
SmartSVN 7.5 Manual

WANdisco plc, www.wandisco.com

2012

Contents

1 Introduction 8

2 Project Window 9
2.1 User Interface . 9
2.2 Perspectives . 9
2.3 Projects . 10
2.4 Directory Tree and File Table . 10

2.4.1 Directory States/Directory Tree . 10
2.4.2 File States/File Table . 10
2.4.3 State Filters . 11
2.4.4 Double Click . 11
2.4.5 Refresh . 12

2.5 Menus . 12
2.5.1 Project . 12
2.5.2 Edit . 13
2.5.3 View . 14
2.5.4 Modify . 15
2.5.5 Change Set . 16
2.5.6 Tag+Branch . 16
2.5.7 Query . 16
2.5.8 Properties . 17
2.5.9 Locks . 18
2.5.10 Changes . 18
2.5.11 Transactions . 18
2.5.12 Window . 19
2.5.13 Help . 20

2.6 Changes View . 20

3 Commands 27
3.1 Check Out . 27
3.2 Import into Repository . 28
3.3 Set Up Local Repository . 29
3.4 Updating . 30

3.4.1 Update . 30
3.4.2 Update More . 31

1

Contents

3.4.3 Exclude from Working Copy . 31
3.4.4 Switch . 31
3.4.5 Relocate . 31

3.5 Local Modifications . 31
3.5.1 Add . 32
3.5.2 Remove . 32
3.5.3 Ignore . 32
3.5.4 Delete Physically . 33
3.5.5 Create Directory . 33
3.5.6 Rename . 33
3.5.7 Move . 33
3.5.8 Detect Moves . 33
3.5.9 Copy . 34
3.5.10 Copy From Repository . 34
3.5.11 Copy To Repository . 35
3.5.12 Copy Within Repository . 35
3.5.13 Revert . 36
3.5.14 Mark Resolved . 36
3.5.15 Mark Replaced . 37
3.5.16 Clean Up . 38
3.5.17 Fix . 38
3.5.18 Validate Working Copy Metadata 39

3.6 Commit . 39
3.7 Merging . 42

3.7.1 Merge . 43
3.7.2 Merge from 2 Sources . 44
3.7.3 Reintegrate Merge . 45
3.7.4 Apply Patch . 45

3.8 Properties . 45
3.8.1 Edit Properties . 46
3.8.2 Set or Delete Property . 46
3.8.3 MIME-Type . 46
3.8.4 EOL-Style . 47
3.8.5 Keyword Substitution . 47
3.8.6 Executable-Property . 47
3.8.7 Externals . 47
3.8.8 Ignore Patterns . 48
3.8.9 Bugtraq-Properties . 48
3.8.10 Merge Info . 49

3.9 Tags and Branches . 49
3.9.1 Tag-Branch-Layout . 50
3.9.2 Add Tag . 51
3.9.3 Tag Multiple Project Roots . 52
3.9.4 Add Branch . 52
3.9.5 Tag Browser . 52

c© 2012 WANdisco plc, www.wandisco.com 2

Contents

3.9.6 Configure Layout . 52
3.10 Queries . 53

3.10.1 Show Changes . 53
3.10.2 Compare with HEAD . 53
3.10.3 Compare with Previous . 53
3.10.4 Compare with Revision . 53
3.10.5 Compare 2 Files . 54
3.10.6 Compare Repository Files or Directories 54
3.10.7 Log . 54
3.10.8 Revision Graph . 54
3.10.9 Annotate . 55
3.10.10Create Patch . 55
3.10.11Create Patch between URLs . 55
3.10.12Export Backup . 56
3.10.13Conflict Solver . 56

3.11 Locks . 56
3.11.1 Refresh . 56
3.11.2 Lock . 57
3.11.3 Unlock . 57
3.11.4 Show Info . 57
3.11.5 Change ’Needs Lock’ . 58

3.12 Remote State . 58
3.12.1 Refresh Remote State . 58
3.12.2 Clear Remote State . 59

3.13 Change Sets . 59
3.13.1 Move to Change Set . 60
3.13.2 Move Up . 60
3.13.3 Move Down . 60
3.13.4 Delete . 60
3.13.5 Edit Properties . 60

3.14 Common Features . 61
3.14.1 Recursive/Depth options . 61
3.14.2 Revision input fields . 61
3.14.3 Repository path input fields . 62
3.14.4 Tag input fields . 62
3.14.5 File/directory input fields . 62

4 Repository Browser 63
4.1 Repository menu . 63
4.2 Edit menu . 64
4.3 View menu . 65
4.4 Modify menu . 65

4.4.1 Create Directory . 65
4.4.2 Remove . 65
4.4.3 Rename . 65

c© 2012 WANdisco plc, www.wandisco.com 3

Contents

4.4.4 Copy/Move . 65
4.4.5 Edit Properties . 66

4.5 Query menu . 66
4.6 Window menu . 66
4.7 Help menu . 67

5 Transactions 68
5.1 Transactions frame . 68

5.1.1 Grouping of revisions . 69
5.1.2 Watched URLs . 69
5.1.3 Read/Unread revisions . 70
5.1.4 Display Settings . 70
5.1.5 Transaction menu . 70
5.1.6 Edit menu . 70
5.1.7 View menu . 71
5.1.8 Modify menu . 71
5.1.9 Query menu . 72
5.1.10 Window menu . 72
5.1.11 Help menu . 72

5.2 Project Transactions . 72
5.2.1 Settings . 73

5.3 Log Cache . 73
5.3.1 Manage Log Caches . 74
5.3.2 Storage . 74

6 Projects 75
6.1 Managing working copies . 75
6.2 Project Manager . 76
6.3 Project Settings . 76

6.3.1 Text File Encoding . 76
6.3.2 Scan . 76
6.3.3 Working Copy . 77
6.3.4 Default Settings . 78

7 Subwindows 79
7.1 File Compare . 79

7.1.1 Comparison . 79
7.1.2 File menu . 80
7.1.3 Edit menu . 80
7.1.4 View menu . 80
7.1.5 Go To menu . 81
7.1.6 Window menu . 81
7.1.7 General Settings . 81
7.1.8 Compare Settings . 81

7.2 Properties Compare . 82

c© 2012 WANdisco plc, www.wandisco.com 4

Contents

7.2.1 File menu . 82
7.2.2 Edit menu . 82
7.2.3 Window menu . 82

7.3 Compare Repository Files or Directories 82
7.3.1 Compare menu . 83
7.3.2 Edit menu . 83
7.3.3 View menu . 83
7.3.4 Window menu . 83

7.4 Conflict Solver . 83
7.4.1 File menu . 84
7.4.2 Edit menu . 84
7.4.3 View menu . 84
7.4.4 Go To menu . 84
7.4.5 Window menu . 84

7.5 Revision Compare . 85
7.5.1 File menu . 85
7.5.2 Edit menu . 85
7.5.3 View menu . 85
7.5.4 Go To menu . 85
7.5.5 Window menu . 85

7.6 Log . 86
7.6.1 Log menu . 86
7.6.2 Edit menu . 87
7.6.3 View menu . 87
7.6.4 Modify menu . 87
7.6.5 Query menu . 88
7.6.6 Window menu . 88
7.6.7 File Export . 88

7.7 Revision Graph . 89
7.7.1 Revisions view . 89
7.7.2 Merge Information . 90
7.7.3 Graph menu . 91
7.7.4 Edit menu . 91
7.7.5 View menu . 91
7.7.6 Modify menu . 91
7.7.7 Query menu . 92
7.7.8 Window menu . 92

7.8 Annotate . 92
7.8.1 Annotate menu . 92
7.8.2 Edit menu . 93
7.8.3 View menu . 93
7.8.4 Revision menu . 93
7.8.5 Go To menu . 93
7.8.6 Window menu . 93

7.9 Merge Preview . 94

c© 2012 WANdisco plc, www.wandisco.com 5

Contents

7.9.1 Merge menu . 94
7.9.2 Edit menu . 94
7.9.3 View menu . 94
7.9.4 Window menu . 94

8 Preferences 95
8.1 On Start-Up . 95
8.2 Project . 95
8.3 Authentication . 95

8.3.1 Editing Profiles . 96
8.3.2 Proxies . 97
8.3.3 Tunnels . 97
8.3.4 Passwords . 98

8.4 User Interface . 98
8.5 Commit . 99
8.6 Conflict Solver . 100
8.7 Open . 100
8.8 Refresh . 101
8.9 Revision Graph . 101
8.10 Built-in Text Editors . 101
8.11 File Compare . 102

8.11.1 External Comparators . 102
8.11.2 External Viewers . 102

8.12 External Tools . 102
8.12.1 Directory Command . 103

8.13 Transactions . 103
8.14 Spell Checker . 104
8.15 Shell Integration (Windows) . 104

8.15.1 Status Cache . 105
8.16 Shell Integration (Mac OS) . 105
8.17 Check for New Version . 105
8.18 Customize . 105

8.18.1 Toolbar (not always available) . 106
8.18.2 Accelerators . 106
8.18.3 Context Menus (not always available) 106

9 Shell Integration 107
9.1 Commands (Windows and OS X 10.5) . 107
9.2 Commands (OS X 10.6) . 107
9.3 Output Window . 108

9.3.1 File menu . 108
9.3.2 Edit menu . 108
9.3.3 Window menu . 108

9.4 Overlay Icons . 108
9.5 Server Mode . 109

c© 2012 WANdisco plc, www.wandisco.com 6

Contents

9.6 Windows Shell Integration . 109
9.7 Mac OS X Finder integration . 110
9.8 Tray Icon . 110
9.9 Status Cache . 111

10 Plugins 113
10.1 JIRA Plugin . 113

10.1.1 Workflow . 113
10.1.2 Requirements . 114

10.2 Trac Plugin . 114
10.2.1 Workflow . 114
10.2.2 Requirements . 115

10.3 Remove Empty Directories . 115
10.4 Quick Update . 116
10.5 Plugin-API . 116
10.6 Send Support Email . 116
10.7 Hide Menu Items . 116
10.8 Merge Info Column . 116
10.9 Tag Multiple . 117
10.10Commit Message Templates . 117

11 Installation and Files 118
11.1 Location of SmartSVN’s settings directory 118
11.2 Notable configuration files . 118
11.3 Company-wide installation . 119
11.4 Command line arguments . 119
11.5 JRE search order (Windows) . 120

12 Advanced Settings 121
12.1 System Properties . 121
12.2 Memory Limit . 121

c© 2012 WANdisco plc, www.wandisco.com 7

Chapter 1

Introduction

SmartSVN is a graphical Subversion (SVN) client. Its target audience are users who
need to manage a number of related files in a directory structure, to control access in a
multi-user environment and to track changes to the files and directories. Typical areas of
application are software projects, documentation projects and website projects.

Acknowledgments

We want to thank all users who have participated in the Early Access/Beta Program of
SmartSVN and in this way helped to improve it by reporting bugs and suggesting features.

Special thanks go to the SVNKit developers (http://www.svnkit.com) who provide
the excellent Subversion base library SVNKit on which SmartSVN has been built, and to
the whole SVN developer community at subversion.apache.org for making Subversion the
most powerful version control system available today.

8

http://www.svnkit.com

Chapter 2

Project Window

The Project Window is the central place for working with SmartSVN. In the center of the
window, the main Directories and Files view show the SVN file system of your currently
opened project (working copy). Various SVN commands on these directories and files are
provided by the menu bar and the toolbar.

2.1 User Interface

In the bottom left area of the Project Window the Output view shows logged output
from executed SVN commands. Depending on the command, there can be several SVN
operations available for the logged files and directories.

In the bottom right the Transactions view (Section 5.2) collects and displays log infor-
mation from the repository. The Changes view (Section 2.6) shows the local modifications
of the currently selected file.

Only one of the aforementioned views can be “active” at any one time. Which one is
displayed in the highlighted title. We will also refer to the active view as the view which
“has the focus”. Menu bar actions (as well as toolbar buttons) are always referring to the
currently active view.

At the very bottom of the Project Window is the status bar, displaying various kinds
of information. The first and largest section of the status bar contains information on the
currently selected menu item, operation progress or the repository URL of the currently
selected file/directory. The second section displays information on your current selection
from the Directories or the Files frame, or no information if neither of these views is
active. The third section displays information on the Refresh state (see 2.4.5) of the
project and the fourth section is used for progress display during the execution of SVN
operations. It may either show the percentage of completion of an operation, or the total
amount of bytes sent and received during the operation.

2.2 Perspectives

The layout of the Project Window can be arranged with the mouse by dragging the
splitters between the various views. By dragging their titles, they can be undocked from

9

Chapter 2. Project Window

one position and docked to another position. You can maximize a view by double-clicking
on its tab title. Double-click again on the tab title to revert it to the non-maximized
state.

A complete layout configuration is called a Perspective. There are two perspectives
available: the Main Perspective and the Review Perspective. The Main Perspective
is primarily intended for giving you an overview of your project and repository state
(Transactions). The Review Perspective is intended for reviewing file content changes,
especially before committing them. Both perspectives can be re-configured to your needs
and you may switch between them in the Window menu.

2.3 Projects

SmartSVN internally manages your SVN working copies in “SmartSVN projects”, as
described in Section 6.

One Project Window shows one project at a time. To work with multiple projects
at the same time, you can open multiple Project Windows by clicking Window|New
Project Window. Already existing projects can be opened in a Project Window via
Open or Manage Projects, and closed via Close.

2.4 Directory Tree and File Table

The directory tree and the file table show the local directories/files below the project’s root
directory. .svn directories, ignored directories and files within other ignored directories
are not displayed.

2.4.1 Directory States/Directory Tree

The directory tree shows the project’s directories and their SVN states, which are denoted
by different icons. The primary directory states are listed in Table 2.1. Every primary
state may be combined with additional states listed in Table 2.2. In case of a versioned
directory, the corresponding revision number is displayed after the name of the directory.
The revision will be omitted if it’s equal to its parent directory revision. If the directory
hasn’t been checked out with depth Fully recursive (see 3.14.1), the check out depth will
be displayed in parantheses, too. The tooltip shows detailed SVN information for the
corresponding directory, similar to the contents of the file table, see below.

To speed search the directory tree for a certain directory, click into the tree (so the
Directories view becomes active) and start typing the directory name. A small popup
will be displayed showing the characters you have already entered. Wildcard symbols ’*’
and ’%’ can be used with the usual meaning.

2.4.2 File States/File Table

The file table shows the project’s files with their SVN states and various additional in-
formation. The primary file states are listed in Table 2.5 and Table 2.6. Every primary

c© 2012 WANdisco plc, www.wandisco.com 10

Chapter 2. Project Window

state may be combined with additional states listed in Table 2.7. The rest of this section
explains configuration options for the file table. They are only related to the current
project and are also stored with the current project.

File Attributes

Tip Certain table columns require access to additional file system files
when scanning the file system and therefore slow down scanning.
The note within the View|Table Columns dialog tells you which
columns these are.

Name Filters

The toolbar of the file table contains the Filter input field, which can be used to restrict
the displayed files to a certain file name pattern. By default, simple patterns, including
the wildcard symbols ’*’ and ’%’, are supported. You can also use ’ !’ at the beginning of
a pattern to invert it. For example, “!*.txt” will show all files which don’t have the .txt
extension.

To clear the Filter field, click on the button right side of the field. In the drop-down
menu on the left side of the Filter field, you can select Regular Expressions instead
of simple patterns. For details on the supported regular expression constructs refer to
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html. With
Save Pattern you can save a pattern. Once a pattern is saved it will be displayed in the
top of the drop-down menu. It can be used by selecting it and removed again by Remove
Pattern.

Similar to the directory tree, the speed search is also available for the file table.

2.4.3 State Filters

With the menu items in the View menu, you can also set filters to display only files which
meet certain criteria. Refer to the View menu (see 2.5.3) for details. The filter behavior
can be customized in the Preferences (see 8.4) with Hide ignored and repository-only
directories according to View-menu filters on the User Interface page.

2.4.4 Double Click

By default, if you double-click on a file in the file table, the file will be “opened” in one
of several ways, depending on its file state:

• For an unchanged file which is remotely changed (see Section 3.12), the Compare
with HEAD (see 3.10.2) command is invoked.

• An unchanged, unversioned or added file is opened with the file editor, see the
Query|Open command (Section 2.5.7) for further details.

• A conflicting file is opened with the Conflict Solver (Section 7.4).

c© 2012 WANdisco plc, www.wandisco.com 11

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Chapter 2. Project Window

• All other files are opened by comparing them (Section 3.10.1).

If, for example, you want to always open (Section 2.5.2) the file independent of its
state by double-clicking it, assign the <Enter>-keystroke accelerator (Section 8.18.2) to
the Query|Open menu item.

2.4.5 Refresh

When a project is opened, the contents of the directory tree and the file table are initialized
by reading the contents of the root directory into memory. Whether or not the complete
project should also be read into memory at project startup can be configured in the
project settings (Section 6.3).

The scanning and refreshing of the project’s directories and files is generally performed
in the background, so you can immediately start to work after opening a project, and you
may continue to work while the project is refreshed. If a Refresh is currently in progress,
the status bar shows a Refreshing symbol and text.

The scanning is performed breadth-first, so you will immediately have the complete
root directory refreshed. When scanning a large working copy, you can force SmartSVN
to give certain subdirectories higher priority in being scanned: As soon as possible select
the (already scanned) directory in the Directories tree you would like to have scanned
recursively. SmartSVN will then reorganize its breadth-first strategy accordingly. The
same holds true for file selections: SmartSVN will give priority in scanning their common
parent directory (and the path up to the root).

Tip The initial scanning/refresh is in general much slower than subse-
quent refreshes due to the system disk cache. On Windows, you
can enable the Status Cache (see 9.9) to get a first “preview” of
your working copy quickly. This preview also allows most of the
commands to be performed. This allows certain SVN operations to
be started before the file system has been scanned.

2.5 Menus

This section summarizes actions which are available from the various Project Window
menus.

Note You may use the Hide Menu Items plugin (see 10.7) to remove
certain menu items from the menu.

2.5.1 Project

• Check Out, see Section 3.1.

• Open Working Copy, see Section 6.

• Edit Working Copy, see Section 6.

c© 2012 WANdisco plc, www.wandisco.com 12

Chapter 2. Project Window

• Remove Working Copy, see Section 6.

• Import into Repository, see Section 3.2.

• Set Up Local repository, see Section 3.3.

• Open or Manage Projects, see Section 6.2.

• Close, see Section 6.

• Manage Log Caches, see Section 5.3.1.

• Settings, see Section 6.3.

• Default Settings, see Section 6.3.

• Exit exits SmartSVN.

2.5.2 Edit

• Stop stops the currently running operation. Depending on the type of operation,
this action might not be applicable. On the other hand, while an operation is
running, most of the other actions are not applicable.

• Reveal in Finder (Mac OS only) brings the Finder process to the front and selects
the currently selected file/directory.

• File Filter positions the cursor in the file table’s filter field.

• Select Committable Files selects all committable files in the file table. Because
SmartSVN allows automatically adding unversioned or removing missing files for a
commit, such files are also selected.

• Select Directory selects the deepest common directory for all selected files in the
file table.

• Select in Project selects the currently selected files/directories from the Transac-
tions (see 5.2) view or the Output area in the file table/directory tree.

• Copy Name copies the name of the selected file/directory to the system clipboard.
If multiple files are selected, all names will be copied, each on a new line.

• Copy Path copies the path of the selected file/directory to the system clipboard. If
multiple files are selected, all paths will be copied, each on a new line.

• Copy Relative Path copies the path of the selected file/directory relative to the
project root directory to the system clipboard. If multiple files are selected, all
paths will be copied, each on a new line.

• Copy URL copies the repository URL of the selected file/directory to the system
clipboard. If multiple files are selected, all URLs will be copied, each on a new line.

c© 2012 WANdisco plc, www.wandisco.com 13

Chapter 2. Project Window

• Copy Revision Number copies the revision number associated with the item in the
currently active view (e.g. Directory view, Files view, Transactions view) to the
system clipboard. If multiple items are selected, all their revision numbers will be
copied, each on a new line. For example, if a file in the Files view is selected, this
command will copy the revision number of the file to the clipboard.

• Copy Message copies the message of the currently selected revision in the Trans-
actions (see 5.2) view. If multiple revisions are selected, all messages will be copied,
each on a new line.

• Clear Output clears the output displayed in the Output view.

• Use Customize to customize accelerators, context menus and the toolbar (see Sec-
tion 8.18).

• Preferences shows the application preferences (see Section 8).

2.5.3 View

• Table Columns lets you specify which file attributes will be displayed in the file
table, see Table 2.3 and Table 2.4. The order of the table columns can also be defined
here. (Alternatively, you can reorder them directly in the file table by dragging the
column headers.) Select Remember as default to have the selected configuration
applied to every new project.

• Refresh, see Section 2.4.5.

• Files From Subdirectories enables the recursive view showing not only files from
the currently selected directory but also those from subdirectories.

• With Unchanged Files unchanged files are displayed. It is often convenient to hide
them, as they are of no interest for most of the SVN commands.

• With Unversioned Files unversioned files (also within unversioned directories) are
displayed.

Note The Unversioned Files option does in no way affect the unver-
sioned files themselves or their SVN states. Certain operations,
which can work on unversioned files, will include them anyway.
Parent directories of unversioned files will continue to display the
Direct/Indirect Local Changes state. To actually ignore such files
on the SVN-level you can use the Ignore command (see 3.5.3).

• With Ignored Files ignored files within versioned directories will be displayed. Files
from ignored directories are never displayed.

c© 2012 WANdisco plc, www.wandisco.com 14

Chapter 2. Project Window

• With Files Assigned to Change Set selected, files which have already been assigned
to a Change Set (see 3.13) will be displayed. Otherwise, these files will be hidden
in order to give a better overview of the files not assigned to any Change Sets.
This option has no effect if the selected directory is a Change Set itself or part of a
Change Set.

• With Remote Changed Files selected, files will be displayed which are remotely
changed (see Table 3.3). Typically, this option has no effect if Unchanged Files is
selected, because these files are shown anyway. An exception here are files which
only exist remotely, i.e. files which are in Remote state.

2.5.4 Modify

• Update, see Section 3.4.1.

• Update More, see Section 3.4.2.

• Exclude from Working Copy, see Section 3.4.3.

• Switch, see Section 3.4.4.

• Relocate, see Section 3.4.5.

• Merge, see Section 3.7.1.

• Merge from 2 Sources, see Section 3.7.2.

• Reintegrate Merge, see Section 3.7.3.

• Apply Patch, see Section 3.7.4.

• Commit, see Section 3.6.

• Add, see Section 3.5.1.

• Remove, see Section 3.5.2.

• Ignore, see Section 3.5.3.

• Delete Physically, see Section 3.5.4.

• Create Directory, see Section 3.5.5.

• Rename, see Section 3.5.6.

• Move, see Section 3.5.7.

• Detect Moves, see Section 3.5.8.

• Copy, see Section 3.5.9.

• Copy From Repository, see Section 3.5.10.

c© 2012 WANdisco plc, www.wandisco.com 15

Chapter 2. Project Window

• Copy To Repository, see Section 3.5.11.

• Copy Within Repository, see Section 3.5.12.

• Revert, see Section 3.5.13.

• Mark Resolved, see Section 3.5.14.

• Mark Replaced, see Section 3.5.15.

• Clean Up, see Section 3.5.16.

• Fix, see Section 3.5.17.

• Validate Working Copy Metadata, see Section 3.5.18.

2.5.5 Change Set

• Move to Change Set, see Section 3.13.1.

• Move Up, see Section 3.13.2.

• Move Down, see Section 3.13.3.

• Delete, see Section 3.13.4.

• Edit Properties, see Section 3.13.5.

2.5.6 Tag+Branch

• Add Tag, see Section 3.9.2.

• Tag Multiple Project Roots, see Section 3.9.3.

• Add Branch, see Section 3.9.4.

• Tag Browser, see Section 3.9.5.

• Configure Layout, see Section 3.9.6.

2.5.7 Query

• Open opens the selected files/directory. If the directory tree has the focus, this ac-
tion will only work if a Directory Command has been configured in the preferences
(see Section 8.12). If the file table has the focus, the file(s) will be opened in an
editor. The editor to be used to open a file can be configured in the External Tools
section of the Preferences (see Section 8.12). For files, you can specify a limit on
the number of files beyond which you will be asked before the files are opened at
once; for details refer to Section 8.7.

c© 2012 WANdisco plc, www.wandisco.com 16

Chapter 2. Project Window

• Use Open in Repository Browser to open the selected directory/file in the Repos-
itory Browser (see 4).

• Show Changes, see Section 3.10.1.

• Compare with HEAD, see Section 3.10.2.

• Compare with Previous, see Section 3.10.3.

• Compare with Revision, see Section 3.10.4.

• Compare 2 Files, see Section 3.10.5.

• Compare Repository Files or Directories, see Section 3.10.6.

• Log, see Section 3.10.7.

• Revision Graph, see Section 3.10.8.

• Annotate, see Section 3.10.9.

• Create Patch, see Section 3.10.10.

• Create Patch between URLs, see Section 3.10.11.

• Export Backup, see Section 3.10.12.

• Conflict Solver, see Section 3.10.13.

• Refresh Remote State, see Section 3.12.1.

• Clear Remote State, see Section 3.12.2.

2.5.8 Properties

• Edit Properties, see Section 3.8.1.

• Set or Delete Property, see Section 3.8.2.

• MIME-Type, see Section 3.8.3.

• EOL-Style, see Section 3.8.4.

• Keyword Substitution, see Section 3.8.5.

• Executable-Property, see Section 3.8.6.

• Externals, see Section 3.8.7.

• Ignore Patterns, see Section 3.8.8.

• Bugtraq-Properties, see Section 3.8.9.

• Merge Info, see Section 3.8.10.

c© 2012 WANdisco plc, www.wandisco.com 17

Chapter 2. Project Window

2.5.9 Locks

• Refresh, see Section 3.11.1.

• Lock, see Section 3.11.2.

• Unlock, see Section 3.11.3.

• Show Info, see Section 3.11.4.

• Change ’Needs Lock’, see Section 3.11.5.

2.5.10 Changes

• Use Reload to refresh the file contents from the file system and recalculate the
differences.

• Use Previous Change to navigate to the previous change within the currently se-
lected file. If there is no previous change, SmartSVN will select the last change of
the previous file (as displayed in the file table).

• Use Next Change to navigate to the next change within the currently selected file.
If there is no next change, SmartSVN will select the first change of the next file (as
displayed in the file table).

• For Ignore Whitespace for Line Comparison, refer to Section 7.1.8.

• For Ignore Case Change for Line Comparison, refer to Section 7.1.8.

• For Settings, refer to Section 7.1.8.

2.5.11 Transactions

• Refresh, see Section 5.1.5.

• Mark as Read, see Section 5.1.7.

• Mark All as Read, see Section 5.1.7.

• Select Show Branches and Tags to display not only the working copy revisions but
also revisions of the trunk, branches and tags. Refer to Section 5.1.2 for details.

• Select Show Additional Watched URLs to display not only the working copy
revisions but also revisions which have explicitly been configured to be watched by
Configure Watched URLs.

• Ungrouped Revisions, see Section 5.1.1.

• Grouped by Days, see Section 5.1.1.

• Grouped by Weeks, see Section 5.1.1.

c© 2012 WANdisco plc, www.wandisco.com 18

Chapter 2. Project Window

• Grouped by Date, see Section 5.1.1.

• Grouped by Authors, see Section 5.1.1.

• Grouped by Location, see Section 5.1.1.

• Use Merge to merge the selected revision to your local working copy. If you want
to configure advanced options for the merge, use the default Merge command (see
3.7.1).

• Rollback, see Section 7.6.4.

• Change Commit Message, see Section 7.6.4.

• Configure Watched URLs, see Section 5.1.2.

• Settings, see Section 5.2.1.

2.5.12 Window

• New Project Window opens a new Project Window for working on another project.

• New Repository Browser opens a new Repository Browser (see 4).

• Show Transactions shows the standalone Transactions Frame (see 5.1).

• Full Screen switches the program to full-screen mode. To get back to the normal
mode, click on this menu entry again.

• Minimize minimizes the program window. On most platforms, to bring it back you
have to click on SmartSVN in the task bar.

• Maximize/Restore maximizes or de-maximizes the currently active view. This
action can also be performed by double-clicking on the tab title area of the respective
view.

• Hide Tool Window hides the currently active view. This is the same as clicking
on the Close button of the view. To bring the hidden view back, select the corre-
sponding entry in this menu. For example, after hiding the Directories view, you
can bring it back with Window|Directories.

• Directories puts the focus in the Directory tree (see 2.4).

• Files puts the focus in the File table (see 2.4).

• Output puts the focus in the Output view (see 2.1).

• Changes puts the focus in the Changes view (see 2.1).

• Transactions puts the focus in the Transactions view (see 5.2).

c© 2012 WANdisco plc, www.wandisco.com 19

Chapter 2. Project Window

• Main Perspective switches to the Main Perspective (see 2.2).

• Review Perspective switches to the Review Perspective (see 2.2).

The subsequent content of the Window menu depends on which windows are currently
open. For each window, there is a menu item to switch to it.

2.5.13 Help

• Help Topics shows the online version of SmartSVN’s help.

• Contact Support links to our support site http://support.smartsvn.com .

• Register switches to the Professional edition.

• Enable Connection Logging can be used to trace and analyze problems when
working with SmartSVN. The dialog will give you further instructions on how to
use Connection Logging.

• Use Obfuscate Log Cache to remove potentially confidential information from a
Log Cache so it can be sent to WANdisco PLC for debug purposes. Select the Cache
to obfuscate, the Output File where the obfuscated cache should be stored and the
Map File which contains the mapping between between real repository paths and
obfuscated paths.

• Check for New Version connects to the SmartSVN website and checks, if there
is a new version available for download. By default, this check is also performed
when starting SmartSVN. You can configure the checking for new versions within
the Preferences (see 8.17).

• About SmartSVN shows information about the SmartSVN version you’re using
and about your SmartSVN license. Also, the SmartSVN license agreement can be
read here.

2.6 Changes View

The Changes view displays local changes of the file currently selected in the file table.
More precisely, it displays the differences between the currently selected file, as found
in the working copy, and the corresponding pristine copy of that file, as found in the
repository.

Tip The Review perspective (see 2.2) is intended to provide enough
space for the Changes view, so you can switch between the Main
and Preview perspective instead of resizing the Changes view.

c© 2012 WANdisco plc, www.wandisco.com 20

http://support.smartsvn.com

Chapter 2. Project Window

Icon State Details

Unchanged Directory is under version control, not modified and equal
to its revision in the repository (i.e. to its pristine copy).

Unversioned Directory is not under version control and hence only exists
locally.

Ignored Directory is not under version control (exists only locally)
and is marked as to be ignored.

Modified Directory itself has been modified compared to its revision
in the repository, i.e. to its pristine copy.

Added Directory is scheduled for addition.

Removed Directory is scheduled for removal.

Replaced Directory has been scheduled for removal and was added
again.

Copied Directory has been added with history.

History-Scheduled A parent directory has been added with history, which im-
plicitly adds this directory with history.

Missing Directory is versioned, but does not exist locally.

Added-Missing The directory has been scheduled for addition, but is locally
missing. Refer to the Fix command (see 3.5.17).

Conflict An update command lead to conflicting changes in directo-
ries’ properties.

Incomplete A previous update was not completed. Run the update
again to finish it.

Root Directory is either the project root or an external root.

Nested Root Directory is a nested working copy root, but not external.
Refer to the Fix command (see 3.5.17).

Obstructed A file exists locally, but according to the pristine copy (i.e.
the information from the repository) it should be a direc-
tory. Please backup the file, then remove it and update the
directory from the repository.

Phantom The directory neither exists locally nor is versioned, but is
still present in the working copy metadata (.svn directory).
It’s probably part of a tree conflict (see 3.5.14).

Remote Directory only exists in the repository. This state is only
used for the remote state command (see Section 3.12).

Unscanned Directory has not been scanned yet (see Section 2.4.5).

Figure 2.1: Primary Directory States

c© 2012 WANdisco plc, www.wandisco.com 21

Chapter 2. Project Window

Icon State Details

Switched Directory is switched (compared to its parent); see
Section 3.4.4.

Locked Directory is locked locally because an operation has
been interrupted before. A Cleanup (see 3.5.16)
should fix the problem.

Direct Local Changes There are local changes to this directory itself.

Indirect Local Changes There are local changes to one of its files or to one
of the subdirectories of this directory.

Direct Remote Changes There are remote changes to this directory itself, see
Section 3.12.

Indirect Remote Changes There are remote changes to one of its files or to one
of the subdirectories of this directory, see Section
3.12.

Tree Conflict The directory is part of a tree-conflict, see Section
3.5.14 for details.

Figure 2.2: Additional Directory States

c© 2012 WANdisco plc, www.wandisco.com 22

Chapter 2. Project Window

SmartSVN Name SVN info Description
Name (same) File name
Revision (same) Current revision of the file
Local State Schedule Textual representation of the local state

of the file
Lock Lock Owner Lock state of the file (see Section 3.11)
Last Rev. Last Changed Rev. Revision in which this file has been com-

mitted
Last Changed Last Changed Date Time of the last commit of the file
Text Updated Text Last Updated Time of the last (local) update of the

file’s text; this attribute is set when the
content of a file has been changed by an
SVN command.

Props Updated Properties Last Updated Time of the last (local) update of the
file’s properties; this attribute is set
when the properties of a file have been
changed by an SVN command.

Last Author Last Changed Author Last author, i.e. who performed the last
commit on the file

Type svn:mime-type The file’s type (see Section 3.8.3)
EOL svn:eol-style End-Of-Line Type of the file (see Sec-

tion 3.8.4)
Keyw. svn:keywords Keyword substitution options of the file

(see Section 3.8.5)
Needs Lock svn:needs-lock Whether the file should be locked before

working (see Section 3.11.5)
Executable svn:executable Whether the file has the Executable-

Property set (see Section 3.8.6)
Merge Info svn:mergeinfo Whether the file has the Merge Info-

Property set (see Section 3.8.10): None
for no Merge Info set, Empty for an
empty Merge Info or Present for non-
empty Merge Info. Provided by the
Merge Info Column plugin (see 10.8).

Copy From Copy From URL/Rev Location and URL from which this file
has been copied (locally). This value is
only present if the file is in Copied state

Figure 2.3: File attributes with SVN counterparts

c© 2012 WANdisco plc, www.wandisco.com 23

Chapter 2. Project Window

SmartSVN Name Description
Remote State Remote state of the file (see Section 3.12)
Ext. The file’s extension
Relative Directory Parent directory of the file relative to the selected directory
File Time The local time of the file
Attrs. Local file attributes: R for read-only and H for hidden
Size The local size of the file
Branch The tag/branch to which the file is currently switched (see 3.4.4).

For details, refer to Section 3.9.1.
Change Set The Change Set (see 3.13) to which the file belongs.

Figure 2.4: File attributes without SVN counterparts

c© 2012 WANdisco plc, www.wandisco.com 24

Chapter 2. Project Window

Icon State Details

Unchanged File is under version control, not modified and equal
to its revision in the repository (i.e. to its pristine
copy).

Unversioned File is not under version control, and only exists
locally.

Ignored File is not under version control (only exists locally)
and is marked to be ignored.

Modified (content only) The content of the file has been modified but not its
properties (compared to its revision in the reposi-
tory, i.e. its pristine copy).

Modified (properties only) The properties of the file have been modified but not
the content (compared to its revision in the reposi-
tory, i.e. to its pristine copy).

Modified (properties only) The content and properties of the file have been
modified (compared to its revision in the repository,
i.e. to its pristine copy).

Missing File is under version control, but does not exist lo-
cally.

Added File is scheduled for addition.

Removed File is scheduled for removal.

Replaced File has been scheduled for removal and was added
again.

Copied File has been added with history.

History-Scheduled A parent directory has been added with history,
which implicitly adds this file with history.

Remote File does not exist locally, but only in the repository.
This state is only used for the remote state (see
Section 3.12).

Conflict An update command lead to conflicting changes ei-
ther in content or in properties.

Merged The file has been merged. Refer to the Merge com-
mand (see 3.7.1) for details.

Figure 2.5: Common Primary File States

c© 2012 WANdisco plc, www.wandisco.com 25

Chapter 2. Project Window

Icon State Details

Incomplete A previous update was not completed. Run the update again
to finish it.

Name conflict There exists another file in the repository with the same name,
only differing in upper/lower case. Such files can’t be checked
out on case-insensitive file systems. To fix this problem the
corresponding files have to be renamed in the repository.

Obstructed A directory exists locally, but according to the pristine copy (i.e.
the information from the repository) it should be a file. Please
backup the contents of the directory, then remove it and update
the file from the repository.

Inaccessible The file’s content is not accessible, hence its state (modification)
can’t be determined. It’s probably locked by another applica-
tion.

Phantom The file neither exists locally nor is versioned, but is still present
in the working copy metadata (.svn directory). It’s probably
part of a tree conflict (see 3.5.14).

Case-Changed The case of the file name has changed on an operating system
that is case-insensitive with respect to file names. Refer to the
Fix command (see 3.5.17) on how to handle such files.

Figure 2.6: Rare Primary File States

Icon State Details

Switched File is switched (compared to its parent directory); see Section
3.4.4.

Locked (Self) The file is locked in the repository by yourself (or more specif-
ically, it is locked for the current working copy). See Section
3.11.

Locked (Other) The file is locked in the repository by some other user, see
Section 3.11.

Lock Necessary The file needs to be locked before starting to work, see Section
3.11.5.

Tree Conflict The file is part of a tree-conflict, see Section 3.5.14 for details.

Figure 2.7: Additional File States

c© 2012 WANdisco plc, www.wandisco.com 26

Chapter 3

Commands

SmartSVN provides most of the SVN command line commands in a standalone version,
but also combines them into powerful higher-level commands. Common enhancements
that are available for several of the following commands are explained in Section 3.14.

3.1 Check Out

Use Project|Check Out to create a working copy from a project which is already under
SVN control.

Page “Repository”

The first step is to enter the URL of the repository you want to check out from. On the
subsequent pages you will be able to specify a subdirectory within the repository, so you
don’t have to append the subdirectory to the repository URL on this page.

Click Next to continue.

Page “Location”

After switching to this page, the repository will be scanned. A few moments later you’ll
see the root content of the repository. Expand the tree nodes to scan into the repository
structure. For details refer to Section 4.

Use Show Revision to define the revision of your selected directory that you want
to check out. Please note that the repository contents might change when changing the
revision.

Select the repository directory you want to check out and click Next.
When working with trunk, tags and branches it’s not recommended to check out the

whole project, because due to the increasing number of tags the working copy (not the
repository) would be growing quickly, over time accumulating a lot of unneeded files on
your disk. Instead you should check out only the trunk or a certain tag or branch and if
necessary switch (see 3.4.4) to another location. SmartSVN tries to detect whether you
are going to check out a whole project instead of a single trunk/branch and will warn you
accordingly.

27

Chapter 3. Commands

Sometimes you won’t need to check out the complete trunk/branch of a project, but
only a certain sub-directory. Certain features (such as tags) won’t work on sub-directories,
hence SmartSVN will ask you whether to check out the necessary parent directory non-
recursively. Such non-recursive check outs (also called “sparse checkouts”) are efficient
and recommended in a situation like this.

Page “Local Directory”

On this page you can select the local directory into which the working copy should be
checked out. Use the options to define how the directory name should be created. The
Checkout Directory depends on these options and always shows the final directory into
which the checkout will occur (i.e. where the root .svn- directory will be created).

When deselecting Check out recursively, you will only check out the selected repos-
itory directory itself, but no subdirectories. Later you may choose to check out certain
subdirectories with Update More (see 3.4.2). Non-recusive checkouts can be useful if you
wish to skip certain modules of a project.

Click Next to proceed.

Page “Project”

On this page you can select whether to check out a working copy, i.e. to create the
necessary .svn/ structure, or to simply Export the files from the repository.

With Check out a working copy, SmartSVN will create a working copy for your
checkout source. In this case you may select Add a new project for this working copy,
specify the project’s name and specify an optional group (Project Manager (see 6.2))
to which the project will be added. You may select Add to current project to add the
working copy to the currently open project (if present). Or you may select Don’t manage
as project to just create a temporary project for this working copy.

With Export only, SmartSVN will just export the files from the repository without
creating the .svn/ subdirectory, meaning you won’t be able to perform the usual SVN
commands on these exported directories and files.

Click Next to proceed.

3.2 Import into Repository

Use Project|Import into Repository to add an unversioned local directory to the reposi-
tory and to create the corresponding SmartSVN project. Only the specified directory will
be put under version control using this command. Use the Add (see 3.5.1) and Commit
(see 3.6) commands to import other files and directories of the project individually into
the repository.

Page “Local Directory”

Select the unversioned Directory which you want to import into the repository.

c© 2012 WANdisco plc, www.wandisco.com 28

Chapter 3. Commands

Page “Repository”

Choose the Repository into which you want to import.

Page “Location”

After switching to this page, it takes a few moments until the first level of the repository
is scanned. If you look into deeper levels of the repository by expanding the directory
nodes, these levels will be scanned also. For more details refer to Section 4. Use the
Create Directory tool button to create new directories in the repository.

Note You can create directories recursively in one go, by specifying the
directories separated by /. This helps to avoid cluttering up the
Log, as only one revision for creating all of these nested directories
will show up.

After you’ve created the necessary directory structure in the repository, select the
directory that should be linked with the root of your local project and click Next.

Page “Project”

On this page you can configure to which project the imported working copy will be added.
You may select Add a new project for this working copy, specify the project’s name and
specify an optional group (see Project Manager (see 6.2)) to which the project will be
added. You may select Add to current project to add the working copy to the currently
open project (if present). Or you may select Don’t manage as project to just create a
temporary project for this working copy.

Configuring the project and doing the final import

The result of this command will be a new project, for which only the local root directory is
under SVN control. This gives you many possibilities to configure which files/directories
of your local file system should actually be versioned in the repository. From the Edit
menu you can use Add and Ignore on files and directories. Furthermore, for files you can
adjust properties using the respective commands from the Properties menu. After the
project has been fully configured, use Modify|Commit to do the final import into the
repository.

3.3 Set Up Local Repository

Use Project|Set Up Local Repository to set up a new local SVN repository and optionally
svnserve to access this repository.

To use this command you need to have a local installation of the Subversion command
line binaries. You can download them from http://subversion.tigris.org. It’s rec-
ommended to have these binaries and the necessary libraries on your operating system
path. Enter the full path to svnadmin and svnserve.

c© 2012 WANdisco plc, www.wandisco.com 29

http://subversion.tigris.org

Chapter 3. Commands

Note When proceeding with Next SmartSVN will perform some ba-
sic correctness checks on the chosen files by executing svnadmin

--version and svnserve --version, respectively. Later on
SmartSVN needs to be able to execute svnadmin create

[repository] and svnserve -d -r [repository-root], respec-
tively.

On the Repository page, enter the New Repository Location where the repository
will be created.

On the Username page, enter a Username and Password; the associated user which
will have write-access to the newly created repository. Anonymous access will be restricted
to read-only.

Note SmartSVN will configure the file conf/svnserve.conf (in the se-
lected repository directory) to use the password file conf/passwd.
Later on you can add users and change usernames and passwords
in this file.

After the repository has been created and configured successfully, you may choose to
Start ’svnserve’ automatically when accessing the repository. Refer to Section 8.3.1
for details. Select Proceed with importing files into the repository to continue with
the Import into Repository wizard (see 3.2).

3.4 Updating

Updating from the repository can be done either with a simple update of the working copy
or by switching the working copy to another location/revision. The following commands
are available from the Modify menu.

3.4.1 Update

Use Modify|Update to get the latest changes or a specific revision from the repository
for the selected files/directory.

Select HEAD to get the latest changes. To get a revision, select Revision and enter
the revision number. Select Recurse into subdirectories to perform the update command
not only for the current selected directory, but also for all subdirectories.

Advanced options

For sparse working copies, the Update will not pull in files/directories of repository sub-
trees that haven’t been checked out yet. Select Set depth to working copy to get new
subtrees as well (according to the selected Depth option).

When selecting Allow unversioned obstructions, SmartSVN will continue to update
new files from the repository for which locally unversioned files already exist. Otherwise
the update will be cancelled in such situations, giving you the chance to cleanup these
locally unversioned files beforehand.

Use Include Externals to descend into externals (see 3.8.7).

c© 2012 WANdisco plc, www.wandisco.com 30

Chapter 3. Commands

3.4.2 Update More

Use Modify|Update More to get locally missing directories and files from the repository
for a foregoing non-recursive Update or Check Out (see 3.1).

Update More checks for the currently selected directory whether there are subdirec-
tories or files that haven’t been checked out yet. They are presented in a list and you can
select one or more of them to update. Recurse into subdirectories specifies whether the
selected entries should be updated or checked out recursively.

To get rid of locally checked out directories, use the inverse operation Exclude from
Working Copy (see 3.4.3).

3.4.3 Exclude from Working Copy

Use Modify|Exclude from Working Copy on one or more directories to locally exclude
them from the working copy. The directories won’t be removed from the repository, but
will simply be ignored during subsequent Updates (see 3.4.1). To get excluded directories
back, use the inverse operation Update More (see 3.4.2).

3.4.4 Switch

Use Modify|Switch to switch the selected directory or file to another repository location.
Select Trunk to switch back from a branch or tag to the main trunk. Select Branch

or Tag and enter the branch or tag name to switch to that branch or tag. Select Other
URL to switch to an arbitrary URL within the same repository.

You can either switch to the selected location At HEAD or at a specific Revision.
Select Recurse into subdirectories to perform the switch command not only for the
currently selected directory, but also for all subdirectories. Regarding the Advanced
options, refer to the Update command (see 3.4.1).

3.4.5 Relocate

Use Modify|Relocate to change the repository for the selected directory (and subdirecto-
ries) of your local working copy. Typically, this command is used when the URL/structure
of an SVN server has changed.

Relocate Directory shows the directory, relative to the project’s root directory, which
will be relocated. From URL displays the repository root URL of the selected directory,
if this information is available locally. Otherwise it displays the complete repository URL
of the directory. With To URL you can now specify the replacement string for From
URL: Relocate will then search within the selected directory and subdirectories for URLs
starting with From URL and replace the corresponding part by To URL.

3.5 Local Modifications

Local commands can be performed without a connection to the repository. They are used
to prepare the working copy state for a final commit. The following local commands are

c© 2012 WANdisco plc, www.wandisco.com 31

Chapter 3. Commands

available from the Modify menu.

3.5.1 Add

Use Modify|Add to schedule files or directories for addition to SVN control.
In case of directories you have the option to Recurse into subdirectories, which, when

selected, causes all subdirectories and files from subdirectories to be added as well.
When a file is added, SmartSVN automatically applies certain properties to the file.

Most important is the automatic detection of the file’s MIME-Type (see 3.8.3), which
can basically be text or binary. Further property defaults can be specified in the project
settings (see 6.3).

Tip Automatic detection can be overridden by the Binary Files project
settings (see Section 6.3.3).

3.5.2 Remove

Use Modify|Remove to schedule the selected files/directory for removal from SVN control.
Select Remove from SVN control and delete locally to schedule the files/directory

for removal and to also delete them locally. Select Just remove from SVN control to
schedule for removal only. After committing the changes, the files/directories will remain
as unversioned.

By default, SmartSVN refuses to remove files or directories that have local modifi-
cations, as well as directories that contain modified or unversioned files. Select Force
Removal if you wish to perform the removal of such items anyway.

3.5.3 Ignore

Use Modify|Ignore to mark unversioned files or directories as to be ignored “locally”.
This is useful for files or directories which should not be put under SVN control. These
are usually temporary, intermediate or automatically generated files, like C’s .obj or
Java’s .class files, or directories containing such files.

Local ignore patterns are stored within the working copy (in the svn:ignore property
of the corresponding parent directories) and will be committed. Therefore, to have a file
locally ignored, its parent directory must either be ignored as well, or be versioned, so that
the necessary svn:ignore property can be stored there. Hence, when trying to ignore a
file or directory within another unversioned directory, SmartSVN will ask you to add this
parent directory. In addition to local ignore patterns, you can configure global ignored
patterns in the project settings (see 6.3).

You can select Ignore Explicitly to add each selected file/directory explicitly to the
ignore list. If SmartSVN detects a common pattern for the selected files/directory, it will
also allow you to Ignore As Pattern.

This command is a shortcut for editing the svn:ignore property directly by Proper-
ties|Ignore Patterns. Refer to Section 3.8.8 for details.

c© 2012 WANdisco plc, www.wandisco.com 32

Chapter 3. Commands

3.5.4 Delete Physically

Use Modify|Delete Physically to delete local files, or unversioned or ignored directories.

Warning! Be careful before deleting a file (or directory) as there will be no
way to recover unversioned items.

3.5.5 Create Directory

Use Modify|Create Directory to locally create a directory within the currently selected
directory.

Enter the Path of the subdirectory that will be created. The path may consist of
multiple directory names, separated by “\” or “/” to create multiple directories at once.
Select Schedule for addition to schedule the created directory/directories for addition to
SVN control, see Section 3.5.1.

3.5.6 Rename

Use Modify|Rename to rename a file or directory which is already under SVN control.
The file with the old name will be scheduled for removal, the file with the new name for
addition. This command will preserve the file’s history.

3.5.7 Move

Use Modify|Move to move and/or rename a file or directory which is already under SVN
control. The file with the old name will be scheduled for removal, the file with the new
name for addition. This command will preserve the history of the moved item.

There is also a special mode of this command that can be used to tell SmartSVN “after
the fact” that a file was moved. For this to work, only two files can be selected: One that
is missing or removed, and another that is unversioned, added or replaced. SmartSVN
will then remove the missing file (if necessary), add the unversioned file (if necessary),
and connect the history of the added file to that of the removed file.

Tip You can also use Drag-And-Drop to copy or move files and direc-
tories.

3.5.8 Detect Moves

Use Modify|Detect Moves to convert already performed “manual” moves (including re-
names) of files to “SVN” moves. Typically, you will not perform moves within SmartSVN
itself, but with system commands, through an IDE, etc. One such external move results
in a missing file and a new unversioned file. Both files could then be changed and commit-
ted. This will result in the repository content being up to date, but will not preserve the
relationship between both files (which is actually one moved file). This especially affects
the log of the added file: It will start at the committed revision and won’t include the revi-
sions of the removed file. To preserve the relation (and hence history/log), a “post-move”

c© 2012 WANdisco plc, www.wandisco.com 33

Chapter 3. Commands

on both files has to be performed. Detect Moves can detect such already performed
“manual” moves based on the file content and displays the corresponding suggestions of
which files could be “post-moved”.

Invoke Detect Moves on a set of missing and unversioned files for which “post-move”
should be detected. Depending on the number of selected files, the operation might take a
while. The results will be displayed in terms of a list of possible “post-moved” files pairs.

Suggestion displays the detected move in a descriptive manner. If you agree that
the corresponding file pair actually represents a move that has happened, keep it selected
so the corresponding “post-move” will be performed. Similarity can be helpful for this
decision. It is entirely based on the comparison of the file contents and denotes the
calculated likelihood for the file pair to be an actual move.

For more details, Target displays the name of the unversioned (i.e. new) file. Source
displays the name of the missing (i.e. old) file. If the name of the file has not changed,
i.e. Target would be equal to Source, Source is omitted. In the same manner Target
Path displays the path of the new file and Source Path displays the path of the old file.
Again, Source Path will be omitted if it is equal to Target Path.

There can also be more than one possible Source for a specific Target. In this case
SmartSVN always suggests the best matching Source, i.e. the file for which the highest
Similarity value was calculated, and Alternatives shows the number of possible alternative
sources. Use Compare to compare the currently selected Source and Target file with the
File Compare (see 7.1). Use Alternatives to select an alternative source to be used instead
of the original suggestion. Finally, if you consider a particular suggestion and all available
Alternatives incorrect, you may deselect the suggestion so that no “post-move” will be
performed for the respective target.

Click OK to perform the selected “post-moves”.

3.5.9 Copy

Use Modify|Copy to create a copy of a file or directory which is already under SVN
control. This command will preserve the history of the copied item.

Select the Target Directory under which the copy of the file/directory will be created,
and specify the New Name.

There is also a special mode of this command that can be used to tell SmartSVN
“after the fact” that a file was copied. For this to work, exactly two files must be selected:
One that is versioned, but not added or replaced, and another that is unversioned, added
or replaced. SmartSVN will then add the unversioned file (if necessary) and connect the
history of the added file to that of the other file.

Tip You can also use Drag-And-Drop to copy or move files and direc-
tories.

3.5.10 Copy From Repository

With Modify|Copy From Repository you can copy a file or directory from the repository
to your local working copy. This command can be used for recovering deleted files and
directories from earlier revisions.

c© 2012 WANdisco plc, www.wandisco.com 34

Chapter 3. Commands

Repository is the repository of your local working copy, it can’t be changed as copies
can only be performed within the same repository. For Copy enter the file/directory to be
copied, along with its Source Revision. Specify the local directory Into Local into which
the file/directory should be copied. With Name will be the name (i.e., last component
of the path) of the restored file/directory.

3.5.11 Copy To Repository

With Modify|Copy To Repository you can copy the selected local file/directory to the
repository. This operation can be used to create tags, although SmartSVN provides more
convenient commands for this task (see Section 3.9).

Repository is the repository of your local working copy, it can’t be changed as copies
can only be performed within the same repository. The local file/directory Copy Local
will be copied to the project’s Repository. The target directory is Into Directory. With
Name will be the name (i.e. last component of the path) of the resulting file/directory.
Because the copy is directly performed into the repository, you have to specify a Commit
Message.

Use Externals Revisions to specify how to handle external revisions (see 3.8.7). This
option is only relevant for externals which have their revisions set to HEAD. By default,
Leave as is will not modify any external revisions. Choose Fix all to have all revisions set
to their current values, as present in the working copy. Choose Fix except below to have
all revisions set to their current values except externals pointing to the specified location,
or some subdirectory of this location.

Only when fixing externals you can make sure that later checkouts of the copied
location will produce exactly the same working copy. Otherwise, externals which have
been left at HEAD will continue to bring the latest revisions of that external, which are
in general not equal to it at the time of creating the copy.

3.5.12 Copy Within Repository

With Modify|Copy Within Repository you can perform copy operations that take place
entirely within a repository. This is for instance a convenient and fast way to create
repository tags/branches.

Select the Repository within which the copy should be performed. Copy From and
the Source Revision specify the copy source. For Copy you can either select to copy
To or to copy Contents Into. In the case of copy To, the source will be copied into
the Directory with its name set to With Name (last component of the path). For copy
Contents Into, the contents (files and directories) of the source will be copied directly into
the Directory with their corresponding names. Because the copy is directly performed in
the repository, you have to specify a Commit Message.

Note This copy operation is in fact not a local operation, as it requires
no working copy. Due to its close relationship with the other copy
operations we have nevertheless put it into the chapter “Local Mod-
ifications”.

c© 2012 WANdisco plc, www.wandisco.com 35

Chapter 3. Commands

3.5.13 Revert

Use Modify|Revert to revert the local changes of the selected files/directories. In case of
directories you have the option to Revert Recursively (i.e. to recurse into subdirectories).
If deselected, only the properties of the directory itself will be reverted.

• Added and copied files/directories will be unscheduled for addition and returned to
unversioned state.

• Removed files/directories will be unscheduled for removal and restored with their
content and properties taken from the pristine copy.

• Replaced files/directories will be unscheduled for replacement and restored with
their content and properties taken from the pristine copy.

• Modified files/directories will be restored with their content and properties taken
from the pristine copy (overwriting local changes!).

• Missing files will be restored with their content and properties taken from the pris-
tine copy. Missing directories can’t be restored, because the pristine copy is also
missing. You have to freshly Update (see 3.4.1) them from the repository.

• Conflicted files/directories will be restored with their content and properties taken
from the pristine copy (ignoring local changes which caused the conflict!).

• For Case-changed files their original file names will be restored and modifications in
contents/properties will be reverted.

Warning! Be careful before reverting a file or directory as all local modifica-
tions will be lost.

3.5.14 Mark Resolved

Use Modify|Mark Resolved to mark conflicting files (see Table 2.5) or conflicting direc-
tories (see Table 2.1) as resolved. You have to resolve conflicts to be able to commit the
files/directories.

In case of directories you have the option to Resolve files and subdirectories recur-
sively. If selected, all conflicting files and directories within the selected directory will be
resolved. Otherwise only the property conflicts of the directory itself will be resolved.

Regarding the File Content, use Leave as is to apply no further modifications to
resolved files. Use Take working copy to replace the contents of resolved files with their
contents as they were before the update/merge. Use Take new to replace the contents
of resolved files with the contents of their corresponding pristine copies as they are now
after the update/merge. Use Take old to replace the contents of resolved files with the
contents of their corresponding pristine copies as they were before the update/merge.

c© 2012 WANdisco plc, www.wandisco.com 36

Chapter 3. Commands

Tree Conflicts

Certain kinds of conflicts are not directly related to the content or properties of a file
(or directory) but to conflicting actions on a file/directory. Such conflicts are called tree-
conflicts.

Tree conflicts are similar to normal conflicts as conflicting files/directories can’t be
committed before they have been resolved. The Local State (see 2.4.2) column for files
shows details for a tree conflict, if present. File and directory tooltips display this infor-
mation as well.

Example
You have modified file foo.txt in your working copy. Your co-worker has renamed
foo.txt to bar.txt and has committed this change. When updating from the repos-
itory, you will receive bar.txt but because of your local modifications to foo.txt

this file will not be deleted, but re-scheduled as copied from itself (but the revision
before the update). Furthermore, bar.txt will receive your local modifications of
foo.txt. This represents a tree conflict. There are different kinds of tree-conflicts,
for a detailed analysis refer to: http://svn.collab.net/repos/svn/branches/1.
6.x/notes/tree-conflicts/

3.5.15 Mark Replaced

Use Modify|Mark Replaced to mark modified files or a directory as replaced, see Table
2.5 for details.

Marking modified files or a directory as replaced does not affect the contents of the files
or directories, but only the meaning of the commit and the history of the directory/files.
This can be useful to show that the content of a directory/files is not related to its previous
revision. The Log (see 3.10.7) of such a directory/files will not go beyond the replacement
revision, meaning that the directory/files has been created at that revision.

Example
For example, we have a Java interface Person.java and one implementing class
PersonImpl.java. As the result of a refactoring, we are getting rid of the inter-
face Person.java and renaming the class PersonImpl.java to Person.java. This
results in a removed file PersonImpl.java and a modified file Person.java.
When simply committing these changes, this would mean that the class
PersonImpl.java has been removed and the interface Person.java has been
changed to a class Person.java, with no history except that of the interface.
Taking a closer look at this situation, it would be better to do a commit meaning that
the interface Person.java has been removed and the class PersonImpl.java has
been renamed to Person.java. At least that was the intention of our refactoring and
it would also mean to preserve the history of PersonImpl.java for Person.java.
To achieve this, we will use Mark Replaced on Person.java and then we
will use Move on Person.java and PersonImpl.java, performing a “post-
move” between both files (for details refer to Section 3.5.7), yielding a removed
PersonImpl.java and a replaced Person.java, which has its history (Copy From)
set to PersonImpl.java.

c© 2012 WANdisco plc, www.wandisco.com 37

http://svn.collab.net/repos/svn/branches/1.6.x/notes/tree-conflicts/
http://svn.collab.net/repos/svn/branches/1.6.x/notes/tree-conflicts/

Chapter 3. Commands

3.5.16 Clean Up

Use Modify|Clean Up to clean up unfinished SVN operations for the selected directory
(and all subdirectories). Cleaning up a working copy is necessary when the working copy
becomes “internally” locked (in contrast to file locks, see Section 3.11). A working copy
can become locked when certain SVN operations (like commit or update) are aborted. In
general, cleaning up a working copy is a safe process.

Note A clean up may fail for the same reasons for which the preceding
SVN operation has failed. This typically happens if certain files
or directories can’t be read or written. In such cases, please check
whether other running processes might lock the file and whether
file permissions have been set adequately.

3.5.17 Fix

Use Modify|Fix to fix (or “repair”) the selected directory/files. This option is only appli-
cable for certain, unusual working copy states:

Case-changed files

SVN repositories and working copies are in general case-sensitive. This can cause problems
when working on a case-insensitive operating system, like Microsoft Windows or certain
file systems on Apple Mac OS, and changing the file name’s case (upper-case to lower-
case, etc.). Because of SVN’s working copy format and the pristine copies, it’s technically
not possible to handle such a file name case change.

One solution is to avoid this situation by either only performing file name case changes
on an operating system which supports case-sensitive file names, or directly in the repos-
itory by using the Repository Browser (see 4).

At any rate, a file name case change may happen on a case-insensitive operating
system, e.g. because of defect software tools, etc. SmartSVN detects such invalid changes
and puts the file into a case-changed file state, see Table 2.6. Fix will now change the
file name case back to its original form as found within the pristine copy, resolving this
problem.

Nested Roots

A nested root (see Table 2.1) is a working copy within another working copy which is not
related to this parent working copy. SVN commands ignore such nested roots; they are
simply treated as unversioned directories.

Nested roots typically result from moving a directory from one location to another
without using the proper SVN commands, like Move (see 3.5.7). This leaves a missing
directory at its original location and introduces a nested root at its current location.

Fix offers the following solutions for nested roots, depending on their origin:

c© 2012 WANdisco plc, www.wandisco.com 38

Chapter 3. Commands

• Mark as Copied will convert the nested root to a copied directory, with its copy
location being the original repository location. This option is only available if the
current location is part of the same repository as the original location.

• Convert to Unversioned strips off the working copy metadata (.svn directories)
for this directory and all of its children. This will make the directory unversioned,
so it can be added and committed afterwards. This option is always available but
in general should only be used if Mark as Copied is not available, as unversioned
directories can be added afterwards, but their history will be lost.

Added-missing directories

If a directory has been scheduled for addition (see Section 3.5.1) and has been locally
deleted afterwards (i.e. the directory and its .svn subdirectory are missing), the directory
is in Added-missing state (see Table 2.1).

Such directories are actually only a leftover entry in the parent directory’s metadata
directory (.svn). The resolution is to Revert (see 3.5.13) them, which is what this com-
mand will do.

3.5.18 Validate Working Copy Metadata

Use Modify|Validate Working Copy Metadata to check the working copy metadata
(.svn directory) for possible inconsistencies, and to do some other house-keeping tasks.

3.6 Commit

Use Modify|Commit to commit (i.e. send) the changes in the selected files/directory to
the repository.

The Commit wizard guides you through the commit process, starting with the “Con-
figuration” page. Based on the choices on the “Configuration” page, the working copy
will be scanned for changes, which is especially important when performing the Commit
on a directory. Subsequent pages allow further “customization” of the commit depending
on the changed files and directories found during the scanning phase.

Before the commit wizard opens, it checks whether you might have forgotten to se-
lect some files or directories, and in that case shows a warning. For details, refer to
the Preferences (see 8.5). Also, a warning will be issued if you are going to commit
switched (see 3.4.4) files or directories. Unless this is intended, you should switch back
the corresponding entries and re-run the commit.

Page “Configuration”

This page is only present when committing one or more directories.
Select Recurse into subdirectories to scan not only changes from the selected local

directory, but also from subdirectories.

c© 2012 WANdisco plc, www.wandisco.com 39

Chapter 3. Commands

When recursing into subdirectories, select Descend into externals to also scan for
changes in external working copies (see 3.8.7).

When clicking Next the file system of your project will be scanned. This may take
some time.

Page “Repositories”

This page is only displayed if the option Descend into externals on the Configuration
page has been selected and at least one committable entry within an external working
copy has been found. For details on externals, refer to Section 3.8.7.

Every such external working copy is listed with its Local Path and its URL. The
project’s working copy itself is also listed with local path “.”. Every working copy can be
individually selected or deselected for the commit by toggling the respective checkbox in
the first table column (either with the mouse or with <Space>-keystroke).

Working copies pointing to the same repository (the URL identifies these) can be
committed together, hence SmartSVN will have to perform as many commits as different
repositories are involved in the overall commit process.

Warning! When committing to multiple repositories, every commit will create
its own revision in the corresponding repository. Hence, atomicity
of such commits cannot be guaranteed. This for example means
that the commit to one repository can succeed while the other one
fails. While fixing the failing commit another person might already
have updated his or her working copy and only have received the
successfully committed revision. This might result in (temporary)
inconsistencies in his/her overall project.

You can choose whether to commit the selected working copies with One commit
message or with Individual commit messages. If you are committing multiple working
copies with different Bugtraq-Property (see 3.8.9) configurations, it’s required to use In-
dividual commit messages to have the Bugtraq-Property functionality available on the
Files page.

Page “Detect Moves”

This page is only displayed if the option Detect moved and renamed files in the Prefer-
ences (see 8.5) has been selected and at least one moved or renamed file pair was detected.
Refer to Section 3.5.8 for details. With Differences you can toggle the integrated compare
view. This will show the differences for the currently selected file in the lower part of the
Commit dialog. The change display behaves similarly to the Changes view (see 2.6).

Page “Files”

This pages shows a list of all files and directories which were found to be committable
according to the selected options from the Configuration page, and from the configuration

c© 2012 WANdisco plc, www.wandisco.com 40

Chapter 3. Commands

in the Preferences (see 8.5). To exclude a file/directory from the commit, deselect the
corresponding checkbox (either with the mouse or by pressing <Space>-keystroke).

Note SmartSVN also displays certain kinds of files which are not com-
mittable (e.g. conflicted files, refer to Table 2.5). This is a caution
not to forget to resolve these files’ problems and commit them as
well (if necessary).

You may review your changes by expanding the dialog with the Differences button.
This will show the differences for the currently selected file in the lower part of the Commit
dialog. The change display behaves similarly to the Changes view (see 2.6). Alternatively,
you can also double-click a file to open a File Compare (see 7.1) frame.

For the Commit Message you can either enter a new message or select an older
message from the message popup on the top right of the text field. The popup menu
will show recently entered commit messages, and you can clear this message history with
Clear Message History or use Get from Log to fetch an older commit message from the
log. With <Ctrl>+<Space>-keystroke you can trigger a file name completion, based on
all of the files that have been selected for the commit.

Depending on how Bugtraq-Properties (see 3.8.9) are configured for the current work-
ing copy, there may be an additional “issue ID” input field. The name of this field can
vary, depending on the Bugtraq-Properties. Its content will be appended/prepended to
entered commit message afterwards, forming the final commit message.

If the spell check (see 8.14) has been configured, SmartSVN will check the entered
Commit Message for basic spelling mistakes. The spell check ignores file paths, i.e.
strings containing a “/”, and “issue IDs” which are part of the commit message and
which can be recognized by the Bugtraq-Property. For details regarding the spell check’s
popup menu, refer to Section 8.14.

Tip Commit messages will be displayed in various kinds of logs. Hence,
a descriptive commit message will help you and your team later on
if you need to go through your past changes for some reason, e.g.
tracking down a bug.

By default, SmartSVN will warn you in case of an empty commit message. You can
disable this warning in the Preferences (see 8.5).

Tip You may configure a template message using the
tsvn:logtemplate property which has to be set on the project
root. For details refer to Section 10.10.

If Descend into externals has been selected and multiple working copies on the
Repositories page have been selected for committing, there will also be a topmost Path
drop-down list. All other items on this page will be related to the selected path. In
particular it will be necessary to enter a Commit Message for each path.

c© 2012 WANdisco plc, www.wandisco.com 41

Chapter 3. Commands

Page “Locks”

This page will only be displayed if the files/directories selected for the commit have been
found to contain locked files during the scanning.

Select Keep locks for committed files to keep the files locked even after having
them committed. Select Unlock committed files to unlock them after the commit. In
the latter case you can additionally select unchanged but locked files which had been
detected during the scan and which should be unlocked upon a successful commit as well.

Tip You can configure whether Keep locks for committed files or Un-
lock committed files should be selected by default in the Project
Settings (see 6.3.3).

Click Finish to finally start the commit.

3.7 Merging

Merging is used to incorporate changes from one “development line” into another.

Note Subversion’s merging has been significantly improved with version
1.5 and its “merge tracking” support. Most merging features re-
quire a Subversion 1.5 server to work. Subsequent explanations
assume that you are performing the commands against a Subver-
sion 1.5 server.

Two very common use cases of merging are release branches and feature branches:

• A release branch is typically forked off from the main development line (trunk)
after the “release” of a new version (of the software project, of the website, etc).
With the “release” the corresponding version typically goes into “production use”
and gains stability while development continues on the trunk. Therefore a release
branch will only receive problem fixes (bug fixes) from the trunk by merging them
to the branch.

• A feature branch is a line of development that is being worked on in parallel to
the trunk, for the purpose of developing a new “feature” which is brought back to
the trunk after completion. A feature branch is frequently merged from the trunk
to stay up to date with the trunk changes, and once the implementation of the
“feature” has been finished, all relevant changes are merged back to the trunk.

For more in-depth information on these use cases, for examples and for general infor-
mation, refer to http://svnbook.red-bean.com/.

c© 2012 WANdisco plc, www.wandisco.com 42

http://svnbook.red-bean.com/

Chapter 3. Commands

Warning! As merging can often turn out to be rather tricky, here are a few
recommandations that may help:

• Only do recursive merges and try to always merge on the
same “merge root”, preferably the trunk itself or the root of
a branch.

• Avoid merging into a working copy which contains mixed re-
visions. Therefore do an Update (see 3.4.1), preferably to the
HEAD revision, beforehand.

• Avoid merging into working copies that are non-recursive or
not completely checked out. To do so, run an Update More
(see 3.4.2) on your merge root, selecting all files and directo-
ries and the Recurse into subdirectories option.

3.7.1 Merge

Use Modify|Merge to merge changes from another source branch to the selected file/directory.
Select Trunk to merge from the main trunk. Select Branch or Tag and enter the

branch or tag name to merge changes from a branch or tag. Select Other Location to
merge from an arbitrary location, specifying the corresponding repository and path.

Alternatively, you may select a merge source from the History button. It shows a
list of previous merge sources you have used, as well as merge sources extracted from the
svn:mergeinfo (see 3.8.10) property of your merge target.

Use All Revisions to merge all the revisions which have not yet been merged from
the selected location. SmartSVN will detect them based on the present merge tracking
information.

Example
You will typically use this option when working with a feature branch to keep it in
sync with the trunk.

Warning! All Revisions does not work with pre-1.5 servers (e.g. 1.4 servers).

Use Revision Range to manually specify multiple (ranges of) revisions to be merged
from the selected location. SmartSVN will detect whether certain revisions of the specified
ranges have already been merged and avoid repeating the merge. Single revisions are just
specified by their revision number while ranges starting at start (inclusive) and ending
at end (inclusive) are specified by start-end. Multiple revisions (ranges) can be specified
with a separating colon (:). Certain revisions may be excluded by prefixing them with
an exclamation mark (!).

Instead of entering the revisions manually, you can choose them from the revision
browser (see 3.14.2). The revision browser will indicate with a green arrow which revisions
have not been merged (“merge candidates”). From the Options button you can select
Show only mergable revision to restrict the revision list to those merge candidates. By
default, Show all revisions will also include revisions which have already been merged.

c© 2012 WANdisco plc, www.wandisco.com 43

Chapter 3. Commands

Example
You will typically use this option when working with a release branch to merge only
bugfix revisions from the trunk to this branch.

Select Reverse merge to reverse the changes between the selected revisions. Internally,
this is achieved by swapping the start and end revisions.

Advanced options

By default, merging takes the ancestry into account, meaning that merging does not
simply calculate (and merge) the difference between two files which have the same path,
but also checks if both files are actually related. For the typical merging use cases, this
behavior leads to the expected results and it is also required for the merge tracking to
work. You can switch this behavior off by selecting Ignore ancestry, however this option
is not recommended unless you have a good reason to use it.

Regarding Ignore changes in EOL-style and For Whitespaces handling, refer to
Create Patch (see 3.10.10).

Deselect Recurse into subdirectories to merge only changes to the selected direc-
tory/file itself but not it’s contained files, etc. In general it’s recommended to keep
Recurse into subdirectories selected.

With Record only no files will be touched during the merge, and only the Mergeinfo
(see 3.8.10), will be adjusted accordingly, so that the core merge tracking mechanisms
consider the revisions as merged. This option can be useful to “block” certain revisions
from being actually merged.

By default merging will stop when it’s required to delete locally modified files, because
they have been removed in the merge source. You can switch off this safety check by
selecting Force deletion of locally modified files, if necessary.

Close the dialog with Merge to immediately perform the merge to the selected di-
rectory/file of the current working copy. Alternatively you may choose to Preview the
changes that would result from the merge. Refer to the Merge Preview (see 7.9) for
details.

Tip You can choose to keep the auxiliary merge files even for non-
conflicting files in the Project Settings (see 6.3.3).

3.7.2 Merge from 2 Sources

Use Modify|Merge from 2 Sources to merge changes between two different merge sources
(URLs) to the selected file/directory.

Changes are merged from one Repository between From and To to the local Destina-
tion. The last 10 merge sources will be stored and can be set using the drop-down button
beside the Repository drop-down list. For details regarding the Advanced options, refer
to Section 3.7.1.

Note Most merging use cases are covered by Merge (see 3.7.1) and Rein-
tegrate Merge (see 3.7.3) and if possible these commands should be
used instead.

c© 2012 WANdisco plc, www.wandisco.com 44

Chapter 3. Commands

3.7.3 Reintegrate Merge

Use Modify|Reintegrate Merge to “reintegrate” changes from another URL to the se-
lected file/directory.

Reintegrate merging is different from the “normal” merging: It carefully replicates
only those changes unique to the source Merge From compared to the local working
copy.

Example
You will typically use Reintegrate Merge after the work in a feature branch has
been finished and the “feature” is to be reintegrated into the trunk. Here it’s
important that all the previous merges from trunk to the feature branch are filtered
out to avoid unnecessary merge conflicts and other problems. That is in short what
reintegrate does. For a detailed explanation, refer to http://svn.haxx.se/users/

archive-2008-05/0808.shtml.

For details regarding the Advanced options, refer to Section 3.7.1.

3.7.4 Apply Patch

Use Modify|Apply Patch to apply a patch file to your working copy. Currently supported
patch file formats are unidiff patches. See Section 3.10.10 on how to create patches with
SmartSVN.

For the Select Patch File dialog, select the patch file which you want to apply.
Typically, patch files have .patch or .diff extensions. Based on the file paths contained
in the patch file, SmartSVN will try to detect the correct base directory to which the
patch should be applied. It will fail if it can’t find any files to patch in the working copy.

The resulting window is similar to the Merge Preview (see 7.9) window. Refer to that
section for a description of the available commands. The Files area allows you to deselect
certain files from the patch. You can apply the patch via Patch|Apply Patch.

Unpatchable files

In case the patch could not be applied to certain files, an Unpatchable files area will
be displayed at the top of the window. The table contains the Path of the file and
a description of the Problem. The tooltip text of the Problem column contains more
details in case the expected and the actual lines did not match when trying to apply the
patch to the file.

3.8 Properties

Both files and directories can have properties attached to them. There exists a set of
predefined properties, which are used by SVN itself to manage the working copy. All
other properties are “user-defined” properties. The following commands are related to
properties and can be found in the Properties menu.

c© 2012 WANdisco plc, www.wandisco.com 45

http://svn.haxx.se/users/archive-2008-05/0808.shtml
http://svn.haxx.se/users/archive-2008-05/0808.shtml

Chapter 3. Commands

3.8.1 Edit Properties

Use Properties|Edit Properties to display and edit properties of the selected file/directory.
For details refer to Section 7.2.

Note Internal SVN properties are displayed with grey font. It’s not rec-
ommended to modify SVN properties directly through this dialog.
It’s better to use the other property-specific commands in the Prop-
erties menu.

You can Add, Edit and Remove individual properties. Use Revert on one or more
properties to reset their Current Value to their Base Value.

3.8.2 Set or Delete Property

Use Properties|Set or Delete property to change a property for multiple files/directories
at once.

Enter the name of the Property; the drop-down button offers the SVN internal prop-
erties for selection. To set a property value, either select Set Value To and enter the new
property value, or, in case of boolean SVN-properties, select Set boolean property. To
remove the property, select Delete Property.

For directories, choose to Recurse into subdirectories and optionally to Include this
directory. Choose Force to skip a couple of checks which are performed for certain
property (values).

Example
To get rid of all explicit mergeinfo from your project except from the project root,
select svn:mergeinfo for Property, choose Delete Property and Recurse into
subdirectories and deselect Include this directory.

3.8.3 MIME-Type

Use Properties|MIME-Type to change the SVN MIME-type of the selected files. The
MIME-type can be either a default Text, a default Binary or a Custom type. In case of a
Custom type, you have to specify the corresponding MIME-type here. E.g. “text/html”,
“application/pdf” or “image/jpeg”.

MIME-types can’t be arbitrary strings but must be well-formed. For instance, a
MIME-type must contain a “/”. By default, SmartSVN checks whether MIME-types are
well-formed. Use Force to disable this check.

The MIME-types are relevant for some SVN operations, for instance updating, where
in the case of text types, the line endings etc. can be replaced. By default, when adding
files (see Section 3.5.1), the coarse MIME-type (either text or binary) is automatically
determined by SmartSVN. In general this detection is correct, but in certain cases you
may want to explicitly change the MIME-type of the file with this command.

Within the project settings (see 6.3.3) you can define file name patterns which should
always be treated as binary.

c© 2012 WANdisco plc, www.wandisco.com 46

Chapter 3. Commands

3.8.4 EOL-Style

Use Properties|EOL-Style to change the EOL-Style (line separator) of the selected files.
The EOL-style is used when updating or checking out a text file and results in a corre-
sponding conversion of its line endings:

• Platform-dependent converts to the platform’s native line separators.

• LF, CR, CR+LF converts to the corresponding line separators, regardless of the
current platform.

• As is performs no conversion.

In the project settings (see 6.3.3), the default EOL-style can be specified. This will
be applied to every added file. By default, this will be Platform-dependent.

When changing the EOL-style of a file, SmartSVN checks whether the file has con-
sistent line endings. If this is not the case, it will reject the EOL-style change (other
behaviors can be configured in the project settings). To skip this check, use Force.

3.8.5 Keyword Substitution

Use Properties|Keyword Substitution to select the keywords for the selected files, which
should be substituted (expanded) locally. Keyword substitution only works for text files.

For each keyword you have the option to Set or Unset it. Select Don’t change to
keep the current substitution for the keyword.

3.8.6 Executable-Property

Use Properties|Executable-Property to change the “Executable-Property” of the se-
lected files. The “Executable-Property” is a versioned property, but is only used on
Unix(-like) platforms, where it defines whether the “Executable Flag” should be set to a
file or not.

Choose Executable if the “Executable-Property” should be assigned to the file or
Non-Executable to remove the property from the selected files.

3.8.7 Externals

Use Properties|Externals to define or change externals. An external (officially also re-
ferred to as externals definition) is a mapping of a Local Path to an URL (and possibly
a particular Revision) of a versioned resource.

In general, externals are specified by complete URLs, but there are also shorter
representations which can be more flexible. The URL input field allows switching be-
tween the available representations for a given URL. For a detailed description of exter-
nals and valid URL formats, refer to http://svnbook.red-bean.com/nightly/en/svn.

advanced.externals.html.

c© 2012 WANdisco plc, www.wandisco.com 47

http://svnbook.red-bean.com/nightly/en/svn.advanced.externals.html
http://svnbook.red-bean.com/nightly/en/svn.advanced.externals.html

Chapter 3. Commands

Example
To include the external http://server/svn/foo as directory bar/bazz at revision
4711 into your project, select directory bar and invoke Properties|Externals. Click
Add, enter bazz into the Local Path input field, http://server/svn/foo into the
URL input field, 4711 to the Revision input field and confirm by hitting OK: After
committing your property change, an update on bar will create the subdirectory
bar/bazz with the content from http://server/svn/foo at revision 4711.

Tip It is safer to always set a Revision to externals. In this way you can
always be sure about which version you are actually working with.
When you decide to use a more recent revision of the external, you
can evaluate it beforehand and, if you are satisfied, increase the
Revision number of the external definition.

Note Externals may refer to directories as well as to files. In case of files,
the referred URL must be part of the same repository to which its
local parent directory belongs. (The local parent the directory is
the directory to which the svn:externals property belongs.)

3.8.8 Ignore Patterns

Use Properties|Ignore Patterns to add, change or delete local ignore patterns for a
directory. Local ignore patterns define file and directory patterns to be ignored within
the directory.

Local ignore patterns are stored within the working copy (in the svn:ignore property
of the directory) and will be committed. Therefore ignore patterns can only be applied
to versioned directories.

By default, the Patterns are only set to the selected directory. You may also choose to
set the patterns to all subdirectories by Recurse into subdirectories. In case of recursive
ignore patterns, you may alternatively consider specifying global ignore patterns within
the project settings (see 6.3.3).

To add an ignore pattern, you can also use the Modify|Ignore command.

3.8.9 Bugtraq-Properties

Use Properties|Bugtraq-Properties to configure the Bugtraq-Properties for the current
working copy. Bugtraq-Properties are a technique for integrating Subversion with issue
tracking systems.

A detailed specification for the Bugtraq-Properties can be found at: http://tortoisesvn.
tigris.org/svn/tortoisesvn/trunk/doc/issuetrackers.txt, username is guest with
empty password. SmartSVN implements this specification with the following mapping
from UI elements to core bugtraq:-properties as shown in Table 3.1.

c© 2012 WANdisco plc, www.wandisco.com 48

http://tortoisesvn.tigris.org/svn/tortoisesvn/trunk/doc/issuetrackers.txt
http://tortoisesvn.tigris.org/svn/tortoisesvn/trunk/doc/issuetrackers.txt

Chapter 3. Commands

bugtraq-Property UI Element
bugtraq:url URL
bugtraq:warnifnoissue Remind me to enter a Bug-ID
bugtraq:label Message Label
bugtraq:message Message Pattern
bugtraq:number is true exactly if Bug-ID is set to Numeric
bugtraq:append is true exactly if Append message to set to Top
bugtraq:logregex For the version with one regular expression this corresponds

to Bug-ID Expression. For the version with two regular
expressions, Message-Part Expr. corresponds to the first
line and Bug-ID expression corresponds to the second line.

Figure 3.1: Mapping from core bugtraq:properties to SmartSVN UI elements

Example
Assuming your commit messages looks like this: Ticket: 5 Some message or
ticket #5: Some message and you want the 5 to be rendered as a link to your
issue tracker. In this case, set Bug-ID Expression to [Tt]icket:? #?(\d+) and
leave Message-Part Expr. empty.
If you want the whole Ticket #5 part to show up as a link, use the same Bug-ID
expression and also set Message-Part Expr. to this value.

Example
Let’s say your commit messages look like this: CF-11: Some message, or ET-12:
Some message. Then, if you want the 11 and 12 to show up as links to your
issue tracker, set Bug-ID Expression to \d+ and the Message-Part Expr. to
(CF|ET)-(\d+).
If you want the whole CF-11 or ET-12 part to show up as a link, set Bug-ID
expression to (CF-\d+|ET-\d+) and leave Message-Part Expr. empty.

3.8.10 Merge Info

Use Properties|Merge Info to change the svn:mergeinfo property for the selected
files/directory.

Warning! The svn:mergeinfo is a core part of Subversion’s merge-tracking
mechanisms and is automatically managed by Modify|Merge and
related commands. If you want to manually “block” certain revi-
sions from being merged, you should use Modify|Merge with the
Record only option set.

3.9 Tags and Branches

SmartSVN simplifies the handling of “Tags” and “Branches”. Both “Tags” and “Branches”
are not native SVN concepts, but can easily be handled by the help of Copy To Repos-

c© 2012 WANdisco plc, www.wandisco.com 49

Chapter 3. Commands

itory (see 3.5.11) and Copy Within Repository (see 3.5.12). SmartSVN provides special
support for managing tags and branches, which are based upon these copy commands.

Commands related to the management of tags and branches are available from the
Tag+Branch menu. Various other commands support tags and branches alternatively
for entering raw URLs.

3.9.1 Tag-Branch-Layout

The Tag-Branch-Layout defines the project’s root URL (within the repository) and where
the trunk, tags and branches of the project are stored. For various commands this will
affect the presentation, and interaction, of the URLs. When invoking a tag/branch-aware
command on a directory for which no layout can be found, SmartSVN will prompt you
to configure a corresponding layout in the Configure Tag-Branch-Layout dialog.

A Tag-Branch-Layout is always linked with a corresponding Project Root. A Project
Root is simply the URL of the top-most directory of a project. Any directory can be
defined as a project root as the definition of what a project is, is completely up to you.

The first decision for a Project Root is whether to enable or disable Tag-Branch-
Layouts for it. Many SVN projects are organized using tags and branches. In this case
choose Use the following layout to configure the layout. If the corresponding project is
not organized by tags and branches, choose Do not work with tags and branches for
this project root to switch Tag-Branch-Layouts off.

Trunk specifies the root directory of the project’s trunk. Branches and Tags specify
the directory patterns of the branch and tag root directories, respectively. All paths are
relative to the Project Root. Enter the values trunk, branches/* and tags/* here if
you want to use the recommended SVN standard layout.

Example
The Subversion project itself is located at http://svn.collab.net/repos/svn/.
Hence for the corresponding SmartSVN project, Project Root must be set to
http://svn.collab.net/repos/svn/. Subversion’s Trunk URL is http://svn.

collab.net/repos/svn/trunk, i.e. trunk is the relative path and must be set for
Trunk. Branches are located in http://svn.collab.net/repos/svn/branches,
e.g. http://svn.collab.net/repos/svn/branches/1.5.x is the root of the
“1.5.x” branch. I.e. Branches must be set to branches/*. This is similar for
Tags.

It’s also possible to use multiple branch or tag patterns. In this case, when entering,
for example, a branch, you have to specify not only the branch name, but the relative
path to the common root of all branches.

c© 2012 WANdisco plc, www.wandisco.com 50

http://svn.collab.net/repos/svn/
http://svn.collab.net/repos/svn/trunk
http://svn.collab.net/repos/svn/trunk
http://svn.collab.net/repos/svn/branches

Chapter 3. Commands

Example
A project may also contain shelves which can be interpreted as “personal
branches”. For instance, the Project Root is located at svn://server/svn/proj.
The “normal” branches are located in svn://server/svn/proj/branches and
the shelves are located in svn://server/svn/proj/shelves/[username], e.g.
svn://server/svn/proj/shelves/bob/my-shelve. Hence, for Branches the fol-
lowing patterns should be used: branches/*, shelves/*/*.
Now, when creating a branch e.g. “b1” with Tag+Branch|Add Branch, you have
to enter branches/b1, so SmartSVN knows that the branch should be created in
the branches directory.
For example, when switching to Bob’s “my-shelve” with Modify|Switch, you have
to enter shelves/bob/my-shelve, so SmartSVN knows that it should switch to a
branch within the shelves/bob directory.

SmartSVN uses the proposed standard layout for new projects. If you want to con-
figure another default layout, open one project which contains the desired layout, select
Tag+Branch|Configure Layout and use Make this configuration the default here.

3.9.2 Add Tag

Use Tag+Branch|Add Tag to create a copy (“Tag”) of your local working-copy in the
tags directory of your repository. Name will be the name of the tag and Location shows
the corresponding location. You can create two kinds of tags:

• Working Copy tags are a snapshot of your current working copy. If the latter
contains local changes, you will be asked whether these local changes should be
included in the snapshot. The local changes will also reflect mixed local revisions
and switched directories.

• Repository Revision tags are “server-side” tags which represent a snapshot of the
repository at a given revision.

Tip Repository Revision tags can be useful if your working copy con-
tains local changes but you don’t want them to be part of the tag.
However, in this case you should make sure that your working copy
actually corresponds to the revision which you plan to tag, i.e. you
should do an update (see 3.4.1) to that revision beforehand and
make sure that there are no switched directories.

By default, SmartSVN will Abort if the specified tag already exists. Select Replace
existing one to create the tag anyway, replacing the existing tag.

Use Externals Revisions to specify how to handle externals revisions (see 3.8.7). For
details refer to Section 3.5.11.

Note This command is similar to Modify|Copy Local to Repository (see
Section 3.5.11), but is tailored to the special case of “Tagging”.

c© 2012 WANdisco plc, www.wandisco.com 51

Chapter 3. Commands

3.9.3 Tag Multiple Project Roots

Use Tag+Branch|Tag Multiple Project Roots on one or more project roots (working
copy roots) to create a tag for all of these roots.

Enter the Tag Name and Commit Message which will be used for the creation of the
tag. Select Fix external revisions to have all revisions of externals set to their current
values, as present in the working copy.

This functionality is provided by the Tag Multiple Project Roots plugin (see 10.9).

3.9.4 Add Branch

Use Tag+Branch|Add Branch to create a copy (“Branch”) of your local working-copy in
the branches directory of your repository. This command is similar to Tag+Branch|Add
Tag, refer to Section 3.9.2 for details.

3.9.5 Tag Browser

Use Tag+Branch|Tag Browser to display all tags and branches of your project in a
hierarchical structure. The hierarchy denotes which tags/branches have been derived (i.e.
copied) from other branches.

Tags and Branches display the tags or branches location as specified with the Con-
figure Layout (see 3.9.6) command. The subsequent table will contain tags and branches
found herein. A tag or branch has a Name, a Revision at which it had been created and
optionally a Removed At revision at which it had been removed.

The tag browser is built upon information from the Log Cache (see 5.3). With Refresh
you can refresh the cache and rebuild the tag/branch-structure.

Tags/branches can be deleted by Remove which will remove the corresponding direc-
tory from the repository.

From the Options button you can select to show both Branches and Tags, Branches
only or Tags only. Recursive View specifies whether the table shall also display tags/branches
which have been indirectly derived from the currently selected branch in the tree. Select
Removed Tags and Branches to also display tags/branches which have been deleted
within the Repository. The corresponding items will contain a red minus within their
icon to denote the deletion.

The Branch drop-down button allows sorting of the branches either by Name or by
Revision.

Tip You can also invoke the Tag Browser from the tag or branch name
input fields by clicking the ellipsis button to the right (...) or using
<Ctrl>+<Space>-keystroke.

3.9.6 Configure Layout

Use Tag+Branch|Configure Layout to configure the Tag-Branch-Layout for the currently
selected directory. This command is only available on the working copy root directory
and externals roots (see 3.8.7). For details refer to Section 3.9.1.

c© 2012 WANdisco plc, www.wandisco.com 52

Chapter 3. Commands

Select Make this configuration the default to have this layout applied to all new
projects.

3.10 Queries

SmartSVN offers following non-modifying commands – some of them work locally, others
by querying the repository – from the Query menu.

3.10.1 Show Changes

Use Query|Show Changes to compare the selected files or directory against their pristine
copies. Show Changes will correspondingly open one or more File Compare (see 7.1)
frames or the Properties Compare (see 7.2) for a directory. For details, regarding the
warning limit on the number of files to compare at once, refer to Section 8.7. No connection
to the repository is required.

3.10.2 Compare with HEAD

Use Query|Compare with HEAD to compare a single, local file with the HEAD revision
in the repository. If you want to compare against an arbitrary revision or some other
repository file, use Compare with Revision (see 3.10.4).

3.10.3 Compare with Previous

Use Query|Compare with Previous to compare a single, local file with the last but one
revision in the repository (i.e. the revision before HEAD). If you want to compare against
the HEAD revision itself, use Compare with HEAD (see 3.10.2). If you want to compare
against an arbitrary revision or some other repository file, use Compare with Revision
(see 3.10.4).

3.10.4 Compare with Revision

Use Query|Compare with Revision to compare a single, local file with another revision
of the same file or even another file. Select either to Compare the Working copy or the
Pristine copy. Select to compare With the Trunk or a specific Branch or Tag or an
arbitrary Other Location. Select whether to retrieve the repository file At the repository
HEAD or at a another Revision. The result will be a File Compare (see 7.1) frame.

Tip Use Compare with HEAD (see 3.10.2) if you want to quickly com-
pare a file against the latest repository revision.

c© 2012 WANdisco plc, www.wandisco.com 53

Chapter 3. Commands

3.10.5 Compare 2 Files

Use Query|Compare 2 Files to compare two local files with each other. No connection
to the repository is required.

When having one or more missing files selected, their pristine copies will be used for
the comparison instead.

3.10.6 Compare Repository Files or Directories

Use Query|Compare Repository Files or Directories to compare two different repository
directories for changes (either added, removed or changed files and directories). This
command gives you similar information like Create Patch between URLs (see 3.10.11),
but in an easier to read form. The result will be a Compare Repository Files or Directories
(see 7.3) frame.

The comparison is performed for one Repository between directories From and To.
Select Recurse into subdirectories to compare not only the directory and its im-

mediate files, but also descend into subdirectories. Regarding Ignore Ancestry, refer to
Section 3.10.11.

3.10.7 Log

Use Query|Log to display the Log (i.e. the commit history) of the selected file or directory.
The Log command will open the Log window (see 7.6).

3.10.8 Revision Graph

Use Query|Revision Graph to open the Revision Graph for the selected file or directory.
The Revision Graph essentially consists of a table of all revisions that make up the history
of the selected file or directory, and a graph on the left side of that table which shows the
parent-child relationships between the revisions. Included in the graph is the display of
branching and merging points.

What happens when you open the Revision Graph depends on the option Show dialog
to allow root selection in the Revision Graph preferences, see Section 8.9. If enabled,
opening the Revision Graph will lead you to a dialog where you can select the root
directory for which the Revision Graph should be produced. Additionally, the dialog
allows you to specify whether you want to include modified files and directories beneath
the root directory in the Revision Graph, via Report children.

If the root selection dialog option is disabled, the root directory for the Revision Graph
is determined as follows:

• What is included in the creation of the Revision Graph depends on the selection
before the Revision Graph was opened. To show a Revision Graph for the entire
project, select the project root before opening the Revision Graph. To show a
Revision Graph for a certain file or directory, only select that respective file or
directory.

c© 2012 WANdisco plc, www.wandisco.com 54

Chapter 3. Commands

• When opening a Revision Graph on a directory, you will be asked whether to create
the Revision Graph for the selected directory only, or also for all modified files and
directories beneath the selected directory.

After invoking the Revision Graph command, the Revision Graph window of the
selected file or directory will show up. For details, refer to Section 7.7.

3.10.9 Annotate

Use Query|Annotate to view the “history” of the selected file on a per-line basis.
On the Configuration tab, you can specifiy the date range over which to run the

Annnotate operation.
On the Advanced tab, select Treat even binary revisions as text (”force”) to con-

tinue the Annotate operation even when it encounters one or more binary revisions of the
file. This option can be necessary if the MIME-Type (see 3.8.3) of a file was changed, e.g.
from binary to text in some earlier revision, and the file had text content throughout. In
case the file actually had binary content in some earlier revision, parts of the annotate
output might contain junk.

After performing this command, the Annotate window for the selected file will show
up. For details refer to Section 7.8.

3.10.10 Create Patch

Use Query|Create Patch to create a “Unidiff” patch for the selected files/directory. A
patch shows the changes in your working copy on a per-line basis, which can for instance
be sent to other developers. See Section 3.7.4 on how to apply patches with SmartSVN.

The patch will be written to the given local Output File. In case of creating a patch
for a directory, you can select Recurse into subdirectories to create the patch recursively
for all files within the selected directory.

Select Ignore changes in EOL-Style to ommit output for line changes in which only
the line ending differs. This can be useful if, after having the line endings of a local file
changed temporarily, only “relevant” changes should be included in the patch.

With For Whitespaces you can configure to ommit output for certain changes which
are only affecting whitespaces. Use No special handing include any changes regarding
whitespaces. Use Ignore changes in the amount to ignore lines for which only blocks
with one or more whitespace characters have been replaced by blocks with one or more
other whitespace characters. Use Ignore them completely to only output lines where
anything except whitespaces has changed.

3.10.11 Create Patch between URLs

Use Query|Create Patch between URLs to create a “Unidiff” patch between two arbi-
trary URLs. See Section 3.10.10 for more details on patches. Compare Repository Files
or Directories (see 3.10.6) is a version of this command that presents the results in a more
human-friendly way.

c© 2012 WANdisco plc, www.wandisco.com 55

Chapter 3. Commands

The patch is generated from one Repository and contains the difference between From
and To. The patch will be written to the local Output File.

By default, this command takes the ancestry into account, meaning it does not simply
calculate (and print out) the difference between two files which have the same path, but
also checks if both files are actually related. You can switch this behavior off by select-
ing Ignore ancestry on the Advanced page. For details regarding the other Advanced
options, refer to Section 3.10.10.

3.10.12 Export Backup

Use Query|Export Backup to export a backup of the selected files/directory.
Export displays what will be exported. Depending on the selection of files/directory

this will either be the number of files being exported or All files and directories. Relative
To displays the common root of all files to be exported and the exported file’s paths will
be relative to this directory.

You can either export Into zip-file or Into directory. In both cases, specify the target
zip file or directory, and optionally choose to Wipe directory before copying.

Select Include ignored files and/or Include ignored directories if you want to include
the respective ignored items (and their contents) as well.

3.10.13 Conflict Solver

Use Query|Conflict Solver to start a Three-Way-Merge, which can be invoked on con-
flicting files (see Table 2.5). For details, refer to Section 7.4.

When invoking this command on a binary file, it will open the Mark Resolved (see
3.5.14) dialog.

3.11 Locks

Since Subversion 1.2, explicit file locking is supported. File locking is especially useful
when working with binary files, for which merging is not possible.

For each file, its lock state is displayed in the file table column Lock and additionally
the Name icon can contain corresponding overlay icons, as shown in Table 2.7. For a list
of possible lock states, refer to Table 3.2.

The “Self” state can be filled in by SmartSVN when scanning the local working copy.
Please note that this state can change when scanning the repository (see Section 3.11.1),
as the lock might actually be “Stolen” or “Broken”.

3.11.1 Refresh

With Locks|Refresh SmartSVN will scan the selected files, or all files within the selected
repository directory, for locks. The result is displayed in the file table column Lock. This
column is automatically made visible, if necessary.

c© 2012 WANdisco plc, www.wandisco.com 56

Chapter 3. Commands

Name Meaning
(Empty) The file is not locked.
Self The file is locked for the local working copy.
Stolen The file was locked for the local working copy but in the meantime it has

been stolen by someone else in the repository.
Broken The file was locked for the local working copy, but in the meantime it has

been unlocked (by someone else) in the repository.
(Username) The file is currently locked by the named user.

Figure 3.2: Lock States

You can combine scanning the repository for locks with refreshing the Remote State
(see 3.12) in the Preferences (see 8.8). You can also schedule a repeated refresh of the
repository lock information in the Project Settings (see 6.3.3).

3.11.2 Lock

With Locks|Lock you can lock the selected files in the repository. You can also enter a
Comment to explain why you are locking these files.

The option Steal locks if necessary will lock the requested files regardless of their
current lock state (in the repository). With this option it may happen that you “steal”
the lock from another user, which can lead to confusion when the other user continues
working on the locked file. Hence you should only use this option if necessary (e.g. if
someone is on holiday and has forgotten to unlock important files).

Keep Update to HEAD before selected to perform an update to HEAD. Only the
latest revision of a file can be locked.

3.11.3 Unlock

With Locks|Unlock you can unlock the selected files, or all files within the selected
directory (recursively) in the repository.

The option Break locks will unlock the requested files even if they are not locked
locally. With this option it may happen that you “break” the lock of another user, which
can lead to confusion if that other user is still working on the locked file.

3.11.4 Show Info

Locks|Show Info shows information on the lock state (in repository) of the selected file.
State shows the current lock state (see Table 3.2). Token ID is the SVN Lock Token

ID, which is normally not relevant for the user. Owner is the name of the user who
currently owns the lock. Created At is the time when the lock has been set. Expires
At is the time when the lock will expire. Needs Lock indicates whether this file needs
locking, i.e. the “Needs Lock” property has been set (see Section 3.11.5). Comment is
the lock comment, as entered by the user at the time of locking.

c© 2012 WANdisco plc, www.wandisco.com 57

Chapter 3. Commands

3.11.5 Change ’Needs Lock’

With Locks|Change ’Needs Lock’ files can be marked/unmarked depending on whether
they require locking. This is a useful indicator to users that they should lock the file
before working with it. One aspect of this indication is that SmartSVN will set files
which require locking (due to this property) to read-only when checking out or updating.

3.12 Remote State

The remote state shows the files’ repositories states compared to the local working copy.
It can also be interpreted as the action that would happen when updating the working
copy to HEAD (see Section 3.4.1). The remote state of files is displayed in the file table
column Remote State, the remote state of directories is displayed in the tooltip for a
directory. See Table 3.3 for the list of possible remote states of files and directories.

Name Meaning
Unchanged The local entry is equal to the latest revision of this entry in the repository.

An update on this entry will bring no changes.
Modified For the local entry there exists a newer revision in the repository. An

update will bring the corresponding changes for this entry.
Removed The local entry has been removed in the repository. An update will remove

the entry locally.
Added This entry does not exist locally, currently in a versioned state. An update

will add this entry.
Obstructed For the local entry the latest repository revision contains another entry

for being added. An update will fail here.

Figure 3.3: Remote State Types

To display the complete remote state information, especially the “Will be added” state,
it may be necessary to add directories and files that do not exist locally to the directory
tree or the file table. To such directories and files the special local state “Remote” is
assigned, see Table 2.5 and Table 2.1.

3.12.1 Refresh Remote State

With Query|Refresh Remote State SmartSVN will query the repository and compare
the latest repository revision with your local working copy. In this way, for each file and
directory the corresponding remote state is assigned and displayed in the Remote State
column; it will be made visible if necessary.

Refresh Remote State can be combined with the local Refresh and the scanning for
locks (see 3.11.1) in the Preferences (see 8.8) to have the Remote State automatically
refreshed.

c© 2012 WANdisco plc, www.wandisco.com 58

Chapter 3. Commands

If problems during the Remote State refresh are encountered, the status bar (see 2.1)
will display an Error in the Refresh area. The tooltip for this area will show more details
regarding the encountered problem.

3.12.2 Clear Remote State

Use Query|Clear Remote State to clear and hide the remote state. This will remove all
directories and files which have the local state “Remote” (see Table 2.5 and Table 2.1)
and hide the Remote State file table column.

3.13 Change Sets

A Change Set is a group of committable files and directories, with a message assigned.
Subversion itself supports Changelists which currently can contain only files. SmartSVN
automatically synchronizes the files of a Change Set with the corresponding SVN change-
list. Change Sets are also known as “prepared commit” in other version control systems.

Change Sets are displayed in the Directory Tree (see 2.4) below the normal project
directory structure. Table 3.4 shows the icons which are used for Change Set directories.

Icon Description

Change Set root node

Change Set root node, which contains the modified project root directory

A virtual Change Set directory, which does not represent an actual project
directory, but is necessary to display child directories and files.

(various) A Change Set directory which represents (or is equal to) the corresponding
project directory, see Table 2.1.

Figure 3.4: Change Set icons

You can create a Change Set by selecting the files/directory to assign to the Change
Set and invoking Change Set|Move to Change Set (Section 3.13.1). You can use the
same menu item to add more committable files/directories to the Change Set, to move
the selected files/directories to a different Change Set or to remove files/directories from
a Change Set. When you are ready to commit, you can simply select the Change Set in
the directory structure and invoke Modify|Commit (Section 3.6).

When the project directory structure is selected (as opposed to a Change Set), deac-
tivating View|Files Assigned to Change Set (Section 2.4) will give a better overview of
changed files not already assigned to a Change Set.

Note A file/directory can only be assigned to one Change Set.

c© 2012 WANdisco plc, www.wandisco.com 59

Chapter 3. Commands

3.13.1 Move to Change Set

Use Change Set|Move to Change Set to change the assigned Change Set (see 3.13) of
selected, committable files/directories.

To move the selected files/directory to a new Change Set, select New Change Set and
enter the Message of the new Change Set. Select Remove this Change Set once it gets
empty to automatically remove this Change Set once it gets empty. Select Allow only
committable entries to automatically remove unchanged and other non-committable
entries from Change Sets.

Example
When having Remove this Change Set once it gets empty and Allow only com-
mittable entries selected, the Change Set will be automatically removed after com-
mitting it because

• the committed files will turn their state into unchanged after the commit and
hence will be removed from the Change Set and

• the Change Set will be empty and hence will be removed itself.

To move the selected files/directory to another, already existing Change Set, select
Existing Change Set and choose the Target Change Set.

To remove the selected files/directory from their currently assigned Change Set, select
Remove from Change Set.

Tip You can use Drag-and-Drop to move files to a Change Set.

3.13.2 Move Up

Use Change Set|Move Up to move the selected Change Set (see 3.13) one position up
(when having multiple Change Sets).

3.13.3 Move Down

Use Change Set|Move Down to move the selected Change Set (see 3.13) one position
down (when having multiple Change Sets).

3.13.4 Delete

Use Change Set|Delete to delete the selected Change Set (see 3.13). This will only affect
the Change Set assignment, not the files nor their SVN state.

3.13.5 Edit Properties

Use Change Set|Edit Properties to change the Message and other properties of the
selected Change Set (see 3.13). For details, refer to Section 3.13.1.

c© 2012 WANdisco plc, www.wandisco.com 60

Chapter 3. Commands

3.14 Common Features

SmartSVN includes a set of common features and UI elements that are shared by various
commands.

3.14.1 Recursive/Depth options

In directory mode, most commands can work recursively and non-recursively. By default,
SmartSVN offers a basic option Recurse into subdirectories (or a similar name) which
let’s you operate either only on the directory itself, or on the directory and all contained
files and subdirectories, i.e. recursively.

Alternatively, you can switch to advanced recursion options in the Preferences (see
8.4). In this mode SmartSVN offers the Subversion depth levels:

• Only this directory only operates on the directory/file itself.

• Only file children operates on the directory and its directly contained files.

• Immediate Children (files and directories) operates on the directory, its directly
contained files and subdirectories, but not on files or directories within these subdi-
rectories.

• Fully recursive operates on the directory, contained files and subdirectories recur-
sively.

Obviously, having Recurse into subdirectories selected is equivalent to depth Fully
recursive while having Recurse into subdirectories deselected is equivalent to depth
Only this directory.

3.14.2 Revision input fields

Most input fields for which you can enter a revision number, support a browse func-
tion, which can be accessed either by a Select button or by hitting <Ctrl>+<Space>-
keystroke.

A dialog displaying all revisions for the selected file/directory will come up. It shows all
revisions for which the directory has actually been affected and additionally all revisions
which correspond to a specific tag, see Section 3.9 for further details. The Revision
column shows the revision number or the corresponding tag. The other columns display
the revision’s Time, Commit Message and Author, respectively. The Path column shows
the revisions’s root location.

The displayed revisions are taken from the Log Cache (Section 5.3), so recent revisions
might not be contained in the list. In this case you can use Refresh to update the Log
Cache (and implicitly the displayed revisions) from the repository.

Browse Revisions at specifies the peg revision for the location to browse. In general
HEAD should be sufficient for alive locations. Otherwise, you may select the correspond-
ing Peg Revision.

c© 2012 WANdisco plc, www.wandisco.com 61

Chapter 3. Commands

Example
When merging (see 3.7.1) revisions from replaced (and hence dead) branches, it will
be necessary to enter the correct Peg Revision to identify the branch.

3.14.3 Repository path input fields

Most input fields for which you can enter a repository path, support a browse function,
which can be accessed by the Browse or by hitting <Ctrl>+<Space>-keystroke.

The Repository Browser (Section 4) will come up as a dialog. Depending on the
command from which the browser has been invoked, you can either select a repository file
and/or a repository directory.

For certain commands – where necessary – peg-revisions are supported. Peg-revisions
specify the URL of a repository path. This can be helpful when working with paths which
do not exist anymore in the repository. In SmartSVN, you can append a peg-revision to
a path by prefixing it with a “@”.

Example
To specify a path “/project/path” at revision 91, enter /project/path@91.

3.14.4 Tag input fields

Input fields, for which you can enter a tag, like when using Switch (Section 3.4.4), sup-
port a browse function, which can be accessed by the Browse button or by hitting
<Ctrl>+<Space>-keystroke.

The Tag Browser (Section 3.9.5) will come up to let you select a branch or tag.
For certain commands – where necessary – peg-revisions are supported. For details

refer to Section 3.14.3.

Example
To specify a tag “my-tag” at revision 91, enter my-tag@91.

3.14.5 File/directory input fields

Input fields, for which you can enter a path to a file or directory, support a browse function,
which can be accessed by selecting the Choose button or by hitting <Ctrl>+<Space>-
keystroke.

c© 2012 WANdisco plc, www.wandisco.com 62

Chapter 4

Repository Browser

The Repository Browser offers a direct view into the repository and basic commands to
manipulate repository contents directly. The Repository Browser comes as a stand-alone
frame. It can be invoked from within the Project Window (see 2) by Query|Open in
Repository Browser or by Window|New Repository Browser. If a tray icon (see 9.8)
is present the Repository Browser frame can be invoked by New Repository Browser.
The Repository Browser can also be invoked from Project Window (see 2) commands
via Repository path input fields (see 3.14.3) and commands like Check Out (see 3.1) or
Import into Repository (see 3.2).

The Repository Browser displays the repository content with a Directory tree and a
File table, similar to the Project Window (see 2). For details on the File Filter, refer to
Section 2.4.2.

The repository file system is only scanned on demand. This happens when currently
unscanned directories are expanded. The Tag-Branch-Layouts (see 3.9.1) will be used to
display directory icons. Table 4.1 shows the possible directory states.

4.1 Repository menu

• Use Open to change the currently browsed repository. This command opens a dialog
where you can enter a Repository URL to browse. It’s recommended (though not
necessary) to enter repository root URLs.

• Use Show Revision to change the currently displayed revision.

• Use Check Out to check out the currently selected directory. This will bring up a
simplified Check Out wizard, for details refer to Section 3.1.

• Manage Log Caches, see Section 5.3.1.

• Use Close to close the frame.

• Use Exit to exit SmartSVN.

63

Chapter 4. Repository Browser

Icon State Details

Default An already scanned repository directory without special mean-
ing.

Unscanned A not yet scanned repository directory.

Root A project root, according to some Tag-Branch-Layout (see
3.9.1).

Trunk/Branch A trunk or branch, according to some Tag-Branch-Layout (see
3.9.1).

Tag A tag according to some Tag-Branch-Layout (see 3.9.1).

Intermediate An intermediate directory according to some Tag-Branch-
Layout (see 3.9.1). For instance the parent directory (container)
of the branches.

Error An error has occurred while scanning the repository, only dis-
played for the root directory.

Figure 4.1: Directory States

4.2 Edit menu

• Use Stop to cancel the currently processing operation. This action might not be
applicable for certain operations.

• Use File Filter to put the focus into the File Filter field.

• Use Configure Layout to configure the Tag-Branch-Layout (see 3.9.1) for the cur-
rently selected directory.

• Use Dismiss Layout to dismiss the Tag-Branch-Layout for the currently selected
directory. This can be useful to get rid of a “deeper” layout in favor of its parent
layout.

• Use Copy Name to copy the name of the selected file/directory to the system
clipboard. If multiple files are selected, all names will be copied, each on a new line.

• Use Copy URL to copy the URLs of the selected file/directory to the system clip-
board. If multiple files are selected, all URLs will be copied, each on a new line.

• Use Set Encoding to configure the encoding which will be used when displaying
file contents for the various Query-commands. Refer to Section 6.3.1 for details on
when encodings will be applied. The encoding will be stored in the corresponding
Repository Profile (see 8.3).

• Use Customize to customize accelerators (see Section 8.18).

• Use Preferences to show the application preferences (see Section 8).

c© 2012 WANdisco plc, www.wandisco.com 64

Chapter 4. Repository Browser

4.3 View menu

• Use Refresh to explicitly refresh the contents of the Directory tree and the File
table from the repository.

• Select Files from Subdirectories to also view files from within subdirectories of the
currently selected directory.

4.4 Modify menu

• Create Directory, see Section 4.4.1.

• Remove, see Section 4.4.2.

• Copy, see Section 4.4.4.

• Move, see Section 4.4.4.

4.4.1 Create Directory

Use Modify|Create Directory to create a new directory in the currently selected directory.
Enter the Directory Name which may contain slashes (“/”) to create multiple directories
at once.

Select Create default project structure for trunk, branches and tags to also create
sub-directories trunk, branches and tags in the created directory.

Enter the corresponding Commit Message which is automatically suggested, as long
as you havn’t manually modified it.

4.4.2 Remove

Use Modify|Remove to remove the currently selected directory(ies) or files from the
repository. Enter a corresponding Commit Message, which is automatically suggested
based on the selected directory/files.

4.4.3 Rename

Use Modify|Rename to rename the selected file or directory. This will open a dialog
where you can enter the new name of the file or directory.

4.4.4 Copy/Move

Use Modify|Copy or Modify|Move to copy or move the selected files/directory to another
location. Select Copy to only copy the files/directory or Move to additionally remove the
copy sources afterwards.

Use To to copy the copy sources itself to the selected location. When having selected
one file/directory the entered destination location must not yet exist. The last part of the

c© 2012 WANdisco plc, www.wandisco.com 65

Chapter 4. Repository Browser

destination path will be the new name of the copied file/directory. When having multiple
files selected, the files will be copied into the destination path.

Use Contents Into to copy the contents of the copy source into the selected location.
This option is only available for copying directories. In either case, necessary parent
directories will be created automatically.

Enter the corresponding Commit Message which is automatically suggested, as long
as you haven’t manually modified it. Select After command execution show repository
at HEAD revision to reset the Repository Browser’s revision to HEAD after having
performed the copy or move command. This option is only available if the current revision
is not set to HEAD and it is convenient to immediately see the copy results (in HEAD).

Tip You can also use Drag-And-Drop to copy or move files and directo-
ries. This will open the same dialog with the corresponding paths
pre-filled.

4.4.5 Edit Properties

Use Modify|Edit Properties to open a dialog that allows you to edit the SVN properties
of the selected file or directory. The dialog is described in more detail in Section 3.8.1.
Additionally, there is a text field at the bottom where you can enter a commit message
for the property changes to be committed.

4.5 Query menu

• Use Open to open the currently selected file. SmartSVN will check out the file to
a temporary location and open it in the specified editor. For details refer to the
corresponding Open (see 2.5.7) command in the Project Window (see 2).

• Use Compare on a selection of two files or two directories to compare their contents.
For details refer to Section 3.10.1 and Section 3.10.6, respectively.

• Use Log to display the log for the currently selected directory or file. For details
refer to Section 3.10.7.

• Use Revision Graph to display the revision graph for the currently selected directory
or file. For details refer to Section 3.10.8.

• Use Annotate to display an annotated view of the currently selected file’s content.
For details refer to Section 3.10.9.

• Use Save As to save the contents of the selected file to a local file. Enter the Target
Path and select whether to Expands keywords or leave them unexpanded (as they
are in the repository).

4.6 Window menu

Refer to Section 2.5.12 for more details.

c© 2012 WANdisco plc, www.wandisco.com 66

Chapter 4. Repository Browser

4.7 Help menu

Refer to Section 2.5.13 for more details.

c© 2012 WANdisco plc, www.wandisco.com 67

Chapter 5

Transactions

The Transactions are a direct view into a repositories’ Log which is continuously updated.
The Transactions are primarily designed to keep you up-to-date on what has happened
within repositories you are interested in, but also to allow similar powerful queries as
the Log command (see 3.10.7) itself. The Transactions are integrated into the Project
Window (see 5.2) and they come as a stand-alone Transactions frame (see 5.1).

5.1 Transactions frame

The Transactions frame can be invoked from within the Project Window (see 2) or from
within the Repository Browser (see 4) by Window|Show Transactions. If a tray icon
(see 9.8) is present the Transactions frame can be invoked by Show Transactions.

The Transactions frame can be used to observe multiple repositories at the same time.
Every revision of every repository is represented by one line in the transactions tree, which
can be expanded to see which files/directories have been affected by the corresponding
revision.

Note For repositories in an older format than Subversion 1.6, the received
log data does not contain information on whether a changed entry
is of file or directory type. Hence, all entries modified in a revision
will be displayed using file icons (even if there are directories).

A revision line primarily shows the commit message of the corresponding revision and
has a prefix which shows various properties of that revision:

• Root: displays to which repository the revision belongs. This column is only present
if multiple repositories are observed, refer to Section 5.1.2 for details. The column
may also contain the “project name”, appended after a colon (“:”). The “project
name” is the last path component of the project root of the corresponding Tag-
Branch-Layout (see 3.9.1).

• Revision Number: Displays the revision number.

• Time: Displays date and time of the revision. The used format can be changed in
the Preferences (see 8.4).

68

Chapter 5. Transactions

• Trunk/Branch/Tag: displays the corresponding trunk, branch or tag to which
the revision belongs, refer to Section 3.9.1 for details. This column is only present
if at least one of the displayed revisions actually belongs to a trunk, branch or tag.

• Author: Displays the revision’s author.

• File count: Displays the number of modified files/directories the revision contains.

The changed files/directories for a revision are displayed relative to the corresponding
Trunk/Branch/Tag of the revision, or relative to the Root’s URL in case no Tag-Branch-
Layout is used. If a Tag-Branch-Layout is used, but a file path does not fit into the
Tag-Branch-Layout, it will be prefixed by a “/” to denote that it is given relative to the
Root.

5.1.1 Grouping of revisions

Use the View to group the revisions by different categories:

• Ungrouped

• Days

• Weeks

• Date

• Authors

• Location (repository)

5.1.2 Watched URLs

Use Edit|Configure Watched URLs to configure the observed URLs (i.e. repositories).
Every entry must have a Name which will be displayed in the “Root” column of the
revision line prefix to distinguish revisions from different repositories. All revisions below
the Root URL will be observed.

With the Display revisions for the last and But at most options you can put limits
on how far into the past the Transactions view will display revisions.

Note For large and/or highly active projects, using a large value for Dis-
play revisions for the last without a reasonable But at most re-
striction can require significant memory usage and computational
resources.

The watched URLs can be refreshed manually with Transaction|Refresh and they
will be refreshed recurrently for the interval specified in the Preferences (see 8.13).

c© 2012 WANdisco plc, www.wandisco.com 69

Chapter 5. Transactions

Icon State Details

Default (read) A (read) revision.

Unread An unread revision.

Remote A working copy revision which contains at least one file which
will be updated when updating to HEAD.

Figure 5.1: Revision states

5.1.3 Read/Unread revisions

SmartSVN internally manages for every repository a list of which revisions are Unread
and which revisions have already been Read. This mechanism is similar to how email
clients work: Newly fetched revisions are considered as Unread and hence are displayed
with a blue color. In addition to that, they will have a different icon. For details refer to
Table 5.1. Use View|Mark as Unread or View|Mark All as Read to mark revisions as
unread or read.

The read/unread state of revisions is not related to a single Transactions view, but
shared by all views. For instance, multiple Project Window transactions (see 5.2) and
the Transactions frame itself may show the same repositories. Marking a revision as
read/unread will change their state in all of these views.

5.1.4 Display Settings

The layout of the revision line prefix can be configured in the display settings, via
View|Settings. Choose whether to show Time, Author, File/directory count and/or
Trunk/Branch/Tag.

5.1.5 Transaction menu

• Use Refresh to refresh the log information for the Watched URLs (see 5.1.2).

• Manage Log Caches, see Section 5.3.1.

• Use Close to close the frame.

• Use Exit to exit SmartSVN.

5.1.6 Edit menu

• Use Stop to cancel the currently processing operation. This action might not be
applicable for certain operations.

• Use Open to open the currently selected file. SmartSVN will check out the file to a
temporary location and will open it in the specified editor. For details refer to the
corresponding Open (see 2.5.2) command in the Project Window (see 2).

c© 2012 WANdisco plc, www.wandisco.com 70

Chapter 5. Transactions

• Use Copy Message to copy the commit message of the currently selected revision.
If multiple revisions are selected, all messages will be copied, each on a new line.

• Use Copy Name to copy the names of the files modified in the currently selected
revisions. In case of multiple files, each filename will occupy a separate line in the
copied text.

• Use Copy Relative Path to copy the relative paths of the currently selected files.
If multiple files are selected, all files will be copied, each on a new line.

• Use Copy URL to copy the URLs of the files modified in the currently selected
revisions. In case of multiple files, each URL will occupy a separate line in the
copied text.

• Use Copy Revision Number to copy the revision numbers of the files modified in
the currently selected revisions. In case of multiple files, each revision number will
occupy a separate line in the copied text.

• Use Customize to customize accelerators (see Section 8.18).

• Configure Watched URLs, see Section 5.1.2.

• Use Preferences to show the application preferences (see Section 8).

5.1.7 View menu

• Mark as Unread, see Section 5.1.3.

• Mark All as Read, see Section 5.1.3.

• Ungrouped Revisions, see Section 5.1.1.

• Grouped by Days, see Section 5.1.1.

• Grouped by Weeks, see Section 5.1.1.

• Grouped by Date, see Section 5.1.1.

• Grouped by Authors, see Section 5.1.1.

• Grouped by Location, see Section 5.1.1.

• Settings, see Section 5.1.4.

5.1.8 Modify menu

• Change Commit Message, see Section 7.6.4.

c© 2012 WANdisco plc, www.wandisco.com 71

Chapter 5. Transactions

5.1.9 Query menu

• Use Show Changes to display the changes for the selected file or revision. For
details refer to Section 3.10.1.

• Use Log to display the log for the currently selected revision or file. For details refer
to Section 3.10.7.

• Use Revision Graph to display the revision graph for the currently selected revision
or file. For details refer to Section 3.10.8.

• Use Annotate to display an annotated view of the currently selected file’s content.
For details refer to Section 3.10.9.

• Use Save As to save the contents of the selected revision/file to a local file, for
details refer to (see 4.5).

5.1.10 Window menu

Refer to Section 2.5.12 for more details.

5.1.11 Help menu

Refer to Section 2.5.13 for more details.

5.2 Project Transactions

The Project Transactions are displayed in the Transaction view which is by default lo-
cated in the lower right area of the Project Window (see 2). The Project Transactions
view provides virtually all features of the stand-alone Transactions Frame (see 5.1) and
extends some of them.

Many commands available in the Project Transactions view are integrated into the
various Project Window commands (see 2), for instance Log (see 3.10.7) transparently
works on the the project files and directories as well as on Transaction revisions or files.
The Transactions-specific commands can be found in the Transactions menu, see Section
2.5.11.

The main difference compared to the Transactions frame is that those revisions which
are related to the current working copy (called working copy revisions) are implicitly
displayed; similar to the Transactions frame further “watched URLs” can be configured
by Transactions|Configure Watched URLs.

For working copy revisions, their read/unread (see 5.1.3) state is tracked but not
displayed in the Project Transactions. Instead, based on the local working copy state,
the “remote state” for every revision is evaluated and displayed accordingly: If a revision
has already been updated, it’s simply displayed as read. If there is at least one file part
of the revision which will be updated when updating (see 3.4.1) to HEAD the revision is
displayed as read, containing a green arrow, see Table 5.1.

c© 2012 WANdisco plc, www.wandisco.com 72

Chapter 5. Transactions

5.2.1 Settings

Select Transactions|Settings to configure the Project Transactions.
Select Repeatedly refresh transactions to refresh the working copy transactions re-

currently, with the same interval as for the Transactions frame. Select Refresh after
loading project to automatically refresh the working copy transactions after a project
has been loaded. Select Refresh after a command changed the working copy to auto-
matically refresh after Updates, Commits, etc.

Regarding the basic Display options, refer to Section 5.1.4. Display revisions for the
last and But at most refer to the working copy revisions; the meaning of these options
is identical to the additionally watched URLs, for details refer to Section 5.1.2.

5.3 Log Cache

The Log Cache is the local data storage for the Transactions. It is also used by other
SmartSVN commands, for instance the Log command (Section 3.10.7). It stores and
supplies the raw log information as received from the server and can supply them to
various commands later on. This can increase log performance significantly and also
leads to reduced network traffic.

When Log information is requested for the first time for a certain repository, you can
choose which parts of the repository should be indexed by the Log Cache. In general it
is recommended to select Create cache for whole repository at to let SmartSVN index
the whole repository. The reason for this is that logs of a certain “module” can have
links to other modules, due to the way Subversion’s Copy mechanism works. Sometimes
repositories can be very large and you may be interested only in a few modules of the
whole repository. In this case it may be more efficient to select Create cache only for
module at and select the corresponding module. However, this can lead to incomplete
logs due to the reasons stated above. For some repositories you might want to use create
no Log Cache at all. In this case choose Skip cache and perform logs directly.

SmartSVN automatically keeps the Log Cache(s) up-to-date. All log-related com-
mands always query the repository for the latest logs, before querying the Log Cache. In
the same way, every manually or automatically triggered refresh of the Transactions will
update the corresponding caches.

Log results (for instance used by the Log command) from the Log Cache are in general
identical to results obtained when querying the server directly. However there can be
differences for following situations:

• Server-side access restrictions on already cached revisions are changed afterwards.
This happens for instance, when using and modifying AuthzSVNAccessFile for
HTTP repositories.

• Log information for already cached revisions are changed on the server afterwards.
This happens for instance when changing the repository’s database directly or by
changing revision properties, e.g. when another user has performed Change Commit
Message (see 7.6.4).

In such cases, you should rebuild the Log Cache as described in Section 5.3.1.

c© 2012 WANdisco plc, www.wandisco.com 73

Chapter 5. Transactions

5.3.1 Manage Log Caches

In the Project Window (see 2) use Project|Manage Log Caches to manage the local Log
Caches.

The list shows all known Root URLs and the corresponding Log Type. For Log Type
set to Local Log Cache there exists a local Log Cache for the Root URL against which
logs will be performed. Otherwise, for Direct Logs onto Repository, the logs will be
performed directly against the repository.

Log Caches are created on demand for a new Root URL and the choice whether to use
a Local Log Cache or Direct Logs onto Repository has to be done when a log is first
requested for that URL. This choice will be remembered and typically doesn’t need to be
changed afterwards. If necessary, you can use Delete for the corresponding Root URL.
This will discard the Log Type choice and get rid of the Log Cache in case of Local Log
Cache choice. Hence, subsequent log requests for this URL (or child URLs) will bring up
the Log Cache initialization dialog again.

Select Rebuild for a Local Log Cache to rebuild it from repository log information.
In general it’s recommended to rebuild caches completely by selecting All unless you know
that only log information Starting with a certain revision had been changed.

5.3.2 Storage

The Log Cache information is stored in the subdirectory log-cache in SmartSVN’s set-
tings directory. For every Log Cache, there is a separate subdirectory containing the
server name and repositoy path. This is typically sufficient to quickly locate the cache for
a specific repository. In case there are multiple subdirectories with the same name, only
differing and the trailing number, you can have a look at the contained urls files. They
show the exact location for which the Log Cache has been built.

If you encounter problems when rebuilding the cache, or if you need to get rid of
the cached information for a certain repository, you can remove the corresponding sub-
directory. Alternatively, you can remove the whole log-cache in order to get rid of all
cached log information. You should never change these files while SmartSVN is running,
otherwise the results will be unpredictable.

c© 2012 WANdisco plc, www.wandisco.com 74

Chapter 6

Projects

SmartSVN internally manages your SVN working copies in “SmartSVN projects”. A
SmartSVN project points to one or more SVN working copies (local SVN-controlled di-
rectories) and has a name and settings (Section 6.3) attached to it. When working with
SmartSVN, you are always working with a project.

Projects can be created in different ways from the Project menu. To create a com-
pletely new project from a not-yet-version-controlled local directory, use Import Into
Repository (see Section 3.2). This will also create the corresponding directory (module)
in the repository. If you want to create a local working copy from a project which already
exists in a repository, use Check Out (see Section 3.1).

6.1 Managing working copies

To create a project from an already versioned local directory, use Project|Open Working
Copy and specify the local Versioned Directory. On the Project page, you may select
to Open in new project for this working copy, specify the project’s name and specify an
optional group (see Project Manager (see 6.2)) to which the project will be added. You
may select Add to current project to add the working copy to the currently open project
(if present). If there is already a project which contains this working copy, you may select
Open existing project to open this project. Or you may select Don’t manage as project
to just create a temporary project for this working copy.

If the location of a working copy has changed, you may use Edit Working Copy to
point to the new location. To remove a working copy from the project, use Remove
Working Copy.

Note For an advanced configuration of the working copy roots use the
project settings (see 6.3).

One Project Window shows one project at a time. To work with multiple projects at
the same time, you can open multiple Project Windows by clicking Window|New Project
Window. Already existing projects can be opened in a Project Window with Open or
Manage Projects and closed with Close.

75

Chapter 6. Projects

6.2 Project Manager

With the Project Manager (Project|Open or Manage Projects) you can manage your
existing SmartSVN projects. The set of managed projects is arranged in a tree-structure.
This allows you to group related projects under a common group name, etc.

Tip There is one special group Sorted project area which receives all
new projects. This group is sorted and hence works like a sorted
project list. If you don’t need to group projects, simply let this
group maintain the project list for you.

With Rename you can change the Name of an already managed project or a group.
Use Delete to remove projects from the project tree; neither the local directory itself nor
any other filesystem content will be affected by this operation.

You can rearrange the entries in the project tree with Drag-and-Drop. If a group is
expanded, you can move the currently selected item into this group, otherwise it will be
moved across.

Use Create Group to wrap the currently selected project in a group. Thereafter you
can move other projects into this group. If you Delete a group, only this group will be
deleted. Projects or groups contained within the group will not be deleted.

6.3 Project Settings

The project settings affect the behavior of various SVN commands. Contrary to the global
preferences (see Section 8), the project settings only apply to an individual project. You
can edit the settings of the currently opened project via Project|Settings.

The top of the dialog shows the Root Paths for the current project. Use Change
to modify these paths to, for example, add other root directories, or to change a root
directory after the corresponding SVN working copy has been moved on your local disk.

6.3.1 Text File Encoding

The text file encoding affects only the presentation of file contents, for instance when
comparing a file (see Section 3.10.1) and it will only be used if for the file itself no charset
has been specified by its MIME-Type property (see 3.8.3). The text file encoding settings
are not relevant for SVN operations itself, which generally work only on the byte-level.

With Use system’s default encoding, SmartSVN will automatically use the system’s
default encoding when displaying files. When changing the system encoding later, the
project settings are automatically updated.

Alternatively you can choose a fixed encoding with Use following encoding.

6.3.2 Scan

The Scan settings specifies whether SmartSVN scans the Whole project or Only root
directory when opening a project.

c© 2012 WANdisco plc, www.wandisco.com 76

Chapter 6. Projects

General we recommend using the Whole project option, because features like search-
ing files in the table, etc. rely on having the whole project structure in memory. Nev-
ertheless, when you are working with large projects, it can be necessary to scan the file
structure on demand to avoid high memory consumption.

6.3.3 Working Copy

The option (Re)set to Commit-Times after manipulating local files tells SmartSVN
to always set a local file’s time to its internal SVN property commit-time. Especially in
case of an updating command (see Section 3.4), this option is convenient to get the actual
change time of a file and not the local update time.

Apply auto-props from SVN ’config’ file to added files tells SmartSVN to use
the auto-props from the SVN ’config’ file, which is located in the Subversion directory
below your home directory. These auto-props will also override other project defaults,
like Default EOL Style, explained below.

Choose Keep input files after merging to always keep the auxiliary files (left, right
and base) after a file has been merged by the Merge (see 3.7.1) or by the Merge from 2
sources (see 3.7.2) command. These files will be put into merged state (see Table 2.5)
which is similar to the conflict state however without having actual conflicts. For merged
files you can use the Conflict Solver (see 7.4) to review merge changes in detail and you
can finally use Mark Resolved (see 3.5.14) to mark the file as resolved and to get rid of
the auxiliary files.

Global Ignores

The Global Ignores define global ignore patterns for files/directories which should in
general be ignored within the current project. This is contrary to local ignores (see Section
3.8.8), which are only related to a specific directory. You can completely deactivate Global
Ignores by Deactivated. With Use from SVN ’config’ file, the same ignore patterns
will be used as by the command line client. Independently of the command line client,
you can enter your own patterns via Use following patterns. The Patterns are file name
patterns, where “*” and “?” are wildcard symbols, interpreted in the usual way.

Binary Files

Choose Use MIME-type registry from SVN ’config’ file to use the corresponding file
which is also used by the command line client. Choose Use following patterns to specify
custom Patterns, for which matching files will always be added (see 3.5.1) with binary
MIME-type (see 3.8.3). The wildcard symbols “*” and “?” can be used in the usual way.

EOL Style

This option specifies the Default EOL-Style, which is used when adding a file (Section
3.5.1). For more details refer to Section 3.8.4.

Use In case of inconsistent EOLs to configure the behavior when adding a file with
inconsistent EOLs (line endings). Add ’As Is’ will automatically add the file with EOL

c© 2012 WANdisco plc, www.wandisco.com 77

Chapter 6. Projects

style “As Is”. Add as Binary will automatically set the file’s type to “Binary”, see also
Section 3.8.3. Report Error will report an error.

EOL Style – Native

Usually text files are stored with ’native’ EOL-Style (see 3.8.4) in the SVN repository.
As a result, after performing SVN operations on these files your platform’s native line
separator will be used (’Platform-dependent’). Under certain circumstances it can be
convenient to redefine what ’native’ means, e.g. when a project is operated on Windows
OS, but frequently uploaded to a Unix server. Re-difining can be done here by choosing
the desired Native EOL-Style.

Locks

Use When adding files, set ’Needs Lock’ for to specify for which files the Needs Lock
(see 3.11.5) flag should be set when they are added. With No file, the ’Needs Lock’
property will be set on no file. With Binary files the property will only be set on files
which have been detected to have binary content. With Every file the property will be
set on every file.

When committing (see 3.6) files or directories, SmartSVN will scan for locked files.
Choose here whether to suggest to Release Locks or to Keep Locks for those files on the
“Locks” page of the commit wizard.

Enable Automatically scan for locks and enter the corresponding interval in minutes
to repeatedly refresh the files’ lock states. Refer to Section 3.11.1 for details.

Keyword Subst.

This option specifies the Keyword Substitution default, which is used when adding a file
(Section 3.5.1). For more details refer to Section 3.8.5.

Conflicts

By default, conflicting files will receive new extensions like “mine” or “.r4711”. Here you
can specify extensions which should be preserved in case of conflicts. Choose either Use
from SVN ’config’ file or Use following extensions and enter the file name Extensions
which should be preserved.

6.3.4 Default Settings

Projects are created by various commands. For reasons of simplicity, in most of these
cases, there is no configuration possibility for the corresponding project settings. There-
fore you can specify default project settings (template settings), which will be applied to
every newly created project. With Project|Default Settings you can configure the same
properties as for a concrete project.

c© 2012 WANdisco plc, www.wandisco.com 78

Chapter 7

Subwindows

Many commands are resulting in stand-alone sub-windows with their own functionality
and purpose.

7.1 File Compare

The File Compare window shows the contents of two files, one in the left and one in the
right area of the window. A File Compare is typically invoked via Query|Show Changes
from the Project Window (see 2) but there are other ways to invoke a File Compare in
SmartSVN. Together with a File Compare, a Properties Compare (see 7.2) can be invoked,
if properties of the files to compare are different as well.

Note Depending on your File Compare settings (see 8.11), performing a
file comparison can also invoke an external file compare tool. This
section refers only to the built-in File Compare of SmartSVN.

Depending on the source of the compared files (local working copy, repository), neither,
only the right, or both editors in the File Compare window may be editable. Depending
on the invoking command, when a copied file is compared and the copy source file is
removed, the pristine copy of the source file will be used for the comparison, provided
that its contents are available.

Tip If the file compare refuses to compare a file because it’s binary,
check the corresponding MIME-Type (see 3.8.3) property. Regard-
ing the used encoding, refer to Section 6.3.1. You can also configure
to the set MIME-Type and auto-detect the type in the File Com-
pare settings (see 8.11).

7.1.1 Comparison

The file contents are compared line-by-line, where the underlying algorithm finds the
minimum number of changed lines between the left and the right content. The differences
between left and right content is highlighted by colored regions within the text views,

79

Chapter 7. Subwindows

which are linked together in the center Link Component. The Link Component allows to
take over changes from one side to the other, depending on which side is editable.

Tip When the mouse is positioned over the Link Component, you can
use the mouse wheel to jump from difference to difference.

Depending on the Preferences (see 8.10), not only complete lines, but also the content
within lines is compared if they are not too different. These comparison results are inner-
line changes. You can take over such changes from left to right or vice versa with Apply
Left and Apply Right, respectively, from the popup menu (invoked on the change itself).

The following sections describe the various entries in the menu of the File Compare
window. Some of the available operations work on the active view, i.e. the view which
has the focus and/or displays the cursor.

7.1.2 File menu

• Use Save to save changes to (both) file(s).

• Use Export as HTML-File to export the comparison to an HTML-file.

• Use Close to close the frame.

7.1.3 Edit menu

Contains common functions to alter the file contents and to find a certain text within the
contents. Additionally:

• Use Take Left Block to take over the complete block below the cursor position
from left to right. This may also remove or insert blocks in the right view.

• Use Take Right Block to take over the complete block below the cursor position
from right to left. This may also remove or insert blocks in the left view.

• Use Customize to customize accelerators (see Section 8.18).

7.1.4 View menu

• Use Refresh to refresh the contents of the files from disk. This command is not
applicable if both file contents are read-only.

• Use Left Beside Right to display left and right files side-by-side, which is the
default.

• Use Left Above Right to display the left file above the right file. This can be
convenient when having files with long lines.

• Ignore Whitespace for Line Comparison, refer to Section 7.1.8.

c© 2012 WANdisco plc, www.wandisco.com 80

Chapter 7. Subwindows

• Ignore Case Change for Line Comparison, refer to Section 7.1.8.

• Select Synchronize Scrolling to enable the synchronization of the scrolling states
of the two editors.

• Settings, refer to Section 7.1.8.

7.1.5 Go To menu

• Use Previous Change to scroll to the previous difference within the active view,
relative to the current cursor location.

• Use Next Change to scroll to the next difference within the active view, relative to
the current cursor location.

• Use Go to Line to go to the specified Line Number within the active view.

7.1.6 Window menu

Refer to Section 2.5.12 for more details.
In the following, the File Compare settings are described, which can be accessed via

View|Settings.

7.1.7 General Settings

The Tab Size specifies the width (number of characters) which is used to display a TAB

character. With Show whitespaces whitespace characters will be displayed. With Show
line numbers a line number gutter will be prepended.

Select Remember as default to have the selected options apply to all File Compare
frames.

For basic settings regarding text components, refer to Section 8.10.

7.1.8 Compare Settings

If Ignore whitespace for line comparison is selected, two lines are treated as equal, if
they only differ in the number, but not in the position of whitespaces.

If Ignore case change for line comparison is selected, uppercase and lowercase char-
acters are treated as equal.

The Inner-Line Comparison specifies the “tokenizing” algorithm of the lines, for which
the individual tokens within two lines will be compared against each other. Alphanumeric
words results in tokens, which form alphanumeric words, i.e. words, which are consisting
only of letters and digits and which are starting with a letter. All other characters are
considered as tokens on their own. Character-based treats every character as a single
token. This is the most fine-grained comparison option. C identifiers and Java identifiers
are similar to Alphanumeric words, but in addition to letters and digits certain other
characters are allowed to be part of a single token. Off completely disables the inner line
comparison, i.e. every line is considered as single token.

c© 2012 WANdisco plc, www.wandisco.com 81

Chapter 7. Subwindows

With Trim equal start/end of Inner-Line changes selected and two tokens being
different, the equal starting and ending characters within both tokens won’t be displayed.
For instance, for the tokens foobar and foupar the difference will only display as up.

Select Remember as default to have the selected options apply to all File Compare
frames.

7.2 Properties Compare

The Properties Compare window shows the properties of two files or directories, one in the
left and one in the right area of the window. A Properties Compare is typically invoked
together with a File Compare (see 7.1), e.g. by Query|Show Changes from the Project
Window (see 2).

The table displays all properties of both files/directories with their Name, State, Old
Value and New Value. Old Value corresponds to the value of the first file/directory and
a New Value corresponds to the value of the second file/directory. When the properties
compare has been invoked for a versioned file or directory, old refers to the pristine copy
of the file/directory and new refers to the working copy file/directory. The State column
shows the property’s state, either Modified, Added, Removed or Unchanged. The
Name column renders the property’s state by using different colors, similar to the File
Compare (see 7.1).

The lower area of the dialog shows the differences between Old Value and New Value
for the currently selected property, similar to the File Compare (see 7.1).

7.2.1 File menu

• Use Close to close the frame.

7.2.2 Edit menu

• Use Customize to customize accelerators (see Section 8.18).

7.2.3 Window menu

Refer to Section 2.5.12 for more details.

7.3 Compare Repository Files or Directories

The Compare Repository Files or Directories frame is the result of a Compare Repository
Files or Directories command (see 3.10.6) invoked from the Project Window (see 2).
It shows the Directories/Files differences between two repository directories, a From
directory and a To directory.

For every file, the table shows the corresponding Name. The Name column also
shows the “state” icon of the file (the same for directories). Possible states are: Added,
Modified, Modified (properties only), Modified (content and properties), Removed

c© 2012 WANdisco plc, www.wandisco.com 82

Chapter 7. Subwindows

and Unchanged; they are always referring to the modification from From to To directory.
The corresponding icons can be found in Table 2.5 and Table 2.6.

While the state displayed in the Name is a combination of file content and properties,
the Content column refers only to the state of the content. The Properties column
refers only to the state of the properties; valid states for properties are Modified and
Unchanged. The Relative Directory displays the file’s path relative to the compare
directory.

7.3.1 Compare menu

• Use Show Changes to open a File Compare (see 7.1) which shows the differences
for the currently selected file between From and To directory.

• Use Close to close the frame.

7.3.2 Edit menu

• Use File Filter to position the cursor in the file table’s filter field.

• Use Customize to customize accelerators (see Section 8.18).

7.3.3 View menu

• Select Files from Subdirectories to toggle the display of files from subdirectories
of the currently selected directory.

7.3.4 Window menu

Refer to Section 2.5.12 for more details.

7.4 Conflict Solver

The Conflict Solver is a kind of Three-Way-Merge. The content of the current file (which
contains the conflicts) is displayed in the center text area (“merge view”). The left
and right text areas show the contents of the two files, which have been forked from
the common base. The common base itself is not displayed, but used by the UI for
highlighting changes and conflicts. All file contents are taken directly from the files,
which SVN produces in case of conflicting changes. The Conflict Solver is invoked by
Tools|Conflict Solver from the Project Window (see 2).

Note Depending on your Conflict Solver settings (see 8.6), performing
a conflict solver can also invoke an external three-way-merge tool.
This section only refers to the built-in Conflict Solver of SmartSVN.

The Conflict Solver works similar to the File Compare (see 7.1), see also Section 7.1.1
for details.

c© 2012 WANdisco plc, www.wandisco.com 83

Chapter 7. Subwindows

7.4.1 File menu

• Use Save to save changes to the merged file. SmartSVN will detect, whether all
conflicts have been resolved and in this case also automatically mark the file as
resolved (see Section 3.5.14).

• Use Close to close the frame.

7.4.2 Edit menu

Refer to Section 7.1.

7.4.3 View menu

• Use All to display all three file contents side-by-side.

• Use Left and Merge to display the left view beside the merge view.

• Use Merge and Right to display the merge view beside the right view.

• Use Left and Right Above Merge to display the merge view below the left and
right view.

• Ignore Whitespace for Line Comparison, refer to Section 7.1.8.

• Ignore Case Change for Line Comparison, refer to Section 7.1.8.

• Settings, refer to Section 7.1.7. In addition, on the Compare page, Compare with
Base can be selected. With this option selected, the content of the center component
will not only be compared against the left and the right content, but also against
the (invisible) content of the base file: Lines in the left, center and right content
which are not equal are also compared to the corresponding lines of the base file
and the highlighting depends on the result of this comparison.

7.4.4 Go To menu

In the addition to the Go To found in the File Compare (see 7.1.5), following commands
are available:

• Use Previous Conflict to scroll to the previous conflicting difference within the
active view, relative to the current cursor location.

• Use Next Conflict to scroll to the next conflicting difference within the active view,
relative to the current cursor location.

7.4.5 Window menu

Refer to Section 2.5.12 for more details.

c© 2012 WANdisco plc, www.wandisco.com 84

Chapter 7. Subwindows

7.5 Revision Compare

The Revision Compare is an optimized “multi-file” compare. It gives a detailed overview of
changes within a set of files. A Revision Compare is for instance invoked by Query|Show
Changes from the Log (see 7.6) when having a revision selected. There are various other
ways/windows to invoke a Revision Compare in SmartSVN.

The core component of the Revision Compare is a read-only File Compare (see 7.1)
view; for details regarding the usage, refer to Section 7.1.1. The upper part of the Revision
Compare frame consists of a directory tree and a file table, which displays the files being
part of the Revision Compare.

7.5.1 File menu

• Use Compare to open a File Compare (see 7.1) for the selected file.

7.5.2 Edit menu

• Use Customize to customize accelerators (see Section 8.18).

Refer to Section 7.1 for details.

7.5.3 View menu

• Select Files From Subdirectories to also display files from subdirectories of the
currently selected directory. This works as for the Project Window, see Section 2.4.

• Use Refresh to refresh the file contents and re-perform the comparison.

• Ignore Whitespace for Line Comparison, refer to Section 7.1.7.

• Ignore Case Change for Line Comparison, refer to Section 7.1.7.

• Settings, refer to Section 7.1.8.

7.5.4 Go To menu

Refer to Section 7.1.1 for details.

7.5.5 Window menu

Refer to Section 2.5.12 for more details.

c© 2012 WANdisco plc, www.wandisco.com 85

Chapter 7. Subwindows

7.6 Log

The Log window shows the history of a versioned file or directory (“entry”). A Log is
typically invoked via Query|Log from the Project Window (see 2), but there are several
other ways to open the Log window in SmartSVN.

The central component of the Log window is the Revisions table, which shows the
found revisions together with their attributes. You can filter out certain revisions by
using the Revision Filter field on the top right of the Revisions table. To the right of the
Revisions table, the detailed Revision Info of the currently selected revision is displayed.

The lower part of the window shows the Directories/Files view for the selected re-
vision. The displayed structure is restricted to the files and directories that are children
of the log context root; all other files/directories which have been modified within this
revision are skipped.

The log context root depends on the context from which the log has been invoked. For
example, the log context root for logs performed by Query|Log from the Project Window
(see 2) is either the corresponding project root directory, or the Externals (see 3.8.7) root
directory. The context root can be enlarged to the corresponding Project Root (see 3.9.1)
if necessary.

Note For repositories in Subversion 1.6 format, the received log data
contains information on whether a changed entry is of file or di-
rectory type. Unfortunately this information is not present for
older servers, hence SmartSVN tries to detect the entry types it-
self. The more log information is present, the better the results of
this detection process. However, without complete log information
SmartSVN may still be wrong. In this case, the entry is assumed
to be a file (although it might actually be a directory).

If merged revisions are loaded via Log|Load Merged Revisions, they are added in
a tree-like manner to their parent revision, which can then be expanded or collapsed.
Because merged revisions have no direct link to the logged revisions themselves, various
commands subsequently listed will not be applicable for these revisions. The context root
for merged revisions is the corresponding repository root.

At all times, exactly one of the four views is “active”, which is indicated by its high-
lighted tab title. Menu and toolbar actions are always performed on the currently active
view.

7.6.1 Log menu

• Use Load Properties to fetch all properties for all displayed revisions from the
repository. The Revisions table will be extended by corresponding table columns,
one for each property. This command is only available for file Logs. The upper limit
of columns to be added can be configured through the system properties (see 12.1).

• Use Load Merged Revisions to load the originating revisions for revisions that have
been merged. This option recursively descends into merged revisions and, depending

c© 2012 WANdisco plc, www.wandisco.com 86

Chapter 7. Subwindows

on the number of merges that have affected the file/directory, this may cause a large
or even huge number of revisions to be loaded.

• Use Export to File to export the log information to a file. Refer to Section 7.6.7
for details.

• Use Close to close the frame.

7.6.2 Edit menu

• Use Stop to cancel the currently running operation.

• Use Open to open the selected revision/file/directory. For details, refer to Section
2.5.2. This command will only be applicable for revisions of file Logs.

• Use Copy Message to copy the commit message of the selected revision to the
clipboard.

• Use Copy Name to copy the name of the selected file to the clipboard. If multiple
files are selected, all names will be copied, each on a new line.

• Use Copy Path to copy the path of the selected file relative to the log context root
to the clipboard. If multiple files are selected, all paths will be copied, each on a
new line.

• Use Customize to customize accelerators (see Section 8.18).

7.6.3 View menu

• Select Skip Unchanged Revisions to skip revisions for which the logged entry has
not actually been changed, but has only been reported due to a copy operation of
one of its parents. For example, when creating a Tag (see 3.9) of the project root,
the log for every entry of that tag will contain this tag-revision.

• Select Show Files Recursively to toggle recursive file listing in the Files view. If the
file listing is recursive, the Files view will display not only all files in the directory
selected in the Directories view, but also all files in subdirectories of the selected
directory.

• Select Show Only Entries Below Selected Directory to restrict the Directo-
ries/Files view to only those directories and files which are actually children of
the logged directory.

7.6.4 Modify menu

• Use Change Commit Message to change the commit message of the currently
selected revision. Enter the new Commit Message and wait, if necessary, until
SmartSVN has finished rebuilding the corresponding Log Cache (see 5.3).

c© 2012 WANdisco plc, www.wandisco.com 87

Chapter 7. Subwindows

• Use Merge Revision to merge the selected revision/file/directory to your local work-
ing copy. If you want to configure advanced options for the merge, use the default
Merge command (see 3.7.1).

• Use Rollback Revision to roll back the selected revision/file/directory locally, i.e.
in your local working copy. You may then review the rolled back changes and, if
acceptable, commit them (see 3.6). This command will only be applicable for logs
which are linked to a local working copy.

7.6.5 Query menu

• Use Show Changes to compare the selected revision/file/directory against its pre-
ceding revision or to compare two selected revisions/files/directories against each
other. Depending on whether two files or directories are compared, either the File
Compare (see 7.1) or the Properties Compare (see 7.2) will come up. When invoking
Show Changes on a revision, the Revision Compare (see 7.5) will come up.

• Use Compare with Working Copy to compare the selected revision/file against
the file’s working copy within your project. This command is only applicable to
revisions of file Logs.

• Use Log to perform another Log for the selected file/directory. This command is not
applicable to revisions as it would result in a Log that is indentical to the present
one.

• Use Revision Graph to create a Revision Graph (see 7.7) for the selected revi-
sion/file/directory.

• Use Annotate to Annotate (see 7.8) the selected revision/file. This command is
only applicable to revisions of file Logs.

• Use Save As to save the contents of the selected revision/file to a local file, for
details refer to (see 4.5). This command is only applicable to revisions of file Logs.

7.6.6 Window menu

Refer to Section 2.5.12 for more details.

7.6.7 File Export

You can export log data in various formats to a file using Log|Export to File.
Select either to export All revisions, independent of the selection or only the Selected

revisions. Specify the Output File to which the log information will be written. If Include
changed paths is selected, not only the main revision information but also the details on
which files/directories have been changed will be exported.

Specify the file Format which shall be used for the export. XML will export in raw
XML format, as used by svn log --xml. HTML will give a basic HTML output. Plain

c© 2012 WANdisco plc, www.wandisco.com 88

Chapter 7. Subwindows

text will give a simply formatted plain text file. Custom maybe used to export in an
arbitrary format, by performing a style sheet transformation on the raw XML data. In
this case, enter the path of the stylesheet for XSLT-File.

7.7 Revision Graph

The Revision Graph is a standalone window that allows you to browse the history of a
repository, which can be either the history of the entire repository, or the history of some
directory or file inside the repository.

There are several ways to open the Revision Graph in SmartSVN, one of them being
through the menu of the Project Window (see 2) via Query|Revision Graph.

The Revision Graph consists of several views: Revisions, Revision Info, Directories
and Files. The Revisions view is basically a table of revisions with a graph showing the
parent-child relationships between the revisions. This will be discussed in more detail in
Section 7.7.1.

The three other views display additional information related to the revision currently
selected in the Revisions view:

• The Revision Info view displays various attributes of the selected revision, such as
commit message, revision number, commit date, author, etc.

• The Directories and Files view provide a file-manager-like view of the files that
were modified as part of the selected revision. What is shown in the Files view
depends on the selection in the Directories view; that is, it shows all modified files
in the revision beneath the directory currently selected in the Directories view.

At any time, exactly one of the four aforementioned views is “active”, as indicated
by the color of the tab titles. Menu and toolbar actions are always performed on the
currently active view.

Note As the Revision Graph displays branches and tags, the Tag-Branch-
Layout (see 3.9.1) must be configured properly.

7.7.1 Revisions view

The Revisions view lists all revisions in the repository sorted by date, with the newest
revisions on top.

Each of the various table columns displays a certain revision attribute, such as Mes-
sage and Revision. You can hide and unhide columns by right-clicking on the column
header area and selecting or deselecting entries in the context-menu. You can also reorder
the columns via drag and drop of the column headers.

The Message column contains a graph showing the parent-child relationships between
the revisions. Generally, the graph will consist of vertical lines of different color, each of
which represents a branch of development. These branches may split or merge to represent
branching and merging operations that occurred at some point in the repository history.
There are four main types of relationships, expressed by different line styles:

c© 2012 WANdisco plc, www.wandisco.com 89

Chapter 7. Subwindows

• Normal parent-child relationship: this is the default relationship when per-
forming a new commit. It’s displayed by thick, colored lines.

• Complete merge relationship: it is set up by performing a merge commit for
which all source revisions have been merged into the target. It’s displayed by thin,
colored lines when having Merge Arrows loaded by Query|Show Merge Arrows.

• Partial merge relationship: is set up by performing a partial merge (cherry-pick)
for which not all source revisions have been merged into the target. It’s displayed
by thin, colored, dashed lines when having Merge Arrows loaded.

• URL relationship: exists between branches which have the same URL, but are
not related. This is typically the case, when removing and re-adding a branch. It’s
displayed by thin, gray lines when having View|Join Same Locations selected.

At the end of each branch, you will find a revision that has a colored marker attached
to it, i.e. a colored box containing the name of the branch the revision belongs to, such
as “trunk” or “feature-branch”. These markers will of course move along as you commit
into the respective branches. In addition to the branch markers, there are also markers
for tags, labelled with the names of your tags, e.g. “1.0” or “1.5-beta-1”.

On the top right of the Revisions view is a Filter text field that allows you to enter
expressions for filtering out some of the revisions in the Revision Graph. This filter works
just like the one on the file table (see 2.4.2). Additionally, the drop-down menu on the left
of the filter field allows you to include or exclude certain revision attributes from being
matched against, namely Author, Branch and Message. For example, if only the Author
field is selected, the filter expression entered into the filter field will only be matched
against the author fields of the revisions.

To the right of the filter field is a drop-down menu for selectively including or excluding
branches from being displayed in the Revision Graph. With this, you can for instance
configure the Revision Graph to only display the branches “branch1” and “branch2”.

7.7.2 Merge Information

The Revision Graph can display information on which revisions have been merged from
other revisions in various ways. Depending on the selected visualization method, it may
be necessary to fetch SVN’s mergeinfo for every displayed revision from the repository,
what may take a while. SmartSVN will cache this mergeinfo for the current graph, so
subsequent invocations of mergeinfo-related queries are performed much faster.

Merge Coloring

By default, lines are colored by chunks, where coloring changes at forks. When using
View|Merge Coloring, SmartSVN will for the currently selected revision (“target”) clas-
sify (and color) every other revision into one of the following categories:

• Merged Now: The revision has been merged directly at and to the selected target
(by default displayed using light green).

c© 2012 WANdisco plc, www.wandisco.com 90

Chapter 7. Subwindows

• Merged: The revision has been merged into the selected target, but not at the
target’s revision itself (by default displayed using dark green).

• Not Yet Merged: The revision has not yet been merged into the selected target
(by default displayed using light red).

• Not mergable (normal revision): The revision is in the ancestor line of the
selected target and hence can’t be merged (displayed using black).

• Unknown: used when no merge information is present for the selected target (dis-
played using gray).

The colors can be configured in the Revision Graph settings (see 8.9).

Warning! The merge coloring depends on which merge information is cur-
rently loaded. To make sure merge information for the currently
selected revision is present, use QueryShow Merge Sources.

7.7.3 Graph menu

• Use Select Shown Branches to configure which branches to display in the graph.

• Use Export as HTML to export the complete graph to an HTML file.

• Use Close to close the frame.

7.7.4 Edit menu

Refer to Section 7.6.2 for more details.

7.7.5 View menu

• Use Branch Coloring to switch to the default graph coloring.

• Use Merge Coloring to switch to Merge Coloring (see 7.7.2).

• Select Show Dead Tags and Branches to toggle the display of tags and branches
which are not present anymore in the repository’s HEAD revision.

• Select Join Same Locations to display revisions having the same URL in the same
branch (column). For details refer to Section 7.7.1.

Refer to Section 7.6.2 for more details.

7.7.6 Modify menu

Refer to Section 7.6.4 for details.

c© 2012 WANdisco plc, www.wandisco.com 91

Chapter 7. Subwindows

7.7.7 Query menu

• Use Show Merge Arrows to add merge arrows to the graph. Refer to Section 7.7.1
for details.

• Use Query|Show Merge Sources to display which revisions have been merged into
the currently selected target revision. Refer to Section 7.7.2 for details.

• Use Clear Merge Information to clear the currently displayed merge information
(and the cached revision mergeinfo).

Refer to Section 7.6.5 for details.

7.7.8 Window menu

Refer to Section 2.5.12 for more details.

7.8 Annotate

The Annotate window shows the contents of a file with each line prefixed by the line
number and by information about the last revision in which this line has been introduced
or changed. The Annotate window is typically opened via Query|Annotate from the
Project Window (see 2), but there are other ways and windows to open an Annotate
window in SmartSVN.

The Revision drop-down list displays all available revisions of the file, and allows
navigating through them.

With the Color By drop-down list you can select one of the following line coloring
schemes:

• Choose Revision to have two colors and a threshold revision Newer Or Equal.
Lines which have been introduced before this threshold revision will receive the
default background color, while lines introduced at or after the threshold revision
will receive another background color.

• Choose Age to change the coloring scheme so that the colors of the lines reflect their
“Age”: The youngest and oldest line will be determined, receiving two distinct
colors. For all other lines, the color will be linearly interpolated based on their
relative age compared to the youngest and oldest line. The interpolation itself can
either be based on the Revision number or on the revision’s commit Time.

• Choose Author to have lines of the same author displayed with the same background
color, and lines of different authors displayed with different background colors.

7.8.1 Annotate menu

• Use Close to close the frame.

c© 2012 WANdisco plc, www.wandisco.com 92

Chapter 7. Subwindows

7.8.2 Edit menu

The Edit menu contains common functions to alter the file contents and to find a certain
text sequence within the file contents.

• Use Customize to customize accelerators (see Section 8.18).

7.8.3 View menu

• Settings, refer to Section 7.1.7.

7.8.4 Revision menu

• Use Show File Changes to invoke a File Compare (see 7.1) between the currently
selected Revision and the previous revision.

• Use Show Revision Changes to invoke a Revision Compare (see 7.5) containing all
changed files between the currently selected Revision and the previous revision.

• Use Go To First Revision to select the first Revision.

• Use Go To Last Revision to select the last Revision.

• Use Go To Next Revision to select the next Revision.

• Use Go To Previous Revision to select the previous Revision.

• Use Go To Preceding Revision to select the preceding Revision for the currently
selected line – to see what the content of the line has been before.

7.8.5 Go To menu

• Use Go to Line to jump to a certain line in the file contents.

7.8.6 Window menu

• Use Full Screen to switch to full screen mode. Select this menu item again to go
from full screen mode back to normal.

• Use Minimize to minimize the Annotate window.

• At the bottom of this menu, there will be additional menu entries to switch between
SmartSVN windows.

c© 2012 WANdisco plc, www.wandisco.com 93

Chapter 7. Subwindows

7.9 Merge Preview

The Merge Preview is the result of a Merge command (see 3.7.1) invoked from the Project
Window (see 2). It shows a Directories/Files structure of which files and directories will
be affected by the merge.

For every file, the table shows the corresponding Name and its Relative Directory,
according to the merge root. State shows the merge state for the file, either Modified,
Added, Removed, Unchanged or Skipped For Modified files, both the Content and the
Properties can be either Conflicting, Modified or Unchanged. Skipped files can’t be
processed by the merge, e.g. because they have been renamed or moved in the merge
source, i.e. the local working copy.

7.9.1 Merge menu

• Use Show Changes to show the File Compare (see 7.1) between the current local
file and the merge Result for the selected file. This command will only be applicable
for Modified and for Conflicting files.

• Use Show 3-Way-Merge Changes to show the Conflict Solver (see 7.4) for the
selected file, previewing the detailled changes and conflicts which can be expected
when actually performing the merge.

• Use Perform Merge to actually perform the merge exactly as it has been previewed
here. If you had initially selected a merge revision range containing HEAD, these
ranges will have been adjusted. This prevents the final merge from including any
new revisions which had been committed after previewing the merge.

• Use Close to close the frame.

7.9.2 Edit menu

• Use Customize to customize accelerators (see Section 8.18).

7.9.3 View menu

• Select Files From Subdirectories to toggle the display of files from subdirectories
of the currently selected directory.

7.9.4 Window menu

Refer to Section 2.5.12 for more details.

c© 2012 WANdisco plc, www.wandisco.com 94

Chapter 8

Preferences

The application preferences define the global behavior of SmartSVN, regarding UI, SVN
commands, etc. Contrary to the project settings (see Section 6.3), these preferences apply
to all projects.

Tip Most preferences are stored in the settings.xml file in SmartSVN’s
settings directory. Refer to Section 11 for details.

8.1 On Start-Up

These settings configure the startup behavior of SmartSVN.
You can either choose to Open last project, Show Welcome Dialog or Do nothing,

i.e. start with an empty main frame.
Select Remove obsolete projects to check for every project on start-up whether the

corresponding root directory still exists. In case the root paths of certain projects are
not valid anymore, you will be asked whether these projects should be removed from the
project tree (see Section 6.2).

8.2 Project

For Open Project you can specify the behavior when opening a project. Projects can
be opened In current window (unless there are SVN operations active for the currently
opened project) or In new window. By default, Ask is selected to let you choose individ-
ually.

With Confirm closing selected, you will always be asked before a project is closed.

8.3 Authentication

The Authentication page contains all the settings needed for establishing connections to
repositories. This includes authentication information, such as user names and passwords.

When opening a working copy, SmartSVN automatically creates a so-called repository
profile for the working copy, if no such profile exists yet. A repository profile is a collection

95

Chapter 8. Preferences

of all the information needed to connect to the repository associated with the working
copy. The profile is incomplete in the beginning and will be filled out as needed. For
instance, as soon as you specify a user name and password, or a certificate, to perform
operations that require access to the repository, the information you provided is stored in
the profile.

The table on the Credentials tab of the Authentication page lists all existing repos-
itory profiles and their associated authentication information. Use the Edit and Delete
buttons to edit and delete profiles, respectively. Editing profiles is described in more
detail in Section 8.3.1.

Use the Show Passwords button to display the passwords in the Password/Passphrase
column in plain text. The Change Master Password button allows you to set, reset and
change the master password used for encrypting all stored passwords. For more informa-
tion on passwords refer to Section 8.3.4.

The Proxies and Tunnels tabs allow you to configure the proxies and tunnels through
which SmartSVN may connect to repositories. See Section 8.3.2 and Section 8.3.3 for
more information on proxies and tunnels, respectively.

8.3.1 Editing Profiles

On the Credentials tab of the Authentication page in the preferences, you can click on
the Edit button to edit the currently selected profile. Clicking the button opens a dialog
with various options (namely Credentials, Client Certificate and Proxy), which will be
discussed in the following subsections.

At the top of the dialog, you can specify an Optional Name for the repository profile.
This name is not only used for increased readability when the profile is displayed; you
can also enter this name directly in many fields across SmartSVN wherever an URL is
expected. For instance, if you do a checkout (see Section 3.1), you can enter this name
instead of the full URL in order to specify the repository to check out from.

At the bottom of the dialog, there’s a Verify connection checkbox. If this checkbox
is checked, SmartSVN will try to connect to the repository with the specified connection
information when the OK button is pressed, and inform you of any failures (which may
be due to an incorrect configuration).

Credentials

On the Credentials tab of the Edit Repository Profile dialog, specify the type of SVN
Login, which can be either Anonymous or User Name and Password. With the latter
option, you have to supply a User Name and an optional Password. If a password was
specified, mark the Save password checkbox so that the password is stored. See Section
8.3.4 for more information on password storage.

Client Certificate

If applicable, the Edit Repository Profile dialog will display a Client Certificate tab. On
this tab, you can enable or disable client authentication for the edited profile. If enabled,

c© 2012 WANdisco plc, www.wandisco.com 96

Chapter 8. Preferences

a Certificate File and the corresponding Certificate Passphrase must be specified. If
you enter a passphrase, mark the Save passphrase checkbox so it will be stored.

Proxy

On the Proxy tab, you may optionally specify a proxy through which to connect to the
repository.

You can add proxies to the drop-down list of available proxies by clicking on the Add
button. This will open a dialog where you can enter the Host and Port of the proxy to
be added.

If a proxy is selected, you can configure the Proxy Login: Either Anonymous or with
a User Name and Password. In the latter case, enter a user name and an optional
password in the fields below. If you enter a password, mark the Save password checkbox
to have the password stored.

Note that the login information entered on the Proxy tab is ”global” in the sense that
it is not stored on a per-profile basis. Rather, the login information entered here will
affect all profiles that use this proxy.

For each proxy configuration you have to specify the configuration’s Name and the
proxy Host and Port. For Login, select either Anonymous if the proxy itself requires no
authentication or User Name and Password. In the second case, specify the required
User Name and Password. You can choose to Save password, see also Section 8.3.4.

8.3.2 Proxies

On the Proxies tab, you can specify the proxy hosts to be used to connect to SVN
repositories via the HTTP/HTTPS protocol. After being added, a proxy can be used
within repository profiles.

Use the Add and Edit buttons to add or edit proxies, respectively. Both actions require
entering a proxy Host and Port. Use the Delete button to delete the selected proxy.

8.3.3 Tunnels

On the Tunnels tab, you can configure custom svn+ssh tunnels. Tunnels are useful
when you already have a working SSH infrastructure that handles authentication and
communication. The configured tunnels can then be used within repository profiles.

A tunnel has a Name, a tunnel Command and Parameters for the tunnel command.
The Command typically is an ssh executable, like PuTTY’s plink.exe on Microsoft
Windows or ssh on Unix and Mac OS X. The tunnel command is always invoked when a
svn+ssh connection is set up and handles the complete SSH-based communication between
SmartSVN and the server. The Parameters can contain predefined variables which are
filled out with concrete values from the corresponding repository profile when the tunnel
is used:

• Host: The host name of the server

• Port: The port number on the server

c© 2012 WANdisco plc, www.wandisco.com 97

Chapter 8. Preferences

• SSH Login Name: The login name on the server

• ’svnserve’ Start Command: The command to start the svnserve process. Ei-
ther this variable or the actual start command must show up in the Parameters
definition.

8.3.4 Passwords

All passwords needed to access repositories can optionally be stored in SmartSVN’s pass-
word store. This password store is located in the password file, which can be found in
SmartSVN’s settings directory (see Section 11).

The password store can be protected by a master password, and each time you start
SmartSVN, this master password has to be entered as soon as SmartSVN tries to access
the password store for the first time. The entered password is kept in memory while the
program runs, so you don’t have to enter it again for the rest of the current session.

You may choose Don’t use a master password if you don’t want the password store
to be protected with a master password. However, this option is only recommended if you
can make sure the master password file itself is protected against unauthorized access.

By clicking on the Change Master Password button on the Authentication page in
the preferences, you can set, reset or change the master password.

Use Change master password to change the current password; this will preserve the
stored passwords, but requires that you supply the Current Master Password. Note
that you don’t need to enter the Current Master Password if you are currently working
without a master password.

If you have forgotten the master password, select Set new master password. In that
case all previously stored passwords will be discarded.

Enter the New Master Password and Retype New Master Password. When leaving
both fields blank, you will continue to work without a master password, i.e. as if having
selected the option Don’t use a master password when you were asked to set the master
password.

8.4 User Interface

These settings affect various aspects of SmartSVN’s user interface.
You can select whether to use Basic or Advanced recursion options. For details, refer

to Section 3.14.1.
Select Hide ignored and repository-only directories according to View-menu filters

to apply the filters from the View menu within the Project Window (see 2) not only to
files, but also to ignored and repository-only directories. For more information on the
View menu, refer to Section 2.5.3.

With the option Use background color in file table to indicate certain states
you can control whether the file table on the Project Window (see 2) may change its
background color to indicate certain table states. For example, the table may take on
a yellow background to indicate it’s currently showing files that match the filter pattern
entered in the filter text field on the top right of the file table.

c© 2012 WANdisco plc, www.wandisco.com 98

Chapter 8. Preferences

Select Show file and directory tooltips to toggle the display of tooltips for the Di-
rectories tree and the Files table within the Project Window (see 2).

For File Name Matches you can configure the filename search and filter features in
SmartSVN:

• Exact case: Requires the search pattern and file name to match in case.

• Ignore case: Ignores the case for matching search pattern and file name.

• Smart upper case: Lower case characters in the search pattern can match upper-
and lower-case characters in the file name. But upper-case characters in the search
pattern match only upper-case characters in the file name. Examples: SMF will
match SuMainFrame, but not SuMainContentFrame. fileS will match FileSignature,
but not Files.

Select Nest in System Tray to have SmartSVN show a System Tray icon. This option
is not available for all operating systems. For details refer to Section 9.8.

Configure the Date Format and Time Format to be used by SmartSVN when dis-
playing dates and times, respectively, and combinations of both. These formats have
no effect on SVN operations. It’s recommended to restart the application after having
changed these formats.

8.5 Commit

Here you can configure global commit (see 3.6) options.
Select Show directory configuration page if the commit wizard should display the

configuration page with directory-related options, e.g. subdirectory recursion options.
Select Skip Change Set entries to ignore changed files or directories which have

already been assigned to a Change Set (see 3.13).
Select Detect moved and renamed files if you want SmartSVN to detect files which

are most likely renamed or moved. These files will not simply be added and removed, but
marked as copied. For details, refer to Section 3.5.8.

Except from those files which have been selected and which are in a committable SVN
state, SmartSVN can Suggest To commit further files: Select Add unversioned files
and directories to also report unversioned (most likely new) files and directories. Select
Remove missing files and directories to also report missing (most likely obsolete) files
and directories.

Select Remove removed parent directories to make SmartSVN also scan parent
directories of the files/directory which have been selected for the commit. If such a
parent directory is scheduled for removal, it will also be suggested for the commit. With
Also remove empty parent directories, all resulting emtpy parent directories will also
be suggested for the commit.

Tip To clean up all empty directories within your project, you can use
Tools|Remove Empty Directories, see Section 10.3.

c© 2012 WANdisco plc, www.wandisco.com 99

Chapter 8. Preferences

Select Remind me to enter a commit message to make SmartSVN warn you when
trying to commit without a message. Select Trim whitespaces from commit message
to trim leading and trailing whitespaces from the commit message directly before com-
mitting.

Specify to Remember up to a specific amount of entered commit messages for each
project.

Choose For File Commits if you want to be warned for potentially missed files when
performing a commit:

• Select Do not warn for potentially missed files or directories to switch all warnings
off.

• Select Warn for potentially missed directories, just up the root to receive a
warning if you have selected all visible committable files and any of their parent
directories is modified (containing properties changes).

• Select Warn for any potentially missed directories to receive a warning if you have
selected all visible committable files and there are any more modified directories in
the project.

• Select Warn for any potentially missed directories and files to receive a warning
if you have selected all visible committable files and there are any more modified
directories or committable files.

8.6 Conflict Solver

Here you can configure external tools which should be used instead of the built-in Conflict
Solver (see 7.4).

You can either choose to use the Built-in Conflict Solver or an External Conflict
Solver. An external conflict solver is defined using the operating system Command to
be executed, along with its Arguments.

Arguments are passed to the Command as it would occur from the OS command
line. The place holders ${leftFile}, ${rightFile}, ${mergedFile} and ${baseFile}
can be used, which will be substituted by the absolute file path of the left, right and
resulting merged file, respectively. Furthermore, the place holder ${encoding} can be
used, which will be substituted by the encoding used for the file. Refer to Section 6.3.1
for details.

8.7 Open

With Don’t open or compare more than X files at once, you can specify an upper
limit beyond which you will be asked before a certain set of files is opened all at once.
It is recommended not to set this value too high, to prevent accidentally opening a large
number of files.

c© 2012 WANdisco plc, www.wandisco.com 100

Chapter 8. Preferences

8.8 Refresh

With these settings you can configure the refreshing of the file system.
Choose Recursively scan unversioned directories to make SmartSVN descend into

unversioned directories and display the complete unversioned sub-tree. Otherwise, only
the unversioned root directory itself will be scanned and displayed.

With Manually Refresh you can configure how the manual Refresh via View|Refresh
(see Section 2.4) behaves. All options take into account the scanned/unscanned state of
the working copy, see Section 6.3.2.

• You have the option to refresh Always root directory. In this case the directory
selection in the tree does not matter; the whole project is always refreshed. This
option is the most expensive in terms of system resources, but will guarantee that
after changing the selection in the tree, displayed data is up to date (relative to the
last refresh time).

• You can also choose to refresh only the Selected directory recursively. This option
can be useful if you know you are only working in a specific part of your SVN
project.

• The option Selected directory (recursively if set for view) also refreshes only the
selected directory. Whether this refresh is recursive or not depends on View|Files
From Subdirectories. This option is the fastest way of refreshing as it is most
selective, but it requires you to always be aware of which directories you have re-
freshed and hence which information displayed in the directory tree, and file table,
is actually up to date.

To automatically perform a Remote State Refresh with every local Refresh, you can
select Refresh Remote State with local Refresh. You may choose to Include externals
and you may choose to Scan locks for a remote state refresh. For details regarding the
Remote State, refer to Section 3.12.

8.9 Revision Graph

Here you can configure global Revision Graph (see 7.7) options.
If the option Show dialog to allow root selection is selected, opening the Revision

Graph will initially show a dialog with various options, e.g. the root directory for which
the Revision Graph will be created.

The Colors are used to colorize the Branches and Revisions of a Revision Graph.
You can specify colors for both Normal (unselected) and Selected mode. Use Reset to
Defaults to reset the colors to SmartSVN’s default values.

8.10 Built-in Text Editors

These settings are used as a default for all text-displaying and editing views of SmartSVN,
like the File Compare (see 7.1), the Conflict Solver (see 7.4), the Annotate (see 7.8) and

c© 2012 WANdisco plc, www.wandisco.com 101

Chapter 8. Preferences

the Changes view (see 2.6).
For the Font page, choose the Font Family and the Font Size to be used by SmartSVN’s

text components.
On the Colors page you can customize the various colors used by SmartSVN’s text

components. Use Reset to Defaults to restore the default settings for Colors page.
On the Behavior page, you can configure various text editing features.

8.11 File Compare

Here you can configure external file compare tools which can be used instead of the built-in
File Compare (see 7.1).

You can associate a specific File Pattern with a file comparator. You can either choose
to use the Built-in text file comparator, an External comparator or an External viewer.

8.11.1 External Comparators

An external comparator is defined by the operating system Command to be executed,
along with its Arguments. Arguments are passed to the Command as they would
be passed from the OS command line. The optional place holders ${leftFile} and
${rightFile} will be substituted by the absolute file path of the left and right file to
compare, respectively. In cases where SVN-internal files like the pristine copy is used
for comparison, the content of this file is copied to a temporary location and this tem-
porary file is passed as a parameter. The optional place holders ${leftTitle} and
${rightTitle} will be substituted by the left and right file title, respectively, which
SmartSVN would use when displaying the file contents with its internal file comparator.

Furthermore, the place holders ${leftEncoding} and ${rightEncoding} will, if used,
be substitued by the encoding of the left and right file, respectively. Refer to Section 6.3.1
for details.

With In case of svn:mime-type is binary, try to detect whether actually text type
you can override binary svn:mime-types. In this case, SmartSVN will detect the content
type text/binary itself by inspecting the file. This is the same as if svn:mime-type has
not been set at all.

8.11.2 External Viewers

An external viewer is defined by the operating system Command to be executed, and
its Arguments. It’s executed two times, once for the left and once for the right file to
“compare”. Arguments are passed to the Command as they would be passed from the
OS command line. The optional place holders ${file} will be substituted by the absolute
file path of the left and right file to view, respectively.

8.12 External Tools

These settings configure external tools, which can be invoked via Edit|Open.

c© 2012 WANdisco plc, www.wandisco.com 102

Chapter 8. Preferences

You can link a specific File Pattern to an external tool. An external tool is defined
by the operating system Command to be executed, along with its Arguments and Run
In. Arguments are passed to the Command as it would occur from the OS command
line. Additionally the place holder ${filePath} can be used, which is substituted by the
absolute file path of the file (from the file table), on which the command is invoked. Run
In specifies to run the command either in SmartSVN’s working directory or in the File’s
directory.

The File Pattern typically contains wild-card symbols (? and *) and may also consist
of multiple patterns, separated by comma.

When running SmartSVN with Java 6 (or above), you can also choose to invoke the
System Edit Command or System Open Command instead of the self-defined command
specified by Following Application.

Example
To configure Acrobat Reader (TM) as the default editor (viewer) for PDF-files, enter
*.pdf for File Pattern, the path of Acrobat Reader Executable (e.g. on Microsoft
Windows acrord32.exe) for Command and keep ${filePath} for Arguments.

8.12.1 Directory Command

The Edit|Open command can also be performed on directories. For this case a Directory
Command can be configured.

To be able to use Edit|Open on a directory, you have to select Use following command
to open a directory. As for files you can configure the Command which shall be executed
and the Arguments to be passed. The directory command will always be executed in the
selected directory.

Example
On Microsoft Windows, to open the command shell for a selected directory, enter
cmd.exe for Command and /c start cmd.exe for Arguments.

8.13 Transactions

This configuration page contains global Transactions (see 5) settings.
For Refresh every select the interval in minutes for which all active Transactions

views should be refreshed.
To distinguish transactions of a project from those of additional URLs which are

watched, project transactions will be labeled by a Project Identifier.
If the option Ask for Master Password if required is enabled, you will be asked

for the master password as soon as SmartSVN tries to perform a Transactions refresh.
If disabled, the Transactions refresh will be silently ignored until you enter the master
password for the first time.

Refer to the system properties (see 12.1) for further configuration options which are
seldom used.

c© 2012 WANdisco plc, www.wandisco.com 103

Chapter 8. Preferences

8.14 Spell Checker

These settings configure the spell check support which is used primarily for the Commit
command (see 3.6).

You can define multiple Dictionaries. Every dictionary has a Name which is used
in the spell checker popup menu and a Dictionary File. In addition, there is also one
optional File for My Own Words which can be extended by SmartSVN.

Note The Dictionary File has to be in MySpell format, however Hunspell
also work. The File for My Own Words is a simple list of words.

Warning! Depending on the number and size of the dictionary files, the mem-
ory consumption of SmartSVN can increase significantly.

If you have configured multiple dictionaries, text fields for which spell-checking is sup-
ported offer a Language pop up menu from which you can select the intended dictionary
by its Name. Alternatively, you can choose whether to Use Best Matching or Use All
dictionaries. Use All is useful to combine multiple dictionaries of the same language, e.g.
one file with general expressions and one with domain-specific expressions. Use Best
Matching is useful to build a super-dictionary containing multiple languages and have
SmartSVN detect which dictionary fits better for a given text.

Example
When you are frequently writing English as well as German commit messages, you
can specify one English and one German dictionary and select Use Best Matching.
Now, when writing an English commit message, SmartSVN will detect after a few
words that the English dictionary fits better and hence will check the complete
commit message only with the English dictionary (as if you had manually selected
the English dictionary).
On the other hand, when writing a German commit message, SmartSVN will detect
to use the German dictionary and only check for German spelling correctness.

8.15 Shell Integration (Windows)

These settings configure the Shell Integration (see 9.6) of SmartSVN.
Select for which drive types and in which range of functions the shell integration shall

be applicable. For every drive type you can choose whether to show Icon Overlays (and
the context menu) or only the Context Menu or have the shell integration be completely
Disabled.

If necessary, specify further Paths for which the shell integration will only be applicable
with a limited range of functions, i.e. only the Context Menu or completely Disabled.
Use only plain paths, like c:\temp or n:, but no patterns here.

c© 2012 WANdisco plc, www.wandisco.com 104

Chapter 8. Preferences

Note In general it’s recommended to have Icon Overlays enabled only for
Fixed Drives, because the display of the overlays may slow down
your machine due to access to the working copy metadata (.svn
directory).
When working copies are located on fast network shares, Icon Over-
lays should work well. In case you have a mix of fast network shares
and, for example, slow VPN-tunneled shares, you can exclude the
latter ones by the Paths input field.

8.15.1 Status Cache

Use Configure Status Cache to configure the Status Cache (see 9.9). This requires the
Status Cache service to be running.

In the dialog you can configure the Cache Roots which will be served by the Status
Cache. Enter every root directory on a new line, wildcards are not allowed here.

Optionally you can reset the Status Cache by Clear all cached status information.
Selecting this option is only recommended if you definitely want to get rid of cached status
information for a certain root directory as cached information is not discarded by simply
removing this root directory from the Cache Roots list.

8.16 Shell Integration (Mac OS)

These settings configure the Shell Integration (see 9.7) integration of SmartSVN.
Select whether to enabled the shell integration by Integrate in Finder. If necessary,

specify further Paths for which the shell integration shall be completely disabled. Use
only plain paths, like /Volumes, but no patterns here.

8.17 Check for New Version

These settings configure the New Version Check mechanism of SmartSVN (Section 2.5.13).
Select Automatically check for new program version to make SmartSVN check for

program updates after it has been started. Choose either Daily, Weekly or Monthly; the
recommended option is Weekly.

Note For beta versions the interval is fixed to Daily.

The version check reads a small file from http://www.wandisco.com. If necessary,
you can specify a proxy server by Use a proxy server to connect to the internet. In this
case specify Host and Port for the proxy server and optionally Username and Password
to access the proxy server.

8.18 Customize

For every frame in SmartSVN you can configure accelerators, and sometimes, if applicable,
also the tool bar and context menus. Use Edit|Customize to open the configuration dialog.

c© 2012 WANdisco plc, www.wandisco.com 105

http://www.wandisco.com

Chapter 8. Preferences

8.18.1 Toolbar (not always available)

Use this page to customize the toolbar.
Use Add to add one or more Available buttons to the toolbar, and Remove to re-

move one or more Selected buttons from the toolbar. From the Add drop down, use
Fixed Separator to add a separator before the currenly selected button. Use Stretching
Separator to add a strechting space before the currently selected button. The remaining
horizontal space is subdivided and assigned to the stretching separators. Use Move Up
and Move Down to re-arrange the order of the buttons.

Select or deselect Show text below icon to show or hide the toolbar button text.

Note All operations can be performed via Drag-and-Drop, too.

8.18.2 Accelerators

Use this page to customize the accelerators (shortcuts).
To set or change an accelerator, select the corresponding menu item, go to the Accel-

erator field, press the key combination and click Assign. To remove existing accelerators,
select the corresponding menu items and click Clear. To reset accelerators to their default,
select the corresponding menu items and click Reset.

Tip You can double click a menu item to directly jump to the Acceler-
ator field. You can assign/change multiple accelerators at the same
time, if they each belong to a different Window.

8.18.3 Context Menus (not always available)

Use this page to customize the context menus.
First select the Context Menu to change. Then you will find all available menu items

on the left and the current context menu structure on the right. You can either use
Drag-and-Drop to arrange the context menu or use the corresponding buttons: Use the
Add button to add a selected menu item from the left side before the selected item on the
right side. You also can use Add Separator or Add Menu to add the corresponding item
before the selected item on the right side. Each (sub)menu contains a gray placeholder
at the end to allow adding items to the end of that (sub)menu. Use the Remove button
to remove a selected menu item, a separator or a submenu on the right side. Use Reset
to Defaults to restore the default context menu layout for the selected Context Menu.

Tip If you haven’t changed the context menus (significantly) it’s recom-
mended to use Reset to Defaults after having upgraded SmartSVN
to a new major version as new menu entries might have been added.

c© 2012 WANdisco plc, www.wandisco.com 106

Chapter 9

Shell Integration

SmartSVN offers a shell integration to have the SVN functionality of SmartSVN also
present in certain parts of the GUI shells, like in file dialogs. The shell integration is
currently present on Microsoft Windows and Apple Mac OS X. It is only available when
SmartSVN is running (except the one on Mac OS X 10.6).

9.1 Commands (Windows and OS X 10.5)

For locally versioned files and directories, the most important SVN commands are avail-
able from the shell’s context menu. Performing commands from the shell’s context menu
results in the same dialogs and windows as if performing the commands from the Project
Window (see 2). For details regarding the commands refer to Section 3.

For commands performed from the shell, the same environmental settings are used as
when performing them from the Project Window. This especially implies to the Project
Settings (see 6.3), if for the current working copy directory, a corresponding project exists.
If no matching Project (see 6) can be found, SmartSVN will use the Default Settings (see
6.3.4).

From the context menu, use Open Project (or Open SmartSVN if no file/directory
is selected) to launch the Project Window (see 2) and open the corresponding project.

Tip For the command icons, the icon files within lib/icons in the in-
stallation directory of SmartSVN are used. The names correspond
to the command names. For every command, there is a default icon
and a grayed version, which has an additional -g in its name. If
you prefer, you can replace these icons.

9.2 Commands (OS X 10.6)

Unfortunately, Apple has dropped the Finder integration API with OS X 10.6. Hence,
SmartSVN can only provide a very simple alternative using socalled services. From the
Finder’s context menu three commands are available if files or directories are selected:
Update from SVN, Commit to SVN and Open in SmartSVN. Note, that because of

107

Chapter 9. Shell Integration

the limited services API these commands are available independent of the SVN state of
these files or directories. They are even available for items which are not SVN-controlled.
In contrast with the shell integration on Windows and OS X 10.5, SmartSVN does not
need to be running to be able to invoke the commands. If necessary, SmartSVN will start
automatically.

9.3 Output Window

All commands invoked from the shell integration will be executed in a special output
window. You may select Close automatically on success to have the window closed
automatically after all currently running operations have been completed successfully.

9.3.1 File menu

• Use Show Changes on a selected file/directory to see what has been changed locally
by executing the command.

• Use Log on a selected file/directory to see the corresponding Log (see 7.6).

• Use Close to close the frame.

9.3.2 Edit menu

• Use Stop on one or more selected commands to cancel them. If no command has
been selected, you will be asked whether to cancel all currently running commands.

• Use Customize to customize accelerators (see Section 8.18).

9.3.3 Window menu

Refer to Section 2.5.12 for more details.

9.4 Overlay Icons

The overlay icons show the SVN states for the corresponding files and directories. Cur-
rently, overlay icons are only present on Windows. Because the number of possible overlay
icons is limited by the operating system, only the most important SVN states have a spe-
cial overlay icon, see Table 9.1 for details. Versioned, but unchanged files and directories
do not have a special overlay icon. For all other SVN states, the modified icon is used.

Tip For the overlay icons, the icon files within lib/icons in the installa-
tion directory of SmartSVN are used. The names are corresponding
to the States used in Table 9.1. If you prefer, you can replace these
icons.

c© 2012 WANdisco plc, www.wandisco.com 108

Chapter 9. Shell Integration

Icon State Details

Modified File/directory is modified in contents/properties.

Modified recursively Directory itself of some file/subdirectory is modified (re-
quires the Status Cache service (see 9.9) running.

Added File/directory is scheduled for addition.

Removed File/directory is scheduled for removal.

Ignored File/directory is not under version control (exists only lo-
cally) and is marked to be ignored.

Conflicted An updating command lead to conflicting changes either
in content or properties.

Unversioned File/directory is not under version control, but only exists
locally.

Root Directory is a working root and is not modified.

Figure 9.1: Overlay Icons

The availability of overlay icons as well as commands can be configured in the Prefer-
ences (see 8.15).

Note On Windows, for technical reasons no icon overlays for files within
your profile directory %USERPROFILE% are shown (except of sub-
directory My Documents).

9.5 Server Mode

To provide the shell integration without requiring SmartSVN actually being open, SmartSVN
can be started with the --server-mode argument, for details refer to Section 11.4.

9.6 Windows Shell Integration

The shell integration adds overlay icons to directory and file views of Windows and SVN
commands in the context menu. You will especially see them for the Windows Explorer,
but also for other software which uses the native file dialogs of Windows.

Installation

You can choose to enable the shell integration for the installation of SmartSVN, when
using the MSI installers. It’s also recommended to have SmartSVN automatically be
started with the system startup, so the shell integration is available immediately. The
installers offer a corresponding option which will add SmartSVN to the Autostart section,
starting SmartSVN in server mode (see 9.5).

c© 2012 WANdisco plc, www.wandisco.com 109

Chapter 9. Shell Integration

Uninstall

The shell integration will be uninstalled together with SmartSVN. You can also uninstall
the shell integration independently from the Control Panel, Software, using Repair there.

9.7 Mac OS X Finder integration

The Finder integration lets you perform SVN commands in the Finder using the context
menu.

Installation

On the first start, SmartSVN asks whether to install the Finder integration. If you
choose to install it, SmartSVN will create a symbolic link ~/Library/Contextual Menu

Items/SmartSVN CM.plugin. If you choose not to install, you can install it later by
selecting the option Integrate in Finder on the Shell Integration page of the Preferences
(see 8.16).

If the installation by SmartSVN itself fails for some reason, you can install the Finder
integration yourself. If the folder ~/Library/Contextual Menu Items does not exist yet,
create it. Right click the SmartSVN application in the Finder and select Show Package
Contents. Copy the SmartSVN CM.plugin from within the SmartSVN application to the
folder ~/Library/Contextual Menu Items. Log out and login again.

Uninstallation

Unselect the option Integrate in Finder on the Finder Integration page of the Prefer-
ences.

To manually uninstall the Finder integration, just delete ~/Library/Contextual

Menu Items/SmartSVN CM.plugin and log out and relogin again.

Automatic start at login

The Finder integration will only work when SmartSVN is running. The easiest way to
do that automatically, is to let SmartSVN be launched at login. Just right click the
SmartSVN dock icon and select Open at Login. Alternatively, you can use the Accounts
panel in the System Preferences to define SmartSVN as a Login Item. Note, that the
Hide option has no effect. If SmartSVN is defined as a Login Item, it will be started in
server mode (see 9.5).

9.8 Tray Icon

By default, SmartSVN keeps running even when all frames have been closed. To have
SmartSVN still accessible, a tray icon is used. It’s available for Microsoft Windows, most
Linux desktop managers and other operating systems for which tray icons are supported.

c© 2012 WANdisco plc, www.wandisco.com 110

Chapter 9. Shell Integration

From the context menu of the tray icon, use New Project Window to open a new
Project Window (see 2), New Repository Browser to open a new Repository Browser (see
4) or Show Transactions to open the Transactions frame (see 5.1). Open the Preferences
or information About SmartSVN. To exit SmartSVN, use Exit SmartSVN.

Note On Mac OS SmartSVN is permanently available when SmartSVN
is running, even when all frames are closed. In this case it has a
reduced menu bar, including the Window menu.

The tray icon shows the progress of currently processing SVN operations which have
been invoked from the shell extensions. It also shows the presence of new revisions for
the Transactions (see 5.1) frame; the tooltip gives more information on which repositories
have new transactions.

You can disable the tray icon in the Preferences (see 8.4) by deselecting Nest in
System Tray. In this case, SmartSVN will exit once the last frame has been closed.

Note The Nest in System Tray option is not regarded when starting
SmartSVN in server mode (see 9.5).

9.9 Status Cache

The Status Cache is an optional Windows service which manages SVN status information
for your working copies. It’s primarily used to display the recursively modified state
of directories, which shows that some files/subdirectories are modified. Also, the initial
scanning/refresh (see 2.4.5) accesses Status Cache information to quickly give a preview
of the working copy.

To avoid unnecessary system load, the root directories which will be served by the
Status Cache have to be explicitly configured. SmartSVN will ask you to do this the first
time you perform a command through the Shell Integration. The Status Cache can be
reconfigured any time in the Preferences (see 8.15.1).

Performance considerations

You should carefully determine which root directories should be be served by the Status
Cache, as the Status Cache will introduce a certain overhead to your system’s load. This
overhead becomes more apparent the slower the file system to cache is. In general you
should:

• Only configure to cache local harddisks

• Avoid caching of possible temporary directories which might receive temporary
working copies

• Don’t create a too detailed list of individual directories to cache

So for instance, if all of your working copies are located at a separate drive D:, it
will be perfect to have the Status Cache configured for this single root directory D: and
nothing else.

c© 2012 WANdisco plc, www.wandisco.com 111

Chapter 9. Shell Integration

Uninstall

If you rarely work with the Shell Integration and additional recursively modified state is
not important to you, you may completely uninstall the service. This can be done via the
Control Panel/Add or Remove Programs, selecting the SmartSVN installer, Change and
within the installer using Change again.

c© 2012 WANdisco plc, www.wandisco.com 112

Chapter 10

Plugins

SmartSVN comes with a couple of pre-installed plugins, based on SmartSVN’s Plugin-
API. The functionality contributed by plugins may be beneficial to certain users, but is
usually either not required for normal usage, or not primarily concerned with SVN.

Plugins are deployed as separate JAR files which are located in the plugins sub-
directory in SmartSVN’s installation directory. A plugin can be disabled simply by re-
moving the corresponding JAR file from this directory.

10.1 JIRA Plugin

The JIRA Plugin provides a basic issue tracker integration for the JIRA issue tracker
from Atlassian, see http://www.atlassian.com/software/jira.

The plugin adds a Get from JIRA entry to the drop-down menu of the commit message
text fields (see Section 3.6). For the Commit wizard itself, it will also parse the commit
message for potential JIRA issue IDs and ask whether to resolve these issues on successful
commit.

10.1.1 Workflow

Before connecting to JIRA, SmartSVN will ask you for your Username and Password
which may be optionally stored by Store password. If you are connecting to an SSL-
secured JIRA server, you will have to confirm the validity of SSL-certificate fingerprints.
In case SSL client authentication is required, enter the path to the Certificate file and its
Passphrase which may optionally be stored by Store passphrase.

On the Files page of the Commit wizard, use Get from JIRA to display a list of JIRA
issues, including their Key, Summary and Status. For reasons of clarity, the list will only
contain issues which are assigned to your username and which are either

• in in-progress state or are

• contained in the next three unreleased versions (the number of unreleased versions
can be changed by the system property smartsvn.plugin.jira.unreleased-versions-to-display,
for details refer to Section 12.1). If there are no unreleased versions, assigned issues
for all versions will be loaded.

113

http://www.atlassian.com/software/jira

Chapter 10. Plugins

You can select one or more issues here which will then be set for the Commit Message.
Using Refresh can be useful to reload issues from JIRA.

When proceeding the Files page with Next, the plugin will check the Commit Mes-
sage for JIRA issue IDs. For every issue found, you will be prompted with a Resolve
JIRA Issue dialog for which you can either select to Mark as resolved in revision and se-
lect the resolution revision. This will contact JIRA and resolve the issue correspondingly.
Don’t mark as resolved will leave the issue as it is.

10.1.2 Requirements

The availability of the plugin functionality for a certain working copy depends on whether
bugtraq-properties (see 3.8.9) for the working copy root directory have been configured
and whether the bugtraq:url is pointing to a JIRA Issues page. Following types of URLs
are recognized:

• http(s)://host:port/prefix/browse/ProjectKey-IssueID

• http(s)://host:port/prefix/ViewIssue.jspa?key=ProjectKey-IssueID

The plugin only works for recent JIRA versions which provide a SOAP interface.
The SOAP interface has to be enabled for your JIRA server (what can typically only be
done by the administrator). For details on how to enable the interface, refer to http:

//confluence.atlassian.com/display/JIRA/Creating+a+SOAP+Client.

Note Certain aspects of the plug-in can be customized by system prop-
erties (see 12.1).

10.2 Trac Plugin

The Trac Plugin provides a basic issue tracker integration for the Trac issue tracker from
Edgewall Software, see http://trac.edgewall.org.

The plugin adds a Get from Trac entry to the drop-down menu of commit message
text fields (see Section 3.6). For the Commit wizard itself, it will also parse the commit
message for potential Trac ticket IDs and ask whether to resolve these tickets on successful
commit.

10.2.1 Workflow

Before connecting to Trac, SmartSVN will ask you for your Username and Password
which may be optionally stored by Store password. If you are connecting to an SSL-
secured Trac server, you will have to confirm the validity of SSL-certificate fingerprints.
In case SSL client authentication is required, enter the path to the Certificate file and its
Passphrase which may optionally be stored by Store passphrase.

Warning! Passwords and passphrases will be stored in plain-text in the
settings.xml file (see Section 11).

c© 2012 WANdisco plc, www.wandisco.com 114

http://confluence.atlassian.com/display/JIRA/Creating+a+SOAP+Client
http://confluence.atlassian.com/display/JIRA/Creating+a+SOAP+Client
http://trac.edgewall.org

Chapter 10. Plugins

On the Files page of the Commit wizard, use Get from Trac to display a list of Trac
tickets, including their Id, Summary, Status, Milestone and Version. For reasons of
clarity, the list will only contain tickets which are assigned to your username and which
are either

• in an accepted state or are

• contained in the next three unreleased versions respectively in the three incomplete
milestones (the number of unreleased versions can be changed by the system prop-
erty smartsvn.plugin.trac.unreleased-versions-to-display, the number of
incomplete milestones by the system property smartsvn.plugin.trac.incomplete-milestones-to-display,
for details refer to Section 12.1). If there are no unreleased versions, assigned tickets
for all versions will be loaded. If there are no incomplete milestones, assigned tickets
for all milestones will be loaded.

You can select one or more tickets here which will then be set for the Commit Mes-
sage. The commit message pattern depends on the property bugtraq:message. If this
property is not set, the pattern can be configured individually over Configure in the ticket
list dialog. Using Refresh can be useful to reload tickets from Trac.

When proceeding the Files page with Next, the plugin will check the Commit Mes-
sage for Trac ticket IDs. For every ticket found, you will be prompted with a Resolve
Trac Issue dialog for which you can either select to Mark as resolved in revision and
select the resolution revision and milestone (this will contact Trac and resolve the ticket
correspondingly), or Don’t mark as resolved which will leave the ticket as it is.

10.2.2 Requirements

The availability of the plugin functionality for a certain working copy depends on whether
bugtraq-properties (see 3.8.9) for the working copy root directory have been configured
and whether the bugtraq:url is pointing to a Trac ticket page. The following types of
URL are recognized:

http(s)://host:port/prefix/ticket/TicketID
The plugin only works for recent Trac versions which provide a Trac XML-RPC Plugin.

The Trac XML-RPC Plugin has to be installed and enabled for your Trac server (this
is usually done by the administrator). For details on how to install and enable the Trac
XML-RPC Plugin, refer to http://trac-hacks.org/wiki/XmlRpcPlugin.

Note Certain aspects of the plug-in can be customized by system prop-
erties (see 12.1).

10.3 Remove Empty Directories

This plugin adds the Remove Empty Directories menu item to the Tools menu. It sched-
ules all empty, versioned directories below the currently selected directory for removal.
Thereafter you can commit the selected directory to actually remove the directories from
the repository.

c© 2012 WANdisco plc, www.wandisco.com 115

http://trac-hacks.org/wiki/XmlRpcPlugin

Chapter 10. Plugins

10.4 Quick Update

This plugin adds an Update category to the Preferences (see 8). Here you can configure
whether to Show Update configuration dialog or not. When there is no configuration
dialog, Update (see 3.4.1) will start immediately and update the selected directory (or
file) recursively to the HEAD revision. If you need to update to another revision, you can
either enable the configuration dialog or use the Switch (see 3.4.4) command.

10.5 Plugin-API

SmartSVN’s Plugin-API can be used to customize various aspects of SmartSVN by cre-
ating corresponding plugins. The Plugin-API currently covers following functionality:

• Modify the menu structure of the Project Window (see 2.5).

• Add custom SVN operations to arbitrary menus.

• Add custom file table columns (see 2.4), e.g. to show custom SVN properties.

• Customize various aspects of the Commit workflow (see 3.6).

• Customize various aspects of the Update workflow (see 3.4.1).

• Store custom Preferences (see 8) or project settings (see 6.3).

For more details refer to http://smartsvn.wandisco.com/techarticles/pluginapi.

10.6 Send Support Email

This plugin adds a Contact Support menu item to the Help menu which opens your
email client to send a message to smartsvn@wandisco.com.

10.7 Hide Menu Items

You can use this plugin to remove menu items from the main menu bar of the project win-
dow (see 2). The configuration of the plugin is performed by the menuItemsToHide.config
in SmartSVN’s settings directory (see 11.1). If this file does not exist, the plugin will cre-
ate it and pre-fill with all available menu items IDs, by default commented out. By
un-commenting a line, the corresponding menu item will not be present anymore for the
next start of SmartSVN.

10.8 Merge Info Column

This plugin adds the Merge Info column to the File Table (see 2.4).

c© 2012 WANdisco plc, www.wandisco.com 116

http://smartsvn.wandisco.com/techarticles/pluginapi

Chapter 10. Plugins

10.9 Tag Multiple

This plugin adds the Tag Multiple Project Roots (see 3.9.3) functionality to the Project
window (see 2).

10.10 Commit Message Templates

This plugin adds support for the tsvn:logtemplate property which can be used to
define a default commit message which will be displayed in the Commit wizard (see
3.6). For details refer to http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/

ch05s15.html.

c© 2012 WANdisco plc, www.wandisco.com 117

http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/ch05s15.html
http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/ch05s15.html

Chapter 11

Installation and Files

SmartSVN stores its configuration files per-user. The root directory of SmartSVN’s con-
figuration area contains subdirectories for every major SmartSVN version, so you can use
multiple versions concurrently. The location of the configuration root directory depends
on the operating system.

11.1 Location of SmartSVN’s settings directory

• Windows:: The configuration files are located below %APPDATA%\syntevo\SmartSVN.
Note: Before version 5, configurations files have been stored below %USERPROFILE%\.smartsvn.

• Mac OS:: The configuration files are located below ~/Library/Preferences/SmartSVN.

• Unix/Other:: The configuration files are located below ~/.smartsvn.

11.2 Notable configuration files

• accelerators.xml stores the accelerators (see 8.18.2) configuration.

• license stores your SmartSVN’s license key.

• log.txt contains debug log information. It’s configured via log4j.xml.

• passwords is an encrypted file and stores the passwords (see 8.3.4) used throughout
SmartSVN.

• project-defaults.xml stores the default project settings (see 6.3.4).

• projects.xml stores all configured projects (see 6), including their settings.

• repositories.xml stores the Repository Profiles (see 8.3), except the corresponding
passwords.

• settings.xml stores the application-wide Preferences (see 8) of SmartSVN.

118

Chapter 11. Installation and Files

• tag-branch-layouts.xml stores the configured Tag-Branch-Layouts (see 3.9.1).

• transactionsFrame.xml stores the configuration of the Transactions frame (see
5.1).

• uiSettings.xml stores the context menu (see 8.18.3) configuration.

11.3 Company-wide installation

For company-wide installations, the administrator can install SmartSVN on a network
share. To make deployment and initial configuration for the users easier, certain configu-
ration files can be prepared and put into the subdirectory default (within SmartSVN’s
installation directory).

When a user starts SmartSVN for the first time, the following files will be copied from
the default directory to their private configuration area:

• accelerators.xml

• project-defaults.xml

• repositories.xml

• settings.xml

• tag-branch-layouts.xml

• transactionsFrame.xml

• uiSettings.xml

The license file (for Enterprise licenses and 10+ Professional licenses) can also be
placed into the default directory. In this case, SmartSVN will prefill the License field
in the Set Up wizard when a user starts SmartSVN for the first time. When upgrading
SmartSVN, this license file will also be used, so users won’t be prompted with a “license
expired” message, and can continue working seamlessly.

Note Typically, you will receive license files from us wrapped into a ZIP
archive. In this case you have to unzip the contained license file
into the default directory.

11.4 Command line arguments

SmartSVN supports a couple of command line arguments.

• --server-mode will just start up the core process and bring up the tray icon (see
9.8), if present. This startup mode is used for the Shell Integration (see 9).

c© 2012 WANdisco plc, www.wandisco.com 119

Chapter 11. Installation and Files

• --exit will try to detect a running SmartSVN process and force this process to
exit. This allows SmartSVN to be stopped gracefully.

• --transactions will bring up the Transactions Frame (see 5.1) instead of the
Project Window (see 2) on startup.

• --repository-browser will bring up the Repository Browser (see 4) instead of the
Project Window (see 2) on startup.

• project-path will bring up the Project Window (see 2) and load the project contain-
ing the specified project-path.

11.5 JRE search order (Windows)

On Windows, the smartsvn.exe launcher will search for an appropriate JRE in the
following order (from top to bottom):

• Environment variable SMARTSVN JAVA HOME

• Sub-directory jre within SmartSVN’s installation directory

• Environment variable JAVA HOME

• Environment variable JDK HOME

• Registry key HKEY LOCAL MACHINE\SOFTWARE\JavaSoft\Java Runtime En-
vironment

c© 2012 WANdisco plc, www.wandisco.com 120

Chapter 12

Advanced Settings

In addition to the options on the preferences dialog, SmartSVN has some advanced set-
tings that can be set through the configuration file smartsvn.properties. How it is
used is described in the following subsection. Additionally, you can change the program’s
memory limit, which is described here as well.

12.1 System Properties

SmartSVN can be configured by editing the file smartsvn.properties in the settings di-
rectory. The smartsvn.properties file contains further documentation about the avail-
able settings, so the latter will not be listed here. In this section, we will only show an ex-
ample in order to give a general idea of how to alter settings in the smartsvn.properties
file.

First, open the settings directory. Its default location is described in Section 11.1. In
the settings directory, you will find the smartsvn.properties file. Open it with a text
editor, such as Windows Notepad.

Each of the settings in smartsvn.properties is specified on a separate line, according
to the following syntax: key=value

If a line starts with #, the entire line is treated as a comment and ignored by the
program. By default, the available settings are prefixed with a #, so that their default
values will be used. To alter a setting, uncomment it by removing the # character and
modify the setting’s value as needed.

Example
In the smartsvn.properties file, uncomment the following line in order to disable
the splash screen:
#smartsvn.ui.splashscreen=false

12.2 Memory Limit

The memory limit (also known as maximum heap size) specifies how much RAM the
SmartSVN process is allowed to use. If the set value is too low, SmartSVN may run out

121

Chapter 12. Advanced Settings

of memory during memory-intensive operations. How the memory limit is set depends on
your operating system:

• Windows (all users): In the file bin/smartsvn.vmoptions inside the SmartSVN
installation directory, there is a line that looks like this: -Xmx256m. This sets a
memory limit of 256 MB. To set a memory limit of 512 MB, change this to -Xmx512m.

• Windows (current user): The memory limit specified in bin/smartsvn.vmoptions

can be overridden on a per-user basis. To do so, create a file named vmoptions in the
directory syntevo\SmartSVN inside the application data directory. The location of
the latter is usually either C:\Documents and Settings\[Username]\Application
Data (for Windows 2000/XP) or C:\Users\[Username]\AppData (for Windows
Vista/7). In the newly created vmoptions file, insert a line that specifies the mem-
ory limit, e.g. -Xmx512m for a memory limit of 512 MB.

• Mac OS X: Set the environment variable SMARTSVN MAX HEAP SIZE to the desired
value, e.g. 512m for a memory limit of 512 MB. One way to set this variable for
all users is to open the file /etc/launchd.conf with root priviledges (creating it
if it doesn’t exist) and to add the following line: setenv SMARTSVN MAX HEAP SIZE

512m.

• Linux: Set the environment variable SMARTSVN MAX HEAP SIZE to the desired value,
e.g. 512m for a memory limit of 512 MB. One way to set this variable for all users is
opening the file /etc/profile with root priviledges and adding the following line
at the end (after unmask xxx): export SMARTSVN MAX HEAP SIZE=512m.

c© 2012 WANdisco plc, www.wandisco.com 122

	Introduction
	Project Window
	User Interface
	Perspectives
	Projects
	Directory Tree and File Table
	Directory States/Directory Tree
	File States/File Table
	State Filters
	Double Click
	Refresh

	Menus
	Project
	Edit
	View
	Modify
	Change Set
	Tag+Branch
	Query
	Properties
	Locks
	Changes
	Transactions
	Window
	Help

	Changes View

	Commands
	Check Out
	Import into Repository
	Set Up Local Repository
	Updating
	Update
	Update More
	Exclude from Working Copy
	Switch
	Relocate

	Local Modifications
	Add
	Remove
	Ignore
	Delete Physically
	Create Directory
	Rename
	Move
	Detect Moves
	Copy
	Copy From Repository
	Copy To Repository
	Copy Within Repository
	Revert
	Mark Resolved
	Mark Replaced
	Clean Up
	Fix
	Validate Working Copy Metadata

	Commit
	Merging
	Merge
	Merge from 2 Sources
	Reintegrate Merge
	Apply Patch

	Properties
	Edit Properties
	Set or Delete Property
	MIME-Type
	EOL-Style
	Keyword Substitution
	Executable-Property
	Externals
	Ignore Patterns
	Bugtraq-Properties
	Merge Info

	Tags and Branches
	Tag-Branch-Layout
	Add Tag
	Tag Multiple Project Roots
	Add Branch
	Tag Browser
	Configure Layout

	Queries
	Show Changes
	Compare with HEAD
	Compare with Previous
	Compare with Revision
	Compare 2 Files
	Compare Repository Files or Directories
	Log
	Revision Graph
	Annotate
	Create Patch
	Create Patch between URLs
	Export Backup
	Conflict Solver

	Locks
	Refresh
	Lock
	Unlock
	Show Info
	Change 'Needs Lock'

	Remote State
	Refresh Remote State
	Clear Remote State

	Change Sets
	Move to Change Set
	Move Up
	Move Down
	Delete
	Edit Properties

	Common Features
	Recursive/Depth options
	Revision input fields
	Repository path input fields
	Tag input fields
	File/directory input fields

	Repository Browser
	Repository menu
	Edit menu
	View menu
	Modify menu
	Create Directory
	Remove
	Rename
	Copy/Move
	Edit Properties

	Query menu
	Window menu
	Help menu

	Transactions
	Transactions frame
	Grouping of revisions
	Watched URLs
	Read/Unread revisions
	Display Settings
	Transaction menu
	Edit menu
	View menu
	Modify menu
	Query menu
	Window menu
	Help menu

	Project Transactions
	Settings

	Log Cache
	Manage Log Caches
	Storage

	Projects
	Managing working copies
	Project Manager
	Project Settings
	Text File Encoding
	Scan
	Working Copy
	Default Settings

	Subwindows
	File Compare
	Comparison
	File menu
	Edit menu
	View menu
	Go To menu
	Window menu
	General Settings
	Compare Settings

	Properties Compare
	File menu
	Edit menu
	Window menu

	Compare Repository Files or Directories
	Compare menu
	Edit menu
	View menu
	Window menu

	Conflict Solver
	File menu
	Edit menu
	View menu
	Go To menu
	Window menu

	Revision Compare
	File menu
	Edit menu
	View menu
	Go To menu
	Window menu

	Log
	Log menu
	Edit menu
	View menu
	Modify menu
	Query menu
	Window menu
	File Export

	Revision Graph
	Revisions view
	Merge Information
	Graph menu
	Edit menu
	View menu
	Modify menu
	Query menu
	Window menu

	Annotate
	Annotate menu
	Edit menu
	View menu
	Revision menu
	Go To menu
	Window menu

	Merge Preview
	Merge menu
	Edit menu
	View menu
	Window menu

	Preferences
	On Start-Up
	Project
	Authentication
	Editing Profiles
	Proxies
	Tunnels
	Passwords

	User Interface
	Commit
	Conflict Solver
	Open
	Refresh
	Revision Graph
	Built-in Text Editors
	File Compare
	External Comparators
	External Viewers

	External Tools
	Directory Command

	Transactions
	Spell Checker
	Shell Integration (Windows)
	Status Cache

	Shell Integration (Mac OS)
	Check for New Version
	Customize
	Toolbar (not always available)
	Accelerators
	Context Menus (not always available)

	Shell Integration
	Commands (Windows and OS X 10.5)
	Commands (OS X 10.6)
	Output Window
	File menu
	Edit menu
	Window menu

	Overlay Icons
	Server Mode
	Windows Shell Integration
	Mac OS X Finder integration
	Tray Icon
	Status Cache

	Plugins
	JIRA Plugin
	Workflow
	Requirements

	Trac Plugin
	Workflow
	Requirements

	Remove Empty Directories
	Quick Update
	Plugin-API
	Send Support Email
	Hide Menu Items
	Merge Info Column
	Tag Multiple
	Commit Message Templates

	Installation and Files
	Location of SmartSVN's settings directory
	Notable configuration files
	Company-wide installation
	Command line arguments
	JRE search order (Windows)

	Advanced Settings
	System Properties
	Memory Limit

