Instructor’s Solutions Manual

to

Concepts of Programming Languages

Sixth Edition
R.W. Sebesta

Preface

Changesto the Sixth Edition

The goals, overall structure, and approach of this sixth edition of Concepts of Programming Languages
remain the same as those of the five earlier editions. The principal goal isto provide the reader with the tools
necessary for the critical evaluation of existing and future programming languages. An additional goal isto
prepare the reader for the study of compiler design. There were several sources of our motivations for the
changesin the sixth edition. First, to maintain the currency of the material, much of the discussion of older
programming languages has been removed. Inits placeis material on newer languages. Especially
interesting historical information on older programming languages has been retained but placed in historical
side boxes. Second, the material has been updated to reflect the fact that most students now come to this
course with a basic understanding of object-oriented programming. We shortened the discussion of basics
and expanded the discussion of advanced topics.

Third, reviewer comments have prompted several changes. For example, the material on functional
programming languages has been reorganized and strengthened. Also, we have added a programming
exercises section at the end of most chaptersto give students experience with the concepts described in the
book and to make the concepts more realistic and appealing. The book now has a new supplement: a
companion Web site with afew small language manuals, interactive quizzes for students, and additional
programming projects. Finally, interviews with the designers of recent languages that have achieved
widespread use appear inseveral placesin the book. These show the human side of language devel opment.

Four specific changes distinguish the sixth edition text from its predecessor. First, the material on
implementing subprograms has been condensed, largely because the virtual disappearance of Pascal and
Modula-2, aswell as the shrinking usage of Ada, has made the implementation of nested subprograms with
static scoping lessimportant. All of the relevant Pascal examples were rewritten in Ada. Second, Chapter 14
has been expanded to cover both exception handling and event handling. This change was motivated by the
great increase in interest and importance of event handling that has come with the wide use of interactive
Web documents. Third, the introduction to Smalltalk has been eliminated because we believe the syntactic
details of Smalltalk are no longer relevant to the material of the book. Fourth, there are numerous significant
changes motivated by the aging of existing programming languages and the emergence of new programming
languages. There is now little mention of Modula-2, Pascal, and the ALGOLs. Also, the coverage of Ada
and Fortran has been whittled down to the more interesting of their features that do not appear in other
popular languages. New material on JavaScript, PHP, and C# has been added where appropriate. Finally,
most chapters now include a new section, Programming Exercises.

TheVision

This book describes the fundamental concepts of programming languages by discussing the design issues
of the various language constructs, examining the design choices for these constructs in some of the most
common languages, and critically comparing design alternatives.

Any serious study of programming languages requires an examination of some related topics, among which
are formal methods of describing the syntax and semantics of programming languages, which are covered in
Chapter 3. Also, implementation techniques for various language constructs must be considered: Lexical
and syntax analysis are discussed in Chapter 4, and implementation of subprogram

linkageis covered in Chapter 10. Implementation of some other language constructsis discussed in various
other parts of the book.

The following paragraphs outline the contents of the sixth edition.

Chapter Outlines

Chapter 1 begins with arationale for studying programming languages. It then discusses the criteria used
for evaluating programming languages and language constructs. The primary influences on language
design, common design tradeoffs, and the basic approaches to implementation are al so examined.

Chapter 2 outlines the evolution of most of the important languages discussed in this book. Although no
language is described completely, the origins, purposes, and contributions of each are discussed. This
historical overview isvaluable because it provides the background necessary to understanding the practical
and theoretical basisfor contemporary language design. It also motivates further study of language design
and evaluation. In addition, because none of the remainder of the book depends on Chapter 2, it can be read
on its own, independent of the other chapters.

Chapter 3 describes the primary formal method for describing the syntax of programming language, BNF.
Thisisfollowed by adescription of attribute grammars, which describe both the syntax and static semantics
of languages. The difficult task of semantic description isthen explored, including brief

introductions to the three most common methods: operational, axiomatic, and denotational semantics.

Chapter 4 introduces lexical and syntax analysis. This chapter is targeted to those colleges that no longer
require acompiler design coursein their curricula. Like Chapter 2, this chapter stands alone and can be read
independently of the rest of the book.

Chapters 5 through 14 describe in detail the design issues for the primary constructs of the imperative
languages. In each case, the design choices for several example languages are presented and eval uated.
Specifically, Chapter 5 covers the many characteristics of variables, Chapter 6 covers data types, and
Chapter 7 explains expressions and assignment statements. Chapter 8describes control statements, Chapters
9 and 10 discuss subprograms and their implementation. Chapter 11 examines data abstraction facilities.
Chapter 12 provides an in-depth discussion of language features that support object-oriented programming
(inheritance and dynamic method binding), Chapter 13 discusses concurrent program units, and Chapter 14
is about exception handling and event handling.

Thelast two chapters (15 and 16) describe two of the most important alternative programming paradigms:
functional programming and logic programming. Chapter 15 presents an introduction to Scheme, including
descriptions of some of its primitive functions, special forms, and functional forms, aswell as some examples
of simple functions written in Scheme. Brief introductionsto COMMON LISP, ML, and Haskell are given to
illustrate some different kinds of functional language. Chapter 16 introduceslogic programming and the
logic programming language, Prolog.

Tothelnstructor

In the junior-level programming language course at the University of Colorado at Colorado Springs, the
book is used as follows: We typically cover Chapters 1 and 3 in detail, and though students find it
interesting and beneficial reading, Chapter 2 receives little lecture time due to its lack of hard technical
content. Because no material in subsequent chapters depends on Chapter 2, as noted earlier, it can be
skipped entirely, and because we require a course in compiler design, Chapter 4 is not covered.

Chapters 5 through 9 should be relatively easy for students with extensive programming experience in C++,
Java, or C#. Chapters 10 through 14 are more challenging and require more detailed lectures.

Chapters 15 and 16 are entirely new to most students at the junior level. Ideally, language processors for

Scheme and Prolog should be available for students required to learn the material in these chapters.
Sufficient material isincluded to allow studentsto dabble with some simple programs.

Undergraduate courses will probably not be able to cover all of the last two chaptersin detail. Graduate
courses, however, by skipping over parts of the early chapters on imperative languages, will be able to
completely discuss the nonimperative languages.

Supplemental Materials

The following supplements are available to all readers of this book at www.aw.com/cssupport :

<<= A set of lecture notes slides. These slides are in the form of Microsoft PowerPoint source files, one
for each of the chapters of the book.

<<= PowerPoint slides of all the figuresin the book, should you wish to create your own lecture notes.

<<= A companion web site. With the sixth edition we are introducing a brand-new supplements
package for students. To reinforce learning in the classroom, to assist with the hands-on lab
component of this course, and/or to facilitate students in a distance learning situation, the edition
will be accompanied by a comprehensive web site with the following content:

1. Mini manuals (approximately 100-page tutorials) on a handful of languages. These will

assume that the student knows how to program in some other language, giving the student
enough information to complete the chapter materialsin each language. Currently manuals are
planned in C++, C, Java, and C#.

2. Lab projects. A series of lab projects will be defined for each concept taught in the book. The
solutions will be available exclusively to those teaching a course.

3. Sdf-grading review exercises. Using the Addison-Wesley software engine, students can
complete a series of multiple-choice and fill-in-the-blank exercisesto check their understanding of
the chapter just read.

Solutions to many of the problem sets are available only to qualified instructors. Please contact your local
Addison-Wesley sales representative, or send e-mail to aw.cse@aw.com, for information about how to
access them.

L anguage Processor Availability
Processors for and information about some of the programming languages discussed in this book can be
found at the following web sites:

C# http://microsoft.com

Java http://java.sun.com

Haskell http://haskell.org

Scheme http://www.cs.rice.edu/CS/PL T/packages/drscheme/
Perl http://www.perl.com

JavaScript isincluded in virtually all browsers, PHPisincluded in virtually all Web servers.

All thisinformation is also included on the companion web site.

Acknowledgements
The suggestions from outstanding reviewers contributed greatly to this book's present form. In al phabetical
order, they are:

Charles Dana, California Polytechnic State University, San Luis Obispo
Eric Joanis, University of Toronto
Donald H. Kraft, Louisiana State University

Dennis L. Mumaugh, DePaul University

Sibylle Schupp, Rensselaer, Polytechnic I nstitute
Neelam Soundarajan, Ohio State University

Ryan Stansifer, Florida Institute of Technology
Steve Stevenson, Clemson University

Virginia Teller, Hunter College CUNY

Salih Y urttas, Texas A&M University

Y ang Wang, Southwest Missouri State University

Numerous other people provided input for the previous editions of Concepts of Programming Languages at
various stages of its development. All of their comments were useful and greatly appreciated. In alphabetical
order, they are: Vicki Allan, Henry Bauer, Carter Bays, Manuel E. Bermudez, Peter Brouwer, Margaret
Burnett, Paosheng Chang, John Crenshaw, Barbara Ann Griem, Mary Lou Haag, Eileen Head, Ralph C.
Hilzer, Hikyoo Koh, Jiang B. Liu, Meiliu Lu, Jon Mauney, Bruce R. Maxim, Robert McCoard, Michael G.
Murphy, Andrew Oldroyd, Rebecca Parsons, Jeffery Popyack, Steven Rapkin, Hamilton Richard, Tom Sager,
Joseph Schell, Mary Louise Soffaand John M. Weiss.

Maite Suarez-Rivas, Editor, Katherine Harutunian, Project Editor, and Juliet Silveri, Production Supervisor at
Addison-Wesley, and Daniel Rausch at Argosy, all deserve my gratitude for their efforts to produce the
sixth edition quickly, aswell as help make it significantly more complete than the fifth.

Finally, I thank my children, Jake and Darcie, for their patience in enduring my absence from them
throughout the endless hours of effort | invested in writing the six editions of this book.

About the Author

Robert Sebestais an Associate Professor in the Computer Science Department at the University of
Colorado, Colorado Springs. Professor Sebestareceived aB.S. in applied mathematics from the University of
Colorado in Boulder and hisM.S. and Ph.D. degreesin Computer Science from the Pennsylvania State
University. He has taught computer science for over 30 years. His professional interests are the design and
evaluation of programming languages, compiler design, and software testing methods and tools. Heisa
member of the ACM and the IEEE Computer Society.

Chapter 1
11

1.2

121
122
123
124
125
1.2.6

131
1311
1312
1313
1314
1.3.15
1.3.2
1321
1322
1323
1.33
1331
1332
1333
1334
134
14
141
142
15

17
171

TABLE of CONTENTS

Preliminaries 1
Reasons for Studying Concepts of Programming 2
Languages
Programming Domains 5
Scientific Applications 5
Business Applications 5
Artificid Intdligence 6
Systems Programming 6
Scripting Languages 7
Specid Purpose Languages 7
Language Evauation Criteria 8
Reedability 8
Ovedl Smplicity 9
Orthogonality 10
Control Statements 12
Data Types and Structures 13
Syntax Congderations 14
Writability 15
Simplicity and Orthogondity 15
Support for Abstraction 16
Expressvity 16
Reliahility 17
Type Checking 17
Exception Handling 17
Aliaang 18
Readability and Writability 18
Cost 18
Influences on Language Design 20
Computer Architecture 20
Programming Methodologies 22
Language Categories 23
Language Design Trade- Offs 24
Implementation Methods 25

Compilation 27

1.7.2 Pure Interpretation

1.7.3 Hybrid Interpretation Systems
1.8 Programming Environments
Summary

Review Questions

Problem Set

Chapter 2 Evolution of the Major I mperative Programming

L anguages
21 Zuse's Plankalkdl
211 Higtorica Background
21.2 Language Overview
2.2 Minima Hardware Programming: Pseudocodes 41
221 Short Code
222 Speedcoding
223 The UNIVAC "Compiling" System
224 Related Work
2.3 The IBM 704 and Fortran
231 Historical Background
232 Design Process
233 Fortran | Overview
234 Fortran I
235 Fortran IV, Fortran 77, 90, and 95
236 Evdudtion
24 Functionad Programming: LISP 49
24.1 The Beginnings of Artificid Intdligenceand List Processng 49
24.2 L1SP Design Process 50
24.3 Language Overview
2431 Data Structures
24.3.2 Processes in Functiond Programming
2433 The Syntax of LISP
244 Evdudtion
245 Two Descendants of LISP
2451 Scheme
2452 COMMON LISP
2.4.6 Related Languages
25 The First Step Toward Sophidtication: ALGOL 60
251 Higtorica Background
252 Early Design Process 56
253 ALGOL 58 Overview
254 Reception of the ALGOL 58 Report 57
255 ALGOL 60 Design Process
256 ALGOL 60 Overview
257 ALGOL 60 Evduation
2.6 Computerizing Business Records: COBOL
26.1 Higtorica Background
2.6.2 FLOW-MATIC
2.6.3 COBOL Design Process
264 Evdudtion
2.7 The Beginnings of Timesharing: BASIC 66
271 Design Process

2.7.2 Language Overview

211

=
o

ISESINENISIN N ol o
NNRPRRE WRN
B NR

N
(N

PRRRRPRPRRRPRRRRRERR
NN
wWwow
N =

wwwr
N =

NRRNRNNNRNRNRRNRNNRNNNNNNRNR
PP
NN
NEF, W

2.14.3
2.14.4
2.14.5
215

2151
2.15.2
2.15.3
2.16

2.16.1
2.16.2
2.16.3
2.16.4
2.16.5
217

2171
2.17.2
2.17.3
2.18

2.18.1
2.18.2
2.19

Evdudtion
Everything for Everybody: PL/I 70
Higtorica Background
Design Process
Language Overview
Evdudtion
Two Early Dynamic Languages: APL and SNOBOL
Origins and Characterigtics of APL
Origins and Characteristics of SNOBOL
The Beginnings of Data Abgtraction: SIMULA 67
Design Process
Language Overview
Orthogonad Design: ALGOL 68
Design Process
Language Overview
Evauation
Some Important Descendants of the ALGOL s 79
Smplicity by Design: Pascd 79
Higtorica Background
Evdudion
A Portable Systems Language: C
Higtorica Background
Evdudion
Other ALGOL Descendants
Modula-2
Oberon
Programming Based on Logic: Prolog 85
Design Process
Language Overview
Evdudtion
Higtory's Largest Design Effort: Ada
Higtorica Background
Design Process
Language Overview
Evdudtion
Ada 95
Object-Oriented Programming: Smaltalk
Design Process
Language Overview
Evdudtion
Combining Imperative and Object- Oriented Features: C++
Design Process
Language Overview
Evdudtion
A Rdaed Language: Eiffd
Ancther Related Language: Delphi

An Imperative-Based Object- Oriented Language: Java 99
Design Process
Language Overview
Evdudtion

Scripting Languages for the Web: JavaScript and PHP 103

Origins and Characteristics of JavaScript
Origins and Characterigtics of PHP
A New Language for the New Millenium: C# 106

2.19.1 Design Process

2.19.2 Language Overview
2.19.3 Evduation
Summary

Bibliographic Notes

Review Questions

Problem Set

Chapter 3 Describing Syntax and Semantics

31 Introduction

3.2 The Generd Problem of Describing Syntax
321 Language Recognizers

3.2.2 Language Generators

3.3 Forma Methods of Describing Syntax
331 Backus-Naur Form and Context-Free Grammars
3311 Context-Free Grammars

3312 Origins of Backus-Naur Form
3313 Fundamentas

3314 Describing Ligts

3315 Grammars and Derivations
3.3.16 Parse Trees

3317 Ambiguity

3.3.18 Operator Precedence

3.3.1.9 Associdivity of Operators
3.3.1.10 An Unambiguous Grammar fori f -t hen- el se
332 Extended BNF

333 Grammars and Recognizers

34 Attribute Grammars

34.1 Static Semantics

34.2 Basic Concepts

343 Attribute Grammars Defined

344 Intringic Attributes

345 Example Attribute Grammars

3.4.6 Computing Attribute Vaues

34.7 Evdudtion

35 Describing the Meanings of Programs. Dynamic Semantics
351 Operaiona Semantics

3511 The Basic Process

35.1.2 Evduation

352 Axiomatic Semantics

3521 Assartions

3522 Weakest Preconditions

35.23 Assgnment Statements

3524 Sequences

35.25 Selection

3.5.2.6 Logica Pretest Loops

35.27 Evdudion

353 Denotational Semantics

3531 Two Smple Examples

35.3.2 The State of a Program

3.5.33 Expressons

35.34 Assgnment Statements

116
117

119

125

131
132

139
139

106
106
107
108
108
109
110

113

114
115
116

117
117
117
118
119

121
122
123

126
128
130
130
130
131

132

136
136
137
137

35.35 Logica Pretest Loops
3.5.3.6 Evduation

Summary

Bibliographic Notes

Review Questions

Problem Set

Chapter 4 Lexical and Syntax Analysis

4.1 Introduction

4.2 Lexicd Andyss

4.3 The Parsing Problem

43.1 Introduction to Parsing

4.3.2 Top-Down Parsers

433 Bottom-Up Parsers

4.3.4 The Complexity of Parsing

4.4 Recursive-Descent Parsing

44.1 The Recursive-Descent Parsing Process
4.4.2 TheLL Grammar Class

45 BottomUp Parsing

45.1 The Parsing Problem for Bottom-Up Parsers
45.2 Shift- Reduce Algorithms

45.3 LR Parsers

Summary

Review Questions

Problem Set

Programming Exercises

Chapter 5 Names, Bindings, Type Checking, and Scopes

51 Introduction

5.2 Names

521 Design Issues

5.2.2 Name Forms

523 Special Words

53 Variables

531 Name

532 Address

5321 Aliases

533 Type

534 Vdue

54 The Concept of Binding

54.1 Binding of Attributesto Variables
54.2 Type Bindings

5421 Variable Declarations
54.2.2 Dynamic Type Binding
54.2.3 Type Inference

54.3 Storage Bindings and Lifetime
5431 Static Variables

54.3.2 Stack-dynamic Variables
54.3.3 Explicit Hegp-Dynamic Vaiables

54.34 Implicit Dynamic Variables

10

161

176

186

191

204
205

154

155
155
156
157

162
163
167
167
168
169
170
170
170
173
176

178
178
183
185
186

189

190
190

191
192
193
193
194
194
195
195
195
196
197
197
198
199
202
202
203

55 Type Checking

5.6 Strong Typing

5.7 Type Compatibility

5.8 Scope

58.1 Static Scope

582 Blocks

5.8.3 Evduation of Static Scoping
584 Dynamic Scope

585 Evauation of Dynamic Scoping
5.9 Scope and Lifetime

5.10 Referencing Environments
511 Named Constants

512 Vaiadle Initidization
Summary

Review Questions

Problem Set

Programming Exercises

Chapter 6 Data Types

6.1 Introduction

6.2 Primitive Data Types

6.2.1 Numeric Types

6.2.11 I nteger

6.2.1.2 Hoating-Point

6.2.1.3 Decimd

6.2.2 Boolean Types

6.2.3 Character Types

6.3 Character String Types

6.3.1 Design Issues

6.3.2 Strings and Their Operations
6.3.3 String Length Options

6.3.4 Evdudtion

6.3.5 Implementation of Character String Types
6.4 User-Defined Ordind Types
6.4.1 Enumeration Types

6.4.1.1 Designs

6.4.1.2 Evdudion

6.4.2 Subrange Types

6.4.2.1 Desgns

6.4.2.2 Evdudion

6.4.3 Implementation of User-Defined Ordind Types
6.5 Array Types

6.5.1 Design Issues

6.5.2 Arrays and Indices

6.5.3 Subscript Bindings and Array Categories
6.5.4 Array Initidization

6.5.5 Array Operations

6.5.6 Rectangular and Jagged Arrays
6.5.7 Sices

6.5.8 Evdudtion

6.5.9 Implementation of Array Types

6.6 Asociative Arrays

11

205

214

231

239
239
239

248

206
208
211
211
213

217
218
219
220
222
223
224
225
226

233

234
235
236
236
236
237
238
238

241

6.6.1 Structure and Operations

6.6.2 Implementing Associative Arrays

6.7 Record Types

6.7.1 Definitions of Records

6.7.2 References to Record Fidlds

6.7.3 Operations on Records

6.7.4 Evdudtion

6.7.5 Implementation of Record Types

6.8 Union Types

6.8.1 Design Issues

6.8.2 Discriminated versus Free Unions

6.8.3 AdaUnion Types

6.8.4 Evdudtion

6.8.5 Implementation of Union Types

6.9 Pointer and Reference Types

6.9.1 Design Issues

6.9.2 Pointer Operations

6.9.3 Pointer Problems

6.9.3.1 Dangling Pointers

6.9.3.2 Lost Heap-Dynamic Variables

6.9.4 Pointersin Ada

6.9.5 Pointersin C and C++

6.9.6 Pointersin Fortran 95

6.9.7 Reference Types

6.9.8 Evduation

6.9.9 Implementation of Pointer and Reference Types
6.9.9.1 Representations of Pointers and References
6.9.9.2 Solutions to the Dangling Pointer Problem
6.9.9.3 Heap Management

Summary

Bibliographic Notes
Review Questions
Problem Set
Programming Exercises

Chapter 7 Expressions and the Assignment Statement

7.1 Introduction

7.2 Arithmetic Expressons

721 Operator Evaluation Order
7.2.1.1 Precedence

7.21.2 Associativity

7.2.1.3 Parentheses

7214 Conditiona Expressons
7.2.2 Operand Evauation Order
7.2.2.1 Sde Effects

7.3 Overloaded Operators

7.4 Type Conversons

7.4.1 Coercion in Expressions
7.4.2 Explicit Type Conversons
7.4.3 Errorsin Expressons

75 Redationd and Boolean Expressons

12

266

269

272

280
280
281

288

293

305

285
286
286
287

291
292

293
294
295
298
298
299
299
301
303
303
305

306

751 Relaiona Expressons

7.5.2 Boolean Expressions

7.6 Short-Circuit Evauetion

1.7 Assgnmen Statements

7.7.1 Smple Assgnments

7.7.2 Conditiond Targets

7.7.3 Compound Assignment Operators
7.7.4 Unary Operator Assgnments
7.75 Assgnment as an Expression
7.8 Mixed-Mode Assgnment
Summary

Review Questions

Problem Set

Programming Exercises

Chapter 8 Statement-Level Control Structures

8.1 Introduction

8.2 Sdection Statements

821 Two-Way Sdection Statements
8211 Design Issues

8.2.1.2 The Control Expression

8.3.1.3 Clause Form

8.2.14 Nesting Selectors

8.2.2 Multiple Sdection Constructs

8221 Desgn Issues

8.2.2.2 Examples of Multiple Selectors
8.2.2.3 Multiple Sdection Using if

8.3 lterative Statements

8.3.1 Counter-Controlled Loops

8311 Design Issues

8.3.1.2 The Do Statement of Fortran 95
8.3.1.3 The Adaf or Statement

8.3.14 Thef or Statement of the C-Based Languages
8.3.2 Logicaly Controlled Loops

8321 Design Issues

8.3.2.2 Examples

8.3.3 User-Located Loop Control Mechanisms
8.34 Iteration Based on Data Structures

8.4 Unconditiond Branching

84.1 Problems with Unconditiona Branching
85 Guarded Commands

8.6 Conclusons

Summary

Review Questions

Problem Set

Programming Exercises

Chapter 9 Subprograms
9.1 Introduction

13

307

310

310

311

312

317

319

324

328

350

353

306
308

310
311

313
314
314
315

320

354

9.2 Fundamentals of Subprograms 354
921 Generd Subprogram Characteristics 354
9.2.2 Badc Definitions

9.2.3 Parameters

9.24 Procedures and Functions

9.3 Design Issues for Subprograms 360
94 Locd Referencing Environments

9.5 Parameter-Passng Methods

951 Semantics Modds of Parameter Passing

95.2 Implementation Models of Parameter Passing 364
9521 Pass-by-Vdue

95.2.2 Pass-by- Resuilt

95.2.3 Pass-by-Vdue- Resuit

95.24 Pass-by- Reference

95.25 Pass-by-Name

95.3 Parameter-Passng Methods of the Mgor Languages 368
954 Type-Checking Parameters

955 Implementing Parameter- Passing Methods

9.5.6 Multidimensiona Arrays as Parameters

95.7 Design Congderations

9.5.8 Examples of Parameter Passing

9.6 Parameters That Are Subprogram Names

9.7 Overloaded Subprograms

9.8 Generic Subprograms

98.1 Generic Subprogramsin Ada 385
9.8.2 Generic Functionsin C++

9.8.3 Generic Subprograms in Other Languages

9.9 Desgn Issues for Functions

991 Functiond Side Effects

9.9.2 Types of Return Vaues

9.10 User-Defined Overloaded Operators

911 Coroutines

Summary

Review Questions

Problem Set

Programming Exercises 395
Chapter 10 Implementing Subprograms 397
10.1 The Genera Semantics of Cdls and Returns

10.2 Implementing “Simple’ Subprograms 399
10.3 Implementing Subprograms with Stack-Dynamic Loca Variables
10.3.1 More Complex Activation Records

10.3.2 An Example without Recursion

10.3.3 Recursion

104 Nested Subprograms

10.4.1 TheBasics

10.4.2 Static Chains

10.4.2 Digplays

10.5 Blocks

10.6 Implementing Dynamic Scoping 419
10.6.1 Deep Access

10.6.2 Shallow Access

14

355
356
359

361
363
363

364

365
365
367

371
373
374
378
378
381
383

387
388
389
389
389
389
390
393
393
394

398

401
401
403
406
407
409
409
416
417

419
420

Summary
Review Questions
Problem Set

Chapter 11 Data Abstraction

111 The Concept of Abstraction

11.2 Introduction to Data Abstraction
11.2.1 Foating-Point as an Abgtract Data Type
11.2.2 User-Defined Abstract Data Types
11.2.3 An Example

114 Design Issuesfor Abgtract Data Types
114 Language Examples

1141 Abstract Data Typesin Ada
114.1.1 Encapsulation

11.4.1.2 Information Hiding

11.4.1.3 An Example

11.4.2 Abstract Data Typesin C++
114.2.1 Encapsulation

11.4.2.2 Information Hiding

11.4.2.3 An Example

11424 Evdudion

11.4.3 Abstract Data Typesin Java
1144 Abstract Data Typesin C#

115 Parameterized Abstract Data Types
1151 Ada

1152 C++

11.6 Encapsulation Construct

116.1 Introduction

11.6.2 Nested Subprograms

11.6.3 Encgpsulationin C

11.6.4 Encapsulation in C++

11.6.5 Ada Packages

11.6.6 C# Assemblies

11.7 Naming Encgpsulations

11.71 C++ Namespaces

11.7.2 Java Packages

11.7.3 Ada Packages

Summary

Review Questions

Problem Set

Programming Exercises

Chapter 12 Support for Object-Oriented Programming

12.1 Introduction

12.2 Object-Oriented Programming

12.2.1 Introduction

12.2.2 Inheritance

12.2.3 Polymorphism and Dynamic Binding

12.3 Design Issues for Object- Oriented Language

12.3.1 The Exdusivity of Objects

15

432
433
433
439
439

449

451

456

457

458

460

422
423
423
427

428

458

458
459

461
461

12.3.2 Are Subclasses Subtypes?

12.3.3 Type Checking and Polymorphism

12.34 Single and Multiple Inheritance

12.35 Allocation and Dedllocation of Objects

12.3.6 Dynamic and Static Binding

124 Support for Object-Oriented Programming in Smdltalk
12.4.1 Generd Characterigtics

12.4.2 Type Checking and Polymorphism

12.4.3 Inheritance

1244 Evduation of Smdltak

125 Support for Object-Oriented Programming in C++
1251 Generd Characterigtics

1252 Inheritance

125.3 Dynamic Binding

1254 Evdudtion

12.6 Support for Object-Oriented Programming in Java
12.6.1 Generd Characteristics

12.6.2 Inheritance

12.6.3 Dynamic Binding

12.6.4 Evdudion

12.7 Support for Object-Oriented Programming in C#
12.7.1 Generd Characterigtics

12.7.2 Inheritance

12.7.3 Dynamic Binding

12.7.4 Evdudion

12.8 Support for Object-Oriented Programming in Ada 95
12.8.1 Generd Characterigtics

12.8.2 Inheritance

12.8.3 Dynamic Binding

12.8.4 Evdudion

12.9 The Object Modd of JavaScript

129.1 Generd Characterigtics

12.9.2 JavaScript Objects

12.9.3 Object Creation and Modification

1294 Evdudion

12.10 Implementation of Object-Oriented Constructs
12.10.1 Instance Data Storage

12.10.2 Dynamic Binding of Method Cdls to Methods
Summary

Review Questions

Problem Set

Programming Exercises

Chapter 13 Concurrency

13.1 Introduction

13.1.1 Multiprocessor Architectures

13.1.2 Categories of Concurrency

13.1.3 Moativations for Studying Concurrency

13.2 Introduction to Subprogram-Level Concurrency
13.2.1 Fundamental Concepts

13.2.2 Language Design for Concurrency

13.2.3 Desgn Issues

16

465
465

481

488

494

497

462
463
463
464

465
466
466
467
467
469
470
474
476
ar7
ar7
478
479
479
479
479
480
480
481

481
482
483

485
485
486
486
488

488
488
491
492
493

495
496

498
499
499
499
503
503

13.3 Semaphores

1331 Introduction

13.3.2 Cooperation Synchronization
13.3.3 Competition Synchronization
13.34 Evdudtion

134 Monitors

134.1 Introduction

13.4.2 Competition Synchronization
13.4.3 Cooperation Synchronization
1344 Evdudtion

135 Message Passing

135.1 Introduction

13.5.2 The Concept of Synchronous Message Passing
135.3 The Ada Synchronous M essage-Passing Moddl
1354 Cooperation Synchronization
1355 Competition Synchronization
13.5.6 Task Termination

13.5.7 Priorities

13.5.8 Binary Semaphores

13.5.9 Protected Objects

13.5.10 Asynchronous Message Passing
135.11 Evdudtion

13.6 Java Threads

13.6.1 TheThr ead Class

13.6.2 Priorities

13.6.3 Competition Synchronization
13.6.4 Cooperation Synchronization
13.6.5 Evdation

13.7 C# Threads

13.7.1 Basic Thread Operations
13.7.2 Synchronizing Threads
13.7.3 Evdudion

13.8 Statement-Level Concurrency
13.8.1 High- Performance Fortran
Summary

Bibliographic Notes

Review Questions

Problem Set

Programming Exercises

Chapter 14 Exception Handling and Event Handling

14.1 Introduction to Exception Handling
14.1.1 Basic Concepts

14.1.2 Design Issues

14.2 Exception Handling in Ada
14.2.1 Exception Handlers

14.2.2 Binding Exceptionsto Handlers
14.2.3 Continuation

14.2.4 Other Design Choices

14.2.5 An Example

14.2.6 Evdudtion

14.3 Exception Handling in C++

17

504
506

510
510

519
520

528
528

540

545

503
503

508
508
508

513
513
513
513
514

521
521
522
522
524
524
525
525
527

14.3.1 Exception Handlers

14.3.2 Binding Exceptionsto Handlers
14.3.3 Continuation

14.3.4 Other Design Choices

14.35 An Example

14.3.6 Evduation

14.4 Exception Handling in Java
14.4.1 Classes of Exceptions

14.4.2 Exception Handlers

14.4.3 Binding Exceptions to Handlers
14.4.4 Other Design Choices

14.4.5 An Example

14.4.6 Thefinal | y Clause

14.4.7 Evdudtion

14.5 Introduction to Event Handling
145.1 Basic Concepts of Event Handling
14.6 Event Handling with Java

14.6.1 Java Swing GUI Components
14.6.2 The Java Event Moddl
Summary

Bibliographic Notes

Review Questions

Problem Set

Programming Exercises

Chapter 15

151
152
1521
15.2.2
153
154
154.1
15.4.2
155
1551
155.2
1553
1554
1555
155.6
155.7
155.8
1559
15.5.10
15511
155111
155.11.2
155.12
15.6
15.7
158

Functional Programming L anguages

Introduction

Mathematica Functions
Simple Functions
Functiona Forms

Fundamentds of Functionad Programming Languages

The Firgt Functiona Programming Language: LISP
Data Types and Structures
The First LISP Interpreter
An Introduction to Scheme
Origins of Scheme
The Scheme Interpreter
Primitive Numeric Functions
Defining Functions
Output Functions
Numeric Predicate Functions
Control Flow
Ligt Functions
Predicate Functions for Symbolic Atoms and Lists
Example Scheme Functions
Functiona Forms
Functiond Composition
An Apply-to-All Functiond Form
Functions That Build Code
COMMON LISP
ML
Haskell

18

565
566

568

578

583

588

591
593

602

607

554
555
556
556
556
558
558
558
559
559
562
563

566

567
567

570
574
575
575
576

579

580
581
581
582

584

586
587
587
588

589
590

591

596
597
601
601

602
603
604

15.9 Applications of Functiond Languages

15.10 A Comparison of Functiona and Imperative Languages
Summary

Bibliographic Notes

Review Questions

Problem Set

Programming Exercises

Chapter 16 Logic Programming L anguages

16.1 Introduction

16.2 A Brief Introduction to Predicate Caculus
16.2.1 Propositions

16.2.2 Clausa Form

16.3 Predicate Cdculus and Proving Theorems
16.4 An Overview of Logic Programming

16.5 The Origins of Prolog

16.6 The Basic Elements of Prolog

16.6.1 Terms

16.6.2 Fact Statements

16.6.3 Rule Statements

16.6.4 God Statements

16.6.5 The Inferencing Processin Prolog
16.6.6 Smple Arithmetic

16.6.7 List Structures

16.7 Deficiencies of Prolog

16.7.1 Resolution Order Control

16.7.2 The Closed-World Assumption

16.7.3 The Negation Problem

16.7.4 Intringc Limitations

16.8 Applications of Logic Programming
16.8.1 Redationd Database Management Systems
16.8.2 Expert Systems

16.8.3 Natura Language Processng

Summary

Bibliographic Notes

Review Questions

Problem Set

Programming Exercises

19

611
612

621

625

647

650

612
613
614
614
615

617

Answersto Selected Problems

Chapter 1
Problem Set:

3. Some arguments for having asingle language for al programming domains are: It would
dramaticaly cut the costs of progranming training and compiler purchase and maintenance; it
would smplify programmer recruiting and judtify the development of numerous language
dependent software development aids.

4. Some arguments againg having a single language for dl programming domains are: The
language would necessarily be huge and complex; compilers would be expensive and costly to
maintain; the language would probably not be very good for any programming domain, ether in
compiler efficiency or in the efficiency of the code it generated.

5. One possibility iswordiness. In some languages, agreat dedl of text is required for even
smple complete programs. For example, COBOL isavery wordy language. In Ada,
programs require alot of duplication of declarations. Wordinessis usually consdered a
disadvantage, because it dows program crestion, takes more file space for the source
programs, and can cause programs to be more difficult to read.

7. The argument for using the right brace to close dl compoundsis smplicity—aright brace
aways terminates a compound. The argument againg it is that when you see aright bracein a
program, the location of its matching left brace is not dways obvious, in part because all
multiple- statement control constructs end with aright brace.

8. The reasons why alanguage would distinguish between uppercase and lowercasein its
identifiers are: (1) So that variable identifiers may look different than identifiers that are names
for congtants, such as the convention of using uppercase for congtant names and using
lowercase for variable namesin C, and (2) so that catenated words as names can have their first
letter digtinguished, asin Tot al Wor ds. (I think it is better to include a connector, such as
underscore)) The primary reason why a language would not distinguish between uppercase and
lowercase in identifiersis it makes programs less readable, because words that ook very smilar
are actudly completely different, such as sumand sum

10. One of the main argumentsis that regardless of the cost of hardware, it is not free. Why
write a program that executes dower than is necessary. Furthermore, the difference between a
wedl-written efficient program and one that is poorly written can be afactor of two or three. In
many other fields of endeavor, the difference between a good job and a poor job may be 10 or
20 percent. In programming, the difference is much greater.

15. The use of type declaration statements for smple scdar variables may have very little effect
on the readability of programs. If alanguage has no type declarations at dl, it may be an aid to
readability, because regardless of where avariable is seen in the program text, its type can be
determined without looking esawhere. Unfortunately, most languages that dlow implicitly
declared variables dso include explicit declarations. In aprogram in such alanguage, the
declaration of avariable must be found before the reader can determine the type of that varigble
when it is used in the program.

20

18. The main disadvantage of using paired delimiters for commentsisthat it results in diminished
reliability. It is easy to inadvertently leave off the find ddimiter, which extends the comment to
the end of the next comment, effectively removing code from the program. The advantage of
paired ddimitersisthat you can comment out aress of a program. The disadvantage of using
only beginning delimitersisthat they must be repeeted on every line of ablock of comments.
This can be tedious and therefore error-prone. The advantage is that you cannot make the
migtake of forgetting the dosing ddimiter.

Chapter 2
Problem Set:

6. Because of the smple syntax of L1SP, few syntax errors occur in L1SP programs.
Unmatched parentheses is the most common mistake.

7. The main reason why imperative features were put in LI1SP was to increase its execution
effidency.

10. The main motivation for the development of PL/I wasto provide asingle tool for computer
centers that must support both scientific and commercia applications. 1BM believed that the
needs of the two classes of applications were merging, at least to some degree. They fdt that
the smplest solution for a provider of systems, both hardware and software, was to furnish a
single hardware system running a single programming language that served both scientific and
commercid gpplications.

11. IBM was, for the most part, incorrect inits view of the future of the uses of computers, at
leest asfar aslanguages are concerned. Commercid applications are nearly al donein
languages that are specificaly designed for them. Likewise for scientific gpplications. On the
other hand, the IBM design of the 360 line of computers was a great success--it dill dominates
the area of computers between supercomputers and minicomputers. Furthermore, 360 series
computers and their descendants have been widdly used for both scientific and commercid
goplications. These applications have been done, in large part, in FORTRAN and COBOL.

14. The argument for typeess languagesistheir great flexibility for the programmer. Literdly
any storage location can be used to store any type value. Thisisuseful for very low-leve
languages used for systems programming. The drawback is that type checking isimpossible, so
that it is entirely the programmer's responsbility to insure that expressons and assgnments are
correct.

18. A good ded of restraint must be used in revisng programming languages. The grestest
danger isthat the revison process will continually add new features, so that the language grows

more and more complex. Compounding the problem is the reluctance, because of existing
software, to remove obsol ete festures.

Chapter 3

21

I nstructor's Note:

In the program proof on page 149, there is a statement that may not be clear to dl, specificaly,
(n + 1)* ...* n = 1. Thejudification of this satement isasfollows:

Consder the following expression:
(count + 1) * (count + 2) * ..* n

The former expression states that when count isequd to n, the value of the later expression is
1. Multiply the later expresson by the quotient:

(L *2* ...* count) / (1 * 2 * ..* count)
whosevaueisi, to get
(1 *2* ...* count * (count + 1) * (count + 2) * ..* n) /
(1 *2* ...* count)

The numerator of this expressonsisn! . The denominator iscount ! . If count isequd ton, the
vaue of the quatient is

n' / n!

or 1, which iswhat we were trying to show.

Problem Set:
2a. <class head>? {<modifier>} cl ass <id>[ext ends class name]
[i mpl enent s <interface_name> {, <interface_name>} |
<modifier>? public | abstract | final
2c. <switch_ smt>? switch (<expr>) {case <literd>: <gmt_lig>
{case <literd>: <gmt_lig>} [defaul t : <gmt _list>] }
3. <assgn>? <id> = <expr>
<ic>? A|B|C
<expr>? <expr>* <term>
| <term>
<term>? <factor> + <term>
| <factor>

<factor>7? (<expr>)

22

| <id>

6.

(a) <assign> => <id> = <expr>

=>A = <expr>

=>A =<id>* <expr>

= A

= A

= A

= A

= A

= A

= A

= A

= A

A * <expr>

A

A

A

*

*

*

(<expr=>)
(<id> + <expr>)

(B+ <expr>)

(B+ (<expr>))

(B+ (<id>* <expr>))
(B+ (C*<expr>))
(B+ (C*<id>))

(B+(C* A))

23

<assign>

T

<id> = <expr>

N

<id> * <expr>

L e
RN

<jd> + <expr>

N

(<expr>)

AN

<id> * <expr>

= <id>
A
7.
(&) <assgn> => <id> = <expr>
=> A = <eXpr>
=>A = <term>

=> A = <factor>* <term>
=>A = (<expr>) * <tem>
=> A = (<expr>+<tem>) * <tem>

=> A

(<tam>+ <tem>) * <tem>

=>A = (<factor>+ <term>) * <term>

24

=>A = (<id>+<tem>) * <term>

= A

(A +<term>) * <term>
=>A = (A +<factor>) * <term>
=>A=(A+<id>) * <tem>
=>A=(A+ B) *<team>
=>A=(A+ B) * <factor>
=>A=(A+B) *<id>

=>A=(A+B) *C

<assign>

<id> = <expr>
A|\ <te|rm>
/’\
<factor> * <term>
T
(<expr>) <factor>

T

<expr> + <term> <id>

<term> <factor> C
<factor> <id>
| |
<id> B
|
A

25

8. Thefollowing two distinct parse tree for the same string prove that the grammear is
ambiguous.

<S> <S>
|
<A> <A>
<A> + <A> <A> + <A>
<A> + <A> <A> + <A>
| | | |
a b C a b C

9. Assume that the unary operators can precede any operand. Replacetherule
<factor>? <id>

with
<factor>? + <id>

|- <id>

10. One or more as followed by one or more b's followed by one or morec's.

13.S? aSb | ab

mii>>>m

7
-\
:@%

QD
o —>
O
o— @

16. <assign>? <id>= <expr>
<id>? A|B|C
<expr>? <expr> (+|-) <expr>
| (<expr>)

| <id>

18.

(a) (Pascd r epeat) We assume that the logic expresson isa single relationa expresson.

loop:
if <rdlationa_expresson> goto out
goto loop
out:
(b) (Adafor) for I in first .. last |oop
| =firgt
loop: if | <last goto out
l=1+1
goto loop
out:...

(¢) (Fortran Do)
K = start

loop: if K> end goto out

27

(e) (Cfor) for (exprl; expr2; expr3) ...

19.

@

(b)

(©

K=K +step
goto loop

out:

evaluate(exprl)
loop: control = evauate(expr2)

if control == 0 goto out

evauate(expr3)

goto loop

out:

a=2*(b-1)-1{a>0}

2*(b-1)-1>0
2*b-2-1>0
2*b>3
b>3/2

b=(c+10)/3{b>6}
(c+10)/3>6
c+10>18

c>8

a=a+2*b-1{a>1}

28

(d)

20.

@

a+2*b-1>1
2*b>2-a
b>1-a/2

X=2*y+x-1{x>11}

2*y+x-1>11
2*y+x>12

a=2*b+1

b=a-3 {b<0}

a-3<0

a<3

Now, we have:

(b)

a=2*b+1{a<3}
2*b+1<3
2*b+1<3
2*b<2

b<1

a=3*(2*b+a);
b=2*a-1{b>5}
2*a-1>5
2*a>6

a>3

29

Now we have:
a=3*(2*b+a){a>3}
3*(2*b+a) >3
6*b+3*a>3
2*b+a>1
n>(1l-a/2

2la. Mpf(for var ininit_expr .. fina_expr loop L end loop, S) =
if VARMAR(i, s) = undef for var or somei ininit_expr or find_expr
then error
dseif Mg(init_expr, s) > Mg(fina_expr, 9)
thens

else M|(whileinit_expr - 1 <= fina_expr do L, Mg(var := init_expr + 1, 5))

21b. M(repest L until B) £
if Mp(B, S) = undef
then error
dseif Mg(L, s) =error
thenerror
dseif Mp(B,) =true
then Mgq(L, 9)
else M(repeat L until B), Mg(L, 9))

21c. Mp(B, 9) £ if VARMAR(, s) = undef for somei in B

30

then error

else B', where B' isthe result of
evauaing B after setting each
vaiablei in B to VARMAR(, 9)

21d. M(for (exprl; expr2; expr3) L, S) &
if VARMAP (i, s) = undef for somei in exprl, expr2, expr3, or L
then error
dseif M (expr2, Mc (exprl, s)) =0
thens
else Mg (EXpr2, expr3, L, s)
Mrep (€Xpr2, expr3, L,) £
if VARMAP (i,) = undef for somei in expr2, expr3, or L
then error
dse
if Mg (L, s) =error
thens

else M (eXpr2, expr3, L, My (L, Me (expr3, s))

22. The vaue of anintrigic attribute is supplied from outside the attribute evauation process,
usudly from the lexicd andyzer. A vaue of a synthesized attribute is computed by an attribute
evauation function.

23. Replace the second semarntic rule with:
var>[2].env ? <expr>.env
<var>[3l.env ? <expr>.env
<expr>.actual_type? <var>[2].actua_type
predicate; <var>[2].actua_type = <var>[3].actua_type

31

Chapter 4

Problem Set:

1

(a) FIRST(aB) ={ &, FIRST(b) = {b}, FIRST(cBB) ={c}, Passes the test
(b) FIRST(aB) ={ &}, FIRST(bA) ={b}, FIRST(aBb) ={a}, Failsthe test

(c) FIRST(aaA) = {a}, FIRST(b) = {b}, FIRST(caB) ={c}, Passesthe test

3.
(a) a@Abb
S
/V\A
a A b
/ v\\
a A B

Phrases: aaAhbb, aAb, b

Simple phrases. b
Handle b
(b) bBab S
| B /A\
a b
Phrases: bBab, ab

Simple phrases. ab

32

Handle ab

5. Stack Input Action
0 id* (id+id) $ Shift5
0id5 *(id+id)$ Reduce6 (Use GOTO[O, F])
OF3 *(id+id)$ Reduce4 (UseGOTO[0, T])
0T2 *(id+id)$ Reduce?2 (Use GOTO[O0, E])
0T2*7 (d+id$ Shift7
0T2*7(4 id+id)$ Shift4
0T2*7(4id5+id) $ Shift 5
0T2*7(4F3 +id) $ Reduce 6 (Use GOTO[4, F])
0T2*7(4T2 +id) $ Reduce 4 (Use GOTO[4, T])
OT2*7(4E8 +id) $ Reduce 2 (Use GOTO[4, E])
OT2*7(4E8+6 id)$ Shift 6
OT2*7(4E8+6id5) $ Shift 5
OT2*7(4E8+6F3) $ Reduce 6 (Use GOTO[6, F])
OT2*7(4E8+6T9) $ Reduce 4 (Use GOTOI[6, T])
0T2*7(4E8)$ Reduce 1 (Use GOTO[4, E])
OT2*7(4E8)11 $ Shift 11
0T2*7F10 $ Reduce 5 (Use GOTQ[7, F])
012 $ Reduce 5 (Use GOTOJO0, T])
OE1 $ Reduce 2 (Use GOTOJ0, E])
--ACCEPT--

Programming Exercises:

1. Every arcin thisgrgph is assumed to have addChar attached. Assume we get here only if
char Cl ass ISSLASH.

other
/ * \ / * /

33

stjt %i & 23 return COMMENT

return SLASH_CODE

3. int getComent() {
get Char () ;
/* The slash state */
if (charCl ass ! = AST)
return SLASH_ CODE;
el se {
/* The com state-end state | oop */
do {
get Char () ;
/* The com state | oop */
while (charC ass ! = AST)
get Char () ;
} while (charClass != SLASH);

return COMVENT;

Chapter 5
Problem Set:

2. The advantage of atypeess language isflexibility; any variable can be used for any type
vaues. The disadvantage is poor rdiability due to the ease with which type errors can be made,
coupled with the impossihility of type checking detecting them.

3. Thisisagood idea. It addsimmensely to the readability of programs. Furthermore, diasing
can be minimized by enforcing programming standards that disalow access to the array in any
executable satements. The dternative to this aliasing would be to pass many parameters, which
isahighly inefficient process.

34

5. Implicit hegp-dynamic variables acquire types only when assigned vaues, which must be at
runtime. Therefore, these variables are dways dynamically bound to types.

6. Suppose that a Fortran subroutine is used to implement a data structure as an abgtraction. In
this Stuation, it is essentid that the structure persst between cals to the managing subroutine.

8.

(@1i.sub1
ii. Sub1
iii. Mai n

(b)i. sub1
ii. Sub1
iii. Sub1

9. Static scoping: x = 5.
Dynamic scoping: x = 10

10. Vaiadde Where Declared

In Sub1:
A Subl
Y Subl
z Subl
X Mai n
In Sub2:
A Sub2
B Sub2
z Sub2
Y Subl
X Mai n
In Sub3:
A Sub3
X Sub3

35

12.

<

Point 1:

o O (o QD

Point 2:

T 9

(@]

W W NP NMNNMNDN PR

w

Point 3: same as Point 1

Point 4: a

13.

@

(b)

(©

(d)

(€

1

1
1

Where Declared

fun3
fun2
funl
mai n
fun3
funl
mai n
funl
fun3
mai n
funl
fun3
mai n
fun2
fun3

36

b funl

a mai n
® b, c, d funl
e fun2
f fun3
a mai n

14. Vaiaddle Where Declared

@ A X W Sub3
B, Sub?2
Y Subl
(b) A X W Sub3
Y, Z Sub1l
(© A Y, Z Sub1
X W Sub3
B Sub?2
(d) A Y, Z Sub1
X, W Sub3
(e A B, Z Sub2
X, W Sub3
Y Subl
® A Y, Z Sub1
B Sub?2
X, W Sub3
Chapter 6
Problem Set:

1. Boolean variables stored as single bits are very space efficient, but on most computers access
tothemisdower than if they were stored as bytes.

2. Integer vaues sored in decimd waste storage in binary memory computers, smply asa
result of the fact that it takes four binary bitsto store a single decimad digit, but those four bits
are capable of storing 16 different values. Therefore, the ability to store six out of every 16
possible vauesiswasted. Numeric values can be stored efficiently on binary memory

37

computers only in number bases that are multiples of 2. 1f humans had developed a number of
fingers that was a power of 2, these kinds of problems would not occur.

6. When implicit dereferencing of pointers occurs only in certain contexts, it makes the language
dightly less orthogona. The context of the reference to the pointer determines its meaning. This
detracts from the readability of the language and makes it dightly more difficult to learn.

7. The only judtification for the - > operator in C and C++ iswritability. It isdightly eader to
writep -> gthan(*p).q.

8. The advantage of having a separate congruct for unionsisthat it clearly shows that unions are
different from records. The disadvantages are that it requires an additiona reserved word and
that unions are often separately defined but included in records, thereby complicating the
program that uses them.

9. Let the subscript ranges of the three dimensionsbe named i n(1) , mi n(2), mi n(3),
max(1), max(2),and max(3). Lettheszesof the subscript rangesbesi ze(1), si ze(2),
and si ze(3). Assumethedement szeis 1.
Row Major Order:

location(a[i, j, k]) = (addressof a[min(1),mn(2),mn(3)])

+((i-mn(l))*size(3) + (j-mn(2)))*size(2) + (k-min(3))

Column Mgor Order:

location(a[i, j, k]) = (addressof a[min(1),mn(2),mn(3)])

+((k-mn(3))*size(1) + (j-min(2)))*size(2) + (i-mn(1))

10. The advantage of this scheme is that accessesthat are done in order of the rows can be
made very fast; once the pointer to arow is gotten, dl of the eements of the row can be fetched
very quickly. If, however, the e ements of a matrix must be accessed in column order, these
accesses will be much dower; every access requires the fetch of arow pointer and an address
computation from there. Note that this access technique was devised to dlow multidimensiona
array rowsto be ssgmentsin avirtua storage management technique. Using this method,

multidimensiona arrays could be stored and manipulated that are much larger than the physicd
memory of the computer.

14. Implicit hegp torage recovery eiminates the creation of dangling pointers through explicit
dedll ocation operations, such asdel et e. The disadvantage of implicit heep Storage recovery is
the execution time cost of doing the recovery, often when it is not even necessary (thereisno
shortage of heap storage).

Chapter 7
Problem Set:

38

1. Suppose Typel isasubrange of | nt eger . It may be useful for the difference between
Typel and | nt eger to beignored by the compiler in an expression.

7. Anexpresson suchasa + fun(b), asdescribed on page 300.

8. Condder theinteger expresson A + B + C. Supposethevauesof A, B, and C are 20,000,
25,000, and -20,000, respectively. Further suppose that the machine has a maximum integer
vadue of 32,767. If thefirst addition is computed firgt, it will result in overflow. If the second
addition is done firgt, the whole expression can be correctly computed.

0.

@ ((Ca*b)l-1)2+¢)3

O ((Ca*(b-1)1)2/7¢)3nmdd)*
©C(Ca-b)lrc)2a(((d*e)d3/a)4-3)5)"

(d (CC-a)lor (c=d)2)3ande)?

© ((a>b)lxor (cor (d<=17)2)3)4

M (- (Ca+b)l)2

10.

@ (a*(b-(1+c)l)2)3

) (a* ((b-1)2/ (cmdd)l)3)4
©((a-b)>/ (c&(d* (el (a-3)L)2)3)4)6
(d (- (aor (c=(dande)l)2)3)4

(© (a>(xor (cor (d=<=17)1)2)3)4

(- (a+b)l)2

11. <expr>7? <expr> or <el> | <expr> xor <el> | <el>
<el>? <el>and <e2>|<e2>
<e2> 7?7 <e2>=<e3> | <e2> [= <e3> | <e2> < <e3>
| <e2> <= <e3> | <e2> > <e3> | <e2> >=<e3> | <e3>
<e3>? <ed>
<ed>? <ed> +<eb> | <ed> - <eb> | <ed> & <e5> | <ed> mod <e5> | <eb>

39

<eb>? <eb>* <eb> | <eb>/ <e6> | not <eb> | <e6>

<e6>? alb|c|d|e]|const|(<expr>)

40

12. (a)

<expr>

<el>
<e’?2>

<e3>

/b\
<e4d> + <75>

<74;//T\\:E > <eb>
T
<e5>+ <€6> J

+ ;

a

41

12. (b)

<expr>
|
<el>

<e’?2>

<e3>

|
<T4>
ﬁ5>\

<e5> mod <e6>

ST~ |

<eﬁ> * <eb> Cc
//T\\\\

<e6> (<expr>)

a <el>

<e’?2>

<e3>

K
<T4> - <eﬁ>
<75> <e7>

<ﬁ6> 1
b

42

12. (c)

<expr>

<el>
<@e2>

<e3>

<e4>

T

<ed> &

<eb>

<eb> |/ <e6>

<e’Z2>

<e3>

<e4>

S

<eb>

<e4d> -
<eb5> <76>

<e6> b

<eb> |/

| I

<eq>
<e6>
\
<el>
<%2>
<73>
<e4>
<T4> - <75>
AN T

<eb> 3

12. (d)

<expr>

PN

<expr> and <el>

//jT{i\\\ <e2>
|

<e3>
<el>or <e2> e3

/1N

<e’?2> <e2>= <T3> <eqd>

7‘3> <e3> <T4> <eb>

- <ed> <e4> <eb5> <eb>

<75> <eb> <eb> e

<eb> <eb> d

a C

44

12. (e)

<expr>

T~

<expr> xor

<el>

<e’?2>

<e2> >

<e3>

<e4>

<eb5>

<eb>

I

<e3>
|
<e4>

<eh>

<eb>

b

<el>

<e’?2>

<e3>

<e4>

<eb5>

<eb>

<el>

RN

or

<e’?2>

/N

<e2> <=

<e3>

<e4>

<eb5>

<eb>

45

<e3>

<e4>

<eb5>

<eb>
|

17

12. (f)

<expr>

|
<71>
<e?2>

<e3>

e

- <e4>

TN

<e4>+ <eb>

<eb5> <eb>
o
<e6> b
a

13. (@) (left ->right) suml is 46; sun2 is 48
(b) (right -> left) suml is48; sun? is46

Chapter 8
Problem Set:
1. Three Stuations in which a combined counting and logical control loops are:

a A lig of vauesisto be added to a sum but the loop isto be exited if SuMexceeds some
prescribed vaue.

b. A ligt of valuesisto beread into an array, where the reading is to terminate when either a
prescribed number of values have been read or some specid vaue isfound in the ligt.

c. Thevaues stored in alinked ligt are to be moved to an array, where values are to be
moved until the end of the linked ligt isfound or the array isfilled, whichever comesfird.

4. Unique closing keywords on compound statements have the advantage of readability and the
disadvantage of complicating the language by increasing the number of keywords.

46

8. The primary argument for usng Boolean expressons exclusvely as control expressonsisthe
reliability that results from disalowing awide range of typesfor thisuse. In C, for example, an
expression of any type can agppear as a control expression, so typing errors that result in
references to variables of incorrect types are not detected by the compiler as errors.

Programming Exercises:
1
@ Do K= (J + 13) / 27, 10
| =3* (K+1) -1
End Do
(b) for kin (j +13) / 27 .. 10 loop
i :=3* (k +1) - 1;

end | oop;

(€ for (k = (j + 13) / 27; k <= 10; i = 3 * (++k) -

@ Do K= (J + 13.0) / 27.0, 10.0, 1.2
| =3.0* (K+1.2) - 1.0
End Do

(b) while (k <= 10.0) | oop

i 3.0 * (k + 1.2) - 1.0;

k :

k + 1.2;
end | oop;
(c) for (k = (j + 13.0) / 27.0; k <= 10.0;
k =k +1.2, i =3.0* k - 1)
3.
(@) sel ect Case (k)
Case (1, 2)

J=2* K-1

47

1)

J=4*K-1

Case Defaul t

Print *, "Error in Select, K=
End Sel ect
(b) case k is
when 1| 2 =>j :=2* k - 1;
when 3 | 56 =>j :=3* k + 1;
when 4 => | =4 * k - 1,
when 6..8 =>j := k - 2;
when ot hers =>
Put ("Error in case, k =');
Put (Kk);
New_Li ne;
end case;

(c) switch (k)

{

case 1. case 2:

j =2 k- 1

br eak;

case 3. case b5:

j =3* k +1;

br eak;

48

case 4.
j =4 * k- 1;
br eak;

case 6. case 7. case 8:

br eak;
defaul t:

printf("Error in switch, k =%@\n", k);

key =j + 2
for (i =0; i < 10; i++){
if ((key == 3) || (key == 2))
j--s
else if (key == 0)
i o+=2
else j = 0;
if (j >0)
br eak;

elsej =3 - 1i;

5. (C)

for (i =1; i <=n; i++) {

1
=

flag
for (j =1, j <=n; j+4)
if (x[i1[j] <> 0) {

flag = 0;

49

br eak;
}
if (flag == 1) {
printf("First all-zero rowis: %\n", i);

br eak;

(Ada)
for I in 1..N | oop
Flag := true;
for Jin 1..N | oop
if X(1, J) /=0 then
Flag := fal se;
exit;
end if;
end | oop;
if Flag = true then
Put("First all-zero rowis: ");
Put(1);
Ski p_Li ne;
exit;
end if;

end | oop;

Chapter 9

50

Problem Set:

2. The main advantage of this method is the fast accesses to forma parametersin subprograms.
The disadvantages are that recursion is rarely useful when values cannot be passed, and dso
that a number of problems, such as aiasing, occur with the method.

4. This can be donein both Javaand C#, using astatic (or class) data member for the page
number.

5. Assumethe cdls are not accumuletive; that is, they are dways cdled with theinitidized vaues
of the variables, so their effects are not accumulative.
az213579 bil12357°9 c.123579
2,1,3,57,9 2,3,1,57,9 2,3,1,57,9
2,1,357,9 51,3279 51,3, 2,7, 9 (unless the addresses of the
actuad parameters are
recomputed on return, in
which case there will be an
index range error.)

6. It is rather weak, but one could argue that having both adds complexity to the language
without sufficient increase in writability.

51

Chapter 10
Problem Set:
1.

ari for B

ari for C

ari for A

ari for
BIGSUB

dynamic link

static link

return (to C)

dynamic link

static link

return (to A)

dynamic link

static link

return (to BIGSUB)

dynamic link

static link

return

stack

52

ari for D

ari for C

ari for A

ari for B

ari for A

ari for
BIGSUB

dynamic link

static link

return (to C)

dynamic link

static link

return (to A)

parameter (flag)

dynamic link

static link

return (to B)

dynamic link

static link

return (to A)

parameter (flag)

dynamic link

static link

return (BIGSUB)

dynamic link

static link

return (to caller)

stack

53

4. Onevery ample dterndiveisto assgn integer vauesto dl variable names used in the
program. Then the integer values could be used in the activation records, and the comparisons
would be between integer vaues, which are much faster than string comparisons.

5. Following the hint stated with the question, the target of every goto in a program could be
represented as an address and a nesting_depth, where the nesting_depth is the difference
between the nesting level of the procedure that contains the goto and that of the procedure
containing the target. Then, when agoto is executed, the gtatic chain is followed by the number
of linksindicated in the nesting_depth of the goto target. The stack top pointer isreset to the
top of the activation record at the end of the chain.

6. Including two tatic links would reduce the access time to nonlocals that are defined in
scopes two steps away to be equal to that for nonlocals that are one step away. Overdl,

because most nonlocdl references are relatively close, this could significantly increase the
execution efficiency of many programs.

Chapter 11
Problem Set:
2. The problem with thisis that the user is given access to the stack through the returned vaue
of the"top" function. For example, if p isapointer to objects of the type stored in the stack, we
could have:

p = top(stackl);

*p = 42;

These statements access the stack directly, which violates the principle of a data absiraction.

54

Chapter 12
Problem Set:

1. In C++, amethod can only be dynamicdly bound if al of its ancestors are marked

vi rt ual . Bedefault, dl method binding is gatic. In Java, method binding is dynamic by
default. Static binding only occursif the method ismarked f i nal , which meansit cannot be
overriden.

3. C++ has extensive access controls to its class entities. Individua entities can be marked
public, private, or prot ect ed, and the derivation processitself can impose further
access controls by being pri vat e. Ada, on the other hand, has no way to restrict inheritance
of entities (other than through child libraries, which this book does not describe), and no access
controls for the derivation process.

Chapter 13
Problem Set:

1. Competition synchronization is not necessary when no actual concurrency takes place smply
because there can be no concurrent contention for shared resources. Two nonconcurrent
processes cannot arrive at a resource a the sametime.

2. When deadlock occurs, assuming that only two program units are causing the deadlock, one
of the involved program units should be gracefully terminated, thereby dlowed the other to
continue.

3. The main problem with busy waiting is that machine cycles are wasted in the process.

4. Deadlock would occur if ther el ease(access) were replaced by awai t (access) inthe
consumer process, because instead of relinquishing access control, the consumer would wait for
control that it aready had.
6. Sequence 1. A fetchesthe value of BUF_SI ZE (6)

A adds 2 to the value (8)

A puts8in BUF_SI ZE

B fetchesthe vaue of BUF_sSI ZE (8)

B subtracts 1 (7)

B put 7 in BUF_SI ZE

BUF_SIZE=7

Sequence 2: A fetchesthe value of BUF_SI ZE (6)

B fetchesthe vaue of BUF_SI ZE (6)
Aadds 2 (8)

B subtracts 1 (5)

A puts8in BUF_SI ZE

55

B puts5in BUF_SI ZE
BUF_SIZE=5

Sequence 3: A fetchesthe value of BUF_SI ZE (6)
B fetchesthe vaue of BUF_SI ZE (6)
Aadds 2 (8)
B subtracts 1 (5)
B puts5in BUF_SI ZE
A puts8in BUF_SI ZE
BUF_SIZE=8

Many other sequences are possible, but al produce the values 5, 7, or 8.

Chapter 14
Problem Set:

5. There are severd advantages of alinguistic mechaniam for handling exceptions, such as that
found in Ada, over smply using aflag error parameter in al subprograms. One advantage is
that the code to test the flag after every call iseliminated. Such testing makes programs longer
and harder to read. Another advantage is that exceptions can be propagated farther than one
leve of control in auniform and implicit way. Findly, thereisthe advantage that dl programs
use a uniform method for dedling with unusud circumstances, leading to enhanced readability.

6. There are severa disadvantages of sending error handling subprograms to other
subprograms. Oneisthat it may be necessary to send severa error handlers to some
subprograms, greatly complicating both the writing and execution of calls. Another isthat there

isno method of propagating exceptions, meaning that they mugt dl be handled locally. This
complicates exception handling, because it requires more atention to handling in more places.

Chapter 15
Problem &t :

6. y returnsthe given ligt with leading dements removed up to but not including the first
occurrence of thefirgt given parameter.

7. x returns the number of non-NI L atlomsin the given lit.

Programming Exercises:

56

5. (DEFINE (del eteal | atmlst)
(COND
((NULL? Ist) ' ())
((EQ? atm (CAR Ist)) (deleteall atm (CDR Ist)))
(ELSE (CONS (CAR I'st) (deleteall atm (CDR Ist)))
))
7. (DEFINE (del eteal |l atmlst)
(COND
((NULL? Ist) ' ())
((NOT (LIST? (CAR Ist)))
(COND
((EQ? atm (CAR Ist)) (deleteall atm (CDR Ist)))
(ELSE (CONS (CAR I'st) (deleteall atm (CDR Ist))))
))
(ELSE (CONS (del eteal | atm (CAR Ist))
(deleteal | atm (CDR Ist))))
))
9. (DEFINE (reverse lis)
(COND
((NULL? Tis) '())
(ELSE (APPEND (reverse (CDR lis)) (CONS (CAR lis) ())))

))

Chapter 16

57

Problem Set:

1. Adavariables are staticaly bound to types. Prolog variables are bound to types only when
they are bound to values. These bindings take place during execution and are tempoarary.

2. On asingle processor machine, the resolution process takes place on the rule base, onerule
a atime, sarting with the firgt rule, and progressaing toward the last until amatch is found.
Because the process on each rule is independent of the process on the other rules, separate
processors could concurrently operate on separate rules. When any of the processors finds a
match, al resolution processing could terminate.

6. The list processing capabilities of Scheme and Prolog are smilar in that they both treat ligts as
consigting of two parts, head and tail, and in that they use recursion to traverse and processlists.

7. Theligt processing capabilities of Scheme and Prolog are different in that Scheme relies on

the primitive functions CAR, CDR, and CONS to build and dismantle lists, whereas with Prolog
these functions are not necessary.

Programming Exercises:
2. intersect([], X [1]).
intersect([X | R, Y, [X] Z] :-
menber (X, Y),
L,
intersect(R, Y, 2).
intersect([X | R, Y, 2) :- intersect(R Y, 2).

Note: this code assumes that the two lists, X and Y, contain no duplicate e ements.
3. union([], X X).

union([X | R, Y, 2 :- nmenmber(X, Y), !, union(R, Y, 2).

union([X | R, Y, [X] Z]) :- union(R, Y, 2).

58

