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Preface 
 
 
Changes to the Sixth Edition  
 

The goals, overall structure, and approach of this sixth edition of Concepts of Programming Languages 
remain the same as those of the five earlier editions. The principal goal is to provide the reader with the tools 
necessary for the critical evaluation of existing and future programming languages. An additional goal is to 
prepare the reader for the study of compiler design. There were several sources of our motivations for the 
changes in the sixth edition. First, to maintain the currency of the material, much of the discussion of older 
programming languages has been removed. In its place is material on newer languages. Especially 
interesting historical information on older programming languages has been retained but placed in historical 
side boxes. Second, the material has been updated to reflect the fact that most students now come to this 
course with a basic understanding of object-oriented programming. We shortened the discussion of basics 
and expanded the discussion of advanced topics. 
 
Third, reviewer comments have prompted several changes. For example, the material on functional 
programming languages has been reorganized and strengthened. Also, we have added a programming 
exercises section at the end of most chapters to give students experience with the concepts described in the 
book and to make the concepts more realistic and appealing. The book now has a new supplement: a 
companion Web site with a few small language manuals, interactive quizzes for students, and additional 
programming projects. Finally, interviews with the designers of recent languages that have achieved 
widespread use appear in several places in the book. These show the human side of language development. 
 
Four specific changes distinguish the sixth edition text from its predecessor. First, the material on 
implementing subprograms has been condensed, largely because the virtual disappearance of Pascal and 
Modula-2, as well as the shrinking usage of Ada, has made the implementation of nested subprograms with 
static scoping less important. All of the relevant Pascal examples were rewritten in Ada. Second, Chapter 14 
has been expanded to cover both exception handling and event handling. This change was motivated by the 
great increase in interest and importance of event handling that has come with the wide use of interactive 
Web documents. Third, the introduction to Smalltalk has been eliminated because we believe the syntactic 
details of Smalltalk are no longer relevant to the material of the book. Fourth, there are numerous significant 
changes motivated by the aging of existing programming languages and the emergence of new programming 
languages. There is now little mention of Modula-2, Pascal, and the ALGOLs. Also, the coverage of Ada 
and Fortran has been whittled down to the more interesting of their features that do not appear in other 
popular languages. New material on JavaScript, PHP, and C# has been added where appropriate. Finally, 
most chapters now include a new section, Programming Exercises.  
 

 
The Vision 
 

This book describes the fundamental concepts of programming languages by discussing the design issues 
of the various language constructs, examining the design choices for these constructs in some of the most 
common languages, and critically comparing design alternatives. 
 
Any serious study of programming languages requires an examination of some related topics, among which 
are formal methods of describing the syntax and semantics of programming languages, which are covered in 
Chapter 3. Also, implementation techniques for various language constructs must be considered: Lexical 
and syntax analysis are discussed in Chapter 4, and implementation of subprogram  
linkage is covered in Chapter 10. Implementation of some other language constructs is discussed in various 
other parts of the book. 
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The following paragraphs outline the contents of the sixth edition. 
 
 
 
Chapter Outlines 
 

Chapter 1 begins with a rationale for studying programming languages. It then discusses the criteria used 
for evaluating programming languages and language constructs. The primary influences on language 
design, common design tradeoffs, and the basic approaches to implementation are also examined. 
 
Chapter 2 outlines the evolution of most of the important languages discussed in this book. Although no 
language is described completely, the origins, purposes, and contributions of each are discussed. This 
historical overview is valuable because it provides the background necessary to understanding the practical 
and theoretical basis for contemporary language design. It also motivates further study of language design 
and evaluation. In addition, because none of the remainder of the book depends on Chapter 2, it can be read 
on its own, independent of the other chapters. 
 
Chapter 3 describes the primary formal method for describing the syntax of programming language, BNF. 
This is followed by a description of attribute grammars, which describe both the syntax and static semantics 
of languages. The difficult task of semantic description is then explored, including brief  
introductions to the three most common methods: operational, axiomatic, and denotational semantics. 
 
Chapter 4 introduces lexical and syntax analysis. This chapter is targeted to those colleges that no longer 
require a compiler design course in their curricula. Like Chapter 2, this chapter stands alone and can be read 
independently of the rest of the book. 
 
Chapters 5 through 14 describe in detail the design issues for the primary constructs of the imperative 
languages. In each case, the design choices for several example languages are presented and evaluated. 
Specifically, Chapter 5 covers the many characteristics of variables, Chapter 6 covers data types, and 
Chapter 7 explains expressions and assignment statements. Chapter 8describes control statements, Chapters 
9 and 10 discuss subprograms and their implementation. Chapter 11 examines data abstraction facilities. 
Chapter 12 provides an in-depth discussion of language features that support object-oriented programming 
(inheritance and dynamic method binding), Chapter 13 discusses concurrent program units, and Chapter 14 
is about exception handling and event handling. 
 
The last two chapters (15 and 16) describe two of the most important alternative programming paradigms: 
functional programming and logic programming. Chapter 15 presents an introduction to Scheme, including 
descriptions of some of its primitive functions, special forms, and functional forms, as well as some examples 
of simple functions written in Scheme. Brief introductions to COMMON LISP, ML, and Haskell are given to 
illustrate some different kinds of functional language. Chapter 16 introduces logic programming and the 
logic programming language, Prolog. 
 
To the Instructor 
 

In the junior-level programming language course at the University of Colorado at Colorado Springs, the 
book is used as follows: We typically cover Chapters 1 and 3 in detail, and though students find it 
interesting and beneficial reading, Chapter 2 receives little lecture time due to its lack of hard technical 
content. Because no material in subsequent chapters depends on Chapter 2, as noted earlier, it can be 
skipped entirely, and because we require a course in compiler design, Chapter 4 is not covered. 
 
Chapters 5 through 9 should be relatively easy for students with extensive programming experience in C++, 
Java, or C#. Chapters 10 through 14 are more challenging and require more detailed lectures. 
 
Chapters 15 and 16 are entirely new to most students at the junior level. Ideally, language processors for 
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Scheme and Prolog should be available for students required to learn the material in these chapters. 
Sufficient material is included to allow students to dabble with some simple programs. 
 
Undergraduate courses will probably not be able to cover all of the last two chapters in detail. Graduate 
courses, however, by skipping over parts of the early chapters on imperative languages, will be able to 
completely discuss the nonimperative languages. 
 
 
Supplemental Materials 
 

The following supplements are available to all readers of this book at www.aw.com/cssupport: 
 
??A set of lecture notes s lides. These slides are in the form of Microsoft PowerPoint source files, one 

for each of the chapters of the book. 
?? PowerPoint slides of all the figures in the book, should you wish to create your own lecture notes.  
??A companion web site. With the sixth edition we are introducing a brand-new supplements 

package for students. To reinforce learning in the classroom, to assist with the hands-on lab 
component of this course, and/or to facilitate students in a distance learning situation, the edition 
will be accompanied by a comprehensive web site with the following content: 

 

1. Mini manuals (approximately 100-page tutorials) on a handful of languages. These will        
assume that the student knows how to program in some other language, giving the student 
enough   information to complete the chapter materials in each language. Currently manuals are 
planned in C++, C, Java, and C#. 
2. Lab projects. A series of lab projects will be defined for each concept taught in the book. The 
solutions will be available exclusively to those teaching a course. 
3. Self-grading review exercises. Using the Addison-Wesley software engine, students can 
complete a series of multiple-choice and fill-in-the-blank exercises to check their understanding of 
the chapter just read. 
 

Solutions to many of the problem sets are available only to qualified instructors. Please contact your local 
Addison-Wesley sales representative, or send e-mail to aw.cse@aw.com, for information about how to 
access them. 
 
Language Processor Availability 
Processors for and information about some of the programming languages discussed in this book can be 
found at the following web sites: 
 

C#  http://microsoft.com 
Java  http://java.sun.com 
Haskell  http://haskell.org 
Scheme  http://www.cs.rice.edu/CS/PLT/packages/drscheme/ 
Perl  http://www.perl.com 
 

JavaScript is included in virtually all browsers; PHP is included in virtually all Web servers. 
 
All this information is also included on the companion web site. 
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Answers to Selected Problems 

 

Chapter 1 

Problem Set: 

3. Some arguments for having a single language for all programming domains are: It would 
dramatically cut the costs of programming training and compiler purchase and maintenance;  it 
would simplify programmer recruiting and justify the development of numerous language 
dependent software development aids. 

4. Some arguments against having a single language for all programming domains are: The 
language would necessarily be huge and complex;  compilers would be expensive and costly to 
maintain;  the language would probably not be very good for any programming domain, either in 
compiler efficiency or in the efficiency of the code it generated. 

5. One possibility is wordiness.  In some languages, a great deal of text is required for even 
simple complete programs.  For example, COBOL is a very wordy language.  In Ada, 
programs require a lot of duplication of declarations.  Wordiness is usually considered a 
disadvantage, because it slows program creation, takes more file space for the source 
programs, and can cause programs to be more difficult to read. 

7. The argument for using the right brace to close all compounds is simplicity—a right brace 
always terminates a compound. The argument against it is that when you see a right brace in a 
program, the location of its matching left brace is not always obvious, in part because all 
multiple-statement control constructs end with a right brace. 

8. The reasons why a language would distinguish between uppercase and lowercase in its 
identifiers are: (1) So that variable identifiers may look different than identifiers that are names 
for constants, such as the convention of using uppercase for constant names and using 
lowercase for variable names in C, and (2) so that catenated words as names can have their first 
letter distinguished, as in TotalWords.  (I think it is better to include a connector, such as 
underscore.)  The primary reason why a language would not distinguish between uppercase and 
lowercase in identifiers is it makes programs less readable, because words that look very similar 
are actually completely different, such as SUM and Sum. 

10. One of the main arguments is that regardless of the cost of hardware, it is not free.  Why 
write a program that executes slower than is necessary.  Furthermore, the difference between a 
well-written efficient program and one that is poorly written can be a factor of two or three.  In 
many other fields of endeavor, the difference between a good job and a poor job may be 10 or 
20 percent.  In programming, the difference is much greater. 

15. The use of type declaration statements for simple scalar variables may have very little effect 
on the readability of programs.  If a language has no type declarations at all, it may be an aid to 
readability, because regardless of where a variable is seen in the program text, its type can be 
determined without looking elsewhere.  Unfortunately, most languages that allow implicitly 
declared variables also include explicit declarations.  In a program in such a language, the 
declaration of a variable must be found before the reader can determine the type of that variable 
when it is used in the program. 
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18. The main disadvantage of using paired delimiters for comments is that it results in diminished 
reliability. It is easy to inadvertently leave off the final delimiter, which extends the comment to 
the end of the next comment, effectively removing code from the program. The advantage of 
paired delimiters is that you can comment out areas of a program. The disadvantage of using 
only beginning delimiters is that they must be repeated on every line of a block of comments. 
This can be tedious and therefore error-prone. The advantage is that you cannot make the 
mistake of forgetting the closing delimiter. 

 

Chapter 2 

Problem Set: 

6. Because of the simple syntax of LISP, few syntax errors occur in LISP programs.  
Unmatched parentheses is the most common mistake. 

7. The main reason why imperative features were put in LISP was to increase its execution 
efficiency. 

10. The main motivation for the development of PL/I was to provide a single tool for computer 
centers that must support both scientific and commercial applications.  IBM believed that the 
needs of the two classes of applications were merging, at least to some degree.  They felt that 
the simplest solution for a provider of systems, both hardware and software, was to furnish a 
single hardware system running a single programming language that served both scientific and 
commercial applications. 

11. IBM was, for the most part, incorrect in its view of the future of the uses of computers, at 
least as far as languages are concerned.  Commercial applications are nearly all done in 
languages that are specifically designed for them.  Likewise for scientific applications.  On the 
other hand, the IBM design of the 360 line of computers was a great success--it still dominates 
the area of computers between supercomputers and minicomputers.  Furthermore, 360 series 
computers and their descendants have been widely used for both scientific and commercial 
applications.  These applications have been done, in large part, in FORTRAN and COBOL. 

14. The argument for typeless languages is their great flexibility for the programmer.  Literally 
any storage location can be used to store any type value.  This is useful for very low-level 
languages used for systems programming.  The drawback is that type checking is impossible, so 
that it is entirely the programmer's responsibility to insure that expressions and assignments are 
correct. 

18. A good deal of restraint must be used in revising programming languages.  The greatest 
danger is that the revision process will continually add new features, so that the language grows 
more and more complex.  Compounding the problem is the reluctance, because of existing 
software, to remove obsolete features.   

 

 

 

Chapter 3 
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Instructor's Note: 

In the program proof on page 149, there is a statement that may not be clear to all, specifically, 
(n + 1)* … * n = 1. The justification of this statement is as follows:  

Consider the following expression: 

     (count + 1) * (count + 2) * … * n 

The former expression states that when count is equal to n, the value of the later expression is 
1. Multiply the later expression by the quotient: 

     (1 * 2 * … * count) / (1 * 2 * … * count) 

whose value is 1, to get 

     (1 * 2 * … * count * (count + 1) * (count + 2) * … * n) /  

          (1 * 2 * … * count) 

The numerator of this expressions is n!. The denominator is count!. If count is equal to n, the 
value of the quotient is 

     n! / n! 

or 1, which is what we were trying to show. 

 

Problem Set: 

2a. <class_head> ?  {<modifier>} class <id> [extends class_name]  

                                     [implements <interface_name> {, <interface_name>}] 

   <modifier> ?  public  |  abstract  |  final 

2c. <switch_stmt> ?  switch ( <expr> ) {case <literal> : <stmt_list>  

                     {case <literal> : <stmt_list> } [default : <stmt_list>] } 

3. <assign> ?  <id> = <expr> 

    <id> ?  A | B | C 

    <expr> ?  <expr> * <term> 

                  | <term> 

    <term> ?  <factor> + <term> 

                  | <factor> 

    <factor> ?  ( <expr> ) 
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                 | <id> 

 

6.  

(a) <assign> => <id> = <expr> 

    => A = <expr> 

    => A = <id> * <expr> 

    => A = A * <expr> 

    => A = A * ( <expr> ) 

    => A = A * ( <id> + <expr> ) 

    => A = A * ( B +  <expr> ) 

    => A = A * ( B + ( <expr> ) ) 

    => A = A * ( B + ( <id> * <expr> ) ) 

    => A = A * ( B + ( C * <expr> ) ) 

    => A = A * ( B + ( C * <id> ) ) 

    => A = A * ( B + ( C * A ) ) 
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<assign>

A

<id> := <expr>

<id> * <expr>

A ( (expr) )

<id> + <expr>

B ( <expr> )

<id> * <expr>

C <id>

 

 

 

7.  

(a) <assign> => <id> = <expr> 

    => A = <expr> 

    => A = <term> 

    => A = <factor> * <term> 

    => A = ( <expr> ) * <term> 

    => A = ( <expr> + <term> ) * <term> 

    => A = ( <term> + <term> ) * <term> 

    => A = ( <factor> + <term> ) * <term> 
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    => A = ( <id> + <term> ) * <term> 

    => A = ( A + <term> ) * <term> 

    => A = ( A + <factor> ) * <term> 

    => A = ( A + <id> ) * <term> 

    => A = ( A + B ) * <term> 

    => A = ( A + B ) * <factor> 

    => A = ( A + B ) * <id> 

    => A = ( A + B ) * C 

<assign>

A

<id> := <expr>

A <term>

<factor> * <term>

( <expr> ) <factor>

<expr> + <term> <id>

<term> <factor> C

<factor> <id>

<id> B
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8. The following two distinct parse tree for the same string prove that the grammar is 
ambiguous. 

 

a                    b           c                     a             b                c

<A>      +        <A>                                          <A>   +      <A>

<A>      +        <A>                 <A>    +          <A>

<A>                                      <A>

<S>                                      <S>

 

 

9. Assume that the unary operators can precede any operand.  Replace the rule 

 <factor> ?  <id> 

with 

 <factor> ?  + <id> 

        | - <id> 

 

10. One or more a's followed by one or more b's followed by one or more c's. 

13. S ?  a S b  |  a b 

14. 

S S

 a              b

A B C A B C

a A b c C a A b B c

a      c a A b B
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16.  <assign> ?  <id> = <expr> 

     <id> ?  A | B | C 

     <expr> ?  <expr> (+ | -) <expr> 

                   | (<expr>) 

                   | <id> 

 

18.  

(a) (Pascal repeat) We assume that the logic expression is a single relational expression. 

 loop:  ... 

  ... 

  if <relational_expression> goto out 

  goto loop 

 out: ... 

 

(b) (Ada for)  for I in first .. last loop 

 

  I = first 

     loop: if I < last goto out 

  ... 

            I = I + 1 

                       goto loop 

      out: ... 

 

 

(c)  (Fortran Do) 

  K = start 

 loop: if K > end goto out 
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  ... 

  K = K + step 

  goto loop 

 out: ... 

 

(e)  (C for)  for (expr1; expr2; expr3) ... 

  evaluate(expr1) 

 loop:   control = evaluate(expr2) 

  if control == 0 goto out 

  ... 

  evaluate(expr3) 

  goto loop 

 out: ... 

 

19. 

(a) a = 2 * (b - 1) - 1  {a > 0} 

  2 * (b - 1) - 1 > 0 

  2 * b - 2 - 1 > 0 

 2 * b > 3 

 b > 3 / 2 

 

(b) b = (c + 10) / 3 {b > 6} 

 (c + 10) / 3 > 6 

 c + 10 > 18 

 c > 8 

 

(c) a = a + 2 * b - 1 {a > 1} 
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 a + 2 * b - 1 > 1 

 2 * b > 2 - a 

 b > 1 - a / 2 

 

(d) x = 2 * y + x - 1 {x > 11} 

  2 * y + x - 1 > 11 

   2 * y + x > 12 

 

20. 

(a) a = 2 * b + 1 

 b = a - 3  {b < 0} 

  

 a - 3 < 0 

 a < 3 

 

  Now, we have: 

 a = 2 * b + 1  {a < 3} 

 2 * b + 1 < 3 

 2 * b + 1 < 3 

 2 * b < 2 

 b < 1 

 

(b) a = 3 * (2 * b + a); 

 b = 2 * a - 1 {b > 5} 

 2 * a - 1 > 5 

 2 * a > 6 

  a > 3 
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   Now we have: 

  a = 3 * (2 * b + a) {a > 3} 

  3 * (2 * b + a) > 3 

  6 * b + 3 * a > 3 

  2 * b + a > 1 

 n > (1 - a) / 2 

 

 

 

 

21a. Mpf(for var in init_expr .. final_expr loop L end loop, s)   

           if VARMAP(i, s) = undef for var or some i in init_expr or final_expr 

    then error 

    else if Me(init_expr, s) > Me(final_expr, s) 

  then s 

  else Ml(while init_expr - 1 <= final_expr do L, Ma(var := init_expr + 1, s)) 

 

21b. Mr(repeat L until B)  

 if Mb(B, s) = undef 

    then error 

    else if Msl(L, s) = error 

  then error 

  else if Mb(B, s) = true 

   then Msl(L, s) 

   else Mr(repeat L until B), Msl(L, s)) 

 

21c. Mb(B, s)  if VARMAP(i, s) = undef for some i in B 
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                  then error 

                  else B', where B' is the result of 

                       evaluating B after setting each 

                       variable i in B to VARMAP(i, s) 

 

21d. Mcf(for (expr1; expr2; expr3) L, s)  

  if VARMAP (i, s) = undef for some i in expr1, expr2, expr3, or L 

   then error 

   else if Me (expr2, Me (expr1, s)) = 0 

  then s 

  else Mhelp (expr2, expr3, L, s) 

        Mhelp (expr2, expr3, L, s)  

 if VARMAP (i, s) = undef for some i in expr2, expr3, or L 

   then error 

   else  

     if Msl (L, s) = error 

       then s 

       else Mhelp (expr2, expr3, L, Msl (L, Me (expr3, s)) 

      

22. The value of an intrisic attribute is supplied from outside the attribute evaluation process, 
usually from the lexical analyzer.  A value of a synthesized attribute is computed by an attribute 
evaluation function. 

 

23. Replace the second semantic rule with: 

 <var>[2].env ?  <expr>.env 

  <var>[3].env ?  <expr>.env 

 <expr>.actual_type ?  <var>[2].actual_type 

 predicate: <var>[2].actual_type = <var>[3].actual_type 
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Chapter 4 

Problem Set: 

1.  

(a) FIRST(aB) = {a}, FIRST(b) = {b}, FIRST(cBB) = {c}, Passes the test 

(b) FIRST(aB) = {a}, FIRST(bA) = {b}, FIRST(aBb) = {a}, Fails the test 

(c) FIRST(aaA) = {a}, FIRST(b) = {b}, FIRST(caB) = {c}, Passes the test 

 

3. 

(a)  aaAbb 

                              S 

 

              a             A              b 

 

                 a          A           B 

 

                                             b 

   Phrases:  aaAbb, aAb, b 

   Simple phrases: b 

   Handle: b 

 

(b) bBab                S 

 

          b                 B              A 

 

                                         a            b   

     Phrases: bBab, ab 

     Simple phrases: ab 
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     Handle: ab 

5.  Stack  Input  Action       

     0    id * (id + id) $ Shift 5 

     0id5  * (id + id) $ Reduce 6 (Use GOTO[0, F]) 

     0F3   * (id + id) $ Reduce 4 (Use GOTO[0, T]) 

     0T2   * (id + id) $ Reduce 2 (Use GOTO[0, E]) 

     0T2*7  (id + id) $ Shift 7 

     0T2*7(4  id + id ) $ Shift 4 

     0T2*7(4id5 + id ) $  Shift 5 

     0T2*7(4F3  + id ) $  Reduce 6 (Use GOTO[4, F]) 

     0T2*7(4T2  + id ) $  Reduce 4 (Use GOTO[4, T]) 

     0T2*7(4E8  + id ) $  Reduce 2 (Use GOTO[4, E]) 

     0T2*7(4E8+6 id ) $  Shift 6 

     0T2*7(4E8+6id5 ) $  Shift 5 

     0T2*7(4E8+6F3 ) $  Reduce 6 (Use GOTO[6, F]) 

     0T2*7(4E8+6T9 ) $  Reduce 4 (Use GOTO[6, T]) 

     0T2*7(4E8  ) $  Reduce 1 (Use GOTO[4, E]) 

     0T2*7(4E8)11 $  Shift 11 

     0T2*7F10  $  Reduce 5 (Use GOTO[7, F]) 

     0T2   $  Reduce 5 (Use GOTO[0, T]) 

     0E1   $  Reduce 2 (Use GOTO[0, E]) 

     --ACCEPT--   

 

Programming Exercises: 

1. Every arc in this graph is assumed to have addChar attached. Assume we get here only if 
charClass is SLASH. 

                                              other      

            /                      *                           *                            / 



 34

start             slash                     com                          end                      return COMMENT 

                                                            other 

            return SLASH_CODE 

 

3.  int getComment() { 

      getChar(); 

    /* The slash state */ 

      if (charClass != AST) 

        return SLASH_CODE; 

      else { 

    /* The com state-end state loop */ 

        do { 

          getChar(); 

    /* The com state loop */ 

          while (charClass != AST) 

            getChar(); 

        } while (charClass != SLASH); 

        return COMMENT; 

    } 

 

Chapter 5 

Problem Set: 

2. The advantage of a typeless language is flexibility; any variable can be used for any type 
values. The disadvantage is poor reliability due to the ease with which type errors can be made, 
coupled with the impossibility of type checking detecting them. 

3. This is a good idea.  It adds immensely to the readability of programs.  Furthermore, aliasing 
can be minimized by enforcing programming standards that disallow access to the array in any 
executable statements.  The alternative to this aliasing would be to pass many parameters, which 
is a highly inefficient process. 
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5. Implicit heap-dynamic variables acquire types only when assigned values, which must be at 
runtime.  Therefore, these variables are always dynamically bound to types. 

6. Suppose that a Fortran subroutine is used to implement a data structure as an abstraction.  In 
this situation, it is essential that the structure persist between calls to the managing subroutine. 

 

8. 

(a) i. Sub1 

    ii. Sub1 

    iii. Main 

(b) i. Sub1 

    ii. Sub1 

    iii. Sub1 

 

9. Static scoping: x = 5. 

    Dynamic scoping: x = 10 

 

10.   Variable  Where Declared 

 In Sub1: 

  A Sub1 

  Y Sub1 

  Z Sub1 

  X Main 

 In Sub2: 

  A Sub2 

  B Sub2 

  Z Sub2 

  Y Sub1 

  X Main 

 In Sub3: 

  A Sub3 

  X Sub3 
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  W Sub3 

  Y Main 

  Z Main 

 

12. Point 1: a 1 

  b 2 
  c 2 
  d 2 

     Point 2: a 1 

  b 2 
  c 3 
  d 3 
  e 3 

    Point 3: same as Point 1 

    Point 4: a 1 

  b 1 
  c 1 

13. Variable Where Declared 

(a) d, e, f fun3 

 c  fun2 

 b  fun1 

 a  main 

(b) d, e, f fun3 

 b, c  fun1 

 a  main 

(c) b, c, d fun1 

 e, f  fun3 

 a  main 

(d) b, c, d fun1 

 e, f  fun3 

 a  main 

(e) c, d, e fun2 

 f  fun3 
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 b  fun1 

 a  main 

(f) b, c, d fun1 

 e  fun2 

 f  fun3 

 a  main 

  

14.  Variable Where Declared 

(a)    A, X, W Sub3 

 B, Z  Sub2 

 Y  Sub1 

(b)    A, X, W Sub3 

 Y, Z  Sub1 

(c)    A, Y, Z Sub1 

 X, W  Sub3 

 B  Sub2 

(d)    A, Y, Z Sub1 

 X, W  Sub3 

(e)    A, B, Z Sub2 

 X, W  Sub3 

 Y  Sub1 

(f)    A, Y, Z Sub1 

 B  Sub2 

 X, W  Sub3 

 

Chapter 6 

Problem Set: 

1. Boolean variables stored as single bits are very space efficient, but on most computers access 
to them is slower  than if they were stored as bytes.   

2. Integer values stored in decimal waste storage in binary memory computers, simply as a 
result of the fact that it takes four binary bits to store a single decimal digit, but those four bits 
are capable of storing 16 different values.  Therefore, the ability to store six out of every 16 
possible values is wasted.  Numeric values can be stored efficiently on binary memory 
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computers only in number bases that are multiples of 2.  If humans had developed a number of 
fingers that was a power of 2, these kinds of problems would not occur. 

6. When implicit dereferencing of pointers occurs only in certain contexts, it makes the language 
slightly less orthogonal. The context of the reference to the pointer determines its meaning. This 
detracts from the readability of the language and makes it slightly more difficult to learn. 

7. The only justification for the -> operator in C and C++ is writability. It is slightly easier to 
write p -> q than (*p).q. 

8. The advantage of having a separate construct for unions is that it clearly shows that unions are 
different from records. The disadvantages are that it requires an additional reserved word and 
that unions are often separately defined but included in records, thereby complicating the 
program that uses them. 

9. Let the subscript ranges of the three dimensions be named min(1), min(2), min(3), 
max(1), max(2), and max(3). Let the sizes of the subscript ranges be size(1), size(2), 
and size(3).  Assume the element size is 1. 

Row Major Order: 

  location(a[i,j,k]) = (address of a[min(1),min(2),min(3)]) 

 +((i-min(1))*size(3) + (j-min(2)))*size(2) + (k-min(3)) 

Column Major Order: 

  location(a[i,j,k]) = (address of a[min(1),min(2),min(3)]) 

     +((k-min(3))*size(1) + (j-min(2)))*size(2) + (i-min(1)) 

10. The advantage of this scheme is that accesses that are done in order of the rows can be 
made very fast; once the pointer to a row is gotten, all of the elements of the row can be fetched 
very quickly.  If, however, the elements of a matrix must be accessed in column order, these 
accesses will be much slower; every access requires the fetch of a row pointer and an address 
computation from there.  Note that this access technique was devised to allow multidimensional 
array rows to be segments in a virtual storage management technique.  Using this method, 
multidimensional arrays could be stored and manipulated that are much larger than the physical 
memory of the computer. 

 

14. Implicit heap storage recovery eliminates the creation of dangling pointers through explicit 
deallocation operations, such as delete. The disadvantage of implicit heap storage recovery is 
the execution time cost of doing the recovery, often when it is not even necessary (there is no 
shortage of heap storage). 

 

Chapter 7 

Problem Set: 
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1. Suppose Type1 is a subrange of Integer.  It may be useful for the difference between 
Type1 and Integer to be ignored by the compiler in an expression. 

7. An expression such as a + fun(b), as described on page 300. 

8. Consider the integer expression A + B + C.  Suppose the values of A, B, and C are 20,000, 
25,000, and -20,000, respectively.  Further suppose that the machine has a maximum integer 
value of 32,767.  If the first addition is computed first, it will result in overflow.  If the second 
addition is done first, the whole expression can be correctly computed. 

9.  

(a) ( ( ( a * b )1 - 1 )2 + c )3 

(b) ( ( ( a * ( b - 1 )1 )2 / c )3 mod d )4 

(c) ( ( ( a - b )1 / c )2 & ( ( ( d * e )3 / a )4 - 3 )5 )6 

(d) ( ( ( - a )1 or ( c = d )2 )3 and e )4 

(e) ( ( a > b )1 xor ( c or ( d <= 17 )2 )3 )4   

(f) ( - ( a + b )1  )2 

 

10. 

(a) ( a * ( b - ( 1 + c )1 )2 )3 

(b) ( a * ( ( b - 1 )2 / ( c mod d )1 )3 )4 

(c) ( ( a - b )5 / ( c & ( d * ( e / ( a - 3 )1 )2 )3 )4 )6 

(d) ( - ( a or ( c = ( d and e )1 )2 )3 )4 

(e) ( a > ( xor ( c or ( d <= 17 )1 )2 )3 )4 

(f) ( - ( a + b )1 )2 

 

11.  <expr> ?  <expr> or <e1> | <expr> xor <e1> | <e1> 

       <e1> ?  <e1> and <e2> | <e2> 

       <e2> ?  <e2> = <e3> | <e2> /= <e3> | <e2> < <e3> 

                     | <e2> <= <e3> | <e2> > <e3> | <e2> >= <e3>  | <e3> 

       <e3> ?  <e4> 

       <e4> ?  <e4> + <e5> | <e4> - <e5> | <e4> & <e5>  | <e4> mod <e5> | <e5> 
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       <e5> ?  <e5> * <e6> | <e5> / <e6> | not <e5>  | <e6> 

       <e6> ?  a | b | c | d | e | const | ( <expr> ) 
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12. (a) 

<expr>

<e1>

<e2>

<e3>

<e4>

<e4>    -      <e5>            <e6>

 a

<e4> + <e5>

<e5> <e6> c

<e5> * <e6> 1

<e6> b
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12. (b) 

<expr>

<e1>

<e2>

<e3>

<e4>

<e5>

<e5> mod <e6>

<e5> / <e6>

<e5> * <e6> c

<e6> ( <expr> )

c

a <e1>

<e2>

<e3>

<e4>

<e4> - <e5>

<e5> <e6>

<e6> 1

b
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12. (c) 

<expr>

<e1>

<e2>

<e3>

<e4>

<e4> & <e5>

<e5> <e6>

<e5> / <e6> ( <expr> )

<e6> c <e1>

( <expr> ) <e2>

<e1> <e3>

<e2> <e4>

<e3> <e4> - <e5>

<e4> <e5> <e6>

<e4> - <e5> <e5> / <e6> 3

<e5> <e6> <e5> * <e6> a

<e6> b <e6> e

a d  
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12. (d) 

<expr>

<expr> and <e1>

<e1> <e2>

<e1> or <e2> <e3>

<e2> <e2> = <e3> <e4>

<e3> <e3> <e4> <e5>

- <e4> <e4> <e5> <e6>

<e5> <e5> <e6> e

<e6> <e6> d

a c  
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12. (e) 

<expr>

 a

<expr> xor <e1>

<e1> <e1> or <e2>

<e2> <e2> <e2> <= <e3>

<e2> > <e3> <e3> <e3> <e4>

<e3> <e4> <e4> <e4> <e5>

<e4> <e5> <e5> <e5> <e6>

<e5> <e6> <e6> <e6> 17

<e6> b c d
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12. (f) 

<expr>

<e1>

<e2>

<e3>

 a

- <e4>

<e4> + <e5>

<e5> <e6>

<e6> b

 

 

13. (a) (left -> right) sum1 is  46; sum2 is 48 

     (b) (right -> left) sum1 is 48; sum2 is 46 

 

Chapter 8 

Problem Set: 

1. Three situations in which a combined counting and logical control loops are: 

a. A list of values is to be added to a SUM, but the loop is to be exited if SUM exceeds some 
prescribed value. 

b. A list of values is to be read into an array, where the reading is to terminate when either a 
prescribed number of values have been read or some special value is found in the list. 

c. The values stored in a linked list are to be moved to an array, where values are to be 
moved until the end of the linked list is found or the array is filled, whichever comes first. 

4. Unique closing keywords on compound statements have the advantage of readability and the 
disadvantage of complicating the language by increasing the number of keywords. 
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8. The primary argument for using Boolean expressions exclusively as control expressions is the 
reliability that results from disallowing a wide range of types for this use. In C, for example, an 
expression of any type can appear as a control expression, so typing errors that result in 
references to variables of incorrect types are not detected by the compiler as errors. 

 

Programming Exercises: 

1.  

 (a)   Do K = (J + 13) / 27, 10 

        I = 3 * (K + 1) - 1 

      End Do 

(b)   for k in (j + 13) / 27 .. 10 loop 

       i := 3 * (k + 1) - 1; 

      end loop; 

(c)   for (k = (j + 13) / 27; k <= 10; i = 3 * (++k) - 1) 

 

2.  

 (a)   Do K = (J + 13.0) / 27.0, 10.0, 1.2 

        I = 3.0 * (K + 1.2) - 1.0 

      End Do 

(b)   while (k <= 10.0) loop 

       i := 3.0 * (k + 1.2) - 1.0; 

       k := k + 1.2; 

     end loop; 

(c )    for (k = (j + 13.0) / 27.0; k <= 10.0; 

        k = k + 1.2, i = 3.0 * k - 1) 

3. 

 (a) Select Case (k) 

     Case (1, 2) 

       J = 2 * K - 1 
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     Case (3, 5) 

       J = 3 * K + 1 

     Case (4) 

       J = 4 * K - 1 

     Case (6, 7, 8) 

       J = K - 2 

     Case Default 

       Print *, 'Error in Select, K = ', K 

   End Select 

(b) case k is 

       when 1 | 2 => j := 2 * k - 1; 

       when 3 | 5 => j := 3 * k + 1; 

       when 4 => j := 4 * k - 1; 

       when 6..8 => j := k - 2; 

       when others => 

         Put ("Error in case, k ='); 

         Put (k); 

         New_Line; 

     end case; 

(c) switch (k) 

     { 

      case 1: case 2: 

        j = 2 * k - 1; 

        break; 

      case 3: case 5: 

        j = 3 * k + 1; 

        break; 
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      case 4: 

        j = 4 * k - 1; 

        break; 

      case 6: case 7: case 8: 

        j = k - 2; 

        break; 

      default: 

        printf("Error in switch, k =%d\n", k); 

      } 

4.  j = -3; 

    key = j + 2; 

    for (i = 0; i < 10; i++){ 

       if ((key == 3) || (key == 2)) 

         j--; 

       else if (key == 0) 

         j += 2; 

       else j = 0; 

       if (j > 0) 

         break; 

       else j = 3 - i; 

      } 

5. (C) 

    for (i = 1; i <= n; i++) { 

      flag = 1; 

      for (j = 1; j <= n; j++) 

        if (x[i][j] <> 0) { 

          flag = 0; 
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          break;  

         } 

      if (flag == 1) { 

        printf("First all-zero row is: %d\n", i); 

        break; 

       } 

     } 

 

   (Ada) 

    for I in 1..N loop 

      Flag := true; 

      for J in 1..N loop 

        if X(I, J) /= 0 then 

          Flag := false; 

          exit; 

        end if; 

      end loop; 

      if Flag = true then 

        Put("First all-zero row is: "); 

        Put(I); 

        Skip_Line; 

        exit; 

      end if; 

    end loop; 

 

 

 Chapter 9 
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Problem Set: 

2. The main advantage of this method is the fast accesses to formal parameters in subprograms.  
The disadvantages are that recursion is rarely useful when values cannot be passed, and also 
that a number of problems, such as aliasing, occur with the method. 

4. This can be done in both Java and C#, using a static (or class) data member for the page 
number. 

5. Assume the calls are not accumulative; that is, they are always called with the initialized values 
of the variables, so their effects are not accumulative. 

    a. 2, 1, 3, 5, 7, 9 b. 1, 2, 3, 5, 7, 9 c. 1, 2, 3, 5, 7, 9  
        2, 1, 3, 5, 7, 9     2, 3, 1, 5, 7, 9     2, 3, 1, 5, 7, 9 
        2, 1, 3, 5, 7, 9     5, 1, 3, 2, 7, 9     5, 1, 3, 2, 7, 9 (unless the addresses of the 
                                                                                                    actual parameters are 
                                                                                                    recomputed on return, in  
                                                                                                    which case there will be an 
                                                                                                    index range error.) 
          

6. It is rather weak, but one could argue that having both adds complexity to the language 
without sufficient increase in writability. 
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Chapter 10 

Problem Set: 

1. 

return (to C)

dynamic link

static link

return (to A)

dynamic link

static link

return (to BIGSUB)

dynamic link

static link

return

dynamic link

static link

.

.

stack

ari for 
BIGSUB

ari for A

ari for C

ari for B
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2. 

dynamic link
static link

return (to C)
dynamic link
static link

return (to A)

dynamic link

static link

ari for D

ari for C

ari for A

return ( to A)

ari for B

ari for A

dynamic link
static link
return (to caller)

stack

ari for
BIGSUB

parameter (flag)

dynamic link
static link

 return (BIGSUB)

parameter (flag)
dynamic link

static link
  return (to B)
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4. One very simple alternative is to assign integer values to all variable names used in the 
program.  Then the integer values could be used in the activation records, and the comparisons 
would be between integer values, which are much faster than string comparisons. 

5. Following the hint stated with the question, the target of every goto in a program could be 
represented as an address and a nesting_depth, where the nesting_depth is the difference 
between the nesting level of the procedure that contains the goto and that of the procedure 
containing the target.  Then, when a goto is executed, the static chain is followed by the number 
of links indicated in the nesting_depth of the goto target.  The stack top pointer is reset to the 
top of the activation record at the end of the chain. 

6. Including two static links would reduce the access time to nonlocals that are defined in 
scopes two steps away to be equal to that for nonlocals that are one step away.  Overall, 
because most nonlocal references are relatively close, this could significantly increase the 
execution efficiency of many programs. 

 

Chapter 11 

Problem Set: 

2. The problem with this is that the user is given access to the stack through the returned value 
of the "top" function.  For example, if p is a pointer to objects of the type stored in the stack, we 
could have: 

 p = top(stack1); 

 *p = 42; 

These statements access the stack directly, which violates the principle of a data abstraction. 
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Chapter 12 

Problem Set: 

1. In C++, a method can only be dynamically bound if all of its ancestors are marked 
virtual. Be default, all method binding is static. In Java, method binding is dynamic by 
default. Static binding only occurs if the method is marked final, which means it cannot be 
overriden. 

3. C++ has extensive access controls to its class entities. Individual entities can be marked 
public, private, or protected, and the derivation process itself can impose further 
access controls by being private. Ada, on the other hand, has no way to restrict inheritance 
of entities (other than through child libraries, which this book does not describe), and no access 
controls for the derivation process. 

 

Chapter 13 

Problem Set: 

1. Competition synchronization is not necessary when no actual concurrency takes place simply 
because there can be no concurrent contention for shared resources.  Two nonconcurrent 
processes cannot arrive at a resource at the same time. 

2. When deadlock occurs, assuming that only two program units are causing the deadlock, one 
of the involved program units should be gracefully terminated, thereby allowed the other to 
continue. 

3. The main problem with busy waiting is that machine cycles are wasted in the process. 

4. Deadlock would occur if the release(access) were replaced by a wait(access) in the 
consumer process, because instead of relinquishing access control, the consumer would wait for 
control that it already had. 

6. Sequence 1:  A fetches the value of BUF_SIZE (6) 

   A adds 2 to the value (8) 
   A puts 8 in BUF_SIZE 
   B fetches the value of BUF_SIZE (8) 
   B subtracts 1 (7) 
   B put 7 in BUF_SIZE  
   BUF_SIZE = 7 

    Sequence 2:  A fetches the value of BUF_SIZE (6) 

   B fetches the value of BUF_SIZE (6) 
   A adds 2 (8) 
   B subtracts 1 (5) 
   A puts 8 in BUF_SIZE 
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   B puts 5 in BUF_SIZE 
   BUF_SIZE = 5 

    Sequence 3:  A fetches the value of BUF_SIZE (6) 

   B fetches the value of BUF_SIZE (6) 
   A adds 2 (8) 
   B subtracts 1 (5) 
   B puts 5 in BUF_SIZE 
   A puts 8 in BUF_SIZE 
   BUF_SIZE = 8 

 

Many other sequences are possible, but all produce the values 5, 7, or 8. 

 

Chapter 14 

Problem Set: 

5. There are several advantages of a linguistic mechanism for handling exceptions, such as that 
found in Ada, over simply using a flag error parameter in all subprograms.  One advantage is 
that the code to test the flag after every call is eliminated.  Such testing makes programs longer 
and harder to read.  Another advantage is that exceptions can be propagated farther than one 
level of control in a uniform and implicit way.  Finally, there is the advantage that all programs 
use a uniform method for dealing with unusual circumstances, leading to enhanced readability. 

6. There are several disadvantages of sending error handling subprograms to other 
subprograms.  One is that it may be necessary to send several error handlers to some 
subprograms, greatly complicating both the writing and execution of calls.  Another is that there 
is no method of propagating exceptions, meaning that they must all be handled locally.  This 
complicates exception handling, because it requires more attention to handling in more places. 

 

Chapter 15 

Problem Set : 

6. y returns the given list with leading elements removed up to but not including the first 
occurrence of the first given parameter. 

7. x returns the number of non-NIL atoms in the given list.  

 

 

Programming Exercises: 
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5. (DEFINE (deleteall atm lst) 

    (COND 

      ((NULL? lst) '()) 

      ((EQ? atm (CAR lst)) (deleteall atm (CDR lst))) 

      (ELSE (CONS (CAR lst) (deleteall atm (CDR lst))) 

    )) 

7. (DEFINE (deleteall atm lst) 

    (COND 

      ((NULL? lst) '()) 

      ((NOT (LIST? (CAR lst))) 

         (COND  

           ((EQ? atm (CAR lst)) (deleteall atm (CDR lst))) 

           (ELSE (CONS (CAR lst) (deleteall atm (CDR lst)))) 

          )) 

      (ELSE (CONS (deleteall atm (CAR lst))  

                          (deleteall atm (CDR lst)))) 

    )) 

9. (DEFINE (reverse lis) 

     (COND  

       ((NULL? lis) '()) 

       (ELSE (APPEND (reverse (CDR lis)) (CONS (CAR lis) () ))) 

   )) 

 

 

 

 

Chapter 16 
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Problem Set: 

1. Ada variables are statically bound to types.  Prolog variables are bound to types only when 
they are bound to values.  These bindings take place during execution and are tempoarary. 

2. On a single processor machine, the resolution process takes place on the rule base, one rule 
at a time, starting with the first rule, and progressing toward the last until a match is found.  
Because the process on each rule is independent of the process on the other rules, separate 
processors could concurrently operate on separate rules.  When any of the processors finds a 
match, all resolution processing could terminate. 

6. The list processing capabilities of Scheme and Prolog are similar in that they both treat lists as 
consisting of two parts, head and tail, and in that they use recursion to traverse and process lists. 

7. The list processing capabilities of Scheme and Prolog are different in that Scheme relies on 
the primitive functions CAR, CDR, and CONS to build and dismantle lists, whereas with Prolog 
these functions are not necessary. 

 

Programming Exercises: 

2.  intersect([], X, []). 

    intersect([X | R], Y, [X | Z] :- 

  member(X, Y), 

  !, 

  intersect(R, Y, Z). 

    intersect([X | R], Y, Z) :- intersect(R, Y, Z). 

  Note: this code assumes that the two lists, X and Y, contain no duplicate elements. 

 

3.  union([], X, X). 

    union([X | R], Y, Z) :- member(X, Y), !, union(R, Y, Z). 

    union([X | R], Y, [X | Z]) :- union(R, Y, Z). 


