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Preface

Changesto the Sixth Edition

The goals, overall structure, and approach of this sixth edition of Concepts of Programming Languages
remain the same as those of the five earlier editions. The principal goal isto provide the reader with the tools
necessary for the critical evaluation of existing and future programming languages. An additional goal isto
prepare the reader for the study of compiler design. There were several sources of our motivations for the
changesin the sixth edition. First, to maintain the currency of the material, much of the discussion of older
programming languages has been removed. Inits placeis material on newer languages. Especially
interesting historical information on older programming languages has been retained but placed in historical
side boxes. Second, the material has been updated to reflect the fact that most students now come to this
course with a basic understanding of object-oriented programming. We shortened the discussion of basics
and expanded the discussion of advanced topics.

Third, reviewer comments have prompted several changes. For example, the material on functional
programming languages has been reorganized and strengthened. Also, we have added a programming
exercises section at the end of most chaptersto give students experience with the concepts described in the
book and to make the concepts more realistic and appealing. The book now has a new supplement: a
companion Web site with afew small language manuals, interactive quizzes for students, and additional
programming projects. Finally, interviews with the designers of recent languages that have achieved
widespread use appear inseveral placesin the book. These show the human side of language devel opment.

Four specific changes distinguish the sixth edition text from its predecessor. First, the material on
implementing subprograms has been condensed, largely because the virtual disappearance of Pascal and
Modula-2, aswell as the shrinking usage of Ada, has made the implementation of nested subprograms with
static scoping lessimportant. All of the relevant Pascal examples were rewritten in Ada. Second, Chapter 14
has been expanded to cover both exception handling and event handling. This change was motivated by the
great increase in interest and importance of event handling that has come with the wide use of interactive
Web documents. Third, the introduction to Smalltalk has been eliminated because we believe the syntactic
details of Smalltalk are no longer relevant to the material of the book. Fourth, there are numerous significant
changes motivated by the aging of existing programming languages and the emergence of new programming
languages. There is now little mention of Modula-2, Pascal, and the ALGOLs. Also, the coverage of Ada
and Fortran has been whittled down to the more interesting of their features that do not appear in other
popular languages. New material on JavaScript, PHP, and C# has been added where appropriate. Finally,
most chapters now include a new section, Programming Exercises.

TheVision

This book describes the fundamental concepts of programming languages by discussing the design issues
of the various language constructs, examining the design choices for these constructs in some of the most
common languages, and critically comparing design alternatives.

Any serious study of programming languages requires an examination of some related topics, among which
are formal methods of describing the syntax and semantics of programming languages, which are covered in
Chapter 3. Also, implementation techniques for various language constructs must be considered: Lexical
and syntax analysis are discussed in Chapter 4, and implementation of subprogram

linkageis covered in Chapter 10. Implementation of some other language constructsis discussed in various
other parts of the book.



The following paragraphs outline the contents of the sixth edition.

Chapter Outlines

Chapter 1 begins with arationale for studying programming languages. It then discusses the criteria used
for evaluating programming languages and language constructs. The primary influences on language
design, common design tradeoffs, and the basic approaches to implementation are al so examined.

Chapter 2 outlines the evolution of most of the important languages discussed in this book. Although no
language is described completely, the origins, purposes, and contributions of each are discussed. This
historical overview isvaluable because it provides the background necessary to understanding the practical
and theoretical basisfor contemporary language design. It also motivates further study of language design
and evaluation. In addition, because none of the remainder of the book depends on Chapter 2, it can be read
on its own, independent of the other chapters.

Chapter 3 describes the primary formal method for describing the syntax of programming language, BNF.
Thisisfollowed by adescription of attribute grammars, which describe both the syntax and static semantics
of languages. The difficult task of semantic description isthen explored, including brief

introductions to the three most common methods: operational, axiomatic, and denotational semantics.

Chapter 4 introduces lexical and syntax analysis. This chapter is targeted to those colleges that no longer
require acompiler design coursein their curricula. Like Chapter 2, this chapter stands alone and can be read
independently of the rest of the book.

Chapters 5 through 14 describe in detail the design issues for the primary constructs of the imperative
languages. In each case, the design choices for several example languages are presented and eval uated.
Specifically, Chapter 5 covers the many characteristics of variables, Chapter 6 covers data types, and
Chapter 7 explains expressions and assignment statements. Chapter 8describes control statements, Chapters
9 and 10 discuss subprograms and their implementation. Chapter 11 examines data abstraction facilities.
Chapter 12 provides an in-depth discussion of language features that support object-oriented programming
(inheritance and dynamic method binding), Chapter 13 discusses concurrent program units, and Chapter 14
is about exception handling and event handling.

Thelast two chapters (15 and 16) describe two of the most important alternative programming paradigms:
functional programming and logic programming. Chapter 15 presents an introduction to Scheme, including
descriptions of some of its primitive functions, special forms, and functional forms, aswell as some examples
of simple functions written in Scheme. Brief introductionsto COMMON LISP, ML, and Haskell are given to
illustrate some different kinds of functional language. Chapter 16 introduceslogic programming and the
logic programming language, Prolog.

Tothelnstructor

In the junior-level programming language course at the University of Colorado at Colorado Springs, the
book is used as follows: We typically cover Chapters 1 and 3 in detail, and though students find it
interesting and beneficial reading, Chapter 2 receives little lecture time due to its lack of hard technical
content. Because no material in subsequent chapters depends on Chapter 2, as noted earlier, it can be
skipped entirely, and because we require a course in compiler design, Chapter 4 is not covered.

Chapters 5 through 9 should be relatively easy for students with extensive programming experience in C++,
Java, or C#. Chapters 10 through 14 are more challenging and require more detailed lectures.

Chapters 15 and 16 are entirely new to most students at the junior level. Ideally, language processors for



Scheme and Prolog should be available for students required to learn the material in these chapters.
Sufficient material isincluded to allow studentsto dabble with some simple programs.

Undergraduate courses will probably not be able to cover all of the last two chaptersin detail. Graduate
courses, however, by skipping over parts of the early chapters on imperative languages, will be able to
completely discuss the nonimperative languages.

Supplemental Materials

The following supplements are available to all readers of this book at www.aw.com/cssupport :

<<= A set of lecture notes slides. These slides are in the form of Microsoft PowerPoint source files, one
for each of the chapters of the book.

<<= PowerPoint slides of all the figuresin the book, should you wish to create your own lecture notes.

<<= A companion web site. With the sixth edition we are introducing a brand-new supplements
package for students. To reinforce learning in the classroom, to assist with the hands-on lab
component of this course, and/or to facilitate students in a distance learning situation, the edition
will be accompanied by a comprehensive web site with the following content:

1. Mini manuals (approximately 100-page tutorials) on a handful of languages. These will

assume that the student knows how to program in some other language, giving the student
enough information to complete the chapter materialsin each language. Currently manuals are
planned in C++, C, Java, and C#.

2. Lab projects. A series of lab projects will be defined for each concept taught in the book. The
solutions will be available exclusively to those teaching a course.

3. Sdf-grading review exercises. Using the Addison-Wesley software engine, students can
complete a series of multiple-choice and fill-in-the-blank exercisesto check their understanding of
the chapter just read.

Solutions to many of the problem sets are available only to qualified instructors. Please contact your local
Addison-Wesley sales representative, or send e-mail to aw.cse@aw.com, for information about how to
access them.

L anguage Processor Availability
Processors for and information about some of the programming languages discussed in this book can be
found at the following web sites:

C# http://microsoft.com

Java http://java.sun.com

Haskell http://haskell.org

Scheme http://www.cs.rice.edu/CS/PL T/packages/drscheme/
Perl http://www.perl.com

JavaScript isincluded in virtually all browsers, PHPisincluded in virtually all Web servers.

All thisinformation is also included on the companion web site.
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Answersto Selected Problems

Chapter 1
Problem Set:

3. Some arguments for having asingle language for al programming domains are: It would
dramaticaly cut the costs of progranming training and compiler purchase and maintenance; it
would smplify programmer recruiting and judtify the development of numerous language
dependent software development aids.

4. Some arguments againg having a single language for dl programming domains are: The
language would necessarily be huge and complex; compilers would be expensive and costly to
maintain; the language would probably not be very good for any programming domain, ether in
compiler efficiency or in the efficiency of the code it generated.

5. One possibility iswordiness. In some languages, agreat dedl of text is required for even
smple complete programs. For example, COBOL isavery wordy language. In Ada,
programs require alot of duplication of declarations. Wordinessis usually consdered a
disadvantage, because it dows program crestion, takes more file space for the source
programs, and can cause programs to be more difficult to read.

7. The argument for using the right brace to close dl compoundsis smplicity—aright brace
aways terminates a compound. The argument againg it is that when you see aright bracein a
program, the location of its matching left brace is not dways obvious, in part because all
multiple- statement control constructs end with aright brace.

8. The reasons why alanguage would distinguish between uppercase and lowercasein its
identifiers are: (1) So that variable identifiers may look different than identifiers that are names
for congtants, such as the convention of using uppercase for congtant names and using
lowercase for variable namesin C, and (2) so that catenated words as names can have their first
letter digtinguished, asin Tot al Wor ds. (I think it is better to include a connector, such as
underscore)) The primary reason why a language would not distinguish between uppercase and
lowercase in identifiersis it makes programs less readable, because words that ook very smilar
are actudly completely different, such as sumand sum

10. One of the main argumentsis that regardless of the cost of hardware, it is not free. Why
write a program that executes dower than is necessary. Furthermore, the difference between a
wedl-written efficient program and one that is poorly written can be afactor of two or three. In
many other fields of endeavor, the difference between a good job and a poor job may be 10 or
20 percent. In programming, the difference is much greater.

15. The use of type declaration statements for smple scdar variables may have very little effect
on the readability of programs. If alanguage has no type declarations at dl, it may be an aid to
readability, because regardless of where avariable is seen in the program text, its type can be
determined without looking esawhere. Unfortunately, most languages that dlow implicitly
declared variables dso include explicit declarations. In aprogram in such alanguage, the
declaration of avariable must be found before the reader can determine the type of that varigble
when it is used in the program.
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18. The main disadvantage of using paired delimiters for commentsisthat it results in diminished
reliability. It is easy to inadvertently leave off the find ddimiter, which extends the comment to
the end of the next comment, effectively removing code from the program. The advantage of
paired ddimitersisthat you can comment out aress of a program. The disadvantage of using
only beginning delimitersisthat they must be repeeted on every line of ablock of comments.
This can be tedious and therefore error-prone. The advantage is that you cannot make the
migtake of forgetting the dosing ddimiter.

Chapter 2
Problem Set:

6. Because of the smple syntax of L1SP, few syntax errors occur in L1SP programs.
Unmatched parentheses is the most common mistake.

7. The main reason why imperative features were put in LI1SP was to increase its execution
effidency.

10. The main motivation for the development of PL/I wasto provide asingle tool for computer
centers that must support both scientific and commercia applications. 1BM believed that the
needs of the two classes of applications were merging, at least to some degree. They fdt that
the smplest solution for a provider of systems, both hardware and software, was to furnish a
single hardware system running a single programming language that served both scientific and
commercid gpplications.

11. IBM was, for the most part, incorrect inits view of the future of the uses of computers, at
leest asfar aslanguages are concerned. Commercid applications are nearly al donein
languages that are specificaly designed for them. Likewise for scientific gpplications. On the
other hand, the IBM design of the 360 line of computers was a great success--it dill dominates
the area of computers between supercomputers and minicomputers. Furthermore, 360 series
computers and their descendants have been widdly used for both scientific and commercid
goplications. These applications have been done, in large part, in FORTRAN and COBOL.

14. The argument for typeess languagesistheir great flexibility for the programmer. Literdly
any storage location can be used to store any type value. Thisisuseful for very low-leve
languages used for systems programming. The drawback is that type checking isimpossible, so
that it is entirely the programmer's responsbility to insure that expressons and assgnments are
correct.

18. A good ded of restraint must be used in revisng programming languages. The grestest
danger isthat the revison process will continually add new features, so that the language grows

more and more complex. Compounding the problem is the reluctance, because of existing
software, to remove obsol ete festures.

Chapter 3
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I nstructor's Note:

In the program proof on page 149, there is a statement that may not be clear to dl, specificaly,
(n + 1)* ...* n = 1. Thejudification of this satement isasfollows:

Consder the following expression:
(count + 1) * (count + 2) * ..* n

The former expression states that when count isequd to n, the value of the later expression is
1. Multiply the later expresson by the quotient:

(L *2* ...* count) / (1 * 2 * ..* count)
whosevaueisi, to get
(1 *2* ...* count * (count + 1) * (count + 2) * ..* n) /
(1 *2* ...* count)

The numerator of this expressonsisn! . The denominator iscount ! . If count isequd ton, the
vaue of the quatient is

n' / n!

or 1, which iswhat we were trying to show.

Problem Set:
2a. <class head>? {<modifier>} cl ass <id>[ext ends class name]
[i mpl enent s <interface_name> {, <interface_name>} |
<modifier>? public | abstract | final
2c. <switch_ smt>? switch ( <expr>) {case <literd>: <gmt_lig>
{case <literd>: <gmt_lig>} [defaul t : <gmt _list>] }
3. <assgn>? <id> = <expr>
<ic>? A|B|C
<expr>? <expr>* <term>
| <term>
<term>? <factor> + <term>
| <factor>

<factor>7? (<expr>)
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| <id>

6.

(a) <assign> => <id> = <expr>

=>A = <expr>

=>A =<id>* <expr>

= A

= A

= A

= A

= A

= A

= A

= A

= A

A * <expr>

A

A

A

*

*

*

( <expr=>)
( <id> + <expr>)

( B+ <expr>)

( B+ (<expr>) )

( B+ ( <id>* <expr>) )
( B+ ( C*<expr>) )
( B+ ( C*<id>) )

(B+(C* A))
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<assign>

T

<id> = <expr>

N

<id> *  <expr>

L e
RN

<jd> +  <expr>

N

( <expr> )

AN

<id> *  <expr>

= <id>
A
7.
(&) <assgn> => <id> = <expr>
=> A = <eXpr>
=>A = <term>

=> A = <factor>* <term>
=>A = (<expr>) * <tem>
=> A = ( <expr>+<tem>) * <tem>

=> A

( <tam>+ <tem>) * <tem>

=>A = ( <factor>+ <term>) * <term>
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=>A = (<id>+<tem> ) * <term>

= A

( A +<term>) * <term>
=>A = ( A +<factor>) * <term>
=>A=( A+<id>) * <tem>
=>A=( A+ B) *<team>
=>A=( A+ B) * <factor>
=>A=( A+B) *<id>

=>A=(A+B) *C

<assign>

<id> = <expr>
A|\ <te|rm>
/’\
<factor> * <term>
T
(  <expr> ) <factor>

T

<expr> + <term> <id>

<term> <factor> C
<factor> <id>
| |
<id> B
|
A

25



8. Thefollowing two distinct parse tree for the same string prove that the grammear is
ambiguous.

<S> <S>
|
<A> <A>
<A> + <A> <A> + <A>
<A> + <A> <A> + <A>
| | | |
a b C a b C

9. Assume that the unary operators can precede any operand. Replacetherule
<factor>? <id>

with
<factor>? + <id>

|- <id>

10. One or more as followed by one or more b's followed by one or morec's.

13.S? aSb | ab

mii>>>m

7
-\
:@%

QD
o —>
O
o— @



16. <assign>? <id>= <expr>
<id>? A|B|C
<expr>? <expr> (+|-) <expr>
| (<expr>)

| <id>

18.

(a) (Pascd r epeat ) We assume that the logic expresson isa single relationa expresson.

loop:
if <rdlationa_expresson> goto out
goto loop
out:
(b) (Adafor) for I in first .. last |oop
| =firgt
loop: if | <last goto out
l=1+1
goto loop
out:...

(¢) (Fortran Do)
K = start

loop: if K> end goto out
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(e) (Cfor) for (exprl; expr2; expr3) ...

19.

@

(b)

(©

K=K +step
goto loop

out:

evaluate(exprl)
loop:  control = evauate(expr2)

if control == 0 goto out

evauate(expr3)

goto loop

out:

a=2*(b-1)-1{a>0}

2*(b-1)-1>0
2*b-2-1>0
2*b>3
b>3/2

b=(c+10)/3{b>6}
(c+10)/3>6
c+10>18

c>8

a=a+2*b-1{a>1}

28



(d)

20.

@

a+2*b-1>1
2*b>2-a
b>1-a/2

X=2*y+x-1{x>11}

2*y+x-1>11
2*y+x>12

a=2*b+1

b=a-3 {b<0}

a-3<0

a<3

Now, we have:

(b)

a=2*b+1{a<3}
2*b+1<3
2*b+1<3
2*b<2

b<1

a=3*(2*b+a);
b=2*a-1{b>5}
2*a-1>5
2*a>6

a>3

29



Now we have:
a=3*(2*b+a){a>3}
3*(2*b+a) >3
6*b+3*a>3
2*b+a>1
n>(1l-a/2

2la. Mpf(for var ininit_expr .. fina_expr loop L end loop, S) =
if VARMAR(i, s) = undef for var or somei ininit_expr or find_expr
then error
dseif Mg(init_expr, s) > Mg(fina_expr, 9)
thens

else M|(whileinit_expr - 1 <= fina_expr do L, Mg(var := init_expr + 1, 5))

21b. M(repest L until B) £
if Mp(B, S) = undef
then error
dseif Mg(L, s) =error
thenerror
dseif Mp(B, ) =true
then Mgq(L, 9)
else M(repeat L until B), Mg(L, 9))

21c. Mp(B, 9) £ if VARMAR(, s) = undef for somei in B
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then error

else B', where B' isthe result of
evauaing B after setting each
vaiablei in B to VARMAR(, 9)

21d. M(for (exprl; expr2; expr3) L, S) &
if VARMAP (i, s) = undef for somei in exprl, expr2, expr3, or L
then error
dseif M (expr2, Mc (exprl, s)) =0
thens
else Mg (EXpr2, expr3, L, s)
Mrep (€Xpr2, expr3, L, ) £
if VARMAP (i, ) = undef for somei in expr2, expr3, or L
then error
dse
if Mg (L, s) =error
thens

else M (eXpr2, expr3, L, My (L, Me (expr3, s))

22. The vaue of anintrigic attribute is supplied from outside the attribute evauation process,
usudly from the lexicd andyzer. A vaue of a synthesized attribute is computed by an attribute
evauation function.

23. Replace the second semarntic rule with:
var>[2].env ?  <expr>.env
<var>[3l.env ? <expr>.env
<expr>.actual_type? <var>[2].actua_type
predicate; <var>[2].actua_type = <var>[3].actua_type
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Chapter 4

Problem Set:

1

(a) FIRST(aB) ={ &, FIRST(b) = {b}, FIRST(cBB) ={c}, Passes the test
(b) FIRST(aB) ={ &}, FIRST(bA) ={b}, FIRST(aBb) ={a}, Failsthe test

(c) FIRST(aaA) = {a}, FIRST(b) = {b}, FIRST(caB) ={c}, Passesthe test

3.
(a) a@Abb
S
/V\A
a A b
/ v\\
a A B

Phrases: aaAhbb, aAb, b

Simple phrases. b
Handle b
(b) bBab S
| B /A\
a b
Phrases: bBab, ab

Simple phrases. ab
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Handle ab

5. Stack Input Action
0 id* (id+id) $ Shift5
0id5 *(id+id)$ Reduce6 (Use GOTO[O, F])
OF3 *(id+id)$ Reduce4 (UseGOTO[0, T])
0T2 *(id+id)$ Reduce?2 (Use GOTO[O0, E])
0T2*7 (d+id$  Shift7
0T2*7(4 id+id)$  Shift4
0T2*7(4id5+id ) $ Shift 5
0T2*7(4F3 +id) $ Reduce 6 (Use GOTO[4, F])
0T2*7(4T2 +id) $ Reduce 4 (Use GOTO[4, T])
OT2*7(4E8 +id) $ Reduce 2 (Use GOTO[4, E])
OT2*7(4E8+6  id)$ Shift 6
OT2*7(4E8+6id5 ) $ Shift 5
OT2*7(4E8+6F3 ) $ Reduce 6 (Use GOTO[6, F])
OT2*7(4E8+6T9 ) $ Reduce 4 (Use GOTOI[6, T])
0T2*7(4E8 )$ Reduce 1 (Use GOTO[4, E])
OT2*7(4E8)11  $ Shift 11
0T2*7F10 $ Reduce 5 (Use GOTQ[7, F])
012 $ Reduce 5 (Use GOTOJO0, T])
OE1 $ Reduce 2 (Use GOTOJ0, E])
--ACCEPT--

Programming Exercises:

1. Every arcin thisgrgph is assumed to have addChar attached. Assume we get here only if
char Cl ass ISSLASH.

other
/ * \ / * /
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stjt %i & 23 return COMMENT

return SLASH_CODE

3. int getComent() {
get Char () ;
/* The slash state */
if (charCl ass ! = AST)
return SLASH_ CODE;
el se {
/* The com state-end state | oop */
do {
get Char () ;
/* The com state | oop */
while (charC ass ! = AST)
get Char () ;
} while (charClass != SLASH);

return COMVENT;

Chapter 5
Problem Set:

2. The advantage of atypeess language isflexibility; any variable can be used for any type
vaues. The disadvantage is poor rdiability due to the ease with which type errors can be made,
coupled with the impossihility of type checking detecting them.

3. Thisisagood idea. It addsimmensely to the readability of programs. Furthermore, diasing
can be minimized by enforcing programming standards that disalow access to the array in any
executable satements. The dternative to this aliasing would be to pass many parameters, which
isahighly inefficient process.
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5. Implicit hegp-dynamic variables acquire types only when assigned vaues, which must be at
runtime. Therefore, these variables are dways dynamically bound to types.

6. Suppose that a Fortran subroutine is used to implement a data structure as an abgtraction. In
this Stuation, it is essentid that the structure persst between cals to the managing subroutine.

8.

(@1i.sub1
ii. Sub1
iii. Mai n

(b)i. sub1
ii. Sub1
iii. Sub1

9. Static scoping: x = 5.
Dynamic scoping: x = 10

10. Vaiadde Where Declared

In Sub1:
A Subl
Y Subl
z Subl
X Mai n
In Sub2:
A Sub2
B Sub2
z Sub2
Y Subl
X Mai n
In Sub3:
A Sub3
X Sub3
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12.

<

Point 1:

o O (o QD

Point 2:

T 9

(@]

W W NP NMNNMNDN PR

w

Point 3: same as Point 1

Point 4: a

13.

@

(b)

(©

(d)

(€

1

1
1

Where Declared

fun3
fun2
funl
mai n
fun3
funl
mai n
funl
fun3
mai n
funl
fun3
mai n
fun2
fun3
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b funl

a mai n
® b, c, d funl
e fun2
f fun3
a mai n

14. Vaiaddle Where Declared

@ A X W Sub3
B, Sub?2
Y Subl
(b) A X W Sub3
Y, Z Sub1l
(© A Y, Z Sub1
X W Sub3
B Sub?2
(d) A Y, Z Sub1
X, W Sub3
(e A B, Z Sub2
X, W Sub3
Y Subl
® A Y, Z Sub1
B Sub?2
X, W Sub3
Chapter 6
Problem Set:

1. Boolean variables stored as single bits are very space efficient, but on most computers access
tothemisdower than if they were stored as bytes.

2. Integer vaues sored in decimd waste storage in binary memory computers, smply asa
result of the fact that it takes four binary bitsto store a single decimad digit, but those four bits
are capable of storing 16 different values. Therefore, the ability to store six out of every 16
possible vauesiswasted. Numeric values can be stored efficiently on binary memory
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computers only in number bases that are multiples of 2. 1f humans had developed a number of
fingers that was a power of 2, these kinds of problems would not occur.

6. When implicit dereferencing of pointers occurs only in certain contexts, it makes the language
dightly less orthogona. The context of the reference to the pointer determines its meaning. This
detracts from the readability of the language and makes it dightly more difficult to learn.

7. The only judtification for the - > operator in C and C++ iswritability. It isdightly eader to
writep -> gthan(*p).q.

8. The advantage of having a separate congruct for unionsisthat it clearly shows that unions are
different from records. The disadvantages are that it requires an additiona reserved word and
that unions are often separately defined but included in records, thereby complicating the
program that uses them.

9. Let the subscript ranges of the three dimensionsbe named i n( 1) , mi n(2), mi n(3),
max( 1), max(2),and max(3). Lettheszesof the subscript rangesbesi ze(1), si ze(2),
and si ze(3). Assumethedement szeis 1.
Row Major Order:

location(a[ i, j, k]) = (addressof a[min(1),mn(2),mn(3)])

+((i-mn(l))*size(3) + (j-mn(2)))*size(2) + (k-min(3))

Column Mgor Order:

location(a[ i, j, k]) = (addressof a[min(1),mn(2),mn(3)])

+((k-mn(3))*size(1) + (j-min(2)))*size(2) + (i-mn(1))

10. The advantage of this scheme is that accessesthat are done in order of the rows can be
made very fast; once the pointer to arow is gotten, dl of the eements of the row can be fetched
very quickly. If, however, the e ements of a matrix must be accessed in column order, these
accesses will be much dower; every access requires the fetch of arow pointer and an address
computation from there. Note that this access technique was devised to dlow multidimensiona
array rowsto be ssgmentsin avirtua storage management technique. Using this method,

multidimensiona arrays could be stored and manipulated that are much larger than the physicd
memory of the computer.

14. Implicit hegp torage recovery eiminates the creation of dangling pointers through explicit
dedll ocation operations, such asdel et e. The disadvantage of implicit heep Storage recovery is
the execution time cost of doing the recovery, often when it is not even necessary (thereisno
shortage of heap storage).

Chapter 7
Problem Set:
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1. Suppose Typel isasubrange of | nt eger . It may be useful for the difference between
Typel and | nt eger to beignored by the compiler in an expression.

7. Anexpresson suchasa + fun(b), asdescribed on page 300.

8. Condder theinteger expresson A + B + C. Supposethevauesof A, B, and C are 20,000,
25,000, and -20,000, respectively. Further suppose that the machine has a maximum integer
vadue of 32,767. If thefirst addition is computed firgt, it will result in overflow. If the second
addition is done firgt, the whole expression can be correctly computed.

0.

@ ((Ca*b)l-1)2+¢)3

O ((Ca*(b-1)1)2/7¢)3nmdd)*
©C(Ca-b)lrc)2a(((d*e)d3/a)4-3)5)"

(d (CC-a)lor (c=d)2)3ande)?

© ( (a>b)lxor (cor (d<=17)2)3)4

M (- (Ca+b)l )2

10.

@ (a*(b-(1+c)l)2)3

) (a* ((b-1)2/ (cmdd)l)3)4
©((a-b)>/ (c&(d* (el (a-3)L)2)3)4)6
(d (- (aor (c=(dande)l)2)3)4

(© (a>(xor (cor (d=<=17)1)2)3)4

(- (a+b)l)2

11. <expr>7? <expr> or <el> | <expr> xor <el> | <el>
<el>? <el>and <e2>|<e2>
<e2> 7?7 <e2>=<e3> | <e2> [= <e3> | <e2> < <e3>
| <e2> <= <e3> | <e2> > <e3> | <e2> >=<e3> | <e3>
<e3>? <ed>
<ed>? <ed> +<eb> | <ed> - <eb> | <ed> & <e5> | <ed> mod <e5> | <eb>
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<eb>? <eb>* <eb> | <eb>/ <e6> | not <eb> | <e6>

<e6>? alb|c|d|e]|const|( <expr>)
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12. (a)

<expr>

<el>
<e’?2>

<e3>

/b\
<e4d> + <75>

<74;//T\\:E > <eb>
T
<e5>+ <€6> J

+ ;

a
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12. (b)

<expr>
|
<el>

<e’?2>

<e3>

|
<T4>
ﬁ5>\

<e5> mod <e6>

ST~ |

<eﬁ> *  <eb> Cc
//T\\\\

<e6> ( <expr> )

a <el>

<e’?2>

<e3>

K
<T4> - <eﬁ>
<75> <e7>

<ﬁ6> 1
b
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12. (c)

<expr>

<el>
<@e2>

<e3>

<e4>

T

<ed> &

<eb>

<eb> |/ <e6>

<e’Z2>

<e3>

<e4>

S

<eb>

<e4d> -
<eb5> <76>

<e6> b

<eb> |/

| I

<eq>
<e6>
\
<el>
<%2>
<73>
<e4>
<T4> - <75>
AN T

<eb> 3



12. (d)

<expr>

PN

<expr> and <el>

//jT{i\\\ <e2>
|

<e3>
<el>or <e2> e3

/1N

<e’?2> <e2>= <T3> <eqd>

7‘3> <e3> <T4> <eb>

- <ed> <e4> <eb5> <eb>

<75> <eb> <eb> e

<eb> <eb> d

a C
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12. (e)

<expr>

T~

<expr>  xor

<el>

<e’?2>

<e2> >

<e3>

<e4>

<eb5>

<eb>

I

<e3>
|
<e4>

<eh>

<eb>

b

<el>

<e’?2>

<e3>

<e4>

<eb5>

<eb>

<el>

RN

or

<e’?2>

/N

<e2> <=

<e3>

<e4>

<eb5>

<eb>

45

<e3>

<e4>

<eb5>

<eb>
|

17



12. (f)

<expr>

|
<71>
<e?2>

<e3>

e

- <e4>

TN

<e4>+ <eb>

<eb5> <eb>
o
<e6> b
a

13. (@) (left ->right) suml is 46; sun2 is 48
(b) (right -> left) suml is48; sun? is46

Chapter 8
Problem Set:
1. Three Stuations in which a combined counting and logical control loops are:

a A lig of vauesisto be added to a sum but the loop isto be exited if SuMexceeds some
prescribed vaue.

b. A ligt of valuesisto beread into an array, where the reading is to terminate when either a
prescribed number of values have been read or some specid vaue isfound in the ligt.

c. Thevaues stored in alinked ligt are to be moved to an array, where values are to be
moved until the end of the linked ligt isfound or the array isfilled, whichever comesfird.

4. Unique closing keywords on compound statements have the advantage of readability and the
disadvantage of complicating the language by increasing the number of keywords.
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8. The primary argument for usng Boolean expressons exclusvely as control expressonsisthe
reliability that results from disalowing awide range of typesfor thisuse. In C, for example, an
expression of any type can agppear as a control expression, so typing errors that result in
references to variables of incorrect types are not detected by the compiler as errors.

Programming Exercises:
1
@ Do K= (J + 13) / 27, 10
| =3* (K+1) -1
End Do
(b) for kin (j +13) / 27 .. 10 loop
i :=3* (k +1) - 1;

end | oop;

(€ for (k = (j + 13) / 27; k <= 10; i = 3 * (++k) -

@ Do K= (J + 13.0) / 27.0, 10.0, 1.2
| =3.0* (K+1.2) - 1.0
End Do

(b) while (k <= 10.0) | oop

i 3.0 * (k + 1.2) - 1.0;

k :

k + 1.2;
end | oop;
(c) for (k = (j + 13.0) / 27.0; k <= 10.0;
k =k +1.2, i =3.0* k - 1)
3.
(@) sel ect Case (k)
Case (1, 2)

J=2* K-1
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J=4*K-1

Case Defaul t

Print *, "Error in Select, K=
End Sel ect
(b) case k is
when 1| 2 =>j :=2* k - 1;
when 3 | 56 =>j :=3* k + 1;
when 4 => | =4 * k - 1,
when 6..8 =>j := k - 2;
when ot hers =>
Put ("Error in case, k =');
Put (Kk);
New_Li ne;
end case;

(c) switch (k)

{

case 1. case 2:

j =2 k- 1

br eak;

case 3. case b5:

j =3* k +1;

br eak;
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case 4.
j =4 * k- 1;
br eak;

case 6. case 7. case 8:

br eak;
defaul t:

printf("Error in switch, k =%@\n", k);

key =j + 2
for (i =0; i < 10; i++){
if ((key == 3) || (key == 2))
j--s
else if (key == 0)
i o+=2
else j = 0;
if (j >0)
br eak;

elsej =3 - 1i;

5. (C)

for (i =1; i <=n; i++) {

1
=

flag
for (j =1, j <=n; j+4)
if (x[i1[j] <> 0) {

flag = 0;
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br eak;
}
if (flag == 1) {
printf("First all-zero rowis: %\n", i);

br eak;

(Ada)
for I in 1..N | oop
Flag := true;
for Jin 1..N | oop
if X(1, J) /=0 then
Flag := fal se;
exit;
end if;
end | oop;
if Flag = true then
Put("First all-zero rowis: ");
Put(1);
Ski p_Li ne;
exit;
end if;

end | oop;

Chapter 9
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Problem Set:

2. The main advantage of this method is the fast accesses to forma parametersin subprograms.
The disadvantages are that recursion is rarely useful when values cannot be passed, and dso
that a number of problems, such as aiasing, occur with the method.

4. This can be donein both Javaand C#, using astatic (or class) data member for the page
number.

5. Assumethe cdls are not accumuletive; that is, they are dways cdled with theinitidized vaues
of the variables, so their effects are not accumulative.
az213579 bil12357°9 c.123579
2,1,3,57,9 2,3,1,57,9 2,3,1,57,9
2,1,357,9 51,3279 51,3, 2,7, 9 (unless the addresses of the
actuad parameters are
recomputed on return, in
which case there will be an
index range error.)

6. It is rather weak, but one could argue that having both adds complexity to the language
without sufficient increase in writability.
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Chapter 10
Problem Set:
1.

ari for B

ari for C

ari for A

ari for
BIGSUB

dynamic link

static link

return (to C)

dynamic link

static link

return (to A)

dynamic link

static link

return (to BIGSUB)

dynamic link

static link

return

stack
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ari for D

ari for C

ari for A

ari for B

ari for A

ari for
BIGSUB

dynamic link

static link

return (to C)

dynamic link

static link

return (to A)

parameter (flag)

dynamic link

static link

return (to B)

dynamic link

static link

return (to A)

parameter (flag)

dynamic link

static link

return (BIGSUB)

dynamic link

static link

return (to caller)

stack
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4. Onevery ample dterndiveisto assgn integer vauesto dl variable names used in the
program. Then the integer values could be used in the activation records, and the comparisons
would be between integer vaues, which are much faster than string comparisons.

5. Following the hint stated with the question, the target of every goto in a program could be
represented as an address and a nesting_depth, where the nesting_depth is the difference
between the nesting level of the procedure that contains the goto and that of the procedure
containing the target. Then, when agoto is executed, the gtatic chain is followed by the number
of linksindicated in the nesting_depth of the goto target. The stack top pointer isreset to the
top of the activation record at the end of the chain.

6. Including two tatic links would reduce the access time to nonlocals that are defined in
scopes two steps away to be equal to that for nonlocals that are one step away. Overdl,

because most nonlocdl references are relatively close, this could significantly increase the
execution efficiency of many programs.

Chapter 11
Problem Set:
2. The problem with thisis that the user is given access to the stack through the returned vaue
of the"top" function. For example, if p isapointer to objects of the type stored in the stack, we
could have:

p = top(stackl);

*p = 42;

These statements access the stack directly, which violates the principle of a data absiraction.
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Chapter 12
Problem Set:

1. In C++, amethod can only be dynamicdly bound if al of its ancestors are marked

vi rt ual . Bedefault, dl method binding is gatic. In Java, method binding is dynamic by
default. Static binding only occursif the method ismarked f i nal , which meansit cannot be
overriden.

3. C++ has extensive access controls to its class entities. Individua entities can be marked
public, private, or prot ect ed, and the derivation processitself can impose further
access controls by being pri vat e. Ada, on the other hand, has no way to restrict inheritance
of entities (other than through child libraries, which this book does not describe), and no access
controls for the derivation process.

Chapter 13
Problem Set:

1. Competition synchronization is not necessary when no actual concurrency takes place smply
because there can be no concurrent contention for shared resources. Two nonconcurrent
processes cannot arrive at a resource a the sametime.

2. When deadlock occurs, assuming that only two program units are causing the deadlock, one
of the involved program units should be gracefully terminated, thereby dlowed the other to
continue.

3. The main problem with busy waiting is that machine cycles are wasted in the process.

4. Deadlock would occur if ther el ease(access) were replaced by awai t (access) inthe
consumer process, because instead of relinquishing access control, the consumer would wait for
control that it aready had.
6. Sequence 1. A fetchesthe value of BUF_SI ZE (6)

A adds 2 to the value (8)

A puts8in BUF_SI ZE

B fetchesthe vaue of BUF_sSI ZE (8)

B subtracts 1 (7)

B put 7 in BUF_SI ZE

BUF_SIZE=7

Sequence 2: A fetchesthe value of BUF_SI ZE (6)

B fetchesthe vaue of BUF_SI ZE (6)
Aadds 2 (8)

B subtracts 1 (5)

A puts8in BUF_SI ZE
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B puts5in BUF_SI ZE
BUF_SIZE=5

Sequence 3: A fetchesthe value of BUF_SI ZE (6)
B fetchesthe vaue of BUF_SI ZE (6)
Aadds 2 (8)
B subtracts 1 (5)
B puts5in BUF_SI ZE
A puts8in BUF_SI ZE
BUF_SIZE=8

Many other sequences are possible, but al produce the values 5, 7, or 8.

Chapter 14
Problem Set:

5. There are severd advantages of alinguistic mechaniam for handling exceptions, such as that
found in Ada, over smply using aflag error parameter in al subprograms. One advantage is
that the code to test the flag after every call iseliminated. Such testing makes programs longer
and harder to read. Another advantage is that exceptions can be propagated farther than one
leve of control in auniform and implicit way. Findly, thereisthe advantage that dl programs
use a uniform method for dedling with unusud circumstances, leading to enhanced readability.

6. There are severa disadvantages of sending error handling subprograms to other
subprograms. Oneisthat it may be necessary to send severa error handlers to some
subprograms, greatly complicating both the writing and execution of calls. Another isthat there

isno method of propagating exceptions, meaning that they mugt dl be handled locally. This
complicates exception handling, because it requires more atention to handling in more places.

Chapter 15
Problem &t :

6. y returnsthe given ligt with leading dements removed up to but not including the first
occurrence of thefirgt given parameter.

7. x returns the number of non-NI L atlomsin the given lit.

Programming Exercises:
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5. (DEFINE (del eteal | atmlst)
( COND
((NULL? Ist) ' ())
((EQ? atm (CAR Ist)) (deleteall atm (CDR Ist)))
(ELSE (CONS (CAR I'st) (deleteall atm (CDR Ist)))
))
7. (DEFINE (del eteal |l atmlst)
( COND
((NULL? Ist) ' ())
((NOT (LIST? (CAR Ist)))
( COND
((EQ? atm (CAR Ist)) (deleteall atm (CDR Ist)))
(ELSE (CONS (CAR I'st) (deleteall atm (CDR Ist))))
))
(ELSE (CONS (del eteal | atm (CAR Ist))
(deleteal | atm (CDR Ist))))
))
9. (DEFINE (reverse lis)
( COND
((NULL? Tis) '())
(ELSE (APPEND (reverse (CDR lis)) (CONS (CAR lis) () )))

))

Chapter 16
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Problem Set:

1. Adavariables are staticaly bound to types. Prolog variables are bound to types only when
they are bound to values. These bindings take place during execution and are tempoarary.

2. On asingle processor machine, the resolution process takes place on the rule base, onerule
a atime, sarting with the firgt rule, and progressaing toward the last until amatch is found.
Because the process on each rule is independent of the process on the other rules, separate
processors could concurrently operate on separate rules. When any of the processors finds a
match, al resolution processing could terminate.

6. The list processing capabilities of Scheme and Prolog are smilar in that they both treat ligts as
consigting of two parts, head and tail, and in that they use recursion to traverse and processlists.

7. Theligt processing capabilities of Scheme and Prolog are different in that Scheme relies on

the primitive functions CAR, CDR, and CONS to build and dismantle lists, whereas with Prolog
these functions are not necessary.

Programming Exercises:
2. intersect([], X [1]).
intersect([X | R, Y, [X] Z] :-
menber (X, Y),
L,
intersect(R, Y, 2).
intersect([X | R, Y, 2) :- intersect(R Y, 2).

Note: this code assumes that the two lists, X and Y, contain no duplicate e ements.
3. union([], X X).

union([X | R, Y, 2 :- nmenmber(X, Y), !, union(R, Y, 2).

union([X | R, Y, [X] Z]) :- union(R, Y, 2).
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