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Problems with solutions in the Analysis of Algorithms c© Minko Markov

Chapter 1

Notations: Θ, O, Ω, o, and ω

The functions we consider are assumed to have positive real domains and real codomains
unless specified otherwise. Furthermore, the functions are assumed to be asymptotically
positive. The function f(n) is asymptotically positive iff ∃n0 : ∀n ≥ n0, f(n) > 0.

Basic definitions:

Θ(g(n)) =
{
f(n) | ∃c1, c2 > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n)

}
(1.1)

O(g(n)) =
{
f(n) | ∃c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) ≤ c.g(n)

}
(1.2)

Ω(g(n)) =
{
f(n) | ∃c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c.g(n) ≤ f(n)

}
(1.3)

o(g(n)) =
{
f(n) | ∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) < c.g(n)

}
(1.4)

ω(g(n)) =
{
f(n) | ∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c.g(n) < f(n)

}
(1.5)

1.4 is equivalent to:

lim
n→∞ f(n)g(n)

= 0 (1.6)

if the limit exists. 1.5 is equivalent to:

lim
n→∞ g(n)f(n)

= 0 (1.7)

if the limit exists.
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It is universally accepted to write “f(n) = Θ(g(n))” instead of the formally correct “f(n) ∈
Θ(g(n))”.

Let us define the binary relations �, �, ≺, �, and � over functions as follows. For any two
functions f(n) and g(n):

f(n) � g(n) ⇔ f(n) = Θ(g(n)) (1.8)

f(n) � g(n) ⇔ f(n) = O(g(n)) (1.9)

f(n) ≺ g(n) ⇔ f(n) = o(g(n)) (1.10)

f(n) � g(n) ⇔ f(n) = Ω(g(n)) (1.11)

f(n) � g(n) ⇔ f(n) = ω(g(n)) (1.12)

When the relations do not hold we write f(n) 6� g(n), f(n) 6� g(n), etc.

Properties of the relations:

1. Reflexivity: f(n) � f(n), f(n) � f(n), f(n) � f(n).

2. Symmetry: f(n) � g(n) ⇔ g(n) � f(n).
Proof: Assume ∃c1, c2, n0 > 0 as necessitated by (1.1), so that 0 ≤ c1.g(n) ≤
f(n) ≤ c2.g(n) for all n ≥ n0. Then 0 ≤ 1

c2
f(n) ≤ g(n) and g(n) ≤ 1

c1
f(n). Overall,

0 ≤ 1
c2
f(n) ≤ g(n) ≤ 1

c1
f(n). So there exist positive constants k1 =

1
c2

and k2 =
1
c1

,
such that 0 ≤ k2.f(n) ≤ g(n) ≤ k1.f(n) for all n ≥ n0. �

3. Transitivity:

f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n)
f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n)
f(n) ≺ g(n) and g(n) ≺ h(n) ⇒ f(n) ≺ h(n)
f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n)
f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n).

4. Transpose symmetry:

f(n) � g(n) ⇔ g(n) � f(n)
f(n) � g(n) ⇔ g(n) ≺ f(n).
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5. f(n) ≺ g(n) ⇒ f(n) � g(n)
f(n) � g(n) 6⇒ f(n) ≺ g(n)
f(n) � g(n) ⇒ f(n) � g(n)
f(n) � g(n) 6⇒ f(n) � g(n)

6. f(n) � g(n)⇒ f(n) 6≺ g(n)
f(n) � g(n)⇒ f(n) 6� g(n)
f(n) ≺ g(n)⇒ f(n) 6� g(n)
f(n) ≺ g(n)⇒ f(n) 6� g(n)
f(n) ≺ g(n)⇒ f(n) 6� g(n)
f(n) � g(n)⇒ f(n) 6� g(n)
f(n) � g(n)⇒ f(n) 6≺ g(n)
f(n) � g(n)⇒ f(n) 6� g(n)

7. f(n) � g(n) ⇔ f(n) � g(n) and f(n) � g(n)

8. There do not exist functions f(n) and g(n), such that f(n) ≺ g(n) and f(n) � g(n)

9. Let f(n) = f1(n)± f2(n)± f3(n)± . . .± fk(n). Let

f1(n) � f2(n)
f1(n) � f3(n)

. . .

f1(n) � fk(n)

Then f(n) � f1(n).

10. Let f(n) = f1(n) × f2(n) × . . . × fk(n). Let some of the fi(n) functions be positive
constants. Say, f1(n) = const, f2(n) = const, . . . , fm(n) = const for some m such
that 1 ≤ m ≤ n. Then f(n) � fm+1(n)× fm+2(n)× . . .× fk(n).

11. The statement “limn→∞ f(n)
g(n) exists and is equal to some L such that 0 < L < ∞” is

stronger than “f(n) � g(n)”:

lim
n→∞ f(n)g(n)

= L ⇒ f(n) � g(n) (1.13)

f(n) � g(n) 6⇒ lim
n→∞ f(n)g(n)

exists.

To see why the second implication does not hold, suppose f(n) = n2 and g(n) =
(2+ sin (n))n2. Obviously g(n) oscillates between n2 and 3n2 and thus f(n) � g(n)
but limn→∞ f(n)

g(n) does not exist.

Problem 1 ([CLR00], pp. 24–25). Let f(n) = 1
2n
2 − 3n. Prove that f(n) � n2.
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Solution:
For a complete solution we have to show some concrete positive constants c1 and c2 and a
concrete value n0 for the variable, such that for all n ≥ n0,

0 ≤ c1.n
2 ≤ 1

2
n2 − 3n ≤ c2.n

2

Since n > 0 this is equivalent to (divide by n2):

0 ≤ c1 ≤
1

2
−
3

n
≤ c2

What we have here are in fact three inequalities:

0 ≤ c1 (1.14)

c1 ≤
1

2
−
3

n
(1.15)

1

2
−
3

n
≤ c2 (1.16)

(1.14) is trivial, any c1 > 0 will do. To satisfy (1.16) we can pick n ′0 = 1 and then any
positive c2 will do; say, c2 = 1. The smallest integer value for n that makes the right-hand
side of (1.15) positive is 7; the right-hand side becomes 12 −

3
7 = 7

14 −
6
14 = 1

14 . So, to saisfy

(1.15) we pick c1 =
1
14 and n ′′0 = 7. The overall n0 is n0 = max {n ′0, n

′′
0} = 7. The solution

n0 = 7, c1 =
1
14 , c2 = 1 is obviously not unique. �

Problem 2. Is it true that 1
1000n

3 � 1000n2?

Solution:
No. Assume the opposite. Then ∃c > 0 and ∃n0, such that for all n ≥ n0:

1

1000
n3 ≤ c.1000n2

It follows that ∀n ≥ n0:
1

1000
n ≤ 1000.c ⇔ n ≤ 1000000.c

That is clearly false. �

Problem 3. Is it true that for any two functions, at least one of the five relations �, �,
≺, �, and � holds between them?

Solution:
No. Proof by demonstrating an counterexample ([CLR00, pp. 31]): let f(n) = n and
g(n) = n1+sinn. Since g(n) oscillates between n0 = 1 and n2, it cannot be the case that
f(n) � g(n) nor f(n) � g(n) nor f(n) ≺ g(n) nor f(n) � g(n) nor f(n) � g(n).

However, this argument from [CLR00] holds only when n ∈ R+. If n ∈ N+, we cannot
use the function g(n) directly, i.e. without proving additional stuff. Note that sinn reaches
its extreme values −1 and 1 at 2kπ + 3π

2 and 2kπ + π
2 , respectively, for integer k. As

these are irrational numbers, the integer n cannot be equal to any of them. So, it is no
longer true that g(n) oscillates between n0 = 1 and n2. If we insist on using g(n) in our
counterexample we have to argue, for instance, that:
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• for infinitely many (positive) values of the integer variable, for some constant ε > 0,
it is the case that g(n) ≥ n1+ε;

• for infinitely many (positive) values of the integer variable, for some constant σ > 0,
it is the case that g(n) ≤ n1−σ.

An alternative is to use the function g ′(n) = n1+sin (πn+π/2) that indeed oscillates between
n0 = 1 and n2 for integer n. Another alternative is to use

g ′′(n) =

{
n2, if n is even,

1, else.

�

Problem 4. Let p(n) be any univariate polynomial of degree k, such that the coefficient in
the higherst degree term is positive. Prove that p(n) � nk.

Solution:
p(n) = akn

k+ak−1n
k−1+ . . .+a1n+a0 with ak > 0. We have to prove that there exist

positive constants c1 and c2 and some n0 such that for all n ≥ n0, 0 ≤ c1nk ≤ p(n) ≤ c2nk.
Since the leftmost inequality is obvious, we have to prove that

c1n
k ≤ aknk + ak−1nk−1 + ak−2nk−2 . . .+ a1n+ a0 ≤ c2nk

For positive n we can divide by nk, obtaining:

c1 ≤ ak +
ak−1
n

+
ak−2
n2

+ . . .+
a1
nk−1

+
a0
nk︸ ︷︷ ︸

T

≤ c2

Now it is obvious that any c1 and c2 such that 0 < c1 < ak and c2 > ak are suitable
because limn→∞ T = 0.

�

Problem 5. Let a ∈ R and b ∈ R+. Prove that (n+ a)b � nb

Solution:
Note that this problem does not reduce to Problem 4 except in the special case when b is
integer. We start with the following trivial observations:

n+ a ≤ n+ |a| ≤ 2n, provided that n ≥ |a|

n+ a ≥ n− |a| ≥ n
2

, provided that
n

2
≥ |a|, that is, n ≥ 2|a|

It follows that:

1

2
n ≤ n+ a ≤ 2n, if n ≥ 2|a|

By raising to the bth power we obtain:(
1

2

)b
nb ≤ (n+ a)b ≤ 2bnb

So we have a proof with c1 =
(
1
2

)b
, c2 = 2

b, and n0 = d2|a|e.
Alternatively, solve this problem trivially using Problem 6. �

5



Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 6. Prove that for any two asymptotically positive functions f(n) and g(n) and
any constant k ∈ R+,

f(n) � g(n)⇔ (f(n))k � (g(n))k

Solution:
In one direction, assume

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

for some positive constants c1 and c2 and for all n ≥ n0 for some n0 > 0. Raise the three
inequalities to the k-th power (recall that k is positive) to obtain

0 ≤ ck1(g(n))k ≤ (f(n))k ≤ ck2(g(n))k, for all n ≥ n0

Conclude that (f(n))k � (g(n))k since ck1 and ck2 are positive constants.
In the other direction the proof is virtually the same, only raise to power 1k . �

Problem 7. Prove that for any two asymptotically positive functions f(n) and g(n), it is
the case that max (f(n), g(n)) � f(n) + g(n).

Solution:
We are asked to prove there exist positive constants c1 and c2 and a certain n0, such that
for all n ≥ n0:

0 ≤ c1(f(n) + g(n)) ≤ max (f(n), g(n)) ≤ c2(f(n) + g(n))

As f(n) and g(n) are asymptotically positive,

∃n ′0 : ∀n ≥ n ′0, f(n) > 0
∃n ′′0 : ∀n ≥ n ′′0 , g(n) > 0

Let n ′′′0 = max {n ′0, n
′′
0}. Obviously,

0 ≤ c1(f(n) + g(n)) for n ≥ n ′′′0 , if c1 > 0

It is also obvious that when n ≥ n ′′′0 :

1

2
f(n) +

1

2
g(n) ≤ max (f(n), g(n))

f(n) + g(n) ≥max (f(n), g(n)) ,

which we can write as:

1

2
(f(n) + g(n)) ≤ max (f(n), g(n)) ≤ f(n) + g(n)

So we have a proof with n0 = n
′′′
0 , c1 =

1
2 , and c2 = 1. �
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Problem 8. Prove or disprove that for any two asymptotically positive functions f(n) and
g(n) such that f(n) − g(n) is asymptotically positive, it is the case that max (f(n), g(n)) �
f(n) − g(n).

Solution:
The claim is false. As a counterexample consider f(n) = n3+n2 and g(n) = n3+n. In this
case, max (f(n), g(n)) = n3 + n2 = f(n) for all sufficiently large n. Clearly, f(n) − g(n) =
n2 − n which is asymptotically positive but n3 + n2 6� n2 − n. �

Problem 9. Which of the following are true:

2n+1 � 2n

22n � 2n

Solution:
2n+1 � 2n is true because 2n+1 = 2.2n and for any constant c, c.2n � 2n. On the other
hand, 22n � 2n is not true. Assume the opposite. Then, having in mind that 22n = 2n.2n,
it is the case that for some constant c2 and all n→ +∞:

2n.2n ≤ c2.2n ⇔ 2n ≤ c2
That is clearly false. �

Problem 10. Which of the following are true:

1

n2
≺ 1

n
(1.17)

2
1

n2 ≺ 2
1
n (1.18)

Solution:
(1.17) is true because

0 ≤ 1

n2
< c.

1

n
⇔ 0 ≤ 1

n
< c

is true for every positive constant c and sufficiently large n. (1.18), however, is not true.
Assume the opposite. Then:

∀c > 0,∃n0 : ∀n ≥ n0, 0 ≤ 2
1

n2 < c.2
1
n ⇔ 0 ≤ 2

1

n2

2
1
n

< c (1.19)

But

lim
n→∞

(
2
1

n2

2
1
n

)
= lim
n→∞

(
2
1

n2
− 1
n

)
= 1 because (1.20)

lim
n→∞

(
1

n2
−
1

n

)
= lim
n→∞

(
1− n

n2

)
= lim
n→∞

(
1
n − 1

n

)
= 0 (1.21)

It follows that (1.19) is false. �

7



Problems with solutions in the Analysis of Algorithms c© Minko Markov

Problem 11. Which of the following are true:

1

n
≺ 1− 1

n
(1.22)

2
1
n ≺ 21−

1
n (1.23)

Solution:
(1.22) is true because

lim
n→∞

(
1
n

1− 1
n

)
= lim
n→∞

(
1
6n
n−1
6n

)
= lim
n→∞ 1

n− 1
= 0 (1.24)

(1.23) is false because

lim
n→∞

(
2
1
n

21−
1
n

)
= lim
n→∞

(
2
2
n

21

)
= const (1.25)

Problem 12. Let a be a constant such that a > 1. Which of the following are true:

f(n) � g(n) ⇒ af(n) � ag(n) (1.26)

f(n) � g(n) ⇒ af(n) � ag(n) (1.27)

f(n) ≺ g(n) ⇒ af(n) ≺ ag(n) (1.28)

for all asymptotically positive functions f(n) and g(n).

Solution:
(1.26) is not true – Problem 9 provides a counterexample since 2n � n and 22n 6� 2n.
The same counterexample suffices to prove that (1.27) is not true – note that 2n � n but
22n 6� 2n.

Now consider (1.28).

case 1, g(n) is increasing and unbounded: The statement is true. We have to prove
that

∀c > 0,∃n ′ : ∀n ≥ n ′, 0 ≤ af(n) < c.ag(n) (1.29)

Since the constant c is positive, we are allowed to consider its logarithm to base a,
namely k = loga c. So, c = ak. Of course, k can be positive or negative or zero. We
can rewrite (1.29) as

∀k, ∃n ′ : ∀n ≥ n ′, 0 ≤ af(n) < akag(n) (1.30)

Taking logarithm to base a of the two inequalities, we have

∀k, ∃n ′ : ∀n ≥ n ′, 0 ≤ f(n) < k+ g(n) (1.31)

8
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If we prove (1.31), we are done. By definition ((1.4) on page 1), the premise is

∀c > 0,∃n0 : ∀n ≥ n0, 0 ≤ f(n) < c.g(n)

Since that holds for any c > 0, in particular it holds for c = 1
2 . So, we have

∃n0 : ∀n ≥ n0, 0 ≤ f(n) <
g(n)

2
(1.32)

But g(n) is increasing and unbounded. Therefore,

∀k, ∃n1 : ∀n ≥ n1, 0 < k+
g(n)

2
(1.33)

We can rewrite (1.33) as

∀k, ∃n1 : ∀n ≥ n1,
g(n)

2
< k+ g(n) (1.34)

From (1.32) and (1.34) we have

∀k, ∃n ′′ : ∀n ≥ n ′′, 0 ≤ f(n) < k+ g(n) (1.35)

Since (1.35) and (1.31) are the same, the proof is completed.

case 2, g(n) is increasing but bounded: In this case (1.28) is not true. Consider

Problem 11. As it is shown there, 1n ≺ 1− 1
n but 2

1
n 6≺ 21−

1
n .

case 3, g(n) is not increasing: In this case (1.28) is not true. Consider Problem 10.

As it is shown there, 1
n2
≺ 1

n but 2
1

n2 6≺ 2
1
n . �

Problem 13. Let a be a constant such that a > 1. Which of the following are true:

af(n) � ag(n) ⇒ f(n) � g(n) (1.36)

af(n) � ag(n) ⇒ f(n) � g(n) (1.37)

af(n) ≺ ag(n) ⇒ f(n) ≺ g(n) (1.38)

for all asymptotically positive functions f(n) and g(n).

Solution:
(1.36) is true, if g(n) is increasing and unbounded. Suppose there exist positive constants
c1 and c2 and some n0 such that

0 ≤ c1.ag(n) ≤ af(n) ≤ c2.ag(n), ∀n ≥ n0

Since a > 1 and f(n) and g(n) are asymptotically positive, for all sufficiently large n, the
exponents have strictly larger than one values. Therefore, we can take logarithm to base a
(ignoring the leftmost inequality) to obtain:

loga c1 + g(n) ≤ f(n) ≤ loga c2 + g(n)

9
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First note that, provided that g(n) is increasing and unbounded, for any constant k1 such
that 0 < k1 < 1, k1.g(n) ≤ loga c1 + g(n) for all sufficiently large n, regardless of whether
the logarithm is positive or negative or zero. Then note that, provided that g(n) is increasing
and unbounded, for any constant k2 such that k2 > 1, loga c2 + g(n) ≤ k2.g(n) for all
sufficiently large n, regardless of whether the logarithm is positive or negative or zero.
Conclude there exists n1, such that

k1.g(n) ≤ f(n) ≤ k2.g(n), ∀n ≥ n1

However, if g(n) is increasing but bounded, (1.36) is not true. We already showed 2
1
n �

21−
1
n (see 1.25). However, since limn→∞

(
1
n

1− 1
n

)
= 0 (see (1.24)), it is the case that

1
n ≺ 1−

1
n according to (1.6).

Furthermore, if g(n) is not increasing, (1.36) is not true. We already showed (see (1.20))

that limn→∞
(
2
1
n2

2
1
n

)
= 1. According to (1.13), it is the case that 2

1

n2 � 2
1
n . However,

1
n2
6� 1
n (see (1.21)).

Consider (1.37). If g(n) is increasing and unbounded, it is true. The proof can be done
easily as in the case with (1.36). If g(n) is increasing but bounded, the statement is false.

Let g(n) = 1
n . As shown in Problem 11, 21−

1
n � 2

1
n , therefore 21−

1
n � 2

1
n , but 1n ≺ 1−

1
n ,

therefore 1 − 1
n 6�

1
n . Suppose g(n) is not increasing. Let g(n) = 1

n . We know that

2
1

n2 � 2
1
n but 1

n2
6� 1
n .

Now consider (1.38). It is not true. As a counterexample, consider that 2n ≺ 22n but
n 6≺ 2n. �

Problem 14. Let a be a constant such that a > 1. Which of the following are true:

logaφ(n) � logaψ(n) ⇒ φ(n) � ψ(n) (1.39)

logaφ(n) � logaψ(n) ⇒ φ(n) � ψ(n) (1.40)

logaφ(n) ≺ logaψ(n) ⇒ φ(n) ≺ ψ(n) (1.41)

φ(n) � ψ(n) ⇒ logaφ(n) � logaψ(n) (1.42)

φ(n) � ψ(n) ⇒ logaφ(n) � logaψ(n) (1.43)

φ(n) ≺ ψ(n) ⇒ logaφ(n) ≺ logaψ(n) (1.44)

for all asymptotically positive functions φ(n) and ψ(n).

Solution:
Let φ(n) = af(n) and ψ(n) = ag(n), which means that logaφ(n) = f(n) and logaψ(n) =
g(n). Consider (1.26) and conclude that (1.39) is not true. Consider (1.36) and conclude
that (1.42) is true if ψ(n) is increasing and unbounded, and false otherwise. Consider
(1.27) and conlude that (1.40) is not true. Consider (1.37) and conclude that (1.43) is true
if ψ(n) is increasing and unbounded, and false otherwise. Consider (1.28) and conclude that
(1.41) is true if ψ(n) is increasing and unbounded, and false otherwise. Consider (1.38) and
conlude that (1.44) is not true. �

10
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Problem 15. Prove that for any two asymptotically positive functions f(n) and g(n),
f(n) � g(n) iff f(n) � g(n) and f(n) � g(n).

Solution:
In one direction, assume that f(n) � g(n). Then there exist positive constants c1 and c2
and some n0, such that:

0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n), ∀n ≥ n0

It follows that,

0 ≤ c1.g(n) ≤ f(n), ∀n ≥ n0 (1.45)

0 ≤ f(n) ≤ c2.g(n), ∀n ≥ n0 (1.46)

In the other direction, assume that f(n) � g(n) and f(n) � g(n). Then there exists a
positive constant c ′ and some n ′0, such that:

0 ≤ f(n) ≤ c ′.g(n), ∀n ≥ n ′0

and there exists a positive constant c ′′ and some n ′′0 , such that:

0 ≤ c ′′.g(n) ≤ f(n), ∀n ≥ n ′′0

It follows that:

0 ≤ c ′.g(n) ≤ f(n) ≤ c ′′.g(n), ∀n ≥ max {n ′0, n
′′
0}

�

Lemma 1 (Stirling’s approximation).

n! =
√
2πn

nn

en

(
1+Θ

(
1

n

))
(1.47)

�

Here, Θ
(
1
n

)
means any function that is in the set Θ

(
1
n

)
. A derivation of that formula—

without specifying explicitly the
√
2π factor—is found in Problem 143 on page 233.

Problem 16. Prove that

lgn! � n lgn (1.48)

Solution:
Use Stirling’s approximation, ignoring the

(
1+Θ

(
1
n

))
factor, and take logarithm of both

sides to obtain:

lg (n!) = lg (
√
2π) + lgn+ n lgn− n lg e

By Property 9 of the relations, lg (
√
2π) + lgn+ n lgn− n lg e � n lgn. �
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Problem 17. Prove that for any constant a > 1,

an ≺ n! ≺ nn (1.49)

Solution:
Because of the factorial let us restrict n to positive integers.

lim
n→∞

n.(n− 1).(n− 2) . . . 2.1

a . a . a . . . a . a︸ ︷︷ ︸
n times

 =∞

lim
n→∞

n.(n− 1).(n− 2) . . . 2.1

n . n . n . . . n . n︸ ︷︷ ︸
n times

 = 0

�

Problem 18 (polylogarithm versus constant power of n). Let a, k and ε be any constants,
such that k > 0, a > 1, and ε > 0. Prove that:

(loga n)
k ≺ nε (1.50)

Solution:

lim
n→∞ nε

(loga n)
k
= let b← ε

k

lim
n→∞ (nb)k

(loga n)
k
=

lim
n→∞

(
nb

loga n

)k
= k is positive

lim
n→∞ nb

loga n
= use l’Hôpital’s rule

lim
n→∞ bnb−1(

1
lna

) (
1
n

) =

lim
n→∞ (lna)bnb =∞

�

Problem 19 (constant power of n versus exponent). Let a and ε be any constants, such
that a > 1 and ε > 0. Prove that:

nε ≺ an (1.51)

Solution:
Take loga of both sides. The left-hand side yields ε. loga n and the right-hand side yields
n. But ε. loga n ≺ n because of Problem 18. Conclude immediately the desired relation
holds. �
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Definition 1 (log-star function, [CLR00], pp. 36). Let the function lg(i) n be defined
recursively for nonnegative integers i as follows:

lg(i) n =


n, if i = 0

lg
(

lg(i−1) n
)
, if i > 0 and lg(i−1) n > 0

undefined, if i > 0 and lg(i−1) n < 0 or lg(i−1) n is undefined

Then

lg∗ n = min
{
i ≥ 0 | lg(i) n ≤ 1

}
�

According to this definition,

lg∗ 2 = 1, since lg(0) 2 = 2 and lg(1) 2 = lg
(

lg(0) 2
)
= lg (2) = 1

lg∗ 3 = 2, since lg(0) 3 = 3 and lg
(

lg(0) 3
)
= lg (lg 3) = 0.6644 . . .

lg∗ 4 = 2

lg∗ 5 = 3

. . .

lg∗ 16 = 3

lg∗ 17 = 4

. . .

lg∗ 65536 = 4

lg∗ 65537 = 5

. . .

lg∗ 265536 = 5

lg∗
(
265536 + 1

)
= 6

. . .

Obviously, every real number t can be represented by a tower of twos:

t = 22
2.
..
2s

where s is a real number such that 1 < s ≤ 2. The height of the tower is the number of
elements in this sequence. For instance,

13
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number its tower of twos the height of the tower

2 2 1

3 21.5849625007... 2

4 22 2

5 22
1.2153232957...

3

16 22
2

3

17 22
21.0223362884...

4

65536 22
22

4

65537 22
22
1.00000051642167...

5

Having that in mind, it is trivial to see that lg∗ n is the height of the tower of twos of n.

Problem 20 ([CLR00], problem 2-3, pp. 38–39). Rank the following thirty functions by
order of growth. That is, find the equivalence classes of the “�” relation and show their
order by “�”.

lg (lg∗ n) 2lg
∗n

(√
2
)lgn

n2 n! (lgn)!(
3

2

)n
n3 lg2 n lg (n!) 22

n

n
1

lgn

ln lnn lg∗n n.2n nlg lgn lnn 1

2lgn (lgn)lgn en 4lgn (n+ 1)!
√

lgn

lg∗ (lgn) 2
√
2 lgn n 2n n lgn 22

n+1

Solution:

22
n+1 � 22n because 22

n+1
= 22.2

n
= 22

n × 22n .

22
n � (n + 1)! To see why, take logarithm to base two of both sides. The left-hand

side becomes 2n, the right-hand side becomes lg ((n+ 1)!) By (1.47), lg ((n+ 1)!) �
(n+ 1) lg (n+ 1), and clearly (n+ 1) lg (n+ 1) � n lgn. As 2n � n lgn, by (1.41) we have
22
n � (n+ 1)!

(n+ 1)! � n! because (n+ 1)! = (n+ 1)× n!

n! � en by (1.49).

en � n.2n. To see why, consider:

lim
n→∞ n.2

n

en
= lim
n→∞ n

en

2n

= lim
n→∞ n(

e
2

)n = 0

n.2n � 2n

14
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2n �
(
3
2

)n
. To see why, consider:

lim
n→∞

(
3
2

)n
2n

= lim
n→∞

(
3

4

)n
= 0

(
3
2

)n � nlg (lgn). To see why, take lg of both sides. The left-hand side becomes n. lg
(
3
2

)
,

the right-hand side becomes lgn.lg (lgn). Clearly, lg2 n � lgn.lg (lgn) and n � lg2 n by
(1.50). By transitivity, n � lgn.lg (lgn), and so n. lg

(
3
2

)
� lgn.lg (lgn). Apply (1.41) and

the desired conclusion follows.

(lgn)lgn = nlg (lgn), which is obvious if we take lg of both sides. So, (lgn)lgn � nlg (lgn).

(lgn)lgn � (lgn) ! To see why, substitute lgn with m, obtaining mm � m! and apply
(1.49).

(lgn) ! � n3. Take lg of both sides. The left-hand side becomes lg ((lgn) !). Substi-
tute lgn with m, obtaining lg (m!). By (1.48), lg (m!) � m lgm, therefore lg ((lgn) !) �
(lgn).(lg (lgn)). The right-hand side becomes 3. lgn. Compare (lgn).(lg (lgn)) with 3. lgn:

lim
n→∞ 3. lgn

(lgn).(lg (lgn))
= lim
n→∞ 3

lg (lgn)
= 0

It follows that (lgn).(lg (lgn)) � 3. lgn. Apply (1.41) to draw the desired conclusion.

n3 � n2.

n2 � 4lgn because 4lgn = 22 lgn = 2lgn
2
= n2 by the properties of the logarithm.

n2 � n lgn.

lgn! � n lgn (see (1.48)).

n lgn � n.

n � 2lgn because n = 2lgn by the properties of the logarithm.

n � (
√
2)lgn because (

√
2)lgn = 2

1
2
lgn = 2lg

√
n =
√
n and clearly n �

√
n.

(
√
2)lgn � 2

√
2 lgn. To see why, note that lgn �

√
lgn, therefore 1

2 . lgn �
√
2.
√

lgn =
√
2 lgn. Apply (1.28) and conclude that 2

1
2
. lgn � 2

√
2 lgn, i.e. (

√
2)lgn � 2

√
2 lgn.

2
√
2 lgn � lg2 n. To see why, take lg of both sides. The left-hand side becomes

√
2 lgn and

the right-hand side becomes lg (lg2 n) = 2. lg (lgn). Substitute lgn with m: the left-hand

side becomes
√
2m =

√
2
√
m =

√
2.m

1
2 and the right-hand side becomes 2 lgm. By (1.50)

we know that m
1
2 � lgm, therefore

√
2.m

1
2 � 2 lgm, therefore

√
2m � 2 lgm, therefore√

2 lgn � lg (lg2 n). Having in mind (1.41) we draw the desired conclusion.

lg2 n � lnn. To see this is true, observe that lnn = lgn
lg e .
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lnn �
√

lgn.

√
lgn � ln lnn. The left-hand side is

√
lnn
ln2 . Substitute lnn with m and the claim becomes

1√
ln2
.
√
m � lnm, which follows from (1.50).

ln lnn � 2lg∗n. To see why this is true, note that ln lnn � lg lgn and rewrite the claim as
lg lgn � 2lg∗n. Take lg of both sides. The left-hand side becomes lg lg lgn, i.e. a triple
logarithm. The right-hand side becomes lg∗ n. If we think of n as a tower of twos, it is
obvious that the triple logarithm decreases the height of the tower with three, while, as
we said before, the log-star measures the height of the tower. Clearly, the latter is much
smaller than the former.

2lg
∗n � lg∗ n. Clearly, for any increasing function f(n), 2f(n) � f(n).

lg∗ n � lg∗ (lgn). Think of n as a tower of twos and note that the difference in the height
of n and lgn is one. Therefore, lg∗ (lgn) = (lg∗ n) − 1.

lg∗ n � lg (lg∗ n). Substitute lg∗ n with f(n) and the claim becomes f(n) � lg f(n) which is
clearly true since f(n) is increasing.

lg (lg∗ n) � 1.

1 � n
1

lgn . Note that n
1

lgn = 2: take lg of both sides, the left-hand side becomes lg
(
n
1

lgn

)
=

1
lgn . lgn = 1 and the right-hand side becomes lg 2 = 1. �

Problem 21. Give an example of a function f(n), such that for any function g(n) among
the thirty functions from Problem 20, f(n) 6� g(n) and f(n) 6� g(n).

Solution:
For instance,

f(n) =

{
22
n+2

, if n is even
1
n , if n is odd

�

Problem 22. Is it true that for any asymptotically positive functions f(n) and g(n), f(n)+
g(n) � min (f(n), g(n))?

Solution:
No. As a counterexample, consider f(n) = n and g(n) = 1. Then min (f(n), g(n)) = 1,
f(n) + g(n) = n+ 1, and certainly n+ 1 6� 1. �

Problem 23. Is it true that for any asymptotically positive function f(n), f(n) � (f(n))2?
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Solution:
If f(n) is increasing, it is trivially true. If it is decreasing, however, it may not be true:
consider (1.17). �

Problem 24. Is it true that for any asymptotically positive function f(n), f(n) � f(n2 )?

Solution:
No. As a counterexample, consider f(n) = 2n. Then f(n2 ) = 2

n
2 . As we already saw,

2n 6� 2
n
2 . �

Problem 25. Compare the growth of nlgn and (lgn)n.

Solution:
Take logarithm of both sides. The left-hand side becomes (lgn)(lgn) = lg2 n, the right-
hand side, n. lg (lgn). As n. lg (lgn) � lg2 n, it follows that (lgn)n � nlgn. �

Problem 26. Compare the growth of nlg lg lgn and (lgn)!

Solution:
Take lg of both sides. The left-hand side becomes (lgn).(lg lg lgn), the right-hand side
becomes lg ((lgn)!). Substitute lgn with m is the latter expression to get lg ((m)!) �
m lgm. And that is (lgn).(lg lgn). Since (lgn).(lg lgn) � (lgn).(lg lg lgn), it follows that
(lgn)! � nlg lg lgn. �

Problem 27. Let n!! = (n!)!. Compare the growth of n!! and (n− 1)!!× ((n− 1)!)n!.

Solution:
Let (n− 1)! = v. Then n! = nv. We compare

n!! vs (n− 1)!!× ((n− 1)!)n!

(nv)! vs v!× vnv

Apply Stirling’s approximation to both sides to get:

√
2πnv

(nv)nv

env
vs

√
2πv

vv

ev
× vnv

√
2πnv (nv)nv vs

√
2πv e(n−1)v × vv × vnv

Divide by
√
2πv vnv both sides:

√
nnnv vs e(n−1)v × vv

Ignore the
√
n factor on the left. If we derive without it that the left side grows faster,

surely it grows even faster with it. So, consider:

nnv vs e(n−1)v × vv

17
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Raise both sides to 1
v :

nn vs en−1 × v

That is,

nn vs en−1 × (n− 1)!

Apply Stirling’s aproximation second time to get:

nn vs en−1 ×
√
2π(n− 1)

(n− 1)n−1

en−1

That is,

nn vs
√
2π(n− 1) (n− 1)n−1

Since
√
2π(n− 1) (n− 1)n−1 � (n− 1)(n−

1
2), we have

nn vs (n− 1)(n−
1
2)

Clearly, nn � (n− 1)(n−
1
2), therefore n!! � (n− 1)!!× ((n− 1)!)n!. �

Lemma 2. The function series:

S(x) =
ln x

x
+

ln2 x

x2
+

ln3 x

x3
+ . . .

is convergent for x > 1. Furthermore, limx→∞ S(x) = 0.
Proof:
It is well known that the series

S ′(x) =
1

x
+
1

x2
+
1

x3
+ . . .

called geometric series is convergent for x > 1 and S ′(x) = 1
x−1 when x > 1. Clearly,

limx→∞ S ′(x) = 0. Consider the series

S ′′(x) =
1√
x
+

1

(
√
x)2

+
1

(
√
x)3

+ . . . (1.52)

It is a geometric series and is convergent for
√
x > 1, i.e. x > 1, and limx→∞ S ′′(x) = 0.

Let us rewrite S(x) as

S(x) =
1

√
x.
√
x

lnx

+
1

(
√
x)2.

(√
x

lnx

)2 +
1

(
√
x)3.

(√
x

lnx

)3 + . . . (1.53)

For each term fk(x) =
1

(
√
x)k.

( √
x

lnx

)k of S(x), k ≥ 1, for large enough x, it is the case that

fk(x) < gk(x) where gk(x) = 1

(
√
x)
k is the kth term of S ′′(x). To see why this is true,

consider (1.50). Then the fact that S ′′(x) is convergent and limx→∞ S ′′(x) = 0 implies the
desired conclusion. �
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Problem 28 ([Knu73], pp. 107). Prove that n
√
n � 1.

Solution:
We will show an even stronger statement: limn→∞ n

√
n = 1. It is known that:

ex = 1+ x+
x2

2!
+
x3

3!
+ . . .

Note that n
√
n = eln

n
√
n = e(

lnn
n ).

e(
lnn
n ) = 1+

lnn

n
+

(
lnn
n

)2
2!

+

(
lnn
n

)3
3!

+ . . .︸ ︷︷ ︸
T(n)

Lemma 2 implies limn→∞ T(n) = 0. It follows that limn→∞ n
√
n = 1. �

We can also say that n
√
n = 1+O

(
lgn
n

)
, n
√
n = 1+ lgn

n +O
(
lg2n
n2

)
, etc, where the big-Oh

notation stands for any function of the set.

Problem 29 ([Knu73], pp. 107). Prove that n
(
n
√
n− 1

)
� lnn.

Solution:
As

n
√
n = 1+

lnn

n
+

(
lnn
n

)2
2!

+

(
lnn
n

)3
3!

+ . . .

it is the case that:

n
√
n− 1 =

lnn

n
+

(
lnn
n

)2
2!

+

(
lnn
n

)3
3!

+ . . .

Multiply by n to get:

n
(
n
√
n− 1

)
= lnn+

(lnn)2

2!n
+

(lnn)3

3!n2
+ . . .︸ ︷︷ ︸

T(n)

Note that limn→∞ T(n) = 0 by an obvious generalisation of Lemma 2. The claim follows
immediately. �

Problem 30. Compare the growth of nn, (n+ 1)n, nn+1, and (n+ 1)n+1.

Solution:
nn � (n+ 1)n because

lim
n→∞ (n+ 1)n

nn
= lim
n→∞

(
n+ 1

n

)n
= lim
n→∞

(
1+

1

n

)n
= e

Clearly, nn ≺ n(n+1) = n.nn. And n(n+1) � (n+ 1)(n+1):

lim
n→∞ (n+ 1)n+1

nn+1
= lim
n→∞

(
1+

1

n

)n+1
= lim
n→∞

(
1+

1

n

)n
lim
n→∞

(
1+

1

n

)
= e.1 = e

�
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Problem 31. Let k be a constant such that k > 1. Prove that

1+ k+ k2 + k3 + . . .+ kn = Θ(kn)

Solution:
First assume n is an integer variable. Then

1+ k+ k2 + k3 + . . .+ kn =
kn+1 − 1

k− 1
= Θ(kn)

The result can obviously be extended for real n, provided we define appropriately the sum.
For instance, if n ∈ R+ \ N let the sum be

S(n) = 1+ k+ k2 + k3 + . . .+ kbn−1c + kbnc + kn

By the above result, S(n) = kn +Θ
(
kbnc

)
= Θ(kn). �

Problem 32. Let k be a constant such that 0 < k < 1. Prove that

1+ k+ k2 + k3 + . . .+ kn = Θ(1)

Solution:

1+ k+ k2 + k3 + . . .+ kn <

∞∑
t=0

kt =
1

1− k
= Θ(1) �

Corollary 1.

1+ k+ k2 + k3 + . . .+ kn =


Θ(1), if 0 < k < 1

Θ(n), if k = 1

Θ(kn), if k > 1

�

Problem 33. Let f(x) = 22
bxc

and g(x) = 22
dxe

where x ∈ R+. Determine which of the
following are true and which are false:

1. f(x) � g(x)

2. f(x) � g(x)

3. f(x) ≺ g(x)

4. f(x) � g(x)

5. f(x) � g(x)
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f(x) = 22
bxc

g(x) = 22
dxe

x

Figure 1.1: f(x) and g(x) from Problem 33.
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Solution:
Note that ∀x ∈ N+, bxc = dxe, therefore f(x) = g(x) whenever x ∈ N+. On the other hand,

∀x ∈ R+ \ N+, dxe = bxc + 1, therefore g(x) = 22
bxc+1

= 22.2
bxc

=
(
22
bxc)2

= (f(x))2

whenever x ∈ R+ \ N+. Figure 1.1 illustrates the way that f(x) and g(x) grow.
First assume that f(x) ≺ g(x). By definition, for every constant c > 0 there exists x0,

such that ∀x ≥ x0, f(x) < c.g(x). It follows for c = 1 there exists a value for the variable,
say x ′, such that ∀x ≥ x ′, f(x) < g(x). However,

dx ′e ≥ x ′

Therefore,

f(dx ′e) < g(dx ′e)

On the other hand,

dx ′e ∈ N+ ⇒ f(dx ′e) = g(dx ′e)

We derived

f(dx ′e) = g(dx ′e) and f(dx ′e) < g(dx ′e)  

We derived a contradiction, therefore

f(x) 6≺ g(x)

Analogously we prove that

f(x) 6� g(x)

To see that f(x) 6� g(x), note that ∀x̃ ∈ R+, ∃x ′′ ≥ x̃, such that g(x ′′) = (f(x ′′))2. As f(x)
is a growing function, its square must have a higher asymptotic growth rate.

Now we prove that f(x) � g(x). Indeed,

∀x ∈ R+, bxc ≤ dxe⇒
∀x ∈ R+, 2bxc ≤ 2dxe ⇒
∀x ∈ R+, 22

bxc≤ 22dxe ⇒ ∃c > 0, c = const, such that ∀x ∈ R+, 22
bxc ≤ c.22dxe

Finally we prove that f(x) 6� g(x). Assume the opposite. Since f(x) � g(x), by property 7
on page 3 we derive f(x) � g(x) and that contradicts our result that f(x) 6� g(x). �

Problem 34. Prove that

(
n⌊
n
2

⌋) � 1√
n
2n. You may assume n is even.

Solution:
Let m =

⌊
n
2

⌋
, which is n2 if we assume n is even. It is known that(

n
n
2

)
=

n!(
n
2 !
)2
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Apply Stirling’s approximation ( on page 11), ignoring the
(
1+Θ

(
1
n

))
factor, on the three

factorials to get

n!(
n
2 !
)2 =

√
2πn n

n

en(√
2πn2

n
2

n
2

e
n
2

)2 =
√
2π
√
n
nn

en
× en

πn n
n

2n

=

√
2

π
× 1√

n
× 2n

�

Problem 35. Compare the growth of 2n
2+n and 3n

2
.

Solution:

lim
n→∞ 2

n2+n

3n
2

= lim
n→∞ 2

n22n

3n
2

= lim
n→∞ 2n(

3
2

)n2 = 0

To see why the limit is 0, take lg of 2n and
(
3
2

)n2
, namely n vs n2 lg

(
3
2

)
. We derived

2n
2+n ≺ 3n2 . �
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Chapter 2

Iterative Algorithms

In this section we compute the asymptotic running time of algorithms that use the for and
while statements but make no calls to other algorithms or themselves. The time complexity
is expressed as a function of the size of the input, in case the input is an array or a matrix,
or as a function of the upper bound of the loops. Consider the time complexity of the
following trivial algorithm.

Add-1(n: nonnegative integer)
1 a ← 0
2 for i← 1 to n

3 a ← a+ i
4 return a

We make the folloing assumptions:

• the expression at line 3 is executed in constant time regardless of how large n is,

• the expression at line 1 is executed in constant time, and

• the loop control variable check and assignment of the for loop at line 2 are executed
in constant time.

Since we are interested in the asymptotic running time, not in the precise one, it suffices to
find the number of times the expression inside the loop (line 3 in this case) is executed as
a function of the upper bound on the loop control variable n. Let that function be f(n).
The time complexity of Add-1 will then be Θ(f(n)). We compute f(n) as follows. First
we substitute the expression inside the loop with a← a+ 1 where a is the counter variable
that is set to zero initially. Then find the value of a after the loop finishes as a function
of n where n is the upper bound n of the loop control variable i. Using that approach,
algorithm Add-1 becomes Add-1-modified as follows.

Add-1-modified(n: nonnegative integer)
1 a ← 0
2 for i← 1 to n

3 a ← a+ 1
4 return a
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The value that Add-1-modified outputs is
∑n
i=1 1 = n, therefore its time complexity

is Θ(n). Now consider another algorithm:

Add-2(n: nonnegative integer)
1 return n

Clearly, Add-2 is equivalent to Add-1 but the running time of Add-2 is, under the said
assumptions, constant. We denote constant running time by Θ(1)†. It is not incorrect to
say the running time of both algorithms is O(n) but the big-Theta notation is superior as
it grasps precisely—in the asymptotic sense—the algorithm’s running time.

Consider the following iterative algorithm:

Add-3(n: nonnegative integer)
1 a ← 0
2 for i← 1 to n

3 for j← 1 to n

4 a ← a+ 1
5 return a

The value it outputs is
n∑
i=1

n∑
j=1

1 =

n∑
i=1

n = n2, therefore its time complexity is Θ(n2).

Algorithm Add-3 has two nested cycles. We can generalise that the running time of k
nested cycles as follows.

Add-generalised(n: nonnegative integer)
1 for i1 ← 1 to n

2 for i2 ← 1 to n

3 . . .
4 for ik ← 1 to n

5 expression

where expression is computed in Θ(1), has running time Θ(nk).

Let us consider a modification of Add-3:

Add-4(n: nonnegative integer)
1 a ← 0
2 for i← 1 to n

3 for j← i to n

4 a ← a+ 1
5 return a

†All constants are bit-Theta of each other so we might have as well used Θ(1000) or Θ(0.0001) but
we prefer the simplest form Θ(1).
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The running time is determined by the output a and that is:

n∑
i=1

n∑
j=i

1 =

n∑
i=1

( n∑
j=1

1︸ ︷︷ ︸
n

−

i−1∑
j=1

1︸ ︷︷ ︸
i−1

)
=

n∑
i=1

(n− i+ 1) =

n∑
i=1

(n+ 1) −

n∑
i=1

i =

n(n+ 1) −
n(n+ 1)

2
=
1

2
n2 +

1

2
n = Θ(n2) (see Problem 4 on page 5.)

It follows that asymptotically Add-4 has the same running time as Add-3. Now consider
a modification of Add-4.

Add-5(n: nonnegative integer)
1 a ← 0
2 for i← 1 to n

3 for j← i+ 1 to n

4 a ← a+ 1
5 return a

The running time is determined by the output a and that is:

n∑
i=1

n∑
j=i+1

1 =

n∑
i=1

( n∑
j=1

1︸ ︷︷ ︸
n

−

i∑
j=1

1︸ ︷︷ ︸
i

)
=

n∑
i=1

(n− i) =

n∑
i=1

(n) −

n∑
i=1

i =

n2 −
n(n+ 1)

2
=
1

2
n2 −

1

2
n = Θ(n2)

Consider the following algorithm:

A2(n: positive integer)
1 a ← 0

2 for i← 1 to n− 1
3 for j← i+ 1 to n

4 for k← 1 to j

5 a ← a+ 1
6 return a

We are asked to determine a that A2 returns as a function of n. The answer clearly is
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n−1∑
i=1

n∑
j=i+1

j∑
k=1

1, we just need to find an equivalent closed form.

n−1∑
i=1

n∑
j=i+1

j∑
k=1

1 =

n−1∑
i=1

n∑
j=i+1

j =

n−1∑
i=1

 n∑
j=1

j−

i∑
j=1

j

 =

n−1∑
i=1

(
1

2
n(n+ 1) −

1

2
i(i+ 1)

)
=

n−1∑
i=1

(
1

2
n(n+ 1)

)
−
1

2

n−1∑
i=1

(i2 + i) =

1

2
n(n+ 1)(n− 1) −

1

2

n−1∑
i=1

i2 −
1

2

n−1∑
i=1

i

But
n∑
i=1

i2 =
1

6
n(n + 1)(2n + 1), therefore

n−1∑
i=1

i2 =
1

6
(n − 1)n(2n − 1). Further,

n−1∑
i=1

i =

1

2
n(n− 1), so we have

1

2
n(n− 1)(n+ 1) −

1

12
n(n− 1)(2n− 1) −

1

4
n(n− 1) =

1

2
n(n− 1)

(
n+ 1−

1

6
(2n− 1) −

1

2

)
=

1

12
n(n− 1)(6n+ 3− 2n+ 1) =

1

12
n(n− 1)(4n+ 4) =

1

3
n(n− 1)(n+ 1)

That implies that the running time of A2 is Θ(n3). Clearly A2 is equivalent to the following
algorithm.

A3(n: positive integer)
1 return n(n− 1)(n+ 1)/3

whose running time is Θ(1).

A4(n: positive integer)
1 a ← 0

2 for i← 1 to n

3 for j← i+ 1 to n

4 for k← i+ j− 1 to n

5 a ← a+ 1
6 return a

Problem 36. Find the running time of algorithm A4 by determining the value of a it
returns as a function of n, f(n). Find a closed form for f(n).
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Solution:

f(n) =

n∑
i=1

n∑
j=i+1

n∑
k=i+j−1

1

Let us evaluate the innermost sum
n∑

k=i+j−1

1. It is easy to see that the lower boundary

i+ j− 1 may exceed the higher boundary n. If that is the case, the sum is zero because the
index variable takes values from the empty set. More precisely, for any integer t,

n∑
i=t

1 =

{
n− t+ 1 , if t ≤ n
0 , else

It follows that

n∑
k=i+j−1

1 =

{
n− i− j+ 2 , if i+ j− 1 ≤ n ⇔ j ≤ n− i+ 1

0 , else

Then

f(n) =

n∑
i=1

n−i+1∑
j=i+1

(n+ 2− (i+ j))

Now the innermost sum is zero when i + 1 > n − i + 1 ⇔ 2i > n ⇔ i >
⌊
n
2

⌋
, therefore
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the maximum i we have to consider is
⌊
n
2

⌋
:

f(n) =

bn2 c∑
i=1

n−i+1∑
j=i+1

(n+ 2− (i+ j)) =

(n+ 2)

bn2 c∑
i=1

n−i+1∑
j=i+1

1−

bn2 c∑
i=1

i

n−i+1∑
j=i+1

1

−

bn2 c∑
i=1

n−i+1∑
j=i+1

j =

(n+ 2)

bn2 c∑
i=1

(n− i+ 1− (i+ 1) + 1) −

bn2 c∑
i=1

i(n− i+ 1− (i+ 1) + 1)−

bn2 c∑
i=1

n−i+1∑
j=1

j−

i∑
j=1

j

 =

(n+ 2)

bn2 c∑
i=1

(n− 2i+ 1) −

bn2 c∑
i=1

i(n− 2i+ 1)−

bn2 c∑
i=1

(
(n− i+ 1)(n− i+ 2)

2
−
i(i+ 1)

2

)
=

(n+ 2)(n+ 1)

bn2 c∑
i=1

1− 2(n+ 2)

bn2 c∑
i=1

i− (n+ 1)

bn2 c∑
i=1

i+ 2

bn2 c∑
i=1

i2−

1

2

bn2 c∑
i=1

(
(n+ 1)(n+ 2) − i(2n+ 3)+ 6 i2− 6 i2 − i)

)
=

(n+ 2)(n+ 1)

bn2 c∑
i=1

1− (3n+ 5)

bn2 c∑
i=1

i+ 2

bn2 c∑
i=1

i2−

(n+ 1)(n+ 2)

2

bn2 c∑
i=1

1+
(2n+ 4)

2

bn2 c∑
i=1

i =

⌊n
2

⌋
(n+ 1)(n+ 2) − (3n+ 5)

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)

2
+ 2

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
) (
2
⌊
n
2

⌋
+ 1
)

6
−

1

2

⌊n
2

⌋
(n+ 1)(n+ 2) + (n+ 2)

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)

2
=⌊

n
2

⌋
(n+ 1)(n+ 2)

2
−

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)
(2n+ 3)

2
+

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
) (
2
⌊
n
2

⌋
+ 1
)

3
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When n is even, i.e. n = 2k for some k ∈ N+,
⌊n
2

⌋
= k and so

f(n) =
k(2k+ 1)(2k+ 2)

2
−
k(k+ 1)(4k+ 3)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)(4k+ 2) − k(k+ 1)(4k+ 3)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)

(
−
1

2
+
2k+ 1

3

)
=
k(k+ 1)(4k− 1)

6

When n is odd, i.e. n = 2k+ 1 for some k ∈ N,
⌊n
2

⌋
= k and so

f(n) =
k(2k+ 2)(2k+ 3)

2
−
k(k+ 1)(4k+ 5)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)(4k+ 6) − k(k+ 1)(4k+ 5)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)

(
1

2
+
2k+ 1

3

)
=
k(k+ 1)(4k+ 5)

6

Obviously, f(n) = Θ(n3). �

A5(n: positive integer)
1 a ← 0

2 for i← 1 to n

3 for j← i to n

4 for k← n+ i+ j− 3 to n

5 a ← a+ 1
6 return a

Problem 37. Find the running time of algorithm A5 by determining the value of a it
returns as a function of n, f(n). Find a closed form for f(n).

Solution:
We have three nested for cycles and it is certainly true that f(n) = O(n3). However, now
f(n) 6= Θ(n3). It is easy to see that for any large enough n, line 5 is executed for only three
values of the ordered triple 〈i, j, k〉. Namely,

〈i, j, k〉 ∈
{
〈1, 1, n− 1〉,
〈1, 1, n〉,
〈1, 2, n− 1〉

}
because the condition in the innermost loop (line 5) requires that i + j ≤ 3. So, f(n) = 3,
thus f(n) = Θ(1). �
Problem 37 raises a question: does it make sense to compute the running time of an iterative
algorithm by counting how many time the expression in the innermost loop is executed?
At lines 2 and 3 of A5 there are condition evaluations and variable increments – can we
assume they take no time at all? Certainly, if that was a segment of a real-world program,
the outermost two loops would be executed Θ(n2) times, unless some sort of optimisation
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was applied by the compiler. Anyway, we postulate that the running time is evaluated by
counting how many times the innermost loop is executed. Whether that is a realistic model
for real-world computation or not, is a side issue.

A6(a1, a2, . . . an: array of positive distinct integers, n ≥ 3)
1 S: a stack of positive integers
2 (∗ P(S) is a predicate that is evaluated in Θ(1) time. ∗)
3 (∗ If there are less than two elements in S then P(S) is false. ∗)
4 push(a1, S)
5 push(a2, S)
6 for i← 3 to n

7 while P(S) do
8 pop(S)
9 push(ai, S)

Problem 38. Find the asymptotic growth rate of running time of A6. Assume the predicate
P is evaluated in Θ(1) time and the push and pop operations are executed in Θ(1) time.

Solution:
Certainly, the running time is O(n2) because the outer loop runs Θ(n) times and the inner
loop runs in O(n) time: note that for each concrete i, the inner loop (line 8) cannot be
executed more than n− 2 times sinse there are at most n elements in S and each execution
of line 8 removes one element from S.

However, a more precise analysis is possible. Observe that each element of the array is
being pushed in S and may be popped out of S later but only once. It follows that line 8
cannot be exesuted more than n times altogether, i.e. for all i, and so the algorithm runs
in Θ(n) time. �

A7(a1, a2, . . . an: array of positive distinct integers, x: positive integer)
1 i ← 1

2 j ← n

3 while i ≤ j do

4 k ← ⌊
i+j
2

⌋
5 if x = ak
6 return k

7 else if x < ak
8 j ← k− 1
9 else i ← k+ 1

10 return −1

Problem 39. Find the asymptotic growth rate of running time of A7.

Solution:
The following is a loop invariant for A7:
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For every iteration of the while loop of A7 it is the case that:

j− i+ 1 ≤ n

2t
(2.1)

where the iteration number is t, for some t ≥ 0.

We prove it by induction on t. The basis is t = 0, i.e. the first time the execution reaches
line 3. Then j is n, i is 1, and indeed n−1+1 ≤ n

20
for all sufficiently large n. Assume that

at iteration t, t ≥ 1, (2.1) holds, and there is yet another iteration to go through. Ignore
the possibility x = ak (line 5) because, if that is true then iteration t+ 1 never takes place.
There are exactly two ways to get from iteration t to iteration t+ 1 and we consider them
in separate cases.

Case I: the execution reaches line 8 Now j becomes
⌊
i+j
2

⌋
− 1 and i stays the same.

j− i

2
+
1

2
≤ n

2t+1
divide (2.1) by 2

j+ i− 2i

2
+
1

2
≤ n

2t+1

j+ i

2
− i+

1

2
≤ n

2t+1

j+ i

2
− i+

1

2
− 1+ 1 ≤ n

2t+1

j+ i

2
− 1− i+

1

2
+ 1 ≤ n

2t+1

j+ i

2
− 1− i+ 1 ≤ n

2t+1
since

1

2
> 0⌊

j+ i

2

⌋
− 1︸ ︷︷ ︸

the new j

− i+ 1 ≤ n

2t+1
since bmc ≤ m, ∀m ∈ R+

And so the induction step follows from the induction hypothesis.

Case II: the execution reaches line 9 Now j stays the same and i becomes

⌊
i+ j

2

⌋
+1.

j− i

2
+
1

2
≤ n

2t+1
divide (2.1) by 2

2j− j− i

2
+
1

2
≤ n

2t+1

j−
j+ i

2
+
1

2
≤ n

2t+1

j−
i+ j

2
+
1

2
− 1+ 1 ≤ n

2t+1

j−
i+ j

2
−
1

2
+ 1 ≤ n

2t+1

j−

(
i+ j

2
+
1

2

)
+ 1 ≤ n

2t+1

j−

(⌊
i+ j

2

⌋
+ 1

)
︸ ︷︷ ︸

the new i

+1 ≤ n

2t+1
since

⌊
i+ j

2

⌋
+ 1 ≥ i+ j

2
+
1

2
, ∀i, j ∈ N+
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And so the induction step follows from the induction hypothesis.

Having proven (2.1), we consider the maximum value that t reaches, call it tmax. During
that last iteration of the loop, the values of i and j become equal, because the loop stops
executing when j < i. Therefore, j − i = 0 during the execution of iteration tmax—before
i gets incremented or j gets decremented. So, substituting t with tmax and j − i with 0 in
the invariant, we get 2tmax ≤ n⇔ tmax < dlgne. It follows that the running time of A7 is
O(lgn).

The following claim is a loop invariant for A7:

For every iteration of the while loop of A7, if the iteration number is t, t ≥ 0,
it is the case that:

n

2t+1
− 4 < j− i (2.2)

We prove it by induction on t. The basis is t = 0, i.e. the first time the execution reaches
line 3. Then j is n, i is 1, and indeed n

21+0
− 4 = n

2 − 4 < n − 1, for all sufficiently large
n. Assume that at iteration t, t ≥ 1, (2.2) holds, and there is yet another iteration to go
through. Ignore the possibility x = ak (line 5) because, if that is true then iteration t + 1
never takes place. There are exactly two ways to get from iteration t to iteration t+ 1 and
we consider them in separate cases.

Case I: the execution reaches line 8 Now j becomes

⌊
i+ j

2

⌋
−1 and i stays the same.

n

2t+2
− 2 <

j− i

2
divide (2.2) by 2

n

2t+2
− 2 <

j+ i− 2i

2
n

2t+2
− 2 <

j+ i

2
− i

n

2t+2
− 4 <

j+ i

2
− 2− i

n

2t+2
− 4 <

⌊
j+ i

2

⌋
− 1︸ ︷︷ ︸

the new j

− i since m− 2 ≤ bmc− 1, ∀m ∈ R+
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Case II: the execution reaches line 9 Now j stays the same and i becomes

⌊
i+ j

2

⌋
+1.

n

2t+2
− 2 <

j− i

2
n

2t+2
− 2 <

2j− j− i

2
n

2t+2
− 2 < j−

j+ i

2
n

2t+2
− 4 < j−

j+ i

2
− 2

n

2t+2
− 4 < j−

(
j+ i

2
+ 2

)
n

2t+2
− 4 < j−

(⌊
j+ i

2

⌋
+ 1

)
︸ ︷︷ ︸

the new i

since m+ 2 ≥ bmc+ 1, ∀m ∈ R+

Having proven (2.2), it is trivial to prove that in the worst case, e.g. when x is not in the
array, the loop is executed Ω(lgn) times. �

Problem 40. Determine the asymptotic running time of the following programming seg-
ment:

s = 0;

for(i = 1; i * i <= n; i ++)

for(j = 1; j <= i; j ++)

s += n + i - j;

return s;

Solution:
The segment is equivalent to:

s = 0;

for(i = 1; i <= floor(sqrt(n)); i ++)

for(j = 1; j <= i; j ++)

s += n + i - j;

return s;

As we already saw, the running time is Θ
((√

n
)2)

and that is Θ(n). �

Problem 41. Assume that An×n, Bn×n, and Cn×n are matrices of integers. Determine
the asymptotic running time of the following programming segment:

for(i = 1; i <= n; i ++)

for(j = 1; j <= n; j ++) {
s = 0;

for(k = 1; k <= n; k ++)

s += A[i][k] * B[k][j];

C[i][j] = s; }
return s;
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Solution:
Having in mind the analysis of Add-3 on page 25, clearly this is a Θ(n3) algorithm. How-
ever, if consider the order of growth as a function of the length of the input, the order of

growth is Θ
(
m
3
2

)
, where m is the length of the input, i.e. m is the order of the number

of elements in the matrices and m = Θ(n2). �

A8(a1, a2, . . . an: array of positive integers)
1 s ← 0

2 for i← 1 to n− 4
3 for j← i to i+ 4
4 for k← i to j

5 s ← s+ ai

Problem 42. Determine the running time of algorithm A8.

Solution:
The outermost loop is executed n − 4 times (assume large enough n). The middle loop is
executed 5 times precisely. The innermost loop is executed 1, 2, 3, 4, or 5 times for j equal
to i, i+ 1, i+ 2, i+ 3, and i+ 4, respectively. Altogether, the running time is Θ(n). �

A9(n: positive integer)
1 s ← 0

2 for i← 1 to n− 4
3 for j← 1 to i+ 4
4 for k← i to j

5 s ← s+ 1
6 return s

Problem 43. Determine the running time of algorithm A9. First determine the value it
returns as a function of n.

Solution:
We have to evaluate the sum:

n−4∑
i=1

i+4∑
j=1

j∑
k=i

1

Having in mind that

j∑
k=i

1 =

{
j− i+ 1, if j ≥ i
0, else
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we rewrite the sum as:

n−4∑
i=1


i−1∑
j=1

j∑
k=i

1︸ ︷︷ ︸
this is 0

+

i+4∑
j=i

j∑
k=i

1

 =

n−4∑
i=1

i+4∑
j=i

(j− i+ 1) =

n−4∑
i=1

(
(i− i+ 1) + (i+ 1− i+ 1) + (i+ 2− i+ 1) + (i+ 3− i+ 1) + (i+ 4− i+ 1)

)
=

n−4∑
i=1

(1+ 2+ 3+ 4+ 5) = 15(n− 4)

So, algorithm A9 returns 15(n − 4). The time complexity, though, is Ω(n2) because the
outer two loops require Ω(n2) work. �

A10(n: positive integer)
1 a ← 0

2 for i← 0 to n− 1
3 j← 1

4 while j < 2n do
5 for k← i to j

6 a ← a+ 1
7 j← j+ 2
8 return a

Problem 44. Find the running time of algorithm A10 by determining the value of a it
returns as a function f(n) of n. Find a closed form for f(n).

Solution:

f(n) =

n−1∑
i=0

∑
j∈{1,3,5,...,2n−1}

j∑
k=i

1

Let n ′ = n− 1. Then

j ∈ {1, 3, 5, . . . , 2n− 1}⇔ j ∈ {1, 3, 5, . . . , 2n ′ + 1}

But {1, 3, 5, . . . , 2n ′ + 1} = {2× 0+ 1, 2× 1+ 1, 2× 2+ 1, . . . , 2×n ′ + 1}. So we can rewrite
the sum as:

f(n) =

n−1∑
i=0

n−1∑
l=0

2l+1∑
k=i

1

We know that

2l+1∑
k=i

1 =

{
2l+ 1− i+ 1, if 2l+ 1 ≥ i⇔ l ≤

⌈
i−1
2

⌉
0, otherwise
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Let
⌈
i−1
2

⌉
be called i ′. it must be case that

f(n) =

n−1∑
i=0


i ′−1∑
l=0

2l+1∑
k=i

1︸ ︷︷ ︸
0

+

n−1∑
l=i ′

2l+1∑
k=i︸ ︷︷ ︸

2l+2−i


=

n−1∑
i=0

n−1∑
l=i ′

(2l+ 2− i)

=

n−1∑
i=0

(
(2− i)

n−1∑
l=i ′

1+ 2

n−1∑
l=i ′

l

)
=

=

n−1∑
i=0

(
(2− i)(n− 1− i ′ + 1) + 2

n−1∑
l=i ′

l

)
=

=

n−1∑
i=0

(
(2− i)(n− i ′) + 2

n−1∑
l=i ′

l

)
=

//
since

q∑
k=p

k =
1

2
(q + p)(q − p + 1 )

=

n−1∑
i=0

(
(2− i)(n− i ′) + 2× 1

2
× (n− 1+ i ′)(n− 1− i ′ + 1)

)
=

=

n−1∑
i=0

(
(2− i)(n− i ′) + (n− 1+ i ′)(n− i ′)

)
=

=

n−1∑
i=0

(
(n− i ′)

(
(2− i) + (n− 1+ i ′)

))
=

=

n−1∑
i=0

(n− i ′)(n+ (−i+ 1+ i ′)) (2.3)

But

− i+ 1+ i ′ = −i+ 1+

⌈
i− 1

2

⌉
=⌈

−i+ 1+
i− 1

2

⌉
=

⌈
−2i+ 2+ i− 1

2

⌉
=

⌈
−i+ 1

2

⌉
=

⌈
−
i− 1

2

⌉
= −

⌊
i− 1

2

⌋
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since ∀x ∈ R, d−xe = − bxc. Therefore, (2.3) equals

n−1∑
i=0

(
n−

⌈
i− 1

2

⌉)(
n−

⌊
i− 1

2

⌋)
=

n−1∑
i=0

(
n2 − n

⌊
i− 1

2

⌋
− n

⌈
i− 1

2

⌉
+

⌈
i− 1

2

⌉⌊
i− 1

2

⌋)
=

n2
n−1∑
i=0

1− n

n−1∑
i=0


⌊
i− 1

2

⌋
+

⌊
i− 1

2

⌋
︸ ︷︷ ︸

i−1

+

n−1∑
i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n2(n) − n

n−1∑
i=0

(i− 1) +

n−1∑
i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n3 − n

(
n−1∑
i=0

i−

n−1∑
i=0

1

)
+

n−1∑
i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n3 − n

(
(n− 1)n

2
− n

)
+

n−1∑
i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n3 −
n2(n− 3)

2
+

n−1∑
i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
=

n3 + 3n2

2
+

n−1∑
i=0

⌈
i− 1

2

⌉⌊
i− 1

2

⌋
(2.4)

By (8.38) on page 255,

n−1∑
i=0

⌊
i− 1

2

⌋⌈
i− 1

2

⌉
=


(n− 2)n(2n− 5)

24
, n− 1 odd ⇔ n even

(n− 3)(n− 1)(2n− 1)

24
, n− 1 even⇔ n odd

I. Suppose n is even. Then

f(n) =
n3 + 3n2

2
+

(n− 2)n(2n− 5)

24

=
12(n3 + 3n2) + (2n3 − 9n2 + 10n)

24

=
14n3 + 27n2 + 10n

24

=
n(2n+ 1)(7n+ 10)

24
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II. Suppose n is odd. Then

f(n) =
n3 + 3n2

2
+

(n− 3)(n− 1)(2n− 1)

24

=
12n3 + 36n2 + 2n3 − 9n2 + 10n− 3

24

=
(n+ 1)(14n2 + 13n− 3)

24

Obviously, f(n) = Θ(n3) in either case. �

Asymptotics of bivariate functions

Our notations from Chapter 1 can be generalised for two variables as follows. A bivariate
function f(n,m) is asymptotically positive iff

∃n0∃m0 : ∀n ≥ n0∀m ≥ m0, f(n,m) > 0

Definition 2. Let g(n,m) be an asymptotically positive function with real domain and
codomain. Then

Θ(g(n,m)) =
{
f(n,m) | ∃c1, c2 > 0, ∃n0,m0 > 0 :
∀n ≥ n0, ∀m ≥ m0, 0 ≤ c1.g(n,m) ≤ f(n,m) ≤ c2.g(n,m)

}
�

Pattern matching is a computational problem in which we are given a text and a pattern
and we compute how many times or, in a more elaborate version, at what shifts, the pattern
occurs in the text. More formally, we are given two arrays of characters T [1..n] and P[1..m],
such that n ≥ m. For any k, 1 ≤ k ≤ n−m+ 1, we have a shift at position k iff:

T [k] =P[1]

T [k+ 1] =P[2]

. . .

T [k+m− 1] =P[m]

The problem then is to determine all the valid shifts. Consider the following algorithm for
that problem.

Naive-Pattern-Mathing(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i← 1 to n−m+ 1
3 if T [i, i+ 1, . . . , i+m− 1] = P
4 print “shift at” i

Problem 45. Determine the running time of algorithm Naive-Pattern-Mathing.
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Solution:
The algorithm is ostensibly Θ(n) because it has a single loop with the loop control variable
running from 1 to n. That analysis, however, is wrong because the comparison at line 3
cannot be performed in constant time. Have in mind thatm can be as large as n. Therefore,
the algorihm is in fact:

Naive-Pattern-Mathing-1(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i← 1 to n−m+ 1
3 Match ← True
4 for j← 1 to m

5 if T [i+ j− 1] 6= P[j]
6 Match ← False
7 if Match
8 print “shift at” i

For obvious reasons this is a Θ((n − m).m) algorithm: both the best-case and the
worst-case running times are Θ((n−m).m)†. Suppose we improve it to:

Naive-Pattern-Mathing-2(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m+ 1
3 Match ← True
4 j ← 1

5 while Match And j ≤ m do
6 if T [i+ j− 1] = P[j]
7 j ← j+ 1
8 else
9 Match ← False

10 if Match
11 print “shift at” i

Naive-Pattern-Mathing-2 has the advantage that once a mismatch is found (line 9)
the inner loop “breaks”. Thus the best-case running time is Θ(n). A best case, for instance,
is:

T = aa . . . a︸ ︷︷ ︸
n times

and P = bb . . . b︸ ︷︷ ︸
m times

However, the worst case running time is still Θ((n−m).m). A worst case is, for instance:

T = aa . . . a︸ ︷︷ ︸
n times

and P = aa . . . a︸ ︷︷ ︸
m times

It is easy to prove that (n −m).m is maximised when m varies and n is fixed for m � n
2

and achieves maximum value Θ(n2). It follows that all the naive string matchings are, at
worst, quadratic algorithms. �

†Algorithms that have the same—in asymptotic terms—running time for all inputs of the same length
are called oblivious.
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It is known that faster algorithms exist for the pattern matching problem. For instance,
the Knuth-Morris-Pratt [KMP77] algorithm that runs in Θ(n) in the worst case.

Problem 46. For any two strings x and y of the same length, we say that x is a circular
shift of y iff y can be broken into substrings—one of them possibly empty—y1 and y2:

y = y1 y2

such that x = y2 y1. Find a linear time algorithm, i.e. Θ(n) in the worst case, that computes
whether x is a circular shift of y or not. Assume that x 6= y.

Solution:
Run the linear time algorithm for string matching of Knuth-Morris-Pratt with input yy (y
concatenated with itself) as text and x as pattern. The algorithm will output one or more
valid shifts iff x is a circular shift of y, and zero valid shifts, otherwise. To see why, consider
the concatenation of y with itself when it is a circular shift of x for some y1 and y2, such
that y = y1 y2 and x = y2 y1:

y y = y1 y2 y1︸ ︷︷ ︸
this is x

y2

The running time is Θ(2n), i.e. Θ(n), at worst. �
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Chapter 3

Recursive Algorithms and
Recurrence Relations

3.1 Preliminaries

A recursive algorithm is an algorithm that calls itself, one or more times, on smaller inputs.
To prevent an infinite chain of such calls there has to be a value of the input for which the
algorithm does not call itself.

A recurrence relation in one variable is an equation, i.e. there is an “=” sign “in the
middle”, in which a function of the variable is equated to an expression that includes the
same function on smaller value of the variable. In addition to that for some basic value of
the variable, typically one or zero, an explicit value for the function is defined – that is the
initial condition†. The variable is considered by default to take nonnegative integer values,
although one can think of perfectly valid recurrence relations in which the variable is real.

Typically, in the part of the relation that is not the initial condition, the function of the
variable is written on the left-hand side of the “=” sign as, say, T(n), and the expression,
on the right-hand side, e.g. T(n) = T(n − 1) + 1. If the initial condition is, say, T(0) = 0,
we typically write:

T(n) = T(n− 1) + 1, ∀n ∈ N+ (3.1)

T(0) = 0

It is not formally incorrect to write the same thing as:

T(n− 1) = T(n− 2) + 1, ∀n ∈ N+, n 6= 1
T(0) = 0

The equal sign is interpreted as an assignment from right to left, just as the equal sign in
the C programming language, so the following “unorthodox” way of describing the same

†Note there can be more than one initial condition as in the case with the famous Fibonacci numbers:

F(n) = F(n− 1) + F(n− 2), ∀n ∈ N+,n 6= 1
F(1) = 1

F(0) = 0

The number of initial conditions is such that the initial conditions prevent “infinite descent”.
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relation is discouraged :

T(n− 1) + 1 = T(n), ∀n ∈ N+

0 = T(0)

Each recurrence relation defines an infinite numerical sequence, provided the variable
is integer. For example, (3.1) defines the sequence 0, 1, 2, 3, . . .. Each term of the relation,
except for the terms defined by the initial conditions, is defined recursively, i.e. in terms of
smaller terms, hence the name. To solve a recurrence relation means to find a non-recursive
expression for the same function – one that defines the same sequence. For example, a
solution of (3.1) is T(n) = n.

It is natural to describe the running time of a recursive algorithm by some recurrence
relation. However, since we are interested in asymptotic running times, we do not need the
precise solution of a “normal” recurrence relation as described above. A normal recurrence
relation defines a sequence of numbers. If the time complexity of an algorithm as a worst-
case analysis was given by a normal recurrence relation then the number sequence a1, a2,
a3, . . . , defined by that relation, would describe the running time of algorithm precisely,
i.e. for input of size n, the maximum number of steps the algorithm makes over all inputs
of size n is precisely an. We do not need such a precise analysis and often it is impossible
to derive one. So, the recurrence relations we use when analysing an algorithm typically
have bases Θ(1), for example:

T(n) = T(n− 1) + 1, n ≥ 2 (3.2)

T(1) = Θ(1)

Infinitely many number sequences are solutions to (3.2). To solve such a recurrence relation
means to find the asymptotic growth of any of those sequences. The best solution we can
hope for, asymptotically, is the one given by the Θ notation. If we are unable to pin down
the asymptotic growth in that sense, our second best option is to find functions f(n) and
g(n), such that f(n) = o(g(n)) and T(n) = Ω(f(n)) and T(n) = O(g(n)). The best solution
for the recurrence relation (3.2), in the asymptotic sense, is T(n) = Θ(n). Another solution,
not as good as this one, is, for example, T(n) = Ω(

√
n) and T(n) = O(n2).

In the problems that follow, we distinguish the two types of recurrence relation by the
initial conditions. If the initial condition is given by a precise expression as in (3.1) we have
to give a precise answer such as T(n) = n, and if the initial condition is Θ(1) as in (3.2) we
want only the growth rate.

It is possible to omit the initial condition altogether in the description of the recurrence.
If we do so we assume tacitly the initial condition is T(c) = Θ(1) for some positive constant
c. The reason to do that may be that it is pointless to specify the usual T(1); however,
it may be the case that the variable never reaches value one. For instance, consider the
recurrence relation

T(n) = T
(⌊n
2

⌋
+ 17

)
+ n

which we solve below (Problem 53 on page 57). To specify “T(1) = Θ(1)” for it is wrong.

3.1.1 Iterators

The recurrence relations can be partitioned into the following two classes, assuming T is
the function of the recurrence relations as above.
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1. The ones in which T appears only once on the right-hand side as in (3.1).

2. The ones in which T appears mutiple times on the right-hand side, for instance:

T(n) = T(n− 1) + T(n− 2) + T(n− 3) + n (3.3)

We will call them relations with single occurrence and with multiple occurrences, respec-
tively. Of course, that distinction is somewhat fuzzy because the following recurrence rela-
tions: T(n) = 2T(n− 1) and T(n) = T(n− 1)+ T(n− 1) are clearly equivalent—they define
the same sequence if the initial condition is the same—and yet the second one is superficially
with multiple occurrences while the first one is not. Therefore, those definitions are not
purely syntactic. With a certain lack of precision we define that recurrence relation with
a single occurrence is one which can easily be transformed into an equivalent recurrence
relation in which the symbol T appears precisely once on the right-hand side.

We find it helpful to make that distinction because in general only the relations with
single occurrence are ameaneable to the method of unfolding (see below). If the relation is
with single occurrence we define the iterator of the relation as the iterative expression that
shows how the variable decreases. For example, the iterator of (3.1) is:

n→ n− 1 (3.4)

It is not practical to define iterators for relations with multiple occurrences. If we wanted
to define iterators for them as well, they would have a set of functions on the right-hand
side, for instance the iterator of (3.3) would be

n→ {n− 1, n− 2, n− 3}

and that does help the analysis of the relation. So, we define iterators only for relations
with single occurrence. The iterators that are easiest to deal with (and, fortunately, occur
often in practice) are the ones in which the function on the right-hand side is subtraction
or division (by constant > 1):

n→ n− c, c > 0 (3.5)

n→ n

b
, b > 1 (3.6)

Another possibility is that function to be some root of n:

n→ d
√
n, d > 1 (3.7)

Note that the direction of the assignment in the iterator is the opposite to the one in
the recurrence relation (compare (3.1) with (3.4)). The reason is that a recurrence has to
phases: descending and ascending. In the descending phase we start with some value n
for the variable and decrease it in successive steps till we reach the initial condition; in
the ascending phase we go back from the initial condition “upwards”. The left-to-right
direction of the iterator refers to the descending phase, while the right-to-left direction of
the assignment in the recurrence refers to the ascending phase.

It is important to be able to estimate the number of times an iterator will be executed before
its variable becomes 1 (or whatever value the initial conditions specify). If the variable n
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is integer, the iterator n→ n− 1 is the most basic one we can possibly have. The number
of times it is executed before n becomes any a priori fixed constant is Θ(n). That has to
be obvious. Now consider (3.5). We ask the same question: how many times it is executed
before n becomes a constant. Substitute n by cm and (3.5) becomes:

cm→ c(m− 1) (3.8)

The number of times (3.8) is executed (before m becomes a constant) is Θ(m). Since
m = Θ(n), we conclude that (3.5) is executed Θ(n) times.

Consider the iterator (3.6). To see how many times it is executed before n becomes
a constant (fixed a priori)) can be estimated as follows. Substitute n by bm and (3.6)
becomes

bm → bm−1 (3.9)

(3.9) is executed Θ(m) times because m → m − 1 is executed Θ(m) times. Since m =
logb n, we conclude that (3.6) is executed Θ(logb n) times, i.e. Θ(lgn) times. We see that
the concrete value of b is immaterial with respect to the asymptotics of the number of
executions, provided b > 1.

Now consider (3.7). To see how many times it is executed before n becomes a constant,
substitute n by dd

m
. (3.7) becomes

dd
m → d

dm

d = dd
m−1

(3.10)

(3.10) is executed Θ(m) times. As m = logd logd n, we conclude that (3.7) is executed
Θ(logd logd n) times, i.e. Θ(lg lgn) times. Again we see that the value of the constant in
the iterator, namely d, is immaterial as long as d > 1.

Let us consider an iterator that decreases even faster than (3.7):

n→ lgn (3.11)

The number of times it is executed before n becomes a constant is lg∗ n, which follows right
from Definion 1 on page 13.

Let us summarise the rates of decrease of the iterators we just considered assuming the
mentioned “constants of decrease” b and d are 2.

iterator asymptotics of the number executions alternative form (see Definion 1)

n→ n− 1 n lg(0) n

n→ n/2 lgn lg(1) n

n→ √n lg lgn lg(2) n

n→ lgn lg∗ n lg∗ n

There is a gap in the table. One would ask, what is the function f(n), such that the iterator
n → f(n) is executed, asymptotically, lg lg lgn times, i.e. lg(3) n times. To answer that
question, consider that f(n) has to be such that if we substitute n by 2m, the number
of executions is the same as in the iterator m → √m. But m → √m is the same as
lgn→ √lgn, i.e. n→ 2

√
lgn. We conclude that f(n) = 2

√
lgn. To check this, consider the

iterator

n→ 2
√
lgn (3.12)
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Substitute n by 22
2m

in (3.12) to obtain:

22
2m → 2

√
lg 222

m

= 2
√
22
m

= 22
2m

2 = 22
2m−1

(3.13)

Clearly, (3.13) is executed m = lg lg lgn = lg(3) n times.
A further natural question is, what the function φ(n) is, such that the iterator n→ φ(n)

is executed lg(4) n times. Applying the reasoning we used to derive f(n), φ(n) has to be
such that if we substitute n by 2m, the number of executions is the same as in m→ 2

√
lgm.

As m = lgn, the latter becomes lgn → 2
√
lg lgn, i.e. n → 22

√
lg lgn

. So, φ(n) = 22
√

lg lgn
.

We can fill in two more rows in the table:

iterator asymptotics of the number executions alternative form (see Definion 1)

n→ n− 1 n lg(0) n

n→ n/2 lgn lg(1) n

n→ √n lg lgn lg(2) n

n→ 2
√
lgn lg lg lgn lg(3) n

n→ 22
√
lg lgn

lg lg lg lgn lg(4) n

n→ lgn lg∗ n lg∗ n

Let us define, analogously to Definion 1, the function base-two iterated exponent.

Definition 3 (iterated exponent). Let i be a nonnegative integer.

itexp(i)(n) =

{
n, if i = 0

2itexp
(i−1)(n), if i > 0

�

Having in mind the results in the table, we conjecture, and it should not be too difficult to
prove by induction, that the iterator:

n→ itexp(k)

(√
lg(k) n

)
(3.14)

is executed lg(k+2) n times for k ∈ N.

3.1.2 Recursion trees

Assume we are given a recurrence relation of the form:

T(n) = k1T(f1(n)) + k2T(f2(n)) + . . .+ kpT(fp(n)) + φ(n) (3.15)

where ki, i ≤ i ≤ p are positive integer constants, fi(n) for 1 ≤ i ≤ p are integer-valued
functions such that n > f(n) for all n ≥ n0 where n0 is the largest (constant) value of the
argument in any initial condition, and φ(n) is some positive function. It is not necessary
φ(n) to be positive as the reader will see below; however, if T(n) describes the running
time of a recursive algorithm then φ(n) has to be positive. We build a special kind of
rooted tree that corresponds to our recurrence relation. Each node of the tree corresponds
to one particular value of the variable that appears in the process of unfolding the relation,
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cost (n− 2)2cost (n− 2)2 cost (n− 2)2 cost (n− 2)2

cost (n− 1)2 cost (n− 1)2level n− 1

level n− 2

level n cost n2

Figure 3.1: The recursion tree of T(n) = 2T(n− 1) + n2.

the value that corresponds to the root being n. That value we call the level of the node.
Further, with each node we associate φ(m) where m is the level of that node. We call that,
the cost of the node. Further, each node—as long as no initial condition has been reached
yet—has k1 + k2 + . . .+ kp children, ki of them being at level defined by fi for 1 ≤ i ≤ p.
For example, if our recurrence is

T(n) = 2T(n− 1) + n2

the recursion tree is as shown on Figure 3.1. It is a complete binary tree. It is binary
because there are two invocations on the right side, i.e. k1+ k2+ . . .+ kp = 2 in the above
terminology. And it is complete because it is a recurrence with a single occurrence. Note
that if k1 + k2 + . . .+ kp equals 1 then the recursion tree degenerates into a path.

The size of the tree depends on n so we can not draw the whole tree. The figure is
rather a suggestion about it. The bottom part of the tree is missing because we have not
mentioned the initial conditions. The solution of the recursion—and that is the goal of the
tree, to help us solve the recursion—is the total sum of all the costs. Typically we sum by
levels, so in the current example the sum will be

n2 + 2(n− 1)2 + 4(n− 2)2 + . . .

The general term of this sum is 2k(n − k)2. The “. . . ” notation hides what happens at
the right end, however, we agreed the initial condition is for some, it does not matter, what
constant value of the variable. Therefore, the sum

n∑
k=0

2k(n− k)2

has the same growth rate as our desired solution. Let us find a closed form for that sum.

n∑
k=0

2k(n− k)2 = n2
n∑
k=0

2k − 2n

n∑
k=0

2kk+

n∑
k=0

2kk2
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level n− 1

level n− 2

level n 1

1

1 1

111

1 1 1 1 1 1 1 1
level n− 3

Figure 3.2: The recursion tree of T(n) = 2T(n− 1) + 1.

Having in mind Problem 144 on page 237 and Problem 145 on page 237, that expression
becomes

n2(2n+1 − 1) − 2n((n− 1)2n+1 + 2) + n22n+1 − 2n2n+1 + 4.2n+1 − 6 =

n2.2n+1 − n2 − 2n(n.2n+1 − 2n+1 + 2) + n22n+1 − 2n2n+1 + 4.2n+1 − 6 =

2.n2.2n+1 − n2 − 2.n2.2n+1 + 2n.2n+1 − 4n− 2n2n+1 + 4.2n+1 − 6 =

4.2n+1 − n2 − 4n− 6

It follows that T(n) = Θ(2n).

The correspondence between a recurrence relation and its recursion tree is not necessarily
one-to-one. Consider the recurrence relation

T(n) = 2T(n− 1) + 1, n ≥ 2 (3.16)

T(1) = Θ(1)

and its recursion tree (Figure 3.2). The cost at level n is 1, at level n− 1 is 2, at level n− 2
is 4, at level n − 3 is 8, etc. The tree is obviously complete. Let us now rewrite (3.2) as
follows.

T(n) = 2T(n− 1) + 1 ⇔ T(n) = T(n− 1) + T(n− 1) + 1

T(n− 1) = 2T(n− 2) + 1

T(n) = T(n− 1) + 2T(n− 2) + 2
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level n− 1

level n− 2

level n 2

2

2

22

2 2 2 2 2
level n− 3

Figure 3.3: The recursion tree of T(n) = T(n− 1) + 2T(n− 2) + 2.

We have to alter the initial conditions for this rewrite, adding T(2) = 3. Overall the
recurrence becomes

T(n) = T(n− 1) + 2T(n− 2) + 2 (3.17)

T(2) = 3

T(1) = 1

Recurrences (3.2) and (3.17) are equivalent. One can say these are different ways of writing
down the same recurrence because both of them define one and the same sequence, namely
1, 3, 7, 15, . . . However, their recursion trees are neither the same nor isomorphic. Figure 3.3
shows the tree of (3.17). To give a more specific example, Figure 3.4 shows the recursion
tree of (3.17) for n = 5. It shows the whole tree, not just the top, because the variable has
a concrete value. Therefore the initial conditions are taken into account. The reader can
easily see the total sum of the costs over the tree from Figure 3.4 is 31, the same as the tree
from Figure 3.2 for n = 5. However, the sum 31 on Figure 3.2 is obtained as 1+2+4+8+16,
if we sum by levels. In the case with Figure 3.4 we do not have obvious definition of levels.

• If we define the levels as the vertices that have the same value of the variable, we have
5 levels and the sum is derived, level-wise, as 2+ 2+ 6+ 15+ 6 = 31.

• If we define the levels as the vertices that are at the same distance to the root, we
have only 4 levels and the sum is derived, level-wise, as 2+ 6+ 18+ 5 = 31.

Regardless of how we define the levels, the derivation is not 1+ 2+ 4+ 8+ 16.
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2

2

2

22

3 3 3 3 3

11 1 1 1 1

Figure 3.4: The recursion tree of T(n) = T(n − 1) + 2T(n − 2) + 2, T(2) = 3,
T(1) = 1, for n = 5.

3.2 Problems

Our repertoire of methods for solving recurrences is:

• by induction,

• by unfolding,

• by considering the recursion tree,

• by the Master Theorem, and

• by the method of the characteristic equation.

3.2.1 Induction, unfolding, recursion trees

Problem 47. Solve

T(n) = 2T(n− 1) + 1 (3.18)

T(0) = 0

Solution:
We guess that T(n) = 2n − 1 for all n ≥ 1 and prove it by induction on n.
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Basis: n = 1. We have T(1) = 2T(0) + 1 by substituting n with 1. But T(0) = 0, thus
T(1) = 2× 0+ 1 = 1. On the other hand, substituting n with 1 in our guessed solution, we
have 21 − 1 = 1.

Inductive hypothesis: assume T(n) = 2n − 1 for some n > 1.

Inductive step: T(n+1) = 2T(n)+1 by definition. Apply the inductive hypothesis to obtain
T(n+ 1) = 2 (2n − 1) + 1 = 2n+1 − 1. �
The proofs by induction have one major drawback – making a good guess can be a form of
art. There is no recipe, no algorithm for making a good guess in general. It makes sense
to compute several initial values of the sequence defined by the recurrence and try to see
a pattern in them. In the last problem, T(1) = 1, T(2) = 3, T(3) = 7 and it is reasonable
to assume that T(n) is 2n − 1. Actually, if we think about (3.18) in terms of the binary
representation of T(n), it is pretty easy to spot that (3.18) performs a shift-left by one
position and then turns the least significant bit from 0 into 1. As we start with T(1) = 1,
clearly

T(n) = 1 1 1 . . . 1︸ ︷︷ ︸
n times

b

For more complicated recurrence relations, however, seeing a pattern in the initial values
of the sequence, and thus making a good guess, can be quite challenging. If one fails to
see such a pattern it is a good idea to check if these numbers are found in The On-Line
Encyclopedia of Integer Sequences [Slo]. Of course, this advice is applicable when we solve
precise recurrence relations, not asymptotic ones.

Problem 48. Solve by unfolding

T(n) = T(n− 1) + n (3.19)

T(0) = 1

Solution:
By unfolding (also called unwinding) of the recurrence down to the initial condition.

T(n) = T(n− 1) + n directly from (3.19)

= T(n− 2) + n− 1+ n substitute n with n− 1 in (3.19)

= T(n− 3) + n− 2+ n− 1+ n substitute n− 1 with n− 2 in (3.19)

. . .

= T(0) + 1+ 2+ 3+ . . .+ n− 2+ n− 1+ n =

= 1+ 1+ 2+ 3+ . . .+ n− 2+ n− 1+ n =

= 1+
n(n+ 1)

2

This method is considered to be not as formally precise as the induction. The reason is
that we inevitably skip part of the derivation—the dot-dot-dot “. . . ” part—leaving it to
the imagination of the reader to verify the derived closed formula. Problem 48 is trivially
simple and it is certain beyond any doubt that if we start with T(n− 3)+n− 2+n− 1+n
and systematically unfold T(i), decrementing by one values of i, eventually we will “hit”
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the initial condition T(0) and the “tail” will be 1 + 2 + 3 + . . . + n − 2 + n − 1 + n. The
more complicated the expression is, however, the more we leave to the imagination of the
reader when unfolding.

One way out of that is to use the unfolding to derive a closed formula and then prove it
by induction. �

Problem 49. Solve

T(n) = 2T
(⌊n
2

⌋)
+ n (3.20)

T(1) = Θ(1) (3.21)

Solution:
We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(n lgn) and T(n) = Ω(n lgn).

Part i: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.22)

There is a potential problem with the initial condition because for n = 1 the right-hand
side of (3.22) becomes c.1. lg 1 = 0, and 0 6= Θ(1). However, it is easy to deal with that
issue, just do not take n = 1 as basis. Taking n = 2 as basis works as c.2. lg 2 is not zero.
However, note that n = 2 is not sufficient basis! There are certain values for n, for example
3, such that the iterator of this recurrence, namely

n→ ⌊n
2

⌋
“jumps over” 2, having started from one of them. Indeed,

⌊
3
2

⌋
= 1, therefore the iterator,

starting from 3, does

3→ 1

and then goes infinite descent. The solution is to take two bases, for both n = 2 and n = 3.
It is certain that no matter what n is the starting one, the iterator will at one moment
“hit” either 2 or 3. So, the bases of our proof are:

T(2) = Θ(1) (3.23)

T(3) = Θ(1) (3.24)

Of course, that does not say that T(2) = T(3), it says there exist constants c2 and c3, such
that:

c2 ≤ c.2 lg 2

c3 ≤ c.3 lg 3
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Our induction hypothesis is that relative to some sufficiently large n, (3.22) holds for some
positive constant c all values of the variable between 3 and n, excluding n. The induction
step is to prove (3.22), using the hypothesis. So,

T(n) = 2T
(⌊n
2

⌋)
+ n this is the defintion of T(n)

≤ 2.c.
⌊n
2

⌋
lg
⌊n
2

⌋
+ n from the inductive hypothesis

≤ 2.c.n
2

lg
n

2
+ n

= cn(lgn− 1) + n

= cn lgn+ (1− c)n (3.25)

≤ cn lgn provided that (1− c) ≤ 0 ⇔ c ≥ 1 (3.26)

If c ≥ 1, the proof is valid. If we want to be perfectly precise we have to consider the two
bases as well to find a value for c that works. Namely,

c = max

{
1,

c2
2 lg 2

,
c3
3 lg 3

}
In our proofs from now on we will not consider the initial conditions when choosing an
appropriate constant.

Part ii: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn (3.27)

We will ignore the basis of the induction and focus on the hypothesis and the inductive step
only. Applying the inductive hypothesis to (3.27), we get:

T(n) ≥ 2d
⌊n
2

⌋
lg
⌊n
2

⌋
+ n from the inductive hypothesis

≥ 2d
(n
2
− 1
)

lg
⌊n
2

⌋
+ n

= d(n− 2) lg
⌊n
2

⌋
+ n

≥ d(n− 2) lg
(n
4

)
+ n

= d(n− 2) (lgn− 2) + n

= dn lgn+ n(1− 2d) − 2d lgn+ 4d

≥ dn lgn provided that n(1− 2d) − 2d lgn+ 4d ≥ 0

So (3.27) holds when

n(1− 2d) − 2d lgn+ 4d ≥ 0 (3.28)

Observe that for d = 1
4 inequality (3.28) becomes

n

2
+ 1 ≥ 1

2
lgn

It certainly holds ∀n ≥ 2, therefore the choice d = 1
4 and n1 = 2 suffices for our proof. �
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Problem 50. Solve

T(n) = 2T
(⌈n
2

⌉)
+ n (3.29)

T(1) = Θ(1) (3.30)

Solution:
We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(n lgn) and T(n) = Ω(n lgn). We ignore the basis of the induction – the
solution of Problem 49 gives us enough confidence that we can handle the basis if we wanted
to.

Part i: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.31)

From the inductive hypothesis

T(n) ≤ 2.c.
⌈n
2

⌉
lg
⌈n
2

⌉
+ n

≤ 2.c.
(n
2
+ 1
)

lg
⌈n
2

⌉
+ n (3.32)

≤ 2.c.
(n
2
+ 1
)

lg

(
3n

4

)
+ n because

3n

4
≥
⌈n
2

⌉
∀n ≥ 2 (3.33)

= c(n+ 2)(lgn+ lg 3− 2) + n

= cn lgn+ cn(lg 3− 2) + 2c lgn+ 2c(lg 3− 2) + n

≤ cn lgn if cn(lg 3− 2) + 2c lgn+ 2c(lg 3− 2) + n ≤ 0

Consider

cn(lg 3− 2) + 2c lgn+ 2c(lg 3− 2) + n = (c(lg 3− 2) + 1)n+ 2c lgn+ 2c(lg 3− 2)

Its asymptotic growth rate is determined by the linear term. If the constant c(lg 3− 2) + 1
is negative then the whole expression is certainly negative for all sufficiently large values of
n. In other words, for the sake of brevity we do not specify precisely what n0 is. In order
to have c(lg 3− 2) + 1 < 0 it must be the case that c > 1

2−lg 3 . So, any c > 1
2−lg 3 works for

our proof.

In (3.32) we substitute
⌈
n
2

⌉
with 3n

4 . We could have used any other fraction pn
q , provided¢¢ NB ¢¢

that 12 <
p
q < 1. It is easy to see why it has to be the case that 12 <

p
q : unless that is fulfilled

we cannot claim there is a “≤” inequality between (3.32) and (3.33). Now we argue it has
to be the case that pq < 1. Assume that pq = 1, i.e., we substitute

⌈
n
2

⌉
with n. Then (3.33)

becomes:

c(n+ 2)(lgn) + n = cn lgn+ 2c lgn+ n

Clearly, that is bigger than cn lgn for all sufficiently large n and we have no proof.
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Part ii: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn (3.34)

From the inductive hypothesis

T(n) ≥ 2.d.
⌈n
2

⌉
lg
⌈n
2

⌉
+ n

≥ 2.d.
(n
2

)
lg
(n
2

)
+ n

= dn(lgn− 1) + n

= dn lgn+ (1− d)n

≥ dn lgn provided that (1− d)n ≥ 0 (3.35)

It follows that any d such that 0 < d ≤ 1 works for our proof. �

As explained in [CLR00, pp. 56–57], it is easy to make a wrong “proof” of the growth rate by¢¢ NB ¢¢

induction if one is not careful. Suppose one “proves” the solution of (3.20) is T(n) = O(n)
by first guessing (incorrectly) that T(n) ≤ cn for some positive constant c and then arguing

T(n) ≤ 2c
⌊n
2

⌋
+ n

≤ cn+ n

= (c+ 1)n

= O(n)

While it is certainly true that cn + n = O(n), that is irrelevant to the proof. The proof
started relative to the constant c and has to finish relative to it. In other words, the proof has
to show that T(n) ≤ cn for the choice of c in the inductive hypothesis, not that T(n) ≤ dn
for some positive constant d which is not c. Proving that T(n) ≤ (c+1)n does not constitute
a proof of the statement we are after.

Problem 51. Solve

T(n) = T
(⌊n
2

⌋)
+ 1 (3.36)

T(1) = Θ(1) (3.37)

Solution:
We prove that T(n) = Θ(lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn).

Part i: Proof that T(n) = O(lgn), that is, there exists a positive constant c and some n0,
such that for all n ≥ n0,

T(n) ≤ c lgn (3.38)
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By the inductive hypothesis,

T(n) ≤ c lg
(⌊n
2

⌋)
+ 1

≤ c lg
(n
2

)
+ 1

= c(lgn− 1) + 1

= c lgn+ 1− c

≤ c lgn provided that 1− c ≤ 0⇔ c ≥ 1

Part ii: Proof that T(n) = Ω(lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ d lgn (3.39)

By the inductive hypothesis,

T(n) ≥ d lg
(⌊n
2

⌋)
+ 1

≥ d lg
(n
4

)
+ 1 since

n

4
≤
⌊n
2

⌋
for all sufficiently large n

= d lgn− 2d+ 1

≥ d lgn provided that − 2d+ 1 ≥ 0 ⇔ d ≤ 1
2

�

Problem 52. Solve

T(n) = T
(⌈n
2

⌉)
+ 1 (3.40)

T(1) = Θ(1) (3.41)

Solution:
We prove that T(n) = Θ(lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn).

Part i: Proof that T(n) = O(lgn), that is, there exists a positive constant c and some n0,
such that for all n ≥ n0,

T(n) ≤ c lgn (3.42)

By the inductive hypothesis,

T(n) ≤ c lg
(⌈n
2

⌉)
+ 1

≤ c lg

(
3n

4

)
+ 1

= c(lgn+ lg 3− 2) + 1

= c lgn+ c(lg 3− 2) + 1

≤ c lgn provided that c(lg 3− 2) + 1 ≤ 0⇔ c ≥ 1

2− lg 3
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Part ii: Proof that T(n) = Ω(lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ d lgn (3.43)

By the inductive hypothesis,

T(n) ≥ d lg
(⌈n
2

⌉)
+ 1

≥ d lg
(n
2

)
+ 1

= d lgn− d+ 1

≥ d lgn provided that − d+ 1 ≥ 0 ⇔ d ≤ 1

�

Problem 53. Solve

T(n) = 2T
(⌊n
2
+ 17

⌋)
+ n (3.44)

Solution:
We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn). Note that the initial condition in this problem is
not T(1) = Θ(1) because the iterator

n→ ⌊n
2

⌋
+ 17

never reaches 1 when starting from any sufficiently large n. Its fixed point is 34 but we
avoid mentioning the awkward initial condition T(34) = Θ(1).

Part i: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.45)

By the inductive hypothesis,

T(n) ≤ 2c
(⌊n
2

⌋
+ 17

)
lg
(⌊n
2

⌋
+ 17

)
+ n

= 2c
(n
2
+ 17

)
lg
(n
2
+ 17

)
+ n

= c(n+ 34) lg

(
n+ 34

2

)
+ n

= c(n+ 34)
(
lg (n+ 34) − 1

)
+ n

≤ c(n+ 34)
(
lg (
√
2n) − 1

)
+ n (3.46)
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because for all sufficiently large values of n, say n ≥ 100, it is the case that
√
2n ≥ n+ 34.

T(n) ≤ c(n+ 34)
(
lg (
√
2n) − 1

)
+ n from (3.46)

= c(n+ 34)

(
lgn+

1

2
lg 2− 1

)
+ n

= c(n+ 34)

(
lgn−

1

2

)
+ n

= cn lgn+ 34c lgn−
cn

2
− 17c+ n

≤ cn lgn provided that 34c lgn−
cn

2
− 17c+ n ≤ 0

In order 34c lgn − cn
2 − 17c + n = n

(
1− c

2

)
+ 34c lgn − 17c to be non-positive for all

sufficiently large n it suffices
(
1− c

2

)
to be negative because the linear function dominated

the logarithmic function. A more detailed analysis is the following. Fix c = 4. The
expression becomes (−1)n+ 136 lgn− 136.

(−1)n+ 136 lgn− 136 ≤ 0 ⇔ n ≥ 136(lgn− 1) ⇔ n

lgn− 1
≥ 136

For n = 65536 = 216 the inequality holds:

216

15
≥ 136

so we can finish the proof with choosing n0 = 65536 and c = 4.

Part ii: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn

By the inductive hypothesis,

T(n) ≥ 2d
(⌊n
2

⌋
+ 17

)
lg
(⌊n
2

⌋
+ 17

)
+ n

≥ 2d
(n
2

)
lg
(n
2

)
+ n

= dn(lgn− 1) + n

= dn lgn+ (1− d)n

≥ dn lgn provided that 1− d ≥ 0 ⇔ d ≤ 1 �

Problem 54. Solve

T(n) = 2T
(n
2

)
+ 1 (3.47)

T(1) = Θ(1)

by the method of the recursion tree.
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level
n

2

level
n

4

level n

level
n

8

1 1 1 1

1 1

1 1 1 1 1 1 1 1

1 1

2

4

8

Figure 3.5: The recursion tree of T(n) = 2T
(
n
2

)
+ 1.

Solution:
The recursion tree is shown on Figure 3.5. The solution is the sum over all levels:

T(n) = 1+ 2+ 4+ 8+ . . .︸ ︷︷ ︸
the number of terms is the height of the tree

(3.48)

The height of the tree is the number of times the iterator

n→ n

2

is executed before the variable becomes 1. As we already saw, that number is lgn†. So,
(3.48) in fact is

T(n) = 1+ 2+ 4+ 8+ . . .︸ ︷︷ ︸
(lgn+1) terms

= 1+ 2+ 4+ 8+ . . .+
n

2
+ n

=

lgn∑
i=0

n

2i
= n

(
lgn∑
i=0

1

2i

)
≤ n

( ∞∑
i=0

1

2i

)
︸ ︷︷ ︸

2

= 2n

We conclude that T(n) = Θ(n). �

However, that proof by the method of the recursion tree can be considered insufficiently
precise because it involves several approximations and the use of imagination—the dot-dot-
dot notations. Next we demonstrate a proof by induction of the same result. We may think

†Actually it is blgnc but that is immaterial with respect to the asymptotic growth of T(n).
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of the proof with recursion tree as a mere way to derive a good guess to be verified formally
by induction.

Problem 55. Prove by induction on n that the solution to

T(n) = 2T
(n
2

)
+ 1 (3.49)

T(1) = Θ(1)

is T(n) = Θ(n).

Solution:
We prove separately that T(n) = O(n) and T(n) = Ω(n).

Part i: Proof that T(n) = O(n). For didactic purposes we will first make an unsuccessful
attempt.

Part i, try 1: Assume there exists a positive constant c and some n0, such that for all
n ≥ n0,

T(n) ≤ cn (3.50)

By the inductive hypothesis,

T(n) ≤ 2cn
2
+ 1

= cn+ 1

Our proof ran into a problem: no matter what positive c we choose, it is not true that
cn + 1 ≤ cn, and thus (3.50) cannot be shown to hold. Of course, that failure does not
mean our claim T(n) = Θ(n) is false. It simply means that (3.50) is inappropriate. We
amend the situation by a technique known as strenthening the claim. It consists of stating an
appropriate claim that is stronger than (3.50) and then proving it by induction. Intuitively,
that stronger claim has to contain some minus sign in such a way that after applying the
inductive hypothesis, there is a term like −c that can “cope with” the +1.

Part i, try 2: Assume there exists positive constants b and c and some n0, such that for
all n ≥ n0,

T(n) ≤ cn− b (3.51)

By the inductive hypothesis,

T(n) ≤ 2
(
c
n

2
− b
)
+ 1

= cn− 2b+ 1

≤ cn− b for any b such that − b+ 1 ≤ 0 ⇔ b ≥ 1

Part ii: Proof that T(n) = Ω(n), that is, there exists a positive constant d and some n1,
such that for all n ≥ n1,

T(n) ≥ dn
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By the inductive hypothesis,

T(n) ≥ 2
(
d
n

2

)
+ 1

= dn+ 1

≥ dn

�

Problem 56. Prove by induction on n that the solution to

T(n) = 2T(n− 1) + n (3.52)

T(1) = Θ(1)

is T(n) = Θ(2n).

Solution:
We prove separately that T(n) = O(2n) and T(n) = Ω(2n).

Part i: Proof that T(n) = O(2n). For didactic purposes we will first make several unsuc-
cessful attempts.

Part i, try 1: Assume there exists a positive constant c such that for all large enough n,

T(n) ≤ c2n

By the inductive hypothesis,

T(n) ≤ 2c2n−1 + n
= c2n + n

6≤ c2n for any choice of positive c

Our proof failed so let us strenghten the claim.

Part i, try 2: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n − b

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − b) + n
= c2n − 2b+ n

6≤ c2n − b for any choice of positive c

The proof failed once again so let us try another strenghtening of the claim.

Part i, try 3: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n−b
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By the inductive hypothesis,

T(n) ≤ 2(c2n−b−1) + n
= c2n−b + n

6≤ c2n−b for any choice of positive c

Yet another failure and we try yet another strenghtening of the claim.

Part i, try 4: Assume there exists a positive constant c such that for all large enough n,

T(n) ≤ c2n − n

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − (n− 1)) + n

= c2n − n+ 2

6≤ c2n − n for any choice of positive c

Part i, try 5: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n − bn

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − b(n− 1)) + n

= c2n − 2bn+ 2b+ n

= c2n − bn+ (1− b)n+ 2b

≤ c2n − bn for any choice of c > 0 and b > 1

Success! At last we have managed to formulate a provable hypothesis.

Part ii: Proof that T(n) = Ω(n), that is, there exists a positive constant d such that for
all sufficiently large n,

T(n) ≥ d2n

By the inductive hypothesis,

T(n) ≥ 2(d2n−1) + n
= d2n + n

≥ d2n

Success! Again we see that the strengthening of the claim is required only in one direction
of the proof. �

The next three problems have the iterator

n→ √n
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According to the table on page 46, that number of times this iterator is executed before
n becomes some fixed constant is Θ(lg lgn). Note, however, that unless n is integer, this
constant cannot be 1 because for real n, it is the case that n > 1 after any iteration.
Therefore “T(1) = Θ(1)” cannot be the initial condition if n is real. One way out of that is
to change the initial conditions to

T(n) = Θ(1) for 2 ≤ n ≤ 4

Problem 57. Solve

T(n) = 2T(
√
n) + 1 (3.53)

Solution:
Substitute n by 22

m
, i.e. m = lg lgn and 2m = lgn. Then (3.53) becomes

T
(
22
m
)
= 2T

(
2
2m

2

)
+ 1

which is

T
(
22
m
)
= 2T

(
22
m−1

)
+ 1 (3.54)

Further substitute T
(
22
m)

by S(m) and (3.54) becomes

S(m) = 2S(m− 1) + 1 (3.55)

But we know the solution to that recurrence. According to Problem 47, S(m) = Θ(2m).
Let us go back now to the original n and T(n).

S(m) = Θ(2m) ⇔ T
(
22
m
)
= Θ(lgn) ⇔ T(n) = Θ(lgn)

�

Problem 58. Solve

T(n) = 2T(
√
n) + lgn (3.56)

Solution:
Substitute n by 2m, i.e. m = lgn. Then (3.56) becomes

T (2m) = 2T
(
2
m
2

)
+m (3.57)

Further substitute T (2m) by S(m) and (3.57) becomes

S(m) = 2S
(m
2

)
+m (3.58)

Consider Problem 49 and Problem 50. They have solve the same recurrence, differing from
(3.58) only in the way the division is rounded to integer. In Problem 49 the iterator is

n→ ⌊n
2

⌋
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and in Problem 50 the iterator is

n→ ⌈n
2

⌉
Both Problem 49 and Problem 50 have Θ(n lgn) solutions. We conclude the solution of
(3.58) is S(m) = Θ(m lgm), which is equivalent to T(n) = Θ(lgn lg lgn). �

Problem 59. Solve

T(n) =
√
nT(
√
n) + n (3.59)

Solution:
Let us unfold the recurrence:

T(n) = n+ n
1
2 T
(
n
1
2

)
(3.60)

= n+ n
1
2

(
n
1
2 + n

1
4 T
(
n
1
4

))
(3.61)

= 2n+ n
3
4 T
(
n
1
4

)
(3.62)

= 2n+ n
3
4

(
n
1
8 + T

(
n
1
8

))
(3.63)

= 3n+ n
7
8 T
(
n
1
8

)
(3.64)

. . . (3.65)

= in+ n

(
1− 1

2i

)
T
(
n
1

2i

)
(3.66)

As we already said, the maximum value of i, call it imax, is imax = lg lgn. But then
2imax = lgn, therefore

n

(
1− 1

2imax

)
=

n

n
1

2imax

=
n

n
1

lgn

=
n

2

The derivation of the fact that n
1

lgn = 2 is on page 16. So, for i = imax,

T(n) = (lg lgn)n+
n

2
T(c) c is some number such that 2 ≤ c ≤ 4

But T(c) is a constant, therefore T(n) = Θ(n lg lgn).

Let us prove the same result by induction.
Part i: Prove that T(n) = O(n lg lgn), that is, there exists a positive constant c such
that for all sufficiently large n,

T(n) ≤ cn lg lgn (3.67)

Our inductive hypothesis then is

T(
√
n) ≤ c

√
n lg lg

√
n (3.68)
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We know by the definition of the problem that

T(n) =
√
nT(
√
n) + n (3.69)

Apply (3.68) to (3.69) to get

T(n) ≤
√
n(c
√
n lg lg

√
n) + n

= cn lg lg
√
n+ n

= cn lg

(
1

2
lgn

)
+ n

= cn lg

(
lgn

2

)
+ n

= cn(lg lgn− 1) + n

= cn lg lgn− cn+ n

≤ cn lg lgn provided that − cn+ n ≤ 0 ⇔ c ≥ 1

Part ii: Prove that T(n) = Ω(n lg lgn), that is, there exists a positive constant d such
that for all sufficiently large n,

T(n) ≥ dn lg lgn (3.70)

Our inductive hypothesis then is

T(
√
n) ≥ d

√
n lg lg

√
n (3.71)

We know by the definition of the problem that

T(n) =
√
nT(
√
n) + n (3.72)

Apply (3.71) to (3.72) to get

T(n) ≥
√
n(d
√
n lg lg

√
n) + n

= dn lg lg
√
n+ n

= dn lg

(
1

2
lgn

)
+ n

= dn lg

(
lgn

2

)
+ n

= dn(lg lgn− 1) + n

= dn lg lgn− dn+ n

≥ dn lg lgn provided that − dn+ n ≥ 0 ⇔ d ≤ 1

�

Problem 60. Solve

T(n) = n2T
(n
2

)
+ 1 (3.73)
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Solution:
Unfold the recurrence:

T(n) = n2 T
(n
2

)
+ 1

= n2
(
n2

4
T
(n
4

)
+ 1

)
+ 1

=
n4

22
T
( n
22

)
+ n2 + 1

=
n4

22

(
n2

24
T
( n
23

)
+ 1

)
+ n2 + 1

=
n6

26
T
( n
23

)
+
n4

22
+ n2 + 1

=
n6

26

(
n2

26
T
( n
24

)
+ 1

)
+
n4

22
+ n2 + 1

=
n8

212
T
( n
24

)
+
n6

26
+
n4

22
+ n2 + 1

=
n8

212

(
n2

28
T
( n
25

)
+ 1

)
+
n6

26
+
n4

22
+ n2 + 1

=
n10

220
T
( n
25

)
+
n8

212
+
n6

26
+
n4

22
+ n2 + 1

=
n10

220
T
( n
25

)
+
n8

212
+
n6

26
+
n4

22
+
n2

20
+
n0

20

=
n10

25.4
T
( n
25

)
+
n8

24.3
+
n6

23.2
+
n4

22.1
+
n2

21.0
+

n0

20.(−1)

= . . .

=
n2i

2i(i−1)
T
( n
2i

)
︸ ︷︷ ︸

A

+
n2(i−1)

2(i−1)(i−2)
+

n2(i−2)

2(i−2)(i−3)
. . .+

n8

24.3
+
n6

23.2
+
n4

22.1
+
n2

21.0
+

n0

20.(−1)︸ ︷︷ ︸
B

The maximum value of i is imax = lgn. First we compute A with i = lgn, having in mind
T(1) is some positive constant c.

A =
n2 lgn

2lg
2n−lgn

T(1) =
c2lgnn2 lgn

2lg
2n

=
c.n.n2 lgn

2lg
2n

But

2lg
2n = 2lgn. lgn = 2lg (n

lgn) = nlgn (3.74)

Therefore

A =
c.n.n2 lgn

nlgn
= Θ(n1+lgn) (3.75)
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Consider B. Obviously, we can represent it as a sum in the following way:

B =

lgn∑
j=1

n2((lgn)−j)

2((lgn)−j)((lgn)−j−1)

=

lgn∑
j=1

1

n2j
n2 lgn

2(lg
2n−j lgn−j lgn+j2−lgn+j)

=

lgn∑
j=1

1

n2j

(
n2 lgn

) (
22j lgn

) (
2lgn

)(
2lg
2n
) (
2j
2+j
) (3.76)

But

22j lgn = 2lg (n
2j) = n2j (3.77)

and

2lgn = n (3.78)

Apply (3.74), (3.77), and (3.78) on (3.76) to obtain

B =

lgn∑
j=1

1

n2j

(
n2 lgn

) (
n2j
)
(n)

(nlgn)
(
2j
2+j
)

=

lgn∑
j=1

n1+lgn

2j
2+j

=
(
n1+lgn

) lgn∑
j=1

1

2j
2+j

≤
(
n1+lgn

) ∞∑
j=1

1

2j
2+j

≤ n1+lgn since we know that
∞∑
j=1

1

2j
= 1

= Θ
(
n1+lgn

)
(3.79)

From (3.75) and (3.79) it follows that

T(n) = Θ
(
n1+lgn

)
�

Problem 61. Solve by unfolding

T(n) = T(n− 2) + 2 lgn (3.80)
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Solution:
Let us unfold the recurrence:

T(n) = T(n− 2) + 2 lgn

= T(n− 4) + 2 lg (n− 2) + 2 lgn

= T(n− 6) + 2 lg (n− 4) + 2 lg (n− 2) + 2 lgn

= . . .

= T(c) + . . .+ 2 lg (n− 4) + 2 lg (n− 2) + 2 lgn (3.81)

where c is either 1 or 2†.

Case I: n is odd. Then c = 1 and (3.81) is:

2 lgn+ 2 lg (n− 2) + 2 lg (n− 4) + . . .+ 2 lg 3+ T(1) (3.82)

We approximate T(1) with 0 = lg 1, which does not alter the asymptotic growth rate of
(3.82), and thus (3.82) becomes:

lgn2 + lg (n− 2)2 + lg (n− 4)2 + . . .+ lg 32 + lg 1 =

lg
(
n2(n− 2)2(n− 4)2 . . . 32.1

)
=

lg
(
n.n(n− 2)(n− 2)(n− 4)(n− 4) . . . 5.5.3.3.1︸ ︷︷ ︸

n factors

)
= T(n) (3.83)

Define

X(n) = lg
(
n(n− 1)(n− 2)(n− 3) . . . 3.2.1︸ ︷︷ ︸

n factors

)
= lgn!

Y(n) = lg
(
(n+ 1)n(n− 1)(n− 2) . . . 4.3.2︸ ︷︷ ︸

n factors

)
= lg (n+ 1)!

and note that

X(n) ≤ T(n) ≤ Y(n) (3.84)

because of the following inequalities between the corresponding factors inside the logarithms

X(n) = lg
(

n

6

n− 1

6

n− 2

6

n− 3

6

. . . 3

6

2

6

1

6

)
T(n) = lg

(
n

6

n

6

n− 2

6

n− 2

6

. . . 3

6

3

6

1

6

)
Y(n) = lg

(
n+ 1 n n− 1 n− 2 . . . 4 3 2

)
However, X(n) = Θ(n lgn) and Y(n) = Θ((n+ 1) lg (n+ 1)) = Θ(n lgn) by (1.48). Having
in mind that and (3.84), T(n) = Θ(n lgn) follows immediately.

†The initial conditions that define T(1) and T(2) are omitted.
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Case II: n is even. Then c = 2 and (3.81) is:

2 lgn+ 2 lg (n− 2) + 2 lg (n− 4) + . . .+ 2 lg 4+ T(2) (3.85)

We approximate T(2) with 1 = lg 2, which does not alter the asymptotic growth rate of
(3.82), and thus (3.82) becomes:

lgn2 + lg (n− 2)2 + lg (n− 4)2 + . . .+ lg 42 + lg 2 =

lg
(
n2(n− 2)2(n− 4)2 . . . 42.2

)
=

lg
(
n.n(n− 2)(n− 2)(n− 4)(n− 4) . . . 6.6.4.4.2︸ ︷︷ ︸

n−1 factors

)
= T(n) (3.86)

Define

X(n) = lg
(
n(n− 1)(n− 2)(n− 3) . . . 4.3.2︸ ︷︷ ︸

n−1 factors

)
= lgn!

Y(n) = lg
(
(n+ 1)n(n− 1)(n− 2) . . . 5.4.3︸ ︷︷ ︸

n−1factors

)
= lg

(n+ 1)!

2
= lg (n+ 1)! − 1

and note that

X(n) ≤ T(n) ≤ Y(n) (3.87)

because of the following inequalities between the corresponding factors inside the logarithms

X(n) = lg
(

n
6

n− 1

6

n− 2

6

n− 3

6

. . . 4

6

3

6

2

6

)
T(n) = lg

(
n

6

n

6

n− 2

6

n− 2

6

. . . 4

6

4

6

2

6

)
Y(n) = lg

(
n+ 1 n n− 1 n− 2 . . . 5 4 3

)
However, X(n) = Θ(n lgn) and Y(n) = Θ((n+ 1) lg (n+ 1)) = Θ(n lgn) by (1.48). Having
in mind that and (3.84), T(n) = Θ(n lgn) follows immediately. �

Problem 62. Solve by induction

T(n) = T(n− 2) + 2 lgn (3.88)

Solution:
We use Problem 61 to guess the solution T(n) = Θ(n lgn).

Part i: Proof that T(n) = O(n lgn), that is, there exists a positive constant c such that
for all sufficiently large n,

T(n) ≤ cn lgn (3.89)
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The following inequalities hold

T(n) ≤ c(n− 2) lg (n− 2) + 2 lgn from the induction hypothesis

≤ c(n− 2) lgn+ 2 lgn

= cn lgn− 2c lgn+ 2 lgn

≤ cn lgn provided that − 2c lgn+ 2 lgn ≤ 0 ⇔ c ≥ 1

Part ii: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d such that
for all sufficiently large n,

T(n) ≥ dn lgn (3.90)

It is the case that

T(n) ≥ d(n− 2) lg (n− 2) + 2 lgn from the induction hypothesis

= (dn− 2d) lg (n− 2) + 2 lgn

= dn lg (n− 2) + 2(lgn− d lg (n− 2)) (3.91)

Having in mind (3.90) and (3.91), our goal is to show that

dn lg (n− 2) + 2(lgn− d lg (n− 2)) ≥ dn lgn ⇔
dn lg (n− 2) − dn lgn+ 2(lgn− d lg (n− 2)) ≥ 0 ⇔

d lg

(
n− 2

n

)n
︸ ︷︷ ︸

A

+ 2 lg
n

(n− 2)d︸ ︷︷ ︸
B

≥ 0 (3.92)

Let us first evaluate A when n grows infinitely:

lim
n→∞d lg

(
n− 2

n

)n
= d lim

n→∞ lg

(
1+

−2

n

)n
= d lg lim

n→∞
(
1+

−2

n

)n
= d lg e−2 = −2d lg e

Now consider B when n grows infinitely:

lim
n→∞ 2 lg

n

(n− 2)d
= 2 lg lim

n→∞ n

(n− 2)d
(3.93)

Note that for any d such that 0 < d < 1, (3.93) is +∞. For instance, for d = 1
2 , (3.93)

becomes

2 lg lim
n→∞

(
n
1
2

n
1
2

(n− 2)
1
2

)
=

2 lg lim
n→∞

(
n
1
2

(
n

n− 2

)1
2

)
=

2 lg


(

lim
n→∞n12

) lim
n→∞

(
1

1− 2
n

)1
2


︸ ︷︷ ︸

1

 = +∞
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It follows inequality (3.92) is true for any choice of d such that 0 < d < 1, say, d = 1
2 ,

because A by absolute value is limited by a constant, and B grows infinitely. And that
concludes the proof of (3.89). �

The proof by induction in Part ii of the solution to Problem 61 is tricky. Consider (3.91):¢¢ NB ¢¢

dn lg (n− 2) + 2(lgn− d lg (n− 2))

Typically, we deal with logarithms of additions or differences by approximating the additions
or differences with multiplications or fractions in such a way that the inequality holds in the
desired direction. But notice that if we approximate n− 2 inside the above logarithms with
any fraction n

α , for any positive constant α, it must be the case that α > 1, otherwise the
inequality would not be in the direction we want. Here is what happens when we substitute
n− 2 with n

α in the logarithm on the left:

dn lg
n

α
+ 2(lgn− d lg (n− 2)) = dn lgn− dn lgα+ 2(lgn− d lg (n− 2))

To accomplish the proof, we have to show the latter is greater than or equal to dn lgn; and
to show that, we have to show that the term −dn lgα+2(lgn−d lg (n− 2)) is positive. But
that is not true! d > 0 and α > 1, therefore −dn lgα < 0 for all n > 0. And the asymptotic
behaviour of −dn lgα + 2(lgn − d lg (n− 2)) is determined by −dn lgα because the linear
function dominates the logarithmic function for all sufficiently large n. Therefore, we need
a more sophisticated technique, based on analysis.

Problem 63. Solve by unfolding

T(n) = T(n− 1) + lgn

Solution:

T(n) = T(n− 1) + lgn

= T(n− 2) + lg (n− 1) + lgn

= T(n− 3) + lg (n− 2) + lg (n− 1) + lgn

. . .

= T(1)︸︷︷︸
Θ(1)

+ lg 2+ lg 3+ . . .+ lg (n− 2) + lg (n− 1) + lgn

= Θ(1) + lg (2.3 . . . (n− 2)(n− 1)n)

= Θ(1) + lgn!

= Θ(1) +Θ(n lgn) by (1.48)

= Θ(n lgn)

�

Problem 64. Solve by unfolding

T(n) = 3T
(⌊n
4

⌋)
+ n (3.94)
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Solution:

T(n) = n+ 3T
(⌊n
4

⌋)
= n+ 3

(⌊n
4

⌋
+ 3T

(⌊⌊
n
4

⌋
4

⌋))

= n+ 3
(⌊n
4

⌋
+ 3T

(⌊ n
16

⌋))
because

⌊⌊
n
4

⌋
4

⌋
=
⌊ n
16

⌋
= n+ 3

⌊n
4

⌋
+ 9T

(⌊ n
16

⌋)
= n+ 3

⌊n
4

⌋
+ 9

⌊ n
16

⌋
+ 27T

(⌊ n
64

⌋)
. . .

= 30
⌊ n
40

⌋
+ 31

⌊ n
41

⌋
+ 32

⌊ n
42

⌋
+ . . .+ 3i−1

⌊ n

4i−1

⌋
︸ ︷︷ ︸

P(n)

+ 3iT
(⌊ n
4i

⌋)
︸ ︷︷ ︸

remainder

(3.95)

The maximum value for i, let us call it imax, is achieved when
⌊
n
4i

⌋
becomes 1. It follows

imax = blog4 nc. Let us estimate the main part P(n) and the remainder of (3.95) for
i = imax.

• To estimate P(n), define

X(n) = 30
( n
40

)
+ 31

( n
41

)
+ 32

( n
42

)
+ . . .+ 3imax−1

( n

4imax−1

)
Y(n) = 30

( n
40

− 1
)
+ 31

( n
41

− 1
)
+ 32

( n
42

− 1
)
+ . . .+ 3imax−1

( n

4imax−1
− 1
)

Clearly, X(n) ≥ P(n) ≥ Y(n). But

X(n) = n

imax−1∑
j=0

(
3

4

)j
≤ n

∞∑
j=0

(
3

4

)j
= n

1

1− 3
4

= Θ(n)

and

Y(n) = n

imax−1∑
j=0

(
3

4

)j−

imax−1∑
j=0

3j

= nΘ(1) −Θ
(
3imax−1

)
by Corollary 1 on page 20

= Θ(n) −Θ
(
3log4n

)
since imax = blog4 nc

= Θ(n) −Θ(nlog4 3) = Θ(n)

Then it has to be the case that P(n) = Θ(n).
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4
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8

Figure 3.6: The recursion tree of T(n) = 2T
(
n
2

)
+ n2.

• To estimate the remainder, consider the two factors in it:

3imax = 3blog4nc = Θ(3log4n) = Θ(nlog3 4)

T
(⌊ n

4imax

⌋)
= T(1) = Θ(1)

It follows the remainder is Θ(3log4n) = o(n).

Therefore, T(n) = Θ(n) + o(n) = Θ(n). �

Problem 65. Solve

T(n) = 2T
(n
2

)
+ n2

by the method of the recursion tree.

Solution:
The recursion tree is shown on Figure 3.6. The solution is the sum

n2 +
n2

2
+
n2

4
+
n2

8
+ . . . ≤ n2

∞∑
i=0

1

2i
= 2n2

It follows T(n) = Θ(n2). �

Problem 66. Solve

T(n) = T
(n
3

)
+ T

(
2n

3

)
+ n

by the method of the recursion tree.
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2n
27

2n
27

4n
27

2n
27

4n
27

4n
27

8
27

n
27

×1
3 ×2

3

×1
3 ×2

3 ×1
3 ×2

3

×2
3×2

3×2
3×2

3×1
3 ×1

3 ×1
3×1

3

n
9

2n
9

2n
9

4n
9

2n
3

n n

n

n

n
3

n

Figure 3.7: The recursion tree of T
(
n
3

)
+ T

(
2n
3

)
+ n.

Solution:
The recursion tree is shown on Figure 3.7. This time the tree is not complete so we do not
write the levels on the left side in terms of n (as we did on Figure 3.6). Rather, the level of
each node is the distance between it and the root. Thus the equidistant with respect to the
root nodes are at the same level. Think of the tree as an ordered tree. That is, if a node
has any children we distinguish between the left and the right child. The value of the left
child is the value of the parent multiplied by 1

3 and the value of the right child is the value

of the parent multiplied by 2
3 . It is trivial to prove by induction that for each level such

that all the nodes at this level exist, the sum of the values at that level is n. However, we
cannot obtain the answer immediately through mulitplying n by the height because the tree
is not balanced. The maximum distance between the root and any leaf is achieved along
the rightmost path (starting at the root, always take the right choice; see Figure 3.7) and
the minimum distance, by the leftmost path. The length of the leftmost path is determined
by the iterator

n→ n

3

which is executed Θ(log3 n) times before reaching any fixed in advance constant. The length
of the rightmost path is determined by the iterator

n→ 2n

3
=
n
3
2

which is executed Θ
(

log3
2
n
)

times before reaching any fixed in advance constant.
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Let T be the recursion tree. Construct two balanced trees T1 and T2 such that the

height of T1 is Θ(log3 n) and the height of T2 is Θ
(

log3
2
n
)

. Suppose that each level in T1
and T2 is associated with some value n – it does not matter for what reason, just assume
each level “costs” n. Let Si(n) be the sum of those costs in Ti over all levels for i = 1, 2.
Clearly,

S1(n) = n×Θ(log3 n) = Θ(n log3 n) = Θ(n lgn)

S2(n) = n×Θ
(

log3
2
n
)
= Θ

(
n log3

2
n
)
= Θ(n lgn)

To conlude the solution, note that S1(n) ≤ T(n) ≤ S2(n) because T1 can be considered a
subtree of T and T can be considered a subtree of T2. Then T(n) = Θ(n lgn). �

Problem 67. Solve by unfolding

T(n) = T(n− a) + T(a) + n a = const, a ≥ 1

Solution:
We assume a is integer† and the initial conditions are

T(1) = Θ(1)

T(2) = Θ(1)

. . .

T(a) = Θ(1)

Let us unfold the recurrence.

T(n) = T(n− a) + T(a) + n

= (T(n− 2a) + T(a) + n− a) + T(a) + n

= T(n− 2a) + 2T(a) + 2n− a

= (T(n− 3a) + T(a) + n− 2a) + 2T(a) + 2n− a

= T(n− 3a) + 3T(a) + 3n− 3a

= (T(n− 4a) + T(a) + n− 4a) + 3T(a) + 3n− 3a

= T(n− 4a) + 4T(a) + 4n− 6a

= (T(n− 5a) + T(a) + n− 4a) + 4T(a) + 4n− 6a

= T(n− 5a) + 5T(a) + 5n− 10a

. . .

= T(n− ia) + iT(a) + in−
1

2
i(i− 1)a (3.96)

Let the maximum value i takes be imax. Consider the iterator

n→ n− a

†It is not essential to postulate a is integer. The problems makes sense even if a is just a positive
real. If that is the case the initial conditions have to be changed to cover some interval with length a, e.g.
T(i) = const. if i ∈ (0,a].
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It maps every n > a, n ∈ N, to a unique number from {1, 2, . . . , a}. Let that number be
called k. So imax is the number of times the iterator is executed until the variable becomes
k. If nmoda 6= 0 then k is nmoda, otherwise k is a†. It follows that

imax =

{⌊
n
a

⌋
, if nmoda 6= 0

n
a − 1, else

That is equivalent to

imax =
⌈n
a

⌉
− 1

Subsituting i with
⌈
n
a

⌉
− 1 in (3.96), we get

T(k) +
(⌈n
a

⌉
− 1
)
T(a) +

(⌈n
a

⌉
− 1
)
n−

1

2

(⌈n
a

⌉
− 1
)(⌈n

a

⌉
− 1− 1

)
a (3.97)

The growth rate of (3.97) is determined by

n
⌈n
a

⌉
−
1

2

⌈n
a

⌉ ⌈n
a

⌉
= Θ(n2)

It follows T(n) = Θ(n2). �

Problem 68. Solve

T(n) = T(αn) + T((1− α)n) + n, α = const., 0 < α < 1 (3.98)

by the method of the recursion tree.

Solution:
Define that 1− α = β. Obviously, 0 < β < 1 and (3.98) becomes

T(n) = T(αn) + T(βn) + n (3.99)

The recursion tree of (3.99) is shown on Figure 3.8. The solution is completely analogous
to the solution of Problem 66. The level of each node is the distance between it and the
root. The sum of the costs at every level such that all nodes at that levels exist, is n. More
precisely, at level i the sum is (α + β)in = n. The tree is not complete. Assume without
loss of generality that α ≤ β and think of the tree as an ordered tree. The shortest path
from the root to any leaf is the leftmost one, i.e. “follow the alphas”, and the longest path
is the rightmost one. The length of the shortest path is log( 1α)

n and of the longest path,

log( 1
β

) n. We prove that T(n) = Θ(n lgn) just as in Problem 66 by considering two other

trees, one that is a subgraph of the current one and one that isa supergraph of the current

one. Since the first of then has sum of the costs n × Θ
(

log( 1α)
n
)

= Θ(n lgn) and the

second one, n×Θ
(

log( 1
β

) n
)

= Θ(n lgn), it follows T(n) = Θ(n lgn). �

†Not nmoda, which is 0.
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×α ×β

×α ×β ×α ×β

α3n α2βn

α2βn αβ2n

α2βn αβ2n

αβ2n β3n

×α ×α ×α×α ×β×β×β×β

α2n αβn αβn

n n

αn βn

β2n

(α+ β)n

(α+β)2n

(α+β)3n

Figure 3.8: The recursion tree of T(n) = T(αn) + T(βn) + n where 0 < α,β < 1
and α+ β = 1.

Problem 69. Solve by unfolding

T(n) = T(n− 1) +
1

n
(3.100)

Solution:
Before we commence the unfolding check the definition of the harmonic series, the partial
sum Hn of the harmonic series, and its order of growth Θ(lgn) on page 248.

T(n) = T(n− 1) +
1

n

= T(n− 2) +
1

n− 1
+
1

n

= T(n− 3) +
1

n− 2
+

1

n− 1
+
1

n

. . .

= T(1) +
1

2
+
1

3
+ . . .+

1

n− 2
+

1

n− 1
+
1

n

= T(1) − 1+ 1+
1

2
+
1

3
+ . . .+

1

n− 2
+

1

n− 1
+
1

n︸ ︷︷ ︸
Hn

= O(1) +Hn

= O(1) +Θ(lgn)

= Θ(lgn)
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�

Problem 70. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) + 1

Solution:

T(n) =
n

n+ 1
T(n− 1) + 1

=
n

n+ 1

(
n− 1

n
T(n− 2) + 1

)
+ 1

=
n− 1

n+ 1
T(n− 2) +

n

n+ 1
+ 1

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) + 1

)
+

n

n+ 1
+ 1

=
n− 2

n+ 1
T(n− 3) +

n− 1

n+ 1
+

n

n+ 1
+ 1

=
n− 2

n+ 1

(
n− 3

n− 2
T(n− 4) + 1

)
+
n− 1

n+ 1
+

n

n+ 1
+ 1

=
n− 3

n+ 1
T(n− 4) +

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+ 1 (3.101)

If we go on like that down to T(1), (3.101) unfolds into

T(n) =
2

n+ 1
T(1) +

3

n+ 1
+

4

n+ 1
+ . . .+

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+ 1

=
2

n+ 1
T(1) +

3

n+ 1
+

4

n+ 1
+ . . .+

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+
n+ 1

n+ 1

=
2T(1)

n+ 1
+

1

n+ 1

n+1∑
i=3

i

=
2T(1)

n+ 1
+

1

n+ 1

((
n+1∑
i=1

i

)
− 3

)

=
2T(1)

n+ 1
+

1

n+ 1

(
(n+ 1)(n+ 2)

2
− 3

)
=

1

n+ 1

(
4T(1) + (n2 + 3n+ 2) − 6

)
=
n2 + 3n+ 4T(1) − 4

n+ 1

=
n2

n+ 1︸ ︷︷ ︸
Θ(n)

+
3n

n+ 1︸ ︷︷ ︸
Θ(1)

+
4T(1) − 4

n+ 1︸ ︷︷ ︸
O(1)

= Θ(n)

So, T(n) = Θ(n). �
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Problem 71. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) + n2

Solution:

T(n) =
n

n+ 1
T(n− 1) + n2

=
n

n+ 1

(
n− 1

n
T(n− 2) + (n− 1)2

)
+ n2

=
n− 1

n+ 1
T(n− 2) +

n(n− 1)2

n+ 1
+ n2

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) + (n− 2)2

)
+
n(n− 1)2

n+ 1
+ n2

=
n− 2

n+ 1
T(n− 3) +

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

=
n− 2

n+ 1

(
n− 3

n− 2
T(n− 4) + (n− 3)2

)
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

=
n− 3

n+ 1
T(n− 4) +

(n− 2)(n− 3)2

n+ 1
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

(3.102)

If we go on like that down to T(1), (3.102) unfolds into

T(n) =
2

n+ 1
T(1) +

3.22

n+ 1
+
4.32

n+ 1
+ . . .

+
(n− 2)(n− 3)2

n+ 1
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

=
2

n+ 1
T(1) +

3.22

n+ 1
+
4.32

n+ 1
+ . . .

+
(n− 2)(n− 3)2

n+ 1
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+

(n+ 1)n2

n+ 1

=
2T(1)

n+ 1
+

1

n+ 1

n+1∑
i=3

i(i− 1)2

=
2T(1)

n+ 1
+

1

n+ 1

((
n+1∑
i=1

i(i− 1)2

)
− 2

)

=
2T(1) − 2

n+ 1
+

1

n+ 1

n+1∑
i=1

i(i− 1)2

=
2T(1) − 2

n+ 1
+

1

n+ 1

n+1∑
i=1

(i3 − 2i2 + i)

=
2T(1) − 2

n+ 1
+

1

n+ 1

(
n+1∑
i=1

i3 − 2

n+1∑
i=1

i2 +

n+1∑
i=1

i

)
(3.103)
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Having in mind (8.26), (8.27), and (8.28) on page 249, (3.103) becomes

2T(1) − 2

n+ 1
+

1

n+ 1

(
(n+ 1)2(n+ 2)2

4
− 2

(n+ 1)(n+ 2)(2n+ 3)

6
+

(n+ 1)(n+ 2)

2

)
=
2T(1) − 2

n+ 1︸ ︷︷ ︸
O(1)

+
(n+ 1)(n+ 2)2

4︸ ︷︷ ︸
Θ(n3)

−
(n+ 2)(2n+ 3)

3︸ ︷︷ ︸
Θ(n2)

+
n+ 2

2︸ ︷︷ ︸
Θ(n)

= Θ(n3)

So, T(n) = Θ(n3). �

Problem 72. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) +

√
n (3.104)

where
√
n stands for either b

√
nc or d

√
ne.

Solution:

T(n) =
n

n+ 1
T(n− 1) +

√
n

=
n

n+ 1

(
n− 1

n
T(n− 2) +

√
n− 1

)
+
√
n

=
n− 1

n+ 1
T(n− 2) +

n
√
n− 1

n+ 1
+
√
n

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) +

√
n− 2

)
+
n
√
n− 1

n+ 1
+
√
n

=
n− 2

n+ 1
T(n− 3) +

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
n− 2

n+ 1

(
n− 3

n− 2
T(n− 4) +

√
n− 3

)
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
n− 3

n+ 1
T(n− 4) +

(n− 2)
√
n− 3

n+ 1
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n (3.105)
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If we go on like that down to T(1), (3.105) unfolds into

T(n) =
2

n+ 1
T(1) +

3
√
2

n+ 1
+
4
√
3

n+ 1
+ . . .

+
(n− 2)

√
n− 3

n+ 1
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
2

n+ 1
T(1) +

3
√
2

n+ 1
+
4
√
3

n+ 1
+ . . .

+
(n− 2)

√
n− 3

n+ 1
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+

(n+ 1)
√
n

n+ 1

=
2T(1)

n+ 1
+

1

n+ 1

n∑
i=2

(i+ 1)
√
i

=
2T(1)

n+ 1
+

1

n+ 1

((
n∑
i=1

(i+ 1)
√
i

)
− 2

)

=
2T(1) − 2

n+ 1
+

1

n+ 1

n∑
i=1

(i+ 1)
√
i

=
2T(1) − 2

n+ 1
+

1

n+ 1

n∑
i=1

(i
√
i+
√
i)

=
2T(1) − 2

n+ 1
+

1

n+ 1

(
n∑
i=1

i
√
i+

n∑
i=1

√
i

)
(3.106)

But we know that

n∑
i=1

⌊√
i
⌋
= Θ

(
n
3
2

)
by (8.10) on page 240.

n∑
i=1

⌈√
i
⌉
= Θ

(
n
3
2

)
by (8.12) on page 241.

n∑
i=1

i
⌊√
i
⌋
= Θ

(
n
5
2

)
by (8.15) on page 244.

n∑
i=1

i
⌈√
i
⌉
= Θ

(
n
5
2

)
by (8.19) on page 247.

Therefore, regardless of whether “
√
n” in (3.104) stands for b

√
nc or d

√
ne,

T(n) =
2T(1) − 2

n+ 1
+

1

n+ 1

(
Θ
(
n
5
2

)
+Θ

(
n
5
2

))
by substituting into (3.106)

=
2T(1) − 2

n+ 1
+

1

n+ 1

(
Θ
(
n
5
2

))
= O(1) +Θ

(
n
3
2

)
So, T(n) = Θ

(
n
3
2

)
. �
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Problem 73. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) + lgn (3.107)

Solution:

T(n) =
n

n+ 1
T(n− 1) + lgn

=
n

n+ 1

(
n− 1

n
T(n− 2) + lg (n− 1)

)
+ lgn

=
n− 1

n+ 1
T(n− 2) +

n

n+ 1
lg (n− 1) + lgn

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) + lg (n− 2)

)
+

n

n+ 1
lg (n− 1) + lgn

=
n− 2

n+ 1
T(n− 3) +

n− 1

n+ 1
lg (n− 2) +

n

n+ 1
lg (n− 1) + lgn

= . . .

=
2

n+ 1
T(1)︸ ︷︷ ︸

A

+
3

n+ 1
lg 2+

4

n+ 1
lg 3+ . . .+

n− 1

n+ 1
lg (n− 2) +

n

n+ 1
lg (n− 1) + lgn︸ ︷︷ ︸

B

Clearly, A = O(1). Consider B.

B =
3

n+ 1
lg 2+

4

n+ 1
lg 3+ . . .+

n− 1

n+ 1
lg (n− 2) +

n

n+ 1
lg (n− 1) +

n+ 1

n+ 1
lgn

=
1

n+ 1
(3 lg 2+ 4 lg 3+ . . .+ (n− 1) lg (n− 2) + n lg (n− 1) + (n+ 1) lgn)︸ ︷︷ ︸

C

Now consider C.

C = 3 lg 2+ 4 lg 3+ . . .+ (n− 1) lg (n− 2) + n lg (n− 1) + (n+ 1) lgn

= lg 2+ lg 3+ . . .+ lg (n− 1) + lgn︸ ︷︷ ︸
D

+ 2 lg 2+ 3 lg 3+ . . .+ (n− 1) lg (n− 1) + n lgn︸ ︷︷ ︸
E

But D = Θ(n lgn) (see Problem 141 on page 232) and E = Θ(n2 lgn) (see Problem 142 on
page 232). It follows that C = Θ(n2 lgn), and so B = Θ(n lgn). We conclude that

T(n) = Θ(n lgn) �

Problem 74. Solve

T(1) = Θ(1) (3.108)

T(2) = Θ(1) (3.109)

T(n) = T(n− 1).T(n− 2) (3.110)
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Solution:
Unlike the problems we encountered so far, the aymptotic growth rate of T(n) in this
problem depends on the concrete values of the constants in (3.108) and (3.109). It is easy
to see that if T(1) = T(2) = 1 then T(n) = 1 for all positive n. So let us postulate that

T(1) = c (3.111)

T(2) = d (3.112)

where c and d are some positive constants. Then

T(3) = T(2).T(1) = cd

T(4) = T(3).T(2) = cd2

T(5) = T(4).T(3) = c2d3

T(6) = T(5).T(4) = c3d5

T(7) = T(6).T(5) = c5d8

. . .

The degrees that appear in this sequence look like the Fibonacci number (see the definition
on page 248). Indeed, it is trivial to prove by induction that

T(1) = c

T(n) = dFn−1cFn−2 , for all n > 1 (3.113)

Define

a = c
1√
5

b = d
1√
5

and derive

T(n) = Θ
(
bφ

n−1
)
Θ
(
aφ

n−2
)

applying (8.20) on page 248 on (3.113)

= Θ
(
bφ

n−1
aφ

n−2
)

= Θ
(
bφ.φ

n−2
aφ

n−2
)

= Θ
(
kφ
n−2

aφ
n−2

)
defining that bφ = k

= Θ
(
(ak)φ

n−2
)

(3.114)

Depending on how detalied analysis we need, we may stop right here. However, we can go
on a little further because depending on what a and k are, (3.113) can have dramatically
different asymptotic growth.

• If ak > 1, T(n) −−−−−→
n→ +∞ ∞.

• If ak = 1, T(n) = 1 for all positive n, thus T(n) = Θ(1).

• If ak < 1, T(n) −−−−−→
n→ +∞ 0, thus T(n) = O(1). �
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Problem 75. Solve

T(1) = Θ(1)

T(n) =

n−1∑
i=1

T(i) + 1

Solution:
By definition,

T(n) = T(n− 1)+ T(n− 2) + . . .+ T(2) + T(1) + 1 (3.115)

T(n− 1) = T(n− 2) + . . .+ T(2) + T(1) + 1 (3.116)

Subtract 3.116 from 3.115 to obtain

T(n) − T(n− 1) = T(n− 1)

So, the original recurrence is equivalent to the following one:

T(1) = Θ(1)

T(n) = 2T(n− 1)

It is trivial to show that T(n) = Θ(2n), either by induction or by the method with the
characteristic equation. �

Problem 76. Solve

T(1) = Θ(1)

T(n) =

n−1∑
i=1

(T(i) + T(n− i)) + 1

Solution:

T(n) =

n−1∑
i=1

(T(i) + T(n− i)) + 1

=

n−1∑
i=1

T(i)︸ ︷︷ ︸
T(1)+T(2)+...+T(n−1)

+

n−1∑
i=1

T(n− i)︸ ︷︷ ︸
T(n−1)+T(n−2)+...+T(1)

+ 1

= 2

n−1∑
i=1

T(i) + 1

Having in mind the latter result, we proceed as in the previous problem.

T(n) = 2T(n− 1)+ 2T(n− 2) + . . .+ 2T(2) + 2T(1) + 1 (3.117)

T(n− 1) = 2T(n− 2) + . . .+ 2T(2) + 2T(1) + 1 (3.118)

84



Problems with solutions in the Analysis of Algorithms c© Minko Markov

Subtract 3.118 from 3.117 to obtain

T(n) − T(n− 1) = 2T(n− 1)

So, the original recurrence is equivalent to the following one:

T(1) = Θ(1)

T(n) = 3T(n− 1)

It is trivial to show that T(n) = Θ(3n), either by induction or by the method of the
characteristic equation. �

Problem 77. Solve

T(1) = Θ(1)

T(n) = nT(n− 1) + 1

Solution:

T(n) = nT(n− 1) + 1

= n((n− 1)T(n− 2) + 1) + 1

= n(n− 1)T(n− 2) + n+ 1

= n(n− 1)((n− 2)T(n− 3) + 1) + n+ 1

= n(n− 1)(n− 2)T(n− 3) + n(n− 1) + n+ 1

= n(n− 1)(n− 2)((n− 3)T(n− 4) + 1) + n(n− 1) + n+ 1

= n(n− 1)(n− 2)(n− 3)T(n− 4) + n(n− 1)(n− 2) + n(n− 1) + n+ 1

. . .

=
n!

(n− i)!
T(n− i) +

n!

(n− i+ 1)!
+

n!

(n− i+ 2)!
+ . . .+

n!

(n− 1)!
+
n!

n!
(3.119)

Clearly, the maximum value i achieves is imax = n− 1. For i = imax, (3.119) becomes:

T(n) =
n!

1!
T(1) +

n!

2!
+
n!

3!
+ . . .+

n!

(n− 1)!
+
n!

n!

= n!×
(
T(1)

1!
+
1

2!
+
1

3!
+ . . .+

1

(n− 1)!
+
1

n!

)
︸ ︷︷ ︸

A

We claim A is bounded by a constant. To see why, note that the series
∑∞
i=1

1
i! is convergent

because the geometric series
∑∞
i=1

1
2i

is convergent and i! > 2i for all i > 3. Therefore,

T(n) = Θ(n!)

�

Problem 78. Solve by unfolding

T(1) = Θ(1)

T(n) = nT(n− 1) + 2n
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Solution:

T(n) = nT(n− 1) + 2n

= n((n− 1)T(n− 2) + 2n−1) + 2n

= n(n− 1)T(n− 2) + n2n−1 + 2n

= n(n− 1)((n− 2)T(n− 3) + 2n−2) + n2n−1 + n2n

= n(n− 1)(n− 2)T(n− 3) + n(n− 1)2n−2 + n2n−1 + n2n

= n(n− 1)(n− 2)((n− 3)T(n− 4) + 2n−3) + n(n− 1)2n−2 + n2n−1 + n2n

= n(n− 1)(n− 2)(n− 3)T(n− 4) + n(n− 1)(n− 2)2n−3 + n(n− 1)2n−2 + n2n−1 + n2n

. . .

=
n!

(n− i)!
T(n− i) +

n! 2n−i+1

(n− i+ 1)!
+
n! 2n−i+2

(n− i+ 2)!
+ . . .+

n! 2n−1

(n− 1)!
+
n! 2n

n!
(3.120)

Clearly, the maximum value i achieves is imax = n− 1. For i = imax, (3.120) becomes:

T(n) =
n!

1!
T(1) +

n! 22

2!
+
n! 23

3!
+ . . .+

n!2n−1

(n− 1)!
+
n! 2n

n!

= n!×

(
T(1) +

n∑
k=2

2k

k!

)

But the series
∑∞
k=1

2k

k! is convergent. To see why, apply d’Alambert criterion:

2k+1

(k+1)!

2k

k!

=
2

k+ 1
< ε for any ε > 0 for all sufficiently large k

It follows
∑n
k=2

2k

k! is bound by a constant, therefore T(n) = Θ(n!). �

The following problem is presented without solution in [Par95, pp. 40, Problem 248].

Problem 79. Solve the recurrence

T(n) = T

(⌊
n

lgn

⌋)
+ 1

Solution:
This recurrence is with a single occurrence (see the definition on page 44) and its solution
is the asymptotic number of times it takes to execute the iterator

n→ ⌊
n

lgn

⌋
in order n to become some constant, say 1. However, the argument at the right-hand side
decreases in a complicated manner and it is unlikely a pattern will emerge if we unfold
the recurrence several times, so a solution by unfolding seems impractical. Let us try to
estimate T(n). Consider another recurrence S(n) in which the argument is always divided
by the same quantity m: S(n) = S

(⌊
n
m

⌋)
+ 1. If m is a constant, we know (see (3.6) on

page 44) its solution is S(n) = logm n. It is easy to see the solution is the same even when
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m is not a constant. So, if m equals lgn with respect to the initial value of n and m stays
the same during the recurrence’s unfolding, the solution is

S(n) = Θ(loglgn n) = Θ

(
lgn

lg lgn

)
However, since n decreases, at each execution of the iterator the argument is divided by
a quantity that gets smaller and smaller, approaching and eventually becoming constant.
With those considerations in mind we can claim the following bounds on T(n):

lgn

lg lgn
� T(n) � lgn

We prove by induction on n that T(n) = Θ
(

lgn
lg lgn

)
. We omit the floor notation for

simplicity, thus

T(n) = T

(
n

lgn

)
+ 1 (3.121)

Part i: Proof that T(n) = O
(

lgn
lg lgn

)
, that is, there exists a positive constant c and some

n0, such that for all n ≥ n0,

T(n) ≤ c lgn

lg lgn
(3.122)

The inductive hypothesis is

T

(
n

lgn

)
≤ c

lg
(
n

lgn

)
lg lg

(
n

lgn

) (3.123)

Substitute (3.123) into (3.121) to obtain

T(n) ≤ c
lg
(
n

lgn

)
lg lg

(
n

lgn

) + 1

= c
lgn− lg lgn

lg (lgn− lg lgn)
+ 1 (3.124)

Substitute lgn by 2m, thus lg lgn by m, in (3.124) to obtain

c
2m −m

lg (2m −m)
+ 1 ≤ c2

m −m

lg 1.9m
+ 1 = c

2m −m

m lg 1.9
+ 1 =

c

1.9

2m −m

m
+ 1 =

c

1.9

2m

m
−
c

1.9
+ 1 ≤ c2

m

m
= c

lgn

lg lgn
(3.125)

(3.124) and (3.125) yield

T(n) ≤ c lgn

lg lgn
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for any c, say c = 1, and all large enough n.

Part ii: Proof that T(n) = Ω
(

lgn
lg lgn

)
, that is, there exists a positive constant d and some

n0, such that for all n ≥ n0,

T(n) ≥ d lgn

lg lgn
(3.126)

The inductive hypothesis is

T

(
n

lgn

)
≥ d

lg
(
n

lgn

)
lg lg

(
n

lgn

) (3.127)

Substitute (3.127) into (3.121) to obtain

T(n) ≥ d
lg
(
n

lgn

)
lg lg

(
n

lgn

) + 1

= d
lgn− lg lgn

lg (lgn− lg lgn)
+ 1 (3.128)

Substitute lgn by 2m, thus lg lgn by m, in (3.128) to obtain

d
2m −m

lg (2m −m)
+ 1 ≥ d2

m −m

lg 2m
+ 1 = d

2m −m

m
+ 1 = d

2m

m
− d+ 1 ≥ d2

m

m
(3.129)

for, say, d = 1. Going back to n, (3.128) and (3.129) prove that

T(n) ≥ d lgn

lg lgn

for d = 1 and all large enough n. �

Problem 80. Prove that the recurrence relation

T(1) = Θ(1)

T(n) =

m∑
i=1

T(ni) +Θ(m) (3.130)

for any numerical partition n1, n2, . . . , nm of n− 1, has solution T(n) = O(n).

Proof:
By induction on n. Assume there are positive constants b and c such that T(n) ≤ c.n −
b. Assume the bigger hidden constant in the “Θ(m)” expression is k. By the inductive
hypothesis,

T(n) ≤
m∑
i=1

(c.ni − b) + k.m

= c

m∑
i=1

(ni) − b.m+ k.m

= c(n− 1) +m(k− b), since n1 + n2 + . . . nm = n− 1

= c.n− c+m(k− b)

≤ c.n− b, if k− b < 0 and c > b
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�

Problem 81. Solve the recurrence

T(n) = T(n− 1) +
2(n− 1)

n(n+ 1)
(3.131)

Solution:

T(n) = T(n− 1) +
2(n− 1)

n(n+ 1)

= T(n− 1) + T(n− 2) +
2(n− 2)

(n− 1)n
+
2(n− 1)

n(n+ 1)

= T(n− 1) + T(n− 2) + T(n− 3) +
2(n− 3)

(n− 2)(n− 1)
+
2(n− 2)

(n− 1)n
+
2(n− 1)

n(n+ 1)

. . .

= T(1)︸︷︷︸
Θ(1)

+
2 · 1
2 · 3

+
2 · 2
3 · 4

+ . . .
2(n− 2)

(n− 1)n
+
2(n− 1)

n(n+ 1)
(3.132)

It follows

T(n) �
n∑
k=2

2(k− 1)

k(k+ 1)
= 2

(
n∑
k=2

k

k(k+ 1)
−

n∑
k=2

1

k(k+ 1)

)
(3.133)

First consider
∑n
k=2

k
k(k+1) :

n∑
k=2

k

k(k+ 1)
=

n∑
k=2

1

k+ 1
� lgn by Fact 8 on page 248 (3.134)

Now consider
∑n
k=2

1
k(k+1) . It is well-known the series

∑∞
k=1

1
k(k+1) is convergent and its

sum is 1. A trivial proof of that fact is

∞∑
k=1

1

k(k+ 1)
=

∞∑
k=1

(k+ 1) − k

k(k+ 1)
=

∞∑
k=1

(
1

k
−

1

k+ 1

)
=

1

1
−
1

2
+
1

2
−
1

3
+
1

3
+ . . . =

1

1
+ 0+ 0+ . . . = 1

It follows that

n∑
k=2

1

k(k+ 1)
= Θ(1) (3.135)

Plug in (3.135) and (3.134) into (3.133) to obtain

T(n) � lgn (3.136)

�

The average complexity of Quicksort (the pseudocode is on page 130) is given by recur-
rence (3.137). The reasoning is the following. We consider only the number of comparison,
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i.e. we ignore the swaps. Given an input A[1, . . . , n], there are precisely n− 1 comparisons
performed by the Partition function (see the pseudocode on page 127). The pivot position
returned by Partition can be any number from 1 to n inclusive. Let k denote that value.
Two recursive calles are performed, one on the subarray A[1, . . . , k − 1] and the other one
on the subarray A[k+ 1, . . . , n]. The first one has precisely k− 1− 1+ 1 = k− 1 elements,
the second one has precisely n− (k+ 1) + 1 = n− k elements.

Problem 82. Solve the recurrence

T(n) =
1

n

n∑
k=1

(
T(k− 1) + T(n− k)

)
+ (n− 1) (3.137)

Solution:

T(n) =
1

n

n∑
k=1

(
T(k− 1) + T(n− k)

)
+ (n− 1)

=
1

n

(
n∑
k=1

T(k− 1) +

n∑
k=1

T(n− k)

)
+ (n− 1)

=
2

n

(
n∑
k=1

T(k− 1)

)
+ (n− 1) (3.138)

Multiply both sides of (3.138) by n to obtain:

nT(n) = 2

(
n∑
k=1

T(k− 1)

)
+ n(n− 1) (3.139)

Then

(n− 1)T(n− 1) = 2

(
n−1∑
k=1

T(k− 1)

)
+ (n− 1)(n− 2) (3.140)

Subtract (3.139) minus (3.140) to obtain:

nT(n) − (n− 1)T(n− 1) = 2T(n− 1) + n(n− 1) − (n− 1)(n− 2) =

2T(n− 1) + 2(n− 1) ⇔
nT(n) = (n+ 1)T(n− 1) + 2(n− 1) (3.141)

Divide both sides of (3.141) by n(n+ 1) to obtain:

T(n)

n+ 1
=
T(n− 1)

n
+
2(n− 1)

n(n+ 1)
(3.142)

Let T(n)n+1 = S(n), i.e. T(n) = (n+ 1)S(n). In terms of S( ), (3.142) becomes:

S(n) = S(n− 1) +
2(n− 1)

n(n+ 1)
(3.143)

But S(n) � lgn by (3.136) on the previous page. It follows that T(n) = Θ(n lgn). �
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3.2.2 The Master Theorem

There are several theoretical results solving a broad range of recurrences corresponding to
divide-and-conquer algorithms that are called master theorems. The one stated below is
due to [CLR00]. There is a considerately more powerful master theorem due to Akra and
Bazzi [AB98]. See [Lei96] for a detailed explanation.

Theorem 1 (Master Theorem, [CLR00], pp. 62). Let a ≥ 1 and b > 1 be constants, let
k = lgb a, and let f(n) be a positive function. Let

T(n) = aT
(n
b

)
+ f(n)

T(1) = Θ(1)

where
n

b
is interpreted either as

⌊n
b

⌋
or
⌈n
b

⌉
. Then T(n) can be bounded asymptotically as

follows.

Case 1 If f(n) = O
(
nk−ε

)
for some positive constant ε then T(n) = Θ(nk).

Case 2 If f(n) = Θ(nk) then T(n) = Θ
(
nk. lgn

)
.

Case 3 If both

1. f(n) = Ω
(
nk+ε

)
for some positive constant ε, and

2. a.f
(
n
b

)
≤ c.f(n) for some constant c such that 0 < c < 1 and for all sufficiently

large n,

then T(n) = Θ(f(n)). �

Condition 3-2 is known as the regularity condition.

Note that the condition f(n) = O
(
nk−ε

)
is stronger than f(n) = o(nk) and f(n) =

Ω
(
nk+ε

)
is stronger than f(n) = ω

(
nk
)
:

f(n) = O(nk−ε) ⇒ f(n) = o(nk)

f(n) = o(nk) 6⇒ f(n) = O(nk−ε)

f(n) = Ω(nk+ε) ⇒ f(n) = ω(nk)

f(n) = ω(nk) 6⇒ f(n) = Ω(nk+ε)

For example, consider that

n lgn = ω(n) (3.144)

n lgn 6= Ω(n1+ε) for any ε > 0 because lgn 6= Ω(nε) by (1.50) (3.145)
n

lgn
= o(n) (3.146)

n

lgn
6= O(n1−ε) for any ε > 0 because

1

lgn
6= O(n−ε) (3.147)
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To see why 1
lgn 6= O(n

−ε) in (3.147) consider that

lim
n→∞ lgn

nε
= 0 ⇒ lim

n→∞
(

1
nε

1
lgn

)
= 0 ⇒ 1

nε
= o

(
1

lgn

)
by (1.6) ⇒

1

lgn
= ω

(
1

nε

)
by the transpose symmetry

Problem 83. Solve by the Master Theorem

T(n) = 4T
(n
2

)
+ n

Solution:
Using the terminology of the Master Theorem, a is 4, b is 2, thus logb a is log2 4 = 2 and
nlogb a is n2. The function f(n) is n. The theorem asks us to compare f(n) and nlogb a,
which, in the current case, is to compare n with n2. Clearly, n = O(n2−ε) for some ε > 0,
so Case 1 of the Master Theorem is applicable and T(n) = n2. �

Problem 84. Solve by the Master Theorem

T(n) = T

(
2n

3

)
+ 1

Solution:
Rewrite the recurrence as

T(n) = 1.T

(
n
3
2

)
+ 1

Using the terminology of the Master Theorem, a is 1, b is 32 , thus logb a is log3
2
1 = 0 and

nlogb a is n0 = 1. The function f(n) is 1. Clearly, 1 = Θ(n0), so Case 2 of the Master
Theorem is applicable. Assording to it, T(n) = Θ(1. lgn) = Θ(lgn). �

Problem 85. Solve

T(n) = 3T
(n
4

)
+ n lgn

Solution:
Using the terminology of the Master Theorem, a is 3, b is 4, thus logb a is log4 3, which
is approximately 0.79, and the function f(n) is n lgn. It certainly is true that n lgn =
Ω(nlog4 3+ε) for some ε > 0, for instance ε = 0.1. However, we have to check the regularity
condition to see if Case 3 of the Master Theorem is aplicable. The regularity condition in
this case is:

∃c such that 0 < c < 1 and 3
n

4
lg
n

4
≤ cn lgn for all sufficiently large n

The latter clearly holds for, say, c = 3
4 , therefore Case 3 is applicable and according to it,

T(n) = Θ(n lgn). �
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Problem 86. Solve

T(n) = 2T
(n
2

)
+ n lgn

Solution:
Let us the try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 2 and b is 2, thus logb a is log2 2 = 1, therefore nlogb a is n1 = n. The
function f(n) is n lgn. Let us see if we can classify that problem in one of the three cases
of the Master Theorem.

try Case 1 Is it true that n lgn = O(n1−ε) for some ε > 0? No, because n lgn = ω(n1).

try Case 2 Is it true that n lgn = Θ(n1)? No, because n lgn = ω(n1).

try Case 3 Is it true that n lgn = Ω(n1+ε) for some ε > 0? No, see (3.145).

Therefore this problem cannot be solved using the Master Theorem as stated above. We
solve it by Theorem 2 on page 96 and the answer is T(n) = Θ(n lg2 n). �

Problem 87. Solve

T(n) = 4T
(n
2

)
+ n (3.148)

T(n) = 4T
(n
2

)
+ n2 (3.149)

T(n) = 4T
(n
2

)
+ n3 (3.150)

(3.151)

Solution:
Using the terminology of the Master Theorem, a is 4 and b is 2, thus logb a is log4 2 = 2,
therefore nlogb a is n2. With respect to (3.148), it is the case that n = O(n2−ε) for some
ε > 0, therefore the solution of (3.148) is T(n) = Θ(n2) by Case 1 of the Master Theorem.
With respect to (3.149), it is the case that n2 = Θ(n2), therefore the solution of (3.149)
is T(n) = Θ(n2 lgn) by Case 2 of the Master Theorem. With respect to (3.150), it is the
case that n3 = Ω(n2+ε) for some ε > 0, therefore the solution of (3.150) is T(n) = Θ(n3)
by Case 3 of the Master Theorem, provided the regularity condition holds. The regularity
condition here is

∃c such that 0 < c < 1 and 4
(n
2

)3
≤ cn3 for all sufficiently large n

Clearly that holds for any c such that 1
2 ≤ c < 1. Therefore, by Case 3 of the Master

Theorem, the solution of (3.150) is T(n) = Θ(n3). �

Problem 88. Solve

T(n) = T
(n
2

)
+ lgn (3.152)
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Solution:
Let us try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 1 and b is 2, thus logb a is log2 1 = 0, therefore nlogb a is n0 = 1. The
function f(n) is lgn. Let us see if we can classify that problem in one of the three cases of
the Master Theorem.

try Case 1 Is it true that lgn = O(n0−ε) for some ε > 0? No, because lgn is an increasing
function and n−ε = 1

nε is a decreasing one.

try Case 2 Is it true that lgn = Θ(n0)? No, because lgn = ω(n0).

try Case 3 Is it true that lgn = Ω(n0+ε) for some ε > 0? No, see (1.50) on page 12.

So the Master Theorem is not applicable and we seek other methods for solving. Substitute
n by 2m, i.e. m = lgn and m = lgn. Then (3.152) becomes

T (2m) = T
(
2m−1

)
+m (3.153)

Further substitute T (2m) by S(m) and (3.153) becomes

S(m) = S(m− 1) +m (3.154)

But that recurrence is the same as (3.19), therefore its solution is S(m) = Θ(m2). Let us
go back now to the original n and T(n).

S(m) = Θ(m2) ⇔ T(2m) = Θ(lg2 n) ⇔ T(n) = Θ(lg2 n)

�

Problem 89. Solve by the Master Theorem

T(n) = 2T
(n
2

)
+ n3 (3.155)

T(n) = T

(
9n

10

)
+ n (3.156)

T(n) = 16T
(n
4

)
+ n2 (3.157)

T(n) = 7T
(n
3

)
+ n2 (3.158)

T(n) = 7T
(n
2

)
+ n2 (3.159)

T(n) = 2T
(n
4

)
+
√
n (3.160)

T(n) = 4T
(n
2

)
+ n2

√
n (3.161)

T(n) = 8T
(n
2

)
+ n3 (3.162)

T(n) = 3T
(n
2

)
+ 2n2 (3.163)

T(n) = 3T
(n
2

)
+ n lgn (3.164)
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Solution:
(3.155): as n3 = Ω

(
nlog2 2+ε

)
for some ε > 0, we classify the problem into Case 3 of

the Master Theorem. To apply Case 3, we have to check the regularity condition holds.

Namely, there is a constant c such that 0 < c < 1 and 2
(
n
2

)3 ≤ cn3 ⇔ 1
4 ≤ c. So, any

c such that 14 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is
applicable, therefore T(n) = Θ(n3).

(3.156): rewrite the recurrence as T(n) = 1.T

(
n
10
9

)
+ n. As n = Ω

(
n

(
log10

9
1

)
+ε
)

for

some ε > 0, we classify the problem into Case 3 of the Master Theorem. To apply Case 3,
we have to check the regularity condition holds. Namely, there is a constant c such that

0 < c < 1 and 1

(
n
10
9

)
≤ cn ⇔ 9

10 ≤ c. So, any c such that 9
10 ≤ c < 1 will do, therefore

the regularity condition holds, therefore Case 3 is applicable, therefore T(n) = Θ(n).

(3.157): As n2 = Θ
(
nlog4 16

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = n2 lgn.

(3.158): as n2 = Ω
(
nlog3 7+ε

)
for some ε > 0, we classify the problem into Case 3 of

the Master Theorem. To apply Case 3, we have to check the regularity condition holds.

Namely, there is a constant c such that 0 < c < 1 and 7
(
n
3

)2 ≤ cn2 ⇔ 7
9 ≤ c. So, any

c such that 79 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is
applicable, therefore T(n) = Θ(n2).

(3.159): as n2 = O
(
nlog2 7−ε

)
for some ε > 0, we classify the problem into Case 1 of the

Master Theorem and so T(n) = Θ
(
nlog2 7

)
.

(3.160): as
√
n = Θ

(
nlog4 2

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = Θ(
√
n lgn).

(3.161): as n
5
2 = Ω

(
nlog2 4+ε

)
for some ε > 0, we classify the problem into Case 3 of

the Master Theorem. To apply Case 3, we have to check the regularity condition holds.

Namely, there is a constant c such that 0 < c < 1 and 4
(
n
2

)5
2 ≤ cn

5
2 ⇔ 1√

2
≤ c. So, any c

such that 1√
2
≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is

applicable, therefore T(n) = Θ(n2
√
n).

(3.162): As n3 = Θ
(
nlog2 8

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = n3 lgn.

(3.163): as 2n2 = Ω
(
nlog2 3+ε

)
for some ε > 0, we classify the problem into Case 3 of

the Master Theorem. To apply Case 3, we have to check the regularity condition holds.

Namely, there is a constant c such that 0 < c < 1 and 3
(
2
(
n
2

)2) ≤ c2n2 ⇔ 3 ≤ 4c. So,

any c such that 34 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3
is applicable, therefore T(n) = Θ(2n2) = Θ(n2).

(3.164): as n lgn = O
(
nlog2 3−ε

)
for some ε > 0, we classify the problem into Case 1 of

the Master Theorem and so T(n) = Θ
(
nlog2 3

)
. �
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The following result extends Case 2 of the Master Theorem.

Theorem 2. Under the premises of Theorem 1, assume

f(n) = Θ(nk lgt n) (3.165)

for some constant t ≥ 0. Then

T(n) = Θ(nk lgt+1 n)

Proof:
Theorem 1 itself is not applicable because the recurrence for the said f(n) cannot be classified
into any of the three cases there. To solve the problem we use unfolding. For simplicity
we assume that n is an exact power of b, i.e. n = bm for some integer m > 0. The same
technique is used in [CLR00] for proving the Master Theorem: first prove it for exact powers
of b and then prove the result holds for any positive n. Here we limit our proof to the case
that n is an exact power of b and leave it to the reader to generalise for any positive n.

Assume that the logarithm in (3.165) is base-b and note we can rewrite what is inside
the Θ-notation on the right-hand side of (3.165) in the following way:

nk logtb n = nlogb a (logb b
m)t = b(m logb a)mt = b(logb a

m)mt = ammt (3.166)

Then (3.165) is equivalent to saying that

c1a
mmt ≤ f(bm) ≤ c2ammt

for some positive constants c1 and c2 and all sufficiently large values of m. However, for
the sake of simplicity, we will assume in the remainder of the proof that

f(bm) = ammt (3.167)

The reader is invited to construct a proof for the general case.

By the definition of the Master Theorem, T(n) = aT
(
n
b

)
+ f(n). Using (3.167) we rewrite

that as follows.

T(bm) = aT

(
bm

b

)
+ ammt

= aT(bm−1) + ammt ⇔
S(m) = aS(m− 1) + ammt substituting T(bm) with S(m)

= a
(
aS(m− 2) + am−1(m− 1)t) + ammt

= a2S(m− 2) + am(m− 1)t + ammt

= a2
(
aS(m− 3) + am−2(m− 2)t

)
+ am(m− 1)t + ammt

= a3S(m− 3) + am(m− 2)t + am(m− 1)t + ammt

. . .

= am−1S(1) + am2t + am3t + . . .+ am(m− 2)t + am(m− 1)t + ammt

= am−1S(1) − am + am (1t + 2t + 3t + . . .+ (m− 2)t + (m− 1)t +mt)︸ ︷︷ ︸
Θ(mt+1) by (8.25) on page 249

= am−1S(1) − am + amΘ(mt+1)

= am−1S(1) − am +Θ(ammt+1) (3.168)
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But (3.168) is Θ(ammt+1) because ammt+1 = ω(|am−1S(1) − am|). So,

S(m) = Θ(ammt+1) ⇔ T(n) = Θ
(
alogbn(logb n)

t+1
)

Having in mind that alogbn = nlogb a and logb n = Θ(lgn), we conclude that

T(n) = Θ
(
nlogb a lgt+1 n

)
�

Problem 90. Solve

T(n) = 2T
(n
2

)
+ lgn

Solution:
Since lgn = O

(
nlog2 2−ε

)
for some ε > 0, T(n) = Θ(nlog2 2) = Θ(n) by Case 1 of the

Master Theorem. �

Problem 91. Solve

T(n) = 2T
(n
2

)
+

n

lgn

Solution:
Let us the try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 2 and b is 2, thus logb a is log2 2 = 1, therefore nlogb a is n1 = n. The
function f(n) is n

lgn . Let us see if we can classify that problem in one of the three cases of
the Master Theorem.

try Case 1 Is it true that n
lgn = O(n1−ε) for some ε > 0? No, see (3.147) on page 91.

try Case 2 Is it true that n
lgn = Θ(n1)? No, because n lgn = o(n1).

try Case 3 Is it true that n
lgn = Ω(n1+ε) for some ε > 0? No, because n lgn = o(n1).

Therefore this problem cannot be solved using the Master Theorem as stated above. Fur-
thermore, Theorem 2 on the previous page cannot be applied either because it is not true
that n

lgn = Θ(nlog2 2 lgt(n)) for any t ≥ 0.
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We solve the problem by unfolding.

T(n) = 2T
(n
2

)
+

n

lgn

= 2

(
2T
(n
4

)
+

n
2

lg n2

)
+

n

lgn

= 4T
(n
4

)
+

n

(lgn) − 1
+

n

lgn

= 4

(
2T
(n
8

)
+

n
4

lg n4

)
+

n

(lgn) − 1
+

n

lgn

= 8T
(n
8

)
+

n

(lgn) − 2
+

n

(lgn) − 1
+

n

lgn

. . .

= nT(1) +
n

1
+
n

2
+
n

3
+ . . .+

n

(lgn) − 2
+

n

(lgn) − 1
+

n

lgn

= nT(1) + n

(
1

1
+
1

2
+
1

3
+ . . .+

1

(lgn) − 2
+

1

(lgn) − 1
+

1

lgn

)
︸ ︷︷ ︸

B

Clearly, |A| = O(n). Now observe that B = n.Hlgn because inside the parentheses is the
(lgn)th partial sum of the harmonic series (see 8.21 on page 248). By (8.22), Hlgn =
Θ(lg lgn), therefore B = Θ(n lg lgn), therefore T(n) = Θ(n lg lgn). �

Problem 92 ([CLR00], Problem 4.4-3). Show that case 3 of the master theorem is over-
stated, in the sense that the regularity condition af

(
n
b

)
≤ cf(n) for some constant c < 1

implies that there exists a constant ε > 0 such that f(n) = Ω(nlogb a+ε).

Solution:
Assume for some constant c such that 0 < c < 1,

f(n) ≥ a
c
f
(n
b

)
Then

f(n) ≥ a
2

c2
f
( n
b2

)
f(n) ≥ a

3

c3
f
( n
b3

)
. . .

f(n) ≥ a
t

ct
f
( n
bt

)
(3.169)

For some constant value n0 for n, that process stops. So, n
bt

= n0, therefore t =

logb

(
n

n0

)
= logb n − logb n0. Let s = 1

c . Since c < 1, it is the case that s > 1.

Substitute t, n
bt

, and c in (3.169) to obtain

f(n) ≥ alogbn

alogbn0
× slogbn

slogbn0
× f(n0)
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Note that 1
alogb n0

× 1
slogb n0

× f(n0) is a constant. Call that constant, β. So,

f(n) ≥ alogbn × slogbn × β

Having in mind that alogbn = nlogb a and slogbn = nlogb s, we see that

f(n) ≥ β× nlogb a × nlogb s

Since s > 1, logb s > 0. Let ε = logb s. We derive the desired result: for all sufficiently
large n and some constant β

f(n) ≥ βnlogb a+ε ⇒ f(n) = Ω(nlogb a+ε)

�

3.2.3 The Method with the Characteristic Equation

Theorem 3 ([Man05], pp. 57). Let the infinite sequence ã = a0, a1, a2, . . . be generated by
the linear recurrence relation

an = c1an−1 + c2an−2 + . . .+ cr−1an−(r−1) + cran−r (3.170)

Let α1, α2, . . . , αs be the distinct complex roots of the characteristic equation

xr − c1x
r−1 − c2x

r−2 − . . .− cr−1x− cr = 0 (3.171)

where αi has multiplicity ki for 1 ≤ i ≤ s†. Then

an = P1(n)α
n
1 + P2(n)α

n
2 + . . .+ Ps(n)α

n
s (3.172)

where Pi(n) is a polynomial of n of degree < ki. The polynomials P1(n), P2(n), . . . ,
Ps(n) have r coefficients altogether which coefficients are determined uniquely by the first r
elements of ã. �

Using our terminology, (3.170) would be rewritten as

T(n) = c1T(n− 1) + c2T(n− 2) + . . .+ cr−1T(n− (r− 1)) + crT(n− r) (3.173)

This is a generic instance of homogeneous linear recurrence. It is hardly possible such
a recurrence relation to describe the running time of a recursive algorithm since after the
recursive calls finish, at least some constant-time work must be perfomed. Therefore, we
will consider more general recurrence relations that are nonhomogeneous and whose generic
form is:

T(n) = c1T(n− 1) + c2T(n− 2) + . . .+ cr−1T(n− (r− 1)) + crT(n− r) (3.174)

+ bn1Q1(n) + b
n
2Q2(n) + . . .+ b

n
mQm(n)

b1, b2, . . . , bm are distinct positive constants and Q1(n), Q2(n), . . . , Qm(n) are polyno-
mials of n of degrees d1, d2, . . . , dm, respectively.

†Clearly, ki ≥ 1 for 1 ≤ i ≤ s and k1 + k2 + . . .+ ks = r.
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Let us denote multisets by { }M brackets, e.g. {1, 1, 2, 3, 3, 3}M. For each element a
from some mulitset A, let #(a,A) denote the number of occurrences of a in A. For example,
#(1, {1, 1, 2, 3, 3, 3}) = 2. The union of two multisets A and B adds the multiplicities of the
elements, that is,

A ∪ B = {x | (x ∈ A or x ∈ B) and (#(x,A ∪ B) = #(x,A) + #(x, B))}M

The cardinality of a multiset A is the sum of the multiplicities of its elements and is denoted
by |A|. For example, | {1, 1, 2, 3, 3, 3}M | = 6.

The solution of (3.174) is the following. Let the multiset of the roots of the characteristic
equation be A. Clearly, |A| = r. Let B = {bi |#(b, B) = di + 1}M. Let Y = A ∪ B. Clearly,
|Y| = r +

∑m
i=1(di + 1). Let us rename the distinct elements of Y as y1, y2, . . . , yt and

define that #(yi, Y) = zi, for 1 ≤ i ≤ t. Then

T(n) =β1,1 y
n
1 + β1,2 ny

n
1 + . . .+ β1,z1 n

z1−1 yn1 + (3.175)

β2,1 y
n
2 + β2,2 ny

n
2 + . . .+ β2,z2 n

z2−1 yn2 +

. . .

βt,1 y
n
1 + βt,2 ny

n
t + . . .+ βt,zt n

zt−1 yn1

The indexed β’s are constants, |Y| in number. Since we are interested in the asymptotic
growth rate of T(n) we do not care what are the precise values of those constants. As we do
not specify concrete initial conditions we are not able to compute them precisely anyways.
The asymptotic growth rate is determined by precisely one of all those terms—namely, the
biggest yi, multiplied by the biggest degree of n.

Problem 93. Solve

T(n) = T(n− 1) + 1

using the method of the characteristic equation.

Solution:
Rewrite the recurrence as T(n) = T(n − 1) + 1nn0 to make sure its form is as required
by (3.174). The characteristic equation is x − 1 = 0 with a single root x1 = 1. So, the
multiset of the roots of the characteristic equation is {1}M. In the naming convention of
(3.174), m = 1, b1 = 1, and d1 = 0. So we add b1 = 1 with multiplicity d1 + 1 = 1 to
{1}M, obtaining {1, 1}M. Then T(n) = A1n+Bn1n for some constants A and B, therefore
T(n) = Θ(n). �

Problem 94. Solve

T(n) = T(n− 1) + n

using the method of the characteristic equation.

Solution:
Rewrite the recurrence as T(n) = T(n − 1) + 1nn1 to make sure its form is as required by
(3.174). The characteristic equation is x− 1 = 0 with a single root x1 = 1. So, the multiset
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of the roots of the characteristic equation is {1}M. In the naming convention of (3.174),
m = 1, b1 = 1, and d1 = 1. So we add b1 = 1 with multiplicity d1 + 1 = 2 to {1}M,
obtaining {1, 1, 1}M. Then T(n) = A1n+Bn1n+Cn2 1n for some constants A, B, and C,
therefore T(n) = Θ(n2). �

Problem 95. Solve

T(n) = T(n− 1) + n4

using the method of the characteristic equation.

Solution:
Rewrite the recurrence as T(n) = T(n − 1) + 1nn4 to make sure its form is as required by
(3.174). The characteristic equation is x−1 = 0 with a single root x1 = 1. So, the multiset of
the roots of the characteristic equation is {1}M. In the naming convention of (3.174), m = 1,
b1 = 1, and d1 = 4. So we add b1 = 1 with multiplicity d1 + 1 = 5 to {1}M, obtaining
{1, 1, 1, 1, 1, 1}M. Then T(n) = A1n + Bn1n + Cn2 1n +Dn3 1n + En4 1n + Fn5 1n for
some constants A, B, C, D, and F, therefore T(n) = Θ(n5). �

Problem 96. Solve

T(n) = T(n− 1) + 2n

using the method of the characteristic equation.

Solution:
Rewrite the recurrence as T(n) = T(n − 1) + 1n(2n1) to make sure its form is as required
by (3.174). The characteristic equation is x − 1 = 0 with a single root x1 = 1. So, the
multiset of the roots of the characteristic equation is {1}M. In the naming convention of
(3.174), m = 1, b1 = 1, and d1 = 1. So we add b1 = 1 with multiplicity d1 + 1 = 2 to
{1}M, obtaining {1, 1, 1}M. Then T(n) = A1n + Bn1n + Cn2 1n for some constants A, B,
and C, therefore T(n) = Θ(n2). �

Problem 97. Solve

T(n) = T(n− 1) + 2n

using the method of the characteristic equation.

Solution:
Rewrite the recurrence as T(n) = T(n − 1) + 2nn0 to make sure its form is as required
by (3.174). The characteristic equation is x − 1 = 0 with a single root x1 = 1. So, the
multiset of the roots of the characteristic equation is {1}M. In the naming convention of
(3.174), m = 1, b1 = 2, and d1 = 0. So we add b1 = 2 with multiplicity d1 + 1 = 1 to
{1}M, obtaining {1, 2}M. Then T(n) = A1n + B2n for some constants A and B, therefore
T(n) = Θ(2n). �
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Problem 98. Solve

T(n) = 2T(n− 1) + 1

using the method of the characteristic equation.

Solution:
Rewrite the recurrence as T(n) = 2T(n − 1) + 1nn0 to make sure its form is as required
by (3.174). The characteristic equation is x − 2 = 0 with a single root x1 = 2. So, the
multiset of the roots of the characteristic equation is {2}M. In the naming convention of
(3.174), m = 1, b1 = 1, and d1 = 0. So we add b1 = 1 with multiplicity d1 + 1 = 1 to
{1}M, obtaining {1, 2}M. Then T(n) = A1n + B2n for some constants A and B, therefore
T(n) = Θ(2n). �

Problem 99. Solve

T(n) = 2T(n− 1) + n

using the method of the characteristic equation.

Solution:
Rewrite the recurrence as T(n) = 2T(n − 1) + 1nn1 to make sure its form is as required
by (3.174). The characteristic equation is x − 2 = 0 with a single root x1 = 2. So, the
multiset of the roots of the characteristic equation is {2}M. In the naming convention of
(3.174), m = 1, b1 = 1, and d1 = 1. So we add b1 = 1 with multiplicity d1 + 1 = 2 to
{1}M, obtaining {1, 1, 2}M. Then T(n) = A1n+Bn1n+C2n for some constants A, B, and
C, therefore T(n) = Θ(2n). �

Problem 100. Solve

T(n) = 2T(n− 1) + 2n

using the method of the characteristic equation.

Solution:
Rewrite the recurrence as T(n) = 2T(n − 1) + 2nn0 to make sure its form is as required
by (3.174). The characteristic equation is x − 2 = 0 with a single root x1 = 2. So, the
multiset of the roots of the characteristic equation is {2}M. In the naming convention of
(3.174), m = 1, b1 = 2, and d1 = 0. So we add b1 = 2 with multiplicity d1 + 1 = 0 to
{2}M, obtaining {2, 2}M. Then T(n) = A2n+Bn2n for some constants A and B, therefore
T(n) = Θ(n2n). �

Problem 101. Solve

T(n) = 3T(n− 1) + 2n

using the method of the characteristic equation.
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Solution:
Rewrite the recurrence as T(n) = 3T(n − 1) + 2nn0 to make sure its form is as required
by (3.174). The characteristic equation is x − 3 = 0 with a single root x1 = 2. So, the
multiset of the roots of the characteristic equation is {3}M. In the naming convention of
(3.174), m = 1, b1 = 2, and d1 = 0. So we add b1 = 2 with multiplicity d1 + 1 = 0 to
{3}M, obtaining {2, 3}M. Then T(n) = A2n + B3n for some constants A and B, therefore
T(n) = Θ(3n). �

Problem 102. Solve

T(n) = T(n− 1) + T(n− 2)

using the method of the characteristic equation.

Solution:
This recurrence is homogeneous but is nevertheless interesting. The characteristic equa-

tion is x2 − x − 1 = 0. The two roots are x1 = 1+
√
5

2 and x2 = 1−
√
5

2 . Then T(n) =

A
(
1+
√
5

2

)n
+ B

(
1−
√
5

2

)n
for some constants A and B. Note that

∣∣∣1−√52 ∣∣∣ < 1 therefore

T(n) = Θ
((
1+
√
5

2

)n)
. �

Problem 103. Solve

T(n) = T(n− 1) + 2T(n− 2)

using the method of the characteristic equation.

Solution:
The characteristic equation is x2 − x − 2 = 0. The two roots are x1 = 1+3

2 = 2 and

x2 = 1−3
2 = −1. Then T(n) = A2n + B (−1)n for some constants A and B. Therefore,

T(n) = Θ(2n). �

Problem 104. Solve

T(n) = 3T(n− 1) + 4T(n− 2) + 1 (3.176)

using the method of the characteristic equation.

Solution:
The characteristic equation is x2 − 3x − 4 = 0. The two roots are x1 = 3+5

2 = 4 and

x2 = 3−5
2 = −1. Then T(n) = A4n + B (−1)n + C1n for some constants A, B, and C.

Therefore, T(n) = Θ(4n). �

Problem 105. Solve

T(n) = 4T(n− 1) + 3T(n− 2) + 1 (3.177)

using the method of the characteristic equation.
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Solution:
The characteristic equation is x2 − 4x − 3 = 0. The two roots are x1 = 2 +

√
7 and

x2 = 2−
√
7. Then T(n) = A (2+

√
7)n+B (2−

√
7)n+C1n for some constants A, B, and

C. Therefore, T(n) = Θ((2+
√
7)n). �

Problem 106. Solve

T(n) = 5T(n− 1) + 6T(n− 2) + 1 (3.178)

using the method of the characteristic equation.

Solution:
The characteristic equation is x2−5x−6 = 0. The two roots are x1 =

5+
√
52+24
2 = 5+

√
49
2 =

5+7
2 = 6 and x2 = 5−7

2 = −1. Then T(n) = A.6n + B.(−1)n + C.1n for some constants A,
B, and C. Therefore, T(n) = Θ(6n). �

Problem 107. Solve

T(n) = 4T(n− 3) + 1 (3.179)

using the method of the characteristic equation.

Solution:
The characteristic equation is

x3 − 4 = 0

Its roots are

x1 =
3
√
4

x2 =
3
√
4 ei

2π
3

x3 =
3
√
4 ei

−2π
3

If A, B, C, and D are some complex constants the solution is

T(n) = A
(
3
√
4
)n

+ B
(
3
√
4
)n

e
2nπi
3 + C

(
3
√
4
)n

e
−2nπi
3 +D1n =

= A
(
3
√
4
)n

+ B
(
3
√
4
)n(

cos

(
2nπ

3

)
+ i sin

(
2nπ

3

))
+

C
(
3
√
4
)n(

cos

(
−2nπ

3

)
+ i sin

(
−2nπ

3

))
+D

= A
(
3
√
4
)n

+
(
3
√
4
)n

cos

(
2nπ

3

)
(B+ C) +(

3
√
4
)n

sin

(
2nπ

3

)
(B− C)i+D
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If we take B = C = 1
2 , we get one solution

T1(n) = A
(
3
√
4
)n

+
(
3
√
4
)n

cos

(
2nπ

3

)
+D

If we take B = −12 i and C = 1
2 i , we get another solution

T2(n) = A
(
3
√
4
)n

+
(
3
√
4
)n

sin

(
2nπ

3

)
+D

By the superposition principle†, we have a general solution

T(n) = A1

(
3
√
4
)n

+A2

(
3
√
4
)n

cos

(
2nπ

3

)
+A3

(
3
√
4
)n

sin

(
2nπ

3

)
+A4

for some constants A1, A2, A3, A4. The asymptotics of the solution is T(n) = Θ
((

3
√
4
)n)

.

�

†The superposition principle says if we have a linear recurrence and we know that some functions gi(),
1 ≤ i ≤ k, are solutions to it, then any linear combination of them is also a solution. See [Bal91], pp. 97.
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Chapter 4

Proving the correctness of
algorithms

4.1 Preliminaries

Every algorithm implements a total function that maps the set of the inputs to the set of
the outputs. To prove the algorithm is correct is to prove that

1. the algorithm halts on every input, and

2. for every input, the corresponding output is precisely the one that is specified by the
said function.

Proving facts about the “behaviour” of algorithms is not easy even for trivial algorithms. It
is well known that in general such proofs cannot be automated. For instance, provably there
does not exist an algorithm that, given as input a program and its input, always determines
(using, of course, a finite number of steps) whether that program with that input halts. For
details, see the Halting Problem and Theorem 5 on page 255.

That famous undecidability result, due to Alan Turing, sets certain limitations on the
power of computation in general. Now we show that even for a specific simple program
deciding whether it halts or not can be extremely difficult. Consider the following program.

k = 3;

for (;;) {
for(a = 1; a <= k; a ++)

for(b = 1; b <= k; b ++)

for(c = 1; c <= k; c ++)

for(n = 3; n <= k; n ++)

if (pow(a,n) + pow(b,n) == pow(c,n))

exit();

k++; }

Clearly, the program does not halt if and only if Fermat’s Last Theorem† is true. However,
for several hundred years some of the best mathematicians in the world were unable to
prove that theorem. The theorem was indeed proved after a huge effort by Sir Andrew

†It says: “an + bn = cn has no positive integer solutions for n ≥ 3”.
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Wiles, an effort that spanned many years and led to some initial frustrations as the first
proof turned out to be incorrect. For a detailed account of these events, see [CSS97] or the
review of that book by Buzzard [Buz99].

We emphasise that to prove Fermat’s Last Theorem and to prove that the abovemen-
tioned program halts are essentially the same thing. Furthermore, determining whether
an algorithm halts or not is but only one aspect of the analysis of algorithms. If telling
whether the execution of a well-defined sequence of instructions halts or not is hard, deter-
mining whether it indeed returns the desired output cannot be any easier in general. So,
determining the behaviour of even simple algorithms can necessitate profound mathematical
knowledge and skills.

4.2 Loop Invariants – An Introduction

It is possible to prove assertions about algorithms—correctness or time complexity—using
loop invariants. That technique is applicable when the algorithm is iterative. It may be a
simple (not nested) loop or something more complicated. The gist of the algorithm has to
be a for or while loop.

Proving assertions with loop invariants is essentially proving assertions by induction,
with the notable exception that normally proofs by induction are done for infinite sequences,
while loop invariants concern algorithm that take only finite number of steps. Here is an
example of a proof of correctness of a very simple algorithm that uses a loop invariant. The
proof is very detailed and the invariant itself is outlined as a nested statement (sub-lemma).

Maximal Sequential(A[1, 2, . . . , n]: array of integers)
1 max ← A[1]
2 i← 2

3 while i ≤ n do
4 if A[i] > max

5 max ← A[i]
6 i← i+ 1
7 return max

Lemma 3. Algorithm Maximal Sequential returns the value of a maximum element of
A[1, 2, . . . , n].

Proof:
In order to prove the desired desired result we first prove a sub-lemma:

Sub-lemma: Every time the execution of Maximal Sequential is at line 3,
max contains the value of a maximum element in the subarray A[1, . . . , i− 1].

The proof of the sub-lemma is done by induction on the number of times the
execution reaches line 3.

Basis. The first time the execution is at line 3, i equals 2 because of the previous
assignment at line 2. So, the subarray A[1, . . . , i− 1] is in fact A[1, . . . , 1]. But
max is A[1] because of the previous assignment at line 1 and indeed this is a
maximum element in A[1, . . . , 1].
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Inductive Hypothesis. Assume the claim is true at a certain moment when
the execution is at line 3, such that the loop is to be executed at least once
more†. Let us define that the current value of i is called i ′.

Induction Step. The following two possibilities are exhaustive.

• A[i ′] is the maximum element in A[1, . . . , i ′]. By the inductive hypothesis,
max equals a maximum element in A[1, . . . , i ′ − 1]. It must be the case
that max < A[i ′]. So, the condition at line 4 is True and the assignment
at line 5 takes place. Thus max becomes equal to the maximum element in
A[1, . . . , i ′] immediately after that assignment. Then i gets incremenented
to i ′ + 1 (line 6). So, the next time the execution reaches line 3 again, max
is indeed equal to a maximum element in A[1, . . . , (i ′ + 1) − 1]. We see the
invariant is preserved in the current case.

• It is not the case that A[i ′] is the maximum element in A[1, . . . , i ′]. Then
A[i ′] is smaller than or equal to a maximum element in A[1, . . . , i ′ − 1],
which in its turn is equal to max by the inductive hypothesis. It follows
max is equal to a maximum element in A[1, . . . , i ′]. The condition at line 4
is False and the assignment at line 5 does not take place. Then i gets
incremenented to i ′ + 1 (line 6). So, the next time the execution reaches
line 3 again, max is indeed equal to a maximum element in A[1, . . . , (i ′ +
1) − 1]. We see the invariant is preserved in the current case, too.

The proof of the sublemma is done.

Corollary of the sub-lemma. Consider the last time line 3 is executed. Then i equals
n+ 1. Substitute i with n+ 1 in the sub-lemma and conclude that max contains the value
of a maximum element in A[1, . . . , (n + 1) − 1], i.e. max equals a maximum element in
A[1, . . . , n]. We observe that at line 7 the algorithm returns max , and that concludes the
proof of the lemma. �

In the subsequent proofs we will not maintain as separate claims the invariant and its
corollary relative to the last execution of the loop. The latter will be the last step of the
proof, called termination. The proofs will have the following structure (after [CLR00]). The
claim is a one-place predicate, call it P, that is associated with the line of the algorithm
that contains the loop’s conditional statement. In the most general case the variable of the
predicate is the number of times the conditional statement has been evaluated. Say, the
loop’s conditional statement is at line k. Generally speaking, the proof goes like this:

• Show P holds the first time the execution is at line k.

• Assuming P holds at certain time when the execution is at line k and the
loop is to be executed at least once more (i.e., the condition is true), prove
P holds the next time the execution is at line k.

• Consider P at the moment when the execution is at line k and loop’s body
is not to be executed any more (i.e., the condition is false) and use P to

†It would be an error to omit the proviso “the loop is to be executed at least once more”. We have to
prove the invariant is preserved during any execution of the loop. Therefore, if we consider the very last
execution of line 3, we cannot establish the preservation of the invariant in the body of the loop.
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prove the desired result immediately. Such a moment must exists since the
algorithm terminates.

An important special case of that proof scheme is the following one. The variable of the
predicate is the control variable of the loop. Say, the loop is a for-loop and its conditional
statement is at line k:

k for i← a to b

Generally speaking, the proof goes like this:

• Show P(a) holds the first time the execution is at line k.

• Assuming P(i) holds at certain time when the execution is at line k and
the loop is to be executed at least once more (i.e., i ≤ b), prove P(i + 1)
holds the next time the execution is at line 12.

• At the moment when the execution is at line 12 and the loop is not to
be executed any more, i equals b + 1. Plug that value into the predicate:
P(b+ 1) must yield immediately desired result.

We emphasise two points.

• First, there can be multiple ways of going through the body of the loop depending on
the values of both the control variable and other variables. For instance, the body can
have complicated nested if–else–if structure. The proof has to follow any possible
path of execution. Say, the algorithm has positive integer variables a, b, and t, and
the body of the loop has the following general structure:

if i mod 5 = 1 then

if t is a perfect square then

a← b+ 1

else if t < 200 then

a← b+ 2

else

a← b+ 3

else if i mod 5 = 2 then

b← b2

else

b← b− t

A complete proof must “trace” all possible ways of going through these cases and
subcases that depend on the divisibility of i by 5 and, in case the remainder is 1, on
the values of t.

• Obviously, the predicate must not only be true but useful as well. Not every true
statement is useful. For instance, consider a purported algorithm that sorts using at
the top level a for-loop the conditional statement of which is at line 12:

12 for i← 1 to n

Will the following invariant do?
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Every time the execution is at line 12, the subarray A[1, . . . , i−1] is sorted.

The answer is definitely no, it is too weak. That invariant can be demonstrably true
but its truth does not imply the algorithm sorts. To see why, consider the following
algorithm that does not sort:

No Sort(A[1, . . . , n])
1 for i← 1 to n

2 A[i]← i

Note that the above invariant holds for it: the subarray A[1, . . . , i − 1] is in fact [1,
2, . . . , i − 1] and is sorted. However, 1, 2, . . . , i − 1 are not necessarily elements of
the original A[ ]. A sorting algorithm must sort its own input. If it outputs sorted
sequence that is unrelated to the input it is not a sorting algotithm.

Once more: the invariant must not only be true but also useful for our proof.

4.3 Practicing Proofs with Loop Invariants

4.3.1 Elementary problems

Problem 108. Consider the following two program fragments written in C. Prove using
invariants that each of the functions sum1( ) and sum2( ) returns the sum of the elements
of the array A[0, 1, . . . , n− 1]:

int A[n];

int sum1(int n) {
int i, s = 0;

for(i = 0; i < n; i ++) {
s += A[i]; }

return s; }

int A[n];

int sum2(int n) {
int i, s = 0;

for(i = 0; i < n; i ++) {
if (i%2 == 0) {

s += A[ i/2 ]; }
else {

s += A[n - 1 - i/2]; } }
return s; }

Have in mind that the integer division i/2 returns
⌊
i
2

⌋
.

Solution for sum1( ):
An invariant for sum1( ) is:

Every time line 4 is reached, s =
∑i−1
j=0 A[j].

Basis When line 4 is reached intially, s = 0 because of the assignment at line 3. On the
other hand,

∑i−1
j=0 A[j] = 0, because i = 0, which in its turn implies the set {0, . . . , i − 1} is

empty. A sum whose index variable gets its values from an empty set is zero. 3

Maintenance Assume the claim holds at some moment the execution is at line 4 and the
body of the loop is to be executed at least once more. Before the assignment at line 5 it is
the case that s =

∑i−1
j=0 A[j] by the assumption. After the assignment at line 5 it is the case
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that s =
(∑i−1

j=0 A[j]
)
+ A[i]. The next time the execution is at line 4, i gets incremented

by one, which means that with respect to the new i, it is the case that s =
∑i−1
j=0 A[j].

Termination The last time the execution is at line 4, it is the case that

i = n

s =

i−1∑
j=0

A[j]

Therefore, s =
∑n−1
j=0 A[j].

Solution for sum2( ):
An invariant for sum2( ) is:

Every time line 4 is reached, s =

b i+12 c−1∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j].

Basis The first time the execution is at line 4, s = 0 because of the assignment at

line 3. On the other hand, s =

b i+12 c−1∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j] = 0 + 0 = 0, because
⌊
0+1
2

⌋
=

0 and
⌊
0
2

⌋
= 0, which in its turn means the sets {0, . . . ,

⌊
i+1
2

⌋
− 1} = {0, . . . ,−1} and

{n−
⌊
i
2

⌋
, . . . , n− 1} = {n, . . . , n− 1} are empty. 3

Maintenance Assume the claim holds at some moment the execution is at line 4 and the
body of the loop is to be executed at least once more.
Case 1 i is even. The condition at line 5 is true and the execution goes to line 6. Before the

assignment at line 6, it is the case that s =

b i+12 c−1∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j] by the assumption.

After the assignment, it is the case that

s =

b
i+1
2 c−1∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j]

+A

[⌊
i

2

⌋]

=

b
i+1
2 c−1∑
j=0

A[j] +A

[⌊
i

2

⌋]+

n−1∑
j=n−b i2c

A[j] (4.1)

Since i is even, i + 1 is odd. It is easy to see that
⌊
i+1
2

⌋
=
⌊
i
2

⌋
, therefore the expression

(4.1) is equivalent tob
i
2c−1∑
j=0

A[j] +A

[⌊
i

2

⌋]+

n−1∑
j=n−b i2c

A[j] =

b i2c∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j] =

⌊
(i+1)+1

2

⌋
−1∑

j=0

A[j] +

n−1∑
j=n−b i+12 c

A[j] (4.2)

111



Problems with solutions in the Analysis of Algorithms c© Minko Markov

The next time the execution is at line 4, i is incremented by one. It is obvious that with
respect to the new value of i, (4.2) is:

b i+12 −1c∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j]

And so the invariant holds.

Case 2 i is odd. The condition at line 5 is false and the execution reaches line 8. Before the

assignment at line 8 it is the case that s =

b i+12 c−1∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j] by the assumption.

After the assignment it is the case that

s =

b
i+1
2 c−1∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j]

+A

[
n− 1−

⌊
i

2

⌋]

=

b i+12 c−1∑
j=0

A[j] +


 n−1∑
j=n−b i2c

A[j]

+A

[
n− 1−

⌊
i

2

⌋]
=

b i+12 c−1∑
j=0

A[j] +

n−1∑
j=n−1−b i2c

A[j] (4.3)

When i is odd it is the case that
⌊
i+1
2

⌋
=
⌊
i+2
2

⌋
. Besides that, for any i it is the case that

n − 1 −
⌊
i
2

⌋
= n − 1 +

⌈
− i2
⌉
= n +

⌈
−1− i

2

⌉
= n −

⌊
1+ i

2

⌋
= n −

⌊
i+2
2

⌋
. If i is odd the

last expression equals n−
⌊
i+1
2

⌋
. Therefore (4.3) is equivalent to

⌊
(i+1)+1

2

⌋
−1∑

j=0

A[j] +

n−1∑
j=n−b i+12 c

A[j] (4.4)

The next time the execution is at line 4, i gets incremented by one. With respect to the
new i, (4.4) is:

b i+12 −1c∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j]

And so the invariant holds.
Termination The last time the execution is at line 4, it is the case that

i = n

s =

b i+12 c−1∑
j=0

A[j] +

n−1∑
j=n−b i2c

A[j]
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Therefore,

s =

bn+1
2 c−1∑
j=0

A[j] +

n−1∑
j=n−bn2 c

A[j] (4.5)

We will prove that
⌊
n+1
2

⌋
− 1 and n −

⌊
n
2

⌋
are two adjacent integers, increasing in that

order, for every natural n. First assume n is even, i.e. n = 2k for some natural k. Then⌊
n+ 1

2

⌋
− 1 =

⌊
2k+ 1

2

⌋
− 1 =

⌊
2k

2

⌋
− 1 = k− 1

and

n−
⌊n
2

⌋
= 2k−

⌊
2k

2

⌋
= 2k− k = k

Now assume n is odd, i.e. n = 2k+ 1 for some natural k. Then⌊
n+ 1

2

⌋
− 1 =

⌊
2k+ 2

2

⌋
− 1 = k+ 1− 1 = k

and

n−
⌊n
2

⌋
= 2k+ 1−

⌊
2k+ 1

2

⌋
= 2k+ 1−

⌊
2k

2

⌋
= 2k+ 1− k = k+ 1

Since
⌊
n+1
2

⌋
− 1 and n−

⌊
n
2

⌋
are adjacent values in that order, the intervals[

0, 1, . . . ,

⌊
n+ 1

2

⌋
− 1

]
and

[
n−

⌊n
2

⌋
, n−

⌊n
2

⌋
+ 1, . . . , n− 1

]
are a partitioning of [0, 1, . . . , n− 1]. Therefore, (4.5) is equivalent to

s =

n−1∑
j=0

A[j]

�

Problem 109. The mode of an array of data is any most frequently occurring element. It
is not necessarily unique. In fact, if all elements are are unique then any element is mode.
Design a simple iterative algorithm that computes a mode of an array of integers. Break ties
arbitrarily. Your algorithm should call once function Sort that sorts the array. Apart from
that call, the algorithm should have linear time complexity and constant space complexity.
Verify the correctness of your algorithm by loop invariant.

Solution:
The following algorithm clearly satisfies the complexity requirements.

Compute Mode(A[1, 2, . . . , n])
1 Sort(A[ ])
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2 mode ← A[1]
3 m ← 1

4 s ← 1

5 for i← 2 to n

6 if A[i] = mode

7 m ← m + 1
8 s ← s + 1
9 else if A[i] 6= A[i− 1]

10 s ← 1

11 else
12 s ← s + 1
13 if s > m

14 mode ← A[i]
15 m ← s

16 return mode

Now we prove its correctness. Compute Mode returns the leftmost mode, that is, if there
is a unique mode it is the leftmost mode, otherwise the leftmost mode is the mode whose
leftmost appearance in A[ ] is to the left of any other appearance of any other mode.

The assignments at lines 4 and 8 are, of course, unnecessary but they facilitate the
correctness proof. We start with a definition and simple observation which we do not prove
formally.

Definition 4 (run in a sequence). Suppose A[1, 2, . . . , n] is an array of numbers. A run
in A[ ] is every maximal subarray A[i, i + 1, . . . , i + k] where 1 ≤ i ≤ i + k ≤ n such that
A[i] = A[i + 1] = . . . = A[i + k]. The length of a run is the number of its elements. The
representative of a run is the value of any of its elements. �

Observation 1. Assume A[1, 2, . . . , n] has precisely t unique elements and it is sorted.
Then A[ ] consists of precisely t runs whose lengths sum up to n and whose representatives
appear in strictly ascending order. �

Let there be t runs in the sorted array A[ ] after the execution of line 1. Let their lengths,
in order from left to right, be n1, n2, . . . , nt, where n1+n2+ . . .+nt = n. The following
is a loop invariant for the for-loop of Compute Mode (lines 5–14):

Every time the execution is at line 5, mode contains the value of the leftmost
mode of the subarray A[1, . . . , i − 1], m is the number of times it occurs there,
and s contains the length of the rightmost run of A[1, . . . , i− 1].

Basis. Suppose the execution is at line 5 for the first time. Then i = 2 and so the
subarray A[1, . . . , i− 1] is in fact A[1]. Obviously, the invariant holds. 3

Maintenance. Assume the invariant holds at some execution of line 5 such that the body
of the loop is to be executed once more.

Case I A[i] equals the leftmost mode of A[1, . . . , i− 1]. Clearly, the following hold.

• A[i] equals the leftmost mode of A[1, . . . , i].
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• The number of the occurrences of the leftmost mode in A[1, . . . , i] is the number of
the occurrences of the leftmost mode in A[1, . . . , i− 1] plus one.

• Since A[ ] is sorted, clearly A[i] and A[i−1] are in the same run in A[1, . . . , i], therefore
the length of the rightmost run of A[1, . . . , i] equals the length of the rightmost run
of A[1, . . . , i− 1] plus one.

Now use the inductive hypothesis. According to it, the leftmost mode of A[1, . . . , i − 1]
equals mode , so the condition at line 6 is True and lines 7 and 8 are executed.

• Since mode equals the leftmost mode of A[1, . . . , i− 1], it is the case that mode equals
the leftmost mode of A[1, . . . , i].

• Since m equals the number of the occurrences of the leftmost mode in A[1, . . . , i −
1] before the assignment at line 7, it is the case that m equals the number of the
occurrences of the leftmost mode in A[1, . . . , i] after the assignment at line 7.

• Since s equals the length of the rightmost run of A[1, . . . , i−1] before the assignment
at line 9, it is the case that s equals the length of the rightmost run of A[1, . . . , i]
after the assignment at line 8.

As the execution goes to line 5 again, i gets incremented by one. Relative to the new value
of i, it is the case that mode equals the leftmost mode of A[1, . . . , i−1], m equals the number
of the occurrences of the leftmost mode in A[1, . . . , i − 1], and s equals the length of the
rightmost run of A[1, . . . , i− 1]. And so the invariant holds.

Case II A[i] does not equal the leftmost mode of A[1, . . . , i − 1]. Since A[ ] is sorted, it
is the case that A[i] is greater than the leftmost mode of A[1, . . . , i − 1]. By the inductive
hypothesis, the leftmost mode of A[1, . . . , i − 1] equals mode , so the condition at line 6 is
False and the execution goes to line 9.

Case II.a A[i] is the leftmost element of some run in A[ ], i.e., A[i] 6= A[i − 1]. Clearly,
the following hold.

• A[i] does not equal the leftmost mode ofA[1, . . . , i] and the leftmost mode ofA[1, . . . , i]
is the same as the leftmost mode of A[1, . . . , i− 1].

• The number of the occurrences of the leftmost mode in A[1, . . . , i] is the same as the
number of the occurrences of the leftmost mode in A[1, . . . , i− 1].

• The length of the rightmost run of A[1, . . . , i] is one.

Now use the inductive hypothesis. According to it,

• mode contains the value of the leftmost mode in A[1, . . . , i− 1].

• m contains the number of occurrences of the leftmost mode in A[1, . . . , i− 1].

We conclude that

• mode contains the value of the leftmost mode in A[1, . . . , i].

• m contains the number of occurrences of the leftmost mode in A[1, . . . , i].

115



Problems with solutions in the Analysis of Algorithms c© Minko Markov

Since the condition at line 9 is True, the assignment at line 10 is executed and the execution
goes to line 5, leaving mode and m unchanged and setting s to one. At line 5 i is incremented
by one. Relative to the new value of i,

• mode contains the value of the leftmost mode in A[1, . . . , i− 1].

• m contains the number of occurrences of the leftmost mode in A[1, . . . , i− 1].

• s equals the length of the rightmost run of A[1, . . . , i− 1].

And so the invariant holds.

Case II.b A[i] is not the leftmost element of any run in A[ ], i.e., A[i] = A[i − 1]. Since
the condition at line 9 is False, the execution goes to line 12. There s gets incremented
by one. Before the increment the value of s equaled the length of the rightmost run in
A[1, . . . , i− 1]. After the increment it equals the length of the rightmost run of A[1, . . . , i].

Note that in Case II.b, A[i] may or may not be equal to the leftmost mode in A[1, . . . , i].
Let us define a necessary and sufficient condition under which A[i] equals the leftmost mode
in A[1, . . . , i].

Let the rightmost run in A[1, . . . , i− 1] be called Y. Let the run in A[1, . . . , i− 1] whose
representative is the leftmost mode be called X. From general considerations we can say
A[i] equals the leftmost mode in A[1, . . . , i] iff the Y is longer than any other run in A[ ]. In
Case II, however, A[i] does not equal the leftmost mode of A[1, . . . , i− 1]. Conclude that
X is to the left of Y and A[i] equals the leftmost mode in A[1, . . . , i] iff the lengths of X and
Y are the same.

Y cannot be longer than any other run in A[1, . . . , i − 1] for if that were the case, A[i]
would have been equal to the leftmost mode of A[1, . . . , i− 1], contrary to the assumption
of Case II. So, the following possibilities are exhaustive: either Y is shorter than X or Y
and X have the same length.

Suppose Y is shorter than X. In that case A[i] is not the leftmost mode of A[1, . . . , i], so
the leftmost mode of A[1, . . . , i] is the same as the leftmost mode of A[1, . . . , i− 1] and the
number of occurences are the same in A[1, . . . , i − 1] and A[1, . . . , i]. On the other hand,
by the inductive hypothesis s before the increment at line 12 equals the length of Y so it
is the case that s < m before the increment at line 12. After the increment at line 12 it
is the case that s ≤ m . So the condition at line 13 is False and lines 14 and 15 are not
executed and mode and m remain unchanged. It follows that mode contains the value of the
leftmost mode of the subarray A[1, . . . , i], m is the number of times it occurs there, and s

contains the length of the rightmost run of A[1, . . . , i]. Then the execution returns to line 5
and i gets incremented by one. Relative to the new value of i, mode contains the value of
the leftmost mode of the subarray A[1, . . . , i− 1], m is the number of times it occurs there,
and s contains the length of the rightmost run of A[1, . . . , i − 1]. And so the invariant is
preserved.

Suppose Y is as long as X. In that case A[i] is the leftmost mode of A[1, . . . , i] and
the number of its occurrences equals the length of Y plus one. On the other hand, by the
inductive hypothesis s before the increment at line 12 equals the length of Y so it is the
case that s = m before the increment at line 12. After the increment at line 12 it is the
case that s > m . So the condition at line 13 is True and lines 14 and 15 are executed. Now
mode contains the value of the leftmost mode of the subarray A[1, . . . , i], m is the number
of times it occurs there, and s contains the length of the rightmost run of A[1, . . . , i]. Then
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the execution returns to line 5 and i gets incremented by one. Relative to the new value
of i, mode contains the value of the leftmost mode of the subarray A[1, . . . , i − 1], m is
the number of times it occurs there, and s contains the length of the rightmost run of
A[1, . . . , i− 1]. And so the invariant is preserved.

Termination. Substitute i with n + 1 in the first part of the invariant to obtain “At
the final execution of line 5, mode contains the value of the leftmost mode of the subarray
A[1, . . . , n].” So at line 16 the retuned value is precisely the leftmost mode of A[ ]. �

It is tempting to get rid of the unnecessary assignments to s . Consider the following version¢¢ NB ¢¢

of the algorithm.

Compute Mode Optimised(A[1, 2, . . . , n])
1 Sort(A[ ])
2 mode ← A[1]
3 m ← 1

4 for i← 2 to n

5 if A[i] = mode

6 m ← m + 1
7 else if A[i] 6= A[i− 1]
8 s ← 1

9 else
10 if s > m

11 mode ← A[i]
12 m ← s

13 return mode

However, if we are to prove its correctness directly rather than use the correctness of Com-
pute Mode, the loop invariant would be:

Every time the execution is at line 4, mode contains the value of the leftmost
mode of the subarray A[1, . . . , i−1] and m is the number of times it occurs there.
Furthermore, if A[i− 1] does not equal the leftmost mode of A[1, . . . , i− 1] then
s contains the length of the rightmost run of A[1, . . . , i− 1].

Of course, if A[i − 1] equals the leftmost mode of A[1, . . . , i − 1] then s is undefined or
meaningless.

The proof of that invariant is more involved. For starters, it requires two bases: one
for the first execution of line 4 and another one for the first time the condition at line 7
is evaluated and the assignment at line 8 executed. See Problem 157 on page 264 for
clarification on why a second basis is needed.

Second Solution:
The code is written by Georgi Georgiev.

AlgM(A[1 . . . n])
1 Sort(A)
2 i← 1
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3 m← 0

4 mode← A[1]
5 while i ≤ n do
6 t← i+ 1
7 while t ≤ n and A[i] = A[t] do
8 t← t+ 1
9 if t− i > m

10 m ← t− i
11 mode← A[i]
12 i ← t

13 return mode

Lemma 4. The inner while-loop (lines 7–8) has the following effect. Under the assumption
that A[i] is the leftmost element of some run in A[ ], it is the case that A[i, . . . , t − 1]
constitutes one run in A[ ] after the inner while-loop terminates.

Proof: Relative to any execution of the outer while-loop (lines 5–12), the following is an
invariant for the inner while-loop (lines 7–8):

Every time the execution is at line 7, the subarray A[i, . . . , t− 1] is subarray of
a single run in A[ ].

Basis. The claim is trivially true the first time the execution is at line 7.

Maintenance. Line 7 can be executed only once. In that case there is no maintenance
to prove and the proof proceeds with the termination phase.

Assume line 7 is executed more than once and consider an execution of it that is not
the last one. It is the case that both t ≤ n and A[i] equals A[t]. Having assumed A[i] =
A[i+1] = . . . A[t−1], it follows that A[i] = A[i+1] = . . . A[t−1] = A[t] and so the subarray
A[i, . . . , t] is a subarray of a single run in A[ ]. As t gets incremented at line 8, the next
time the execution is at line 7, it is the case that A[i, . . . , t− 1] is subarray of a single run
in A[ ].

Termination. The last time the execution is at line 7, either t < n and A[t] does not
equal A[i], or t = n + 1. In both cases A[t − 1] is the rightmost element of some run that
A[i] is in. Under the assumption that A[i] is the leftmost element of some run, the proof of
the lemma follows immediately. �

Lemma 5. Algorithm AlgM returns a mode of A[ ].

Proof: The following is an invariant for the outer while-loop (lines 5–12):

Every time the execution is at line 12†, mode contains the value of a mode of
A[1, . . . , t − 1] and m contains the number of its occurrences in that subarray.
Furthermore, A[t− 1] is the rightmost element of some run in A[ ].

Basis. Consider the first execution of the body of the outer while-loop. By Lemma 4,
when the execution is at line 9, it is the case that A[1, . . . , t − 1] is the leftmost run of

†Before the assignment at line 12 takes place.
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A[ ]. Its length is t − 1, that is, t − i because i was assigned 1 at line 2 and it was not
modified afterwards. Furthermore, m equals 0 because of the assignment at line 3 and thus
the condition at line 9 is necessarily true. Then m is assigned the length of the leftmost
run of A[ ], that run being A[1, . . . , t − 1], and mode is assigned the representative of that
run. The claim clearly holds.

Maintenance. If the loop is not executed a second time proceed directly with the
termination phase of the proof.

Suppose the claim holds before certain execution of line 12 and the outer while-loop is
to be executed at least once more. By the inductive hypothesis, t − 1 is the index of the
rightmost element of some run in A[ ] and it is not the rightmost run. It follows that after
the assignment at line 12, i contains the index of the leftmost element of the next run. Call
that next run Y. By Lemma 4, the next time the inner while-loop is executed, A[i, . . . , t−1]
is a single run. Clearly, A[i, . . . , t − 1] is Y. If Y is longer than any run prior to it then
the unique mode of A[1, . . . , t − 1] is the representative of Y, otherwise the representative
of some other run is a mode of A[1, . . . , t− 1]. According to the inductive hypothesis, such
a representative is stored in the variable mode and m is the number of its occurrences.

It follows that the condition at line 9 is true iff Y is the longest run in A[1, . . . , t − 1].
In that case the assignments at line 10 and 11 store the representative of Y into mode and
the length of Y into m, so the invariant is preserved. Otherwise, the unchanged values of
the variable mode and m store a mode of A[1, . . . , t− 1 and the number of its occurrences,
so the invariant is preserved.

Termination. The last time the execution is at line 12, t equals n+1. Then i is assigned
n + 1 and the outer loop terminates. Substitute i with n + 1 in the invariant to obtain
“mode contains the value of a mode of A[1, . . . , n]”. Conclude that the returned value is a
mode of A[ ]. �

4.3.2 Proving the correctness of Insertion Sort, Selection Sort, Bub-
ble Sort, Merge Sort, and Quick Sort

Consider the following proof of correctness by loop invariant of Insertion Sort, based on
[CLR00]. The goal is to prove that Insertion Sort indeed sorts its input.

Insertion Sort(A[1, 2, . . . n]: array of integers)
1 for i← 2 to n

2 key ← A[i]
3 j← i− 1
4 while j > 0 and A[j] > key do
5 A[j+ 1]← A[j]
6 j← j− 1
7 A[j+ 1]← key

There are two loops in that algorithm. A very precise formal proof should consist of two
separate invariants:

• an invariant concerning the inner while loop—it should be stated and proved relative
to j, the control variable of the inner loop;
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• an invariant concerning the outer for loop—it should be stated and proved relative
to i.

The algorithm moves the elements of A[ ] around. Because of that, making a precise ar-
gument can be tricky: for instance, when we mention A[i] in Lemma 6, do we mean the
element of A at position i before, or after, the inner while loop has shifted a certain subar-
ray “upwards” by one position? Position i can be affected by the shift, so in general those
are different elements. We overcome that potential ambiguity by giving different names to
the whole array, or parts of it, in different moments of the execution.

Lemma 6. Consider algorithm Insertion Sort. Relative to any execution of the for
loop (lines 1–7), let us call the subarray A[1, . . . , i] before the while loop (lines 4–6) starts
being executed, A ′[1, . . . , i], and let us call it A ′′[1, . . . , i], after it is executed. Assume the
subarray A ′[1, . . . , i− 1] is sorted. The while loop has the following effects:

• j is assigned the biggest number from {1, 2, . . . , i − 1} such that A ′[j] ≤ key, if such a
number exists, or is assigned 0, otherwise.

• with respect to that value of j, it shifts the subarray A ′[j+ 1, . . . , i− 1] by one position
upwards.

Proof: The following is a loop invariant for the while loop:

Every time the execution reaches line 4:

• for every element x of the current subarray A[j+ 2, . . . , i], x > key , and

• the current subarray A[j+ 2, . . . , i] is the same as A ′[j+ 1, . . . , i− 1].

Basis. The first time the execution reaches line 4, it is the case that j = i − 1. So, the
current subarray A[j + 2, . . . , i] is in fact A[i + 1, . . . , i]. Since that is an empty subarray,
the first part of the invariant is vacuously true. The second part of the invariant is true as
well because both subarrays it concerns are empty.

Maintenance. Assume the claim holds at a certain moment t when the execution is
at line 4 and the while loop is to be executed at least once more. The latter means that
j > 0 and A[j] > key . After line 5, it is the case that A[j + 1] > key , and that is relative
to the value of j that the current iteration began with. By the first part of the invariant,
for every element x of the current subarray A[j + 2, . . . , i], x > key . We conclude that for
every element x of the current subarray A[j+1, . . . , i], x > key . At line 6, j is decremented.
Relative to the new value of j, the previously stated conclusion becomes, for every element
x of the current subarray A[j+ 2, . . . , i], x > key . We proved the first part of the invariant.

Consider the execution at moment t again. Consider the second part of the invariant.
According to it, the current subarray A[j + 2, . . . , i] is the same as A ′[j + 1, . . . , i − 1].
Then the execution of the loop body commences. At line 5, the value of the current A[j] is
assigned to A[j+ 1]. But element A[j] has not been modified by the while loop so far†—a
fact which is fairly obvious and does not necessitate inclusion in the invariant—so A[j] is in
fact A ′[j]. It follows the current subarray A[j+ 1, . . . , i] is the same as A ′[j, . . . , i− 1] after
the assignment at line 5 takes place. Then j gets decremented (line 6). When the execution

†Remember that here we consider only the executions of the while loop relative to the current execution
of the outer for loop, not all executions of the while loop since the start of the algorithm.
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is at line 4 again, relative to the new value of j, it is the case that A[j+ 2, . . . , i] is the same
as A ′[j+ 1, . . . , i− 1]. We proved the second part of the invariant.

Termination. Consider the moment when the execution is at line 4 and the condition
there is False. That is, j ≤ 0 or A[j] ≤ key .

Case i. First assume that j ≤ 0. Since j is decremented by one, it cannot be negative, so
it is the case that j = 0. Plug the value 0 for j in the invariant to obtain that:

• for every element x of the current subarray A[2, . . . , i], x > key , and

• the current subarray A[2, . . . , i] is the same as A ′[1, . . . , i− 1].

The first part of the invariant means there is no number j from {1, 2, . . . , i − 1} such that
A ′[j] ≤ key . But j is assigned 0 and so the first claim of this Lemma is true. The
second part of the invariant means that, relative to the value 0 for j, the original subarray
A[j+ 1, . . . , i− 1] has been shifted one position upwards. So, the Lemma holds when j = 0.

Case ii. Now assume that j > 0 and A[j] ≤ key . But A[j] has never been modified by
the while loop. Therefore, it is the case that A ′[j] ≤ key .

The invariant says that, on the one hand, A[j+2] > key , A[j+3] > key , etc., A[i] > key ,
and on the other hand, that A[j + 2] = A ′[j + 1], A[j + 3] = A ′[j + 2], A[i] = A ′[i − 1]. It
follows that A ′[j+ 1] > key , A ′[j+ 2] > key , etc., A ′[i− 1] > key .

The two facts above imply that indeed j is assigned the biggest number from {1, 2, . . . ,

i − 1} such that A ′[j] ≤ key . So, the first claim of the Lemma holds. The second claim of
the Lemma is literally the same as the the second part of the invariant. That concludes the
proof of the Lemma. �

Lemma 7. Algorithm Insertion Sort is a sorting algorithm.

Proof:
Let us call the original array, A ′[1, . . . , n], and let us call A ′′[1, . . . , n] the array after the
algorithm halts. The following is a loop invariant for the for loop:

Every time the execution of Insertion Sort is at line 1, the current subarray
A[1, . . . , i − 1] consists of the same elements as A ′[1, . . . , i − 1], but in sorted
order.

Basis. The first time the execution reaches line 1, it is the case that i = 2. The subarray
A[1, . . . , 1] consists of a single element that is clearly the same as A ′[1] and it is, in a trivial
sense, sorted.

Maintenance. Assume the claim holds at a certain execution of line 1 and the for loop
is to be executed at least once more. Let Ã[1, . . . , i] be the name of A[ ] when the execution
of the for loop commences. The current value of A[i], i.e. Ã[i], is stored in key , j is set to
i− 1, and the inner while loop is executed. By Lemma 6, the effects of the while loop are
the following:

• j is assigned the biggest number from {1, 2, . . . , i − 1} such that Ã[j] ≤ key , if such a
number exists, or is assigned 0, otherwise.

• with respect to that value of j, the subarray Ã[j+1, . . . , i−1] is shifted by one position
upwards.
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If there are elements in Ã[1, . . . , i − 1] that are bigger than key = Ã[i], they are stored
in a contiguous sorted subsequence – that follows from the assumption at the beginning of
the Maintenance phase. Lemma 6 implies that the index of the smallest of those is j+ 1.
Lemma 6 further implies that Ã[j + 1, . . . , i − 1] is shifted into the current A[j + 2, . . . , i].
Thus in the current A[ ], A[j+1] = A[j+2] and therefore the assignment at line 7 overwrites
a value that has already been copied into another position. Clearly, at the end of the for
loop, A[1, . . . , i] consists of the same elements as Ã[1, . . . , i] but in sorted order.

It remains to consider the case when no elements in Ã[1, . . . , i − 1] are bigger than
key = Ã[i]. By Lemma 6, j equals i− 1 at the end of the while loop and nothing has been
shifted upwards, thus the assignment at line 7 overwrites the i-th element of A with the
value it had at the start of the for loop, namely Ã[i]. Clearly, at the end of the for loop,
A[1, . . . , i] consists of the same elements as Ã[1, . . . , i] but in sorted order.

Termination. Consider the moment when the execution is at line 1 for the last time.
Clearly, i equals n + 1. Plug the value n + 1 in place of i in the invariant to obtain “the
current subarray A[1, . . . , (n+1)−1] consists of the same elements as A ′[1, . . . , (n+1)−1],
but in sorted order”. �

Selection Sort(A[1, 2, . . . n]: array of integers)
1 for i← 1 to n− 1
2 for j← i+ 1 to n

3 if A[j] < A[i]
4 swap(A[i], A[j])

The following two lemmas concern the correctness of Selection Sort. It is obvious that
Selection Sort permutes the elements of the input because the only changes is does to
A[ ] happen at line 4, using swaps. That is unlike Insertion Sort where it is not (so)
obviuos that at the end, the elements in the array are the same as the original ones. So
in the analysis of Insertion Sort we did concern ourselves with proving that no original
element gets overwritten before its value is stored safely somewhere else. In the analysis of
Selection Sort we have no such concerns.

Lemma 8. With respect to a particular execution of the outer for loop (lines 1–4) of
Selection Sort, the execution of the inner for loop (lines 2–4) has the effect that A[i] is
a smallest element in A[i, . . . , n].

Proof:
With respect to a certain execution of the outer for loop, the following is a loop invariant
for the inner for loop:

Every time the execution reaches line 2, the current A[i] holds the value of a
minimum element from A[i, . . . , j− 1].

Basis. The first time the execution of the inner for loop is at line 2, it is the case that
j = i+ 1. Then A[i] is trivially a minimum element in A[i, . . . , (i+ 1) − 1].

Maintenance. Assume the claim is true at some moment when the execution is at line 2
and the inner for loop is to be executed once more. The following two cases are exhaustive.
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Case i. A[j] < A[i]. The condition at line 3 is True and the swap at line 4 takes place.
By the maintenance hypothesis, A[i] is a minimum in A[i, . . . , j − 1]. Since A[j] < A[i],
by the transitivity of the < relation, A[j] is the minimum element in A[i, . . . , j] before the
swap. We conclude A[i] is the minimum element in A[i, . . . , j] after that swap. Then j gets
incremented by one and the execution goes to line 2. With respect to the new value of j, it
is the case that A[i] is the minimum element in A[i, . . . , j− 1].

Case ii. A[j] 6< A[i]. Then the condition at line 3 is False and the swap at line 4 does
not take place. By the maintenance hypothesis, A[i] is a minimum element in A[i, . . . , j−1].
Since A[i] ≤ A[j], clearly A[i] is a minimum element in A[i, . . . , j]. Then j gets incremented
by one and the execution goes to line 2. With respect to the new value of j, it is the case
that A[i] is a minimum element in A[i, . . . , j− 1].

Termination. Consider the moment when the execution is at line 2 for the last time.
Clearly, j equals n + 1. Plug the value n + 1 in place of j in the invariant to obtain “the
current A[i] holds the value of a minimum element from A[i, . . . , (n+ 1) − 1]”. �

Lemma 9. Algorithm Selection Sort is a sorting algorithm.

Proof:
Let us call the original array, A ′[1, . . . , n]. The following is a loop invariant for the outer
for loop (lines 1–4):

Every time the execution of Selection Sort is at line 1, the current subarray
A[1, . . . , i − 1] consists of i − 1 in number smallest elements from A ′[1, . . . , n],
in sorted order.

Basis. The first time the execution reaches line 1, it is the case that i = 1. The current
subarray A[1, . . . , i − 1] is empty and thus, vacuously, it consists of the zero in number
smallest elements from A ′[1, . . . , n], in sorted order.

Maintenance. Assume the claim holds at a certain execution of line 1 and the outer for
loop is to be executed at least once more. Let us call the array A[ ] at that moment, A ′′[ ].
By Lemma 8, the effect of the inner for loop is that it stores into the ith position a smallest
value from A ′′[i, . . . , n]. On the other hand, by the maintenance hypothesis, A ′′[1, . . . , i−1]
consists of i−1 in number, smallest elements from A ′[1, . . . , n], in sorted order. We conclude
that at the end of that execution of the outer for loop, the current A[1, . . . , i] consists of i
in number, smallest elements from A ′[1, . . . , n], in sorted order. Then i gets incremented by
one and the execution goes to line 1. With respect to the new value of i, it is the case that
the current A[1, . . . , i− 1] consists of i− 1 in number, smallest elements from A ′[1, . . . , n],
in sorted order.

Termination. Consider the moment when the execution is at line 1 for the last time.
Clearly, i equals n. Plug the value n in place of i in the invariant to obtain “the current
subarray A[1, . . . , n−1] consists of the smallest, n−1 in number, elements from A ′[1, . . . , n],
in sorted order”. But then A[n] has to be a maximum element from A ′[1, . . . , n]. And that
concludes the proof of the correctness of Selection Sort. �

Bubble Sort(A[1, 2, . . . n]: array of integers)
1 for i← 1 to n

2 for j← n downto i+ 1
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3 if A[j− 1] > A[j]
4 swap(A[j− 1], A[j])

Lemma 10. With respect to a particular execution of the outer for loop (lines 1–4) of
Bubble Sort, the execution of the inner for loop (lines 2–4) has the effect that A[i] is a
smallest element in A[i, . . . , n].

Proof:
With respect to a certain execution of the outer for loop, the following is a loop invariant
for the inner for loop:

Every time the execution reaches line 2, the current A[j] holds the value of a
minimum element from A[j, . . . , n].

Basis. The first time the execution of the inner for loop is at line 2, it is the case that
j = n. Then A[n] is trivially a minimum element in A[n, . . . , n].

Maintenance. Assume the claim is true at some moment when the execution is at line 2
and the inner for loop is to be executed once more. The following two cases are exhaustive.

Case i. A[j−1] > A[j]. The condition at line 3 is True and the swap at line 4 takes place.
By the maintenance hypothesis, A[j] is a minimum in A[j, . . . , n] at the before the swap.
Since A[j − 1] > A[j], A[j] is a minimum element in A[j − 1, . . . , n] before the swap. After
the swap, clearly A[j − 1] is a minimum element in A[j − 1, . . . , n]. Since j is decremented
by one the next time the execution is at line 2, with respect to the new j, it is the case that
A[j] is a minimum element from A[j, . . . , n].

Case ii. A[j − 1] 6> A[j], i.e. A[j − 1] ≤ A[j]. The condition at line 3 is False and
the swap at line 4 does not take place. By the maintenance hypothesis, A[j] is a minimum
in A[j, . . . , n] at the before the evaluation at line 3. By the transitivity of the ≤ relation,
A[j−1] is a minimum element in A[j−1, . . . , n]. Since j is decremented by one the next time
the execution is at line 2, with respect to the new j, it is the case that A[j] is a minimum
element from A[j, . . . , n].

Termination. Consider the moment when the execution is at line 2 for the last time.
Then j equals i. Plug the value i in place of j in the invariant to obtain “A[i] holds the
value of a minimum element from A[i, . . . , n]”. �

Lemma 11. Algorithm Bubble Sort is a sorting algorithm.

Proof:
Let us call the original array, A ′[1, . . . , n]. The following is a loop invariant for the outer
for loop (lines 1–4):

Every time the execution of Bubble Sort is at line 1, the current subarray
A[1, . . . , i − 1] consists of i − 1 in number smallest elements from A ′[1, . . . , n],
in sorted order.

Basis. The first time the execution reaches line 1, it is the case that i = 1. Obviously,
the current A[1, . . . , i− 1] is empty and the claim is vacuously true.

Maintenance. Assume the claim holds at a certain execution of line 1 and the outer for
loop is to be executed at least once more. Let us call the array A[ ] at that moment, A ′′[ ].
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By Lemma 10, the effect of the inner for loop is that it stores into the ith position a smallest
value from A ′′[i, . . . , n]. On the other hand, by the maintenance hypothesis, A ′′[1, . . . , i−1]
consists of i−1 in number, smallest elements from A ′[1, . . . , n], in sorted order. We conclude
that at the end of that execution of the outer for loop, the current A[1, . . . , i] consists of i
in number, smallest elements from A ′[1, . . . , n], in sorted order. Then i gets incremented
by one and the execution goes to line 1. With respect to the new value of i, it is the case
that the current A[1, . . . , i − 1] consists of i − 1 in number, smallest i − 1 elements from
A ′[1, . . . , n], in sorted order.

Termination. Consider the moment when the execution is at line 1 for the last time.
Clearly, j equals n+1. Plug the value n in place of i in the invariant to obtain “the current
subarray A[1, . . . , (n+ 1)− 1] consists of the smallest, (n+ 1)− 1 in number, elements from
A ′[1, . . . , n], in sorted order.”. �

Merge(A[1, 2, . . . n]: array of integers; l , mid , h : indices in A[ ])
1 (∗ the subarrays A[l , . . . , mid ] and A[mid + 1, . . . , h ] are sorted ∗)
2 n1 ← mid − l + 1
3 n2 ← h − mid

4 create L[1, . . . , n1 + 1] and R[1, . . . , n2 + 1]
5 L← A[l , . . . , mid ]
6 R← A[mid + 1, . . . , h ]
7 L[n1 + 1]←∞
8 R[n2 + 1]←∞
9 i← 1

10 j← 1

11 for k ← l to h

12 if L[i] ≤ R[j]
13 A[k ]← L[i]
14 i← i+ 1
15 else
16 A[k ]← R[j]
17 j← j+ 1

Lemma 12. On the assumption that the subarrays A[l, . . . , mid] and A[mid+ 1, . . . , h] are
sorted, the whole array A[l, . . . , h] is sorted after Merge terminates.

Proof:
The following is a loop invariant for the for loop (lines 11–17):

part i Every time the execution of Merge is at line 11, A[l , . . . , k−1] contains
k − l smallest elements of L[ ] and R[ ], in sorted order.

part ii Furthermore, L[i] and R[j] are smallest elements in L[ ] and R[ ], respec-
tively, that have not been copied into A[ ] yet.

Basis. When the execution is at line 11 for the first time, it is the case that k = l . Then
the subarray A[l , . . . , k − 1] is in fact A[l , . . . , l − 1], i.e. an empty subarray. Vacuously,
it is sorted and contains the k − l = 0 smallest elements of L[ ] and R[ ], in sorted order.
Furthermore, L[1] and R[1] are smallest elements of L[ ] and R[ ], respectively, that have not
been copied into A[ ].
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Maintenance. Assume the claim holds at a certain execution of line 11 and the for loop
is to be executed at least once more. There are two alternative ways the execution can
take through the body of the loop. We consider them both. Before we do that we prove
an useful auxilliary result; both L[ ] and R[ ] contain a ∞ value so we want to be sure that
those are never compared.

In the comparison at line 12, it cannot be the case that two ∞ values are com-
pared.

Proof: Assume the opposite. By the maintenance hypothesis, k − l elements
are copied into A from L[ ] and R[ ]. By the maintenance hypothesis, the body
of the loop is to be executed once more, so the number of the copied elements
is ≤ h − l . By the assumption we made, we have copied all n1 + n2 elements
that are not ∞, so the number of copied elements is ≥ n1+n2 = mid − l + 1+
h − mid = h − l + 1 > h − l .  

Consider the comparison at line 12. Since both L[i] and R[j] cannot be ∞, the result of
the comparison is always defined. First assume L[i] ≤ R[j]. Clearly, L[i] < ∞. By part ii
of the maintenance hypothesis and the assumption that L[i] ≤ R[j] we conclude L[i] is a
smallest element in L[ ] and R[ ] that has not been copied yet. By part i of the maintenance
hypothesis, L[i] is not smaller than any element in A[l , . . . , k-1 ]. The execution goes to
line 13. So, now A[k ] is not smaller that any element in A[l , . . . , k-1 ]. It follows A[l , . . . , k ]
is sorted and contains the k − l + 1 = (k + 1) − l smallest elements of L[ ] and R[ ]. But k
gets incremented the next time the execution is at line 11. Relative to the new value of k ,
it is the case that A[l , . . . , k-1 ] contains k − l smallest elements of L[ ] and R[ ], in sorted
order. So, part i of the invariant holds.

Now we prove that part ii of the invariant holds as well. By assumption, L[ ] and R[ ]
are sorted. Before the assignment at line 13, L[i] was a smallest element from L[ ] not copied
into A[ ] yet. After that assignment, L[i+ 1] is a smallest element from L[ ] not copied into
A[ ] yet. But i get incremented at line 14. With respect to the new value of i, L[i] is a
smallest element from L[ ] not copied into A[ ] yet.

Now assume the execution is still at line 12 and L[i] 6≤ R[j], i.e. L[i] > R[j]. The proof is
completely analogous to the proof above.

Termination. The loop control variable k equals h+ 1 the last time the execution is at
line 11. Plug that value into the invariant to obtain “the subarray A[l , . . . , h − 1] contains
k − l smallest elements of L[ ] and R[ ], in sorted order”. �

Merge Sort(A[1, 2, . . . , n]: array of integers; l , h : indices in A[ ])
1 if l < h

2 mid ← ⌊
l+h
2

⌋
3 Merge Sort(A, l , mid )
4 Merge Sort(A, mid + 1, h )
5 Merge(A, l , mid , h )

Lemma 13. Algorithm Merge Sort is a correct sorting algorithm if the initial call is
Merge Sort(A, 1, n).

Proof:
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By induction on the difference h − l †. We consider it obvious that h − l can get as small
as zero but not any smaller. So, the basis is h − l = 0.

Basis. h = l . On the one hand, the array A[l ] is trivially sorted. On the other hand,
Merge Sort does nothing when h = l . So, the one element array remains sorted at the
end.

Maintenance. Assume that Merge Sort sorts correctly the subarrays A[l , . . . , mid ]
and A[mid + 1, . . . , h ] (lines 3 and 4) during any recursive call such that h > l . Use
Lemma 12 to conclude that at the end of the current call, the whole A[l , . . . , h ] is sorted.

Termination. When proving facts about recursive algorithms, using induction rather
than loop invariant, the termination step of the proof concerns the termination of the very
first recursive call. In this proof that is Merge Sort(A[1, . . . , n]). With Merge Sort,
this step is trivial: simply observe that after the algorithm finishes altogether, A[1, . . . , n]
is sorted. �

Partition(A[1, 2, . . . , n]: array of integers; l , h : indices in A[ ])
1 pivot ← A[h ]
2 pp ← l

3 for i← l to h − 1
4 if A[i] < pivot

5 swap(A[i], A[pp ])
6 pp ← pp + 1
7 swap(A[pp ], A[h ])
8 return pp

Lemma 14. The value pp returned by Partition is such that l ≤ pp ≤ h and

∀x ∈ A[l, . . . , pp− 1], ∀y ∈ A[pp+ 1, . . . , h] : x < A[pp] ≤ y

Proof:
At any moment, let S denote the current set {x ∈ A[l , . . . , i−1] | x < pivot }. The following
is a loop invariant for the for loop (lines 3–6):

Every time the execution of Partition is at line 3, pp ≤ i and the elements of
S are precisely the elements in A[l , . . . , pp − 1].

Basis: i = l . Because of the assignement at line 2, pp ≤ i holds. The subarray A[l , . . . , i−
1] is A[l , . . . , l − 1], an empty subarray, therefore S = ∅, so it is vacuously true that the
elements of S are precisely the elements in A[l , . . . , pp − 1] .

Maintenance: Assume the claim holds at a certain moment when the execution is at
line 3 and i ≤ h − 1. Let A ′[ ] and pp ′ denote the array A[ ] and the index variable pp ,
respectively, at the beginning of that the for loop execution.

Case 1: A ′[i] < pivot . By the maintenance hypothesis, A ′[pp ] is the leftmost element
that is left of the current ith position and is not smaller than pivot . All the elements
that are smaller than pivot and left of the current ith position—namely, the elements of
S—consitute the subarray left of the current pp th position. Let the values of A ′[pp] and

†Note that this is not a proof with loop invariant because Merge Sort is not an iterative algorithm.
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A ′[i] be called x and y, respectively. See the following figure. The elements of S are outlined
in yellow. For brevity we write Al rather than A[l ], etc.

pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

A ′

hh − 1i

pivot

the elements of S are here

the pp index

points here

the loop

control var.

points here

A ′
h−1yA ′

l A ′
l+1 A

′
l+2 A ′pp ′−1 x A ′pp ′+1

The condition at line 4 is True and so the execution proceeds to line 5 where x and y get
swapped. Note that S “grows” by one element, namely y:

pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

A

hh − 1i

pivot

the elements of S are here

the pp index

points here

control var.

the loop

points here

Ah−1Al Al+1 Al+2 App ′−1 y App ′+1 x

At line 6, pp is incremented by one:

pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

A

hh − 1i

pivot

the elements of S are here

the pp index

points here

the loop

control var.

points here

Ah−1Al Al+1 Al+2 App ′−1 y xApp ′+1

Next the execution is at line 3 again, with i incremented by one. Relative to the current i,
we have the following picture:
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the pp index

points here

pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

the loop

control var.

points here

A

hh − 1

pivot

the elements of S are here

ii− 1

Ah−1Al Al+1 Al+2 App ′−1 y xApp ′+1

Relative to the current values of i and pp , the elements in A[l , . . . , i−1] smaller than pivot

are precisely the elements in A[l , . . . , pp − 1]. Furthermore, pp ≤ i. And so the invariant
holds.

There is no loss of generality in considering the case pp ′ < i as we did here. However, if
the reader is not convinced, here is what happens when pp ′ = i at the start of the iteration
whose execution we follows. Let x be the value of the element at position pp ′ = i:

pivotA ′
h−1xA ′pp ′−1A ′

l+2A ′
l+1A ′

l

the pp index

points here

A ′

hh − 1

the elements of S are here

the loop

control var.

points here

pp ′ = il l + 1 l + 2 pp ′ − 1

The condition at line 4 is true under the premise of Case 1, so the swap at line 5 takes
place. However, nothing changes because x is swapped with itself. Then both pp and i get
incremented by one. Relative to their new values, S is one element bigger than it was at the
beginning of the current iteration – it has “grown”, x being added to it. However, it is still
the case that pp ≤ i and the elements of S are precisely the elements in A[l , . . . , pp − 1]:
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pp ′ + 1pp ′pp ′ − 1l + 2l + 1l

the loop

control var.

points here

the pp index

points here

A

h

pivot

the elements of S are here

h − 1

A ′
l A ′

l+1 A
′
l+2 A ′pp ′−1 x A ′pp ′+1 A ′

h−1

Case 2: A ′[i] ≥ pivot . In this case, the condition at line 4 is False and so the execution
proceeds directly to line 3 with the loop control variable being incremented by one. The
invariant holds because of the maintenance hypothesis and the facts that no element in the
array is moved, pp equals pp ′, and pp ≤ i relative to the new value of i, and S is the same
relative to the new value of i.

Termination: When the for loop terminates, it is the case that i = h . Now S is the set
of the elements in A[l , . . . , h − 1] smaller than pivot . But it is also true that S consists
of the elements in A[l , . . . , h ] smaller than pivot . By the loop invariant, the elements of
S form the contiguous subarray A[l , . . . , pp − 1]. After the assignment at line 7, it is the
case that

∀x ∈ A[l , . . . , pp − 1], ∀y ∈ A[pp + 1, . . . , h ] : x < A[pp ] ≤ y

And finally at line 8, Partition returns pp , so the claim of this Lemma is true. �

Quick Sort([A1, 2, . . . , n]: array of integers; l , h : indices in A[ ])
1 if l < h

2 mid ← Partition(A, l , h )
3 Quick Sort(A, l , mid − 1)
4 Quick Sort(A, mid + 1, h )

Lemma 15. Algorithm Quick Sort is a correct sorting algorithm if the initial call is
Quick Sort(A, 1, n).

Proof:
By induction on the difference h − l . We consider it obvious that h − l can get as small
as zero but not any smaller. So, the basis is h − l = 0.

Basis. h = l . On the one hand, the array A[l ] is trivially sorted. On the other hand,
Quick Sort does nothing when h = l . So, the one element array remains sorted at the
end.

Maintenance. Assume that h > l . Use Lemma 14 to conclude that after the call to
Partition (line 2) returns mid , it is the case that A[ ] is modified in such a way that left
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of A[mid ] are precisely the elements of the original A[ ] smaller than A[mid ], and right of
A[mid ] are the elements not smaller than it. Assuming that the two recursive calls at lines 3
and 4 sort correctly the respective subarrays, clearly A[l , . . . , h ] is sorted at the end of the
current recursive call.

Termination. Consider the termination of the first recursive call Quick Sort(A[1, . . . , n])
and conclude that A[1, . . . , n] is sorted. �

4.3.3 The correctness of algorithms on binary heaps

First let us clarify that by heaps we mean binary max heaps. The algorithms concerning
heaps use the following primitive operations:

Parent(i)

return
⌊
i
2

⌋
Left(i)

return 2i

Right(i)

return 2i+ 1

In the following definitions and discussion we assume the array A[ ] is used to represent a
complete binary tree. A complete binary tree is a binary tree such that every level, except
possibly for the last level, is completely filled. If the last level is incomplete then its nodes
must be as left as possible. A perfect binary tree is a complete binary tree in which the last
level is complete. For the classification of trees as data structures, see [NIS]. When we say
tree, we always mean binary tree.

Definition 5. Let A[1, 2, . . . , n] be an array of integers† and i be an index such that 1 ≤ i ≤
n. We call “the complete subtree in A[ ] rooted at i”—denoted by AJiK—the not necessarily
contiguous subarray of A[ ] induced by the indices generated by the following function:

Generate Indices(A[1, . . . , n]: array of integers, i: index in A[ ])
1 print i
2 left ← Left(i)
3 right ← Right(i)
4 if left ≤ n
5 Generate Indices(A[ ], left )
6 if right ≤ n
7 Generate Indices(A[ ], right ) �

Clearly, AJ1K is the array A[1, . . . , n] itself. Since A[ ] represents a tree, A[1] is the root
and AJiK is the subtree rooted at vertex A[i]. When we use Graph Theory terminology and
more specifically, terminology that concerns rooted trees, on arrays, we of course have in

†The heaps we consider have elements–integers. Of course, any other data type whose elements take
O(1) memory and allows comparing and moving elements around in O(1) time could be used.
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mind that the array represents a rooted tree. So the leaves of A[ ] are the elements that
correspond to the leaves of the tree that A[ ] represents. By Problem 153 on page 251, the
number of leaves is precisely

⌈
n
2

⌉
and thus the number of non-leaves is

⌊
n
2

⌋
. It follows the

leaves of A[1, . . . , n] are precisely A
[⌊
n
2

⌋
+ 1
]
, A

[⌊
n
2

⌋
+ 2
]
, . . . , A[n]. Furthermore, the

predicate that indicates whether an array element is a leaf or not is

IsLeaf(i) =

{
True, if i >

⌊
n
2

⌋
False, else

Definition 6. Let T be any rooted tree and u be any vertex in it. The height of u is the
distance between it and the root. The height of T is the maximum height of any vertex in
T . The depth† of u is the length of any longest path between u and a leaf which path does
not contain vertices of height smaller than the height of u. �

The depths of the vertices in a complete binary tree is illustrated on Figure 8.3 on page 253.
When we speak of the depth of an element of A[ ] we have in mind the depth of the
corresponding vertex of the tree A[ ] represents. Of course, the elements of depth 0 are the
leaves. As an example consider the following 26-element array A[ ]:

A
2 3 164 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 261 23

6 2 5 7 11 1 3 9 2 1 15 17 2 8 1 15 4 13 21 18 3 1 6 17 9 10

The leaves of A[ ] are elements A[13]–A[26], shown in yellow:

A
2 3 164 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 261 23

6 2 5 7 11 1 3 9 2 1 15 17 2 8 1 15 4 13 21 18 3 1 6 17 9 10

Suppose i = 3. AJ3K is the (non-contiguous) subarray of A[ ] outlined in green:

A
2 3 164 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 261 23

6 2 5 7 11 1 3 9 2 1 15 17 2 8 1 15 4 13 21 18 3 1 6 17 9 10

The leaves of AJ3K are the five elements A[14], A[15], A[24]–A[26], outlined in blue:

A
2 3 164 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 261 23

6 2 5 7 11 1 3 9 2 1 15 17 2 8 1 15 4 13 21 18 3 1 6 17 9 10

Definition 7 (heap). AJiK is a heap iff:

• either IsLeaf(i),

• or

◦ AJLeft(i)K is a heap and A[i] ≥ A[Left(i)],
◦ AJRight(i)K, if it exists, is a heap, and A[i] ≥ A[Right(i)]. �

†In [CLR00], the authors call “height of a node” what we call “depth”.
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We consider the following fact obvious.

Fact: If AJiK is a heap then for any index j such that A[j] is in AJiK, AJjK is a heap. �

In the context of heaps, relative to some A[ ] and index i in it, let us call a heap inversion
every pair of indices 〈j, k〉 such that:

• A[j] and A[k] are in AJiK,

• A[j] < A[k], and

• k = Left(j) or k = Right(j).

Clearly, AJiK is a heap iff it has no heap inversions.

Iterative Heapify(A[1, 2, . . . , n]: array of integers, i: index in A[ ])
1 j← i

2 while j ≤
⌊
n
2

⌋
do

3 left ← Left(j)
4 right ← Right(j)
5 if left ≤ n and A[left ] > A[j]
6 largest ← left

7 else
8 largest ← j

9 if right ≤ n and A[right ] > A[largest ]
10 largest ← right

11 if largest 6= j
12 swap(A[j], A[largest ])
13 j← largest

14 else
15 break

Lemma 16. Under the assumption that A[1, . . . , n] and i are such that each of AJLeft(i)K
and AJRight(i)K, if it exists, is a heap, the effect of algorithm Iterative Heapify is that
AJiK is heap at its termination.

Proof:
The following is a loop invariant for the while loop (lines 1–15):

Every time the execution is at line 2, the only possible heap inversions in AJiK
are 〈j,Left(j)〉 and 〈j,Right(j)〉, if A[Left(j)] and A[Right(j)] exist.

Basis. j = i. By the premises, each of AJLeft(i)K and AJRight(i)K, if it exists, is a
heap, so the claim holds trivially.

Maintenance. Assume that the claim holds at some moment when the execution is at
line 2 and execution will reach line 2 at least once more.

The latter proviso implies line 15 is not reached during the current execution.¢¢ NB ¢¢

So, it is the case that j ≤
⌊
n
2

⌋
, and thus at least one of Left(j) ≤ n and Right(j) ≤ n is

true, namely Left(j) ≤ n. So, at least A[Left(j)] is defined. Without loss of generality,
assume both Left(j) ≤ n and Right(j) ≤ n to avoid considering unnecessary subcases.
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Case i: Both A[left ] and A[right ] are bigger than A[j] at the beginning and A[right ] >
A[left ]. The evaluation at line 5 yields True and the assignment at line 6 takes place. The
evaluation at line 9 yields True, too, so the assignment at line 10 takes place and when the
execution is at line 11, largest equals right . The evaluation at line 11 yields True and
at line 12, A[j] and A[largest ] get exchanged. We claim the only possible heap inversions
in AJiK after the exchange are 〈right ,Left(right )〉 and 〈right ,Right(right )〉:

• no element in AJiK outside AJjK has been changed;

• currently A[j] > A[left ] so 〈j,Left(j)〉 cannot be a heap inversion;

• currently A[j] > A[right ] so 〈j,Right(j)〉 cannot be a heap inversion;

• AJleft K has not been modified.

• none of AJLeft(right )K and AJRight(right )K has been modified.

But right is assigned to j at line 13. So the invariant holds the next time the execution is
at line 2.
Case ii: BothA[left ] andA[right ] are bigger thanA[j] at the beginning andA[right ] 6>
A[left ]. The evaluation at line 5 yields True and the assignment at line 6 takes place.
The evaluation at line 9 yields False, so the assignment at line 10 does not take place and
when the execution is at line 11, largest equals left . The evaluation at line 11 yields
True and at line 12, A[j] and A[largest ] get exchanged. We claim the only possible heap
inversions in AJiK after the exchange are 〈left ,Left(left )〉 and 〈left ,Right(left )〉:

• no element in AJiK outside AJjK has been changed;

• currently A[j] > A[left ] so 〈j,Left(j)〉 cannot be a heap inversion;

• currently A[j] ≥ A[right ] so 〈j,Right(j)〉 cannot be a heap inversion;

• AJright K has not been modified.

• none of AJLeft(left )K and AJRight(left )K has been modified.

But left is assigned to j at line 13. So the invariant holds the next time the execution is
at line 2.
Case iii: A[left ] 6> A[j] and A[right ] > A[j] at the beginning. The evaluation at
line 5 yields False and the assignment at line 8 takes place. The evaluation at line 9 yields
True, so the assignment at line 10 takes place and when the execution is at line 11, largest
equals right . The evaluation at line 11 yields True and at line 12, A[j] and A[largest ]
get exchanged. We claim the only possible heap inversions in AJiK after the exchange are
〈right ,Left(right )〉 and 〈right ,Right(right )〉. The proof is precisely the same as the
proof of the analogous claim is Case i. But largest is assigned to j at line 13. So the
invariant holds the next time the execution is at line 2.
Case iv: A[left ] > A[j] and A[right ] 6> A[j] at the beginning. The evaluation at
line 5 yields True and the assignment at line 6 takes place. The evaluation at line 9
yields False, so the assignment at line 10 does not take place and when the execution is at
line 11, largest equals left . The evaluation at line 11 yields True and at line 12, A[j]
and A[largest ] get exchanged. We claim the only possible heap inversions in AJiK after
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the exchange are 〈left ,Left(left )〉 and 〈left ,Right(left )〉. The proof is precisely the
same as the proof of the analogous claim is Case ii. But left is assigned to j at line 13.
So the invariant holds the next time the execution is at line 2.
Case v: A[left ] 6> A[j] and A[right ] 6> A[j] at the beginning. But that is impossible
under the current assumptions, because clearly line 15 would be reached and the execution
would never get to line 2 again.

Termination. Unlike the examples we have see so far, this loop can be exited in two
ways: via line 2 when j >

⌊
n
2

⌋
and via line 15. Let us consider the first possibility. Then

both Left(j) and Right(j) point outside A[1, . . . , n]. The invariant, therefore, says there
are no heap inversions in AJiK at all since A[Left(j)] and A[Right(j)] do not those exist.
And so AJiK is heap.

Consider the second possibility, viz. the while loop starts executing but the execution
reaches line 15. It is obvious that, in order line 15 to be reached, it has to be the case that
largest = j at line 11. In order that to happen, both A[left ] ≤ A[j] and A[right ] ≤ A[j]
must be true at the beginning of that execution since that is the only way that line 8 is
reached and line 10 is not reached. But if A[left ] ≤ A[j] and A[right ] ≤ A[j], there are
no heap inversions in AJiK at all, so AJiK is a heap. �

The function Heapify in the following algorithm is either Recursive Heapify on page 148
or Iterative Heapify on page 133.

Build Heap(A[1, 2, . . . , n]: array of integers)
1 for i← n downto 1

2 Heapify(A[ ], i)

Lemma 17. When Build Heap terminates, A[ ] is a heap.

Proof:
The following is a loop invariant for the while loop (lines 1–2):

Every time the execution is at line 1 and d is the depth of A[i], then for every
element A[j] of depth d− 1, AJjK is a heap.

We make use the of the fact—without proving is—that for every depth d, the elements of
A[ ] of depth d form a continuous subarray in A[ ]. If we call that subarray, the d-block,
clearly those blocks appear in reverse sorted order:

• A[1] is the blgnc-block†.

• . . .

• A
[⌊n
2

⌋
+ 1,

⌊n
2

⌋
+ 2, . . . , n

]
is the 0-block (the leaves).

So, as the index i starts from n and goes down to 1, the depths of the A[i] elements take
all values from {0, 1, . . . , blgnc} in ascending order. Furthermore, Lemma 35 on page 253

implies that the d-block is precisely A
[⌊ n

2d+1

⌋
+ 1, . . . ,

⌊ n
2d

⌋]
.

†Recall that the height of any n element heap is blgnc (see eq. (8.31) on page 250) and note that the
height of the heap equals the depth of the root.
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In order to make the proof work, assume that A[ ] has an dummy element at position 0.
The value of that A[0] does not concern us. What is important is to consider the remainder
of the array, namely A[1, . . . , n], as a subtree of A[0]. In other words, the depth of A[0]
is blgnc + 1. Without that technicality, the termination phase of the proof could not be
formulated because i equals 0 when the execution is at line 2 for the last time.

Basis. Unlike the previous proofs, here the basis is not for a single value of the loop
control variable but for a multitude of values. To see why, note that the induction is on the
depth of the elements, not on the number of times line 2 is reached. It is natural to take
for basis depth 0. But that means that the basis is over all leaves of A[1, . . . , n]. The leaves
are precisely the elements A[i] such that

⌊
n
2

⌋
+ 1 ≤ i ≤ n (see Problem 153 on page 251).

Consider any i be such that
⌊
n
2

⌋
+ 1 ≤ i ≤ n. Then A[i] has depth 0. But elements of

depth −1 do not exist. So the claim is vacuously true.

Maintenance. Relative to some number d such that 0 ≤ d ≤ blgnc†, consider the first
time the execution is at line 2 and the depth of the current A[i] is d. Since the depths of
the A[i] elements take all values from {0, 1, . . . , blgnc} in ascending order, such a moment
will occur. As implied by Lemma 35 on page 253, at that moment i =

⌊
n
2d

⌋
. Assume that

the claim holds at that moment.

Our goal now is not to prove, using this assumption, that the claim holds the next time the¢¢ NB ¢¢

execution is at line 2. Such an implication does not exist.

Our goal is to prove that at the subsequent moment when the execution is at line 2 and
for the first time, the depth of the current A[i] is d + 1, it is the case that for all indices
j such that A[j] is at depth d, AJjK is a heap. As implied by Lemma 35 on page 253, that
subsequent moment is when i =

⌊
n

2d+1

⌋
.

In other words, the maintenance phase consists of the following:

• assuming that

A
r⌊ n
2d

⌋
+ 1

z
, A

r⌊ n
2d

⌋
+ 2

z
, . . . , A

r⌊ n

2d−1

⌋z
︸ ︷︷ ︸

the indices here are from the d−1 block

are heaps,

• show that

A
r⌊ n

2d+1

⌋
+ 1

z
, A

r⌊ n

2d+1

⌋
+ 2

z
, . . . , A

r⌊ n
2d

⌋z
︸ ︷︷ ︸

the indices here are from the d block

are heaps.

It is rather obvious that the the map

j→ {Left(j),Right(j)}

maps the d-block on the (d − 1)-block in the sense that the sets {Left(j),Right(j)} are
partitioning of the indices of the (d − 1)-block, if j takes its values from the set of indices
of the d-block. Of course, that holds if d > 0.

†In other words, d can be the depth of any vertex from A[1, . . . ,n].
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Apply Lemma 16 or Lemma 23, whichever one is applicable (depending on whether the
recursive or the iterative Heapify is used) on every one of

A
r⌊ n

2d+1

⌋
+ 1

z
, A

r⌊ n

2d+1

⌋
+ 2

z
, . . . , A

r⌊ n
2d

⌋z
For each index

j ∈
{⌊ n

2d+1

⌋
+ 1,

⌊ n

2d+1

⌋
+ 2, . . . ,

⌊ n
2d

⌋}
the premises of the Lemma include the assumption that AJLeft(j)K an AJRight(j)K are
heaps. But those two subtrees are from the set{

A
r⌊ n
2d

⌋
+ 1

z
, A

r⌊ n
2d

⌋
+ 2

z
, . . . , A

r⌊ n

2d−1

⌋z}
and we did assume the elements of this set are heaps. So, the said Lemma provides the
desired result.

Termination. When the execution is at line 2 for the last time, i = 0. We agreed that
the dummy A[0] is of depth blgnc+ 1. Plug that value in the invariant to derive that every
element of A[ ] of depth blgnc, and the only such element is A[1], it is the case that AJ1K
is a heap. �

The following pseudocode uses the notation “A.size”. Assume that is a number such
that 1 ≤ A.size ≤ n, and Heapify works using it as an upper index of the array–heap,
not n as the pseudocode of Heapify says.

Heap Sort(A[1, 2, . . . , n])
1 Build Heap(A[ ])
2 A.size← n

3 for i← n downto 2

4 swap(A[1], A[i])
5 A.size← A.size − 1
6 Heapify(A[ ], 1)

Lemma 18. Heap Sort is a sorting algorithm.

Proof:
Let us call the original array, A ′[1, . . . , n]. The following is a loop invariant for the for loop
(lines 3–6):

Every time the execution of Heap Sort is at line 3, the current subarray
A[i + 1, . . . , n] consists of n − i in number biggest elements of A ′[1, . . . , n].
Furthermore, the current A[1, . . . , i] is a heap.

Basis. The first time the execution reaches line 3, it is the case that i = n. The current
subarray A[i+ 1, . . . , n] is empty and thus, vacuously, it consists of zero in number biggest
elements from A ′[1, . . . , n], in sorted order. A[1, . . . , n] is a heap by Lemma 18, applied to
line 1.

Maintenance. Assume the claim holds at a certain execution of line 3 and the for loop
is to be executed at least once more. Let us call the array A[ ] at that moment, A ′′[ ]. By
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the maintenance hypothesis, A ′′[i + 1, . . . , n] are n − i in number maximum elements of
A ′[ ], in sorted order. By the maintenance hypothesis again, A ′′[1] is a maximum element of
A ′′[1, . . . , i]. After the swap at line 4, A ′′[i, . . . , n] are n− i in number maximum elements
of A ′[ ], in sorted order. Relative to the new value of i the next time the execution is at
line 3, the first sentence of the invariant holds.

The second sentence holds, too, by applying Lemma 16 or Lemma 23, whichever one is
applicable (depending on whether the recursive or the iterative Heapify is used), at line 6.
Just keep in mind that Heapify considers the heap to be A[1, . . . , i − 1] because i equals
A.size when the execution is at line 6; note that because of line 5, A.size is i − 1 at line 6.
Thus at line 6, the current A[i] is outside the scope of the current heap.

Termination. Consider the moment when the execution is at line 3 for the last time.
Clearly, i equals 1. Plug the value 1 in place of i in the invariant to obtain “the current
subarray A[2, . . . , n] consists of n − 1 in number biggest elements of A ′[1, . . . , n].”. But
then A[1] has to be a minimum element from A ′[1, . . . , n]. And that concludes the proof of
the correctness of Heap Sort. �

4.3.4 The correctness of Dijkstra’s algorithm

We assume the reader is familiar with the terminology concerning weighted digraphs. When
we talk about path lengths or distances, we mean weighted lengths or distances. Note the
distance is not necessarily symmetric in digraphs. Let the weight function be w : E→ R+.
The proof of correctness of the algorithm below is a detailed version of the proof in [Man05].
If G(V, E) is a graph, for any u ∈ V we denote the set {v ∈ V | (u, v) ∈ E} by “adj(u)”, and for
any u, v ∈ V we denote the distance from u to v in G by “distG(u, v)”. The subscript G in
that notation is useful when u and v are vertices in more than one graph under consideration
and we want to emphasise we mean the distance in that particular graph. We postulate
that distG(u, v) =∞ iff there is no path from u to v in G.

Dijkstra(G(V, E): graph; w: weight function; s: vertex from V)
1 (∗ U is a variable of type vertex set ∗)
2 foreach u ∈ V
3 dist[u]←∞
4 π[u]← 0

5 U← {s}

6 dist[s]← 0

7 foreach x ∈ adj(s)
8 dist[x]← w((s, x))
9 π[x]← s

10 while
(
{v ∈ V \U |dist[v] <∞} 6= ∅

)
do

11 select any x ∈ {v ∈ V \U |dist[v] <∞} such that dist[x] is minimum
12 U← U ∪ {x}

13 foreach y ∈ adj(x)
14 if dist[y] > dist[x] +w((x, y))
15 dist[y]← dist[x] +w((x, y))
16 π[y]← x

It is obvious that Dijkstra’s algorithm terminates because at each iteration of the while
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loop (lines 10–16) precisely one vertex is added to U and since V is finite, inevitably the
set {v ∈ V \ U |dist[v] < ∞} will become ∅. Now we prove Dijkstra’s algorithm computes
correctly the shortest paths in G from s to all vertices.

Lemma 19. At the termination of Dijkstra, it is the case that

• ∀u ∈ V : the value dist[u] equals distG(s, u), and

• the array π[ ] represents a shortest-paths tree in G, rooted at s.

Proof:
Let us first make several definitions. A u-path for any u ∈ V is a any path from s to u.
During the execution of Dijkstra, relative to the current value of U, for any z ∈ V \ U,
a z-special path in G is any path p = s, u, . . . , w, z, such that |p| > 0 and precisely one
vertex in p, namely z, is not from U. A special path is any path that is a z-special path
for some z ∈ V \ U. Relative to the current value of U, the fringe F(U) is the set {z ∈
V \U | there exists a z-special path}.
The following is a loop invariant for the while loop (lines 10–16):

Every time the execution of Dijkstra is at line 10 the following conjunction
holds:

part i: ∀u ∈ U : dist[u] = distG(s, u), and

part ii: ∀u ∈ U \ {s} : π[u] is the neighbour of u is some shortest u-path and
π[u] ∈ U, and

part iii: ∀u ∈ V \U : dist[u] <∞ iff u ∈ F(U), and

part iv: ∀u ∈ F(U) : dist[u] is the length of a shortest u-special path and π[u]
is the neighbour of u in such a path.

Basis. The first time the execution reaches line 10, it is the case that U = {s} because of
the assignment at line 5. part i holds because dist[s] = 0 (line 6) and distG(s, s) = 0 (by
definition). part ii holds vacuously since U \ {s} = ∅. part iii holds because on the one
hand F(U) = adj(s) and on the other hand the assignments at lines 3 and 8 imply adj(s)
are the only vertices with dist[ ] <∞. part iv holds because ∀u ∈ F(U) the only u-special
path is the edge (s, u); at lines 8 and line 9, dist[u] and π[u] are set accordingly.

Maintenance. Assume the claim holds at a certain execution of line 10 and the while
loop is to be executed at least once more. Let us call the set U at that moment, Uold and
after the assignment at line 12, Unew. So, {x} = Unew \ Uold. We first prove part i and
part ii. We do that by considering Uold and x separately. We claim that for all vertices
in Uold, their dist[ ] and π[ ] values do not change during the current iteration of the while
loop. But that follows trivially from the fact that by part i of the inductive hypothesis
their dist[ ] values are optimal and the fact that, if the while loop changes the dist[ ] and
π[ ] values of any vertex, that implies decreasing its dist[ ] value.

Consider vertex x. Before the assignment at line 12, by part iii of the inductive hy-
pothesis x is a fringe vertex and so by part iv, its dist[ ] value is the length of a shortest
x-special—with respect to Uold—path p and π[x] is the neighbour of u in p. Now we prove
that p is a shortest x-path in G.

Assume the contrary. Then there exists an x-path q that is shorter than p. Since one
endpoint of q, namely s, is from Uold, and the other endpoint x is not from Uold, there is
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at least one pair of neighbour vertices in q such that one is from Uold and the other one
is not from Uold. Among all such pairs, consider the pair a, b that is closest to s in the
sense that between s and a inclusive there are only vertices from Uold and b is the first
vertex (in direction away from s) not from Uold. Note that b 6= x, for if b were x then q
would be an x-special—with respect to Uold—path shorter than p, and by part iv that is
not possible. Let the subpath of q between s and b be called q ′. Note that |q ′| < |q|. By
assumption, |q| < |p|, therefore |q ′| < |p|. Then note q ′ is a special path with respect to Uold

and b ∈ F(Uold). By part iv, dist[b] is at most |q ′| at the beginning of the current iteration
of the while-loop, thus dist[b] < dist[x] and Dijkstra would have selected b rather than
x at line 11. This contradiction refutes the assumption there exists any x-path shorter
than p. So, dist[x] indeed equals distG(s, x), therefore part i and part ii hold the next
time the execution reaches line 10. The following two figures illustrate the contradiction we
just derived. Initially we assumed the existence of a path q shorter than p and defined its
rightmost neighbour pair a, b such that b is the vertex closest to s and not from Uold:

q

vertices from Uold only

not from Uold

s x

a b

p

Then we concluded the subpath q ′ between s and b must be special with respect to Uold

and, furthermore, shorter than p:

s x

a b

p

q ′

Immediately we concluded the algorithm whould have picked b rather than x.

It remains to prove that part iii and part iv hold after the current iteration. Have in
mind that x was a fringe vertex at the beginning of the current iteration of the while loop
but at the end of it x is in U, we exclude x from consideration. The proof of part iii is
straightforward. As just said, x is no longer in V \U.

• In one direction, partition the remaining vertices of V \ U into those whose dist[ ]
value was <∞ at the beginning of the current iteration and those whose dist[ ] value
was equal to ∞ at the at the beginning of the current iteration. By part iii of the
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inductive hypothesis, the former set were neighbours of vertices from Uold, so at the
end of the iteration they are neighbours of vertices from Unew which makes them
fringe vertices. On the other hand, the latter set are neighbours to x, which makes
them fringe vertices with respect to Unew.

• In the other direction, consider the vertices from V \ U whose dist[ ] value is equal
to ∞ at the end of the current iteration. They can neither be neighbours to vertices
from Uold, otherwise they would have dist[ ] value <∞ at the beginning of the current
iteration of the while-loop, nor can they be neighbours of x, otherwise their dist[ ]
values would be set to some positive reals by for-loop at lines 13–16. Therefore, they
are not fringe vertices at the end of the current iteration of the while-loop.

To prove part iv, partition F(Unew) into F(Uold) \ {x} and F(Unew) \ (F(Uold) \ {x})—
the vertices added during the current iteration of the while-loop. It is obvious that for
every vertex u from F(Unew) \ (F(Uold) \ {x}) its only neighbour from Unew is x—otherwise,
dist[u] would not be ∞ at the beginning of the current iteration of the while-loop. Then
every shortest u-special path p is such that the path neighbour of u is x and so |p| equals
distG(s, x)+w((x, u)). We already showed that distG(s, x) equals dist[x] during the current
iteration of the while-loop. We note that at line 16, dist[u] is assigned precisely dist[x] +
w((x, u)). Clearly, part iv holds for u.

Now consider any vertex u in F(Uold) \ {x}. If dist[u] is not changed, in other words
decreased, during the current iteration of the while-loop, part iv holds by the induction
hypothesis regardless of whether u is or is not a neighbour of x. Suppose dist[u] is decreased
during the current iteration of the while-loop. u must be a neighbour of x because the
only place dist[u] can be altered is at line 15 that is executed within the for-loop (lines
13–16). However, u is a neighbour of at least one vertex from Uold, otherwise u would not
be a vertex from F(Uold). By part iv of the induction hypothesis, at the beginning of the
current iteration of the while-loop, it is the case that dist[u] = |p|, where p is a shortest
u-special path with respect to Uold. The fact that dist[u] was altered at line 15 means that

dist[x] +w((x, u)) < |p|

It follows there is a u-special path q with respect to Unew such that the path neighbour of
u in q is x, and |q| = dist[x] + w((x, u)). Furthermore, |q| is the minimum length of any
u-special path q with respect to Unew such that the path neighbour of u in q is x because
dist[x] = distG(s, x) as we already proved. There cannot be a shorter than q, u-special
path with respect to Unew—assuming the opposite leads to a contradiction because the
path neighbour of u in that alleged path cannot be x and cannot be any other vertex from
Unew. That concludes the proof of part iv.

Termination. Consider the moment when the execution is at line 10 for the last time.
It is either the case that U = V, or U ⊂ V but all vertices in V \ U have dist[ ] values
equal to ∞. In the former case, the claim of this lemma follows directly from part i and
part ii of the invariant. In the latter case, it is easy to see that every vertex w such that
dist[w] = ∞ is such that no path exists from s to w—assuming the opposite leads to a
contradiction because that alleged path must have neighbour vertices a and b, such that
dist[a] <∞, dist[b] =∞, and (a, b) ∈ E(G); clearly, b would have gotten finite dist[ ] value
as a neighbour of a during the iteration of the while-loop when the value of the x variable
at line 11 was a. It follows that Dijkstra assigns∞ precisely to the dist[ ] of those vertices
that are not reachable from s, and all other ones are dealt with correctly. �
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4.3.5 The correctness of Counting Sort

The input is an array of positive integers A[1, 2, . . . , n]. It is known there is some k ∈ N+

such that 1 ≤ A[i] ≤ k for all i, 1 ≤ i ≤ n. We are going to sort A[ ] in time Θ(n + k)
by counting the number of appearances of each element. That sorting algorithm is not
comparison-based and thus the Ω(n lgn) lower bound does not hold for it. The algorithm
uses an auxiliary array C[0, 1, . . . , k] as a workpad and another array B[1, 2, . . . , n] for writing
the output.

Counting Sort(A[1, 2, . . . , n]: positive integers; k: a positive integer)
1 (∗ k is such that 1 ≤ A[i] ≤ k for all i ∗)
2 for i← 0 to k

3 C[i]← 0

4 for i← 1 to n

5 C[A[i]]← C[A[i]] + 1
6 for i← 1 to k

7 C[i]← C[i] + C[i− 1]
8 for i← n downto 1

9 B[C[A[i]]]← A[i]
10 C[A[i]]← C[A[i]] − 1

Obviously, the first for-loop (lines 2–3) initialises C[ ] with zeroes. Let us introduce the
following notation: if Z[1, . . . ,m] is an array, j is an index such that 1 ≤ j ≤ m, and x is
an element that may occur in Z[ ], then #(x, j, Z) denotes the number of occurrences of x
in the subarray in the subarray Z[1, . . . , j].

Lemma 20. After the second for-loop (lines 4–5) terminates, for 1 ≤ j ≤ k, element C[j]
contains the number of occurrences of j in A[ ].

Proof:
The following is a loop invariant for the second for-loop:

Every time the execution is at line 4, for every element C[j] where 1 ≤ j ≤ k, it
is the case that C[j] = #(j, i− 1,A).

Basis. The first time the execution reaches line 4, all elements of C[ ] are zeroes. On the
other hand, i is 1, and thus A[1, . . . , i− 1] is empty. The claim is vacuously true.

Maintenance. Assume the claim holds at a certain execution of line 4 and the second for-
loop is to be executed at least once more. Let the value of C[A[i]] be y at the moment before
the execution of line 5. By the inductive hypothesis, is y = #(A[i], i − 1,A). An obvious
mathematical fact is that #(A[i], i − 1,A) + 1 = #(A[i], i, A). Indeed, after the execution
of line 5, C[A[i]] gets incremented by one, so now C[A[i]] equals #(A[i], i, A). Since the
other elements of C[ ] (apart from C[A[i]]) are not affected by the current execution of the
for-loop, it is the case that:

• for every element C[j] apart from C[A[i]], C[j] = #(j, i−1,A), and also C[j] = #(j, i, A)

• C[A[i]] = #(A[i], i, A).
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Overall, for every element C[j], C[j] = #(j, i, A). That is before i gets incremented. After i
gets incremented, C[j] = #(j, i− 1,A) for every j such that 1 ≤ j ≤ k.

Termination. Consider the moment when the execution is at line 4 for the last time.
Clearly, i equals n + 1. Plug the value n + 1 in place of i in the invariant to obtain “for
every element C[j] where 1 ≤ j ≤ k, it is the case that C[j] = #(j, n,A).” �

Lemma 21. After the third for-loop (lines 6–7) terminates, for 1 ≤ j ≤ k, element C[j]
contains the number of elements of A[ ] that are ≤ j.

Proof:
The following is a loop invariant for the third for-loop:

Every time the execution is at line 6, for every j such that 0 ≤ j ≤ i − 1,
C[j] =

∑j
t=1#(t, n,A).

Basis. The first time the execution reaches line 6, i equals 1, so the claim is that
C[0] =

∑0
t=1#(t, n,A) = 0. But C[0] is indeed 0 since it is initialised to 0 by the first

for-loop and the second for-loop does not assign anything to it as A[i] cannot be 0.3

Maintenance. Assume the claim holds at a certain execution of line 6 and the third
for-loop is to be executed at least once more. The element C[i] has not been affected by
the execution of the for-loop so far, therefore by Lemma 20, C[i] = #(i, n,A). By the
inductive hypothesis, C[i − 1] =

∑i−1
t=1#(t, n,A). After the execution of line 7, it is the

case that C[i] =
∑i
t=1#(t, n,A). With respect to the new value of i, for every j such that

0 ≤ j ≤ i− 1, C[j] =
∑j
t=1#(t, n,A).

Termination. Consider the moment when the execution is at line 6 for the last time.
Clearly, i equals n + 1. Plug the value n + 1 in place of i in the invariant to obtain “for
every j such that 0 ≤ j ≤ n, C[j] =

∑j
t=1#(t, n,A).” �

For every integer j such that 1 ≤ j ≤ k, let us call j essential if there is at least one element
of A[ ] with value j. By Lemma 20, the non-zero elements of C[ ] after the second for-loop
are precisely the elements whose indices are essential. For every element x of A[ ] we define
the concept the proper place of x. The proper place of x is the total number of elements of
A[ ] smaller than x, plus the number of elements equal to x that are left of x, plus one. In
other words, the proper place of x is its index in the array after a stable sorting algorithm
has been executed on the array.

Lemma 22. Counting Sort is a stable sorting algorithm.

Proof:
The following is a loop invariant for the fourth for-loop (lines 8–10):

Every time the execution is at line 8, for every j such that 1 ≤ j ≤ k and j is
essential, C[j] is the proper place for the rightmost element from the subarray
A[1, . . . , i] that has value j. Furthermore, all elements from A[i + 1, . . . , n] are
at their proper places in B[ ].

Basis. The first time the execution reaches line 6, i equals n. The first part of the
invariant is, “for every j such that 1 ≤ j ≤ k and j is essential, C[j] is the proper place for
the rightmost element from the subarray A[1, . . . , n] that has value j”. However, C[ ] has
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not been modified yet by the fourth loop, therefore Lemma 21 holds. For every distinct
value j that occurs in A[ ], the proper place of the rightmost j in A[ ] is at position that
equals the sum of the numbers of all elements with value ≤ j. According to Lemma 21, C[j]
equals precisely that sum.

Consider the second part of the invariant. The subarray A[i+1, . . . , n] = A[n+1, . . . , n]
is empty, therefore the claim holds vacuously.

Maintenance. Assume the claim holds at a certain execution of line 8 and the fourth
for-loop is to be executed at least once more. The value of A[i] is some essential integer j
between 1 and k. Moreover, it is the rightmost element in A[1, . . . , i] with value j. By
the induction hypothesis, its proper place is C[A[i]] and that is where the algorithm copies
it (line 9).

Assume there are other elements in A[1, . . . , i] with value j. At line 10, C[A[i]] gets
decremented, so now it contains the proper position of the rightmost j inA[1, . . . , i−1]. After
i gets decremented, it is the case the element of C[ ] that just got modified (decremented)
contains the proper position of the rightmost j in A[1, . . . , i]. Since all the other elements
of C[ ] are unmodified, the first part of the invariant holds.

Now assume there are no other elements in A[1, . . . , i] with value j. Then element j is
not essential with respect to the remainder of A[ ] that is still to be scanned, so the value of
C[A[i]] is inconsequential for the remainder of the algorithm. Indeed, after the decrement
at line 10, C[A[i]] points to a location in B where another element, not j, belongs. But, as
we said, the value of that C[A[i]] will never be used again for that value of A[i] will occur
no more. The first part of the invariant holds in this case, too.

Now we prove the second part of the invariant is preserved as well. Consider the moment
the execution is at line 8 at the beginning of the current iteration. By the induction
hypothesis, all elements from A[i + 1, . . . , n] are at their proper places in B[ ]. We just
proved that during the execution of the loop, element A[i] is put in its proper place. So all
elements from A[i, . . . , n] are at their proper places in B[ ]. With respect to the new value
of i, it is the case that all elements from A[i+ 1, . . . , n] are at their proper places in B[ ].

Termination. When the loop terminates, i = 0. Plug in that value in the second part of
the invariant to obtain “all elements from A[1, . . . , n] are at their proper places in B[ ].” �

4.3.6 Correctness proofs of miscellaneous algorithms

Problem 110. Two players, call them Red and Blue, are given a rectangular grid of m
rows and n dots, for instance for m = n = 5:

4

5

3

2

1

544321

Every dot is refered to as (i, j) where 1 ≤ i ≤ m and 1 ≤ i ≤ n, i being the row and j, the
column. For instance, the green dot is (2, 3). Red and Blue take alternating turns, starting
with Red. In his or her turn, each player puts either a horizontal or a vertical line segment
with unit length, connecting two adjacent grid dots that have not been previously connected.
Red’s segments have red colour and Blue’s segments have blue colour. Red wins iff he or

144



Problems with solutions in the Analysis of Algorithms c© Minko Markov

she creates a closed curve (of red segments only). Otherwise, Blue wins. Since the number
of unused adjacent pairs decreases with every turn, the game terminates. Decide whether
one player, Red or Blue, has a winning strategy. If yes, what is it?

Solution:
Blue has a winning strategy. Suppose Red has just placed a segment. That segment can
either be horizontal or vertical.

Blue’s answer(m× n dot grid)
1 Red places a segment between some pair of adjacent dots
2 while there are unused pairs of adjacent dots do
3 if Red has placed a horizontal segment
4 let Red’s last segment be ((i, j), (i, j+ 1))
5 if i > 1 and ((i− 1, j+ 1), (i, j+ 1)) is unused
6 Blue places the segment ((i− 1, j+ 1), (i, j+ 1))
7 else
8 Blue places a segment between an arbitrary unused pair of adj. dots
9 else

10 let Red’s last segment be ((i, j), (i+ 1, j))
11 if j > 1 and ((i+ 1, j− 1), (i+ 1, j)) is unused
12 Blue places the segment ((i+ 1, j− 1), (i+ 1, j))
13 else
14 Blue places a segment between an arbitrary unused pair of adj. dots
15 Red places a segment between some unused pair of adjacent dots
16 if a closed red-segment curve is formed
17 Red wins, game over
18 Blue wins, game over

Informally speaking, Blue’s strategy is to prevent an upper right corner consisting of two
red segments. Red cannot make a red closed curve unless he or she can make a two-segment
red upper right corner.

Let us define that during the execution of Blue’s answer, any red segment is free iff

• it is horizontal, say ((i, j), (i, j+ 1)), i > 1, and ((i− 1, j+ 1), (i, j+ 1)) is unused, or

• it is vertical, say ((i, j), (i+ 1, j)), j > 1, and ((i+ 1, j− 1), (i+ 1, j)) is unused.

For example, the following two figures illustrate a free vertical segment (left) and a free
horizontal segment (right).
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unused
unused

The following is a loop invariant for the while loop (line 2–17):

Every time the execution of Blue’s answer is at line 2, there is at most one
free red segment. Furthermore, it is placed by the most recent addition of red
segment.
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Basis. The first time the execution reaches line 2, Red has just placed a red segment,
either a horizontal or a vertical one. If it is ((i, j), (i, j+ 1)), if i = 1 it is not free, otherwise
it is free. If it is ((i, j), (i + 1, j)), if j = 1 it is not free, otherwise it is free. The invariant
holds in any event.

Maintenance. Assume the claim holds at a certain execution of line 2 and the while
loop is to be executed at least once more. Note that the placement of the blue segment at
line 12 or line 14, whichever is applicable, is such that if there was a free segment at the
beginning of the current execution of the while loop, there is no free segment after the blue
segment is placed. Then the adding of another red segment at line 15 may or may not lead
to a free segment. The invariant holds.

Based on this invariant, it is trivial to prove that during any execution of Blue’s answer,
an upper right corner of two red segments is never made. Such a corner can only be made
after the addition of a red segment at line 15. However, the addition of a single red segment
can lead to such a corner only if there has been a free segment before. By the invariant, at
the beginning of any execution of the while loop there is at most one free segment; even if
there is one, a blue segment is placed in such a way that there is no free segment at line 15.
It follows that an upper right corner of two red segments is never made, and so line 17 is
unreachable. It follows that the execution always reaches line 17 and Blue wins. �

Problem 111. A deck of 52 cards are piled on a stack. Two players, A and B, play in
turns by taking one or two cards from the top of the stack. Once taken away, a card is never
returned to the stack. The winner is the one taking a card or two cards last. A plays first.
Does A have a winning strategy? If yes, how does that depend on the number of cards.

Solution:
Let us think backwards. Suppose it is A’s turn. If the cards in the stack are one or two, A
clearly wins.

If the cards are three, A loses (assuming B plays optimally) since after his or her turn,
the number of cards left is one or two, and B wins as A in the former case.

If the cards are four or five, A takes one or two cards away, respectively, and places B
in the losing situation with three cards. If the cards are six, A loses. And so on.

Intuitively, it is clear that A wins whenever the initial number of cards is not a multiple
of three. Here is a precise argument in support of that claim. Let A execute the following
algorithm. Assume that the call Bplays removes either one or two cards from the stack
and outputs an appropriate message.

Remove last card(n: pos. integer such that nmod 3 6= 0)
1 while n > 3 do
2 k← nmod 3
3 print “A takes ” k “ cards.”
4 n← n− k
5 Bplays(n)
6 (∗ n = 1 or n = 2 ∗)
7 print “A takes ” n “ cards and wins!”

The following is a loop invariant for the while loop (line 2–17):
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Every time the execution of Remove last card is at line 1, nmod 3 6= 0.

Basis. The first time the execution is at line 1, the claim is true by the definition of the
algorithm.

Maintenance. Assume the claim holds at a certain execution of line 1 and the while
loop is to be executed at least once more. After the assignments at lines 2 and 4, it is the
case that nmod 3 = 0 but still n ≥ 3. Then Bplays causes the decrement of n by one or
two, thus nmod 3 6= 0 the next time the execution of Remove last card is at line 1.
Termination. The last time the execution of Remove last card is at line 1, it must
be the case that n ≤ 3. By the invariant, n cannot be 3, so n ∈ {1, 2}. Indeed, A wins
immediately. �

4.4 Proving algorithm correctness by induction

The correctness of recursive algorithms is typically proven by induction. Although the
proofs with loop invariants are essentially proofs by induction they differ from the proofs
that use “pure” induction as shown in the following examples.

4.4.1 Correctness proofs of miscellaneous algorithms

Strange Increment(n: natural number)
1 if n = 0
2 return 1

3 else
4 if nmod 2 = 0
5 return n+ 1
6 else
7 return 2× Strange Increment(

⌊
n
2

⌋
)

Problem 112. Prove that Strange Increment returns n+ 1 for any natural n.

Solution:
The algorithm is recursive so the proof is by induction on n.

Basis. n = 0. The condition at line 1 is True and the algorithm returns 0 + 1 = 1 via
the assignment at line 2. 3

Inductive Hypothesis. Assume ∀m < n, the algorithm returns m+ 1.

Inductive Step. Consider the work of Strange Increment on input n. First suppose
n is even. The condition at line 4 is True, therefore line 5 is executed and the algorithm
returns n+ 1. 3

Now suppose n is odd. The condition at line 4 is False, therefore line 7 is executed
and the algorithm returns 2 × Strange Increment

(⌊
n
2

⌋)
. As

⌊
n
2

⌋
, by the inductive
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hypothesis it is the case that Strange Increment
(⌊
n
2

⌋)
returns

⌊
n
2

⌋
+1. Since n is odd,

n = 2k+ 1 for some k ∈ N. The returned value is

2×
(⌊
2k+ 1

2

⌋
+ 1

)
= 2×

(⌊
k+

1

2

⌋
+ 1

)
= 2× (k+ 1) = 2k+ 2 = 2n+ 1

�

4.4.2 The correctness of algorithms on binary heaps

Recursive Heapify(A[1, 2, . . . , n]: array of integers, i: index in A[ ])
1 left ← Left(i)
2 right ← Right(i)
3 if left ≤ n and A[left ] > A[i]
4 largest ← left

5 else
6 largest ← i

7 if right ≤ n and A[right ] > A[largest ]
8 largest ← right

9 if largest 6= i
10 swap(A[i], A[largest ])
11 Recursive Heapify(A[ ], largest )

Lemma 23. Under the assumption that A[1, . . . , n] and i are such that each of AJLeft(i)K
and AJRight(i)K, if it exists, is a heap, the effect of algorithm Recursive Heapify is
that AJiK is heap.

Proof:
By induction on the height h of AJiK.

Basis. h = 0. That means that AJiK consists of a single element from A[ ]. So,
both Left(i) and Right(i) point outside A[ ]. Let us follow the execution of Recur-
sive Heapify: the condition at line 3 is false and so the assignment at line 6 takes place.
The condition at line 7 is false, too, so line 8 is not executed and the execution goes to
line 9. The evaluation there yields False and so the current recursive call terminates.
Clearly, AJiK is a heap when that recursive call terminates.

Inductive Hypothesis. Assume that for every AJjK of height ≤ h − 1 rooted at some j
such that A[j] belongs to AJiK, it is the case that Recursive Heapify(A[ ], j) constructs a
heap out of AJjK.

Inductive Step. Consider the execution of Recursive Heapify(A[ ], i). Without loss
of generality, assume that Left(i) ≤ n and Right(i) ≤ n, so lines 3 and 7 are

if A[left ] > A[i]

and

if A[right ] > A[largest ]
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respectively.
Case i: Both A[left ] and A[right ] are bigger than A[i] at the beginning and A[right ] >
A[left ]. The evaluation at line 3 yields True and the assignment at line 4 takes place.
The evaluation at line 7 yields True, too, so the assignment at line 8 takes place and when
the execution is at line 9, largest equals right . The evaluation at line 9 yields True and
at line 10, A[i] and A[largest ] get exchanged. The recursive call at line 11 takes place
with the former A[i] now at position right . By the inductive hypothesis, that recursive
call constructs a heap out of AJright K. On the other hand, AJleft K is a heap because
it has not been modified in any way. On the third hand, the current A[i], i.e. the initial
A[right ], is

• bigger than the current A[left ] because of the premises

• not smaller than the current A[right ] for the following reasons. At the beginning,
AJright K was a heap so the former A[right ] was not smaller than any other element
of AJright K then (at the beginning). Now, at the end, the elements of AJright K
consist of the initial elements minus the initial A[right ] plus the initial A[i]. Since
the initial A[right ] is bigger than the initial A[i] and not smaller that any other
element of AJright K, the current A[i] is not smaller than the current A[right ].

Therefore, by definition the current AJiK is a heap.
Case ii: BothA[left ] andA[right ] are bigger thanA[i] at the beginning andA[right ] 6>
A[left ]. The evaluation at line 3 yields True and the assignment at line 4 takes place.
The evaluation at line 7 yields False, so the assignment at line 8 does not take place and
when the execution is at line 9, largest equals left . The evaluation at line 9 yields True
and at line 10, A[i] and A[largest ] get exchanged. The recursive call at line 11 takes place
with the former A[i] now at position left . By the inductive hypothesis, that recursive call
constructs a heap out of AJleft K. On the other hand, AJright K is a heap because it has
not been modified in any way. On the third hand, the current A[i], i.e. the initial A[left ],
is

• not smaller than the current A[right ] because of the premises

• not smaller than the current A[left ] for the following reasons. At the beginning,
AJleft K was a heap so the former A[left ] was not smaller than any other element of
AJleft K then (at the beginning). Now, at the end, the elements of AJleft K consist
of the initial elements minus the initial A[left ] plus the initial A[i]. Since the initial
A[left ] is bigger than the initial A[i] and not smaller that any other element of
AJleft K, the current A[i] is not smaller than the current A[left ].

Therefore, by definition the current AJiK is a heap.
Case iii: A[left ] 6> A[i] and A[right ] > A[i]. The evaluation at line 3 yields False
and the assignment at line 6 takes place. The evaluation at line 7 yields True, so the
assignment at line 8 takes place and when the execution is at line 9, largest equals right .
The evaluation at line 9 yields True and at line 10, A[i] and A[largest ] get exchanged.
The recursive call at line 11 takes place with the former A[i] now at position right . By
the inductive hypothesis, that recursive call constructs a heap out of AJright K. On the
other hand, AJleft K is a heap because it has not been modified in any way. On the third
hand, the current A[i], i.e. the initial A[right ], is
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• bigger than the current A[left ] because of the premises and the transitivity of the
inequalities

• not smaller than the current A[right ] for the following reasons. At the beginning,
AJright K was a heap so the former A[right ] was not smaller than any other element
of AJright K then (at the beginning). Now, at the end, the elements of AJright K
consist of the initial elements minus the initial A[right ] plus the initial A[i]. Since
the initial A[right ] is bigger than the initial A[i] and not smaller that any other
element of AJright K, the current A[i] is not smaller than the current A[right ].

Therefore, by definition the current AJiK is a heap.
Case iv: A[left ] > A[i] and A[right ] 6> A[i]. The evaluation at line 3 yields True
and the assignment at line 4 takes place. The evaluation at line 7 yields False, so the
assignment at line 8 does not take place and when the execution is at line 9, largest

equals left . The evaluation at line 9 yields True and at line 10, A[i] and A[largest ] get
exchanged. The recursive call at line 11 takes place with the former A[i] now at position
left . By the inductive hypothesis, that recursive call constructs a heap out of AJleft K.
On the other hand, AJright K is a heap because it has not been modified in any way. On
the third hand, the current A[i], i.e. the initial A[left ], is

• bigger than the current A[right ] because of the premises and the transitivity of the
inequalities

• not smaller than the current A[left ] for the following reasons. At the beginning,
AJleft K was a heap so the former A[left ] was not smaller than any other element of
AJleft K then (at the beginning). Now, at the end, the elements of AJleft K consist
of the initial elements minus the initial A[left ] plus the initial A[i]. Since the initial
A[left ] is bigger than the initial A[i] and not smaller that any other element of
AJleft K, the current A[i] is not smaller than the current A[left ].

Therefore, by definition the current AJiK is a heap.
Case v: A[left ] 6> A[i] and A[right ] 6> A[i]. The evaluation at line 3 yields False
and the assignment at line 6 takes place. The evaluation at line 7 yields False, so the
assignment at line 8 does not take place and when the execution is at line 9, largest

equals i. The evaluation at line 9 yields False and the execution terminates, leaving AJiK
untouched. By the premises, AJleft K and AJright K are heaps and A[left ] > A[i] and
A[right ] 6> A[i], so the current AJiK is a heap by definition. �
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Chapter 5

Lower Bounds for Computational
Problems

5.1 Comparison-based sorting

We prove an Ω(n lgn) bound for the time complexity of any comparison-based sorting
algorithm. A sorting algorithm on input a1, a2, . . . , an is comparison-based if it accesses

the input elements in only one way – by performing a comparison operation ai
?
< aj and

acting according to the result of it. The outcome of the comparison operation is binary.
Not all thinkable sorting algorithms are comparison based, for instance if it is known that
∀i : ai ∈ {1, 2} we can sort the input by counting the ones and filling in the output with
ones and twos accordingly in O(n) time. That algorithm, however, is not comparison-based
and so the lower bound Ω(n lgn) is not applicable to it. Recall Insertion Sort.

Insertion Sort(A[1, . . . , n])
1 for i← 2 to n

2 key← A[i]
3 j← i− 1
4 while j > 0 and key < A[j] do

5 A[j+ 1]← A[j]
6 j← j− 1
7 A[j+ 1]← key

Consider the work of Insertion Sort on an input of size three. Let the input be

a1, a2, a3

We denote by lower case letter, e.g. “a1”, the elements of the input and with capital
letters, e.g. “A[1]”, the elements of the current array A[ ]. That means at the beginning
necessarily A[ ] = [a1, a2, a3] but after several steps of the execution it may be the case that
A[ ] = [a2, a3, a1]. Let us assume the elements of the input are pairwise distinct. Precisely
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one of the following is the case:

a1 < a2 < a3 (5.1)

a1 < a3 < a2 (5.2)

a2 < a1 < a3 (5.3)

a2 < a3 < a1 (5.4)

a3 < a1 < a2 (5.5)

a3 < a2 < a1 (5.6)

Let us call those, the permutations. To sort the input is the same as to determine which
one of (5.1), . . . , (5.6) is the case. Insertion Sort is a comparison-based algorithm.

The comparisons happer at one place only: the colour box at line 4 key < A[j] . The fist

comparison that takes place is necessarily a2 < a1 .

Case I If a2 < a1 is True then precisely three permutations (out of the original six)
are possible:

a2 < a1 < a3

a2 < a3 < a1

a3 < a2 < a1

In that case the algorithm changes A[ ] during the current execution of the for-loop so that
A[ ] becomes [a2, a1, a3]. No more comparisons take place and the algorithm proceeds with
the next execution of the for-loop. The next comparison in a3 < a1 .

Case II If a2 < a1 is False then precisely three permutations (out of the original six)
are possible:

a1 < a2 < a3

a1 < a3 < a2

a3 < a1 < a2

In this case the algorithm does not change A[ ] during the current execution of the for-loop
and therefore A[ ] remains [a1, a2, a3]. No more comparisons are done at line 4 and the
algorithm proceeds with the next iteration of the for-loop.

Case I.1 If a3 < a1 is True there are two possible permutations:

a2 < a3 < a1

a3 < a2 < a1

A[ ] becomes [a2, a1, a1], the value a3 being stored in the variable key. The next comparison
is a3 < a2 .

Case I.1.a If a3 < a2 is True there remains a single possible permutation:

a3 < a2 < a1
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Speaking of the algorithm, thewhile-loop is executed precisely once more and A[ ] be-
comes [a2, a2, a1]. Tnen a3 is placed at the first position in A[ ] (line 7) and A[ ] becomes
[a3, a2, a1]. Then the algorithm terminates.

I.1.b If a3 < a2 is False there remains a single possible permutation:

a2 < a3 < a1

Speaking of the algorithm, thewhile-loop is not executedany more. a3 is placed at the
second position in A[ ] (line 7)) and A[ ] becomes [a2, a3, a1].

Case I.2 a3 < a1 is False there remains a single possible permutation:

a2 < a1 < a3

Speaking of the algorithm, that is the end. A[ ] remains [a2, a1, a3].

The four subcases of Case I can be presented succinctly by the tree-like sttructure on
Figure 5.1. There are two types of vertices – comparison vertices, corresponding to the

questions of the kind ai
?
< aj , and the leaves (in green). Above every comparison vertex

we have recorded the permutations that are possible before that comparison has taken place.
Naturally, above the root are all six possible permutations that are possible initially. The
leaves correspond to all possible outputs of the algorithm. If we perform the analogous
analysis of the subcases of Case II, we obtain the structure shown at Figure 5.2. The tree
T is binary becase there are two possible outcomes for every element comparison.

We derived the tree-like structure by meticulous analysis of the work of Insertion Sort
on all possible inputs of size three. Such a tree-like scheme of questions and answers is
called a decision tree. The definition of that concept in [CLR00] is:

A decision tree is a full binary tree that represents the comparisons between
elements that are performed by a particular sorting algorithm operating on an
input of a given size. Control, data movement, and all other aspects of the
algorithm are ignored.

The decision trees do not have to binary in general and do not have to be limited to the
sorting problem. The famous balance puzzle and the twelve-coin puzzle (see Problem 113
on page 156 and Problem 114 on page 158) are based on decision trees, though their trees
are not binary but ternary. The balance puzzle, the twelve-coin puzzle, and Insertion
Sort on input of size three have a single decision tree because they consider fixed input
size. Clearly, Insertion Sort in general is characterised not by a single decision tree but
by an infinite collection of decision trees, one for any input size. Both the balance puzzle
and the twelve-coin puzzle have obvious generalisations for input of arbitrary size, in which
case they have solutions with infinitely many decision trees, one for each input size.

It is important to realise we can think of the decision tree as as the primary object of
consideration rather that a derived object. In the balance puzzle and the twelve-coin puzzle
that is obvious because the solution is the decision tree. In the case of the the sorting
problem that may not be obvious; however, note that decision trees can sort in some sense,
not by moving elements around but by determining the sorted permutation after asking
appropriate questions (without moving anything).
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a3 < a2 < a1

a2 < a1 < a3

a2 < a3 < a1

Yes

Yes No

Yes No

a1 < a3 < a2

a2 < a3 < a1

a1 < a2 < a3

a2 < a1 < a3
a2 < a3 < a1
a3 < a1 < a2

a2 < a1 < a3
a2 < a3 < a1
a3 < a2 < a1

a3 < a2 < a1

a3 < a2 < a1

a3
?
< a2

a3
?
< a1

a2
?
< a1

Figure 5.1: The subcases in which a2 < a1 is True.
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a3 < a2 < a1 a3 < a1 < a2

a1 < a2 < a3a2 < a1 < a3
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Yes YesNo

Yes No Yes No
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a1 < a3 < a2

a1 < a3 < a2
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a2 < a3 < a1
a3 < a2 < a1
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a2 < a1 < a3
a2 < a3 < a1

a2 < a3 < a1
a3 < a2 < a1

a1 < a2 < a3
a1 < a3 < a2
a3 < a1 < a2
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a2
?
< a1

a3
?
< a1

a3
?
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a3
?
< a2

a3
?
< a2

Figure 5.2: This is whole tree T of the comparisons. It represents a scheme S
of questions and answers for determining the sorted permutation of three given
numbers.

155



Problems with solutions in the Analysis of Algorithms c© Minko Markov

Now we show that decision trees provide us with a mechanism for establishing lower
bounds. First consider the concrete tree T derived from Insertion Sort for input size
three (Figure 5.2). The fact that there are leaves at distances two and three from the
root means for certain inputs we determine the sorted permutation with two questions and
for other inputs, with three questions. The height of the tree is the maximum number of
questions we need—with respect to the particular scheme of questions and answers we have
chosen—to detemine the sorted permutation. It has to be fairly clear that for input size
three, the height of the tree has to be at least three. Assume there is another scheme S ′ of
questions and answers for input size three that always determines with at most two questions
the sorted permutation. The tree T ′ that corresponds to S ′ has height at most 2 and so it
is different from T . However, just like T , it is a binary tree because the questions asked have
precisely two possible outcomes. It is a trivial observation that T ′ cannot have more than
four leaves, being a binary tree of height at most 2. But then S ′ cannot distinguish more
than four different permutations. However, in order to be a correct scheme of questions and
answers for determining the sorted permutation of three numbers, S ′ has to identify one
out of six, not four, possible permutations. That refutes the claim such S ′ exists – there
is no way its tree can identify uniquely one possibility among six ones. Note that analysis
does not consider at all the specifics of the hypothetical tree T ′. Surely we could investigate
exhaustively all decision trees for sorting three elements and we would observe all of them
have height at least three. However, that would very tedious and would hardly scale for
arbitrary number of elements. The analysis we did is non-constructive and is based on the
pigeonhole principle: the leaves of the hypothetical tree are fewer than the possibilities so
it must be the case at least one leaf is associated with more than one possibility.

The non-constructive anaylsis scales easily for arbitrary many elements. For every input
size n there is a scheme of questions and answers that determines the sorted permutation,

the questions being of the type ai
?
< aj. We know such schemes exist because there exist

comparison-based sorting algorithms and to every comparison-based sorting algorithm there
corresponds an infinite collection of decision trees, one for each input size. The sizes of these
trees grows explosively with n because the number of the leaves is Ω(n!) so it is not feasible
to even draw them for n > 3 but that is not important. What is important is that if we
consider the set Tn of all possible decision trees for sorting on input size n, for any n, the
tree from Tn with minimum height yields a lower bound for Sorting for in the worst case
that many questions must be answered in order to compute the sorted permutation. A
lower bound for the minimum height of tree from Tn as a function of n is a lower bound
for the computational problem comparison-based sorting.

Any tree from Tn must have at least n! leaves because the process of asking questions
has to determine uniquely one object from n! objects altogether. Since the tree is binary,
its height is at least logarithmic (base 2) in the number of leaves. So every tree from Tn
has height at least log2 n!, and according to Problem 1.48, log2 n! = Θ(n lgn). The lower
bound Ω(n lgn) for the comparison-based sorting follows right away.

5.2 The Balance Puzzle and the Twelve-Coin Puzzle

Problem 113 (The balance puzzle). We are given a set of 9 numbered items, say balls.
From them 8 have identical weights and one is heavier. Our task is to identify the heavier
ball using balance scales with the restriction that no standerd weights are provided. Thus the
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only possible way to perform a measurement is to put some balls in one pan, some other balls
in the other pan, and observe the result. There are three possible outcomes from any such
measurement: the left pan goes down, the right pan goes down, or both pans are balanced.
We have to achieve our goal with as few measurements as possible.

Propose a scheme of measurements that identifies the heavy ball using the scales at most
twice. Prove that two is a lower bound on the necessary number of measurements.

Solution:
Call the nine balls b1, . . . , b9. Use the scales once measuring b1, b2, and b3 versus b4,
b5, and b6. There are precisely three possible outcomes.

• If b1, b2, and b3 collectively are heavier than b4, b5, and b6, use the scales for a
second time with b1 against b2. There are precisely three possible outcomes.

◦ If b1 is heavier than b2, report “b1 is the heavier ball”.

◦ If b2 is heavier than b1, report “b2 is the heavier ball”.

◦ If none of b1 and b2 is heavier than the other one, report “b3 is the heavier
ball”.

• If b4, b5, and b6 collectively are heavier than b1, b2, and b3, use the scales for a
second time with b4 against b5. There are precisely three possible outcomes.

◦ If b4 is heavier than b5, report “b4 is the heavier ball”.

◦ If b5 is heavier than b4, report “b5 is the heavier ball”.

◦ If none of b4 and b5 is heavier than the other one, report “b6 is the heavier
ball”.

• If b1, b2, and b3 collectively are as heavy as b4, b5, and b6, use the scales for a
second time with b7 against b8. There are precisely three possible outcomes.

◦ If b7 is heavier than b8, report “b7 is the heavier ball”.

◦ If b8 is heavier than b7, report “b8 is the heavier ball”.

◦ If none of b7 and b8 is heavier than the other one, report “b9 is the heavier
ball”.

Figure 5.3 illustrates that measurements scheme. It is very useful to think in terms of
possibilities, or in other words, possible states. Initially there are precisely nine possibilities
with respect to the balance puzzle: either b1 is heavier, or b2 is heavier, . . . , or b9 is
heavier. Let us denote those by i, ii, . . . , ix, respectively. The initial set of possibilities is
{i, ii, . . . , ix}. Every time we measure, the set of possibilities grows smaller. The puzzle is
solved iff we reduce the set of possibilities to sets of size at most one. On Figure 5.3 we
write the set of possibilities next to nodes that represent measurements. That means, those
sets are possible before the measurement takes place.

The proof of the lower bound is trivial: we have to distinguish one out of nine possibil-
ities. We use a ternary decision tree. A ternary tree with nine leaves must have height at
least two, and therefore any scheme ot measurements must use the scales at least twice.

�
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{vii, viii, ix}{i, ii, iii} {iv, v, vi}

{i} {vii} {iv}{iii} {ix} {vi}{ii} {viii} {v}

Figure 5.3: A measurement scheme with two questions for the balance puzzle. The
possibilities are written with roman numerals. To solve the puzzle is to decide
which of all nine possibilities is the case.

Problem 114 (The twelve-coin puzzle). We are given a set of 12 numbered items, say
coins. From them 11 have identical weights and one—call it the odd coin—is heavier or
lighter. Our task is to identify the odd coin using balance scales as those in Problem 113.
Propose a scheme of measurements that identifies the heavy coin using the scales at most
three times. Prove that three is a lower bound on the necessary number of measurements.

Solution:
This puzzle is a bit more complicated than the balance puzzle. The number of possibilities
now is 24, twice the number of coins. Denote by i’ the possibility “b1 is lighter”, by i”
the possibility “b1 is heavier”, by ii’ the possibility “b2 is lighter”, by ii” the possibility
“b2 is heavier”, etc., by xii’ the possibility “b12 is lighter”, and by xii” the possibility “b12
is heavier”. Figure 5.4 shows a measurement scheme with at most three measurements
determining which of the twenty four possibilities is the case.

Now we prove that three measurements are necessary. Since there are 24 possibilities
altogether and we have to find out which one of them is the case, a lower bound for the
number of measurements is dlog3 24e = 3, the reason being that a ternary decision tree with
≥ 24 leaves has height at least three.

Note that the derivation of a lower bound using a decision tree argument does not imply
that bound is achievable. In the case of the twelve-coin puzzle, the lower bound three is
indeed achievable as demonstrated by Figure 5.4. However, the same problem with thirteen
coins cannot be solved with at most three measurements in the worst case. To see why,
consider that

• it makes no sense to weigh two sets of coins with different cardinalities during the first
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Figure 5.4: A measurement scheme for the twelve-coin puzzle. Note that for some
measurements, only two of all three outcomes are possible.
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measurement because if the pan with the bigger set goes down we gain no information
whatsoever and the possibilities remain the same;

• having in mind the previous consideration, for any choice of two subsets of the same
cardinality of the thirteen coins, either those sets have cardinality ≥ 5, or the remain-
ing set has cardinality ≥ 5;

• a set of cardinality ≥ 5 has ≥ 10 possibilities associated with it;

• there is no way to determine which of the ≥ 10 possibilities is the case using ≤ 2

measurements.

But we can derive a lower bound three for the thirteen-coin puzzle: dlog3 26e = 3. There is
no contradiction between the fact that dlog3 26e = 3 and the above proof that the thirteen-
coin puzzle cannot be solved using three measurements at worst. Those are separate argu-
ments – the lower bound three is still valid but, unlike the twelve-coin puzzle, now it is not
achievable. �

5.3 Comparison-based element uniqueness

Computational Problem Element Uniqueness
Generic Instance: A list of numbers a1, a2, . . . , an
Question: Are all numbers unique? �

An algorithm for Element Uniqueness is comparison based if it accesses the input

elements in only one way – by performing a comparison operation ai
?
< aj and acting

according to the result of it, the outcome of the comparison operation being binary. The
naive comparison-based algorithm for Element Uniqueness is to compare all unordered
pairs from the input in time Θ(n2). A more sophisticated algorithm is to sort the input first
in Θ(n lgn) and then determine whether there are repeating numbers or not by a single
linear sweep: if there are repeating elements they will form a contiguous subsequence after
the sorting. The overall running time is Θ(n lgn).

Comparison-based Element Uniqueness(A[1, . . . , n]: array of integers)
1 Sort(A[ ])
2 are unique ← True
3 for i← 2 to n

4 if A[i− 1] = A[i]
5 are unique ← False
6 return are unique

Now we prove that any algorithm for comparison-based Element Uniqueness has
time complexity Ω(n lgn) using a decision tree argument. Any algorithm for that problem
has a binary decision tree associated with it. In fact, as we pointed out above, a particular
algorithm has an infinite set of decision trees associated with it, one for each input size.
Speaking of input size n, the tree is only one. In order to prove the lower bound it suffices
to prove that the tree has Ω(n!) leaves and then apply the argument we made on page 156
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for comparison-based sorting. In its turn, in order to prove the tree has Ω(n!) leaves it
suffices to prove the tree distinguishes all permutations of the input in the sense that every
leaf is associated with at most one permutation.

With respect to the sorting problem that task is trivial: if the decision tree has a leaf
associated with ≥ 2 permutations then the algorithm does not sort correctly. With respect
to the uniqueness of the elements it is not so obvious the leaves should be associated with
different permutations. The proof below follows a proof from [SW11].

Lemma 24. Suppose X is a comparison-based algorithm for Element Uniqueness and
its decision tree for input of size n is T . Every leaf of T is associated with at most one
permutation of the input elements.

Proof:
We can assume without loss of generality that the input elements are unique because we
perform worst-case analysis. If we prove the claim for inputs of unique elements we are
done because that restriction scales: for every n there is an input of unique elements and
since X is a correct algorithm it has to work correctly on that instance.

Assume that the smallest input value is b1, the second smallest is b2, etc., the largest
input value is bn. Clearly, there are n distinct b values under the assumption all input
elements are unique. We emphasise that

b1 < b2 < . . . < bn

First we prove that for every k such that 1 ≤ k < n, X compares bk−1 and bk at some
moment of its execution. Assume the opposite. Namely, there exists an input A[1, . . . , n]
of unique elements such that X does not compare the (k − 1)-th and the k-th smallest
elements. Since X is a correct algorithm and all elements of A[ ] are unique, X(A[1, . . . , n])
returns True. Let A[i] be the input element with value bk−1 and A[j] be the input element
with value bk. Now transform A[1, . . . , n]) into A ′[1, . . . , n]) by changing the value of the
A[i] to bk and run X(A ′[ ]). As X is a correct algorithm it has to return No because A ′[ ]
has repeating elements. However, the work of X on A ′[ ] is identical to its work on A[ ]
because, by assumption, it never compares A[i] with A[j] and thus all the comparisons it
performs and their outcomes are precisely the same for both inputs. Then X(A[1, . . . , n])
and X(A ′[1, . . . , n]) return the same value, contradicting the former assumption that X is a
correct algorithm.

And so we proved that X has to compare every pair (there are n − 1 of them) of
elements with adjacent values. Now we prove a crucial fact. Suppose a1, a2, . . . , an are
distinct numbers and a ′1, a

′
2, . . . , a ′n is any permutation on them different from the identity.

Suppose that b1 is the smallest value, b2 is the second smallest value, etc., bn is the largest
value. Then there exists a k such that 1 ≤ k < n, such that if ai has value bk−1 and aj
has value bk, which means ai < aj, it is the case that a ′i > a

′
j. This fact is trivial though it

may sound intimidating. Reworded, it says for any “true” permutation there exist adjacent
values (not adjacent positions but adjacent values) in the original list such that after the
permutation, the inequality sign between the elements at their position is the opposite. For
instance, if the original list is

2, 5, 3, 1, 4, 6

and the permutation is

3, 5, 4, 1, 6, 2
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note that a5 = 4 and a2 = 5 form such pair: a ′5 is 6 and a ′2 is 5, thus a ′5 > a ′2. The
proof of the fact is easily done by assuming the opposite. The opposite is, for every two
positions containing elements with adjacent values in the original list, after the permutation
takes place, the inequality sign between the elements in these positions is the same as in the
original list. But then it follows trivially the permutation keeps all elements in their places,
in contradiction with the initial assumption the permutation is different from the identity.

Having proved the two auxiliary facts, the proof of the lemma follows easily. Assume
that the decision tree T of X associates some leaf u with two or more permutations of the
input. Consider any two of them. Since they are different permutations, one of them can
be thought of as non-identity permutation of the other one. By the second fact above,
there exist adjacent values in the first permutation at positions i and j such that in the
second permutation the values at positions i and j are in the opposite order. Let us clarify
that point. Leaf u has two permutations a1, a2, . . . , an and a ′1, a

′
2, . . . , a ′n of the input

associated with it. That means, both of them are consistent with the set of questions and
answers so far (i.e. with the non-leaf vertices on the path from the root to u). If b1, . . . , bn
are the values of the input in increasing order, the second fact says that for some adjacent
values bk−1 and bk, if they are at positions i and j, respectively, in a1, a2, . . . , an, then in
a ′1, a

′
2, . . . , a ′n the elements at positions i and j, namely a ′i and a ′j are such that a ′i > a

′
j.

However, in the other permutation, ai < aj. The first fact implies that X must have asked
the question “Is it the case that bk−1 < bk?”. However, X cannot ask questions about
adjacent values directly: if it could ask such questions in constant time, the problem would

be solvable in linear time. The algorithm rather asks questions of the type ai
?
< aj. The

first fact implies the algorithm has to be designed in a way such that bk−1 and bk are
unavoidably compared, regardless of their positions in the list. And the crucial observation

is that X must have compared bk−1 with bk by asking question of the type ai
?
< aj. For

one of the two said permutations the answer is Yes, for the other one, No. It follows that
no leaf can be associated with both permutations. �
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Chapter 6

Algorithmic Problems

6.1 Programming fragments

Problem 115. Determine the asymptotic running time of the following programming frag-
ment. Function q() is an unspecified function, it works in Θ(1) time and can swap elements
of the array A. Heapsort(A, i, j) sorts A[i..j] by the eponymous sorting algorithm.

int A[MAXINT];

int p(int, int);

void q(int, int);

int main() { return p(1, n); }

int p(int i, int j) {
int mid, a, b;

if (j > i) {
Heapsort(A, i, j);

q(i, j);

mid = (i+j)/2;

a = p(i, mid);

b = p(mid + 1, j);

return a + b; }
return 1; }

Solution:
It is well known that Heapsort has Θ(n lgn) worst case time complexity. We have to
assume that at every recursive level its complexity is the worst possible because we do not
know how q() works. There are two resursive calls at each execution of p(), therefore the
running time is determined by the recurrence

T(n) = 2T
(n
2

)
+Θ(n lgn)

Using Theorem 2 on page 96, we conclude T(n) = Θ(n lg2 n). �
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Problem 116. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

void r(int, int, int);

int main() { return r(1, n, n*n); }

void r(int a, int b, int c) {
int k;

if (a + b + c > a + b + 1) {
for(k = 1; k < a + b + c; k = (k << 2) - 1) {
if(k % 3 == 0) break;

r(a, b, c - 1); }
for(k = 1; k < a + b + c; k <<= a + b + c)

r(a, b, c - 1); } }

Solution:
Only the third parameter of r() determines the recursion; the first two parameters are
insignificant. The body of the first for loop is executed precisely once because the second
value that k gets is (1 ∗ (22) − 1) = 3, then the condition of the if operator is evaluated to
True, and after the break operator the loop is executed no more.

The second for loop is executed only once, too: the second value that k gets is 2a+b+c,
and certainly 2a+b+c > a + b + c. There are two resursive calls at each execution of r(),
therefore the running time is determined by the recurrence

T(m) = 2T (m− 1) +Θ(1)

where m is the size of the input. The solution is known to be T(m) = Θ(2m). Having in

mind that m = n2, it is easy to see that T(n) = Θ
(
2n
2
)

. �

Problem 117. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int foo(int n) {
int s;

if (n == 0) s = 1;

else s = foo(n - 1) * 2;

bar(s);

return s; }

void bar(int m) {
int i;

for (i = m; i > 0; i /= 2)

cout << i % 2; }

Solution:
First we prove that foo(n) returns 2n. Note that the bar() function, while affecting the
running time, does not affect the value of s is any way. We prove the claim by induction
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on n. For n = 0 it is obviously the case that foo(n) returns 1 = 20. Assuming foo(n-1)

returns 2n−1, it is clear foo(n) returns 2× 2n−1 = 2n.
Note that bar() runs in time Θ(lgm). Having in mind that s is 2n and bar() runs in

logarithmic time with respect to its input, it is clear that bar(s) runs in time Θ (lg (2n)) =
Θ(n). We conclude the time complexity of foo() is determined by the recurrence

T(n) = T(n− 1) + n

According to (3.19) on page 51, T(n) = Θ(n2). �

Problem 118. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int recf(int n) {
int s;

if (n == 0) s = 1;

else s = foo(n - 1) * 2;

bar(s);

return s; }

void bar(int m) {
int i;

for (i = m; i > 0; i /= 2)

cout << i % 2; }

Solution:
First we prove that foo(n) returns 2n. Note that the bar() function, while affecting the
running time, does not affect the value of s is any way. We prove the claim by induction
on n. For n = 0 it is obviously the case that foo(n) returns 1 = 20. Assuming foo(n-1)

returns 2n−1, it is clear foo(n) returns 2× 2n−1 = 2n.
Note that bar() runs in time Θ(lgm). Having in mind that s is 2n and bar() runs in

logarithmic time with respect to its input, it is clear that bar(s) runs in time Θ (lg (2n)) =
Θ(n). We conclude the time complexity of foo() is determined by the recurrence

T(n) = T(n− 1) + n

According to (3.19) on page 51, T(n) = Θ(n2). �

Problem 119. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int recf(int n) {
int i, s = 1;

if (n == 1) return s;

for (i = 0; i < 3; i ++) s += recf(n-1) * (i + 1);

for (i = 0; i < 4; i ++) s += recf(n-2) * (i + 1);

return s; }
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Solution:
The time complexity of recf() is determined by the recurrence

T(n) = 3T(n− 1) + 4T(n− 2) + 1

To see why, note there are three recursive calls with input of size n−1 and four, with input
of size n− 2. According to Problem 104 on page 103, T(n) = Θ(4n). �

We should not try to “optimise” the number of recursive calls. One may indeed be tempted¢¢ NB ¢¢

to think we can make only one recursive call with input n − 1 and then use the obtained
value three times, rather than making three consecutive recursive calls (and likewise, only
one call with input n− 2 and then use the result four times. Such “optimisations” are not
allowed: the algorithm should be investigated as it is. Furthermore, it is possible that the
shown fragment is an abbreviated version of a program that does a lot more, for instance
it may change a global variable. If that is the case, we cannot substitute a multitude of
recursive calls by a single call and claim that the new “optimised” program is necessarily
equivalent.

Problem 120. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int r(int n, int m) {
int i, s = 0;

if (n < 2) return n*m + 1;

for(i = 0; i < 3; i ++) {
s += r(n-1,m+i) * r(n-2,m-i); }

s += r(n-1,m);

return s; }

Solution:
The recurrence determining the asymptotic time complexity is

T(n) = 4T(n− 1) + 3T(n− 2) + 1

To see why that is true note that the variable that determines the recursive calls is n. The
other variable m does not affect the time complexity, though it surely affects the returned
quantity. There are three recursive calls with n−2 and four with n−1. The fact that there
is a multiplication r(n−1,m+ i)∗r(n−2,m− i) is immaterial with respect to the structure
of the recursive calls. According to Problem 105 on page 103, T(n) = Θ((2+

√
7)n). �

Problem 121. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int f(int n, int m) {
int i, s = 0;

if (n == 0 || n == 1)

return m;

for(i = 0; i < 5; i++) {
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s += f(n-1, m + i);

s += f(n-2, m + 2*i); }
s += f(n-2, 2*m)*3;

return s; }

Solution:
The recurrence determining the asymptotic time complexity is

T(n) = 5T(n− 1) + 6T(n− 2) + 1

To see why, note that the variable that controls the recursive calls is n. The other variable
m does not affect the time complexity, though it surely affects the returned quantity. There
are six recursive calls with n−2 and five with n−1. According to Problem 106 on page 104,
T(n) = Θ(6n). �

Problem 122. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int r(int n) {
int i, s = 2;

if (n == 1)

return 2;

for(i = n; i > 0; i /= 2) {
s += 2; }

s += r(n/2)*r(n/2);

return s; }

Solution:
The recurrence determining the asymptotic time complexity is

T(n) = 2T
(n
2

)
+ lgn

To see why, note the for loop runs in Θ(lgn) time and afterwards two recursive calls are
made, each one on an input that is half the size of the original one. According to Problem 90
on page 97, T(n) = Θ(n). �

Problem 123. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

int bf(int m, int v) {
if (m == 1)

return v;

return bf(m - 1, 1) * v && bf(m-1, 0) * (1 - v); }

int main() {
return bf(n, x); }
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Solution:
At a first glance, it seems the fragment has exponential time complexity: two recursive calls
are made, each with input of size n−1, and only constant work is done in addition to them,
therefore the recurrence T(n) = 2T(n− 1)+ 1 determines the complexity, and we know (see
Problem 98 on page 102) this recurrence has solution T(n) = Θ(2n).

However, if we take into account the operator precedence of the C language† and the
evaluation of the logical operators‡, the analysis is quite different. Suppose we make the
initial call bf(n, x) with a sufficiently large value of n. The first recursive call is bf(n -

1, 1). Inside it, the first recursive call is bf(n - 2, 1), etc., until bf(2, 1) calls bf(1,

1). Clearly, bf(1, 1) returns 1 and then bf(2, 1) makes its second recursive call, bf(1,
0). The latter returns 0 and the && operator within bf(2, 1) evaluates 1 && 0 to 0 and
passes 0 upwards to bf(3, 1). Now bf(3, 1) does not call bf(2, 0) because, by the rules
of C, the evaluation of the && operator is left to right and it stops once the value is known—
bf(2, 1) returning 0 implies the result within bf(3, 1) is necessarily 0. Thus bf(3, 1)

passes 0 upwards, bf(4, 1) does not call bf(3, 0) but passes 0 upwards directly, etc.,
until bf(n, x) returns 0 without calling bf(n - 1, 0). In other words, the recursion tree
is in fact a path, except that at the very bottom, bf(2, 1) has two children. It follows that
the time complexity is linear in n rather than exponential. The recursion tree is shown on
Figure 6.1.

Of course, that is the case only under the assumption that the rules of the C language
apply. If that fragment were written in pseudocode the time complexity would be proved
to be exponential since we have no standard rules for the direction and early stopping of
the evaluation of logical expressions in pseudocode. �

Problem 124. Determine the asymptotic running time of the following programming frag-
ment as a function of n.

unsigned n;

int main() {
return recf(1, n); }

int recf(unsigned i, unsigned j) {
int k, s = 0;

if (j - i > 3) {
for(k = 0; k < 4; k ++) {
s += recf(i + k, j + k - 3); }

return s; }
else

return 1; }

Solution:
The execution of the recursion is controlled by the difference j− i of the two input variables.
Let us call it, the control difference. For all large enough values of the control difference, i.e.
whenever j− i > 3, there are exactly four recursive calls, each one having control difference

†See [KR88], pp. 53.
‡ibid., pp. 41: “More interesting are the logical operators && and ||. Expressions connected by && or ||

are evaluated left to right, and evaluation stops as soon as the truth or falsehood of the result is known.”
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bf(n, x)

bf(n - 1, 1) bf(n - 1, 0)

bf(n-2,0) bf(n-2,1)bf(n-2,1)

bf(3,1)

bf(n-2,0)

bf(2,1) bf(2,0)

bf(1,1) bf(1,0) bf(1,1) bf(1,0)

0

0

1

0

0

0

0

Figure 6.1: The recursion tree of the fragment in Problem 123. We draw the whole
tree, i.e. what the tree would be if the considerations about the && operator were
not taken into account. The part of the tree that corresponds to the execution of
the fragment when these considerations are taken into account, is outlined with
dashed red line. The flow of the returned values is drawn in green.
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that is smaller by three since j+ k− 3− (i+ k) = j− i− 3 for k ∈ {0, 1, 2, 3}. Therefore, the
following recurrence relation determines the asymptotic running time:

T(n) = 4T(n− 3) + 1

According to Problem 107 on page 104, T(n) = Θ
(
4
n
3

)
. �

6.2 Arrays and sortings

Problem 125. Let C1, C2, . . . , Cn be n cities placed along a straight line. Let di be the
distance between Ci and Ci+1, for 1 ≤ i < n. Initially each city Ci possesses some amount
xi ∈ R of a certain resource, say water. If xi < 0, what Ci possesses is not real water but
deficiency of water, e.g. if Ci has −5.5 units of water and afterwards we transport 6 units
of water to it, it is going to have +0.5 units. Each city Ci needs some amount li ∈ R+ of
water. We say Ci is satisfied iff li ≤ xi.

Water can be transported between any two adjacent cities but the transportation is lossy:
if we start transporting amount z from Ci to Ci+1 or vice versa, the amount that is going
to be delivered is max {z− di, 0}.

Design an algorithm that outputs True, in case there is a way to transport water between
the cities so that every city is satisfied, or False, otherwise. Assume that the amount of
water in any city is constant unless water is transported to, or from, it. Prove the correctness
of your algorithm and analyse its time complexity.

Solution: Define dn to be zero. Consider the following algorithm:

Transport(x1, . . . , xn, d1, . . . , dn, l1, . . . , ln)
1 s← 0

2 for i← 1 to n

3 ∆← xi − li
4 if s+ ∆ ≥ 0
5 s← max {s+ ∆− di, 0}
6 else
7 s← s+ ∆− di
8 if s ≥ 0
9 return True

10 else
11 return False

For any i such that 1 ≤ i ≤ n, let Ai be the subarray of cities [C1, C2, . . . , Ci]. Ai is
called good if there is a way to satisfy its cities by transporting water only between them.
Otherwise, Ai is called wanting. Suppose q is a positive amount. When we say Ai is
q-redundant we mean that:

• Ai is good and it remains good even if the amount in Ci is decreased by q units
beforehand.

• However, if the amount in Ai is decreased by q + ε units beforehand, for any ε > 0,
Ai becomes wanting.
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When we say Ai is isolated we mean that:

• Ai is good.

• However, if the amount in Ai is decreased by di + ε units beforehand, for any ε > 0,
Ai becomes wanting.

When we say Ai is q-deficient we mean:

• Ai is wanting but it becomes good if the amount in Ci is increased by q units before-
hand.

• However, if the amount in Ai is increased by q − ε units beforehand, for any ε > 0,
Ai remains wanting.

Note the distintion between isolated and redundant: isolatedness is not a special case of
redundancy although it may sound like being a special case, namely for q = di. Now we
point out the difference. If Ai is di-redundant then it is good and di is precisely equal to
the largest quantity that can transported out of Ci beforehand (keeping Ai good). So, di
is a threshold value. On the other hand, if Ai is isolated then it is good and with certainty
transporting any amount ≥ di out of Ci ruins its goodness; the key observation is, it is
possible that transporting even the smallest quantity out of Ci may ruin the goodness – the
definition of isolatedness allows that. So, in the case with isolatedness, there is no certain
threshold quantity that can safely be transported out of Ci.

Lemma 25. Algorithm Transport returns True iff An is good.

Proof:
The following is a loop invariant for the for-loop (lines 2–7):

Every time the execution of Transport is at line 2,

• if s > 0 then Ai−1 is (s+ di−1)-redundant.

• if s = 0 then Ai−1 is isolated.

• if s < 0 then Ai−1 is |s+ di−1|-deficient.

Basis. The first time the execution is at line 2, i equals 1 and so Ai−1 is empty. The
empty subarray of cities is vacuously isolated because it is vacuously good (no deficiency)
and its water—of which there is none—cannot be decreased by any amount. On the other
hand, s equals 0 because of the assignment at line 1. So, the invariant holds.

Maintenance. Assume the claim holds at a certain execution of line 2 and the for loop
is to be executed at least once more. ∆ is set to xi − li at line 3. Let us call the value of s
prior to the execution of line 5 or line 7, sold, and the value of s after that execution, snew.

Case I: Suppose sold > 0. By the assumption, Ai−1 is (sold + di−1)-redundant. That
means we can deliver sold units of water to Ci by transporting sold+di−1 out of Ci−1 to Ci
(losing di−1 quantity along the way), Ai−1 remaining good. However, if we transport any
more water out of Ci−1 to Ci, Ai−1 becomes wanting. So, Ci can get at most sold water
more (keeping Ai−1 good).

Case I.1: Suppose sold + ∆ ≥ 0. Then the assignment at line 5 takes place. The
following two facts:
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1. Ai−1 is good and Ci can get sold water more, Ai−1 staying good.

2. sold + ∆ ≥ 0.

imply Ai is good. Furthermore, sold + ∆ is the surplus in Ci that can be transported out
of Ci (towards Ci+1), keeping Ai good; that is the threshold value, anything more out of
Ci makes Ai wanting. So, Ai is (sold + ∆)-redundant.

Case I.1.a: Suppose sold + ∆ − di > 0. Then snew = sold + ∆ − di. Now we prove
Ai is (snew + di)-redundant. We know Ai is good and (sold + ∆)-redundant. Observe that
sold + ∆ = sold + ∆ − di + di = snew + di and conclude Ai is (snew + di)-redundant. The
next time the execution is at line 2, i gets incremented by one. With respect to the new
value of i, it is the case that Ai−1 is (s+ di−1)-redundant.

Case I.1.b: Suppose sold +∆− di = 0. Then snew = 0. Recall that Ai is good. Note
that sold + ∆ − di − ε < 0 for any ε > 0. It follows Ai is isolated†. The next time the
execution is at line 2, i gets incremented by one. With respect to the new value of i, it is
the case that Ai−1 is isolated.

Case I.2: Suppose sold + ∆ < 0, which means ∆ < 0 since sold > 0. But then Ai
is wanting because, as we already pointed out, if Ci gets any more water than sold, Ai−1
becomes wanting. In order to make Ai good, at least |sold+∆| has to be transported into Ci.
By defintion, Ai is |sold +∆|-deficient. Having in mind that sold +∆ = sold +∆− di + di =
snew + di, it follows Ai is |snew + di|-deficient. The next time the execution is at line 2, i
gets incremented by one. With respect to the new value of i, it is the case that Ai−1 is
|snew + di−1|-deficient.

Case II: Suppose sold = 0. By the induction hypothesis, Ai−1 is closed. That means
Ai−1 is good but we cannot transport di−1 + ε units of water out of Ci−1 (towards Ci),
for any ε > 0, and keep Ai−1 good. So, no amount of water from Ai−1 can go into Ci if
we are to keep Ai−1 good. It follows the status of Ai depends entirely on ∆ and di.

Case II.1: Suppose sold+∆ ≥ 0⇔ ∆ ≥ 0. Then the assignment at line 5 takes place.
Case II.1.a: Suppose ∆− di > 0. Then snew = ∆− di. Ai is good and it is possible

to transport ∆ water out of Ci (towards Ci+1), keeping Ai good; furthermore, ∆ is the
threshold value, any more will make Ai wanting. Then Ai is ∆-redundant, i.e. (snew+di)-
redundant. The next time the execution is at line 2, i gets incremented by one. With
respect to the new value of i, it is the case that Ai−1 is (s+ di−1)-redundant.

Case II.1.b: Suppose ∆ − di = 0. Then snew = 0. Clearly, Ai is good but no water
can be transported out of Ci, if we are to keep Ai good. It follows Ai is isolated. The next
time the execution is at line 2, i gets incremented by one. With respect to the new value
of i, it is the case that Ai−1 is isolated.

Case II.2: Suppose sold + ∆ < 0 ⇔ ∆ < 0. Then the assignment at line 7 takes
place and snew = ∆ − di, which is a negative amount since di > 0. Clearly, Ai is wanting.
It becomes good if at least |∆| water is transported into Ci; any less amount will keep it
wanting. By defintion, Ai is |∆|-deficient, i.e. |snew + di|-deficient. The next time the
execution is at line 2, i gets incremented by one. With respect to the new value of i, it is
the case that Ai−1 is |snew + di−1|-deficient.

Case III: Suppose sold < 0. By the induction hypothesis, Ai−1 is |sold+di−1|-deficient.
That means Ai−1 is wanting and unless we deliver at least |sold + di−1| units of water into

†As noted before, Ai can be both isolated and redundant.
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Ci−1, it stays wanting. To deliver at least |sold + di−1| units of water into Ci−1 means to
transport at least |sold + di−1| + di−1 units of water out of Ci (towards Ci−1) in order to
compensate for the loss of di−1 units along the way.

We claim that |sold| > di−1. To see why, note that the negative value sold was assigned
to s during the previous execution of the for-loop at line 7. Now we discuss the previous
iteration, so let us call iold the value of the variable i then. In order to reach line 7, it
must have been the case that s + ∆ was negative. But −diold at line 7 was negative, too.
It follows the absolute value of what was assigned to s at line 7 was strictly larger than
diold . In other words, |sold| > diold . Finally, note that i got incremented by one since the
previous iteration, so iold = i− 1, with respect to the current i.

Having proved that |sold| > di−1 and having in mind that sold < 0, it is obvious that
|sold + di−1| + di−1 = |sold|. So, the threshold amount of water to transport out of Ci
(towards Ci−1) to make Ai−1 good is |sold|, anything less will keep Ai−1 wanting.

Case III.1: Suppose sold + ∆ ≥ 0. Then the assignment at line 5 takes place.
Case III.1.a: Suppose sold + ∆ − di > 0. Then snew = sold + ∆ − di. Since sold is

negative and −di is negative, it must be the case that ∆ is positive; furthermore, it must
be the case that ∆ > |sold|+di. Now we show Ai is (sold+∆)-redundant. There are ∆ units
of water in Ci. Transport |sold| units to Ci−1, thus making Ai−1 good. That amounts to
reducing the water in Ci down to sold + ∆ units (recall that sold is negative so sold + ∆ is
smaller than ∆, still being a positive quantity). Since |sold| is a threshold quantity, there is
no way to have more than sold + ∆ units in Ci and making Ai−1 good.

Since sold + ∆, the remaining quantity in Ci, is nonnegative, and Ai−1 is good, Ai
is (sold + ∆)-redundant. In other words, Ai is (snew + di)-redundant. The next time the
execution is at line 2, i gets incremented by one. With respect to the new value of i, it is
the case that Ai−1 is (s+ di−1)-redundant.

Case III.1.b: Suppose sold+∆−dt = 0. Then snew = 0. We prove that Ai is closed.
Note that the water in Ci is ∆ = −sold + di, −sold being a positive amount, and Ai−1
is wanting. We transport |sold| units of water from Ci back to Ct−1, making Ai−1 good.
We know that transporting anything less will keep Ai−1 wanting. After the transportation
Ci will be satisfied, too, having di water in it. So, Ai is good after the transportation.
However, it is not possible to make Ai−1 good and keep Ci satisfied and deliver ε units of
water into Ci+1, for any ε > 0, using the water in Ci. It follows Ai is isolated. The next
time the execution is at line 2, i gets incremented by one. With respect to the new value
of i, it is the case that Ai−1 is isolated.

Case III.2: Suppose sold + ∆ < 0. Then the assignment at line 7 takes place and
snew = sold + ∆ − di, which is a negative amount since di > 0. We prove Ai is |sold + ∆|-
deficient. Recall that Ai−1 is wanting and unless |sold| units are transported into Ci−1, it
remains waning. The quantity in Ci, viz. ∆, may be positive, zero, or negative, we do not
know that; what matters is that ∆ decremented by |sold|, i.e. sold + ∆, is negative—that
fact implies Ai is wanting. Furthermore, in order to make Ai good, the amount of water in
Ci must be increased by at least |sold + ∆|, any smaller increase leaves Ai wanting. To see
why that is true, note that under the current assumptions, ∆ − |sold| + |sold + ∆| = 0. And
the latter is true since

∀x, y ∈ R, such that x < 0 and x+ y < 0, y− |x|+ |x+ y| = 0

Since |sold+∆| is the threshold amount to be added to the water in Ci in order to make Ai
good, by definition Ai is |sold + ∆|-deficient. Clearly, that is equivalent to saying that Ai
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is |snew − di|-deficient. The next time the execution is at line 2, i gets incremented by one.
With respect to the new value of i, it is the case that Ai−1 is |snew + di−1|-deficient.

Termination. Consider the moment when the execution is at line 2 for the last time.
Clearly, i equals n+1. If the current s is non-negative then Ai−1 = An is either s-redundant
(recall then dn is defined to be zero) or isolated, therefore it is good. Accordingly, the
retuned value (line 9) is True. If s is negative then it is wanting. Accordingly, the retuned
value (line 11) is False.

The time complexity is obviously Θ(n). �

Problem 126. Imagine two rooms with no visibility between them. In one room there n
numbered light switches s1, s2, . . . , sn. In the other room there are n numbered light bulbs
l1, l2, . . . , ln. It is known that each switch turns on and off to exactly one bulb but we do
not know anything about the wiring between the switches and the bulbs. Initially we are in
the room with the switches. Our job is to tell the exact wiring, i.e. which switch operates
which bulb. We are allowed to press any switches and then go to the room with the bulbs
and perform an observation. We are not allowed to touch the bulbs – our only source of
information is the observation of the bulbs.

The switches are such that their physical appearance does not change when toggled so we
have no way of knowing beforehand whether pressing a certain switch leads to turning on
or turning off of a bulb. Every swtich has, of course, two states only, as any normal light
switch.

Describe an algorithm that discovers the wiring with minimum number of observations,
i.e. with minimum visits to the room with the bulbs. The algorithm should work iteratively,
at each iteration simulating toggling some switches and then simulating an observation by
calling some function Observe. The toggling is simulated by writing into a 0-1 array
P[1, . . . , n]. Say, P[i] = 1 means si is toggled, and P[i] = 0 means si is not toggled. The
result of the “observation” is written in some 0-1 array L[1, . . . , n]. Say, L[i] = 1 means li
is on, and L[i] = 0 means li is off. After every call to Observe, the algorithm temporarily
halts, the execution is supposed to be transfered to an outside agent and the algorithm
resumes after the outside agent finishes writing into L.

Prove an asymptotic lower bound for the number of observations. Is your algorithm
optimal in the asymptotic sense?

Solution:
Our algorithm maintains the following data structures:

• a 0-1 array A[1, . . . , n] to keep the result of the previous observation,

• an array S[1, . . . , n] that refers to the switches. Every element of S is a pointer.
Namely, S[i] points to a (doubly) linked list that represents the set of the bulbs, each
of which can possibly be connected to si according to currently available information.
We call this set of bulbs, the candidate set for si.

• an array B of positive integers of size 2n. During iteration i, B contains 2i elements
that determine a partitioning of S into subarrays. B[2j] and B[2j + 1] are numbers
such that B[2j] ≤ B[2j + 1] and the pair 〈B[2j], B[2j + 1]〉 represents the subarray
S[B[2j], . . . , B[2j+ 1] ].
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• a multitide of doubly linked lists with n elements altogether. They represent a parti-
tion of the set of the bulbs. Each element contains an integer that corresponds to the
ID of precisely one bulb, and each list represents precisely one candidate set. Initially,
there is only one list in this multitude, call this list C. That reflects the fact that at
the beginning we have no restrictions on the possible connections between bulbs and
switches. At the end, there are n non-empty lists in this multitude. That reflects the
fact that at the end we know precisely the wiring between the switches and the bulbs.

Here is the pseudocode. Initially P[ ] is arbitrary.

Switches and Bulbs()
1 create doubly linked list C of n elements, one for each bulb
2 create S and set every pointer in it to C
3 B← [1, n]
4 Observe()
5 copy L into A
6 while the are less than 2n entities in B do
7 foreach pair 〈B[2j], B[2j+ 1]〉 such that B[2j] < B[2j+ 1]
8 mid← 1

2(B[2j] + B[2j+ 1])
9 set P[B[2j], . . . ,mid ] to ones

10 set P[mid + 1, . . . , B[2j+ 1] ] to zeros
11 update B so that for each applicable pair 〈B[2j], B[2j+ 1]〉, it
12 is substituted by two pairs 〈B[2j],mid〉 and 〈mid + 1, B[2j+ 1]〉
13 Observe()
14 for i← 1 to n

15 if A[i] 6= L[i]
16 mark bulb i as changed
17 foreach list of bulbs
18 split the list, if necessary, into two lists: changed and unchanged bulbs
19 foreach element of S
20 update the pointer to the relevant list of bulbs
21 copy L into A
22 for i← 1 to n

23 print the sole element of the list pointed to by S[i]

The query complexity of the algorithm, i.e. the number of calls of Observe, is the
number of executions of the while loop plus one. The number of executions of the while
loop is logarithmic in n because we split each subarray, delineated by a couple from B,
roughly in half, with each execution. So, the number of queries is Θ(lgn).

Now we prove an Ω(lgn) lower bound of the number of such queries. We use the
decision tree model. The decision tree model is used, for instance, for proving an Ω(n lgn)
lower bound for comparison based sortings (see [CLR00]). However, the decision trees for
comparison based sortings are binary because there are precisely two possible outcomes of

each comparison of the kind ai
?
< aj. In contrast to that, any decision tree that corresponds

to the current problem of switches and bulbs has branching factor of 2n. To why this is
true, note that there are precisely 2n possible outcomes from each observation of the n
bulbs.
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The current problem is, essentially, computing a permutation, because the mapping
from switches to bulbs is a bijection. It follows that any decision tree for that problem
has to distinguish all possible n! permutations of n elements: if the decision tree has a leaf
labeled by at least two permutations then the corresponding algorithm is not correct. It
follows that the leaves must be at least n!.

The height of the tree is approximately logarithm to base the branching factor of the
number of leaves:

log2n n! =
log2 n!

log2 2
n

=
Θ(n lgn)

n
= Θ(lgn)

The height of the tree is a lower bound for the query complexity of any observation-based
algorithm for the problem of switches and bulbs. It follows that Θ(lgn) observations are
required if the only testing allowed is direct observation. It follows that algorithm Switches
and Bulbs is asymptotically optimal with respect to the number of performed ovservations.
�

Problem 127 ([CLR00], Problem 4-2, Finding the missing integer). An array A[1, . . . , n]
contains all the integers from 0 to n except one. It would be easy to determine the missing
integer in O(n) time by using an auxiliary array B[0, . . . , n] to record which numbers appear
in A. In this problem, however, we cannot access an entire integer in A with a single
operation. The elements of A are represented in binary, and the only operation we can use
to access them is “fetch the j-th bit of A[i],” which takes constant time. Show that if we use
only this operation, we can still determine the missing integer in O(n) time.

Solution:
Let m be the number of bits required to represent n in binary. It is well known that
m = blog2 nc+ 1. In this problem we think of A as an m× n, 0-1 matrix. Row number m
of A consists of the least significant bits of the numbers in A, row number m − 1 consists
of the second least significant bits, etc., row number 1 consists of the most significant bits.
For instance, if n = 10 and the missing number is 6 = 0110b, A may look like:

A =

0 0 1 0 0 0 0 1 1 0

0 0 0 1 1 1 0 0 0 0

1 0 1 1 0 0 0 0 0 1

1 1 0 1 0 1 0 1 0 0

The only constant time access to it is of the form A[j][i], which the authors of [CLR00] call
“fetch the j-th bit of A[i]”, assuming the first bit is the most significant, etc.

Consider the following program in C.

int m = floor(logb(n)) + 1;

int A[m][n];

int main() {
int i, j, t, numrow, n0, n1, ntemp = n;

int B[n], res[m];

for(i = 0; i < n; i ++)

B[i] = i;
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for(i = m - 1; i >= 0; i --) {
n0 = n1 = 0;

for(j = 0; j < ntemp; j ++) {
if (A[i][B[j]] == 0) n0 ++;

else n1 ++; }
if(n0 - n1 == 2 || n0 - n1 = 1) res[i] = 1;

if(n0 - n1 == 0 || n0 - n1 == -1) res[i] = 0;

for(j = 0, t = 0; j < ntemp; j ++)

if((res[i] == A[i][B[j]])) {
B[t] = B[j];

t ++; }
if(ntemp % 2 == 0) ntemp = (ntemp / 2);

else if(res[i] == 0) ntemp = floor(ntemp / 2);

else ntemp = ceil(ntemp / 2);

}
for(i = 0; i < n; i ++)

printf("%d", res[i]);

}

We claim the algorithm implemented by this program solves correctly the problem of de-
termining the missing bit. First we prove it is correct.

Define that a complete array of size n is a two dimensional bit array similar to the above
A but without any missing column from it. Clearly, such an array has n+ 1 columns. For
instance, a complete array of size 10 would be the following:

0 0 1 0 0 0 0 1 0 1 0

0 0 0 1 1 1 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 1

1 1 0 1 0 1 0 1 0 0 0

Define that an almost complete array of size n is a two dimensional bit array with precisely
one missing column from it†. Now consider any complete array Ã of size n. Call L̃ the
bottom row of Ã. That L̃ consists of the least significant bits of the numbers fron Ã. Let
ñ0 be the number of zeros and ñ1, the number of ones, in L̃. Let ∆̃ = ñ0 − ñ1. We claim
that:

∆̃ =

{
0, if n is odd

1, if n is even

Indeed, it is trivial to prove by induction that if the number n+ 1 of columns in Ã is even
then ∆̃ = 0 and if it is odd, ∆̃ = 1.

Now consider A: any almost complete array of size n, obtained from Ã by deleting a
column, i.e., the missing number. Let L be the bottom row of A. Let n0 be the number of
zeros and n1, the number of ones, in L. Let ∆ = n0 − n1. We claim that:

∆ =

{
∆̃+ 1, if the missing number is odd

∆̃− 1, if the missing number is even

†It follows the array A in the current problem is an almost complete array of size n.
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Indeed, if the missing number is even there is a 0 less in L in comparison with L̃, while the
number of ones is the same; that is, n0 = ñ0 − 1 and n1 = ñ1. Likewise, if the missing
number is odd there is a 1 less in L in comparison with L̃, while the number of zeros is the
same; that is, n0 = ñ0 and n1 = ñ1 − 1. Having in mind the above considerations, it is
clear that:

∆ =


2, if n is even and the missing number is odd

1, if n is odd and the missing number is odd

0, if n is even and the missing number is even

−1, if n is odd and the missing number is even

We conclude that:

∆ ∈ {1, 2}⇒ the least significant bit of the missing number is 1 (6.1)

∆ ∈ {−1, 0}⇒ the least significant bit of the missing number is 0 (6.2)

So, with one linear scan along the bottom row of A we can compute ∆ and then in
constant time we can compute the least significant bit of the missing number. However, if
we attempt a similar approach for the other bits of the missing number, we will end up with
Ω(n lgn) computation because the number of rows is logarithmic in n. The key observation
is that in order to derermine the second least significant bit of the missing number, we need
to scan approximately half the columns of A. Namely, if the least significant bit was
determined to be 1, for the computation of the second least significant bit we need to scan
only the columns having 1 at the bottom row. Likewise, if the least significant bit was
determined to be 0, for the computation of the second least significant bit we need to scan
only the columns having 0 at the bottom row. Next we explain why this is true.

The number of rows of A ism = blog2 nc+1. Define that A
(m−1)
0 is the two dimensional

array obtained from A by deleting the columns that have 0 in row m− 1, and then deleting

row m − 1. Define that A
(m−1)
1 is the two dimensional array obtained from A by deleting

the columns that have 1 in row m − 1, and then deleting row m − 1. Call the process of

deriving A
(m−1)
0 and A

(m−1)
1 , the reduction of A, and the two obtained arrays, the reduced

arrays. Let b be the least significant bit of the missing number and b be its complement.

Lemma 26. Under the current naming conventions, A
(m−1)
b is complete, and A

(m−1)

b
is

almost complete. Furthermore, the missing number in A
(m−1)

b
is obtained from the missing

number in A by removing the least significant bit ( i.e., shift right).

Proof:
First we will see an example and then make a formal proof. To use the previously given
example with n = 10, m = 4, missing number 6 = 0110b, and

A =

0 0 1 0 0 0 0 1 1 0

0 0 0 1 1 1 0 0 0 0

1 0 1 1 0 0 0 0 0 1

1 1 0 1 0 1 0 1 0 0

the two derived subarrays are
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A
(3)
0 =

0 0 0 0 1

0 0 1 1 0

1 0 1 0 0

A
(3)
1 =

1 0 0 1 0

0 1 0 0 0

1 0 0 0 1

Obviously, A
(3)
0 is complete and A

(3)
1 is almost complete: column

0
1
1

is missing from it.

The least significant bit of the missing number in A is 0; if we did not know which is
the missing number, we could deduce that its least significant bit is 0 by computing the

aforementioned ∆ = 5 − 5 = 0. Indeed A
(3)

0
= A

(3)
1 is the array that is almost complete.

And indeed the missing number in it 011 is obtained from 0110 by shift right.

Let us prove the lemma. It is clear that if Ã is a complete array of size n, both Ã
(m−1)
0

and Ã
(m−1)
1 are complete. If n is odd then they contain the same columns (possibly in

different order left to right), otherwise Ã
(m−1)
1 contains one column more and the other

columns are the same. Now imagine A—the array obtained from Ã by the deletion of

precisely one column. If the bit at the bottom row of the deleted column is 0 then A
(m−1)
0

is the same as Ã
(m−1)
0 , so A

(m−1)
0 is complete. However, A

(m−1)
1 is not the same as

Ã
(m−1)
1 : Ã

(m−1)
1 contains one more column that corresponds to the missing number. It

follows that A
(m−1)
1 is almost complete. Alternatively, if the bit at the bottom row of

the deleted column is 1 then A
(m−1)
1 is the same as Ã

(m−1)
1 , so A

(m−1)
1 is complete, but

A
(m−1)
0 is almost complete. That concludes the proof of the lemma. �

Having all that in mind, the verification of the algorithm is straightforward. m is the number
of bits, i.e. the number of rows of A. The array res is the output: at each iteration of the
main for loop, one bit of res is computed, the direction being from the least significant
bit “upwards”. B is an auxilliary array of integers. The definition of the problem requires
bitwise access only to the elements of A; the array B can be accessed “normally”. B keeps
the indices of the columns whose i-th row we scan at every iteration of the main for loop.
Initially, of course, B contains the indices 0, 1, . . . , n-1, in that order, so when i is m-1

we simply scan the bottom row of A. At every iteration of the main for loop, ntemp is the
number of columns in the almost complete array whose last row we scan. Initially, ntemp
is n, which reflects the fact that at the first iteration we scan the bottom row of A. We will
verify the assignment of new value to ntemp later on.

Within the main for loop, the first nested for loop simply counts the zeros and ones
and stores the results in n0 and n1, respectively.

The difference n0 - n1 determines the i-th least significant bit res[i] according to 6.1
and 6.2.

The second nested for loop discovers the indices of the columns that correspond to the
columns of the next reduced array that is almost complete. To see why we consider only
values (of the last row of A) equal to res[i], check the above Lemma.

Finally, the asignment of new value to ntemp is done in accordance to the following
considerations. If ntemp is even then both derived arrays have the same length ntemp / 2.
Otherwise, note that we are interested in that derived subarray that is almost complete. If
res[i] is one then that subarray is the one obtained by deleting the columns with zeros at
the bottom; it has one more column than the complete derived subarray, so res[i] should
be ceil(ntemp / 2). Analogously, if res[i] is zero then res[i] should be floor(ntemp
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/ 2). That concludes the verification of the algorithm. The reader is invited to make an
even more rigorous proof of correctness using loop invariant.

The number of accesses to A at each iteration of the main for loop is proportional to the
current value of ntemp. Clearly, the total number of accesses is proportional to

n+
n

2
+
n

4
+ . . .+ 1 ≤ 2n = Θ(n)

�

Problem 128. Consider Problem 127 under the additional assumption that the numbers
in A, that is, the columns, appear in sorted order. Find the missing number with O(lgn)
bit accesses to A.

Solution:
If the numbers in A are sorted the problem can be solved by first determining the most
significant bit, then the second most significant bit, etc., the least significant bit, of the
missing number, with precisely one access to A for each bit.

Suppose Ã is the complete array of size n (see the definition of “complete array” in the
solution to Problem 127), i.e. there is no missing number. For instance, if n = 10 then Ã
is:

Ã =

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1 0 0 0

0 0 1 1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 1 0 1 0

0 1 2 3 4 5 6 7 8 9 10

Consider the boundary on the top row between the zeros and the ones. The rightmost zero

is in column 7 (7 = 2blog2 10c−1) and the leftmost one is in column 8 (8 = 2blog2 10c). It is
easy to generalise that the boundary is between columns 2blog2nc−1 and 2blog2nc, provided
the leftmost column is number 0.

Now consider the boundary on the top row between the zeros and the ones in an almost
complete array A of size n. For instance, if n = 10 and the missing number is 6 = 0110b
then A is:

A =

0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 0 0 0

0 0 1 1 0 0 1 0 0 1

0 1 0 1 0 1 1 0 1 0

0 1 2 3 4 5 6 7 8 9

Consider positions 7 = 2blog2 10c − 1 and 8 = 2blog2 10c on the top row. Now the boundary
is not between them because the missing number has most significant bit 0, so the boundary
is “shifted” one position to the left in comparison with Ã. However, if we do not know what
the missing number’s most significant bit is, we can deduce it is 0 from the fact that there
are two 1’s at positions 7 and 8 on the top row.
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Clearly, if there were 0 and 1 at positions 7 and 8, respectively, on the top row, that
would mean the missing number’s most significant bit is 1, as in the following example
where the array is called B, n = 10 and the missing number is 9 = 1001b:

B =

0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1 0 1

0 1 0 1 0 1 0 1 0 0

0 1 2 3 4 5 6 7 8 9

So, by inspecting only position 2blog2nc−1 on the top row, we can deduce the most significant
bit of the missing number as follows:

the missing number’s most significant bit =

{
0, if A[0][2blog2nc − 1] = 1

1, if A[0][2blog2nc − 1] = 0

Having computed the most significant bit of the missing number in Θ(1) time, we compute
the second most significant bit in Θ(1) time, etc., until we compute all bits of the missing
number with Θ(lgn) attempts, each taking Θ(1) time.

Case I: If the most significant bit is 0, to compute the second most significant bit we
consider only the subarray of columns 0, 1, . . . , 2blog2nc − 2 and rows 1, 2, . . . , blog2 nc.
Using the above A as an example, that subarray is, say, A ′:

A =

0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 0 0 0

0 0 1 1 0 0 1 0 0 1

0 1 0 1 0 1 1 0 1 0

0 1 2 3 4 5 6 7 8 9

7→ A ′ =

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 1

0 1 2 3 4 5 6

We proceed recursively with A ′ exactly as with A because A ′ is an almost complete array.
Let us compute the size of A ′. The initial A can be of any size but the size of A ′ is uniquely
determined by n. Let m = blog2 nc + 1, that is, the number of bits necessary to represent
n in binary (thus m is the number of rows in A). Let m ′ = m − 1. The derived A ′ is of
size 2m

′
− 1. The −1 comes from the fact that A ′ has a missing number.

Case II: If the most significant bit is 1, to compute the second most significant bit we
consider only the subarray whose columns have 1’s in the top row. Using the above B as
an example, that subarray is, say, B ′:

B =

0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1 0 1

0 1 0 1 0 1 0 1 0 0

0 1 2 3 4 5 6 7 8 9

7→ B ′ =

0 0

0 1

0 0

0 1

The number of columns, call it c ′, in B ′ is easy to compute: it is c ′ = n − 2m
′

where
m ′ = blog2 nc. In the concrete example, n = 10, m ′ = 3, thus c ′ = n − 2m

′
= 10 − 8 = 2.
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However, B ′ is not necessarily an almost complete array—in order to be an almost complete
array it has to have at least one 1 at its top row. In fact, B ′ is an almost complete array
only when c ′ > 1

2(2
m ′) = 2m

′−1. In this example, B ′ is not an almost complete array, it has
one row too many. We can conlude the second most significant bit of the missing number is
0 (the missing number is 9 = 1001b) just by knowing the dimensions of B ′; we do not have
to scan, or even examine bits of, the top row to make that conclusion. The rule is, while
c ′ ≤ 2m ′−1, write 0’s to into the missing number’s bit positions and perform m ′ ← m ′− 1.
This process is equivalent to removing the necessary number of top rows from B ′. Once the
process is over and B ′ is reduced as necessary, it can be dealt with recursively.

Consider the following program in C.

int m = floor(logb(n)) + 1;

int A[m][n], res[m];

void find(int, int, int) ;

int main() {
find(0, n-1, 0);

return 0; }

void find(int low, int high, int row) {
int j, c, n1, n2, numel = high - low + 1;

if(row == m-1) {
res[row] = !(A[i][0]);

PrintResult();

return; }
n1 = floor(logb(numel));

n2 = 1 << n1;

if(A[row][low+n2-1] == 1) {
res[row] = 0;

find(low, n2-2, row+1); }
else {

j = 1;

res[row] = 1;

c = numel - n2;

while((n1 >= 0) & & c <= (1<<(--n1))) {
j ++;

res[row+j] = 0; }
if(row+j == m-1) {
PrintResult();

return; }
find(n2, high, row+j); } }

The correctness of the fragment follows from the previous discussion. The time complexity
is obviously Θ(lgn). �

Problem 129. A circular array A[1, . . . , n] is an array such that n ≥ 3 and A[1] and
A[n] are considered to be adjacent elements just like A[1] and A[2], A[2] and A[3], etc.,
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are adjacent. We are given a circular array A[1, . . . , n] of nonnegative integers. For any
i, j ∈ {1, 2, . . . , n} such that i 6= j, dist(i, j) = max {|i− j|, n− |i− j|}. Design a linear time
algorithm that computes a maximum number t such that for some i, j ∈ {1, 2, . . . , n}, i 6= j,
t = A[i] +A[j] + dist(i, j).

Solution:
Consider the following algorithm, due to Mugurel Ionuţ Andreica [MAMc].

Circular Array(A[1, . . . , n]: circular array of nonnegative integers)
1 let B[0 . . . n] and C[1 . . . n] be linear arrays of nonnegative integers
2 B[0]← 0

3 for i← 1 to n

4 B[i]← max {B[i− 1], A[i] − (i− 1)}
5 C[i]← B[i− 1] +A[i] + (i− 1)
6 x← max {C[i] | 1 ≤ i ≤ n}
7 for i← 1 to n

8 B[i]← max {B[i− 1], A[i] + (i− 1)}
9 C[n]← A[n] + 1

10 for i← n− 1 downto 2

11 C[i]← max {C[i+ 1], A[i] + n− (i− 1)}
12 y← max {B[i] + C[i+ 1] | 1 ≤ i ≤ n− 1}
13 return max {x, y}

It is obvious that the time complexity is Θ(n). Now we prove the correctness.

Lemma 27. Whenever the execution of the first for loop (lines 3–5) of Circular Array
is at line 5 and i ≥ 2, C[i] is assigned max {A[k] +A[i] + i− k | 1 ≤ k < i}.

Proof:
It is fairly obvious that at line 5 the value B[i− 1] is such that

B[i− 1] =

{
0, if A[k] − (k− 1) ≤ 0 ∀k such that 1 ≤ k < i
max {A[k] − (k− 1) | 1 ≤ k < i}, else

However, A[1] − (1 − 1) cannot be negative, therefore there is at least one non-negative
value in the sequence A[k] − (k − 1), 1 ≤ k < i, so we can say simply that B[i − 1] at
line 5 is B[i − 1] = max {A[k] − k+ 1 | 1 ≤ k < i}. It follows that C[i] is assigned the value
max {A[k] − k+ 1 | 1 ≤ k < i}+A[i] + i− 1 = max {A[k] +A[i] + i− k | 1 ≤ k < i}. �

It follows that x is assigned the value max {A[i] +A[j] + j− i | 1 ≤ i < j ≤ n} at line 6 of
Circular Array.

Lemma 28. y is assigned the value max {A[i] +A[j] + n− (j− i) | 1 ≤ i < j ≤ n} at line 12
of Circular Array.

Proof:
Consider the second for loop (lines 7–8). Since A[1] + (1 − 1) ≥ 0, it is the case that
∀i, 1 ≤ i ≤ n,B[i] = max {A[k] + (k− 1) | 1 ≤ k ≤ i} after the second for loop terminates.
Now consider the third for loop at lines 10–11. Think of the assignment at line 9 as
C[n] = A[n] + n − (n − 1). Having that in mind, it is fairly obvious that after that for
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loop terminates, it is the case that C[i] = max {A[k] + n− (k− 1) | i ≤ k ≤ n}, ∀i, 2 ≤ i ≤ n
From these two considerations it follows immediately that at line 12, y is assigned the value

max {A[i] + (i− 1) +A[j] + n− (j− 1) | 1 ≤ i < j ≤ n} =
max {A[i] +A[j] + n− (j− i) | 1 ≤ i < j ≤ n}

�

It follows immediately that Circular Array indeed returns the maximum number t such
that for some i, j ∈ {1, 2, . . . , n}, i 6= j, t = A[i] +A[j] + dist(i, j). �

Problem 130 ([CLR00], Problem 10.3-8). Let X[1, . . . , n] and Y[1, . . . , n] be two arrays,
each containing n numbers already in sorted order. Give an O(lgn)-time algorithm to find
the median of all 2n elements in arrays X and Y.

Solution:
Assume that when n is even the median of X is X

[
n
2 + 1

]
. If the arrays are of equal size,

and that is the current case, we can solve the problem by a divide and conquer algorithm
that compares the medians of the two arrays and then discards the lower half of the array
with the smaller median and the upper half of the array with the bigger median. The
algorithm proceeds likewise until both arrays are reduced to 2 elements each. Then we
solve the reduced problem in constant time. In case the size is odd, by upper and lower half
we mean, the subarray from one end until and excluding the median. It is easy to show this
dichotomy brings the size of the array down to 2 regardless of what the initial n is, because
the iterator n→ ⌈

n
2

⌉
reaches 2 regardless of the starting value of n.

Now consider a more general version of this problem where the arrays are X[1, . . . , p] and
Y[1, . . . , q] for possibly unequal values of p and q. The following solution is based on [LD05].
Let us call Z the array that would be obtained if we merged X and Y. Let m = p+ q. The
essence is the fact that we can check in Θ(1) time whether X[i] is the median of Z, for any
i such that 1 ≤ i ≤ p. According to our definition of median, the median is greater than
or equal to

⌊
m
2

⌋
elements of an m-element array. Having that in mind, clearly if X[i] is the

median then:

• X[i] is greater than or equal to i− 1 elements of X.

• X[i] is greater than or equal to j =
⌊
m
2

⌋
− i+ 1 elements of Y.

It takes only constant time to check if Y[j] ≤ X[i] ≤ Y[j + 1]† If that is fulfilled we have
found the median and it is X[i]. Otherwise, we binary search in X to see if the median is in
X. If that fails, the median must be from Y, and we can repeat the analogous process with
X and Y swapped.

Common Median(X[1, . . . , p], Y[1, . . . , q]: sorted arrays)
1 m← p+ q
2 k←Median Bin Search(X, Y, 1, p)
3 if k > 0

†To avoid excessive boundary checks, pad X and Y at the left side with −∞ and with ∞ at the right
side.
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4 return X, k

5 k←Median Bin Search(Y, X, 1, q)
6 return Y, k

Median Bin Search(A, B: sorted arrays, l, r: integers)
1 if l > r
2 return −1
3 i← ⌊

l+r
2

⌋
4 j←⌊m2 ⌋ −i+ 1
5 if B[j] ≤ A[i] ≤ B[j+ 1]
6 return i

7 if A[i] < B[j]
8 Median Bin Search(A,B, l, i)
9 if A[i] > B[j+ 1]

10 Median Bin Search(A,B, i+ 1, r)

A not too formal proof of correctness of Common Median is simply pointing out the pre-
ceding discussion and knowing that the binary search idea is correct. The time complexity
is obviously Θ(lgm). Alternatively, we can say the complexity is Θ(max {lg p, lgq}). �

6.3 Graphs

Whenever we say “graph” without any qualifiers, we mean undirected graph without loops
and without edge weights. The edges of graphs are denoted as, for example (u, v), although
typically parentheses denote ordered pairs and in undirected graphs the edges are in fact
vertex sets of size two. Whenever we say “weighted graph” we mean that the edges have
positive weights and the vertices, no weights. Unless otherwise specified, n is the number of
vertices of the graph under consideration and m is the number of its edges. If G is a graph,
we denote its vertex set by V(G) and its edge set, by E(G). adj(u) denotes the adjacency
list of vertex u. By G we denote its complement: G = (V, E), where E = V2 \ E, where
V2 = {X ∈ 2V | |X| = 2}.

To delete a vertex v from a graph G(V, E) means to delete v from V and to delete all edges
with one endpoint v from E. The vertex deletion operation is denoted by G− v. To remove
an edge e from a graph G(V, E) means to delete e from E without deleting its endpoints
from V. The edge deletion operation is denoted by G − e. To add an edge e ′ = (u, v) to
G means that (u, v) 6∈ E and then the operation E ← E ∪ {(u, v)} is performed. The edge
addition operation is denoted by G+ e ′. To delete a subset U ∈ V from V means to delete
all vertices from U and all edges with at least one endpoint in U.

By “path” we mean a simple path, i.e. without repeating vertices. Likewise, by “cycle”
we mean a simple cycle. The degree of a vertex u in undirected graph G is denoted by
deg(u) and is defined as deg(u) = |adj(u)|. If u is a vertex in multiple graphs, we write
degG(u) to emphasise we mean the degree of u in G.
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6.3.1 Graph traversal related algorithms

Definition 8. Let G(V, E,w) be a weighted connected graph. The eccentricity of any ver-
tex v ∈ V is ecc(v) = max{dist(v, u) |u ∈ V \ {v}}. The diameter of G is diam(G) =
max{ecc(v) | v ∈ V}. �

The term “diameter” is overloaded, meaning either the maximum eccentricity, or any
path of such length whose endpoints are two vertices of maximum eccentricity. We encourage
the reader to have in mind that diameter is completely different from longest path: the
diameter is the longest one among the shortest paths between any two vertices in the
graph, while the longest path is the longest one among the longest paths between any two
vertices in the graph. As an extreme example, consider the complete graph Kn (with edge
weights ones). Its diameter is 1 because every vertex is connected to every other vertex
but its longest path is of length n − 1 because Kn is Hamiltonian. A notable exception
are trees. In any tree, “diameter” and “longest path” are the same thing, i.e. paths of the
same length. To see why, note that in trees there is a unique path between any two vertices.
Therefore, the longest path between any two vertices u and v has the same length as the
shortest path between u and v, because there is only one such path to begin with.

A cut vertex in a graph G with k connected components is any vertex u ∈ V(G) such
that the deletion of u leads to graph G ′ with ≥ k + 1 connected components. A bridge in
a graph G with k connected components is any edge e ∈ V(G) such that the deletion of u
leads to graph G ′ with k+ 1 connected components.

Now we present the well known algorithm DFS for graph traversal, in the version of Cormen
et al. [CLR00].

DFS(G(V, E): directed graph)
1 foreach u ∈ V
2 color[u]←White
3 π[u]← Nil
4 time← 0

5 foreach u ∈ V
6 if color[u] = White
7 DFS Visit(G,u)

DFS Visit(G(V, E): directed graph, u: vertex from V)
1 color[u]← Gray
2 time← time + 1
3 d[u]← time
4 foreach v ∈ adj(u)
5 if color[v] = White
6 π[v]← u

7 DFS Visit(G, v)
8 color[u]← Black
9 time← time + 1

10 f[u]← time
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It is well known that DFS on undirected graphs partitions the edges into tree edges and
back edges according to the following rules: if the colour of v at line 5 is White then (u, v)
is a tree edge and if the colour of v at line 5 is Gray then (u, v) is a back edge. Also, it is
known it is not possible the said colour to be Black, so no other type of edge is possible
in undirected graphs.

Problem 131. Design a fast algorithm to compute the diameter of weighted tree. Analyse
its correctness and time complexity.

Solution:
We use a modified DFS as follows. The original DFS on the preceding page works on
nonweighted graphs. Assume the input graph is weighted and connected. Let the algorithm
use an additional array dist[1, . . . , n]. Consider the following modification of DFS Visit
that does not use d[ ], f[ ], and the variable time.

Eccentricity(T(V, E,w): weighted tree, u: vertex from V)
1 (∗ Returns an ordered pair 〈α,β〉 where α = ecc(u) and ∗)
2 (∗ β is a vertex at distance α from u. ∗)
3 foreach x ∈ V
4 color[x]←White
5 π[x]← Nil
6 dist[x]← 0

7 Ecc1(T, u)
8 α← max {dist[x] | x ∈ V}
9 β← any x ∈ V such that dist[x] = α

10 return 〈α,β〉

Ecc1(T(V, E,w): weighted tree, u: vertex from V)
1 color[u]← Gray
2 foreach v ∈ adj(u)
3 if color[v] = White
4 π[v]← u

5 dist[v]← dist[u] +w(u, v)
6 Ecc1(T, v)
7 color[u]← Black

It is trivial to prove by induction that after the call at line 7 in Eccentricity, for every
vertex x ∈ V, dist[x] contains the distances betwen x and u in T . Using the definition of
ecc(u), conclude that Eccentricity returns the eccentricity of u and a vertex that is at
that distance from u. Eccentricity has the time complexity of DFS and that is Θ(m+n).

Lemma 29. Let G be a connected graph, weighted or non-weighted. Any two paths of
maximum length in G share a vertex.

Proof:
Assume there are two paths of maximum length that are independent. It is not difficult
to show there is a path of even greater length, contrary to the assumption just made. We
leave the details to the reader. �
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Figure 6.2: The paths p, q, p ′, and p ′′ under the assumption that u is an internal
vertex of the backbone T ′.

Corollary 2. Let T be a tree, weighted or non-weighted. Any two diameters in T share a
vertex. �

Corollary 3. Let T be a tree, weighted or non-weighted. Let V ′ be the union of the vertex
sets of all diameters in T . V ′ induces a subtree T ′ of T . Every leaf of T ′ is a leaf of T , too.
�

We call the subtree T ′ from Corollary 3, the backbone of T. Note that T can coincide with
its backbone, e.g. if T is a star.

Lemma 30. Let T be a tree, weighted or non-weighted. Let T ′ be the backbone of T . For
any vertex u ∈ V(T), the eccentricity of u is the length of a path p such that one endpoint
of p is u and the other endpoint, call it v, of p is some leaf of T ′.

Proof:
Assume the opposite. First assume u is a leaf of T ′. By the definition of backbone, all
vertices at maximum distance from u are endpoints of some diameters in T , i.e. they are
leaves of T , hence the contradiction. Assume u is an internal vertex of T ′. Then there is a
diameter q of T such that u is an internal vertex in q. Having assumed that v is not a leaf
of T ′, it follows v is not a vertex of q. But p and q share at least one vertex, namely u.
Let the maximum contiguous subsequence (subpath) of p and q be u, . . . , w. Let p ′ be the
subpath w, . . . , v of p. Let q ′ be the subpath w, . . . , x of q such that x is am endpoint of q
and u is not an internal vertex of q ′. Let q ′′ be the subpath of q from w to y where y is the
other endpoint of q (i.e., not x). It must be case that |p ′| > |q ′| according to the current
assumptions. It follows that using p ′ and q ′′ we can construct a path in T that is longer
than the diameter q, contrary to the fact that q is a longest path in T . See Figure 6.2.

Finally, assume u is not in T ′. It is clear there exists a unique vertex z in T ′ such that,
for every other vertex a from T ′, z is an internal vertex in the path between a and u. The
proof reduces to the previous one with z instead of u. See Figure 6.3. �

Having in mind Lemma 30 and the correctness of algorithm Eccentricity, it is obvious
that Eccentricity returns a vertex that is a leaf of the backbone of T . Now consider the
following algorithm.

Diameter of Tree(T(V, E,w): weighted tree)
1 u← arbitrary vertex from V

2 〈x, y〉← Eccentricity(T, u)
3 〈w, z〉← Eccentricity(T, y)
4 return 〈w, z〉
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Figure 6.3: The case when u is not in the backbone T ′.

Using tha names of Diameter of Tree, y is a leaf of the backbone of T . Then the second
call of Eccentricity, namely Eccentricity(T, y), returns 〈w, z〉 such that z is another
leaf of the backbone, one that is at maximum distance from y, and w is the distance between
them, i.e. the diameter. That proves the correctness of the algorithm. Clearly, the time
complexity is Θ(n+m). �

Problem 132. Design a fast algorithm to output all cut vertices of a connected graph.
Analyse its correctness and time complexity.

Solution:
The solution is based on the solution in [Ski08, Section 5.9.2, pp. 173–177]. The main idea
is to modify DFS and thus to use its optimal time complexity.

Each execution of DFS on a connected graph G(V, E) generates a tree T . V(T) = V and
E(T) = {e ∈ E | e is classified as a tree edge by DFS.}. Clearly, the leaves of T cannot be
cut vertices. To see why, consider any vertex v ∈ V that is a leaf of T . If degG(v) = 1 then
the deletion of u from G leads to one connected component because such a vertex connects
only itself to the remainder of the graph. If degG(v) ≥ 2, the tree edges are sufficient to
hold the remainder of the graph together.

The root r of the tree may or may not be a cut vertex of G: if degT (r) = 1 then r is not
a cut vertex, otherwise it is a cut vertex.

Each of the remaining vertices may or may not be a cut vertex according to the following
lemma.

Lemma 31. Using the above names, for every vertex u that is not the root and is not a
leaf of T , u is a cut vertex iff there exists a child v of u in T such that, if Tv is the subtree
of T rooted at v, there is no back edge from any vertex from Tv to a proper ancestor of u.

Proof:
Suppose there is no back edge from a vertex from V(Tv) to a proper ancestor of u. Then
for every path p with endpoints x and y such that x ∈ V(Tv) and y ∈ V(G) \ (V(Tv)∪ {u}),
u is an internal vertex in p. So, u is a cut vertex in G. Suppose the opposite: there is a
back edge from a vertex from V(Tv) to a proper ancestor of u. Then there exists a path p
with endpoints x and y such that x ∈ V(Tv) and y ∈ V(G) \ (V(Tv) ∪ {u}), such that u is
not in p. So, u is not a cut vertex in G. �

The algorithm that implements these ideas is a modifed DFS. The arrays d[ ], f[ ], and π[ ],
and the variable “time” are not used. There is, however, an array level[1, . . . , n] of natural
numbers that keeps record of the levels of the vertices in the DFS tree. That is, level[i]
means the distance between vertex i and the root r. Obviously, the level of the root is 0.
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Find Cut Vertices(G(V, E): undirected graph)
1 foreach u ∈ V
2 color[u]←White
3 let u be an arbitrary vertex from V

4 FCV1(G,u, 0);

FCV1(G(V, E): undirected graph, u: vertex from V, l: integer)
1 color[u]← Gray
2 level[u]← l

3 minback← level[u]
4 if level[u] = 0
5 count← 0

6 IsCut ← False
7 foreach v ∈ adj(u)
8 if color[v] = White {
9 if level[u] = 0

10 count← count+ 1
11 x← FCV1(G, v, l+ 1)
12 if x ≥ level[u] and level[u] ≥ 1
13 IsCut ← True
14 minback← min {minback, x} }
15 if color[v] = Gray {
16 if level[v] < minback and level[v] 6= level[u] − 1
17 minback← level[v] }
18 if IsCut
19 print u
20 if level[u] = 0 and count ≥ 2
21 print u
22 color[u]← Black
23 return minback

We argue that the printing of cut vertices (line 19 or line 21) is correct. First, recall that
the root vertex is treated differently: the root, i.e. the starting vertex of the DFS, is a cut
vertex iff there are at least two tree edges incident to it. The number of tree edges incident
to the root is recorded in the count variable†. It is incremented at line 10 precisely when
the current u is 0, i.e. u is the root, and v is White, i.e. (u, v) is a tree egde. It follows
that after the for loop (lines 7–17) finishes, count ≥ 2 iff the current u is the root of the
DFS tree and it is indeed a cut vertex, and so the printing at line 21 is correct.

On the other hand, line 13 is reached iff

• vertex u is not the root, because level[u] ≥ 1 implies that, and

• there is no back edge from any vertex from Tv to a proper ancestor of u, because
at line 11, x is assigned the number of the lowest level proper ancestor of v that is

†We emphasise that the number of tree edges incident to that vertex is completely different from the
degree of that vertex in G.
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incident to a vertex from Tv; if that number is ≥ level[u] that vertex must be u or a
vertex from Tv, so by Lemma 31, u is a cut vertex.

Those two conditions imply u is a cut vertex. Of course, in order to give a complete formal
proof one has to prove by induction that FCV1 returns the number of the lowest level proper
ancestor of u that is incident to a vertex from Tu. We leave that job to the inquisitive reader.

We point out that the variable minback at line 17 is set to level[v] only if level[v] 6=
level[u] − 1 for the following reason. We know that DFS in the current implementation
visits every edge of an undirected graph twice because that edge is in two different adjacency
lists (one list for each endpoint). So, it makes sense to consider (u, v) at lines 16 and 17
as a back edge only when u is not the immediate ancestor of v. In other words, when
level[v] 6= level[u] − 1. We also point out that the code at lines 16–17 is executed for each
back edge (u, v).

That concludes the proof of the correctness of algorithm Find Cut Vertices. The
time complexity is, obviously, the same as that of DFS: Θ(m+ n). �

Problem 133. Design a fast algorithm to output all bridges of a connected graph. Analyse
its correctness and time complexity.

Solution:
This problem is similar to the previous one and the solution is quite close to algorithm Find
Cut Vertices. Again we use a modification of DFS and again we consider the partition
of the edges into tree edges and back edges.

Lemma 32. With respect to the work of DFS and the classification of edges into tree edges
and back edges, any edge (u, v) is a bridge iff u is the father of v in T and the subtree Tv
rooted at v is such that there is no back edge from a vertex from Tv to u or a proper ancestor
of u.

Proof:
The claim is obvious, having in mind that there is no back edge from a vertex from Tv to u
or a proper ancestor of u if and only if every path from a vertex from Tv to a vertex outside
Tv must contain the edge (u, v). �

Unlike the problem of finding the cut vertices, now the root and the leaves of the DFS tree
do not have to be treated differently from the other vertices.

Find Bridges(G(V, E): undirected graph)
1 foreach u ∈ V
2 color[u]←White
3 let u be an arbitrary vertex from V

4 FBR1(G,u, 0);

FBR1(G(V, E): undirected graph, u: vertex from V, l: integer)
1 color[u]← Gray
2 level[u]← l

3 minback← level[u]
4 foreach v ∈ adj(u)
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5 if color[v] = White {
6 x← FBR1(G, v, l+ 1)
7 if x > level[u]
8 print (u, v)
9 else if x < minback

10 minback← x }
11 if color[v] = Gray {
12 if level[v] < minback and level[v] 6= level[u] − 1
13 minback← level[v] }
14 color[u]← Black
15 return minback

The proof of the correctness of algorithm Find Bridges is simpler than that of Find Cut
Vertices. The edge (u, v) is printed (line 8) iff the condition specified in Lemma 32 is
fulfilled. Actually, the condition at line 7 is the main difference betweem this algorithm and
Find Cut Vertices (see line 12 there). The time complexity is, obviously, the same as
that of DFS: Θ(m+ n). �

6.3.2 NP-hard problems on restricted graphs

One way of dealing with computational intractability on graphs is designing fast algorithms
for classes of graphs, graphs whose structure is restricted enough to permit fast algorithms
for problems that are hard in general. A very natural candidate for a simple graph class are
trees. Indeed, most intractable graph problems have fast, often linear-time, algorithms on
trees, with few notable exceptions such as Graph Bandwidth that remains NP-complete
on trees, even on trees with maximum degree ≤ 3 (see [GGJK78]).

Definition 9. Let G = (V, E) be a graph. Any subset U ⊆ V is called:

• vertex cover if ∀(u, v) ∈ E : u ∈ U or v ∈ U.

• dominating set if ∀v ∈ V : v ∈ U or ∃w ∈ U such that (v,w) ∈ E.

• independent set if ∀u ∈ U ∀v ∈ U : (u, v) 6∈ E.

• clique if ∀u ∈ U∀v ∈ U : (u, v) 6∈ E. �

The concepts from Definition 9 have their counterparts–computational problems. Here we
list the optimisation versions of the problems.

Computational Problem Vertex Cover
Generic Instance: A graph G
Objective: Compute the size of a minimum vertex cover of G �

Computational Problem Dominating Set
Generic Instance: A graph G
Objective: Compute the size of a minimum dominating set of G �
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Computational Problem Independent Set
Generic Instance: A graph G
Objective: Compute the size of a maximum independent set of G �

Computational Problem Maximum Clique
Generic Instance: A graph G
Objective: Compute the size of a maximum clique of G �

It is immediately obvious that with respect to tractability or intractability, Independent
Set and Maximum Clique are in the same group.

Observation 2. For every graph G = (V, E), for any U ⊆ V, U is a clique iff U is an
independent set in G.

The same holds for Vertex Cover and Independent Set though that may not be so
obvious.

Theorem 4. For any graph G = (V, E), for any U ⊆ V, U is an independent set iff V \U

is a vertex cover. �

Proof:
First assume U is an independent set. Assume V \U is not a vertex cover. It follows there
is an edge (u, v) such that u 6∈ V \U and v 6∈ V \U. But that is equivalent to saying there
is an edge (u, v) such that u ∈ U and v ∈ U. Then U is not an independent set, contrary
to the initial assumption.
Now assume V \ U is a vertex cover. Assume U is not an independent set. Negating the
definition of independent set, we derive ∃u ∈ U∃v ∈ U : (u, v) ∈ E. The definition of vertex
cover says that for every edge, at least one of its vertices is in the cover. Since V \ U is
a vertex cover and (u, v) is an edge, u ∈ V \ U or v ∈ V \ U. It follows u 6∈ U or v 6∈ U,
contrary to the previous conclusion that u ∈ U and v ∈ U. �

Corollary 4. For every graph G, every minimum vertex cover U induces a maximum
independent set, namely V \U, and vice versa. �

Problem 134. Construct a linear time algorithm for Vertex Cover on trees using a
greedy approach.

Solution:

VC on trees(T = (V, E): tree)
1 A← ∅
2 while T has at least one edge do
3 if T has a single edge e = (u, v)
4 let x be an arbitrary vertex from {u, v}

5 A← A ∪ {x}

6 delete x from T

7 else let U ⊂ V be the set of the leaves of T
8 B← ∅
9 foreach u ∈ U
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10 let e = (u, v) be the edge incident with u
11 A← A ∪ {v}

12 B← B ∪ {u, v}

13 delete B from T

14 return A

Note that A and B are sets so multiple additions of vertices to them at line 11 or line 12
does not matter.

The verification is straightforward. We are going to prove the returned A is a minimum
vertex cover. If T has a single edge, clearly any vertex x from it covers T and {x} is a
minimum vertex cover. Otherwise, by the well-known fact that in any tree with at least
two edges:

• there are two leaves,

• there is at least one non-leaf, and

• for every edge incident with a leaf, the other vertex in non-leaf,

we conclude that there are at least two edges incident with leaves, and for each such edge,
one endpoint is a non-leaf vertex. Clearly, each of those edges must be covered at the end,
and it can only be covered by at least one of its endpoints. Therefore, if we choose the
non-leaf endpoint (vertex v at line 11) to add to A, we cannot go wrong with respect to the
number of vertices in A.

The latter statement is fairly obvious but if the reader is not convinced, here is a proof
by contradiction. Assume for at least one edge e = (u, v) where u is a leaf and v, non-leaf,
the algorithm make wrong choice putting v (instead of u) in A. So, there is no minimum
vertex cover of T containing v.

Consider any minimum vertex set A ′ ⊂ V. However, since at least one of u and v must
be in any vertex cover, we conclude u ∈ A ′. Now let A ′′ = (A ′ \ {u}) ∪ {v}. Clearly, edge
e is covered by A ′′ and, furthermore, any edge covered by A ′ is covered by A ′′, too, and
|A ′′| = |A ′|. That contradicts the assumption that no minimum vertex cover contains v.

The algorithm can easily be implemented in linear time using a postorder traverse of T .
�

According to Theorem 4, that algorithm solves Independent Set as well. However, we
can use dynamic programming to the same effect. The dynamic programming algorithm is
linear-time as well but it has the advantage it can be used with a minor modification to
solve Weighted Independent Set.

Problem 135. Construct a linear time algorithm for Independent Set on trees using
dynamic programming.

Solution:

IS on trees, dynamic(T = (V, E): tree)
1 the algorithm uses arrays A[1, . . . , n] and B[1, . . . , n]
2 let r be an arbitrary vertex from V

3 make T rooted tree with root r
4 work from the leaves upwards in the following way
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5 foreach leaf vertex u
6 A[u] = 1
7 B[u] = 0
8 foreach non-leaf vertex u
9 let v1, v2, . . . , vk be the children of u

10 A[u] = 1+
∑k
i=1 B[vi]

11 B[u] =
∑k
i=1max {A[vi], B[vi]}

12 return max {A[r], B[r]}

The arrays A[ ] and B[ ] keep the following information with respect to the rooted tree T .
Let Tu denote the subtree rooted at u, for every u. For every vertex u,

• A[u] is the size of a maximum independent set in Tu that contains u, and

• B[u] is the size of a maximum independent set in Tu that does not contain u.

The verification of the algorithm is based on the trivial fact that an optimum independent
set either contains a certain vertex, or does not contain that vertex. In particular, the
root is in some optimum independent set or not. The assignments at lines 6 and 7 are
obviously correct. In a recursive implementation of the algorithm those lines correspond to
the bottom of the recursion. The assignment at line 10 is correct because if u is necessarily
contained in any independent set, then v1, . . . , vk are necessarily not in that set; therefore,
we choose max independent sets in Tv1 , . . . , Tvk that do not contain the respective roots
v1, . . . , vk. Consider the assignment at line 11. If u is not in the independent set, for any
child vi we can pick the maximum independent set in TvI regardless of whether it contains
vi or not.

The key observation, unmentioned so far, with respect to the correctness, is that the
optimum for any internal vertex is obtained from the optimuma obtained for its children,
those optima being independent of one another.

The proposed algorithm can be implemented with linear time complexity if we traverse
the tree in postorder. The recurrence relation of its time complexity is

T(1) = Θ(1)

T(n) =

m∑
i=1

T(ni) +Θ(m)

where n1, n2, . . . , nm is a numerical partition of n− 1. The reason is that at each internal
vertex the algorithm performs work proportional to the number of the children of that
vertex, in addition to the recursive calls, one recursive call per child. The number of
children is assumed to be m and the total number of vertices in all subtrees rooted at the
children is n−1. According to Problem 80 on page 88, this recurrence relation has solution
O(n). The fact that it is also Θ(n) is obvious. �

Problem 136. Construct a linear time algorithm for Dominating Set on trees using
dynamic programming.

Solution: For each vertex x is a rooted tree, let ch(x) denote the set of its children.
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DS on trees(T = (V, E): tree)
1 the algorithm uses arrays A[1, . . . , n] and B[1, . . . , n]
2 let r be an arbitrary vertex from V

3 make T rooted tree with root r
4 work from the leaves upwards in the following way
5 foreach leaf vertex u
6 A[u] = 1
7 B[u] = 0
8 foreach non-leaf vertex u

9 A[u] = 1+ min

 ∑
v∈ch(u)

B[v], min
v∈ch(u)

 ∑
w∈ch(v)

B[w] +
∑

z∈(ch(u)\{v})

A[z]




10 B[u] = min

1+ ∑
v∈ch(u)

B[v],
∑

v∈ch(u)

A[v]


11 return min {A[r], B[r]}

The arrays A[ ] and B[ ] keep the following information with respect to the rooted tree T .
Let Tu denote the subtree rooted at u, for every u. For every vertex u,

• A[u] is the size of a minimum dominating set in Tu, and

• B[u] is the size of a minimum set in Tu that dominates every vertex in Tu except
possibly u.

The verification of the assignments at lines 6 and 7 is trivial. Consider line 9, which can be
written as

A[u] = min

1+ ∑
v∈ch(u)

B[v], 1+ min
v∈ch(u)

 ∑
w∈ch(v)

B[w] +
∑

z∈(ch(u)\{v})

A[z]




Indeed, a minimum dominating set in Tu either includes u, or not. If it includes u then for all
children of u it suffices to consider (that is, to sum together) the sizes of their vertex subsets
that dominate all vertices except the children of u, for if u is included in the dominating
set then its children are dominated by it. The value 1+

∑
v∈ch(u) B[v] corresponds to that

possibility.
If a dominating set in Tu does not include u then u has to be dominated by one of its

children. The minimum size of the dominating set for Tu in this case is the minimum over
every child v of the sum of those three:

• 1, which is the contribution of vertex v,

• the sum over all children of v of the sizes of the dominating sets of the subtrees rooted
at them, those dominating sets possibly leaving those children (of v) undominated;
the reason we can afford that is although they are undominated with respect to the
subtrees rooted at them, they get dominated with respect to the subtree rooted at v
because v is in a dominating set, and

• the sum over all other children of u (not v) of the sizes of the minimum dominating sets,
each one containing the corresponding child; the reason the child must be included is
that u is not in the overall dominating set of Tu.
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The value 1+minv∈ch(u)

{∑
w∈ch(v) B[w] +

∑
z∈(ch(u)\{v})A[z]

}
corresponds to the current

possibility.
Now consider line 10. With respect to B[u], u can be left undominated but that does not

mean it is necessarily undominated. Thus, it is possible that u is included in the set. If u is
included then all vertices in Tu are dominated, so a minimum dominating set for Tu has size
1 +
∑
v∈ch(u) B[v], the 1 reflecting the contribution of u and the B[ ] values of the children

of u reflecting the fact that all those children are dominated by u anyways. However, if
u is not included in the dominating set, we have to sum over all children the sizes of the
minimum dominating sets in their subtrees that ensure the domination of the said children
because now u cannot dominate them. The correct value in this case is

∑
v∈ch(u)A[v].

The proposed algorithm can be implemented with linear time complexity if we traverse
the tree in postorder. The recurrence relation of its time complexity is

T(1) = Θ(1)

T(n) =

m∑
i=1

T(ni) +Θ(m)

where n1, n2, . . . , nm is a numerical partition of n − 1. In contrast with IS on trees,
dynamic, it may not be immediately obvious that this recurrence relation describes the
time complexity of DS on trees. To see that recurrence is applicable to DS on trees,
note that all obtained A[ ], B[ ],

∑
A[ ], and

∑
B[ ] values up to a certain moment can

be stored and used later, i.e. when the current execution is further up in the tree. The
value

∑
z∈(ch(u)\{v})A[z] therefore can be obtained as a difference in constant time. Having

established that this recurrence relation is applicable, we use Problem 80 on page 88 to
conclude the algorithm is linear time. �

6.3.3 Dynamic Programming

Consider the following problem from The Algorithm Design Manual of Steven Skiena [Ski08,
pp. 315, Problem 8-22].

Problem 137. Consider the problem of examining a string x = x1x2 . . . xn from an alphabet
of k symbols, and a multiplication table over this alphabet. Decide whether or not it is
possible to parenthesize x in such a way that the value of the resulting expression is a, where
a belongs to the alphabet. The multiplication table is neither commutative or associative,
so the order of multiplication matters.

a b c

a a c c

b a a b

c c c c

For example, consider the above multiplication table and the string bbbba. Parenthesizing
it (b(bb))(ba) gives a, but ((((bb)b)b)a) gives c. Give an algorithm, with time polynomial
in n and k, to decide whether such a parenthesization exists for a given string, multiplication
table, and goal element.

Solution:
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String Evaluation(Σ: finite alphabet, x ∈ Σ∗, ⊗: binary operation over Σ, a ∈ Σ)
1 (∗ The algorithm computes whether there exists a parenthesisation ∗)
2 (∗ of x such that the application of ⊗ according to it ∗)
3 (∗ results in symbol a ∗)
4 let x be σ1, σ2, . . . , σn
5 let T be an n× n table with elements-subsets of Σ
6 for i← 1 to n

7 T [i, i]← σi
8 for diag← 1 to n− 1
9 for i← 1 to n− diag

10 T [i, i+ diag]← ∅
11 for k← i to i+ diag − 1
12 foreach p ∈ T [i, k]
13 foreach q ∈ T [k+ 1, i+ diag]
14 T [i, i+ diag]← T [i, i+ diag] ∪ {p⊗ q}
15 if a ∈ T [1, n]
16 return Yes
17 else
18 return No

The proposed algorithm resembles the well-known Matrix-Chain-Order (see [CLR00]),
which is not coincidental because in both cases the goal is to compute a parenthesisation
with certain properties of a linear order. Combinatorially, the number of all possible paren-
thesisations of a linear order of n objects is

Pn =

{
1, if n = 1,∑n−1
k=1 PkPn−k, if n ≥ 2

and therefore the brute force algorithm to both Matrix-Chain-Order and the current
problem would have time complexity Ω(Pn). It is well-known that Pn equals Cn−1, the
(n− 1)th Catalan number, and Cn � 4n

n
√
n

.

The proposed solution to the current problem uses a function

T : {1, 2, . . . , n}× {1, 2, . . . , n}→ 2Σ

defined as follows. For all 1 ≤ i ≤ j ≤ n, T(i, j) is the set of all p ∈ Σ such that there
is a parenthesisations of the substring σi, . . . , σj such that the application of ⊗ according
to this parenthesisation yields p. That function can be computed efficiently using a two
dimensional table for storing partial results in the following way:

T [i, j] =

{
σi, if i = j⋃j−1
k=i {p⊗ q |p ∈ T [i, k]∧ q ∈ T [k+ 1, j]}, else

(6.3)

The answer is Yes if and only if T [1, n] contains the given a. Algorithm String Evaluation
is a straightforward application of (6.3). Its time complexity is O(n3k2).

Computational Problem Partition
Generic Instance: A set A = {a1, a2, . . . , an}, a weight function w : A→ Z+
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Question: Does there exist a partitionA1, A2 ofA such that
∑
a∈A1 w(a) =

∑
a∈A2 w(a)?

�

Computational Problem Equal Sum Subsets (ESS)
Generic Instance: A set A = {a1, a2, . . . , an}, a weight function w : A→ Z+

Question: Do there exist two non-empty non-intersecting subsets A1, A2 of A such that∑
a∈A1 w(a) =

∑
a∈A2 w(a)? �

Problem 138. Design a reasonably fast algorithm for Partition.

Solution: The proposed solution is well-known.

Partition(A: set, w : A→ Z+)
1 if

(∑
a∈Aw(a)

)
mod 2 = 1

2 return No
3 S← 1

2

∑
a∈Aw(a)

4 let T be a two-dimensional, n× (S+ 1) boolean array T [1 . . . n, 0 . . . S]
5 for j← 0 to S

6 if j = 0 or j = w(a1)
7 T [1, j]← 1

8 else
9 T [1, j]← 0

10 for i = 2 to n

11 for j = 0 to S

12 T [i, j]← T [i− 1, j]∨ T [i− 1, j−w(ai)]
13 if T [n, S] = 1
14 return Yes
15 else
16 return No

The verification is straightforward. Let Ai denote the subset {a1, a2, . . . , ai}. Let T(i, j)
be the following predicate, where the domain of i is {1, 2, . . . , n} and the domain of j is {0, 1,
. . . , S}:

T(i, j) =

{
True, if ∃B ⊆ Ai :

∑
a∈Bw(a) = j

False, else

The proposed algorithm is a direct algorithmic implementation of that predicate using the
dynamic programming approach with a two-dimensional table. First note that if the sum of
all weights is odd there cannot exist such a partition, therefore the preprocessing at lines 1
and 2 is correct. Then note that T(1, j) is True for precisely two values of j:

• for j = 0 because there exists a subset B of A1, namely B = ∅, such that the sum∑
a∈Bw(a) over its elements, namely the empty sum, equals j = 0.

• for j = w(a1) because there exists a subset B of A1, namely B = {a1} = A
1, such that

the sum
∑
a∈Bw(a) over its elements equals j = w(a1).
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For all other values of j, T(1, j) is False. It follows the first row of the table is filled in
correctly (lines 5–9). The key observation is that T(i, j) for 2 ≤ i ≤ n is True iff T(i−1, j) is
True or T(i−1, j−w(ai)) is True, the reason being that Ai has a subset whose elements’
weights sum up to j iff at least one of the following is the case:

• there is a subset of Ai−1 whose elements’ weights sum up to j, in which case we do
not use element ai,

• there is a subset of Ai−1 whose elements’ weights sum up to j−w(ai), in which case
we do use element ai to obtain a subset with sum equal to j.

The time complexity of Partition is Θ(nS). Note this is not a polynomial complexity
because S can be (at worst) exponential in the size of the input if the input is encoded
succinctly, e.g. in binary. However, if S is small, i.e. at most polynomial in the size of
the input†, the time complexity would be polynomial. Algorithms whose time complexity
depends on some numbers (number S in this case) in such a way that if the numbers
are at most polynomial in the input size the time complexity is polynomial but if the
numbers are superpolynomial then the time complexity becomes superpolynomial, are called
pseudopolynomial time algorithms. �

Problem 139. Design a reasonably fast algorithm for ESS.

Solution: We point out that ESS is a generalisation of Partition. ESS becomes Parti-
tion if we impose the additional requirement that A1 ∪A2 = A. The proposed solution to
ESS is based on [CEPS08]

2ESS(A: set, w : A→ Z+)
1 S← 1

2

∑
a∈Aw(a)

2 let T be a three-dimensional, n×(S+1)×(S+1) boolean array T [1 . . . n, 0 . . . S, 0 . . . S]
3 for j← 0 to S

4 for k← 0 to S

5 if (j = k = 0) or (j = w(a1) and k = 0) or (j = 0 and k = w(a1))
6 T [1, j, k]← 1

7 else
8 T [1, j, k]← 0

9 for i = 2 to n

10 for j = 0 to S

11 for k = 0 to S

12 T [i, j, k]← T [i− 1, j, k]∨ T [i− 1, j−w(ai), k]∨ T [i− 1, j, k−w(ai)]
13 for j← 1 to S

14 if T [n, j, j] = 1
15 return Yes
16 return No

Let Ai denote the subset {a1, a2, . . . , ai}. Let T(i, j, k) be the following predicate, where

†S is at most polynomial in the input size if its representation under a sane encoding is at most logarithmic
in the input size.
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the domain of i is {1, 2, . . . , n}, the domains of both j and k is {0, 1, . . . , S}:

T(i, j, k) =

{
True, if ∃B,C ⊆ Ai : B ∩ C = ∅∧

∑
a∈Bw(a) = j∧

∑
a∈Cw(a) = k

False, else

The proposed algorithm is a direct algorithmic implementation of that predicate using the
dynamic programming approach with a three-dimensional table. Note that T(1, j, k) is
True for precisely three values of the ordered pair 〈j, k〉:

• for 〈0, 0〉 because there exist subsets B,C of A1, namely B = ∅ and C = ∅ such that
the sum

∑
a∈Bw(a) equals j = 0 and the sum

∑
a∈Cw(a) equals k = 0.

• for 〈w(a1), 0〉 because there exists a subset B of A1, namely B = {a1} = A
1, such that

the sum
∑
a∈Bw(a) equals j = w(a1) and there exists a subset C = ∅ of A1 such

that the sum
∑
a∈Cw(a) equals k = 0.

• for 〈0,w(a1)〉, the argument being completely analogous to the argument above.

For all other values of 〈j, T(1, j) is False. It follows the first row of the table is filled
in correctly (lines 3–8). The key observation is that T(i, j, k) for 2 ≤ i ≤ n is True iff
T(i − 1, j, k) is True or T(i − 1, j − w(ai), k) is True or T(i − 1, j, k − w(ai)) is True.
The reason is that Ai has two subsets B and C whose elements’ weights sum up to j and k,
respectively, iff at least one of the following is the case:

• there are such subsets of Ai−1, in which case we do not use element ai,

• there is a subset B ′ of Ai−1 whose elements’ weights sum up to j−w(ai) and a subset
C ′ of Ai−1 whose elements’ weights sum up to k, in which case B = B ′ ∪ {ai} and
C = C ′.

• there is a subset B ′ of Ai−1 whose elements’ weights sum up to j and a subset C ′

of Ai−1 whose elements’ weights sum up to k − w(ai), in which case B = B ′ and
C = C ′ ∪ {ai}.

The time complexity of 2ESS is Θ(nS2) and so it is another pseudopolynomial time
algorithm. �
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Chapter 7

Intractability

7.1 Several NP-complete decision problems

Suppose Π1 and Π2 are computational decision problems version, i.e. with Yes/No an-
swers. A polynomial reduction from Π1 to Π2 is a polynomial-time computable (total)
function f : Π1 → Π2 such that ∀x ∈ Π1 : x ∈ YΠ1 iff f(x) ∈ YΠ2 . The fact that Π1 reduces
to Π2 by a polynomial reduction is denoted by Π1 ∝ Π2. Here is a list of several decision
problems:

Computational Problem SAT
Generic Instance: A set of boolean variables X = {x1, x2, . . . , xn}, a CNF† Q on them
Question: Does there exist a truth assignment for X that satisfies Q? �

Computational Problem 3SAT
Generic Instance: A set of boolean variables X = {x1, x2, . . . , xn}, a CNF Q on them
with precisely 3 literals per clause
Question: Does there exist a truth assignment for X that satisfies Q? �

Computational Problem Vertex Cover (VC)
Generic Instance: A graph G, k ∈ N
Question: Does G have a vertex cover of size ≤ k? �

Computational Problem Dominating Set (DS)
Generic Instance: A graph G, k ∈ N
Question: Does G have a dominating set of size ≤ k? �

Computational Problem Independent Set (IS)
Generic Instance: A graph G, k ∈ N
Question: Does G have an independent set of size ≥ k? �

†CNF means Conjunctive Normal Form.
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Computational Problem Clique
Generic Instance: A graph G, k ∈ N
Question: Does G have a clique of size ≥ k? �

Computational Problem 3-Dimensional Matching (3DM)
Generic Instance: A set A ⊆ B × C ×D where B, C, and D are pairwise disjoint sets
such that |B| = |C| = |D| = n.
Question: Does A contain matching, i.e. a subset A ′ ⊆ A such that |A ′| = n and

∀α = (aα, bα, cα) ∈ A ′ ∀β = (aβ, bβ, cβ) ∈ A ′ : α 6= β→ aα 6= aβ∧bα 6= bβ∧cα 6= cβ ?

�

For brevity, let us call such ordered triples component-wise distinct. In that terminology,
the 3DM problem is: do there exist component-wise distinct triples in A such that every
element from B, C, and D is in (precisely) one of them? Obviously, this is the same question
as: do there exist n component-wise distinct triples in A?

Computational Problem Hamiltonian Cycle (HC)
Generic Instance: A graph G = (V, E)
Question: Is there a Hamiltonian cycle in G? �

Computational Problem Partition
Generic Instance: A set A = {a1, a2, . . . , an}, a weight function w : A→ Z+

Question: Does there exist a partitionA1, A2 ofA such that
∑
a∈A1 w(a) =

∑
a∈A2 w(a)?

�

Computational Problem Knapsack
Generic Instance: A set A = {a1, a2, . . . , an}, a weight function w : A → Z+, a value
function v : A→ Z+, a size constraint B ∈ Z+, a value goal K ∈ Z+

Question: Is there a subset A ′ ⊆ A such that∑
a∈A ′

w(a) ≤ B and
∑
a∈A ′

v(a) ≥ K ?

�

Computational Problem Traveling Salesman Problem (TSP)
Generic Instance: A finite set of locations C = {c1, c2, . . . , cn}, a distance function
dist : C× C→ Z+†, a bound B ∈ N+

Question: Does there exist a permutation π of all locations

cπ(1), cπ(2), . . . , cπ(n)

such that
(∑n

i=1 dist(cπ(i), cπ(i+1))
)
+ dist(cπ(n), cπ(1)) ≤ B ? �

†We can assume dist(x,y) is 0 for x = y and also equals dist(y,x).
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Definition 10. For any two paths in a directed or undirected graph we say they are edge-
disjoint if they have no common edges, they are vertex-disjoint if they have no common
vertices, and they are internally vertex-disjoint if they have no common vertices except
possibly for common endpoints. �

Computational Problem Edge-Disjoint Paths (EDP)
Generic Instance: A directed graph G = (V, E), a list of tuples (s1, t1), . . . , (sk, tk) of
vertices from V.
Question: Do there exist k edge-disjoint directed paths

p1 = s1, . . . , t1

p2 = s2, . . . , t2

. . .

pk = sk, . . . , tk

in G? �

Computational Problem Vertex-Disjoint Paths (VDP)
Generic Instance: A directed graph G = (V, E), a list of tuples (s1, t1), . . . , (sk, tk) of
vertices from V.
Question: Do there exist k internally vertex-disjoint† directed paths

p1 = s1, . . . , t1

p2 = s2, . . . , t2

. . .

pk = sk, . . . , tk

in G? �

Subsections 7.2.11 on page 229 and 7.2.12 on page 230 prove the well-known fact that EDP
and VDP are computationally equivalent modulo a polynomial factor. Both EDP and VDP
can be defined on undirected graphs. The directed and undirected versions of the problem
have dramatically different complexities: while the directed versions are NP-complete (see
subsection 7.2.10 on page 224 for the NP-hardness; the fact that the problems are in NP
is trivial) and remain so even for k = 2 [FHW80], the undirected version is in P for every
fixed k [RS95]. A survey of several versions of the disjoint paths problems can be found in
[Pap95, pp. 214–215].

†It is necessary to use the weaker concept of vertex-disjointness, viz. “internally vertex-disjoint”, because
the tuples may have vertices in common.
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7.2 Polynomial Reductions

7.2.1 SAT ∝ 3SAT

Suppose X = {x1, x2, . . . , xn} is a set of boolean variables and Q = {q1, q2, . . . , qm} is a
CNF on them. For each qi, 1 ≤ i ≤ m, we do the following contruction.

Case i: If qi has a single literal, i.e. qi = (y) for some literal y over X, add two variables
u1,i, u2,i that are not in X and are not going to be used anywhere else in our construction,
and construct the four clauses:

q1i = (y, u1,i, u2,i), q
2
i = (y, u1,i, u2,i), q

3
i = (y, u1,i, u2,i), q

4
i = (y, u1,i, u2,i)

Let Q ′ = (Q \ {qi}) ∪ {q1i , q
2
i , q

3
i , q

4
i }. We claim that Q is satisfiable iff Q ′ is satisfiable.

Indeed, if Q is satisfiable then every satisfying assignment t for Q must set literal y to
True. Then any assignment t ′ for Q ′ that agrees with t on all variables except for ui,1
and ui,2 satisfies each one of q1j for 1 ≤ j ≤ 4. It follows t ′ is a satisfying assignment for
Q ′. In the other direction, a satisfying assignment t ′ for Q ′ implies a satisfying assignment
t for Q, t being the restriction of t ′ on the variables from X. To see why note that t ′ must
set y to True because if y is set to False there is no way to satisfy q1j for 1 ≤ j ≤ 4

simultaneously with u1,i and u2,i.

Case ii: If qi has precisely two literals, i.e. qi = (y, z) for some literals y and z over X,
add a single variable vi that is not in X and is not going to be used anywhere else in our
construction, and construct the two clauses:

q1i = (y, z, vi), q
2
i = (y, z, vi)

The justification of that construction is analogous to above.

Case iii: If qi has precisely three literals we leave it as it is.

Case iv: And finally suppose qi has > 3 literals. Let qi = (y1, y2, . . . , yk) for some
k > 3. Add k− 3 new variables u1,i, u2,i, . . . , uk−3,i that are not in X and are not going
to be used anywhere else in our construction. Construct k− 2 new clauses:

q1i = (y1, y2, u1,i),

q2i = (u1,i, y3, u2,i),

q3i = (u2,i, y4, u3,i),

. . .

qk−4i = (uk−5,i, yk−3, uk−4,i),

qk−3i = (uk−4,i, yk−2, uk−3,i),

qk−2i = (uk−3,i, yk−1, yk)

Let Q ′ = (Q \ {qi}) ∪ {q1i , q
2
i , . . . , q

k−2
i }. We prove that Q is satisfiable iff Q ′ is satisfiable.

=⇒ Suppose there is a satisfying assignment t for Q. At least one of the literals y1,
y2, . . . , yk must be set to True by t. We construct a truth assignment t ′ for X∪ {u1,i, u2,i,
. . . , uk−3,i} that agrees with t on all variables from X and assigns the following values to
u1,i, u2,i, . . . , uk−3,i.
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• If t(y1) = True or t(y2) = True then

t ′(u1,i) = False

t ′(u2,i) = False

. . .

t ′(uk−3,i) = False

In this case, q1i is satisfied by y1 or y2, and q2i , . . . , qk−2i are satisfied by u1,i, . . . ,
uk−3,i, respectively.

• Suppose t(yj) = True for some j such that 3 ≤ j ≤ k − 2. Note yj is in the clause

q
j−1
i = (uj−2,i, yj, uj−1,i). The truth assignments for the uj,i variables are

t ′(u1,i) = True

t ′(u2,i) = True

. . .

t ′(uj−2,i) = True

t ′(uj−1,i) = False

t ′(uj,i) = False

. . .

t ′(uk−3,i) = False

Note that

◦ qj−1i is satisfied by yj,

◦ q1i , . . . , qj−2i are satisfied by the literals u1,i, . . . , uj−2,i, respectively, and

◦ qji, . . . , qk−2i are satisfied by uj−1,i, . . . , uk−3,i, respectively.

• If t(yk−1) = True or t(yk) = True then

t ′(u1,i) = True

t ′(u2,i) = True

. . .

t ′(uk−3,i) = True

In this case, qk−2i is satisfied by yk−1 or yk, and q1i , . . . , qk−2i are satisfied by u1,i,
. . . , uk−3,i, respectively.

⇐= Suppose there is a satisfying assignment t ′ for Q ′. But at least one of y1, . . . ,
yk is assigned True by t ′( ) – assume the opposite and see there is no way the clauses q1i ,
. . . , qk−2i are satisfied simultaneously by the u1,i and uj,i literals.

That concludes the proof that Q is satisfiable iff Q ′ is satisfiable. The fact that the con-
struction can be carried out in polynomial time is patently obvious.
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7.2.2 3SAT ∝ 3DM

Consider an arbitrary instance of 3SAT: a set X = {x1, x2, . . . , xn} of boolean variables and
CNF Q = {q1, q2, . . . , qm}, each clause qj being a disjunction of precisely 3 literals over X.
We are going to construct three pairwise disjoint sets B, C, and D such that |B| = |C| = |D|

and a set A ⊆ B × C ×D such that A contains |B| componentwise-distinct triples iff Q is
satisfiable. The sets B, C, and D are

B = {ui,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪
{vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

C = {yi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪
{s1,j | 1 ≤ j ≤ m}∪
{g1,j | 1 ≤ j ≤ m(n− 1)}

D = {zi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪
{s2,j | 1 ≤ j ≤ m}∪
{g2,j | 1 ≤ j ≤ m(n− 1)}

with 6mn elements altogether. The set A is

A = (∪ni=1A1,i)
⋃(
∪mj=1A2,j

)⋃
A3,u

⋃
A3,v

where

A1,i = {(ui,j, yi,j, zi,j) | 1 ≤ j ≤ m}∪ (7.1)

{(vi,j, yi,j+1, zi,j) | 1 ≤ j < m} ∪ {(vi,m, yi,1, zi,m)}

A2,j = {(ui,j, s1,j, s2,j) | xi is a literal in qj} ∪ {(vi,j, s1,j, s2,j) | xi is a literal in qj}
(7.2)

A3,u =
{
(ui,j, g1,k, g2,k) | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ m(n− 1),

ui,j does not occur in any triple of A3,j, for any j
}

A3,v =
{
(vi,j, g1,k, g2,k) | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ m(n− 1),

vi,j does not occur in any triple of A3,j, for any j
}

It is obvious the construction can be performed in linear time. Now we prove that Q is
satisfiable iff A has a subset A ′ that is a three-dimentional matching by giving a small
example and generalising it. The reduction is based on two main ideas, the first of which
is the following. Suppose we are given a set of triples that contains a circular-shaped
substructure like the one shown on Figure 7.1. Suppose that the red elements do not
appear in any other triple while the black elements appear in other triples. The only way
to achieve a 3DM is to choose every other triple from that substructure with respect to
the circular arrangement. Needless to say, if the number of triples in this structure is odd
then the task cannot be accomplished. We discuss the second idea further on. Consider the
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Figure 7.1: A circular arrangements of triples that is a subset of a larger set of
triples. The red elements do not appear in other triples while the black elements
do. There can be no matching in the larger set (not shown) unless it contains two
of the shown triples that are not adjacent in the circular arrangement, i.e. have
empty intersection.

u1,1

v1,1v1,4

v1,2
v1,3

u1,3

u2,1

v2,1v2,4

v2,2
v2,3

u2,3

u3,1

v3,1v3,4

v3,2
v3,3

u3,3

u1,4

u
1,2

u2,4

u
2,2

u3,4

u
3,2A1,1 A1,2 A1,3

Figure 7.2: The three stars in the construction for Q = (x1∨x2∨x3)(x1∨x2∨x3)
(x1∨ x2∨ x3)(x1∨ x2∨ x3). A1,1 corresponds to x1, A1,2 corresponds to x2, and
A1,3 corresponds to x3.

following CNF:

Q = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)

A satisfying truth assignment for it is, say t(x1) = t(x2) = 1, t(x3) = 0. Now n = 3 and
m = 4. Our construction uses 6× 4× 3 = 72 set elements, partitioned among B, C, and D.
We call the sets A1,i, the stars. Each of the three stars A1,1, A1,2, and A1,3 has 2× 4 = 8
triples as dictated by equation (7.1) on the preceding page, arranged in a circular order
as shown on Figure 7.2. Star A1,i corresponds to variable xi. In each star only the ui,j
and vi,j elements are named because they will take part in other triples further on. The
anonymous elements do not take part in any other triples. Those anonymous elements are
the yi,j and the zi,j elements. In each star A1,i, the ui,j elements for 1 ≤ j ≤ m model
the appearance of the literal xi in clause qj while the vi,j elements for 1 ≤ j ≤ m model
the appearance of the literal xi in clause qj

†. In order to obtain a valid 3DM, for each star
either all shaded, or all unshaded, triples must be put in the matching because the yi,j’s
and zi,j’s (the anonymous dots around the inside on Figure 7.2) are not in any other triples,
so if we leave some of them “uncovered” now they will never be “covered”. In other words,

†Of course, not every possible literal appears in every clause. The “garbage collection” triples we introduce
further on take care of that.
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v2,1
v1,1 v3,1

u2,2
v1,2

v2,3
u1,3

u2,4
u1,4 v3,4u3,3u3,2

A2,1 A2,2 A2,3 A2,4

Figure 7.3: The four crowns in the construction for Q = (x1∨x2∨x3)(x1∨x2∨x3)
(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3). A2,1 corresponds to clause q1 and so on. The red
dots represent the common anonymous elements.

for each variable xi, either we assign it True in every clause, or we assign it False in every
clause. Which, of course, it the right thing to do. The convention we follow is that picking
the u values for variable xi assigns False to it and picking the v values assigns True to it.

Now consider the sets of triples A2,j defined by (7.2). We call those sets, “the crowns”.
In this example the crowns are four and crown A2,j corresponds to clause qj for 1 ≤ j ≤ 4.
Each crown is the overlap of three triples, each two of them sharing the same two common
elements s1,j, s2,j. Now those common elements are the anonymous elements, the ones that
do not appear in any other triples. See Figure 7.3 for illustration. The anonymous red dots
represent the elemens s1,j, s2,j that do not appear in any other triple. The u and v elements
from the crowns are shared with the hitherto defined stars. See Figure 7.4 which illustrates
the joining together of the stars and the crowns. The purpose of the crowns is to make sure
the matching, if one exists, corresponds to a satisfying assignment. Obviuosly, exactly one
of the triples from each crown participates in the matching, which corresponds to the fact
that each clause must be satisfied. For each crown, “the spike” of its participating triple,
i.e. the element of the participating triple that is u or v, is of crucial importance. That
spike is shared with some star. Because of that sharing, in the said star, the triples from
that star that are in the matching have opposite truth values to the truth value of the spike.
Recall that the truth values are encoded by the correspondence

u corresponds to False, v corresponds to True.

The other two spikes of the crown are elements that, in order to be covered in the matching,
must be covered by the stars they are in.

Now we argue that a satisfying assignment of Q corresponds to a 3DM in the structure we
built. Recall that in our examples the CNF is:

Q = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)

In each clause that has to be a literal that is True. Let x1 be the literal that is True
in q1 = (x1 ∨ x2 ∨ x3). We model that by chosing the triple (v1,1, s1,1, s2,1) from A2,1.
That choice has the following consequences with respect to the matching. See Figure 7.5
for an illustration. All colour-coding on the figure is removed except for the green colour
of (v1,1, s1,1, s2,1). Now v1,1 in A1,1 is covered and thus the triple of A1,1 containing v1,1
cannot be in the matching. The triples of A1,1 that must be in the matching are shown in
blue on Figure 7.6. Putting the blue triples into the matching in its turn has consequences.
Since the blue triples have u elements in them, all u values from A1,1 that are shared with
other crowns become unusable for connecting A1,1 to other crowns. For instance, u1,3 is
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v3,1

u 3
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u2,4 u3,4

u2,2 u3,2
A1,1 A1,2 A1,3

Figure 7.4: The stars and the crowns together. The CNF is Q = (x1 ∨ x2 ∨ x3)
(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3).
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Figure 7.5: The reduction 3SAT ∝ 3DM. The CNF is Q = (x1 ∨ x2 ∨ x3)
(x1∨ x2∨ x3)(x1∨ x2∨ x3)(x1∨ x2∨ x3). x1 is assigned True in the first clause
(x1 ∨ x2 ∨ x3). We model that by choosing (v1,1, s1,1, s2,1) from A2,1 (in green).
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Figure 7.6: The reduction 3SAT ∝ 3DM. The CNF is Q = (x1 ∨ x2 ∨ x3)
(x1∨x2∨x3)(x1∨x2∨x3)(x1∨x2∨x3). The green triple forces the blue triples.
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shared with A2,3 and now it is certain the triple from A2,3 that has u1,3 in its spike is not
going to be in the matching. The same fact, translated into the language of the CNF, says
that the choice of x1 as literal to satisfy q1 forbids the choice of x1 as a literal to satisfy
q3. Likewise, the fact that the triple of A1,1 having u1,4 is in the matching means that
the triple of A2,4 having u1,4 is not in the matching. Figure 7.7 shows those “forbidden
triples”.

There has to be a literal in the second clause that is True. Suppose that is x1 again. We
model that by placing (v1,2, s2,1, s2,2) in the matching (see Figure 7.8). That choice forces
no consequences. It is consistent with the previous choice but that is all. There has to be
a literal in the third clause that is True. Suppose that is x2. We model that by placing
(v2,3, s1,3, s2,3) in the matching (see Figure 7.9) and that forces the placement of half the
triples from A1,2 in the matching. Finally we choose x3 from the fourth clause to be True
and model that by placing (v3,4, s1,4, s2,4) in the matching (see Figure 7.10)

It is not difficult to the converse. Namely, if there is a matching, i.e. a subset of the
constructed triples, there is a satisfying truth assignment for the CNF.

To complete the argument we have to consider a certain technicality. Not every spike
of every star is covered by the matching, if one exists. On Figure 7.10 precisely 8 star
spikes are outside the matching. The reader is invited to check that the triples A3,u and
A3,v, called collectively garbage collection gadget, “take care” of all star spikes that are left
unshared by the construction so far.

7.2.3 3SAT ∝ VC

Consider an arbitrary instance of 3SAT: a set X = {x1, x2, . . . , xn} of boolean variables and
CNF Q = {q1, q2, . . . , qm}, each clause qj being a disjunction of precisely 3 literals over X.
We are going to construct a graph G = (V, E) and a number k such that G has vertex cover
of size ≤ k iff Q is satisfiable. The vertex set V is

V = {ui | 1 ≤ i ≤ n} ∪ {vi | 1 ≤ i ≤ n} ∪ {zi,j | 1 ≤ i ≤ 3, 1 ≤ j ≤ m}

The edge set E is

E = {(ui, vi) | 1 ≤ i ≤ n} ∪ {(zi,j, zk,j) | i, k ∈ {1, 2, 3}, i 6= k, 1 ≤ j ≤ m} ∪ E ′

where E ′ = ∪mi=1E ′j, where for any 1 ≤ i ≤ m, E ′j is:

E ′j = {(z1,j, aj), (z1,j, bj), (z1,j, cj)}

The vertices aj, bj, and cj correspond to the three distinct literals of clause qj as follows.
Assume some order, it does not matter what, is imposed on the literals of qj, say qj =
(y1, y2, y3). If y1 is without negation then it is some xk and so aj is set to uk; otherwise
aj is set to vk. Likewise, if y2 is without negation then it is some xp and so bj is set to up;
otherwise bj is set to vp; and if y3 is without negation then it is some xq and so cj is set
to uq; otherwise cj is set to vq.

To complete the construction we must specify k as well. k is n+ 2m.

It is obvious the construction can be done in polynomial time. Before we argue about its
correctness, consider a small example. Let

Q = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)
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Figure 7.7: The reduction 3SAT ∝ 3DM. The CNF is Q = (x1 ∨ x2 ∨ x3)
(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3). Once the blue triples are in the
matching, the two triples crossed with red lines are out of the question.
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Figure 7.8: The reduction 3SAT ∝ 3DM. The CNF is Q = (x1 ∨ x2 ∨ x3)
(x1∨x2∨x3)(x1∨x2∨x3)(x1∨x2∨x3). We put (v1,2, s1,2, s2,2) in the matching
(in yellow). That choice is consistent with the former choice (in green) but forces
nothing.
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Figure 7.9: The reduction 3SAT ∝ 3DM. The CNF is Q = (x1 ∨ x2 ∨ x3)
(x1∨x2∨x3)(x1∨x2∨x3)(x1∨x2∨x3). We put (v2,3, s1,3, s2,3) in the matching (in
magenta). That forces the addition of the blue triples from A1,2 to the matching.
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Figure 7.10: The reduction 3SAT ∝ 3DM. The CNF is Q = (x1 ∨ x2 ∨ x3)
(x1∨x2∨x3)(x1∨x2∨x3)(x1∨x2∨x3). We put (v3,4, s1,4, s2,4) in the matching
(in ). That forces the addition of the blue triples from A1,3 to the matching.
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u1 v1 u2 v2 u3 v3

z2,1 z3,1 z2,4 z3,4z2,2 z3,2 z2,3 z3,3

z1,2 z1,3 z1,4z1,1

Figure 7.11: The reduction 3SAT ∝ VC: that is the graph corresponding to
Q = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3).

u1 v1 u2 v2 u3 v3

z2,1 z3,1 z2,4 z3,4z2,2 z3,2 z2,3 z3,3

z1,2 z1,3 z1,4z1,1

Figure 7.12: The reduction 3SAT ∝ VC: having chosen u1, u2, and v3 to be in
the vertex cover. The red edges are the “covered” ones, the black edges are yet
to be covered.

Figure 7.11 shows the graph we construct. A satisfying truth assignment for it is, say
t(x1) = t(x2) = 1, t(x3) = 0. For each of the three edges on the top row, at least one vertex
from it has to be in the vertex cover. Choosing a vertex among, say, u1 and v1 translates to
choosing a boolean value, True or False, respectively, for x1. The chosen correspondence

the u vertex corresponds to True, the v vertex corresponds to False

means we choose u1, u2, and v3 on the top row. As a consequence, all edges with at least
one endpoint in that vertex set are “covered”. See Figure 7.12 for illustration. It is obvious
that in each of the four 3-cliques on the bottom, we have to choose 2 vertices and place them
in the vertex cover – choosing less than 2 vertices would not do. In the concrete example
we can proceed as suggested by Figure 7.13. The key observation is that if the maximum
number of vertices in the vertex cover is n + 2m, in the concrete example that is 11, we
cannot afford to choose all three vertices from any of the 3-cliques. Having left out of the
vertex cover precisely one vertex from each 3-clique, the edges incident to that vertex have
to be taken care of by their other endpoints, namely the endpoints from the edges above.
Recall that choosing vertices from the edges above translates as choosing boolean values for
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u1 v1 u2 v2 u3 v3

z2,1 z3,1 z2,4 z3,4z2,2 z3,2 z2,3 z3,3

z1,2 z1,3 z1,4z1,1

Figure 7.13: The reduction 3SAT ∝ VC: having chosen appropriately two ver-
tices from each 3-clique, the graph is covered.

every variable. It follows that if there is a satisfying assignment we can make such choice
for each edge above that all 3-cliques at the bottom will have a vertex, such that all edges
incident to it with other endpoint some vertex from the top row, can safely be left out of a
vertex cover. The argument in the opposite direction is trivial. �

7.2.4 VC ∝ HC

7.2.5 3DM ∝ Partition

Suppose A ⊆ B × C × D is an instance of 3DM such that |B| = |C| = |D| = n and
A = {a1, a2, . . . , am}. We construct a set S and function w : S → Z+ such that ∃S ′ ⊂ S
such that

∑
x∈S ′ w(s) =

∑
x∈S\S ′ w(s) iff A has a matching as specified by 3DM. S contains

m + 2 elements altogether. Say, S = {s1, s2, . . . , sm+2}. All we have to do is specify the
weight function w( ).

First we specify the weight function for s1, s2, . . . , sm. Assume sj corresponds to aj,
for 1 ≤ j ≤ m. Let p = blog2 nc + 1, i.e. the number of bits necessary to represent n in
binary. Let σj for 1 ≤ j ≤ m be binary strings of length 3np that we define below. For any
binary string x let ν(x) be number encoded by x in binary. We define w(sj) to be ν(σj).
σj is the concatenation of three 3 substrings of equal length

σj = σj,1σj,2σj,3

σj,1 corresponds to B, σj,2 to C, and σj,3, to D. Each σj,i is further subdivided into n
substrings of length p:

σj,i = σj,i,1σj,i,2 . . . σj,i,n

σi,1,k corresponds to bk for 1 ≤ k ≤ n, σi,2,k corresponds to ck for 1 ≤ k ≤ n, and σi,3,k
corresponds to dk for 1 ≤ k ≤ n. In every σj for 1 ≤ j ≤ m we place exactly three symbols
1 in sj; the remainder is filled in with 0’s. Now we define in which positions we place the
1’s. Suppose that

f, g, h : {1, 2, . . . ,m}→ {1, 2, . . . , n}

are functions such that:
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• f(j) is the index of the b-element of aj,

• g(j) is the index of the c-element of aj, and

• h(j) is the index of the d-element of aj,

for 1 ≤ j ≤ m. We put 1’s in σj at positions bf(j), cg(j), and dh(j). It is not difficult to see
that

ν(σj) = 2
p(3n−f(j)) + 2p(2n−g(j)) + 2p(n−h(j))

Let Z = {σj | 1 ≤ j ≤ m}. For each string σj ∈ Z we define the zones of σj as the 3n
substrings, each of length p, in it. Collectively, the zones are the indices of those substrings,
the substrings being the abovementioned σj,i,k. If we add all σj strings together in the sense
of binary addition, there will never be carry from one zone to the next because all zones
have length p and by construction that suffices to accomodate the sum of at most n 1’s.
Consequently, for any subset of the set of strings, adding the elements together does not
lead to carry. Let

H =

3n−1∑
t=0

2pt

H is the number that has, in binary, is represented by a string of length 3np that has 1 in
the rightmost position of every zone and 0 elsewhere. The key observation is that for any
X ⊆ Z, it is the case that∑

x∈X
ν(x) = H iff the subset of A corresponding to X is a matching. (7.3)

That observation is straightforward: if the subset of A corresponding to X is a matching then
the strings of X will “cover” precisely once with 1 each position (among the 3np positions)
that is the rightmost position of a zone; conversely, if the subset of A corresponding to X
is not a matching then at least one rightmost position of a zone will not be covered or will
be covered more than once – in both cases

∑
x∈X ν(x) cannot be H.

Finally we define the weights of the last two elements of S that we called sm+1 and
sm+2:

w(sm+1) = 2

 m∑
j=1

ν(σj)

−H

w(sm+2) =

 m∑
j=1

ν(σj)

+H

That is the end of our construction. Clearly, it can be done in polynomial time.

Now we argue about the correctness of the reduction. Note that if S has a triple that
contains b1, which certainly is the case if S has a matching, then w(sm+1) is positive. Also

note that w(sm+1) +w(sm+2) = 3
(∑m

j=1 ν(σj)
)

. Then

m+2∑
j=1

ν(σj) = 4

 m∑
j=1

ν(σj)

 (7.4)
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Now suppose ∃S ′ ⊂ S such that
∑
x∈S ′ w(x) =

∑
x∈S\S ′ w(x). Considering (7.4), it

must be the case that
∑
x∈S ′ w(x) =

∑
x∈S\S ′ w(x) = 2

(∑m
j=1 ν(σj)

)
. Elements sm+1

and sm+2 cannot be both in S ′ or in S\S ′ because w(sm+1)+w(sm+2) = 3
(∑m

j=1 ν(σj)
)

.

So, precisely one of S ′ or in S \ S ′ contains sm+1. Without loss of generality let S ′ contain
sm+1. Then

∑
z∈S ′\{sm+1}

w(z) = 2

 m∑
j=1

ν(σj)


︸ ︷︷ ︸

the total weight of S ′

−

2
 m∑
j=1

ν(σj)

−H

︸ ︷︷ ︸
the value of sm+1

 = H

So, if there is a partition then the remaining elements from one subset must have weights
that sum to H. By (7.3), a subset whose weights sum to H in the Partition instance is
equivalent to the existence of matching in the 3DM instance.

On the other hand, if A ′ ⊆ A is a matching, then the sum of the weights of its cor-
responding strings is H by (7.3), therefore the set {sm+1} ∪ {σj |aj ∈ A ′} has total weight

H+ 2
(∑m

j=1 ν(σj)
)
−H = 2

(∑m
j=1 ν(σj)

)
and thus it is an yes-instance of Partition.

Now we give an example. Suppose B = {b1, b2, b3, b4}, C = {c1, c2, c3, c4}, and D =
{d1, d2, d3, d4} are sets and A is an instance of 3DM:

A = {(b1, c1, d1), (b3, c2, d2), (b2, c3, d4), (b4, c4, d3),

(b1, c2, d2), (b2, c3, d3), (b3, c1, d1), (b4, c4, d3)}

So, n = 4, m = 8, and p = 4. We are going to define 8 binary strings, each one of length
3 × 4 × 4 = 48. Each string is divided into 12 zones, each zone 4 positions long. The
correspondence between the zones and the elements of B, C, and D is shown below:

b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4

The 8 strings are shown on Figure 7.14 with the correspondence between them and the
elements of A. Rather than writing zeroes and ones, we represent the strings as arrays
of positions that are empty (zero) or filled in (one). The rightmost position is the least
significant bit, etc.. The concrete numerical values of the strings are not important and
we leave them out. The reader may verify that the string on top, if read in binary, has
numerical value 212 + 212+16 + 212+32 = 17 592 454 483 968, etc. Figure 7.14 also shows
the result of the binary addition denoted by Σ. Clearly, there is no carry out of any of the
zones. The 12 zones are not shown explicitly, only the regions corresponding to B, C, and
D are outlined. The value H written as a binary string is shown on Figure 7.15. Verify the
crucial observation (7.3): the instance has a matching, namely

A ′ = {(b1, c1, d1), (b3, c2, d2), (b2, c3, d4), (b4, c4, d3)}

and indeed the strings corresponding to the triples in A ′ (the four top rows on Figure 7.14)
sum precisely to H.
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(b1, c1, d1)

(b3, c2, d2)

(b2, c3, d4)

(b4, c4, d3)

(b1, c2, d2)

(b2, c3, d3)

(b3, c1, d1)

(b4, c4, d3)

+

Σ

Figure 7.14: Each array of boxes represents a binary string, an empty box corre-
sponding to a zero and a filled-in box corresponding to a one.

Figure 7.15: The number H =
∑3n−1
t=0 2pt in binary.

7.2.6 VC ∝ DS

Assume 〈G = (V, E), k〉 is an instance of VC. Assume without loss of generality G has no
vertices of degree 0 – if there were such isolated vertices, each of them would be necessarily
in any dominating set. Construct the following graph G ′ = (V ∪ V ′, E ∪ E ′) where V ′ and
E ′ are obtained as follows. For each edge e = (u, v) from E, add a new vertex we to V ′ and
add two new edges (u,we) and (we, v) to E ′. We claim G ′ has dominating set of size s iff
G has vertex cover of size k.

In one direction, assume U ⊂ V is a vertex cover for G. We prove U is a dominating
set for G ′. Consider any vertex z of G ′. If z is from U then z is dominated, being in the
dominating set. If z is one of the newly added vertices V ′ then z has a neighbour in U
because by construction z has two neighbours precisely and they are the endpoints of some
original edge e from E and since U is a vertex cover for G at least one endpoint of e is in
U. Finally, if z is from V \U note that z has a neighbour in U because there is at least one
edge incident with z and it must have an endpoint in U.

In the other direction, assume U is a dominating set for G ′. It is easy to see that if
there are vertices from V ′ in U, for each we ∈ V ′∩U we can substitute we with either of its
two neighbours in the dominating set; precisely the same vertices are dominated after that
operation and the size of the dominating set does not increase. So we can assume without
loss of generality that V ′ ∩U = ∅. Since U is a dominating set for G ′,

for every vertex from V ∪ V ′, it is in U or has a neighbour in U.

In particular,

for every vertex from V ′, it is in U or has a neighbour in U.

But we just pointed out a construction, according to which it is possible to assume V ′∩U =
∅. The statement becomes

for every vertex from V ′ it has a neighbour in U.

Clearly, that implies for every edge from E at least one of its endpoints in is U. Then by
definition U is a vertex cover for G.
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7.2.7 HC ∝ TSP

Suppose G(V, E) is an instance of HC and V = {v1, v2, . . . , vn}. Construct an instance of
TSP as follows. Let the locations be {c1, c2, . . . , cn}. Define the distances thus

∀ci, cj : dist(ci, cj) =


0, if i = j,

1, if i 6= j and (vi, vj) ∈ E
2, else

Let the bound B be n.
Assume G has a Hamiltonian cycle. Then in the TSP instance there is a permutation of

the locations cπ(1), cπ(2), . . . , cπ(n) such that
∑n
i=1 dist(cπ(i), cπ(i+1)) = n − 1, therefore(∑n

i=1 dist(cπ(i), cπ(i+1))
)
+ dist(cπ(n), cπ(1)) = n. In the other direction, consider any

permutation π such that
(∑n

i=1 dist(cπ(i), cπ(i+1))
)
+ dist(cπ(n), cπ(1)) ≤ n. Since the

distances are either 1 or 2, by Dirichlet’s principle it must be the case that all weights are
ones, therefore in G there is a simple cycle containing all vertices that corresponds to the
said permutation. But that is a Hamiltonian cycle. �

7.2.8 Partition ∝ Knapsack

Suppose A = {a1, a2, . . . , an} is a set and w : A → Z+ is a weight function on it. Let the
instance of Knapsack have the same set and weight function, and let the value function be
v(a) = w(a), ∀a ∈ A. Let size constraint B and the value goal K be B = K = 1

2

∑
a∈Aw(a).

Assume the instance of Partition is an yes-instance. Then ∃A ′ ⊂ A such that∑
a∈A ′ =

1
2

∑
a∈Aw(a). It is a trivial observation that then the size and value constraints

are satisfied. In the other direction, if the said size and value constraints are satisfied, which
means the instance is an yes-instance of Knapsack, then the same subset of A over which
those constraints are satisfied, induces a partition such that the sum of its weights equals
the sum of the weights of its complement. �

7.2.9 3SAT ∝ Clique

Clique and VC are very closely related. Indeed, a minimum vertex cover induces a max-
imum independent set which in its turn induces a maximum clique in the complement
graph, so the proof that 3SAT ∝ VC implies almost immediately that 3SAT ∝ IS and
3SAT ∝ Clique. However, we show a direct reduction from 3SAT to Clique.

Consider an arbitrary instance of 3SAT: a set X = {x1, x2, . . . , xn} of boolean variables
and CNF Q = {q1, q2, . . . , qm}, each clause qj being a disjunction of precisely 3 literals over
X. We are going to construct an instance of Clique: a graph G = (V, E) and a number k
such that Q is satisfiable iff G has clique of size ≥ k. V consists of 3m vertices. The vertices
of G are partitioned into triples where triple number j corresponds to qj, for 1 ≤ j ≤ m.
For brevity we use the name of the literals from Q to name the vertices; clearly we can get
vertices with the same name in this way.

We put an edge between vertices u and v iff

• u and v are from different triples, and

• it is not the case that u and v are named by “opposite” literals of the same variable.
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x3x2x1

x3

x2

x1

x1 x2 x3

x1

x2

x3

Figure 7.16: The graph that corresponds to Q = (x1∨x2∨x3)(x1∨x2∨x3)(x1∨
x2 ∨ x3)(x1 ∨ x2 ∨ x3) in the reduction 3SAT ∝ Clique.

The number k is m. We claim the graph has an m-clique whenever the CNF is satis-
fiable. Indeed, let Q be satisfiable. Then in every clause there is a literal that is assigned
True. Imagine the corresponding vertices in the graph and note that every two of them
are connected by an edge because they

• belong to distinct triples, and

• they cannot possibly be named by opposite literals of the same variable – that would
mean the truth assignment assigns both True and False to their variable.

In the opposite direction, assume H is a clique of size n in G. Assign True to all its literals†.
But that means that every clause of Q has at least one literal that is True so the whole
clause is satisfied.
For example, let

Q = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)

The graph that corresponds to Q is shown on Figure 7.16. A satisfying assignment is, for
instance, t(x1) = t(x2) = 1, (x3) = 0. Under it, x1 from the first clause, x1 from the second
clause, x2 from the third clause and x3 from the fourth clause are satisfied. The desired
4-clique is shown on Figure 7.17. �

7.2.10 3SAT ∝ EDP

Consider an arbitrary instance of 3SAT: a set X = {x1, x2, . . . , xn} of boolean variables and
CNF Q = {q1, q2, . . . , qm}, each clause qj being a disjunction of precisely 3 literals over
X. We are going to construct an instance of EDP such that it is an yes-instance iff Q is
satisfiable.

For each variable xi we construct a vertex tuple (svi , t
v
i ) and two directed vertex-

disjoint—except for the common endpoints—paths p0i = si, . . . , ti and p1i = si, . . . , ti
of length m+ 2 each, i.e. with m internal vertices. Furthermore, paj is vertex-disjoint with

†That does not mean to assign True to the variables: those variables whose literals are negated will be
assigned False.
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x3x2x1

x3

x2

x1

x1 x2 x3

x1

x2

x3

Figure 7.17: A 4-clique in the graph that corresponds to Q = (x1∨ x2∨ x3)(x1∨
x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3).

pbs , for a, b ∈ {0, 1} and 1 ≤ j < s ≤ m. p0i models the assignment of 0 to xi and p1i models
the assignment of 1 to xi. The internal vertices of p0i are named u1i , . . . , um+1

i , in that
order away from svi , and the internal vertices of p1i are named v1i , . . . , vm+1

i , in that order

away from svi . The edge (uj, uj+1i ) models the appearance of xi is qj without negation and

the edge (vj, vj+1i ) models the appearance of xi is qj with negation.
For example, let the CNF be

Q = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)

Our construction at this stage has resulted in the graph shown on Figure 7.18. Then for
each clause qj = (yp, yq, yr) we place another vertex tuple (scj , t

c
j ) and six edges:

• either (scj , u
j
p) or (scj , v

j
p) depending on whether yp is negated or not, respectively,

• either (scj , u
j
q) or (scj , v

j
q) depending on whether yq is negated or not, respectively,

• either (scj , u
j
r) or (scj , v

j
r) depending on whether yr is negated or not, respectively,

• either (uj+1p , tcj ) or (vj+1p , tcj ) depending on whether yp is negated or not, respectively,

• either (uj+1q , tcj ) or (vj+1q , tcj ) depending on whether yq is negated or not, respectively,

• either (uj+1r , tcj ) or (vj+1r , tcj ) depending on whether yr is negated or not, respectively.

Figure 7.19 shows the result of the those edges’ additions to our example. Figure 7.20
shows that in our example there are indeed 7 edge-disjoint paths, each with one endpoint
an s vertex amd the other endpoint, a t vertex. Furthermore, those paths are constructed
according to the satisfying truth assignment t(x1) = t(x2) = 1 and t(x3) = 0. Recall that
we adoptded the convention that the u intermediate vertices model the literals that are not
negated and the v vertices model the negated literals. Some clauses may be satisfied by more
than one literal but the paths we construct represent exactly one satisfying literal per clause.
Under the currently considered truth assignment, we choose literal x1 for (x1 ∨ x2 ∨ x3),
literal x1 for (x1 ∨ x2 ∨ x3), literal x2 for (x1 ∨ x2 ∨ x3), and literal x3 for (x1 ∨ x2 ∨ x3).
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p11

p12

p13

p01

p02

p03

tv1sv1

v11 v21 v31 v41

u11 u21 u41 u51

u51

u31

tv2sv2

v12 v22 v32 v42

u12 u22 u42 u52

u52

u32

tv3sv3

v13 v23 v33 v43

u13 u23 u43 u53

u53

u33

Figure 7.18: The reduction 3SAT ∝ EDP: the first stage of the construction.

The four green paths on Figure 7.20 represent those choices for satisfying literals: the dark
green path on top corresponds to the choice of x1 for the first clause (the vertices sc1 and
tc1 model the first clause), the bright green path on top corresponds to the choice of x1
for the second clause, etc. Having placed the green paths in an edge-disjoint manner, we
place the three red paths that model the truth assignments: the red path on top models
the assignment of True to x1, etc. The red paths can be placed in this manner iff for every
component (see Figure 7.18 that depicts only those components), the green paths leave the
either the u vertices or the v vertices “free”. In other words, if we have already satisfied
the clauses in a consistent way.

Now we prove that Q is satisfiable iff the instance of EDP is an yes-instance.

=⇒ Suppose there is a satisfying truth assignment t for Q. Choose a satisfying literal
for every clause qj and call the variable of that literal, the satisfying variable of qj. For
each (svi , t

v
i ) tuple use the p1i path if t(xi) = True and the p0i path if if t(xi) = False.

And for each (scj , t
c
j ) tuple, if xk is its satisfying variable, use either the three-edge path

scj , u
j
k, u

j
k+1, t

c
j in case xk is not negated in qj, or the three-edge path scj , v

j
k, v

j
k+1, t

c
j , in case

xk is negated in qj. It is obvious that no path connecting any (svi , t
v
i ) can have a common

edge with any path connecting any (scj , t
c
j ). Furthermore, every two paths connecting

(scj , t
c
j ) and (scj ′ , t

c
j ′) that are used, are edge-disjoint for 1 ≤ j < j ′ ≤ m:

• if we use different satisfying variables for qj and qj ′ the claim is obvious,

• if we use the same satisfying variable xk for qj and qj ′ , indeed the middle edge in
both of them is from p0k or p1k, whichever one is applicable, but they do not use the
same edge from that path.

Finally, it is obvious the path connecting (svi , t
v
i ) is disjoint with the path connecting

(svi ′ , t
v
i ′), for 1 ≤ i < i ′ ≤ n.
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Figure 7.19: The reduction 3SAT ∝ EDP: the second stage of the construction.
The CNF is (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3).
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Figure 7.20: The reduction 3SAT ∝ EDP. The CNF is (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨
x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3). There are 7 edge-disjoint paths, each with one
endpoint an s vertex amd the other endpoint, a t vertex.
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⇐= Suppose the instance of EDP is an yes-instance. Then for every i, 1 ≤ i ≤ n,
the tuple (svi , t

v
i ) is connected and so at least one of the paths p0i or p1i is used to that

end. If any tuple (scj , t
c
j ) is connected via an edge from p0i or p1i , it is clear that precisaly

one of p0i or p1i is used for connecting (svi , t
v
i ) and edges from the other one are used for

connecting one or more tuples (scj , t
c
j ). That implies unambiguously a truth assignment for

the variables corresponding to the (svi , t
v
i ), such that edges either from p0i or from p1i are

used for connecting tuples (scj , t
c
j ). On the other hand, for every tuple (svi , t

v
i ) such that no

edge either from p0i or from p1i are used for connecting tuples (scj , t
c
j ), we have the freedom

to choose the truth assignment for the corresponding xi. In any event, a satisfying truth
assignment exists.

The fact that the construction can be performed in polynomial time is obvious.

Problem 140. It is well-known that the version of the disjoint-paths problem in which
s1 = s2 = . . . = sk and t1 = t2 = . . . tk is solvable in polynomial time, for instance with
max-flow algorithms [CLR00]. As pointed out in [Pap95, pp. 204], only s1 = s2 = . . . = sk
implies the problem is in P.

Let us call the version of EDP in which s1 = s2 = . . . = sk and t1 = t2 = . . . tk,
restricted EDP or shortly rEDP. Explain what is wrong with the following “reduction”
EDP ∝ rEDP. Starting with any instance of EDP, add two new vertices α and ω to the
graph and add the edges (α, s1), (α, s2), . . . , (α, sk), (t1,ω), (t2,ω), . . . , (tk,ω). Clearly,
there are k edge-disjoint paths from α to ω in the new graph iff there are k edge disjoint
paths in the original graph, each path connecting an si vertex to a distinct tj vertex.

Solution:
The EDP problem requires specifically that the edge-disjoint paths connect s1 to t1, s2 to
t2, . . . , sk to tk. The incorrect “reduction” constructs paths that are edge-disjoint and
connect each si vertex to a distinct tj but that does not suffice. Each si must be connected
to ti in order to have an yes-instance of EDP, the associations between the s and t vertices
being defined by the tuples of the instance of EDP. �

7.2.11 VDP ∝ EDP

Suppose we are given an instance of VDP: a directed graph G = (V, E) and a list of tuples
(si, ti), (s2, t2), . . . , (sk, tk). For every vertex u ∈ V do the following. Let A = {v ∈
V | (v, u) ∈ E} and B = {v ∈ V | (u, v) ∈ E}. Delete u from G, add two new vertices z ′

and z ′′ to G, add (z ′, z ′′) to E, and add {(v, z ′) | v ∈ A} and {(z ′′, v) | v ∈ B} to E. Once
added, those new vertices are never deleted. Let us call z ′, the in-substitute of u and z ′′,
the out-substitute of u

The instance of EDP is the obtained graph G ′ together with the k tuples of vertices
defined as follows. For any tuples (si, ti) of the original graph (the VDP instance), add
the tuples (xi, yi) to the EDP instance, where xi is the in-substitute of si and yi is the
out-substitute of ti.

Suppose the instance of VDP is an yes-instance. Let pi be a path in G from si to ti,
for 1 ≤ i ≤ k, such that all pi are pairwise internally vertex-disjoint. The images of pi, for
1 ≤ i ≤ k, in G ′ are clearly edge-disjoint.

On the other hand, for every pair of paths among pi, for 1 ≤ i ≤ k, that share an internal
vertex in G, it is the case that their images share an edge in G ′. Figure 7.21 demonstrates
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Figure 7.21: A yes-instance 〈G, 〈(s1, t1), (s2, t2), (s3, t3)〉〉 of VDP is
mapped on a yes-instance 〈H, 〈(x1, y1), (x2, y2), (x3, y3)〉〉 of EDP. A no-
instance 〈G ′, 〈(s ′1, t ′1), (s ′2, t ′2), (s ′3, t ′3)〉〉 of VDP is mapped on a no-instance
〈H ′, 〈(x ′1, y ′

1), (x
′
2, y

′
2), (x

′
3, y

′
3)〉〉 of EDP.

the construction from an yes-instance to an yes-instance and from a no-instance to a no-
instance.

7.2.12 EDP ∝ VDP

Definition 11. Suppose G = (V, E) is a graph. The line graph of G is the graph G ′ =
(V ′, E ′) where V ′ is a vertex set such that there exists a bijection f : E → V ′ and E ′ is
defined as follows:

u, v ∈ V ′ : (u, v) ∈ E ′ iff f−1(u) and f−1(v) are coincident.

�

Definition 12. Suppose G = (V, E) is a directed graph. The line graph of the directed
graph G is the directed graph G ′ = (V ′, E ′) where V ′ is a vertex set such that there exists a
bijection f : E→ V ′ and E ′ is defined as follows:

u, v ∈ V ′ : (u, v) ∈ E ′ iff f−1(u) = (x, y) and f−1(v) = (y, z) for the same vertex y.

�

Suppose we are given an instance of EDP: a directed graph G = (V, E) and a list of tuples
(si, ti), (s2, t2), . . . , (sk, tk). Construct the following instance of VDP: the line graph of
G, call it G ′, together with the list of tuples (xi, yi), 1 ≤ i ≤ k, where xi is the vertex of
G ′ corresponding to the edge of G whose initial vertex (in G) is si and yi is the vertex of
G ′ corresponding to the edge of G whose ending vertex (in G) is ti.

Assume the instance of EDP is an yes-instance. Let pi, for 1 ≤ i ≤ k, be a set edge-
disjoint paths certifying that is indeed a yes-instance. Consider any two of them. If they
are internally vertex-disjoint then their images in G ′ are vertex-disjoint, too, for obvious
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Figure 7.22: G is a yes-instance of EDP. Its line graph H is a yes-instance of VDP.
The edge-disjoint paths in G are mapped on vertex-disjoint paths in H.

reasons. If they share vertices but do not share edges then their images are vertex-disjoint
because for each shared internal vertex z, the predecessors of z and the successors of z in
the paths in G are distinct—otherwise the paths would have a common edge—therefore
the images of the paths in G ′ each have an edge connecting the images of the respective
predecessor and successor edges, and those are distinct. Figure 7.22 shows the construction
for an yes-instance.

Assume the instance of EDP is a no-instance. Then all sets of k paths, each one
connecting the vertices from exactly one tuple, are such that there are always two paths
that share an edge. It is a trivial observation that their images in G ′ share a vertex.
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Chapter 8

Appendix

Problem 141. Prove that

n∑
k=1

lg k � n lgn

Solution:
One way to solve it is to see that the sum is

∑n
k=1 lg k = lg (n!) and then use Problem 1.48

on page 11. There is another way. Let m = bn2 c, A =
∑m−1
k=1 lg k, and B =

∑n
k=m lg k.

First we prove that B � n lgn.

n∑
k=m

lgm ≤
n∑

k=m

lg k ≤
n∑

k=m

lgn ⇔
(lgm)

n∑
k=m

1 ≤ B ≤ (lgn)
n∑

k=m

1 ⇔(
lg
⌊n
2

⌋)(
n−

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
C

≤ B ≤ (lgn)
(
n−

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
D

Clearly, C � n lgn and D � n lgn. It must be the case that B � n lgn. Now we prove
that A � B. A has n−22 terms, in case n is even, and n−3

2 terms, in case n is odd. In any
event, A has less terms than B. Furthermore, every term of A is smaller than any term of
B. It follows A � B. Since

∑n
k=1 lg k = A+ B, A � B, and B � n lgn, it must be the case

that
∑n
k=1 lg k � n lgn. �

Problem 142.

n∑
k=1

k lg k � n2 lgn

Solution:

232



Problems with solutions in the Analysis of Algorithms c© Minko Markov

Let m = bn2 c, A =
∑m−1
k=1 k lg k, and B =

∑n
k=m k lg k. First we prove that B � n2 lgn.

n∑
k=m

m lgm ≤
n∑

k=m

k lg k ≤
n∑

k=m

n lgn ⇔
(m lgm)

n∑
k=m

1 ≤ B ≤ (n lgn)
n∑

k=m

1 ⇔(⌊n
2

⌋
lg
⌊n
2

⌋)(
n−

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
C

≤ B ≤ (n lgn)
(
n−

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
D

Clearly, C � n2 lgn and D � n2 lgn. It must be the case that B � n2 lgn. Now we prove
that A � B. A has n−22 terms, in case n is even, and n−3

2 terms, in case n is odd. In any
event, A has less terms than B. Furthermore, every term of A is smaller than any term of B.
It follows A � B. Since

∑n
k=1 k lg k = A+B, it must be the case that

∑n
k=1 k lg k � n lgn.

�

The following derivation of Stirling’s approximation is based on [Sch].

Problem 143. Prove that for some constant c,

c
√
n
(n
e

)n
≤ n! ≤ c

√
n
(n
e

)n
e
1
12n

Solution:
Consider the natural log of the factorial:

lnn! =
n∑
i=1

ln i

Let each summand be multiplied by 1:

n∑
i=1

ln i =

n∑
i=1

((ln i)× 1)

That sum is the area of the n rectangles r1, r2, r3, . . . , rn shown on the following figure†,
r1 being a degenerate rectangle with area 0:

†The figure was made by using Maple(TM).
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Let ai denote the area of rectangle ri, for 2 ≤ i ≤ n. On the one hand, ai = (ln i)×1 =
ln i. On the other hand,

ai = yi + ti − zi (8.1)

where

• yi is the area of the region Ri within ri that lies below the curve ln x,

• ti is the area of the triangle Ti with vertices (i− 1, ln (i− 1)), (i− 1, ln i), (i, ln i).

• and zi is the area of the overlap of Ri and Ti.

Those overlaps grow smaller and smaller very rapidly, so on the figure above only the first
overlap is clearly seen: it is the region within r2 bounded by the red curved segment and
the blue straight segment. Clearly,

yi =

∫ i
i−1

ln x dx

ti =
ln i− ln (i− 1)

2

zi = yi − ui − t
′
i

where ui is the area of the rectangle with vertices (i− 1, 0), (i− 1, ln (i− 1)), (i, ln (i− 1)),
and (i, 0), and t ′i is the area of the triangle with vertices (i − 1, ln (i− 1)), (i, ln i), and
(i, ln (i− 1)). Clearly,

ui = ln (i− 1)

t ′i = ti =
ln i− ln (i− 1)

2

Since ∫ i
i−1

ln x dx = ln (i− 1) − i ln (i− 1) − 1+ i ln i,

zi = ln (i− 1) − i ln (i− 1) − 1+ i ln i− ln (i− 1) −
ln i− ln (i− 1)

2

=

(
1− i+−1+

1

2

)
ln (i− 1) +

(
i−

1

2

)
ln i− 1

=

(
i−

1

2

)
ln i−

(
i−

1

2

)
ln (i− 1) − 1

=

(
i−

1

2

)
ln

(
i

i− 1

)
− 1 (8.2)

Now we show that the series
∑∞
i=2 zi converges. Consider the series expansion

ln (1+ x) =

∞∑
k=1

(−1)k+1

k
xk
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Then

ln (1− x) = ln (1+ (−x)) =

∞∑
k=1

(−1)k+1

k
(−x)k =

∞∑
k=1

(−1)k+1

k
(−1)kxk

=

∞∑
k=1

(−1)2k+1

k
xk = −

∞∑
k=1

xk

k

It follows that

ln (1+ x) − ln (1− x) =

∞∑
k=1

(−1)k+1

k
xk +

∞∑
k=1

xk

k
=

∞∑
k=1

(−1)k+1 + 1

k
xk

= 2x+
2x3

3
+
2x5

5
+
2x7

7
+ . . .

We derived

1

2
ln

(
1+ x

1− x

)
= x+

x3

3
+
x5

5
+
x7

7
+ . . .

Substitute x by 1
2i−1 to obtain

1

2
ln

(
1+ 1

2i−1

1− 1
2i−1

)
=

1

2i− 1
+

1

3(2i− 1)3
+

1

5(2i− 1)5
+

1

7(2i− 1)7
+ . . . ⇔

2i− 1

2
ln

(
2i+2
2i−1
2i
2i−1

)
= 1+

1

3(2i− 1)2
+

1

5(2i− 1)4
+

1

7(2i− 1)6
+ . . . ⇔(

i−
1

2

)
ln

(
i

i− 1

)
− 1 =

1

3(2i− 1)2
+

1

5(2i− 1)4
+

1

7(2i− 1)6
+ . . .

Therefore,(
i−

1

2

)
ln

(
i

i− 1

)
− 1 ≤ 1

3

(
1

(2i− 1)2
+

1

(2i− 1)4
+

1

(2i− 1)6
+ . . .

)
But 1

(2i−1)2
+ 1

(2i−1)4
+ 1

(2i−1)6
+ . . . is a convergent geometric series for i > 1 with sum

1
(2i−1)2

1− 1
(2i−1)2

=

1
(2i−1)2

(2i−1)2−1
(2i−1)2

=
1

4i2 − 4i+ 1− 1
=
1

4

(
1

i(i− 1)

)
=
1

4

(
1

i− 1
−
1

i

)
It follows that(

i−
1

2

)
ln

(
i

i− 1

)
− 1 ≤ 1

3

(
1

4

(
1

i− 1
−
1

i

))
=
1

12

(
1

i− 1
−
1

i

)
(8.3)

According to (8.2), the left-hand side of equation (8.3) is zi. For any m > 1 and k > 0,

zm ≤
1

12(m− 1)
−

1

12m

zm+1 ≤
1

12m
−

1

12(m+ 1)

. . .

zm+k ≤
1

12(m+ k− 1)
−

1

12(m+ k)
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thus

zm + zm+1 + . . .+ zm+k ≤
1

12(m− 1)
−

1

12(m+ k)

So,

∞∑
i=m

zi ≤
1

12(m− 1)
(8.4)

and in particular

∞∑
i=2

zi ≤
1

12
(8.5)

Now we get back to equation (8.1). Sum for 2 ≤ i ≤ n to obtain:

n∑
i=2

ai︸ ︷︷ ︸
lnn!

=

n∑
i=2

∫ i
i−1

ln xdx︸ ︷︷ ︸∫n
1

lnx dx = 1+n lnn−n

+

n∑
i=2

ln i− ln (i− 1)

2︸ ︷︷ ︸
lnn
2

+

n∑
i=2

zi ⇔

lnn! = 1+ n lnn− n+
lnn

2
+

( ∞∑
i=2

zi −

∞∑
i=n+1

zi

)

Take the exponent to base e of both sides to obtain

n! = e1 × en lnn × e−n × e
lnn
2 × e

∑∞
i=2 zi × e

∑∞
i=n+1 zi

= e
(n
e

)n√
n× e

∑∞
i=2 zi × e

∑∞
i=n+1 zi

By (8.5), e
∑∞
i=2 zi does not exceed 1

12 , i.e. a constant, as n grows infinitely. By (8.4),

e
∑∞
i=n+1 zi ≤ e

1
12n . It has to be the case that for some constant c,

c
(n
e

)n√
n ≤ n! ≤ c

(n
e

)n√
ne

1
12n

�

Problem 144. Find a closed formula for

n∑
k=0

2kk

Solution:
Let

Sn =

n∑
k=0

2kk
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Then

Sn + (n+ 1)2n+1 =

n∑
k=0

2kk+ (n+ 1)2n+1 =

n∑
k=0

2k+1(k+ 1) = 2

n∑
k=0

2kk+ 2

n∑
k=0

2k

Since
∑n
k=0 2

k = 2n+1 − 1,

Sn + (n+ 1)2n+1 = 2

n∑
k=0

2kk︸ ︷︷ ︸
2Sn

+ 2(2n+1 − 1) = 2Sn + 2.2n+1 − 2

Then

Sn = n2n+1 + 2n+1 − 2.2n+1 + 2 = n2n+1 − 2n+1 + 2

So,

Sn = (n− 1)2n+1 + 2 (8.6)

�

Problem 145. Find a closed formula for

n∑
k=0

2kk2

Solution:
Let

Sn =

n∑
k=0

2kk2

Then

Sn + 2n+1(n+ 1)2 =

n∑
k=0

2kk2 + 2n+1(n+ 1)2 =

n∑
k=0

2k+1(k+ 1)2

= 2

n∑
k=0

2k(k2 + 2k+ 1)

= 2

n∑
k=0

2kk2︸ ︷︷ ︸
2Sn

+ 4

n∑
k=0

2kk︸ ︷︷ ︸
4(n−1)2n+1+8

+ 2

n∑
k=0

2k︸ ︷︷ ︸
2.2n+1−2

Then

Sn + n22n+1 + 2n2n+1 + 2.2n+1 = 2Sn + 4n2n+1 − 4.2n+1 + 8+ 2.2n+1 − 2

So,

Sn = n22n+1 − 2n2n+1 + 4.2n+1 − 6 (8.7)

�
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1+ 3 = 22

1+ 3+ 5+ 7 = 42
1+ 3+ 5 = 32

1 = 12

Figure 8.1: A geometric proof that the sum of the first n odd numbers is the nth

square n2.

Problem 146. Find a closed formula for the sum of the first n odd numbers

Sn = 1+ 3+ 5+ . . .+ 2n− 1

Solution:
It is trivial to prove by induction on n that Sn = n2.
Basis: S1 = 1

2.
Induction hypothesis: assume Sn = n2.
Induction step:

Sn+1 = 1+ 3+ 5+ . . .+ 2n− 1+ 2n+ 1

= Sn + 2n+ 1 by definition

= n2 + 2n+ 1 by the induction hypothesis

= (n+ 1)2

Indeed,

Sn = n2 (8.8)

There is a geometric proof of the same fact, illustrated on Figure 8.1. �

Problem 147. Find a closed formula for

n∑
i=1

⌊√
i
⌋

Solution:
To gain some intuition, let us write down the sum explicitly, i.e. all the terms, for some
small n, say n = 17. For clarity put boxes around the terms whose positions are perfect
squares, i.e. around the first, fourth, ninth, and sixtienth term.

17∑
i=1

⌊√
i
⌋
= 1 + 1+ 1︸ ︷︷ ︸

run 1

+ 2 + 2+ 2+ 2+ 2︸ ︷︷ ︸
run 2

+ 3 + 3+ 3+ 3+ 3+ 3+ 3︸ ︷︷ ︸
run 3

+ 4 + 4︸ ︷︷ ︸
run 4

The pattern is clear: the sum is the first n, in this case n = 17, terms of a series whose
terms are the consecutive positive integers grouped in runs, run j being the sum of 2j + 1
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in number j’s. Naturally, each run starts at a term whose position in the series is a perfect
square: run 1 starts at position 1, run 2 starts at position 4, run 3 starts at position 9,
etc. Problem 146 explains why the runs, except possibly for the last run, have lengths
that are the consecutive odd numbers—since the first j odd numbers sum precisely to a
perfect square, viz. j2, it follows the difference between the two consecutive perfect squares
(j+ 1)2 − j2 is an odd number, viz. 2j+ 1.

The run with the largest number can be incomplete, as is the case when n = 17—run
number 4 has only two terms. Let us call the number of complete runs, i.e. the ones that
have all the terms, kn. For instance, k17 = 3. We claim that

kn = b
√
n+ 1c− 1

To see why, imagine that n decreases one by one and think of the moment when kn decreases.
That is not when n becomes a perfect square minus one but when n becomes a perfect square
minus two. For instance, k15 = 3 but k14 = 2. Hence we have

√
n+ 1, not

√
n.

Having all that in mind we break the desired sum down into two sums:

n∑
i=1

⌊√
i
⌋
= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run. S2 = 0
if and only if n is a perfect square minus one. More precisely, if we denote the number of
terms in S2 by ln,

ln = n− b
√
n+ 1c2 + 1

For instance, l17 = 2 as seen above and indeed 17 − b
√
17+ 1c2 + 1 = 17 − 42 + 1 = 2;

l15 = 0 as seen above and indeed 15− b
√
15+ 1c2 + 1 = 15− 42 + 1 = 0.

Let us first compute S1.

S1 = 1.3+ 2.5+ 3.7+ 4.9+ 5.11+ . . .+ k(n)(2k(n) + 1)

=

k(n)∑
i=1

i(2i+ 1)

= 2

k(n)∑
i=1

i2 +

k(n)∑
i=1

i

= 2
k(n).(k(n) + 1).(2k(n) + 1)

6
+
k(n).(k(n) + 1)

2
by (8.26) and (8.27)

= k(n).(k(n) + 1)

(
4k(n) + 2

6
+
3

6

)
=
1

6
k(n).(k(n) + 1).(4k(n) + 5)

=
1

6
(b
√
n+ 1c− 1)(b

√
n+ 1c− 1+ 1)(4b

√
n+ 1c− 4+ 5)

=
1

6
(b
√
n+ 1c− 1)b

√
n+ 1c(4b

√
n+ 1c+ 1)
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Clearly, S1 = Θ
(
n
3
2

)
. S2 is easier to compute, it has l(n) terms, each term being k(n)+1.

S2 = ln(kn + 1)

= (n− b
√
n+ 1c2 + 1)(b

√
n+ 1c− 1+ 1)

= (n− b
√
n+ 1c2 + 1)b

√
n+ 1c

Clearly, S2 = O
(
n
3
2

)
, therefore S1 + S2 = Θ

(
n
3
2

)
+O

(
n
3
2

)
= Θ

(
n
3
2

)
.

Let us denote b
√
n+ 1c by ñ. It follows that

S1 =
ñ(ñ− 1)(4ñ+ 1)

6

S2 = (n− ñ2 + 1)ñ
n∑
i=1

⌊√
i
⌋
= ñ

(
(ñ− 1)(4ñ+ 1)

6
+ (n− ñ2 + 1)

)
(8.9)

and

n∑
i=1

⌊√
i
⌋
= Θ

(
n
3
2

)
(8.10)

�

Problem 148. Find a closed formula for

n∑
i=1

⌈√
i
⌉

Solution:
Let us start with a small example as in Problem 147, say for n = 17. For clarity put boxes
around the terms whose positions are perfect squares, i.e. around the first, fourth, ninth,
and sixtienth term.

17∑
i=1

⌈√
i
⌉
= 1︸︷︷︸

run 1

+ 2+ 2+ 2︸ ︷︷ ︸
run 2

+ 3+ 3+ 3+ 3+ 3︸ ︷︷ ︸
run 3

+ 4+ 4+ 4+ 4+ 4+ 4+ 4︸ ︷︷ ︸
run 4

+ 5︸︷︷︸
run5

The pattern is quite similar to the one in Problem 147. We sum the first n terms of a series
whose terms are the consecutive positive integers grouped in runs, run j being the sum of
2j− 1 in number j’s.

The run with the largest number can be incomplete. For instance, if n = 17 then run
number 5 has only one term. Let us call the number of complete runs, i.e. the ones that
have all the terms, sn. For instance, s17 = 4. It is obvious that

sn = b
√
nc
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We break the desired sum down into two sums:

n∑
i=1

⌊√
i
⌋
= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run. S2 = 0
if and only if n is a perfect square. We denote the number of terms in S2 by tn.

tn = n− b
√
nc2

For instance, t17 = 1 as seen above and indeed 17− b
√
17c2 = 17− 42 = 1; t16 = 0 as seen

above and indeed 16− b
√
16c2 = 16− 42 = 0.

Let us compute S1.

S1 = 1.1+ 2.3+ 3.5+ 4.7+ 5.9+ . . .+ sn(2sn − 1)

=

sn∑
i=1

i(2i− 1)

= 2

sn∑
i=1

i2 −

sn∑
i=1

i

= 2
sn.(sn + 1).(2sn + 1)

6
−
sn.(sn + 1)

2
by (8.26) and (8.27)

= sn.(sn + 1)

(
4sn + 2

6
−
3

6

)
=
1

6
sn.(sn + 1).(4sn − 1)

=
1

6
(b
√
nc)(b

√
nc+ 1)(4b

√
nc− 1)

Clearly, S1 = Θ
(
n
3
2

)
. Now we compute S2. It has tn terms, each term being sn + 1.

S2 = tn.(sn + 1)

= (n− b
√
nc2)(b

√
nc+ 1)

Clearly, S2 = O
(
n
3
2

)
, therefore S1 + S2 = Θ

(
n
3
2

)
+O

(
n
3
2

)
= Θ

(
n
3
2

)
.

It follows that

n∑
i=1

⌈√
i
⌉
= (b
√
nc+ 1)

(
b
√
nc(4b

√
nc− 1)

6
+ n− b

√
nc2

)
(8.11)

and

n∑
i=1

⌈√
i
⌉
= Θ

(
n
3
2

)
(8.12)

�
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Problem 149. Find a closed formula for

n∑
i=1

i
⌊√
i
⌋

Solution:
The line of reasoning is very similar to the one in Problem 147. We sum the first n terms of
a series, the series being the one mentioned in the solution of Problem 147 with each term
multiplied by its position. Consider for example n = 17. The terms whose positions are
perfect squares are boxed.

17∑
i=1

i
⌊√
i
⌋
= 1 + 2+ 3︸ ︷︷ ︸

run 1

+ 8 + 10+ 12+ 14+ 16︸ ︷︷ ︸
run 2

+ 27 + 30+ 33+ 36+ 39+ 42+ 45︸ ︷︷ ︸
run 3

+ 64 + 68︸ ︷︷ ︸
run 4

Unlike Problem 147, now the runs consist of those consecutive terms whose differences are
equal (and equal to the number of the run). Just as in Problem 147, all the runs but the
last one are complete, the last run being either complete or incomplete. We denote the
number of the complete runs with kn and the number of terms in the incomplete run by
ln. It is the case that

kn = b
√
n+ 1c− 1

ln = n− b
√
n+ 1c2 + 1

the reasoning being exactly the same as in Problem 147. We break the desired sum down
into two sums:

n∑
i=1

i
⌊√
i
⌋
= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run.
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Let us first compute S1.

S1 = 1.(1+ 2+ 3) + 2.(4+ 5+ 6+ 7+ 8) + 3.(9+ 10+ 11+ 12+ 13+ 14+ 15)

+ 4.(16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24)

+ 5.(25+ 26+ 27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35)

+ . . .

+ kn
(
k2n + (k2n + 1) + (k2n + 2) + . . .+ ((kn + 1)2 − 1)︸ ︷︷ ︸

k2n+2kn

)

=

kn∑
i=1

i

i2+2i∑
j=i2

j

=

kn∑
i=1

i

i2+2i∑
j=1

j−

i2−1∑
j=1

j


=

kn∑
i=1

i

(
(i2 + 2i)(i2 + 2i+ 1)

2
−

(i2 − 1)i2

2

)

=
1

2

kn∑
i=1

i
(
i4 + 2i3 + i2 + 2i3 + 4i2 + 2i− i4 + i2

)
=
1

2

kn∑
i=1

i
(
4i3 + 6i2 + 2i

)
= 2

kn∑
i=1

i4 + 3

kn∑
i=1

i3 +

kn∑
i=1

i2 apply (8.27), (8.28), and (8.29)

= 2
kn(kn + 1)(2kn + 1)(3k2n + 3kn − 1)

30
+ 3

k2n(kn + 1)2

4
+
kn(kn + 1)(2kn + 1)

6

=
kn(kn + 1)

2

(
(4kn + 2)(3k2n + 3kn − 1)

15
+
3kn(kn + 1)

2
+
2kn + 1

3

)
=
kn(kn + 1)

60

(
(8kn + 4)(3k2n + 3kn − 1) + 45kn(kn + 1) + 20kn + 10

)
=
kn(kn + 1)

60

(
24k3n + 24k2n − 8kn + 12k2n + 12kn − 4+ 45k2n + 45kn + 20kn + 10

)
=
kn(kn + 1)

60

(
24k3n + 81k2n + 69kn + 6

)
=
kn(kn + 1)(8k3n + 27k2n + 23kn + 2)

20
(8.13)
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Substitute kn with b
√
n+ 1c− 1 in (8.13) to obtain

S1 =
1

20
b
√
n+ 1c(b

√
n+ 1c− 1)

(
8(b
√
n+ 1c− 1)3+

27(b
√
n+ 1c− 1)2 + 23(b

√
n+ 1c− 1) + 2

)
=
1

20
b
√
n+ 1c(b

√
n+ 1c− 1)

(
8b
√
n+ 1c3 − 24b

√
n+ 1c2 + 24b

√
n+ 1c− 8

27b
√
n+ 1c2 − 54b

√
n+ 1c+ 27+ 23b

√
n+ 1c− 23+ 2

)
=
1

20
b
√
n+ 1c(b

√
n+ 1c− 1)

(
8b
√
n+ 1c3 + 3b

√
n+ 1c2 − 7b

√
n+ 1c− 2

)
Clearly, S1 = Θ

(
n
5
2

)
. Now we compute S2. It has ln terms, the first term is (kn + 1)3,

and the difference between every two consecutive terms is (kn + 1).

S2 =

ln∑
i=1

(kn + 1)3 + (i− 1)(kn + 1)

= (kn + 1)3
ln∑
i=1

1+ (kn + 1)

ln∑
i=1

(i− 1)

= (kn + 1)3ln +
(kn + 1)(ln − 1)ln

2

= b
√
n+ 1c3(n− b

√
n+ 1c2 + 1) + b

√
n+ 1c(n− b

√
n+ 1c2)(n− b

√
n+ 1c2 + 1)

2

Clearly, S2 = O
(
n
5
2

)
, therefore S1 + S2 = Θ

(
n
5
2

)
+O

(
n
5
2

)
= Θ

(
n
5
2

)
.

Let us denote b
√
n+ 1c by ñ. It follows that

S1 =
ñ(ñ− 1)(8ñ3 + 3ñ2 − 7ñ− 2)

20

S2 = ñ
3(n− ñ2 + 1) +

ñ(n− ñ2)(n− ñ2 + 1)

2

and
n∑
i=1

i
⌊√
i
⌋
=
ñ(ñ− 1)(8ñ3 + 3ñ2 − 7ñ− 2)

20
+ ñ3(n− ñ2 + 1) +

ñ(n− ñ2)(n− ñ2 + 1)

2

(8.14)

and
n∑
i=1

i
⌊√
i
⌋
= Θ

(
n
5
2

)
(8.15)

�

Problem 150. Find a closed formula for

n∑
i=1

i
⌈√
i
⌉
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Solution:
The solution of this problem is quite similar to the solution of Problem 148. We sum the
first n terms of a series, the series being the one mentioned in the solution of Problem 148
with each term multiplied by its position. Consider for example n = 17. The terms whose
positions are perfect squares are boxed.

17∑
i=1

i
⌈√
i
⌉
= 1︸︷︷︸

run 1

+ 4+ 6+ 8︸ ︷︷ ︸
run 2

+ 15+ 18+ 21+ 24+ 27︸ ︷︷ ︸
run 3

+ 40+ 44+ 48+ 52+ 56+ 60+ 64︸ ︷︷ ︸
run 4

+ 85︸︷︷︸
run5

Unlike Problem 148, now the runs consist of those consecutive terms whose differences are
equal (and equal to the number of the run). Just as in Problem 148, all the runs but the
last one are complete, the last run being either complete or incomplete. We denote the
number of the complete runs with s(n) and

s(n) = b
√
nc

the reasoning being exactly the same as in Problem 148. The number of terms in the
incomplete run is

t(n) = n− b
√
nc2

We break the desired sum down into two sums:

n∑
i=1

i
⌈√
i
⌉
= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run.
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Let us first compute S1.

S1 = 1.1+ 2.(2+ 3+ 4) + 3.(5+ 6+ 7+ 8+ 9)

+ 4.(10+ 11+ 12+ 13+ 14+ 15+ 16)

+ 5.(17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25)

+ . . .

+ sn
(
((sn − 1)2 + 1) + ((sn − 1)2 + 2) + . . .+ s2n︸ ︷︷ ︸

(sn−1)2+2sn−1

)

=

sn∑
i=1

i

2i−1∑
j=1

(i− 1)2 + j (8.16)

=

sn∑
i=1

i

2i−1∑
j=1

(i− 1)2 +

2i−1∑
j=1

j


=

sn∑
i=1

i

(
(i− 1)2(2i− 1) +

(2i− 1)2i

2

)

=

sn∑
i=1

i
(
(i2 − 2i+ 1)(2i− 1) + 2i2 − i

)
=

sn∑
i=1

i(2i3 − i2 − 4i2 + 2i+ 2i− 1+ 2i2 − i)

=

sn∑
i=1

i(2i3 − 3i2 + 3i− 1)

= 2

sn∑
i=1

i4 − 3

sn∑
i=1

i3 + 3

sn∑
i=1

i2 −

sn∑
i=1

i apply (8.26), (8.27), (8.28), and (8.29)

= 2
sn(sn + 1)(2sn + 1)(3s2n + 3sn − 1)

30
− 3

s2n(sn + 1)2

4
+

3
sn(sn + 1)(2sn + 1)

6
−
sn(sn + 1)

2

=
sn(sn + 1)

2

(
2(2sn + 1)(3s2n + 3sn − 1)

15
−
3sn(sn + 1)

2
+
6sn + 3

3
− 1

)
(8.17)

246



Problems with solutions in the Analysis of Algorithms c© Minko Markov

Simplify (8.17) to obtain

sn(sn + 1)

2

(
12s3n + 12s2n − 4sn + 6s2n + 6sn − 2

15
−
3s2n + 3sn

2
+
6sn + 3

3
− 1

)
=

sn(sn + 1)

2

(
24s3n + 36s2n + 4sn − 4

30
−
45s2n + 45sn

30
+
60sn + 30

30
−
30

30

)
=

sn(sn + 1)

60
(24s3n + 36s2n + 4sn − 4− 45s2n − 45sn + 60sn + 30− 30) =

sn(sn + 1)(24s3n − 9s2n + 19sn − 4)

60
=

b
√
nc(b
√
nc+ 1)(24b

√
nc3 − 9b

√
nc2 + 19b

√
nc− 4)

60

Clearly, S1 = Θ
(
n
5
2

)
. Now we compute S2. It has tn terms, the first term is (s2n+1)(sn+1),

and the difference between every two consecutive terms is (sn + 1).

S2 =

tn∑
i=1

(s2n + 1)(sn + 1) + (i− 1)(sn + 1) =

= (s2n + 1)(sn + 1)

tn∑
i=1

1+ (sn + 1)

tn∑
i=1

(i− 1)

= tn(s
2
n + 1)(sn + 1) +

(sn + 1)(tn − 1)tn
2

=

=
tn(sn + 1)

2

(
2s2n + 2+ tn − 1

)
=

=
tn(sn + 1)(2s2n + tn + 1)

2

=
(n− b

√
nc2)(b

√
nc+ 1)(2b

√
nc2 + n− b

√
nc2 + 1)

2

=
(n− b

√
nc2)(b

√
nc+ 1)(n+ b

√
nc2 + 1)

2

Clearly, S2 = O
(
n
5
2

)
, therefore S1 + S2 = Θ

(
n
5
2

)
+O

(
n
5
2

)
= Θ

(
n
5
2

)
. It follows that

n∑
i=1

i
⌊√
i
⌋
=
b
√
nc(b
√
nc+ 1)(24b

√
nc3 − 9b

√
nc2 + 19b

√
nc− 4)

60
+

(n− b
√
nc2)(b

√
nc+ 1)(n+ b

√
nc2 + 1)

2
(8.18)

and

n∑
i=1

i
⌈√
i
⌉
= Θ

(
n
5
2

)
(8.19)

�
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Fact: The Fibonacci numbers are the natural numbers defined by the recurrence relation

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2, for all n > 1

The first several elements of the sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

The asymptotic growth rate of Fn is determined by the following equality [GKP94, pp. 300]

Fn =

⌊
φn√
5
+
1

2

⌋
=
φn√
5
, rounded to the nearest integer

where φ = 1+
√
5

2 is the so called “golden ratio”, the positive root of φ2 = φ + 1. Clearly,
for any positive constant c,

cFn = Θ

(
c
φn√
5

)
= Θ

(
kφ
n
)
, where k = c

1√
5 (8.20)

�

Fact: The harmonic series

1+
1

2
+
1

3
+
1

4
+ . . . =

∞∑
i=1

1

i

is divergent. Its nth partial sum is denoted by Hn.

Hn =
1

1
+
1

2
+
1

3
+ . . .+

1

n− 1
+
1

n
(8.21)

It is known that

Hn = Θ(lgn) (8.22)

Furthermore, lnn < Hn < lnn+ 1 for n > 1. For details, see [GKP94, pp. 272–278]. �

Fact: The sum of the first kth powers for some integer constant k ≥ 1 is

1k + 2k + . . .+ nk =

n∑
i=0

ik (8.23)

It is well known that

n∑
i=0

ik =
1

k+ 1

k∑
j=0

(
k+ 1

j

)
Bj(n+ 1)k+1−j (8.24)
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where Bj is the jth Bernoulli number. The Bernolli numbers are defined with the recurrence

B0 = 1

Bm = −
1

m

m−1∑
j=0

(
m+ 1

j

)
Bj, for m ∈ N+

For details on the summation formula (8.24) and plenty of information on the Bernoulli
numbers, see [GKP94, pp. 283–290]. Just keep in mind that Knuth et al. denote the sum
by Sk(n) and define it as

Sk(n) = 0
k + 1k + 2k + . . .+ (n− 1)k

For our purposes in this manual it is sufficient to know that

1k + 2k + . . .+ nk = Θ(nk+1) (8.25)

which fact follows easily from (8.24). In fact, (8.24) is a polynomial of degree k + 1 of
n because the

(
k+1
j

)
factor and the Bernoulli numbers are just constants and clearly the

highest degree of n is k+1. Strictly speaking, we have not proved here formally that (8.24)
is a degree k + 1 polynomial of n because we have not shown that the coefficient before
nk+1 is not zero. But that is indeed the case—see for instance [GKP94, (6.98), pp. 288].

Be careful to avoid the error of thinking that¢¢ NB ¢¢

1k + 2k + . . .+ nk

is a degree k polynomial of n and thus erroneosly concluding that its order of growth is
Θ(nk). It is not a polynomial of n because a polynomial has an a priori fixed number of
terms, while the above sum has n terms where n is the variable.

Using (8.24), we can easily derive

1+ 2+ . . .+ n =
n(n+ 1)

2
(8.26)

12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
(8.27)

13 + 23 + . . .+ n3 =
n2(n+ 1)2

4
(8.28)

14 + 24 + . . .+ n4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
(8.29)

�

Lemma 33.

n∑
k=1

k(k+ 1) =
n(n+ 1)(n+ 2)

3
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Proof:

n∑
k=1

k(k+ 1) = 1× (1+ 1) + 2× (2+ 1) + . . .+ n(n+ 1) =

1× 1+ 1+ 2× 2+ 2+ . . . n× n+ n =

1× 1+ 2× 2+ . . .+ n× n+ 1+ 2+ . . .+ n = by (8.27) and (8.28)

n(n+ 1)(2n+ 1)

6
+
n(n+ 1)

2
=

n(n+ 1)

2

(
2n+ 1

3
+ 1

)
=

n(n+ 1)(n+ 2)

3

�

Problem 151. Let T be a binary heap of height h vertices. Find the minimum and maix-
mum number of vertices in T .

Solution:
The vertices of any binary tree are partitioned into levels, the vertices from level number i
being the ones that are at distance i from the root. By definition, every level i in T , except
possibly for level h, is complete in the sense it has all the 2i vertices possible. The last
level (number h) can have anywhere between 1 and 2h vertices inclusive. If n denotes the
number of vertices in the heap, it is the case that

20 + 21 + 22 + . . .+ 2h−1︸ ︷︷ ︸
the number of vertices in the complete levels

+1 ≤ n ≤ 20 + 21 + 22 + . . .+ 2h−1︸ ︷︷ ︸
the number of vertices in the complete levels

+2h

Since 20 + 21 + 22 + . . .+ 2h−1 = 2h−1
2−1 = 2h − 1, it follows that

2h − 1+ 1 ≤ n ≤ 2h − 1+ 2h

2h ≤ n ≤ 2h+1 − 1 (8.30)

�

Problem 152. Let T be a binary heap with n vertices. Find the height h of T .

Solution:

2h ≤ n ≤ 2h+1 − 1 see Problem 151, (8.30)

2h ≤ n < 2h+1

h ≤ lgn < h+ 1 take lg of both sides

Clearly,

h = blgnc (8.31)

�
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h− 1 h

V ′

V ′′

T ′′

V ′′′

Figure 8.2: The heap in Problem 153.

Problem 153. Let T be a binary heap with n vertices. Prove that the number of leaves of
T is

⌈
n
2

⌉
and the number of internal vertices in T is

⌊
n
2

⌋
.

Solution:
Let h be the height of T . We know (8.31) that h = blgnc. Let V ′ be the vertices of T
at level h. Let T ′′ be obtained from T by deleting V ′ (see Figure 8.2). Clearly, T ′′ is a
complete binary tree of height h− 1 = blgnc− 1. The number of its vertices is

2blgnc−1+1 − 1 = 2blgnc − 1 (8.32)

It follows

|V ′| = n− (2blgnc − 1) = n+ 1− 2blgnc (8.33)

The vertices at level h− 1 are 2h−1 = 2blgnc−1. Those vertices are partitioned into V ′′, the
vertices that have no children, and V ′′′, the vertices that have a child or two children (see
Figure 8.2). So,

|V ′′|+ |V ′′′| = 2blgnc−1 (8.34)

Note that |V ′′′| =
⌈
|V ′|
2

⌉
. Having in mind (8.33), it follows that

|V ′′′| =

⌈
n+ 1− 2blgnc

2

⌉
=

⌈
n+ 1

2
−
2blgnc

2

⌉
=

⌈
n+ 1

2
− 2blgnc−1

⌉
=⌈

n+ 1

2

⌉
− 2blgnc−1 since 2blgnc−1 is integer (8.35)
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Use (8.34) and (8.35) to conclude that

|V ′′| = 2blgnc−1 −

(⌈
n+ 1

2

⌉
− 2blgnc−1

)
= 2blgnc−1 −

⌈
n+ 1

2

⌉
+ 2blgnc−1

= 2.2blgnc−1 −

⌈
n+ 1

2

⌉
= 2blgnc −

⌈
n+ 1

2

⌉
(8.36)

It is obvious the leaves of T are V ′ ∪ V ′′. Use (8.33) and (8.36) to conclude that

|V ′|+ |V ′′| = n+ 1− 2blgnc + 2blgnc −

⌈
n+ 1

2

⌉
= n+ 1−

⌈
n+ 1

2

⌉
= n+ 1+

⌊
−
n+ 1

2

⌋
=

⌊
n+ 1−

n+ 1

2

⌋
since n+ 1 is integer

=

⌊
n+ 1

2

⌋
=
⌈n
2

⌉
(8.37)

Then the internal vertices of T must be
⌊
n
2

⌋
sincem =

⌊
m
2

⌋
+
⌈
m
2

⌉
for any natural numberm.

�

Lemma 34 ([GKP94], pp. 71). Let f(x) be any continuous, monotonically increasing
function with the property that

f(x) is integer ⇒ x is integer

Then,

bf(x)c = bf(bxc)c and df(x)e = df(dxe)e

�

Corollary 5.

∀x ∈ R+ ∀b ∈ N+ :

(⌊
bxc
b

⌋
=
⌊x
b

⌋
and

⌈
dxe
b

⌉
=
⌈x
b

⌉)
Proof:
Apply Lemma 34 with f(x) = x

b . �

The equalities in Corollary 6 are presented in [CLR00] but without any proof.

Corollary 6.

∀x ∈ R+ ∀a ∈ N+ ∀b ∈ N+ :

(⌊b xac
b

⌋
=
⌊ x
ab

⌋
and

⌈d xae
b

⌉
=
⌈ x
ab

⌉)
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depth 3

depth 1

depth 2

depth 0

Figure 8.3: Depths of vertices in a complete binary tree T .

Proof:
Apply Corollary 5 with x

a instead of x. �

Lemma 35. In any binary heap T of n vertices, there are precisely
⌊ n
2d

⌋
vertices of depth

≥ d.

Proof:
We remind the reader depth is defined as follows: any vertex u has depth d if the longest
path p—that does not contain the parent of u if one exists—between u and any leaf is of
length d (see also Definition 6 on page 132). For instance, see Figure 8.3. The proof is by
induction on d.

Basis. d = 0. The vertices of depth ≥ 0 are precisely the vertices of T . But there are

n =
⌊ n
20

⌋
vertices altogether in T . 3

Induction Hypothesis. Assume the claim holds for some depth d that is not the
maximum.

Induction Step. Delete all vertices of depth < d from T . Let us call the obtained tree
T ′ and let n ′ be the number of its vertices. The leaves of T ′, i.e. the vertices of depth 0
in T ′, are precisely the vertices of depth d in T . All vertices of T ′ are precisely the vertices

of depth ≥ d in T . By the inductive hypothesis, n ′ =
⌊ n
2d

⌋
. For example, consider T from

Figure 8.3; let d = 1 and after deleteting all vertices of depth < 1, we obtain the tree T ′

from Figure 8.4.

We know (see Problem 153 on page 251) there are

⌊
n ′

2

⌋
internal vertices in T ′. But the

internal vertices in T ′ are precisely the vertices of depth ≥ d + 1 in T . It follows there are⌊⌊
n
2d

⌋
2

⌋
vertices of depth ≥ d+1 in T . By Corollary 6,

⌊⌊
n
2d

⌋
2

⌋
=

⌊
n

2× 2d

⌋
, and certainly⌊

n

2× 2d

⌋
=
⌊ n

2d+1

⌋
. �
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depth 2

depth 0

depth 1

Figure 8.4: The complete tree T ′ obtained from T by deleting the vertices of depth
< 1, i.e. of depth 0. That vertex deletion decrements by one the depths of the
remaining vertices.

Corollary 7. In any binary heap T of n vertices, there are precisely

⌈⌊
n
2d

⌋
2

⌉
vertices of

depth d.

Proof:
By Lemma 35, there are

⌊ n
2d

⌋
vertices of depth ≥ d. The vertices of depth d are precisely

the leaves of the subtree of T induced by the vertices of depth ≥ d. By Problem 153 on

page 251, those leaves are

⌈⌊
n
2d

⌋
2

⌉
. �

Problem 154. Find a closed formula for

n∑
k=0

⌊
k− 1

2

⌋⌈
k− 1

2

⌉

Solution:

n∑
k=0

⌊
k− 1

2

⌋⌈
k− 1

2

⌉
=⌊

0− 1

2

⌋⌈
0− 1

2

⌉
+

⌊
1− 1

2

⌋⌈
1− 1

2

⌉
+

⌊
2− 1

2

⌋⌈
2− 1

2

⌉
+

⌊
3− 1

2

⌋⌈
3− 1

2

⌉
+

. . .+

⌊
(n− 1) − 1

2

⌋⌈
(n− 1) − 1

2

⌉
+

⌊
n− 1

2

⌋⌈
n− 1

2

⌉
=

(−1)× 0+ 0× 0+ 0× 1+ 1× 1+ 1× 2+

. . .+

⌊
(n− 1) − 1

2

⌋⌈
(n− 1) − 1

2

⌉
+

⌊
n− 1

2

⌋⌈
n− 1

2

⌉
Suppose n is odd, i.e. n = 2t+ 1 for some t ∈ N. We have to evaluate the sum

1× 1+ 1× 2+ 2× 2+ 2× 3+ . . .+ (t− 1)× t+ t× t =
1× 1+ 2× 2+ . . .+ (t− 1)× (t− 1) + t× t︸ ︷︷ ︸

A

+ 1× 2+ 2× 3+ . . .+ (t− 2)× (t− 1) + (t− 1)× t︸ ︷︷ ︸
B
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By (8.28) on page 249, A = t(t+1)(2t+1)
6 , and by Lemma 33 on page 249, B = (t−1)t(t+1)

3 .
So,

A+ B =
t(t+ 1)(2t+ 1)

6
+

(t− 1)t(t+ 1)

3
=
t(t+ 1)

3

(
2t+ 1

2
+ (t− 1)

)
=

t(t+ 1)

3

(
2t+ 1+ 2t− 2

2

)
=
t(t+ 1)(4t− 1)

6

Now suppose n is even, i.e. n = 2t for some t ∈ N. We have to evaluate the sum

1× 1+ 1× 2+ 2× 2+ 2× 3+ . . .+ (t− 1)× (t− 1) + (t− 1)× t =
1× 1+ 2× 2+ . . .+ (t− 1)× (t− 1)︸ ︷︷ ︸

A

+ 1× 2+ 2× 3+ . . .+ (t− 2)× (t− 1) + (t− 1)× t︸ ︷︷ ︸
B

By (8.28) on page 249, A = (t−1)t(2t−1)
6 , and by Lemma 33 on page 249, B = (t−1)t(t+1)

3 .
So,

A+ B =
(t− 1)t(2t− 1)

6
+

(t− 1)t(t+ 1)

3
=
t(t− 1)

3

(
2t− 1

2
+ (t+ 1)

)
=

t(t− 1)

3

(
2t− 1+ 2t+ 2

2

)
=
t(t− 1)(4t+ 1)

6

Overall,

n∑
k=0

⌊
k− 1

2

⌋⌈
k− 1

2

⌉
=


(n− 1)(n+ 1)(2n− 3)

24
, n odd

(n− 2)n(2n+ 1)

24
, n even

(8.38)

�

Computational Problem Halting Problem
Generic Instance: 〈P, I〉 where P is a computer program and I its input
Question: Does P(I) halt? �

The following is a simplistic version of the proof of the famous undecidability result. For a
more thorough treatment see, for instance, [Sip06].

Theorem 5. The Halting Problem is algorithmically unsolvable.

Proof:
Assume the opposite. Then there exists an program Q with input an ordered pair 〈P, I〉
of (the encoding of) a computer program P and its input I (i.e., I is input to P), such
that Q(P, I) returns True if P(I) halts, and False otherwise. Define program S(P) as
Q(P,P). That is, S(P) consists of the single line

return Q(P,P)

Define yet another program T(P) as follows:
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if S(P) then loop forever

else return True

Analyse T(T). If it goes into infinite loop, it must be the case that S(T) returns True.
Then it must be the case that Q(T,T) returns True. Then it must be the case that T halts
with input T. This is a contradiction.

If T halts, it returns True. Then it must be the case that S(T) returns False. Then
it must be the case that Q(T,T) returns False. Then it must be the case that T does not
halt with input T. This is a contradiction, too. �

Definition 13. A Turing machine M is an abstract device consisting of:

• a two-ways infinite tape, each cell of which contains exactly one symbol out of finitely
many possible tape symbols,

• a read-write head that is positioned initially at cell number 1 and can then move in
discrete steps from a cell to any of its two adjacent cells,

• a control unit that in any moment of the machine’s work is in precisely one of finitely
many states.

The machine operates in discrete steps. At each step it considers the symbol that is currently
read by the head and the state it is currently in. There are fixed rules (transition table) that
specify a new symbol to be written in that cell, a new state to go into, and a new cell for
the head, left or right. Formally,

M = 〈Σ, Γ,Q, q0, qY , qN, δ〉

where Σ is a finite alphabet called the input alphabet, Γ is another finite alphabet that is a
strict superset of Σ and such that there is at least one symbol ∈ Γ \Σ called blank, Q is a
finite set of states that necessarily contains those three states q0, qY, and qN where q0 is
the start state and qY and qN collectively are known as the halting states, and finally δ is
the transition function

δ :
(
Q \ {qY , qN}

)
× Γ → Q× Γ × ∆

where ∆ = {^,_}. Σ is the alphabet used to encode the input and Γ is the overall alphabet
of the machine. Initially, the input x = σ1, σ2, . . . , σn is written into cells number 1, 2, . . . ,
n, respectively, and all other cells of the tape are filled with . The two arrows ^, _ encode
the movement of the head in the obvious way. Initially, the machine is in the starting state
and then, in accordance with the tape content and the transition table, it changes states,
changes the tape content and moves the head. Whenever, if ever, the machine reaches any
of the halting states, it stops working, or halts. It it halts in qY we way it accepths input
x and if it halts in qN we say it rejects input x. �

Recall that a palindrome is a string that coincides with its reverse permutation, e.g.
010111010.

Problem 155. Construct a Turing machine that recognises palindromes over Σ = {0, 1}.
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Solution:
A Turing machine can be defined by just defining its input alphabet Σ and its transition
function δ, for instance by a table. From the table we can infer the set of states and the
tape alphabet (the input alphabet is given already).

0 1

q0 〈r0, ,_〉 〈r1, ,_〉 〈qY , ,^〉
r0 〈r ′0, 0,_〉 〈r ′0, 1,_〉 〈qy, ,^〉
r ′0 〈r ′0, 0,_〉 〈r ′0, 1,_〉 〈s0, ,^〉
s0 〈t, ,^〉 〈qN, ,^〉 〈s0, ,^〉
t 〈t, 0,^〉 〈t, 1,^〉 〈t ′, ,_〉
t ′ 〈r0, ,_〉 〈r1, ,_〉 〈t ′, ,^〉
r1 〈r ′1, 0,_〉 〈r ′1, 1,_〉 〈qY , ,^〉
r ′1 〈r ′1, 0,_〉 〈r ′1, 1,_〉 〈s1, ,^〉
s1 〈qN, ,^〉 〈t, ,^〉 〈s1, ,^〉

Table element T [i, j] is the ordered triple 〈x, y, z〉 where x is the new state, y is the new
symbol, and z is the movement of the head that correspond to state i and symbol j. For
instance (row 1), if the machine is in q0 and the symbol is 0 then it goes into state r0, writes
blank, and moves the head rightwards. The three coloured cells correspond to unreachable
(impossible) combinations of state and symbol so it really does not matter what it is in
them. �

The n frogs leap frog puzzle is defined as follows. There are 2n + 1 lily pads arranged in
a line and numbered 1, . . . , 2n + 1. There are 2n frogs, n green and n red, on the pads.
Each pad can have at most one frog on it. The initial arrangement is, the green frogs are
on pads 1, . . . , n and the red ones, on pads n + 2, . . . , 2n + 1. Thus initially the middle
lily pad has no frog. The frogs can jump in discrete subsequent moments. At each moment
at most one frog jumps. Furthermore, it can jump from pad k only to pad k − 2 or k − 1
or k + 1 or k + 2, provided the number is in {1, 2, . . . , 2n + 1} and that the target pad has
no frog on it already. Furthermore, the green frogs jump only rightwards and the red frogs,
only leftwards. The goal is to move all green frogs to pads n + 2, . . . , 2n + 1 and all red
frogs to pads 1, . . . , n, that is, to exhange the greens and the reds, with as few subsequent
jumps as possible. Solutions for n = 3 are commonly found on the Internet.

Problem 156. What is the minimum number of jumps that solves the n frogs leap frog
puzzle? Give a precise answer.

Solution:
Let us investigate small instances. Let n = 1. Let the frogs be drawn by coloured triangles.
Consider the initial arrangement:

There are precisely two solutions, both using 3 jumps:
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Once we choose which frog to move initially, the solution follows. There is no way to get
into a dead-end position when n = 1. However, when n = 2 it is possible to get into a
dead-end position:

Here is a possible solution for n = 2 that uses 8 jumps:

And a solution for n = 3 that uses 15 jumps:
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The last example is big enough to generalise. There are two key intermediate arrangements
A and B (outlined in yellow):
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B

A

Arrangement A is right after the rightmost red frog has jumped for the first time. Let us
define the disbalance of some arrangement as the absolute value of the difference between the
number of the green frogs and the number of the red frogs on either side of the empty pad;
clearly, the disbalance of both sides is equal in any arrangement. Initially the disbalance
is n = 3, then it gets monotonusly down to zero, stays zero for a while, and then gets
monotonously up to n = 3 in the final arrangement. Arrangement A is the first one in which
the disbalance is zero. Arrangement B is the last arrangement in which the disbalance is
zero. To get from A to B takes precisely n = 3 jumps. To get from the initial arrangement
to A takes the same number of jumps as the number of jumps from B to the final arrangment
because those two sequences of jumps mirror each other. An arrangement is interleaved iff
the colours of the frogs alternate along the lily pads sequence.

Let us generalise this idea. The sequence of jumps consists of three stages.

Stage i: From the initial arrangement to the first interleaved arrangement A. The empty
pad is at either the right end (as in the above example):

or the left end (there is nothing special about the red frogs):

In either case, the interleaved frogs start with a green frog on the left (and finish with
a red frog on the right). Let us say it takes P(n) jumps to accomplish Stage i.

Stage ii: From the first interleaved arrangement to the last interleaved arrangement. Ei-
ther the green frogs “slide between” the red frogs as in:

or the red frogs slide between the green frogs as in:
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Stage ii takes precisely n jumps.

Stage iii: From the last interleaved arrangement to the final arrangement. This stage
clearly mirrors Stage i and thus it takes P(n) jumps.

Let T(n) be the number of jumps for this particular scheme. There is no natural recursive
expression for T(n) because the solution for n frogs does not contain the solution for n− 1
frogs in any obvious way. However, we just derived:

T(n) = 2P(n) + n

The initial condition is T(1) = 3. In order to figure out what P(n) is, consider Stage i of
the solution for n = 3:

It clearly contains a solution for n = 2 (outlined in yellow):

Let us generalise. Stage i for instance of size n > 1 consists of a Stage i for instance
of size n− 1, followed by n more jumps. Having in mind that P(1) = 1, it is the case that

P(1) = 1

P(n) = P(n− 1) + n

The solution is P(n) = 1
2n(n+1), which the reader can easily verify by induction. Therefore,

T(n) = n(n+ 1) + n = n2 + 2n (8.39)
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n2+2n is a lower bound. So far we have demonstrated semi-rigorously that the scheme
we introduced solves the problem in n2+2n jumps for any n, thus a solution always exists.
Now we argue that is a lower bound. Let us first define that the inactive frogs in any
arrangement are the frogs that have either not jumped at all, or are already in their final
positions. All the other forgs are the active frogs. See the following figure (the solution for
n = 3) in which the active frogs (and possibly the empty pad) are outlined in yellow:

In each arrangement, the sub-arrangement of the active frogs is interleaved. This is no
coincidence. The following fact is immediately obvious.

Observation 3. Under the current names and assumptions, if during a sequence of jumps
there comes an arrangement in which there are two adjacent green or red frogs, the desired
final arrangement is unreachable. �

Now we prove that Stage i is unavoidable. Without loss of generality, let the first frog
among the two extreme frogs (leftmost and rightmost) that jumps be the red frog from pad
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2n+ 1, as in the example above. We argue that this frog jumps to pad 2n. By the rules of
the games, it may potentially jump to pad 2n−1, provided it is empty. Now we refute that
possibility. Assume there is a successful sequence of jumps (i.e. it ends with the desired
final arrangement) such that the first jump of the rightmost red frog is on pad 2n−1. Then
there is a frog on pad 2n.

• If the frog on pad 2n is red:

then after the jump

there are two adjacent active red frogs and by Observation 3, the game is lost.

• If the frog on pad 2n is green:

then the frog on pad 2n− 2 must be green:

otherwise after the jump we will end up with two adjacent red frogs. But then, in
order to avoid adjacent pair of same-colour frogs, it follows that between pads 1 and
2n− 2 inclusive the frog colours interchange like that:

It is easy to see that in order to have that arrangement, at some prior moment the
arrangement must have been:

and immediately prior to it:

But then the first among the two leftmost and rightmost frogs that has jumped has
been the green one on the left, contradicting the earlier assumption.

We proved that the rightmost frog first jumps from pad 2n+ 1 to pad 2n:

The sub-arrangement from position 1 to position 2n−1 inclusive has disbalance 1, with
one green frog more, and its must look like:

The jump of the rightmost frog yields the arrangement that we called A above (it is
obvious how to generalise it for input of size n):

A
It follows that Stage i is indeed unavoidable. It is trivial to show that from arrangement

A we have to get into arrangement A unless we lose the game:

B
In other words, Stage ii is unavoidable, too. The fact that Stage iii follows from

considerations of symmetry with Stage i. It follows that n2 + 2n is indeed a lower bound
for the number of jumps. �
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Problem 157. Let a and b be integers such that a < b. Let P be a predicate defined over
{i ∈ N | i ≥ a} and Q be a predicate over {i ∈ N | i ≥ b}. Show that any proof by induction
of the statement

∀n n≥a(P(n)∧ (n ≥ b→ Q(n)))

requires two bases because single basis for n = a does not suffice.

Solution:
Consider a concrete example. It is well-known that

∑n
i=0 i =

n(n+1)
2 . Therefore,

∑n
i=0 i =

n(n+1)
2 + 9 is false. Consider the statement

∀n n≥−15

(
n = (n+ 1) − 1∧

(
n ≥ 0→ n∑

i=0

i =
n(n+ 1)

2
+ 9

))
The statement is false. Consider the following invalid “proof by induction” for it.

Basis. n = −15. The substatement n = (n + 1) − 1 is always true and

so it is true for n = −15. The implication n ≥ 0 → ∑ni=0 i = n(n+1)
2 + 9 is

true because its antecedent is false: −15 is not greater than or equal to 0. The
conjunction of those two is then true, and the basis holds.

Inductive hypothesis. Assume the claim holds for some value n of the
argument.

Inductive step. Consider the claim for value n + 1 of the argument. Of
course, n+ 1 = (n+ 1+ 1) − 1 holds. Furthermore,

n+1∑
i=0

i =

(
n∑
i=0

i

)
+ n+ 1 = (* by the inductive hypothesis *)

n(n+ 1)

2
+ 9+ n+ 1 =

n2 + n+ 2n+ 2

2
+ 9 =

(n+ 1)(n+ 2)

2
+ 9

And that concludes the proof.

What is wrong with this “proof” is that in the inductive step it substitutes the implication
with the consequent of the implication and that is not right. The basis is surely true and the
whole statement remains true for n = −15,−14, . . . ,−1 because the second substatement—
the implication—remains true, its antecedent being false. However, for n = 0 the proof
breaks because the antecedent is no longer false and the consequent

∑0
i=0 i =

0(0+1)
2 + 9 is

false. Thus the statement for n = −1 does not imply it for n = 0. So, the proof is bogus.
A proof by induction is valid whenever the statement for n implies the statement for n+ 1
over the whole range of values.

That example makes it clear that if we insist two prove

∀n n≥a(P(n)∧ (n ≥ b→ Q(n)))

by induction we have to prove the following two statements separately by induction:

∀n a≤n<b(P(n))
∀n n≥b(P(n)∧Q(n))

Of course, if we have valid proofs for both statements we have a valid proof for the original
one. But that invloves considering separate bases for n = a and n = b. �
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