
MACRO

The High-Performance SNOBOL4 Language

Tutorial and Program Reference Manual

Manual text by Mark B. Emmer and Edward K. Quillen
with additional material by Robert B.K. Dewar

Catspaw SPITBOL™ program by
Robert B.K. Dewar, Mark B. Emmer, and Robert E. Goldberg

Catspaw, Inc.

P.O. Box 1123
Salida, CO 81201

U.S.A.
719/539-3884

FAX: 719/539-4830
support@SNOBOL4.com

For technical assistance, call 719-539-3884,
Monday-Friday, 8:30 a.m. to 5:00 p.m., Mountain Time,
or FAX 719-539-4830.

Electronic mail: support@SNOBOL4.com
Web address: www.SNOBOL4.com

Originally published in 1989 by Catspaw, Inc.
Revised September, 1991 for OS/2 2.0.
Revised May, 1995 for SPITBOL-8088 and AIX SPITBOL
Revised Februrary, 1998 for Windows NT.
Revised September, 2000.

© 1989, 2000 by Robert B. K. Dewar and Catspaw, Inc.

All rights reserved. No part of this
manual may be reproduced in any form
or by any means, without permission
in writing from the publisher.

Catspaw SPITBOL is a trademark of Catspaw, Inc..

Printed in the United States of America

What’s in a name? Apparently a great deal when the name is
“SPITBOL.” The name elicits either confusion, derision, or admiration.

Confusion comes from those who think “SPITBOL” is a dialect of “CO-
BOL,” even though there’s absolutely no similarity between the two. True,
they do share “BOL” in their name, and Robert Dewar, SPITBOL’s creator,
has also written a COBOL compiler, but that’s as close as they get. SPITBOL
and COBOL were designed for very different types of data processing.

Derision comes because of SPITBOL’s homophone, “spitball,” which
my dictionary defines as “1. a small ball or lump of chewed paper used as a
missile. 2. Baseball, a pitch, now illegal, made to curve by moistening one
side of the ball with saliva or perspiration.” Hardly the stuff of which mod-
ern marketing images are made.

Admiration comes from those who have used other implementations of
SPITBOL. Mainframe and minicomputer SPITBOLs have always had a fol-
lowing among programming cognoscenti. They know that calling it a
“SPeedy ImplemenTation of snoBOL” is an understatement. Whatever con-
notations SNOBOL4 has as a powerful but slow language are discredited
with an implementation that typically runs six to ten times faster than other
SNOBOLs.

We briefly considered creating a more modern name, like “Athena,” ap-
propriately unfocused and non-descriptive for the current age; a name that
could be applied equally to software or shampoo. But in the end we decided
to wear the name proudly: SPITBOL—raw speed and programming power
for non-numerical problem solving.

In today’s climate of structured and object-oriented programming, the
SNOBOL4 language may look archaic. Gotos? In the 1990’s? But go a little
deeper, and you’ll find many features that are advanced by any standard:
absence of type declarations, automatic memory management with dynam-
ically-sized objects, associative data structures, patterns as objects,
first-class objects, and runtime compilation of new program material.

iii

Preface

I’ve used various incarnations of the SNOBOL language for over
twenty-five years. Don’t think me immodest when I say that using SPITBOL
on a modern PC or workstation is exceedingly pleasant. The computer
speed and memory now available on your desktop means never again hav-
ing to apologize for SNOBOL4’s performance. But don’t take my word for
it. Dig in and get started. You’ll be surprised at how quickly you can write
programs that would be difficult to formulate in other languages.

And try to have fun while you’re at it. As one user told me: “Pro-
gramming in SNOBOL4 sometimes leaves me euphoric.”

Acknowledgements

The research that produced the SNOBOL series of languages took place
at the Bell Telephone Laboratories during the 1960s. Bell Labs is to be com-
mended for allowing the fruit of that research to enter the public domain.

Ralph Griswold, one of the original designers of SNOBOL, has kept the
language alive through the SNOBOL4 Project at the University of Arizona.
Dr. Griswold also gave permission for many of his SNOBOL4 programs
from String and List Processing in SNOBOL4 to be distributed here.

Robert Dewar created Macro SPITBOL in the mid 1970’s, and showed
the world that a high-performance version of SNOBOL4 was possible. His
Macro SPITBOL compiler forms the kernel of this implementation. As an
example of “aggressive” assembly-language programming, it remains a
programming tour de force.

SNOBOL4 and SPITBOL evolved in a special world that is more collegial
than competitive. Several SPITBOL loyalists have given generously of their
time over the years to refine and improve Macro SPITBOL, among them An-
thony McCann, Steve Duff, Robert Goldberg, and David Shields.

Portions of SPITBOL’s I/O system and operating system interface were
created by Robert Goldberg, based upon the ideas of Andrew Koenig.

Ed Quillen, local novelist, political columnist, and SNOBOL enthusiast,
co-authored this manual. He combined various terse SPITBOL documents
from other systems with Catspaw’s SNOBOL4+ manual, while providing
more complete explanations of some concepts. Any observed clarity in this
manual is due to Ed, while the more opaque portions can be blamed on me.

My wife, Nancy R. Vickery, has adjusted to life with a SPITBOL enthusi-
ast. She also proofread the manuscript and provided design assistance.
Without her support, sustenance, and encouragement, SPITBOL would
have remained a distant dream.

Finally, I’d like to recognize and thank the many users of SNOBOL4+ for
their support and continued loyalty to the SNOBOL4 way. Your sugges-
tions and comments have helped keep the SNOBOL4 flame alive.

Mark B. Emmer

iv Preface

Preface iii

PART I
Getting Started

Chapter 1 Installation 1

About This Manual 1
Installing SPITBOL 3
DOS-Extended SPITBOL-386 4
SPITBOL-8088 5
Checkout 5
File readme.txt 5
An Example 6

Chapter 2 First Program 9

A First Program 9
Interactive Statement Execution 11
Experienced Users 12

PART II
Tutorial

Chapter 3 Fundamentals 15

Simple Data Types 15
Simple Operators 18
Variables 23
Chapter Summary 25

Chapter 4 Control Flow and Functions 27

Success and Failure 27
A SPITBOL Statement 28
Built-in Functions 31
Chapter Summary 36

v

Table of Contents

Chapter 5 Input/Output and Keywords 39

Input/Output 39
The INPUT and OUTPUT Functions 42
Completing File Processing 45
Keywords 47
Programs Without Pattern Matching 49
Chapter Summary 53

Chapter 6 Pattern Matching 55

Introduction 55
Specifying Pattern Matching 56
Subject String 57
Pattern Subsequents and Alternates 57
Simple Pattern Matches 60
The Pattern Data Type 61
Capturing Match Results 62
Unknowns 63
Pattern Matching with Replacement 72
Sample Programs 74
Anchored and Unanchored Matching 78
Chapter Summary 79

Chapter 7 Additional Operators and Datatypes 81

Indirect Reference 81
Unevaluated Expressions 85
Immediate Assignment 87
Arrays 88
Tables 91
The Name Operator 96
Alternative Evaluation 97
Chapter Summary 99

Chapter 8 Program-Defined Objects 101

Program-Defined Functions 102
Program-Defined Data Types 111
Program-Defined Operators 115
Chapter Summary 119

Chapter 9 Advanced Topics 121

The ARBNO Function 121
Recursive Patterns 122
Quickscan and Fullscan 123
Other Primitive Patterns 124
Other Functions 127
Binary Operator Extensions 128
Other Unary Operators 129
Run-Time Compilation 130
NRETURN 133
Parsing and Translation 135
Chapter Summary 137

vi Contents

Chapter 10 Debugging 139

Debugging and Tracing 139
Execution Tracing 146
Chapter Summary 151

Chapter 11 Concluding Remarks 153

PART III
Reference Manual

Chapter 12 Reference Introduction 157

Language Background 158

Chapter 13 Running SPITBOL 161

Command Line 161
Command Line Options 162
Standard I/O and Redirection 165
Environment Variables 166
Save Files and Load Modules 168

Chapter 14 SPITBOL Statements 171

Comment Statements 171
Control Statements 171
Program Statements 175
Continuation Statements 178
Multiple Statements 178
The END Statement 179

Chapter 15 Operators 181

Unary Operators 181
Binary Operators 182

Chapter 16 Keywords 187

Protected Keywords 187
Unprotected Keywords 189
Special Names 192

Chapter 17 Data Types and Conversion 195

Data Type Names 195
Data Type Conversion 198
Conversion Details 199

Chapter 18 Patterns and Pattern Matching 203

Primitive Patterns 203
The Pattern Match Algorithm 204

Chapter 19 SPITBOL Functions 209

Built-in SPITBOL Functions 209
Function Summary 210
Function Descriptions 212

Contents vii

Chapter 20 Programming Notes 247

Space Considerations 247
Speed Considerations 249

Appendix A Distribution Media 255

Appendix B Programs from String and List Processing 261

Appendix C Summary of Differences 263

Features Not Implemented 263
Features Implemented Differently 264
Additional Features 266
Syntax Differences 267
SPITBOL for SNOBOL4+ Users 268

Appendix D Error Messages 271

Appendix E The HOST Function 281

Appendix F External Functions 303

Appendix G Configuring SPITBOL 335

Configuring MS-DOS SPITBOL-386 335
Intel-Extended SPITBOL-386 336
PharLap-Extended SPITBOL-386 340
Use with Microsoft Windows

Bibliography 345

Index 349

viii Contents

PART I

Getting Started

Welcome to the world of SNOBOL4! It’s a world where you can manipu-
late text and search for patterns in a simple and natural manner. SNOBOL4
is a completely general programming language, and its magic extends far
beyond the world of text processing. Concise, powerful programs are easy
to write. In addition, SNOBOL4’s pattern programming provides a new
way to work with computers.

SPITBOL is an extremely high-performance implementation of the
SNOBOL4 language. If you would like to add it to your repertoire of prob-
lem-solving tools, and learn why other users swear by it, read on.

Scope This manual covers all implementations of Catspaw SPITBOL. At this
writing it covers these architectures:

• Intel 80x86-based systems

• Motorola 680x0-based systems

• Sun SPARC RISC systems

• IBM POWER (RS/6000) and PowerPC-based systems

• MIPS R-3000 systems

and these operating systems:

• MS- and PC-DOS

• OS/2

1

1

Chapter 1

Installation

About This Manual

• Windows 95 and Windows NT

• various Unix flavors: AIX, BSD, IRIX, System V, SunOS, and Solaris

The Intel 80x86-version is further divided into a 16-bit SPITBOL-8088
and a 32-bit SPITBOL-386. SPITBOL-8088 will run on all 80x86-family com-
puters, from 8088s to Pentium Pros. SPITBOL-386 requires a 80386-, 80486-,
or Pentium-family CPU. The combined nature of the manual reflects our de-
sire to standardize on one version of SPITBOL and make it available on a va-
riety of platforms and operating systems. Because of the very different work
environment provided by the Apple Macintosh, a different manual is pro-
vided with Catspaw’s MaxSPITBOL system.

MS-DOS,
Windows 95,
Windows NT

If you have purchased SPITBOL-386, you will find one SPITBOL execut-
able file on the distribution disk. This file will run by itself as a 32-bit pro-
gram in a command window under Windows 95 and Windows NT. Under
native MS-DOS or Windows 3.1, you will also need the DOS Extender pro-
vided on the distribution disk to run SPITBOL as a protected-mode 32-bit
program.

Organization This manual is divided into four parts. This part, “Getting Started,”
shows you how to create and run small programs with SPITBOL. It consists
of Chapters 1 and 2. Beginners and experts alike should take the time to read
these two small chapters.

Part II, “Tutorial,” is addressed to the beginning SNOBOL4 program-
mer; it comprises Chapters 3–11. It assumes a modest knowledge of general
programming concepts, and experience with another programming lan-
guage, such as BASIC, C, or Pascal. Readers without any programming
background may wish to consult a book written with them in mind:
SNOBOL Programming for the Humanities, listed in the bibliography.

Part III, “Reference,” is a complete description of the SPITBOL product;
it comprises Chapters 12–20. If you are already familiar with the SNOBOL4
language, you may wish to skip the tutorial and proceed to the reference
section for specific details about SPITBOL. Later, you can return to the tuto-
rial section for fresh insight into the language’s use.

Part IV holds the appendices. Appendices A and B describe the pro-
grams on the SPITBOL distribution media. Appendix C lists differences be-
tween SPITBOL, standard SNOBOL4, and SNOBOL4+. Appendix D lists all
compilation and run-time error messages. Appendix E lists HOST functions
provided for machine-specific programming. Appendix F describes the ex-
ternal function interface for those implementations that provide it. Finally,
there is a bibliography of SPITBOL-related material, and an index.

2 Getting Started

Create a new sub-directory on your hard disk called spitbol. (All file and
directory names will be shown as bold lower case in this manual. Some sys-
tems such as MS-DOS will automatically convert such names to upper-case.
No harm comes from entering them in lower case however). Make spitbol
your current sub-directory.

Installing from
disk

Copy the distribution disk(s) into the new sub-directory. MS-DOS and
OS/2 users can simply use the xcopy command:

xcopy a:*.* /s

Windows users may prefer to use the file manager to drag the floppy
disk icon to the subdirectory.

Sun 4/SPARC users will receive a “bar”-format floppy disk, created
with compression. The method of reading depends upon the operating sys-
tem. If you are running SunOS 4.x (Solaris 1), use:

bar xvfZ /dev/rfd0

If you are running Solaris 2.x, use the following two-command se-
quence:

volcheck
cpio -i -Hbar -d </vol/dev/rdiskette0/unlabeled

By special arrangement, AIX and Unix users can receive their SPITBOL
system on an MS-DOS formatted diskette. They should use local system
utilities to transfer the files and directory structure through their network to
the target system.

Installing from
tape

Users who receive SPITBOL as a “tar”- format cartridge tape can copy all
files off the tape with either of these commands:

tar xvf /dev/rst0 (SunOS 4.x)

tar xvf /dev/rmt/0 (Solaris 2.x)

You may have to adjust the tape device name for your particular system.

If you are short on disk space, you may wish to only retain those files
needed to run SPITBOL and work through the tutorial. Those files are
spitbol (or spitbol.exe), code.spt, readme.txt, tictac.spt, faustus, asc.inc,
capitals.dat, fact.inc and roman.inc. MS-DOS and Windows 3.1 users will
need the DOS Extender files 32rtm.exe, dpmi32vm.ovl and windpmi.386.

The other files on the distribution media are sample programs and func-
tions which will be useful after you’ve used the tutorial.

Unix users may wish to copy the spitbol file to /usr/local/bin, or other
appropriate directory on their path. The spitbol file must be given read and
execute privileges (chmod +xr spitbol).

Installation 3

1

Installing SPITBOL

OS/2, Windows 95, Windows NT and Unix users should skip ahead to
the Checkout section. Placing the SPITBOL executable somewhere on your
execution path is all that is required. However, MS-DOS and Windows 3.1
users must read the following material describing the installation of the
DOS Extender.

SPITBOL-386 for Windows NT can be run under MS-DOS or Windows
3.1 using the supplied DOS Extender. A DOS Extender allows SPITBOL to
operate in 32-bit mode, and to break the 640K barrier common to MS-DOS
systems. This DOS Extender is from Borland International, and is com-
monly known as their “PowerPack for MS-DOS.”

Previous versions of SPITBOL-386 contained bound-in DOS Extenders
from PharLap Software and Intel Corporation. These versions have been
discontinued in favor of the present system — a native Win32 application
and a separate, stand-alone DOS Extender for those environments that re-
quire it.

In addition to running in native MS-DOS environments, this DOS Ex-
tender is compatible with DPMI*-compliant hosts, such as a DOS Shell un-
der Windows 3.1 Enhanced mode or under OS/2.

MS-DOS For both MS-DOS and Windows 3.1, the two files 32rtm.exe and
dpmi32vm.ovl must be present in the current directory or on your path. We
suggest placing them in your c:\dos directory. 32rtm.exe is the 32-bit
run-time manager, and dpmi32vm.ovl is a DPMI server that is installed by
32rtm if DPMI services are not provided by your system. If DPMI is present,
32rtm uses the existing services.

Windows 3.1 For Windows 3.1 (or Windows for Workgroups), one additional step is
necessary. The file windpmi.386 should be copied to the same directory
where you placed 32rtm.exe. Now go to your Windows directory, and edit
the file system.ini using Notepad or some other editor. Look for the section
that begins “[386Enh]” and add a line like this:

Device=c:\dos\windpmi.386

4 Getting Started

DOS-Extended SPITBOL-386

*DPMI - DOS Protected Mode Interface, a second-generation protected mode
standard. Version 0.9 is supported by the DOS Shell in Windows 386 Enhanced
mode and OS/2. It is likely to be supported in future versions of 80386 Unix.

where “c:\dos\” should be adjusted to reflect the path where you placed
the windpmi.386 file. You’ll need to restart Windows to have this change
take effect.

The Intel 8088 version of SPITBOL is supplied in two forms,
spitbols.exe, and spitboll.exe. The difference is whether integers are stored
as 16- or 32-bit values. spitbols.exe provides short, 16-bit integers, while
spitboll.exe provides long, 32-bit integers.

The 8088 CPU has 16-bit wide data paths and registers, so 16-bit arithme-
tic is natural and fast. Even later processors, such as the Pentium, are operat-
ing under PC/MS-DOS with 16-bit registers unless a DOS Extender is ac-
tive. 32-bit integer arithmetic will be slower, both because it must be emu-
lated using the chip’s 16-bit facilities, and because an additional two bytes
of storage are required. The additional storage requirements also reduce the
amount of data that can be stored in SPITBOL-8088’s workspace.

For the purposes of this tutorial, we suggest using spitboll.exe. Its 32-bit
integers are identical to those of its “big brother” SPITBOL versions, so ex-
amples will work exactly as presented. Throughout this tutorial, type
“spitboll” instead of “spitbol,” or simply rename spitboll.exe to
spitbol.exe.

Once SPITBOL is installed, play a game of Tick-Tack-Toe. Enter

spitbol tictac

The SPITBOL program should load and compile the Tick-Tack-Toe pro-
gram. The game will begin execution and display instructions.

We put a file called readme.txt on the distribution media. It contains
last-minute information that became available after this manual was
printed. To view this file, load it into your text editor for inspection.

Installation 5

1

Checkout

File readme.txt

Throughout this

manual, we’l l

use small

sidebars l ike this

to point out

dif ferences

between

SPITBOL-8088

and the other,

32-bit versions

SPITBOL-8088

Just to get a feel for where we’re going, let’s take a look at a small pro-
gram on the next page. It produces a sorted list of the words in a file, along
with a count of how many times each word appears. Don’t be concerned if
you don’t understand the program; we just want to give you a taste of the
language.

Running the program with some file of text as input would produce a
sorted usage count like this:

Word Counts
a – 147
able – 18
above – 3
aren’t – 2
…

Notice some of the things that seem to occur so effortlessly here: A word
is defined to be any combination of lower-case letters, hyphen, and apostro-
phe. Data from the file are converted to lower case. A table of word counts
uses the words themselves as subscripts. The table is converted to a sorted ar-
ray in one statement, and printed without any knowledge of the array’s
size. Finally, because the definition of a word is contained in one succinct
pattern, it’s easy to modify the program to catalog other kinds of text pat-
terns.

Excluding comments and the end statement, there are 11 working state-
ments in this program—and this program uses only a fraction of SPITBOL’s
power. How much work would it be to write such a program in any other
language you are familiar with? Is it possible that there is something unique
about SPITBOL?

6 Getting Started

An Example

Sample program to produce a list of unique words in a file

* Program wordlist.spt

*
* To run: spitbol wordlist <datafile

*
* Trim input, set up constants, create table to hold word counts

&trim = 1
wrdpat = break(&lcase) span(&lcase “–’”) . word
tally = table(1000)

* Read a line, convert upper-case letters to lower-case
read line = replace(input, &ucase, &lcase) :f(sort)

* Get and remove next word from line, place in variable word
nextwrd line ? wrdpat = “”

:f(read)

* Increment the count for this word
tally[word] = tally[word] + 1

:(nextwrd)

* Convert the table to an array, and sort the words
sort result = sort(tally)

* Display the results
output = “Word Counts”
n = 1

print output = result[n,1] “ – ” result[n,2] :f(end)
n = n + 1
:(print)

end

Installation 7

1

This chapter will do three things:

1. It will take you through the steps needed to create and run a very
simple SPITBOL program.

2. It will show you how to use the interactive execution features of the
code.spt program. This handy program allows you to “try out”
various SPITBOL statements and constructions. You’ll find it use-
ful whenever you use SPITBOL.

3. For the experts in the audience who want to skip the tutorial in Part
II, we’ll point out a few key things you need to know when convert-
ing programs from other SNOBOL4 systems.

We will begin with a very simple program, one that displays a simple
message on your computer’s display screen. It will familiarize you with the
mechanics of running a SPITBOL program.

In the examples that follow, we’ll use the convention of showing text that
you type in boldface. Every line you enter from the keyboard should end by
pressing the Enter or Return key.

You start the system by typing spitbol and a hyphen at the system com-
mand prompt. SPITBOL displays two title lines and waits for you to enter
your program:

spitbol –
SPITBOL-386 Release 3.7(ver 1.29) Serial 20001
(c) Copyright 1987-1995 Robert B. K. Dewar and Catspaw, Inc.

9

2

Chapter 2

First Program

A First Program

Now enter the program. Use the tab character to begin the indented line,
and be sure to place blanks on each side of the equal sign:

OUTPUT = ‘Real programmers use SPITBOL!’
END
Real programmers use SPITBOL!

As you enter each line, it is compiled into a compact internal notation.
The first program line begins with a tab; the second is flush left. The word
END is special; it signals SPITBOL that you have finished entering program
lines. It must appear at the left margin to be recognized. After the END state-
ment is entered, SPITBOL begins to run your program.

This program consists of one assignment statement. Assignment takes
the value on the right side of the equals sign, and stores it in the variable on
the left. The value on the right is the character string literal ‘Real programmers

use SPITBOL!’. The variable’s name is OUTPUT, which is a special name in
SPITBOL; values assigned to it are displayed on the screen. After the assign-
ment statement is performed, control flows into the END statement and the
program stops.

Capitalization of names is largely historic. You’re free to use any conven-
tion that you’re comfortable with, such as Output or end.

SPITBOL only allows in-line editing as you enter your program. It is not
a program editor, and does not save your source program or let you correct
mistakes in previous program lines. Usually, you’ll want to prepare your
program in a disk file.

Use your text editor to create the same two line program:

OUTPUT = ‘Real programmers use SPITBOL!’
END

and save it is a file called real.spt. If you are using a word processor, remem-
ber to produce an unadulterated ASCII file, free of any special format con-
trols. Now you can have SPITBOL read and execute your program from a
file:

spitbol real.spt
SPITBOL-386 Release 3.7(ver 1.29) Serial 20001
(c) Copyright 1987-1995 Robert B. K. Dewar and Catspaw, Inc.
Real programmers use SPITBOL!

We substituted the program name for the hyphen on the command line
(the hyphen told SPITBOL to read the file “keyboard”).

SPITBOL assigns a unique number to each program statement. The
statement number and line number are displayed whenever an error mes-
sage is produced. Statement numbers may differ from the line numbers in
your text editor. To get a listing of your program with SPITBOL’s statement
numbers, try (that’s a lower-case “L” in the line below):

spitbol –l real
SPITBOL-386 Release 3.7(ver 1.29) Serial 20001
(c) Copyright 1987-1990 Robert B. K. Dewar and Catspaw, Inc.
Real programmers use SPITBOL!

10 Reference

The command line allows options to be specified between the word
“spitbol” and your program name. The option –l tells SPITBOL to produce a
listing of your source file. It writes it to a file with the same name as your
program but with the extension .lst.

Now display the file real.lst using your system’s type (MS-DOS, Win-
dows, OS/2) or cat (Unix) command:

type real.lst

or

cat real.lst

Macro SPITBOL Release 3.7(ver 1.29)
80386 05/22/95 14:36:00

1 OUTPUT = “Real programmers use SPITBOL!”
2 END

Other command line options are discussed in Chapter 13, “Running
SPITBOL.” In this example we omitted the file name extension. SPITBOL
will supply the .spt extension for the source file if it is absent.

You’ve now run a simple SPITBOL program in two ways: by typing it in
directly, and by creating a disk file.

Normally, you’ll create a program in your text editor, save the file, and
then run it.

But when first learning SPITBOL, it’s helpful if you can test simple state-
ments as they are introduced in the text. If an idea is unclear, you can try dif-
ferent variations to see what’s happening. There is a SPITBOL program
called code.spt on the distribution media to help you do this.

The code.spt
program

To use code.spt, make sure it is in your current directory, and start up
SPITBOL with code as the program name. Type END to stop the program:

spitbol code
SPITBOL-386 Release 3.7(ver 1.29) Serial 20001
(c) Copyright 1987-1995 Robert B. K. Dewar and Catspaw, Inc.
Enter SPITBOL statements:
? OUTPUT = ‘Hello World!’
Hello World!
Success
? OUTPUT = 16
16
Success

Introduction 11

2

Interactive Statement Execution

Feel free to experiment—you can’t break anything by using this pro-
gram. At most, you will get an error message. When you’re done, stop the
program by typing end:

?end

Whenever you see examples in the text that begin with a question mark,
they are meant to be tried with code.spt. In the rest of this manual, we’ll
omit the bold type and the word Success unless it is relevant to the concept
being presented.

What’s next? If you’re just learning the SNOBOL4 language, start working through
the tutorial in Part II. If you’re already a SNOBOL4 programmer, and are
anxious to get some existing programs running right away, read the follow-
ing section, and then turn to Chapter 13, “Running SPITBOL.” It’s full of de-
tailed information on the many features we’ve added to make the system
more flexible.

If you’re familiar with the SNOBOL4 programming language, this sec-
tion will give you the absolute minimum needed to start writing programs
immediately. If you’re not in that category, skip this section, and we’ll pro-
ceed at a more leisurely pace.

Converting to
SPITBOL

If you have existing SNOBOL4 programs that you want to run, here’s a
quick checklist of things that may have to be changed:

• Calls to the INPUT() and OUTPUT() functions. SNOBOL4+ and Robert
Dewar’s original PC-SPITBOL provide different processing options,
and SNOBOL4+ places file names in a fourth argument. Full details are
in the description of the INPUT function, see page 224. Catspaw SPITBOL
uses the format:

INPUT(.Variable, Channel, “filename[options]”)

where Channel can be either a simple integer, or the name of a variable.

• SPITBOL does not provide the &STFCOUNT keyword. The &FULLSCAN

keyword is always set to 1 — pattern matching always takes place in
fullscan mode.

• SPITBOL HOST functions are machine dependent. See Appendix E for
specific differences.

• Some systems pre-declare a SCREEN variable to write data to the con-
sole. SPITBOL uses an equivalent variable called TERMINAL.

A complete list of differences and enhancements is given in Appendix C,
particularly the section “SPITBOL for SNOBOL4+ Users,” page 268.

12 Reference

Experienced Users

PART II

Tutorial

SPITBOL is really a combination of two kinds of languages: a conven-
tional language, with several data types and a simple but powerful control
structure, and a pattern language, with a structure all its own. The conven-
tional language is not block structured and may appear old-fashioned. The
pattern language, however, remains unsurpassed, and is unique to
SPITBOL and its immediate relatives, such as SNOBOL4.

You should try to master the conventional portion of SPITBOL first.
When you’re comfortable with it, you can move on to pattern-matching.
Pattern-matching by itself is a very large subject, and this book can only of-
fer an introduction. The sample programs on the distribution diskette can
be studied for a deeper understanding of patterns and their application. In
addition, the book Algorithms in SNOBOL4 (by James Gimpel, available
from Catspaw) provides an extensive discussion of the theory of pat-
tern-matching.

We’ll begin by discussing data types, operators, and variables.

All computer languages provide certain basic types of data that are used
in programs to produce meaningful results. SPITBOL has nine different ba-
sic types, but has a mechanism to define many more as aggregates of others.
Initially, we’ll discuss three of the most basic: integers, reals, and strings.

3

15

Chapter 3

Fundamentals

Simple Data Types

Integers An integer is a simple whole number, without a fractional part. In
SPITBOL, its value can range from –2147483648 to +2147483647. It appears
without quotation marks, and commas should not be used to group digits.
Here are some acceptable integers:

14 –234 0 0012 +12832 –9395 +0

These are not integers in SPITBOL:

13.4 fractional part is not allowed

3145926535 larger than 2147483647

– number must contain at least one digit

3,076 comma is not allowed

Use the code.spt program to test different integer values. Try both legal
and illegal values. Here are some sample test lines:

Enter SPITBOL statements:
? OUTPUT = 42
42
? OUTPUT = –825
–825
? OUTPUT = 5356295413
Error #231, Syntax error: Invalid numeric item

Reals Reals are numbers with a decimal point; they are sometimes called float-
ing-point numbers. Reals provide a much wider range of values than inte-
gers, but at the expense of lost precision and longer program execution time.
A real number has either a decimal point or an exponent (it must have at
least one for SPITBOL to recognise it as a real number). There must be at
least one digit to the left of the decimal point. The real number also has an
optional sign.

Here are some examples of acceptable real numbers:

12.9543

–0.0053294

123456789012345678.901

1.0E+7 (10000000.0 or 1 times 10 to the 7th power)

1E+7 (Has no decimal point, but has exponent)

2E7 (Sign for exponent is optional if positive)

8.4E–7 (0.00000084 or 8.4 times 10 to the –7th power)

SPITBOL maintains accuracy to 15 decimal places on real numbers (IEEE
64-bit, double-precision format). When converting to a string, the mantissa
is displayed with 9 significant digits. The 10th digit is rounded; 6 and above
in the 10th place will increment the 9th digit when displayed. Therefore, the
long number above would be displayed by SPITBOL as 0.12345789E+18.

16 Tutorial

Exception: In the

shor t integer

version of

SPITBOL-8088

(spitbols.exe),

integers are

restr icted to the

range –32768 to
+32767.

Unl ike integers,

both versions of

SPITBOL-8088

suppor t the ful l

range and

precision of real

numbers.

Note that if a real has more than 9 digits to the left of the decimal point,
SPITBOL scales the mantissa between 0 and 1, and adjusts the exponent ac-
cordingly. Reals less than 1.0 are always handled this way.

These are incorrect real numbers:

.63 no digit to the left of the decimal point

1.23E–2.3 exponent not an integer

If a real number is larger than 0.18E+309, it causes an error. Generally,
full precision is maintained for values as small as 0.22E–309, then there is a
gradual loss of precision down to 0.49E–322. Numbers smaller than that are
converted to 0. (In the absence of floating-point hardware, the precision of
very small numbers is dependent upon the quality of each system’s float-
ing-point library. Some SPITBOL implementations, notably SPITBOL-386,
may only have numbers as small as 0.23E–307, after which they abruptly
switch to 0.)

Here are some lines to try with code.spt:

? OUTPUT = 5.23
5.23
? OUTPUT = 1.8E+3
1800.
?= 1.8E–3
0.0018
?= –3.0E+400
Error #231, Syntax error: Invalid numeric item
?= 5.3E–400
0.
?= –5.4.
Error #231, Syntax error: Invalid numeric item
?= +9.5E29
0.95E+30

Strings

A string is an ordered sequence of characters. The order of the characters
is important: the strings AB and BA are different. Characters are not re-
stricted to printing characters; all of the 256 combinations possible in an
8-bit byte are allowed.

Normally, the maximum length of a string is 4,194,304 characters (4
megacharacters). If that’s not long enough for you, Chapter 13 describes a
command line option (–m) that tells SPITBOL to allow longer strings.

A string of length zero (no characters) is called the null string. At first,
you may find the idea of an empty string disturbing: it’s a string, but it has
no characters. You’ll find its role in SPITBOL is similar to the role of zero in
the natural number system.

Strings may appear literally in your program, or may be created during
execution. To place a literal string in your program, enclose it in single quo-
tation (‘) or double quotation marks (“). Either may be used, but the begin-
ning and ending marks must be the same. The string itself may contain one
type of mark if the other is used to enclose the string. The null string is repre-

Fundamentals 17

3

A code.spt
shor tcut: typing

“OUTPUT = ” for

each test l ine

quickly becomes

tiresome. If you

type an “=”

right af ter the

“?”, code.spt
wil l evaluate the

expression and

display the

results.

Remember, this

only works in

code.spt ; i t ’s

not a general

feature of the

SPITBOL

String length is

l imited to 9,000

characters in

SPITBOL-8088,

and cannot be

increased.

sented by two successive quotation marks, with no intervening characters.
Here are some samples to try with code.spt:

? OUTPUT = ‘THIS IS A STRING LITERAL’
THIS IS A STRING LITERAL
?= “So is this one”
So is this one
?= “”

?= ‘WHO COINED THE WORD “BYTE”?’
WHO COINED THE WORD “BYTE”?
?"WON’T"
WON’T

(Generally it’s easier to use the single quote to mark literal strings, be-
cause it is not a shifted character—and that makes for faster typing.)

If data is the raw material, operators are the tools that do the work. Some
operators, such as + and –, appear in all programming languages. But
SPITBOL provides many more, some of which are unique to the SNOBOL
language family. SPITBOL also allows you to define your own operators.
We’ll examine just a few basic operators below.

Unary vs.
binary

SPITBOL operators require either one or two items of data, called
operands. For example, the minus sign (–) can be used with one object. In
this form, the operator is considered unary:

–6.92

Or, it can be a binary operator with two operands:

4.25 – 1.33

In the first case, the minus sign negates the number. The second example
subtracts 1.33 from 4.25. The minus sign’s meaning depends on the context
in which it appears. SPITBOL has very simple rules for determining if an op-
erator is binary or unary:

1. Unary operators are placed immediately to the left of their operand.
No blank or tab character may appear between operator and oper-
and.

2. Binary operators have one or more blank or tab characters on each
side.

The blank or tab requirement for binary operators causes problems for
programmers first learning SPITBOL. Most other languages make these
white-space characters optional. Omitting the right-hand blank after a binary
operator will produce a unary operator. While the statement may have
proper syntax, it will very likely produce results you didn’t expect.

18 Tutorial

Simple Operators

Fortunately, blanks and binary operators quickly become a way of
SPITBOL life, and after some initial forgetfulness there are few problems.

Binary
operators

A complete list of SPITBOL’s operators appears in Chapter 15, “Opera-
tors.” Here we’ll concern ourselves with those operators that are found in
most other programming languages.

Assignment
=

You’ve already met one binary operator, the equals sign (=). It appeared
in the first sample program:

OUTPUT = ‘Hello world!’

It assigns, or transfers, the value of the object on the right (‘Hello world!’) to
the object on the left (variable OUTPUT, whose value then appears on the
standard output file, typically your display screen).

As an extension to the SNOBOL4 language, SPITBOL allows multiple as-
signments within a statement. Assignments are performed from right to left:

OUTPUT = RESULT = ‘No errors’

Assignments may also be embedded within other expressions:

OUTPUT = (RESULT = 10 * 6) / 15

stores 60 in RESULT and 4 in OUTPUT.

Arithmetic
^, *, /, +, –

These characters provide the arithmetic operations—exponentiation,
multiplication, division, addition, and subtraction respectively. Each is as-
signed a priority, so SPITBOL knows which to perform first if m

You may use parentheses to change the order of operations. The oper-
ands may be integers or real numbers, or a mixture of both. If both operands
are integers, the result will be an integer. If either operand is real, the result
will be real. Division of an integer by another integer will produce a trun-
cated integer result; any fractional part is discarded. Try the following:

? OUTPUT = 3 – 6 + 2
–1

?= 2 * (10 + 4)
28
?= 7 / 4
1
?= 7. / 4
1.75

Note that 7 / 4 is the division of two integers, so the quotient is 1, an inte-
ger (no rounding occurs in integer division). With 7. / 4 there is a real num-
ber (7.) so the operation is performed with real values—and you get a real
result, 1.75.

Here are some more operations to try:

?= 3 ^ 5 (exponentiation)
243
?= 3 ! 5
243

Fundamentals 19

3

?= 3.4 ** 5
454.35424
?= 3.4 ^ 2.9
34.7767393

?= 10 / 2 * 5 (multiplication, then division)
1

?= (10 / 2) * 5
25
?= 1.0 / 0
Error #262, Division caused real overflow
?= 1 / 0
Error #14, Division caused integer overflow

As you see, there are several synonyms for exponentiation: the caret (^),
the exclamation point (!), and the doubled asterisk (**). We prefer the caret,
so that’s what we will use from here on. (Back in the old days when the first
versions of SNOBOL were developed, keypunch machines didn’t have a
caret. We kept the ! and ** so that old programs will run easily).

When the same operator occurs more than once in an expression, which
one should be performed first? The governing principle is called associativ-
ity, and operators are classified as being either left-associative or right-associa-
tive. Multiple instances of *, /, + and – are performed left to right, while ^’s
are performed right to left. Again, parentheses may be used to change the
default order. Try a few examples:

?= 24 / 4 / 2
3
?= 24 / (4 / 2)
12
?= 2 ^ 2 ^ 3
256
?= (2 ^ 2) ^ 3
64

Here’s the first bit of SPITBOL magic: what happens if either operand is a
string rather than an integer or real number? The action taken is one which
is widespread throughout the SPITBOL language; the system tries to con-
vert the operand to a suitable data type. Consider these statements:

?= 14 + ‘54’
68
?= 14 + ‘ 54 ‘
68

SPITBOL detects the addition of an integer and a string, and tries to con-
vert the string to a numeric value; it will ignore leading and trailing spaces
and tabs. In both cases, SPITBOL was able to, so the integers 14 and 54 are
added together. If the characters in the string are not acceptable integers or
real numbers, SPITBOL will produce an error message.

SPITBOL will convert the null string to integer 0. Observe:

?= 14 + ‘ ‘
14
?= 14 + ‘’

20 Tutorial

14
?= ‘A’ + 1
Error #1, Addition left operand is not numeric
?= 14 + ‘ –54 ‘
–40
?= 14 + ‘ – 54 ‘
Error #2, Addition right operand is not numeric

The last statement produced an error because the blank was in the mid-
dle of the string. When converting strings to numerics, only leading or trail-
ing blanks are ignored.

Concatenation
blank or tab

This is the fundamental operator for assembling strings. Two strings are
concatenated simply by writing one after the other, with one or more blank
or tab characters between them. There is no explicit symbol for concatena-
tion (it is special in this regard). The white space between two objects is this
operator. The blank or tab character merely specifies the operation; it is not
included in the resulting string.

The string that results from concatenation is the right string appended to
the end of the left. The two strings remain unchanged and a third string
emerges as the result. Try a few simple concatenations with code.spt:

?= ‘CONCAT’ ‘ENATION’
CONCATENATION
?= ‘ONE,’ ‘TWO,’ ‘THREE’
ONE,TWO,THREE
?= ‘A’ ‘B’ ‘C’
ABC
?= ‘BEGINNING ‘ ‘AND ‘ ‘END.’
BEGINNING AND END.

The string resulting from concatenation can not be longer than the maxi-
mum allowable string size. If the limit is 4,194,304, you cannot concatenate
two 2,500,000 character strings, because the 5,000,000-character result
would be too large.

The concatenation operator works only on character strings, but if an op-
erand is not a string, SPITBOL will convert it to its string form. For example,

?= ‘Fourscore and ‘ (1863 – 1776 – 4 * 20) ‘ years’
Fourscore and 7 years
?= 19 (2. / 3.)
190.666666667

In the first case, the concatenation has three operands: the string ‘Four-

score and ‘, the expression (1863 – 1776 – 4 * 20), and the string ‘ years’.
SPITBOL evaluates the expression, converts the result to the string ‘7’, and
produces the result, ‘Fourscore and 7 years’.

In the second example, the integer and real operands are converted to
the strings ‘19’ and ‘0.666666667’, to produce the result string
‘190.666666667’. This is not exactly good math, but it is correct concatena-
tion.

Fundamentals 21

3

Concatenating

two 5,000

character str ings

would exceed

SPITBOL-8088’s

9,000-character

maximum string

length.

The last example also highlights a problem with SPITBOL. If you acci-
dentally omit an operator, SPITBOL will think you intended to perform
concatenation. In the example above, suppose we omitted a minus sign and
had really meant to say:

?= 19 – (2. / 3.)
18.3333333

It is always possible for concatenation to automatically convert a num-
ber to a string. But there is one important exception when SPITBOL doesn’t
try to do this: if either operand is the null string, the other operand is re-
turned unchanged. It is not coerced into the string data type. If we tried:

?= (20 – 17) ‘’
3

the result is the integer 3. It looks the same when printed, but internally
strings and integers are stored differently. You’ll find you’ll use this aspect
of null string concatenations extensively in your SPITBOL programming.

Before we proceed, let’s think about the null string one more time, and
the earlier statement identifying it as the string equivalent of the number
zero. First of all, adding zero to a number does not change its value, and con-
catenating the null string with an object doesn’t change it, either. Second,
just as a calculator is cleared to zero when beginning to add a series of num-
bers, the null string can serve as the starting place for concatenating a series
of strings.

Unary
operators

There aren’t many interesting unary operators at this point in your tour
of SPITBOL. Most of them appear in connection with pattern-matching, dis-
cussed later. Note, however, that all unary operations are performed before
binary operations, unless precedence is altered by parentheses.

Arithmetic
+, –

These unary operators require a single numeric operand, which must
immediately follow the operator, without an intervening blank or tab.
Unary minus (–) changes the arithmetic sign of its operand; unary plus (+)
leaves the sign unchanged. If the operand is a string, SPITBOL will try to
convert it to a number. The null string is converted to integer 0. Coercing a
string to a number with unary plus is a noteworthy technique. Try unary
plus and minus with code.spt:

?= –(3 * 5)
–15
?= +‘654321.123456’
654321.123
?= +‘’
0

22 Tutorial

A variable is a place to store an item of data. The number of variables you
may have is unlimited, provided you give each one a unique name. Think of
a variable as a box, marked on the outside with a permanent name, able to
hold any data value or type. Many programming languages require that
you formally declare what kind of entity the box will contain—integer, real,
string, etc.—but SPITBOL is more flexible. A variable’s contents may
change repeatedly during program execution. In the figure below, variable
WAGER might contain an integer, then a character string, then a real num-
ber, then the null string; in fact, any SPITBOL data type.

This can happen in SPITBOL because individual data are stored in a
small packet of memory that contains both the data value, and a marker that
remembers the data’s type. Variables do not contain data values them-
selves, merely pointers to where the data packets reside in memory. How-
ever in practice, we usually ignore the underlying pointer, and speak in-
stead of a variable’s “contents,” or say that “variable WAGER contains 4822.”

Variable
names

There are only a few rules about composing a variable’s name when it
appears in your program:

1. The name must begin with an upper- or lower-case letter.

2. If it is more than one character long, the remaining characters may
be any combination of letters, numbers, or the characters period (.)
and underscore (_).

3. The name must fit on a single program line. The maximum pro-
gram line length is 1,024 characters. Longer names, up to the maxi-
mum allowable string length, may be constructed using the
method described on page .

Here are some correct SPITBOL names:

WAGER P23 VERB_CLAUSE SUM.OF.SQUARES Buffer

Normally, SPITBOL performs case-folding on names. This means that
lower-case alphabetic characters are changed to upper-case when they ap-

Fundamentals 23

3

WAGER

null string

"PutOne
Hundred
Dollars
on Red"

string

127.932

real

4822

integer

or

or

or

Variables

pear in names, so that Buffer, buFFer, and BUFFER are all equivalent. Natu-
rally, case-folding of data does not occur within a string literal. (Case-fold-
ing of names can be disabled by using the –f command line option.)

In some languages, the initial value of a new variable is undefined.
SPITBOL guarantees that a new variable’s initial value is the null string.
However, except in very small programs, you should always initialize vari-
ables. This prevents unexpected results when a program is modified or a
program segment is re-executed.

Using
variables

You store something in a variable by assigning a value to it, usually by
placing it on the left side of the assignment operator. You can retrieve its
contents simply by using it wherever its value is needed. Using a variable’s
value is nondestructive; the data packet it points to remains unchanged. Try
creating some variables using code.spt:

? ABC = ‘EGG’
?= ABC
EGG
? D = ‘SHELL’
?= abc d (Same as ABC D)
EGGSHELL
?= NONESUCH (New variable is null)

?= ABC NULL D
EGGSHELL
? N1 = 43.9
? D = 17
? OUTPUT = N1 + D
60.9
? output = ABC D
EGG17

OUTPUT is a variable with special properties; when a value is stored in it,
it is also displayed on your screen. There is a corresponding variable named
INPUT, which reads data from your keyboard. It has no permanent value.
Whenever SPITBOL is asked to fetch its value, a complete line is read from
the keyboard and used instead. If INPUT were used twice in one statement,
two separate lines of input would be read. Try these examples:

? OUTPUT = INPUT
TYPE ANYTHING YOU DESIRE
TYPE ANYTHING YOU DESIRE
? TWO.LINES = INPUT ‘–AND–‘ INPUT
FIRST LINE
SECOND LINE
? OUTPUT = TWO.LINES
FIRST LINE–AND–SECOND LINE

Generally, SPITBOL variables are global in scope—any variable may be
referenced anywhere in the program. In chapter 8, we’ll show how vari-
ables can be made private to a program section under certain circumstances.

24 Tutorial

Data types INTEGER
Range: –2147483648 to +2147483647

(for 8088 spitbols.exe: –32768 to +32767)

REAL Range: ±0.18E+309 to ±0.49E–322 and 0.0.
STRING “chars” or ‘chars’

Unary
operators

+ Plus
– Minus

Binary
operators

^ Exponentiation

* Multiplication

/ Division
+ Addition
– Subtraction
blank Concatenation
= Assignment
tab Concatenation

** Exponentiation
! Exponentiation

Variables • No type declaration: variable’s type may change during execution

• Name’s first character must be a letter; remaining characters may be let-
ters, numbers, period (.) or underscore (_)

• Maximum name length limited by program statement line length, 1,024
characters.

• Global in scope

Cautions Single quote (‘) should not be confused with the grave accent mark (‘)
which appears under the tilde on most keyboards. The grave accent may
not be used as a string delimiter.

For real numbers, SPITBOL provides full 64-bit accuracy on quantities as
small as ±0.22E–309. From there to ±0.44E–322, there is a gradual loss of pre-
cision as the number is denormalized. Smaller quantities are converted to
0.0.

Fundamentals 25

3

Chapter Summary

Success and failure are as important in SPITBOL as they are in life. Suc-
cess and failure are unmistakable signals; something either worked, or it
didn’t. One reason that a short SPITBOL program can do more than a long
program in another language is because SPITBOL recognizes that there’s a
fundamental difference between a data value and a signal.

The elements of a statement provide values and signals as computation
proceeds. SPITBOL accumulates both, and stops executing a particular
statement when it finds it cannot succeed. A mechanism is provided to alter
program flow based upon these signals.

The success signal will have a value result associated with it. In situa-
tions in which the signal itself is the desired object, the result value may only
be the null string. The failure signal has no associated value. (In some in-
stances, it may be helpful to view failure as failure to produce a result.)

Previously, we introduced the variable INPUT, which reads a line from
the keyboard. In general, INPUT can be made to read from any system file.
The line read may be any character string, including the null string if it is an
empty line. If any string might appear, then there is no special value we can

27

4Chapter 4

Control Flow and Functions

Success and Failure

Some
computation

Some
computation

Some
computation

Some
computation

Some
computation

Value

Value

Value Value

Success

Success

Success Success

Failure

test for to detect End-of-File. Success and failure provide an elegant alterna-
tive to testing for special values.

When we retrieve a value from INPUT, we normally get a string and a suc-
cess signal. But when End-of-File is encountered, we get a failure signal in-
stead, and no value.

If you enter an End-of-File from the keyboard, we can easily demon-
strate this type of failure. You do this in different ways on different systems:
control-Z or function key F6 under MS-DOS, Windows and OS/2, control-D
on most Unix systems. Typographically, we’ll use the notation <EOF> in
this manual. When you see it, simply enter the appropriate control charac-
ter.

As you’ve noticed, the code.spt program reports the success or failure of
each statement. So far, all examples have succeeded. Now try this one:

?= INPUT

<EOF> (Enter control-D or control-Z)
Failure

Success and failure are control signals, and appear only during the exe-
cution of a statement. They cannot be stored in a variable, which holds val-
ues only.

There is much more which can be done with success and failure, but to
understand their use, you’ll need to know how SPITBOL statements are
constructed.

In general, a SPITBOL statement looks like this:

Label Statement body
:Goto

The label is optional, and is omitted by placing a blank or tab in the first
character position. The Goto is also optional, and can be eliminated simply
by omitting it and the preceding colon character. In fact, even the statement
body is optional. You can have a program line consisting of just a label or a
Goto field.

Label field SPITBOL normally executes the statements of a program in sequence.
The ability to transfer control from one statement to another, perhaps condi-
tionally, makes SPITBOL much more usable.

Labels provide names for statements. They are analogous to BASIC’s line
numbers, but SPITBOL’s labels are optional. If present, a label must begin in
the first character position of a statement, and must start with a letter or
number. Additional characters may be anything except blank or tab. Like
variable names, lower-case letters are equivalent to upper-case when
case-folding is used (the default).

28 Tutorial

A SPITBOL Statement

Goto field Transfer of control is made possible by the Goto. It interrupts the normal
sequential execution of statements by telling SPITBOL which statement to
execute after the present one. The Goto field appears at the end of the state-
ment, preceded by a colon (:), and has one of these forms:

:(label)
:S(label)
:F(label)

:S(label1)F(label2)

White space (space or tab) is required before the colon. Label is the name
given the target statement, and must be enclosed in parentheses. If the first
form is used, execution resumes at the referenced statement, uncondition-
ally. In the second and third forms, transfer to the referenced statement oc-
curs only if the statement has succeeded or failed, respectively. Otherwise,
execution proceeds to the next statement in line. If the fourth form is used,
transfer is made to label1 if the statement succeeded, or to label2 if it failed. A
statement with a label and a Goto would look like this:

COPY OUTPUT = INPUT
:S(COPY)

Now let’s write a short program which copies keyboard input to the
screen, and reports the total number of lines. First stop code.spt by typing
<EOF>.

Use your text editor to create a file called linesum.spt. Here’s what you
should enter into it:

N = 0
COPY OUTPUT = INPUT
:F(DONE)

N = N + 1
:(COPY)

DONE OUTPUT = “PROGRAM COPIED ‘ N ‘ LINES.’
END

Once you’ve typed that in, save the file and exit from your text editor. At
the system command prompt, compile and run the program with:

spitbol linesum

If you typed the above precisely, then moments later, you will see a mes-
sage like this:

DONE OUTPUT = “PROGRAM COPIED ‘ N ‘ LINES.’
!

linesum.spt(4,14) : Error 232 –– Syntax error: Unmatched string quote

Well, you’ve made a mistake. (Actually, you didn’t. You’ve been follow-
ing our directions. But SPITBOL thinks you made a mistake, even if we
know better.)

The error message gives the name of the program file, followed by the
line number and character position of the error, and then an explanation of
the error. The exclamation point is positioned at the place where SPITBOL
first encountered a problem.

Control Flow and Functions 29

4

Note that the error is in line 4, and reload your text editor with
linesum.spt. Look at line 4:

DONE OUTPUT = “PROGRAM COPIED ‘ N ‘ LINES.’

All the strings are framed by single quote marks, except right there at the
start. So replace the double-quote with a single, save the file, and try compil-
ing and executing it. If all is in order (no error messages), type some of the
following test lines, and watch the result.

TYPE IN A TEST LINE
TYPE IN A TEST LINE
AND ANOTHER
AND ANOTHER
<EOF>
PROGRAM COPIED 2 LINES.

We start the line count in variable N at 0. The next statement has a label,
COPY, a statement body, and a Goto field. It is an assignment statement, and
begins execution by reading a line of input. If INPUT successfully obtains a
line, the result is stored in OUTPUT. The Goto field is only testing for failure,
so SPITBOL proceeds to the next statement, where N is incremented, and the
unconditional Goto transfers back to statement COPY.

When an End-of-File is read, variable INPUT signals failure. Execution of
this statement terminates immediately, without performing the assign-
ment, and transfers to the statement labeled DONE. The number of lines is
displayed, and control flows into the END statement, stopping the program.

In this example, INPUT reads from the keyboard and OUTPUT writes to
the screen. More generally, INPUT reads from your system’s standard input
file, while OUTPUT writes to the standard output file. The standard I/O files
are associated with the keyboard and screen by default. However, by using
the command line redirection characters < and >, INPUT and OUTPUT can
read and write any system file. Try this example, using the test file faustus
provided with SPITBOL:

spitbol linesum <faustus >null (or /dev/null un-
der Unix)
PROGRAM COPIED 20 LINES.

Now INPUT reads lines from faustus, and discards the copied data by
writing to the null device. The number of lines copied is still reported. Redi-
recting input and output is discussed more fully on page 165.

To resume use of code.spt, which you’ll soon need, load it from the sys-
tem command prompt with:

spitbol code

30 Tutorial

A function is analogous to an operator; it operates upon data to produce a
result. The data objects are called the arguments of the function. The result
produced—the function of the arguments—has two components: the success
or failure signal; and for success, a value. The value may be any data type.

A function is used by writing its name and a list of arguments enclosed
by parentheses:

FUNCTION_NAME(ARG1, ARG2, …, ARGn)

It may appear in your program anywhere a constant is allowed—in ex-
pressions, patterns, even as the argument of another function. If the func-
tion has more than one argument, they should be separated by commas. If
trailing arguments are omitted, SPITBOL will supply null strings in their
place. Some functions, such as one that produces the current date, have no
arguments at all.

SPITBOL provides a large number of predefined functions, and allows
you to define your own. The large repertoire of built-in functions makes
SPITBOL programming easier. Most functions are concerned with pattern
matching, input/output, and advanced features of the language.

You needn’t memorize all the functions, or feel overwhelmed by them.
They are catalogued alphabetically in Chapter 19, “SPITBOL Functions.”
Here we’ll introduce a few simple conditional, numeric, and string func-
tions to give you an idea of the variety. Try them interactively with code.spt.

Conditional
functions

These functions fail or succeed depending on the value of the argu-
ments. They are sometimes called predicate functions because the success of
an expression using them is predicated upon their success. If they succeed,
they produce the null string as their value.

IDENT(S,T) Succeed if S and T are identical. S and T may be constants or variables
with any data type. To be identical, the arguments must have the same data
type and value. Since omitted arguments default to the null string, IDENT(S)

succeeds if S is the null string.

DIFFER(S,T) Succeed if S and T are different. DIFFER is the opposite of IDENT. When
used with one argument, function DIFFER(S) succeeds if S is not the null
string.

EQ(X,Y) Succeed if the numeric values X and Y are equal. X and Y must be integer
or real numbers, or strings which can be converted to them. Because the null
string is provided for omitted arguments, and null strings are converted to 0
or 0.0 as needed, the statement:

EQ(X)

Control Flow and Functions 31

4

Built-in Functions

is equivalent to

EQ(X, 0)

and succeeds if X is 0 or 0.0.

NE(X,Y) Succeed if numerics X and Y are not equal.

GE(X,Y) Succeed if numeric X is greater than or equal to Y.

GT(X,Y) Succeed if numeric X is greater than Y.

LE(X,Y) Succeed if numeric X is less than or equal to Y.

LT(X,Y) Succeed if numeric X is less than Y.

INTEGER(X) Succeed if X is an integer or a string which can be converted to an integer.
It fails if X is a real number or any string that is not a simple integer.

LGT(S,T) Succeed if string S is lexically greater than string T using a charac-
ter-by-character comparison.

Leading blanks may be used in front of an argument for readability. In
this case, blanks are not significant, nor do they specify concatenation. Here
are some exercises for code.spt:

? N = 3
? EQ(N, 3)
Success
? IDENT(N, 3)
Success
? EQ(3.0, 3)
Success

? IDENT(3.0, 3)

(real and integer)
Failure
? EQ(N, 4)
Failure
? NE(N, 4)
Success
? INTEGER(N)
Success
? INTEGER(47.3)
Failure
? INTEGER(‘47’)
Success
? IDENT(‘ABC’, ‘abc’)
Failure

? DIFFER(3, ‘3’)

(integer and string)
Success
? IDENT(‘a’ ‘b’ ‘c’, ‘abc’)

32 Tutorial

Success
? LGT(‘ABC’, ‘ABD’)
Failure

When any of these functions succeed, they produce a null string value.
As other statement elements are not altered when concatenated with the
null string, this provides an easy way to interpose tests and construct loops.
Suppose we execute the statement:

N = LT(N,10) N + 1
:S(LOOP)

Function LT fails if N is 10 or greater. If the statement fails, the assignment
is not performed, and execution continues with the next statement in line.
However, if N is less than 10, LT succeeds. Its null string value is concate-
nated with the expression N + 1, and the result is assigned to N. This has the
effect of increasing the value of N by 1 and transferring to statement LOOP

until N reaches 10.

If we concatenated several conditional functions together, and they all
succeeded, the result would still be the null string. If any function failed, the
entire concatenation would fail. This gives us a simple and natural way to
produce a successful result if a number of conditions are all true. For exam-
ple, the expression:

(INTEGER(N) GE(N,5) LE(N,100))

succeeds if N is an integer between 5 and 100, and fails otherwise.

Chapter 7, “Additional Operators and Datatypes,” explains a SPITBOL
extension to create expressions which succeed if any component succeeds.
See “Alternative Evaluation” at the end of that chapter.

Numeric
functions

Although the SNOBOL4 languages are renowned for their string-han-
dling abilities, SPITBOL also includes many numeric functions.

These functions always succeed. They have numeric argument(s), and
produce a numeric value instead of the null string. All trigonometric func-
tions expect arguments in radians, and logarithmic functions use natural
logarithms with base e: 2.718281…

ATAN(X) ATAN(X) produces the arctangent of X. The result is in radians.

CHOP(X) CHOP(X) discards the fractional part of real number X.

COS(X) COS(X) produces the cosine of X; X is in radians.

EXP(X) EXP(X) raises the natural logarithm base e to the power X.

LN(X) LN(X) produces the natural logarithm of X.

REMDR(X,Y) REMDR(X,Y) produces the remainder (modulus) of X divided by Y.

Control Flow and Functions 33

4

SIN(X) SIN(X) produces the sine of X; X is in radians.

TAN(X) TAN(X) produces the tangent of X; X is in radians.

You might want to experiment with these with code.spt:

? PI = 3.14159265358979
?= CHOP(PI)
3.
?= ANGLE = PI / 6
0.523598776
?= SIN(ANGLE)
0.5
?= COS(ANGLE)
0.866025404
? TANGENT = TAN(ANGLE)
?= TANGENT
0.577350269
?= ATAN(TANGENT)
0.523598776
?= EXP(1)
2.71828183
?= LN(10)
2.30258509
?= REMDR(10, 3)
1
?= REMDR(PI, 2.2)
0.941592654
?= REMDR(PI, CHOP(PI))
0.141592654

String
functions

These functions also always succeed; all but SIZE produce a string result.

DATE() DATE() produces current date and time as a string, such as

‘09/15/95 16:19:48’

DUPL(S,N) DUPL(S,N) duplicates string S, N times.

REVERSE(S) REVERSE(S) produces string S in reverse order of characters.

REPLACE
(S1,S2,S3)

REPLACE(S1,S2,S3) produces a modified copy of string S1 after perform-
ing the character replacements specified by strings S2 and S3. S2 specifies
which characters to replace, and S3 specifies what to replace them with. In
the following example, all occurrences of the letter “M” are replaced by “P”,
and “I” is replaced by “O”.

34 Tutorial

Letters in S1 that do not appear in S2 are passed through unchanged. S2

and S3 must be the same length. See page 236 for an example of how this
function may also be used for transposing characters within a string.

REPLACE never fails, even if no replacements are made.

SIZE(S) SIZE(S) produces the number of characters in string S. It produces 0 for
the null string.

TRIM(S) TRIM(S) produces string S with trailing blanks and tabs removed.

Exercises for code.spt:

?= ‘THE DATE AND TIME ARE: ‘ DATE()
THE DATE AND TIME ARE: 09/15/95 16:19:48
?= DUPL(‘ABC’, 14)
ABCABCABCABCABCABCABCABCABCABCABCABCABCABC
?= REVERSE(‘OSCAR’)
RACSO
?= REVERSE(DUPL(‘CAT’,3))
TACTACTAC
?= REVERSE(REVERSE(DATE()))
09/15/95 16:22:36
?= SIZE(‘ZIPPY’)
5
?= SIZE(‘’)
0
?= TRIM(‘TRAILING BLANKS ‘) ‘GONE’
TRAILING BLANKSGONE
?= REPLACE(‘dromedary’,’ed’,’ED’)
DromEDary
?= REPLACE(‘seven’,’ns’,’l’)
Error #171, Null or unequally long 2nd, 3rd args to REPLACE
?= REPLACE(‘seven’,’ns’,’ll’)
level
?= REPLACE(‘iridology’,’yglodri’,’nocipus’)
suspicion

Control Flow and Functions 35

4

REPLACE("IMMINENT", "MI", "PO")

Success
and failure

• Success has value result associated with it

• Failure has no associated value

Statement
labels

• Must begin in first character position of statement

• Label’s first character must be letter or number

• Remaining characters may be any characters except blank and tab

Control
transfer

:(label) Unconditional transfer to label

:S(label) Transfer if statement succeeds

:F(label) Transfer if statement fails
:S(label1)F(label2) To label1 if success, to label2 if failure

Conditional
functions

Succeed if:

DIFFER(S,T) S and T are different

EQ(X,Y) Numbers X and Y are equal

GE(X,Y) Number X is greater than or equal to Y

GT(X,Y) Number X is greater than Y

IDENT(S,T) S and T are identical
INTEGER(X) X is an integer or integer in string form
LE(X,Y) Number X is less than or equal to Y

LGT(S,T) String S lexically greater than string T

LT(X,Y) Number X is less than Y

NE(X,Y) Numbers X and Y are not equal

Numeric
functions

• Accept and produce numeric argument

• Always succeed

• Logarithmic functions use natural logarithms; trigonometric functions
are in radians

• All can accept reals or integers

• All produce reals, except for REMDR, which produces an integer if both
arguments are integer.

ATAN(X) produces the arctangent of X.
CHOP(X) discards the fractional part of real number X.
COS(X) produces the cosine of X; X is in radians.
EXP(X) raises the natural logarithm e to the power X.
LN(X) produces the natural logarithm of X.

36 Tutorial

Chapter Summary

REMDR(X,Y) produces the remainder (modulus) of X divided by Y.
SIN(X) produces the sine of X; X is in radians.
TAN(X) produces the tangent of X; X is in radians.

String
functions

DATE() Produces current date and time as a string
DUPL(S,N) Duplicates string S, N times

REPLACE(S1,S2,S3) Replace S2‘s characters in S1 by
corresponding characters from S3

REVERSE(S) Produces the reverse of string S

SIZE(S) Number of characters in string S

TRIM(S) Produces string S with trailing blanks removed

Control Flow and Functions 37

4

We’ve already performed simple input and output with variables INPUT

and OUTPUT. In this chapter, you’ll learn more about SPITBOL’s I/O capa-
bilities, which are quite flexible.

The number of files with which SPITBOL can communicate at once is op-
erating-system dependent. For example with MS-DOS, the number is lim-
ited by the FILES=n command in file config.sys.

Each file is identified by a channel. A channel can be a name or a number.
What you pick has no special significance; channels are what SPITBOL uses
internally to distinguish various input and output paths. You also use the
channel for special operations, such as rewinding a file, or telling SPITBOL
that you are finished with a file.

Before you can perform any I/O, you must associate a variable with a
channel and a direction. When a statement tries to use the variable’s value, a
line is read from the associated file or device. When a value is assigned to the
variable, a line is written to the associated file or device.

Strings are the only data types which can be transferred to and from files.
A successful input operation always returns a string. During output,
non-string objects such as integers and reals are automatically converted to
their string form.

SPITBOL’s input and output are powerful and flexible; they can also be
confusing. You can get quite bewildered if you don’t keep in mind that
there’s a difference between the variables INPUT and OUTPUT, and the func-
tions INPUT() and OUTPUT().

When you start up SPITBOL, the INPUT and OUTPUT variables are as-
signed so that INPUT reads from the keyboard, and OUTPUT writes to the

39

5

Chapter 5

Input/Output and Keywords

Input/Output

screen. SPITBOL also has a special variable for the keyboard-screen combi-
nation, TERMINAL.

Thus in the default case, whenever you say something like:

LINE = INPUT
OUTPUT = SIZE(LINE) ‘ ‘ LINE

it works just the same as if you had written

LINE = TERMINAL
TERMINAL = SIZE(LINE) ‘ ‘ LINE

In both cases, you are telling SPITBOL to read a line from the keyboard,
and then write its length, followed by a space and the line, to the screen.

However, TERMINAL always refers to the same things—the keyboard for
input and the screen for output. The variables named INPUT and OUTPUT

can refer to the keyboard and screen, but they can also refer to files or de-
vices if you use command-line redirection.

To illustrate the possibilities, you should try the following examples. If
you’re running the code.spt program, exit it by typing <EOF> (control-D or
control-Z, depending on your system) and load your text editor. Create and
save a new file which we’ll call in-out.spt.

* program in-out.spt
READ LINE = INPUT

:F(END)
OUTPUT = SIZE(LINE) ‘ ‘ LINE :(READ)

END

Note that the line with the “*” in the first column is a comment, in this
case, the name of the program. It’s ignored by SPITBOL.

Default input From the command prompt, compile and execute this program with

spitbol in-out

Since the INPUT and OUTPUT associations have not been changed,
in-out.spt will look for its input from the default place, the keyboard, and
send output to the screen.

Type in a few lines and see what happens:

The easy snowball jumped over the quick lazy saxophonist.
57 The easy snowball jumped over the quick lazy saxophonist.
Pack my box with five dozen liquor jugs.
40 Pack my box with five dozen liquor jugs.
<EOF>

In the statement labeled READ, SPITBOL fetched what it could from IN-

PUT—the keyboard. Input from the keyboard stops when you press the Re-
turn or Enter key, and whatever you typed was assigned to LINE.

Then SPITBOL took LINE, determined its size, and concatenated that
number with a space and LINE, and assigned all that to OUTPUT—the screen.
The Goto at the end told SPITBOL to go back to READ to fetch more data.

40 Tutorial

When you entered the <EOF>, that told SPITBOL that you were done
supplying data. So accessing the INPUT variable failed, and control passed
to the END statement, which terminated in-out.spt.

Redirection The operating system allow you to redirect standard input and standard
output. You can take advantage of these facilities to alter the source and des-
tination for program input and output.

Make sure you have the file faustus in your current subdirectory. We’ve
included it just for testing input and output. The text is the famous speech
from Act 5, Scene 2 of Christopher Marlowe’s play, and it has several signal
virtues: It is pretty poetry, it is a convenient length, and it is out of copyright,
since it was written in 1589.

Now, we’ll use redirection to make INPUT read from a disk file. On the
command line enter

spitbol in-out <faustus

We’ll see this on the screen:

63 Was this the face that launched a thousand ships,
64 And burnt the topless towers of Ilium?
42 Sweet Helen, make me immortal with a kiss.
…
39 And none but thou shalt be my paramour.

By using the input redirection operator <, we have told the system to
supply lines from faustus instead of the keyboard when our program ac-
cesses the INPUT variable. Whether from the keyboard or a file, the INPUT

variable is said to read from the “standard input” file.

OUTPUT
variable

Naturally, you can perform analogous tasks with program out-
put—send it to a disk file or a device instead of the screen.

The redirection operator for output is >. It looks like this:

spitbol in-out >helen

If you run this, whatever you type at the keyboard will be sent to a disk
file named helen. (Again, you terminate keyboard input, and thus the pro-
gram, by entering <EOF>). Once you’ve terminated the program, you can
examine helen with your text editor or by using the TYPE or Unix cat com-
mand.

To use redirection with files for both input and output, try this:

spitbol in-out <faustus >helen

This reads from the faustus file, and writes to the file helen. If there is no
file helen, the system creates one; if it does exist, it will be overwritten.

Naturally, you can use redirection to send OUTPUT to a device, rather
than a file. Using MS-DOS, you could send output to the printer with:

spitbol in-out <faustus >prn:

Now we’re going to use in-out.spt to explore the INPUT and OUTPUT

functions.

Input/Output and Keywords 41

5

All of the previous examples were constructed in terms of the variables
INPUT, OUTPUT, and TERMINAL. Furthermore, the file being accessed was
specified on the command line.

Often, you’ll want to use other variable names to perform I/O, or handle
more than two files at once, or be able to specify the names of files or devices
from within your program. The INPUT and OUTPUT function calls allow you
to do just that. These are functions, and are not to be confused with the INPUT

and OUTPUT variables, even though the names are the same.

SPITBOL knows you are referring to functions here because the word IN-

PUT or OUTPUT is followed by a parenthesized list of arguments.

INPUT function We’ll start working with the INPUT function. The formal syntax of the IN-

PUT function looks like this:

INPUT(“Variable”, Channel, “Filename[options]”)

where Variable is the name you want associated with each line or record of
input. We’ll stick to lines here—each time Variable is accessed in a statement,
everything up to the next carriage return will be assigned to Variable.

Channel can be any legal variable name, as well as a number. That is, 1

and “mx37" are acceptable as channel names. If you’re not using a number
the name must be provided in quotes. In other versions of SNOBOL4, Chan-

nel must be a small integer. So we’ll use that method here, and it’s a good
policy to follow, so that your programs will be portable.

Filename is the name of a file or device. Any processing options must be
enclosed in square brackets. These options are primarily used for handling
binary files, as opposed to text files, or files with unusually long records.
Options are also used to specify that a file will be accessed for both input and
output (update mode). Since we’re working with just text files here, we’ll re-
call that options are, for us, optional.

The function succeeds and returns the null string if the file was success-
fully opened for input, and fails otherwise.

Now, revise program in-out.spt to use the INPUT function to read from
faustus. Make it read like this:

* program in-out.spt
INPUT(‘POETRY’, 1, ‘faustus’)

:F(ERR)
READ LINE = POETRY

:F(END)
OUTPUT = SIZE(LINE) ‘ ‘ LINE

:(READ)

42 Tutorial

The INPUT and OUTPUT Functions

ERR TERMINAL = “Couldn’t open file ‘faustus’”
END

But before we run it, let’s anticipate what will happen. We have used the
INPUT function with its three arguments. The first one, ‘POETRY’, specifies
the variable that the data from the file will appear in. The next argument, 1,
is the channel. The last argument, ‘faustus’, is the name of the file we want to
read from.

In the core of the program, material read in from POETRY is assigned to
LINE. When that fails, control goes to END. When it doesn’t fail, the OUTPUT

displays the lines we’re used to seeing. Compile and run the revised
in-out.spt, and watch the output appear on the screen.

Now, let’s make one minor change. Revise the INPUT function in
in-out.spt to read like this:

INPUT(.POETRY, 1, ‘faustus’)
:F(ERR)

In this minor revision, we used the unary name operator (.) to name the
variable used by the INPUT function. Using .POETRY works exactly the same
here as ‘POETRY’, and is slightly faster (this is covered in more detail in
Chapter 7, “Additional Operators and Datatypes”).

Notice that the third argument to the INPUT function is the string ‘fau-

stus’. What would happen if instead we had written:

INPUT(.POETRY, 1, faustus) :F(ERR)

In this example, faustus would be seen as the name of a variable whose
contents should be the file name. However, in this program, variable faustus

will contain the null string, not a file name. Here’s an example of how this
could be written using a variable:

FILE = ‘faustus’
INPUT(.POETRY, 1, FILE) :F(ERR)

OUTPUT
function

The OUTPUT function is used to associate a variable with a file or device
that will be written to. OUTPUT‘s usage is similar to the INPUT function, and
has the same syntax. It fails if the file cannot be created or opened, perhaps
because of a write-protected or full disk, or because it is in use by another
program. Let’s try it first by writing to a file that we specify in the program.
Revise in-out.spt to look like this:

* program in-out.spt
INPUT(.POETRY, 1, ‘faustus’)

:F(ERR1)
OUTPUT(.MIGHTY, 2, ‘marlowe’)

:F(ERR2)
READ LINE = POETRY

:F(END)
MIGHTY = SIZE(LINE) ‘ ‘ LINE

:(READ)

ERR1 TERMINAL = “Couldn’t open file ‘faustus’” :(END)

Input/Output and Keywords 43

5

ERR2 TERMINAL = “Couldn’t open file ‘marlowe’” :(END)
END

We know what the INPUT function is doing here. OUTPUT will take what-
ever is assigned to the variable MIGHTY on channel 2, and send it to the file
marlowe.

You now know the fundamentals of SPITBOL’s input and output; what
you’ve covered may well include everything you’ll ever need to do with
SPITBOL input and output. There’s more, of course, but that’s for special-
ized purposes. What you’ve done will handle 99 percent of all the text input
and output you’ll need SPITBOL to do.

When you’re reading and writing in the line mode, as we have been here,
the maximum length of a single line (everything up to the end-of-line char-
acter(s)) is 1,024 characters. Extra characters are discarded—the line is trun-
cated. The end-of-line character (carriage return and/or linefeed) is not in-
cluded in what you get. Longer lines and other end-of-line characters can be
handled by specifying options following the filename.

I/O options We mentioned earlier that the file name argument can be followed by
processing options enclosed within square brackets. Options allow you to
change the file’s characteristics, for example, the maximum line length. That
might be desirable if you were reading text from a file prepared with a word
processor, where each paragraph might appear as a single long line.

Suppose some paragraphs might contain more than 1,024 characters,
and that each appears as a single line of input. The –L option would allow
SPITBOL to accept longer lines of input, say 4,000 characters. We do so in
the INPUT function:

INPUT(.FILE, 4, ‘Textfile[–L4000]’)

Now when we use variable FILE to read data, SPITBOL will read lines of
up to 4,000 characters in length. Notice that the bracketed options string is
appended directly to the file name. The option character can be upper or
lower case. If the file name were being provided by a string contained in a
variable, we would concatenate the option string to the file name string:

INFILE = ‘Textfile’

INPUT(.FILE, 4, INFILE ‘[-L4000]’)

A complete list of processing options is provided with the description of
the INPUT function beginning on page 226.

Specifying
files

You’ve seen how file names can be specified by command-line redirec-
tion, and directly within the INPUT and OUTPUT functions. There are other
ways as well, offering increased flexibility.

If the file name argument is omitted, SPITBOL examines the command
line for a file specified with the same channel number. Modify in-out.spt
again as shown on the following page.

44 Tutorial

SPITBOL-8088’s

default maximum

record length is

512 characters.

* program in-out.spt
INPUT(.POETRY, 1)
:F(ERR1)
OUTPUT(.MIGHTY, 2)
:F(ERR2)

READ LINE = POETRY
:F(END)
MIGHTY = SIZE(LINE) ‘ ‘ LINE

:(READ)

ERR1 TERMINAL = “Couldn’t open input file” :(END)
ERR2 TERMINAL = “Couldn’t open output file”
:(END)
END

and start the program like this:

spitbol –1=faustus –2=marlowe in-out

The INPUT and OUTPUT functions are missing their third argument, the
file name, so SPITBOLlooks on the command line for a matching channel
number, and uses the file name provided exactly as if it had been supplied
in the function.

Chapter 13, “Running SPITBOL” explains still another way of doing
this, using system environment variables, but this should provide plenty of
flexibility for now.

ENDFILE
function

When your program terminates, SPITBOL automatically writes out any
partially-filled file buffers and closes all files. You can also do this yourself
from the program by using the ENDFILE function.

ENDFILE takes one argument, and it is the channel associated with the file
you want to close. For example, we could change in-out.spt to branch to la-
bel DONE when processing is comple:

* program in-out.spt
INPUT(.POETRY, 1, ‘faustus’)

:F(ERR1)
OUTPUT(.MIGHTY, 2, ‘marlowe’)

:F(ERR2)
READ LINE = POETRY

:F(DONE)
MIGHTY = SIZE(LINE) ‘ ‘ LINE

:(READ)

ERR1 TERMINAL = “Couldn’t open input file” :(END)
ERR2 TERMINAL = “Couldn’t open output file”
:(END)

Input/Output and Keywords 45

5

Completing File Processing

DONE ENDFILE(1)
ENDFILE(2)

END

Most programs don’t need to do this. But if you complete processing on
an output file, and are then entering a time-consuming phase of your pro-
gram, closing the output file will insure that no data is lost if there is a power
outage or system failure.

Also, channel numbers cannot be reused unless the channel is closed.
For example, we might read two files in our in-out program:

* program in-out.spt
I = 1
INPUT(.POETRY, 1, ‘faustus’)

:F(ERR1)
OUTPUT(.MIGHTY, 2, ‘marlowe’)

:F(ERR2)
READ LINE = POETRY

:F(EOF)
MIGHTY = SIZE(LINE) ‘ ‘ LINE

:(READ)

EOF I = EQ(I, 1) I + 1
:F(END)
ENDFILE(1)
INPUT(.POETRY, 1, ‘edwardii’)

:S(READ)
TERMINAL = “Couldn’t open file ‘edwardii’”) :(END)

ERR1 TERMINAL = “Couldn’t open file ‘faustus’” :(END)
ERR2 TERMINAL = “Couldn’t open file ‘marlowe’” :(END)
END

DETACH
function

Finally, we’ll mention that it is possible to remove the I/O association
between a variable and a channel, without closing or disturbing the channel
or file in any way. DETACH takes one argument, and it is the name of a vari-
able previously used in an INPUT or OUTPUT function. For example:

DETACH(.POETRY)
DETACH(“MIGHTY”)

After detaching a variable, referencing it or assigning to it has no affect
on the file it was previously associated with.

Attaching to a
channel

It’s also possible to attach (that is, create a new association) more than
one variable to an existing, open channel:

INPUT(.POETRY, 1, ‘faustus’)
INPUT(.VERSE, 1)

Both variables refer to the same file. There is only one current file posi-
tion, and it belongs to the channel number. Reading from either variable
changes the position in the file equivalently.

46 Tutorial

Input and Output allow your program to communicate with the outside
world. Your program may also communicate with the SPITBOL system it-
self. Keywords allow you to modify SPITBOL’s behavior, and to obtain infor-
mation from the system. A keyword consists of the ampersand character
(&) followed by an alphabetic name. They are used in a statement in the
same way as variables. They either provide values or have values assigned
to them. Numeric keywords are restricted to integer values.

&TRIM Remove trailing blanks and tabs

The function TRIM(S) removes trailing blanks and tabs from the argu-
ment S. If S is an input associated variable, like TRIM(INPUT), lines read from
the file wll be trimmed of trailing blanks and tabs. In this case, a faster and
simpler method is to assign a non-zero integer to the keyword &TRIM (the
default is 0).

When &TRIM = 0, any trailing blanks and tab characters are preserved on
input lines. When &TRIM = 1 (or any other positive integer), SPITBOL re-
moves trailing blanks and tabs. A statement to do this looks like this:

&TRIM = 1

Since trailing blanks are usually not desired, you’ll often see this state-
ment at the beginning of many SPITBOL programs.

&MAXLNGTH Maximum string length

This keyword controls the maximum permissible string length. Its initial
value is 4,194,304 (9,000 for SPITBOL-0800). You can set it to any number
greater than 1,023, although there’s usually no need to reduce the value of
&MAXLNGTH from its initial value.

Besides limiting string size, keyword &MAXLNGTH also limits the size of
other SPITBOL objects. Although they haven’t been introduced yet,
SPITBOL provides aggregate objects such as arrays and tables. The amount
of memory used by any individual object is restricted to &MAXLNGTH bytes.
So even if your string lengths are moderate, you may need to increase
&MAXLNGTH if you need to use large arrays.

&MAXLNGTH is also the largest value to which other keywords (except
&STLIMIT) can be set.

The largest value to which &MAXLNGTH may be set depends upon the
amount of memory available, and upon the –m command line option de-
scribed in Chapter 13, “Running SPITBOL.” See “Caution” at the end of this
chapter.

You can inspect the default value of this keyword by starting up code.spt
and entering:

Input/Output and Keywords 47

5

Keywords

? OUTPUT = &MAXLNGTH
4194304

The statement to change the value of &MAXLNGTH looks like this:

&MAXLNGTH = 50000

&DUMP Termination dump of variables

This keyword is useful for debugging programs because it tells SPITBOL
to display the values of your variables when your program terminates. The
information is displayed on the screen when your program terminates. It
can also be sent to a file by using the –o=file command-line option described
in Chapter 13, “Running SPITBOL.”

When &DUMP = 0, the default, then these messages are suppressed.

If &DUMP = 1, the screen will show the last values for your variables, and
these will be displayed in alphabetical order (a “partial dump”). Following
that will be a listing of keyword values. Only variables with non-null values
are displayed.

If &DUMP = 2, you’ll get all of the preceding dump, plus the non-null con-
tents of arrays, tables, and program-defined data types (a “full dump”).

Finally, &DUMP = 3 adds statement labels and all null-valued variables
and elements.

You might want to try various values of &DUMP in in-out.spt and run it
just to see what happens. In such a simple program you won’t see any differ-
ence between keyword values 1 and 2.

Here’s the form of the statement:

&DUMP = 1

A useful programming technique is to set &DUMP non-zero at the start of
your program, and then set it to zero just before transferring or flowing into
the END statement. That way, if the program stops with an unexpected er-
ror, the non-zero &DUMP keyword will display all program variables.

&ALPHABET Complete character set

This keyword contains a 256-character string, the system’s character set
in ascending sequence. It is called a protected keyword because it cannot be
modified by your program. In the next chapter, we’ll use pattern-matching
techniques to extract segments of this alphabet to obtain special characters.

You can see what’s there with a statement like this:

TERMINAL = &ALPHABET

&LCASE All lowercase letters

This keyword contains the 26 lowercase alphabetic characters, in as-
cending sequence. It is equivalent to the string

“abcdefghijklmnopqrstuvwxyz”

48 Tutorial

and is provided for convenience only.

&UCASE All uppercase letters

This keyword contains the 26 uppercase alphabetic characters, and is
equivalent to the string

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”

You now have the ingredients to create some simple programs. How-
ever, if this were all of the SPITBOL language, there would be very little rea-
son to use it. We’ll get to pattern matching shortly, where you’ll find many
new, challenging concepts. First, however, you should be comfortable with
the preceding material—it will only take a few minutes to create and test
each of these programs.

fileinfo.spt Produce information about a file

This program counts the number of characters and lines in a file.

&TRIM = 1
NEXTL CHARS = CHARS + SIZE(INPUT) :F(DONE)

LINES = LINES + 1
:(NEXTL)

DONE OUTPUT = CHARS ‘ characters, ‘ +LINES ‘ lines read’
END

In such a small program, it’s reasonable to use LINES and CHARS without
initializing them. The first use of the statement:

LINES = LINES + 1 :(NEXTL)

converts LINES from the null string to an integer 0. We used the expression
+LINES in the last statement to produce an integer 0 (instead of the null
string), just in case the input file is empty.

The statement

CHARS = CHARS + SIZE(INPUT)

demonstrates that when an input-associated variable appears as the argu-
ment to a function, an input operation occurs each time the function is
called.

If you ran this with familiar faustus for input, as with:

spitbol fileinfo <faustus

you would see a result like this:

800 characters, 20 lines read.

Input/Output and Keywords 49

5
Programs Without Pattern Matching

triplet.spt Simple text formatting

This program reformats a file by centering the lines and arranging them
in groups of three. Note that statements containing an asterisk in column
one are considered comments by SPITBOL.

* Trim input, prepare to count input lines:
&TRIM = 1
N = 0

* Read next input line, all done if End-of-File.
LOOP S = INPUT

:F(END)

* Precede with blanks to center within 80 character line:
OUTPUT = DUPL(‘ ‘, (80 – SIZE(S)) / 2) S

* Increment count, but reset to zero every third line.

* Also, output a blank line when count resets:
N = REMDR(N + 1, 3)
OUTPUT = EQ(N, 0)
:(LOOP)

END

This program uses the DUPL function to produce the leading blanks re-
quired to center a line. A simple calculation based on each line’s width de-
termines the number of blanks needed. (We assume all input lines contain
80 or fewer characters.)

The last two statements break the file lines into triplets. Variable N cycles
through values 0, 1, 2, 0, …. When N is 0, the last statement assigns the null
string to OUTPUT, producing a blank line. If N is 1 or 2, EQ fails, and the state-
ment terminates without performing the assignment.

To run this with a disk file for INPUT, remember to redirect standard in-
put on the command line.

palin.spt Palindromes

This program accepts an input line, and checks if it is a palindrome (a
statement that reads the same forward and backward).

&TRIM = 1
TERMINAL = ‘Enter test lines, terminate with EOF’

* Read input line, convert lower case to upper.
LOOP S = REPLACE(TERMINAL, &LOWERS, &UPPERS)
:F(END)

* Check for palindrome:
TERMINAL = IDENT(S, REVERSE(S)) ‘Palindrome!’ :S(LOOP)
TERMINAL = ‘No, try again.’

:(LOOP)
END

50 Tutorial

This program uses the REPLACE function to convert input lines to up-
per-case before testing. The statement:

LOOP S = REPLACE(TERMINAL, &LOWERS, &UPPERS)
:F(END)

begins by evaluating the arguments for the REPLACE function. Retrieving
the value of TERMINAL causes a line to be read, and trimmed of any trailing
blanks. The remaining two arguments tell REPLACE to find all the
lower-case characters in the line, and replace them with the corresponding
upper-case characters. The result is returned as the value of the function,
and assigned to variable S. As REPLACE never fails (even if no replacements
are made), the failure Goto will only be used if variable TERMINAL received
an End-of-File.

The testing for a palindrome and reporting success have been combined
into one statement:

TERMINAL = IDENT(S, REVERSE(S)) ‘Palindrome!’ :S(LOOP)

Function REVERSE creates a mirror-image of the test line, and function
IDENT checks if this reversed line is the same as the original. If it is, IDENT‘s
null value is concatenated with the literal ‘Palindrome!’, and assigned to TER-

MINAL. The Goto field detects success, and transfers to LOOP to read another
line. If IDENT fails, execution continues with the next statement, and the user
is told to try again.

The program accepts a very limited class of palindromes: their punctua-
tion and word spacing must be the same in both directions. It succeeds for
Napoleon’s lament: “Able was I ere I saw Elba” but fails for others, such as:
“A man, a plan, a canal, Panama!” We’ll improve the program later, after we
learn about pattern-matching.

temp.spt Temperature conversion

This program asks the user for a low and high Fahrenheit temperature,
and an increment. The values are specified as integers. It produces a list of
temperatures in Fahrenheit and Celsius.

&TRIM = 1
AGAIN TERMINAL = ‘Enter low temperature (F), or <EOF> to end:’

LOW = TERMINAL
:F(END)
TERMINAL = ‘Enter high temperature:’
HIGH = TERMINAL
:F(END)
TERMINAL = ‘Enter temperature step or Return for 1:’
STEP = TERMINAL
:F(END)

* If step omitted, default to 1:

* When the second argument is omitted, IDENT(STEP) asks whether

* STEP matches the null string. If not, we go to the next state-

* ment. If STEP is the null string, then the function succeeds,

* thereby producing the null string, which is concatenated with the

Input/Output and Keywords 51

5

* following 1. The result is to assign 1 to STEP if STEP is null.
STEP = IDENT(STEP) 1

* Check for valid input:
(INTEGER(LOW) INTEGER(HIGH) INTEGER(STEP)

+ LT(LOW, HIGH) GT(STEP,0))
:S(GO)

TERMINAL = ‘Must be integers, low<high, step>0’
:(AGAIN)

* Produce results:
GO TERMINAL = LOW ‘ ‘ (LOW – 32) * 5.0 / 9.0

LOW = LT(LOW, HIGH) LOW + STEP :S(GO)F(AGAIN)
END

The plus sign in column one marks a continuation statement—the full
statement was too long to place on one line, so it was split into two parts.
SPITBOL removes the plus sign when it combines the two lines.

The last program step is a loop test. The low temperature will be in-
creased by the step value until it is greater than the high temperature.

52 Tutorial

Input/Output
variables

INPUT Read from standard input file, fails at End-of-File
OUTPUT Write to standard output file

TERMINAL Write to computer’s screen, read from keyboard.

Input/Output
functions

DETACH(‘variable’)Remove variable‘s I/O association
DETACH(.variable) Remove variable‘s I/O association

ENDFILE(channel) Close file associated with channel

INPUT(‘variable’, channel, ‘file[options]’)

INPUT(.variable, channel, ‘file[options]’)

OUTPUT(‘variable’, channel, ‘file[options]’)

OUTPUT(.variable, channel, ‘file[options]’)

Keywords &ALPHABET String of all 256 possible character values
&DUMP Nonzero for termination display of variables
&LCASE String of 26 lower-case letters
&MAXLNGTH Maximum string length, initially 4,194,304 (9,000 in

SPITBOL-8088)
&TRIM Nonzero to remove trailing blanks or tabs on input
&UCASE String of 26 upper-case letters

Caution SPITBOL uses a fast garbage collector to reclaim unused memory. The
collection algorithm* needs to distinguish between small integers and
memory addresses. This effectively restricts the maximum size of a
SPITBOL object (string, array, table header, code or expression block, inte-
ger keyword) to be less than &MAXLNGTH bytes. &MAXLNGTH in turn is lim-
ited to the value set with the –m command line option described in Chapter
13, “Running SPITBOL.”

Another consequence of this algorithm is that the value specified for the
maximum object size must be numerically less than the starting memory ad-
dress of SPITBOL’s work space. If it is not, SPITBOL ignores (and is not able
to use) any memory between the low end of the work space and this value.
For most users, the default value of 4 megabytes should pose little problem.

Input/Output and Keywords 53

5

Chapter Summary

*For a description of the garbage collection algorithm, as well as the internal orga-
nization of SPITBOL, see reference 8 of the bibliography.

Pattern matching examines a subject string for some combination of
characters, called a pattern. The matching process may be very simple, or ex-
tremely complex. For example:

1. The subject contains several color names. The pattern is the string
‘BLUE’. Does the subject string contain the word ‘BLUE’?

2. The subject contains a nucleic acid (DNA) sequence. The pattern
searches for a subsequence that also appears in mirror-image form.

3. The subject contains a paragraph of text. The pattern describes the
spacing rules to be applied after punctuation. Does the subject string con-
form to the punctuation rules?

4. The subject string represents the current board position in a game of
Tick-Tack-Toe. The pattern examines this string and determines the next
move.

5. The subject contains a program statement from a prototype computer
language. The pattern contains the grammar of that language. Is the state-
ment properly formed according to the grammar?

Most programming languages provide rudimentary facilities to exam-
ine a string for a specific character sequence. SPITBOL patterns are far more
powerful, because they can specify complex (and convoluted) interrelation-
ships. The colors of a painting, the words of a sentence, the notes of a musi-
cal score have limited significance in isolation. It is their relationship with
one another which provides meaning to the whole. Likewise, SPITBOL pat-
terns can specify context; they may be qualified by what precedes or follows
them, or by their position in the subject.

6

55

Chapter 6

Pattern Matching

Introduction

Knowns and
unknowns

Patterns are composed of known and unknown components. Together,
they specify a set of character strings to be recognized.

Knowns are specific character strings, such as the string ‘BLUE’ in the first
example above. We are looking for a yes/no answer to the question: “Does
this known item appear in the subject string?”

Unknowns specify the kind of subject characters we are looking for; the
specific characters are not identifiable in advance. We might want to match
only characters from a restricted alphabet, or any substring of a certain
length, or some arbitrary number of repetitions of a string. If the pattern
matches, we can then capture the particular subject substring matched.

A pattern match requires a subject string and a pattern. The subject is the
first statement element after the label field (if any). The pattern appears
next, separated from the subject by white space (blank or tab). If SUBJECT is
the subject string, and PATTERN is the pattern, it looks like this:

label SUBJECT PATTERN

The pattern match succeeds if the pattern is found in the subject string;
otherwise it fails. This success or failure may be tested in the Goto field:

label SUBJECT PATTERN
:S(label1)F(label2)

A real point of confusion is the distinction between pattern matching
and concatenation. How do you tell the difference? Where does the subject
end and the pattern begin? In this case, parentheses should be placed
around the subject, since SPITBOL always uses the first complete statement
element as the subject. In the statement

X Y Z

the content of X is the subject, and the concatenation of variables Yand Z is
the pattern. Whereas

(X Y) Z

indicates the subject is the concatenation of the strings in X and Y, while the
pattern is in variable Z.

In SNOBOL4, a blank can signify a pattern match as well as concatena-
tion, depending upon position. This sometimes leads to unintentional er-
rors. So as an extension to the SNOBOL4 language, SPITBOL allows the use
of the question mark to signify a pattern match. This has two advantages.

First, it makes programs more readable, and for that reason we will use it
for the rest of the tutorial. Thus, the last two statements would be written as:

X ? Y Z
(X Y) ? Z

56 Tutorial

Specifying Pattern Matching

Second, it permits you to encapsulate one or more pattern matches into
an expression. Consider the statement:

A = (X ? Y) (Q ? P)

The expression (X ? Y) applies the pattern in Y to the subject string in X. If
the pattern match succeeds, the matching substring becomes the value of
the first parenthesized expression. Similarly, pattern P is applied to Q. If
both pattern matches succeed, the matching substrings are concatenated
and assigned to variable A. If either fails, the statement fails, and assignment
does not occur.

The subject string may be a literal string, a variable, or an expression. If it
is not a string, its string equivalent will be produced before pattern match-
ing begins. For example, if the subject is the integer 48, integer to string con-
version produces the character string ‘48’. Remember, if the subject includes
elements to be concatenated, they should be enclosed in parentheses.

Arithmetic expressions are composed of elements and simpler
subexpressions. Similarly, patterns are composed of simpler subpatterns
which are joined together as subsequents and alternates. If P1 and P2 are two
variables, each containing a subpattern, the expression

P1 P2

is also a pattern. The subject must contain whatever P1 matches, immedi-
ately followed by whatever P2 matches. P2 is subsequent to P1. The white
space (blank or tab) between P1 and P2 is the same binary concatenation op-
erator previously used to join strings; its use with patterns is completely
analogous. The above pattern matches pattern P1 followed by pattern P2.

The binary alternation operator is the vertical bar (|). As it is a binary op-
erator, it must have white space on each side. The pattern

P1 | P2

matches whatever P1 matches, or whatever P2 matches. SPITBOL tries the
various alternatives from left to right.

In The SNOBOL4 Programming Language, the authors develop the con-
cept of “bead” diagrams. Here we’ll only touch on it briefly, but you may
find it useful as a mechanical way to sort out subsequents and alternates.

In this view, pattern matching is the process of attempting to pass a nee-
dle and thread through a collection of beads—the individual pattern com-
ponents. Pattern subsequents are drawn side-by-side, left-to-right. Pattern

6

Pattern Matching 57

Subject String

Pattern Subsequents and Alternates

alternates are stacked vertically, in columns, with a horizontal line between
each alternative.

The needle passes through a pattern component if that component
matches the next set of characters in the subject. A pattern match succeeds if
the needle can reach the right side of the diagram by passing through each
column of alternatives.

In the simplest cases, P1 P2 and P1 | P2, the diagrams look like this:

If the needle cannot pass through a component, it will try the next alter-
native in that column. So if P1 does not match, it will try P2, as in the third ex-
ample above.

If none of the alternatives in a column match, the needle is pulled back to
the previous column (if any), and other alternatives are tried there. Alterna-
tives are tried from top-to-bottom in a column, corresponding to the
left-to-right manner they are written in a program.

Patterns may contain both concatenation and alternation. Normally,
concatenation is performed before alternation, so the pattern

P1 | P2 P3

matches P1 alone, or P2 followed by P3. Parentheses can be used to alter the
grouping of subpatterns. For example:

(P1 | P2) P3

matches P1 or P2, followed by P3. The diagrams for both cases are shown on
the next page.

58 Tutorial

P1 P2 P1 P2

P1 | P2

P1 | P2
P1

P1

P2

P2

When a pattern successfully matches a portion of the subject, the match-
ing subject characters are bound to it. The next pattern in the statement must
match beginning with the very next subject character. If a subsequent fails
to match, SPITBOL backtracks, unbinding patterns until another alterna-
tive can be tried. A pattern match fails when SPITBOL cannot find an alter-
native that matches.

The null string may appear in a pattern. It always matches, but does not
bind any subject characters. We can think of it as matching the invisible
space between two subject characters. One possible use is as the last of a se-
ries of alternatives. For example, the pattern

PAT = ROOT (‘S’ | ‘ES’ | ‘’)

matches the pattern in ROOT, with an optional suffix of ‘S’ or ‘ES’. If ROOT

matches, but is not followed by ‘S’ or ‘ES’, the null string matches and suc-
cessfully completes the clause. Its presence gives the pattern match a suc-
cessful escape. The bead diagram looks like this, where NULL is a convenient
equivalent for ‘’.

The conditional functions of Chapter 4, “Control Flow and Functions,”
may appear in patterns. If they fail when evaluated, the current alternative
fails. If they succeed, they match the null string, and so do not bind any sub-
ject characters.

These functions behave like a gate, allowing the match to proceed be-
yond them only if they are true. This pattern will match ‘FOX’ if N is 1, or
‘WOLF’ if N is 2:

EQ(N,1) ‘FOX’ | EQ(N,2) ‘WOLF’

6

Pattern Matching 59

P1

P2 P3

P1 | P2 P3

(P1 | P2) P3

P1

P2

P3

'S 'ROOT

'ES '

NULL

ROOT ('S ' | 'ES ' | NULL)

The bead diagram for the previous pattern looks like this:

Pattern
factoring Parentheses may be used to factor a pattern. The strings ‘COMPATIBLE’,

‘COMPREHENSIBLE’, and ‘COMPRESSIBLE’ are matched by the pattern:

‘COMP’ (‘AT’ | ‘RE’ (‘HEN’ | ‘S’) ‘S’) ‘IBLE’

You may get a better feel for factored patterns by viewing them as bead
diagrams. The following example shows how the above pattern would be
threaded for the subjects ‘COMPATIBLE’ and ‘COMPRESSIBLE’:

Here are examples of pattern matches using a string literal or a variable
for the subject. The patterns consist entirely of known elements. Use the
code.spt program to experiment with them:

? ‘BLUEBIRD’ ? ‘BIRD’
Success
? ‘BLUEBIRD’ ? ‘bird’
Failure
? B = ‘THE BLUEBIRD’

60 Tutorial

’ S ’’ H E N ’’ R E ’

’ S ’’ H E N ’’ R E ’

’ S ’

’ S ’

’ C O M P ’ (’ A T ’ | ’ R E ’ (’ H E N ’ | ’ S ’) ’ S ’) ’ I B L E ’

’ C O M P A T I B L E ’

’ C O M P R E S S I B L E ’

’ C O M P ’ ’ A T ’ ’ I B L E ’

’ C O M P ’ ’ A T ’ ’ I B L E ’

Simple Pattern Matches

E Q (N , 1) ’ F O X ’ | E Q (N , 2) ’ W O L F ’

E Q (N , 1) ’ F O X ’

’ W O L F ’E Q (N , 2)

? B ? ‘FISH’
Failure
? B ? ‘FISH’ | ‘BIRD’
Success
? B ? (‘GOLD’ | ‘BLUE’) (‘FISH’ | ‘BIRD’)
Success

The first statement shows that the matching substring (‘BIRD’) need not
begin at the start of the subject string. This is called unanchored matching.
The second statement fails because strings are case sensitive, unlike names
and labels. The third statement creates a variable to be used as the subject.
The fifth statement employs an alternate: we are matching for ‘FISH’ or
‘BIRD’.

The last statement uses subsequents and alternates. We are looking for a
substring in B that contains ‘GOLD’ or ‘BLUE’, followed by ‘FISH’ or ‘BIRD’. It
will match ‘GOLDFISH’, ‘GOLDBIRD’, ‘BLUEFISH’ or ‘BLUEBIRD’. If the paren-
theses were omitted, ‘BLUE’ and ‘FISH’ would be concatenated as
subsequents, and the pattern would match ‘GOLD’, ‘BLUEFISH’, or ‘BIRD’.
Both combinations are shown in the bead diagrams below.

If we execute the statement

? COLOR = ‘BLUE’

the variable COLOR contains the string ‘BLUE’, and could appear in the pat-
tern portion of a statement:

? B ? COLOR
Success

6

Pattern Matching 61

(’ G O L D ’ | ’ B L U E ’) (’ F I S H ’ | ’ B I R D ’)

’ G O L D ’ | ’ B L U E ’ ’ F I S H ’ | ’ B I R D ’

’ F I S H ’’ G O L D ’

’ G O L D ’

’ B L U E ’

’ F I S H ’’ B L U E ’

’ B I R D ’

’ B I R D ’

The Pattern Data Type

Even though it is used as a pattern, COLOR has the string data type. How-
ever, complicated patterns may be created and stored in a variable just like a
string or numeric value. The statement

? COLOR = ‘GOLD’ | ‘BLUE’

will create a structure describing the pattern, and store it in the variable
COLOR. It’s as if the bead diagram were recorded in memory. COLOR now
has the pattern data type. The preceding example can now be written as:

? CRITTER = ‘FISH’ | ‘BIRD’
? BOTH = COLOR CRITTER
? B ? BOTH
Success

If the pattern match

B ? BOTH

succeeds, we may want to know which of the many pattern alternatives
were used in the match.

Conditional
assignment

The binary operator conditional assignment assigns the matching subject
substring to a variable. The operator is called conditional, because assign-
ment occurs only if the pattern match is successful. Its graphic symbol is a
period (.). It assigns the matching substring on its left to the variable on its
right. Note that the direction of assignment is just the opposite of the state-
ment assignment operator (=). Continuing with the previous example, we’ll
redefine COLOR and CRITTER to use conditional assignment:

? COLOR = (‘GOLD’ | ‘BLUE’) . SHADE
? CRITTER = (‘FISH’ | ‘BIRD’) . ANIMAL
? BOTH = COLOR CRITTER
? B ? BOTH
Success
? OUTPUT = SHADE
BLUE
? OUTPUT = ANIMAL
BIRD

The substrings which matched the subpatterns COLOR and CRITTER

were assigned to variables SHADE and ANIMAL respectively. The statement

BOTH = COLOR CRITTER

had to be re-executed because its previous execution captured the old val-
ues of COLOR and CRITTER, without the conditional assignment operators.
The redefinition of COLOR and CRITTER was not reflected in BOTH until the
statement was re-executed.

Conditional assignment may appear at any level of pattern nesting, and
may include other conditional assignments within its embrace. The pattern

62 Tutorial

Capturing Match Results

((‘B’ | ‘F’ | ‘N’) . FIRST ‘EA’ (‘R’ | ‘T’) . LAST) . WORD

matches ‘BEAR’, ‘FEAR’, ‘NEAR’, ‘BEAT’, ‘FEAT’, or ‘NEAT’, assigning the first
letter matched to FIRST, the last letter to LAST, and the entire result to WORD.

The variable OUTPUT may be used as the target of a conditional assign-
ment. Try:

? ‘B2’ ? (‘A’ | ‘B’) . OUTPUT (‘1’ | ‘2’ | ‘3’) . OUTPUT
B
2
Success

All of the previous examples used patterns created from literal strings.
We may also want to specify the qualities of a match component, rather than
its specific characters. Using unknowns greatly increases the power of pat-
tern matching. There are two types, primitive patterns and pattern func-
tions.

Primitive
patterns

There are seven primitive patterns built into the SPITBOL system. The
two used most frequently will be discussed here. Chapter 9, “Advanced
Topics,” introduces the remaining five.

REM Match remainder of subject

REM is short for the REMainder pattern. It will match zero or more char-
acters at the end of the subject string. Try the following:

? ‘THE WINTER WINDS’ ? ‘WIN’ REM . OUTPUT
TER WINDS
Success

The subpattern ‘WIN’ matched its first occurrence in the subject, at the be-
ginning of the word ‘WINTER’. REM matched from there to the end of the sub-

Pattern Matching 63

6

’ B ’ ’ E A ’ ’ R ’

’ T ’’ F ’

’ N ’

((’ B ’ | ’ F ’ | ’ N ’) . F I R S T ’ E A ’ (’ R ’ | ’ T ’) . L A S T) . W O R D

F I R S T L A S T

W O R D

Unknowns

ject string—the characters ‘TER WINDS‘—and assigned them to the variable
OUTPUT. If we change the pattern slightly, to:

? ‘THE WINTER WINDS’ ? ‘WINDS’ REM . OUTPUT

Success

then ‘WINDS’ matches at the end of the subject string, leaving a null remain-
der for REM. REM matches this null string, assigns it to OUTPUT, and a blank
line is displayed.

The pattern components to the left of REM must successfully match some
portion of the subject string. REM begins where they left off, matching all
subject characters through the end of string. There are no restrictions on the
particular characters matched.

ARB Match arbitrary characters

ARB matches an ARBitrary number of characters from the subject string.
It matches the shortest possible substring, including the null string. The pat-
tern components on either side of ARB determine what is matched. Try the
statements

? ‘MOUNTAIN’ ? ‘O’ ARB . OUTPUT ‘A’
UNT
Success
? ‘MOUNTAIN’ ? ‘O’ ARB . OUTPUT ‘U’

Success

In the first statement, the ARB pattern is constrained on either side by the
known patterns ‘O’ and ‘A’. ARB expands to match the subject characters be-
tween, ‘UNT’. In the second statement, there is nothing between ‘O’ and ‘U’,
so ARB matches the null string. ARB behaves like a spring, expanding as
needed to fill the gap defined by neighboring patterns.

word1.spt Here’s a simple test program that demonstrates how knowns and un-
knowns combine to extract some simple information from our faustus data
file.

* word1.spt
PAT = “ the ” ARB . OUTPUT (“ of ” | “ a ”)

LOOP LINE = INPUT :F(END)
LINE ? PAT :(LOOP)

END

The pattern looks for the word “the” (notice the blanks before and after to
make sure it’s a word) followed by either the word “of” or “a”. The characters
between the words are bound by the ARB pattern, and assigned to the OUT-

PUT variable.

If you run the program with the command line:

spitbol word1.spt <faustus

you should see the following output:

64 Tutorial

face that launched
topless towers
beauty
monarch

Why can’t the two-line heart of the program be collapsed into a single
line like this?

LOOP INPUT ? PAT :S(LOOP)

The reason is that there are two causes of failure in this statement. Failure
could occur because the desired words aren’t found in the input line, or be-
cause the proram has encountered the end of the input file. In one case we
want to keep reading additional lines looking for our pattern; in the other
case we want to end the program.

Combining an input statement with a pattern match makes it impossible
to distinguish the cause of failure.

Cursor position During a pattern match, the cursor is SPITBOL’s pointer into the subject
string. It is integer valued, and points between two subject characters. It may
also may be positioned before the first subject character, or after the final
subject character. Its value may never exceed the size of the subject string.
Here’s an example of the numbering for the substring string ‘VALLEY’:

The cursor is set to zero when a pattern match begins, corresponding to a
position immediately to the left of the first subject character. As the pattern
match proceeds, the cursor moves right and left across the subject to indi-
cate where SPITBOL is attempting a match. The value of the cursor will be
used by some of the pattern functions that follow.

The cursor position operator assigns the current cursor value to a variable.
It is a unary operator whose graphic symbol is the “at sign” (@). It appears
within a pattern, preceding the name of a variable. By using OUTPUT as the
variable, we can display the cursor position on the screen. For instance:

? ‘VALLEY’ ? ‘A’ @OUTPUT ARB ‘E’ @OUTPUT
2
5
Success
? ‘DOUBT’ ? @OUTPUT ‘B’
0
1
2
3
Success
? ‘FIX’ ? @OUTPUT ‘B’
0

Pattern Matching 65

6

V A L L E Y

0 1 2 3 4 5 6

1
2
Failure

Cursor assignment is performed whenever the pattern match encoun-
ters the operator, including retries. It occurs even if the pattern ultimately
fails. The element @OUTPUT behaves like the null string—it doesn’t con-
sume subject characters or interfere with the match in any way.

Integer pattern
functions

These functions return a pattern based on their integer argument. The
pattern produced can be used directly in a pattern match statement, or
stored in a variable for later retrieval.

LEN LEN(integer) — Match fixed-length string

LEN(I) produces a pattern which matches a string exactly I characters
long. I must be an integer greater than or equal to zero. Any characters may
appear in the matched string. For example, LEN(5) matches any 5-character
string, and LEN(0) matches the null string. LEN may be constrained to certain
portions of the subject by other adjacent patterns:

? S = ‘ABCDA’
? S ? LEN(3) . OUTPUT
ABC
? S ? LEN(2) . OUTPUT ‘A’
CD

The first pattern match had only one constraint—the subject had to be at
least three characters long—so LEN(3) matched its first three characters. The
second case imposes the additional restriction that LEN(2)‘s match be fol-
lowed immediately by the letter ‘A’. This disqualifies the intermediate
match attempts ‘AB’ and ‘BC’.

Using LEN with keyword &ALPHABET as the subject provides a simple
way to obtain a string of unprintable characters. For example, the ASCII
control characters occupy positions 0 through 31 in the 256-character ASCII
set. To obtain a 32-character string containing these control codes, use:

? &ALPHABET ? LEN(32) . CONTROLS

Success

When you’re just working with a few characters, though, the easiest way
to obtain a character from an ASCII numeric value is to use the built-in CHAR

function. It produces the character which corresponds to the given number.
That is, these to statements are equivalent:

? BEEP = CHAR(7)
? &ALPHABET ? LEN(7) LEN(1) . BEEP

The inverse operation, obtaining the numerical value of a character code,
is also possible. If variable CHR contains a one character string, variable N

will be set to its decimal equivalent with the second statement below:

? CHR = ‘A’
? &ALPHABET ? @N CHR

66 Tutorial

? OUTPUT = N
65

POS, RPOS POS(integer), RPOS(integer) — Verify cursor position

The POS(I) and RPOS(I) patterns do not match subject characters. Instead,
they succeed only if the current cursor position is a specified value. They of-
ten are used to tie points of the pattern to specific character positions in the
subject.

POS(I) counts from the left end of the subject string, succeeding if the cur-
rent cursor position is equal to I. RPOS(I) is similar, but counts from the right
end of the subject. If the subject length is N characters, RPOS(I) requires the
cursor be (N – I). If the cursor is not the correct value, these functions fail, and
SPITBOL tries other pattern alternatives, perhaps extending a previous
substring matched by ARB, or beginning the match further along in the sub-
ject.

Continuing with code.spt:

? S = ‘ABCDA’
? S ? POS(0) ‘B’
Failure
? S ? LEN(3) . OUTPUT RPOS(0)
CDA
? S ? POS(3) LEN(1) . OUTPUT
D
? S ? POS(0) ‘ABCD’ RPOS(0)
Failure

The first example requires a ‘B’ at cursor position 0, and fails for this sub-
ject. POS(0) anchors the match, forcing it to begin with the first subject char-
acter. Similarly, RPOS(0) anchors the end of the pattern to the tail of the sub-
ject. The next example matches at a specific mid-string character position,
POS(3). Finally, enclosing a pattern between POS(0) and RPOS(0) forces the
match to use the entire subject string.

At first glance these functions appear to be setting the cursor to a speci-
fied value. Actually, they never alter the cursor, but instead wait for the cur-
sor to “come to them” as various match alternatives are attempted. This, in
turn, allows other patterns in the statement to be processed in an orderly
fashion. You can demonstrate this “waiting for the cursor” behavior like
this:

? S ? @OUTPUT POS(3)
0
1
2
3
Success

Pattern Matching 67

6

RTAB, TAB RTAB(integer), TAB(integer) — Match to fixed position

These patterns are hybrids of ARB, POS(), and RPOS(). They use specific
cursor positions, like POS and RPOS, but bind (match) subject characters,
like ARB. TAB(I) matches any characters from the current cursor position up
to the specified position I. RTAB(I) does the same, except, as in RPOS(), the
target position is measured from the end of the subject.

TAB and RTAB will match the null string, but will fail if the current cursor
is to the right of the target. They also fail if the target position is past the end
of the subject string.

These patterns are useful when working with tabular data. For example,
if a data file contains name, street address, city and state in columns 1, 30, 60,
and 75, this pattern will break out those elements from a line:

P = TAB(29) . NAME TAB(59) . STREET TAB(74) . CITY REM . ST

The pattern RTAB(0) is equivalent to primitive pattern REM. One poten-
tial source of confusion is just what it is that RTAB matches. It counts from
the right end of the subject, but matches to the left of its target cursor. Try:

? ‘ABCDE’ ? TAB(2) . OUTPUT RTAB(1) . OUTPUT
AB
CD
Success

TAB(2) matches ‘AB’, leaving the cursor at 2, between ‘B’ and ‘C’. The sub-
ject is 5 characters long, so RTAB(1) specifies a target cursor of 5 – 1, or 4,
which is between the ‘D’ and ‘E’. RTAB matches everything from the current
cursor, 2, to the target, 4.

word2.spt Pattern functions like LEN, POS, and TAB are useful when dealing with
data arranged in columns. The file treesort.in in the demos directory con-
tains some columnar data. Here are two lines from the file:

1896 MARCONI G : RADIO
1609 GALILEO : TELESCOPE

Consider a program that reads the file and breaks each line into its com-
ponent fields:

* word2.spt
PAT = POS(0) LEN(4) . WHEN

+ TAB(6) ARB . WHO “ :”
+ TAB(24) REM . WHAT
LOOP LINE = INPUT :F(END)

LINE ? PAT :F(LOOP)
OUTPUT = WHO “ invented the ” WHAT “ in ” WHEN

:(LOOP)
END

Running the program with redirected input gives output lines like this:

spitbol word2 <demos\treesort.in

MARCONI G invented the RADIO in 1896
GALILEO invented the TELESCOPE in 1609

68 Tutorial

Character
pattern

functions

These functions produce a pattern based on a string-valued argument.
Once again, the pattern may be used directly or stored in a variable.

ANY, NOTANY ANY(string), NOTANY(string) — Match one character

Each function produces a pattern which matches exactly one character
from the subject string. ANY(S) matches the next subject character if it ap-
pears in the string S, and fails otherwise. NOTANY(S) matches a subject char-
acter only if it does not appear in S. Here are some sample uses of each:

? VOWEL = ANY(‘AEIOU’)
? DVOWEL = VOWEL VOWEL
? NOTVOWEL = NOTANY(‘AEIOU’)
? ‘VACUUM’ ? VOWEL . OUTPUT
A
? ‘VACUUM’ ? DVOWEL . OUTPUT
UU
? ‘VACUUM’ ? (VOWEL NOTVOWEL) . OUTPUT
AC

The argument string specifies a set of characters to be used in creating
the ANY or NOTANY pattern. It may contain duplicate characters, and the or-
der of characters is immaterial.

BREAK
SPAN

BREAK(string), SPAN(string) — Match a run of characters

These are multi-character versions of NOTANY and ANY. Each requires a
non-null string argument to specify a set of characters.

SPAN(S) matches one or more subject characters from the set in S. SPAN

must match at least one subject character, and will match the longest subject
string possible.

BREAK(S) matches up to but not including any character in S. The string
matched must always be followed in the subject by a character in S. Unlike
SPAN and NOTANY, BREAK will match the null string.

These two functions are called stream functions because each streams by
a series of subject characters. SPAN is most useful for matching a group of
characters with a common trait. For example, we can say an English word is
composed of one or more alphabetic characters, apostrophe, and hyphen.
The statements

? LETTERS = “ABCDEFGHIJKLMNOPQRSTUVWXYZ’–”
? WORD = SPAN(LETTERS)

produce a suitable pattern in WORD. To match the material between words
(white space, punctuation, etc.), use the pattern:

? GAP = BREAK(LETTERS)

SPAN and BREAK are two of the most useful SPITBOL functions. Try
some examples using code.spt:

Pattern Matching 69

6

? ‘SAMPLE LINE’ ? WORD . OUTPUT
SAMPLE
? ‘PLUS TEN DEGREES’ ? ‘ ‘ WORD . OUTPUT
TEN
? GAPO = GAP . OUTPUT
? WORDO = WORD . OUTPUT
? ‘: ONE, TWO, THREE’ ? GAPO WORDO GAPO WORDO
:
ONE
,
TWO
? DIGITS = ‘0123456789’
? INTEGER = (ANY(‘+–‘) | ‘’) SPAN(DIGITS)
? ‘SET –43 VOLTS’ ? INTEGER . OUTPUT
–43
? REAL = INTEGER ‘.’ (SPAN(DIGITS) | ‘’)
? ‘SET –43.625 VOLTS’ ? REAL . OUTPUT
–43.625
? S = ‘0ZERO,1ONE,2TWO,3THREE,4FOUR,5FIVE,’
? S ? 4 BREAK(‘,’) . OUTPUT
FOUR

If you require a version of SPAN which will match the null string, or a
BREAK which will not match the null string, you can use the following con-
structions:

(SPAN(S) | ‘’)
(NOTANY(S) BREAK(S))

word3.spt Let’s recast the previous word2.spt program to use the fact that there are
two or more blanks between each field, and that ‘:’ is also part of the field
separator.

* word3.spt
PAT = POS(0) BREAK(‘ ‘) . WHEN (‘ ‘ SPAN(‘ ‘))

+ ARB . WHO (‘ ‘ SPAN(‘ :’))
+ REM . WHAT
LOOP LINE = INPUT :F(END)

LINE ? PAT :F(LOOP)
OUTPUT = WHO “ invented the ” WHAT “ in ” WHEN

:(LOOP)
END

Because SPAN(‘ ‘) will match one or more blank characters, (‘ ‘ SPAN(‘ ‘))

will match two or more blank characters.

Notice that we could not use the line:

+ BREAK(‘ ‘) . WHO (‘ ‘ SPAN(‘ :’))

in the pattern to collect the inventor’s name, because the names contain em-
bedded blanks. That is, given a name like:

BELL A G

BREAK(‘ ‘) would match ‘BELL’, but then fail because ‘BELL’ is not immedi-
ately followed by a blank and a colon, or two or more blanks.

70 Tutorial

The BREAKX function described next solves this little problem.

BREAKX BREAKX(string) — Extended BREAK function

SPITBOL offers an extended version of BREAK called BREAKX. If neces-
sary, BREAKX will “look past” the place where it stopped to see if a longer
match is possible. It will do this if some subsequent pattern element fails to
match. The pattern matcher checks to see if extending BREAKX might allow
the subsequent pattern element match. If so, the operation succeeds. If not,
other pattern alternatives (if any) prior to BREAKX are attempted.

Suppose you want everything before the first ‘E’ in a subject string, as
with:

? ‘INTEGERS’ ? BREAK(‘E’) . OUTPUT
INT

BREAK works fine for that. But suppose we want whatever comes before
the first occurrence of a two-letter pattern, ‘ER’? That’s where BREAKX is
handy.

? ‘INTEGERS’ ? BREAKX(‘E’) . OUTPUT ‘ER’
INTEG

BREAKX stopped at the first E in INTEGERS, and tried to match the next
pattern element, the two letters ‘ER’. But the next subject characters were
‘EG’, a mismatch, so BREAKX was instructed to try again. BREAKX extended
itself to the next E, where ‘ER’ in the subject matches ‘ER’ in the pattern.

The above example illustrates that BREAK(S) will never return a string
containing any characters in S, while BREAKX(S) might, if a subsequent pat-
tern requires it.

BREAKX(S) provides a more selective, and more efficient version of the
ARB pattern. We could have used the construction:

? ‘INTEGERS’ ? ARB . OUTPUT ‘ER’
INTEG

but ARB pokes along one character at time, matching ‘I’, ‘IN’, ‘INT’, and ‘INTE’,
before finding the desired match, ‘INTEG’. In contrast, BREAKX gets the right
answer after only two attempts: ‘INT’ and ‘INTEG’. The increased efficiency is
even more pronounced with a long subject.

word4.spt Consider how we might apply this to the previous word3.spt program:

* word4.spt
PAT = POS(0) BREAK(‘ ‘) . WHEN (‘ ‘ SPAN(‘ ‘))

+ BREAKX(‘ ‘) . WHO (‘ ‘ SPAN(‘ :’))
+ REM . WHAT
LOOP LINE = INPUT :F(END)

LINE ? PAT :F(LOOP)
OUTPUT = WHO “ invented the ” WHAT “ in ” WHEN

:(LOOP)
END

Pattern Matching 71

6

Using BREAKX, we were able to replace the less efficient ARB pattern and
skip over the blanks within the inventor’s name.

We need to introduce one more fundamental concept—replace-
ment—before we can write some meaningful programs.

Pattern matching identifies a subject substring with a particular trait,
specified by the pattern. We used conditional assignment to copy that
substring to a variable. Replacement moves in the other direction, letting
you alter the substring in the subject. The space occupied by the matching
substring may be enlarged or contracted (or removed entirely), leaving ad-
jacent subject characters undisturbed. If the pattern matched the entire sub-
ject, replacement behaves like a simple assignment statement.

Replacement appears in a form similar to assignment:

SUBJECT ? PATTERN = REPLACEMENT

First, the pattern match is attempted on the subject. If it fails, execution of
the statement ends immediately, and replacement does not occur. If the
match succeeds, any conditional assignments within the pattern are per-
formed. The replacement field is then evaluated, converted to a string, and
inserted in the subject in place of the matching substring. If the replacement
field is empty, the null string replaces the matched substring, effectively de-
leting it. Let’s try a few examples with code.spt:

? T = ‘MUCH ADO ABOUT NOTHING’
? T ? ‘ADO’ = ‘FUSS’
Success
?= T
MUCH FUSS ABOUT NOTHING
? T ? ‘NOTHING’ =
Success
?= T
MUCH FUSS ABOUT
? ‘MASH’ ? ‘M’ = ‘B’
Error #212, Syntax error: Value used where name is required

The first replacement searches for ‘ADO’ in the subject string, replacing it
with ‘FUSS’. The second replacement has a null string replacement value,
and deletes the matching substring. The last example demonstrates that a
variable must be the subject of replacement. Variables can be changed; string
literals—like ‘MASH’—cannot.

The following will replace the ‘M’ in ‘MASH’ with a ‘B’:

? VERB = ‘MASH’
? VERB ? ‘M’ = ‘B’
?= VERB
BASH

72 Tutorial

Pattern Matching with Replacement

If the matched substring appears more than once in the subject, only the
first occurrence is changed. The remaining substrings must be found with a
program loop. For example, a statement to eliminate all occurrences of the
letter ‘A’ from the subject looks like this:

ALOOP SUBJECT ? ‘A’ =
:S(ALOOP)

Here ALOOP is the statement label, SUBJECT is some variable containing
the subject string, ‘A’ is the pattern, and the replacement field is empty. If an
‘A’ is found, it is deleted by replacing it with the null string, and the state-
ment succeeds. The success Goto branches back to ALOOP, and another
search for ‘A’ is performed. The loop continues until no A‘s remain in the
subject, and the pattern match fails. Of course, the pattern and replacement
can be as complex as desired.

Simple loops like this can be tried in code.spt if the label and Goto are
both on the same line. Continuing with the previous example:

? VOWEL = ANY(‘AEIOU’)
?VL T ? VOWEL = ‘*‘

:S(VL)
?= T
M*CH F*SS *B**T

We can combine replacement with the ANY function to improve upon
our earlier palindrome checking program. We would like to remove all
punctuation and blanks from the input line. We add one line after the state-
ment labeled LOOP:

LOOP S = REPLACE(INPUT, &LCASE, &UCASE) :F(END)
PUNCT S ? ANY(“.,;:’?!– ”) =

:S(PUNCT)
…

Now we can now use input lines such as: A man, a plan, a canal, Panama!,
or Poor Dan is in a droop.

Since conditional assignment is performed before replacement, its re-
sults are available for use in the replacement field of the same statement.
Here’s an example of removing the first item from a list, and placing it on
the end:

? RAINBOW = ‘RED,ORANGE,YELLOW,GREEN,BLUE,VIOLET,’
? CYCLE = BREAK(‘,’) . ITEM LEN(1) REM . REST
? RAINBOW ? CYCLE = REST ITEM ‘,’
?= ITEM
RED
? OUTPUT = RAINBOW
ORANGE,YELLOW,GREEN,BLUE,VIOLET,RED,

Pattern CYCLE matches the entire subject, placing the first color into ITEM,
bypassing the comma with LEN(1), and placing the remainder of the subject
into REST. REST and ITEM are then transposed in the replacement field, and
stored back into RAINBOW.

Pattern Matching 73

6

Finally, we note that SPITBOL allows you to place the subject, pattern,
and replacement within parentheses and used as an expression. The value
of the expression is the entire subject string after replacement occurs, or fail-
ure:

?= (RAINBOW ? CYCLE = REST ITEM ‘,’)
YELLOW,GREEN,BLUE,VIOLET,RED,ORANGE,
? (RAINBOW ? CYCLE = REST ITEM ‘,’) ? BREAK(‘,’) . OUT-
PUT
GREEN

We’ve introduced a lot of concepts in this chapter; it’s time to see how
they fit together into programs. These programs should be created as text
files (straight ASCII) with your text editor. It’s easiest if you use the ‘.spt’ ex-
tension when naming files with SPITBOL source code.

words.spt Word Counting

The first program counts the number of words in the input file. Program
lines with an asterisk in the first column are comment lines—their contents
are ignored by SPITBOL.

* Simple word counting program, words.spt.

*
* A word is defined to be a contiguous run of letters,

* digits, apostrophe and hyphen. This definition of

* legal letters in a word can be altered for specialized

* text.

*
* Input is read from the standard input file

*
&TRIM = 1
NUMERALS = ‘0123456789’
WORD = “’–” NUMERALS &UCASE &LCASE
WPAT = BREAK(WORD) SPAN(WORD)

NEXTL LINE = INPUT
:F(DONE)

NEXTW LINE ? WPAT =
:F(NEXTL)

N = N + 1
:(NEXTW)

DONE OUTPUT = +N ‘ words’
END

After defining the acceptable characters in a word, the real work of the
program is performed in the three lines beginning with label NEXTL. A line
is read from the input file, and stored in variable LINE. The next statement at-

74 Tutorial

Sample Programs

tempts to find the next word with pattern WPAT. BREAK streams by any
blanks and punctuation, stopping just short of the word, which SPAN then
matches. Both the word and any preceding punctuation are removed from
LINE by replacement with the null string.

When no more words remain in LINE, the failure transfer to NEXTL reads
the next line. If the match succeeds, N is incremented, and the program goes
back to NEXTW to search for another word. When the End-of-File is encoun-
tered, control transfers to DONE and the number of words is displayed.

To run the program and read data from file faustus, use file redirection
on the command line:

spitbol words <faustus

It’s simple to alter pattern WPAT to search for other things. For instance, if
we wanted to count occurrences of double vowels, we could use:

WPAT = ANY(‘AEIOUaeiou’) ANY(‘AEIOUaeiou’)

To count the occurrences of integers with an optional sign character, use:

WPAT = (ANY(‘+–‘) | ‘’) SPAN(‘0123456789’)

Perhaps we want to count violations of simple typing rules: period with
only one blank, or comma and semicolon followed by more than one blank:

WPAT = ‘. ‘ NOTANY(‘ ‘) | ANY(‘,;’) ‘ ‘ SPAN(‘ ‘)

Notice how closely WPAT parallels the English language description of
the problem.

cross.spt Word Crossing

This program asks for two words, and displays all intersecting letters be-
tween them. A similar program is in Griswold [10].

For example, given the words LOOM and HOME, the program output is:

H
LOOM
M
E

H
LOOM

M
E

H
O

LOOM
E

A pattern match like this would find the first intersecting character:

HORIZONTAL ? ANY(VERTICAL) . CHAR

However, we want to find all intersections, so will have to iterate our
search. In conventional programming languages, we might use numerical
indices to remember which combinations were tried. Here, we’ll use
place-holding characters like ‘*‘ and ‘#’ to remove solutions from future

Pattern Matching 75

6

consideration. As seems to be the case with SPITBOL, there are more com-
ments than program statements:

* cross.spt – Print all intersections between two words
&TRIM = 1

* Get words from user

*
AGAIN OUTPUT = ‘ENTER HORIZONTAL WORD:’

H = INPUT
:F(END)
OUTPUT = ‘ENTER VERTICAL WORD:’
V = INPUT
:F(END)

* Make copy of horizontal word to track position.
HC = H

* Find next intersection in horizontal word. Save

* the number of preceding horizontal characters in NH.

* Save the intersecting character in CROSS.

* Replace with ‘*‘ to remove from further consideration.

* Go to AGAIN to get new words if horizontal exhausted.

*
*
NEXTH HC ? @NH ANY(V) . CROSS = ‘*‘ :F(AGAIN)

* For each horizontal hit, iterate over possible

* vertical ones. Make copy of vertical word to track

* vertical position.

*
VC = V

* Find where the intersection was in the vertical word.

* Save the number of preceding vertical characters in NV.

* Replace with ‘#’ to prevent finding it again in that

* position. When vertical exhausted, try horizontal again.

*
NEXTV VC ? @NV CROSS = ‘#’
:F(NEXTH)

* Now display this particular intersection.

* We make a copy of the original vertical word,

* and mark the intersecting position with ‘#’.

*
OUTPUT =
PRINTV = V
PRINTV ? POS(NV) LEN(1) = ‘#’

* Peel off the vertical characters one-by-one. Each will

* be displayed with NH leading blanks to get it in the

* correct column. When the ‘#’ is found, display the full

* horizontal word instead.

* When done, go to NEXTV to try another vertical position.

*

76 Tutorial

PRINT PRINTV ? LEN(1) . C =
:F(NEXTV)

OUTPUT = DIFFER(C,’#’) DUPL(‘ ‘,NH) C :S(PRINT)
OUTPUT = H

:(PRINT)
END

Pattern Matching 77

6

Most of the examples above match substrings which do not begin at the
first subject character. This is the unanchored mode of pattern matching. Al-
ternately, we can anchor the pattern match by requiring it to include the first
subject character. Setting keyword &ANCHOR to a nonzero value produces
anchored matching. Anchored matching is usually faster than unanchored,
because many futile attempts to match are eliminated.

Even when the desired item is not at the beginning of the subject, it is of-
ten possible to simulate anchored matching by prefixing the pattern with a
subpattern which will stream out to the desired object. The stream function
spans the gap from the first subject character to the desired item. Use
code.spt to experiment with &ANCHOR:

? DIGITS = ‘0123456789’
? &ANCHOR = 1
? ‘THE NEXT 43 DAYS’ ? BREAK(DIGITS) SPAN(DIGITS) . N

This will assign substring ‘43’ to N, even in anchored mode. In unan-
chored mode, the test lines:

? &ANCHOR = 0
? ‘THE NEXT 43 DAYS’ ? SPAN(DIGITS) . N

would ultimately succeed, but only after SPAN failed on each of the charac-
ters preceding the ‘4’. The efficiency difference is more pronounced if the
subject does not contain any digits. In the first formulation, BREAK(DIGITS)

fails and the anchored match then fails immediately. The second construc-
tion fails only after SPAN is tried at each subject character position.

When your program first begins execution, SPITBOL sets keyword &AN-

CHOR to zero, the unanchored mode. If you can construct all your patterns
as anchored patterns, you should set &ANCHOR nonzero for anchored
matching. Setting and resetting &ANCHOR throughout your program is er-
ror prone and is not advised. Another alternative is to leave &ANCHOR set to
0, but to “pseudo-anchor” patterns by using POS(0) as the first pattern ele-
ment.

It always takes less time for a pattern to succeed than to fail. Failure im-
plies an exhaustive search of all combinations, whereas success stops the
pattern match early. You should try to construct patterns with direct routes
to success, such as the use of BREAK above. Wherever possible, impose re-
strictions on the number of alternatives to be tried. Combinatorial explosion
is the price of loose pattern programming.

78 Tutorial

Anchored and Unanchored Matching

Pattern match
statements

label SUBJECT ? PATTERN :S(label1)F(label2)
label SUBJECT ? PATTERN = REPLACEMENT :S(label1)F(label2)

Data types PATTERN A structure containing pattern operators, primitive pat-
terns, or pattern functions

Pattern
operations

PAT1 PAT2 Subsequent, matches PAT1 followed by PAT2

PAT1 | PAT2 Alternate, matches PAT1 or PAT2

PATTERN . NAME Conditional assignment of matched substring to variable

@NAME Copy cursor position to variable

Primitive
patterns

ARB Arbitrary number of characters
REM Remainder of subject

Pattern
functions

LEN(I) Match string of specified length
POS(I) Match null string at specified cursor position
RPOS(I) Match null string at specified cursor position counting

from subject end

RTAB(I) Match to specified cursor position counting from end
TAB(I) Match to specified cursor position
ANY(S) Match one character if it appears in S

BREAK(S) Match run of characters up to a character in S

BREAKX(S) Like BREAK(S), but can extend past first match
NOTANY(S) Match one character if it is not in S

SPAN(S) Match one or more characters if they appear in S

Keywords &ANCHOR Nonzero requires match to include first subject character

Pattern Matching 79

6

Chapter Summary

In this chapter we will explore some additional SPITBOL operators and
data types. Some concepts are absent from other languages, but far from be-
ing esoteric, they fit quite naturally into SPITBOL, and add to its conciseness
and power of expression. In the following examples, we will continue to use
the code.spt program to illustrate each idea.

In conventional programming languages, a variable’s name may be
specified only at the time the program is written. In fact, once the run-time
storage has been allocated, the textual form of the name can be discarded
from the object program. This is not the case in SPITBOL; you can create
new variables during execution, and reference existing ones from names
specified in character strings.

The unary operator dollar sign ($) is the indirection or indirect reference op-
erator. By applying it to a variable you instruct SPITBOL to use its contents
as the name of another variable, and to continue on to reference that variable.
SPITBOL goes through one variable to reach another. Try the following sim-
ple example with code.spt:

? DOG = ‘BARK’
? CAT = ‘MEOW’
? ANIMAL = ‘CAT’
?= $ANIMAL
MEOW
? ANIMAL = ‘DOG’
?= $ANIMAL
BARK

81

7

Chapter 7

Additional Operators and Datatypes

Indirect Reference

These statements make their indirect reference through the string con-
tained in variable ANIMAL. ANIMAL‘s contents are treated as a pointer to the fi-
nal destination. That is, using ANIMAL by itself retrieves ‘DOG’, while $ANI-

MAL refers to the variable DOG.

New variables may also be created by using an indirect reference as the
object of an assignment. Here, $DOG causes variable BARK to be created, and
assigned the string ‘RUFF’:

? $DOG = ‘RUFF’
?= BARK
RUFF

which can be visualized like this:

Indirection may proceed to any depth, provided the null string is never
encountered as a variable name:

?= $ANIMAL ‘–‘ $$ANIMAL
BARK–RUFF
?= $RUFF
Error #239, Indirection operand is not a name

In the first example, $ANIMAL produces the contents of variable DOG,
while $$ANIMAL refers to the variable BARK. The second example attempts to
go through RUFF—which was not previously defined—and obtains the null
string. Of course, the null string is not a valid variable name.

82 Tutorial

ANIMAL CAT

DOG

string
or

string

"CAT"

"DOG"

string

string

"MEOW"

"BARK"

ANIMAL CAT

DOG

BARK

string
or

string

"CAT"

"DOG"

string

string

string

"MEOW"

"BARK"

"RUFF"new variable

Associative
programming

Indirection provides a means of programming by association. Suppose we
want to write a program allowing the user to enter a state name and get the
state’s capital in response. We’ve provided a data file called capitals.dat, in
which each line contains a state name, comma, and the capital. The first part
of the program will read the file and set up an associative data base:

* Trim input, attach data file to variable INFILE
&TRIM = 1
INPUT(‘INFILE’, 1, ‘capitals.dat’) :F(ERROR)

* Read a line from file. Start querying upon EOF
READF LINE = INFILE

:F(QUERY)

* Break out state and capital from line
LINE ? BREAK(‘,’) . STATE LEN(1) REM . CAPITAL :F(ER-

ROR)

* Convert state name into a variable, and assign the

* capital city string to it. Then read next line.
$STATE = CAPITAL
:(READF)

ERROR OUTPUT = ‘Illegal data file’
:(END)
QUERY …

We attach the file and associate variable INFILE with it. Successive file
lines are read into variable LINE. Pattern matching then assigns the state
name and capital city to variables STATE and CAPITAL respectively. We use
an indirect reference through $STATE to create a new variable having the
state’s name, and assign the capital city string to it. For example, the file line
‘COLORADO,DENVER‘ would create variable COLORADO, with contents
‘DENVER’. When End-of-File is read from the data file, the program transfers
to the statement labeled QUERY.

Having established a data base, completing the program is trivial:

* Read state name, access it as a variable
QUERY OUTPUT = $INPUT

:S(QUERY)
END

An input line is read from the user, and used for an indirect reference. If
the user types a state name, treating it as a variable name obtains the state
capital. An invalid state name would reference a new variable, whose value
is the null string, and a blank line would be output. A more complete pro-
gram might test for this null string and produce an error message.

The addition of one statement to the program loop creating the data base
allows us to enter either the state name or capital city, and obtain the other:

$STATE = CAPITAL
$CAPITAL = STATE
:(READF)

Additional Operators and Datatypes 83

7

How would we solve this problem in a language like BASIC? State names
and capitals could be stored in some explicit data structure, such as an array.
We would then use a loop to sequentially compare the user’s input string
with the array elements. If a match were found, the result would be dis-
played from another array element. In SPITBOL, we did it all with one state-
ment: OUTPUT = $INPUT. Associative programming can often replace a con-
ventional linear search.

Variable
names

Earlier we said that variable names were composed of letters, digits, and
the characters period and underscore, and that they could be up to 1,024
characters long. These restrictions apply only to variables which appear lit-
erally in program text. Variable names created or referenced with the indi-
rection operator may be composed of any non-null string of characters, and
may be as long as any other string. If our previous program set keyword
&DUMP nonzero, we would see a list of states and capitals when the program
terminated. The variable names created by $STATE are in the left column,
and their string contents in the right column:

ALABAMA = ‘MONTGOMERY’
ALASKA = ‘JUNEAU’
ARIZONA = ‘PHOENIX’
…
NEW HAMPSHIRE = ‘CONCORD’
…

The dump reveals a variable named NEW HAMPSHIRE, which contains a
blank within its name. Clearly, it could never appear in a statement, such as:

NEW HAMPSHIRE = ‘CONCORD’

since SPITBOL sees this as a pattern match statement: with NEW as the sub-
ject, and HAMPSHIRE as the pattern. To reference this variable, we must use:

$’NEW HAMPSHIRE’ = ‘CONCORD’

Try code.spt with some unconventional variable names:

? $’"’ = ‘DOUBLE QUOTE’
? $’$#@!*‘ = 53.1
? NM = DUPL(‘AB CD’, 1000)
? $NM = ‘LONG’
?= $’$#@!*‘ $’"’ $NM
53.1DOUBLEQUOTELONG
?= SIZE(NM)
5000

Indirect Gotos Indirection is not restricted to the main body of a statement. It may also
be used in the Goto field to transfer control to a label specified by a variable.
Suppose variable OP contained the one-character string ‘+’, ‘–‘, ‘*‘, or ‘/’.
This Goto would transfer to one of four statements, labeled L+, L–, L*, or L/:

statement
:($(‘L’ OP))
L+ statement

84 Tutorial

L– statement
…

The string in OP is appended to string ‘L’, and the result is used with indi-
rection to obtain the final transfer label name.

Indirection in the Goto field is a more powerful version of the computed
Goto which appears in some languages. It allows a program to quickly per-
form a multi-way control branch based on an item of data. Of course, the
computed label name must be defined in the program. SPITBOL provides
an error message if your program transfers to an undefined label.

Indirection may not be used in a statement’s label field. Dynamically
changing the name of a statement during execution is excessive even by
SPITBOL standards.

Indirection
cautions

Creating variables with the unary $ operator carries some danger with it
as well. Because SPITBOL’s variables are global in scope, allowing data read
from a file to create variable names could have unexpected consequences.
Suppose our capitals.dat file mistakenly contained words like REM or OUT-

PUT? Our assignment statement would interfere with program patterns and
variables with the same names.

One way to avoid this problem is to prefix names with a character that
could not appear at the beginning of a name entered directly into the pro-
gram, such as the reverse slash (\). Then the assignment statement in the
program might read:

$(‘\’ STATE) = CAPITAL
:(READF)

and the access statement would appear as:

QUERY OUTPUT = $(‘\’ INPUT)
:S(QUERY)

There are better ways of solving this problem. Later in this chapter we’ll
discuss another data type called a table, which allows us to make the kinds
of associations used in capitals.dat much more elegantly, and within a pre-
scribed and protected domain, with no danger of name collisions.

The pattern data type appears when a pattern structure is stored in a
variable for subsequent use in a pattern match. For example, a pattern to
capture the next N characters after a colon, and store them in variable ITEM

could be written as:

NPAT = ‘:’ LEN(N) . ITEM

Unfortunately, a definition such as this is static. NPAT captures the value
of variable N at the time of pattern construction. If we subsequently alter N in

Additional Operators and Datatypes 85

7

Unevaluated Expressions

the program, NPAT retains N‘s original value. One way to use the current
value of N is to explicitly specify the pattern each time it is needed:

SUBJECT ? ‘:’ LEN(N) . ITEM

Now the pattern is being constructed anew whenever the statement is
executed. However, reconstructing a pattern whenever it is used is ineffi-
cient, so a one-time definition of NPAT is preferable.

The unevaluated expression or deferred evaulation operator allows us to ob-
tain the efficiency of the NPAT formulation, yet use the current value of N

when NPAT is referenced. It is a unary operator, whose graphic symbol is the
asterisk (*). Now we would specify NPAT like this:

NPAT = ‘:’ LEN(*N) . ITEM

The pattern is only constructed once, and assigned to NPAT. N‘s current
value is ignored at this time. Later, when NPAT is used in a pattern match, the
deferred evaluation operator fetches the then current value of N.

Deferred evaluation may appear as the argument of the pattern func-
tions ANY, BREAK, BREAKX, LEN, NOTANY, POS, RPOS, RTAB, SPAN, or TAB.
Here’s an example using code.spt:

? PAT = TAB(*I) . OUTPUT SPAN(*S) . OUTPUT
? SUB = ‘123AABBCC’
? I = 4
? S = ‘AB’
? SUB ? PAT
123A
ABB
? I = 3
? SUB ? PAT
123
AABB

Note that I and S were undefined when PAT was first constructed. Later,
we will apply this technique to construct recursive patterns.

Deferred evaluation may also be applied to a pattern’s alternate or sub-
sequent clause or to the entire pattern. Because deferred expressions are
valid arguments only to the pattern functions mentioned above, you’ll have
to move the operator “out a level” to use it with other kinds of functions. For
example, the first statement is incorrect, and will result in an execution er-
ror:

? PAT = EQ(*I, 4) ‘ABC’ | ‘DEF’
Error #101, EQ first argument is not numeric
Failure
? PAT = *EQ(I, 4) ‘ABC’ | ‘DEF’
Success

By having the * operator apply to the function EQ(I, 4), the problem with
it appearing as a function argument was circumvented.

86 Tutorial

Our examples have made extensive use of the conditional assignment
operator to capture matched substrings after a successful pattern match. The
immediate assignment operator allows us to capture intermediate results
during the pattern match. Immediate assignment occurs whenever a
subpattern matches, even if the entire pattern match ultimately fails. Immediate
assignment is a binary operator whose graphic symbol is the dollar sign ($).
Like conditional assignment, the matching substring on its left is assigned
to the variable on its right. Here are examples with code.spt where we use
variable OUTPUT to reveal the work of the pattern matcher:

? S = ‘ABCDEFG’
? S ? ‘A’ ARB $ OUTPUT ‘E’

B
BC
BCD
Success
? S ? (‘B’ LEN(2) | ‘C’ LEN(3)) $ OUTPUT ‘G’
BCD
CDEF
Success
?

Immediate
assignment

and deferred
evaluation

As useful as immediate assignment is for revealing the inner workings
of a pattern match, a more powerful use is possible. It can be used with the
deferred expression operator (*) to develop a new class of patterns. An in-
teresting substring at the beginning of the subject is immediately assigned
to a variable, and the variable is then subsequently used in the very same pat-
tern.

Suppose a number at the beginning of the subject specifies the length of a
variable width field that follows. We would like to capture the number into
variable N, then use it with the LEN function to transfer the data into variable
FIELD. When used with LEN, N must be preceded by the deferred evaluation
operator, so that its new value is retrieved. For instance:

? FPAT = SPAN(‘0123456789’) $ N LEN(*N) . FIELD
? ‘12ABCDEFGHIJKLMNOPQ’ ? FPAT
Success
?= FIELD
ABCDEFGHIJKL

SPAN matched the field length, 12, and immediately assigned it to N.
LEN(*N) then matched the next 12 characters. Another subject, with a differ-
ent field length, would update N appropriately. Type conversion was work-
ing quietly behind the scenes here: N was assigned the string ‘12’, yet it ap-
peared as integer 12 to the LEN function.

Additional Operators and Datatypes 87

7

Immediate Assignment

Now here is an example which provides a glimpse of just how powerful
SPITBOL’s pattern matching can be. Problem: Examine a subject for an arbi-
trary three-character substring which appears twice in a row, or is immedi-
ately followed by its mirror image. Solution:

? TWOPAT = LEN(3) $ X *(X | REVERSE(X)) . OUTPUT
? ‘ABCDECDEFGH’ ? TWOPAT
CDE
Success
? ‘ABCDEEDCBA’ ? TWOPAT
EDC
Success

Let’s take a break from pattern matching, and examine some other
SPITBOL data types.

Array concepts Arrays in SPITBOL are similar to arrays in other programming lan-
guages. They allow a single variable name to specify more than one data ele-
ment. Integer subscripts distinguish the individual members of an array.
Each array element may contain any SPITBOL data type, independent of the
types in other array elements.

Arrays may have any number of dimensions. A one-dimensional array
is a vector; it is simply a list of I items. A two-dimensional array is a grid com-
posed of several adjacent vectors—an I by J array has I rows and J columns.
A three-dimensional array, I by J by K in size, is a rectangular solid consist-
ing of K adjacent grids. There’s no limit to the number of dimensions al-
lowed, but such arrays become increasingly difficult to visualize.

In keeping with SPITBOL’s pliability, an array is defined during program
execution, rather than at compilation time. Its size and shape is specified by
a string. Arrays may be deleted or re-created with a different definition at
any time.

Array creation Arrays are created by the SPITBOL function ARRAY. A program calls this
function with a prototype string which specifies the number of dimensions
and their sizes. The function returns an array pointer, which is stored in a
variable; the array elements are referenced by applying subscripts to this
variable. Here are two sample statements for use with code.spt. They create
one- and two-dimensional arrays named LIST and BOX respectively:

? LIST = ARRAY(‘10’)
? BOX = ARRAY(‘5,3’)

LIST points to a vector of 10 elements. BOX points to a grid, 5 rows high
and 3 columns wide, containing 15 elements. The ARRAY function initializes
all array elements to the null string.

88 Tutorial

Arrays

In the case of a vector, you’ll often see the ARRAY function call written
with an integer argument instead of a string:

LIST = ARRAY(10)

SPITBOL quietly converts the integer 10 to the string “10" as required by
the ARRAY function.

Array
referencing

Array subscripts are integer valued, and are specified by angular or
square brackets (< > or []). Subscript values range from 1 to the size of each
dimension. If you attempt to use a subscript outside this range, the array ref-
erence will fail, and the failure may be detected in the Goto portion of the
statement. Try some array references with code.spt:

? LIST<3> = ‘MAPLE’
? BOX[3,2] = 3.54
? LIST[11] = 4
Failure
?= LIST[3] LIST[4] BOX<3,2>
MAPLE3.54

As you can see, angular and square brackets have been used inter-
changeably.

The reference to LIST[11] failed because the largest subscript allowed for
that array is 10. LIST[4] produced its initialized value, the null string, and
had no effect on the concatenation. The array pointer in LIST can be assigned
to another variable:

Additional Operators and Datatypes 89

7

BOX array

BOX = ARRAY("5,3")

LIST array

LIST = ARRAY("10")

LIST[1]

LIST[2]

LIST[3]

LIST[4]

LIST[5]

LIST[6]

LIST[7]

LIST[8]

LIST[9]

LIST[10]

BOX[1,3]

BOX[2,3]

BOX[3,3]

BOX[4,3]

BOX[5,3]

BOX[1,2]

BOX[2,2]

BOX[3,2]

BOX[4,2]

BOX[5,2]

BOX[1,1]

BOX[2,1]

BOX[3,1]

BOX[4,1]

BOX[5,1]

? B = LIST
?= B[3]
MAPLE
? B<3> = ‘WILLOW’
?= LIST<3>
WILLOW

Assigning the pointer in LIST to B made both variables point to the same
array. Since there is but one actual array, array references made using LIST

or B are equivalent. Use the COPY function described in Chapter 19,
“SPITBOL Functions,” when you need a duplicate (and separate) copy of an
entire array.

Array elements may be used anywhere a variable name is allowed—ex-
pressions, patterns, function arguments, etc. The fact that an array reference
fails if a subscript is out-of-bounds can be used in a simple and natural way
when scanning an array. Rather than having to know an array’s size, we
simply loop until an array reference fails. A program segment to display the
members of an array SCORE might look like this:

I = 0
PRINT I = I + 1

OUTPUT = SCORE[I]
:S(PRINT)

…

Array
initialization

Arrays may be created with an initial value other than the null string.
The ARRAY function accepts a second argument which specifies this initial
value. For example, we can create a three-dimensional array with all ele-
ments initialized to the string ‘PA–18’ as follows:

? A = ARRAY(‘2,3,4’, ‘PA–18’)
?OUTPUT = A[1,2,3]
PA–18

Other array
bounds

Ordinarily, subscripts range from 1 to the size of each dimension. How-
ever, if you find it more convenient, other subscript ranges may be used.
The prototype string argument for the ARRAY function has the general form:

‘L1:H1,L2:H2,…,Ln:Hn’

L and H are integers specifying the lower and upper bounds respectively
of each dimension. If the lower bound and colon are omitted from any di-
mension, the integer 1 is assumed. Here is a five element vector, with al-
lowed subscripts –2, –1, 0, 1 and 2:

? A = ARRAY(‘–2:2’,’PIPER’)
?= A[–1]
PIPER
?= A[3]
Failure

Arrays are a traditional computer programming concept. Now we’ll see
how SPITBOL takes the idea one important step further, with the concept of
tables.

90 Tutorial

Table creation
and

referencing

A table is similar to a one-dimensional array, with two important differ-
ences. First, a table’s size is not fixed; it extends itself automatically when-
ever a new element is added to it. Second, table subscripts are not limited to
integers, but may be any SPITBOL data type. Strings, real numbers, even pat-
terns may be used as subscripts. Tables combine the idea of associative pro-
gramming with the data grouping of arrays.

Tables are created by the SPITBOL function TABLE. No arguments are re-
quired, since a table’s size is not fixed. The function returns a table pointer,
which you store in a variable. Like arrays, table elements are referenced by
applying subscripts to the variable. Try this example with code.spt:

? T = TABLE()
? T[‘ROSE’] = ‘RED’
? T[0.093] = 6
?= T[0.093] T[‘THE’] T[‘ROSE’]
6RED
? FLOWER = ‘ROSE’
? T[FLOWER] = T[FLOWER] ‘,THORNS’
?= T[FLOWER]
RED,THORNS

Here, a string and a real number have been used as table subscripts. The
concept of an “out-of-bounds” subscript does not exist with tables. The ref-
erence to T[‘THE’], a non-existent table entry, merely returned the null
string. T[‘THE’] was not added to the table.

Entries are added to a table by using the subscripted table value as the
object of an assignment. That can be a direct assignment, or the conditional
or immediate assignment that occurs in a pattern match.

Tables can be viewed as a two-dimensional structure, with N rows and
two columns. N is the number of elements added to the table. The first col-
umn contains subscripts, also known as keys. The second column is the
value. After adding another entry such as

? T[‘New Mexico’] = “Santa Fe”

our three-element table would look like this:

Subscript keys in the first column are all unique. You cannot create a an-

Additional Operators and Datatypes 91

7

Tables

T table

'ROSE'

0.093

'New Mexico'

'RED'

6

'Sante Fe'

Key Value

other entry for T[‘ROSE’] for example—assignments to T[‘ROSE’] will always
modify the existing entry. However, different subscripts can have the same
value entries. No ambiguity arises from duplicate values.

Table
initialization

As with arrays, a table can be created with initial values for its elements.
This value will be returned if you reference a table item before anything has
been stored there. Normally, SPITBOL supplies the null string as the initial
value.

You may also specify an initial size when you create a table. Table data is
accessed slightly faster if the number of table entires remains less than this
initial size. (The number you specify is not a limit on the size of the table—it
just sets aside an initial amount of memory for the table.)

The easiest way to set up a table is:

T = TABLE()

while the full form of a table declaration is:

T = TABLE(Arg1, Arg2, Arg3)

Arg1 is the estimated size. Arg2 is just there for compatibility with other
versions of SNOBOL; it is ignored by SPITBOL. Arg3 is the initial value for
entries in the table; if there is no Arg3, they all start as the null string.

So, to create a table that you expect to have about 100 entries, with an ini-
tial value of ‘STUFF’, you would declare:

T = TABLE(100, , ‘STUFF’)

Returning to our state capitals program, we could eliminate the possibil-
ity of conflict with program variables by using a table. The state names will
be used as subscripts, and the capitals will be the data values stored in the
table. We can even use a default table value to provide a simple error mes-
sage if a table lookup is made with a state name not in the table. At the begin-
ning of the program, we would declare a table to hold our data:

CAPITALS = TABLE(50, , ‘Not found, try again.’)

As data is read from the file, it is entered in the table:

CAPITALS[STATE] = CAPITAL
:(READF)

Finally, the lookup phase would be coded as:

QUERY OUTPUT = CAPITALS[INPUT]
:S(QUERY)

(For those who like to write the shortest program possible, we can use
the immediate assignment operator discussed earlier to combine the two
program lines

LINE ? BREAK(‘,’) . STATE LEN(1) REM . CAPITAL :F(ER-
ROR)

CAPITALS[STATE] = CAPITAL
:(READF)

into one statement:

92 Tutorial

LINE ? BREAK(‘,’) $ STATE LEN(1) REM . *CAPITALS[STATE]
+

:S(READF)F(ERROR)

The + in the first column is a continuation marker that’s needed because
the statement spread across two physical lines. The state name will be im-
mediately assigned to STATE. Its usage as a subscript to the CAPITALS table
occurs only after the pattern match is complete. Note that a table entry may
be the object of assignment during pattern matching.)

Tables are one of the most exquisite features of SPITBOL, because they
permit one data item to be associated with another, and there are no limita-
tions on data types. Other tables and arrays can even be used as subscripts
or data items.

Conversion
between tables

and arrays

If a table is loaded with data items read from a file, an immediate ques-
tion arises. How can we determine what items were placed in the table? We
need to know the subscripts to view the table, but the subscripts themselves
are part of the table. If we were using an array, we could step an integer sub-
script through the array to obtain the data. Applying integer subscripts to a
table merely references non-existent entries.

SPITBOL provides a simple solution—a method to convert a table to an
array. An N row by 2 column array can be created from a table. The first ar-
ray column contains the subscripts which were used to create the table. The
second column contains the values that were stored with the corresponding
table subscript. The number N is the number of table entries with non-null
values.

Once the table is in array form, integer subscripts can be applied to the
array to display the subscripts and their values. A table is converted to an ar-
ray with the SPITBOL CONVERT function, which accepts a table argument
and the word ‘ARRAY’, and returns a pointer to the new array. Continuing
with the earlier example:

? A = CONVERT(T, ‘ARRAY’)
Success
?= A[1,1] ‘:’ A[1,2]
New Mexico:Santa Fe
?= A[2,1] ‘:’ A[2,2]
ROSE:RED,THORNS

Although table entries are stored using a hashing technique, the order in
which they are placed in the table is not random. Table entries will appear in
the array ordered by time-of-entry into the table.

As you would expect with SPITBOL, the inverse operation—conversion
of an array to a table—is also possible. The array must be rectangular, N

rows by 2 columns. The array entries in the first column become the table
subscripts. The array’s second column becomes the table entry values:

? W = CONVERT(A, ‘TABLE’)
Success
?= W[‘ROSE’]
RED,THORNS

Additional Operators and Datatypes 93

7

Dumping
arrays and

tables

Earlier we mentioned that the &DUMP keyword could be used to display
the contents of variables when a program terminates. If you set the &DUMP

keyword to the value 2, the dump display will also include the contents of
all arrays and tables created by your program. Try it now in code.spt:

? &DUMP = 2
?<EOF>

worduse.spt Counting Word Usage with a Table

Tables are useful when we want to record a number of pair associations,
where each half of the pair might have any data type. A classic example of a
table’s utility is a word usage program. Earlier, we developed a program to
count the total number of words in a file. We will modify that program to
count the number of times each unique word appears. The program begins
like this:

* Simple word usage program, worduse.spt

*
* A word is defined to be a contiguous run of letters,

* digits, apostrophe and hyphen. This definition of legal

* letters in a word can be altered for specialized text.

*
* The data file is read from standard input,

&TRIM = 1
&ANCHOR = 1

* Define the characters which form a ‘word’
WORD = “’–” ‘0123456789’ &LCASE

* Pattern to isolate each word and assign it to ITEM:
WPAT = BREAK(WORD) SPAN(WORD) . ITEM

* Create a table to maintain the word counts
WCOUNT = TABLE()

* Read a line of input and obtain next word
NEXTL LINE = REPLACE(INPUT, &UCASE, &LCASE) :F(DONE)
NEXTW LINE ? WPAT =

:F(NEXTL)

* Use word as subscript, update its usage count
WCOUNT[ITEM] = WCOUNT[ITEM] + 1

:(NEXTW)
DONE …

We’ll use REPLACE to convert the input to lower case, so words like ‘The’

and ‘the’ are counted together. WPAT has been changed to store each word in
variable ITEM. When a word is identified, it is used as a subscript for table
WCOUNT. When ITEM contains a new word, the first reference to
WCOUNT[ITEM] returns the null string. Integer 1 is added to the null string,
and the result, 1, is stored in WCOUNT[ITEM], thereby creating the entry in

94 Tutorial

that table. If the same word is encountered again, WCOUNT[ITEM] for that
word will be incremented to 2.

The program reads the input file, building a table with entries for each
unique word. When End-of-File is encountered, control transfers to label
DONE, and now we would like to display the words and their respective
counts. We convert WCOUNT to an array, and use integer subscripts to re-
trieve the words and their counts. Conversion fails if the table is empty.
Continuing with this program:

* Convert table to array. Fail if table is empty
DONE A = CONVERT(WCOUNT, ‘ARRAY’) :F(EMPTY)

* Scan array, displaying words and counts
I = 0

PRINT I = I + 1
OUTPUT = A[I,1] ‘—’ A[I,2]

:S(PRINT)F(END)

EMPTY OUTPUT = ‘No words’
END

The table subscripts were the file’s words, and have been placed in the
first column of the array, A[I,1]. The count for each word was the table entry,
now in the second column, A[I,2]. Tables are very convenient for recording
information about data items, while conversion to an array makes it easy to
systematically examine the recorded information.

To run the program with file faustus as the input file, use:

spitbol worduse <faustus

The indirection operator should come to mind here because it provides
associations similar to a table’s. For example, after each word is placed in
ITEM, we could create and increment an indirectly-referenced variable with
the statement:

$ITEM = $ITEM + 1

If ITEM contained the string ‘the’, the above statement would behave like
this:

$’the’ = $’the’ + 1

Counting all the words would proceed in a manner similar to the table
method. But how do we learn the names of all the variables we created to
display the results? We would need to record all the names, either in an ar-
ray, or perhaps in a long concatenated string. Tables provide a more elegant
and economical solution.

Another advantage of tables is that they are easily sorted. We could have
the result words displayed in ascending order merely by replacing the
statement DONE with:

DONE A = SORT(WCOUNT)

Additional Operators and Datatypes 95

7

The unary name operator provides the address or location in memory
where a variable is stored. Its graphic symbol is the period (.). We’ll intro-
duce it here through an example.

Consider the indirection operator mentioned earlier. Suppose we want
to use a variable to point to different elements of an array or table. If we try
the following, we immediately discover a problem:

? A = ARRAY(‘10,10’)
? A[4,2] = ‘DOG’
? V = ‘A[4,2]’
?= $V

Success

The indirection operator treats the string ‘A[4,2]’ as a variable name,
rather than an array element. Remember, any character sequence can be
used indirectly to create a variable. SPITBOL creates a variable called A[4,2],
which has absolutely no connection with array A. The fact that this character
sequence happens to look like an array reference to us is purely coincidental
from SPITBOL’s point of view.

To make this work properly, the name operator is applied to A[4,2] to ob-
tain the address of that array element. The address can be stored in variable
V, and referenced with the indirection operator:

? V = .A[4,2]
?= $V
DOG

The name operator provides a general method for specifying the name of
an object. Both of these statements are correct for specifying the first argu-
ment to the INPUT function:

INPUT(‘INFILE’, 1, ‘capitals.dat’)
INPUT(.INFILE, 1, ‘capitals.dat’)

Either form, ‘INFILE’ or .INFILE, tells the INPUT function the name of the
variable to be input associated. However, using the name operator allows
us to associate a file with an array or table element. Of the following two
statements, only the second one is correct:

INPUT(‘A[4,2]’, 1, ‘capitals.dat’) (incorrect)
INPUT(.A[4,2], 1, ‘capitals.dat’)

Note that alternate use of the indirection and name operators “cancel”
one another, so

?= $(.($(.A[4,2])))
DOG

is simply a reference to A[4,2].

96 Tutorial

The Name Operator

Alternativeevaluation SPITBOL introduced a new control structure to the SNOBOL4 language
that greatly simplifies programming. It is the alternative (or selective) evalua-
tion of a series of expressions.

A parenthesized list may appear anywhere an element is used to pro-
vide a value. The elements of the list are evaluated from left to right, until an
evaluation succeeds. The value of the successful list element is returned as
the value of the parenthesized list. No further list elements are evaluated
when an element succeeds. If all elements fail, the entire list signals failure.
The general form of this type of list is:

(expr1, expr2, …, exprn)

At least two expressions, separated by commas, must be present.

SPITBOL tries to evaluate the first expression, expr1. If it is successful, its
value is used as the value of the list, otherwise expr2 is evaluated, etc. Note
that the alternation operator (|) provides alternatives for patterns. This con-
struction provides alternatives for expressions. Sample statements:

MAXIJ = (GE(I,J) I, J)
CARDINAL = (EQ(N,1) ‘FIRST’, EQ(N,2) ‘SECOND’, ‘OTHER’)
SUBJECT ? (EQ(N,1) PAT1, EQ(N,2) PAT2, ABORT) = ‘***‘

In the first example, the list element GE(I,J) I is evaluated. If I is greater
than J, the GE function succeeds and its null-string value is concatenated
with I, and the result, I, is returned as the value of the list. If GE() fails,
SPITBOL proceeds to evaluate the next list element, J, which being a simple
variable, always succeeds. In that case, J would be returned as the value of
the list.

The second example sets CARDINAL to “FIRST”, “SECOND”, or “OTHER”

depending upon the value of N. The last example shows that list elements
are not limited to string values. Here N selects one of two patterns for a pat-
tern match, or aborts the match if N is not 1 or 2.

Lists provides a compact method to encode the If…Then…Else notation
of other languages. For example, the following sequence (coded in a generic
high-level language):

IF A > B THEN C = D
ELSE IF E = 5 THEN CALL PROC(E)
ELSE CALL OUTPUT(‘Value Error’)

END

could be expressed using alternative evaluation as:

(GT(A,B) C = D, EQ(E,5) PROC(E), OUTPUT = ‘Value Error’)

Additional Operators and Datatypes 97

7

Alternative Evaluation

Here, the first list expression is GT(A,B) C = D. If A > B, the remainder of
the expression, C = D, is performed, and the list processing is complete. Oth-
erwise, the second expression, EQ(E,5) PROC(E) is evaluated, etc.

There are several potential traps to be aware of when using alternative
evaluation.

First, SPITBOL is evaluating each expression, and proceeding to the next
alternative if the expression fails. This may have unexpected consequences.

Suppose A is less than B, and E is 5 in the previous example. The first ex-
pression, GT(A,B), fails. EQ(E,5) succeeds, so function PROC(E) is called, as
intended. But suppose PROC(E) returns failure for some reason. SPITBOL
sees the entire expression as failing, and proceeds on to the last expression,
OUTPUT = ‘Value Error’. This may not be what you expected, which was to
call PROC(E) and do nothing more.

Another trap occurs when you want to produce either a value or the null
string, depending upon a predicate function. Here’s an example as it should
be written:

PADDING = (DIFFER(USE_TABS) CHAR(9), “”)

This sets variable PADDING to either the tab character or the null string.
Because an empty expression produces the null string, this could also be
written as:

PADDING = (DIFFER(USE_TABS) CHAR(9),)

This is still fine. The problem comes when the last comma is omitted

PADDING = (DIFFER(USE_TABS) CHAR(9))

in the mistaken belief that merely placing parentheses around an expres-
sion creates an alternative evaluation with the null string as an implied last
alternative. Both the comma and the parentheses are needed to signal alter-
native evaluation.

98 Tutorial

Unary
operators

$ Indirect reference
. Name (location) of object

* Unevaluated expression

Binary
operators

$ Immediate assignment

Alternative
evaluation

(E1, E2, … En) Evaluate expressions until one succeeds

Data types ARRAY N-dimensional, integer subscripts
TABLE No fixed size, subscripts may be of any data type

Functions ARRAY(S,V) Create array according to prototype string. Array initial-
ized to value V

CONVERT(I,S) Convert data type of item to specified type
SORT(A or T) Create sorted array from array or table
TABLE() Create table of variable size
TABLE(N,,V) Create table of variable size with initial values set to V. N is

the estimated number of entries.

Additional Operators and Datatypes 99

7

Chapter Summary

SPITBOL is a very large and rich language, providing a diverse assort-
ment of built-in features. It is also an extensible language; it allows you to de-
fine your own new data types, functions, and operators. You can, by creat-
ing your own entities, obtain another level of conciseness and power of ex-
pression. SPITBOL is truly an amorphous creature.

We will begin with program-defined functions because they allow a pro-
gram to be partitioned into smaller, more manageable segments. Functions
help counter the criticism directed toward the presence of Gotos in
SPITBOL. As functions tend to be just a few lines long, transfers of control
within them are usually obvious and manageable. If your main program
has grown to hundreds of lines, with complex, intertwined Gotos, consider
how the use of functions would clarify things.

Functions also allow us to postpone the complete development of an al-
gorithm. We can design the overall program structure, using function
names for components which will be developed later. Furthermore, if a par-
ticular function proves inefficient, it can be replaced later with an improved
version.

With time, you will develop an inventory of useful functions that can be
included in new programs. To get you started, the SPITBOL release disk
contains an assortment of such functions.

101

8

Chapter 8

Program-Defined Objects

The concept of a function should be clear from all the examples of
SPITBOL’s built-in functions. A function accepts some number of argu-
ments, performs a computation based on their values, and returns a result
and a success signal. A function can also signal failure, and not return any
value.

Function
definition

We can define a new function by specifying its name and arguments. The
definition will be composed of dummy arguments—place holders that show
how the arguments are to be used in the function. Later, when the function
is called, the actual arguments will replace the dummy arguments in the
computation.

We define a new function in SPITBOL by using a built-in function re-
served for this purpose. Logically enough, it is called the DEFINE function.
We call it with a prototype string containing the new function’s name and ar-
guments. DEFINE makes the new function’s name known to SPITBOL, so it
can be used subsequently in your program. Blanks are not permitted within
a prototype string.

Suppose we want to create a new function called SHIFT, that would rotate
a string through a specified number of character positions. We’ll define all
rotations as being to the left—characters removed from the front of the
string are placed back on the end. For example, SHIFT(‘ENGRAVING’,3)

would return the string ‘RAVINGENG’.

We will begin by defining the function name and its dummy arguments,
which we will call S and N. Any name of your choosing can by used for a
dummy argument. In a program, it would look like this:

DEFINE(‘SHIFT(S,N)’)

It is important to realize that the DEFINE function must be executed for
the definition to occur. Most other programming languages process func-
tion definitions when a program is compiled. SPITBOL’s system is more
flexible; the prototype string can itself be the result of other run-time com-
putations. In an extreme case, data input to a program could determine the
names and kinds of functions to be defined.

Function body Having declared the function name and dummy arguments, we need to
provide the statements which will implement the function. A very simple
convention is used:

When the function is used, SPITBOL transfers control to a state-
ment label with the same name as the function.

In this case, the first statement of the function would be labeled SHIFT.
There is no limit to the number of statements inside the function body.

102 Tutorial

Program-Defined Functions

Returning
results

First, a function may return a value by assigning it to a variable with the
same name as the function. If no assignment occurs, the result is the null
string.

Second, the function must tell SPITBOL that it is finished, and that con-
trol should return back to the caller. It does this by transferring to the special
label RETURN.

The label RETURN should not appear anywhere in your program. It is a
special name, reserved by the SPITBOL system for just this purpose.

With this information, we can now write our SHIFT function. We will re-
move the first N characters from the beginning of the argument string, and
place them on the end. The function body looks like this:

SHIFT S ? LEN(N) . FRONT REM . REST
SHIFT = REST FRONT :(RETURN)

Each time SHIFT is called, the particular arguments used are placed in S

and N. The first statement splits S into two parts, assigning them to variables
FRONT and REST. The second statement reassembles them in the shifted or-
der, and assigns them to variable SHIFT, to be returned as the function result.
The Goto field then transfers to label RETURN to return back to the caller.

Function
failure

What happens if we try the function call SHIFT(‘PEAR’,7)? As the function
is defined above, the pattern match would fail, since LEN(7) is longer than
the subject string. The assignment to FRONT and REST would not take place,
and the function would return an erroneous result.

Now in this particular case, we could extend the definition of SHIFT to
cycle the argument string multiple times. In general, though, we want to de-
velop a convenient method that allows a function to signal an exceptional
condition back to the caller. Function failure allows us to do just that. An-
other convention is provided:

Transferring to the special label FRETURN returns from a function
signaling failure to the caller. No value is returned as the function
result.

We can now rework the function body to signal failure when N is too
large. In this case, the pattern match fails, and we detect the failure in the
Goto field:

SHIFT S ? LEN(N) . FRONT REM . REST :F(FRETURN)
SHIFT = REST FRONT

:(RETURN)

In general, the transfer to FRETURN does not need to be the result of the
failure of a particular statement. Any success or failure could be tested to
produce a transfer to FRETURN. For example, if we decided to explicitly test
the length of S, the function could begin with:

SHIFT GT(N, SIZE(S))
:S(FRETURN)

…

Program-Defined Objects 103

8

Local variables FRONT and REST were used in this function as temporary variables to re-
arrange the argument string. If they had appeared elsewhere in your pro-
gram, their old values would be destroyed. Such inadvertent conflicts be-
come harder to avoid as your function library grows. The prototype string
used with DEFINE can specify local variables to be protected when the func-
tion is called. For our SHIFT function, the DEFINE call would now look like
this:

DEFINE(‘SHIFT(S,N)FRONT,REST’)

The local variables appear after the argument list. When SHIFT is called,
any existing values for FRONT and REST will be saved on a pushdown stack.
FRONT and REST are set to the null string, and control is transferred to the
first statement of the function body. When the function returns, FRONT and
REST are restored to their previous values.

Since the same potential problem exists for dummy arguments S and N,
SPITBOL automatically saves their values before assigning the actual argu-
ments to them. And just like local variables, when the function returns, the
dummy arguments are restored to their original values.

Using
functions

Once a function has been defined, it may used in exactly the same man-
ner as a built-in function. It may appear in a statement anywhere its value is
needed—in the subject, pattern, or replacement fields. If used with the indi-
rect reference operation, functions may even be used in the Goto field. Of
course, a function may be used as the argument of another function.

The value returned by a function is not restricted to strings. Any
SPITBOL data type, including patterns, may be returned. Earlier, in the pat-
tern match chapter, we showed how simple patterns could be tailored to
our needs by using them in more complicated clauses. The specific example
was a variation of the BREAK pattern which would not match the null string.
Let’s use a program-defined function to create a new function, BREAK1, with
this property. The definition statement might look like this:

DEFINE(‘BREAK1(S)’)

and the function body, like this:

BREAK1 BREAK1 = NOTANY(S) BREAK(S) :(RETURN)

This function can now be used directly in a pattern match. For example,
BREAK1(‘abc’) constructs a pattern which matches a non-null string, up to
the occurrence of the letters ‘a’, ‘b’, or ‘c’. Of course, the pattern returned by
a function can be as complex as desired, giving us an elegant method to de-
fine our own pattern matchingfunctions.

104 Tutorial

Organizing
functions

Unlike other programming languages, SPITBOL does not know or care
what statements belong to a particular function. There is no explicit END

statement for individual functions. To keep programs readable, we’ll have
to impose some discipline of our own. Also, having to execute the DEFINE

function is a mixed blessing. It offers tremendous flexibility, but requires us
to place all our DEFINE‘s at the beginning of a program. Here is the system
proposed by Gimpel [2, pp. 20–21], which we suggest you use to manage
functions and their definitions:

We keep the function definition, any one-time initialization, and the
function body together as a unit. A Goto transfers control around the func-
tion body after the definition and initialization statements are executed.
Also present are comments describing its use and any exceptional condi-
tions. Rewriting the SHIFT function in this form, and taking this opportunity
to avoid rebuilding the pattern each time the function is called, it looks like
this:

* SHIFT(S,N) – Shift string S left N character positions.

* As characters are removed from the left side of the string,

* they are placed on the end.

*
* The function fails if N is larger than the size of string S.

DEFINE(‘SHIFT(S,N)FRONT,REST’)
SHIFT_PAT = LEN(*N) . FRONT REM . REST
:(SHIFT_END)

SHIFT S ? SHIFT_PAT
:F(FRETURN)
SHIFT = REST FRONT
:(RETURN)

SHIFT_END

Now this group of lines can be incorporated as a unit into the beginning
of any program that wants to use it. When execution begins, the first state-
ment defines the SHIFT function. Next we define a pattern, called SHIFT_PAT,
for use when the function is called. The pattern definition is only executed
once, so we use the unevaluated expression operator (*N) to obtain the cur-
rent value of N on each function call. After defining the pattern, we jump
around the function body, to label SHIFT_END. (Remember, we are defining
the function now, not executing it; falling into the function body at this time
would cause problems.) The function is now defined, and ready to be used.

In general, all of your functions should be prepared in this form:

* Fname – Description of use

DEFINE(‘Fname(arg1,…,argn)local1,…,localn’)
. . .

* Any one-time initialization for Fname
. . . :(Fname_END)

Fname Function body
. . .

Program-Defined Objects 105

8

Fname_END

If you place your functions in individual disk files, they can be included
in new programs as necessary. Chapter 14, “SPITBOL Statements,” de-
scribes a SPITBOL extension called INCLUDE, which allows you to insert
these files in your program when it is being compiled. By preparing func-
tions in this form, they will all be defined and initialized when execution be-
gins.

When discussing pattern matching, we used a pattern to convert a char-
acter to its ASCII decimal value. In BASIC, two functions are provided for
similar operations: ASC and CHR$. SPITBOL has the equivalent of CHR$
with its CHAR function. But it would be useful to have an equivalent for the
ASC function, and place it in file asc.inc for later inclusion when we need
that function. The file might look like this:

* ASC(S) – Return the ASCII code for the first character of string S.

*
* The value returned is an integer between 0 and 255.

* The function fails if S is null.

DEFINE(‘ASC(S)C’)
ASC_ONE = LEN(1) . C
ASC_PAT = BREAK(*C) @ASC :(ASC_END)

ASC S ? ASC_ONE :F(FRETURN)
&ALPHABET ? ASC_PAT :(RETURN)

ASC_END

Note that the function was written to work correctly regardless of the an-
choring mode in use by the calling program.

Call by value,
call by name

Function calls in SPITBOL transmit the value of the argument to the func-
tion. Variables used in the function call cannot be harmed by the function.
This type of function usage is referred to as call by value. Occasionally, we
might want the function to access the argument variables themselves. The
name operator introduced in the previous chapter provides this ability. The
function call still transmits a value, but the value used is the name of a vari-
able.

Consider a function called SWAP, which will exchange the contents of
two variables. If we wanted to exchange the contents of variables COUNT

and OLDCOUNT, we would say SWAP(.COUNT, .OLDCOUNT). The function
looks like this:

* SWAP(.V1, .V2) – Exchange the contents of two variables.

* The variables must be prefixed with the name operator when

* the function is called.
DEFINE(‘SWAP(X,Y)TEMP’)
:(SWAP_END)

SWAP TEMP = $X
$X = $Y

106 Tutorial

$Y = TEMP :(RETURN)
SWAP_END

The name operator allows us to access the argument variables. If we had
not used it, the function would be called with the variables’ values, with no
indication of where they came from. Calls to SWAP are not limited to simple
variable arguments. Anything capable of receiving the name operator, such
as array and table elements, could be used: SWAP(.A[4,3], .T[‘YOU’]).

There are certain situations where call by name occurs implicitly. If the
argument is an array or table name, or a program-defined data type (dis-
cussed below), it points to the actual data object, which can then be modi-
fied by the function. For example, if FILL were a function which loads an ar-
ray with values read from a file, the statements

A = ARRAY(25)
FILL(A)

would allow function FILL to modify the contents of array A.

Functions and
code.spt

The code.spt program was provided to allow interactive experiments
with SPITBOL statements. If you create functions using the preceding for-
mat, they also can be tested using code.spt.

Use your editor to create a disk file containing the SHIFT function on
page 105. (Be sure to include the Goto that transfers around the function
body.) Call the file shift.inc. Now, start the code.spt program, and type the
following:

?–INCLUDE “shift.inc”
Success
?= SHIFT(‘COTTON’,4)
ONCOTT
?= SHIFT(‘OAK’,4)
Failure

The first line is a SPITBOL “control statement.” It begins with a minus
sign in the first column, and directs SPITBOL to take some special action. In
this case, –INCLUDE incorporates a group of statements into your program
from a file. You can use it to modularize a program under development, and
to keep a library of canned functions.

When used with the code.spt program, control is transferred to the in-
cluded statements after they are read and compiled. If function definitions
have the proper Goto around the function body, they will “define them-
selves” after being included.

Program-Defined Objects 107

8

Remember that

“?=“ is a

shor tcut for

“? output =”

within the

code.spt

Recursive
functions

The statements which comprise a function are free to call any functions
they choose, including the function they are defining. Of course, for this to
make sense, they must call themselves with a simplified version of the origi-
nal problem, or an endless loop would result. Eventually, the function calls
itself with such a simple argument that it can return an answer without any
further recursive calls. It’s like winding a clock spring up. The central,
non-recursive answer to the innermost call provides an answer to the next
turn out, with the recursive calls unwinding until the original problem can
be solved.

The classic example of a recursive function is one used to compute the
factorial of a number. When called with a number N, we compute N! using
the formula N! = N * (N – 1)!. We call ourselves recursively, with successively
smaller arguments, until we request 1!. We know the answer to this is sim-
ply 1, so we return it without any further recursive calls. The function to do
this is provided on the release disk in file fact.inc, and looks like this:

* FACT(N) – Compute N! using recursion.

* N must be less than 171.0 to prevent real overflow

DEFINE(‘FACT(N)’) :(FACT_END)

* If argument is 1 or less, return 1 as result
FACT FACT = LE(N,1) 1 :S(RETURN)

* Otherwise, result is N * (N–1)!
FACT = N * FACT(N – 1) :(RETURN)

FACT_END

This function can be “included” in code.spt for exploration. Since the
value of 13! is 6,227,010,800, you will have to use real values for N>12 to pre-
vent integer overflow:

?–INCLUDE “fact.inc”
?= FACT(5)
120
?= FACT(12)
479001600

OUTPUT = FACT(13)
Error #28, Multiplication caused integer overflow
?= FACT(13.)
0.62270208E+10

There is no explicit declaration for recursion; any SPITBOL function can
be used recursively if it is designed properly. However, all local variables
should be declared in the DEFINE function so they will be saved and restored
during recursive calls.

roman.inc Sometimes, recursion can produce dramatically smaller programs.
Gimpel [2, pp. 25–26] provides a good example with his recursive function,
ROMAN. It will convert an integer in the range 0 to 3999 to its Roman nu-
meral equivalent. Two premises are required:

108 Tutorial

1. We know the Roman numerals for the numbers 0 to 9 (null, I, II, …,
IX), and can perform this conversion with a simple pattern match.

2. We can use the REPLACE function to “multiply” a number in Ro-
man form by 10 by replacing I by X, V by L, X by C, etc.

The function uses these two rules to produce a recursive solution for
some integer N. The algorithm looks like this:

The rightmost digit is removed from the argument and converted
by premise 1. Removing the digit effectively divides the argument
by 10, simplifying the problem. The reduced argument is then con-
verted by calling ROMAN recursively and “multiplying” the result
by 10 according to premise 2. The previously converted unit’s digit
is then appended to the result.

The function looks like this (note that a “plus sign” in column one allows
a statement to be continued over several lines):

* ROMAN(N) – Convert integer N to Roman numeral form.

*
* N must be positive and less than 4000.

*
* An asterisk appears in the result if N = 4000.

*
* The function fails if N is not an integer.

DEFINE(‘ROMAN(N)UNITS’)
:(ROMAN_END)

* Get rightmost digit to UNITS and remove it from N.

* Return null result if argument is null.
ROMAN N ? RPOS(1) LEN(1) . UNITS = :F(RETURN)

* Search for digit, replace with its Roman form.

* Return failing if not a digit.
‘0,1I,2II,3III,4IV,5V,6VI,7VII,8VIII,9IX,’ ? UNITS

+ BREAK(‘,’) . UNITS :F(FRETURN)

* Convert rest of N and multiply by 10. Propagate a

* failure return from recursive call back to caller.
ROMAN = REPLACE(ROMAN(N), ‘IVXLCDM’, ‘XLCDM**‘)

UNITS
+ :S(RETURN)F(FRETURN)
ROMAN_END

The first call to ROMAN may have an integer argument. The statement la-
beled ROMAN causes N to be converted to a string, and subsequent recursive
calls use a string argument. The recursive calls cease when reducing N fi-
nally produces a null string argument—the match at statement ROMAN

fails, and the function returns immediately with a null result.

If roman.inc is a disk file, you can watch it work by running code.spt and
typing the following:

Program-Defined Objects 109

8

?–INCLUDE “roman.inc”
? &FTRACE = 100
?= ROMAN(432)

Set &FTRACE to 0 to turn off function tracing, which is described more
fully in Chapter 10, “Debugging.”

External
Functions

Some versions of SPITBOL provide a mechanism for loading and execut-
ing functions written in other languages, such as C, Pascal, and assembly
language. Such functions are loaded with SPITBOL’s built-in LOAD func-
tion, which behaves in a manner similar to DEFINE. When no longer needed,
external functions may be removed from the system with the built-in UN-
LOAD function.

See Chapter 19, “SPITBOL Functions,” for a description of LOAD and UN-

LOAD, and Appendix F for a discussion of how to write external functions.

110 Tutorial

With the exception of arrays and tables, a variable may have only one
item of data in it at a time. In many applications, it is convenient if several
data items can be associated with a variable. For example, if we wanted to
work with complex numbers, a variable should contain two numbers—the
real and imaginary parts. In an inventory system, an individual product
might require values such as name, price, quantity, and manufacturer.

Program-defined data types enlarge SPITBOL’s repertoire to include new
objects such as COMPLEX or PRODUCT. SPITBOL only provides a system for
managing these new types; defining a data type does not magically invest
SPITBOL with a knowledge of complex arithmetic or inventory accounting.
It is still up to you to provide the computational support for each new type.

Data type
definition

A program-defined data type will consist of a number of fields, each con-
taining an individual data element. We begin by selecting names for the
data type and fields. An inventory system might use the data type name
PRODUCT, and field names NAME, PRICE, QUANTITY, and MFG.

A data type is defined by providing a prototype string to the built-in
DATA function. The prototype assumes a form similar to a function call, with
the data type taking the place of the function name, and the field names re-
placing the arguments. The form of the prototype string is:

‘TYPENAME(FIELD1,FIELD2,…,FIELDn)’

Blanks are not permitted within a prototype. Try creating a new data
type using the code.spt program:

? DATA(‘PRODUCT(NAME,PRICE,QUANTITY,MFG)’)
Success

The DATA function tells SPITBOL to define an object creation function
with the new data type’s name:

PRODUCT(arg1, arg2, arg3, arg4)

This new function can be called whenever we wish to create a new object
with the PRODUCT data type. Its arguments are the initial values to be given
to the four fields which comprise a PRODUCT. The function returns a pointer
to the new object, which can be stored in a variable, array, or table. Try creat-
ing two new objects as follows:

? ITEM1 = PRODUCT(‘CAPERS’, 2.39, 48, ‘BRINE BROTHERS’)
? ITEM2 = PRODUCT(‘PICKLES’, 1.25, 72, ‘PETER PIPER
INC.’)

At this point, SPITBOL has created two data structures in memory that
are shown on the next page.

Program-Defined Objects 111

8

Program-Defined Data Types

Data type use

The defining call to the DATA function also created several field reference
functions. In this example, their names would be:

NAME(arg) PRICE(arg) QUANTITY(arg) MFG(arg)

The argument used with each function is an object created by the PRO-

DUCT function. Try accessing ITEM1‘s fields:

?= MFG(ITEM1)
BRINE BROTHERS
?= PRICE(ITEM1) * QUANTITY(ITEM1)
114.72

We can alter the value of a field after an object is created. Field reference
functions can also be used as the object of an assignment, so:

? QUANTITY(ITEM2) = QUANTITY(ITEM2) – 12

changes the QUANTITY field of ITEM2 from 72 to 60.

Tables work very nicely with program-defined data types to provide an
index. For example, assume all our products have unique names. We can
create a table P, and use the product name as the subscript. The table entry
would point to the complete data object for each product:

? P = TABLE()
? P[‘SALT’] = PRODUCT(‘SALT’, 0.69, 12, ‘BRINE BROTHERS’)
? P[NAME(ITEM2)] = ITEM2

After the table is constructed, we can use the product name to retrieve
other information about the product:

?= MFG(P[‘SALT’])
BRINE BROTHERS
?= PRICE(P[‘PICKLES’])
1.25

112 Tutorial

ITEM1 product

ITEM1 = PRODUCT("CAPERS", 2.39, 48, "BRINE BROTHERS")

"CAPERS"

2.39

48

"BRINE BROTHERS"

name

price

quantity

mfg

ITEM2 product

ITEM2 = PRODUCT("PICKLES", 1.25, 72, "PETER PIPER INC.")

"PICKLES"

1.25

72

"PETER PIPER INC."

name

price

quantity

mfg

Copying data
items

It is important to recognize that variables like ITEM1 and ITEM2 contain
pointers to the data. Assigning ITEM1 to another variable, say LASTITEM,
merely copies the pointer; both variables still point to the same physical
packet of data in memory. Altering the QUANTITY field of ITEM1 would alter
the QUANTITY field of LASTITEM. This is the same behavior observed earlier
for array and table names.

The built-in COPY function creates a unique copy of an object—one
which is independent of the original. Try using it with code.spt:

? LASTITEM = COPY(ITEM1)
? QUANTITY(ITEM1) = 24
?= QUANTITY(LASTITEM)
48

Displaying a
data type

Try the following in code.spt:

?= ITEM1
PRODUCT

As you can see, all SPITBOL knows about ITEM1 is its data type. It’s up to
you to provide a method of displaying the data in a meaningful form. The
simplest method is to create a function to display the individual fields. This
one will be called PRDSTR (PRoDuct to STRing), but any convenient name
could be used.

We’ll create it by using the SLOAD function built into code.spt. It reads
and compiles statements from a file, and uses the special file name “–” to
read from the keyboard. Just stay in code.spt and enter the following:

? SLOAD(‘–’)
DEFINE(‘PRDSTR(X)’)

:(PRDSTR_END)
PRDSTR PRDSTR = NAME(X) ‘ ‘ PRICE(X) ‘ ‘
+ QUANTITY(X) ‘ ‘ MFG(X) :(RETURN)
PRDSTR_END
<EOF>
Success
?= PRDSTR(ITEM1)
CAPERS 2.39 24 BRINE BROTHERS
?= PRDSTR(P[‘PICKLES’])
PICKLES 1.25 60 PETER PIPER INC.

Creating
structures

Our inventory example used string, integer, and real values as the field
contents. In fact, any SPITBOL data type may be stored in a field, including
pointers to other program-defined types. Complex structures, such as
queues, stacks, trees, and directed graphs may be created. The SPITBOL dis-
tribution media contains sample programs for creating and manipulating
such structures.

For example, if we wanted to link together all products made by the
same manufacturer, PRODUCT could be defined with an additional field.

Program-Defined Objects 113

8

We won’t go through the exercise with code.spt, but will sketch out the
changes:

DATA(‘PRODUCT(NAME,PRICE,QUANTITY,MFG,MFGLINK’))

As each product is defined, we will determine if we have another prod-
uct from the same manufacturer. If so, MFGLINK is set to point to that other
product. If not, it is set to the null string. Once again, a table, M, provides a
convenient way to keep track of manufacturers. Assume variable COMPANY

contains the manufacturer’s name as each product is defined. Then all of the
requisite searching and linking can be accomplished in one statement:

M[COMPANY] = PRODUCT(…, …, …, COMPANY, M[COMPANY])

If this is the company’s first appearance, it is not in the table, and the last
argument to the PRODUCT function sets MFGLINK to the null string. The as-
signment statement uses the company as the table subscript, and the entry
points to the current product.

If an existing product definition uses the same company, MFGLINK will
point to that product, and the table will be updated to point to the current
product. In this manner, all products from a manufacturer will be threaded
together. Each thread starts with a table entry, and goes through each prod-
uct’s MFGLINK field, ending with a null string in the last product’s MFGLINK.
The following diagram shows the resulting data structure.

Now if we wanted to display all products supplied by a particular manu-
facturer, we just select and follow the appropriate thread:

X = M[COMPANY]
LOOP OUTPUT = DIFFER(X) PRDSTR(X) :F(DONE)

X = MFGLINK(X) :(LOOP)
DONE

The DATATYPE
function

The DATATYPE function allows you to learn the type of data in a particu-
lar variable. It is useful when the kind of processing to be performed de-
pends on the data type. The formal data type name is returned as an up-
per-case string:

114 Tutorial

name

price

quantity

mfg

mfglink

M table

"BRINE BROTHERS"

Key Value

name

price

quantity

mfg

mfglink

product

"CAPERS"

2.39

48

"BRINE BROTHERS"

null string

product

"SALT"

0.69

12

"BRINE BROTHERS"

?= DATATYPE(54)
INTEGER
?= DATATYPE(ITEM1)
PRODUCT

The data type name can be compared with a known name using function
IDENT. Suppose variable X contains a number, and we want to remove any
fractional part if it is a real number, and leave it unchanged otherwise. We
test for the REAL data type, and if found, call function CHOP:

X = IDENT(DATATYPE(X), ‘REAL’) CHOP(X)

This may sound arcane here, but it will come in handy shortly, when we
define a FRACTION data type, and then a function to add two fractions. In-
side that function, FADD, we will want to make sure we’re working with
fractions. You’ll see IDENT(DATATYPE(X), ‘FRACTION’).

If you can define new functions and data types, why not new operators
too? Indeed, SPITBOL allows this, although most programs can be written
without it. For the sake of completeness, we’ll provide a brief discussion.

Operators and
functions

The built-in function OPSYN creates synonyms for functions. It also al-
lows you to call a function by using one of SPITBOL’s undefined operators.

OPSYN(new name, old name, i)

The new name is defined as a synonym of the old name. The old name
must be a function already defined—either one that is built into SPITBOL,
or a function you have defined in your program.

The third argument is 0, 1, or 2. If it is omitted, SPITBOL assumes that the
third argument is 0.

A third argument of 0 means that the first argument is a function name,
not an operator.

If the third argument is 1, then the first argument must be one of the un-
used unary operators (!, %, /, #, =, |).

When the third argument is 2, the first argument must be one of the un-
used binary operators (&, @, #, %, ~)

Function
synonyms

We can make the name LENGTH a synonym for the SIZE function, and
PLUS a synonym for + as follows:

? OPSYN(‘LENGTH’, ‘SIZE’, 0)
? OPSYN(‘PLUS’, ‘+‘, 0)
?= LENGTH(‘RABBIT’)
6
?= PLUS(10, 20)
30

Program-Defined Objects 115

8

Program-Defined Operators

Operator
synonyms

The tables in Chapter 15, “Operators,” list the unused unary and binary
operators. Normally, if you try to use such an operator, you’ll get an execu-
tion error:

?OUTPUT = 1 # 1
Error #29, Undefined operator referenced

However, we could make this binary operator synonymous with the
DIFFER function (which also uses two arguments) and use it instead:

? OPSYN(‘#’, ‘DIFFER’, 2)
?= 1 # 2
Success
?= 1 # 1.0
Success
?= 1 # 1
Failure

Note that we can only associate an unused operator with a function or
existing operator. The normal SPITBOL operators cannot be redefined:

? OPSYN(‘+‘, ‘PLUS’, 2)
Error #156, OPSYN first arg is not correct operator name

This is one of the few places where SPITBOL is more restrictive than
other SNOBOL4 dialects. However, by not allowing basic system functions
and operators to be redefined, SPITBOL is able to optimize the code it gener-
ates.

Unused unary operators can be similarly treated, using 1 as the third ar-
gument:

? OPSYN(‘!’, ‘ANY’, 1)
? ‘ABC321’ ? !’3C’ . OUTPUT
C

Using
synonyms

These examples happened to use built-in functions (DIFFER, ANY) for the
old name, but a program-defined function could be used as well.

For a simple example, you could make an operator capitalize a string.
Terminate code.spt by entering <EOF>, then use your editor to create a file
called ucase.inc. In it, define this function:

DEFINE(‘UCASE(S)’)
OPSYN(‘!’,’UCASE’,1)

:(UCASE_END)

UCASE UCASE = REPLACE(S, &LCASE, &UCASE) :(RETURN)
UCASE_END

After you’ve saved it, restart code.spt and include the file you just cre-
ated. Then you can convert any string to upper case by using the unary ! op-
erator:

?–INCLUDE “ucase.inc”
?= !"SPITBOL is very fast."
SPITBOL IS VERY FAST.

116 Tutorial

Synonyms are more than just grammatical curiosities—they can be com-
bined with program-defined data types to extend the language.

Suppose we are working with fractions, and we want to avoid the
round-off errors that occur with some computations. When you say:

X = 1 / 3.0

the value that is stored for X is not precisely one-third, but a binary approxi-
mation. As an exercise, we’ll create a new data type that will store the nu-
merator and denominator as separate values.

Exit from code.spt, and use your editor to create fraction.inc. First we
create a new data type, FRACTION:

DATA(‘FRACTION(N,D)’)

This stores the exact numerator in N and the exact denominator in D.
Since we’re storing their exact values, we shouldn’t have any rounding er-
rors. But we need to do more with this precise fraction than store it. We
would like to be able to add two FRACTIONs. So we define a function, FADD.
It should be nice and general. If called with numeric arguments, it should re-
turn a simple numeric sum. But if either argument is a fraction, it should re-
turn a fraction result.

DEFINE(‘FADD(X,Y)DX,DY’) :(FADD_END)

* Note the datatype of each argument.
FADD DX = DATATYPE(X)

DY = DATATYPE(Y)

* If neither argument is a fraction, just return a simple sum.
FADD = DIFFER(DX,’FRACTION’) DIFFER(DY,’FRACTION’)

+ X + Y :S(RETURN)

* Not so. If either argument is not a fraction, make it into one.
X = DIFFER(DX,’FRACTION’) FRACTION(X,1)
Y = DIFFER(DY,’FRACTION’) FRACTION(Y,1)

* Now we know they’re both fractions. Add them together.

* Remember that A/B+C/D = (AD+BC)/BD.
FADD = FRACTION(((N(X) * D(Y)) + (N(Y) * D(X))),

+ (D(X) * D(Y))) :(RETURN)
FADD_END

Now we have a function that can add two numbers or fractions. To put
OPSYN to work, we will define ‘&’, an unused binary operator:

OPSYN(‘&’,’FADD’,2)

Displaying these fractions in a customary form would be simpler if we
had a function to do the work. So we’ll create FSTR, which takes a fraction
and returns it as a string, with the numerator, a slash, and the denominator.
If we called FSTR with FRACTION(3,4), we would get the string “3/4" in re-
turn. We’ll also show off a simple use for SPITBOL’s alternative selection
feature discussed in Chapter 7, “Additional Operators and Datatypes.”

Program-Defined Objects 117

8

DEFINE(‘FSTR(X)’) :(FSTR_END)

* If argument is not a fraction, just return it unchanged.

* Otherwise, return its numerator and denominator.

*
* Test the argument’s datatype as the first element of

* an alternative evaluation expression. If the IDENT

* succeeds, return N(X) and D(X). If it fails, just

* return X.

*
FSTR FSTR = (IDENT(DATATYPE(X), ‘FRACTION’) N(X) ‘/’ D(X), X)
+ :(RETURN)
FSTR_END

While we’re at it, we’ll give FSTR a synonym, an appropriate one from
the set of unused unary operators:

OPSYN(‘/’, ‘FSTR’, 1)

If you’ve typed in the preceding, you’ll want to experiment with it. Go
back to code.spt and try this:

?–INCLUDE ‘fraction.inc’
? HALF = FRACTION(1,2)
? THIRD = FRACTION(1,3)
? SUM = HALF & THIRD
?= /HALF ‘ + ‘ /THIRD ‘ = ‘ /SUM
1/2 + 1/3 = 5/6
?= /(4 & 5)
9

With a little work, you could make FADD return its totals reduced to the
lowest common denominator, and you could define functions to subtract,
multiply, and divide fractions. You could use other undefined operators to
call those functions.

Remember, operator redefinition is not limited to mathematical opera-
tions. Operators can be created to maintain a stack, or navigate around a
tree. The full generality of functions and program-defined data types are
available to the unused operators. Through this technique you can make
SPITBOL speak the language of your particular problem.

118 Tutorial

Program-defin
ed function

DEFINE(S) Create function according to prototype string
entry Label with same name as function

result Variable with same name as function
RETURN Return success from function
FRETURN Return failing from function

External
function

LOAD(S1,S2) Load and define external function
UNLOAD(S) Unload and undefine external function

Program-defin
ed data type

DATA(S) Create data type according to prototype string
DATATYPE(X) Data type name of X

name(f1, …, fn) Object creation function
f(X) Field reference function

Synonyms OPSYN(new,old,N) Create synonym for function or operator

Program-Defined Objects 119

8

Chapter Summary

The material presented so far allows you to write powerful SPITBOL
programs. In this chapter, we will examine other interesting and useful fea-
tures of the language. Often a pattern or function can be greatly simplified
by using one of the language features described here.

This function produces a pattern which will match zero or more consec-
utive occurrences of the pattern specified by its argument.

As its name implies, ARBNO is useful when an arbitrary number of in-
stances of a pattern may occur. For example, ARBNO(LEN(3)) matches
strings of length 0, 3, 6, 9, … There is no restriction on the complexity of the
pattern argument.

Like the ARB pattern, ARBNO is shy, and tries to match the shortest possi-
ble string. Initially, it simply matches the null string. If a subsequent pattern
component fails to match, SPITBOL backs up, and asks ARBNO to try again.
Each time ARBNO is retried, it supplies another instance of its argument pat-
tern. In other words, ARBNO(PAT) behaves like

(“” | PAT | PAT PAT | PAT PAT PAT | …)

Also like ARB, ARBNO is usually used with adjacent patterns to “draw it
out.” Let’s consider a simple example. We want to write a pattern to test for
a list. We’ll define a list as being one or more numbers separated by comma,
and enclosed by parentheses. Use code.spt to try this definition:

121

9

Chapter 9

Advanced Topics

The ARBNO Function

? ITEM = SPAN(“0123456789")
? LIST = POS(0) ”(“ ITEM ARBNO(”," ITEM) “)” RPOS(0)
? “(12,345,6)” ? LIST
Success
? “(12,,34)” ? LIST
Failure

ARBNO is retried and extended until its subsequent, “)”, finally matches.
POS(0) and RPOS(0) force the pattern to be applied to the entire subject
string.

Alternation may be used within ARBNO‘s argument. This pattern
matches any number of pairs of certain letters:

? PAIRS = POS(0) ARBNO(“AA” | “BB” | “CC”) RPOS(0)
? “CCBBAAAACC” ? PAIRS
Success
? “AABBB” ? PAIRS
Failure

This is the pattern analogue of a recursive function—a pattern is defined
in terms of itself. The unevaluated expression operator makes the definition
possible.

Suppose we wanted to expand the previous definition of a list to say that
a list item may be a span of digits, or another list. The definition proceeds as
before, except that the unevaluated expression operator is used in the first
statement; the concept of a list has not yet been defined:

? ITEM = SPAN(“0123456789") | *LIST
? LIST = ”(“ ITEM ARBNO(”," ITEM) “)”
? TEST = POS(0) LIST RPOS(0)
? “(12,(3,45,(6)),78)” ? TEST
Success
? “(12,(34)” ? TEST
Failure

The unevaluated expression operator used with *LIST allows a forward
reference to a pattern not yet defined. Recursion occurs in the second line,
when LIST is defined in terms of ITEM, which was defined in terms of LIST,
and so on. Note that functions POS(0) and RPOS(0) were “moved out one
level,” to TEST, because LIST must now match substrings within the subject.

In our previous discussion of recursive functions, we said they work be-
cause successive calls present the function with progressively simpler prob-
lems, until the problem can be solved without further recursion. Similarly,
patterns ITEM and LIST are applied to successively smaller substrings, until
ITEM can use its SPAN() alternative instead of invoking LIST again.

122 Tutorial

Recursive Patterns

The patterns should be designed so that some progress has been made in
the subject prior to encountering the recursion. In this example, “(” and “,” in
the LIST pattern serve that purpose.

SPITBOL saves information on a stack during the pattern match process.
Heavily recursive patterns and long subject strings can sometimes result in
stack overflow. If this occurs, you should break the problem apart into sev-
eral smaller pattern matches. You can also increase the size of SPITBOL’s
stack by using the –s command line parameter described in Chapter 13,
“Running SPITBOL.”

A recursive pattern that recurses without consuming subject characters
will produce a recursive plunge and stack overflow immediately:

EXPRESSION = *EXPRESSION | “(” TERM “)”

In going to evaluate the first alternative, SPITBOL needs the current
value of EXPRESSION, which means evaluating the first alternative, ad infi-
nitum. Switching alternatives like this:

EXPRESSION = “(” TERM “)” | *EXPRESSION

only helps if the first alternative happens to match. If it doesn’t, the second
alternative recurses until the stack overflows. Something else needs to ap-
pear with the second alternative to consume subject characters prior to re-
cursion. Perhaps something like this is more appropriate:

EXPRESSION = TERM | “(” *EXPRESSION “)”

Pattern matching can be time-consuming because of the number of possi-
bilities which must be attempted. The original SNOBOL4 system applied
heuristics to the process, eliminating match attempts that could not possibly
succeed. This was done by carrying out side computations of the remaining
subject characters, and the amount required at any point in the pattern.

Whether the extra memory and computations required by the heuristics
are worth the savings in pattern matching time has long been debated.
What is known is that the introduction of the immediate assignment opera-
tor meant that heuristics were no longer invisible to the programmer. Elimi-
nating some match attempts eliminated some immediate assignments, and
programs might run differently with the heuristics turned on or off.

The author of SPITBOL has concluded that the heuristics do not result in
a significant increase in speed. Furthermore, it often produces malfunction-
ing patterns when deferred evaluation is used within a pattern. Accord-
ingly, pattern matching is done exhaustively and no heuristics are applied.
In particular, deferred expressions are not assumed to match at least one
character, and recursive patterns always work properly.

Advanced Topics 123

9

Quickscan and Fullscan

Heuristics were called the “Quickscan mode” of pattern-matching. They
were controlled with the &FULLSCAN keyword—zero for Quickscan, or
non-zero for “Fullscan mode,” where all combinations are tried.

The &FULLSCAN keyword has been retained, but it may only be set to a
non-zero value. Attempting to set it to zero will produce an error message.

We can accomplish quite a lot with just the primitive patterns ARB and
REM. However, there are five additional patterns which you should be
aware of:

ABORT End pattern match

The ABORT pattern causes immediate failure of the entire pattern match,
without seeking other alternatives. Usually a match succeeds when we find
a subject sequence which satisfies the pattern. The ABORT pattern does the
opposite: if we find a certain pattern, we will abort the match and fail imme-
diately. For example, suppose we are looking for an “A” or “B”, but want to
fail if “1" is encountered first:

? “–AB–1–” ? (ANY(“AB”) | “1" ABORT)
Success
? ”–1B–A–" ? (ANY(“AB”) | “1" ABORT)
Failure

The last example may be confusing because the ANY function appears as
the first alternative, fostering the illusion that it will find the “B” in the sub-
ject before the other pattern alternative is tried. However, that is not the or-
der of pattern matching; all pattern alternatives are tried at cursor position
zero in the subject. If none succeed, the cursor is advanced by one, and all
the patterns are tried again. When the cursor is in front of subject character
“1", ANY still does not match, but the second alternative now does. As the ”1"s
match, ABORT is reached, causing failure.

BAL Match balanced string

The BAL pattern matches the shortest non-null string in which parenthe-
ses are balanced. (A string without parentheses is also considered to be bal-
anced.) These strings are balanced:

(X) Y (A!(C:D)) (AB)+(CD) 9395

These are not:

)A+B (A*(B+) (X))

BAL is concerned only with left and right parentheses. The matching
string does not have to be a well-formed expression in the algebraic sense; in
fact, it needn’t be an algebraic expression at all. Like ARB, BAL is most useful
when constrained by other pattern components:

124 Tutorial

Other Primitive Patterns

? ‘AB+(14–2)*C’ ? ANY(‘+–*/’) BAL . OUTPUT ANY(‘+–*/’)
(14–2)
Success

By combining BAL and the REPLACE function, strings balanced by other
character pairs can be found. For example, to find a string in S balanced by
square brackets, exchange brackets for parentheses:

REPLACE(S, ‘[]()’, ‘()[]’) ? BREAK(‘(‘) BAL . RESULT
RESULT = REPLACE(RESULT, ‘()[]’, ‘[]()’)

For an example of using the BAL primitive to manipulate algebraic ex-
pressions, consult file prefix.spt on the SPITBOL distribution disk.

FAIL Seek other alternatives

The FAIL pattern signals the failure of this portion of the pattern match,
causing the pattern matcher to backtrack and seek other alternatives. FAIL

will also suppress a successful match, which can be very useful when the
match is being performed for its side effects, such as immediate assignment.
For example, in unanchored mode, this statement will display the subject
characters, one per line:

SUBJECT ? LEN(1) $ OUTPUT FAIL

LEN(1) matches the first subject character, and immediately assigns it to
OUTPUT. FAIL tells the pattern matcher to try again, and since there are no
other alternatives, the entire match is retried at the next subject character.
Forced failure and retries continue until the subject is exhausted.

Note the difference between ABORT and FAIL. ABORT stops all pattern
matching, while FAIL tells the system to back up and try other alternatives or
other subject starting positions.

FENCE Prevent match retries

Pattern FENCE matches the null string and has no effect when the pattern
matcher is moving left to right in a pattern. However, if the pattern matcher
is backing up to try other alternatives, and encounters FENCE, the match
fails.

FENCE can be used to lock in an earlier success. Suppose we want to suc-
ceed if the first ‘A’ or ‘B’ in the subject is immediately followed by a plus sign.
In the example below, the ‘A’s match, we go through the FENCE, and find ‘+’
does not match the next subject character, ‘B’. SPITBOL tries to backtrack,
but is stopped by the FENCE and fails:

? ‘1AB+’ ? ANY(‘AB’) FENCE ‘+’
Failure

If FENCE were omitted, backtracking would match ANY to ‘B’, and then
proceed forward again to match ‘+’.

If FENCE appears as the first component of a pattern, SPITBOL cannot
back up through it to try another subject starting position. This results in an

Advanced Topics 125

9

anchored pattern, even if the &ANCHOR keyword specifies unanchored
mode:

? ‘ABC’ ? FENCE ‘B’
Failure

SUCCEED Match always

This pattern matches the null string and always succeeds. If the scanner
is backtracking when it encounters SUCCEED, it reverses and starts forward
again. Placing a pattern between SUCCEED and FAIL causes the pattern
matcher to oscillate. We used to say that there were no serious uses for the
SUCCEED pattern, but discussions in September, 1996 on the SNOBOL4
mailing list server have effectively countered that assertion. While the
on-line list archives can be consulted for the full discussion (file list9609.txt),
they can be summarized as follows:

SUCCEED can be used as part of a loop control structure within a pattern
when it appears in the form:

SUCCEED something_with_possible_ABORT FAIL

The pattern matcher will continually move back and forth between SUC-

CEED and FAIL until something in between causes the match to abort. This
example

? P = FENCE(TAB(*(N + 1)) $ OUTPUT @N | ABORT)
? “abcd” ? POS(0) $ N SUCCEED P FAIL
a
ab
abc
abcd
Failure

displays successively larger subject substrings. The FENCE function (dis-
cussed in the next section) is necessary to prevent the pattern matcher from
seeing the ABORT pattern when it is backing up.

The substrings could be presented to a user-defined function which
would determine when to end the loop (by returning the null string to con-
tinue or the ABORT pattern to terminate).

DEFINE(‘FN(T)’) :S(FN_END)
FN FN = GT(SIZE(T), 4) ABORT :(RETURN)

FN_END
P = TAB(*(N + 1)) $ T *FN(T) @N
S ? POS(0) $ N SUCCEED P FAIL

Here, the pattern would continue to oscillate until the matched substring
contained more than four characters. The ABORT pattern has been moved to
within the function, and the FENCE function is not needed because there are
no alternatives within P.

Peter-Arno Coppen has devised these rules for the use of SUCCEED:

1. If SUCCEED can be replaced by the null string, it is superfluous.

126 Tutorial

2. SUCCEED without an ABORT or FENCE, and without a deferred ex-
pression will either never terminate or it is superfluous.

3. No sensible use of SUCCEED is possible without the unevaluated
evaluation operator (*).

We’d like to briefly point out a few more built-in functions. Chapter 19,
“SPITBOL Functions,” describes their calling sequences in detail.

APPLY
(name, args)

Allows an indirect call to a function through a variable.

CONVERT
(arg, type)

Provides explicit conversion from one data type to another. Chapter 17,
“Data Types and Conversion,” describes the conversions possible.

ENDFILE(S) Closes a file and detaches all variables associated with it.

FENCE(P) Given a pattern argument P, FENCE(P) is a same pattern except alterna-
tives within P are only visible when the pattern matcher is moving forward
through the pattern. If a subsequent pattern element forces the scanner to
back up, alternatives within P are not examined.

HOST(N,args) Provides access to machine-specific extensions of SPITBOL.

ITEM(array,N) Allows an indirect reference to an array or table. The use of ITEM is never
necessary in SPITBOL, because of the extended syntax for array and table
references.

LPAD(S,N)
RPAD(S,N)

These are padding functions, which will pad a string on its left or right
side with blanks or a given character. Padding is provided to a specified
width, and is useful when producing columnar output.

REWIND(S) The image conjured up by the word “rewind” made a lot more sense in
the days of spinning magnetic tape reels. REWIND positions a file so that the
next read or write operation will take place at the beginning of the file.

RSORT(T)
SORT(A)

Sorts the elements of an array or table in descending or ascending se-
quence. The sorted results are returned in a new array.

SET(S,M,N) Positions a file for random-access I/O.

SETEXIT(S) Allows interception of execution errors.

Advanced Topics 127

9

Other Functions

SUBSTR Allows a substring to be extracted from another string. The substring’s
location and length are specified by integer character positions.

These extensions appear in SPITBOL and SNOBOL4+, but not in stan-
dard SNOBOL4.

Assignment
=

Multiple use of the equal sign (=) operator within a statement is allowed.
The operator is right associative, meaning that multiple instances of the
equal sign within an expression are performed right to left. It returns the
value of its right hand side. Sample statements:

ARRAY<I = I + 1, J = J + 1> = “OSCAR”
A = B = C + D
Q = 1 + (R = 1 + (S = T + 1))

Pattern match
?

The binary question mark operator (?) has been used throughout this tu-
torial to make pattern matching explicit. However, its definition is more
general, as matching, and matching with replacement, can be used like any
other SNOBOL4 expression. Thus, the expression

(SUBJECT ? PATTERN)

performs pattern matching and returns the substring matched, or failure as
its value. The expression

(SUBJECT ? PATTERN = OBJECT)

returns the entire subject after replacement occurs, or failure. In both cases, a
string is returned, so the returned object may be the subject of another pat-
tern match, but not the subject of replacement, since that requires a variable as
the subject.

If the pattern match fails, the failure signal is treated like any other func-
tion failure. Parentheses are not required if the order of operations is unam-
biguous. Sample statements:

P = Q (A ? B = C) R
A ? B . V1 ? C . V2
N = (A ? B, C ? D = E, F ? G =, I ? (J ? K = (L ? M)))

Note the implicit null object used in the list element F ? G =. The question
mark operator may be combined with multiple assignment and alternative
evaluation to create truly indecipherable statements.

128 Tutorial

Binary Operator Extensions

Interrogation
?

Unary question mark is called the interrogation operator, although value
annihilation might be more descriptive. If X is an expression which fails, ?X

also fails. However, if X succeeds, ?X also succeeds, returning the null string.
In other words, any value component of X is replaced by the null string.

Remember that predicate functions return the null string if successful,
and that we use them to interpose tests in a statement. The interrogation op-
erator now allows us to treat any expression in the same manner. For exam-
ple, this statement adds 1 to N if the pattern match succeeds:

N = ?(S ? P) N + 1

Notice that this statement uses the question mark in two different ways.
The binary question mark signifies a pattern match, while the unary (first)
question mark converts a successful match to the null string.

Programming in this style can eliminate many trivial “jump arounds”
and the resulting need to invent labels. For example, without this operator,
the statement above would be written:

S ? P
:F(NO)

N = N + 1
NO …

Negation
~

The negation operator, or tilde (~), inverts the success or failure result of
its operand. If the expression X succeeds, then ~X fails. Conversely, if X fails,
~X succeeds and returns the null string.

Like the interrogation operator, the negation operator can eliminate
some program labels. Recall that the INPUT function fails if the file specified
does not exist. Then this statement tries to open a file and produces an error
message if it doesn’t exist:

TERMINAL = ~INPUT(.IN,1,’NoneSuch’) ‘File not found’
:S(ERR)

If INPUT(…) fails, then ~INPUT(…) succeeds, allowing the error message
to be assigned to TERMINAL. Note that the negation means we have to use a
success Goto to test for failure of the INPUT function.

Shafto [7, p. 29] provides an interesting example of evaluating arbitrary
Boolean expressions in the pattern field. The null string represents Boolean
TRUE, and failure is Boolean FALSE. Functions returning these values can be
combined using concatenation for AND, alternation (|) for OR, and negation
(~) for NOT. A null string subject is used—it’s just a place-holder—as all the
action takes place in the pattern field. For example:

‘’ ? *EQ(N,3) *GT(X,Y) | *~(IDENT(V) LT(Y,Z))
:S(TRUE)F(FALSE)

Advanced Topics 129

9

Other Unary Operators

The deferred evaluation operator (*, page 86) is needed here to prevent
failures during pattern construction from terminating the match early.

The two functions described below are among the most esoteric features,
not just of SPITBOL, but of any programming language. You won’t use
them very often, but when you do, you’ll be able to save hundreds or thou-
sands of lines of code. While your program is executing, the entire SPITBOL
compiler is just a function call away.

A SPITBOL program is nothing more than a string of characters. When
we first compile our program, SPITBOL reads a long string from a file, and
converts it to internal object code. Program execution occurs when the ob-
ject code is subsequently executed. The functions EVAL and CODE let you
supply the compiler with character strings from within the program itself.

EVAL function This function is used to evaluate an expression. Its argument may take a
number of forms:

1. If the argument is an integer or real number, or a number in string
form, the number is returned as the function result:

?= EVAL(19)
19

2. If the argument is an unevaluated expression, it is evaluated using
current values for any variables it might contain. EVAL returns the
expression’s value as its result:

? E = *(‘N SQUARED IS ‘ N ^ 2)
? N = 15
?= EVAL(E)
N SQUARED IS 225

This is similar to our earlier use of unevaluated expressions with
patterns. In this case, however, the unevaluated expression opera-
tor (*) must be applied to the entire expression to create an object
with the EXPRESSION data type.

3. If the argument is a string (other than a simple number), EVAL tries
to compile it as a SPITBOL expression. By expression we mean some-
thing which might appear in the subject, pattern, or replacement
field of a statement. Only an expression is permitted—not an entire
SPITBOL statement:

?= EVAL(‘3 * N + 2’)
47

If the string compiles without error, EVAL then evaluates the expres-
sion and returns the result.

130 Tutorial

Run-Time Compilation

It is this last use of EVAL—to compile a string—which is the most interest-
ing. Here is a trivial program which behaves like a simple desk calculator.

LOOP OUTPUT = EVAL(INPUT) :S(LOOP)
END

You can easily try it with the code.spt program:

?LOOP OUTPUT = EVAL(INPUT) :S(LOOP)
4 * (5 – 2) / 2
6
2 ^ 14 + N
16609
<EOF>
Success
?

The program reads a line of input, compiles it, evaluates it, and then dis-
plays the result. Of course, each expression you enter must be well-formed
according to SPITBOL’s syntax rules. In particular, this means there must be
blanks around the binary operators.

EVAL fails if evaluation of the argument fails, or if the argument contains
a syntax error. The SPITBOL keyword &ERRTEXT will contain a string de-
scribing the error.

The expressions used with EVAL may return any SPITBOL data type, not
just numbers. For instance, the expression might construct a new pattern,
and return it as the result:

ITEM = EVAL(“SPAN(‘0123456789’) | *LIST”)

Note that EVAL can only call the compiler with a string argument. If we
used a pattern as the argument, we would produce an execution error:

ITEM = EVAL(SPAN(“0123456789") | *LIST) (incorrect)

When we write a program, our patterns freeze, once and for all, the order
and kinds of data we will be able to recognize. Of course, we have some flex-
ibility, since input data can be used as the argument of a pattern function,
but the overall pattern structure—SPAN following BREAK alternating with
LEN, etc.—is fixed when the program is written. For most problems, this is
satisfactory, but suppose the very description itself of what we want to recog-
nize is not known until the program is executed? This problem is not as far-
fetched as it seems, as the following two examples illustrate.

1. A data base is being compiled for a medical study. A patient will be
categorized by an “information string,” in which each character po-
sition contains a specific “bit” of knowledge. For example, male or
female will be encoded as ‘M’ or ‘F’, ages 10 to 14 years as ‘B’, etc., un-
t i l a composite string has been constructed, such as
‘FBCGBIEMDKEAM’.

Now a program can be designed to allow an analyst to scan for cer-
tain cases. In any particular character position, we can look for a
certain value (e.g., ‘F’), set of values (ANY(‘DAL’)), or “don’t care”
(LEN(1)). The analyst either enters a SPITBOL pattern directly, or

Advanced Topics 131

9

provides parameters to be translated into a pattern by the program.
The pattern is compiled with EVAL, and applied sequentially to the
patient information strings. Alternatively, all patient data could be
combined into one long string, perhaps with a patient number and
a suitable delimiter between patients:

‘!FBCGBIEMDKEAM,001!MCCAJEAGIBALH,002!…’

The pattern could then be applied to all patients at once, and match-
ing cases captured using conditional assignment.

2. Most formal languages are defined by a rigorous grammar. Can we
write a SPITBOL program to read such definitions and generate the
appropriate patterns to recognize statements written in the lan-
guage? If such a program were possible, we could recognize new
languages merely by changing the input file; the SPITBOL program
itself would remain unchanged.

EVAL makes such a program very simple to write, and the distribu-
tion disk provides it in file bnf.spt. It accepts a grammar definition
file written in a standard notation (Backus-Naur Form), and con-
verts those definitions to a series of interlinked, recursive SPITBOL
patterns. The program then reads a file of sample language state-
ments, applies the patterns, and tells you if each statement is
well-formed according to the rules of the grammar. The entire pro-
gram—including input and output—is 30 statements long.

The BNF program demonstrates that EVAL‘s power is useful even if the
input data does not conform to SPITBOL syntax.

The CODE
function

The CODE function enlarges upon EVAL to compile entire SPITBOL state-
ments. CODE accepts a string argument containing one or more statements
to be compiled. Multiple statements are separated by placing a semicolon (;)
between each. Statements may be labeled, and can include all the usual
components—subject, pattern, replacement, and Goto. Even comment and
control statements are permitted.

The CODE function compiles the statements, and returns a pointer to the
resulting object code block. It fails if any statement contains a syntax error,
and places an error message in keyword &ERRTEXT.

There are two ways to execute the new object code.

1. Transfer to a label which is defined in the new code. For example:

* Compile a sample piece of code:
S = ‘L OUTPUT = N; N = LT(N,10) N + 1 :S(L)F(DONE)’
CODE(S)

* Transfer to a label in it:

:(L)

* Come here when the new code transfers back.
DONE …

132 Tutorial

Notice how we placed a Goto from the new code back to label DONE

in the main program. If we had not done this, SPITBOL would ter-
minate when execution “fell out of the bottom” of the new code
block.

2. The pointer returned by the CODE function can be used in a direct
Goto to transfer to the first statement in the code block. A direct
Goto is performed by enclosing the pointer in angular brackets in the
Goto field:

* Compile a sample piece of code:
S = ‘L OUTPUT = N; N = LT(N,10) N + 1 :S(L)F(DONE)’
C = CODE(S)

* Transfer to the first statement in the block:

:<C>
DONE …

Direct Gotos may be used with success and failure branches in the
Goto field.

Labels contained in the new program fragment override any labels of the
same name in your main program. This provides the ability to write
self-modifying SPITBOL programs, and makes the division between “code”
and “data” far less distinct than in other high-level languages.

The CODE function made the code.spt program possible, and produced
more powerful scripts for the eliza program.

In our discussion of program-defined functions, we learned that a func-
tion returns to its caller by transferring to one of the reserved labels RETURN

or FRETURN. If the transfer is to RETURN, the function returns a value for use
by the caller.

There is a third way that a function may return, and that is by transfer-
ring to the reserved label NRETURN. This action says that the function is re-
turning the name (i.e., address) of a variable, to which the caller may assign a
value. If function STORE were defined as:

STORE STORE = .DUMMY
:(NRETURN)

then STORE() could appear in the following contexts:

STORE() = 43
SUBJECT ? PATTERN . STORE()

In either case, the variable DUMMY would receive the result of the assign-
ments.

As the previous example always returns the address of variable DUMMY,
there isn’t any reason not to forego STORE() entirely, and to just use DUMMY

Advanced Topics 133

9

NRETURN

in its place. NRETURN becomes useful when the function returns a different
name with each call, or when the function is being called for other side ef-
fects it may perform. We’ll illustrate both in the remainder of this chapter.

Maintaining a
stack

A stack is an expandable list of data items. It operates on a last-in,
first-out basis, and is useful for storing intermediate results. There are many
ways to implement stacks in SPITBOL, including arrays, tables, and pro-
gram- defined datatypes. We’ll use a table with numeric subscripts, because
it has no predeclared size limit like an array. We’ll also use it as a vehicle to
demonstrate a practical application of NRETURN.

Our stack will be stored in a table named STK. STK[0] will contain an in-
dex to the last entry in the table. We’ll create a PUSH function that allows us
to enter items into the stack:

* PUSH(X) – Push item X onto the stack.

*
* Returns the address of the top stack element.

*
DEFINE(‘PUSH(X)’)
STK = TABLE() :(PUSH_END)

* Increment the index to the first free element.

* On the very first call, STK[0] is null.
PUSH STK[0] = STK[0] + 1

* We’ll return the address of this new stack element
PUSH = .STK[STK[0]]

* If a value was supplied in the call, store it there.
$PUSH = X :(NRETURN)

PUSH_END

NRETURN allows PUSH() to be used in one of two ways. It can be called
with an explicit argument, like this:

PUSH(43)

or used as the object of assignment, like this:

PUSH() = 43
‘ABCDE’ ? LEN(2) . PUSH() ‘D’ LEN(1) . PUSH()

One refinement here is to include the unevaluated expression operator
in the last pattern:

‘ABCDE’ ? LEN(2) . *PUSH() ‘D’ LEN(1) . *PUSH()

Without it, PUSH() is called when the pattern is first constructed. In the
modified example, the calls to PUSH() are deferred until assignment takes
place, and new stack entries are allocated only if the pattern match succeeds.

To remove items from the stack, we will construct a very conventional
POP() function. It doesn’t need to use NRETURN:

* POP() – Remove an item from the table STK

*
* STK is declared in the PUSH() function.

134 Tutorial

DEFINE(‘POP()’) :(POP_END)

* Return the value currently on top of the stack
POP POP = STK[STK[0]]

STK[0] = STK[0] – 1 :(RETURN)

Next we’ll use several of the advanced features of this chapter to create a
simple parser.

Parsing programs, like bnf.spt on the distribution diskette, demonstrate
how tangled patterns can recognize complex linguistic constructions. But
recognition is only one part of parsing and translation—one needs to save
the components matched, and invoke “action routines” to perform the trans-
lation. A stack is useful here because we don’t know in advance how large
the subject is, or how many components will be matched, or even the order
in which they’ll be matched.

Arithmetic
parsing

To demonstrate how NRETURN, pattern recursion, and EVAL() can sim-
plify programming, we’ll examine a short program that parses and evalu-
ates simple arithmetic expressions. These techniques illustrate how infor-
mation gathered during a pattern match can be systematically stored and
acted upon. In this case, we’ll directly evaluate the numbers in the expres-
sion—with a little more work we could begin to generate code as a compiler
would. Interested readers are referred to Chapter 18 of James Gimpel’s Al-
gorithms in SNOBOL4, for additional information.

Our program will read a line of input, attempt to parse it, and then call
action routines to carry out the specified arithmetic. The program begins by
defining the grammar of the arithmetic expressions we want to recognize.
First are the definitions of integer and real numbers. Note that sub-patterns
having the null string as a final alternative effectively make that sub-pattern
optional.

integer = span(“0123456789")
exponent = any(”eEdD") (any(“+–”) | “”) integer
real = integer “.” (integer | “”) (exponent | “”) | integer ex-

ponent
constant = real | integer

Next we provide the patterns to match simple arithmetic expressions.
Expressions are built-up from simpler terms and factors. A factor is a nu-
meric constant or parenthesized expression, optionally preceded by unary
plus or minus. A term is either two factors joined by the binary multiplica-
tion or division operator, or a simple factor. Finally, an expression is either a
term plus or minus another term, or just a term. Note the recursive defini-
tion: the exp pattern occurs at the highest and lowest levels.

Advanced Topics 135

9

Parsing and Translation

primary = constant . *push() | “(” *exp “)”
factor = any(“+–”) . *push() *factor . *unary() | *primary
term = *factor any(‘*/’) . *push() *factor . *binary() | *factor
exp = *term any(‘+–’) . *push() *exp . *binary() | *term

If we were only interested in applying a pattern match to determine the
validity of the subject string, the calls to *push() would not be necessary.
However, we want to save the matching components on a stack for later
evaluation.

When exp is applied to a subject string, “jockeying for position” takes
place between the various sub-patterns. When all are properly aligned, con-
ditional assignment takes place, triggering calls to push(), unary(), and bi-

nary(). Push() places the various operands and operators on the stack, while
unary() and binary() remove them from the stack, and perform the desired op-
eration. The result of each operation will be left on the stack.

The push() and pop() functions were defined in the previous section, and
won’t be repeated here. The unary() and binary() functions return the name of
a dummy variable—they don’t care about the string assigned to them. It’s
just a ploy to use conditional assignment to get them called at precisely the
right moment in the pattern match—when the needed operands are on the
stack. They use SPITBOL’s eval() function to actually perform the arithme-
tic. An alternate technique is to branch to specific labels for each of the oper-
ators found on the stack.

define(“unary()arg,op”) :(unary_end)
unary arg = pop()

op = pop()
push() = eval(op arg)
unary = .dummy :(nreturn)

unary_end

define(“binary()op,left,right”) :(binary_end)
binary right = pop()

op = pop()
left = pop()
push() = eval(left “ ” op “ ” right)
binary = .dummy :(nreturn)

binary_end

Having defined the functions and the patterns, all that remains is to
write a short test loop that reads a line of input and applies the pattern. Note
that the use of pos(0) and rpos(0) guarantees that the entire subject string will
be used for the match.

&trim = 1
loop line = input :f(end)

line ? pos(0) exp rpos(0) :f(error)
output = pop() :(loop)

error output = “Bad input, try again” :(loop)
end

Using NRETURN and deferred evaluation in this manner can only be
called an obscure programming technique. However, it does work, and
should give you a glimpse of SPITBOL’s power and flexibility.

136 Tutorial

Pattern
functions

ARBNO(P) Arbitrary number of occurrences of argument pattern
FENCE(P) Bypass alternatives in P when backing up

Unary
operators

~ Negation, inverts success/failure
? Interrogation, evaluates expression for success/failure

result only

Primitive
patterns

ABORT Entire pattern match fails
BAL String balanced with respect to parentheses

FAIL Subpattern fails, alternatives will be sought
FENCE Initially succeeds, but fails during backtracking
SUCCEED Matches null string and succeeds

Built-in
functions

APPLY Indirect reference call to function
CODE Compile SPITBOL program statements

CONVERT Convert data types
ENDFILE Close file
EVAL Compile and evaluate expression
ITEM Indirect reference to array or table element

LPAD Pad on left to fixed width
REWIND Rewind file
RPAD Pad on right to fixed width
RSORT Sort array or table, descending order
SET Position file
SETERROR Trap execution errors
SORT Sort array or table, ascending order
SUBSTR Extract substring by character positions

Labels NRETURN Return by name from function

Advanced Topics 137

9

Chapter Summary

You are probably well aware of the diversity of potential errors that can
occur in computer programs. They range from simple typographical errors
made while entering a program, to subtle design problems which may only
be revealed by unexpected input data.

Debugging a SPITBOL program is not fundamentally different than de-
bugging programs written in other languages. However, SPITBOL’s syn-
tactic flexibility and lack of type declarations for variables produce some
unexpected problems. By way of compensation, an unusually powerful
trace capability is provided.

Compilation
errors

Compilation errors are the simplest to find. When SPITBOL compiles a
program and encounters errors, it produces messages which give the loca-
tion of the error, an error number, and a brief explanation of the error. These
messages normally go to the screen.

Note that there are some text editors that can be configured to compile
from within the editor (i.e., Brief, Vedit, Multi-Edit, etc.). When errors occur,
the editor will automatically read an error file, find error messages, and po-
sition the cursor at each offending line while displaying the appropriate er-
ror message. If you have such an editor, specify a SPITBOL command line
that writes the errors to the error file that the editor will read:

spitbol –e –o=errfile progname

When SPITBOL is run directly from the command line, error messages
appear on the screen and the listing file, if any. The offending line is dis-
played, then a pointer to the error, followed by another line with informa-
tion about the error. If there is more than one error in a line, only the first er-
ror is identified.

139

10

Chapter 10

Debugging

Debugging and Tracing

Consider this offending line:

TERMINAL = CNT+ 1 ‘ items counted."

There are two problems. The blank before the binary plus operator is
missing after the variable CNT. And the string “ items counted” is not properly
framed by matched quotes.

When we compile a program with this statement, an error message like
this will appear:

program.spt(8,12) : Error 223 — Syntax error: Invalid use of operator.

The message gives the name of the source-code file, followed by the line
number and character position where the error occured, and then an expla-
nation of the error.

Note that it missed the second error in this statement; we’ll ignore it too
for the moment. We’ll fix the first one, so that we have:

TERMINAL = CNT + 1 ‘ items counted."

When we compile and run this, we’ll get this error message:

program.spt(8,20) : Error 232 — Syntax error: Unmatched string
quote.

After we fix the second error by making both string delimiters either ‘ or
“, this statement will compile without error.

Execution
errors

Once a program compiles without error, testing can begin. Two kinds of
errors are possible: errors which SPITBOL can detect, such an incorrect data
type or calling an undefined function, and errors in program logic which
produce incorrect results.

With the first type of execution error, SPITBOL will send a message to
the screen, much as it does with compilation errors.

Consider this short program:

&TRIM = 1
&ANCHOR = 1
TERMINAL = ‘Program is starting.’ :(NONESUCH)

END

The obvious error is that the Goto, NONESUCH, doesn’t exist. When we
compile and run this, we get this message:

program.spt(3) : Error 038 — Goto undefined label

Inspecting the offending line will often reveal typing errors, such as a
misspelled function name, keyword, or label. If the error is due to incorrect
data in a variable—such as trying to perform arithmetic on a non-numeric
string—you’ll have to start debugging to discover where the incorrect data
was created. Placing output statements in your program, or using the trace
techniques described later in this chapter, will usually find such errors.

Here are some common errors to look for first:

140 Tutorial

1. Setting keywords &ANCHOR and &TRIM improperly. We may have
written a program with anchored pattern matching in mind, but let
an unanchored match slip in inadvertently. In unanchored mode,

‘BELL’ ? ‘E’

will succeed, whereas it will fail in anchored mode.

Forgetting to set &TRIM to 1 causes any trailing blanks to remain on
input lines, which can interfere with pattern matching.

2. Misspelled variable names. Using PUTPUT instead of OUTPUT, as in:

PUTPUT = LINE1

creates a new variable and assigns LINE1 to it.

This kind of spelling error is relatively easy to find. By setting the
keyword &DUMP to either 1, 2 or 3, you will get a list of variables af-
ter you compile and run your program.

If &DUMP = 1, the dump will list only variables with non-null val-
ues, while &DUMP = 2 will show the non-null elements of tables, ar-
rays, and user-defined datatypes. &DUMP = 3 will include null-val-
ued variables and elements, and statement labels. You can examine
the list for an unexpected name.

3. Spurious spaces between a function name and its argument list. A
line like:

LINE = TRIM (INPUT)

is not a call to the TRIM function. The blank between TRIM and the
left parenthesis is interpreted as concatenating variable TRIM with
the expression (INPUT). TRIM used as a variable is likely to be the null
string, so INPUT is returned unchanged.

4. No blank space after a binary operator. SPITBOL sees a unary oper-
ator instead, with completely unexpected results. For instance:

X = Y –Z

concatenates Y with the element –Z. If Y = 3 and Z = 1, then the above
would assign the string “3–1” to X, when you probably expected X to
equal the integer 2.

5. Confusion occurring when a variable contains a number in string
form. When used as an argument to most built-in functions, con-
version from string to number is automatic, and proper execution
results. However, functions IDENT and DIFFER do not convert their
arguments, and seemingly equal values are thought to be different.
For example, if we want to test an input line for the number 3, the
statements:

N = INPUT
IDENT(N, 3)

:S(OK)

Debugging and Program Efficiency 141

10

are not correct. N contains a string, which is a different data type
from the integer 3. This could be corrected by using IDENT(+N,3), or
EQ(N,3).

6. Omitting the assignment operator when we wish to remove the
matching substring from a subject, resulting in a program which
loops forever. For example, our word-counting program replaced
each word with the null string:

NEXTWRD LINE ? WRDPAT = :F(READ)

However, by omitting the equal sign we would repeatedly find the
same first word in LINE:

NEXTWRD LINE ? WRDPAT :F(READ)

7. Unexpected statement failure, with no provision for detecting it in
the Goto field. For example, we declare an input file early in the pro-
gram:

INPUT(.IN, 1, ‘nonesuch’)

Some lines later, you attempt to read from that file with a statement
like this:

LINE = IN :F(EOF)

Surprisingly, the statement never fails, and LINE is always set to the
null string. Here the error was really up in the INPUT statement,
which failed because there wasn’t any file called nonesuch.

The solution is to always test for failure when using a function that
might fail:

INPUT(.IN,1,’nonesuch’) :F(ERR)
…

ERR TERMINAL = ‘The input file could not be found’:(END)

You can also include a –NOFAIL control statement at the beginning
of your program (see Chapter 14, “SPITBOL Statements”).
SPITBOL will alert you when a statement lacking a conditional
Goto fails.

8. Failure can be detected but misinterpreted when there are several
causes for it in a statement. This statement fails when an End-of-File
is read, or if the input line does not contain any digits:

INPUT ? SPAN(‘0123456789’) . N :F(EOF)

In the latter case, if we want to generate an error message, the state-
ment should be split in two:

N = INPUT :F(EOF)
N ? SPAN(‘0123456789’) . N :F(WARN)

9. Using operators such as alternation (|) and conditional assignment
(.) for purposes other than pattern construction. Using them in the
subject field will produce a ‘Pattern match left operand is not a
string’ error message. Using them in the replacement field pro-
duces a pattern, intended for subsequent use in a pattern match

142 Tutorial

statement. For example, this statement sets N to a pattern; it does
not replace it with the words ‘EVEN’ or ‘ODD’, as was probably in-
tended:

N = EQ(REMDR(N,2),0) ‘EVEN’ | ‘ODD’

Such a construction could best be handled with the alternative eval-
uation construction described in Chapter 7, “Additional Operators
and Datatypes”:

N = (EQ(REMDR(N,2),0) ‘EVEN’, ‘ODD’)

10. Forgetting that functions like TAB and BREAK bind subject charac-
ters. This won’t matter for simple pattern matching, but for match-
ing with replacement, problems can appear. For example, suppose
we wanted to replace the 50th character in string S with ‘*‘. If we
used:

S ? TAB(49) LEN(1) = ‘*‘

we would find the first 50 characters replaced by a single asterisk.
Instead, we should say:

S ? POS(49) LEN(1) = ‘*‘

which is not very efficient, or the more desirable:

S ? TAB(49) . FRONT LEN(1) = FRONT ‘*‘

11. Omitting the unevaluated expression operator when defining a
pattern containing variable arguments. For example, the pattern

NTH_CHR = POS(*(N – 1)) LEN(1) . CHR

will place the N
th subject character in variable CHR. The pattern ad-

justs automatically if N‘s value is subsequently changed. Omitting
the asterisk would capture the value of N at the time the pattern is
defined (probably the null string).

12. Failing to jump around a function body, after executing the defini-
tion. Here’s a short function definition in good form:

DEFINE(‘CYC(S,N)’)
CYC_PAT = LEN(*N) . FRONT REM . REAR :(CYC_END)

CYC S ? CYC_PAT = REAR FRONT
CYC = S
:(RETURN)

CYC_END

That will work fine, because after making the necessary definitions,
control is passed to the label CYC_END with a Goto. If that Goto
were omitted, then control would go straight on to the line with the
CYC label which would then transfer to RETURN. Since we’re at-
tempting to return from a function that has never been called, you’ll
get this error message:

program.spt(4) : Error 242 — Function return from level zero

The message is a little cryptic if you’re not thinking along those
lines. When you get such a message, it probably means that your
program fell into a function, instead of calling it properly.

Debugging and Program Efficiency 143

10

13. Omitting quotes around a string literal. This INPUT statement does
not open datafile.txt:

INPUT(.IN, 1, datafile.txt)
:F(ERR)

Instead, it is passing the INPUT function the variable datafile.txt,
which probably contains the null string as a file name.

144 Tutorial

Simple
debugging

These simple methods should find a majority of your bugs:

1. Set keyword &DUMP to 1, 2, or 3 for a partial or full dump to the
screen after your program runs. The dump can be sent instead to a
file by using the –o=filename command-line option. Dumps can also
be produced at any time during execution by calling the built-in
DUMP function. DUMP(n) corresponds to &DUMP = n.

One useful trick is to set &DUMP = 2 at the beginning of your pro-
gram. Then just before the END statement, transfer to a statement
that sets &DUMP = 0. That way, if your program terminates unex-
pectedly, you’ll get a full dump. But if your program terminates
normally, you won’t be getting a dump that you don’t need.

2. Use keyword &STLIMIT to end execution after a fixed number of
statements are executed. The default value of &STLIMIT is
2,147,483,647. Setting it to a low value, such as 100 or 200, with
&DUMP set to 1 or 2, can tell you if you’re stuck in a loop somewhere.

After SPITBOL executes the number of statements specified in
&STLIMIT, this appears on the screen:

program.spt(123) : Error 244 — Statement count exceeds
value

of STLIMIT keyword

3. Use the Goto :F(ERROR) to detect unexpected failures and data er-
rors. Do not define the label ERROR—SPITBOL will stop if an at-
tempt is made to transfer to label ERROR.

4. Assign values to TERMINAL to monitor data values. Use immediate
assignment and cursor assignment (to TERMINAL) to observe the
operation of a pattern match.

5. Set keyword &PROFILE to 1 to obtain an execution profile of how
much time is spent in each statement. Are the numbers reasonable?
Is the program hung anywhere?

More subtle errors can be pinpointed using SPITBOL’s trace facility, de-
scribed next.

Debugging and Program Efficiency 145

10

Tracing the flow of control and data in a program is usually the best way
to solve difficult problems. SPITBOL allows tracing of data in variables and
some keywords, transfers of control to specified labels, and function calls
and returns. Two keywords control tracing: &FTRACE and &TRACE.

Function
tracing

Keyword &FTRACE can be set nonzero to produce a trace message each
time a program-defined function is called or when it returns. The trace mes-
sage displays the statement number where the action occurred, the name of
the function, and the values of its arguments. Function returns display the
type of return and value, if any. Each trace message decrements &FTRACE by
one, and tracing ends when &FTRACE reaches zero.

To use this feature, you place a statement like this near the beginning of
your program:

&FTRACE = 1000

Trace messages are written to standard output, (normally, the screen,
but it can be redirected to a disk file on the command line). A typical trace
messages looks like this:

****12****** SHIFT(‘SKYBLUE’,3)

****37****** RETURN SHIFT = ‘BLUESKY’

The first number in asterisks is the statement number where SHIFT was
called. The next one is the statement number where SHIFT returned.

To interpret these numbers, it will be necessary to produce a program
listing by using the –l option on the command line, which creates pro-
gram.lst from program.spt. The statement numbers provided in the listing
correspond to the statement numbers in trace messages. (It is important to
remember that there is usually a difference between line numbers and state-
ment numbers.)

When functions are nested—called from within other functions—the
trace messages provide a visual indication of the nesting depth:

****37****** SHIFT(‘skyblue’,3)

****30****** I UCASE(‘bluesky’)

****33****** II COUNT(‘blue’)

****22****** II RETURN COUNT = 4

****25****** I RETURN UCASE = ‘BLUESKY’

****38****** RETURN SHIFT = ‘BLUESKY’

Here, the successive capital I’s indicate the function call depth. The
depth is also available to your program through the &FNCLEVEL keyword. It
is zero when your program begins execution, and is incremented by one
when a function is called, and decremented by one when a function returns.

146 Tutorial

Execution Tracing

Selective
tracing

Keyword &TRACE will also produce trace messages when it is set non-
zero. SPITBOL will perform as many traces as are specified, so that

&TRACE = 10

would allow 10 traces.

However, the TRACE function must be called to specify what is to be
traced. Tracing can be selectively ended by using the STOPTR function. In its
simplest form, the TRACE function call looks like this:

TRACE(name, type)

The name of the item being traced is specified using a string or the unary
name operator. Besides variables, it is also possible to trace particular ele-
ments of an array or table:

TRACE(‘VAR1’, …
TRACE(.A[2,5], …
TRACE(.SHIFT, …

Type is a string describing the kind of trace to be performed. If omitted, a
‘VALUE’ trace is assumed. The full set of possibilities for type is:

‘A’ or ‘ACCESS’ Produces a trace every time the named item is ref-
erenced. If you say X = N, that does not change the
value of N, but it is a reference—an “access” to N.

‘V’ or ‘VALUE’ Traces the value of a variable whenever it is the ob-
ject of an assignment. Assignment statements, as
well as conditional and immediate assignments
within pattern matching will all produce trace
messages.

‘K’ or ‘KEYWORD’ Produce a trace when keyword name‘s value is
changed by the system. The name is specified
without an ampersand. Only keywords
&ERRTYPE, &FNCLEVEL, and &STCOUNT may be
traced. If &STLIMIT is negative, &STCOUNT may not
be traced.

‘L’ or ‘LABEL’ Produce a trace when a Goto transfer to statement
name occurs. Flowing sequentially into the labeled
statement or calling a function that begins with the
label oes not produce a trace.

‘C’ or ‘CALL’ Produce a trace whenever the function is called.

‘R’ or ‘RETURN’ Produce a trace whenever the function returns.

‘F’ or ‘FUNCTION’ Produce a trace whenever the named function is
called or when it returns. This combines the pre-
ceding two types.

Each time a trace is performed, keyword &TRACE is decreased by one.
Tracing stops when it reaches zero. Tracing of a particular item can also be
stopped by function STOPTR:

STOPTR(name, type)

Debugging and Program Efficiency 147

10

You might want to experiment with tracing in a short program:

&TRACE = 1000
TRACE(‘N’, ‘VALUE’)
N = 1

LOOP TERMINAL = CHAR(64 + N)
N = LT(N,10) N + 1

:S(LOOP)
END

If standard output is not re-directed, you’ll see this:

****3******* N = 1
A

****5******* N = 2
B

****5******* N = 3
C
…

****5******* N = 10
J

where you have the statement number and the value of N from the TRACE

function, each followed by the characters generated by your program.

Program trace
functions

Normally, each trace action displays a descriptive message, with state-
ment number and the affected variable or function, such as:

****371***** SENTENCE = ‘Nancy ran to town.’

Instead, we can instruct SPITBOL to call our own program-defined func-
tion. In it, we can check the variable (or other conditions), and only produce
a message if an exceptional situation exists. To do so, we need to use the full
form of the TRACE function:

TRACE(name, type, tag_string, function)

We define the function to carry out the trace action in the normal way,
using DEFINE, and then specify its name as the fourth argument of TRACE

For example, if we want function TRFUN called whenever variable
COUNT is altered, we would say:

&TRACE = 10000
TRACE(.COUNT, ‘VALUE’, ‘Variable COUNT’, .TRFUN)
DEFINE(‘TRFUN(NAME,TAG)TEMP’) :(TRFUN_END)
…

TRFUN will be called with the name of the item being traced, .COUNT, as
its first argument. If a third argument was provided to TRACE, it too is
passed to your trace function. Its use is entirely optional—use it to pass ad-
ditional identifying information to your trace function, or omit it.

Our trace function, TRFUN, will be called every time a new value is as-
signed to COUNT. It’s a simple matter then to verify that all is well, and just
return, or to issue an alert if a problem is found.

148 Tutorial

Let’s consider debugging a program where variable COUNT is inexplica-
bly being set to a negative number. Continuing with the previous example,
TRFUN‘s function body would look like this:

TRFUN TEMP = &LASTNO
GE($NAME,0)

:S(RETURN)
TERMINAL = TAG “ negative in statement ” TEMP :(END)

TRFUN_END

The first statement of the function captures the number of the last state-
ment executed—the statement where the assignment occurred. We then
check the variable being traced, $NAME (which will be COUNT in this case),
and return if it is satisfactory. If it is negative, we print an error message and
stop the program. The error message will pinpoint the statement where
COUNT was set negative. You’ll need a program listing to find the actual
statement corresponding to that statement number.

Although this trace function could have accessed the variable COUNT di-
rectly, we chose to access the variable and an identification string indirectly
through the arguments NAME and TAG. This allows us to use the same func-
tion with several variables that we might want to monitor for the same ex-
ception condition:

TRACE(.COUNT, ‘VALUE’, ‘Variable COUNT’, .TRFUN)
TRACE(.N, ‘VALUE’, ‘Variable N’, .TRFUN)

Notice that our trace function used a new keyword, &LASTNO. There are
several such keywords that allow us to use trace functions effectively:

&LASTNO The statement number of the previous SPITBOL
statement executed.

&STCOUNT The total number of statements executed. This
keyword is incremented by one as each statement
begins execution. However, if &STLIMIT has been
set negative for unlimited execution, &STCOUNT is
not incremented.

&ERRTEXT Error message text of the last execution error.

&ERRTYPE Error message number of the last execution error.
A complete list of error message numbers and
their associated text is provided in Appendix D.

&ERRLIMIT Number of nonfatal execution errors allowed be-
fore SPITBOL will terminate.

The first four keywords are continuously updated by SPITBOL as a pro-
gram is executed.

When a program-defined trace function is invoked, keywords &TRACE

and &FTRACE are temporarily set to zero. Their values are restored when the
trace function returns. There is no limit to the number of functions or items
which may be traced. Tracing a variable slows down references to it alone,
but there is no general execution penalty by having tracing enabled, as there
is in other versions of SNOBOL4.

Debugging and Program Efficiency 149

10

Tracing keyword &STCOUNT will call your trace function before every
program statement is executed. To do so, use the call:

TRACE(‘STCOUNT’, ‘KEYWORD’, , .MYFUN)

If you set keyword &ERRLIMIT non-zero, then you may trace keyword
&ERRTYPE to trap nonfatal execution errors. When an error occurs,
SPITBOL stores the error number in &ERRTYPE, and that store operation is
traceable. A better method is to use the SETEXIT function described below.

Finally, we would like to note that some programmers use the function
trace mechanism as a standard programming technique. That is, they are
not debugging a program, but instead deliberately plan on having SPITBOL
invoke a designated function when some variable is accessed or modified,
or a particular function called. For example, tracing an output-associated
variable might invoke a line-counting function that inserts a page heading
after every 60 lines of output.

This can produce pretty obscure programs, but is interesting because it
reveals how SPITBOL’s generality can be exploited by the clever program-
mer.

SETEXIT
function

SPITBOL provides an additional debugging mechanism, one not found
in standard SNOBOL4. The SETEXIT() function allows interception of execu-
tion errors, or compilation errors when using with the CODE or EVAL func-
tions. When an error occurs, the system transfers to a label of your choosing,
provided that the value of &ERRLIMIT is non-zero.

Your program can transfer to the special labels ABORT and CONTINUE af-
ter processing the error. ABORT causes error processing to resume as though
no error intercept had been set. CONTINUE causes execution to resume by
branching to the failure exit of the statement in error.

The SETEXIT function can also be used to trap a user attempt to stop pro-
gram execution by typing the system interrupt key (typically control-C,
DEL, break, etc.). Programs may need to perform last-minute clean-up and
file closings before terminating. Without such a mechanism, a user inter-
rupt would stop the program immediately, without flushing file buffers,
etc.

To accomplish this, a user interrupt will generate error number 320. If
&ERRLIMIT is non-zero, this “pseudo-error” will invoke the SETEXIT func-
tion declared by the program. The special label SCONTINUE can be used by
the error-trapping function to resume execution precisely at the point
where the main program was interrupted. Unlike CONTINUE, SCONTINUE

does not cause the interrupted statement to fail.

See Chapter 19, “SPITBOL Functions” for additional information on us-
ing SETEXIT.

150 Tutorial

Built-in
functions

DUMP(I)
Produce partial dump if I is 1, and full dump if I is 2.

SETEXIT(label)
Intercept execution error

STOPTR(n,t) Stop trace
TRACE(n,t,s,f) Trace variable, keyword, function, or label

Keywords &ERRLIMIT Number of execution errors permitted
&ERRTEXT Text of most recent error
&FTRACE Enable function tracing
&LASTNO Line number of previous statement executed
&STLIMIT Number of statements allowed to execute
&TRACE Enable TRACE function tracing

Traceable
keywords

&ERRTYPE Error number of most recent error
&STCOUNT Number of statements executed

Reserved
labels

ABORT Normal error processing after SETEXIT

Resume with statement failure after SETEXITCONTINUE

SCONTINUE Resume interrupted statement after SETEXIT

Debugging and Program Efficiency 151

10

Chapter Summary

What to do
next

While this tutorial has covered a lot of ground, it omitted some fine
points and features of the language. We suggest you work with the material
presented—it’s more than adequate for most programming needs.

Chapter 13, “Running SPITBOL,” in the reference section explains all of
the options available when running SPITBOL. It would be good idea to read
it now.

Once you’re proficient, try reading the reference section from beginning
to end. You’ll find many other language features described there.

As a course of study of advanced SPITBOL programming techniques,
we heartily endorse James Gimpel’s Algorithms in SNOBOL4. We thought
so much of this book that when John Wiley & Co. let it go out of print, we ac-
quired the rights and reprinted it ourselves. It’s 500 pages of ingenious code
and algorithms that will make you see the SNOBOL family in a new light. In
addition to over 140 sample programs, a formal theory of pattern-matching
is developed.

SPITBOL’s
future

For much of this tutorial we’ve been concerned with the detailed me-
chanics of pattern-matching—the functions, primitive patterns, and
datatypes involved when applying a pattern to a character string. SPITBOL
provides so many primitive functions and operations that it’s easy to get
lost in the forest. Let’s step back and consider SPITBOL’s larger significance.

It would be a mistake to think of SPITBOL only as a text-processing lan-
guage. For example, programmers in the artificial intelligence field think in
terms of lists, and have used the LISP language for some time. As Shafto
demonstrates[7], SPITBOL can be made to emulate LISP, and go well be-
yond it, using pattern-matching, backtracking, and associative program-
ming. Others have noted that it is fairly simple to write a LISP interpreter in
SPITBOL, but the converse doesn’t hold. Researchers would do well to em-

153

11

Chapter 11

Concluding Remarks

ploy SPITBOL’s power and flexibility in the study and development of arti-
ficial intelligence.

SPITBOL’s pattern-matching provides a very powerful and completely
general recognition system, in which character strings happen to be the me-
dium of expression. Other recognition problems can be solved by mapping
the object to be examined into a subject string, and the recognition criteria
into SPITBOL patterns. For example, we know of one user who maps
two-dimensional images into character strings for recognition.

In the past, use of SPITBOL has been hindered by the high cost and in-
convenience of running it on mainframe computers. Now it’s on your desk
top, with computer time essentially free.

Historically, the SNOBOL family, of which SPITBOL is a member, has
appealed to two divergent classes of computer users. One group is com-
puter professionals, especially those doing systems work, who use
SPITBOL for prototyping and “quick and dirty” jobs.

The other group is the academic community, where people who aren’t
professional programmers have work that has to be done on a computer,
primarily text and data analysis. Compared to programs which do the same
things in other languages, SPITBOL programs are much shorter, which
makes them both easier to write and easier to understand.

SPITBOL is the linguistic researcher’s preferred tool, and the systems en-
gineer’s secret trick when something needs to be done in a hurry. But the
SNOBOL family has somehow missed the vast middle ground of computer
users.

A language with so much ease, power, and flexibility should be useful to
many others. Can SPITBOL bring new insights to your problems? Are there
general applications for SPITBOL’s abilities? What do you do now that you
can do better and faster with SPITBOL? And what can you discover with
SPITBOL’s power at your fingertips?

154 Tutorial

PART III

Reference Manual

This reference section describes the SPITBOL system. It will tell you how
to create and run SPITBOL programs. It catalogs all the standard language
features, as well as extensions for the Catspaw versions of SPITBOL which
run on 32-bit Unix™, MS-DOS and Windows computers. We have tried to
make all features standard across all systems. Where differences exist, they
are noted in the text. Consult the tutorial section for illustrative uses of vari-
ous functions and operators.

Catspaw SPITBOL is a full implementation of the powerful SNOBOL4
programming language. It has all the features of other SNOBOL4 systems,
as well as many useful extensions.

Compatibility with other SPITBOL systems is achieved by basing this
Catspaw product on the macro implementation used on such systems as the
CDC 6600 and DEC VAX. All SPITBOL string- and pattern-matching facili-
ties are now available in a desktop environment.

The earliest versions of SPITBOL compiled directly to executable ma-
chine language. However after 1976, a new version of SPITBOL achieved
greater portability by compiling to an intermediate language of indirectly
threaded code. A highly optimized run-time system then interprets the
thread of code and data objects.

Because the language requires run-time type checking and conversion,
surprisingly little efficiency is sacrificed by using an interpreter. On aver-
age, the interpreted version of SPITBOL (Macro SPITBOL) is only 20%
slower than the fully-compiled systems (SPITBOL 370).

157

12

Chapter 12

Reference Introduction

SPITBOL has an odd name, one that some people might have trouble
mentioning in polite company. There’s a long story behind that name,
which is supposed to be an acronym for “SPeedy ImplemenTation of
snoBOL.” SNOBOL, in turn, is an acronym for “StriNg-Oriented symBOlic
Language,” and it is with SNOBOL that the SPITBOL story starts.

SNOBOL In 1962, several researchers at Bell Telephone Laboratories were apply-
ing computers to problems such as factoring multivariate polynomials and
symbolic integration. Available tools were the Symbolic Communication
Language (SCL), an internal Bell Labs product for processing symbolic ex-
pressions, and COMIT, designed for natural-language analysis. Both
proved inadequate, and frustration led the researchers to design a new lan-
guage.

The original SNOBOL was developed by David J. Farber, Ralph E.
Griswold, and Ivan P. Polonsky, and was first implemented on an IBM 7090
computer in 1963. The name, SNOBOL, came after the implementation and
considerable discussion, in part to poke fun at the then current trend toward
tortuous acronyms in computer names. No one at Bell Labs was overly en-
thusiastic about the name SNOBOL, but since the language was a small, in-
ternal development, no one expected it to face public scrutiny.

It was soon discovered that SNOBOL was applicable to a much wider
range of problems. In fact, the language proved more interesting than the
problems it was intended to solve. As more people used it, new features
such as recursive functions were added, and its generality grew. By 1964, it
had become SNOBOL3, and was available outside the Labs on such ma-
chines as the IBM 7094, CDC 3600, SDS 940, Burroughs 5500, and the RCA
601. Because these implementations were all written from scratch, each ma-
chine introduced its own dialect of the language.

SNOBOL3 had only one data type, the string. The desire for additional
data types, more complex pattern matching, and other features led to a ma-
jor redesign of the language in 1966, by Ralph Griswold, Jim Poage, and
Ivan Polonsky.

The new language—SNOBOL4—was also designed to be portable to
other machines. The other significant difference is that SNOBOL4 had so
many new features that it was no longer just a string manipulation lan-
guage—it had become a general-purpose programming language.

Most of SNOBOL4 was completed by 1967, although some features, such
as operator redefinition, did not appear until 1969. Portability was achieved
by writing the system in a macro assembly language for an abstract ma-
chine. By 1970 it was available on nine different mainframe systems. Cur-
rently, it is available on most large- and medium-scale computers, and the

158 Reference

Language Background

IBM PC family. (Contact Catspaw, Inc. for the names of SNOBOL4 suppli-
ers.)

SPITBOL SPITBOL is essentially a dialect of SNOBOL4. It has the same syntax and
an almost identical repertoire of functions, which perform in the same
ways. If you know one, you know the other. SPITBOL isn’t quite as flexible
as SNOBOL4 (which, for instance, allows for redefinition of all operators),
but gains in internal efficiency, so that the same program typically runs six
or eight times faster under SPITBOL than under SNOBOL4.

SPITBOL was devised in 1970 for the IBM 360 by Robert B. K. Dewar and
Ken Belcher, then at the Illinois Institute of Technology. Because of the great
deal of custom work involved, only two implementations were ever com-
pleted, these being the IBM 360/370 and the Univac 1100. Dewar maintains
that he was unaware of what a “spitball” was until after his implementa-
tion, along with the name, was already in circulation. (Readers unfamiliar
with the American game of baseball need to know that a “spitball” is the ille-
gal wet treatment of a baseball, and so connotes an unfair, or underhanded
action. The original SPITBOL 360 broke all rules of reasonable assem-
bly-language programming in its quest for speed.)

In the summer of 1974, Dewar went to England to implement SPITBOL
for the ICL 1900, a British mainframe. Out of time at the end of the summer,
he realized that designing a new SPITBOL system for each type of computer
was too time-consuming. Returning the following year, he discarded the
previous year’s work, and with A. P. McCann of the University of Leeds, re-
wrote SPITBOL in a generic assembly language he created, Minimal. That
change in SPITBOL was announced in 1976; this method of implementing
the language is known as Macro SPITBOL, and has been used in all imple-
mentations since, including MaxSPITBOL.

Besides SNOBOL4 and SPITBOL, the SNOBOL family of computer lan-
guages includes FASBOL, SITBOL, SNOBAT, and SNOBOL4B, as well as
preprocessors like SNOCONE and Rebus. Icon, a relatively new language
which is gaining in popularity, is in many respects a descendant of
SNOBOL and bears many similarities, especially the concepts of “success”
and “failure” for operations. That’s understandable, since one of the driving
forces behind Icon is Ralph Griswold, who was also one of the creators of
SNOBOL.

SPITBOL is in wide use on mainframe and minicomputer systems. For
desktop computers, Dewar has implemented SPITBOL for the IBM PC fam-
ily. Catspaw has developed SNOBOL4 for the IBM PC family (SNOBOL4+),
and SPITBOL for the Apple Macintosh™ (MaxSPITBOL), for Intel 80386 ar-
chitectures, for Motorola 680x0-based Unix systems, and for RISC systems
such as Sun Microsystem’s SPARC, IBM’s RS/6000, and MIPS R-3000.

Introduction 159

12

TThis chapter provides information on running SPITBOL. It describes:

• the command line used to invoke SPITBOL

• the variety of options available to alter SPITBOL’s behavior

• input and output from standard files

• use of environment variables to provide additional information to
SPITBOL

• information about save files and load modules

The general form of the command line to execute SPITBOL is given be-
low. Items within [] are optional, and may be omitted.

spitbol [options] ifile[.spt or .spx] [args]

where

ifile A list of one or more files from which a program is read. The
files are read sequentially until an END statement is found. If
no ifiles are present, the compiler will present a short sum-
mary of the options available.

If ifile cannot be opened, and the name provided did not have
a file name extension, SPITBOL tries to open it with exten-
sions .spt and .spx corresponding to possible source and save
file names.

After all ifiles are read in order, the system will read from
standard input. An isolated “–” (hyphen) may be placed in
the ifile list to force standard input to be read at that point in-
stead of a file. When end-of-file (control-D or control-Z) is sig-
naled, reading resumes with the next ifile. The source pro-

161

13

Chapter 13

Running SPITBOL

Command Line

gram consists of the sequential concatenation of all files read
up to the END statement.

If a program ifile contains data following the END statement
to be read by the program, use the –r option described on the
next page to force INPUT to continue reading the ifile instead
of switching to standard input.

options Options affect the compilation and runtime behavior of
SPITBOL, and can provide file names for I/O. They are pre-
ceded by a minus sign, and multiple options may be grouped
together. Options must precede the ifile list, if any.

args Arguments on the command line after the ifile that contained
the program’s END statement are ignored by SPITBOL.
HOST(3) returns the index of the first unused argument, and
HOST(2, i) retrieves argument i. These can be easily accessed
using the args.inc file described in Appendix A, page 259.

Options appear before any input file names:

spitbol options ifiles args

A brief summary of all options is produced by typing:

spitbol

Options requiring a numeric argument may have a “k” or “m” ap-
pended to the number to indicate units of “kilo” and “mega” respectively.
That is, “8k” can be written in place of 8192, or “8m” instead of 8388608. All
numbers are decimal, and may not have embedded punctuation.

Compilation
and execution

–b suppress SPITBOL’s two-line screen sign-on message (also
recorded in any save file or load module created)

–f don’t fold lower-case names to upper case

–k run program even with compilation error (like –ERRORS con-
trol statement)

–n suppress execution (like –NOEXEC control statement)

Input/output Options taking a file name may be separated from the name by a colon,
equal sign, or blank. A single hyphen “–” may be used anywhere in place of
a file name to represent standard input or output.

–e don’t send error messages or trace output to the screen; send
to standard output instead, which may then be redirected:

spitbol –e ifiles >trace.dat

–o=ofile

162 Reference

Command Line Options

any program listing, statistics, error messages or dumps are
written to this file. If no extension is present, SPITBOL ap-
pends .lst. Data assigned to variable OUTPUT is not affected by
this option, and continues to go to standard output.

To write to standard output and simultaneous redirect stan-
dard output, use a hyphen for the file name:

spitbol –o=– ifiles >outfile.dat

–r INPUT variable should begin reading data at the line following
the END statement in the last source file compiled. If no lines
follow the END statement, INPUT signals end-of-file immedi-
ately. Normally SPITBOL ignores anything beyond the END

statement.

–n=file associate file with I/O channel number n. INPUT/OUTPUT

functions with the same channel number (second argument)
may omit the file name (third argument). SPITBOL will use
the file specified on the command line for this channel. File
processing options may appear in square brackets after the
file name (see the description of the INPUT function in Chapter
19, “SPITBOL Functions,” for processing options). For exam-
ple,

–23=infile.dat[–r10]

associates infile.dat with I/O channel 23. The file can be read
in binary mode, using 10-character records, after executing:

INPUT(.IN, 23)

Listing and
statistics

If a listing option (–a, –l, –p, –z) calls for a listing, but no ofile is provided,
the listing is written to the first ifile with its extension changed to .lst.

–a like –lcx. Produce listing and statistics

–c generate compilation statistics

–gn number of lines per page for listings (default –g60)

–h suppress SPITBOL version identification string and
date/time that normally appear at the start of a listing

–l produce normal program listing

–p produce listing with wide titles for printer

–tn page width in characters for listings (default –t120)

–x generate execution statistics

–z produce listing with form feeds

Running SPITBOL 163

13

Memory
control

–dn size (bytes) of maximum allocated dynamic area (the heap)
(default –d64m, or 64 megabytes). This option is not available
in SPITBOL-8088, where the maximum dynamic area size is
fixed at 56 kilobytes.

–in number of bytes by which the dynamic work space (heap) is
enlarged each time more memory is required (default –i128k).
This is also the minimum starting size for the heap. All pro-
gram object code and runtime data is held in the heap. Under
SPITBOL-8088, the default heap starting size is 56k, and no
heap expansion is possible.

–mn maximum size (bytes) of any created object (default –m4m, or
4 megabytes for all systems except SPITBOL-8088, where the
default maximum object size is 9,000 bytes). This is the size of
the longest individual string allowed, or the largest individ-
ual array. Keyword &MAXLNGTH is assigned this value when
execution begins.

Because of efficiency decisions made by SPITBOL’s design-
ers, the number specified for the maximum object size must
be numerically less than the starting memory address of
SPITBOL’s work space. If it is not, SPITBOL ignores (and is
not able to use) any memory between the low end of the work
space and this value. This is not a practical problem under
systems with virtual memory because any unused region will
likely be swapped out. MS-DOS and OS/2 SPITBOL-386 is
linked such that the heap is offset to a virtual address at 4
megabytes.

–sn maximum size (bytes) of stack space (default –s32k, except in
SPITBOL-8088, where it is 2,830 bytes)

Parameter
string

–u string string retrievable by program with HOST(0). String must be
quoted if it contains any blanks or other command-line delim-
iters. A better way to process arguments is through the
args.inc include file described in Appendix A, page 259.

Save files and
load modules

–w create a stand-alone load module after compilation. When op-
erating under Unix, the load module is named ifile.out. Un-
der SPITBOL-386, the load module is named ifile.exe. The
first ifile name is used.

–y create ifile.spx as a save file after compilation. The first ifile
name is used.

Either option can be combined with –n to suppress execution after the
file is written.

Help –? displays a brief summary of the available options.

164 Reference

Defaults By default, program listings and statistics are generated only when re-
quested by options. All variable names are folded to upper-case during
compilation and execution. Other options are system dependent:

For all systems except SPITBOL-8088:

–m4m –s32k –i128k –d64m

For SPITBOL-8088:

–m9000 –s2830 –i56k -d56k

Examples Compile and execute program abc.spt. INPUT from standard input and
OUTPUT to standard output:

spitbol abc

As above, but produce compilation and execution statistics:

spitbol –cx abc

Compile abc.spt, producing save file abc.spx, with flag set to suppress
SPITBOL sign-on message when the save file is run. Run abc.spx:

spitbol –ybn abc
spitbol abc.spx

Note that it was necessary to specify the .spx extension, since given the
simple name abc, the system would read abc.spt by default.

Compile program split across files prog1.spt and prog2.spt, produce full
listing to file prog.lst, and suppress execution:

spitbol –pn –o=prog.lst prog1 prog2

Compile and run abc.spt, and make string “FILE1, FILE2" available to the
running program via the HOST(0) function:

spitbol –u “FILE1, FILE2" abc

Standard input is the file that programs read by default. Standard input,
file descriptor 0, may be accessed in two ways. In the absence of the –r op-
tion, the INPUT variable will read from standard input when execution be-
gins. Alternately, standard input may be attached by calling the INPUT func-
tion with “[–f0]” as the third argument. This is described more fully in the de-
scription of the INPUT function.

Standard output, file descriptor 1, is associated with variable OUTPUT

when program execution commences. Standard output is produced only by
assignments to OUTPUT and by error messages. Standard output may also
be accessed by invoking the OUTPUT function with “[–f1]” as the third argu-
ment.

Running SPITBOL 165

13

Standard I/O and Redirection

Normally, standard input reads from the keyboard, and standard out-
put writes to the screen. Standard input or output may be redirected by con-
ventional methods. Input may be read from a file or pipe, and output writ-
ten to a file or pipe. For example, to execute prog1.spt, and have INPUT auto-
matically associated with file1 instead of the keyboard, use

spitbol prog1 <file1

In the next example, INPUT reads the results of the MS-DOS or OS/2 dir

command, and OUTPUT is written to FILE2:

dir | spitbol prog1 >FILE2

Standard error, file descriptor 2, is always associated with variable TER-

MINAL, and provides read and write access to the keyboard and screen, re-
gardless of redirection which may have occurred on the command line.

MS-DOS, OS/2, Windows and Unix all provide environment strings or
“shell variables” to a program. SPITBOL uses these strings in three ways:

• To specify sub-directories that will be searched for include files and ex-
ternal functions

• To associate file names with SPITBOL I/O channels

• To provide other information to your program via function HOST(4)

The examples that follow alternate between MS-DOS (or OS/2), Berke-
ley Unix and System V Unix syntax. With the appropriate syntax, the exam-
ples work on all systems.

Directories Search directories for include files and external functions

The environment variable SNOLIB may be set to a list of sub-directory
paths to be searched for files given in an –INCLUDE control statement or in
the LOAD function. The name SNOLIB must appear in upper-case letters. Un-
der MS-DOS, Windows and OS/2, paths are separated by semicolon:

set SNOLIB=c:\spitbol\library;d:\spitbol\includes

Note that there is no space on either side of the equal sign. For the Berke-
ley Unix C-shell, paths are enclosed in quotes and parentheses and sepa-
rated by spaces:

setenv SNOLIB “(/spitbol/library /spitbol/includes)”

For the System V shell, separate paths with colon, and export the SNOLIB

variable:

SNOLIB=/spitbol/library:/spitbol/includes
export SNOLIB

166 Reference

Environment Variables

SPITBOL looks first in the current sub-directory for the file. If not found
there, the SNOLIB sub-directories are prepended one-by-one to the file name
until the file is found, or all attempts fail.

I/O files Associating Files with I/O Channels

Environment variables can associate file names with SPITBOL I/O
channels. If your program’s INPUT or OUTPUT function omits the file name,
the environment is searched for the string form of the I/O channel (second
argument). If found, the name supplied is used in the function call. File pro-
cessing options may appear in square brackets after the file name (see the
description of the INPUT function in Chapter 19, “SPITBOL Functions,” for
processing options). For example, under MS-DOS or OS/2,

set 23=infile.dat[–L500]

associates infile.dat with I/O channel 23. The file will be opened in line
mode, with a 500-character record length, upon execution of the statement

INPUT(.datasrc, 23)

Unlike its command line equivalent, this technique works just as well for
the non-numeric channels permitted by SPITBOL. For example, under the
Berkeley C-shell,

setenv XYZ poetry.txt

Within a SPITBOL program, the file poetry.txt would be opened by

INPUT(.IN, ‘XYZ’)

If the same I/O channel appears both as an environment variable and on
the command line, the command line takes precedence. Either of these
methods are useful ways to avoid hard-coding file names into programs.

HOST access Accessing Environment Strings from your Program

The HOST function provides a way for programs to see if a particular
string is in the environment. Given the System V Unix shell commands:

DIRECTION=NorthEast
export DIRECTION

The program statement

HEADING = HOST(4, “DIRECTION”)

will set HEADING to “NorthEast”. The HOST function fails if the desired string
is not found in the environment. String names must have the same case as
they have in the environment (always upper-case for MS-DOS, Windows
and OS/2).

Running SPITBOL 167

13

SPITBOL provides two methods of saving a compiled program.

Save files A “save file” records the program object code and data in SPITBOL’s
heap as well as other information necessary to resume the program. Save
files are compressed when written, resulting in relatively compact files.
Compression also obscures any data strings and variable names in the heap,
making the save file unintelligible to the casual browser.

Save files can be created immediately after program compilation and
prior to execution by specifying the –y command-line option. The save file is
written to a file with the same name as the first source file, but with exten-
sion .spx.

Save files may also be written after the program has begun execution,
perhaps after a lengthy initialization is completed. The program executes
function EXIT(–3,filename), which writes a save file with the given name, or
a.spx if the file name is omitted. After writing the save file, SPITBOL termi-
nates execution. (Use EXIT(–4,filename) to continue execution after writing
the save file.)

A save file is loaded and resumed merely by supplying its name in place
of a source file when starting SPITBOL:

spitbol a.spx

The .spx extension can be omitted if there will be no confusion with a file
named a.spt.

Save files are tied to a specific version of SPITBOL. Subsequent versions
of SPITBOL may render existing save files obsolete, and they will have to be
regenerated to run with the new version.

Load modules A “load module” is an executable file containing the entire SPITBOL sys-
tem in addition to your program’s object code and data. Because they con-
tain all of SPITBOL, load modules tend to be relatively large compared to
save files.

Load modules can be created just prior to program execution by specify-
ing the –w command-line option. They are created with the same name as
the first source file, but with extension .out for Unix, extension .exe for
MS-DOS, Windows and OS/2.

Load modules may also be written during program execution by calling
EXIT(3,filename), which creates a load module with the given name, or a.out
or a.exe if the file name is omitted. After writing the load module, SPITBOL
terminates execution. (Use EXIT(4,filename) to continue execution.)

168 Reference

Save Files and Load Modules

A load module is executed by typing its name in the shell or command
processor, just like any other program. Because they are independent of the
SPITBOL program, new versions of SPITBOL do not affect them.

Resumption When a save file is loaded back into SPITBOL or when a load module is
subsequently executed, all I/O files except those associated with INPUT,
OUTPUT, and TERMINAL are closed. If created with the –w or –y com-
mand-line option, execution begins with the first program statement. If cre-
ated with the EXIT function, execution resumes by having the EXIT function
return a null string value.

If the –b option was present when the save file or load module was cre-
ated, then execution resumes silently—without SPITBOL’s normal sign-on
message.

External
Functions

External functions are loaded dynamically at execution time by
SPITBOL’s LOAD function. The implications of this must be clearly under-
stood by programmers who use external functions and wish to create save
files or load modules.

External functions are not saved within a save file or load module. When
the save file or load module is subsequently loaded and resumed, the LOAD

function call(s) must be executed at that time. Therefore, the external func-
tion(s)s must be present on that system so that they can be dynamically
loaded. You will have to distribute them along with your save file or load
module.

External functions that are dynamic libraries must be accompanied by
any other dynamic libraries that they load in turn.

Distribution—
General

The SPITBOL program file contains material copyrighted by Catspaw,
Inc., and may be used only as specified in the license agreement contained
in the original package. However, we recognize that users will develop pro-
grams that they wish to distribute to others in executable form. This is com-
plicated by the fact that SPITBOL programs can compile new code at
runtime, thereby requiring that the compiler be available in some form to
third parties executing your programs.

Distributing
Load Modules

and Save Files

Catspaw, Inc., grants the licensee permission to make and distribute to
others copies of load modules (stand-alone executable files) and save files
(object program images), provided such modules or files do not substantially du-
plicate the function of SPITBOL as a general purpose compiler for the SPITBOL
language. That is, you cannot distribute a load module or save file that be-
haves like the SPITBOL compiler—reading and executing SPITBOL source
programs.

Running SPITBOL 169

13

Distributing for
MS-DOS and
Windows 3.1

Because SPITBOL-386 requires a DOS Extender to operate in the
MS-DOS or Windows 3.1 environment, the DOS Extender must also be in-
cluded if your distribution target is operating in such an environment.
Three files must be distributed:

32rtm.exe run-time manager containing the Portable Execu-
tion loader, a floating point emulator, and Win32
emulation

dpmi32vm.ovl DPMI (DOS Protected Mode Interface) and virtual
memory server, used if DPMI services are not oth-
erwise available. DPMI services are available in
Windows 3.1 and OS/2 DOS shell windows.

windpmi.386 Provides uncommitted-memory and some float-
ing point support if running under Windows 3.1.

The copyright owner for thse files is Borland International, and they are
being distributed with their permission.

The 32rtm.exe, dpmi32vm.ovl, and windpmi.386 files must be placed in
a directory specified in the user’s PATH environment variable.

If running Windows 3.1 (or Windows for Workgroups 3.1), the sys-
tem.ini file in the Windows directory should include the following lines:

[386Enh]
device=<path>\windpmi.386

Where <path> is the full pathname of the directory where you copied
windpmi.386.

170 Reference

Each line of input to SPITBOL consists of a sequence of ASCII characters,
terminated by a carriage return. Program lines may be up to 1,024 charac-
ters long—characters beyond the 1,024th are ignored.

Comment and control statements are always one line long. However, a
program statement may occupy several lines if necessary. A continuation
mark (described below) is placed in the first column of the additional lines.

An asterisk (*) in character position one denotes a comment statement.
All text through the end-of-line is copied to the listing file, but is otherwise
ignored by SPITBOL.

Control statements provide instructions to the SPITBOL compiler.

They begin with a minus (–) in character position one. Controls may be
specified in upper- or lower-case, regardless of the current state of
case-folding. Unlike other versions of SPITBOL, Catspaw SPITBOL follows
the SNOBOL4 model and ignores unrecognized control statements.

Multiple controls may appear on the same line, separated by commas:

–FAIL, EXECUTE, LIST

(In some SNOBOL4 reference books, you will see control “cards” and
comment “cards” mentioned. That’s a reflection of the old days of punch
cards. They are the same as “control statements” or “comment state-
ments”.)

171

14

Chapter 14

SPITBOL Statements

512 characters

in SPITBOL-8088

Comment Statements

Control Statements

There are two types of control statements—those of general usage, and
those concerned with producing a program listing suitable for printing.

General
controls

–ERRORS
–NOERRORS

These statements control whether SPITBOL should commence program
execution in the presence of compilation errors. –NOERRORS is the default,
and suppresses execution if there is a compilation error. –ERRORS will begin
execution anyway. The –k command line option does the same as –ERRORS.

–CASE N If N is not 0, then lower-case names are folded to upper-case (the default).
If N is 0, or not specified, then upper- and lower-case names are separate; i.e.,
Label and LABel are different when N is 0, but the same when N is 1. The de-
fault is to perform case-folding.

–COPY “file”
–INCLUDE “file”

Compile source code from the specified file. The file name must be en-
closed in single or double quotes. Included files may be nested 9 deep.
When the End-of-File is encountered, compilation resumes with the line fol-
lowing the –INCLUDE statement. The include nest depth appears in the list-
ing file between the statement number and the statement proper.

As an example, if you compile a program like this:

CAMPAIGN = ‘MUDSLINGING’
–INCLUDE “asc.inc”
LOOP CAMPAIGN ? LEN(1) . C = :F(END)

TERMINAL = ASC(C) :(LOOP)
END

It will show up in the listing like this:

1 CAMPAIGN = “MUDSLINGING”
–INCLUDE “asc.inc”

2 1 DEFINE(‘ASC(S)C’)
3 1 ASC_ONE = LEN(1) . C
4 1 ASC_PAT = BREAK(*C) @ASC :(ASC_END)
5 1 ASC S ? ASC_ONE :F(RE-
TURN)
6 1 &ALPHABET ASC_PAT :(RETURN)
7 1 ASC_END
8 LOOP CAMPAIGN ? LEN(1) . C = :F(END)
9 TERMINAL = ASC(C) :(LOOP)
10 END

The numbers at the far left are the statement numbers, in one sequence
for the entire program—the include files are inserted in place. The next
number indicates the depth of the included statements; if asc.inc had in-
cluded another function, then that function’s statements would be prefixed
by 2, and so forth.

SPITBOL will search other directories for included files based on the
SNOLIB environment variable. See “Directories” on page 166

172 Reference

To avoid compilation errors due to duplicate labels, SPITBOL will only in-
clude a particular file once. That is, if files a.inc and b.inc are both included in a
program, and both a.inc and b.inc attempt to include file c.inc, only one copy of
c.inc will be read. In situations where you deliberately wish to include multiple
copies of a file, simply append a blank after the file name. SPITBOL remembers
only the “trimmed” names of files included so far, so the comparison with the
blank-padded name will fail, and the file will be included again.

–COPY is a synonym for –INCLUDE, and is provided for compatibility
with SPITBOL/370.

–FAIL
–NOFAIL

When the –FAIL mode is set (the default), a failure in a statement without
a Goto is ignored, and execution continues with the next statement in se-
quence. This can lead to undetected errors, especially when array subscripts
are out of bounds, or there are pattern matches which fail when you were
sure they would always succeed.

Including a –NOFAIL in your program changes this. If a statement with-
out a Goto fails, you’ll get an execution error message.

–FAIL and –NOFAIL can be intermixed in the same program; statements
will be compiled in the mode currently in effect.

–EXECUTE
–NOEXECUTE

The usual course is to compile a program and then run it. But when
you’re writing a program, you often want to compile it without running it,
so that you can quickly check for compilation and syntax errors. Using the
–NOEXECUTE control does just that—compiles your program, but does not
run it. When you’re ready to run the program, you change it to –EXECUTE,
or just eliminate that line.

The command-line option –n also compiles the program but suppresses
execution.

–IN### Sets the maximum line length when compiling the source program to
“###”. This is also the record length for reading from standard input during
execution. Note that there is no space between –IN and the number. The de-
fault value is 1,024 (512 for SPITBOL-8088). Typical usage is to set this con-
trol to 72 to ignore sequence numbers present in columns 73 to 80 of a card
deck.

–OPTIMIZE
–NOOPTIMIZE

SPITBOL normally does some optimization at compile time. It evaluates
expressions consisting entirely of constants, and replaces the expression
with the result. Thus if you have the statement:

A = B / (3 + 4)

then the denominator is replaced by 7 when compiled, rather than sum-
ming 3 and 4 each time the statement is executed. More dramatic improve-
ments occur when a pattern can be pre-compiled, such as:

SUB ? LEN(3) . X BREAK(“ABab”) . Y SPAN(“AABb”) . Z

In this case, the entire pattern is constructed once, at compile time, in-
stead of being recreated each time the statement is executed.

SPITBOL Statements 173

14

A second optimization is that unlabeled empty statements without
Gotos are not compiled. Blank lines will not incur an execution penalty.

We know of no reason ever to use –NOOPTIMIZE. It is included for com-
patibility with SPITBOL/370, which provided additional optimizations
that could affect program execution.

Listing controls

–EJECT Advance to a new page in the listing file. Depending on other command
line listing switches, this control will either produce three blank lines, or a
form feed character. See Chapter 13, “Running SPITBOL,” for more infor-
mation on these options.

–LINE N “file” Allows the user to override the source file name and line number that
will be associated with the next statement. This provides a method for
preprocessors such as Rebus and Snocone to place their source lines into the
target SPITBOL program for use in error messages. The statement formis:

–LINE line_number ‘filename’

The file name is optional, but must be quoted if it appears.

The current line number and file name are available to your program in
keywords &LINE and &FILE. The line number and file name of the previous
statement are available in &LASTFILE and &LASTLINE.

–LIST This statement turns on listing, thereby producing a program listing
with statement numbers, like that shown under –INCLUDE.

Another way to produce a listing is with the –l command line option.

The listing goes to a file with the same name as the source-code file, but
with the extension .lst. A different listing file can be specified by using the
–o=name command line option.

–NOLIST This statement turns off listing (the default).

–PRINT
–NOPRINT

Control statements are normally displayed in any listing being made.
Control –NOPRINT turns this feature off; –PRINT turns it on (the default).

–SINGLE
–DOUBLE

Listings are normally single-spaced. These control statements allow you
to single- or double-space all or part of a program listing.

–SPACE N This sends N blank lines to the listing. N defaults to one if absent.

–STITL text Subtitle line for program listing, which appears below the title line. The
list file is advanced to a new page prior to printing any title and subtitle.

–TITLE text Title line for program listing. The list file is advanced to a new page prior
to printing the new title and any subtitle line.

174 Reference

Defaults Catspaw SPITBOL defaults to:

–CASE 1 Case-folding of names
–PRINT Display control statements in listing
–NOLIST No listing
–FAIL Ignore statement failure without Goto
–EXECUTE Run after compile
–IN1024 Source program line length
–NOERRORS Don’t execute if compilation error
–OPTIMIZE Opitimize code generation

If a line is not a control or comment statement, it is considered SPITBOL
program text. A SPITBOL statement may have up to five components. The
general form of a statement is:

LABEL SUBJECT ? PATTERN = REPLACEMENT :GOTO

Statement elements are separated by blank or tab.

Ignoring the LABEL and GOTO fields for a moment, the remaining three
elements may appear in various combinations to create different types of
statements:

Evaluate
expression

SUBJECT

The expression comprising the subject is evaluated. It may invoke both
built-in and program-defined functions.

Assignment
statement

SUBJECT = REPLACEMENT

This is an assignment statement, in which the value on the right is assigned
to the variable on the left. If failure occurs when evaluating the subject or re-
placement components, the assignment does not occur.

Pattern match SUBJECT ? PATTERN

This is a pattern-matching statement. The subject and pattern expres-
sions are evaluated, and the specified pattern is applied to the subject string,
producing success or failure.

Pattern-match
with

replacement

SUBJECT ? PATTERN = REPLACEMENT

This statement proceeds like the pattern-matching statement. If the pattern
match succeeds, the replacement expression is evaluated and replaces the
portion of the subject matched. Only the matched portion is replaced; char-
acters adjacent to the matching substring are not disturbed.

SPITBOL Statements 175

14

Program Statements

If the equal sign (=) is present but the replacement field is absent, the null
string is assumed as the value of the replacement field.

The Goto field provides two-way branching to test the success or failure
of the preceding statement elements.

Label field If a label is present, it must begin with the first character of the line. La-
bels provide a name for the statement, and serve as the target for transfer of
control from the Goto field of any statement. Labels must begin with a letter
or digit, optionally followed by an arbitrary string of characters. The label
field is terminated by the character blank, tab, or semicolon. If the first char-
acter of a line is blank or tab, the label field is absent.

If case-folding is in effect, lower-case letters are converted to upper-case
before defining the label.

Subject field The subject field specifies the string which will be the subject of pattern
matching. It also specifies the left side of a simple assignment statement if
pattern matching is absent.

In an assignment statement, the subject must be a variable name, an ar-
ray or table element, an unprotected keyword, a field-reference function
from a program-defined data type, or a program-defined function that has
returned by name by branching to NRETURN. If a string is produced by eval-
uating an expression, the indirect ($) operator must be used to reference the
underlying variable.

If the subject appears in pattern-matching without replacement, the sub-
ject must evaluate to a string. The string is scanned left to right during the
pattern-match. If the subject evaluates to an integer or real number, it is au-
tomatically converted to a string. If replacement is present, the same subject
restrictions of assignment statements apply. Thus, a literal string is a valid
subject only if replacement is absent.

If the expression comprising the subject contains the concatenation oper-
ator, the subject should be enclosed in parenthesis.

Pattern field The pattern may be a simple string, or a complex expression involving
primitive pattern functions. The pattern specifies one or more strings which
are systematically searched for in the subject. The pattern match succeeds if
a match is found, and fails otherwise. The pattern may assign various
matching components to variables with the binary assignment operators
dot and dollar sign (., $).

Pattern-matching is a rich language of its own; a sub-language within
SPITBOL. Patterns may be recursive, and have looping properties. It is often
possible to condense several program lines into a single pattern that will be
incomprehensible to its author several days later. Resist the temptation!

176 Reference

Replacement
field

In an assignment statement, there are very few restrictions on the re-
placement field. If the subject is an unprotected keyword, the replacement
field must evaluate to an integer value (except for &ERRTEXT, which will ac-
cept a string). If the subject is a variable, the replacement field is assigned di-
rectly to it, without type conversion.

If there is pattern matching on the left side of the statement, the replace-
ment field must evaluate to a string, so that it may be inserted into the
matched portion of the subject string.

Replacement occurs only if evaluation of the subject, pattern, and re-
placement succeeded. Primitive functions which return success or failure
may be used in the replacement field as predicate functions. Since they re-
turn the null string, they do not alter the replacement value. However, their
failure can prevent replacement from occurring, and can be tested in the
Goto field. Loops can be easily constructed:

N = LT(N, 50) N + 1 :S(LOOP)

will increment N and transfer to label LOOP if N is less than 50.

Goto field Statement execution normally proceeds sequentially from one state-
ment to the next. The Goto field allows this flow to be altered by directing
the SPITBOL system to continue execution elsewhere. The Goto field is set
off from the preceding statement elements by blank or tab, and colon (:). It
may assume three forms: unconditional, conditional, and direct.

The unconditional Goto causes control to be transferred to the specified la-
beled statement. The label is enclosed in parenthesis, and may be a name, or
the result of evaluating an expression and applying the indirect operator
($). Transfer is made to the labeled statement regardless of the success or
failure outcome of the earlier parts of the statement.

The conditional Goto similarly specifies control transfer to a labeled state-
ment, but it depends on the success or failure of the statement. The letter S

precedes the parenthesized label where control goes next if the statement
succeeds. The letter F specifies the branch to be taken if the statement fails.
For example:

:S(LOOP) Branches to label LOOP if the statement succeeds.

:F(ERROR) Branches to label ERROR if the statement fails.

:S(OK) F(NOGO) Branches to label OK on success, NOGO on failure.

:(AGAIN) Unconditionally transfers control to label AGAIN.

:($(‘VAR’ N)) Branches to the label obtained by concatenating
the string ‘VAR’ with the value of variable N.

The direct Goto is used to branch to a block of code compiled with the
CODE function. If the code contains labels, a regular Goto could branch to
the label and begin execution in the code block. The direct Goto will branch
to the start of the code block, labeled or not. A direct Goto is specified by

SPITBOL Statements 177

14

placing in angle brackets the name of the variable which points to the code
block:

VAR = CODE(string) :<VAR>

Direct Gotos may be made conditional by preceding them with S or F.
They may also appear with regular Gotos:

VAR = CODE(string) :S<VAR>F(COM-
PILE_ERROR)

The lower-case letters s and f may be used interchangeably with S and F,
regardless of case-folding.

The Goto field may appear on a line without any subject, pattern, and re-
placement. The absent SPITBOL statement is assumed to have succeeded.

A SPITBOL statement may be divided across several lines by placing a
plus (+) or period (.) in character position one of the successive lines. There
is no limit to the number of continuation statements allowed. The statement
must be divided at a point where a blank or tab could appear as an operator
or separator; it cannot be split in the middle of a name or quoted string.

Very long strings may be entered on multiple lines, using the implicit
blank between lines as a concatenation operator:

LONG_STRING = “This is an example of a very long ”
+ “string, which wends its way across multiple continuation state”
+ “ments. There is an implicit blank at the beginning of each ”
+ “line, which provides the concatenation operator between ”
+ “segments.”

The semicolon character may be used to place several statements on one
line. Each semicolon terminates the current statement and behaves like a
new “column one” for the statement which follows. Program, control, and
comment statements are permitted after the semicolon; however, nothing
should follow a comment statement, because all characters in it, (including
any semicolons), are ignored.

I = 1; J = 2; S ? PAT = ‘HENRI’ :S(YES)
LINE ? WORDPAT = ;* Remove next word
I = 1;OUT OUTPUT = A :F(END); I = I + 1 :(OUT)
A = 42 ;–DOUBLE

Because of its poor readability, placing labels in the middle of a line is
strongly discouraged.

178 Reference

Continuation Statements

Multiple Statements

Notice that a comment statement is permitted after the semicolon. This
provides a simple method to add end-of-line comments:

PARA NEXT = GETNEXT() :F(FRETURN) ;* Return if
End-of-File

IDENT(NEXT) :S(RETURN) ;* Return on empty
line

PARA = PARA NEXT :(PARA) ;* Splice line

The last statement in a program must be an END statement. The word
END appears in the label field, beginning in column one. Normally, it is the
only word on the line:

…
OUTPUT = ‘All done’

END

After reading the END statement, compilation ends, and execution be-
gins immediately with the very first program statement. When the program
is done, it should flow into the END statement, or use a Goto to transfer to it.

Occasionally, we would like to begin execution at other than the first
statement. If we place a statement label in the subject field of the END state-
ment, execution will begin there. For example, this statement will cause exe-
cution to begin at the statement labeled START:

END START

Note that for compatibility with mainframe implementations, Catspaw
SPITBOL provides the –r command-line option. When this is in effect, the IN-

PUT variable begins reading data at the line following the END statement in
the source program file.

SPITBOL Statements 179

14

The END Statement

Following are lists of all the unary and binary operators in SPITBOL. Un-
used operators may be attached to program-defined or built-in functions
using the OPSYN function. Unary operators have equal precedence among
themselves, and higher precedence than binary operators. Operators of
higher precedence are performed first, unless reordered by parentheses.
Where several instances of operators with the same priority appear, asso-
ciativity specifies which one is performed first.

Unary operators all have equal priority which is greater than that of any
binary operator. If several appear together, they are performed right-to-left.

Operator Name Definition

@ at sign Assigns cursor position to its operand

~ tilde Negates failure or success of its operand

? question mark Interrogation—returns null if operand succeeds

& ampersand Keyword

+ plus Indicates positive numeric operand

– minus Negates numeric operand

∗ asterisk Defers evaluation of expression

$ dollar sign Indirection

. period, dot Returns a name

181

15

Chapter 15

Operators

Unary Operators

The following unary operator symbols are undefined and are available
for user definition using the OPSYN() function.

Operator Name Definition

! exclamation Unused

% percent Unused

/ slash Unused

pound, sharp Unused

= equal Unused

| vertical bar Unused

Indirect
reference and

case-folding

The indirect reference operator ($) converts a string to a variable name.
When case-folding is in effect, the string characters are treated as up-
per-case letters when producing the name. The string itself is not modified.
Thus,

$(‘abc’)

references variable ABC when case-folding, and variable abc when not.

Binary operators of highest numeric priority are performed first, unless
there are parentheses which say otherwise. Note that multiplication has a
higher priority than division. When operators of equal priority are adjacent,
associativity specifies which one is performed first.

Operator Association Priority Definition

= right 0 Assignment

? left 1 Pattern match

| right 3 Pattern alternation

space right 4 Concatenation or match

+ left 6 Addition

– left 6 Subtraction

/ left 8 Division

∗ left 9 Multiplication

^, ! or ∗∗ right 11 Exponentiation

$ left 12 Immediate assignment

. left 12 Conditional assignment

182 Reference

Binary Operators

The following binary operations are undefined and are available for user
definition using OPSYN().

Operator Association Priority Definition

& left 2 Unused

@ right 5 Unused

left 7 Unused

% left 10 Unused

~ right 13 Unused

Operator
Extensions

SPITBOL provides several extensions to the standard SNOBOL4 lan-
guage. See Chapter 9, “Advanced Topics,” for examples of their usage. The
extensions are:

• Multiple use of the assignment (=) operator within a statement, such as A
= B = C + 1.

• Embedded pattern matching and replacement: A = (B ? C = D) + 1.

• Alternative evaluation, in which expressions in a parenthesized list are
evaluated left to right until one succeeds: A = (LT(I,J) I, GT(I,J) J, “Same”).

Operators 183

15

Special variables called keywords allow a program to communicate
with SPITBOL. Their names are set apart from other variables by the unary
operator ampersand (&). Protected keywords cannot be changed by a pro-
gram, while unprotected keywords can.

Several protected keywords can be traced using the TRACE function:
&ERRTYPE, &FNCLEVEL, and &STCOUNT. Tracing occurs each time SPITBOL
alters their value. For example, tracing keyword &STCOUNT produces a
trace after every SPITBOL statement is executed.

Protectedkeywords Among these keywords are several which serve as read-only reposito-
ries of fundamental system patterns and values, such as &ARB and &BAL. In
other SNOBOL4 systems, the non-keyword form of primitive patterns
(ARB, BAL, etc.), can be changed by a program, and later restored to its origi-
nal value by assigning it the corresponding keyword. Because patterns like
ARB and BAL may not be altered in SPITBOL, the keyword form is present
only for historic reasons.

&ABORT The primitive pattern ABORT.

&ALPHABET String of 256 ASCII character values in ascending order.

&ARB The primitive pattern ARB.

187

16

Chapter 16

Keywords

Protected Keywords

&BAL The primitive pattern BAL.

&FAIL The primitive pattern FAIL.

&FENCE The primitive pattern FENCE.

&FILE Source file name of the current statement being executed.

&FNCLEVEL Integer depth of program-defined function calls. It is initially zero, and
incremented by one for each function call, and decremented for each func-
tion return. This keyword may be traced.

&LASTFILE Source file name of the previous statement executed.

&LASTLINE Integer source file line number of the previous statement executed.

&LASTNO Integer statement number of the previous statement executed.

&LCASE String of 26 lower-case alphabetic characters in ascending order:

“abcdefghijklmnopqrstuvwxyz”

&LINE Integer source file line number of the current statement being executed.

&REM The primitive pattern REM.

&RTNTYPE Contains a string describing the type of return most recently made by a
program-defined function, either ‘RETURN’, ‘FRETURN’, or ‘NRETURN’.

&STCOUNT Integer count of the number of statements executed.

&STNO Integer statement number of the current statement being executed.

&SUCCEED The primitive pattern SUCCEED.

&UCASE String of 26 upper-case alphabetic characters in ascending order:

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”

188 Reference

These keywords may be set to integer values to modify SPITBOL’s be-
havior. The normal method for setting them is a statement like this:

&ANCHOR = 1

&ABEND Abnormal ending. This is normally set to 0. Changing it does not per-
form any useful function in SPITBOL, but it is included to maintain compat-
ibility with programs written to run under other operating systems.

&ANCHOR Nonzero for anchored pattern match. Initially 0, unanchored. Pattern
matching is much more efficient if performed in anchored mode.

&CASE Setting it to zero will prevent case-folding during compilation with the
functions CODE and EVAL. Initially 1, causing case-folding to occur.

&CODE The end-of-job code is an integer value in the range 0 to 255 returned by
SPITBOL to the operating system. In MS-DOS, Windows and OS/2 envi-
ronments, this is accessed from the command processor via ERRORLEVEL; in
Unix, with shell variable $? (sh) or status (csh). The default value of &CODE is
0.

&COMPARE Select collating sequence for lexical comparisons. It is ignored in the im-
plementations described by this manual, but is present for compatibility
with programs written for Catspaw’s MaxSPITBOL implementation.

&DUMP Normally, this is 0. Setting it to 1 will cause a partial dump at program
termination, and 2 or 3 will produce a full dump. The dump goes to the file
specified with –o on the command line, or to standard output if none.

A partial dump includes the values of all non-constant keywords and all
non-null variables. A full dump with value 2 also includes values of all
non-null array and table elements, and non-null members of any pro-
gram-defined datatypes. Value 3 additionally lists null-valued variables
and statement labels.

&ERRLIMIT When zero (the default), an execution error or user interupt results in
program termination with an error message displayed. When non-zero and
either occurs, it is decremented by one, no message is displayed, and execu-
tion proceeds as follows: If an error label has been declared with the SETEXIT

function described in Chapter 19, “SPITBOL Functions,” control is trans-
ferred to that label.

If there is no SETEXIT label, SPITBOL converts the error to statement fail-
ure. Note that this can cause unexpected loops if the error occurred in the

Keyword 189

16

Unprotected Keywords

Goto portion of the statement, such as transferring to an undefined label, or
failure when evaluating an expression in a complex Goto.

Setting &ERRLIMIT non-zero without a corresponding SETEXIT error label
is strongly discouraged.

&ERRTEXT If an execution error occurs, then the error message text corresponding
to the error code is stored as a string in &ERRTEXT. It is possible to assign a
string to &ERRTEXT which is then used in a subsequent error report if
&ERRTYPE is assigned a value out of the range used by SPITBOL for its
own purposes.

&ERRTYPE If an execution error occurs, then the error code is stored as an integer in
&ERRTYPE. &ERRTYPE may be assigned a value; in this case, an immediate
error is signaled. This is sometimes used for reporting errors detected by a
program. Standard error codes used by SPITBOL all fall below 400. Values
in &ERRTEXT and &ERRTYPE are useful in SETEXIT error intercept routines.

&FTRACE Nonzero value causes each call and return of a program-defined func-
tion to be listed. Decremented for each trace, it is initially 0.

&FULLSCAN Set non-zero to enable exhaustive pattern scanning (the default). Setting
&FULLSCAN to 0 is an error—the “Quickscan” heuristics of older SNOBOL4
systems are not supported.

&INPUT Set to 1 for normal input (the default). If set to 0, all input associations (of
variables) are temporarily ignored.

This keyword is an anachronism from older SNOBOL4 systems that
could run compute-bound programs faster if I/O associations were dis-
abled. Having input enabled does not incur a time penalty in SPITBOL.

&MAXLNGTH The size of the largest object or string permitted by SPITBOL. The default
value for &MAXLNGTH is 4,194,304, except in SPITBOL-8088, where it is
9,000. System restrictions on possible settings are discussed in Chapter 13,
“Running SPITBOL”.

&OUTPUT Set to 1 for normal output (the default). If set to 0, all output associations
(of variables) are temporarily ignored.

&PROFILE When set to 0, the default, statement profiling is disabled. When set to 1,
statement profiling is enabled. When enabled, SPITBOL keeps track of in-
formation about each statement executed.

If profiling is enabled at any time during execution, when the program
terminates the accumulated profile goes to the file specified with –o on the
command line, or to standard output if none. The profile shows statement
numbers, the number of times each statement was executed, the total
elapsed time in milliseconds spent in each statement, and the average exe-
cution time of each statement, in microseconds.

190 Reference

A sample profile is shown below. A program listing will be required to
interpret the statement numbers.

Program Profile
STMT Number Of –– Execution Time ––
Number Executions Total(MSec) per Excn(MCSec)
1 1 0 0
2 1 0 0
3 1 0 0
4 129 83 643
6 128 17 132
7 128 17 132
8 1001 251 250
9 1001 201 200
14 1001 164 163
15 1001 484 483

Because computer clock accuracy varies from one tenth to one thou-
sandth of a second on different systems, the times will not be reliable unless
statements are executed repeatedly.

If &PROFILE is set to 2, the accumulated time spent in a user-defined
function is charged to the statement calling the function.

Profiling greatly slows down the execution of a program, so the absolute
times shown for each statement are not realistic. However, the relative
times between statements are accurate.

&STLIMIT The maximum number of statements permitted to be executed. It is ini-
tially 2,147,483,647, except in the 16-bit integer version of SPITBOL-8088
(spitbols.exe), where it is 32,767. There are no restrictions on the integer val-
ues for &STLIMIT. To inhibit this check on number of statements executed, as-
sign a negative value to the keyword:

&STLIMIT = –1

This will result in a very slight improvement in execution speed, since inter-
nal counts will not have to be updated and checked. The value of &STCOUNT

remains frozen at the value reached when &STLIMIT was set negative and the
number of statements executed is omitted from the execution statistics.
Tracing of &STCOUNT is no longer possible since its value is not incre-
mented.

&TRACE Nonzero to permit tracing with the TRACE function. Initially 0, it is decre-
mented for each trace performed.

&TRIM Nonzero to strip trailing blanks and tab characters from lines read from
files. This is faster than using the TRIM() function. Initially set to zero, which
preserves any trailing blanks or tabs. Note that in SPITBOL, unlike some
other SNOBOL4 implementations, there is no padding with blanks of short
input lines to a standard width. Regardless of the setting of &TRIM, no blank
trimming occurs when reading from a file opened for binary transfers.

Keyword 191

16

Special names The following names have special meaning to SPITBOL. If case-folding is in
effect, they may appear with any combination of upper- or lower-case letters.

ABORT Transfer to this special system label only when within an error routine
that has been invoked by SETEXIT(). It causes error processing to resume as
though no error intercept through SETEXIT() had been made. When used as
a variable, ABORT is also a primitive SPITBOL pattern that terminates a pat-
tern match.

CONTINUE Transfer to this special system label only when within a SETEXIT() error
routine. This causes execution to resume by branching to the failure exit of
the statement that produced the error. Beware of problems if the original er-
ror was in the Goto field of a statement. The error will be triggered again
when the attempt is made to branch to the failure exit. See SCONTINUE.

END This is a special label which marks the last statement of your program.
An optional label may follow the word END (in the subject field) to denote
where program execution is to begin. A program should terminate execu-
tion by transferring to label END.

FRETURN Transfer to this label to return from a program-defined function with a
failure indication.

INPUT Variable associated with the standard input file. Normally, INPUT reads
from the keyboard, but this can be changed with redirection on the com-
mand line. System file descriptor 0 is used for this input.

NRETURN Transfer to this label to return successfully from a program-defined
function by name, rather than by value. The function name should be as-
signed a name result (usually with the period (.) unary operator). A name
result may be thought of as the address of a variable. A discussion of the use
of NRETURN appears at the end of Chapter 9, “Advanced Topics.”

OUTPUT Variable associated with the standard output file. OUTPUT normally
goes to the screen, but can be sent elsewhere with redirection or the –o speci-
fication on the command line. System file descriptor 1 is used for this out-
put.

RETURN Transfer to this label to return from a program-defined function with a suc-
cess indication. A value may be returned as the function’s result by assign-
ing it to a variable with the same name as the function before transferring to
RETURN.

192 Reference

Special Names

SCONTINUE Transfer to this special system label only when within a SETEXIT() error
routine, and only after an error 320. Error 320 is generated for a user key-
board interrupt (system dependent: control-C, DEL, break, etc.). Trans-
ferring to SCONTINUE causes execution to resume by branching back into
the statement at the point of interruption. The statement then succeeds or
fails normally.

TERMINAL Variable associated with output to the screen, or input from the key-
board. System file descriptor 2 is used for this input/output.

Keyword 193

16

There are nine fundamental types of data in SPITBOL. In addition, new
data types may be defined by the user, each being an aggregate of other ex-
isting types. This section describes the nine internal types, and how they
may be converted from one to the other.

Most other programming languages require the user to explicitly de-
clare the type of data to be stored in a variable. In the SNOBOL family, any
variable may contain any data type, and the variable’s type may be freely al-
tered during program execution. SPITBOL remembers what kind of data is
in each variable. Remember, data is typed, a variable is not.

Aggregate structures such as arrays, tables, and user-defined data types
need not be of homogeneous type. Their constituent elements may all be of
different data types.

Built-in types The formal name of a data type is specified by an upper-case string (or
lower-case if case-folding is in effect), such as ‘INTEGER’, or ‘ARRAY’. It is
used with the CONVERT function to specify the data type conversion de-
sired. The formal name is also the string returned when the DATATYPE()

function is used to determine an object’s type.

Array The primitive function ARRAY() creates an array storage area, and returns
a pointer with this data type. If this pointer is stored in a variable, the vari-
able is said to be of type ARRAY. The variable may then be subscripted to ac-
cess the elements of the array.

195

17

Chapter 17

Data Types and Conversion

Data Type Names

Each array element consists of a one word memory pointer to the mem-
ory where the actual value is stored. The array requires several additional
words for housekeeping information. Arrays may not exceed &MAXLNGTH

bytes in total size.

Code The primitive function CODE() compiles a string containing SPITBOL
statements, and returns a pointer to the resulting object code block. If this
pointer is stored in a variable, the variable is said to be of type CODE. The
variable may then be used as the argument of a direct Goto by enclosing it in
angle brackets. Execution control transfers to the first statement in the object
code block.

Expression When the unevaluated expression operator (*) is applied to an expres-
sion, the result has the data type EXPRESSION. Such expressions are not
evaluated when they are defined, only when they are referenced.

E = *(LEN(K) POS(M))

defines E as an unevaluated expression. When this statement is executed,
object code is compiled to call LEN and POS and nothing more. It is only
when E is referenced in some subsequent pattern match (or EVAL‘ed) that
LEN and POS are called with the then current values of K and M. The pattern
structure is then built.

In this case, it would be more efficient to use

E = LEN(*K) POS(*M)

because execution could proceed further, and call LEN and POS to build the
pattern structure, even if the particular arguments K and M aren’t known.

In this second case the result E is a PATTERN, not an EXPRESSION. The
unevaluated expression operator must be at the outermost level to create an
object of type EXPRESSION. Expressions may also be produced explicitly
with the CONVERT() function (see below).

Integer In all versions except 16-bit SPITBOL-8088 (spitbols.exe), this is a deci-
mal number in the range –2,147,483,648 to +2,147,483,647. No fractional part
may appear. Integers are stored in twos-complement form, and occupy two
32-bit memory words (one for housekeeping information, one for the
value). In 16-bit SPITBOL-8088, the allowable range for integers is –32,768 to
+32,767, occupying two 16-bit memory words.

Name When the unary name operator (.) is applied to a variable the NAME data
type results. This can be thought of as the address or storage location of the
variable.

When the indirect reference operator ($) is applied to such a result, the
original, underlying object is obtained. That is, $(.A) is the same as using the
variable A.

Unlike SNOBOL4, the unary name operator (.) applied to a simple vari-
able name yields a NAME rather than a STRING. Since this NAME is converted
to a STRING when necessary, the difference is not normally noticed. The

196 Reference

only point at which the difference is apparent is when a NAME value is used
as an argument to the IDENT, DIFFER, or DATATYPE functions or when it is
used as a TABLE subscript.

Pattern A pattern is created by an expression containing any of the following:
other patterns, primitive patterns, pattern functions, the alternation opera-
tor (|), the conditional or immediate assignment operator (. or $), or the cur-
sor position operator (@). A simple string is not a pattern data type, even
though it may appear in the pattern portion of a statement. The following
are examples of the pattern data type:

POS(0) “A” LEN(1)
“COLUMN A” | “COLUMN B”
“ZIP” . X
“MATCH” @Y

Pattern structures may be arbitrarily large within the limits imposed by
available memory. They are not limited by &MAXLNGTH.

Real A floating-point decimal number in the range ±0.19E–322 to ±0.18E+309,
and 0. The fractional portion may contain up to 15 significant digits, al-
though only 9 are displayed by SPITBOL. A real value is stored in 64-bit,
double-precision IEEE format, with one additional memory word required
for housekeeping information.

String A sequence of characters. Each character occupies one memory byte, and
may contain any of the 256 possible bit combinations. A string of length zero
is called the null string. Maximum length of a string is determined by the
keyword &MAXLNGTH.

Table The primitive function TABLE() creates a table storage area, and returns a
pointer with this data type. If this pointer is stored in a variable, the variable
is said to be of type TABLE. The variable may then be subscripted to access
the elements of the table.

A table may be thought of as a one-dimensional array in which the array
subscripts may be any SPITBOL data type including the null string. Arrays
require integer subscripts, but table subscripts such as T<“TALLY”> or
T<13.52> are acceptable.

Tables are implemented using a hash table data structure. A contiguous
block of memory is used to hold a number of one-word “bucket headers,”
each of which points to a linked list of elements that hashed to the same
value.

Tables default to 11 bucket headers, which is inefficient for tables with a
large number of elements. You can and should specify a larger number of
buckets in the first argument to the TABLE() function. The total memory allo-
cated to bucket headers must be less than &MAXLNGTH bytes in size.

Data Types and Conversion 197

17

Program-defin
ed data type

New data types may be created with the primitive function DATA. The
name specified in the prototype string becomes a new data type in
SPITBOL. Any object created with the data type’s creation function is given
this name as its data type.

DATA(‘COMPLEX(REAL,IMAG)’) ;* Define a new data type COMPLEX
NUM = COMPLEX(2.3, –4.0) ;* Create a COMPLEX object
OUTPUT = DATATYPE(NUM) ;* Print the string ‘COMPLEX’

As far as possible, SPITBOL converts from one datatype to another as re-
quired. The following table shows which conversions are possible. Blank
entries indicate that the conversions are impossible, A indicates that conver-
sion is always possible, and U indicates conversion is usually possible, de-
pending on the value involved.

Explicit
conversion

A program may use the CONVERT() function to explicitly convert an ob-
ject to another data type. Its first argument is the object to be converted. The
second argument is a string containing the formal name of the desired data
type. The formal name must be in upper-case (or lower-case if case-folding).
If conversion is possible, the function succeeds and returns the converted
object. If conversion is not possible, the function fails. The call looks like this:

NEWTYPE = CONVERT(OBJECT, “DESIRED TYPE”)

Implicit
conversion

Implicit conversion occurs automatically when SPITBOL requires a cer-
tain data type, and your program provides it in another form. Conversion to
the correct data type will be attempted, and an error message given if con-
version is not possible.

198 Reference

String A U U A A U U

Integer A A A A A A

Real A U A A A A

Array A U

Table A A

Pattern A

Name U U U U A U U

Expression A

Code A

S I R A T P N E C

Convert ToConvert
From

Data Type Conversion

Type Ü type All possible data type conversions are explained here. Most of these oc-
cur automatically as necessary.

String Ü

integer
Leading and trailing blanks are ignored. A leading plus or minus sign is

allowed, but must be followed by at least one digit. A string consisting only
of a plus or minus character is illegal. Leading zeros are allowed. The result-
ing value must be in the legal range for integer values. A null or blank string
is converted to integer zero.

RESULT = (“–14" + ”") / “2"

stores integer –7 in RESULT.

String Ü real Leading and trailing blanks are ignored. A leading sign, if present, must
immediately precede the number. Some of the restrictions which apply
when a real number appears as a literal in a SPITBOL program are relaxed
here: a decimal point is not required, and there need not be any digits to the
left of the decimal point. A signed power of 10 may follow the mantissa. It is
designated by one of the letters E, e, D, or d. Values smaller than ±0.19E–322
are converted to 0.

? R1 = ‘ –1.234’ + “12345678" + ” 19D2 “ + ‘.5E–2’
?= R1
12347577.

String Ü

pattern
A pattern is created which will match the string value.

String Ü

name
The result is the name of a natural variable which has the given string as

its name. This is identical to the result of applying the unary dot operator to
the variable in question. Thus, CONVERT(“ABC”,"NAME") is equivalent to
.ABC. CONVERT()creates a variable ABC and returns a pointer to it.

The null string cannot be converted to a name.

String Ü

expression
The string must represent a legal SPITBOL expression. The compiler is

used to convert the string into its equivalent expression, and the result can
be used anywhere an expression is permitted.

String Ü code The string must represent a legal SPITBOL program, complete with la-
bels, and using semicolons to separate statements. The compiler is used to
convert the string into executable code. The resulting code can be executed
by transferring to it with a direct Goto or by a normal transfer of label within
the code. For example,

Data Types and Conversion 199

17

Conversion Details

S = ‘LOOP OUTPUT = A; A = LT(A,10) A + 1
:S(LOOP)F(END)’

CODE(S)
:(LOOP)

END

The string S is converted to executable code by the CODE function, and
control passes to its label with the LOOP Goto.

Integer Ü

string
Leading zeros are suppressed, and a minus sign appears if the integer

was negative. Integer zero is converted to the string “0”. For example,

A = –23; B = 0; C = 92
OUTPUT = A B C

produces the string “–23092”.

Integer Ü real The integer is converted to a real value without any loss of significance.
Example:

FIFTH = 3.42 / 5

Integer Ü

pattern
The integer is converted to a string, and the string converted to a pattern.

Example:

SUBJECT ? 19 = ‘’

Integer Ü

name
SPITBOL first converts the integer to a STRING and then performs a

STRING to NAME conversion. Example:

X = CONVERT(1, ‘NAME’)

A subsequent reference to $X would access a variable with name “1".

Integer Ü

expression
The result is an EXPRESSION which when evaluated yields the original

integer as its value. For example:

X = CONVERT(1, ‘EXPRESSION’)
TERMINAL = EVAL(X)

produces integer 1.

Real Ü string The real number is converted to its standard representation. If an expo-
nent is produced, it will always be signed. In all cases, the string will have a
decimal point. Example:

A = 12.1; B = 123456789.012
OUTPUT = A ‘, ‘ B

12.1, 0.123456789E+9
OUTPUT = A ‘ ‘ –B

12.1 –0.123456789E+9

Real Ü

integer
The real number must be in the range allowed for integer values. Con-

version occurs by truncating the fractional part. For example,

200 Reference

R = 3.14159
SUBJECT ? LEN(R) . FRONT

uses LEN(3) as a pattern since LEN requires an integer argument.

Note that the real function CHOP() can be used to remove the fractional
part of a real number without converting it to an integer, and without any
range restrictions.

Real Ü

pattern
The real is converted to a string, and the string converted to a pattern. Ex-

ample:

SUBJECT ? (12.4 / 2.0)

searches for the substring “6.2” in the subject.

The conversion can be made explicitly with:

P = CONVERT(12.4 / 2.0, ‘PATTERN’)
SUBJECT ? P

Real Ü name First convert to STRING and then convert the string to a name.

Real Ü

expression
The result is an expression which when evaluated yields the original real

value. After executing

X = CONVERT(1.23, ‘EXPRESSION’)

X has the data type EXPRESSION, and EVAL(X) produces the real number
1.23.

Array Ü table The array must be two-dimensional with a second dimension of 2, or an
error occurs (that is, it must be a two-column array). For each value of the
first subscript, J, a table entry is created, which uses [J,1] as the key and [J,2]

as the value. The table built has a number of hash headers equal to the first
dimension.

If a two-dimensional array A had these values:

A[1,1] = ‘Dog’
A[1,2] = ‘Bark’
A[2,1] = ‘Cat’
A[2,2] = ‘Meow’

and this were executed:

T = CONVERT(A, ‘ARRAY’)

the resulting table T would have these values:

T[‘Dog’] = ‘Bark’
T[‘Cat’] = ‘Meow’

Table Ü array This occurs implicitly when a table is the first argument to function
RSORT or SORT, or explicitly with CONVERT(T, ‘ARRAY’). The table is con-
verted to a two-dimensional array.

The table must have at least one non-null element. If the table is empty,
CONVERT, RSORT and SORT will fail.

Data Types and Conversion 201

17

The array generated is two-dimensional; the first dimension equals the
number of non-null elements in the table, and the second dimension is two.
For each entry, the [J,1] element is the key and the [J,2] element is the value.

When a table is explicitly converted to an array with CONVERT(), entries
are placed in the resultant array in the order they were created in the table.
That is, older table elements come before newer ones.

Name Ü

string
The formal data type name “NAME” is produced.

? A = TABLE()
? A[2] = ‘Something’
? N = .A[2]
?= N
NAME

Name Ü

integer
A NAME can be converted to an INTEGER only if it is the name of a natural

variable whose character name has the form of an integer constant. Exam-
ple:

? X = CONVERT(1, ‘NAME’)
?= 2 + X
3

Name Ü real A NAME can be converted to a REAL only if it is the name of a natural vari-
able whose character name has the form of a real constant. The result is the
corresponding real value.

Name Ü

pattern
A NAME can be converted to a PATTERN only if it is the name of a natural

(simple) variable. The result is a string pattern which matches this name.

P = .ABC
S ? P

is the same as

S ? ‘ABC’

Name Ü

expression
A NAME can be converted to an EXPRESSION only if it is the name of a nat-

ural variable whose character name has the form of a valid expression. The
result is the corresponding expression value. Example:

? E = CONVERT(‘1 + 2’, ‘NAME’)
? $E = 45
?= EVAL(E)
3
?= $’1 + 2’
45

(And a variable named ‘1 + 2’ was created, with value 45.)

Name Ü code A NAME can be converted to CODE only if it is the name of a natural vari-
able whose character name has the form of a valid code sequence. The result
is the corresponding code sequence value.

202 Reference

The SPITBOL pattern matcher is called the scanner. The cursor is the
scanner’s pointer into the subject string; it points between subject characters
(see picture on page 65). It is initially zero when positioned to the left of the
first subject character, and is incremented as the scanner moves to the right
in the subject.

This chapter discusses SPITBOL’s pattern-matching primitives, and
provides an introduction to the pattern-matching algorithm used.

SPITBOL also provides pattern functions, including ANY(), ARBNO(),
BREAK(), BREAKX(), LEN(), NOTANY(), POS(), RPOS(), RTAB(), SPAN(), and
TAB(). They are discussed in Chapter 19, “SPITBOL Functions.”

Built-in
patterns

These variables contain the primitive patterns of the same name. Unlike
SNOBOL4, these variables cannot be altered.

ABORT Causes immediate failure of the entire pattern match, without seeking
alternatives.

ARB Matches zero or more characters of the subject string. It matches the
shortest possible substring.

BAL Matches any non-null string which is balanced with respect to parenthe-
ses. A string without parentheses is considered balanced. BAL matches the
shortest string possible.

203

18

Chapter 18

Patterns and Pattern Matching

Primitive Patterns

FAIL Causes failure of this portion of the pattern match, causing the scanner to
backtrack and try alternatives.

FENCE Matches the null string and succeeds when the scanner is moving left to
right in the pattern, but fails if the scanner has to back up through it, seeking
alternatives. FENCE as the first component of a pattern effectively anchors
the match, regardless of the setting of the &ANCHOR keyword.

REM Matches zero or more characters from the current cursor position to the
end of the subject string.

SUCCEED Matches the null string and always succeeds.

Although pattern elements can be combined as subsequents and alter-
nates to produce complex patterns, the basic matching process rules are rel-
atively simple.

Pattern-match
algorithm

A pushdown stack is used to remember backtracking possibilities. A
SPITBOL pattern match proceeds as described below and shown on the
next page:

1. Set the subject string cursor to zero.

2. Point to the first pattern element.

3. If the current pattern has an alternative, push the alternative and
current cursor position onto the stack.

4. Apply the current pattern to the subject string at the current cursor
position. If it succeeds, advance the cursor past the characters
matched and go to step 5. Go to step 6 if it fails.

5. (Pattern element matched) If the current pattern has a subsequent,
point to it and go to step 3. If there is no subsequent, the entire pat-
tern match has succeeded.

6. (Pattern element did not match) Pop the stack to get a previous al-
ternative and old cursor position. If there is one, make it the current
pattern and cursor and go to step 3. If the stack is empty and key-
word &ANCHOR is nonzero, the entire pattern match has failed. If
&ANCHOR is zero, advance the starting cursor position by one and
go to step 2 if more subject characters remain.

204 Reference

Pattern Matching

Patterns and Pattern Matching 205

18

Set subject string
cursor to zero

Point to the first
pattern element

Point to subsequent
pattern element

Increment
subject cursor

Push pattern altern-
ative and subject
cursor onto stack

Advance cursor
past characters

matched

Pop stack

Apply
current pattern

to subject at current
cursor position

Does
current pattern

have subsequent?

Any
previous

alternative and
old cursor?

Can starting
subject cursor
be advanced

by one?

&ANCHOR?

Does current
pattern have

an alternative?

START

SUCCESS FAILURE FAILURE

No

No

No

No

Match

Yes

Yes

Yes

Yes

No
Match

zero

non-zero

SPITBOL Pattern-Match Algorithm

Make it the
current alternative

and cursor

Pattern-match
example

The algorithm attempts to thread a path through one alternative in each
subsequent group. We can get a feel for it by applying it to the statement:

‘ABCDEF’ ? (‘A’ | LEN(3)) (‘D’ | ‘E’)

We’ll use a graphical representation of the pattern-match process known
as a “bead diagram.” Pattern alternatives are stacked vertically, and pattern
subsequents appear as adjacent columns of alternatives. The scanner tries to
thread a needle through one “bead” in each column.

The cursor is positioned to the left of the first subject character. The cur-
rent pattern element is set to ‘A’. We stack the current cursor (0) and alter-
native, LEN(3). ‘A’ is matched to the subject, and succeeds. The cursor is
advanced to 1 and we check if ‘A’ has a subsequent. The subsequent is

206 Reference

('A' | LEN(3)) ('D' | 'E')

A B C D E F 'A'

LEN(3)

'D'

'E'

A B C D E F 'A'

LEN(3)

'D'

'E'

'A'

LEN(3)

'D'

'E'

A B C D E F

A B C D E F 'A'

LEN(3)

'D'

'E'

A B C D E F 'A'

LEN(3)

'D'

'E'

A B C D E F 'A'

LEN(3)

'D'

'E'

Stack

0
Len(3)

0
Len(3)
1
'E'

0
Len(3)

3
'E'

3
'E'

(‘D’ | ‘E’), so we point to its first element, ‘D’, and stack its alternative, ‘E’.
‘D’ does not match ‘B’, so we pop the stack, and try ‘E’ against ‘B’. Again it
does not match, and popping the stack again takes us back to LEN(3) and
cursor position 0. LEN(3) matches ‘ABC’. The first subsequent, ‘D’ matches,
and there are no more subsequents, so the entire match succeeds.

If the statement had been:

‘ABCDEF’ ? (‘A’ | LEN(3)) (‘W’ | ‘E’)

the final step of the previous diagram would fail when ‘W’ and ‘E’ failed to
match subject character ‘D’. In the unanchored pattern matching mode, the
starting cursor would be advanced to 1, and the whole process started over
again. The final portion of the bead diagram would now look like this:

It would succeed this time, with LEN(3) matching ‘BCD’ and ‘E’ matching
itself. Given a long subject, you can see how time consuming unanchored
matching can become.

The algorithm gives no clue how patterns such as ARB operate. Consider
the statement:

‘ABCDEF’ ? ‘A’ (ARB | ‘D’) ‘E’

ARB first matches the null string, and ARB‘s subsequent, ‘E’, fails when
applied to ‘B’ of the subject. The algorithm implies the next step should try
ARB‘s alternate, ‘D’, which also fails. Since there are no more alternatives, the
entire match should fail. But in practice it doesn’t—ARB matches ‘BCD’ as ex-
pected.

The answer to this puzzle is that patterns such as ARB and BAL have im-
plicit alternatives which are tried before your explicit ones. ARB behaves as
if it were:

(LEN(0) | LEN(1) | LEN(2) | LEN(3) | …)

Patterns and Pattern Matching 207

18

('A' | LEN(3)) ('W' | 'E')

A B C D E F 'A'

LEN(3)

'W'

'E'

A B C D E F 'A'

LEN(3)

'W'

'E'

A B C D E F 'A'

LEN(3)

'W'

'E'

Stack

4
'E'

and fails only when further extensions would make it larger than the sub-
ject. Only then are other pattern alternatives tried.

208 Reference

Conventions In this chapter, the following items are used to indicate the required ar-
gument type. Other types may be used, and will be automatically converted
to the required type, if possible. Integer suffixes will be used to distinguish
multiple arguments of the same type.

arg A generic argument of any SPITBOL data type.

array An array.

i An integer number.

n A number, either integer or real.

name The name of a variable, function or label, such as .VAR or ‘VAR’.
When case-folding is in effect, ‘VAR’ and ‘var’ are equivalent as
names.

r A real number.

s Any SPITBOL string.

table A table.

channel I/O channel. An integer or string.

If an argument is omitted in a function call, SPITBOL supplies the null
string instead.

Note Functions that may not be available in other SPITBOL or SNOBOL4 sys-
tems, or which operate in a substantially different manner on those systems,
have a double-outlined box around their names.

When discussing these differences, “standard SPITBOL” means com-
mon implementations of Macro SPITBOL, as devised by Dewar and
McCann. “Standard SNOBOL4” refers to Bell Labs Macro SNOBOL4, as de-
fined in The SNOBOL4 Programming Language by Griswold, Poage, and

209

19

Chapter 19

SPITBOL Functions

Built-in SPITBOL Functions

Polonsky. “SNOBOL4+” is Catspaw’s MS-DOS implementation of
SNOBOL4, version 2.1 or greater. “MaxSPITBOL” is Catspaw’s
implmentation of SPITBOL for the Apple Macintosh™.

Function
summary

Built-in functions are grouped here by functionality. Consult the de-
tailed description in the remainder of the chapter for more information.

Arrays and tables

ARRAY(s, arg) create array, prototype s, initial value arg
ITEM(array, i1, i2, …, in) reference array element
ITEM(table, arg) reference table element
PROTOTYPE(array) produce creating prototype
RSORT(array, i) sort array descending, column i
RSORT(table, i) sort table descending on key or value
SORT(array, i) sort array ascending, column i
SORT(table, i) sort table ascending on key or value
TABLE(i, x, arg) create table, i hash headers, initialize to arg

Compilation

EVAL(s) compile and evaluate expression string
CODE(s) compile program statements

Function control

APPLY(name, arg1, argn) call function name with args
ARG(name, i) retrieve ith prototype arg for named function
DEFINE(s, name) define new function, prototype s, at label name
LOAD(s1, s2) load external function
LOCAL(name, 1) retrieve ith prototype local for named function
OPSYN(s1, s2, i) make s1 synonym for s2
UNLOAD(name) remove function definition

Input/output

BACKSPACE(name) backspace file one record
DETACH(name) detach variable from channel
EJECT(channel) issue page eject on channel
ENDFILE(channel) close and release channel
INPUT(name, chanl, s) attach file to variable via channel for input
OUTPUT(name, chan, s) attach file to variable via channel for output
REWIND(channel) rewind file attached to channel
SET(channel, i, i) set file position

Memory

CLEAR(s) reinitialize all variables
COLLECT(i) garbage collect memory
DUMP(i) display variable values

Miscellaneous

CHAR(i) convert integer ordinal to character string
CONVERT(arg, s) convert arg to data type s
DATATYPE(arg) produce data type of arg
DATE() produce date and time
EVAL(expression) evaluate expression
SIZE(s) produce length of string
TIME() return execution time

210 Reference

Numeric

ATAN(n) arctangent in radians
CHOP(r) discard fractional part of real
COS(n) cosine of angle in radians
EXP(n) natural logarithm e to the nth power
LN(n) natural logarithm of n
REMDR(n1, n2) remainder after division
SIN(n) sine of angle in radians
SQRT(n) square root of n
TAN(n) tangent of angle in radians

Numeric comparison

EQ(n1, n2) numbers equal
GE(n1, n2) n1 greater than or equal n2
GT(n1,n2) n1 greater than n2
INTEGER(arg) argument integer or integer string
LE(n1,n2) n1 less than or equal n2
LT(n1, n2) n1 less than n2
NE(n1,n2) numbers not equal

Object comparison

DIFFER(arg1, arg2) objects different
IDENT(arg1, arg2) objects identical

Object creation

COPY(arg) create copy of argument
DUPL(pattern, i) replicated pattern

Pattern match

ANY(s) match one character in s
ARBNO(pattern) match zero or more occurrences of pattern
BREAK(s) match up to any character in s
BREAKX(s) like BREAK, but expand on rematch
FENCE(pattern) pass through pattern on rematch
LEN(i) match i characters
NOTANY(s) match one character not in s
POS(i) verify match cursor at i
RPOS(i) verify match cursor at i from end
RTAB(i) match to i characters from end of subject
SPAN(s) match run of characters from s
TAB(i) match to cursor position i

Program control

EXIT(i) create load module or Save file
EXIT(s) launch another program
HOST(i, arg1, …, argn) machine-specific functions
SETEXIT(name) trap errors
STOPTR(name, type) stop tracing named object
TRACE(name,s) trace object according to type

Program-defined data type

DATA(s) define new data type
FIELD(s, i) ith field name of data type s
DATATYPE(arg) data type of arg

SPITBOL Functions 211

19

String comparison

LEQ(s1, s2) s1 lexically equal to s2
LGE(s1, s2) s1 lexically greater or equal to s2
LGT(s1, s2) s1 lexically greater than s2
LLE(s1, s2) s1 lexically less or equal to s2
LLT(s1, s2) s1 lexically less than s2
LNE(s1, s2) s1 lexically different from s2

String synthesis

DUPL(s, i) replicate s i times
LPAD(s1, i, s2) pad string on left
REPLACE(s1, s2, s3) replace characters in s1 according to s2, s3
REVERSE(s) reverse a string
RPAD(s1, i, s2) pad string on right
SUBSTR(s, i1, i2) extract substring from s
TRIM(s) remove trailing blanks and tabs

ANY Match one character from a set

ANY(s)

Matches exactly one character from the set of characters specified by the
argument string. A null argument is not permitted.

APPLY Indirect call to a function

APPLY(name, arg1, arg2, …, argn)

Call function name with the specified arguments. Since name may be a
variable containing a function name, it allows an indirect call to a function,
similar to the :($VAR) construct in the Goto field.

The list of arguments may be null in SPITBOL, whereas SNOBOL4 re-
quires the number of arguments to match the function definition. In
SPITBOL, extra arguments are ignored, and missing arguments are sup-
plied as null strings.

ARBNO Match repeated pattern

ARBNO(pattern)

Matches zero or more consecutive occurrences of the string matched by
the argument pattern. ARBNO matches the shortest string possible—initially
the null string—and only tries to match pattern if other pattern components
in the statement require it. For example, surrounding ARBNO by POS(0) and
RPOS(0) forces it to match the entire subject string. In this respect, it is very
much like the ARB primitive pattern.

212 Reference

Function Descriptions

ARG Get dummy argument name from function definition

ARG(name, i)

Returns a string which is the i
th argument from the formal definition of

program-defined function name. ARG fails if i is greater than the number of
arguments in name‘s definition. ARG is useful when one function is used to
trace another. The trace function can access the actual argument used with
the function being traced with an indirect reference: $ARG(name, i).

ARRAY Create an array

ARRAY(s, arg)
ARRAY(i, arg)

In the first form of the call, s is a prototype string which specifies the di-
mensions of the array created, and the optional arg is the value used to ini-
tialize all array elements. The form of the prototype string is:

“L1:H1,L2:H2,…,Ln:Hn”

where each L and H are integers giving the lower and upper bounds of each
dimension. Blanks are not permitted. If the lower bound and colon are omit-
ted from any dimension, ‘1:’ is assumed.

The second form of the call is used to create one-dimensional arrays (vec-
tors) with i elements, initialized to the optional arg. Access to vector ele-
ments is considerably faster than access to array elements.

ARRAY returns a pointer to the new array, which should be assigned to a
variable. The variable can then be subscripted to access the array elements.

YEARS = ARRAY(‘1901:2000’)
…

OUTPUT = YEARS[1989]

A common error when defining a multi-dimensional array is to use inte-
gers instead of a string for the prototype, that is:

X = ARRAY(3, 4)

instead of

X = ARRAY(“3,4")

The first statement defines a 3-element, one-dimensional array, with ele-
ments initialized to integer 4. The second defines a rectangular array, 3 rows
by 4 columns, with no initializing value.

When arguments are supplied through variables, note the difference be-
tween commas within the first argument (separating dimensions), and the
comma that separates the the two arguments to the ARRAY function:

DIMS = “10,10,10"
INITVAL = -1
CUBE = ARRAY(DIMS, INITVAL)

SPITBOL Functions 213

19

ATAN Arctangent

ATAN(n)

ATAN returns the angle whose tangent is n. The result is in radians.

ATAN is not present in standard SNOBOL4 nor in standard SPITBOL.

BACKSPACE Backspace file one record

BACKSPACE(channel)

The argument is an I/O channel previously used as the second argu-
ment to the INPUT or OUTPUT function. The file associated with the channel
is positioned backwards one record. If the file is a binary (raw-mode) file,
the file position is decremented by the record size specified when the file
was opened (–rn option). If the file is a text (line-mode) file, it is scanned
backwards and positioned at the beginning of the previous record. The
method used is as follows:

If an end-of-line character is found immediately preceding the current
file position, it is ignored. The file is then scanned in reverse until another
end-of-line character is found. The file is then positioned just forward of
the end-of-line character.

BACKSPACE stops at beginning-of-file. BACKSPACE fails if the channel is
not a disk file. If it succeeds, the null string is returned.

BACKSPACE is present in SNOBOL4, but is absent in standard SPITBOL.

BREAK Match characters not in set

BREAK(s)

Matches zero or more characters provided they are not in the set of char-
acters specified by the argument string. That is, it matches up to, but not in-
cluding, a character from the argument string. For example:

“Now is the time” ? BREAK(“ei”) . X

matches “Now ” and assigns it to variable X.

BREAKX Extended BREAK function

BREAKX(s)

BREAK(s) matches up to any character in s, and will not extend past that
character if forced to rematch by subsequent pattern failures. However,
BREAKX will extend over characters in s on rematch.

Consider the following subject and patterns:

SUB = ‘EXCEPTIONS ARE AS TRUE AS RULES’
P1 = BREAK(‘A’) . OUTPUT ‘AS’
P2 = BREAKX(‘A’) . OUTPUT ‘AS’

Pattern P1 will fail when applied to SUB, because BREAK will not extend
past the first ‘A’, at the beginning of ‘ARE’. However, P2 will succeed, with
BREAKX matching the string ‘EXCEPTIONS ARE ‘.

214 Reference

BREAKX can be thought of as a smarter and faster version of the ARB

primitive pattern. ARB will extend its match length one character at a time,
when required by the mismatch of a “downstream” pattern component. In
contrast, BREAKX will extend itself in multi-character segments, by skipping
to the next character in its argument string.

BREAKX is part of Catspaw SNOBOL4+ and standard SPITBOL, but it is
not present in standard SNOBOL4.

CHAR Convert character code to string

CHAR(i)

The CHAR function returns a one-character string with the character
whose character code is i, which must be an integer between 0 and 255, in-
clusive.

Return = CHAR(13)
Tab = CHAR(9)

This works very similarly to the CHR$ function in most versions of BA-

SIC.

CHAR is a standard SPITBOL feature and it is in SNOBOL4+, although it
is not in standard SNOBOL4.

CHOP Discard fractional portion of real

CHOP(r)

The real valued argument has its fractional portion discarded. It is
chopped (truncated) toward zero. The function returns a real result.

CHOP is in SNOBOL4+, but not standard SNOBOL4 or SPITBOL.

CLEAR Clear variables

CLEAR(s)

If s is omitted, then the null string is assigned to all user variables in the
system.

When s is present, it should be a list of variable names separated by com-
mas. These variables will not be affected by the CLEAR function. For exam-
ple:

CLEAR(‘ABC,CDE,EFG’)

would cause the values of all variables except ABC, CDE, and EFG to be set to
the null string.

The CLEAR function differs from SNOBOL4 by not clearing protected
variables, such as ARB. Also, SNOBOL4 does not allow argument s.

CODE Compile a string

CODE(s)

SPITBOL Functions 215

19

This converts s to the data type CODE, as described in Chapter 17, “Data
Types and Conversion.” The string s must contain valid SPITBOL program
statements complete with labels and using semicolons to separate state-
ments. The call fails if syntactical errors are found. In this case, it is possible
to inspect &ERRTEXT to find the error message, e.g.:

CEDAR = CODE(CD) :S(OK)
OUTPUT = &ERRTEXT

:(BADCOMPILE)

The SETEXIT() function can also be used to intercept these errors.

The CODE function returns a pointer to the object code compiled from
statements in the argument string. This pointer can be assigned to a vari-
able, and the code executed with a direct Goto (:<CEDAR>).

Statements may be of any length up to MAXLNGTH; the 258-character
limit when compiling from a file does not apply. Case-folding of names is
controlled by the keyword &CASE.

All versions of SPITBOL allow control statements and comments (sepa-
rated by semicolons, of course) in the string compiled by CODE, whereas
SNOBOL4 does not. One good use for this is to have –LIST produce a listing
of the compiled code.

COLLECT Regenerate storage

COLLECT(i)

The COLLECT function forces a garbage collection which retrieves mem-
ory no longer in use and returns it to the block of available storage. The inte-
ger argument represents a minimum number of words to be made available
(in Catspaw SPITBOL, each word is 32 bits or 4 bytes). If this amount of stor-
age cannot be obtained, the COLLECT function fails. When successful, it re-
turns the number of free words in SPITBOL’s memory.

Generally, this is not the maximum free memory available to a program,
because SPITBOL will request additional memory from the operating sys-
tem when its working storage is full.

Although the implementation of COLLECT is the same as in SNOBOL4,
the values returned will be different because of different internal represen-
tations. The organization of SPITBOL is such that forcing garbage collec-
tions before they are necessary will always increase execution time.

CONVERT Convert to specified data type

CONVERT(arg, s)

The argument is converted to the specified data type and returned as the
value of the function. If conversion is not possible, the function fails. S is a
data type name string, such as ‘STRING’, ‘REAL’, ‘TABLE’, etc. Data type
names may be lower case if case-folding is active. Chapter 17, “Data Types
and Conversion,” lists allowable conversions.

216 Reference

SPITBOL and SNOBOL4+ differ from standard SNOBOL4 in that s can
take an additional data type, ‘NUMERIC’, which converts the argument to in-
teger or real, as appropriate.

COPY Make copy of argument

COPY(arg)

Returns a distinct copy of arg. The argument may be an array, table, code
block, pattern, or program-defined data type. If A is an array, the statement

B = COPY(A)

creates a new array B, whose initial contents are the same as array A. Their
elements are independent; altering element A does not affect element B. By
contrast, the assignment B = A makes A and B alternate names for the same
array.

SPITBOL allows tables to be copied; SNOBOL4 does not.

COS Cosine of an angle

COS(n)

Returns the cosine of n, which is presumed to be in radians.

This function is not present in standard SPITBOL or SNOBOL4.

Functiondescriptions
DATA Create new data type

DATA(s)

Defines a new data type according to the prototype in string s. The proto-
type assumes a form similar to a function call, with the data type taking the
place of the function name, and the field names replacing the arguments.
The form of the prototype string is

“NEWTYPE(FIELD1,FIELD2,…,FIELDn)”

The DATA function implicitly defines a creation function and n new field
reference functions:

NEWTYPE(F1, F2, …, Fn) Object creation
function

FIELD1(x) Reference to field variable 1

…

FIELDn(x) Reference to field variable n

where x is an object created with the NEWTYPE function. The names
NEWTYPE and FIELD1 … FIELDn must not be the same as a built-in function,
or an error 248 will result (“Attempted redefinition of system function”).
Here’s an example of proper usage:

DATA(‘COMPLEX(REAL,IMAG)’)

defines a new data type called COMPLEX, containing two fields: REAL and
IMAG. Once the data type is defined, the statement:

SPITBOL Functions 217

19

X = COMPLEX(3.2, 2.0)

creates a COMPLEX item with an initial real part of 3.2, and imaginary part of
2.0. A pointer to the new item is assigned to variable X. The individual fields
are referenced by statements such as these:

Z = ((REAL(X) ^ 2) + (IMAG(X) ^ 2)) ^ 0.5
REAL(X) = 1.0; IMAG(X) = IMAG(X) / 2

The fields may be of any data type, including pointers to other pro-
gram-defined data items.

If &DUMP = 2, then all user-defined items in the program will have their
non-null contents displayed in the dump. If &DUMP = 3, null-valued fields
are displayed as well.

DATATYPE Get data type of argument

DATATYPE(arg)

Returns a string specifying the data type of the argument. Some typical
arguments and their data types are:

23.4 “REAL”
12 “INTEGER”
‘ABCD’ “STRING”
POS(2) ‘C’ LEN(3) “PATTERN”
.Q “NAME”

*PAT “EXPRESSION”

If the argument is a program-defined data type, the name from the creat-
ing DATA() function is returned, such as “COMPLEX”.

DATE() Get current date and time

DATE()

In Catspaw SPITBOL, DATE() returns a 17-character string of the form:

“11/19/96 13:11:32"

representing month, day, year, hour, minute, and second.

The form of string returned by this function depends on the hardware
and operating system, although it is similar in all versions of SPITBOL and
SNOBOL4.

Some systems use hyphens instead of slashes between date elements.
For compatibility, programs should decompose dates by positional pat-
tern-matching, such as:

DATE() ? LEN(2) . MTH LEN(1) LEN(2) . DAY LEN(1) LEN(2) . YEAR

218 Reference

DEFINE Create program-defined function

DEFINE(s)
DEFINE(s, name)

This function creates a new, program-defined function. S is a prototype
string specifying the function’s name, arguments, and local variables, if
any. Name is optional, and specifies a label as the first statement of the func-
tion body. If absent, a label with the same name as the function is the as-
sumed entry point. The form of the prototype string is

“FNAME(ARG1,ARG2,…,ARGn)LOCAL1,LOCAL2,…,LOCALn”

where FNAME is the name of the function, and ARGi are names of formal ar-
guments to the function. Blanks are not permitted in the prototype. The val-
ues of variables specified in the list of locals are saved prior to function en-
try, and restored upon function return.

Functions may return a value or variable name by assigning the result to
a variable with the same name as the function. Functions return by transfer-
ring to one of the reserved labels RETURN, NRETURN, or FRETURN to return
by value, by name, or to fail respectively.

DETACH Remove I/O association

DETACH(name)

Removes any input or output channel associated with the variable name.
The underlying file is not affected in any way. Note that name is the address
of the variable (e.g. .X or ‘X’), not the variable itself.

DIFFER Check if arguments are different

DIFFER(arg1, arg2)

Succeeds and returns the null string if and only if arg1 and arg2 are differ-
ent. Strings, integers, and reals are different if they have unequal values.
Other data types differ only if they point to different objects. If arg2 is omit-
ted, DIFFER succeeds if arg1 is not null.

DIFFER and IDENT are the only functions where the different handling of
the name operator (unary dot) may present problems when moving pro-
grams between SNOBOL4 and SPITBOL.

In SPITBOL,

DIFFER(.ABC, ‘ABC’)

succeeds because SPITBOL handles .ABC as a name and ‘ABC‘ as a string.
The same function would fail in SNOBOL4 because it treats .ABC and ‘ABC’

identically.

The above example will work properly if treated as a lexical comparison:

LNE(.ABC, ‘ABC’)

SPITBOL Functions 219

19

DUMP Dump variables

DUMP(i)

This function sends a dump of current values to file specified with –o on
the command line, or to standard output if none.

If i is set to 1, the dump includes the values of all non-constant keywords
and all non-null natural variables.

If i is set to 2, the dump is expanded to include non-null array and table
elements, and non-null field values of program-defined data types.

When i is 3, the dump includes null-valued variables, elements and
fields, as well as statement labels.

If i is set to 0, is not present, or is any value other than 1, 2 or 3, then no
dump occurs. This allows use of a switch value which can be turned on and
off globally during program development.

In SNOBOL4, only non-null variables can be dumped, and any value
other than 0 will cause a dump. Standard SPITBOL does not provide
DUMP(3).

DUPL Duplicate string or pattern.

DUPL(s, i)
DUPL(pattern, i)

Returns the argument string s repeated i times. The function returns the
null string if i is zero, and fails if i is negative.

SNOBOL4 does not allow a pattern as a first argument.

EJECT Eject to a new page

EJECT(channel)

This function sends an ASCII form-feed character (decimal 12) to the I/O
channel specified, or to the listing file if channel is omitted.

ENDFILE Close a file or window

ENDFILE(channel)

The argument is a channel which has previously appeared as the second
argument to an INPUT or OUTPUT function call. The file attached to this chan-
nel is closed, associated storage is released, and all variables associated with
the file are detached. Thus, ENDFILE should be used only when no further
use is to be made of the file. If the file is to be reread or rewritten, use RE-

WIND.

Upon program termination, SPITBOL will automatically perform an
ENDFILE function on all open channels.

220 Reference

The channel argument passed to ENDFILE varies with different imple-
mentations of SPITBOL and SNOBOL4. For maximum portability, use
small integers for the channel in any INPUT or OUTPUT function call.

EQ Equality test for numbers

EQ(n1, n2)

This function succeeds and returns the null string if the two numeric ar-
guments are equal. N1 and n2 must evaluate to integer or real values. The
function fails if n1 is not equal to n2.

EVAL Compile and evaluate expression

EVAL(s)
EVAL(n)
EVAL(expression)

If the argument is a string, it should contain a valid SPITBOL expression
to be compiled and evaluated. The evaluation result is returned as the value
of the function. EVAL fails and sets &ERRTEXT to an error message string if s
contains a syntactic error. If the argument is a number, n, it is returned un-
changed. If the argument is an unevaluated expression, it is evaluated, and
the result returned.

EXIT Exit to another application or create a Save file or stand-alone
application

EXIT(s)
EXIT(n,s)

EXIT(s) will terminate program execution and request that the operating
system perform the system command s.

Windows 95, Windows NT, Unix and OS/2 systems readily provide this
ability to transfer from SPITBOL to another program. MS-DOS requires that
both remain in memory simultaneously.

If the system is able to run the given command, SPITBOL terminates exe-
cution. EXIT(s) fails otherwise. Use HOST(1, s) to perform a system command
without terminating SPITBOL execution.

EXIT(n,s) creates a file that captures the current state of program execu-
tion for later resumption. After writing the file, SPITBOL terminates execu-
tion. Two file formats are possible: “save” files and load modules.

A save file is a small, compressed file containing just SPITBOL’s impure
data segment and object code of the user’s program. To resume execution,
the save file must be loaded by either SPITBOL proper or a special SPITBOL
runtime program. Save files are keyed to the particular version of SPITBOL
that created them, and must be regenerated to run with each new version of
SPITBOL.

SPITBOL Functions 221

19

A load module file contains program object code and all of the SPITBOL
system, including compiler and runtime. The file is self-contained, and may
be directly executed by the operating system.

Argument n is –3 to create a save file, and +3 to create a load module.
Other values are not permitted. Argument s is the name of the file created. If
omitted, the name defaults to a.spx for save files, and to a.out or a.exe for
load module files. We encourage users to use the .spx extension when sup-
plying their own save file name.

Save files can also be created prior to program execution by using the
command line option –y. Those implementations that support the produc-
tion of load modules can do likewise with the –w command line option.

When a save file or load module is resumed, all files except INPUT, OUT-

PUT, and TERMINAL are closed. The HOST function will retrieve command
line arguments present at resumption, not those given when the file was
created.

All versions of Catspaw SPITBOL can create save files and load mod-
ules. Some versions of standard SPITBOL can create load modules and exe-
cute commands. Standard SNOBOL4 provides neither. SNOBOL4+ han-
dles similar operations with functions EXECUTE and SAVE.

EXP Compute en

EXP(n)

Returns the base of the natural logarithms, e raised to the power n. N

must evaluate to a valid integer or real number.

This function is in SNOBOL4+, but not in standard SPITBOL or
SNOBOL4.

FENCE Generate fenced pattern

FENCE(pattern)

The argument must be a pattern. The function returns a pattern value
which is the same as the given pattern, except that alternatives within the
pattern are only seen by the scanner when it is moving forward. Pattern
backup will always pass through FENCE(). Note that backup through
FENCE() does not cause the match to abort, as does the &FENCE pattern; it is
that alternatives within the fenced pattern are not examined when the scan-
ner is backing up.

For example, this pattern will match a string of text up to the next
comma, or where there is no comma, to the end of the string. The text is put
in STR, and the match will succeed only if STR is non-null.

P = FENCE(BREAK(‘,’) | REM) $ STR *DIFFER(STR)

Without the FENCE, failure of the DIFFER(STR) would cause the scanner
to try the REM alternative regardless of whether or not a comma is found.

This function is not present in SNOBOL4.

222 Reference

FIELD Get field name of defined data type

FIELD(s, i)

Returns a string which is the i
th field name from the formal definition of

the program-defined data type whose name is in string s. FIELD fails if i is
greater than the number of fields in the data type’s definition, or if i is less
than 1.

GE Greater than or equal test for numbers

GE(n1, n2)

This function succeeds and returns the null string if the two numeric ar-
guments satisfy the relationship n1≥n2. N1 and n2 must evaluate to integer
or real values. The function fails if n1 is less than n2.

GT Greater than test for numbers

GT(n1,n2)

This function succeeds and returns the null string if the two numeric ar-
guments satisfy the relationship n1>n2. N1 and n2 must evaluate to integer
or real values. The function fails if n1 is less than or equal to n2.

HOST Obtain host computer information and machine-specific features

HOST()
HOST(i, arg1, arg2, arg3, ..., argn)

This function is in standard SPITBOL, but not in SNOBOL4. It is used to
obtain access to machine-specific features.

By definition, programs using most HOST functions will not be portable
to other machine environments without alteration.

With the exception of one case where HOST is called with no arguments,
the normal HOST call takes an integer sub-function number as its first argu-
ment, to identify the particular machine-specific operation to be carried out.

Different sub-functions will require zero or more additional string or in-
teger arguments. Appendix E details their usage.

There are two HOST functions that are common to all Catspaw SPITBOL
implementations, and they are listed here for convenience.

HOST() returns a “host-information” string describing the system on
which SPITBOL is executing. The general form of the string is:

“computer type:operating system name:site name version se-
rial”

Not all elements may be present in all implementations. HOST

first looks for a file named /usr/lib/spithost, and if found re-
turns its contents as the function value. This mechanism al-
lows you to provide any string you desire to HOST. If
/usr/lib/spithost does not exist, HOST constructs a string us-

SPITBOL Functions 223

19

ing whatever information it can obtain from the operating
system. In this case, a typical result returned by HOST() is:

“80386:MS-DOS 3.30:Macro SPITBOL 3.7(2.45 I/O) #10001"

HOST(0) returns command-line information provided by the –u op-
tion. If program.spt were invoked this way,

spitbol -u “file1,file2" program

then the string “file1,file2" would be returned by HOST(0). This
provides a convenient way to pass run-dependent informa-
tion to a program. If –u was not specified, it returns the concat-
enation of all command line arguments.

&PARM produces the command line string in SNOBOL4+;
there is no equivalent in standard SNOBOL4. HOST(1) returns
the entire command line in PC-SPITBOL.

IDENT Check if arguments are identical

IDENT(arg1, arg2)

Succeeds and returns the null string if and only if arg1 and arg2 are iden-
tical. Strings, integers, and reals are identical if they have the same values.
Other data types are identical only if they point to the same object. If arg2 is
omitted, IDENT succeeds if arg1 is the null string.

As with DIFFER, SPITBOL’s treatment of the NAME datatype is different
from SNOBOL4’s, so that

IDENT(.ABC, ‘ABC’)

fails in SPITBOL but succeeds in SNOBOL4. To make your program porta-
ble, use:

LEQ(.ABC, ‘ABC’)

when comparing names and strings, since it performs identically in both di-
alects.

INPUT Open file or pipe for input

INPUT(name, channel, s)
OUTPUT(name, channel, s)

Rather than give a separate description of the OUTPUT function which
would be almost exactly parallel with that for INPUT, a joint description is
given here.

These functions create an association between a variable and a file or
pipe for input or output. The file is opened or the pipe created at the time of
the INPUT or OUTPUT call. If successful, data may then be read from or writ-
ten to the file or pipe, otherwise the function fails. The creation of pipes from
within a SPITBOL program is only available on systems which support
multi-tasking (AIX, OS/2, Unix, Windows NT, etc.).

name The name of the variable (given either in quotes or with a pre-
ceding period) to be input or output associated. Following a

224 Reference

call to INPUT, references to this variable will cause the associ-
ated file, if any, to be read and the next record returned as the
value of the variable. Following a call to OUTPUT, assignments
to this variable will cause the assigned value to be written as
the next record to the output file. For example:

INPUT(‘IN’, …
LINE = IN

or

OUTPUT(.OUT, …
OUT = LINE

channel an integer or string that has no significance to the SPITBOL
system other than that it represents a unique binding between
a SPITBOL I/O stream and a file. This value can be used in
subsequent calls to BACKSPACE, EJECT, ENDFILE, REWIND,
and SET. For example:

INPUT(‘IN’, 3, …

or

INPUT(‘IN’, ‘INCHANNEL’, …

If an integer channel number is used, the user may omit the
third argument, s, and provide it instead on the command line
using an option of the form –channel=s. That is:

>spitbol –3=infile.dat prog.spt

INPUT(‘IN’, 3) (within prog.spt)

is equivalent to

>spitbol prog.spt

INPUT(‘IN’, 3, ‘infile.dat’) (within prog.spt)

If the third argument, s, is omitted, the file name can be pro-
vided by setting a system environment variable with the same
name as the channel to the desired file name:

>set INCHANNEL=infile.dat
>spitbol prog.spt

INPUT(‘IN’, ‘INCHANNEL’) (within prog.spt)

s specifies the file name and I/O processing options. The file
name, if it is not in the current subdirectory, can be proceeded
by a full or partial path description. Processing options if
present, must be enclosed in square brackets. S can be either a
path to a file or a command string to be used as the other end
of a pipe. If s is omitted, and no channel association appears
on the command line or as an environment variable, then the
standard system input and output channels are assumed.

For systems supporting the creation of pipes, command
strings are denoted by a leading “!” (exclamation point). The
character following the “!” represents the command string
delimiter, which is used to separate the command string from

SPITBOL Functions 225

19

SPITBOL I/O processing options. (A square bracket is not
sufficient as will be shown.)

Examples of I/O association without I/O processing options:

Read from file foobar:

INPUT(.in, 0, ‘foobar’) :F(Cannot_Open)
line = in

Read from the dir command (via a pipe):

INPUT(.user, ‘user’, “!!dir”)

Write to file summary.lst:

output(.out, ‘out’, ‘summary.lst’)

Write to the wc command (via a pipe):

OUTPUT(.pipe, 5, ‘!*wc’)
pipe = sentence

Open a file whose name is specified by environment variable DLOG:

OUTPUT(.out, “DLOG”)

Notice that the closing delimiter for pipe commands (! and * in these ex-
amples) is not needed when there are no SPITBOL file processing options. It
is not possible to read and write both ends of a command pipe, because of
deadlock considerations.

There are two basic ways of transferring information to and from a file:

1. Line mode, where records are delimited by end-of-line characters (a
carriage return/newline in MS-DOS, Windows and OS/2 systems,
a line feed in Unix). SPITBOL removes them on input and appends
them on output. Line mode corresponds to “normal” record-ori-
ented I/O.

During input, lines can be up to 1,024 characters by default; charac-
ters beyond that point are discarded (up to the end of line). Longer
lines can be read by specifying a larger number in the –l option de-
scribed below. On output, the string assigned to the output variable
is written as one line. It can be broken into several shorter lines by
using the –l option.

2. Raw mode, where a predetermined number of characters (set by the
–r option) are read on input, and the new-line character(s) have no
special significance. On output, the data is written verbatim, and
the new-line character(s) are not appended. Raw mode is some-
times called “binary mode.”

Line mode is the default for all I/O. Trimming of trailing blanks and tabs
occurs only in line mode, and only if keyword &TRIM is non-zero. Raw mode
can be obtained by specifying one of the file processing options. These op-
tions follow the file name and are enclosed in square brackets. Each option is
denoted by a leading “–” (minus sign or hyphen) and is separated from
other options by one or more blanks or commas.

226 Reference

–a Append output to an existing file. If the file doesn’t exist, then
it is created. If –a or –u (see below) is not specified with the
OUTPUT function, then the file is created, thereby replacing
any existing file with the same name.

–bn Set internal buffer size to the number n. This value is the byte
count used for all I/O with files. The is not the logical record
size or line length, but merely the internal buffer SPITBOL
uses to hold data between reads or writes. The default is
–b1024. It may not be set larger than &MAXLNGTH. Use –w to
disable buffering.

–c One-character raw mode, it is a shorthand for –r1. This is used
by programs which read characters “one-at-a-time” from the
keyboard.

–e End-of-file character detection. MS-DOS, OS/2, and Win-
dows follow the old CP/M convention that the control-Z
character (decimal 26) indicates end-of-file in a text file. If this
character is encountered when reading a file in line mode,
SPITBOL treats it as the end-of-file, and signals failure to the
user’s program.

When the –e switch is present, SPITBOL does not treat con-
trol-Z as a special character when reading a file in line mode.
It is included with the line of data delivered to the user’s pro-
gram. True end-of-file is detected and signaled only after the
last physical byte of the file is read.

The –e switch is ignored if the file is opened in raw (binary)
mode.

–fn Use n as a file descriptor for I/O. SPITBOL assumes that n has
been opened by the operating system. The presence of a file
name and –fn are mutually exclusive. File descriptor 0 is standard
input, 1 is standard output, and 2 is the keyboard or screen (some-
times known as “standard error”). Additionally, under
MS-DOS, file descriptor 3 is device AUX and 4 is device PRN.

–i Make file inheritable. Normally files opened by SPITBOL are
private to your program and are not inherited by any child
process. When this option is present, the file is opened such
that its O/S file handle may be used by a child process.

–ln Line mode: maximum record length is n characters. On input,
characters beyond this number and up to the end-of-line in a re-
cord are ignored. During output, strings longer than this number
will be divided into multiple n-character records.

–mn

–nn

Specify line-mode end-of-line conventions. End of line can be
marked by either a one- or two-character sequence.

–mn specifies the first end-of-line character, where n is the dec-
imal code of the desired character, and must be in the range 0
to 255. During line-mode input this character signals the end

SPITBOL Functions 227

19

of an input line. During line-mode output, it is appended to
each output record.

–nn specifies an optional second end-of-line character. n is
zero to specify no second character; otherwise it must be a
decimal number in the range 1 to 255.

Any combination of values for –m and –n can be used on any
system, making it simple to produce conversion programs
that read and write files using foreign end-of-line conven-
tions. Note that null (0) is an allowed value for –mn, permit-
ting the transfer of null-delimited records. The default values
of –mn and –nn are operating system dependent:

Operating System –m –n

MS-DOS, OS/2, Windows 13 (return) 10 (newline)

Macintosh 13 (return) 0 (none)

Unix 10 (newline) 0 (none)

The second end-of-line character is always optional. That is,
when SPITBOL finds the first end-of-line character in an input
record, it examines the next input character. If it is the second
end-of-line character, it is discarded. If it isn’t, it is remem-
bered as the first character of the next record.

Alternate end-of-line characters may not be used with console
input, since they are usually determined by the operating sys-
tem, and hence not under SPITBOL’s control.

–qn Quiet raw mode. Behaves like –rn below, except that input
from the keyboard is not echoed to the screen.

–rn Raw mode: input record length is n characters. Exactly these
many characters are read to satisfy an input request, except a
smaller number of characters may be read if end-of-file is en-
countered. The string returned to the program is exactly the
data that is read. End-of-line character(s) are returned as part
of the string. If the system read call returns 0 bytes, the input
request fails. Output record length is exactly the length of the
data written; n is immaterial for output. It may not be set
larger than &MAXLNGTH for input or output.

–sxx Share mode. Specifies how a file may be accessed by other
programs whilst it is being accessed by SPITBOL. Possible
values for xx are:

–sdn deny none: others may open file for reading and writing.

–sdr deny read: others may open file for writing.

–sdw deny write: others may open file for reading.

–sdrw deny read/write: others may not open the file.

If not specified, the INPUT function opens files with “deny
write”, and the OUTPUT function uses “deny read/write”.

228 Reference

Thus, input files can have many readers, but output files are
reserved exclusively for the use of the SPITBOL program.

–u Update mode: file will be opened for reading and writing. For
example:

OUTPUT(.out, 1, ‘customer.dat[–u]’)
INPUT(.in, 1)

If the file exists, its contents are preserved. If it doesn’t exist, it
will be created. The order of these operations can be reversed,
provided the –u option is specified with the first one:

INPUT(.in, 1, ‘customer.dat[–u]’)
OUTPUT(.out, 1)

Note that the second function of the pair does not specify a file
name. It just opens the “other direction” of an existing I/O
channel. Having done this, records of the file can be read and
written using the associated variables. There is only one
read/write pointer for the channel, and it can be manipulated
with the SET function.

Only one record length can be specified for a given channel.
When a file is open for update, the default output record
length is the same as the default input record length, which is
1024. If a longer output length is needed, it must be set explic-
itly with the -l option.

–w Do I/O directly, without buffering. Buffer size (–b) is ignored.
Each record is transferred by a single read or write system call
with a byte count of the value in –ln or –rn, depending upon
whether the file is operating in line mode or raw mode. Note
that although SPITBOL is no longer buffering data, the oper-
ating system may do its own buffering. See the –y option be-
low.

–x Make file executable. When creating an output file on file sys-
tems that mark files as “executable” (such as Unix), this op-
tion causes SPITBOL to create the file with executable status
(0777 instead of 0666 under Unix).

–y Do I/O directly, without buffering in the operating system or
in SPITBOL. Like the –w option, each record is transferred by a
single read or write system call. In addition, if the file is being
opened for output, SPITBOL instructs the operating system to
disable buffering for this file (“write-through” output mode).

SPITBOL defaults to –b1024 and –l1024 for input, &MAXLNGTH for out-
put; the line mode is the default I/O method.

Examples of I/O associations with options are shown below:

Append to file foobar:

OUTPUT(.WRITE, 0, ‘foobar[–a]’)

Read with large buffer:

SPITBOL Functions 229

19

input(.in, ‘in’, ‘file.to.read[–b4096]’)

Read one character at a time from terminal:

INPUT(.getc, 0, “[–f2 –c]”)

Read one character at a time from a pipe:

input(.getcls, 99, “!!ls![–c]’’)
input(.gtclslong, 99, ”!!ls –l![–c]")

Open a file in update mode using 128-byte fixed-length binary records:

INPUT(.database, “FILE”, “filename[–r128 –u]”)
OUTPUT(.database, “FILE”)

Write 4,000-character blocks to a magnetic tape:

output(.tape, ‘mt’, “/dev/rmt0[–b4000 –r1]”)

Read a foreign tape with unknown or varying block sizes:

input(.tapein, ‘mtin’, ‘/dev/rmt0[–r16000 –w]")
tapeblock = tapein
blocksize = size(tapeblock)

More than one type of transfer may be associated with a channel. You do
this by calling INPUT or OUTPUT after the first time with the variable name
(which can be different), the channel (which must be the same), and any op-
tions. File names are not valid on calls after the first while a given channel is
open, and the –bn option is processed only on the first call. For example:

INPUT(.LINE, 33, “\foo\bar”)
input(.line1, 33, ‘[–c]’)
input(.line5, 33, ‘[–r5]’)

Error messages are given for syntactically invalid third arguments but in
the case where the file corresponding to a syntactically valid file name can-
not be found, statement failure occurs and should be tested for in the usual
way by a conditional Goto.

The maximum number of files or devices that may be open at one time is
operating system dependent.

INPUT/OUTPUT functions work similarly, but are syntactically different
in other systems. Standard SNOBOL4 omits the file name entirely, while
SNOBOL4+ places it in a fourth argument position, and restricts channels to
integers between 1 and 32. SPITBOL/370 does not attempt to open or create
a file when the INPUT or OUTPUT function is performed, and thus will never
signal failure. SPITBOL/370 defers opening the file until the first actual in-
put or output operation, signalling failure at that time.

INPUT and OUTPUT functions usually need to be adjusted when moving a
SNOBOL4 program between systems. Programmers moving programs
from SPITBOL/370 systems will need to adjust the point at which failure is
detected if a file cannot be opened.

INTEGER Check if argument is an integer

INTEGER(arg)

230 Reference

Succeeds and returns the null string if arg is an integer, or a string which
can be converted to an integer. Real numbers, even if integer-valued, are not
considered integers by this function. If the argument is not an integer, the
function fails.

SPITBOL allows leading or trailing blanks or tabs on the number if the
argument is a string; SNOBOL4 does not.

ITEM Get array or table element

ITEM(array, i1, i2, …, in)
ITEM(table, arg)

Returns the specified array or table element. I1, i2, …, in are array sub-
scripts, and arg is a table subscript. ITEM is analogous to the APPLY function.
For example, if F(X) is a program-defined function that returns an array
name,

ITEM(F(X), 20) = 123

references the 20th element of that array.

The use of ITEM is never necessary in SPITBOL because of the extended
syntax for array references. The above example can be written as:

F(X)<20> = 123

LE Less than or equal test for numbers

LE(n1,n2)

This function succeeds and returns the null string if the two numeric ar-
guments satisfy the relationship n1≤n2. N1 and n2 must evaluate to integer
or real values. The function fails if n1 is greater than n2.

LEN Matches fixed-length string

LEN(i)

Matches a string of the specified length. There are no restrictions on the
subject string characters. An argument of zero will match the null string.

LEQ Lexical equality test for strings

LEQ(s1, s2)

This function succeeds and returns the null string if s1 is lexically equal
to s2. See function LGT. Note that LEQ(S1,S2) and IDENT(S1,S2) have slightly
different behavior. LEQ converts its arguments to data type STRING, and
performs a string comparison. IDENT compares its arguments without data
type conversion. Thus LEQ(‘1’,1) succeeds, while IDENT(‘1’,1) fails (STRING

data type is not identical to INTEGER data type).

This function is not present in standard SNOBOL4, but is in SNOBOL4+
and standard SPITBOL.

SPITBOL Functions 231

19

LGE Lexical greater than or equal test for strings

LGE(s1, s2)

This function succeeds and returns the null string if s1 is lexically greater
than or equal to s2. See function LGT.

This function is not present in standard SNOBOL4, but is in SNOBOL4+
and standard SPITBOL.

LGT Lexical greater than test for strings

LGT(s1, s2)

This function succeeds and returns the null string if s1 is lexically greater
than s2. The two strings are compared left to right, character by character. If
one string is exhausted before the other—with all characters equal—the lon-
ger string is lexically greater than the shorter string. The null string is lexi-
cally less than any other string.

If there is a character mismatch at the same position in both strings, the
relationship between the characters determines the relationship of the
strings. Strings are equal only if they are the same length, and are identical
character by character.

This function is present in all versions of SNOBOL4 and SPITBOL.

LLE Lexical less than or equal test for strings

LLE(s1, s2)

This function succeeds and returns the null string if s1 is lexically less
than or equal to s2. See function LGT.

This function is not present in standard SNOBOL4, but is in SNOBOL4+.
It is a standard SPITBOL function.

LLT Lexical less than test for strings

LLT(s1, s2)

This function succeeds and returns the null string if s1 is lexically less
than s2. See function LGT.

This function is not present in standard SNOBOL4, but is in SNOBOL4+.
It is a standard SPITBOL function.

LN Natural logarithm

LN(n)

Returns the natural logarithm (base e) of the number n. N should evaluate
to a positive, non-zero integer or real number or an error message for nu-
meric overflow results.

This function is in SNOBOL4+, but not standard SPITBOL or standard
SNOBOL4.

232 Reference

LNE Lexical not equal test for strings

LNE(s1, s2)

This function succeeds and returns the null string if s1 is lexically differ-
ent from s2. See function LEQ.

LNE differs from DIFFER in that its arguments are converted to strings, so
that both of the following fail:

LNE(10, ‘10’)
LNE(.ABC, ‘ABC’)

This function is not present in standard SNOBOL4, but is in SNOBOL4+.
It is a standard SPITBOL function.

LOAD Load external function

LOAD(s1, s2)

This function loads compiled functions coded in another language.
String s1 is a prototype of the form:

“FNAME(DATATYPE1,DATATYPE2,…,DATATYPEn)DATATYPEr”

where FNAME is the function name, and DATATYPEi specifies how the sup-
plied arguments will be converted prior to calling the external function.

Recognized values for DATATYPEi are EXTERNAL, FILE, INTEGER, REAL,
and STRING. Any other type string means that the argument will not be con-
verted, and is provided to the external function in internal form. DATATYPEr

specifies the type of result. It is presented to the external function, but is oth-
erwise ignored by SPITBOL. The external function will always indicate the
type of result it is returning.

String s2 is the name of the file containing the desired function. Appen-
dix F describes the writing of assembly-language programs for use with
LOAD. LOAD produces an error message if the specified file is a character de-
vice, or cannot be opened, or if insufficient memory remains to load the
function. This error can be trapped by SETEXIT() if necessary.

LOAD will produce an error message in implementations where it is not
supported.

SPITBOL Functions 233

19

LOCAL Get local variable name from function definition

LOCAL(name, 1)

Returns a string which is the i
th local variable from the formal definition

of program-defined function name. LOCAL fails if i is greater than the num-
ber of local variables in name‘s definition. LOCAL is useful when one func-
tion is used to trace another. The trace function can access the local variables
used with the function being traced with an indirect reference: $LO-

CAL(name, i).

LPAD Pad left end of string

LPAD(s1, i, s2)

This function is useful for right-justifying columnar output. It returns s1

padded on its left end until its total size is i characters. The pad character
used is the first character of s2 if present, otherwise a blank (ASCII character
32) is used if s2 is absent or null. If i is less than or equal to the length of s1, s1

is returned unchanged.

This is in standard SPITBOL and SNOBOL4+, but not in standard
SNOBOL4.

LT Less than test for numbers

LT(n1, n2)

This function succeeds and returns the null string if the two numeric ar-
guments satisfy the relationship n1<n2. N1 and n2 must evaluate to integer
or real values. The function fails if n1 is greater than or equal to n2.

NE Not equal test for numbers

NE(n1,n2)

This function succeeds and returns the null string if the two numeric ar-
guments are not equal. N1 and n2 must evaluate to integer or real values.
The function fails if n1 is equal to n2.

NOTANY Match one character not in set

NOTANY(s)

Matches exactly one character provided it is not in the set of characters
specified by the argument string.

OPSYN Create operator synonym

OPSYN(s1, s2, i)

The function or operator name s1 becomes a synonym for s2.

The second argument must always be an already-defined function
name.

234 Reference

If i is omitted or 0, the first argument must be a function name; it cannot
be an operator.

If i is 1, s1 must be an undefined unary operator (! % / # = |). If i is 2, then
s1 must be an undefined binary operator(& @ # % ~). See Chapter 15, “Oper-
ators,” for more information about these operators.

In all three cases, subsequent use of s1 results in calling of the function
corresponding to s2 with the appropriate arguments.

See Chapter 8, EProgram-Defined Objects,” for examples of OPSYN at
work.

In contrast with SNOBOL4, the second argument must always be an al-
ready defined function name. SPITBOL also differs from SNOBOL4 by not
allowing built-in functions or operators to be redefined.

OUTPUT Open file or pipe for output

OUTPUT(name, channel, s)

This function has similar arguments and behaves similarly to INPUT,
which should be consulted for a detailed description. The difference is that
the first argument becomes output associated so that assignments to this
variable subsequent to the OUTPUT function call will cause the assigned
value to be written as the next record to the output file. Also, if the second
and third arguments are omitted, then the variable is by default associated
with the standard output file.

POS Verify scanner position

POS(i)

Succeeds if the pattern matcher’s current cursor position in the subject
string is equal to the specified integer value. This function merely verifies
scanner position—it does not consume or match any subject characters.
POS(0) as the first component of a pattern produces an anchored pattern
match.

PROTOTYPE Get prototype which created an array

PROTOTYPE(array)

Returns the prototype string of dimensions used to create the specified
array. If the array was created by the ARRAY function, then the string re-
turned is identical to the first argument of the original ARRAY function call. If
the array was produced from a table by the CONVERT or SORT functions, the
string has the form ‘N,2’, where N is the integer number of rows in the array.

REMDR Get remainder after division

REMDR(n1, n2)

If n1 and n2 are both integers, REMDR returns the integer remainder re-
sulting from n1 divided by n2, that is, n1 modulus n2. If either n1 or n2 are

SPITBOL Functions 235

19

real values, REMDR calculates n1–CHOP(n1/n2)*n2, where CHOP truncates its
real argument to an integer by rounding toward zero. In both cases, the re-
sult has the same sign as n1.

In SNOBOL4+ and MaxSPITBOL, REMDR works as it does here. In stan-
dard SNOBOL4 and standard SPITBOL, REMDR accepts only integers.

REPLACE Replace characters in string

REPLACE(s1, s2, s3)

This function returns s1 transformed according to a translation specified
by s2 and s3. Each character of s1 found in s2 is replaced by the correspond-
ing character in s3. S2 and s3 must be the same length. If duplicate charac-
ters appear in s2, the rightmost one is used to obtain the mapping character
from s3. Normally, s2 and s3 are thought of as parameters, and REPLACE

performs character substitutions on the variable s1. For instance:

REPLACE(S, ‘aeiouAEIOU’, ‘1234512345’)

replaces all upper- and lower-case vowels in S with the digits 1 through 5.

It is possible to use REPLACE as a transposition function if s1 and s2 are
considered parameters, and s3 allowed to vary. If s1 and s2 are the same
length, a simple positional transformation results. For example,

REPLACE(‘123456’, ‘214365’, S)

returns the six-character string S with adjacent pairs of characters inter-
changed (‘ABCDEF’ becomes ‘BADCFE’). S1 and s2 can be different
lengths—only s2 and s3 must be the same size. If s2 contains characters not
in s1, the corresponding characters in s3 are dropped from the result. If s1

contains characters not in s2, they will appear in the result. The function call

REPLACE(‘Yy/Mm/Dd’, ‘Mm/Dd/Yy xx:xx:xx’, DATE())

returns the date in the form YY/MM/DD (e.g., 88/11/20). Duplicate characters
in s1 are permitted, so:

REPLACE(‘aaabbbccc’, ‘abc’ ‘(1)’)

produces ‘(((111)))’.

236 Reference

REVERSE Swap string end-for-end

REVERSE(s)

This function returns a mirror image (end-for-end reversal) of string s.

This function is in SNOBOL4+ and SPITBOL, but it is not included in
standard SNOBOL4.

REWIND Rewind file

REWIND(channel)

The file associated with the specified channel is rewound. The next read
or write will take place at the beginning of the file. Existing variable associa-
tions to the channel are unaffected.

RPAD Pad right end of string

RPAD(s1, i, s2)

This function is useful for left-justifying columnar output. It returns s1

padded on its right end until its total size is i characters. The pad character
used is the first character of s2 if present, otherwise a blank (ASCII character
32) is used if s2 is absent or null. If i is less than or equal to the length of s1, s1

is returned unchanged.

This is in standard SPITBOL and SNOBOL4+, but not in standard
SNOBOL4.

RPOS Verify scanner position from end

RPOS(i)

Succeeds if the pattern matcher’s current cursor position is the specified
number of characters from the end of the subject string. Like POS(), it veri-
fies scanner position but does not consume any characters. RPOS(0) as the
last component of a pattern forces the pattern to match to the end of the sub-
ject string.

RSORT Sort array or table in descending order

RSORT(array, i)
RSORT(array, name)
RSORT(table, i)

The specified array or table is sorted in descending order, with larger
keys appearing before smaller ones in the resultant array. Consult function
SORT for more information on how a sort is performed.

Sorting functions are present in most implementations of SPITBOL, and
in SNOBOL4+, but not in standard SNOBOL4.

RTAB Match through position counting from end

RTAB(i)

SPITBOL Functions 237

19

Matches all characters from the current cursor position up to the speci-
fied cursor position, counting from the end of the subject string. RTAB(N)

matches characters up to, but not including, the final N characters of the sub-
ject. RTAB(0) is equivalent to the primitive pattern REM, matching to the end
of the subject string. RTAB will match the null string. The function fails if the
current scanner position is to the right of the target position.

SET Set file position

SET(channel, i1, i2)

The channel must have been established by a previous INPUT or OUTPUT

function. SET repositions the file attached to this channel and returns the
new position as the result. The next read or write operation will take place at
that position in the file. The general form of the call is:

SET(channel, offset, whence)

Offset and whence are integers. If whence is 0, the file pointer is set to offset

bytes from the beginning of the file.

If whence is 1, the file pointer is set to its current position plus offset. (Off-

set may be negative to position backward.) SET(channel, 0, 1) simply returns
the current file position without changing it.

If whence is 2, the pointer is set to the current size of the file plus offset.
Here offset must be zero or negative to position backward from the end of
file.

This function is part of standard SPITBOL, but is handled differently in
SNOBOL4+, which uses the SEEK and TELL functions to perform the same
tasks.

SETEXIT Set error exit

SETEXIT()
SETEXIT(name)

SETEXIT allows interception of execution errors, including any detected
during calls of CODE and EVAL. The argument is a label to which control is
passed if a subsequent error occurs, providing that the value of &ERRLIMIT is
non-zero. (This is a direct branch to the label, not a function call.) The value
of &ERRLIMIT is decremented when the error trap occurs. A SETEXIT call
with a null argument causes cancellation of error intercepts. A subsequent
error will terminate execution as usual with an error message.

The result returned by SETEXIT is the previous intercept setting (i.e., a la-
bel name or null if no intercept was set. This can be used to save and restore
the SETEXIT conditions recursively. The error routine may inspect the error
code and text stored in &ERRTYPE and &ERRTEXT, and take one of the follow-
ing actions.

1. Terminate execution by transferring to the special system label,
ABORT. This causes error processing to resume as though no error
intercept had been set.

238 Reference

2. Branch to the special system label CONTINUE. This causes execution
to resume by branching to the failure exit of the statement in error.

Caution: If your error routine was called because of problems in the
Goto field, such as an undefined label or evaluation failure, CON-

TINUE will try to perform that same Goto again. The system will
loop this way until &ERRLIMIT becomes zero. Your error routine
should test &ERRTYPE for Goto-type errors, numbers 20, 23, 24, and
38, and transfer to ABORT instead of CONTINUE in these cases.

3. Branch to the special system label SCONTINUE. This causes execu-
tion to resume at the point of interruption, by branching into the
statement. The statement resumes execution and succeeds or fails
normally. Generally this should only be attempted after receiving
an error 320 (user interrupt). It lets the user’s SETEXIT function re-
cord a keyboard-generated interrupt for processing later.

4. Continue execution elsewhere by branching to another section of
the program. If the error occurred inside a function, execution is
still “down a level.”

5. If the error occurred inside a function (&FNCLEVEL is non-zero),
branch to label RETURN, FRETURN, NRETURN. This avoids possible
difficulties with alternative 4.

The occurrence of an error cancels the intercept. An error routine must
reissue a SETEXIT call if error interception is to continue.

To display an error and continue processing after an error, use program
statements like this:

SETEXIT(.ERRTRACE)
&ERRLIMIT = 100
…

ERRTRACE
OUTPUT = “Error #” &ERRTYPE “, ” &ERRTEXT
SETEXIT(.ERRTRACE)
(DIFFER(&ERRTYPE,20) DIFFER(&ERRTYPE,23)

+ DIFFER(&ERRTYPE,24) DIFFER(&ERRTYPE,38))
+ :S(CONTINUE)F(ABORT)

Another example of error processing may be found in the SPITBOL pro-
gram code.spt.

SETEXIT is part of standard SPITBOL, but not SNOBOL4, although
SNOBOL4+ provides a SETBREAK function to trap user interrupts.

SPITBOL Functions 239

19

SIN Sine of an angle

SIN(n)

Returns the sine of n, an angle expressed in radians.

This function is not part of standard SPITBOL or SNOBOL4.

SIZE Get length of string

SIZE(s)

The function SIZE returns an integer value which is the number of char-
acters in its argument string. A null string argument returns 0.

SORT Sort array or table in ascending order

SORT(array, i)
SORT(array, name)
SORT(table,i)

This function will sort one column of an array or table in ascending or-
der, with larger keys appearing after smaller ones in the resultant array.
Function RSORT may be used to sort in descending order.

If a table is provided as the first argument, it will be converted automati-
cally to an array. If an array is provided, the sort is performed on a copy of
the array; the original array is unchanged. In either case, the sorted array is
returned as the result of the function.

When an array is specified, it must be a one- or two-dimensional array.
The second argument specifies a column number. If it is omitted, it defaults
to the smallest column number for the array. Comparisons are made using
elements of this column. When two elements are found to be out of se-
quence, the entire rows to which they belong are exchanged.

If the first argument is a table, it is first converted to a two-dimensional
array, by internally invoking the CONVERT(table, “ARRAY”) function. This
produces an N row by 2 column array, where the first column contains the
table keys, and the second column contains the table values. Only table en-
tries with non-null values are placed in the array. When using a table, the
second argument should be 1 to sort by key, or 2 to sort by entry value. If all
table entries are null, SORT fails. If the resultant array would be too large for
the current value of &MAXLNGTH, SORT produces error number 256.

The array or table entries may contain any SPITBOL data type. The rules
used when comparing two entries of different data types are:

string-string Compared lexically

integer-integer Compared algebraically

real-real Compared algebraically

integer-real Integer converted to real, then real-real compari-
son

240 Reference

other For all other data types: If the data type of the two
entries is the same, an unsigned comparison is
made of their memory addresses. This effectively
sorts them by time of creation, because older ob-
jects have smaller addresses. If the data types are
different, the lexical data type names are used, and
effectively sorts them in the order: array, code, ex-
pression, integer, keyword, name, pattern, real,
string, and table. Program-defined data types will
appear within this group in their proper lexical po-
sition.

In case a vector (one-dimensional array) is being sorted, the optional sec-
ond argument may be the name of a field of a programmer-defined data
type created by DATA(). In this case, if any of the values in the vector are of
this type, the contents of the field corresponding to name are used as the sort
key. If the second argument is omitted, the sorting is carried out by using the
values the vector contains as keys. For example:

DATA(“Complex(Real,Imag)”)
Points = ARRAY(50)
Points[1] = Complex(3.4, 3.2)
…

Points(50) = Complex(0.7, 8.4)
…

OrderedPoints = SORT(Points, .Imag)

will sort the array Points based upon the value of the Imag field of the pro-
gram-defined datatype.

The SORT function produces an error message if the first argument is an
empty table, or if the array has three or more dimensions, or if the column
number is out of range.

The sorting method used is Heapsort (see Horowitz and Sahni, Funda-
mentals of Data Structures) modified so that no interchanging of equal keys
occurs. It is efficient in usage of both space and time, the time taken to sort N

items being proportional to N*log(N).

SNOBOL4+ and many other implementations of SNOBOL4 and
SPITBOL offer built-in sorting functions, but they are not part of standard
SNOBOL4.

Like SNOBOL4+, and unlike standard SPITBOL, Catspaw SPITBOL does
not attempt to convert strings to numbers when comparing strings to reals
or integers. To do so can result in an unstable sort that is dependent upon
the order of the input data. If your array or table contains integers, reals, and
numeric strings, the integers and reals will now sort ahead of all strings.
This can be remedied by converting all numeric strings to integers or reals
when they are first added to the array or table.

SPAN Match characters in set

SPAN(s)

SPITBOL Functions 241

19

Matches one or more characters from the set of characters specified by
the argument string. SPAN will not match the null string; at least one charac-
ter from the argument string must be found in the subject.

SQRT Square root of a number

SQRT(n)

Returns the square root of n as a real number.

This function is not part of standard SPITBOL or SNOBOL4.

STOPTR Stop trace

STOPTR(name, type)

Discontinues the type of trace of the named item. Consult the TRACE()

function for a list of tracing types available, as well as the differences be-
tween SPITBOL and SNOBOL4.

SUBSTR Extract substring

SUBSTR(s, i1, i2)

Returns a substring extracted from the argument string. Integer i1 speci-
fies the starting character position in s (1 = first character), and i2 is the
length of the desired substring. If i2 is omitted or zero, the remaining charac-
ters of the argument string are extracted. The statement fails if i1 or i2 specify
a string which is not properly contained in s.

It is always faster to use SUBSTR instead of pattern matching to extract
characters from a fixed position in a string.

This function is in standard SPITBOL and SNOBOL4+, but not in stan-
dard SNOBOL4.

TAB Match through fixed position

TAB(i)

Matches all characters from the current cursor position up to the speci-
fied cursor position. TAB(N) matches characters up to, and including, the ini-
tial N characters of the subject. TAB will match the null string if the target po-
sition and current cursor position are the same. The function fails if the cur-
rent scanner position is to the right of the target position.

242 Reference

TABLE Create a table

TABLE(i,x,arg)

A table is similar to a one-dimensional array, but the subscripts may be
any SPITBOL data type. The TABLE function creates an associative table and
returns a pointer to it.

All three arguments are optional, and if omitted, the defaults will be
used. However, to have just the third argument in effect, it must be prefixed
by two commas, as with TABLE(,,’Whatever’).

The integer i is the number of hash headers used internally. If it is omit-
ted, 11 is used by default.

If N is the number of entries in the table, and H is the number of hash
headers, the average number of probes to find an entry rises from about 1.0
for small N, to N / 2H if N is large compared with H. Since the overhead for
hash headers is small compared to the size of a table element, a useful guide
is to use as argument i an estimate of the number of entries to be stored in the
table. This value is subject to SPITBOL’s general restriction on largest object
size, so the value of i selected should also be less than &MAXLNGTH/4.

The second argument to TABLE, x, is of no relevance to SPITBOL and is ig-
nored. It is part of the syntax in order to maintain compatibility with
SNOBOL4.

The third argument, arg, is a value which is to be returned instead of the
default null string when table look-up is performed using a key which has
not been entered into the table. For instance:

WORDS = TABLE(1000,,’No such word’)
….
TERMINAL = WORDS[‘nonesuch’]

will produce the string “No such word”.

Remember, argument i does not limit the total number of values stored
in a table—it only affects the efficiency of table access. Thus, 80,000 elements
might be stored in a table created by TABLE(5000) (if the workspace were
large enough). A typical table access would require an average of 8 probes.

SPITBOL differs from SNOBOL4 in that referring to a non-existent table
entry in SNOBOL4 will create a new entry, while in SPITBOL, an entry is in-
serted into a table only when an explicit assignment is made. Thus table
look-up for a currently missing key does not create an entry for that key.
SNOBOL4+ provides functions FREEZE and THAW to overcome this diffi-
culty; these functions are not needed in SPITBOL.

TAN Tangent of an angle

TAN(n)

Returns the tangent of n, an angle in radians. Real overflow results when
the argument is a multiple of ±π/4.

This is not in standard SPITBOL or SNOBOL4.

SPITBOL Functions 243

19

TIME Get execution time

TIME()

Returns the execution time in milliseconds since the start of program ex-
ecution. Under Unix, this is the amount of time spent computing, and ex-
cludes time spent waiting for I/O or keyboard input. Under MS-DOS and
OS/2, this is a measure of total elapsed time, and includes all I/O wait time.
Resolution is dependent upon the hardware and operating system.

The function appears in all SPITBOL and SNOBOL4 systems, but varies
in the time unit used, resolution, and meaning of “execution” time.

TRACE Trace an entity

TRACE(name1, s1, s2, name2)

The TRACE function, an invaluable debugging aid, starts a trace of the
item whose name is given by the first argument. The second argument, s1,
specifies the sense of the trace:

Second Argument Trace Type

‘A’ or ‘ACCESS’ Access

‘V’ or ‘VALUE’ or null Value

‘K’ or ‘KEYWORD’ Keyword

‘L’ or ‘LABEL’ Label

‘F’ or ‘FUNCTION’ Function call and return

‘C’ or ‘CALL’ Function call

‘R’ or ‘RETURN’ Function return

TRACE information is written to standard output, (normally, the screen,
but it can be redirected to a disk file on the command line).

The access trace mode produces trace output each time an item is refer-
enced. Attempts to trace a function before a DEFINE statement has been exe-
cuted will produce an error. If the value of &STLIMIT is negative, &STCOUNT

may not be traced. To give a visual impression of depth of nesting, the letter
“I” is included in the trace output for each additional level of function call.

The keyword &TRACE must be set to nonzero for tracing to occur.

Name2 is the optional name of a program-defined function that will be
called when a trace occurs. It is called with two arguments: the name of the
item being traced, and argument s2, which can provide additional informa-
tion to the trace routine. See Chapter 10, “Debugging,” for examples of use.

TRACE has the same syntax in both SNOBOL4 and SPITBOL, but
SNOBOL4 does not offer the access trace. SNOBOL4 allows a function trace
to be specified before a function is defined with DEFINE(). SPITBOL requires
that the function be defined before it can appear as the first argument to
TRACE() when the second argument is ‘FUNCTION’, ‘CALL’, or ‘RETURN’.

For more information on tracing, see Chapter 10.

244 Reference

TRIM Remove trailing blanks and tabs

TRIM(s)

Returns the argument string with trailing blanks and tabs removed. If
the argument string was read from an input file, it is more efficient to set
keyword &TRIM nonzero than to use TRIM(INPUT).

By combining function TRIM with REPLACE, any trailing character can be
removed. The desired character is temporarily exchanged with blank,
trimmed, then exchanged back. For example, this expression returns string
S with trailing zeros removed:

REPLACE(TRIM(REPLACE(S, ‘0 ‘, ‘ 0’)), ‘0 ‘, ‘ 0’)

Standard SNOBOL4 contains a TRIM function, but it removes blanks
only, not tabs.

UNLOAD Remove function definition

UNLOAD(name)

This undefines the user-defined function name. If name is an external
function, reclaiming the memory occupied by the function is implementa-
tion dependent. See Appendix F.

In SPITBOL, only user-defined functions can be UNLOADed. SNOBOL4
allows even built-in functions to be UNLOADed.

SPITBOL Functions 245

19

Generally, you can ignore the details of SPITBOL’s internal construction.
Data storage and memory management occur effortlessly and invisibly.
However, if you are writing programs that will process large volumes of
data, you may wish to understand the storage overhead associated with
various data types.

The internal organization of SPITBOL is quite different from that of
SNOBOL4. Consequently the relative speed of various operations differs.
This section attempts to give some idea of how to obtain high efficiency in
SPITBOL programs. Much of the material for this section was provided by
Robert B. K. Dewar, the principal designer of Macro SPITBOL.

In the following discussions, a “word” occupies four bytes (32 bits) of
RAM memory in all implementations except SPITBOL-8088, where a word
is two bytes (16 bits) long.

1. The ANY, NOTANY, BREAK, BREAKX, and SPAN functions use trans-
late-and-test tables for arguments longer than one character. Such a
table is 256 words plus one additional word of overhead. For each
function call, a bit column is allocated so that a single table suffices
for 32 calls (16 calls in SPITBOL-8088). With a constant argument,
the table entry is precomputed at compile time, thus avoiding ero-
sion of space by repeated calls in a run-time loop. Single-character
arguments incur no space overhead.

2. Integers and reals have an overhead of one word above the space
for their values, one word for integers and two words for reals. The
long integer version of SPITBOL-8088 (spitboll.exe) requires two
16-bit words to store a 32-bit integer.

3. Multidimensional arrays have a space overhead of 8 + 2D words,
where D is the number of dimensions. One-dimensional arrays

247

20

Chapter 20

Programming Notes

Space Considerations

(vectors) with a low bound of 1 are treated specially and have an
overhead of only three words. The actual array storage in an N-ele-
ment array requires N words for pointers to the data (the actual data
values are stored outside the array).

4. The TABLE datatype is implemented using a hash table. This con-
sists of a block of hash headers, each pointing to a linked list of table
elements. The block consists of 4 + N words, where N is the first ar-
gument used in the creating TABLE() function call (N defaults to 11 if
not specified). Each non-null table element requires 4 words in ad-
dition to the space for the key and entry values themselves.

5. Program-defined data require 3 + F words, where F is the number
of fields. They are quite compact and can be used freely. The data
type definition (one for each different data type) requires 5F words.

6. Strings are stored in a contiguous block of words and require 2
words of overhead per string. The last word of the string is filled
with zero characters if the string size is not a multiple of four.

7. Each user-created name (label, function name, or variable) pro-
duces a variable block that requires 8 words plus space for the text
of the name, the characters of which are packed 4 per word. This
space is constant irrespective of whether the name has a single use
or is used multiply as a label, function, variable, etc. This space is
never reclaimed once it has been allocated. It is thus inefficient to
use variables to store associative data with the $ operator. Instead
use the TABLE data type.

8. The interpretive code produced by the compiler is held in code
blocks and is subject to garbage collection when no longer accessi-
ble. You can take advantage of this by writing label-free initializing
code at the start of the program. Even if the labels are present, it is
possible to make initializing code collectible by calling CODE with a
string argument in which the labels are redeclared.

9. Considerable amounts of memory are used in repeatedly building
patterns. They should either be preassigned to variables outside
program loops or alternatively, if written in-line in loops, should be
constant so that they may be precomputed at compile time in order
to avoid this overhead.

10. Pattern concatenation is accomplished by making a copy of the left
pattern operand, then pointing the copy’s “subsequent” words to
the right operand. This can result in substantial memory usage in
the case of complex patterns. Applying the deferred evaluation op-
erator to the left operand will result in a much smaller structure, be-
cause all that is copied is a pointer to the original pattern. That is,

Pat3 = *Pat1 Pat2

will be far more efficient of space than

Pat3 = Pat1 Pat2

248 Reference

when Pat1 is large.

11. Setting &TRIM non-zero ensures that memory is not wasted in stor-
ing trailing blanks in strings.

12. The COLLECT function can be used to obtain detailed information of
memory utilization for various structures.

As its name implies, SPITBOL is very fast. However, a general knowl-
edge of the relative efficiency of various SPITBOL constructions can lead to
programs that rival those written in conventionally compiled languages.
Here then are some guidelines to keep in mind when developing large, pro-
duction programs.

1. To a greater extent than is the case with SNOBOL4, there is a loss of
efficiency in encoding complex structures as strings. Use arrays, ta-
bles and program-defined datatypes where possible, since all of
these are highly efficient in SPITBOL. The fast associative lookup
(hashing) feature of tables make them a particularly recommended
feature to be exploited in a wide range of applications.

2. Programmers frequently do not appreciate that execution speeds
may be reduced by an order of magnitude if poorly designed pat-
terns fruitlessly scan data in unanchored mode. With the pattern
matching primitives of SPITBOL, it is rare that unanchored match-
ing is necessary and since anchored matching is much less expen-
sive, it is worth acquiring the habit of initially setting &ANCHOR

non-zero. If unanchored matching is needed for some purpose,
take care that it is not unduly wasteful with data for which match
failure is common.

3. Immediate pattern assignment with the binary $ operator is faster
than conditional pattern assignment (.), and may be used freely.

4. SPITBOL precomputes constant expressions before execution. No
efficiency is lost by writing pre-evaluable patterns in-line rather
than predefining them. Use of the unary unevaluated expression
operator (*) to defer computation is useful in some cases. For exam-
ple, consider the in-line matches:

X ? ANY(‘PQR’) BAL PAT ‘X’ RPOS(0)
X ? ANY(‘PQR’) BAL *PAT ‘X’ RPOS(0)

The second form is more efficient, since the compiler can
precompute the entire pattern where the variable PAT occurs as a
deferred expression.

5. The ANY, NOTANY, BREAK, BREAKX, SPAN, RSORT and SORT func-
tions are fast and highly recommended.

Programming Notes 249

20

Speed Considerations

6. ARB and ARBNO are slow and can very often be avoided by using
other constructions.

7. Time for datatype conversions may be significant. Where efficiency
is important, avoid repeated unnecessary conversions.

8. The SETEXIT error intercepts are fast and may be used for program
control as well as for debugging.

9. Tracing or I/O associating a variable substantially slows down ref-
erences to it but there is no residual access penalty if the trace or I/O
associations are removed by STOPTR or DETACH.

10. The unary $ (indirection) operator applied to a string argument in
SPITBOL corresponds to a hash search of existing variables. The
process of applying $ to a NAME (including the name of a natural
variable), is much faster, which is why unary dot (name operator)
returns a NAME instead of a string. It is thus better to use names
rather than strings in applications such as passing variable names
or labels indirectly as in

F(.X)

rather than

F(“X”)

11. Use of the REPLACE function is optimized when, on repeated calls,
the second and third arguments are found to be unchanged, since in
this case the previously constructed replace table is re-used. RE-

PLACE is further optimized when the second argument is &ALPHA-

BET, because no replace table need be built at all (the third argument
is used as the replacement lookup table directly). Private replace-
ment tables can thus be constructed as follows:

TO_LOW = REPLACE(&ALPHABET, &UCASE, &LCASE)
LOOP LINE = REPLACE(INPUT, &ALPHABET, TO_LOW) :F(EOF)

12. Use ANY instead of an explicit list of one-character strings and the
alternation operator. That is, use:

ANY(“AEIOU”) rather than (“A” | “E” | “I” | “O” | “U”)

13. LEN, TAB and RTAB are faster than POS and RPOS. The former “step
over” subject characters in one operation; the latter continually fail
until the subject cursor is positioned correctly. But be careful of us-
ing them with replacement and replacing more than expected.

14. Keep strings modest in length. Although SPITBOL allows strings to
be thousands of characters long, operating upon them is time-con-
suming. Furthermore, they use large amounts of memory, and
force SPITBOL to rearrange memory frequently.

Other notes 1. The pattern match:

&ALPHABET LEN(N) LEN(1) $ C

250 Reference

puts the Nth character of the host machine character set into C.
SPITBOL’s built-in function CHAR is far more efficient:

C = CHAR(N)

2. The interrogation operator, unary ?, is useful to annihilate an ex-
pression which is evaluated for its side effects rather than for its
value. For example:

S ? BREAK(*DELIM) $ K *?(TABLE = TABLE + 1)

Programming Notes 251

20

Appendices

This appendix describes files on the SPITBOL distribution media. Addi-
tional programs derived from String and List Processing in SNOBOL4 [13] are
listed in Appendix B.

The three most important files are: spitbol, code.spt, and read.me.

read.me Last-minute changes

This file contains last minute information about SPITBOL that became
available after this manual was printed.

spitbol SPITBOL compiler and interpreter

This is the main SPITBOL program file. Chapter 13, “Running
SPITBOL,” explains how to run this program. Under MS-DOS and OS/2,
the file name will be spitbol.exe.

code.spt Experiment with SPITBOL statements

This program allows you to enter individual statements for compilation
and immediate execution.

Begin each statement by placing a blank or tab in column one to bypass
the label field. Type the statement and press Return or Enter. The program
will compile and execute your statement, and report its success or failure.
Multiple statements and small loops may be entered by using semicolon be-
tween statements. If a statement contains a Goto field, append a semicolon
to keep your Goto distinct from the one that code.spt appends to your input
line:

? M = 1;LOOP TERMINAL = M; M = LT(M, 20) M + 1 :S(LOOP);
1

2

...

Success

255

A

Appendix A

Distribution Media

You can transfer to labels S and F from within a statement to report suc-
cess or failure.

As a shortcut to avoid having to type “TERMINAL =” to display an expres-
sion, an equal sign in column one will evaluate the remainder of the line:

?=SIN(3) + 4
4.44112001

You can also execute system commands by placing an exclamation point
in column one:

?!dir *.spt

Case-folding is in effect, and &TRIM = 1. Statements are cumulative—a
variable defined in one statement is available later. Terminate the program
by typing end in column 1, or entering <EOF> (control-D or control-Z for
Unix or MS-DOS, OS/2) on an empty line.

Tutorial files These files are used in the tutorial section of the manual.

asc.inc Obtain integer character code of a character

This simple function is explained in the description of program-defined
functions in Chapter 8, “Program-Defined Objects.”

capitals.dat List of states and capitals

A sample data file containing the fifty states and their capital cities. It is
used in the associative programming example in Chapter 7, “Additional
Operators and Data Types.”

fact.inc Produce factorials by recursion

This file is included by code.spt in Chapter 8, “Program-Defined Ob-
jects,” to demonstrate recursion.

faustus Sample text data file

This is a small file of text which you can use as sample input to some of
the word counting and concordance programs. We’ve chosen a speech from
Act 5, Scene 2 of Christopher Marlowe’s play.

host.inc Synonyms for HOST function

This include file contains function definitions for the HOST functions
listed in Appendix E.

palin.spt Check for palindrome

A simple program to check for palindromic input. Try the old saying:

ABLE WAS I ERE I SAW ELBA

256 Appendices

roman.inc Produce Roman numerals

This function converts an integer to its representation in Roman numeral
form. It illustrates the use of recursion in string processing, and is described
further in Chapter 8, “Program-Defined Objects.”

Demonstration
files

This assortment of SPITBOL programs and functions is provided in the
demos sub-directory. The files can be examined or printed to obtain addi-
tional information on their use.

atn.spt
atn.in Compiler for an Augmented Transition Network

This compiler was written by Shafto [7], and is provided by permission.
It compiles a network description of English sentence structure into
SPITBOL code. Sentences are then the “source input” to the network, which
tries to parse them.

File atn.in contains a sample network description and test sentences.

eliza.spt The ELIZA program written in SPITBOL

The program ELIZA is one of the most famous early works in the field of
artificial intelligence. Originally written in FORTRAN in 1966, it was con-
verted to SNOBOL4 by R. T. Duquet in 1969. Other related files are:

eliza.txt Article describing the ELIZA system.

eliza.scr A sample ELIZA script.

gotos.spt Record Gotos executed by program

This program uses the trace feature of SPITBOL to keep a history of the
Gotos recently executed by your program. It is useful for post-mortem anal-
ysis of the execution path taken.

kalah.spt Plays the African board game Mancala

This is a large artificial intelligence program written by Shafto [7]. It was
translated from a similar program written in the LISP language. Because it
was meant to parallel the original LISP program, it relies more upon func-
tions and data structures than string processing. However, reading the pro-
gram file is rewarding, as it contains a wealth interesting SPITBOL pro-
gramming techniques.

It is one of the many variations of Mancala games. Mancala games are
popular in Africa and India. It is a very old game; boards have been found in
Ancient Egyptian ruins. Some of the names of different versions are:
Mankala’h, Pallanguli, Wari, Awari, and Ba-Awa.

The board consists of two rows of six depressions, called pits or pots. A
larger pit at each end holds captured pieces.

Distribution Media 257

A

The board is shown below: integers are pot numbers, “P” is the program,
“O” is the opponent (user).

The move path is counter-clockwise. For the program: P1⊗ P6⊗ P Kalah
⊗ O1⊗ O6⊗ P1, and for the opponent, O1⊗ O6⊗ O Kalah⊗ P1⊗ P6⊗ O1.

Initially, P1-P6 and O1-O6 are filled with the desired number of stones. A
move is made by taking all the stones from a numbered pot on your side,
and sowing them one-by-one into succeeding pots along your path. If your
last stone went into your Kalah, you get another turn. If the last stone went
into a numbered pot on your side, which was empty, you take that stone, and
any stones in your opponent’s opposite pot, and place them in your Kalah.
The game ends when one side has a majority of the stones in its Kalah. If it is
your turn and all of your pots are empty (you have no play), the other side’s
stones are placed in the other side’s Kalah, the game ends, and the side with
the most stones wins.

The program will prompt for the initial number of stones in each pot,
and the search depth that will be used for the internal tree search of moves.
Try numbers of 4 and 2 respectively to get started.

keyword.spt Find keywords in file

This program reads a list of words from file keywords and inserts them
into a table. It then reads text from the file keytext, and reports the number
of occurrences of the keywords in the text.

sentenc.spt Parse simple sentences

Contributed by Michael Feldman, this program demonstrates how sim-
ple English grammars can be constructed by developing patterns
incrementally from simpler ones. The program expects you to type in a sen-
tence using its restricted vocabulary, then tells you if it is well formed ac-
cording to the built-in grammar. You’ll have to display the program to see
the vocabulary. However, you can start out by trying the following:

Zippy eats the yellow banana slowly.
The aggressive monkey reads the large book, however, Dick is a boy.

258 Appendices

P 4P 5P 6 P 3 P 2 P 1

O 1 O 2 O 3 O 4 O 5 O 6

O KalahP Kalah

treesort.spt Constructing and displaying a sorted binary tree

This program was provided by Robert Dewar, author of SPITBOL, and
demonstrates several programming techniques. It reads data from file
treesort.in and enters it into two sorted trees. After all data is read, the trees
are displayed using a recursive technique that displays the left sub-tree, the
intermediate node, then the right sub-tree. Setting keyword &DUMP = 2

gives a dump from which you can construct a diagram of the tree structure.

Miscellaneous
files

These files are provided to solve unusual programming problems. Some
are specific to the SPITBOL-386 version of SPITBOL. Documentation for
each is provided at the beginning of each file.

args.inc Prepare command line arguments in array

This file uses HOST(2) and HOST(3) to copy the user’s command-line ar-
guments into an array named ARGV. The number of user arguments is pro-
vided in ARGC. The name of the user’s program is provided in ARGV[0].

For example, if the program test.spt includes args.inc, then the com-
mand line:

spitbol test.spt aaa bbb ccc

will set ARGC to 3, and ARGV as follows:

ARGV[0] = “test.spt” ARGV[1] = “aaa”
ARGV[2] = “bbb” ARGV[3] = “ccc”

The advantage of this method is that it works equally well with load
modules. For example, if the programmer generated load module test.exe,
then the command line:

test aaa bbb ccc

would produce the same result shown above, except ARGV[0] would con-
tain “test.exe”.

intcall.inc Call MS-DOS and BIOS interrupt services

HOST function 212 provides a way to call MS-DOS and BIOS interrupt
routines. This include file provides a higher level interface to HOST(212).

logic.inc
logic.slf

Perform bit-wise logical operations, unsigned arithmetic and radix
conversion

This include file and external function provide bit-wise logical opera-
tions such as And and Or upon numbers or strings. It also provides radix
conversion between numbers and strings of digits in an arbitrary base.

The include file defines 19 functions as shown below. The logical and
arithmetic functions may be called with arguments that are integers,
strings, or a mixture of each. When a string argument is used, the indicated

Distribution Media 259

A

operation is performed on a character-by-character basis. That is, to add one
to each character in the string S, use

UPLUS(S, 1)

Similarly, each characters in strings S1 and S2 can be added on a
pair-wise basis by using

UPLUS(S1, S2)

The source code for the LOGIC function may be found in file logic.asmin
the externals\asm subdirectory.

NOT(X) return logical NOT of X

AND(X1,X2) return X1 AND X2

OR(X1,X2) return X1 OR X2

XOR(X1,X2) return X1 XOR X2

NAND(X1,X2) return X1 NAND X2

NOR(X1,X2) return X1 NOR X2

UPLUS(X1,X2) return X1 + X2 (overflow ignored)
UMINUS(X1,X2) return X1 – X2 (overflow ignored)
UMUL(X1,X2) return X1 * X2 (unsigned)
UDIV(X1,X2) return X1 / X2 (unsigned)
SHL(X1,X2) return X1 shifted left X2 bits
SHR(X1,X2) return X1 shifted right X2 bits (unsigned)
SAR(X1,X2) return X1 shifted right X2 bits (sign extension)
ROL(X1,X2) return X1 rotated left X2 bits
ROR(X1,X2) return X1 rotated right ARG3 bits
HI(X) hex digit string in X converted to integer
IH(X) integer X converted to hex digit string
DIB(X,B) base B digit string in X converted to integer
IDB(X,B) base B integer in X converted to digit string

pathname.inc
pathname.slf Obtain file name from SPITBOL channel number

This include file and external function uses the channel number (the sec-
ond argument to the INPUT/OUTPUT functions) to obtain the name of the file
opened for this channel.

pchost.inc PC-SPITBOL-compatible synonyms for HOST function.

This include file may be substituted for host.inc if you need to resolve in-
compatibilities in HOST function numbering in PC (8088) SPITBOL.

snobol4.inc Emulate some SNOBOL4+ extensions

Catspaw’s SNOBOL4+ system provided a number of functions that are
not available in SPITBOL. This include file emulates some of those func-
tions, and provides error messages for others. Its use can assist the transi-
tion from SNOBOL4+ to SPITBOL.

260 Appendices

The following files are provided with SPITBOL in the sub-directory slp.
They contain SNOBOL4 programs and functions derived from the book
String and List Processing in SNOBOL4 [13].

These programs appear with permission of their author, Ralph
Griswold. We’ve reformatted them, altered some, and provided comments.

Some functions will be useful by direct inclusion in other programs. Oth-
ers are artifices to illustrate techniques made possible by the SNOBOL4 lan-
guage. Many of the arithmetic functions are incomplete; some operators are
provided, others are left as an exercise for the reader.

The description at the beginning of each file should be consulted for
more information. The files are listed here in approximately the same order
they appear in the book.

bnf.spt Generates a recognizer for BNF grammars

grammar.def Test grammar definition for bnf.spt

grammar.in Test input file for bnf.spt

property.spt Programs to examine and print property strings

tictac.spt Plays the game Tick-Tack-Toe

center.inc Function to center a string

rotate.inc Function to rotate a string

delete.inc Function to delete characters from a string

compress.inc Function to compress characters from a string

trunc.inc Functions to truncate and extend arrays

261

B

Appendix B

Programs from

String and List Processing

trim.inc Trim arbitrary characters from the end of a string

fact.inc Recursive and iterative factorial functions

fibon.inc Recursive and iterative Fibonacci functions

acker.inc Ackermann function and call depth histogram

prefix.inc Convert expression between prefix and infix form

random.inc Random number and random character genera-
tors

ngram.inc Functions to produce n-gram strings

sort.inc Shell sort written in SNOBOL4

concord.spt Word citation in text

stack.inc Functions to implement stack operations

queue.inc Functions to implement list operations

bintree.inc Functions to implement binary trees

tree.inc Functions to implement more general trees

ration.inc Operations on rational numbers

lrgint.inc Operations on large integers

poly.inc Operations on polynomials

collate.inc Function to blend two strings

decollat.inc Function to unblend a string

cryptsub.inc Cryptography with substitution ciphers

crypttran.inc Cryptography with transposition ciphers

cryptply.inc Cryptography with polyliteral ciphers

decrypt.inc Deciphering tools

262 Appendices

The main difference between SPITBOL and standard SNOBOL4 are
summarized in this appendix. SPITBOL features absent from standard
SNOBOL4 but present in Catspaw’s SNOBOL4+ for MS-DOS systems are
noted. Much of this material was provided by Robert B.K. Dewar.

1. The capability of redefining standard system functions and prede-
fined operators. This restriction permits compile time pre-evalua-
tion of a wider range of expressions and patterns than would other-
wise be possible. It also affects the OPSYN function.

2. The VALUE function.

3. The keywords &STFCOUNT and &FULLSCAN. The heuristics associ-
ated with the Quickscan mode of pattern matching are complex
and for many programs do not result in a significant increase in
speed. Accordingly only Fullscan matching is provided and no
heuristics are applied. In particular deferred expressions are not as-
sumed to match at least one character.

4. The variable PUNCH has no predefined association to a punch
stream. If PUNCH is to be referenced, a statement like OUT-

PUT(.PUNCH,3) should be included in the program. This will write
data assigned to PUNCH to the standard output file.

263

C

Appendix C

Summary of Differences

Features Not Implemented

Some of the differences here may require program changes.

1. In SPITBOL the value of &ANCHOR is obtained only at the start of
the match. In SNOBOL4, changing the value during a match can
lead to unexpected results.

2. The pattern valued variables ABORT, ARB, FAIL, REM and SUCCEED

are write-protected so that attempts to assign to them will fail.

3. The same stack is used for pattern matching and for function calls.
Thus the diagnostic issued for an infinite pattern recursion is the
standard stack overflow message.

4. Recovery from most execution errors is possible. See SETEXIT() in
Chapter 19, “SPITBOL Functions.”

5. Input/Output. In particular, FORTRAN I/O is not provided. Dy-
namic association to files is possible through the third argument
and statement failure is possible if a file cannot be found as in

INPUT(.IN, 3, ‘INFIL’) :F(NOFILE)

SNOBOL4+ provides a similar capability.

6. The TABLE function is implemented so that table elements can be
rapidly accessed by the efficient technique of hashing. In order to
set a suitable size for the hash table it is important to choose a rea-
sonable value for the argument of TABLE. Using an inappropriate
value will not cause program failure but may slow down access to
elements or waste memory. Hashing is more efficient if the value
chosen is a prime number.

Like SNOBOL4+ and SPITBOL/370, when a table is converted to
an array, the oldest elements appear first.

7. SPITBOL allows some datatype conversions not allowed in stan-
dard SNOBOL4. For example a real value may be used in patterns
and is converted to an appropriate datatype if at all possible.
SNOBOL4+ provides these additional conversions.

8. The unary . (name) operator applied to a natural variable yields a
NAME datatype, rather than a STRING. Since this NAME is converted
to a STRING when necessary, the difference is not normally noticed.
The only point at which the difference will be apparent is when a
NAME value is used as an argument to the IDENT, DIFFER or
DATATYPE functions or when it is used as a TABLE subscript. The
NAME may be explicitly converted to a STRING using the CONVERT

function. SNOBOL4+ and SPITBOL can be distinguished with this
statement:

IDENT(DATATYPE(.X), “NAME”) :S(SPITBOL)F(SNOBOL4)

264 Appendices

Features Implemented Differently

9. SPITBOL permits leading and trailing blanks on numeric strings
which are converted to integer or real numbers. SNOBOL4+ pro-
vides the same capability.

10. Several of the built-in functions are slightly different. They are
identified by a double-ruled box around their names in Chapter 19,
“SPITBOL Functions.”

11. Constant sub-expressions and patterns are pre-evaluated at com-
pile time. This may occasionally result in execution errors (e.g. inte-
ger overflow) being reported during compilation. Significant speed
increases may be obtained by ensuring that in-line patterns are con-
stant so that they may be pre-evaluated. Patterns built from pat-
tern-valued variables (e.g. ARB) and pattern functions with con-
stant arguments (e.g., ANY(*ARG), RTAB(0)) are themselves constant.

12. A compact and fast garbage collector is used that needs to distin-
guish between small integers and memory addresses. This effec-
tively restricts the maximum size of any SPITBOL object (string, ar-
ray, table, code or expression block, integer keyword) to be less
than a value referred to as MXLEN. This is in practice not a restric-
tion for most users. Where it might prove restrictive, the –mn com-
mand line option allows you to alter its value.

Since the value of MXLEN is used to initialize &MAXLNGTH, output-
ting &MAXLNGTH during execution gives its exact value. You may
subsequently assign a smaller value to this keyword but values ex-
ceeding that of MXLEN may not be assigned to it.

13. A value of zero for &TRIM does not necessarily imply that trailing
blanks will be added to records in which they are not originally
present. SNOBOL4+ provides a similar capability by setting &TRIM

to –1. Trimming is always disabled when reading from a binary file.

14. In standard SNOBOL4, line-mode record lengths default to 80 char-
acters for input and output. By default, SPITBOL provides a 1,024
character record length for input, and an infinite record length for
output. Both may be changed by use of the –l record length option
as described in the INPUT function in Chapter 19, “SPITBOL Func-
tions.”

15. Like standard SNOBOL4, Catspaw SPITBOL ignores unrecog-
nized control statements. Standard SPITBOL will report an unrec-
ognized control statement as an error.

16. SNOBOL4+ provides FREEZE and THAW functions to prevent the
creation of new table entries merely upon table access. These func-
tions are unnecessary in SPITBOL, because it only creates table en-
tries as the result of explicit assignments.

17. SNOBOL4+‘s extended pattern matching functions LEN(–1), MARB,
and absolute TAB are not available in SPITBOL.

Summary of Differences 265

C

The following SPITBOL features are not found in standard SNOBOL4.

1. The functions BREAKX, EJECT, EXIT, FENCE, HOST, LEQ, LGE, LLE, LLT,
LNE, LPAD, REVERSE, RPAD, RSORT, SETEXIT, SORT, SUBSTR. The
sorting functions, the extended break pattern BREAKX, and the out-
putting formatting functions LPAD and RPAD are especially useful.
See Chapter 19, “SPITBOL Functions,” for details of all these func-
tions. Most of these functions are provided in SNOBOL4+.

2. The numeric functions ATAN, CHOP, COS, EXP, LN, SIN, SQRT, TAN,
and X**Y for real X and Y. Some of these functions are in SNOBOL4+.

3. The keywords &ERRTEXT, &FILE, &LASTFILE, &LASTLINE, and &LINE.
(Also in SNOBOL4+.)

4. The symbolic dump optionally includes elements of arrays, tables
and programmer-defined datatypes, and null-valued items.

5. An access trace mode is provided in addition to the other modes.

6. A selection or alternative feature is provided to evaluate successive
expressions from a list of expressions. (Also in SNOBOL4+.)

7. The CONVERT functions allows conversion to “NUMERIC”. Conver-
sion will be to integer or real according to the form of the data. (Also
in SNOBOL4+.)

8. The assignment symbol = is treated as an ordinary binary operator
and the binary operator ? is given a defined meaning as a pattern
matching operator. (Also in SNOBOL4+.)

9. The name TERMINAL is available with pre-association for input and
output to the keyboard and the screen. Note that:

T TERMINAL = EVAL(TERMINAL) :S(T)

acts as a desk calculator. TERMINAL is also available in later versions
of SNOBOL4+.

10. All lower-case letters appearing in a name are by default folded to
upper case. For example, terminal and Terminal are both treated like
TERMINAL. If compatibility with standard SNOBOL4 is desired, dis-
able case-folding via the –f command line option or the –CASE con-
trol statement. (Also in SNOBOL4+.)

11. The assignment &STLIMIT = –1 inhibits all the checks on numbers of
statements executed. (Also in SNOBOL4+.)

12. SPITBOL contains a statement profiler that may be used to assist in
program optimization. The keyword &PROFILE controls its use.

266 Appendices

Additional Features

This section describes differences in syntax between SPITBOL and stan-
dard SNOBOL4. Such differences should not generally affect existing
SNOBOL4 programs.

1. Reference to elements of arrays or tables which are themselves ele-
ments of arrays or tables is possible without using the ITEM func-
tion. Thus the following are equivalent:

A<J><K> = B<J><K>
ITEM(A<J>,K) = ITEM(B<J>,K)

A similar language extension is provided in SNOBOL4+.

2. The compiler permits real constants to be followed by a FOR-
TRAN-style exponent E±NN or D±NN. (Also in SNOBOL4+.)

3. A selection or alternative construction may be written anywhere
that a value is permitted. It consists of a series of expressions sepa-
rated by commas and enclosed in parentheses:

(e1, e2, e3, …, en)

The semantics are to evaluate the expressions from left to right until
one succeeds and then use its value. Failure is signaled if all evalua-
tions fail. This feature trivially provides an “or” function for predi-
cates and also has many other uses as shown by the following ex-
amples:

A = (EQ(B,3), GT(B,20)) B + 1
NEXT = (INPUT, ‘%EOF’)
MAXAB = (GT(A,B) A, B)

The alternative structure provides an If-Then-Else capability, and
as such is a useful programming feature. Note incidentally that the
semantics of ordinary parentheses is a correct degenerate case of an
alternative structure with one alternative. This selection construc-
tion is provided in SNOBOL4+, but not in standard SNOBOL4.

4. The array brackets [] may be used instead of < > if desired. Thus
X[I,J] and X<I,J> are equivalent. (Also in SNOBOL4+.)

5. By treating = as a right associative operator of lowest priority, mul-
tiple assignments within a single statement may be coded. The
value returned by an assignment is that of its right hand side. After
executing

A[J = J + 1] = INPUT

J is the index of the element of the array into which data has been
read. (Also in SNOBOL4+.)

6. The question mark symbol (?) is defined to be an explicit binary pat-
tern-matching operator. It is left associative and has priority lower

Summary of Differences 267

C

Syntax Differences

than that of all operators except assignment (=). It returns as its
value the substring matched from its left argument (a string) by its
right argument (a pattern). Thus

‘ABCD’ ? LEN(3) $ OUTPUT ? LEN(1) REM $ OUTPUT

causes printing of ABC followed by BC. See “Binary operator exten-
sions” in Chapter 9, “Advanced Topics.” (Also in SNOBOL4+.)

SNOBOL4+ and SPITBOL offer a high degree of compatibility in their
implementations of the SNOBOL4 programming language. However, as
with any two systems that have evolved independently, differences arise.
This section summarizes the things you should be aware of in order to
move programs from SNOBOL4+ to SPITBOL.

Many SPITBOL features (such as BREAKX) have been included in version
2 of SNOBOL4+ under the generic name “PlusOps,” simplifying the transi-
tion to SPITBOL. However, there are some non-standard language features
(and a few standard ones) in SNOBOL4+ that are not present in SPITBOL.

Identifying the
system

By using only features common to both versions, it is simple to write pro-
grams that will run under either system. Even system-specific features can
be used if your program identifies the system it is running under. The first
step is to distinguish SNOBO4+ from SPITBOL.

DIFFER(.NAME,’NAME’)
:S(SPITBOL)F(SNOBOL4)

will succeed under SPITBOL and fail under SNOBOL4+ (see paragraph 8,
page 264 for the reason). If SPITBOL, the particular platform can be ob-
tained from the HOST() call (no arguments).

Command line
differences

1. SNOBOL4 is usually invoked from the operating system command
line with a line in this form:

SNOBOL4 filename [options]

SPITBOL follows Unix conventions, where options are listed first:

SPITBOL [options] filename

2. SNOBOL4 allows the characters / or – to specify options; UNIX ver-
sions of SPITBOL only permit – because / is part of a path name.

3. Both systems allow input/output files to be specified on the com-
mand line as –n:filename, where n is the decimal channel number
used in the INPUT or OUTPUT function. When used in this fashion,
the file name is omitted from the INPUT or OUTPUT function:

INPUT(.Varname, n)

268 Appendices

SPITBOL for SNOBOL4+ Users

4. Most other command-line options have different meanings.
SPITBOL’s options are described in Chapter 13, “Running
SPITBOL.”

Features
absent

1. Setting compiler options via environment variables: the SNOCMD

environment variable is not supported.

2. Setting compiler options via control statements: the –OPTION con-
trol statement is not supported.

3. Extended pattern matching. SNOBOL4+‘s experimental pattern
matching features such as LEN(negative argument), MARB, ATAB, and
ARTAB are not provided.

Functions
absent

These SNOBOL4+ functions are absent from SPITBOL. The include file
SNOBOL4.inc provides emulation for many of them.

ASC obtain decimal code of character, emulated
ENVIRONMENT look up environment variable, emulated
EXECUTE execute shell command, emulated
FREEZE, THAW not needed: SPITBOL only expands a table when a

new value is stored, emulated by empty functions
PATHNAME obtain channel’s fi le name, emulated in

SPITBOL-386 only via external functon in file
pathname.slf

REMOVE remove characters from string, emulated
SEEK set file position, emulated
SETBREAK trap user interrupt, emulated
STATEMENTS obtain statement count, partially emulated
TELL obtain file position, emulated
TRUNCATE trancate portion of file, not emulated
VALUE(NAME) value of field or variable, emulated

Input/output 1. In SPITBOL, the file name is provided as the third argument to the
INPUT/OUTPUT functions, and processing options are appended to
the file name (see INPUT, page 224). In SNOBOL4+, the third argu-
ment is used to specify options, and the fourth argument is the file
name.

2. The syntax for file processing options is completely different.

3. Unit numbers 5, 6, and 7 have no special meaning in SPITBOL. File
processing option –Fn provide access to standard I/O files.

4. I/O options L and O (to fine-tune end-of-line character conven-
tions) are provided in SPITBOL via the –M# and –N# options to the
INPUT and OUTPUT functions. See those functions in chapter 19,
“SPITBOL Functions.”

5. I/O options T (tab expansion/compression) and Z (control-Z con-
trol) are not present in SPITBOL.

Summary of Differences 269

C

Keywords 1. &FULLSCAN does not appear in SPITBOL. Pattern matching is per-
formed in fullscan mode automatically.

2. &PARM is not present in SPITBOL. However, function AMP_PARM()

in file SNOBOL4.inc returns the same information.

3. &STFCOUNT does not appear in SPITBOL.

Miscellaneous 1. SPITBOL’s DATE function returns the date and time in the form
“DD/MM/YY HH:MM:SS”. SNOBOL4+‘s DATE function returns
“DD–MM–YY HH:MM:SS.CC”.

2. SNOBOL4+‘s external functions are incompatible with SPITBOL’s.

270 Appendices

Special errors Error messages are generally self-explanatory, and SPITBOL will dis-
play the source file name and line number where the error occurred. During
compilation, the character number within the line is also displayed. How-
ever, several messages require additional explanation:

204 Memory overflow
Insufficient extended memory to load program

The program workspace was exhausted. The workspace size is limited
by the physical or virtual memory provided to SPITBOL by the operating
system, and by the –d command line option. Since this option defaults to 64
megabytes, it is not likely to be the limiting factor. Unix users should consult
their system administrator about obtaining a larger memory partition.

Windows 95, Windows NT, and OS/2 provide virtual memory to appli-
cations, and SPITBOL will use it automatically. Memory overflow may oc-
cur if insufficient swap file space is present on the hard disk.

205 String length exceeds value of MAXLNGTH keyword

Keyword &MAXLNGTH determines the longest string allowed. The de-
fault value for this keyword is 9,000 under 8088 SPITBOL, and 4 megabytes
under all other Catspaw SPITBOLs. If you need to use longer strings, in-
crease keyword &MAXLNGTH via the –m command line option. You may also
have to adjust your workspace size upward.

068 Array size exceeds maximum permitted

260 Conversion array size exceeds maximum permitted

Both errors refer to the same problem. Keyword &MAXLNGTH deter-
mines the largest block of memory that can be allocated internally by
SPITBOL. The program tried to create an array that was larger than
&MAXLNGTH bytes. Error 068 arises when calling the ARRAY function. Error

271

DAppendix D

Error Messages

260 comes from converting a table to an array, either explicitly with the
CONVERT function, or implicitly, by sorting a table. Consult Chapter 20,
“Programming Notes,” for information on how to calculate the amount of
memory required for an array, and adjust &MAXLNGTH accordingly via the
–m command line option.

213 Syntax error: Statement is too complicated.

SPITBOL was unable to allocate a memory block large enough to contain
the object code produced when compiling a very complicated statement.
Simplify the statement, or increase the largest object size via command line
option –m.

246 Stack overflow

This usually indicates an error in a recursive function or pattern, with a
resulting “stack plunge.” If a stack larger than the default 32 kilobytes is
needed, increase it with command line option –s.

299 Internal logic error: Unexpected PPM branch

This rather cryptic error should never appear. Please contact Catspaw,
Inc. and supply enough documentation to allow us to duplicate the error.

329 Requested &MAXLNGTH too large

There was not enough memory to accept the size requested by the –m

command line option.

Stack memory unavailable

There was not enough memory to provide the execution stack specified
by the –s command line option.

Workspace memory unavailable

SPITBOL begins execution with an initial workspace size specified by
the –i command line option. This defaults to 128 kilobytes, and is also the
size by which the workspace is expanded when memory is 85% full. This er-
ror means there was insufficient memory to allocate the initial amount.

272 Appendices

Error numbers The following list details all error messages which can be generated ei-
ther at compile time or execution time. The number is provided in
&ERRTYPE, and the text in &ERRTEXT.

1 Addition left operand is not numeric
2 Addition right operand is not numeric
3 Addition caused integer overflow
4 Affirmation operand is not numeric
5 Alternation right operand is not pattern
6 Alternation left operand is not pattern
7 Compilation error encountered during execution
8 Concatenation left operand is not a string or pattern
9 Concatenation right operand is not a string or pattern

10 Negation operand is not numeric
11 Negation caused integer overflow
12 Division left operand is not numeric
13 Division right operand is not numeric
14 Division caused integer overflow
15 Exponentiation right operand is not numeric
16 Exponentiation left operand is not numeric
17 Exponentiation caused integer overflow
18 Exponentiation result is undefined
20 Goto evaluation failure
21 Function called by name returned a value
22 Undefined function called
23 Goto operand is not a natural variable
24 Goto operand in direct goto is not code
25 Immediate assignment left operand is not pattern
26 Multiplication left operand is not numeric
27 Multiplication right operand is not numeric
28 Multiplication caused integer overflow
29 Undefined operator referenced
30 Pattern assignment left operand is not pattern
31 Pattern replacement right operand is not a string
32 Subtraction left operand is not numeric
33 Subtraction right operand is not numeric
34 Subtraction caused integer overflow
35 Unexpected failure in -NOFAIL mode
36 Goto ABORT with no preceding error
37 Goto CONTINUE with no preceding error
38 Goto undefined label
39 External function argument is not a string
40 External function argument is not integer
41 FIELD function argument is wrong datatype
42 Attempt to change value of protected variable
43 ANY evaluated argument is not a string
44 BREAK evaluated argument is not a string
45 BREAKX evaluated argument is not a string
46 Expression does not evaluate to pattern

Error Messages 273

D

47 LEN evaluated argument is not integer
48 LEN evaluated argument is negative or too large
49 NOTANY evaluated argument is not a string
50 POS evaluated argument is not integer
51 POS evaluated argument is negative or too large
52 RPOS evaluated argument is not integer
53 RPOS evaluated argument is negative or too large
54 RTAB evaluated argument is not integer
55 RTAB evaluated argument is negative or too large
56 SPAN evaluated argument is not a string
57 TAB evaluated argument is not integer
58 TAB evaluated argument is negative or too large
59 ANY argument is not a string or expression
60 APPLY first arg is not natural variable name
61 ARBNO argument is not pattern
62 ARG second argument is not integer
63 ARG first argument is not program function name
64 ARRAY first argument is not integer or string
65 ARRAY first argument lower bound is not integer
66 ARRAY first argument upper bound is not integer
67 ARRAY dimension is zero,negative or out of range
68 ARRAY size exceeds maximum permitted
69 BREAK argument is not a string or expression
70 BREAKX argument is not a string or expression
71 CLEAR argument is not a string
72 CLEAR argument has null variable name
73 COLLECT argument is not integer
74 CONVERT second argument is not a string
75 DATA argument is not a string
76 DATA argument is null
77 DATA argument is missing a left paren
78 DATA argument has null datatype name
79 DATA argument is missing a right paren
80 DATA argument has null field name
81 DEFINE first argument is not a string
82 DEFINE first argument is null
83 DEFINE first argument is missing a left paren
84 DEFINE first argument has null function name
85 Null arg name or missing) in DEFINE first arg.
86 DEFINE function entry point is not defined label
87 DETACH argument is not appropriate name
88 DUMP argument is not integer
89 DUMP argument is negative or too large
90 DUPL second argument is not integer
91 DUPL first argument is not a string or pattern
92 EJECT argument is not a suitable name
93 EJECT file does not exist
94 EJECT file does not permit page eject
95 EJECT caused non-recoverable output error

274 Appendices

96 ENDFILE argument is not a suitable name
97 ENDFILE argument is null
98 ENDFILE file does not exist
99 ENDFILE file does not permit endfile

100 ENDFILE caused non-recoverable output error
101 EQ first argument is not numeric
102 EQ second argument is not numeric
103 EVAL argument is not expression
104 EXIT first argument is not suitable integer or string
105 EXIT action not available in this implementation
106 EXIT action caused irrecoverable error
107 FIELD second argument is not integer
108 FIELD first argument is not datatype name
109 GE first argument is not numeric
110 GE second argument is not numeric
111 GT first argument is not numeric
112 GT second argument is not numeric
113 INPUT third argument is not a string
114 Inappropriate second argument for INPUT
115 Inappropriate first argument for INPUT
116 Inappropriate file specification for INPUT
117 INPUT file cannot be read
118 LE first argument is not numeric
119 LE second argument is not numeric
120 LEN argument is not integer or expression
121 LEN argument is negative or too large
122 LEQ first argument is not a string
123 LEQ second argument is not a string
124 LGE first argument is not a string
125 LGE second argument is not a string
126 LGT first argument is not a string
127 LGT second argument is not a string
128 LLE first argument is not a string
129 LLE second argument is not a string
130 LLT first argument is not a string
131 LLT second argument is not a string
132 LNE first argument is not a string
133 LNE second argument is not a string
134 LOCAL second argument is not integer
135 LOCAL first arg is not a program function name
136 LOAD second argument is not a string
137 LOAD first argument is not a string
138 LOAD first argument is null
139 LOAD first argument is missing a left paren
140 LOAD first argument has null function name
141 LOAD first argument is missing a right paren
142 LOAD function does not exist
143 LOAD function caused input error during load
144 LPAD third argument not a string

Error Messages 275

D

145 LPAD second argument is not integer
146 LPAD first argument is not a string
147 LT first argument is not numeric
148 LT second argument is not numeric
149 NE first argument is not numeric
150 NE second argument is not numeric
151 NOTANY argument is not a string or expression
152 OPSYN third argument is not integer
153 OPSYN third argument is negative or too large
154 OPSYN second arg is not natural variable name
155 OPSYN first arg is not natural variable name
156 OPSYN first arg is not correct operator name
157 OUTPUT third argument is not a string
158 Inappropriate second argument for OUTPUT
159 Inappropriate first argument for OUTPUT
160 Inappropriate file specification for OUTPUT
161 OUTPUT file cannot be written to
162 POS argument is not integer or expression
163 POS argument is negative or too large
164 PROTOTYPE argument is not valid object
165 REMDR second argument is not numeric
166 REMDR first argument is not integer
167 REMDR caused integer overflow
168 REPLACE third argument is not a string
169 REPLACE second argument is not a string
170 REPLACE first argument is not a string
171 Null or unequally long 2nd, 3rd args to REPLACE
172 REWIND argument is not a suitable name
173 REWIND argument is null
174 REWIND file does not exist
175 REWIND file does not permit rewind
176 REWIND caused non-recoverable error
177 REVERSE argument is not a string
178 RPAD third argument is not a string
179 RPAD second argument is not integer
180 RPAD first argument is not a string
181 RTAB argument is not integer or expression
182 RTAB argument is negative or too large
183 TAB argument is not integer or expression
184 TAB argument is negative or too large
185 RPOS argument is not integer or expression
186 RPOS argument is negative or too large
187 SETEXIT argument is not label name or null
188 SPAN argument is not a string or expression
189 SIZE argument is not a string
190 STOPTR first argument is not appropriate name
191 STOPTR second argument is not trace type
192 SUBSTR third argument is not integer
193 SUBSTR second argument is not integer

276 Appendices

194 SUBSTR first argument is not a string
195 TABLE argument is not integer
196 TABLE argument is out of range
197 TRACE fourth arg is not function name or null
198 TRACE first argument is not appropriate name
199 TRACE second argument is not trace type
200 TRIM argument is not a string
201 UNLOAD argument is not natural variable name
202 Input from file caused non-recoverable error
203 Input file record has incorrect format
204 Memory overflow
205 String length exceeds value of MAXLNGTH keyword
206 Output caused file overflow
207 Output caused non-recoverable error
208 Keyword value assigned is not integer
209 Keyword in assignment is protected
210 Keyword value assigned is negative or too large
211 Value assigned to keyword ERRTEXT not a string
212 Syntax error: Value used where name is required
213 Syntax error: Statement is too complicated.
214 Bad label or misplaced continuation line
215 Syntax error: Undefined or erroneous entry label
216 Syntax error: Missing END line
217 Syntax error: Duplicate label
218 Syntax error: Duplicated goto field
219 Syntax error: Empty goto field
220 Syntax error: Missing operator
221 Syntax error: Missing operand
222 Syntax error: Invalid use of left bracket
223 Syntax error: Invalid use of comma
224 Syntax error: Unbalanced right parenthesis
225 Syntax error: Unbalanced right bracket
226 Syntax error: Missing right paren
227 Syntax error: Right paren missing from goto
228 Syntax error: Right bracket missing from goto
229 Syntax error: Missing right array bracket
230 Syntax error: Illegal character
231 Syntax error: Invalid numeric item
232 Syntax error: Unmatched string quote
233 Syntax error: Invalid use of operator
234 Syntax error: Goto field incorrect
235 Subscripted operand is not table or array
236 Array referenced with wrong number of subscripts
237 Table referenced with more than one subscript
238 Array subscript is not integer
239 Indirection operand is not name
240 Pattern match right operand is not pattern
241 Pattern match left operand is not a string
242 Function return from level zero

Error Messages 277

D

243 Function result in NRETURN is not name
244 Statement count exceeds value of STLIMIT keyword
246 Stack overflow
247 Invalid control statement
248 Attempted redefinition of system function
249 Expression evaluated by name returned value
250 Insufficient memory to complete dump
251 Keyword operand is not name of defined keyword
252 Error on printing to interactive channel
254 Erroneous argument for HOST
255 Error during execution of HOST
256 SORT/RSORT 1st arg not suitable ARRAY or TABLE
257 Erroneous 2nd arg in SORT/RSORT of vector
258 SORT/RSORT 2nd arg out of range or non-integer
259 FENCE argument is not pattern
260 Conversion array size exceeds maximum permitted
261 Addition caused real overflow
262 Division caused real overflow
263 Multiplication caused real overflow
264 Subtraction caused real overflow
265 External function argument is not real
266 Exponentiation caused real overflow
268 Inconsistent value assigned to keyword PROFILE
270 BACKSPACE argument is not a suitable name
271 BACKSPACE file does not exist
272 BACKSPACE file does not permit backspace
273 BACKSPACE caused non-recoverable error
281 Char argument not integer
282 Char argument not in range
284 Excessively nested INCLUDE files
285 INCLUDE file cannot be opened
286 Function call to undefined entry label
287 Value assigned to keyword MAXLNGTH is too small
288 EXIT second argument is not a string
291 SET first argument is not a suitable name
292 SET first argument is null
293 Inappropriate second argument to SET
294 Inappropriate third argument to SET
295 SET file does not exist
296 SET file does not permit setting file pointer
297 SET caused non-recoverable I/O error
298 External function argument is not file
299 Internal logic error: Unexpected PPM branch
301 ATAN argument not numeric
302 CHOP argument not numeric
303 COS argument not numeric
304 EXP argument not numeric
305 EXP produced real overflow
306 LN argument not numeric

278 Appendices

307 LN produced real overflow
308 SIN argument not numeric
309 TAN argument not numeric
310 TAN produced real overflow
311 Exponentiation of negative base to non-integral power
312 REMDR caused real overflow
313 SQRT argument not numeric
314 SQRT argument negative
315 LN argument negative
320 User interrupt
321 Goto SCONTINUE with no preceding error
326 Calling external function – bad argument type
327 Calling external function – not found

(Save files and execution modules do not include any Dynamic
Link Libraries loaded by a program. They must be explicitly re-
loaded when execution resumes. Error 327 will appear if an exter-
nal function is called without it having been reloaded.)

328 LOAD function – insufficient memory
329 Requested MAXLNGTH too large

Error Messages 279

D

This appendix describes SPITBOL’s HOST function. HOST provides ac-
tions specific to the computer system on which your program is running.
The integer first argument to HOST() describes the particular action desired.

Unfortunately, HOST functions were never standardized in the different
versions of Macro SPITBOL. Only one HOST action is standard across all
versions of Macro SPITBOL:

• Obtain a string that identifies the host computer and its operating sys-
tem

A second HOST function is standard in all Catspaw versions of SPITBOL,
but different in 8086 PC-SPITBOL:

• Obtain any command-line or parameter string entered by the user prior
to execution (HOST(0) on Macintosh, Unix, and SPITBOL-386, HOST(1) in
PC SPITBOL).

We have provided include file pchost.inc in an attempt to resolve the in-
compatibilities with PC SPITBOL. If you have a program that must run on
both PC SPITBOL and one of Catspaw’s SPITBOLs, copy this file into your
program. It provides a new function, PCHOST, that can be used instead of
HOST. It maps PC-SPITBOL HOST functions 1 through 4 to their equivalent
Catspaw SPITBOL functions, if any.

Any other use of the HOST function is likely to introduce machine-specific de-
pendencies into your program.

281

E

Appendix E

The HOST Function

Introduction

Having to remember the specific numbers of the various HOST functions
and sub-functions is tedious and error prone. Therefore, we’ve provided
the include file host.inc to encapsulate HOST calls into user-defined func-
tions with more mnemonic names. To use these in your programming, sim-
ply add the control statement:

–INCLUDE “host.inc”

In the descriptions that follow, we give the common-name form from the
host.inc include file first, followed by the corresponding HOST function.

Unlike other built-in SPITBOL functions, the only automatic type con-
version performed by the HOST function is from string to integer where re-
quired. In all other cases, arguments must have the appropriate types. If neces-
sary, use CONVERT() within the argument list to perform an explicit conver-
sion. For example:

NUM = 3.0
…

HOST(2, CONVERT(NUM, “INTEGER”))

These two sub-functions appear in all versions of Macro SPITBOL.

SYSTEM
HOST() Get machine type and operating system

SYSTEM()
HOST()

Called with no arguments, HOST returns a “host-information” string de-
scribing the system on which SPITBOL is executing. The general form of the
string in all SPITBOL implementations is:

“computer type:operating system name:site name version serial #”

For SPITBOL-386, a typical string returned by this function is:

“80386:MS-DOS 3.30:Macro SPITBOL 3.7(2.45 I/O) #10001"

PARM
HOST(0) Obtain parameter string text

PARM()
HOST(0)

Returns the string specified with the –u command line option. To supply
multiple words with this parameter, quote them: for example, –u “abc def”. If

282 Appendices

Argument Conversion

Universal HOSTs

–u was not specified, it returns the concatenation of all the user’s command
line arguments with one blank character between each. That is, it returns all
arguments after the user’s source program name. The maximum length of
the returned string is 512 characters.

This sub-function provides a convenient way to pass run-dependent in-
formation to a program. If SPITBOL is invoked with

spitbol –u “this is an arg” myprog.spt more stuff

HOST(0) returns the string “this is an arg”. If invoked with

spitbol myprog.spt more stuff

HOST(0) returns “more stuff”.

The dual behavior is necessary to accommodate existing Unix SPITBOL
programs.

The –u option is not available to load modules created by SPITBOL. Most
programmers will find that HOST sub-functions 2 and 3 (below) and the in-
clude file args.inc provide a simpler and more consistant way of processing
user arguments.

These HOST functions appear in all versions of Catspaw SPITBOL.

EXECUTE
HOST(1) Execute a command string

EXECUTE(s1, s2)
HOST(1, s1, s2)

Executes the command string s1 and returns the integer result code re-
turned by the sub-process.The string s2 is ignored, and may be omitted.

On Unix and OS/2 systems, there are no special problems with this func-
tion. However under MS-DOS, the command.com processor used to exe-
cute the string s1 discards any error code returned by the sub-process, re-
turning zero instead. If access to the sub-process error code is required,
SPITBOL-386 provides another method of use. S2 is the complete pathname
of a COM or EXE file to execute (including any .COM or .EXE name extension.
S1 is provided to the program as its “command-line string.” The integer re-
sult code returned by the sub-process is returned as the function value.

By using the MS-DOS command processor, the first method (s2 null or
absent) provides access to the full range of MS-DOS command line capabili-
ties, including redirection, use of batch files and searching sub-directories
specified with the MS-DOS PATH command. In doing so, any sub-process
result code is lost. The second method does not permit redirection or batch
files, but does return the sub-process result code.

The HOST Function 283

E

Miscellaneous HOSTs

Assume the program file LINK.EXE is located in sub-directory \MS,
and that \MS has been included in the MS-DOS PATH command. Using the
first method, we would say:

RESULT = EXECUTE(‘LINK TEST.OBJ;’)

RESULT would be set to integer zero, even if the LINK program detected
errors, because the DOS command processor is between SPITBOL-386 and
LINK. Using the second method, we could say:

RESULT = EXECUTE(‘TEST.OBJ;’, ‘\MS\LINK.EXE’)

Now RESULT will be set to zero if the LINK program succeeds, and to a
non-zero error code otherwise. Note though that we had to specify the
linker’s complete path name, and that the program name was omitted from
the beginning of the first argument.

The choice between using these two forms is dependent on the need for
the result code, the availability of memory for the command processor, and
whether the target program must be started by the command processor
(some MS-DOS utilities, such as CHKDSK are so restricted). Generally, the
first form is preferred.

Use EXIT(s) to terminate SPITBOL and run another application.

GETARG
HOST(2) Obtain argument from command line

GETARG(i)
HOST(2, i)

HOST(2, i) returns argument i (zero-based) from the command line. The
function fails if i is out of range or not an integer. This facility is useful for
programs that are to be executed as load modules; when executed, they can
access all command line arguments.

FIRSTARG
HOST(3) Obtain index of first unused command line argument

FIRSTARG()
HOST(3)

HOST(3) returns the index of the first command line argument not exam-
ined or processed by SPITBOL. For example, given the command line

spitbol prog.spt aaa bbb ccc

this function returns integer 2, corresponding to argument aaa. This can be
combined with HOST(2) to fetch the arguments. The include file args.inc
uses HOST(2) and HOST(3) to create the C-like array ARGV of command line
arguments. ARGV[0] contains the program name. ARGC is the number of
arugments.

In the example above, if prog.spt contained the statement

–INCLUDE “args.inc”

284 Appendices

then following the include statement ARGC would be set to 3, and the values
of ARGV would be:

ARGV[0] = “prog.spt”ARGV[1] = “aaa”
ARGV[2] = “bbb” ARGV[3] = “ccc”

SHELLVAR
HOST(4, s) Search environment for shell variable

SHELLVAR(s)
HOST(4, s)

HOST(4, s) returns the value of environment variable s. If the value is lon-
ger than 512 bytes, it is truncated. The function fails if the string is not found.

For MS-DOS and OS/2 systems, any alphabetic characters in the string s

should be upper-case, because that is how names are saved in the environ-
ment block.

The HOST Function 285

E

The remainder of this appendix describes HOST functions that only ap-
pear in the MS-DOS and OS/2 80386 versions of Catspaw SPITBOL. They
provide direct access to the screen, keyboard, memory and BIOS, as well as
a limited capability to produce notes and music. With the exception of the
functions numbered 200 and above, the HOST numbers and arguments are
the same as PC-SPITBOL.

SOUND
HOST(200) Sound a tone on the speaker

SOUND(i1, 12)
HOST(200, i1, i2)

This sounds a tone on the speaker with frequency i1 Hertz for duration i2

milliseconds. This is achieved under MS-DOS by reprogramming the sys-
tem’s timer chip, and therefore requires IBM hardware compatibility. Un-
der OS/2, it uses a standard system service.

PLAY
HOST(201) Play tune on speaker

PLAY(s)
HOST(201, s)

This call plays a tune according to the specifications in the string s. The
format of this string is compatible with the format used in IBM BASIC, ex-
cept that MF and MB are not supported, and X is not supported (or needed
since the argument can be computed by concatenation). A seven octave
range is supported. The following is a brief summary of the allowed
sub-commands, see BASIC manual for more details:

A,B,C,D,E,F,G sound corresponding note
– make previous note flat

or + make previous note sharp

Ln set note length, n = 1 (long) to 64 (short). Note length is
1/n (e.g., n = 8 is an eighth note). Default = 4.

n (after note), set length for this note only (n as in Ln)

. (period) (after note), length of this note is multiplied by 3/2.

On set octave, n = 0 (lowest) to 6 (highest). Each octave in-
cludes the notes from C to B. Octave 3 begins with mid-
dle C. The default octave is 4.

〉 go up one octave

〈 go down one octave
Nn play note n (0 = pause, 1 = lowest C, 84 = highest B)
Pn Pause for length n

286 Appendices

SPITBOL-386 HOSTs

Tn Set tempo, the number of quarter notes per minute.
n = 32 (slow) to 255 (fast). Default = 120.

ML Legato mode (note plays full time)
MN Normal mode (note plays 7/8th of time, default)
MS Staccato mode (note plays 3/4th of time)

Because OS/2 is a multi-tasking system, time periods may not be as ac-
curate as operation under MS-DOS.

CURSOR
HOST(5) Set cursor type

CURSOR(i)
HOST(5, i)

This call sets the cursor type as indicated by the integer code i:

i = 0 Normal underline cursor
i = 1 Full block cursor
i = 2 Half block low on line
i = 3 Half block high on line (not supported in Windows NT

version of SPITBOL)

The cursor is displayed when keyboard input is active. This function re-
turns the previous cursor type as its return value.

GOTO
HOST(6) Set screen position

GOTO(i1, i2)
HOST(6, i1, i2)

This call sets the current screen position to line i1 and column i2, for use
by subsequently described calls. Positions are zero-based, with values de-
pendent on the current screen size (for example, 0 to 24 and 0 to 79). See page
299 for functions that return the current screen position.299

READY
HOST(7) Test keyboard input available

READY()
HOST(7)

This call tests if keyboard input is available, if so, it succeeds and returns
the null string. If no keyboard input is available, the call fails.

READKEY
HOST(8) Read one character from the keyboard

READKEY()
HOST(8)

This call returns an integer code for the next key from the keyboard.
While waiting for the key to be pressed, the cursor is displayed at the cur-

The HOST Function 287

E

rent position (see HOST(6) call). The code returned indicates the key pressed
according to the chart on the following page.

The key pressed is not echoed to the screen. If echoing is required, it must
be programmed explicitly.

Note 1: this keyboard facility is not completely compatible with Prokey
and similar products which intercept the system keyboard driver but fail to
provide a transparent interface to the shift key status (which is needed for
such distinctions as the upper- and lower-case numeric pad + and – keys).

Note 2: this function’s result is an integer, not a string. To obtain a string,
use CHAR(READKEY()).

Note 3: Under OS/2, Shift-Enter and Control-Enter are used to switch
among OS/2 tasks, and may not be input to a SPITBOL program.

Note 4: The Shift-, Alt-, and Control-forms of functions keys 11 and 12
are not available for input to SPITBOL.

288 Appendices

Numeric Key Codes Returned by HOST(8) Function

0 Ctrl @
1-26 Ctrl A-Z
27-31 Ctrl [\] ^ _
32-126 Standard ASCII codes

(from main keyboard,
not numeric pad)

127 Ctrl backspace
128 Shift backspace
129 Backspace
130 Tab
131 Back tab
132-157 ALT A-Z
158 Numeric pad period
159-168 Numeric pad 0-9
169 Numeric pad plus

(shifted)
170 Numeric pad minus

(shifted)
171 Numeric pad *
172 Enter (unshifted)
173 Shift Enter
174 Ctrl Enter
175 Esc (unshifted)
176 Shift Esc
177 Ctrl Esc
179 Ctrl space bar

180 ALT space bar
181-192 F1-F12 (unshifted)
193 Home
194 Cursor up
195 PgUp
196 Numeric pad mi-

nus
197 Cursor left
199 Cursor right
200 Numeric pad plus
201 End
202 Cursor down
203 PgDn
204 Ins
205 Del
206-215 Shift F1-F10
216-225 Ctrl F1-F10
226-235 ALT F1-F10
236 Ctrl numeric pad *
237 Ctrl cursor left
238 Ctrl cursor right
239 Ctrl End
240 Ctrl PgDn
241 Ctrl Home
242-250 ALT 1-9
251 ALT 0

READFIELD
HOST(9) Read screen field

READFIELD(i)
HOST(9, i)

This call reads a field of length i, starting at the current screen position.
The data keys are echoed to the screen as they are entered and normal DOS
or OS/2 editing functions are available. When Enter is pressed, the entered
string is returned as the result and the screen position is updated past the
entered data.

SPITBOL-386 maintains an internal screen buffer, separate from the ac-
tual hardware display buffer. Most of the screen calls operate on this inter-
nal buffer, and to actually update the display, one of the update calls must
be used. This allows efficient screen operations, particularly when the color
screen is in use. The screen operations module is written to work with
monochrome, color, EGA and VGA cards. Other display systems may or
may not work exactly correctly. In particular, attribute characters may be in-
correct on some compatibles and the screen may flash unnecessarily.

To obtain the greatest possible display speed under MS-DOS, screen
functions bypass the ROM BIOS and write directly to video memory when
updating the screen.

The first use of any keyboard or screen HOST function automatically
clears the screen, sets the screen position to line 0, column 0, and allocates
the internal screen buffer. The default foreground and background screen
attributes are obtained from column one of the last display line. These at-
tributes can be changed with HOST(10).

If conventional screen/keyboard I/O (using variables INPUT, OUTPUT, or
TERMINAL) is interspersed with these HOST functions, a similar initialization
occurs before and after the conventional I/O, and upon program termina-
tion. However, default foreground and background screen attributese are
not modified on these subsequent initializations.

SPITBOL queries the video adapter to obtain the number of rows and
columns in use when execution of SPITBOL begins. This will work for all
standard video adapters and display modes, but is likely to fail for
non-standard (e.g., full-page) displays operating in non-standard modes.
The number of columns and rows in use can be obtained from HOST(202)

and HOST(205). When operating in a windowed OS/2 environmnet, the
number of screen rows can be set (within limits) with HOST(211).

The HOST Function 289

E

HOST Screen Calls

CLEARSCN
HOST(10) Clear screen

CLEARSCN(s)
HOST(10, s)

This call clears both the internal screen buffer and the actual display
screen. The current screen position is set to line 0, column 0.

The argument s is optional and provides default screen attributes if pres-
ent. The first and second characters of s provide the normal and reverse
screen attributes respectively. If only one character is provided, SPITBOL
constructs the reverse screen attributes automatically by exchanging the
foreground and background fields, and removing the Blink bit if necessary.
The eight bits of each character consists of several fields:

The low-order four bits specify the foreground color that characters are
painted. The next three or four bits (depending on mode) specify the back-
ground color used to fill the remainder of the character cell. When operating
in a windowed environment, there are sixteen possible background values.
When operating in a full-screen environment, one of the background bits is
used instead to control blinking versus normal characters. Color and mono-
chrome values are shown in the table on the next page.

The argument string can be constructed using the CHAR function and the
fact that the multiplying by 16 shifts a value left by four bits. For example, to
specify Bright White characters (15) on a Red (4) background, use:

HOST(10, CHAR(15 + 4 * 16))

This sets the foreground value to 15 and the background value to 4. Be-
cause only one character was provided, SPITBOL constructs the reverse at-
tributes (Red on Bright White) automatically. (In full screen mode, this
would be Red on White because SPITBOL would change the 15 to 7 to avoid
setting the Blink bit). To specify both attribute characters explicitly:

HOST(10, CHAR(15 + 4 * 16) CHAR(4 + 7 * 16))

290 Appendices

2

Background

Foreground

7 6 5 4 3 1

B

02

Background

Foreground

7 6 5 4 3 1

0

MS-DOS, Windows 3.0 and OS/2
Full Screen Mode

Windows 3.0 and OS/2 Windowed Mode

B = Blink = 128

DELETECHR
HOST(11) Delete character

DELETECHR()
HOST(11)

The character at the current screen position is deleted and remaining
characters are moved left, with a blank being inserted at the end of the line.
This call affects only the internal screen buffer, not the display.

ERASEEOL
HOST(12) Erase to end of line

ERASEEOL()
HOST(12)

Characters from the current screen position to the end of the line are re-
placed by blanks. The current position is unchanged. This call affects only
the internal screen buffer, not the display.

INSERTCHR
HOST(13) Insert character

INSERTCHR()
HOST(13)

A blank is inserted at the current screen position with remaining charac-
ters on the line being moved to the right. The current position is unchanged.
This call affects only the internal screen buffer, not the display.

The HOST Function 291

E

Value Monochrome Color

0 Black Black

1 Underline1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 White White

8 Gray2

9 Light Blue2

10 Light Green2

11 Light Cyan2

12 Light Red2

13 Light Magenta2

14 Yellow2

15 Bright White2 Bright White2

Video Character
Attributes

Note 1: Monochrome Underline
value in foreground field only.

Note 2: Values 8 through 15 al-
lowed in background field only in
OS/2 and Windows 3.0 windowed
environments. In full-screen envi-
ronments, the high-order bit speci-
fies blinking.

READSTR
HOST(14) Read string from screen buffer

READSTR(i)
HOST(14, i)

This call reads a string from the screen buffer starting at the current posi-
tion. The argument i indicates the length which must not extend past the
end of the current line. On return the screen position is updated past the
string read. Neither the screen buffer nor the display are affected by this call.

READCHR
HOST(15) Read character from screen buffer

READCHR()
HOST(15)

This call reads a single character from the current screen buffer position.
On return, the screen position is updated past the character read. Neither
the screen buffer nor the display are affected by this call.

SCROLLDN
HOST(16) Scroll screen down

SCROLLDN(i1, i2)
HOST(16, i1, i2)

The arguments i1 and i2 specify the top and bottom lines of a region of the
screen which is to be scrolled down one line, with a new line of blanks being
inserted at the top line. For example HOST(16,0,24) scrolls the entire screen
down one line (if operating in 25-line mode). This call affects only the inter-
nal screen buffer, not the display.

SCROLLUP
HOST(17) Scroll screen up

SCROLLUP(i1, i2)
HOST(17, i1, i2)

The arguments i1 and i2 specify the top and bottom lines of a region of the
screen which is to be scrolled up one line, with a new line of blanks being in-
serted at the bottom line. For example HOST(16,0,24) scrolls the entire screen
up one line (if operating in 25-line mode). This call affects only the internal
screen buffer, not the display.

292 Appendices

SETCHRATR
HOST(18) Set attribute characters

SETCHRATR(i1, i2)
HOST(18, i1, i2)

This call modifies the video attribute characters stored in the hardware
display buffer, starting at the current position. The argument i2 is an integer
in the range 0-255 giving the new attribute to be set and argument i1 is the
count of character positions to be set to this value. The following is a sum-
mary of the attribute characters, for more details, consult your system’s
technical reference manual:

Monochrome case:

0 = non-display

1 = underline

7 = normal

114 = reverse video

Color case:

16 * (background color) + (foreground color)

0 Black 4 Red

1 Blue 5 Magenta

2 Green 6 Brown

3 Cyan 7 White

For color and monochrome cases, add 128 to get a blinking field, and add
8 to get high intensity (lighter foreground color). Also see the discussion of
default attributes provided by HOST(10).

On EGA and VGA systems, color numbers are treated as indices into a
set of “palette” registers, providing an additional level of color mapping.
These palette registers can be directly manipulated on MS-DOS systems by
means of calls to the system ROM BIOS using HOST(210). The interested
reader should consult a hardware technical manual for additional informa-
tion on programming color EGA and VGA displays.

SETLINEATR
HOST(19) Set line attribute

SETLINEATR(i1, i2)
HOST(19, i1, i2)

This call sets the given video attribute for all characters on a particular
line in the hardware display buffer. The attribute is given in argument i2,
and is the same as that given above for SETCHRATR. Argument i1 is the line
number. The current screen position is not referenced and not modified.

The HOST Function 293

E

UPDATELINE
HOST(20) Update line

UPDATELINE(i)
HOST(20, i)

This call updates the specified display line to match the contents of the
internal screen buffer. It is typically used after a call such as insert or delete
character, or write string, to cause the change to become visible on the
screen.

UPDATESCN
HOST(21) Update screen

UPDATESCN()
HOST(21)

This call updates the display to match the contents of the internal screen
buffer. It is typically used after a scroll call, or a series of calls writing data to
the screen buffer to cause the change or changes to become visible on the
screen.

WRITESTR
HOST(22) Write string

WRITESTR(s)
HOST(22, s)

This call writes the specified string to the internal screen buffer, starting
at the current screen position. On exit, the screen position is updated past
the written string, which must not extend past the end of the current line.
This call affects only the internal screen buffer, not the display.

WRITECHR
HOST(23) Write character

WRITECHR(s)
HOST(23, s)

This call writes a single character (string of length 1) both to the internal
screen buffer and to the display at the current screen position. On exit, the
current screen column is incremented by one.

Note: HOST(23, ‘a’) differs from HOST(22, ‘a’) in that the write character
call does update the display for this character, whereas the modification
from the WRITESTR call is not displayed until a subsequent screen update
call.

294 Appendices

NORMATR
HOST(24) Get normal attribute

NORMATR()
HOST(24)

This call returns an integer representing the normal display attribute, as
read from the bottom screen line, column 0, at initialization time, or subse-
quently specified by HOST(10). Normally this value will be 7, but use of
HOST(24) rather than 7 will allow a program to respect a non-standard dis-
play setting (e.g. a non-standard color setting).

REVATR
HOST(25) Get reversed attribute

REVATR()
HOST(25)

This call returns the reversed attribute corresponding to the normal at-
tribute returned by HOST(24). Normally this would be 114, but use of
HOST(25) rather than 114 allows a program to respect a non-standard dis-
play setting.

GETTYPE
HOST(26) Get display type

GETTYPE()
HOST(26)

This call returns ‘C’ if operating with the color display, and ‘M’ if operat-
ing with the monochrome display.

The HOST Function 295

E

Extended
Screen Calls

These HOST functions are only present in MS-DOS and OS/2
SPITBOL-386. They are absent from 8088 PC-SPITBOL.

In the preceding material, we have assumed that the internal screen
buffer contains the same number of lines and columns as the physical
screen, and that all lines have identical display properties. For example,
when using the standard monochrome video adapter containing 25 lines of
80 characters each, the internal screen buffer will also consist of 25, 80-char-
acter lines.

In fact, the screen functions can provide the user with additional flexibil-
ity when displaying text. SPITBOL will maintain a screen buffer that is
wider than the physical screen (up to 255 characters), while letting the pro-
grammer pan the physical screen left and right over this virtual screen.

The screen may be divided vertically into an upper region of display lines
and a lower region of message lines. Display lines can be wider than the phys-
ical screen, and can be scrolled horizontally and vertically. The message
lines are limited to the physical width of the screen, and cannot be scrolled
in either direction. The diagram below illustrates the model implemented.

In this model, the physical screen provides a viewing window onto a se-
ries of display lines which may be panned horizontally beneath the win-
dow. The message lines are not affected by this motion. A typical applica-
tion is a text editor, where edited text may be scrolled in one part of the
screen while status information remains constant at the bottom of the
screen.

The offset specifies the number of characters that the display lines are
panned to the left of the physical screen. It is initially zero, and may be as
large as (virtual columns – physical columns).

In the default case, the number of virtual columns equals the number of
physical columns, the number of display lines equals the number of physi-
cal lines, and there are no message lines. Only vertical scrolling is possible,
and all lines are homogeneous.

HOST function 209 may be used to create a larger number of virtual col-
umns, and to divide the screen into display lines and message lines. Under

296 Appendices

display
lines

message lines

offset physical screen columns

(scrollable)

physical
screen
lines

(fixed)

virtual columns

such circumstances, the preceding HOST functions require some clarifica-
tion:

• HOST(6) (GOTO) accepts a virtual column number, not a physical screen
column when referencing a display line. Column numbering for mes-
sage lines remains unchanged.

• HOST(16) and HOST(17) (SCROLLDN and SCROLLUP) affect display lines
only. Message lines cannot be scrolled.

• HOST(21) (UPDATESCN) only affects the display lines. Message lines
must be updated individually with HOST(20) (UPDATELINE) when modi-
fied.

GETCOLS
HOST(202) Get number of screen columns

GETCOLS()
HOST(202)

This call returns the number of text columns on the physical screen or in
the screen window under OS/2 or Windows 3.

GETETYPE
HOST(203) Get extended adapter/display type

GETETYPE()
HOST(203)

This call returns an integer describing the type of video adapter and dis-
play present according to the following table:

0 No video adapter present

1 Monochrome display adapter (MDA)

2 Color graphics adapter (CGA)

3 EGA with monochrome display

4 EGA with color display

5 VGA with monochrome display

6 VGA with color display

7 MCGA (PS/2 model 30) with monochrome display

8 MCGA (PS/2 model 30) with color display

GETFSIZE
HOST(204) Get screen font size

GETFSIZE()
HOST(205)

This call returns the number of video scan lines in a screen character box.
Note that the actual character height will be smaller than this because of
blank scan lines used to provide vertical spacing between text lines.

The HOST Function 297

E

Typical values returned for various adapters and combinations of col-
umns and rows:

8 CGA 80x25; EGA 80x43; VGA, MCGA 80x50

14 MDA, EGA 80x25; VGA, MCGA 80x28

16 VGA, MCGA 80x25

GETLINES
HOST(205) Get number of screen lines

GETLINES()
HOST(205)

This call returns the number of text lines on the physical screen or in the
screen window under OS/2 or Windows 3.

GETMODE
HOST(206) Get video operating mode

GETMODE()
HOST(206)

This call returns the operating mode of the video display adapter. Con-
sult a technical reference manual for a description of video operating
modes.

GETPAGE
HOST(207) Get current display page

GETPAGE()
HOST(207)

This call returns the number of the video display page that is currently
active.

SETOFFSET
HOST(208) Set horizontal offset

SETOFFSET(i)
HOST(208, i)

Sets the horizontal offset by which display lines are shifted left beneath
the physical screen to i characters. The function limits i to values between 0
and the difference between the virtual width and the physical width. Values
outside this range are ignored. The function returns the current offset value.

SETSIZE
HOST(209) Set size of screen buffer

SETSIZE(i1, i2)
HOST(209, i1, i2)

Establishes a scrollable display region on the screen of i1 display lines,
where each line has a virtual width of i2 characters. If the physical screen

298 Appendices

consists of HOST(205) physical lines, this function implicitly creates
(HOST(205) – i1 message lines. I1 cannot exceed the number of physical lines,
and i2 cannot exceed 255.

This function clears the screen and sets the horizontal offset to zero. It
does not change the hardware display mode of the video adapter board.

SETLINES
HOST(211) Set number of screen lines (OS/2 SPITBOL-386 only)

SETLINES(i)
HOST(211, i)

This function is available under OS/2 only, and only when operating in
a windowed environment. It changes the vertical extent of the window. The
maximum value of i is operating system dependent. The screen is cleared
and the cursor set to row 0, line 0.

GETCURCOL
HOST(212) Get current column position

GETCURCOL()
HOST(212)

This function returns the column number of the current screen position
maintained by SPITBOL.

GETCURROW
HOST(213) Get current row position

GETCURROW()
HOST(213)

This function returns the row number of the current screen position
maintained by SPITBOL.

The HOST Function 299

E

The following three functions provide read/write access to specific
80386 memory locations. They are available in the MS-DOS version of
SPITBOL-386 only.

SETADR
HOST(27) Set address for peek/poke (MS-DOS SPITBOL-386 only)

SETADR(i1, i2)
HOST(27, i1, i2)

This call sets the given segment selector (i1) and offset (i2) values as the
current address for peek and poke calls. Note that offset values above 2
gigabyte will require that they be given in signed form, e.g. –2 for
0FFFFFFFEh).

Because SPITBOL-386 operates in protected mode, the offset is a 32-bit
value. The segment selector is not a physical paragraph address, but rather a
16-bit number that selects various logical segments established by SPIT-
BOL’s DOS Extender. The program has read/write access to all segments.
Available segment numbers are given below (decimal):

4 SPITBOL-386’s program segment prefix (PSP) set up by
MS-DOS.

20 Segment containing SPITBOL-386’s code, data, and stack, and
the workspace containing the user’s program and data.

28 Segment pointing to the system’s video buffer.

44 Segment pointing to the MS-DOS environment block for
SPITBOL-386. The block contains a sequence of strings, each
terminated with a zero character.

52 A segment mapping the first megabyte of conventional mem-
ory used by MS-DOS.

PEEK
HOST(28) Read byte at peek/poke address (MS-DOS SPITBOL-386 only)

PEEK()
HOST(28)

This call returns the byte at the current peek/poke address as an integer
in the range 0-255. The offset of the current address is incremented by 1
(with wrapping from 0FFFFFFFFh to 00000000).

300 Appendices

Memory Access

POKE
HOST(29) Store byte at peek/poke address (MS-DOS SPITBOL-386 only)

POKE(i)
HOST(29, i)

This call sets the byte at the current peek/poke address to the value
given, which must be an integer in the range 0-255. The offset of the current
address is incremented by 1 (with wrapping from 0FFFFFFFFh to 00000000).

The following function provides access to the BIOS and MS-DOS system
calls that are accessible through a software interrupt. Only data values may
be communicated to and from these functions; there is no facility for trans-
mitting data in memory. This function is not available under the OS/2 or
Windows 9x/NT versions of SPITBOL.

INTCALL
HOST(210) Invoke software interrupt (MS-DOS SPITBOL-386 only)

INTCALL(i, eax, ebx, ecx, edx, esi, edi, ebp, ds, es)
HOST(210, i, a)

This call invokes software interrupt i with the hardware register values
contained in array a. The interrupt number i must be between 0 and 255. The
function returns an array of (possibly modified) register values, including
the hardware flags and condition codes returned by the interrupt call.

Because this function requires data in a highly structured form and must
follow special rules, the user should not call this HOST function directly. In-
stead, an include file, intcall.inc, has been provided to assist the user.

Function INTCALL is called with an interrupt number and up to nine ar-
guments which provide the machine registers shown in the function proto-
type above. Note that registers other than segment registers are 32-bit ex-
tended registers of the 80386 machine architecture. Null or omitted argu-
ments will cause the previous value used for that register to be retained (ini-
tial value 0). Non-null arguments are explicitly converted to type integer.

INTCALL returns an array of ten integer values—the result values of the
nine incoming registers, and a tenth value containing the machine status
flags produced by the interrupt call. The array may be indexed by symbols
defined in intcall.inc, specifically R_EAX, R_EBX, R_ECX, R_EDX, R_ESI,

R_EDI, R_EBP, R_DS, R_ES, and R_FLG.

Interested readers should also consult the include file logic.inc, (see also
page 259) which provides a number of bit-level logical operations on inte-
gers, as well as conversion functions between hexadecimal, octal, and deci-
mal.

The HOST Function 301

E

BIOS, MS-DOS Interrupts

The following simple example shows how the MS-DOS version number
might be obtained with this function. The MS-DOS interrupt is 21 hexadeci-
mal, or 33 decimal. The “obtain version” sub-function is 3000h; it returns the
major and minor version numbers in registers AL, and AH respectively. This
example uses functions defined in logic.inc: HI converts a hexidecimal digit
string to an integer, AND performs logical And, and SHR shifts an integer
right by a given number of bit positions.

–INCLUDE “INTCALL.INC”
–INCLUDE “LOGIC.INC”

R = INTCALL(33, HI(“3000"))
MAJOR = AND(R<R_EAX>, HI(”FF"))
MINOR = SHR(AND(R<R_EAX>, HI(“FF00")), 8)
TERMINAL = ”MS-DOS Version “ MAJOR ”." MINOR

END

302 Appendices

Some implementations of SPITBOL allow the user to load and execute
external functions written in other programming languages. Such functions
can provide services that are inefficient or impossible to perform in the
SNOBOL4 language. For example, specialized system calls for communica-
tions or screen graphics might be accessible to an external function written
in C or assembly language.

At this time, the MS-DOS and OS/2 versions of SPITBOL-386 as well as
MaxSPITBOL provide the ability to load and execute external functions.
The remainder of this appendix describes the interface provided by
SPITBOL-386. The material provides:

• an overview of external functions

• an exhaustive description of the assembly-language interface, including
entry conventions, argument types, internal blocks, function return
mechanisms, and the real number interface

• a description of how external functions may be written in the C lan-
guage, provided a 32-bit C compiler is available

MS-DOS and OS/2 require slightly different implementation tech-
niques. These are noted where appropriate.

The material in this appendix is highly technical in nature, and is not for
the casual user.

303

F

Appendix F

External Functions

Introduction

Language
support

External functions may be created using any assembler or C compiler ca-
pable of producing 32-bit, 80386 opcodes and operands (such as Microsoft’s
MASM 5.1, Borland’s Turbo Assembler, or Meta Ware’s High C 386). Assem-
bly-language functions require no additional interface code, while some C-
language functions need a small interface module to initialize C’s memory
allocator and I/O system. The distribution disk contains the source code for
such an interface for High C. If you use a different 32-bit language or com-
piler, you will have to adapt the interface code to your particular system.

There are three primary forms that external functions can take:

• COM files produced by Borland’s TLINK program or the DOS utility
program EXE2BIN. Because of the inherent nature of COM files, func-
tions created in this manner are limited to 64K bytes (combined code and
data).

• EXP files produced by 32-bit development tools, such as Phar Lap Soft-
ware’s 386|LINK program. These files can be thought of as pro-
tected-mode extensions of MS-DOS EXE files. Only the single segment,
flat memory model is supported. However, segment size is limited only
by available memory. Files packed (compressed) by the PharLap linker
to reduce disk storage are also acceptable to SPITBOL. SPITBOL ignores
any symbolic information in an EXP file, and just loads the code and
data.

• DLL files are Dynamic Link Libraries produced by a wide variety of
OS/2 development tools. The only restriction is that the DLL must obey
SPITBOL’s calling and parameter-passing conventions.

Files containing functions of the first two forms should be renamed to
have file name extension “SLF” (SPITBOL Load Function) instead of “COM”

or “EXP”. DLLs can use the extension “DLL” or “SLF”.

Due to implementation restrictions, not all file types are available to all
versions of SPITBOL-386. This table shows the allowable combinations:

File Type MS-DOS
(Intel-extended)

MS-DOS
(PharLap-extended)

Win 9X/NT

OS/2 2.0

COM files Yes Yes No

EXP files No Yes No

DLL files No No Yes

The same COM-file function is interchangeable between the Intel- and
Pharlap-extended versions of SPITBOL. No re-assembly is necessary.

304 Appendices

SPITBOL-386 External Function Overview

Argument
types

An external function may be passed INTEGER, REAL, STRING, FILE, or EX-

TERNAL arguments. The data type FILE allows access to SPITBOL’s internal
state variables and the data buffer associated with an I/O channel. The data
type EXTERNAL permits a function to accept and return its own private data
blocks whose contents are preserved but otherwise ignored by SPITBOL.
The function may return an INTEGER, REAL, STRING or EXTERNAL result.
Other data types may be passed to the function or returned by it, but utiliz-
ing them requires a thorough understanding of SPITBOL’s internal organi-
zation and block types.

Real arithmetic Assembly language external functions have access to the SPITBOL’s real
number routines. These routines use an internal software emulator or nu-
meric coprocessor as appropriate. The external function need not be aware
of the particular hardware configuration. Functions coded in C should use
the real arithmetic library furnished with the C compiler.

Memory model Because SPITBOL-386 runs as a 32-bit, protected-mode program, exter-
nal functions must be written to execute in 32-bit mode. This means that
functions should use the 80386’s 32-bit wide extended registers, and should
use 32-bit memory addresses. MS-DOS functions will execute using the
“small” memory model in their own private 32-bit segment, which may be
up to 4 gigabytes long. In contrast, OS/2 functions will share the upper por-
tion of SPITBOL’s memory region.

Only one physical segment per function is supported; multi-segment
functions are not permitted. While there is only one segment, two segment
selector numbers are allocated to map it — a read-and-execute-only seg-
ment for code, and a read-write segment for data. They both point to the
same physical memory, but have different access rights.

Memory for functions is allocated in increments of 4K bytes (the system
page size).

MS-DOS: Once loaded, functions are saved and restored to and from
SPITBOL save files and load modules just like any other piece of SPITBOL
code or data. When run under PharLap-extended SPITBOL, a function may
enlarge or reduce the size of its memory segment at any time, subject to the
availability of system memory.

MS-DOS: Functions must be linked to begin at virtual offset 0 in their
segment. When reloaded from a Save file, the relative position of code and
data within a segment is unchanged. However, the segment selector num-
bers for the function may be different after a reload.

OS/2: Because Dynamic Link Libraries are loaded and managed by
OS/2, they cannot be saved in save files or load modules. Any necessary
DLLs must be distributed along with the save file or load module. If EXIT()

was used, the external functions must be explicitly reloaded when execu-
tion resumes. DLLs are relocatable and are not linked for a particular ad-
dress.

External Functions 305

F

External functions are loaded with SPITBOL’s LOAD function:

LOAD(‘fname(dt1,dt2,...,dtn)dtr’, ‘filename’)

Fname is the name by which the function will be referenced in the re-
mainder of the program. Fname is strictly a SPITBOL name; it need not ap-
pear anywhere in the assembly language source program.

The data type names dt1 … dtn specify how the supplied arguments will
be converted prior to calling the external function. Recognized names are:

INTEGER Pass argument as an integer.
REAL Pass argument as a real number.
STRING Pass argument as a string.
FILE Pass pointer to file information for an I/O associ-

ated variable.
EXTERNAL,

any other text,
or null string

Argument is not converted. A pointer to the inter-
nal memory block containing the data is presented
to the function.

Dtr specifies the datatype of the result returned by the function. If dtr is
present and is INTEGER, REAL, or STRING, then the function must return a re-
sult of that type. Programmers should omit dtr or use unrecognized names
for dtr if the function will return other data types, or if the datatype returned
will vary. For example, a function might normally return an integer result,
but could return a textual error message under some conditions. It should
omit any specification for dtr.

It is the function’s responsibility to indicate the result type being re-
turned.

The second argument, “filename”, is a string specifying a disk file name.
The name itself has no special significance. If the second argument is absent,
SPITBOL will attempt to load the function from a file named fname.slf
(MS-DOS) or fname.dll(OS/2), where “fname” is the function name given in
the first argument.

MS-DOS: SPITBOL will examine the first few bytes of the file to deter-
mine if it is a COM or EXP file, and will load it using the appropriate
method. Only one function is allowed per file.

OS/2: The file must be linked as a Dynamic Link Library that exports the
public label “fname”. One or more external functions may be placed in the
same library file, provided each functions name is exported.

Here are some sample calls to the LOAD function. Like SPITBOL’s DEFINE

function, LOAD is not a language declarative — it must be executed to actually
load in the external function. Note that blanks are not permitted within the
prototype string, and lower-case letters are converted to upper-case.

306 Appendices

Loading an External Function

LOAD(“TESTEF(STRING,INTEGER)STRING”, “TESTEF.SLF”)
LOAD(“scan(string,file)”)
LOAD(“custom(,,,)”, “custom.exp”)
LOAD(“J0(REAL)REAL”, “BESSEL.DLL”)

SNOLIB As described in Chapter 13, “Running SPITBOL,” the environment vari-
able SNOLIB can be used to specify alternate search directories for external
functions. If SPITBOL is unable to locate the external function file in the de-
fault directory, it will search in all directories specified by this environment
variable.

OS/2: If filename is omitted, OS/2 will search for fname.dll in directories
specified by the LIBPATH variable in file config.sys. But beware this OS/2
quirk: if LIBPATH does not include the current directory (“.\”), then OS/2 does
not look in your current directory for the file.

The external function is coded as a 32-bit assembly language program
which is then assembled and linked to create a COM, EXP or DLL file. The
details depend upon the tools available:

Microsoft
MASM

(MS-DOS)

Because Microsoft’s LINK program is not 32-bit aware, certain coding re-
strictions are necessary. These are discussed in the following section, “A
Microsoft ‘Gotcha’.” To assemble and link a file, use these commands:

C>masm file,,; Assemble the function in file.asm to create
file.obj.

C>link file,,; Link the function to create file.exe. This operation
will produce one warning message saying there is
no stack segment, and should be ignored.

C>exe2bin file.exe file.slf Create final COM file. The EXE2BIN program is
provided on your PC/MS-DOS diskette.

Borland Turbo
Assembler
(MS-DOS)

Borland’s TLINK program is 32-bit aware, and does not require any of
the special coding restrictions needed when using Microsoft’s tools. Use
these commands to produce an assembly-language function:

C>tasm file Assemble the function in file.asm to create
file.obj.

C>tlink /3 /t /i file, file.slf Link the function to create file.slf. The switches
specify a 32-bit-aware link, produce a COM-style
file, and force output of any trailing uninitialized
data region.

External Functions 307

F

Creating an Assembly-Language Function

PharLap
386|ASM
(MS-DOS)

PharLap’s tools allow you create an EXP-style file without the 64K
COM-file limitation:

C>386asm file –nolist Assemble the function in file.asm to create file.obj

C>386link file –exe file.slf –pack –maxdata 0

Link the function to create packed file file.slf.

Microsoft
MASM386

(OS/2)

The normal OS/2 2.0 tools can be used to create a Dynamic Link Library.
In addition to the external function source file, you must create a “defini-
tion” file that tells the linker the name(s) of the functions being exported by
the DLL. A typical definition file named hyperbol.def is shown here. It ex-
ports two external functions, SINH and COSH.

; HYPERBOL.DEF module definition file
;
LIBRARY HYPERBOL
DESCRIPTION ‘SPITBOL Hyperbolic math functions’
PROTMODE
DATA NONSHARED
EXPORTS SINH

COSH

The OS/2 commands to assemble and link are:

C>masm386 file; Assemble the function in file.asm to create file.obj

C>link386 file,file.dll,,,file.def

Link the function to create DLL file file.dll.

Near vs. Far MS-DOS SPITBOL-386 loads external functions as “far” procedures.
That is, the function return pointer and all data pointers are 48-bit values: a
16-bit segment and a 32-bit offset. In contrast, OS/2 loads external functions
as “near” procedures — all pointers are 32-bit offsets, and the segment reg-
isters are not used at all.

In languages like C, switching pointers between near and far is just a
matter of changing keywords or command-line switches. Writing assem-
bly-language code to be transparent to pointer sizes is somewhat more in-
volved.

We take the position that assembly-language functions should only be
written once. Therefore we provide you with a set of macros, equates, and
structures in file extrn386.inc that make it possible to write functions that
can be used with either the MS-DOS or OS/2 versions of SPITBOL-386. Be-
cause of limitations of the Microsoft assembler, things are not completely
transparent, but they do come close.

Which version is assembled is controlled by the included file system.inc,
which sets the equated symbol os2 to 0 or 1 for MS-DOS or OS/2 respec-
tively. This in turn sets the symbol nearptr to 0 if far pointers are in use, or to 1
for near pointers. The remaining macros, structures, etc., are conditioned on
these symbols.

308 Appendices

Pointers are described with this dpt structure defined in extrn386.inc:

MS-DOS: All far pointers are 6-bytes long:

dpt struc
o dd ? ; 32-bit offset of data
s dw ? ; 16-bit segment se-

lector
dpt ends

OS/2: All near pointers are 4-bytes long, with no segment selector:

dpt struc
o dd ? ; 32-bit offset of data

dpt ends

In the remainder of this appendix, we will use dpt as a generic pointer, re-
gardless of which system it is being assembled for.

Function
skeleton

MS-DOS: The source file should contain one external function, coded as
a far procedure in a 32-bit segment. An ORG 0 statement guarantees that the
program begins at location 0.

OS/2: The source file should contain one or more external function(s),
coded as near procedure(s) in a 32-bit segment.

A prologue similar to the following should appear at the beginning of
your assembly-language source file:

title FILE - sample external function “FNAME”
.386
name file

include system.inc ; specifies DOS or
OS/2
include extrn386.inc

preamble _TEXT ; define CGROUP
entry FNAME ; declare procedures
enter 0,0 ; push ebp, mov

ebp,esp

The body of your function follows this prologue, and will typically end
with these five lines:

leave ; pop ebp
ret ; far return

FNAME endp

_TEXT ends
end ; transfer address

omitted

Note that a starting address label was not specified in the operand field
of the end statement. For COM-style files MS-DOS SPITBOL always trans-
fers to location 0. Borland’s TLINK will complain if a label is present because
it expects all COM files to begin at 100h.

The code segment (_TEXT) is read-only. If a read-write data segment is
needed, change the preamble to:

External Functions 309

F

preamble _TEXT,_DATA ; define CGROUP

and the end of the function to:

_TEXT ends

_DATA segment dword use32 ‘DATA’
;
; place read-write data here
;
_DATA ends

end ; transfer address
omitted

If a small amount of temporary storage is needed, a better strategy is to
allocate it on the stack with the 80386 ENTER instruction.

The include files system.inc, extrn386.inc and blocks.inc are provided
on the release disk in sub-directory external\asm. They contain numerous
equated definitions that can be used by the external function to access
SPITBOL’s arguments and datatypes.

A Microsoft
“Gotcha”

If you are using OS/2, or Borland’s TASM or PharLap’s 386|ASM, skip
this section. For those using Microsoft’s assembler (MASM 5.1) under
MS-DOS, important coding considerations apply.

While MASM is perfectly capable of processing 32-bit, 80386 opcodes,
there are pitfalls in using Microsoft’s LINK program to produce an EXE file.
LINK is not 32-bit aware, and this causes problems for instructions contain-
ing 32-bit relative offsets. Consider this code fragment:

TEST1: MOV EAX,EBX
…

< more than 128 bytes of code here >
…

JE TEST1

The negative offset needed for the JE instruction exceeds 8-bits, forcing
the assembler to choose the long form which permits a 32-bit offset. Since
the distance between the JE and the target label is known, MASM could sim-
ply assemble in the proper hexadecimal offset. Unfortunately, it does not.
Instead, it produces a “fixup” record in the object file, and leaves it to the
linker to generate the negative offset.

But the LINK program thinks it is working with a 16-bit object file. It does
the fixup using 16-bit arithmetic, and stores the negative offset in the low-or-
der 16-bits of the instruction’s offset field. The high-order 16-bits are unaf-
fected (they remain zero). Thus a proper negative offset, such as
0FFFFFF5Ch (–164) appears in the object file as 0000FF5C. The 80386 CPU in-
terprets this offset as +65372, a very different number! The usual result is a
page fault.

This problem affects all near CALLs to previous addresses, and jumps to
previous addresses more than 128 bytes distant. Extreme care must be exer-
cised, because neither the assembler nor the linker issue warnings in these
situations. There are two work-arounds: 1) rearrange your code so that all

310 Appendices

CALLs are to forward addresses, and all backward jumps are within 128
bytes, or 2) use the jump and call macros provided in file jumps.inc. A better
solution is to use a different assembler.

While the same fixup error occurs with forward CALLs and forward
jumps more than 127 bytes distant, the error is benign because the upper
16-bits will be zero anyway for a positive offset.

(Interestingly, even though both the Borland and PharLap assemblers
have 32-bit-aware linkers, each is smart enough to not bother with a fixup
record at all, and simply assemble in the necessary 32-bit negative offset.)

The contents of the CPU registers when the external function is invoked
are as follows:

CS Execute/read-only code segment number for the func-
tion.

EIP 0 if function is a COM file. An EXP or DLL file will des-
ignate its entry EIP, which may be non-zero.

DS, ES Read/write data segment number for the function.

FS, GS SPITBOL’s data segment, including the workspace
containing the user’s program and data.

SS:ESP The hardware stack containing function arguments
and return information. If the function is a COM or
DLL file, the stack will always be in SPITBOL’s data
space (that is, SS equals FS and GS). If the function is an
EXP file and the source program included a stack seg-
ment, then SS:ESP will point to it and SS equals DS and
ES.

Because OS/2 DLLs are loaded into SPITBOL’s memory space, registers
DS, ES, FS, GS, and SS all contain the same value.

When an external function is called, the calling arguments are pushed
onto the stack in left to right order. Some additional information is pushed
on top of the arguments, and then the return link. For efficiency, the stack
pointer ESP is always maintained on a double-word (4-byte) boundary.

MS-DOS: 6-byte far pointers on the stack will have 2 bytes of padding:

External Functions 311

F

Entry Register Conventions

Input Arguments

dps struc
dpt ? ; 48-bit pointer to

data
dw ? ; padding to 4-byte

boundary
dps ends

OS/2: Near pointers on the stack are 4-bytes long:

dps struc
dpt ? ; 32-bit pointer to

data
dps ends

Note: Assemblers do not allow structure declarations to be nested, as
shown here. The extrn386.inc file actual expands the definitions to make
them legal. However, for clarity and brevity, we will continue to show them
as nested in this appendix.

Arguments on the stack take different forms depending upon their
datatype and whether the LOAD function prototype string specified type
conversion. The table below shows how arguments appear on the stack for
various datatype names in the prototype.

INTEGER A 32-bit signed integer is pushed on the stack.

REAL A 64-bit real number is pushed on the stack. The
most significant 32-bits are pushed first, and thus
appear at the higher memory address.

STRING Two items are pushed on the stack: a 32-bit integer
providing the string length, then a pointer to the
first character of the string.

FILE A pointer to a file control block (blocks.inc).

EXTERNAL,

any other text,
or the null string

A pointer to the internal SPITBOL block contain-
ing the data. The first word of the block provides
the type of the argument. Users interested in work-
ing with internal block types should see consult
the section “SPITBOL’s Internal Data Blocks” later
in this appendix. File logic.asm provides an exam-
ple of an external function that determines
whether it is called with integer or string argu-
ments.

External functions that do not declare any arguments in the prototype
will receive one unconverted argument (the null string) when called.

312 Appendices

After placing the arguments on the stack, SPITBOL pushes two other
key pieces of information:

• a pointer to a block of miscellaneous information. The block contains the
number of arguments, as well as pointers to other SPITBOL data struc-
tures. The block is described by structure misc in file extrn386.inc:

misc struc
vers dw ? ; version number of this structure
env db ? ; 0 = PharLap, 1 = Intel, 2 = OS/2

db ? ; reserved
nargs dd ? ; number of arguments to function
ptyptab dpt ? ; pointer to table of data types
pxnblk dpt ? ; pointer to xnblk describing function
pefblk dpt ? ; pointer to efblk describing function
pflttab dpt ? ; pointer to floating point table
spds dw ? ; SPITBOL’s data segment
spcs dw ? ; SPITBOL’s code segment
misc ends

• a pointer to a result area, where the function will place the data to be re-
turned as the function value. The use of the result area is explained later
in this appendix in the section “Returning a Function Result.”

Many functions can be written without reference to or knowledge of this
structure. However, the information here permits additional flexibility and
may be of use to you. Consult files extrn386.inc and blocks.inc for addi-
tional descriptions of the items in this structure.

External Functions 313

F

Other Stack Information

Assume a function prototype for a function that takes three arguments
and returns an integer result:

LOAD(“MYFUN(INTEGER,REAL,STRING)INTEGER”) :F(NOLOAD)

Because the second (filename) argument was omitted, SPITBOL will
search for the function in a file named myfun.slf (or myfun.dll for OS/2).

Once the function is loaded, we will call it with the following statement:

N = MYFUN(“256", 1000, ”A test string")

The prototype states that arguments are to be converted to specific types.
In this case, the string “256" will be converted to integer 256, and 1000 will be
converted to the real number 1000.0. At function entry, the stack will con-
tain the subroutine return link, pointers to the result area and misc struc-
tures, and finally the three calling arguments.

MS-DOS: Because far pointers are in use, the stack would look like this:

low memory
;return Information:

02000010h ; return offset <—— SS:[ESP] point here
0000000Ch ; return segment + padding

;result area pointer:
02013DE4h ; offset of result area
00000014h ; segment of result area + padding

;miscellaneous Information pointer:
020145A0h ; offset of miscellaneous info area
00000014h ; segment of miscellaneous info area + pad-
ding

;arguments:
020231FCh ; offset of string (3rd arg)
00000014h ; segment of string (3rd arg) + padding
0000000Dh ; length of string, 13 characters (3rd arg)
00000000h ; 1000.0, least significant half (2nd arg)
408F4000h ; 1000.0, most significant half (2nd arg)
00000100h ; integer 256 (1st arg)

high memory

OS/2: Using near pointers, the stack would look like this:

low memory
02000010h ; return offset <—— SS:[ESP] point here
02013DE4h ; offset of result area
020145A0h ; offset of miscellaneous info area

;arguments:
020231FCh ; offset of string (3rd arg)
0000000Dh ; length of string, 13 characters (3rd arg)
00000000h ; 1000.0, least significant half (2nd arg)
408F4000h ; 1000.0, most significant half (2nd arg)

314 Appendices

Calling Example

00000100h ; integer 256 (1st arg)
high memory

Most functions will begin by pushing EBP and copying ESP to EBP. This
is most conveniently done with the 80386 ENTER n,0 instruction, where n is
the number of stack bytes to reserve for storage of temporary data. A func-
tion that was expecting these argument types could define a structure to ac-
cess them as offsets from register EBP. The sample structures shown on the
next page includes the saved value of EBP.

We use the conditional-assembly feature to define both the MS-DOS and
OS/2 forms of the stack.

External Functions 315

F

if nearptr
stk struc ; OS/2 form of stack

;items invariant for all functions:
stk_ebp dd ? ; save EBP <— SS:[EBP] point

here
stk_ret dd ? ; return link
presult dd ? ; pointer to result area
pmisc dd ? ; pointer to miscellaneous info

area
;items that must be customized

for
;arguments of each function:

parg3 dd ? ; string pointer, third arg
larg3 dd ? ; string length, third arg
rarg2 dq ? ; real number, second arg
iarg1 dd ? ; integer, first arg

stk ends
else
stk struc ; MS-DOS form of stack

;items invariant for all functions:
stk_ebp dd ? ; save EBP <— SS:[EBP] point

here
stk_ret df ? ; return link

dw ? ; pad word
presult df ? ; pointer to result area

dw ? ; pad word
pmisc df ? ; pointer to miscellaneous info

area
dw ? ; pad word

;items that must be customized
for

;arguments of each function:
parg3 df ? ; string pointer, third arg

dw ? ; pad word
larg3 dd ? ; string length, third arg
rarg2 dq ? ; real number, second arg
iarg1 dd ? ; integer, first arg

stk ends
endif

With EBP set up this way, it’s easy to access the various pieces of infor-
mation. Here are some examples:

To load the first (integer) argument into register EAX:

mov eax, [ebp].iarg1 ; 32-bit in-
teger

The real number second argument can be loaded into registers EDX:EAX
with:

316 Appendices

mov eax, dword ptr [ebp].rarg2 ; least
signif.

mov edx, dword ptr [ebp].rarg2+4 ; most
signif.

If you wanted to scan the string provided in the third argument, you
might load the appropriate registers with:

mov ecx, [ebp].larg3 ; string
length

sload es, edi, [ebp].parg3 ; string address

Here sload is a macro that loads a 48- or 32-bit pointer as appropriate.
Under MS-DOS, it generates

les edi, [ebp].parg3

while under OS/2 it produces:

mov edi, [ebp].parg3

The number of arguments can be loaded from the miscellaneous infor-
mation area into register ECX with:

sload es, ebx, [ebp].pmisc ; point to misc
area

mov ecx, ses:[ebx].nargs ; load number of
args

Ses is an equate that generates an ES: override for MS-DOS far pointers,
and nothing for OS/2 near pointers.

The stk structure will have to be customized for each different function to
reflect the actual number and types of arguments used.

By restricting argument types to integers, reals and strings, and using
those type names in the function prototype, your function need not be con-
cerned with SPITBOL’s internal data blocks. The data is presented on the
stack in a language-independent fashion. Omitting the data type in the pro-
totype will require additional work and knowledge to extract the datum
from SPITBOL’s heap.

External Functions 317

F

If your function fully declares data types in the LOAD function prototype
and will only produce integer, real, or string results, you can skip this sec-
tion. But if you need to work with unconverted input data, this section will
provide an overview of how SPITBOL’s stores data internally.

Unconverted input arguments are presented to the function as pointers
to SPITBOL’s internal data block. Each block is an aggregate of 32-bit words.
The first word identifies the type of data in the block. Subsequent words de-
pend upon the block type, as shown in the figure below.

Integer and real data follow the type word directly. String data is pre-
ceded by a word specifying the number of characters in the string. Most
other block types are variable in length, and so have a word that specifies
the total number of bytes used by the block. The layout of these blocks is de-
scribed by structures in file blocks.inc.

The type word heading each block identifies the block type in a curious
way. Rather than being a small integer type code, it is instead a full 32-bit
value that points to program code within the SPITBOL system responsible
for processing that type of data. Because there is a different section of pro-
gram code for every data type, the data type pointers are unique. Further-
more, this means that your program must never rely upon the absolute
value of this type word; it will change with each new release of SPITBOL.

This roundabout system permits the indirect-threaded code organiza-
tion used internally by SPITBOL. SPITBOL programs are converted to a list
of pointers to data blocks and operators. The interpreter merely jumps indi-
rectly through the first word of each object pointed to by the list.

While this organization results in improved execution speed and inter-
nal flexibility, it does cause one problem. Given a pointer to an arbitrary
block in memory, how does an external function determine its block type?
Simple, small integer type codes suitable for use in a compare operation or
dispatch table would be more convenient.

318 Appendices

type word

bytes in blockinteger

type word

real (lsh)

real (msh)

type word

string length

start of stringInteger data

Real data String data

SPITBOL’s Internal Data Blocks

Most other

data blocks

type word

Identifying
block types

SPITBOL lets you identify block types in two ways. The program code
pointed to by the type word is preceded in memory by a one byte, small in-
teger type code. Suppose for example that registers ES:[EBX] point to a
SPITBOL data block, and we want to obtain a one-byte type code. The mis-
cellaneous information area contains the segment selector of SPITBOL’s
code segment. With this information, fetching the type code into AL is
straightforward:

if nearptr
; OS/2 - near ptr

mov ecx, [ebx] ; load type word
mov al, [ecx–1] ; load type byte

else
; MS-DOS - far ptr

lfs ecx, [ebp].pmisc ; pointer to misc info
mov fs, fs:[ecx].spcs; get code segment
mov ecx, es:[ebx] ; load type word
mov al, fs:[ecx–1] ; load type byte

endif

The block-type data structure is shown schematically in the figure
above. The code in AL could then be compared with known values. These
values are defined symbolically in blocks.inc in the form BL_xx, where xx

describes the type. For example, to test if the code in AL represents string
data, use:

cmp al, BL_SC ; test for string constant

There is another, and usually simpler way to perform this test. The mis-
cellaneous information area contains a pointer to a table of type words
which may be indexed by small integer type codes. Because this table re-
sides within SPITBOL, it is updated with each new release. Each table entry
is four bytes long, so the type code must be multiplied by four to access the
table. Using the same example above, with a block pointer in ES:[EBX], we
can test if the block contains a string as follows (independent of pointer
size):

External Functions 319

F

type word

type
byte

SPITBOL
program code

for this
data type

mov eax, ses:[ebx] ; load type word
sload fs, ecx, [ebp].pmisc ; ptr to misc info
sload fs, ecx, sfs:[ecx].ptyptab ; ptr to type ta-

ble
cmp eax, sfs:[ecx+BL_SC*4]; test for string

This situation arises so often that the file extrn386.inc contains equates
for all the common block types, assuming the type table pointer is in
SFS:[ECX]. The last line above could be replaced by:

cmp eax, sc ; test for string

Accessing the type table is also useful for functions that will return data
blocks unconverted. In this case, it is necessary to set the result block’s type
word explicitly, and the type table gives you the word to store there.

Using internal
blocks

When an internal block is passed to a function, the method just described
permits a function to identify the block type. Or if your function is returning
an unconverted block, you now know how to obtain the proper value to
store into the type word. But what about the remaining words in the block?

The file blocks.inc contains structure definitions for various common
block types. A full discussion of how SPITBOL operates internally is be-
yond the scope of this manual. String, integer, and real blocks are straight-
forward, but the curious user armed with blocks.inc and a debugger should
be able to figure out most of the rest.

MS-DOS: In situations where a block contains a pointer to another
block, remember that the target block resides within SPITBOL’s heap, and
must be referenced through a segment register loaded with SPITBOL’s data
segment. This segment value is available in the spds field of the miscella-
neous information area.

SPITBOL distinguishes between relocatable and non-relocatable words
within a block. A relocatable word is a pointer to the first word of another
block in the heap. When the target block is moved during storage regenera-
tion, SPITBOL will adjust the pointer automatically. For each block type,
SPITBOL knows which words can contain relocatable pointers. For this rea-
son, it is important that all words within a block be properly filled in when
returning unconverted data. Note that all words within an external (XNBLK)
block are treated as non-relocatable, so do not place pointers to other heap
blocks there. Such pointers would become invalid after the first storage re-
generation.

Argument data blocks containing standard SPITBOL data types should
be treated as read-only by an external function. If you need to have a data
block whose contents can be freely modified, create an external data block
of a suitable size. SPITBOL will preserve its contents, but otherwise ignore
it. External data blocks are described in the next section.

320 Appendices

A function returns by placing its result in the designated result area and
executing a RET instruction. The result area is in SPITBOL’s workspace; its
address is provided on the stack in presult. Register EAX is set to indicate
function success or failure, and in the case of success, the type of result being
returned. Input registers do not need to be preserved.

The following table provides the result type indicators that may be re-
turned in register EAX. Symbol definitions are obtained by including file
extrn386.inc.

Register EAX Result Type

FAIL Function returns failing, no result.

BL_IC 32-bit signed integer.

BL_RC 64-bit real number.

BL_SC String in the result area. The string length may be be-
tween 0 and 512.

BL_FS String of up to &MAXLNGTH characters via a pointer.

BL_XN External data block. A block of up to 512 bytes of
user-defined data becomes a SPITBOL object.

BL_FN External data block of up to &MAXLNGTH bytes of
user-defined data via a pointer.

BL_NC No conversion. The result block must be properly set
up with SPITBOL’s internal block information.

In the case of a failure signal, no additional information need be pro-
vided. All other return types must place their data (or a pointer to the data
block) into the result area provided to the function in [EBP].presult. Each re-
sult type requires that a different data structure be applied to the result area.
The structures are defined in file blocks.inc, and common ones are pro-
vided below for reference. The following information presumes that ES:EDI
has been set to the result area by performing:

sload es, edi, [ebp].presult

Integer Result, EAX = BL_IC

icblk struc
ictyp dd ? ; type word (not used)
icval dd ? ; integer value

icblk ends

The integer result is stored in SES:[EDI].icval.

External Functions 321

F

Returning a Function Result

Real Result, EAX = BL_RC

rcblk struc
rctyp dd ? ; type word (not used)
rcval dq ? ; real value (lsh, msh)

rcblk ends

The real result’s least significant half is stored in dword ptr SES:[EDI].rcval.
The most significant half is stored in dword ptr SES:[EDI].rcval+4.

String Result, EAX = BL_SC

scblk struc
sctyp dd ? ; type word (not used)
sclen dd ? ; string length
scstr db ? ; start of string

scblk ends

The length of the string being returned is stored in SES:[EDI].sclen, and
must be between 0 and BUFLEN (defined in extrn386.inc, nominally 512)
characters. Use a zero length to return a null string result.

The characters of the string are stored in the buffer beginning at
SES:[EDI].scstr. If your function needs to return strings longer than BUFLEN,
you will have to provide your own buffer within the function. You then re-
turn a pointer to the buffer using the method described below.

Pointer to String Result, EAX = BL_FS

fsblk struc
fstyp dd ? ; type word (not used)
fslen dd ? ; string length
fsptr dpt ? ; pointer to string

fsblk ends

The length of the string being returned is stored in SES:[EDI].fslen, and is
limited to &MAXLNGTH. Use a zero length to return a null string result.

A pointer to the string is placed in SES:[EDI].fsptr. SPITBOL copies the
string into its own workspace.

MS-DOS: The pointer is a far pointer, consisting of a 32-bit offset value
followed by a 16-bit segment number.

OS/2: The pointer is a 32-bit near pointer.

Setting a pointer can be handled in a size-independent manner by using
the sstore macro. Assume a pointer in SFS:[EBX]:

sstore ses:[edi].fsptr, ebx, fs ; save ptr

Under MS-DOS, it generates

mov dword ptr [edi].fsptr, ebx
mov word ptr [edi].fsptr+4, fs

while under OS/2 it produces:

mov [edi].fsptr, ebx

322 Appendices

External Block Result, EAX = BL_XN

xnblk struc
xntyp dd ? ; type word (not used)
xnlen dd ? ; size of block in bytes
xndta dd ? ; start of user’s data

xnblk ends

Functions may return an external data block. SPITBOL copies the block
into its workspace, and returns it as the value of the function. The data block
may then be copied, assigned to variables, and passed to functions, etc., us-
ing normal SPITBOL statements. However, SPITBOL does not examine or
access any of the user’s data within the block. It is not treated as string data,
and cannot participate in pattern matching. Interpretation of the data is left
exclusively to the external function.

The result area provides room to store up to BUFLEN (defined in
extrn386.inc, nominally 512) bytes of user data, starting at SES:[EDI].xndta.
Your function must set SES:[EDI].xnlen to the number of bytes being re-
turned. External data blocks larger than BUFLEN may be created using the
method below.

If you subsequently pass this block back to your function as an argu-
ment, you will find that SPITBOL has increased the contents of the xnlen

word by eight to account for the size of the xntyp and xnlen words them-
selves, and rounded the result up to be a multiple of four. Example files
testef5.asm and testcef5.c on the distribution disk illustrate this phenome-
non.

Pointer to External Block Result, EAX = BL_FX

xfblk struc
xftyp dd ? ; type word (not used)
xflen dd ? ; data length in bytes
xfptr dpt ? ; pointer to user’s data

xfblk ends

The length of data being returned is stored in SES:[EDI].xflen, and is lim-
ited to the current value of keyword &MAXLNGTH.

A pointer to the data is placed in SES:[EDI].xfptr. SPITBOL copies the des-
ignated data into its own workspace. The length word is adjusted in the des-
tination block as mentioned above.

MS-DOS: The pointer is a far pointer, consisting of a 32-bit offset value
followed by a 16-bit segment number.

OS/2: The pointer is a 32-bit near pointer.

Unconverted Result, EAX = BL_NC

This method is normally used only by those with an intimate knowledge
of SPITBOL’s internal operation. The type word must be set to the correct
SPITBOL value obtained from the table provided in the miscellaneous in-
formation area in ptyptab. For example, the internal type word correspond-

External Functions 323

F

ing to the vector type BL_VC can be loaded into register EAX with these
statements:

sload fs, ecx, [ebp].pmisc ; misc info area
sload fs, ecx, sfs:[ecx].ptyptab ; ptr to type ta-

ble
mov eax, sfs:[ecx+BL_VC*4]

Using the data type equates in extrn386.inc, the last instruction can be
expressed more succinctly as:

mov eax, vc ; get vector block type
word

All other words appropriate to the data type being returned must be cor-
rectly set. Block lengths are expressed in bytes, and must be a multiple of
four.

324 Appendices

Interactive debugging requires a 32-bit, protected mode debugger. You
cannot debug external functions with a 16-bit MS-DOS debugger.

MS-DOS, PharLap-extended SPITBOL: SPITBOL-386 invokes the ex-
ternal function by a CALL instruction. This CALL instruction is located at
location CS:200000Ch in the PharLap-extended SPITBOL system. Since this
instruction is at a fixed address, the programmer may plant a breakpoint
and interrupt SPITBOL just prior to the function call. You may then trace the
function with your PharLap or MetaWare High C debugger. An example of
setting up to debug is provided in the figure below.

MS-DOS, Intel-extended SPITBOL: The Intel CodeBuilder debugger
does not support the use of far pointers and segments registers that are used
in external functions. You cannot debug external functions with Intel-ex-
tended SPITBOL.

OS/2: There are no fixed addresses that can be used to plant a breakpoint
prior to calling the function. The only alternative is to assemble in a break-
point instruction (INT 3) at the beginning of your function. Then load
SPITBOL and your program into the OS/2 debugger and run SPITBOL. Ex-
ecution will be interrupted when the INT 3 is encountered, after which de-
bugging can proceed normally.

External Functions 325

F

Debugging Functions

C:>386DEBUG SPITBOL.EXE TEST.SPT
386|DEBUG: 2.2b — Copyright (C) 1986-89 Phar Lap Software, Inc.
[80386 protected mode]
–BP 200000C
–G
SPITBOL-386 Version 3.7(2.4 I/O) Serial 20001
(c) Copyright 1987-1990 Robert B. K. Dewar and Catspaw, Inc.
Breakpoint at 000C:0200000C Elapsed time = 0.1 seconds
EAX=00000000 EBX=0201F5C0 ECX=02014518 EDX=00000001
ESI=0201FE08 EDI=02013D58 EBP=0201458C ESP=0201EFB0
DS=004C SS=0014 ES=004C FS=0014 GS=0014
CS:EIP=000C:0200000C EFLAGS=00000206 NV UP EI PL NZ NA PE NC
000C:0200000C 2EFF5B10 CALLF CS:[EBX+10]

Setting up to debug an external function

Real numbers are 64-bit entities stored in standard IEEE format (compat-
ible with the 80x87 coprocessor). They are normalized 64-bit signed magni-
tude values, containing a sign, binary exponent, and mantissa. A value is
represented by the formula:

–1
sign

* mantissa * 2
exponent

Bit 63 Sign bit for the mantissa. One for negative numbers.
Bits 62-52 Binary exponent biased by 3FFH. Thus the binary ex-

ponent +2 is stored as 401H.
Bits 51-0 The mantissa. In normalized form, the most significant

mantissa bit is always one, and is not explicitly stored.
It is an implied 1 to the left of bit 51. The binary point
lies between it and bit 51.

The number –3.25 would be represented as:

–1 * 1.625 * 2 = –1
1

* 1.101 * 2
1

Hexadecimal: 00000000h, C00A0000h

where:

Sign: 1
Mantissa: [1]101 (1 + 0.5 + 0.125) (leftmost 1-bit not stored)
Exponent: 1 + BIAS = 400h

Zero is represented by all 64 bits being zero. The special values NAN
(Not-A-Number) and ∞ (infinity) have an exponent field of all ones (7FFh).
If all mantissa bits are zero, the value is ∞, with the sign bit specifying plus
or minus ∞. If any mantissa bit is a 1, the value is NAN, and the sign bit is ig-
nored.

Operations on real numbers are performed by pushing them onto the
stack and calling one of the real arithmetic functions provided by SPITBOL.
Reals are pushed left to right, and it is the caller’s responsibility to remove
arguments from the stack when the function returns.

The SPITBOL real number functions are available through an indirect
call made via a dispatch table whose address is provided in pflttab in the
block of miscellaneous information. Equated definitions in file extrn386.inc
make these functions readily available provided the pointer to the table has
been loaded into registers DS:[EBX]. Because this is a callback into
SPITBOL, DS must be set to SPITBOL’s data segment. The equated function
names are:

fix real to integer, i = fix(r)
float integer to real, r = float(i)
r_add real addition, r = r_add(r1,r2)
r_sub real subtraction, r = r_sub(r1,r2)

326 Appendices

Real Numbers

r_mul real multiplication, r = r_mul(r1,r2)
r_div real division, r = r_div(r1,r2)
r_neg real negation, r = r_neg(r)
r_atn real arc tangent, r = r_atn(r)
r_chp real chop, r = r_chp(r)
r_cos real cosine, r = r_cos(r)
r_etx real e to the x, r = r_etx(r)
r_lnf real natural logarithm r = r_lnf(r)
r_sin real sine, r = r_sin(r)
r_sqr real square root, r = r_sqr(r)
r_tan real tangent, r = r_tan(r)

This example divides the real number in location r1 by the number in r2,
and stores the result in r3:

spush ds ; save function’s DS
push dword ptr r1+4 ; push first arg msh
push dword ptr r1 ; push first arg lsh
push dword ptr r2+4 ; push second arg msh
push dword ptr r2 ; push second arg lsh
lds ebx, [ebp].pmisc ; get address of misc

info
sload ds, ebx, [ebx].pflttab ; get adr of vectors
call r_div ; perform division
add esp, 2*8 ; remove arguments
spop ds ; restore function’s DS
fstore r3 ; save result

spush and spop are macros that generate no code under OS/2, where
segment registers are not modified. fstore stores a floating point result in the
argument address.

MS-DOS: Floating point results are returned in registers EDX:EAX.

OS/2: Floating point results are returned in ST(0), the top of the co-pro-
cessor stack (real or emulated by OS/2).

SPITBOL’s real number functions are easily accessible from assembly
language using this technique. Because of segment addressing problems,
external functions coded in other languages, such as C, may find it simpler
to forego SPITBOL’s functions and to simply use the real number support
provided in the compiler’s library.

External Functions 327

F

MS-DOS, PharLap-extended SPITBOL: Each function is allocated its
own memory segment, whose length is a multiple of the 80386’s 4,096-byte
page size. The size of this segment may be modified by invoking DOS inter-
rupt 21h, function 4Ah. The function has been slightly altered from the DOS
standard to accommodate the 80386’s 4 gigabyte segments. Register EBX
provides the requested segment size in four-kilobyte pages. Register ES
should contain the function’s data segment. For example, to set the func-
tion’s data segment to 20 kilobytes, use the following:

push ds
pop es ; function’s segment to ES
mov ebx, 5 ; five 4,096-byte pages
mov ah, 4Ah
int 21h
jc error

This technique modifies the size of the data segment only. Although the
code segment is an alias for the same region of memory, it is not modified.
At the time of writing, a bug in the PharLap DOS Extender prevents you
from also modifying the size of the code segment. In practice, this is not a
problem, because your existing code continues to execute in the existing
code segment.

MS-DOS, Intel-extended SPITBOL: Additional memory cannot be al-
located by an external function when running with this version of SPITBOL.

OS/2: SPITBOL allocates (but does not commit) 256 megabytes of ad-
dress space for its own use. External functions are free to use OS/2’s
DosAllocMem and DosAllocSharedMem to allocate memory from the 512
megabyte address space provided by OS/2.

Impact on
Save Files

MS-DOS: External functions are captured in save files and load mod-
ules created with the EXIT() function. To reduce the size of these files,
SPITBOL only includes the memory actually used by the function, not the
entire segment. Since external functions are usually quite small, recording
4,096 bytes for each would increase the size of files unnecessarily.

The actual number of bytes being used by the function (as opposed to the
full segment size) is recorded in location xnsiz of an xnblk. A pointer to this
block is provided in pxnblk of the miscellaneous information area. After
changing the size of a function’s data segment, you should update the func-
tion size in the xnblk. Assume the new size is in register EAX. Use:

sload es, edi, [ebp].pmisc
sload es, edi, ses:[edi].pxnblk
mov ses:[edi].xnsiz, eax ; size in bytes

328 Appendices

Allocating Memory

OS/2: External functions are not saved in save files and load modules, so
there is no need to inform SPITBOL of a function’s private memory alloca-
tions.

The SPITBOL distribution disk contains a number of sample programs
that illustrate the techniques for accessing arguments, as well as returning
various types of results. For each test case, there are several files: the assem-
bly language source, the binary version of the function ready for loading
into SPITBOL, and a short SPITBOL test program. For example, for test case
one, the three files are testef1.asm, testef1.slf, and testef1.spt.

The first six test cases illustrate accessing integer, real, and string argu-
ments. If all are found to be in order, they return results as follows:

testef1.asm return a string
testef2.asm return an integer
testef3.asm return a real number
testef4.asm return a string via a pointer
testef5.asm return an external data block
testef6.asm return external data via a pointer

The last test case, testef7.asm, illustrates how a function may change the
size of its memory segment, and runs under PharLap-extended SPITBOL
only.

In addition to these test cases, the file logic.asm provides an example of a
complex external function. It provides logical and mathematical operations
upon strings and integers, as well as base conversion. The file is worth
studying as an example of a complete function. The SPITBOL include file
logic.inc provides SPITBOL programs with simplified access to the external
function.

External Functions 329

F

Sample External Functions

Writing external functions in C is in many ways simpler than writing
them in assembly-language. The register bookkeeping chores of juggling
multiple pointers is handled automatically by C, and C’s strong typing as-
sures that pointers are associated with the proper data structures. The
low-level flexibility of the C language can now be harnessed to SPITBOL.

The distribution disk contains C-language analogs of the files used by as-
sembly-language programmers. This section will not duplicate all of the as-
sembly-language material previously introduced. Rather, it will highlight
how these assembly-language operations can be performed in C.

MS-DOS: Only the PharLap-extended version of SPITBOL supports
loading the EXP files generated by the MS-DOS C compilers and linkers.
The Intel-extended version of SPITBOL can only load assembly-language
files.

OS/2: Because OS/2 embraces run-time dynamic loading of library
functions (DLLs), interfacing arbitrarily complex C-language functions is
simple and straightforward. In fact, functions can be written in any OS/2
32-bit development language capable of producing DLLs.

Header files The header files system.h, extrn386.h and blocks.h are the C equivalents
of files system.inc, extrn386.inc and blocks.inc used by assembly-language
programmers. Extrn386.h provides basic definitions while blocks.h pro-
vides definitions of SPITBOL’s data blocks. System.h defines the os2 mani-
fest constant used to select between MS-DOS and OS/2 implementations.
These files are in directory external\c.

Loading an
external
function

Because SPITBOL does not care how a particular external function was
created, the LOAD prototype, calling sequence, and stack layout are identical
for both C and assembly-language external functions. The only difference is
that instead of being COM files, C-language functions will be EXP files cre-
ated by a 32-bit linker (MS-DOS), or Dynamic Link Libraries (OS/2). The
SLF or DLL filename extensions are still used.

Creating C
functions

MS-DOS: We use the Meta Ware High C 386 compiler to create external
functions. Users of other 32-bit C compilers (or other 32-bit languages, such
as Pascal), may have to adjust some parts of this sequence. Only one func-
tion per linked file is allowed. The entry point is identified by a C function
named mainslf(). SPITBOL calls mainslf() when the external function is in-
voked.

MS-DOS: After compiling all C source files, they are linked with one of
four small interface modules provided. The choice depends on whether

330 Appendices

C-Language External Functions

your external function uses C-library functions, real number arithmetic, or
C memory allocation. The files are:

inittiny.obj The external function uses SPITBOL’s stack. Because
many C library functions assume the stack and data
segments are the same, inittiny.obj should be used
with extreme care.

initstk.obj Provides the external function with its own 2K byte
stack. This satisfies the C library requirement that the
stack and data segments be one and the same.

initheap.obj Similar to initstk.obj, but also initializes a heap for dy-
namic memory allocation.

initfull.obj Similar to initheap.obj, but also initializes things so
that a function may use real numbers and the complete
C I/O library.

MS-DOS: Initstk.obj, initheap.obj and initfull.obj are compatible with
the SMALL memory model assumed by the C library and compiler. By using
SPITBOL’s stack, inittiny.obj is simulating the COMPACT memory model.
While it is certainly possible to instruct your compiler to generate code for
the COMPACT model, High-C’s library assumes the SMALL model, and is in-
compatible with inittiny.obj.

MS-DOS: Initstk.obj provides a 2K byte stack and nothing more.
Initheap.obj provides a stack as well as a dynamic heap and C memory al-
location via C functions malloc(), free(), brk() and sbrk(). Initfull.obj in-
cludes the stack and memory allocation of initheap.obj, but also initializes
C’s I/O system and provides variables for C’s real number library. With
initfull.obj, your function can use such C library functions as fopen() and
fprintf().

MS-DOS: All versions of Init receive initial control from SPITBOL when
your function is called. After performing any initialization, they jump to
your main function, mainslf(). Select the version of Init appropriate for the
complexity of your C function.

OS/2: We use the Microsoft CL386 compiler provided with the OS/2
SDK to create external functions. Any other OS/2 tools capable of produc-
ing DLLs may be used. More than one external function may appear in a
DLL. The entry point of each is just the SPITBOL name of the function, and is
communicated to SPITBOL by being EXPORTed in the corresponding mod-
ule definition file.

Extrnlib.obj Your function should be linked to the file extrnlib.obj provided with
SPITBOL. It contains functions useful for returning results. For MS-DOS, it
also contains functions for performing the basic string operations on the far
strings typically encountered in the argument list. Here’s a brief list of the
functions present in extrnlib.obj; consult the file extrnlib.c for additional
details:

For returning results:

retint return integer

External Functions 331

F

retnstrf return n-char string via a pointer
retnstrn return n-char near string
retnxdtf return n-char external data via a pointer
retnxdtn return n-char near external data
retreal return real number
retstrf return C string via a far pointer
retstrn return C string

Other utility functions (MS-DOS only):

memcmpff compare n-byte far areas of memory
memcpyff copy n-byte far areas of memory
memcpyff copy n-bytes from near area to far
strcpyff copy far C string to far string
strcpyfn copy near C string to far string
strcpynf copy far C string to near string
strlenf length of far C string
strncmpfn compare n-char far and near strings
strncpyff copy n-char far C string to far string
strncpyfn copy n-char near C string to far string
strncpynf copy n-char far C string to near string

MS-DOS: Consult your C-language reference manual for additional in-
formation on near and far objects.

OS/2: Under OS/2, where all pointers are near, the utility functions
above are defined to their C library analogs: memcpy, strcpy, strlen, strncmp,

and strncpy respectively.

MS-DOS: Below we show a compilation and link operation for a modest
function that will not use floating point, C I/O, or memory allocation. The
–maxdata 0 option is required to prevent the EXP file loader from allocating
all remaining free memory to the function:

hc386 /c myfun.c
386link myfun.obj initstk.obj extrnlib.obj –pack –maxdata 0

–e myfun.slf

A more complex function will require linking in the C libraries:

386link myfun.obj initfull.obj extrnlib.obj –pack –maxdata 0
–lib \bin\hce –e myfun.slf

OS/2: Here is the compilation and link under OS/2. The definition file is
similar to the definition file on page 308:

cl386 /c /Gs myfun.c
link386 /nod /noe /noi myfun.obj extrn386.obj, myfun.dll, ,

libcdll os2386, myfun.def

332 Appendices

Function
prototype

The form of your C function prototype depends upon the arguments
used in the corresponding SPITBOL prototype. Consider an external func-
tion loaded with this statement:

LOAD(“MYFUN(INTEGER,REAL,STRING,EXTERNAL)”)

Your function should be declared as a procedure returning a word (long)
result. We use a Pascal calling sequence to reflect the left-to-right order that
SPITBOL pushes arguments onto the stack. Under MS-DOS, the function
name is mainslf; under OS/2 it is the SPITBOL name of the function. This
can all be done in a platform-independent fashion by using the entry()
macro provided in extrn386.h.

After the function arguments, SPITBOL pushes pointers to the miscella-
neous information and result areas. Using the typedefs in extrn386.h, the
function’s entry would look like this:

#include “system.h”
#include “extrn386.h”

entry(MYFUN)(iarg1, rarg2, larg3, parg3, parg4, pinfo, presult)
word iarg1; /* arg1 integer */
double rarg2; /* arg2 real number */
word larg3; /* arg3 length */
far char *parg3; /* pointer to arg3 string */
far union block *parg4; /* pointer to arg4 block */
far misc *pinfo; /* pointer to misc info */
far union block *presult; /* pointer to result area */
{ …

The far keyword is defined to the null string under OS/2 to produce the
32-bit near pointers that are the norm under OS/2. Note that the pointers to
the result area, and to the unconverted fourth argument are presented as
pointers to a union of all possible SPITBOL block types. The union is de-
fined at the end of file blocks.h. The word typedef corresponds to a 4-byte
long integer.

Accessing
arguments

The previous assembly-language sections provide detailed information
on the stack forms taken by various arguments. Rather than repeat the ma-
terial here, the interested reader should consult the C-language sample files
testcefn.c. Just remember that under MS-DOS, the strings and internal data
blocks reside in SPITBOL’s data segment (not the function’s data segment),
and must be accessed via a far pointer consisting of a 32-bit offset and a
16-bit segment selector.

Provided you used the dummy argument name pinfo, the datatype of a
SPITBOL block can be checked using simple type names like ic (integer), or
sc (string). Definitions for these types are provided in extrn386.h.

External Functions 333

F

Returning a
result

As with assembly-language functions, results are stored in the result
area pointed to by the presult argument. It’s simplest to use the retxxx() func-
tions in extrnlib.c listed earlier. They store the correct data in the result area,
and provide the correct value to be returned to SPITBOL. For example, to re-
turn integer 1000 as the result of the function, use:

return retint(1000, presult);

Other return functions allow returning real numbers, strings, and exter-
nal data. Consult the documentation in extrnlib.c and the examples in
testcefn.c.

Real arithmetic MS-DOS: In order to use SPITBOL’s real arithmetic functions, register
DS must point to SPITBOL’s data segment. Because this setup is difficult to
achieve in C, we advise against attempting to use SPITBOL’s real functions.
Simply link with initfull.obj, and use your compiler’s own real number li-
brary. Although this results in duplicated code, it makes things much easier
for all concerned.

OS/2: Program code uses hard-coded floating-point instructions. These
are executed by the numeric co-processor or emulated by OS/2 if the
co-processor is absent. More complex operations such as trigonometric
functions are obtained from the C library.

C library I/O MS-DOS: The module initfull.obj initializes the High C I/O system the
first time your function is called, either during initial execution, or after be-
ing reloaded as a Save file. It permits you to use all normal C I/O functions,
such as fprintf() and fscanf(). Opening files other than standard input, out-
put and error is your responsibility. All files (including the standard input,
output, and error files) are closed after a function is reloaded from a Save
file. Opening files when a Save file is reloaded must be done explicitly by
your function.

OS/2: Normal C I/O functions such as fprintf() and fscanf() can be used
freely. All necessary initialization is performed automatically by OS/2
when the DLL is loaded.

Files remain open between function calls. SPITBOL closes files opened
via C library functions in all loaded functions when SPITBOL terminates. It
also closes files opened by a particular external function if that function is
unloaded.

334 Appendices

There are no special configuration actions required for Unix or OS/2
versions of SPITBOL. The material in this appendix is concerned solely with
configuring MS-DOS SPITBOL-386. Information on using SPITBOL-386
with Microsoft Windows is provided at the end of this appendix.

Introduction SPITBOL-386 incorporates a “DOS-Extender.” Your 80386/486 com-
puter normally executes in real mode as a very fast 80286 computer. Real
mode and virtual 8086 mode are the only modes in which MS-DOS can exe-
cute, and DOS remains ignorant of the true 32-bit nature of your system.

The DOS-Extender switches your computer into 32-bit protected mode.
In this mode programs like SPITBOL have access to 4 gigabyte memory seg-
ments, hardware memory paging, and 32-bit CPU registers. When
SPITBOL needs to call MS-DOS, such as for file I/O, the DOS-Extender
switches the computer back to real mode and moves the data between the
protected region and the conventional memory that DOS is aware of. In this
way, MS-DOS thinks it is running on an 80286 system while SPITBOL can
run in 32-bit protected mode.

The fact that a program is running in 32-bit protected mode is usually in-
visible to the user. However, sufficient differences exist among 80386 and
80486 systems that some individual reconfiguration may be necessary.

Versions There are two versions of SPITBOL on the release disk: PharLap-ex-
tended SPITBOL (spitbol.exe) and Intel-extended SPITBOL (spitboli.exe).
Each is described in a separate section of this appendix. Chapter 1, “Installa-
tion,” describes the differences between the two versions.

335

G

Appendix G

Configuring SPITBOL

Configuring MS-DOS SPITBOL-386

Intel-extended SPITBOL runs in extended memory only; it cannot use
expanded memory (EMS). It uses only a small amount of conventional
memory below 1 megabyte, so most of that remains available for running
other MS-DOS programs from within SPITBOL via the HOST(1) function.

Much of the following material distinguishes between two different en-
vironments:

1. Operation under a DPMI host such as a DOS shell in Windows 3.0
or 3.1 Enhanced mode or OS/2 2.0. The DOS Extender lets the
DPMI host provide memory management.

2. Operation under native MS-DOS or with a VCPI host, such as
QEMM-386. No DPMI host is present, and the Intel DOS Extender
provides memory management services to SPITBOL.

Virtual memory Virtual memory is used if SPITBOL’s workspace must be expanded to
accommodate your program and data, and insufficient physical RAM re-
mains. The virtual memory is obtained by swapping portions of your pro-
gram and data from RAM to the hard disk. If running under a DPMI host,
the host provides the virtual memory management. Absent a DPMI host,
the Intel DOS Extender manages virtual memory itself. In either case, vir-
tual memory is maintained by use of a hard disk swap file.

Region size Intel-extended SPITBOL is configured with a particular region size. The
region size determines the maximum amount of memory (physical and vir-
tual) that can be used. By default, Intel-extended SPITBOL sets the region
size to 1 megabyte. The interpretation of region size is slightly different de-
pending on whether you are running with a DPMI host or not, and is de-
scribed below.

The modxconf.exe program can be used to specify region and swap file
sizes. The program is provided by Intel Corp. for use with their DOS Ex-
tender. Start it at the DOS command line like this:

>modxconf spitboli.exe

To understand how to set the options, we will discuss how the region
size behaves with and without DPMI hosts. This behavior is shown sche-
matically in the figure on the next page, and described below.

336 Appendices

Intel-Extended SPITBOL-386

DPMI host When running with a DPMI Host (Windows, OS/2 2.0, etc.), virtual
memory is maintained by use of a hard disk “swap file.” For speed of access,
the swap file must occupy contiguous blocks on the disk. Chapter 13 “Opti-
mizing Windows” of MicroSoft’s Windows User’s Guide provides detailed
information on setting up a swap file. Briefly, there are two types of swap
files: permanent and temporary.

A permanent swap file remains on your hard disk (occupying space)
even when Windows is not running. Its size and location are controlled by
the SwapFile program provided with real-mode Windows. A temporary
swap file is one that is created each time Windows is started, and deleted
when Windows terminates execution. Besides the delay added to each Win-
dows startup, the size of the temporary swap file will be limited by the cur-

Configuring SPITBOL 337

G

Load SPITBOL

Use Region Size as is.
DPMI Host supplies
Physical and Virtual
Memory as needed.

Enlarge Region to size
of Swap File plus size
of Extended Memory

Create Temporary Swap
File = Region Size minus

Extended Memory size

Enlarge Swap File to
Region Size minus

Extended Memory size

Enlarge Region to use
all Extended Memory

(Virtual Memory
is needed)

Compare
Extended Memory

vs. Requested
Region Size

Extended
Memory Size plus
Swap File Size vs.
Requested Region

Size

Permanent Swap
File Exist?

Native DOS
or

DPMI Host?

START

No

DPMI

Yes

No
DPMI

>

>

<

<

Region Size Adjustment for Intel-extended SPITBOL

rent organization of the hard disk, in particular, the largest contiguous free
area on the disk.

If you work with Windows a lot, and can spare the disk space, you will
find a permanent swap file to be the most convenient. Consult the Windows
User’s Guide for additional information on setting up this file.

If you attempt to start SPITBOL and receive the message “Insufficient ex-
tended memory during program load” it means that extended memory
plus the DPMI-host’s swap file could not accommodate SPITBOL’s cur-
rently configured region size. Either make more space available on the swap
device and increase the size of the Windows swap file, reduce SPITBOL’s re-
gion size using the MODXCONF program, or remove extended memory
utilities such as VDISK.

Native DOS When running without a DPMI host, the Intel DOS Extender will man-
age its own swap file. By default, the swap file is xmswap.tmp in the root di-
rectory of drive C, but the name and location may be altered by setting the
DOS environment variable SWAP:

>SET SWAP=D:\TEMP\MYXMSWP.TMP

A permanent, pre-allocated swap file may be created by using the
MODXCONF program. Because the region size used by an executing pro-
gram is comprised of both physical RAM and virtual memory from the
swap file, the swap file does not need to be the full size of the region. It only
needs to be large enough to accommodate the additional memory desired
beyond the physical extended memory of the machine.

When SPITBOL is loaded without a DPMI host, the region size will be
automatically adjusted according to the following algorithm:

1. If the available extended memory is larger than the desired region
size, the region size is temporarily enlarged to match the physical
memory, and execution commences. Your SPITBOL program will
then use all available extended memory.

2. If the available extended memory is smaller than the requested re-
gion size, a swap file and virtual memory will be needed. The DOS
Extender’s first step is to check for the existence of a swap file via
the SWAP environment variable:

a. If there is no swap file, the DOS Extender will attempt to
allocate one. The file must be created large enough so that
combined with the physical extended memory on the ma-
chine, the region size is available to SPITBOL. If the disk
does not have enough space, the message “Insufficient
extended memory” is displayed. Otherwise, the file is
created and execution begins.

b. If a permanent swap file already exists, the DOS Extender
examines its size:

338 Appendices

1. If the swap file plus extended memory is greater than
the region size, the region size is enlarged to match.

2. If the swap file plus extended memory is smaller than
the region size, additional disk space will be allocated if
possible. If space is not available, the “Insufficient ex-
tended memory” message is displayed.

Unlike Windows, the MODXCONF utility does not require that the
swap file be contiguous. However, a fragmented swap file will degrade per-
formance, and you should consider using a disk de-fragmenting program
to rearrange and consolidate disk free space.

modxconf.exe Intel’s MODXCONF program allows you to do two things:

1. Adjust SPITBOL’s region size.

2. Create a permanent swap file to be used when running without a
DPMI host (native DOS).

Usage is straightforward. The program takes one command line argu-
ment, the name of the SPITBOL executable file. Invoke it like this:

>MODXCONF SPITBOL.EXE

and follow the directions. The “M” option allows you to modify SPITBOL’s
region size, the “C” option allows to create or modify a permanent
non-DPMI swap file.

Note 1: Do not attempt to use a RAM disk as a swap file.

Note 2: Avoid swapping and virtual memory as much as possible. It
greatly slows down SPITBOL. We suggest setting the region size to a value
several hundred K bytes smaller than the available extended memory. This
should eliminate any use of a swap file when running without a DPMI host.
With a DPMI host such as Windows, even smaller values will be required to
avoid swapping, because Windows will be using some of your extended
memory for its own purposes.

Load modules Because Intel-extended SPITBOL can generate executable files (via com-
mand-line option –w or the EXIT(3) function) for distribution to others, the
considerations above will apply to these executables as well. The
MODXCONF program can be used on executable files produced by
SPITBOL.

Other notes 1. If you receive the message “DOS Stack Overflow,” note the following:
Certain combinations of device drivers and network cards can cause a cas-
cading of interrupts, using a lot of space on the DOS stack. Coupled with the
DOS extender’s 32-bit pushes onto the same stack, your system can halt
with the following message: “Internal Stack Overflow, System Halted.” If
you receive this message, insert the following line in your config.sys file
and reboot (see your DOS manual for more information on the STACKS
command): STACKS=9,384.

Configuring SPITBOL 339

G

2. If you use 386MAX V6.0 or QEMM-386, do not use the EMS=0

(386MAX) or NOEMS (QEMM-386) option; this option disables services re-
quired by Intel-extended SPITBOL. Otherwise, executing your application
can cause unpredictable results. Note that the NOEMS option is permitted
with EMM386. Also, because extended memory is required to run, do not
use QEMM’s NOXMS option.

3. If you use MODXCONF to specify a region size larger than extended
memory, and do not have a permanent swap file, you will experience a de-
lay when SPITBOLI.EXE starts up and ends. The DOS Extender is creating
and then deleting a temporary swap file whose size is:

(region size) - (extended memory size)

Even if PharLap-extended SPITBOL-386 runs without incident on your
system, you may still need to adjust the way it uses system memory. For ex-
ample, the HOST(1) function runs another MS-DOS program from within a
SPITBOL program. This requires that enough conventional memory below
640K be available to execute the other program. Normally, PharLap-ex-
tended SPITBOL reserves at least 64K bytes for this purpose, but that may
be adjusted up or down by the configuration utility.

Altering
SPITBOL-386’s
Configuration

The options described below are made effective by directly modifying
the spitbol.exe file. They cannot be specified at the time a program is run.
Therefore, make sure you have a backup copy of spitbol.exe, and only mod-
ify the copy.

cfig386.exe CFIG386 is a program produced by PharLap Software, Inc., and distrib-
uted with SPITBOL-386 by Catspaw, Inc. under license from PharLap. It is
sub-licensed to you as part of the SPITBOL-386 software package; the same
License and Warranty terms apply.

Configuration changes are made by running CFIG386 with file
spitbol.exe as its argument, and specifying the options to be added to the
file. CFIG386 can also remove all options from spitbol.exe, allowing you to
start over without resorting to the backup copy.

The program is run by using a DOS command line like this:

cfig386 spitbol.exe [configuration switches]

If no switches are present, CFIG386 reports the switches currently set in
spitbol.exe. For example:

cfig386 spitbol.exe

when used with SPITBOL-386 as distributed produces:

340 Appendices

PharLap-Extended SPITBOL-386

Configured switch values:
–minreal 4000
–maxreal 7000

Clearing All
Switches

All switches installed in spitbol.exe can be removed by using the special
switch “–CLEAR”. For example:

cfig386 spitbol.exe –clear

Additional switches can follow “–CLEAR” and will be installed in the exe-
cutable file.

Switches
MINREAL,
MAXREAL

Most switches are highly technical in nature, and are provided for
non-conforming 80386 systems or early versions of the 80386 chip. The only
switches you will probably need to know about are –MINREAL and
–MAXREAL, described here.

Memory on 80386 systems is divided into conventional memory and ex-
tended memory. Conventional memory is that memory below 640K, and is
the area in which normal MS-DOS programs execute. Extended memory is
the region above 1 megabyte, extending as high as 4 gigabytes. SPITBOL’s
DOS-Extender can combine all available conventional and extended mem-
ory into one large, virtual region in which SPITBOL-386 will run.

MS-DOS commands can be executed from within SPITBOL, provided
enough conventional memory has been reserved for that purpose. This re-
served memory is not available for SPITBOL program or data storage.
Therefore, if your SPITBOL program does not execute other programs, far
less conventional memory need be reserved, and you may wish to alter the
configuration so that SPITBOL can use the memory.

The amount of conventional memory reserved is controlled by switches
–MINREAL and –MAXREAL. They take an argument giving the number of
16-byte paragraphs to be reserved. The number is assumed to be decimal,
but may be treated as hexidecimal by appending the letter “h”.

–MINREAL #
–MAXREAL #

These switches instruct the DOS-Extender to attempt to reserve MAXREAL

16-byte paragraphs, but to always reserve at least MINREAL 16-byte para-
graphs of conventional memory. For example,

cfig386 spitbol.exe –clear –minreal 8000 –maxreal 16000

removes existing settings, and reserves between 8000 * 16 (128,000) and
256,000 bytes of conventional memory for DOS programs. Notice that a
space appears between each switch name and the number.

can vary from 0 to 65535. If MINREAL amount of memory is not avail-
able when SPITBOL starts up, a message is provided and the program will
not run. Note that spitbol.exe is shipped to reserve between 64,000 and
112,000 bytes of conventional memory. You may wish to set these switches
to a much smaller value if your SPITBOL programs does not execute
MS-DOS commands. We recommend a minimum value of 320 bytes
(–MINREAL 20 –MAXREAL 20). SPITBOL will use these 20 paragraphs to build

Configuring SPITBOL 341

G

a file handle table that allows your program to simultaneously open as
many files as are allowed in your system’s config.sys file (less 4 for standard
system files).

Other Switches The remaining switches should only be needed in extraordinary circum-
stances.

–MINIBUF #
–MAXIBUF #

These switches control the size of the buffer used to communicate file
data between SPITBOL-386 and MS-DOS. The # is between 1 and 64, and is
the buffer size in kilobytes. By default, MINIBUF is 1 and MAXIBUF is 64. The
system attempts to allocate a buffer of MAXIBUF kilobytes, but will run pro-
vided MINIBUF kilobytes can be allocated. Since SPITBOL’s I/O system allo-
cates 1K buffers, the default settings are more than adequate. However, if
you are short of conventional system memory, you may wish to reduce
MAXIBUF to a much smaller value, such as 4K bytes. This does not affect or re-
strict the record length used in I/O, merely the internal efficiency of moving
data through memory. To reduce MAXIBUF to 4K, use:

cfig386 spitbol.exe –maxibuf 4

–EXTLOW #
–EXTHIGH #

SPITBOL-386 will use extended memory at or above the EXTLOW ad-
dress, and below the EXTHIGH address. By default, EXTLOW is 100000h (one
megabyte) and EXTHIGH is FFFFFFFFh (four gigabytes). SPITBOL-386
should detect other programs such as RAM disks that are using extended
memory, and avoid interference. However, if you have a non-conforming
program using extended memory, it will be necessary to explicitly tell
SPITBOL-386 what area of extended memory is safe to use.

–NOBIM Compaq 80386 systems provide “built-in” memory that SPITBOL-386
will use automatically if not in use by another program. This switch forces
SPITBOL-386 to ignore that memory.

–VDISK Use this switch if you have a RAM disk program that does not follow the
VDISK standard for using extended memory.

–B0 Use this switch only if your system has an 80386 chip that is Intel step B0.
You may not be able to use the 80287 or 80387 with such an old chip (see
NO87 environment variable at the end of Chapter 13, “Running SPITBOL”).

–XT You may need to use this switch if you are running on a PC or XT system
with a 386 board installed (e.g., Intel Inboard/PC). SPITBOL-386 should de-
tect this configuration automatically, but may fail if the board has a
non-standard BIOS.

–AT Use this switch if SPITBOL-386 cannot detect that your system has an AT
bus architecture.

342 Appendices

–MCA Use this switch if SPITBOL-386 cannot detect that your system has a Mi-
cro Channel bus architecture.

–MAXVCPI # SPITBOL-386 is compatible with expanded memory emulators such as
Quarterdeck’s QEMM-386 that provide a Virtual Control Program Inter-
face. Normally, SPITBOL-386 can use all of extended memory, leaving none
left for the execution of other programs. This switch limits the amount of ex-
tended memory that SPITBOL-386 will use to # bytes.

PharLap-extended SPITBOL is compatible with Windows under the fol-
lowing circumstances:

1. Windows is started in standard mode.

2. the Microsoft driver himem.sys is installed in your config.sys file.

Intel-extended SPITBOL is compatible with Windows if:

1. Windows is started in 386 Enhanced mode.

Installing PIF Copy files spitbol.pif and spitbol.ico from the distribution disk to your
Windows directory.

If you are running Windows in standard mode, make sure Microsoft’s
himem.sys driver is installed in your config.sys file. Then startup Win-
dows:

>WIN /S (Standard mode)
>WIN /3 (386 Enhanced mode)

Execute Windows’ PIF Editor program. Open the spitbol.pif file in the
Windows directory. Change the Program File Name line to include the disk
drive and full path of the directory where you copied the correct version
(PharLap or Intel) of file spitbol.exe.

The other options may be changed, but should be correct as is. Note that
it is important to specify 64 for the XMS Memory Required entry. This forces
Windows to permit SPITBOL to access extended memory. The –1 for XMS
Memory Limit allows SPITBOL to use as much memory as it needs, up to
the system maximum. You may wish to place a specific number here, such
as 2000 KB if other programs will need to access extended memory simulta-
neously. Normally this is not necessary, because SPITBOL is not greedy,
and only acquires additional memory when absolutely necessary.

Save the spitbol.pif file, and close the PIF Editor.

Configuring SPITBOL 343

G
Use with Microsoft Windows

Group Select the Program Manager group in which you wish to install
SPITBOL, and select New from the File menu, and Program Item from the
dialog box. For Description, enter SPITBOL, and for the Command Line en-
ter spitbol.pif. Press the Change Icon button, and on the File Name line, en-
ter the complete pathname to the spitbol.ico file that you previously copied
to your hard disk, for example:

Associating
source files

Start Windows’ File Manager Program, and navigate the directory struc-
ture to find the test.spt program previously copied from the hard disk.
(Actually, any file with the “spt” extension will do.) Select the file so it ap-
pears in reverse video. From the File Menu select Associate… and fill out the
form to say that “.SPT” files are associated with spitbol.pif.

From now on, when you double-click any .SPT file, SPITBOL will auto-
matically begin execution with that file as input.

Other Notes If you will be using Windows’ DOS Prompt icon to start a DOS session,
and then manually starting spitbol.exe at the DOS prompt, observe the fol-
lowing. It will be necessary to create or modify the PIF file for the DOS
Prompt (command.pif) to have the correct entries for the XMS memory
lines:

XMS Memory Required: 64
XMS Memory Limit: –1

If you do not make these changes, the DOS Session will not let SPITBOL
have access to extended memory, and an “out of memory” error message
from SPITBOL will result.

If you are using Windows enhanced mode, Windows can supply virtual
memory to the Intel DOS Extender. Additional information on configuring
both Windows’ and SPITBOL’s memory usage will be found in an earlier
section of this Appendix.

344 Appendices

Books in print 1. Butler, Christopher., Computers in Linguistics. Oxford: Basil
Blackwell Ltd., 1985. ISBN 0-631-14267-3, paper, 270 pages.

Two-thirds of this book is a SNOBOL4 tutorial, aimed at non-pro-
grammers, so that the reader “should attain a level of competence
which will allow him to write programs for his own purposes.”

2. Gimpel, James F., Algorithms in SNOBOL4. Salida, CO: Catspaw,
Inc., 1986. Originally published 1976 by Wiley Interscience; repub-
lished by Catspaw, Inc. ISBN 0-939793-00-8, paper; ISBN
0-939793-01-6, hardcover, 506 pages.

A cookbook of useful SNOBOL4 algorithms and techniques, highly
recommended for all serious SNOBOL4 programmers. Besides il-
lustrating subtle uses of the language, it provides an extensive col-
lection of general programming algorithms.

3. Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky, The
SNOBOL4 Programming Language (2nd ed.). Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1971. ISBN 0-13-815373-6, paper, 256 pages.

The complete, official definition of the SNOBOL4 language. It is
written as a clear, step-by-step examination of the language.

4. Griswold, Ralph E., and Madge T. Griswold, A SNOBOL4 Primer.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1973. ISBN 0-13-815381-7,
paper, 192 pages.

An introductory description of SNOBOL4 for individuals with lit-
tle or no programming experience. It is written for workers in the
humanities who want to apply computers to textual problems.

5. Hockey, Susan, SNOBOL Programming for the Humanities, Oxford:
Clarendon Press, 1985. ISBN 0-19-824676-5, paper, 178 pages.

An excellent introduction to SNOBOL programming for humani-
ties researchers. The book derived from classes given at Oxford by
Hockey. See also Translations, below.

345

Bibliography

6. Maurer, W. Douglas, The Programmer’s Introduction to SNOBOL.
New York: North Holland, 1976. ISBN 0-444-00172-7, paper, 141
pages.

A concise, yet very complete guide to the SNOBOL4 language and
its dialects, such as SPITBOL, SITBOL and FASBOL.

7. Shafto, Michael G., Artificial Intelligence Programming in SNOBOL4.
Salida, CO: Catspaw, Inc., 1987, 170 pages. Originally published in
1982 by University of Michigan; available only on diskette.

A report of SNOBOL4 programming techniques applicable to re-
search in artificial intelligence. Includes extensive library of code
for emulating LISP in SNOBOL4. In addition to the machine-read-
able report text, all programs and library code are provided in
SPITBOL form.

All of the above materials are available by mail-order from Catspaw, Inc.
Contact Catspaw for current pricing and shipping information.

Other
references

8. Dewar, Robert B.K., and McCann, A.P. MACRO SPITBOL—a
SNOBOL4 Compiler. Software—Practice and Experience, 7 (1977)
95-113.

A description of the implementation techniques and design of
MACRO SPITBOL, the system upon which Catspaw SPITBOL is
based.

9. Gimpel, James F. A Theory of Discrete Patterns and Their Imple-
mentation in SNOBOL4. Comm. ACM 16, 2 (February 1973), 91-100.

A formal treatment of SNOBOL4’s pattern matching, including a
detailed analysis of the quickscan heuristics.

10. Griswold, Ralph E. REBUS - A SNOBOL4/Icon Hybrid. Tucson, AZ:
Department of Computer Science, The University of Arizona, TR
84-9, 1984.

REBUS is a language that combines Icon-like control structures and
syntax with SNOBOL4’s pattern matching. It is implemented as a
free-standing preprocessor that converts REBUS programs to
SNOBOL4 or SPITBOL.

11. A SNOBOL4 Information Bulletin is published irregularly by the
SNOBOL4 Project, Department of Computer Science, The Univer-
sity of Arizona, Tucson, AZ 85721.

12. A SNOBOL’s Chance is another irregular newsletter, this one pub-
lished by Catspaw, Inc., P.O. Box 1123, Salida, CO 81201.

Translations 13. Coppen, Peter-Arno, and Ben Salemans, SNOBOL4 voor Iedereen.
Nijmegen: Stichting LOC, 1988. ISBN 90-5088-012-6, paper, 278
pages.

A Dutch introductory SNOBOL4 text.

346 Bibliography

14. Toda, Shinichi, Bin Umino, and Kyo Kageura, SNOBOL Nyumon:
Tekisto Shorino Tameno Puroguramingu. Maruzen, 1988. ISBN
4-621-03302-6, 241 pages.

A Japanese translation of Hockey’s SNOBOL Programming for the
Humanities.

Bibliography 347

Out of print The following books are no longer available from booksellers. However,
copies may be found at large academic libraries.

14. Griswold, Ralph E. String and List Processing in SNOBOL4.
Englewood Cliffs, N.J. : Prentice-Hall, Inc. 1975. ISBN
0-13-853010-6, cloth, 288 pages.

A text on advanced programming topics and techniques using
SNOBOL4. Much of the program material is included on the
SPITBOL distribution media.

15. Griswold, Ralph E. The Macro Implementation of SNOBOL4. San
Francisco: W. H. Freeman and Company, 1972, ISBN 0-7167-0447-1,
310 pages.

A detailed description of the internal operation of the standard
SNOBOL4 compiler and interpreter; a case study of machine inde-
pendent software.

16. Shapiro, Stuart C. Techniques of Artificial Intelligence. New York: Van
Nostrand 1979, ISBN 0-442-80501-2, 166 pages.

This book consists of programming problems and examples of
well-written programs in subareas of artificial intelligence. The ex-
ample programs are written in LISP, SNOBOL4, or
MICROPLANNER.

17. Uhr, L. Pattern Recognition, Learning, and Thought: Computer Pro-
grammed Models of Higher Mental Processes. Englewood Cliffs, N.J.:
Prentice-Hall, Inc. 1973, ISBN 0-13-654095-3, 506 pages.

Contains a large number of AI programs written in the EASEy lan-
guage, which in turn was written in SNOBOL4.

348 Bibliography

INDEX

A
-a, produce listing and statistics, 163
&ABEND, 189
&ABORT, 124-125, 137, 150-151, 187, 192, 203, 238,

264
Ackermann sample function, 262
Addition, 19-20, 182
Address, object, 96
Algorithm

pattern-match, 204
&ALPHABET, 48, 53, 66, 187
Alternation

of patterns, 57, 122, 124, 204
Alternative evaluation, 97-99, 183, 267
&ANCHOR, 78-79, 141, 189, 264
Anchored pattern matching, 78

with FENCE, 125
with POS, 67, 78, 122, 235

AND, external logic function, 260
AND, logical

in patterns, 57, 129
of conditional functions, 33, 129

Angular brackets, 133
ANY, 69, 79, 124, 212, 247, 250
Any string (ARB), 64, 79, 203
APPLY, 127, 137, 212, 231
ARB, 64, 79, 187, 203, 207, 215, 250, 264
ARBNO (arbitrary number of), 121-122, 137, 212, 250
ARG, 213
Arguments

SEE Function calls
Arithmetic functions

CHOP, 33, 215
logarithmic, 232
mixed-mode, 19
relational, 234
REMDR (modulus), 33, 235

Arithmetic operators
SEE Binary operators

ARRAY, 89-90, 99, 195, 201, 213

truncating and extending, 261
Arrays, 47, 88, 90, 213, 247, 267

and tables, 47, 94
creation, 88, 213
data type, 88, 195
dimensions, 88, 213
initial value, 88, 90, 213
prototype string, 88, 235
referencing, 88
scanning, 90
sorting, 240
tables, 47, 90, 93

ASC, SNOBOL4+ function, 269
ASCII to decimal conversion (ASC), 106, 256
Assignment

conditional, 62, 87, 91, 182
immediate, 87, 91, 145, 182
indirect, 82
multiple, 19, 183, 267
operator, 19, 24, 128, 183, 266
statements, 10, 33, 175-176

Associations, 85
command line, 40, 161, 163, 268
I/O, 40, 163, 167, 224, 226, 229

Associative programming, 84, 91, 248
Associativity

operator, 20, 181-182
ATAN, 33, 214, 266

B
-b, suppress sign-on message option, 162
BACKSPACE, 214
Backup in pattern matching, 58, 121, 125, 204
&BAL, 187
BAL (balanced parentheses), 124-125, 137, 187-188,

203
Beginning of string (POS), 67, 235
Binary I/O

SEE see I/O raw mode

349

Binary operators, 18-19, 115, 181-182
addition, 19, 182
alternation, 57, 122, 124, 142, 182
assignment, 19, 128, 182
concatenation, 21
conditional assignment, 62, 142, 182, 249
division, 19, 182
exponentiation, 19, 182
immediate assignment, 87, 182
multiplication, 19, 182
pattern match, 56
subtraction, 19, 182
undefined, 116, 182

Binary trees, sample program, 262
Blanks

and number conversion, 20, 199
at end of string, 35, 47, 245
between subject and pattern, 56
between subsequent patterns, 57
concatenation, 21, 57
in first statement column, 28
with binary operators, 18, 140-141
within prototype string, 111

Blending strings, sample program, 262
BNF grammar, 261
Brackets, 42, 44, 89, 267
BREAK, 69-70, 79, 143, 214, 247
BREAKX, 71, 79, 214, 247, 266

extended BREAK function, 214
Built-in functions, 31-34, 127, 137, 210

SEE ALSO Pattern functions

C
-c, generate compilation statistics, 163
Call tracing, 147
Capital, state, sample program, 83
Capitals.dat data file, 256
Carriage return, 42, 44, 171, 226

SEE ALSO End-of-line
-CASE, 172, 189
Case-folding

labels, 28, 176
names, 23, 172, 182
with indirect reference, 182

Center sample function, 261
CFIG386 configuration program, 340-341

CLEAR switch, 341
MAXREAL switch, 341
MINREAL switch, 341

Channel, 12, 42, 224, 268
association with file name, 39

CHAR, 66, 106, 215, 251
Character set

&ALPHABET, 48, 66, 187
CHOP, 33, 115, 201, 215, 266
CLEAR, 215
CLEARSCN, host function, 290
CODE, 189, 202

data type, 196
function, 130, 132-133, 137, 177, 189, 196, 200,

215-216, 248
program for interactive execution, 11, 107, 255

COLLECT, 216, 249
Column one

asterisk, 40, 50, 171
blank or tab, 28
minus sign, 171
period or plus sign, 93, 178

Command line, 10-11, 41, 45, 47, 268
arguments, 162, 281
SPITBOL, 10-11, 44, 139, 161, 281
SPITBOL file associations, 40, 161
SPITBOL options, 161-162, 268

Comment statement, 40, 50, 74, 171, 179
&COMPARE, 189
Compilation

during execution, 130, 215, 221
errors, 139-140, 172
source program, 10, 161

Compress sample function, 261
Concatenation

of functions, 33
of patterns (subsequents), 58
operator, 21, 176, 178, 182
with null string, 22, 33

Concordance sample program, 262
Conditional assignment, 62, 87
Conditional functions, 33
Conditional GOTO, 29, 177
Configuring PharLap SPITBOL

for AT bus, 342
for Compaq, 342
for early 80386, 342
for extended memory, 343
for MCA bus, 343
for PC or XT, 342
for RAM disks, 342

Continuation statements, 93, 109, 178
CONTINUE, 150-151, 192, 239
Control statements, 171-172, 174, 265, 269

CASE, 172
COPY, 172
ERRORS, 172
EXECUTE, 173
FAIL, 173
IN, 173
INCLUDE, 172
NOERRORS, 172
NOEXECUTE, 173
NOFAIL, 173
NOOPTIMIZE, 173
OPTIMIZE, 173

Control-D
SEE End-of-File character

Control-Z
SEE End-of-File character

Conversion, data type

350 Index

SEE Data type conversion
CONVERT, 93, 99, 127, 137, 195-196, 198-199, 201-202,

216, 266
COPY, 90, 113, 172-173, 217
COS, 33, 217, 266
Created names, 84
Created variables, 82
CROSS

sample program, 75
Cryptography sample program, 262
Cursor, 203
CURSOR, host function, 287
Cursor position operator, 65-66

D
-dN, set memory heap size to N, 164
DATA, 111-112, 117, 119, 217
Data type conversion

explicit, 93, 198
implicit, 20-22, 198

Data types, 15, 127, 195, 218
array, 88, 93, 195, 201
code, 196
expression, 130, 196
external, 305
file, 305
integer, 196
name, 196
pattern, 61-62, 85, 197
program-defined, 111-112, 248
real, 16, 197
string, 17, 39, 197, 218
table, 91, 93, 197

Data types program-defined, 111, 198
DATATYPE, 114, 195-196, 218, 264
Data-types

numeric, 266
DATE, 34, 218, 270
Date and time, 34, 270
DATE(), 34, 218
Debugging, 48, 139-140, 145, 149-150, 244
Decimal to ASCII conversion (CHAR), 106
Default file name extension, 11, 161
Defaults, 165, 175
Deferred evaluation, 86-87, 123, 130, 136

operator, 86-87, 181
DEFINE, 102, 104-105, 108, 119, 219
Delete sample function, 261
DELETECHR, host function, 291
Deleting characters from a string, 72, 261
Demonstration files, 257

Args, 259
ATN, 257
Eliza, 257
Gotos, 257
Kalah game, 257
Keyword, 258
Logic, 259

Sentenc, 258
Treesort, 259

Desk calculator example, 131
DETACH, 46, 53, 219, 250
Device names, 41-42
DIFFER, 31, 141, 196, 219, 233, 264
Direct GOTO, 133, 177-178, 196
Division operator, 19, 182
DOS

ERRORLEVEL, 189
DOS Extender

Intel, 4, 336
license restrictions, 169
PharLap, 4, 340
purpose, 335
use with Windows, 343

-DOUBLE, 174
DPMI host

use with, 336
Dummy arguments, 102, 104
&DUMP, 48, 53, 94, 141, 145, 151, 189, 218, 220, 266
DUPL, 34, 50, 220
Dynamic Link Libraries (DLL), 305-306, 308, 311,

330-331

E
-e, suppress error messages to screen, 139, 162
Echo, input screen, 228
Efficiency, 247, 249
-EJECT, 174, 220, 266
Embedded assignment, 183
Embedded pattern match, 183
END, 10-11, 179, 192
End of line, 44, 226, 269
End of line character

SEE see I/O, end of line character
End of string (RPOS), 67, 237
End statement, 10, 30, 179, 192
ENDFILE, 45, 53, 127, 137, 220-221
End-of-File, 27-28, 30, 161
End-of-File character, 28
Entry point

function, 102, 119, 219
Environment, 269, 285, 307
Environment strings, 166
ENVIRONMENT, SNOBOL4+ function, 269
EQ, 31, 221
Equals sign operator, 19, 183
ERASEEOL, host function, 291
&ERRLIMIT, 149-151, 189, 238-239
Error control

&ERRLIMIT, 149, 189
&ERRTYPE, 187

Error message
Array size exceeds maximum permitted, 271
compilation, 139, 271
Conversion array size exceeds maximum, 271
&ERRTEXT, 131-132, 215, 221

Index 351

execution, 271
Internal logic error Unexpected PPM branch, 272
Memory overflow, 271
Requested &MAXLNGTH too large, 272
Stack memory unavailable, 272
Stack overflow, 272
Statement is too complicated, 272
String length exceeds value of MAXLNGTH, 271
Workspace memory unavailable, 272

Error messages, 273-279
-ERRORS, 172
Errors, common, 140
&ERRTEXT, 131-132, 149, 151, 190, 221, 266
&ERRTYPE, 149-151, 187, 190, 239
EVAL, 130-132, 135, 137, 189, 201, 221
-EXECUTE, 173
EXECUTE, host function, 283
EXECUTE, SNOBOL4+ function, 269
Execution errors, 127, 140, 150, 238, 264-265
Execution errors, trapping with SETEXIT(), 150
EXIT, 168-169, 221, 266, 284
EXP, 33, 200, 202, 222, 266, 308
Exponent

real number, 16, 200
Exponential function (EXP), 33, 222
Exponentiation operator, 20, 182
EXPRESSION, 196, 200-202
Expressions

unevaluated, 122
Expressions

arithmetic, 19
balanced, 124
evaluation of, 97, 130, 175
unevaluated, 86, 105, 122, 130, 196, 221

Extended operators
Alternative evaluation, 97, 183
Multiple assignment, 128, 183
Pattern match, 128, 183

External functions
arguments, 305-306
Assembly language, 309, 311-314, 318, 321
blocks.inc file, 310, 320
C language, 330-333
C library I/O, 334
creating with Borland TASM, 307
creating with MASM, 307, 310
creating with Microsoft MASM386, 308
creating with PharLap ASM, 308
debugging, 325
extrn386.inc file, 308, 310, 320
near and far pointers, 308-309, 323
OS/2, 308
real numbers, 305, 326-327
returning result, 321, 323, 331, 334
sample files, 329
SPITBOL data storage format, 318-319
stack frame, 315
system.inc file, 308, 310

External functions, 110, 166, 169, 233, 270, 303-305,
307, 328-330

arguments, 233
.COM files, 304
data types, 233
.DLL files, 304, 330
dynamic link libraries, 304
.EXP files, 304, 330
loading, 110, 119, 233
memory model, 305, 328, 331
prototype, 233
unloading, 119, 245

F
F (for failure GOTO), 29, 178
-f, suppress case-folding, 23, 162, 266
FACT, factorial function, 108, 256, 262
Factoring a pattern, 60
FADD, sample function, 117
FAIL, 125, 137, 173, 188, 204, 264
Failure

and success, 27-29, 129
array reference, 89
function, 28, 31, 103, 192
in expression, 129, 175
input, 27-28, 30, 41, 224
pattern match, 56, 124-125, 203-204

Faustus, text file, 256
FENCE, 125, 137, 188, 204, 222, 266

to simulate anchored mode, 125, 204
Fibonacci sample function, 262
FIELD, 223
Fields

program-defined data type, 111, 217, 223
Fields of a statement, 28, 175
&FILE, 174, 188, 266
File information program (FILEINFO), 49
File name

default extension, 11, 161
with I/O function, 224-225

Files
SEE I/O

FIRSTARG, host function, 284
Floating-point

SEE Real numbers
&FNCLEVEL, 146, 187-188, 239
Forcing garbage collection, 216
Formal arguments, 102, 219
Formal data type names, 195
FREEZE, SNOBOL4+ function, 269
FRETURN, 103, 119, 133, 188, 192, 219, 239
FSTR, sample function, 117
&FTRACE, 110, 146, 149, 151, 190
&FULLSCAN, 12, 124, 263, 270
Function calls, 31

SEE ALSO Built-in functions
arguments, 31, 102, 106
conditional, 31

352 Index

failure, 31, 103
indirect (APPLY), 212
level, 188
numeric, 33
passing names, 106
preservation of values, 104, 108
recursive, 108
result of, 31, 103-104, 119
string, 34

Function definition
SEE Program-defined functions

Function synonyms, 115, 234
Functions

and operators, 115-116, 235
array and table, 210
built-in, 31-34, 127, 209-210
compilation, 210, 265
control, 210
error-trapping, 211
external, 110, 166, 169, 270, 303-305, 307, 328-330
field reference, 112
first statement, 102, 219
I/O, 210
machine-specific, 211
memory, 210
miscellaneous, 210
numeric, 211, 266
numeric comparison, 211
object comparison, 211
object creation, 211
pattern match, 211, 265
program control, 211
program-defined, 101, 105, 143
program-defined data type, 211
return from, 103, 119, 219
returning result, 103, 219
string comparison, 212
string synthesis, 212
tracing, 146-149
use of, 104

Functions from String and List Processing, 261

G
-gN, set number of lines per page in list file, 163
Garbage collection, 53, 216
GE, 32, 202, 223
GETARG, host function, 284
GETCOLS, host function, 297
GETCURCOL, host function, 299
GETCURROW, host function, 299
GETFSIZE, host function, 297
GETLINES, host function, 298
GETMODE, host function, 298
GETPAGE, host function, 298
GETTYPE, host function, 295, 297
Gimpel, James F., 15, 105, 108, 153, 345-346
GOTO, 29

conditional, 29, 177-178

direct, 133, 177-178, 196
failure, 29-30, 176-177
indirect, 84
success, 29, 176-177
unconditional, 29-30, 177

GOTO, host function, 287, 297
Griswold, Ralph E., 345-346, 348
GT, 32, 223

H
-h, suppress SPITBOL ID in listing, 163
Heuristics, 123-124, 263, 346
Hexadecimal, external function, 260
HOST, 12, 127, 164, 166-167, 223, 256, 260, 266, 268,

281-282
Host.inc file, 282

I
-iN, set heap increment size to N, 164, 173
I/O, 39, 166, 214, 269

append to existing file, 227
binary, 224, 226
channel, 39, 42, 46, 224
defaults, 229
DETACH, 46, 53, 219
direct mode, 229
end of line character, 227
ENDFILE, 53, 220
end-of-file character, 227
file descriptors, 227
inheritable file, 227, 229
INPUT, 42, 53, 167, 224, 226, 229, 264, 289
internal buffer size, 227
keywords, 190-191
line mode, 226-227
one-character raw mode, 227
OUTPUT, 42, 53, 167, 224, 226, 229, 235, 264, 289
quiet raw mode, 228
raw mode, 226, 228
redirection, 41, 163, 224
REWIND, 127, 137, 237
SET, 127, 229, 238
share mode, 228
TERMINAL, 53, 289
update mode, 229

IDENT, 31, 141, 196, 219, 224, 264
Identifiers

SEE Variables, names of
If-then-else, LISTS, 97, 267
Immediate assignment operator, 92, 99, 123, 182
Implicit alternatives, 207
-INCLUDE, 106-107, 166, 172-173
Include files, 106, 166, 172-173
Indirect reference

case-folding within, 182
function call (APPLY), 212
operator, 81, 96, 99, 104, 176, 181-182, 196

Index 353

to array or table (ITEM), 127, 137, 231
within GOTO, 84, 104, 177

Indirection operator, 84, 95-96, 181, 250
Initial value

array, 88, 90, 213
table, 91-92
variable, 24, 215

In-out.spt, sample program, 40, 42-43
INPUT, 24, 27-28, 30, 41, 190

from source program file, 163
function, 12, 39, 41-44, 53, 96, 220-221, 224, 230,

269
variable, 24, 27, 30, 39-41, 53, 179, 192-193,

219-220, 226, 230
Input association, 45, 83, 190

on command line, 45, 268
Input association,

with environment variables, 166
Input association, 42, 75, 172

attaching existing channel, 46
Input, standard, 41, 53, 161-162, 165, 227
INSERTCHR, host function, 291
Installation

SPITBOL, 3
INTCALL, host function, 301
INTEGER, 16, 32, 196, 202, 230
Integer data type, 196

conversion from string, 20, 141, 199
Integer pattern functions, 66
Intel-extended SPITBOL

and Windows, 343
configuring, 336
region size, 336
use of, 4

Interactive statement execution, 11
Interrogation operator, 129, 137, 181-182, 251
Interrupts, MS-DOS and BIOS, 259, 301
ITEM, 127, 231, 267

K
-k, run with compilation errors, 162
Keyword names

protected, 187
unprotected, 187

Keyword operator, 47, 181-182
Keyword tracing, 147, 187
Knowns, pattern, 56

L
-l, produce normal program listing, 146, 163, 174
Label, 28-29, 85, 176

function entry, 102, 119, 219
reserved, 151
tracing, 147

Large integers, sample program, 262
&LASTFILE, 174, 188, 266
&LASTLINE, 174, 188, 266

&LASTNO, 149, 151, 188
&LCASE, 48, 53, 188
LE, 32, 231
LEN, 66, 79, 231, 250
Length of a string (SIZE), 35, 240
LEQ, 231, 266
Level, function, 146, 188
Lexical ordering of strings, 231-233
LGE, 232, 266
LGT, 32, 232
Line, 174, 188, 266

length, 23, 44, 171, 173, 265
Linear search, 84
-LIST, 174, 216
List operations, sample program, 262
Listing control, 174

-DOUBLE, 174
-EJECT, 174, 220
-LINE, 174
-LIST, 174
-NOLIST, 174
-NOPRINT, 174
-PRINT, 174
-SINGLE, 174
-SPACE, 174
-STITL, 174
-TITLE, 174

Listing file, 11, 139, 174, 220
LISTS, 97
Literals, 10, 17, 72
LLE, 232, 266
LLT, 232, 266
LN, 33, 232, 266
LNE, 233, 266
LOAD, 110, 119, 169, 233, 306
Load Modules, 168
Load Modules

and Intel-extended SPITBOL, 222
distribution of, 169, 339
production of via EXIT(3), 221

Loading
assembly language (LOAD), 233
C language, 233
SPITBOL, 5

LOCAL, 234
Local variables, 104, 108, 219, 234
Logarithm

LN, 33, 232
Logic.inc, sample file, 329
Loop control, 33, 73, 90, 177
Loops in pattern matching, 122
Lower-case characters, &LCASE, 48
LPAD, 127, 137, 234, 266
LT, 32-33, 199, 234

M
-mN, set maximum object size to N, 47, 53, 164
-mN, set maximum object size to N, 265, 269

354 Index

Matching entire subject, 122
Maximum object size, 47
&MAXLNGTH, 47-48, 53, 164, 190, 196-197, 229, 265,

271-272
Minus sign

in column one, 171
operator, 18, 181

Mixed-mode arithmetic, 19
Modulus (REMDR), 33, 235
MODXCONF, configuring with, 336
Multiple assignment, 19, 128, 267
Multiple statements, 178
Multiplication operator, 19, 182

N
-n, suppress execution, 162, 173
-n=file, associate file with I/O channel, 45, 163,

268-269
NAME, 196, 199-200, 202, 264
Name operator, 96, 99, 107, 181-182, 196, 219, 250
NAND external logic function, 260
Natural variable, 199, 202
NE, 32, 234
Negation operator, 129, 137, 181-182
Newline character

SEE End-of-line
-NOERRORS, 172
-NOEXECUTE, 173
-NOFAIL, 142, 173
-NOLIST, 174
-NOOPTIMIZE, 173
-NOPRINT, 174
NOR, external logic function, 260
NORMATR, host function, 295
NOT, external logic function, 260
NOTANY, 69, 79, 234, 247
NRETURN, 133-137, 176, 188, 192, 219, 239
Null string, 17, 20, 22-24, 27, 31, 33, 49, 70, 82, 103,

176, 197, 199, 209
as function result, 31
as initial value, 24, 88, 91, 104
concatenation of, 22, 33
in pattern match, 59, 64, 68, 121
replacement by, 72-73
setting all variables to, 215
zero value of, 20, 199

Numeric functions, 33, 266

O
-o, specify list file, 139, 163, 174, 189-190
Object code, 132, 168, 196, 216, 221-222

branching to, 133, 177, 196
Object comparison functions

DIFFER, 31, 116, 219
IDENT, 31
LEQ, 231

Object creation functions, 111

Omitted arguments, 31, 209, 301
One character assumption, 123
Operator

associativity, 20, 181-182
definition, 116, 182, 234
precedence, 19, 22, 58, 181-182
synonyms, 115-116, 234

Operators
SEE Binary, Extended, and Unary operators

OPSYN, 115-117, 119, 181, 234-235, 263
-OPTIMIZE, 173
Option switches

command line, 161
OR, external logic function, 260
OR, logical

in patterns, 129
OUTPUT, 10, 19, 24, 40-41, 190, 224, 235

function, 12, 39, 41-44, 53, 220-221, 224, 230, 235,
269

variable, 10, 19, 24, 39-40, 53, 63, 192-193, 219-220,
226, 230, 235

Output association, 41, 45, 190
on command line, 45, 268

Output association,
with environment variables, 166

Output, standard, 41, 53, 162-163, 165, 227

P
-p, produce listing with wide titles, 163
Padding functions

LPAD, 127, 234
RPAD, 127, 237

Palin.spt, sample program, 50
Palindromes, 50-51, 73, 256
Parentheses

balanced expression, 203
ordering operations, 19

&PARM, 270
PARM, host function, 282
Parsing, 135
Pathname, external function, 260
PATHNAME, SNOBOL4+ function, 269
PATTERN, 197, 202
Pattern evaluation, 175-176
Pattern functions, 63, 265
Pattern match

failure, 56, 124-125, 203
operator, 56-57, 128, 182, 266
scan algorithm, 124, 204
statement, 56, 59, 79, 84, 175, 177
success, 56

Pattern matching, 12, 57, 63, 128, 183, 346
alternates, 57
capturing results, 62
introduction, 55
pattern data type, 61
replacement, 72
sample programs, 74

Index 355

simple examples, 60
specifying, 56
subject string, 57
subsequent, 57
summary, 79
unanchored, 78
unknowns, 63

Pattern operators, 79
Pattern structures, 57, 85, 176, 197
Patterns

alternates, 57-58, 122, 124, 204
as data type, 57, 85, 197
assignment in, 62, 87
concatenation of, 58
knowns, 56
primitive, 63, 124, 137, 203
recursive, 86, 122-123, 132
subsequents, 57-58, 204
unknowns, 56, 63

PEEK, host function, 300
Period

binary assignment operator, 62, 182
in variable names, 23
unary name operator, 43, 96, 106, 181-182, 264

PharLap-extended SPITBOL
and Windows, 343
configuring, 340
use of, 4

PLAY, host function, 286
Plus sign

in column one, 52, 93, 109
operator, 19-20, 181-182

Plusops, SNOBOL4+ control statement, 268
Pointer

array, 88, 195, 213
as function argument, 106
code, 132-133, 196, 215-216
program-defined data, 111, 113, 217
table, 91, 197
variable, 23, 82, 199, 213

POKE, host function, 301
Polynomials, sample program, 262
POS, 67, 79, 212, 235, 250

anchored matching with, 67, 78, 122, 235
Position, cursor, 65, 124
Precedence, operator, 19, 181-182
Predicate functions

SEE Conditional functions
Primitive patterns, 63, 124, 137, 187, 203
-PRINT, 174
&PROFILE, 145, 190-191, 266
Profiling, 190
Program-defined

DATA, 107, 111
data types, 111-112, 119, 198, 217, 248
DEFINE, 219
entry point, 219
FIELD, 111, 113, 223
functions, 101, 119, 219

local variables, 219, 234
name, 219
operators, 116
prototype, 219
prototype string, 219
structures, 113
trace functions, 148
use of, 101

Program-defined functions
Prototype strings, 102

Programming by association, 83
Protected keywords, 187
Protected-mode DOS

SEE DOS Extender
PROTOTYPE, 235
Prototype strings

array, 88, 213
blanks within, 219
program-defined data type, 111, 217
program-defined functions, 102, 105, 219

PUNCH, 263

Q
Question mark

and CODE program, 12
binary operator, 56, 267
unary operator, 81

Quickscan pattern matching, 124
Quotation mark, 16-17

R
-r, input from program file, 163, 179
Random, sample function, 262
Random-access I/O (SET), 127, 238
Read.me file, 255
READCHR, host function, 292
READFIELD, host function, 289
READKEY, host function, 287
READSTR, host function, 292
READY, host function, 287
REAL, 202
Real numbers, 16-17, 20, 25, 267, 326

accuracy, 16-17
conversion from string, 20, 199

REAL, sample program, 10
REBUS, 346
Record length, 167, 173, 265
Recursion, 122
Recursive function calls, 108
Recursive pattern definitions, 122
Redefinition of operators, 116, 234
Redirecting I/O, 41, 224
Region size, memory, 336
Relational operators, 32
REM, 63-64, 79, 188, 204, 264
REMDR, 33, 235-236
REMOVE, SNOBOL4+ function, 269

356 Index

Removing characters from a string, 72
REPLACE, 34, 51, 94, 236, 250
Replacement

pattern matching with, 72, 177
Replacement field, 72-73, 177
RETURN, 103, 119, 133, 188, 192, 219, 239
Return tracing, 147
Returning a function result, 103, 219, 313
REVATR, host function, 295
REVERSE, 34, 51, 237, 266

function, 34, 51, 237
REWIND, 127, 137, 237
ROL, external logic function, 260
ROMAN, sample function, 108, 257
ROR, external logic function, 260
Rotate a string

SEE SHIFT
Rotate, sample function, 261
RPAD, 127, 137, 237, 266
RPOS, 67, 79, 212, 237, 250
RSORT, 127, 137, 201, 237, 240, 266
RTAB, 68, 79, 237-238, 250
&RTNTYPE, 188
Running a program, 10
Run-time compilation, 130, 215, 221

S
S

for success GOTO, 29, 178
-sN, set stack size to N, 123, 164
SAR, external logic function, 260
Save files, 168-169, 221-222, 305, 328
Scanner, 203, 222
SCONTINUE, 150-151, 193, 239
SCREEN, 12
Screen colors, 293
SCROLLDN, host function, 292, 297
SCROLLUP, host function, 292, 297
SEEK, SNOBOL4+ function, 238, 269
Semicolon

and CODE, 215
multiple statements, 178

SET, 127, 137, 238
SETADR, host function, 300
SETBREAK, SNOBOL4+ function, 239, 269
SETCHRATR, host function, 293
SETERROR, 137
SETEXIT, 127, 150-151, 189-190, 192, 216, 233, 238-239,

250, 264, 266
SETLINEATR, host function, 293
SETLINES, host function, 299
SETOFFSET, host function, 298
SETSIZE, host function, 298
Shell variables, 166
SHELLVAR, host function, 285
SHIFT, sample function, 103, 105
SHL, external logic function, 260
SHR, external logic function, 260

Significant digits of reals, 16
SIN, 34, 240, 266
-SINGLE, 174
SIZE, 35, 240
SLOAD function, 113
SNOBOL4, differences, 263
SNOBOL4+ and SPITBOL, 268-269
SNOBOL4+, emulation, 260
SNOLIB, environment variable, 166, 172, 307
SORT, 95, 99, 127, 137, 201, 240-241, 266
Sort method, 241
Sort order, 240
SOUND, host function, 286
Source listing, 10, 163
-SPACE, 174
Space considerations, 247
SPAN, 69-70, 79, 241-242, 247
Special names, 192
Speed considerations, 249
SPITBOL

history, 157-158
installation, 3
license, 169
loading, 5
macro implementation, 157
running a program, 10, 29
system requirements, 1

SPITBOL and SNOBOL4+, 268-269
SPITBOL command line, 5, 11, 139
SPITBOL, books about, 345
SPITBOL, configuring, 335
SPITBOL, distribution files, 255
SQRT, 242, 266
Square brackets for subscripts, 89
Stack overflow, 123, 264, 272
Stack, example, 134
Stack, sample program, 262
State capital example, 83
Statement fields, 28
Statement label

SEE Label
Statement numbers, 10, 146, 172, 174
Statements, 9, 28-29, 178

assignment, 10, 33, 175-176
comment, 74, 171, 179
continuation, 109, 178
control, 171, 265
END, 179
expression evaluation, 175
general form, 175
multiple, 178
pattern match, 79, 175
pattern match with replacement, 177

STATEMENTS, SNOBOL4+ function, 269
&STCOUNT, 149-151, 187-188, 191, 244
&STFCOUNT, 12, 263, 270
-STITL, 174
&STLIMIT, 47, 145, 149, 151, 191, 244, 266
&STNO, 188

Index 357

STOPTR, 147, 151, 242, 250
Storage regeneration, 216, 320
Stream functions, 69
String, 196, 200

functions, 31, 34, 37
length of, 17, 21, 197, 240
literal, 10, 17, 23, 72, 144, 176
null, 17, 20, 22-24, 27, 31, 33, 49, 82, 103, 176, 197,

199, 209
numeric conversion, 199
subject, 55-57, 175-177
substring of (SUBSTR), 128, 242

Strings, 17, 21, 30, 178, 248
Subject, 55-59, 176, 214
Subject evaluation, 56, 175
Subsequents, pattern, 58, 204
Substitution, character

REPLACE, 34, 125, 236
SUBSTR, 128, 137, 242, 266
Subtraction, 19, 182
SUCCEED, 126, 137, 188, 204, 264
Success

and failure, 27-29, 128
conditional functions, 31, 33
function, 31, 192
GOTO field, 29, 176
pattern match, 56
with interrogation operator, 128

Swap file, virtual memory, 337
SWAP, sample function, 106
Synonyms

function, 115, 234
operator, 115-116, 234

SYSTEM, host function, 282

T
-tN, page width in characters for listing, 163
TAB, 68, 79, 143, 242, 250, 265
Tab character, 10, 18, 21

SEE ALSO Blanks
TABLE, 99, 197, 243, 264
Tables, 90-91, 197, 217, 243, 248

conversion to array, 93, 201
extension of, 91
initial value, 91-92
referencing, 91
size, 47, 91-92, 197
sorting, 95, 240

TAN, 34, 243, 266
TELL, SNOBOL4+ function, 238, 269
Temporary variables, 104
TEMPS, sample program, 51
TERMINAL, 12, 39-40, 53, 145, 166, 193, 266
Termination

dump, 48, 189
Text editors, using with SPITBOL, 139
THAW, SNOBOL4+ function, 269
Time, 244

and date (DATE), 34, 218, 270
of execution (TIME), 244

-TITLE, 174
&TRACE, 146-149, 151, 187, 191, 244
Trace associations, 244
Trace functions, 149
Trace messages, 146-147
Tracing, 146-150, 187, 191, 242, 244, 250

access, 147
function, 147
keyword, 147, 150
label, 147
value, 147

Trailing arguments, 31
Trailing blanks, 35, 47, 191, 199, 226, 231, 245, 265
Transfer of control

SEE GOTO
Transposing characters (REPLACE), 236
TRIM, 35, 47, 53, 141, 191, 226, 245, 249, 265
TRIPLET

sample program, 50
TRUNCATE, SNOBOL4+ function, 269

U
-uS, string S retrieved by Host(0), 164, 282
&UCASE, 49, 53, 188
UCASE, sample function, 116
Unanchored mode, 78
Unary operators, 18, 22, 115, 181

cursor position, 65, 79
indirect reference, 81, 96, 104, 196
interrogation, 129
keyword, 47, 187
minus, 18, 22
name, 43, 96, 106, 196, 264
negation, 129, 137
plus, 22, 49
undefined, 116, 181
unevaluated expression, 86, 105, 122, 196, 249

Unconditional GOTO, 30, 177
Undefined operators

binary, 116, 182
unary, 116, 181

Underscore in variable names, 23
Unevaluated expression operator, 99, 143
Unevaluated expressions, 86, 105, 122, 130, 196
Unevaluated expressions, 77, 95, 110, 117, 178, 122
Unit numbers, 269
Unknowns, pattern, 56
UNLOAD, 110, 119, 245
Unprotected keywords, 187, 189
UPDATELINE, host function, 294, 297
UPDATESCN, host function, 294, 297
Upper-case characters, &LCASE, 49

V
Value tracing, 147

358 Index

VALUE, SNOBOL4+ function, 263, 269
Variables, 15, 23-24, 81, 106

address of, 96
created, 82, 84, 95
I/O association, 42, 83, 224
initial value, 24
local, 104, 108, 219, 234
names of, 24-25, 84

Virtual memory, 336
swap file, 337

W
-w, create stand-alone load module, 164
White-space characters, 18

SEE ALSO Blanks
Windows

PIF file for, 343
use with, 343

Word counting program (WORDS), 74
Word crossing program (CROSS), 75
Word usage program (WORDU), 6, 94
WRITECHR, host function, 294
WRITESTR, host function, 294

X
-x, generate execution statistics, 163
XOR, external logic function, 260

Y
-y, create save file without execution, 164

Index 359

359

	Preface
	Table of Contents
	PART I Getting Started
	Installation
	First Program

	PART II Tutorial
	Fundamentals
	Control Flow and Functions
	Input/Output and Keywords
	Pattern Matching
	Additional Operators and Datatypes
	Program-Defined Objects
	Advanced Topics
	Debugging
	Concluding Remarks

	PART III Reference Manual
	Reference Introduction
	Running SPITBOL
	SPITBOL Statements
	Operators
	Keywords
	Data Types and Conversion
	Patterns and Pattern Matching
	SPITBOL Functions
	Programming Notes

	Appendices
	Distribution Media
	Programs from String and List Processing
	Summary of Differences
	Error Messages
	The HOST Function
	External Functions
	Configuring SPITBOL

	Bibliography
	INDEX
	A
	-a, pro duce list ing and sta tis tics, 163
	&ABEND, 189
	&ABORT, 124-125, 137, 150-151, 187, 192, 203, 238, 264
	Ackermann sam ple func tion, 262
	Ad di tion, 19-20, 182
	Ad dress, ob ject, 96
	Al go rithm
	pat tern-match, 204

	&AL PHA BET, 48, 53, 66, 187
	Al ter na tion
	of pat terns, 57, 122, 124, 204

	Al ter na tive eval u a tion, 97-99, 183, 267
	&AN CHOR, 78-79, 141, 189, 264
	An chored pat tern match ing, 78
	with FENCE, 125
	with POS, 67, 78, 122, 235

	AND, ex ter nal logic func tion, 260
	AND, log i cal
	in pat terns, 57, 129
	of con di tional func tions, 33, 129

	An gu lar brack ets, 133
	ANY, 69, 79, 124, 212, 247, 250
	Any string (ARB), 64, 79, 203
	APPLY, 127, 137, 212, 231
	ARB, 64, 79, 187, 203, 207, 215, 250, 264
	ARBNO (ar bi trary num ber of), 121-122, 137, 212, 250
	ARG, 213
	Ar gu ments
	SEE Func tion calls

	Arith me tic func tions
	CHOP, 33, 215
	log a rith mic, 232
	mixed-mode, 19
	re la tional, 234
	REMDR (modu lus), 33, 235

	Arith me tic op er a tors
	SEE Bi nary op er a tors

	AR RAY, 89-90, 99, 195, 201, 213
	trun cat ing and ex tend ing, 261

	Ar rays, 47, 88, 90, 213, 247, 267
	and ta bles, 47, 94
	cre ation, 88, 213
	data type, 88, 195
	di men sions, 88, 213
	ini tial value, 88, 90, 213
	pro to type string, 88, 235
	ref er enc ing, 88
	scan ning, 90
	sort ing, 240
	ta bles, 47, 90, 93

	ASC, SNOBOL4+ func tion, 269
	ASCII to dec i mal con ver sion (ASC), 106, 256
	As sign ment
	con di tional, 62, 87, 91, 182
	im me di ate, 87, 91, 145, 182
	in di rect, 82
	mul ti ple, 19, 183, 267
	op er a tor, 19, 24, 128, 183, 266
	state ments, 10, 33, 175-176

	As so ci a tions, 85
	com mand line, 40, 161, 163, 268
	I/O, 40, 163, 167, 224, 226, 229

	As so cia tive pro gram ming, 84, 91, 248
	As so cia tiv ity
	op er a tor, 20, 181-182

	ATAN, 33, 214, 266

	B
	-b, sup press sign-on mes sage op tion, 162
	BACK SPACE, 214
	Backup in pat tern match ing, 58, 121, 125, 204
	&BAL, 187
	BAL (bal anced pa ren the ses), 124-125, 137, 187-188, 203
	Be gin ning of string (POS), 67, 235
	Bi nary I/O
	SEE see I/O raw mode

	Bi nary op er a tors, 18-19, 115, 181-182
	ad di tion, 19, 182
	al ter na tion, 57, 122, 124, 142, 182
	as sign ment, 19, 128, 182
	con cat e na tion, 21
	con di tional as sign ment, 62, 142, 182, 249
	di vi sion, 19, 182
	exponentiation, 19, 182
	im me di ate as sign ment, 87, 182
	mul ti pli ca tion, 19, 182
	pat tern match, 56
	sub trac tion, 19, 182
	un de fined, 116, 182

	Bi nary trees, sam ple pro gram, 262
	Blanks
	and num ber con ver sion, 20, 199
	at end of string, 35, 47, 245
	be tween sub ject and pat tern, 56
	be tween sub se quent pat terns, 57
	con cat e na tion, 21, 57
	in first state ment col umn, 28
	with bi nary op er a tors, 18, 140-141
	within pro to type string, 111

	Blending strings, sam ple pro gram, 262
	BNF gram mar, 261
	Brackets, 42, 44, 89, 267
	BREAK, 69-70, 79, 143, 214, 247
	BREAKX, 71, 79, 214, 247, 266
	ex tended BREAK func tion, 214

	Built-in func tions, 31-34, 127, 137, 210
	SEE ALSO Pat tern func tions

	C
	-c, gen er ate com pi la tion sta tis tics, 163
	Call trac ing, 147
	Cap i tal, state, sam ple pro gram, 83
	Cap i tals.dat data file, 256
	Car riage re turn, 42, 44, 171, 226
	SEE ALSO End-of-line

	-CASE, 172, 189
	Case-fold ing
	la bels, 28, 176
	names, 23, 172, 182
	with in di rect ref er ence, 182

	Cen ter sam ple func tion, 261
	CFIG386 con fig u ra tion pro gram, 340-341
	CLEAR switch, 341
	MAXREAL switch, 341
	MINREAL switch, 341

	Chan nel, 12, 42, 224, 268
	as so ci a tion with file name, 39

	CHAR, 66, 106, 215, 251
	Char ac ter set
	&AL PHA BET, 48, 66, 187

	CHOP, 33, 115, 201, 215, 266
	CLEAR, 215
	CLEARSCN, host func tion, 290
	CODE, 189, 202
	data type, 196
	func tion, 130, 132-133, 137, 177, 189, 196, 200, 215-216, 248
	pro gram for in ter ac tive ex e cu tion, 11, 107, 255

	COL LECT, 216, 249
	Col umn one
	as ter isk, 40, 50, 171
	blank or tab, 28
	mi nus sign, 171
	pe riod or plus sign, 93, 178

	Com mand line, 10-11, 41, 45, 47, 268
	ar gu ments, 162, 281
	SPITBOL, 10-11, 44, 139, 161, 281
	SPITBOL file as so ci a tions, 40, 161
	SPITBOL op tions, 161-162, 268

	Com ment state ment, 40, 50, 74, 171, 179
	&COMPARE, 189
	Com pi la tion
	dur ing ex e cu tion, 130, 215, 221
	er rors, 139-140, 172
	source pro gram, 10, 161

	Com press sam ple func tion, 261
	Con cat e na tion
	of func tions, 33
	of pat terns (subsequents), 58
	op er a tor, 21, 176, 178, 182
	with null string, 22, 33

	Con cor dance sam ple pro gram, 262
	Con di tional as sign ment, 62, 87
	Con di tional func tions, 33
	Con di tional GOTO, 29, 177
	Con fig uring PharLap SPITBOL
	for AT bus, 342
	for Compaq, 342
	for early 80386, 342
	for ex tended mem ory, 343
	for MCA bus, 343
	for PC or XT, 342
	for RAM disks, 342

	Con tin u a tion state ments, 93, 109, 178
	CON TINUE, 150-151, 192, 239
	Con trol state ments, 171-172, 174, 265, 269
	CASE, 172
	COPY, 172
	ER RORS, 172
	EX E CUTE, 173
	FAIL, 173
	IN, 173
	IN CLUDE, 172
	NOERRORS, 172
	NOEXECUTE, 173
	NOFAIL, 173
	NOOPTIMIZE, 173
	OP TI MIZE, 173

	Con trol-D
	SEE End-of-File char ac ter

	Con trol-Z
	SEE End-of-File char ac ter

	Con ver sion, data type
	SEE Data type con ver sion

	CON VERT, 93, 99, 127, 137, 195-196, 198-199, 201-202, 216, 266
	COPY, 90, 113, 172-173, 217
	COS, 33, 217, 266
	Cre ated names, 84
	Cre ated vari ables, 82
	CROSS
	sam ple pro gram, 75

	Cryp tog ra phy sam ple pro gram, 262
	Cur sor, 203
	CUR SOR, host func tion, 287
	Cur sor po si tion op er a tor, 65-66

	D
	-dN, set mem ory heap size to N, 164
	DATA, 111-112, 117, 119, 217
	Data type con ver sion
	ex plicit, 93, 198
	im plicit, 20-22, 198

	Data types, 15, 127, 195, 218
	ar ray, 88, 93, 195, 201
	code, 196
	ex pres sion, 130, 196
	ex ter nal, 305
	file, 305
	in te ger, 196
	name, 196
	pat tern, 61-62, 85, 197
	pro gram-de fined, 111-112, 248
	real, 16, 197
	string, 17, 39, 197, 218
	ta ble, 91, 93, 197

	Data types pro gram-de fined, 111, 198
	DATATYPE, 114, 195-196, 218, 264
	Data-types
	nu meric, 266

	DATE, 34, 218, 270
	Date and time, 34, 270
	DATE(), 34, 218
	De bugging, 48, 139-140, 145, 149-150, 244
	Dec i mal to ASCII con ver sion (CHAR), 106
	De fault file name ex ten sion, 11, 161
	De faults, 165, 175
	De ferred eval u a tion, 86-87, 123, 130, 136
	op er a tor, 86-87, 181

	DE FINE, 102, 104-105, 108, 119, 219
	De lete sam ple func tion, 261
	DELETECHR, host func tion, 291
	De leting char ac ters from a string, 72, 261
	Dem on stra tion files, 257
	Args, 259
	ATN, 257
	Eliza, 257
	Gotos, 257
	Kalah game, 257
	Key word, 258
	Logic, 259
	Sentenc, 258
	Treesort, 259

	Desk cal cu la tor ex am ple, 131
	DE TACH, 46, 53, 219, 250
	De vice names, 41-42
	DIFFER, 31, 141, 196, 219, 233, 264
	Di rect GOTO, 133, 177-178, 196
	Di vi sion op er a tor, 19, 182
	DOS
	ERRORLEVEL, 189

	DOS Ex tender
	Intel, 4, 336
	li cense re stric tions, 169
	PharLap, 4, 340
	pur pose, 335
	use with Win dows, 343

	-DOU BLE, 174
	DPMI host
	use with, 336

	Dummy ar gu ments, 102, 104
	&DUMP, 48, 53, 94, 141, 145, 151, 189, 218, 220, 266
	DUPL, 34, 50, 220
	Dy namic Link Li braries (DLL), 305-306, 308, 311, 330-331

	E
	-e, sup press er ror mes sages to screen, 139, 162
	Echo, in put screen, 228
	Ef fi ciency, 247, 249
	-EJECT, 174, 220, 266
	Em bedded as sign ment, 183
	Em bedded pat tern match, 183
	END, 10-11, 179, 192
	End of line, 44, 226, 269
	End of line char ac ter
	SEE see I/O, end of line char ac ter

	End of string (RPOS), 67, 237
	End state ment, 10, 30, 179, 192
	ENDFILE, 45, 53, 127, 137, 220-221
	End-of-File, 27-28, 30, 161
	End-of-File char ac ter, 28
	En try point
	func tion, 102, 119, 219

	En vi ron ment, 269, 285, 307
	En vi ron ment strings, 166
	EN VI RON MENT, SNOBOL4+ func tion, 269
	EQ, 31, 221
	Equals sign op er a tor, 19, 183
	ERASEEOL, host func tion, 291
	&ERRLIMIT, 149-151, 189, 238-239
	Er ror con trol
	&ERRLIMIT, 149, 189
	&ERRTYPE, 187

	Er ror mes sage
	Ar ray size ex ceeds max i mum per mit ted, 271
	com pi la tion, 139, 271
	Con ver sion ar ray size ex ceeds max i mum, 271
	&ERRTEXT, 131-132, 215, 221
	ex e cu tion, 271
	In ter nal logic er ror Un ex pected PPM branch, 272
	Mem ory over flow, 271
	Re quested &MAXLNGTH too large, 272
	Stack mem ory un avail able, 272
	Stack over flow, 272
	State ment is too com pli cated, 272
	String length ex ceeds value of MAXLNGTH, 271
	Workspace mem ory un avail able, 272

	Er ror mes sages, 273-279
	-ER RORS, 172
	Er rors, com mon, 140
	&ERRTEXT, 131-132, 149, 151, 190, 221, 266
	&ERRTYPE, 149-151, 187, 190, 239
	EVAL, 130-132, 135, 137, 189, 201, 221
	-EX E CUTE, 173
	EX E CUTE, host func tion, 283
	EX E CUTE, SNOBOL4+ func tion, 269
	Ex e cu tion er rors, 127, 140, 150, 238, 264-265
	Ex e cu tion er rors, trap ping with SETEXIT(), 150
	EXIT, 168-169, 221, 266, 284
	EXP, 33, 200, 202, 222, 266, 308
	Ex po nent
	real num ber, 16, 200

	Ex po nen tial func tion (EXP), 33, 222
	Exponentiation op er a tor, 20, 182
	EX PRES SION, 196, 200-202
	Ex pres sions
	unevaluated, 122

	Ex pres sions
	arith me tic, 19
	bal anced, 124
	eval u a tion of, 97, 130, 175
	unevaluated, 86, 105, 122, 130, 196, 221

	Ex tended op er a tors
	Al ter na tive eval u a tion, 97, 183
	Mul ti ple as sign ment, 128, 183
	Pat tern match, 128, 183

	Ex ter nal func tions
	ar gu ments, 305-306
	As sem bly lan guage, 309, 311-314, 318, 321
	blocks.inc file, 310, 320
	C lan guage, 330-333
	C li brary I/O, 334
	cre at ing with Borland TASM, 307
	cre at ing with MASM, 307, 310
	cre at ing with Microsoft MASM386, 308
	cre at ing with PharLap ASM, 308
	de bug ging, 325
	extrn386.inc file, 308, 310, 320
	near and far point ers, 308-309, 323
	OS/2, 308
	real num bers, 305, 326-327
	re turn ing re sult, 321, 323, 331, 334
	sam ple files, 329
	SPITBOL data stor age for mat, 318-319
	stack frame, 315
	sys tem.inc file, 308, 310

	Ex ter nal func tions, 110, 166, 169, 233, 270, 303-305, 307, 328-330
	ar gu ments, 233
	.COM files, 304
	data types, 233
	.DLL files, 304, 330
	dy namic link li brar ies, 304
	.EXP files, 304, 330
	load ing, 110, 119, 233
	mem ory model, 305, 328, 331
	pro to type, 233
	un load ing, 119, 245

	F
	F (for fail ure GOTO), 29, 178
	-f, sup press case-fold ing, 23, 162, 266
	FACT, fac to rial func tion, 108, 256, 262
	Fac toring a pat tern, 60
	FADD, sam ple func tion, 117
	FAIL, 125, 137, 173, 188, 204, 264
	Fail ure
	and suc cess, 27-29, 129
	ar ray ref er ence, 89
	func tion, 28, 31, 103, 192
	in ex pres sion, 129, 175
	in put, 27-28, 30, 41, 224
	pat tern match, 56, 124-125, 203-204

	Fau stus, text file, 256
	FENCE, 125, 137, 188, 204, 222, 266
	to sim u late an chored mode, 125, 204

	Fibonacci sam ple func tion, 262
	FIELD, 223
	Fields
	pro gram-de fined data type, 111, 217, 223

	Fields of a state ment, 28, 175
	&FILE, 174, 188, 266
	File in for ma tion pro gram (FILEINFO), 49
	File name
	de fault ex ten sion, 11, 161
	with I/O func tion, 224-225

	Files
	SEE I/O

	FIRSTARG, host func tion, 284
	Floating-point
	SEE Real num bers

	&FNCLEVEL, 146, 187-188, 239
	Forcing gar bage col lec tion, 216
	For mal ar gu ments, 102, 219
	For mal data type names, 195
	FREEZE, SNOBOL4+ func tion, 269
	FRETURN, 103, 119, 133, 188, 192, 219, 239
	FSTR, sam ple func tion, 117
	&FTRACE, 110, 146, 149, 151, 190
	&FULLSCAN, 12, 124, 263, 270
	Func tion calls, 31
	SEE ALSO Built-in func tions
	ar gu ments, 31, 102, 106
	con di tional, 31
	fail ure, 31, 103
	in di rect (APPLY), 212
	level, 188
	nu meric, 33
	pass ing names, 106
	pres er va tion of val ues, 104, 108
	re cur sive, 108
	re sult of, 31, 103-104, 119
	string, 34

	Func tion def i ni tion
	SEE Pro gram-de fined func tions

	Func tion syn onyms, 115, 234
	Func tions
	and op er a tors, 115-116, 235
	ar ray and ta ble, 210
	built-in, 31-34, 127, 209-210
	com pi la tion, 210, 265
	con trol, 210
	er ror-trap ping, 211
	ex ter nal, 110, 166, 169, 270, 303-305, 307, 328-330
	field ref er ence, 112
	first state ment, 102, 219
	I/O, 210
	ma chine-spe cific, 211
	mem ory, 210
	mis cel la neous, 210
	nu meric, 211, 266
	nu meric com par i son, 211
	ob ject com par i son, 211
	ob ject cre ation, 211
	pat tern match, 211, 265
	pro gram con trol, 211
	pro gram-de fined, 101, 105, 143
	pro gram-de fined data type, 211
	re turn from, 103, 119, 219
	re turn ing re sult, 103, 219
	string com par i son, 212
	string syn the sis, 212
	trac ing, 146-149
	use of, 104

	Func tions from String and List Pro cessing, 261

	G
	-gN, set num ber of lines per page in list file, 163
	Gar bage col lec tion, 53, 216
	GE, 32, 202, 223
	GETARG, host func tion, 284
	GETCOLS, host func tion, 297
	GETCURCOL, host func tion, 299
	GETCURROW, host func tion, 299
	GETFSIZE, host func tion, 297
	GETLINES, host func tion, 298
	GETMODE, host func tion, 298
	GETPAGE, host func tion, 298
	GETTYPE, host func tion, 295, 297
	Gimpel, James F., 15, 105, 108, 153, 345-346
	GOTO, 29
	con di tional, 29, 177-178
	di rect, 133, 177-178, 196
	fail ure, 29-30, 176-177
	in di rect, 84
	suc cess, 29, 176-177
	un con di tional, 29-30, 177

	GOTO, host func tion, 287, 297
	Griswold, Ralph E., 345-346, 348
	GT, 32, 223

	H
	-h, sup press SPITBOL ID in list ing, 163
	Heuristics, 123-124, 263, 346
	Hex a dec i mal, ex ter nal func tion, 260
	HOST, 12, 127, 164, 166-167, 223, 256, 260, 266, 268, 281-282
	Host.inc file, 282

	I
	-iN, set heap in cre ment size to N, 164, 173
	I/O, 39, 166, 214, 269
	ap pend to ex ist ing file, 227
	bi nary, 224, 226
	chan nel, 39, 42, 46, 224
	de faults, 229
	DE TACH, 46, 53, 219
	di rect mode, 229
	end of line char ac ter, 227
	ENDFILE, 53, 220
	end-of-file char ac ter, 227
	file descriptors, 227
	in her it able file, 227, 229
	IN PUT, 42, 53, 167, 224, 226, 229, 264, 289
	in ter nal buffer size, 227
	keywords, 190-191
	line mode, 226-227
	one-char ac ter raw mode, 227
	OUT PUT, 42, 53, 167, 224, 226, 229, 235, 264, 289
	quiet raw mode, 228
	raw mode, 226, 228
	re di rec tion, 41, 163, 224
	RE WIND, 127, 137, 237
	SET, 127, 229, 238
	share mode, 228
	TER MI NAL, 53, 289
	up date mode, 229

	IDENT, 31, 141, 196, 219, 224, 264
	Iden ti fiers
	SEE Vari ables, names of

	If-then-else, LISTS, 97, 267
	Im me di ate as sign ment op er a tor, 92, 99, 123, 182
	Im plicit al ter na tives, 207
	-IN CLUDE, 106-107, 166, 172-173
	In clude files, 106, 166, 172-173
	In di rect ref er ence
	case-fold ing within, 182
	func tion call (APPLY), 212
	op er a tor, 81, 96, 99, 104, 176, 181-182, 196
	to ar ray or ta ble (ITEM), 127, 137, 231
	within GOTO, 84, 104, 177

	In di rec tion op er a tor, 84, 95-96, 181, 250
	Ini tial value
	ar ray, 88, 90, 213
	ta ble, 91-92
	vari able, 24, 215

	In-out.spt, sam ple pro gram, 40, 42-43
	IN PUT, 24, 27-28, 30, 41, 190
	from source pro gram file, 163
	func tion, 12, 39, 41-44, 53, 96, 220-221, 224, 230, 269
	vari able, 24, 27, 30, 39-41, 53, 179, 192-193, 219-220, 226, 230

	In put as so ci a tion, 45, 83, 190
	on com mand line, 45, 268

	In put as so ci a tion,
	with en vi ron ment vari ables, 166

	In put as so ci a tion, 42, 75, 172
	at tach ing ex ist ing chan nel, 46

	In put, stan dard, 41, 53, 161-162, 165, 227
	INSERTCHR, host func tion, 291
	In stal la tion
	SPITBOL, 3

	INTCALL, host func tion, 301
	IN TE GER, 16, 32, 196, 202, 230
	In te ger data type, 196
	con ver sion from string, 20, 141, 199

	In te ger pat tern func tions, 66
	Intel-ex tended SPITBOL
	and Win dows, 343
	con fig ur ing, 336
	re gion size, 336
	use of, 4

	In ter ac tive state ment ex e cu tion, 11
	In ter ro ga tion op er a tor, 129, 137, 181-182, 251
	In ter rupts, MS-DOS and BIOS, 259, 301
	ITEM, 127, 231, 267

	K
	-k, run with com pi la tion er rors, 162
	Key word names
	pro tected, 187
	un pro tected, 187

	Key word op er a tor, 47, 181-182
	Key word trac ing, 147, 187
	Knowns, pat tern, 56

	L
	-l, pro duce nor mal pro gram list ing, 146, 163, 174
	La bel, 28-29, 85, 176
	func tion en try, 102, 119, 219
	re served, 151
	trac ing, 147

	Large in te gers, sam ple pro gram, 262
	&LASTFILE, 174, 188, 266
	&LASTLINE, 174, 188, 266
	&LASTNO, 149, 151, 188
	&LCASE, 48, 53, 188
	LE, 32, 231
	LEN, 66, 79, 231, 250
	Length of a string (SIZE), 35, 240
	LEQ, 231, 266
	Level, func tion, 146, 188
	Lex i cal or der ing of strings, 231-233
	LGE, 232, 266
	LGT, 32, 232
	Line, 174, 188, 266
	length, 23, 44, 171, 173, 265

	Lin ear search, 84
	-LIST, 174, 216
	List op er a tions, sam ple pro gram, 262
	List ing con trol, 174
	-DOU BLE, 174
	-EJECT, 174, 220
	-LINE, 174
	-LIST, 174
	-NOLIST, 174
	-NOPRINT, 174
	-PRINT, 174
	-SIN GLE, 174
	-SPACE, 174
	-STITL, 174
	-TI TLE, 174

	List ing file, 11, 139, 174, 220
	LISTS, 97
	Lit er als, 10, 17, 72
	LLE, 232, 266
	LLT, 232, 266
	LN, 33, 232, 266
	LNE, 233, 266
	LOAD, 110, 119, 169, 233, 306
	Load Mod ules, 168
	Load Mod ules
	and Intel-ex tended SPITBOL, 222
	dis tri bu tion of, 169, 339
	pro duc tion of via EXIT(3), 221

	Loading
	as sem bly lan guage (LOAD), 233
	C lan guage, 233
	SPITBOL, 5

	LO CAL, 234
	Lo cal vari ables, 104, 108, 219, 234
	Log a rithm
	LN, 33, 232

	Logic.inc, sam ple file, 329
	Loop con trol, 33, 73, 90, 177
	Loops in pat tern match ing, 122
	Lower-case char ac ters, &LCASE, 48
	LPAD, 127, 137, 234, 266
	LT, 32-33, 199, 234

	M
	-mN, set max i mum ob ject size to N, 47, 53, 164
	-mN, set max i mum ob ject size to N, 265, 269
	Matching en tire sub ject, 122
	Max i mum ob ject size, 47
	&MAXLNGTH, 47-48, 53, 164, 190, 196-197, 229, 265, 271-272
	Mi nus sign
	in col umn one, 171
	op er a tor, 18, 181

	Mixed-mode arith me tic, 19
	Modu lus (REMDR), 33, 235
	MODXCONF, con fig ur ing with, 336
	Mul ti ple as sign ment, 19, 128, 267
	Mul ti ple state ments, 178
	Mul ti pli ca tion op er a tor, 19, 182

	N
	-n, sup press ex e cu tion, 162, 173
	-n=file, as so ci ate file with I/O chan nel, 45, 163, 268-269
	NAME, 196, 199-200, 202, 264
	Name op er a tor, 96, 99, 107, 181-182, 196, 219, 250
	NAND ex ter nal logic func tion, 260
	Nat u ral vari able, 199, 202
	NE, 32, 234
	Ne ga tion op er a tor, 129, 137, 181-182
	Newline char ac ter
	SEE End-of-line

	-NOERRORS, 172
	-NOEXECUTE, 173
	-NOFAIL, 142, 173
	-NOLIST, 174
	-NOOPTIMIZE, 173
	-NOPRINT, 174
	NOR, ex ter nal logic func tion, 260
	NORMATR, host func tion, 295
	NOT, ex ter nal logic func tion, 260
	NOTANY, 69, 79, 234, 247
	NRETURN, 133-137, 176, 188, 192, 219, 239
	Null string, 17, 20, 22-24, 27, 31, 33, 49, 70, 82, 103, 176, 197, 199, 209
	as func tion re sult, 31
	as ini tial value, 24, 88, 91, 104
	con cat e na tion of, 22, 33
	in pat tern match, 59, 64, 68, 121
	re place ment by, 72-73
	set ting all vari ables to, 215
	zero value of, 20, 199

	Nu meric func tions, 33, 266

	O
	-o, spec ify list file, 139, 163, 174, 189-190
	Ob ject code, 132, 168, 196, 216, 221-222
	branch ing to, 133, 177, 196

	Ob ject com par i son func tions
	DIFFER, 31, 116, 219
	IDENT, 31
	LEQ, 231

	Ob ject cre ation func tions, 111
	Omitted ar gu ments, 31, 209, 301
	One char ac ter as sump tion, 123
	Op er a tor
	as so cia tiv ity, 20, 181-182
	def i ni tion, 116, 182, 234
	pre ce dence, 19, 22, 58, 181-182
	syn onyms, 115-116, 234

	Op er a tors
	SEE Bi nary, Ex tended, and Unary op er a tors

	OPSYN, 115-117, 119, 181, 234-235, 263
	-OP TI MIZE, 173
	Op tion switches
	com mand line, 161

	OR, ex ter nal logic func tion, 260
	OR, log i cal
	in pat terns, 129

	OUT PUT, 10, 19, 24, 40-41, 190, 224, 235
	func tion, 12, 39, 41-44, 53, 220-221, 224, 230, 235, 269
	vari able, 10, 19, 24, 39-40, 53, 63, 192-193, 219-220, 226, 230, 235

	Out put as so ci a tion, 41, 45, 190
	on com mand line, 45, 268

	Out put as so ci a tion,
	with en vi ron ment vari ables, 166

	Out put, stan dard, 41, 53, 162-163, 165, 227

	P
	-p, pro duce list ing with wide ti tles, 163
	Padding func tions
	LPAD, 127, 234
	RPAD, 127, 237

	Palin.spt, sam ple pro gram, 50
	Pal in dromes, 50-51, 73, 256
	Pa ren the ses
	bal anced ex pres sion, 203
	or der ing op er a tions, 19

	&PARM, 270
	PARM, host func tion, 282
	Parsing, 135
	Pathname, ex ter nal func tion, 260
	PATHNAME, SNOBOL4+ func tion, 269
	PAT TERN, 197, 202
	Pat tern eval u a tion, 175-176
	Pat tern func tions, 63, 265
	Pat tern match
	fail ure, 56, 124-125, 203
	op er a tor, 56-57, 128, 182, 266
	scan al go rithm, 124, 204
	state ment, 56, 59, 79, 84, 175, 177
	suc cess, 56

	Pat tern match ing, 12, 57, 63, 128, 183, 346
	al ter nates, 57
	cap tur ing re sults, 62
	in tro duc tion, 55
	pat tern data type, 61
	re place ment, 72
	sam ple pro grams, 74
	sim ple ex am ples, 60
	spec i fy ing, 56
	sub ject string, 57
	sub se quent, 57
	sum mary, 79
	un an chored, 78
	un knowns, 63

	Pat tern op er a tors, 79
	Pat tern struc tures, 57, 85, 176, 197
	Pat terns
	al ter nates, 57-58, 122, 124, 204
	as data type, 57, 85, 197
	as sign ment in, 62, 87
	con cat e na tion of, 58
	knowns, 56
	prim i tive, 63, 124, 137, 203
	re cur sive, 86, 122-123, 132
	subsequents, 57-58, 204
	un knowns, 56, 63

	PEEK, host func tion, 300
	Pe riod
	bi nary as sign ment op er a tor, 62, 182
	in vari able names, 23
	unary name op er a tor, 43, 96, 106, 181-182, 264

	PharLap-ex tended SPITBOL
	and Win dows, 343
	con fig ur ing, 340
	use of, 4

	PLAY, host func tion, 286
	Plus sign
	in col umn one, 52, 93, 109
	op er a tor, 19-20, 181-182

	Plusops, SNOBOL4+ con trol state ment, 268
	Pointer
	ar ray, 88, 195, 213
	as func tion ar gu ment, 106
	code, 132-133, 196, 215-216
	pro gram-de fined data, 111, 113, 217
	ta ble, 91, 197
	vari able, 23, 82, 199, 213

	POKE, host func tion, 301
	Poly no mials, sam ple pro gram, 262
	POS, 67, 79, 212, 235, 250
	an chored match ing with, 67, 78, 122, 235

	Po si tion, cur sor, 65, 124
	Pre ce dence, op er a tor, 19, 181-182
	Pred i cate func tions
	SEE Con di tional func tions

	Prim i tive pat terns, 63, 124, 137, 187, 203
	-PRINT, 174
	&PRO FILE, 145, 190-191, 266
	Pro filing, 190
	Pro gram-de fined
	DATA, 107, 111
	data types, 111-112, 119, 198, 217, 248
	DE FINE, 219
	en try point, 219
	FIELD, 111, 113, 223
	func tions, 101, 119, 219
	lo cal vari ables, 219, 234
	name, 219
	op er a tors, 116
	pro to type, 219
	pro to type string, 219
	struc tures, 113
	trace func tions, 148
	use of, 101

	Pro gram-de fined func tions
	Pro to type strings, 102

	Pro gramming by as so ci a tion, 83
	Pro tected keywords, 187
	Pro tected-mode DOS
	SEE DOS Ex tender

	PRO TO TYPE, 235
	Pro to type strings
	ar ray, 88, 213
	blanks within, 219
	pro gram-de fined data type, 111, 217
	pro gram-de fined func tions, 102, 105, 219

	PUNCH, 263

	Q
	Ques tion mark
	and CODE pro gram, 12
	bi nary op er a tor, 56, 267
	unary op er a tor, 81

	Quickscan pat tern match ing, 124
	Quo ta tion mark, 16-17

	R
	-r, in put from pro gram file, 163, 179
	Ran dom, sam ple func tion, 262
	Ran dom-ac cess I/O (SET), 127, 238
	Read.me file, 255
	READCHR, host func tion, 292
	READFIELD, host func tion, 289
	READKEY, host func tion, 287
	READSTR, host func tion, 292
	READY, host func tion, 287
	REAL, 202
	Real num bers, 16-17, 20, 25, 267, 326
	ac cu racy, 16-17
	con ver sion from string, 20, 199

	REAL, sam ple pro gram, 10
	RE BUS, 346
	Re cord length, 167, 173, 265
	Re cursion, 122
	Re cur sive func tion calls, 108
	Re cur sive pat tern def i ni tions, 122
	Re def i ni tion of op er a tors, 116, 234
	Re di recting I/O, 41, 224
	Re gion size, mem ory, 336
	Re la tional op er a tors, 32
	REM, 63-64, 79, 188, 204, 264
	REMDR, 33, 235-236
	RE MOVE, SNOBOL4+ func tion, 269
	Re moving char ac ters from a string, 72
	RE PLACE, 34, 51, 94, 236, 250
	Re place ment
	pat tern match ing with, 72, 177

	Re place ment field, 72-73, 177
	RE TURN, 103, 119, 133, 188, 192, 219, 239
	Re turn trac ing, 147
	Re turning a func tion re sult, 103, 219, 313
	REVATR, host func tion, 295
	RE VERSE, 34, 51, 237, 266
	func tion, 34, 51, 237

	RE WIND, 127, 137, 237
	ROL, ex ter nal logic func tion, 260
	ROMAN, sam ple func tion, 108, 257
	ROR, ex ter nal logic func tion, 260
	Ro tate a string
	SEE SHIFT

	Ro tate, sam ple func tion, 261
	RPAD, 127, 137, 237, 266
	RPOS, 67, 79, 212, 237, 250
	RSORT, 127, 137, 201, 237, 240, 266
	RTAB, 68, 79, 237-238, 250
	&RTNTYPE, 188
	Run ning a pro gram, 10
	Run-time com pi la tion, 130, 215, 221

	S
	S
	for suc cess GOTO, 29, 178

	-sN, set stack size to N, 123, 164
	SAR, ex ter nal logic func tion, 260
	Save files, 168-169, 221-222, 305, 328
	Scan ner, 203, 222
	SCONTINUE, 150-151, 193, 239
	SCREEN, 12
	Screen col ors, 293
	SCROLLDN, host func tion, 292, 297
	SCROLLUP, host func tion, 292, 297
	SEEK, SNOBOL4+ func tion, 238, 269
	Semi co lon
	and CODE, 215
	mul ti ple state ments, 178

	SET, 127, 137, 238
	SETADR, host func tion, 300
	SETBREAK, SNOBOL4+ func tion, 239, 269
	SETCHRATR, host func tion, 293
	SETERROR, 137
	SETEXIT, 127, 150-151, 189-190, 192, 216, 233, 238-239, 250, 264, 266
	SETLINEATR, host func tion, 293
	SETLINES, host func tion, 299
	SETOFFSET, host func tion, 298
	SETSIZE, host func tion, 298
	Shell vari ables, 166
	SHELLVAR, host func tion, 285
	SHIFT, sam ple func tion, 103, 105
	SHL, ex ter nal logic func tion, 260
	SHR, ex ter nal logic func tion, 260
	Sig nif i cant dig its of reals, 16
	SIN, 34, 240, 266
	-SIN GLE, 174
	SIZE, 35, 240
	SLOAD func tion, 113
	SNOBOL4, dif fer ences, 263
	SNOBOL4+ and SPITBOL, 268-269
	SNOBOL4+, em u la tion, 260
	SNOLIB, en vi ron ment vari able, 166, 172, 307
	SORT, 95, 99, 127, 137, 201, 240-241, 266
	Sort method, 241
	Sort or der, 240
	SOUND, host func tion, 286
	Source list ing, 10, 163
	-SPACE, 174
	Space con sid er ations, 247
	SPAN, 69-70, 79, 241-242, 247
	Spe cial names, 192
	Speed con sid er ations, 249
	SPITBOL
	his tory, 157-158
	in stal la tion, 3
	li cense, 169
	load ing, 5
	macro im ple men ta tion, 157
	run ning a pro gram, 10, 29
	sys tem re quire ments, 1

	SPITBOL and SNOBOL4+, 268-269
	SPITBOL com mand line, 5, 11, 139
	SPITBOL, books about, 345
	SPITBOL, con fig ur ing, 335
	SPITBOL, dis tri bu tion files, 255
	SQRT, 242, 266
	Square brack ets for sub scripts, 89
	Stack over flow, 123, 264, 272
	Stack, ex am ple, 134
	Stack, sam ple pro gram, 262
	State cap i tal ex am ple, 83
	State ment fields, 28
	State ment la bel
	SEE La bel

	State ment num bers, 10, 146, 172, 174
	State ments, 9, 28-29, 178
	as sign ment, 10, 33, 175-176
	com ment, 74, 171, 179
	con tin u a tion, 109, 178
	con trol, 171, 265
	END, 179
	ex pres sion eval u a tion, 175
	gen eral form, 175
	mul ti ple, 178
	pat tern match, 79, 175
	pat tern match with re place ment, 177

	STATE MENTS, SNOBOL4+ func tion, 269
	&STCOUNT, 149-151, 187-188, 191, 244
	&STFCOUNT, 12, 263, 270
	-STITL, 174
	&STLIMIT, 47, 145, 149, 151, 191, 244, 266
	&STNO, 188
	STOPTR, 147, 151, 242, 250
	Stor age re gen er a tion, 216, 320
	Stream func tions, 69
	String, 196, 200
	func tions, 31, 34, 37
	length of, 17, 21, 197, 240
	lit eral, 10, 17, 23, 72, 144, 176
	null, 17, 20, 22-24, 27, 31, 33, 49, 82, 103, 176, 197, 199, 209
	nu meric con ver sion, 199
	sub ject, 55-57, 175-177
	substring of (SUBSTR), 128, 242

	Strings, 17, 21, 30, 178, 248
	Sub ject, 55-59, 176, 214
	Sub ject eval u a tion, 56, 175
	Subsequents, pat tern, 58, 204
	Sub sti tu tion, char ac ter
	RE PLACE, 34, 125, 236

	SUBSTR, 128, 137, 242, 266
	Sub trac tion, 19, 182
	SUC CEED, 126, 137, 188, 204, 264
	Suc cess
	and fail ure, 27-29, 128
	con di tional func tions, 31, 33
	func tion, 31, 192
	GOTO field, 29, 176
	pat tern match, 56
	with in ter ro ga tion op er a tor, 128

	Swap file, vir tual mem ory, 337
	SWAP, sam ple func tion, 106
	Syn onyms
	func tion, 115, 234
	op er a tor, 115-116, 234

	SYS TEM, host func tion, 282

	T
	-tN, page width in char ac ters for list ing, 163
	TAB, 68, 79, 143, 242, 250, 265
	Tab char ac ter, 10, 18, 21
	SEE ALSO Blanks

	TA BLE, 99, 197, 243, 264
	Ta bles, 90-91, 197, 217, 243, 248
	con ver sion to ar ray, 93, 201
	ex ten sion of, 91
	ini tial value, 91-92
	ref er enc ing, 91
	size, 47, 91-92, 197
	sort ing, 95, 240

	TAN, 34, 243, 266
	TELL, SNOBOL4+ func tion, 238, 269
	Tem po rary vari ables, 104
	TEMPS, sam ple pro gram, 51
	TER MI NAL, 12, 39-40, 53, 145, 166, 193, 266
	Ter mi na tion
	dump, 48, 189

	Text ed i tors, us ing with SPITBOL, 139
	THAW, SNOBOL4+ func tion, 269
	Time, 244
	and date (DATE), 34, 218, 270
	of ex e cu tion (TIME), 244

	-TI TLE, 174
	&TRACE, 146-149, 151, 187, 191, 244
	Trace as so ci a tions, 244
	Trace func tions, 149
	Trace mes sages, 146-147
	Trac ing, 146-150, 187, 191, 242, 244, 250
	ac cess, 147
	func tion, 147
	key word, 147, 150
	la bel, 147
	value, 147

	Trailing ar gu ments, 31
	Trailing blanks, 35, 47, 191, 199, 226, 231, 245, 265
	Trans fer of con trol
	SEE GOTO

	Trans posing char ac ters (RE PLACE), 236
	TRIM, 35, 47, 53, 141, 191, 226, 245, 249, 265
	TRI PLET
	sam ple pro gram, 50

	TRUN CATE, SNOBOL4+ func tion, 269

	U
	-uS, string S re trieved by Host(0), 164, 282
	&UCASE, 49, 53, 188
	UCASE, sam ple func tion, 116
	Un an chored mode, 78
	Unary op er a tors, 18, 22, 115, 181
	cur sor po si tion, 65, 79
	in di rect ref er ence, 81, 96, 104, 196
	in ter ro ga tion, 129
	key word, 47, 187
	mi nus, 18, 22
	name, 43, 96, 106, 196, 264
	ne ga tion, 129, 137
	plus, 22, 49
	un de fined, 116, 181
	unevaluated ex pres sion, 86, 105, 122, 196, 249

	Un con di tional GOTO, 30, 177
	Un de fined op er a tors
	bi nary, 116, 182
	unary, 116, 181

	Un der score in vari able names, 23
	Unevaluated ex pres sion op er a tor, 99, 143
	Unevaluated ex pres sions, 86, 105, 122, 130, 196
	Unevaluated ex pres sions, 77, 95, 110, 117, 178, 122
	Unit num bers, 269
	Un knowns, pat tern, 56
	UN LOAD, 110, 119, 245
	Un pro tected keywords, 187, 189
	UPDATELINE, host func tion, 294, 297
	UPDATESCN, host func tion, 294, 297
	Up per-case char ac ters, &LCASE, 49

	V
	Value trac ing, 147
	VALUE, SNOBOL4+ func tion, 263, 269
	Vari ables, 15, 23-24, 81, 106
	ad dress of, 96
	cre ated, 82, 84, 95
	I/O as so ci a tion, 42, 83, 224
	ini tial value, 24
	lo cal, 104, 108, 219, 234
	names of, 24-25, 84

	Vir tual mem ory, 336
	swap file, 337

	W
	-w, cre ate stand-alone load mod ule, 164
	White-space char ac ters, 18
	SEE ALSO Blanks

	Win dows
	PIF file for, 343
	use with, 343

	Word count ing pro gram (WORDS), 74
	Word cross ing pro gram (CROSS), 75
	Word us age pro gram (WORDU), 6, 94
	WRITECHR, host func tion, 294
	WRITESTR, host func tion, 294

	X
	-x, gen er ate ex e cu tion sta tis tics, 163
	XOR, ex ter nal logic func tion, 260

	Y
	-y, cre ate save file with out ex e cu tion, 164

