Learn by doing: less theory, more resuits

Spring MVC

Your ultimate guide to building a complete web application
using all the capabilities of Spring MVC

Beginner's Guide

Amuthan G [open source

Spring MVC Beginner’s Guide

Table of Contents

Spring MV C Beginner’s Guide
Credits

About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Time for action — heading
What just happened?
Pop quiz — heading

Have a go hero — heading

Reader feedback

Customer support

Downloading the example code

Errata

Piracy
Questions
1. Configuring a Spring Development Environment

Setting up Java

Time for action — installing JDK

Time for action — setting up environment variables
Configuring a build tool

Time for action — installing the Maven build tool

Installing a web server

Time for action — installing the Tomcat web server

Configuring a development environment

Time for action — installing Spring Tool Suite

Time for action — configuring Tomcat on STS
What just happened?

Time for action — configuring Maven on STS

Creating our first Spring MVC project

Time for action — creating a Spring MVC project in STS
What just happened?
Spring MVC dependencies

Time for action — adding Spring jars to the project
What just happened?

Time for action — adding Java version properties in pom.xml
A jump-start to MVC

Time for action — adding a welcome page
What just happened?
The dispatcher servlet

Time for action — configuring the dispatcher servlet

What just happened?

Deploying our project
Time for action — running the project

Summary
2. Spring MVC Architecture — Architecting Your Web Store

The dispatcher servlet

Time for action — examining request mapping
What just happened?

Pop quiz — request mapping

The web application context

Time for action — understanding the web application context

What just happened?

Pop quiz — the web application context

The web application context configuration
Pop quiz — web application context configuration

View resolvers

Time for action — understanding InternalResourceViewResolver

What just happened?
Model View Controller

An overview of the Spring MVC request flow

The web application architecture

The domain layer

Time for action — creating a domain object
What just happened?

The persistence layer

Time for action — creating a repository object
What just happened?

The service layer

Time for action — creating a service object
What just happened?

Have a go hero — accessing the product domain object via a service

An overview of the web application architecture

Have a go hero — listing all our customers

Summary

3. Control Your Store with Controllers

Defining a controller

Time for action — adding class-level request mapping

What just happened?

Pop quiz — class-level request mapping
The role of a controller in Spring MVC

Handler mapping
Using URI template patterns

Time for action — showing products based on category

What just happened?
Pop quiz — request path variable
Using matrix variables

Time for action — showing the products based on filter

What just happened?

Understanding request parameters

Time for action — adding the product details page
What just happened?
Pop quiz — the request parameter

Time for action — implementing a master detail view
What just happened?
Have a go hero — adding multiple filters to list products

Summary

4. Working with Spring Tag Libraries

Serving and processing forms

Time for action — serving and processing forms
What just happened?

Customizing data binding

Time for action — whitelisting form fields

What just happened?

Externalizing text messages

Time for action — externalizing messages
What just happened?

Using Spring Security tags
Time for action — adding a login page

What just happened?

Summary
5. Working with View Resolver

Resolving views

The redirect view

Time for action — examining RedirectView

What just happened?

Pop quiz — redirect view

Serving static resources

Time for action — serving static resources

What just happened?

Pop quiz — static view

Time for action — adding images to the product detail page
What just happened?
The multipart request in action
Time for action — adding images to the product page
What just happened?
Have a go hero — uploading product user manuals to the server
Using ContentNegotiatingViewResolver
Time for action — configuring ContentNegotiating ViewResolver
What just happened?
Working with the handler exception resolver
Time for action — adding the response status exception
What just happened?

Time for action — adding an exception handler

What just happened?

Summary

. Intercept Your Store with Interceptor

Working with interceptors

Time for action — configuring an interceptor

What just happened?

Pop quiz — interceptor

Internationalization (i18n)
Time for action — adding internationalization

What just happened?

Have a go hero — fully internationalize the product detail page
Audit logging

Time for action — adding the data audit interceptor

What just happened?

Conditional redirecting

Time for action — intercepting offer page requests
What just happened?

Summary
. Validate Your Products with a Validator

Bean validation

Time for action — adding bean validation support
What just happened?
Have a go hero — adding more validation in the add products page
Custom validation with JSR-303 / bean validation
Time for action — adding custom validation support
What just happened?
Have a go hero — adding custom validation to a category
Spring validation
Time for action — adding Spring validation
What just happened?

Time for action — combining Spring and bean validations
What just happened?

Have a go hero — adding Spring validation to the product image

Summary
. Give REST to Your Application with Ajax

Introducing REST

Time for action — implementing RESTful web services

What just happened?

Time for action — consuming REST web services
What just happened?

Handling a web service in Ajax
Time for action — consuming REST web services via Ajax

What just happened?

Summary
9. Apache Tiles and Spring Web Flow in Action

Working with Spring Web Flow

Time for action — implementing the order-processing service
What just happened?

Time for action — implementing the checkout flow

What just happened?
Understanding the flow definition
Understanding the checkout flow

Pop quiz — web flow

Time for action — creating views for every view state

What just happened?
Have a go hero — adding a decision state
Enhancing reusability through Apache Tiles

Time for action — creating views for every view state

What just happened?
Pop quiz — Apache Tiles
Summary
10. Testing Your Application

Unit testing

Time for action — unit-testing domain objects

What just happened?

Have a go hero — adding tests for cart

Integration testing with the Spring Test Context framework

Time for action — testing the product validator

What just happened?

Time for action — testing the product controller

What just happened?

Time for action — testing REST controllers

What just happened?

Have a go hero — adding tests for the remaining REST methods

Summary
A. Using the Gradle Build Tool
Installing Gradle
The Gradle build script for your project
Understanding the Gradle script

B. Pop Quiz Answers

Chapter 2, Spring MVC Architecture — Architecting Your Web Store
Pop quiz — request mapping
Pop quiz — the web application context

Pop quiz — web application context configuration
Chapter 3, Control Your Store with Controllers

Pop quiz — class-level request mapping

Pop quiz — request path variable

Pop quiz — the request parameter
Chapter 5, Working with View Resolver

Pop quiz — redirect view

Pop quiz — static view
Chapter 6, Intercept Your Store with Interceptor

Pop quiz — interceptor

Chapter 9, Apache Tiles and Spring Web Flow in Action

Pop quiz — web flow

Pop quiz — Apache Tiles

Index

Spring MVC Beginner’s Guide

Spring MVC Beginner’s Guide
Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014
Production reference: 1190614
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-487-0

www.packtpub.com

Cover image by Aniket Sawant (<aniket sawant photography@hotmail.com>)

http://www.packtpub.com
mailto:aniket_sawant_photography@hotmail.com

Credits

Author

Amuthan G
Reviewers

Rafal Borowiec
Pawan Chopra

Rubén Clemente Serna
Acquisition Editor
Vinay Argekar
Content Development Editor
Azharuddin Sheikh
Technical Editors
Monica John

Neha Mankare

Shiny Poojary

Copy Editors
Gladson Monteiro
Insiya Morbiwala
Aditya Nair

Stuti Srivastava
Project Coordinators
Kinjal Bari

Wendell Palmer
Proofreaders

Simran Bhogal
Stephen Copestake
Maria Gould
Ameesha Green

Paul Hindle

Indexer

Hemangini Bari

Graphics

Disha Haria

Abhinash Sahu
Production Coordinator
Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Amuthan G has over six years of experience as a professional software developer. He
currently works for a large cloud platform company and has strong product development
experience in Java, Spring, JPA, and many other enterprise technologies. In his free time,
he enjoys blogging on his site (http://www.madebycode.in). He can be contacted at

<mr .amuthan@gmail .com>.

I would like to gratefully and sincerely thank Mr. Vincent Kok for his guidance,
understanding, patience, and most importantly, his friendship during my first job at
Educator Inc. His mentorship has shaped me to become a well-rounded professional. He
encouraged me to not only grow as a developer, but also as an independent thinker.

I want to take a moment and express my gratitude to the entire team at Packt Publishing
for their patience and cooperation. When I signed up for this book, I really had no idea
how things would turn out. I couldn’t have pulled this off without their guidance.

I would like to express my gratitude to all my friends and family for providing me with
unending encouragement and support. I owe every challenge and accomplishment to all
my lovely colleagues who taught me a lot over the years.

A special thanks to Divya and Arun for their encouragement, friendship, and support.
They were a strong shoulder to lean on in the most difficult times during the writing of
this book.

Finally, and most importantly, I would like to thank my wife Manju who believes me more
than myself. Her support, encouragement, quiet patience, and unwavering love were
undeniably the bedrock upon which my life has been built.

http://www.madebycode.in
mailto:mr.amuthan@gmail.com

About the Reviewers

Rafal Borowiec is an IT specialist with about eight years of commercial experience,
specializing in software testing and quality assurance, software development, project
management, and team leadership.

He currently holds the position of a Team Leader at Goyello, where he is mainly
responsible for building and managing teams of professional developers and testers. He is
also responsible for maintaining relations with customers and acquiring new ones, mainly
through consultancy.

He believes in agile project management and is a big fan of technology, especially
technology that is Java related (but not limited to it). He likes sharing knowledge about
software development and practices through his blog (blog.codeleak.pl) and Twitter
account (@kolorobot) and also at internal and external events such as conferences or
workshops.

Pawan Chopra is an Agile developer with eight years of experience in the software
industry. He currently works at Webners (http://www.webnersolutions.com/) on some cool
JavaScript, Java, HTML5, Node, and AngularJS projects. He is an open source enthusiast.
He loves sharing knowledge through training and blogging. He is also very strong on the
server side with vast experience in Spring and Hibernate tools. He blogs at
www.itspawan.com.

Rubén Clemente Serna is a software engineer by profession with over eight years of
experience in software development. He recently moved to the UK and is currently
working as a Java Developer at Piksel, a company that creates and manages OTT video
solutions for some of the world’s leading media brands. Prior to Piksel, he has worked at
GFI Informatica in Spain on many Java development projects, mainly for telecom and
government service customers.

More detailed information about his skills and experience can be found at
http://www.linkedin.com/in/rubenclementeserna. He can be contacted at
<rubenclemente@gmail.com>.

http://blog.codeleak.pl
http://www.webnersolutions.com/
http://www.itspawan.com
http://www.linkedin.com/in/rubenclementeserna
mailto:rubenclemente@gmail.com

www.PacktPub.com

Support files, eBooks, discount offers, and
more

You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[lﬁ PACKT! i 1°

http://Packtl.ib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can access, read and search across Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print and bookmark content
¢ On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

This book has a very clear aim: to introduce you to the incredible simplicity and power of
Spring MVC. I still remember first learning about the Spring framework back in 2009.
The best way to test whether or not you really understand a concept is to try to teach it to
someone else. In my case, I have taught Spring MVC to MVC; are you confused? I mean
that back in 2009, I taught it to my wife Manju Viswambaran Chandrika (MVC). During
that course, I was able to understand the kind of doubts that arise in a beginner’s mind. I
have gathered all my teaching knowledge and put it in this book in an elegant way so that
it can be understood without confusion.

This book follows a theme of developing a simple e-commerce site step-by-step. In every

successive chapter, you will learn a new concept of Spring MVC. Obviously, the aim is to

teach you how you can use Spring MVC effectively. Developing a full-blown, production-
ready e-commerce site is not the purpose of this book.

What this book covers

Chapter 1, Configuring a Spring Development Environment, will give you a quick
overview of Spring MVC and its architecture and guide you through detailed notes and
step-by-step instructions to set up your development environment. After installing the
required prerequisites, you will try out a quick example of how to develop an application
with Spring MVC. Although the chapter doesn’t explain all the code in detail, you’ll pick
up a few things intuitively.

Chapter 2, Spring MVC Architecture — Architecting Your Web Store, will lay down the
ground work for the sample application that we are going to build along the way, chapter
by chapter. This chapter will introduce you to concepts such as request mapping, web
application context, Spring MVC request flow, and the layered architecture of a typical
web application.

Chapter 3, Control Your Store with Controllers, will take you through the concept of a
controller; you will learn more about how to define a controller, and use URI template
patterns, matrix variables, and request parameters.

Chapter 4, Working with Spring Tag Libraries, will teach you how to use Spring and
Spring form tag libraries in web form handling. You will learn how to bind domain objects
with views and how to use message bundles to externalize label caption texts. At the end
of this chapter, you will see how to add a login form.

Chapter 5, Working with View Resolver, will present the inner mechanics of how
InternalResourceViewResolver resolves a view and takes you through how to use
various view types, such as redirect view and static view. You will also learn about the
multipart resolver and content negotiation view resolver. Finally, you will learn how to use
exception handler resolvers.

Chapter 6, Intercept Your Store with Interceptor, will present the concept of an interceptor
to you. You will learn how to leverage the interceptor to handle or transform requests and
responses flexibly. This chapter will teach you how to make your web page support
internalization with the help of LocaleChangeInterceptor. This chapter also introduces
how to perform audit logging in a log file using the interceptor concept.

Chapter 7, Validate Your Products with a Validator, will give you an overview of the
validation concept. You will learn about bean validation, and you will learn how to
perform custom validation along with the standard bean validation. You will also learn
about the classic Spring validation and how to combine it with bean validation.

Chapter 8, Give REST to Your Application with Ajax, will teach you the basic principles of
REST and Ajax. You will learn how to develop an application in RESTful services. The
basic concept of HTTP verbs and how they are related to standard CRUD operations will
be explained, and you will learn how to fire an Ajax request and handle it from a web

page.
Chapter 9, Apache Tiles and Spring Web Flow in Action, will teach you how to use the

Spring web flow to develop workflow-based web pages. You will learn more about states
and transitions in web flow and how to define a flow definition. This chapter also teaches
you how to decompose a page using Apache tiles. You will also learn more about
TileviewResolver and how to define reusable Apache tiles templates.

Chapter 10, Testing your Application, will teach you how to leverage the Spring testing
capability to test your controllers. You will learn how to load the test context and how to
mock the service and repository layers. This chapter also introduces you to the Spring
MVC test module and teaches you how to use that.

Appendix A, Using the Gradle Build Tool, introduces you to using the Gradle build tool
for our sample application. You will learn about the Gradle script that is required to build
our project using Gradle build tool.

What you need for this book

To run the examples in the book, the following software will be required:

Java SE Development Kit 7u45 or newer
Maven 3.1.0

Apache Tomcat 7.0

STS 3.4.0 release (Spring Tool Suite)

Who this book is for

This book is designed to be followed from beginning to end, although those with existing
knowledge of Spring MV C will be able to jump in to the later chapters and pick out things
that are important to them. You are not expected to be experienced with the Spring
framework. Some knowledge of servlet programming and dependency injection will be
helpful but not essential. In a nutshell, the book provides clear pictures, illustrations,
concepts, and is ideally suited for beginners and intermediate developers.

Conventions

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action — heading

1. Action 1
2. Action 2
3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz — heading

These are short multiple-choice questions intended to help you test your own
understanding.

Have a go hero — heading

These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “Once
the download is finished, go to the downloaded directory and extract the .zip file into a
convenient directory of your choice.”

A block of code is set as follows:

<body>
<section>
<div class="jumbotron'">
<div class="container">
<h1> ${greeting} </h1>
<p> ${tagline} </p>
</div>
</div>
</section>
</body>

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

<servlet>
<servlet-name>DefaultServlet</servlet-name>
<servlet-class> org.springframework.web.servlet.DispatcherServlet
</servlet-class>
</servlet>

Any command-line input or output is written as follows:

C:\>mvn -version

Apache Maven 3.2.1 (ea8b2b07643dbb1b84b6d16e1f08391b666bcle9; 2014-02-
14T12:37:52-05:00)

Maven home: C:\Program Files\apache-maven-3.2.1

Java version: 1.7.0_51, vendor: Oracle Corporation

Java home: C:\Program Files\Java\jdk1l.7.0_51\jre

Default locale: en_SG, platform encoding: Cp1252

0S name: "windows 7", version: "6.1", arch: "amd64", family: "windows"

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “A System Properties
window will appear; in this window, select the Advanced tab and click on the
Environment Variables button to open the environment variables window.”

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website, or added to any list of existing errata, under the
Errata section of that title.

http://www.packtpub.com/submit-errata

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:questions@packtpub.com

Chapter 1. Configuring a Spring
Development Environment

In this chapter, we are going take a look at how we can create a basic Spring MVC
application. In order to develop a Spring MVC application, we need some prerequisite
software and tools. First, we are going to learn how to install all the prerequisites that are
required to set up our development environment so that we can start developing the
application.

The setup and installation steps given here are for Windows operating systems, but don’t
worry, as the steps may change only slightly for other operating systems. You can always
refer to the respective tools/software vendor’s websites to install them in other operating
systems. In this chapter, we will learn how to set up Java and configure the Maven build
tool, install the Tomcat web server, install and configure the Spring tool suite, and create
and run our first Spring MVC project.

Setting up Java

Obviously, the first thing that we need to do is get started with Java. The more technical
name for Java is Java Development Kit (JDK). JDK includes a Java compiler (javac), a
Java virtual machine, and a variety of other tools to compile and run Java programs.

Time for action - installing JDK

We are going to use Java 7 but Java 6 or any higher version is also sufficient. Let’s take a
look at how we can install JDK on Windows operating systems:

1.

2.

S.

Go to the Java SE download page on the Oracle website by entering the following
URL in your browser:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Click on the Java platform JDK 7 download link; this will take you to the license
agreement page. Accept the license agreement by selecting that option in radio
button.

Now, click on the listed download link that corresponds to your Windows operating
system architecture; for instance, if your operating system is of type 32 bit, click on
the download link that corresponds to Windows x86. Or, if your operating system is
of type 64 bit, click on the download link that corresponds to Windows x64.

Now, it will start downloading the installer. Once the download is finished, go to the
downloaded directory and double-click on the installer. This will open up the
following wizard window; just click on the Next button in the wizard, leaving the
default options alone, and click on the Close button at the end of the wizard:

14! Java SE Development Kit 7 Update 51 (64-bit) - Custom Setup [

ORACLE

Select optional features to install from the list below. You can change your choice of features after
installation by using the Add/Remove Programs utility in the Control Panel

Feature Description

Java SE Development Kit 7
Update 51 (64-hit), induding the
JavaFX 50K, a private JRE, a
private JavaFX runtime, and the
Java Mission Control tools suite.
This will require 300MB on your
hard drive.

e Development Tools

= = | Source CDE

Install to:

C:\Program Files\Javaljdk1.7.0_51% Change. .. |

| < Back][Mext =] | Cancel |

JDK installation wizard

Tip
Additionally, a separate wizard also prompts you to install Java Runtime
Environment (JRE). Go through that wizard as well to install JRE in your system.

Now you can see the installed JDK directory in the default location; in our case, the

http://www.oracle.com/technetwork/java/javase/downloads/index.html

default location is C:\Program Files\Java\jdk1.7.0_25.

Time for action — setting up environment
variables

After installing JDK, we still need to perform some more configurations to use Java
conveniently from any directory on our computer. By setting up the environment variables
for Java in the Windows operating system, we can make the Java compiler and tools
available to the entire operating system:

1. Navigate to Control Panel | System | Advanced system settings.

2. A System Properties window will appear; in this window, select the Advanced tab
and click on the Environment Variables button to open the environment variables
window.

3. Now, click on the New button in the System variables panel, enter JAVA_HOME as the
variable name, and enter the installed JDK directory path as the variable value; in our
case, this is C:\Program Files\Java\jdk1.7.0_51. In case you do not have proper
rights for the operating system, you will not be able to edit System variables; in that
case, you can create the JAVA_HOME variable under the User variables panel.

4. Now, in the same System variables panel, double-click on the PATH variable entry;
an Edit System Variable window will appear.

i |
Envircnment Variables | 2
r
Edit System Variable [
Variable name; PATH
Variable value: ram Files Tor toiseHo L o u e o =y &)

| oK | | Cancel

System variables

Variable Value =

PATH C:\Windows'system32;C: \Windows;C:\,...

PATHEXT .COM; .EXE; . BAT;.CMD; . VBS;.VBE;. 15;....

PROCESSOR._A... AMDG4

PROCESSOR_ID... Intel4 Family 6 Model 15 Stepping 11, ... ™
New.. || Edit. || Delete |

| QK l | Cancel |

Setting PATH Environment variable

5. Edit Variable value of Path by appending the ;%JAVA_HOME%\bin text to its existing
value.

Tip
Edit the path variable carefully; you should only append the text at the end of existing

value. Don’t delete or disturb the existing values; make sure you haven’t missed the ;
(semicolon) mark as that is the first letter in the text that you will append.

6. Now click on the OK button.

Now we have installed Java in our computer. To verify whether our installation has been
carried out correctly, open a new command window and type java -version and press
Enter; you will see the installed version of Java on the screen:

C:\>java -version

java version "1.7.0_51"

Java(TM) SE Runtime Environment (build 1.7.0_51-b13)

Java HotSpot(TM) 64-Bit Server VM (build 24.51-b03, mixed mode)

Configuring a build tool

Building a software project typically includes some activities such as the following:

Compiling all the source code

Generating the documentation from the source code
Packaging the compiled code into a JAR or WAR archive file
Installing the packaged archives files on a server

Manually performing all these tasks is time consuming and is prone to errors. Therefore,
we take the help of a build tool. A build tool is a tool that automates everything related to
building a software project, from compiling to deploying.

Time for action — installing the Maven
build tool

Many build tools are available for building a Java project. We are going to use Maven
3.2.1 as our build tool. Let’s take a look at how we can install Maven:

1. Go to Maven’s download page by entering the following URL on your browser:

http://maven.apache.org/download.cgi

2. Click on the apache-maven-3.2.1-bin.zip download link, and start the download.

3. Once the download is finished, go to the downloaded directory and extract the .zip
file into a convenient directory of your choice.

4. Now we need to create one more environment variable, called M2_HOME, in a way that
is similar to the way in which we created JAVA_HOME. Enter the extracted Maven zip
directory’s path as the value for the M2_HOME environment variable.

5. Create one more environment variable, called M2, with the value ¥M2_HOME%\bin, as
shown in the following screenshot:

- N
Mew System Variable I,—EE—J
Variable name: F'12|_
Variable value: ;’.-.""nM 2_Hﬁi‘~:1.E %o 'I,|:III'|
[(0]4] [Cancel]
e

Setting the M2 environment variable

6. Finally append the M2 variable to the PATH environment variable as well by simply
appending the; %M2% text to the PATH variable’s value.

Now we have installed the Maven build tool in our computer. To verify whether our
installation has been carried out correctly, we need to follow steps that are similar to the
Java installation verification. Open a new command window, type mvn -version, and
press Enter; you will see the following details of the Maven version:

C:\>mvn -version

Apache Maven 3.2.1 (ea8b2b07643dbb1b84b6d16e1f08391b666bcle9; 2014-02-
14T12:37:52-05:00)

Maven home: C:\Program Files\apache-maven-3.2.1

Java version: 1.7.0_51, vendor: Oracle Corporation

Java home: C:\Program Files\Java\jdk1l.7.0_51\jre

Default locale: en_SG, platform encoding: Cp1252

0S name: "windows 7", version: "6.1", arch: "amd64", family: "windows"

http://maven.apache.org/download.cgi

Installing a web server

So far, we have learned how to install JDK and Maven. Using these tools, we can compile
the Java source code into the .class files and package these .class files into the . jar or
.war archives. However, how do we run our packaged archives? To do this, we take the
help of a web server; a web server will host our packaged archives as a running

application.

Time for action — installing the Tomcat
web server

Apache Tomcat is a popular Java web server cum servlet container. We are going use
Apache Tomcat Version 7.0. Let’s take a look at how we can install the Tomcat web
server:

1. Go to the Apache Tomcat home page using the following URL link:

http://tomcat.apache.org/

2. Click on the Tomcat 7.0 download link, and it will take you to the download page.

3. Click on the 32-bit/64-bit Windows Service Installer link; it will start downloading
the installer.

4. Once the download is finished, go to the downloaded directory and double-click on
the installer; this will open up a wizard window.

5. Just click through the next buttons in the wizard, leaving the default options alone,
and click on the Finish button at the end of the wizard. Note that before clicking on
the Finish button, just ensure that you have unchecked Run Apache Tomcat
checkbox.

Installing Apache Tomcat with the default option works successfully only if you have
installed Java in the default location. Otherwise, you have to correctly provide the JRE
path according to the location of your Java installation during the installation of Tomcat,
as shown in the following screenshot:

Apache Tomcat Setup: Java Virtual Machine path selection

Java Virtual Machine
Java Yirtual Machine path selection.

Please select the path of a Java 5E 6.0 or later JRE installed on your system,

C:\Program Files\lavaljre7 E]

Mullsoft Inskall Syskem w2, 46

The Java runtime selection for the Tomcat installation

http://tomcat.apache.org/

Configuring a development environment

We installed Java and Maven to compile and package Java source code, and we installed
Tomcat to deploy and run our application. However, prior to all this, we have to write the
Spring MV C code so that we can compile, package, and run the code.

We can use any simple text editor on our computer to write our code, but that won’t help
us much with features such as finding syntax errors as we type, autosuggesting important
key words, syntax highlighting, easy navigation, and so on.

Integrated Development Environment (IDE) can help us with these features to develop
the code faster and error free. We are going to use Spring Tool Suite (STS) as our IDE.

Time for action — installing Spring Tool
Suite

STS is the best Eclipse-powered development environment to build Spring applications.
Let’s take a look at how we can install STS:

1. Go to the STS download page at http://spring.io/tools/sts/all.

2. Click on the STS installer .exe link to download the file that corresponds to your
windows operating system architecture type (32 bit or 62 bit); this will start the
download of the installer. The STS stable release version at the time of writing this
book is STS 3.4.0.RELEASE based on Eclipse 4.3.1.

3. Once the download is finished, go to the downloaded directory and double-click on
the installer; this will open up a wizard window.

4. Just click through the next buttons in the wizard, leaving the default options alone; if
you want to customize the installation directory, you can specify that in the steps you
perform in the wizard.

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book

elsewhere, you can visit http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

5. In step 5 of the wizard, you have to provide the JDK path; just enter the JDK path
that you configured for the JAVA_HOME environment variable, as shown in the
following screenshot:

http://spring.io/tools/sts/all
http://www.packtpub.com
http://www.packtpub.com/support

" Installer - Spring Teol Suite Ql

JDK Path =
Step Sof 3 Sprlng

The application needs a 10K, & Java Runtime Environment (JRE) will not be sufficient,
Select the JDK path:
EE-:@rogram FiIes‘l,Jaua‘l,jdki..;IJ__El | [Browse...

=

toolsuite™

Made with |zPack - hitp://izpack.org

Previous][Next][Quit]

Setting the JDK path during the STS installation

We have almost installed all the tools and software required to develop a Spring MVC
application, so now, we can create our Spring MVC project on STS. However, before
jumping into creating a project, we need to perform a final configuration for STS.

Time for action — configuring Tomcat on
STS

As I already mentioned, we can use the Tomcat web server to deploy our application, but
we have to inform STS about the location of the Tomcat container so that we can easily
deploy our project from STS to Tomcat. Let’s configure Tomcat on STS:

1.
2.

Open STS from the start menu option or the desktop icon.

STS will ask you to provide a workspace directory location; provide a workspace
directory path as you wish and click on the OK button.

Now, STS will show you a welcome screen. Close the welcome screen and go to the
menu bar and navigate to Window | preferences | Server | Runtime Environments.
You can see the available servers listed on the right-hand side; you may also see
VMware vFabric tc Server listed under the available servers, which comes along
with the STS installation.

Now click on the Add button to add our Tomcat web server.

A wizard window will appear; type tomcat in the Select the type of runtime
environment: text box, and a list of available Tomcat versions will be shown. Just
select Tomcat v7.0 and select the Create a new local server checkbox. Finally, click
on the Next button, as shown in the following screenshot:

s Ny
= Mew Server Runtime Environment uﬂlﬁ

MNew Server Runtime Environment

Define a new senver runtime environment —

Download additional server adapters

Select the type of runtime environment:

tomcat i

4 [= Apache
B Apache Tomecatva.2
B Apache Tomecat vd.0
B Apache Tomcat vd.1
B Apache Tomecat v5.0
B Apache Tomcat vs.5
B Apache Tomecat vi.0
| Apache Tomcatv7.0|

Apache Tomcat w70 supports J2EE1.2, 1.3, 1.4, and Java EE5 and 6 Web
rnodules,

Create a new local senver

® <Back Mext =] [Einish J I Cancel

Selecting the server type during the Tomcat configuration on STS

7. In the next window, click on the Browse button and locate Tomcat’s installed
directory, and click on the OK button. You can find Tomcat’s installed directory
under C:\Program Files\Apache Software Foundation\Tomcat 7.0 if you have
installed Tomcat in the default location. Then, click on the Finish button, as shown in
the following screenshot:

i @ =

& New Server

Tomcat Server
Specify the installation directory

Mame:

Apache Tomcat vi0
Tomcat installation directony:

CihProgram Files\Apache Scftware Foundation\Tomcat 7.0 l Browse.., J

apache-tomcat-7.0.12 [Download and In 5ta||-.:]

JRE:
Workbench default JRE v|| InstalledJREs.. |
@ [<Back |[mNet> |[Finish][cancel |

Selecting the Tomcat location during the Tomcat configuration on STS

What just happened?

In step 2, we provided a workspace path for STS. When you open STS for the very first
time after installing STS, it will ask you to provide a workspace location. This is because
when you create a project on STS, all your project files will be created under this location
only.

Once we enter STS, we should inform STS where the Tomcat has been installed. Only
then can STS use your Tomcat web server to deploy the project. This is also a one-time
configuration; you need not perform this configuration every time you open STS. We did
this by creating a new server runtime environment in step 5. Although STS might come
with an internal VMware vFabric tc Server, we chose to use the Tomcat web server as
our server runtime environment.

Time for action — configuring Maven on
STS

We learned how to configure Tomcat on STS. Similarly, to build our project, STS will use
Maven. But we have to tell STS where Maven has been installed so that it can use the
Maven installation to build our projects. Let’s take a look at how we can configure Maven
on STS:

1. Open STS if it is not already open.

2. Navigate to Window | Preferences | Maven | Installations.

3. On the right-hand side, you can see the Add button, to locate Maven’s installation.

4. Click on the Add button and choose Maven’s installed directory, as shown in the
following screenshot:

. Preferences [(=] ﬁ]

type filter text Installations A= i,

. General -
- Ant
Aspect) Compiler [7] Embedded (3.0.4/1,4,020130531-2315) Add... |

Select the installation used to launch Maven:

. Atlassian Connector [¥] External C:\Program Files\apache-maven-3.2.1 (3.21)
. Data Management
> Help B
» Install/Update :
> Java

. Java EE

. lava Persistence

m

» JavaScript
10T Weaving
a4 Maven

Mote: Embedded runtime is always used for dependency
resclution, but does not use global settings when it is used to
Archetypes launch Maven. To learn more, visit the Maven web page.
Discovery

Installations

fava EE Integrafion Global settings from installation directory (open filel:

Lifecycle Mappings ChProgram Files\apache-maven-3.2 1% conf\settings.xml
Templates
User Interface
User Settings
Warnings

> Mylyn

> Plug-in Development

Quick Search
» Remote Systermns

> Run/Debug -

4 T I

| Restore Qefaults| | Apply |

|f:?;| | oK l I Cancel |

Selecting Maven's location during the Maven configuration on STS

5. Now click on the OK button in the Preferences window and close it.

Creating our first Spring MVC project

So far, we have learned how we can install all the prerequisite tools and software. Now we
are going to develop our first Spring MV C application using STS. STS provides an easy-
to-use project template. Using these templates, we can quickly create our project directory

structures without many problems.

Time for action — creating a Spring MVC
project in STS

Let’s create our first spring MVC project in STS:

1. In STS, navigate to File | New | Project; a New Project wizard window will appear.
2. Select Maven Project from the list and click on the Next button, as shown in the
following screenshot:

o New Project RER X

Select a wizard —

Create a Maven Project

Wizards:
type filter text

4 [= Maven -
'..'_L Checkout Maven Projects from SCM
E""g Mawven Module
M Maven Project
| & = Plug-in Development

Cancel

|oc

=
g
W

Maven project’s template selection

3. Now, a New Maven Project dialog window will appear; just select the checkbox that
has the Create a simple project (skip archetype selection) caption, and click on the
Next button.

4. The wizard will ask you to specify artifact-related information for your project; just
enter Group Id as com. packt, Artifact Id as webstore. Then, select Packaging as
war and click on the Finish button, as shown in the following screenshot:

o+ MNew Maven Project

MNew Maven project
Configure project

Artifact
Group Id: com.packt

ArtifactId: webstore
Version: 0.0.1-SMAPSHOT
Packaging: war

Mame:

Description:

Parent Project

Group Id:
Artifact Id:

Yerzion:

¢ Advanced

Browse... Clear

Finish] I Cancel

What just happened?

We just created the basic project structure. Any Java project follows a certain directory
structure to organize its source code and static resources. Instead of manually creating the
whole directory hierarchy by ourselves, we just handed over that job to STS. By collecting
some basic information about our project, such as Group Id, Artifact Id, and the
Packaging style from us, it is clear that STS is smart enough to create the whole project
directory structure with the help of the Maven plugin. Actually, what is happening behind
the screen is that STS is internally using Maven to create the project structure.

We want our project to be deployable in any servlet container-based web server, such as
Tomcat, and that’s why we selected the Packaging style as war. After executing step 4,
you will see the project structure in Package Explorer, as shown in the following
screenshot:

£ Package Explorer 32 | |2 q:"p | : U=
Fi "F—‘,J- webstore

[=rc/main/java
2 src/main/resources
[srcftest/java
B srcftest/resources

» B JRE System Library [J25E-1.5]

» =% srC

> [target
[m| porm.eml

4| L] | I

The project structure of the application

Spring MVC dependencies

As we are going to use Spring MVC APIs heavily in our project, we need the Spring jars
in our project during the development. As I already mentioned, Maven will take care of

managing dependencies and packaging the project.

Time for action — adding Spring jars to
the project

Let’s take a look at how we can add the spring-related jars via the Maven configuration:

1. Open pom.xml; you can find pom.xml under the root directory of the project itself.

2. You will see some tabs at the bottom of the pom.xm1 file. If you do not see these tabs,
then right-click on pom. xml and select the Open With option from the context menu
and choose Maven POM editor. Select the Dependencies tab and click on the Add
button in the Dependencies section. Don’t get confused with the Add button of the
Dependencies Management section. You should choose the Add button in the left-
hand side pane.

3. A Select Dependency window will appear; enter Group Id as
org.springframework, Artifact Id as spring-webmvc, and Version as
4.0.3.RELEASE. Select Scope as compile and then click on the OK button, as shown
in the following screenshot:

& Select Dependency =] 2

GroupId: + org.springframewark
Artifact Id: # spring-webmve

Version: 4.0.3.RELEASE Scope |compile -

Enter groupld, artifactld or shal prefix or pattern (*):

Search Results:

'/’?' Ok] | Cancel

4. Similarly, add the dependency for JavaServer Pages Standard Tag Library (JSTL)
by clicking on the same Add button; this time, enter Group Id as javax.servlet,
Artifact Id as jstl, Version as 1.2, and select Scope as compile.

5. Finally, add one more dependency for servlet-api; repeat the same step with Group
Id as javax.servlet, Artifact Id as javax.servlet-api, and Version as 3.1.0, but
this time, select Scope as provided and then click on the OK button.

6. As a last step, don’t forget to save the pom.xm1 file.

What just happened?

In the Maven world, pom.xml (Project Object Model) is the configuration file that defines
the required dependencies. While building our project, Maven will read that file and try to
download the specified jars from the Maven central binary repository. You need Internet
access in order to download jars from Maven’s central repository. Maven uses an
addressing system to locate a jar in the central repository, which consists of Group Id,
Artifact Id, and Version.

Every time we add a dependency, an entry will be made within the <dependencies> </
dependencies> tags in the pom.xml file. For example, if you go to the pom.xml tab after
finishing step 3, you will see an entry for spring-mvc as follows within the
<dependencies> </ dependencies> tag:

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-webmvc</artifactId>
<version>4.0.3.RELEASE</version>
</dependency>

We added the dependency for spring-mvc in step 3, and in step 4, we added the
dependency for JSTL. JSTL is a collection of useful JSP tags that can be used to write JSP
pages easily. Finally, we need a servlet-api jar in order to use servlet-related code; this is
what we added in step 5.

However, there is a little difference in the scope of the servlet-api dependency compared
to the other two dependencies. We only need servlet-api while compiling our project.
While packaging our project as war, we don’t want to the ship servlet-api jar as part of our
project. This is because the Tomcat web server would provide the servlet-api jar while
deploying our project. This is why we selected the scope as provided for the servlet-api.

After finishing step 6, you will see all the dependent jars configured in your project, as
shown in the following screenshot, under the Maven Dependencies library:

[Package Explorer &2 B & ¥ = O
4 '_'F—‘,J- webstore -
[=rc/main/java
2 src/main/resources
[sroftest/java
[srcftest/resources
> B JRE System Library [J25E-1.5]
a4 =) Maven Dependencies
. fms spring-webmvc-4.0.3.RELEASE jar - C:\Use

» |mo spring-beans-4.0.3.RELEASE jar - C:\L
. [ma spring-context-4.0.3,RELEASE jar -

- law spring-acp-4.0.3.RELEASE jar -

m

> [od aopalliance-1.0ar - ChUsers\Amuthan'.rm

» |oo spring-core-4.0.3.RELEASE jar - T\ Uzers) A
. [commons-logging-1.1.3.jar - C:\Users\ Arr
, -?!;-' spring-expression-4.0.3, RELEASE jar - T\
. fms spring-web-4.0.3.RELEASE jar - T\ Users) 2

s [mg jsti-1.2.jar - Chlsers\Amuthar

> (e javax.serviet-api-3.1.0jar - Ch\Users
o P
> (=2 target X
. -

We added only three jars as our dependencies, but if you notice in our Maven dependency
library list, you will see more than three jar entries. Can you guess why? What if our
dependent jars have a dependency on other jars and so on?

For example, our spring-mvc jar is dependent on the spring-core, spring-context, and
spring-aop jars, but we have not specified those jars in our pom.xm1 file; this is called
transitive dependencies in the Maven world. In other words, we can say that our project
is transitively dependent on these jars. Maven will automatically download all these
transitive dependent jars; this is the beauty of Maven. It will take care of all the
dependency management automatically; we need to inform Maven only about the first
level dependencies.

Time for action — adding Java version
properties in pom.xml

We successfully added all the required jars to our project, but we need to perform one
small configuration in our pom.xm1l file, that is, telling Maven to use Java Version 7 while
building our project. How do we tell Maven to do this? Simply add two property entries in
pom.xml. Let’s do this.

1. Open pom.xml. You will see some tabs at the bottom of pom.xm1; select the Overview
tab from the bottom of pom. xm1, expand the properties accordion, and click on the
Create button.

2. Now, an Add property window will appear; enter Name as maven.compiler.source
and Value as 1.7.

¢ Parent Eu] 2!

= Properties

(|

=¥ Add property 2

Mame: maven.compiler.source

Value: -i.?l

L -

Ohverview Dependencie5| Dependency Hierarch],.r| Effective F'OM| pl:um.xml|

Adding the Java compiler version properties to POM

3. Similarly, create one more property with Name as maven.compiler.target and
Value as 1.7.
4. Finally, save pom.xml.

A jump-start to MVC

We created our project and added all the required jars, so we are ready to code. We are
going to incrementally build an online web store throughout this book, chapter by chapter.
As a first step, let’s create a home page in our project to welcome our customers.

Our aim is simple; when we enter the http://localhost:8080/webstore/ URL on the

browser, we would like to show a welcome page that is similar to the following
screenshot:

i@ Welcome =]
= .;;éh http:/flocalhost:B080, webstore/ -| B

Welcome to Web Store! [

The one and only amazing web store

Don’t worry if you are not able to understand some of the code; we are going to take a
look at each concept in detail in the upcoming chapters. As of now, our aim is to have
quick hands-on experience of developing a simple web page using Spring MVC.

Time for action — adding a welcome page

To create and add a welcome page, we need to execute the following steps:

1. Create a WEB-INF/jsp/ directory structure under the src/main/webapp/ directory;
create a jsp view file called welcome. jsp under the src/main/webapp/WEB-INF/jsp/
directory, and add the following code snippets into it and save it:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-
1||>
<link rel="stylesheet"
href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">
<title>Welcome</title>
</head>
<body>
<section>
<div class="jumbotron'">
<div class="container'">
<h1> ${greeting} </h1>
<p> ${tagline} </p>
</div>
</div>
</section>
</body>
</html>

2. Create a class called HomeController under the com.packt.webstore.controller
package in the source directory src/main/java, and add the following code into it:

package com.packt.webstore.controller;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class HomeController {

@RequestMapping("/")

public String welcome(Model model) {
model.addAttribute("greeting", "Welcome to Web Store!");
model.addAttribute("tagline", "The one and only amazing webstore");

return "welcome";

}

What just happened?

In step 1, we just created a JSP view; the important thing we need to notice here is the
<h1> tag and the <p> tag. Both the tags have some expression that is surrounded by curly
braces and prefixed by the $ symbol:

<h1> ${greeting} </h1>

<p> ${tagline} </p>

So, what is the meaning of ${greeting}? It means that greeting is a kind of variable;
during the rendering of this JSP page, the value stored in the greeting variable will be
shown in the header 1 style, and similarly, the value stored in the tagline variable will be
shown as a paragraph.

So now, the next question of where we will assign values to those variables arises. This is
where the controller will be of help; within the welcome method of the HomeController
class, take a look at the following lines of code:

model.addAttribute("greeting", "Welcome to Web Store!");
model.addAttribute("tagline", "The one and only amazing web store");

You can observe that the two variable names, greeting and tagline, are passed as a first
parameter of the addAttribute method and the corresponding second parameter is the
value for each variable. So what we are doing here is simply putting two strings, "Welcome
to Web Store!" and "The one and only amazing web store", into the model with their
corresponding keys as greeting and tagline. As of now, simply consider the fact that
model is a kind of map. Folks with knowledge of servlet programming can consider the
fact that model.addAttribute works exactly like request.setAttribute.

So, whatever value we put into the model can be retrieved from the view (jsp) using the
corresponding key with the help of the ${} placeholder expression notation.

The dispatcher servlet

We created a controller that can put values into the model, and we created the view that
can read those values from the model. So, the model acts as an intermediate between the
view and the controller; with this, we have finished all the coding part required to present
the welcome page. So will we be able to run our project now? No; at this stage, if we run
our project and enter the http://localhost:8080/webstore/ URL on the browser, we
will get an HTTP Status 404 error. This is because we have not performed any servlet
mapping yet. In a Spring MVC project, we must configure a front servlet mapping. The
front servlet (sometimes called the front controller) mapping is a design pattern where all
requests for a particular web application are directed to the same servlet. One such front
servlet given by Spring MVC framework is the dispatcher servlet
(org.springframework.web.servlet.DispatcherServlet). We have not configured a
dispatcher servlet for our project yet; this is why we get the HTTP Status 404 error.

Time for action — configuring the
dispatcher servlet

The dispatcher servlet is what examines the incoming request URL and invokes the right
corresponding controller method. In our case, the welcome method from the
HomeController class needs to be invoked if we enter the
http://localhost:8080/webstore/ URL on the browser. So let’s configure the
dispatcher servlet for our project:

1. Create web.xml under the src/main/webapp/WEB-INF/ directory in your project and
enter the following content inside web . xm1 and save it:

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
<servlet>
<servlet-name>DefaultServlet</servlet-name>
<servlet-class> org.springframework.web.servlet.DispatcherServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>DefaultServlet</servlet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>

</web-app>

2. Now create one more xml file called DefaultServlet-servlet.xml under the same
src/main/webapp/WEB-INF/ directory and enter the following content into it and
save it:

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mvc="http://www.springframework.org/schema/mvc"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd">

<mvc:annotation-driven />
<context:component-scan base-package="com.packt.webstore" />

<bean

class="org.springframework.web.servlet.view.InternalResourceViewResolver
n
>

<property name="prefix" value="/WEB-INF/jsp/" />
<property name="suffix" value=".jsp" />
</bean>

</beans>

What just happened?

If you know about servlet programming, you might be quite familiar with the servlet
configuration and web.xml. In web.xml, we configured a servlet named DefaultServlet,
which is more or less similar to any other normal servlet configuration. The only
difference is that we have not created any servlet class for that configuration. Instead, the
servlet class (org.springframework.web.servlet.DispatcherServlet) is provided by
the Spring MVC framework, and we make use of it in web . xm1. After this step, our
configured DispatcherServlet (DefaultServlet) will be ready to handle any requests
that come to our application on runtime and will dispatch the request to the correct
controller’s method.

However, DispatcherServlet should know where our controllers and view files are
located in our project, and only then can it properly dispatch the request to the correct
controllers. So we have to give some hint to DispatcherServlet to locate the controllers
and view files. This is what we configured in step 2 through the bispatcherServlet-
servlet.xml file.

Don’t worry if you are not able to understand each and every configuration in web.xml and
DispatcherServlet-servlet.xml; we will take a look at these configuration files in next
chapter. As of now, just remember that this is a one-time configuration that is needed to
run our project successfully.

Deploying our project

We successfully created the project in the last section, so you might be curious to know
what would happen if we run our project now. As our project is a web project, we need a
web server to run it.

Time for action — running the project

As we already configured the Tomcat web server in our STS, let’s use Tomcat to deploy
and run our project:

1. Right-click on your project from Package Explorer and navigate to Run As | Run
on Server.

2. A server selection window will appear with all the available servers listed; just select
the server that we have configured, Tomcat v7.0.

3. At the bottom of the window, you can see a checkbox with the caption that says
Always use this server when running this project; select this checkbox and enter
the Finish button, as shown in the following screenshot:

P ™

& Run On Server = 2

Run On Server =1

Select which server to use {

How do you want to select the server?
@ Choose an existing server
Manually define a new server

Select the server that you want to use:

type filter text

Server State

4 [~ localhost
& Tomcat v7.0 Server at localhost g Stopped

Apache Tomcat vi.0 supports J2EE1.2,1.3, 1.4, and Java EE5 and 6 Web
rmodules,

[¥] Always use this server when running this project

I/aj < Bach [Mest » | [Finish] | e

Configuring the default server for a Spring MVC project

4. Now you will see a web page that will show you a welcome message.

@ Welcome [

= .;;éh http:/flocalhost:B080, webstore/ | B Re=a

.

Welcome to Web Storel H|

The one and only amazing web store

-

Summary

In this chapter, we saw how to install all the prerequisites that are needed to get started and
run our first Spring MVC application, for example, installing JDK, the Maven build tool,
the Tomcat servlet container, and STS IDE.

We also learned how to perform various configurations in our STS IDE for Maven and
Tomcat, created our first Spring MVC project, and added all Spring-related dependent jars
through the Maven configuration.

We had a quick hands-on experience of developing a welcome page for our web store
application. During that course, we learned how to put values into a model and how to
retrieve these values from the model.

Whatever we have seen so far is just a glimpse of Spring MVC, but there is much more to
uncover, for example, how the model and view controller are connected to each other and
how the request flow occurs. We are going to explore these topics in the next chapter, so
see you there!

Chapter 2. Spring MVC Architecture —
Architecting Your Web Store

What we saw in the first chapter is nothing but a glimpse of Spring MVC; in the previous
chapter, our total focus was just on getting it to run a Spring MVC application. Now, it’s
time for us to deep-dive into Spring MVC architecture.

By the end of this chapter, you will have a clear understanding of:

The dispatcher servlet and request mapping
The web application context and configuration
The Spring MVC request flow and Web MVC
The web application architecture

The dispatcher servlet

In the first chapter, we were introduced to the dispatcher servlet and saw how to define a
dispatcher servlet in web.xml. We learned that every web request first comes to the
dispatcher servlet. The dispatcher servlet is the one that decides the controller method that
it should dispatch the web request to. In the previous chapter, we created a welcome page
that will be shown whenever we enter the URL http://localhost:8080/webstore/ on
the browser. Mapping a URL to the appropriate controller method is the primary duty of a
dispatcher servlet.

So the dispatcher servlet reads the web request URL and finds the appropriate controller
method that can serve that web request and invokes it. This process of mapping a web
request to a specific controller method is called request mapping, and the dispatcher
servlet is able to do this with the help of the @RequestMapping annotation
(org.springframework.web.bind.annotation.RequestMapping).

Time for action — examining request
mapping

Let’s observe what will happen when you change the value attribute of the
@RequestMapping annotation by executing the following steps:

1. Open your STS and run the webstore project; just right-click on your project and
choose Run As | Run on Server. You will be able to view the same welcome
message on the browser.

2. Now, go to the address bar of the browser and enter the URL,
http://localhost:8080/webstore/welcome.

3. You will see the HT'TP Status 404 error page on the browser, and you will also see
the following warning in the console:

WARNING: No mapping found for HTTP request with URI [/webstore/welcome]
in DispatcherServlet with name ' DefaultServlet'

i@ Apache Tomcat/7.0.52 - Error report 532 =N

=) Tl f;‘.—gk' http:/flocalhost:8080, webstore/welcome - [n

-~

HTTP Status 404 - 1

m

ThE Status report

The requested resource is not available.

Bl Console 3 ; | =x | ~ L W —om

Tomcat v7.0 Server at localhost [Apache Tomcat] C\Program Files\Java'jdkl .7.0_51\bin'javaw.exe [
ar 27, 2814 4:12:46 PM org.springframework.web. servlet.PageNotFound noHE
WARNING: No mapping found for HTTP request with URI [/webstore/welcome]

=

4 il 3

An error log displaying the “No mapping found” warning message

4. Now, open the HomeController class, change the @RequestMapping annotation’s
value attribute to /welcome, and save it. Basically, your new request mapping
annotation will look like @RequestMapping("/welcome").

5. Again, run the application and enter the same URL that you entered in step 2; now
you will be able to see the same welcome message on the browser, without any
request mapping error.

6. Finally, open the HomeController class and revert the changes that were made to the

@RequestMapping annotation’s value; just make it @RequestMapping("/") again and
save it.

What just happened?

After starting our application, when we enter the URL
http://localhost:8080/webstore/welcome on the browser, the dispatcher servlet
(org.springframework.web.servlet.DispatcherServlet) immediately tries to find a
matching controller method for the request path, /welcome.

Tip
In a Spring MVC application, the URL can logically be divided into five parts (see the

following figure); the @RequestMapping annotation only matches against the URL request
path. It omits the scheme, hostname, application name, and so on.

The @RequestMapping annotation has one more attribute called method to further narrow
down the mapping based on the HTTP request method types (GET, POST, HEAD, OPTIONS,
PUT, DELETE, and TRACE). If we do not specify the method attribute in the
@RequestMapping annotation, the default method will be GET. We will learn more about
the method attribute of the @RequestMapping annotation in Chapter 4, Working with Spring
Tag Libraries, under the section on form processing.

@ ® &

http://localhost:8080/webstore/products/search?pid=123

P S S

“Scheme” "Host name” “application name” "Request path” “Parameters”

o & &

The logical parts of a typical Spring MVC application URL

Since we don’t have a corresponding request mapping for the given URL path, /welcome,
we get the HTTP Status 404 error on the browser and the following error log on the
console:

WARNING: No mapping found for HTTP request with URI [/webstore/welcome] in
DispatcherServlet with name 'DefaultServlet'

From the error log, we can clearly understand that there is no request mapping for the
URL path, /webstore/welcome. So, we try to map this URL path to the existing controller
method; that’s why, in step 4, we put only the request path value, /welcome, in the
@RequestMapping annotation as the value attribute. Now everything works perfectly fine.

Finally, we reverted our @RequestMapping annotation’s value to / again in step 6. Why did
we do this? Because we want it to show the welcome page under the web request URL
http://localhost:8080/webstore/ again. Observe carefully that here the last single
character / is the request path. We will see more about request mapping in upcoming
chapters.

Pop quiz — request mapping

QL. If we have a Spring MV C application for library management called BookPedia and

want to map a web request URL,
http://localhost:8080/BookPedia/category/fiction, to a controller method, how

will we form the @RequestMapping annotation?

1. @RequestMapping("/fiction").
2. @RequestMapping("/category/fiction").
3. @RequestMapping("/BookPedia/category/fiction").

The web application context

In a Spring-based application, our application objects live within an object container. This
container creates objects and associations between objects, and manages their complete
life cycle. These container objects are called Spring-managed beans (or simply beans), and
the container is called an application context in the Spring world.

A Spring container uses dependency injection (DI) to manage the beans that make up an
application. An application context
(org.springframework.context.ApplicationContext) creates beans and associate
beans together based on the bean configuration and dispenses beans on request. A bean
configuration can be defined via an XML file, annotation, or even via Java configuration
classes. We will use only XML- and annotation-based bean configurations in our chapters.

A web application context is the extension of an application context, designed to work
with the standard servlet context (javax.servlet.ServletContext). A web application
context typically contains frontend-related beans, such as views and view resolvers. In the
first chapter, we created an XML file called befaultServlet-servlet.xml, which is
nothing but a bean configuration file for our web application context.

Time for action — understanding the web
application context

You have received enough of an introduction on the web application context; now, tweak a
little bit with the name and location of the web application context configuration file
(DefaultServlet-servlet.xml) and observe the effect. Perform the following steps:

1. Rename the DefaultServlet-servlet.xml file to DispatcherServlet-
servlet.xml; you can find DefaultServlet-servlet.xml under the
src/main/webapp/WEB-INF/ directory.

2. Then, run your webstore project again and enter the URL,
http://localhost:8080/webstore/; you will see an HT'TP Status 500 error
message on your web page and a FileNotFoundException error in the stack trace as

follows:

java.io.FileNotFoundException: Could not open ServletContext resource
[/WEB-INF/DefaultServlet-servlet.xml]

i@ Apache Tomcat/7.0.52 - Error report 53

[fﬁ* http:/flocalhost:B080/ webstore/ - [=

] » Ho

HTTP Status 500 - Servlet.init() for serviet

DefaultServilet threw exception

BTiE Exception report

e senvlet.init() for servlet DefaultServlet threw exception -

4 | i 3

An error message displaying FileNotFoundException for DefaultServlet-servlet.xml

3. To fix this error, change the name of DefaultServlet to DispatcherServlet in
web . xm1; basically, after changing the name to DispatcherServlet, your servlet
configuration will look like the following in the web . xm1 file:

<servlet>
<servlet-name>DispatcherServlet</servlet-name>
<servlet-
class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>DispatcherServlet</servlet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>

. Now, run your application and enter the URL, http://localhost:8080/webstore/;
you will see the welcome message again.

. Rename your DispatchersServlet-servlet.xml file to DispatcherServlet-
context.xml once more.

. Next, create a directory structure spring/webcontext/ under the WEB-INF directory
and move the DispatcherServlet-context.xml file to the src/main/webapp/WEB-
INF/spring/webcontext/ directory.

. Then, run your application, and you will see an HTTP Status 500 error message on
your web page again and a FileNotFoundException error message in the stack trace:

java.io.FileNotFoundException: Could not open ServletContext resource
[/WEB-INF/DispatcherServlet-servlet.xml]

. To fix this error, add the following tags within the <servlet>and </ servlet> tags
in web.xml as shown in the following code:

<init-param>
<param-name>contextConfiglLocation</param-name>
<param-value>
/WEB-INF/spring/webcontext/DispatcherServlet-context.xml
</param-value>
</init-param>

. Now, run the application again and enter the URL,
http://localhost:8080/webstore/; you will be able to see the welcome message
again.

What just happened?

So, what we did first was renamed the DefaultServlet-servlet.xml file to
DispatcherServlet-servlet.xml, and we got a FileNotFoundException error at
runtime, as follows:

java.io.FileNotFoundException: Could not open ServletContext resource
[/WEB-INF/DefaultServlet-servlet.xml]

To fix the error, we changed our dispatcher servlet configuration, as follows, in the
web . xml file:

<servlet>
<servlet-name>DispatcherServlet</servlet-name>
<servlet-class> org.springframework.web.servlet.DispatcherServlet
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>DispatcherServlet</servlet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>

We changed the servlet name to DispatcherServlet in order to align with the web
application context configuration file named DispatcherServlet-servlet.xml. So, based
on this exercise, we can learn that during the start-up of any Spring MVC project, the
dispatcher servlet will look for a web application context configuration file of the pattern
<Configured dispatcher Servlet Name>-servlet.xml under the WEB-INF directory. It
is our responsibility to keep the web application context configuration file under the wWeB-
INF directory with the right name. However, what if we wish to keep the file in some other
directory?

Tip
One of the important things to be noted in <servlet-mapping> is the value of the <url-
pattern>/</url-pattern> tag. By assigning / as the URL pattern for the dispatcher

servlet, we make DispatcherServlet the default servlet for our web application. So,
every web request coming to our web application will be handled by Dispatcherservlet.

For instance, in steps 5 and 6, we renamed the web application context configuration file
and moved it to a completely new directory (src/main/webapp/WEB-
INF/spring/webcontext/). In that case, how did we fix the HTTP Status 500 error? The
answer lies within a property called contextConfigLocation. For the dispatcher servlet to
locate the web context configuration file easily, we gave the location of this file to the
dispatcher servlet through a property called contextConfigLocation. That’s why we
added this property to the dispatcher servlet in step 8, as follows:

<servlet>

<servlet-name>DispatcherServlet</servlet-name>

<servlet-
class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

<init-param>
<param-name>contextConfiglLocation</param-name>
<param-value>
/WEB-INF/spring/webcontext/DispatcherServlet-context.xml
</param-value>
</init-param>
</servlet>
Now, we are able to run our application without any problem. Okay, we played a lot with
the web application context configuration file and learned that the dispatcher servlet
should know about the web application context configuration file during the start-up of
our project. So the next question is: why is the dispatcher servlet looking for this web
context configuration file, and what is defined inside this file? Let’s find out the answer,
but before that, you may answer the following pop quiz questions to make sure you
understand the concept of the web application context configuration.

Pop quiz — the web application context

Q1. If the contextConfigLocation property was not configured in our dispatcher servlet
configuration, under which location would Spring MVC look for the web application
context configuration file?

1. In the WEB-INF directory
2. In WEB-INF/spring
3. In WEB-INF/spring/appServlet

Q2. If we do not want to provide contextConfigLocation to the following dispatcher
servlet configuration, how do we avoid the HTTP Status 500 error?

<servlet>

<servlet-name>FrontController</servlet-name>

<servlet-
class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

</servlet>

1. By creating a context file called FrontController-context.xml in the WEB-INF
directory

2. By creating a file called DispatcherServlet-context.xml in WEB-INF

3. By creating a file called FrontController-servlet.xml in WEB-INF

The web application context configuration

The web application context configuration file (DispatcherServlet-context.xml) is
nothing but a simple Spring bean configuration file. Spring will create beans (objects) for
every bean definition mentioned in this file during bootup of our application. If you open
this web application context configuration file (/WEB-
INF/spring/webcontext/DispatcherServlet-context.xml), you will find some
configuration and bean definition as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mvc="http://www.springframework.org/schema/mvc"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.0.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd">

<mvc:annotation-driven />
<context:component-scan base-package="com.packt.webstore" />

<bean
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="prefix" value="/WEB-INF/jsp/" />
<property name="suffix" value=".jsp" />
</bean>

</beans>

The first tag within the <beans> definition is <mvc:annotation-driven />. By this tag,
we tell Spring MVC to configure the DefaultAnnotationHandlerMapping,
AnnotationMethodHandlerAdapter, and ExceptionHandlerExceptionResolver beans.
These beans are required for Spring MVC to dispatch requests to the controllers.

Actually <mvc:annotation-driven /> does many things behind the screen. It also
enables support for various convenient annotations such as @NumberFormat and
@ateTimeFormat to format the form bean fields during form binding. Similarly, we have
the @valid annotation to validate the controller method’s parameters. It also supports Java
objects to/from an XML or JSON conversion via the @RequestBody and @ResponseBody
annotations in the @RequestMapping or @ExceptionHandler method during form binding.
We will see the usage of these annotations in later chapters. As of now, just remember that
the <mvc:annotation-driven /> tag is needed to enable annotations such as
@controller and @RequestMapping.

What is the purpose of the second tag, <context :component-scan>? You need a bit of
background information to understand the purpose of the <context :component - scan> tag.
The @Controller annotation indicates that a particular class serves the role of a controller.

We already learned that the dispatcher servlet searches such annotated classes for mapped
methods (the @RequestMapping annotated methods) to serve a web request. In order to
make the controller available for searching, we need to create a bean for this controller in
our web application context.

We can create beans for controllers explicitly via the bean configuration (using the <bean>
tag—you can see how we created a bean for the InternalResourceviewResolver class
using the <bean> tag in the next section), or we can hand over that task to Spring via the
autodetection mechanism. To enable the autodetection of the @Controller annotated
classes, we need to add component scanning to our configuration using the

<context :component -scan> tag. Now, you finally understand the purpose of the
<context:component-scan> tag.

Spring will create beans (objects) for every @Controller class at runtime. The dispatcher
servlet will search for the correct request mapping method in every @Controller bean
based on the @RequestMapping annotation, to serve a web request. The base-package
property of a <context : component -scan> tag indicates the package under which Spring
should search for controller classes to create beans:

<context:component-scan base-package="com.packt.webstore" />

The preceding line instructs Spring to search for controller classes within the
com.packt.webstore package and its subpackages.

Tip
The <context :component -scan> tag not only recognizes controller classes, it also

recognizes other stereotypes such as services and repository classes as well. We will learn
more about services and repositories later.

Pop quiz — web application context configuration

Q1. What needs to be done to identify a class by Spring as a controller?

1.
2.

3.

That particular class should have the @Controller annotation.

The <mvc:annotation-driven /> and <context:component-scan> tags should be
specified in the web application context configuration file.

That particular class should be put up in a package or subpackage that has been
specified as a base package in the <context:component-scan> tag.

All of the above.

View resolvers

We saw the purpose of the first two tags that are specified within the web application
context configuration file:

<mvc:annotation-driven />
<context:component-scan base-package="com.packt.webstore" />

Based on these tags, Spring creates the necessary beans to handle a web request and also
creates beans for all the @controller classes. However, to run a Spring MV C application
successfully, Spring needs one more bean; this bean is called a view resolver.

A view resolver helps the dispatcher servlet identify the views that have to be rendered as
the response for a specific web request. Spring MVC provides various view resolver
implementations to identify views, and InternalResourcevViewResolver is one such
implementation. The final tag in the web application context configuration is the bean
definition for the InternalResourceviewResolver class as follows:

<bean
class="org.springframework.web.servlet.view.InternalResourceViewResolver'">
<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />
</bean>

Through the preceding bean definition in the web application context configuration, we
instruct Spring MVC to create a bean for the InternalResourceViewResolver class

(org.springframework.web.servlet.view.InternalResourceViewResolver). We will
learn more about the view resolver in Chapter 5, Working with View Resolver.

Time for action — understanding
InternalResourceViewResolver

We instruct Spring to create a bean for an InternalResourceViewResolver class, but
why? Who is going to use this bean? What is the role of the
InternalResourceViewResolver bean in Spring MVC? Find the answer to these
questions through the following exercise:

1. Open DispatcherServlet-context.xml; you can find this file under the
src/main/webapp/WEB-INF/spring/webcontext/ directory in your project.

2. Change the prefix property value of the InternalResourceviewResolver bean as
follows:

<property name="prefix" value="/WEB-INF/views/" />

3. Now, run your webstore project again and enter the URL
http://localhost:8080/webstore/. You will see an HTTP Status 404 error
message in your browser as shown in the following screenshot:

@ Apache Tomcat/7.0.52 - Error report &2 = |m

= é\. http://locathost:8080/ webstore/ -~ [

HTTP Status 404 - /webstore/WEB-INF/views/welcome.jsp

m

BTE Status report

=ean= fwebstore/WEB-INF/views/welcome.jsp ¥

An error page displaying the no resource found message

4. Then, rename the jsp directory (/src/main/webapp/WEB-INF/jsp) to views.
5. Finally, run your application and enter the URL,
http://localhost:8080/webstore/. You will see the welcome message again.

What just happened?

After changing the prefix property value of the InternalResourceviewResolver bean,
we got an HTTP Status 404 error when we entered the URL,
http://localhost:8080/webstore/, in the browser. The HTTP Status 404 error means
that the server could not find the web page that we asked for. If that is the case, then which
web page did we ask for?

As a matter of fact, we didn’t ask for any web page from the server directly; instead, the
dispatcher servlet asks a particular web page from the server. What we already learned is
that the dispatcher servlet invokes a method in any of the controller beans that can serve
this web request. In our case, this method is nothing but the welcome method of our
HomeController class, because this is the only request mapping method that can match
the request path of the given URL, http://localhost:8080/webstore/, in its
@RequestMapping annotation.

Now, observe the following:

e The prefix property value of the InternalResourceVviewResolver bean definition in
DispatcherServlet-context.xml; that is, /WEB-INF/views/

e The return value of the welcome method from the HomeController class; that is,
welcome

¢ Finally, the suffix property value of the InternalResourceviewResolver bean, that
is, .jsp

If you combine these three values together, you will get a web page request URL: /WEB-
INF/views/welcome. jsp. Now, note the error message in the previous screenshot,
showing the HTTP Status 404 error for the same web page URL: /WEB-
INF/views/welcome. jsp under the application name, webstore/.

So, the conclusion is that InternalResourceViewResolver resolves the actual view file
path by prepending the configured prefix value and appending the suffix value with the
view name—the view name is the value usually returned by the controller method. So, the
controller method doesn’t return the path of the actual view file; it returns only the logical
view name. It is the job of InternalResourceVviewResolver to form the URL of the actual
view file correctly.

Who is going to use this final formed URL? The answer is the dispatcher servlet. After
getting the final formed URL of the view file from the view resolver, the dispatcher servlet
will try to get the view file from the server. During this time, if the formed URL is found
to be wrong, then you will get the HTTP Status 404 error.

Usually, after invoking the controller method, the dispatcher servlet will wait to get the
logical view name from it. Once the dispatcher servlet gets the logical view name, it gives
this name to the view resolver (InternalResourceViewResolver) to get the URL path of
the actual view file; once the view resolver returns the URL path to the dispatcher servlet,
the rendered view file is served to the client browser as a web page by the dispatcher
servlet.

However, why did we get the error in step 3? Since we changed the prefix property of the
InternalResourceViewResolver bean in step 2, the URL path value returned from
InternalResourceViewResolver became /WEB-INF/views/welcome. jsp in step 3, which
is an invalid path value (there is no directory called views under WEB-INF). That’s why, we
renamed the directory jsp to views in step 4 to align it with the path generated by
InternalResourceViewResolver so that everything works fine again.

Model View Controller

So far, we have seen lots of concepts, such as the dispatcher servlet, request mapping,
controllers, and view resolver; it would be good to see the overall picture of the Spring
MVC request flow so that we can understand each component’s responsibilities. However,
before that, we need to understand the Model View Controller (MVC) concept some
more. Every enterprise-level application’s presentation layer can logically be divided into
the following three major parts:

e The part that manages the data (Model)

e The part that creates the user interface and screens (View)

e The part that handles interactions between the user, user interface, and data
(Controller)

The following diagram will help you understand the event flow and command flow within
an MVC pattern:

= i ———
Controller Event
'.1.'}\'{;“\\ /'91' Method
> i By invocation
Cpq" F &U d%)
-‘§“ £l 5
kS & {T} ,ﬁ@
F {('\ ’}
F &é\ %
i -\,b"
)’
State query
View > Model
Change notification

The classic MVC pattern

Whenever a user interacts with the view by clicking on a link or button, the view issues an
event notification to the controller, and the controller issues a command notification to the
model to update the data. Similarly, whenever the data in the model gets updated or
changed, a change notification event is issued to the view by the model in response, and
the view issues a state query command to the model to get the latest data from the model.
Here, the model and view can interact directly; this pattern is called the classic MVC
pattern. However, what Spring MVC employs is something called a web MVC pattern
due to the limitations in the HTTP protocol.

Tip
Web applications rely on the HTTP protocol, which is a stateless pull protocol. This means

that no request implies no reply; every time, we need to request the application to know its
state. The MV C design pattern requires a push protocol for the views to be notified by the

model. So in web MVC, the controller takes more responsibility for the state changing,
state querying, and change notification.

In web MVC, every interaction between the model and view is taken through the
controller only. So, the controller acts as a bridge between the model and view. There is no
direct interaction between the model and view, as in the classic MVC pattern.

An overview of the Spring MVC request
flow

The main entry point for a web request in a Spring MV C application is via the dispatcher
servlet. The dispatcher servlet acts as the front controller and dispatches the requests to the
other controller. The front controller’s main duty is to find the appropriate controller to
hand over the request for further processing. The following diagram shows an overview of
the request flow in a Spring MVC application:

Presentation layer

Request
Browser ' Front Controller

Response
A, !] A
s ;
' | Model | | Model
. !
View Controller

The Spring MVC request flow

Now, let’s review the Spring MV C request flow in short:

1. When we enter a URL in the browser, the request comes to the dispatcher servlet.
The dispatcher servlet then acts as a centralized entry point to the web application.

2. The dispatcher servlet determines a suitable controller that is capable of handling the
request and dispatching this request to the controller.

3. The controller method updates objects in the model and returns the logical view name
and updated model to the dispatcher servlet.

4. The dispatcher servlet consults with the view resolver to determine which view to
render and passes the model data to that view.

5. The view furnishes the dynamic values in the web page using the model data, renders
the final web page, and returns this web page to the dispatcher servlet.

6. At the end, the dispatcher servlet returns the final, rendered page as a response to the
browser.

The web application architecture

Now, we understand the overall request flow and responsibility of each component in a
typical Spring MVC application. However, this is not enough for us to build an online web
store application. We also need to know the best practices to develop an enterprise-level
web application. One of the best practices in a typical web application is to organize
source code into layers, which will improve reusability and loose coupling. A typical web
application normally has four layers: the presentation, domain, services, and persistence.
So far, whatever we have seen, such as the dispatcher servlet, controllers, view resolvers,
and so on, is considered a part of the presentation layer components. Let’s understand the
remaining layers and components one by one.

The domain layer

Let’s start with the domain layer. A domain layer typically consists of a domain model. So,
what is a domain model? A domain model is a representation of the data storage types
required by the business logic. It describes the various domain objects (entities); their
attributes, roles, and relationships; plus the constraints that govern the problem domain.
Take a look at the following domain model diagram for order processing to get a quick
idea about the domain model:

s

Sample domain model

Each block in the preceding diagram represents a business entity, and the lines represent
the associations between the entities. Based on the preceding domain model diagram, we
can understand that, in an order processing domain, a customer can have many orders,
each order can have many order items, and each order item represents a single product.

During coding, the domain model will be converted into corresponding domain objects
and associations by a developer. A domain object is a logical container of pure domain
information. Since we are going to build an online web store application, in our domain,
the primary domain object might be a product. So, let’s start with the domain object to
represent a product.

Time for action — creating a domain object

So far, in your webstore, you have showed only a welcome message. It is now time for
you to show your first product on the web page. Do this by creating a domain object, as
follows, to represent the product information:

1. Create a class called Product under the com.packt.webstore.domain package in the
source folder src/main/java. Now, add the following code into it:

package c
import ja
public cl

private
private
private
private
private
private
private
private
private
private S

public
super

public
this.
this.
this.

3
// add

@overri
public
if (t
ret

if (o
ret

if (9
ret
Produ
if (p
if

r

} els
ret
retur

om.packt.webstore.domain;
va.math.BigDecimal;
ass Product {

String productId;
String name;
BigDecimal unitPrice;
String description;
String manufacturer;
String category;

long unitsInStock;
long unitsInOrder;
boolean discontinued;
tring condition;

Product() {
();

Product(String productId, String name, BigDecimal unitPrice) {
productId = productId;

name = name;

unitPrice = unitPrice;

setters and getters for all the fields here

de

boolean equals(Object obj) {
his == obj)

urn true;

bj == null)

urn false;

etClass() != obj.getClass())
urn false;

ct other = (Product) obj;
roductId == null) {
(other.productId !'= null)
eturn false;

e if (!productId.equals(other.productId))
urn false;

n true;

@Ooverride
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result
+ ((productId == null) ? 0 : productId.hashCode());
return result;

}

@Ooverride
public String toString() {

return "Product [productId=" + productId + ", name=" + name + "]";
}

}

Add setters and getters for all of the fields in the preceding class. I have omitted it to
make the code compact, but it is a must, so please do add it.

. Now, create one more class called ProductController under the
com.packt.webstore.controller package in the source folder src/main/java and
add the following code into it:

package com.packt.webstore.controller;

import java.math.BigDecimal;

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.RequestMapping;
import com.packt.webstore.domain.Product;

@Controller
public class ProductController {

@RequestMapping("/products")
public String list(Model model) {
Product iphone = new Product('"P1234","iPhone 5s", new
BigDecimal(500));
iphone.setDescription("Apple iPhone 5s smartphone with 4.00-inch
640x1136 display and 8-megapixel rear camera");
iphone.setCategory("Smart Phone");
iphone.setManufacturer("Apple");
iphone.setUnitsInStock(1000);

model.addAttribute("product", iphone);

return "products";

b
}

. Finally, add one more JSP view file called products. jsp under the directory
src/main/webapp/WEB-INF/views/, add the following code snippets into it, and save
it:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-
1||>

<link rel="stylesheet"

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">
<title>Products</title>
</head>
<body>
<section>
<div class="jumbotron'">
<div class="container">
<h1>Products</h1>
<p>All the available products in our store</p>
</div>
</div>
</section>

<section class="container">
<div class="row">
<div class="col-sm-6 col-md-3" style="padding-bottom: 15px">
<div class="thumbnail">
<div class="caption">
<h3>${product.name}</h3>
<p>${product.description}</p>
<p>${product.unitPrice} USD</p>
<p>Available ${product.unitsInStock} units in stock</p>
</div>
</div>
</div>
</div>
</section>
</body>
</html>

. Finally, run the application and enter the URL
http://localhost:8080/webstore/products. You will be able to see a web page
displaying the product information as shown in the following screenshot:

[Products
€ C' | [Y localhost:8080/webstore/products

Products

All the available products in our store

IPhone 5s

Apple iPhone 5s smartphone
with 4.00-inch 640x1136
display and 8-megapixel rear
camera

3500

Available 1000 units in stock

The Products page displaying the product information

What just happened?

Our aim is to show the details of a product on our web page; thus, in order to do this, we
first need a domain object to hold the details of the product. That’s what we did in step 1;
we just created a class called Product (Product.java) to store information about the
product, such as the name, description, price, and so on.

As we have already learned from the An overview of the Spring MVC request flow section,
to show any dynamic data on a web page, prior to this, we need to put this data in a model;
only then will the view be able to read this data from the model and render it on the web
page. So, to put the product information in a model, we just created one more controller
called ProductController (ProductController.java) in step 3.

In the ProductController class, we just have a single method called 1ist whose
responsibility is to create a product domain object to hold the information about the Apple
iPhone 5s and add that object to the model. And finally, we return the view name as
products. That’s what we were doing through the following lines in the 1ist method of
ProductController:

model.addAttribute("product", iphone);
return "products";

Since we configured InternalResourceViewResolver as our view resolver in the web
application context configuration file, in the process of resolving the view file for the
given view name (in our case, the view name is products), the view resolver will try to
look for a file products. jsp under /WEB-INF/views/. That’s why, we created

products. jsp in step 4. If you skip step 4, you will get the HTTP Status 404 error when
running the project.

For a better visual experience, products.jsp contains lots of div tags with Bootstrap CSS
styles applied (Bootstrap is an open source CSS framework), so don’t think that
products.jsp is very complex; as a matter of fact, it is very simple. You need not bother
about the div tags. These are present just for the appeal. You only need to observe the
following four tags carefully in products. jsp to understand data retrieval from the model:

<h3>${product.name}</h3>

<p>${product.description}</p>

<p>${product.unitPrice} USD</p>

<p>Available ${product.unitsInStock} units in stock</p>

Note the ${product.unitPrice} expression carefully; the text product in the expression
is the name of the key that we used to store the iphone object in the model. (Remember
this line model.addAttribute("product”, iphone);from the ProductController
class.) The text unitPrice is nothing but one of the fields from the Product domain class
(Product . java). Similarly, we show some important fields of the product domain class in
the products. jsp file.

Tip

When I say that price is the field name, I am actually making an assumption here that you

have followed the standard Java bean naming conventions for the getters and setters of
your domain class.

This is because, when Spring evaluates the expression ${product.unitPrice}, itis
actually trying to call the getter method of the field to get the value, so it will expect a
getUnitPrice() method in the Product. java file.

After completing step 4, if we run our application and enter the URL
http://localhost:8080/WebStore/products, we will be able to see a web page
displaying the product information as shown in the previous screenshot.

So, we have created a domain class to hold information about a product, created a single

product object in the controller, and added it to the model. Finally, we showed the product
information in the view.

The persistence layer

Since we had a single product, we just instantiated it in the controller itself and displayed
this product information on our web page successfully. However, a typical webstore
contains thousands of products; all the information for these products is usually stored in a
database. So, we need to make our ProductController class smart enough to load all the
product information from the database into the model. However, if we write all the data
retrieval logic in the ProductController class itself to retrieve product information from
the database, our ProductController class will blow down into a big chunk of file.
Logically speaking, data retrieval is not the duty of the controller because the controller is
a presentation layer component. Moreover, we need to organize data retrieval code in a
separate layer so that we can reuse this logic as much as possible from other controllers
and layers.

How do we retrieve data from the database the Spring MVC way? There comes the
concept of the persistence layer. A persistence layer usually contains repository objects to
access domain objects. A repository object makes queries to the data source for the data,
thereafter maps the data from the data source to a domain object, and finally, persists the
changes in the domain object to the data source. So, a repository object is typically
responsible for CRUD operations (Create, Read, Update, and Delete) on domain objects.
The @Repository annotation (org.springframework.stereotype.Repository)is an
annotation that marks a specific class as a repository. The @Repository annotation also
indicates that the SQL exceptions thrown from the repository object’s methods should be
translated into Spring’s DataAccessExceptions. Let’s create a repository layer for our
application.

Time for action — creating a repository
object

Perform the following steps to create a repository class to access your product domain
objects:

1. Create an interface called ProductRepository under the package
com.packt .webstore.domain.repository in the source folder src/main/java. Add
a single method declaration in it, as follows:

List <Product> getAllProducts();

2. Create a class called InMemoryProductRepository under the package
com.packt.webstore.domain.repository.impl in the source folder
src/main/java. Now, add the following code into it:

package com.packt.webstore.domain.repository.impl;

import java.math.BigDecimal;

import java.util.ArraylList;

import java.util.List;

import org.springframework.stereotype.Repository;

import com.packt.webstore.domain.Product;

import com.packt.webstore.domain.repository.ProductRepository;

@Repository
public class InMemoryProductRepository implements ProductRepository{

private List<Product> listOfProducts = new ArrayList<Product>();

public InMemoryProductRepository() {

Product iphone = new Product('"P1234","iPhone 5s", new
BigDecimal(500));

iphone.setDescription("Apple iPhone 5s smartphone with 4.00-inch
640x1136 display and 8-megapixel rear camera");

iphone.setCategory("Smart Phone");

iphone.setManufacturer("Apple");

iphone.setUnitsInStock(1000);

Product laptop_dell = new Product("P1235","Dell Inspiron", new
BigDecimal(700));

laptop_dell.setDescription("Dell Inspiron 14-inch Laptop (Black)
with 3rd Generation Intel Core processors");

laptop_dell.setCategory("Laptop");

laptop_dell.setManufacturer("Dell");

laptop_dell.setUnitsInStock(1000);

Product tablet_Nexus = new Product("P1236", "Nexus 7", new
BigDecimal(300));

tablet_Nexus.setDescription("Google Nexus 7 is the lightest 7 inch
tablet With a quad-core Qualcomm Snapdragon™ S4 Pro processor");

tablet_Nexus.setCategory("Tablet");

tablet_Nexus.setManufacturer("Google");
tablet_Nexus.setUnitsInStock(1000);

listOfProducts.add(iphone);
listOfProducts.add(laptop_dell);
listOfProducts.add(tablet_Nexus);

}

public List<Product> getAllProducts() {
return listOfProducts;
}

}

3. Open ProductController from the package com.packt.webstore.controller in
the source folder src/main/java, and add a private reference to ProductRepository
with the @Autowired annotation
(org.springframework.beans.factory.annotation.Autowired), as follows:

@Autowired
private ProductRepository productRepository;

4. Now, alter the body of the 1ist method, as follows, in ProductController:

@RequestMapping("/products")

public String list(Model model) {
model.addAttribute("products", productRepository.getAllProducts());
return "products";

}

5. Then, open the view file products.jsp from src/main/webapp/WEB-INF/views/,
and remove all of the existing code and replace it with the following code snippet:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">
<link rel="stylesheet"

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">
<title>Products</title>
</head>
<body>
<section>
<div class="jumbotron">
<div class="container'">
<h1>Products</h1>
<p>All the available products in our store</p>
</div>
</div>
</section>

<section class="container'">
<div class="row">

<c:forEach items="${products}" var="product">
<div class="col-sm-6 col-md-3" style="padding-bottom: 15px">
<div class="thumbnail">
<div class="caption">
<h3>${product.name}</h3>
<p>${product.description}</p>
<p>$${product.unitPricel}</p>
<p>Available ${product.unitsInStock} units in stock</p>
</div>
</div>
</div>
</c:forEach>
</div>
</section>
</body>
</html>

. Finally, run the application and enter the URL
http://localhost:8080/webstore/products. You will see a web page displaying
the product information as shown in the following screenshot:

= C | [4 localhost:8080/webstore/products

Products

All the available products in our store

iPhone 5s Dell Inspiron Nexus 7

Apple iPhone s smartphone with Dell Inspiron 14-inch Laptop (Black) Google Nexus 7 is the lightest 7 inch
4.00-inch 640x1136 display and 8- with 3rd Generation Intel Core tablet With a gquad-core Qualcomm
megapixel rear camera processors Snapdragon? S4 Pro processor
3500 $700 $300

Available 1000 units in stock Available 1000 units in stock Available 1000 units in stock

The Products page displaying all of the product information from the in-memory
repository

What just happened?

Since we don’t want to write all of the data retrieval logic inside ProductController
itself, we delegated this task to another class called InMemoryProductRepository. The
InMemoryProductRepository class has a single method called getAl1lProducts(), which
returns a list of product domain objects.

As the name implies, InMemoryProductRepository is just a dummy, in-memory product
repository. It does not retrieve any real product domain object information from any
database as such; rather, it just instantiates a list of product domain objects in its
constructor. So, in step 2, we just created the InMemoryProductRepository class, added a
single method getAllProducts() to it, and instantiated some products in the constructor.

You may wonder, then, what we did in step 1. In step 1, we just created an interface called
ProductRepository, which defines the expected behavior of a product repository. As of
now, the only expected behavior of a ProductRepository interface is to return a list of
product domain objects (getAllProducts), and our InMemoryProductRepository class is
just an implementation of this interface.

Writing real data retrieval code is beyond the scope of this book, so I have created
InMemoryProductRepository just for demonstration purposes. However, it is possible to
replace the InMemoryProductRepository class with any other real implementation that
can retrieve real data from the database.

Why do we have an interface and an implementation for the product repository?
Remember that we are actually creating a persistence layer for our application. Who is
going to use our persistence layer repository object? It will possibly be used by a
controller object (in our case, ProductController) from the controller layer, so it is not
the best practice to connect two layers (controller and persistence) with a direct reference.
Instead, we can, in future, have an interface reference in the controller so that we can
easily switch to different implementations of the repository without doing any code
changes in the controller class, if we want.

That’s the reason why we had the ProductRepository reference in our
ProductController class in step 3, and not the InMemoryProductRepository class
reference. Note the following lines in ProductController:

@Autowired
private ProductRepository productRepository;

What is the need of the @Autowired annotation here? If you observe the
ProductController class carefully, you may wonder why we didn’t instantiate any object
for the reference, productRepository. Nowhere could we see a single line saying
something like productRepository = new InMemoryProductRepository();.

So how come the execution of the line productRepository.getAllProducts() works just
fine without any NullPointerException error in the 1ist method of the
ProductController class?

model.addAttribute("products", productRepository.getAllProducts());

Who assigns the InMemoryProductRepository object to the productRepository
reference? The answer is that the Spring Framework assigns the
InMemoryProductRepository object to the productRepository reference.

Remember we learned that Spring creates and manages beans (objects) for every
@controller class? Similarly, Spring creates and manages beans for @Repository classes
as well. As soon as Spring sees the @Autowired annotation on top of the
ProductRepository reference, it assigns the object of InMemoryProductRepository to
this reference since Spring already created and holds the InMemoryProductRepository
object in its object container (the web application context).

If you remember, we configured a component scan through the following tag in the web
application context configuration file:

<context:component-scan base-package=" com.packt.webstore" />

Also, we learned earlier that if we configure our web application context as mentioned, it
not only detects controllers (@controller), but it also detects other stereotypes such as
repositories (@Repository) and services (@Service).

Since we added the @Repository annotation on top of the InMemoryProductRepository
class, Spring knows that if any reference of the type productRepository has an
@Autowired annotation on top of it, then it should assign the implementation object
InMemoryProductRepository to that reference. This process of managing the dependency
between classes is called dependency injection or wiring in the Spring world. So, to mark
any class as a repository object, we need to annotate that class with the @Repository
annotation (org.springframework.stereotype.Repository).

We understand how the persistence layer works, but after the repository object returns a
list of products, how do we show it on the web page? If you remember how we added our
first product to the model, it is very similar to that. Instead of a single object, this time we
add a list of objects to the model through the following line in the 1ist method of
ProductController:

model.addAttribute("products", productRepository.getAllProducts());

In the preceding code, productRepository.getAllProducts() just returns a list of
product domain objects (List<Product>), and we directly add this list to the model.

In the corresponding view file (products. jsp), using the <C: forEach> tag, we loop
through the list and display the information for each product inside a styled div tag:

<c:forEach items="${products}" var="product">
<div class="col-sm-6 col-md-3" style="padding-bottom: 15px">
<div class="thumbnail">
<div class="caption">

<h3>${product.name}</h3>
<p>${product.description}</p>
<p>${product.unitPrice} USD</p>
<p> Available ${product.unitsInStock} units in stock </p>

</div>
</div>
</div>
</c:forEach>

Again, note that the text products in the expression ${products} is nothing but the key
that we used when adding the product list to the model from the ProductController
class.

The for each loop is a special JSTL looping tag that will run through the list of products
and assign each product to a variable called product (var="product") on each iteration.
From the product variable, we fetch information such as the name, description, and
unitPrice of the product and display it within the <h3> and <p> tags. That’s how we are
finally able to see the list of products on the products web page.

The service layer

So far so good; we created a presentation layer that contains a controller, dispatcher
servlet, view resolvers, and so on. Then, we created a domain layer that contains a single
domain class, Product. Finally, we created the persistence layer, which contains a
repository interface and an implementation to access our Product domain objects.

However, we are still missing one more concept called the service layer. Why do we need
the service layer? We saw how a persistence layer deals with all of the logic related to data
access (CRUD) and the presentation layer deals with all of the activities related to the web
request and view; the domain layer contains classes to hold information that is retrieved
from database records / the persistence layer. However, where can we put the code for
business operations?

The service layer exposes business operations that could be composed of multiple CRUD
operations. These CRUD operations are usually performed by the repository objects. For
example, you could have a business operation to process a customer order, and in order to
perform such a business operation, you would need to perform the following operations:

1. First, ensure that all of the products in the requested order are available in your store.

2. Second, have a sufficient quantity of these products in your store.

3. Finally, update the product inventory by reducing the available count for each
product that was ordered.

Service objects are good candidates for such business operations logic. The service
operations could also represent the boundaries of SQL transactions; this means that all of
the elementary CRUD operations performed inside the business operation should be inside
a transaction: either all of them should succeed or they should roll back in case of error.

Time for action — creating a service object

Perform the following steps to create a service object that will perform the simple business
operation of order processing:

1. Open the interface ProductRepository from the package
com.packt.webstore.domain.repository in the source folder src/main/java, and
add one more method declaration on it, as follows:

Product getProductById(String productID);

2. Open the implementation class InMemoryProductRepository and add an
implantation for the previously declared method, as follows:

public Product getProductById(String productId) {
Product productById = null;

for(Product product : listOfProducts) {
if(product!=null && product.getProductId()'=null &&
product.getProductId().equals(productId)){
productById = product;
break;

}
b

if(productById == null){
throw new IllegalArgumentException("No products found with the
product id: "+ productId);

}

return productById;
}

3. Create an interface called orderservice under the package
com.packt .webstore.service in the source folder src/main/java. Now, add a
method declaration in it as follows:

void processOrder(String productId, int count);

4. Create a class called orderserviceImpl under the package
com.packt .webstore.service.impl in the source folder src/main/java. Then, add
the following code into it:

package com.packt.webstore.service.impl;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import com.packt.webstore.domain.Product;

import com.packt.webstore.domain.repository.ProductRepository;
import com.packt.webstore.service.OrderService;

@Service
public class OrderServiceImpl implements OrderService{

@Autowired
private ProductRepository productRepository;

public void processOrder(String productId, long quantity) {
Product productById = productRepository.getProductById(productId);

if(productById.getUnitsInStock() < quantity){
throw new IllegalArgumentException("Out of Stock. Available Units
in stock"+ productById.getUnitsInStock());

}

productById.setUnitsInStock(productById.getUnitsInStock() -
guantity);

3
}

. Now, create one more controller class called ordercontroller under the package
com.packt .webstore.controller in the source folder src/main/java, and add the
following code into it:

package com.packt.webstore.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.RequestMapping;
import com.packt.webstore.service.OrderService;

@Controller
public class OrderController {

@Autowired
private OrderService orderService;

@RequestMapping("/order/P1234/2")

public String process() {
orderService.processOrder("P1234", 2);
return "redirect:/products";

}
}
. Finally, run the application and enter the URL
http://localhost:8080/webstore/order/P1234/2. You will be able to see a web
page displaying the product information as shown in the following screenshot (note
that the available units in stock for iPhone 5s show as Available 998 units in stock):

[Products
&« C' | [localhost:8080/webstore/products

Products

All the available products in our store

IPhone 5s

Apple iPhone 5s smartphone with 4 00-inch
640x1136 display and 8-megapixel rear camera

500 USD

Available 998 units in stock

The Products page displaying the product information after the stock was updated
via a service call

What just happened?

Before going through the steps, I just want to remind you of a fact regarding repository
objects: all of the data access (CRUD) operations on a domain object should be carried
through repository objects only. Fact number two is that service objects rely on repository
objects to carry out all operations related to data access. That’s why, before creating the
actual service interface/implementation, we created a repository interface /
implementation method (getProductById) in steps 1 and 2.

The getProductById method from the InMemoryProductRepository class just returns a
product domain object for the given product ID. We need this method when we write the
logic for our service object method (process0Order) in the OrderServiceImpl class. If the
product is not found for the given ID, then InMemoryProductRepository throws
IllegalArgumentException.

Now, let’s review steps 3 and 4, where we created the actual service definition and
implementation. In step 3, we created an interface called orderService to define all of the
expected responsibility of an order service. We defined only one responsibility, as of now,
within that interface; that is, to process the order via the method, processorder. The
processOrder method has two parameters: one is productId and the other is quantity. In
step 4, we implemented the processOrder method within the OrderServiceImpl class,
where we reduced the amount of stock available for the given productId by the quantity
parameter.

In the previous exercise, within the ProductController class, we connected controller
and repository through the ProductRepository interface reference to maximize loose
coupling. Similarly, we have now connected the service layer and repository layer through
the ProductRepository interface reference, as follows, in the OrderServiceImpl class:

@Autowired
private ProductRepository productRepository;

As we have already learned, Spring assigned the InMemoryProductRepository object to
the productRepository reference in the previously mentioned code because the
productRepository reference has the @Autowired annotation, and we know that Spring
creates and manages all of the @service and @Repository objects. Note that
OrderServiceImpl has the @Service annotation
(org.springframework.stereotype.Service) on top of it. We used the
productRepository reference to get the product for the given ID within the processorder
method of the orderServiceImpl class as follows:

public void processOrder(String productId, long quantity) {
Product productById = productRepository.getProductById(productId);

if(productById.getUnitsInStock() < quantity){
throw new IllegalArgumentException("Out of Stock. Available Units in
stock"+ productById.getUnitsInStock());

}

productById.setUnitsInStock(productById.getUnitsInStock() - quantity);
}

Tip

To ensure transactional behavior, Spring provides the @Transactional annotation
(org.springframework.transaction.annotation.Transactional). We need to annotate
service methods with the @Transactional annotation to define transaction attributes, and

we need to do some more configuration in our application context for transactional
behavior to take effect.

However, since we are using dummy, in-memory repositories to mimic data access, to
annotate service methods with the @Transactional annotation is meaningless. To know
more about transaction management in Spring, refer to

http://docs.spring.io/spring/docs/current/spring-framework-
reference/html/transaction.html.

We already created the service layer, and now it is ready to be consumed from the
presentation layer. It is time for us to connect our service layer with the controller. In step
5, we created one more controller, OrderController, with a request mapping method
called process in it that is shown in the following code snippet:

@RequestMapping('"/order/P1234/2")

public String process() {
orderService.processOrder("P1234", 2);
return "redirect:/products";

}

The process method from the ordercController class uses our orderService reference to
process the order for the product ID, P1234. After successfully executing the process
method of orderController, the available units in stock should get reduced by 2 for the
product with the ID, P1234.

You will also notice that we mapped the /order/P1234/2 URL path to the process
method using the @RequestMapping annotation. So, when we finally try to hit the URL
http://localhost:8080/webshop/order/P1234/2, we will be able to see that the
available units in stock get reduced by two for the product, P1234.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/transaction.html

Have a go hero — accessing the product domain
object via a service

In our ProductController class, we only have the ProductRepository reference to
access the Product domain object. However, to access ProductRepository directly from
ProductController is not the best practice; it is always good to access the persistence
layer repository via the service object. However, we have not created any service object to
mediate between ProductController and ProductRepository.

Why don’t you create a service layer to mediate between ProductController and
ProductRepository? The following are some of the things you can try out:

1.

Create an interface called ProductService with a method declaration, List
<Products> getAllProducts();.

Create an implementation class, ProductServiceImpl, for the ProductService
interface.

Autowire the ProductRepository reference in the ProductServiceImpl class and
use this reference within the getAllProducts method to get all of the products from
ProductRepository.

Replace the ProductRepository reference with the ProductService reference in the
ProductController class. Accordingly, change the list method in the
ProductController class.

After finishing this, you will be able to see the same product listings under the URL,
http://localhost:8080/webshop/products/.

An overview of the web application
architecture

So far, we have seen how to organize our code into layers so that we can avoid tight
coupling between various code files, and improve reusability and the separation of
concerns. We just created one domain class, one repository class, and one service class for
demonstration purposes, but a typical, real-world MVC application may contain as many
domain, repository, and service classes as required. Each layer is usually connected
through interfaces and always controller access domain objects from the repository via the
service interface only.

Every typical, enterprise-level Spring MV C application will logically have four layers:
presentation, domains, persistence, and services. The domain layer is sometimes called the
model layer. The following block diagram will help you conceptualize this idea:

Presentation laver :
Y Service layer

Request
Browser Front Controller

Persistence
Response layer

Model Model

View Controller

The layers of a Spring MVC application

So, we learned how to create a service layer object and repository layer object; what we
saw in the service layer and repository layer was just a glimpse. Spring has extensive
support to deal with databases and transactions; handling these is a very vast topic and
deserves its own book. In the upcoming chapters, we will concentrate more on the
presentation layer, which contains most of the concepts related to Spring MVC rather than
those related to the database and transaction.

Have a go hero — listing all our customers

It is great that you have listed all of the products in your web application under the URL,
http://localhost:8080/webstore/products, but in order to become a successful web
store, maintaining only the product information is not enough. You need to maintain
information about the customer as well so that you can attract them by giving special
discounts based on their purchase history.

Why don’t you maintain customer information in your application? Execute the following
steps to make some improvements to your application to maintain customer information:

1.

w

o

10.

11.

Add one more domain class called the Customer domain class in the same package
where the product exists.

Add fields such as customerId, name, address, and noOfOrdersMade to the Customer
class.

Create a persistence layer to return all customers.

Create an interface called customerRepository with a method declaration, List
<Customers> getAllCustomers();.

Create an implementation InMemoryCustomerRepository for CustomerRepository
and instantiate a dummy customer in the constructor of
InMemoryCustomerRepository, as you did for InMemoryProductRepository.
Create a service layer to get all of the customers from the repository.

Create an interface called customerService with a method declaration, List
<Customers> getAllCustomers().

Create an implementation CustomerServiceImpl for CustomerService.

Create one more controller called CustomerController.

Add a request mapping method to map the URL,
http://localhost:8080/webstore/customers.

Create a view file called customers. jsp.

After finishing this exercise, you will be able to see all of your customers under the URL,
http://localhost:8080/webstore/customers. This is very similar to the way we listed
all of our products under the URL, http://localhost:8080/webstore/products.

Summary

At the start of this chapter, we learned the duty of a dispatcher servlet and how it maps a
request using the @RequestMapping annotation. Next, we saw what a web application
context is and how to configure it for our web application. After that, we got a little
introduction about view resolvers and how InternalResourceViewResolver resolves the
view file for the given logical view name. We also learned the concept of MVC and the
overall request flow of a Spring MVC application, and then we learned about web
application architecture. In the web application architecture section, we saw how to create
and organize code under the various layers of a Spring MVC application, such as the
domain layer, persistence layer, and service layer. At the same time, we saw how to
retrieve product domain objects from the repository and present them on the web page
using the controller. We also learned where a service object fits in. Finally, we saw an
overview of the web application architecture.

I hope you got a good overview of Spring MVC and the various components involved in
developing a Spring MVC application. In the next chapter, we are specifically going to
learn more about controllers and related concepts. Meet you in the next chapter!

Chapter 3. Control Your Store with

Controllers

In Chapter 2, Spring MVC Architecture — Architecting Your Web Store, we learned the
overall architecture of a Spring MVC application. We didn’t go into any of the concepts in
detail; our total aim was to understand the overall flow. In this chapter, we are going to
have an in-depth look at the controllers in Spring MVC as they have an important role.

This chapter will cover the following concepts:

Defining a controller
URI template patterns
Matrix variables

[]
[]
[]
e Request parameters

Defining a controller

Controllers are presentation layer components that are responsible for responding to user
actions. These actions could be entering a particular URL on the browser, clicking on a
link, submitting a form on a web page, and so on. Any regular Java class can be
transformed into a controller by simply being annotated with the @Controller annotation
(org.springframework.stereotype.Controller).

And we had already learned that the @Controller annotation supports Spring’s
autodetection mechanism for auto-registering the bean definition in the web application
context. To enable such auto-registering, we must add the <context: component -scan> tag
in the web application context configuration file; we have seen how to do that in the The
web application context configuration section of Chapter 2, Spring MVC Architecture —
Architecting Your Web Store.

A controller class is made up of request-mapped methods, also called handler methods.
Handler methods are annotated with the @RequestMapping annotation
(org.springframework.web.bind.annotation.RequestMapping). The @RequestMapping
annotation is used to map URLs to particular handler methods. In Chapter 2, Spring MVC
Architecture — Architecting Your Web Store, we saw a brief introduction on the
@RequestMapping annotation and learned how to apply the @RequestMapping annotation
on the handler method level. However, in Spring MVC, we can even specify the
@RequestMapping annotation at the controller class level. In that case, Spring MVC will
consider the controller class level @RequestMapping annotation value before mapping the
URL to the handler methods. This feature is called relative request mapping.

Note

The terms request mapped method, mapped method, handler method, and controller
method all mean the same thing; these terms are used to specify the controller method
with an @RequestMapping annotation. They have been used interchangeably in this book.

Time for action — adding class-level
request mapping

Let’s add a @RequestMapping annotation on our ProductController class to demonstrate
the relative request mapping feature. However, before that, we just want to ensure that you
have already replaced the ProductRepository reference with the ProductService
reference in the ProductController class as part of the previous chapter’s Time for action
— creating a service object section. Because contacting the persistence layer directly from
the presentation layer is not a best practice, all access to the persistence layer should go
through the service layer. Perform the following steps (those who have completed this
exercise can directly start from step 5; others please continue from step 1):

1. Create an interface called ProductService under the com.packt.webstore.service
package in src/main/java and add two method declarations in it as follows:

List<Product> getAllProducts();
Product getProductById(String productID);

2. Create a class called ProductServiceImpl under the
com.packt.webstore.service.impl package in src/main/java and add the
following code into it:

package com.packt.webstore.service.impl;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import com.packt.webstore.domain.Product;

import com.packt.webstore.domain.repository.ProductRepository;
import com.packt.webstore.service.ProductService;

@Service
public class ProductServiceImpl implements ProductService{

@Autowired
private ProductRepository productRepository;

public List<Product> getAllProducts() {
return productRepository.getAllProducts();
}

public Product getProductById(String productID) {
return productRepository.getProductById(productID);
¥

}

3. Open ProductController, remove the existing ProductRepository reference, and
add the ProductService reference as follows:

@Autowired
private ProductService productService;

. Now, alter the body of the 1ist method in the ProductController class as follows
(note that this time we used the productService reference to get all of the products):

@RequestMapping("/products")
public String list(Model model) {
model.addAttribute("products", productService.getAllProducts());

return "products";

}

. In the ProductController class, add the following annotation on top of the class:

@RequestMapping("/products")

. From the 1ist method’s @RequestMapping annotation, remove the value attribute
completely; so now, the 1ist method will have a plain @RequestMapping annotation
without any attributes as follows:

@RequestMapping
public String list(Model model) {

. Now, add one more handler method in the ProductController class as follows:

@RequestMapping("/all")
public String allProducts(Model model) {
model.addAttribute("products", productService.getAllProducts());

return "products";

}

. Finally, run the application again and enter the URL
http://localhost:8080/webstore/products/all in the browser to view all of the
products.

What just happened?

What we have demonstrated here is a simple concept called relative request mapping. We
did the following three things in the ProductController class:

e We added an @RequestMapping annotation at the class level with a value attribute
defined as "/products" in step 5

e We removed the value attribute from the @RequestMapping annotation of the 1list
method in step 6

¢ Finally, we added one more handler method called al1Products, which also puts the
same list of products on the model as the 1ist method, but under a different URL
mapping—a@RequestMapping("/all")

In all our previous examples, we annotated the @RequestMapping annotations only at the
controller method level, but Spring MV C also allows us to specify request mapping at the
controller class level. In this case, Spring MVC maps a specific URL path at the method
level that is relative to the class level @RequestMapping URL value.

In step 5, we just added the @RequestMapping annotation at the ProductController class
level with the URL mapping value /products. And in step 7, we added a new handler
method called allProducts with a URL mapping value /all. So, the final request path for
the allProducts method is formed by combining the class and method request mapping
values, which is /products/all. So, if we defined any class level request mapping,

Spring MV C would consider that class level request path before mapping the request to
the method.

Note

Steps 1 to 4 just teach you how to create and connect a service layer object with the
ProductController class. As of now, the ProductServiceImpl class does not have any
distinguishable business logic in it; rather, it simply delegates the call to the persistence
layer’s repository object (ProductRepository) to access the Product domain object. So as
of now, there is no real meaning to have a service layer for ProductRepository; however,
in future, if we decide to replace the InMemoryProductRepository object with a real
database backed repository object, we will definitely need this service layer to write code
to handle transaction-related tasks. So, just to maintain the industry’s best practices, I have
retained the service layers in most of the examples in this book.

In step 6, we simply didn’t specify any request path value in the @RequestMapping
annotation of the 1ist method. By doing so, we made the 1ist method the default request
mapping method for the ProductController class. So, whenever a request URL ends up
with the controller class level request path value without any further relative path, Spring
MVC invokes this method as a response to the request.

So, finally in our case, the URL http://localhost:8080/webstore/products will be
mapped to the 1ist method and http://localhost:8080/webstore/products/all will
be mapped to the allProducts method.

Note

If you specify more than one default mapping method inside a controller, you will get
IllegalStateException with the message Ambiguous mapping found. So, a controller
can have only one default request mapping method at most.

Pop quiz — class-level request mapping

Q1. In a web application called 1ibrary that has the following request mapping at a
controller class level and in the method level, which is the appropriate request URL to
map the request to the books method?

@RequestMapping("/books™")
public class BookController {

@RequestMapping(value = "/list")
public String books(Model model) {

http://localhost:8080/1ibrary/books/1list
http://localhost:8080/1ibrary/list
http://localhost:8080/1ibrary/list/books
http://localhost:8080/1ibrary/

e

Q2. If we have another handler method called bookDetails under BookController as
follows, what will the URL that maps to that method be?

@RequestMapping()
public String bookDetails(Model model) {

http://localhost:8080/1ibrary/books/details
http://localhost:8080/1library/books
http://localhost:8080/1library/details
http://localhost:8080/1ibrary/

e

The role of a controller in Spring MVC

In Spring MVC, controller methods are the final destination point that a web request can
reach. After being invoked, the controller method starts to process the web request by
interacting with the service layer to complete the work that needs to be done. Usually, the
service layer executes some business operations on domain objects and calls the
persistence layer to update the domain objects. After the processing has been completed
by the service layer object, the controller is responsible for updating and building up the
model object and chooses a view for the user to see next as a response.

Remember that Spring MVC always keeps the controllers unaware of any view
technology used. That’s why the controller returns only a logical view name; later,
DispatcherServlet consults with viewResolver to find out the exact view to be
rendered. According to the controller, Model is a collection of arbitrary objects and View is
specified with a logical name.

In all our previous exercises, the controllers used to return the logical view name and
update the model via the model parameter available in the controller method. There is
another, seldom used way of updating the model and returning the view name from the
controller with the help of the ModelAndview object
(org.springframework.web.servlet.ModelAndView). Look at the following code
snippet, for example:

@RequestMapping("/all")
public ModelAndView allProducts() {
ModelAndView modelAndView = new ModelAndView();

modelAndView.addObject("products", productService.getAllProducts());
modelAndView.setViewName("products");

return modelAndView;

}

The preceding code snippet just shows how we can encapsulate the model and view using
the ModelAndview object.

Handler mapping

We have learned that DispatcherServlet is the one that dispatches the request to the
handler methods based on the request mapping; however, in order to interpret the
mappings defined in the request mapping, DispatcherServlet needs a HandlerMapping
implementation (org.springframework.web.servlet.HandlerMapping). The
DispatcherServlet consults with one or more HandlerMapping implementations to find
out which controller (handler) can handle the request. So, HandlerMapping
determines which controller to call.

The HandlerMapping interface provides the abstraction for mapping requests to handlers.
The HandlerMapping implementations are capable of inspecting the request and coming
up with an appropriate controller. Spring MVC provides many HandlerMapping
implementations, and the one we are using to detect and interpret mappings from the
@RequestMapping annotation is the RequestMappingHandlerMapping class
(org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandler
To start using RequestMappingHandlerMapping, we have to add the <mvc:annotation-
driven> element in our web application context configuration file so that Spring MVC
can create and register a bean for RequestMappingHandlerMapping in our web application
context. We already configured <mvc:annotation-driven> in Chapter 2, Spring MVC
Architecture — Architecting Your Web Store, in the The web application context
configuration section.

Using URI template patterns

In the previous chapters, we saw how to map a particular URL to a controller method; for
example, if the URL entered was http://localhost:8080/webstore/products, we
mapped that request to the 1ist method of ProductController and listed all the product
information on the web page.

What if we want to list only a subset of the products based on category, for instance, we
want to display only the products that fall under the category of laptops if the user entered
the URL http://localhost:8080/webstore/products/laptop? Similarly, what if the
URL is http://localhost:8080/webstore/products/tablet and we would like to show
only tablets on the web page?

One way to do this is to have a separate request mapping method in the controller for
every unique category. However, it won’t scale if we have hundreds of categories; in that
case, we’ll have to write a hundred request mapping methods in the controller. So how do
we do this in an elegant way?

We use the Spring MVC URI template pattern feature. If you note the following URLs,
the only part that changes in the URL is the category type (laptop and tablet); other than
that, everything remains the same:

® http://localhost:8080/webstore/products/laptop
® http://localhost:8080/webstore/products/tablet

So, we can define a common URI template for the previously mentioned URLSs, which
might look like http://localhost:8080/webstore/products/{category}. Spring MVC
can leverage this fact and make that template portion ({category}) of the URL a variable,
called a path variable in the Spring world.

Time for action — showing products based
on category

Let’s add a category view to the products page using the path variable:

1.

Open the ProductRepository interface and add one more method declaration on its
getProductsByCategory method:

List<Product> getProductsByCategory(String category);

Open the implementation class InMemoryProductRepository and add an
implementation for the previously declared method as follows:

public List<Product> getProductsByCategory(String category) {
List<Product> productsByCategory = new ArrayList<Product>();

for(Product product: listOfProducts) {
if(category.equalsIgnoreCase(product.getCategory())){
productsByCategory.add(product);

b
¥

return productsByCategory;

}

Similarly, open the ProductService interface and add one more method declaration
on its getProductsByCategory method:

List<Product> getProductsByCategory(String category);

Open the service implementation class ProductServiceImpl and add an
implementation as follows:

public List<Product> getProductsByCategory(String category) {
return productRepository.getProductsByCategory(category);

}

Open the ProductController class and add one more request mapping method as
follows:

@RequestMapping("/{category}")

public String getProductsByCategory(Model model,

@Pathvariable("category") String productCategory) {
model.addAttribute("products",

productService.getProductsByCategory(productCategory));
return "products";

}

Run the application and enter the URL
http://localhost:8080/webstore/products/tablet; you will see something as
specified in the following screenshot:

LT I |

[localhost:8080/webstore/products/tablet

Products

All the available products in our store

Nexus 7

Google MNexus 7 is the lightest 7 inch
tablet With a quad-core Qualcomm
Snapdragon? S4 Pro processor

300 UsD

Available 1000 units in stock

Showing products by category with the help of path variables

What just happened?

Step 5 is the most important in the whole sequence from the previous list, because all the
steps prior to step 5 are the prerequisites for step 5. What we are doing in step 5 is nothing
but adding a list of product objects to the model like we normally would:

model.addAttribute("products", productService.getProductsByCategory(ProductC
ategory));

One thing we need to note here is the getProductsByCategory method from
productService; we need this method to get the list of products for the given category,
and productService as such cannot give the list of products for the given category. It will
ask the repository. That’s why, in step 4, we used the productRepository reference to get
the list of products by category within the ProductServiceImpl class. Note the following
code snippet from ProductServiceImpl:

return productRepository.getProductsByCategory(category);

Another important thing to be noted in the code snippet from step 5 is the
@RequestMapping annotation’s request path value as follows:

@RequestMapping("/{category}")

By enclosing a portion of a request path within curly braces, we indicate to the Spring
MVC that it is a URI template variable. According to Spring MVC documentation, a URI
template is a URI-like string that contains one or more variable names. When you
substitute values for these variables, the template becomes a URI.

For example, the URI template
http://localhost:8080/webstore/products/{category} contains the variable
category. Assigning the value laptop to the variable yields
http://localhost:8080/webstore/products/laptop. In Spring MVC, we can use the
@Pathvariable annotation
(org.springframework.web.bind.annotation.Pathvariable) to read a URI template
variable.

Since we have the @RequestMapping("/products") annotation at the ProductController
level, the actual request path of the getProductsByCategory method will be
/products/{category}. So at runtime, if we give a web request URL as
http://localhost:8080/webstore/products/laptop, then the category path variable
will have the value laptop. Similarly, for the web request
http://localhost:8080/webstore/products/tablet, the category path variable will
have the value tablet.

How do we retrieve the value stored in the URI template path variable category? As we
already mentioned, the @Pathvariable annotation will help us read that variable. All we
need to do is simply annotate the getProductsByCategory method parameter with the
@Pathvariable annotation as follows:

public String getProductsByCategory(@Pathvariable("category") String

productCategory, Model model) {

So, Spring MVC will read whatever value is present in the category URI template
variable and assign it to the method parameter productCategory. So, we have the
category value in a variable, and we just pass it to productService to get the list of
products in that category. Once we get that list of products, we simply add it to the model
and return the same view name that we have used to list all the products.

The value attribute in the @Pathvariable annotation should be the same as the variable
name in the path expression of the @RequestMapping annotation. For example, if the path
expression is "/products/{identity}", then to retrieve the path variable identity, you
have to form the @Pathvariable annotation as @Pathvariable("identity").

Note

If the @Pathvariable annotation has been specified without any value attribute, it will try
to retrieve a path variable with the same name as that of the variable that it has been
annotated with.

For example, if you specify simply @Pathvariable String productId, then Spring will
assume that it should look for a URI template variable " {product1d}" in the URL. A
request mapping method can have any number of @Pathvariable annotations.

Finally, in step 6, when we enter the URL
http://localhost:8080/webstore/products/tablet, we see information about
Google’s Nexus 7, which is a tablet. Similarly, if we enter the URL
http://localhost:8080/webstore/products/laptop, we see information about Dell’s
Inspiron laptop.

Pop quiz — request path variable

Q1. In a web application called WebStore that has the following request mapping at a
controller class level and in the method level, which is the appropriate request URL that
can be used?

@RequestMapping("/items")
public class ProductController {

@RequestMapping(value = "/type/{type}", method = RequestMethod.GET)
public String productDetails(@Pathvariable("type") String productType,
Model model) {

1. http://localhost:8080/WebStore/items/electronics

2. http://localhost:8080/WebStore/items/type/electronics

3. http://localhost:8080/WebStore/items/productType/electronics
4. http://localhost:8080/WebStore/type/electronics

Q2. For the following request mapping annotation, which are the correct method
signatures to retrieve the path variables?

@RequestMapping(value="/manufacturer/{
manufacturerId}/product/{productId}")

1. public String productByManufacturer(@Pathvariable String
manufacturerId, @PathVariable String productId, Model model)

2. public String productByManufacturer (@Pathvariable String manufacturer,
@Pathvariable String product, Model model)

3. public String productByManufacturer (@Pathvariable("manufacturer")
String manufacturerId, @PathVariable("product") String productId, Model
model)

4. public String productByManufacturer (@Pathvariable("manufacturerId")
String manufacturer, @PathVariable("productId") String product, Model
model)

Using matrix variables

In the last section, we saw the URI template facility to bind variables in the URL request
path. However, there is one more way to bind variables in the request URL in a name-
value pair style; these bound variables are referred to as matrix variables within Spring
MVC. Look at the following URL.:

http://localhost:8080/webstore/products/filter/price;low=500;high=1000

In this URL, the actual request path is just up to
http://localhost:8080/webstore/products/filter/price, after which we have
something like 1ow=500; high=1000; here, low and high are just matrix variables.
However, what makes matrix variables so special is the ability to assign multiple values
for a single variable; this means that we can assign a list of values to a URI variable. Take
a look at the following URL.:

http://localhost:8080/webstore/products/filter/ByCriteria;brand=google, dell;

In the given URL, we have two variables, namely, brand and category; both have
multiple values, brand=google, dell and category=tablet, laptop. How do we read
these variables from the URL during request mapping? We use the special binding
annotation @Matrixvariable
(org.springframework.web.bind.annotation.Matrixvariable). One cool thing about
the @Matrixvariable annotation is that it allows us to collect the matrix variables in a
map of collections (Map<String, List<String>>), which will be more helpful when we
are dealing with complex web requests.

Time for action — showing the products
based on filter

Consider a situation where we want to filter the product list based on the brand and
category variables. For example, you want to list all the products that fall under the
category laptop and tablets and from the manufacturers google and dell. With the help
of the matrix variables, we can form a URL to bind the brand and category variables’
values into the URL as follows:

http://localhost:8080/webstore/products/filter/ByCriteria;brand=google, dell;
Let’s map this URL to a handler method with the help of the @Matrixvariable annotation:

1. Open the ProductRepository interface and add one more method declaration,
getProductsByFilter, on it:

Set<Product> getProductsByFilter (Map<String, List<String>>
filterParams);

2. Open the implementation class, InMemoryProductRepository, and add the following
method implementation for getProductsByFilter:

public Set<Product> getProductsByFilter(Map<String, List<String>>
filterParams) {
Set<Product> prod