

Spring	MVC	Beginner’s	Guide

Table	of	Contents

Spring	MVC	Beginner’s	Guide

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Time	for	action	–	heading

What	just	happened?

Pop	quiz	–	heading

Have	a	go	hero	–	heading

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Configuring	a	Spring	Development	Environment

Setting	up	Java

Time	for	action	–	installing	JDK

Time	for	action	–	setting	up	environment	variables

Configuring	a	build	tool

Time	for	action	–	installing	the	Maven	build	tool

Installing	a	web	server

Time	for	action	–	installing	the	Tomcat	web	server

Configuring	a	development	environment

Time	for	action	–	installing	Spring	Tool	Suite

Time	for	action	–	configuring	Tomcat	on	STS

What	just	happened?

Time	for	action	–	configuring	Maven	on	STS

Creating	our	first	Spring	MVC	project

Time	for	action	–	creating	a	Spring	MVC	project	in	STS

What	just	happened?

Spring	MVC	dependencies

Time	for	action	–	adding	Spring	jars	to	the	project

What	just	happened?

Time	for	action	–	adding	Java	version	properties	in	pom.xml

A	jump-start	to	MVC

Time	for	action	–	adding	a	welcome	page

What	just	happened?

The	dispatcher	servlet

Time	for	action	–	configuring	the	dispatcher	servlet

What	just	happened?

Deploying	our	project

Time	for	action	–	running	the	project

Summary

2.	Spring	MVC	Architecture	–	Architecting	Your	Web	Store

The	dispatcher	servlet

Time	for	action	–	examining	request	mapping

What	just	happened?

Pop	quiz	–	request	mapping

The	web	application	context

Time	for	action	–	understanding	the	web	application	context

What	just	happened?

Pop	quiz	–	the	web	application	context

The	web	application	context	configuration

Pop	quiz	–	web	application	context	configuration

View	resolvers

Time	for	action	–	understanding	InternalResourceViewResolver

What	just	happened?

Model	View	Controller

An	overview	of	the	Spring	MVC	request	flow

The	web	application	architecture

The	domain	layer

Time	for	action	–	creating	a	domain	object

What	just	happened?

The	persistence	layer

Time	for	action	–	creating	a	repository	object

What	just	happened?

The	service	layer

Time	for	action	–	creating	a	service	object

What	just	happened?

Have	a	go	hero	–	accessing	the	product	domain	object	via	a	service

An	overview	of	the	web	application	architecture

Have	a	go	hero	–	listing	all	our	customers

Summary

3.	Control	Your	Store	with	Controllers

Defining	a	controller

Time	for	action	–	adding	class-level	request	mapping

What	just	happened?

Pop	quiz	–	class-level	request	mapping

The	role	of	a	controller	in	Spring	MVC

Handler	mapping

Using	URI	template	patterns

Time	for	action	–	showing	products	based	on	category

What	just	happened?

Pop	quiz	–	request	path	variable

Using	matrix	variables

Time	for	action	–	showing	the	products	based	on	filter

What	just	happened?

Understanding	request	parameters

Time	for	action	–	adding	the	product	details	page

What	just	happened?

Pop	quiz	–	the	request	parameter

Time	for	action	–	implementing	a	master	detail	view

What	just	happened?

Have	a	go	hero	–	adding	multiple	filters	to	list	products

Summary

4.	Working	with	Spring	Tag	Libraries

Serving	and	processing	forms

Time	for	action	–	serving	and	processing	forms

What	just	happened?

Customizing	data	binding

Time	for	action	–	whitelisting	form	fields

What	just	happened?

Externalizing	text	messages

Time	for	action	–	externalizing	messages

What	just	happened?

Using	Spring	Security	tags

Time	for	action	–	adding	a	login	page

What	just	happened?

Summary

5.	Working	with	View	Resolver

Resolving	views

The	redirect	view

Time	for	action	–	examining	RedirectView

What	just	happened?

Pop	quiz	–	redirect	view

Serving	static	resources

Time	for	action	–	serving	static	resources

What	just	happened?

Pop	quiz	–	static	view

Time	for	action	–	adding	images	to	the	product	detail	page

What	just	happened?

The	multipart	request	in	action

Time	for	action	–	adding	images	to	the	product	page

What	just	happened?

Have	a	go	hero	–	uploading	product	user	manuals	to	the	server

Using	ContentNegotiatingViewResolver

Time	for	action	–	configuring	ContentNegotiatingViewResolver

What	just	happened?

Working	with	the	handler	exception	resolver

Time	for	action	–	adding	the	response	status	exception

What	just	happened?

Time	for	action	–	adding	an	exception	handler

What	just	happened?

Summary

6.	Intercept	Your	Store	with	Interceptor

Working	with	interceptors

Time	for	action	–	configuring	an	interceptor

What	just	happened?

Pop	quiz	–	interceptor

Internationalization	(i18n)

Time	for	action	–	adding	internationalization

What	just	happened?

Have	a	go	hero	–	fully	internationalize	the	product	detail	page

Audit	logging

Time	for	action	–	adding	the	data	audit	interceptor

What	just	happened?

Conditional	redirecting

Time	for	action	–	intercepting	offer	page	requests

What	just	happened?

Summary

7.	Validate	Your	Products	with	a	Validator

Bean	validation

Time	for	action	–	adding	bean	validation	support

What	just	happened?

Have	a	go	hero	–	adding	more	validation	in	the	add	products	page

Custom	validation	with	JSR-303	/	bean	validation

Time	for	action	–	adding	custom	validation	support

What	just	happened?

Have	a	go	hero	–	adding	custom	validation	to	a	category

Spring	validation

Time	for	action	–	adding	Spring	validation

What	just	happened?

Time	for	action	–	combining	Spring	and	bean	validations

What	just	happened?

Have	a	go	hero	–	adding	Spring	validation	to	the	product	image

Summary

8.	Give	REST	to	Your	Application	with	Ajax

Introducing	REST

Time	for	action	–	implementing	RESTful	web	services

What	just	happened?

Time	for	action	–	consuming	REST	web	services

What	just	happened?

Handling	a	web	service	in	Ajax

Time	for	action	–	consuming	REST	web	services	via	Ajax

What	just	happened?

Summary

9.	Apache	Tiles	and	Spring	Web	Flow	in	Action

Working	with	Spring	Web	Flow

Time	for	action	–	implementing	the	order-processing	service

What	just	happened?

Time	for	action	–	implementing	the	checkout	flow

What	just	happened?

Understanding	the	flow	definition

Understanding	the	checkout	flow

Pop	quiz	–	web	flow

Time	for	action	–	creating	views	for	every	view	state

What	just	happened?

Have	a	go	hero	–	adding	a	decision	state

Enhancing	reusability	through	Apache	Tiles

Time	for	action	–	creating	views	for	every	view	state

What	just	happened?

Pop	quiz	–	Apache	Tiles

Summary

10.	Testing	Your	Application

Unit	testing

Time	for	action	–	unit-testing	domain	objects

What	just	happened?

Have	a	go	hero	–	adding	tests	for	cart

Integration	testing	with	the	Spring	Test	Context	framework

Time	for	action	–	testing	the	product	validator

What	just	happened?

Time	for	action	–	testing	the	product	controller

What	just	happened?

Time	for	action	–	testing	REST	controllers

What	just	happened?

Have	a	go	hero	–	adding	tests	for	the	remaining	REST	methods

Summary

A.	Using	the	Gradle	Build	Tool

Installing	Gradle

The	Gradle	build	script	for	your	project

Understanding	the	Gradle	script

B.	Pop	Quiz	Answers

Chapter	2,	Spring	MVC	Architecture	–	Architecting	Your	Web	Store

Pop	quiz	–	request	mapping

Pop	quiz	–	the	web	application	context

Pop	quiz	–	web	application	context	configuration

Chapter	3,	Control	Your	Store	with	Controllers

Pop	quiz	–	class-level	request	mapping

Pop	quiz	–	request	path	variable

Pop	quiz	–	the	request	parameter

Chapter	5,	Working	with	View	Resolver

Pop	quiz	–	redirect	view

Pop	quiz	–	static	view

Chapter	6,	Intercept	Your	Store	with	Interceptor

Pop	quiz	–	interceptor

Chapter	9,	Apache	Tiles	and	Spring	Web	Flow	in	Action

Pop	quiz	–	web	flow

Pop	quiz	–	Apache	Tiles

Index

Spring	MVC	Beginner’s	Guide

Spring	MVC	Beginner’s	Guide
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2014

Production	reference:	1190614

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-487-0

www.packtpub.com

Cover	image	by	Aniket	Sawant	(<aniket_sawant_photography@hotmail.com>)

http://www.packtpub.com
mailto:aniket_sawant_photography@hotmail.com

Credits
Author

Amuthan	G

Reviewers

Rafał	Borowiec

Pawan	Chopra

Rubén	Clemente	Serna

Acquisition	Editor

Vinay	Argekar

Content	Development	Editor

Azharuddin	Sheikh

Technical	Editors

Monica	John

Neha	Mankare

Shiny	Poojary

Copy	Editors

Gladson	Monteiro

Insiya	Morbiwala

Aditya	Nair

Stuti	Srivastava

Project	Coordinators

Kinjal	Bari

Wendell	Palmer

Proofreaders

Simran	Bhogal

Stephen	Copestake

Maria	Gould

Ameesha	Green

Paul	Hindle

Indexer

Hemangini	Bari

Graphics

Disha	Haria

Abhinash	Sahu

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Amuthan	G	has	over	six	years	of	experience	as	a	professional	software	developer.	He
currently	works	for	a	large	cloud	platform	company	and	has	strong	product	development
experience	in	Java,	Spring,	JPA,	and	many	other	enterprise	technologies.	In	his	free	time,
he	enjoys	blogging	on	his	site	(http://www.madebycode.in).	He	can	be	contacted	at
<mr.amuthan@gmail.com>.

I	would	like	to	gratefully	and	sincerely	thank	Mr.	Vincent	Kok	for	his	guidance,
understanding,	patience,	and	most	importantly,	his	friendship	during	my	first	job	at
Educator	Inc.	His	mentorship	has	shaped	me	to	become	a	well-rounded	professional.	He
encouraged	me	to	not	only	grow	as	a	developer,	but	also	as	an	independent	thinker.

I	want	to	take	a	moment	and	express	my	gratitude	to	the	entire	team	at	Packt	Publishing
for	their	patience	and	cooperation.	When	I	signed	up	for	this	book,	I	really	had	no	idea
how	things	would	turn	out.	I	couldn’t	have	pulled	this	off	without	their	guidance.

I	would	like	to	express	my	gratitude	to	all	my	friends	and	family	for	providing	me	with
unending	encouragement	and	support.	I	owe	every	challenge	and	accomplishment	to	all
my	lovely	colleagues	who	taught	me	a	lot	over	the	years.

A	special	thanks	to	Divya	and	Arun	for	their	encouragement,	friendship,	and	support.
They	were	a	strong	shoulder	to	lean	on	in	the	most	difficult	times	during	the	writing	of
this	book.

Finally,	and	most	importantly,	I	would	like	to	thank	my	wife	Manju	who	believes	me	more
than	myself.	Her	support,	encouragement,	quiet	patience,	and	unwavering	love	were
undeniably	the	bedrock	upon	which	my	life	has	been	built.

http://www.madebycode.in
mailto:mr.amuthan@gmail.com

About	the	Reviewers
Rafał	Borowiec	is	an	IT	specialist	with	about	eight	years	of	commercial	experience,
specializing	in	software	testing	and	quality	assurance,	software	development,	project
management,	and	team	leadership.

He	currently	holds	the	position	of	a	Team	Leader	at	Goyello,	where	he	is	mainly
responsible	for	building	and	managing	teams	of	professional	developers	and	testers.	He	is
also	responsible	for	maintaining	relations	with	customers	and	acquiring	new	ones,	mainly
through	consultancy.

He	believes	in	agile	project	management	and	is	a	big	fan	of	technology,	especially
technology	that	is	Java	related	(but	not	limited	to	it).	He	likes	sharing	knowledge	about
software	development	and	practices	through	his	blog	(blog.codeleak.pl)	and	Twitter
account	(@kolorobot)	and	also	at	internal	and	external	events	such	as	conferences	or
workshops.

Pawan	Chopra	is	an	Agile	developer	with	eight	years	of	experience	in	the	software
industry.	He	currently	works	at	Webners	(http://www.webnersolutions.com/)	on	some	cool
JavaScript,	Java,	HTML5,	Node,	and	AngularJS	projects.	He	is	an	open	source	enthusiast.
He	loves	sharing	knowledge	through	training	and	blogging.	He	is	also	very	strong	on	the
server	side	with	vast	experience	in	Spring	and	Hibernate	tools.	He	blogs	at
www.itspawan.com.

Rubén	Clemente	Serna	is	a	software	engineer	by	profession	with	over	eight	years	of
experience	in	software	development.	He	recently	moved	to	the	UK	and	is	currently
working	as	a	Java	Developer	at	Piksel,	a	company	that	creates	and	manages	OTT	video
solutions	for	some	of	the	world’s	leading	media	brands.	Prior	to	Piksel,	he	has	worked	at
GFI	Informática	in	Spain	on	many	Java	development	projects,	mainly	for	telecom	and
government	service	customers.

More	detailed	information	about	his	skills	and	experience	can	be	found	at
http://www.linkedin.com/in/rubenclementeserna.	He	can	be	contacted	at
<rubenclemente@gmail.com>.

http://blog.codeleak.pl
http://www.webnersolutions.com/
http://www.itspawan.com
http://www.linkedin.com/in/rubenclementeserna
mailto:rubenclemente@gmail.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
This	book	has	a	very	clear	aim:	to	introduce	you	to	the	incredible	simplicity	and	power	of
Spring	MVC.	I	still	remember	first	learning	about	the	Spring	framework	back	in	2009.
The	best	way	to	test	whether	or	not	you	really	understand	a	concept	is	to	try	to	teach	it	to
someone	else.	In	my	case,	I	have	taught	Spring	MVC	to	MVC;	are	you	confused?	I	mean
that	back	in	2009,	I	taught	it	to	my	wife	Manju	Viswambaran	Chandrika	(MVC).	During
that	course,	I	was	able	to	understand	the	kind	of	doubts	that	arise	in	a	beginner’s	mind.	I
have	gathered	all	my	teaching	knowledge	and	put	it	in	this	book	in	an	elegant	way	so	that
it	can	be	understood	without	confusion.

This	book	follows	a	theme	of	developing	a	simple	e-commerce	site	step-by-step.	In	every
successive	chapter,	you	will	learn	a	new	concept	of	Spring	MVC.	Obviously,	the	aim	is	to
teach	you	how	you	can	use	Spring	MVC	effectively.	Developing	a	full-blown,	production-
ready	e-commerce	site	is	not	the	purpose	of	this	book.

What	this	book	covers
Chapter	1,	Configuring	a	Spring	Development	Environment,	will	give	you	a	quick
overview	of	Spring	MVC	and	its	architecture	and	guide	you	through	detailed	notes	and
step-by-step	instructions	to	set	up	your	development	environment.	After	installing	the
required	prerequisites,	you	will	try	out	a	quick	example	of	how	to	develop	an	application
with	Spring	MVC.	Although	the	chapter	doesn’t	explain	all	the	code	in	detail,	you’ll	pick
up	a	few	things	intuitively.

Chapter	2,	Spring	MVC	Architecture	–	Architecting	Your	Web	Store,	will	lay	down	the
ground	work	for	the	sample	application	that	we	are	going	to	build	along	the	way,	chapter
by	chapter.	This	chapter	will	introduce	you	to	concepts	such	as	request	mapping,	web
application	context,	Spring	MVC	request	flow,	and	the	layered	architecture	of	a	typical
web	application.

Chapter	3,	Control	Your	Store	with	Controllers,	will	take	you	through	the	concept	of	a
controller;	you	will	learn	more	about	how	to	define	a	controller,	and	use	URI	template
patterns,	matrix	variables,	and	request	parameters.

Chapter	4,	Working	with	Spring	Tag	Libraries,	will	teach	you	how	to	use	Spring	and
Spring	form	tag	libraries	in	web	form	handling.	You	will	learn	how	to	bind	domain	objects
with	views	and	how	to	use	message	bundles	to	externalize	label	caption	texts.	At	the	end
of	this	chapter,	you	will	see	how	to	add	a	login	form.

Chapter	5,	Working	with	View	Resolver,	will	present	the	inner	mechanics	of	how
InternalResourceViewResolver	resolves	a	view	and	takes	you	through	how	to	use
various	view	types,	such	as	redirect	view	and	static	view.	You	will	also	learn	about	the
multipart	resolver	and	content	negotiation	view	resolver.	Finally,	you	will	learn	how	to	use
exception	handler	resolvers.

Chapter	6,	Intercept	Your	Store	with	Interceptor,	will	present	the	concept	of	an	interceptor
to	you.	You	will	learn	how	to	leverage	the	interceptor	to	handle	or	transform	requests	and
responses	flexibly.	This	chapter	will	teach	you	how	to	make	your	web	page	support
internalization	with	the	help	of	LocaleChangeInterceptor.	This	chapter	also	introduces
how	to	perform	audit	logging	in	a	log	file	using	the	interceptor	concept.

Chapter	7,	Validate	Your	Products	with	a	Validator,	will	give	you	an	overview	of	the
validation	concept.	You	will	learn	about	bean	validation,	and	you	will	learn	how	to
perform	custom	validation	along	with	the	standard	bean	validation.	You	will	also	learn
about	the	classic	Spring	validation	and	how	to	combine	it	with	bean	validation.

Chapter	8,	Give	REST	to	Your	Application	with	Ajax,	will	teach	you	the	basic	principles	of
REST	and	Ajax.	You	will	learn	how	to	develop	an	application	in	RESTful	services.	The
basic	concept	of	HTTP	verbs	and	how	they	are	related	to	standard	CRUD	operations	will
be	explained,	and	you	will	learn	how	to	fire	an	Ajax	request	and	handle	it	from	a	web
page.

Chapter	9,	Apache	Tiles	and	Spring	Web	Flow	in	Action,	will	teach	you	how	to	use	the

Spring	web	flow	to	develop	workflow-based	web	pages.	You	will	learn	more	about	states
and	transitions	in	web	flow	and	how	to	define	a	flow	definition.	This	chapter	also	teaches
you	how	to	decompose	a	page	using	Apache	tiles.	You	will	also	learn	more	about
TileViewResolver	and	how	to	define	reusable	Apache	tiles	templates.

Chapter	10,	Testing	your	Application,	will	teach	you	how	to	leverage	the	Spring	testing
capability	to	test	your	controllers.	You	will	learn	how	to	load	the	test	context	and	how	to
mock	the	service	and	repository	layers.	This	chapter	also	introduces	you	to	the	Spring
MVC	test	module	and	teaches	you	how	to	use	that.

Appendix	A,	Using	the	Gradle	Build	Tool,	introduces	you	to	using	the	Gradle	build	tool
for	our	sample	application.	You	will	learn	about	the	Gradle	script	that	is	required	to	build
our	project	using	Gradle	build	tool.

What	you	need	for	this	book
To	run	the	examples	in	the	book,	the	following	software	will	be	required:

Java	SE	Development	Kit	7u45	or	newer
Maven	3.1.0
Apache	Tomcat	7.0
STS	3.4.0	release	(Spring	Tool	Suite)

Who	this	book	is	for
This	book	is	designed	to	be	followed	from	beginning	to	end,	although	those	with	existing
knowledge	of	Spring	MVC	will	be	able	to	jump	in	to	the	later	chapters	and	pick	out	things
that	are	important	to	them.	You	are	not	expected	to	be	experienced	with	the	Spring
framework.	Some	knowledge	of	servlet	programming	and	dependency	injection	will	be
helpful	but	not	essential.	In	a	nutshell,	the	book	provides	clear	pictures,	illustrations,
concepts,	and	is	ideally	suited	for	beginners	and	intermediate	developers.

Conventions
In	this	book,	you	will	find	several	headings	appearing	frequently.

To	give	clear	instructions	of	how	to	complete	a	procedure	or	task,	we	use:

Time	for	action	–	heading
1.	 Action	1
2.	 Action	2
3.	 Action	3

Instructions	often	need	some	extra	explanation	so	that	they	make	sense,	so	they	are
followed	with:

What	just	happened?
This	heading	explains	the	working	of	tasks	or	instructions	that	you	have	just	completed.

You	will	also	find	some	other	learning	aids	in	the	book,	including:

Pop	quiz	–	heading
These	are	short	multiple-choice	questions	intended	to	help	you	test	your	own
understanding.

Have	a	go	hero	–	heading
These	practical	challenges	give	you	ideas	for	experimenting	with	what	you	have	learned.

You	will	also	find	a	number	of	styles	of	text	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Once
the	download	is	finished,	go	to	the	downloaded	directory	and	extract	the	.zip	file	into	a
convenient	directory	of	your	choice.”

A	block	of	code	is	set	as	follows:

<body>

		<section>

				<div	class="jumbotron">

						<div	class="container">

								<h1>	${greeting}	</h1>

								<p>	${tagline}	</p>

						</div>

				</div>

		</section>

</body>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

		<servlet>

				<servlet-name>DefaultServlet</servlet-name>

				<servlet-class>	org.springframework.web.servlet.DispatcherServlet	

</servlet-class>

		</servlet>

Any	command-line	input	or	output	is	written	as	follows:

C:\>mvn	-version

Apache	Maven	3.2.1	(ea8b2b07643dbb1b84b6d16e1f08391b666bc1e9;	2014-02-

14T12:37:52-05:00)

Maven	home:	C:\Program	Files\apache-maven-3.2.1

Java	version:	1.7.0_51,	vendor:	Oracle	Corporation

Java	home:	C:\Program	Files\Java\jdk1.7.0_51\jre

Default	locale:	en_SG,	platform	encoding:	Cp1252

OS	name:	"windows	7",	version:	"6.1",	arch:	"amd64",	family:	"windows"

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“A	System	Properties
window	will	appear;	in	this	window,	select	the	Advanced	tab	and	click	on	the
Environment	Variables	button	to	open	the	environment	variables	window.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.

http://www.packtpub.com/submit-errata

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Configuring	a	Spring
Development	Environment
In	this	chapter,	we	are	going	take	a	look	at	how	we	can	create	a	basic	Spring	MVC
application.	In	order	to	develop	a	Spring	MVC	application,	we	need	some	prerequisite
software	and	tools.	First,	we	are	going	to	learn	how	to	install	all	the	prerequisites	that	are
required	to	set	up	our	development	environment	so	that	we	can	start	developing	the
application.

The	setup	and	installation	steps	given	here	are	for	Windows	operating	systems,	but	don’t
worry,	as	the	steps	may	change	only	slightly	for	other	operating	systems.	You	can	always
refer	to	the	respective	tools/software	vendor’s	websites	to	install	them	in	other	operating
systems.	In	this	chapter,	we	will	learn	how	to	set	up	Java	and	configure	the	Maven	build
tool,	install	the	Tomcat	web	server,	install	and	configure	the	Spring	tool	suite,	and	create
and	run	our	first	Spring	MVC	project.

Setting	up	Java
Obviously,	the	first	thing	that	we	need	to	do	is	get	started	with	Java.	The	more	technical
name	for	Java	is	Java	Development	Kit	(JDK).	JDK	includes	a	Java	compiler	(javac),	a
Java	virtual	machine,	and	a	variety	of	other	tools	to	compile	and	run	Java	programs.

Time	for	action	–	installing	JDK
We	are	going	to	use	Java	7	but	Java	6	or	any	higher	version	is	also	sufficient.	Let’s	take	a
look	at	how	we	can	install	JDK	on	Windows	operating	systems:

1.	 Go	to	the	Java	SE	download	page	on	the	Oracle	website	by	entering	the	following
URL	in	your	browser:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

2.	 Click	on	the	Java	platform	JDK	7	download	link;	this	will	take	you	to	the	license
agreement	page.	Accept	the	license	agreement	by	selecting	that	option	in	radio
button.

3.	 Now,	click	on	the	listed	download	link	that	corresponds	to	your	Windows	operating
system	architecture;	for	instance,	if	your	operating	system	is	of	type	32	bit,	click	on
the	download	link	that	corresponds	to	Windows	x86.	Or,	if	your	operating	system	is
of	type	64	bit,	click	on	the	download	link	that	corresponds	to	Windows	x64.

4.	 Now,	it	will	start	downloading	the	installer.	Once	the	download	is	finished,	go	to	the
downloaded	directory	and	double-click	on	the	installer.	This	will	open	up	the
following	wizard	window;	just	click	on	the	Next	button	in	the	wizard,	leaving	the
default	options	alone,	and	click	on	the	Close	button	at	the	end	of	the	wizard:

JDK	installation	wizard

Tip
Additionally,	a	separate	wizard	also	prompts	you	to	install	Java	Runtime
Environment	(JRE).	Go	through	that	wizard	as	well	to	install	JRE	in	your	system.

5.	 Now	you	can	see	the	installed	JDK	directory	in	the	default	location;	in	our	case,	the

http://www.oracle.com/technetwork/java/javase/downloads/index.html

default	location	is	C:\Program	Files\Java\jdk1.7.0_25.

Time	for	action	–	setting	up	environment
variables
After	installing	JDK,	we	still	need	to	perform	some	more	configurations	to	use	Java
conveniently	from	any	directory	on	our	computer.	By	setting	up	the	environment	variables
for	Java	in	the	Windows	operating	system,	we	can	make	the	Java	compiler	and	tools
available	to	the	entire	operating	system:

1.	 Navigate	to	Control	Panel	|	System	|	Advanced	system	settings.
2.	 A	System	Properties	window	will	appear;	in	this	window,	select	the	Advanced	tab

and	click	on	the	Environment	Variables	button	to	open	the	environment	variables
window.

3.	 Now,	click	on	the	New	button	in	the	System	variables	panel,	enter	JAVA_HOME	as	the
variable	name,	and	enter	the	installed	JDK	directory	path	as	the	variable	value;	in	our
case,	this	is	C:\Program	Files\Java\jdk1.7.0_51.	In	case	you	do	not	have	proper
rights	for	the	operating	system,	you	will	not	be	able	to	edit	System	variables;	in	that
case,	you	can	create	the	JAVA_HOME	variable	under	the	User	variables	panel.

4.	 Now,	in	the	same	System	variables	panel,	double-click	on	the	PATH	variable	entry;
an	Edit	System	Variable	window	will	appear.

Setting	PATH	Environment	variable

5.	 Edit	Variable	value	of	Path	by	appending	the	;%JAVA_HOME%\bin	text	to	its	existing
value.

Tip
Edit	the	path	variable	carefully;	you	should	only	append	the	text	at	the	end	of	existing
value.	Don’t	delete	or	disturb	the	existing	values;	make	sure	you	haven’t	missed	the	;
(semicolon)	mark	as	that	is	the	first	letter	in	the	text	that	you	will	append.

6.	 Now	click	on	the	OK	button.

Now	we	have	installed	Java	in	our	computer.	To	verify	whether	our	installation	has	been
carried	out	correctly,	open	a	new	command	window	and	type	java	–version	and	press
Enter;	you	will	see	the	installed	version	of	Java	on	the	screen:

C:\>java	-version

java	version	"1.7.0_51"

Java(TM)	SE	Runtime	Environment	(build	1.7.0_51-b13)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	24.51-b03,	mixed	mode)		

Configuring	a	build	tool
Building	a	software	project	typically	includes	some	activities	such	as	the	following:

Compiling	all	the	source	code
Generating	the	documentation	from	the	source	code
Packaging	the	compiled	code	into	a	JAR	or	WAR	archive	file
Installing	the	packaged	archives	files	on	a	server

Manually	performing	all	these	tasks	is	time	consuming	and	is	prone	to	errors.	Therefore,
we	take	the	help	of	a	build	tool.	A	build	tool	is	a	tool	that	automates	everything	related	to
building	a	software	project,	from	compiling	to	deploying.

Time	for	action	–	installing	the	Maven
build	tool
Many	build	tools	are	available	for	building	a	Java	project.	We	are	going	to	use	Maven
3.2.1	as	our	build	tool.	Let’s	take	a	look	at	how	we	can	install	Maven:

1.	 Go	to	Maven’s	download	page	by	entering	the	following	URL	on	your	browser:

http://maven.apache.org/download.cgi

2.	 Click	on	the	apache-maven-3.2.1-bin.zip	download	link,	and	start	the	download.
3.	 Once	the	download	is	finished,	go	to	the	downloaded	directory	and	extract	the	.zip

file	into	a	convenient	directory	of	your	choice.
4.	 Now	we	need	to	create	one	more	environment	variable,	called	M2_HOME,	in	a	way	that

is	similar	to	the	way	in	which	we	created	JAVA_HOME.	Enter	the	extracted	Maven	zip
directory’s	path	as	the	value	for	the	M2_HOME	environment	variable.

5.	 Create	one	more	environment	variable,	called	M2,	with	the	value	%M2_HOME%\bin,	as
shown	in	the	following	screenshot:

Setting	the	M2	environment	variable

6.	 Finally	append	the	M2	variable	to	the	PATH	environment	variable	as	well	by	simply
appending	the;%M2%	text	to	the	PATH	variable’s	value.

Now	we	have	installed	the	Maven	build	tool	in	our	computer.	To	verify	whether	our
installation	has	been	carried	out	correctly,	we	need	to	follow	steps	that	are	similar	to	the
Java	installation	verification.	Open	a	new	command	window,	type	mvn	–version,	and
press	Enter;	you	will	see	the	following	details	of	the	Maven	version:

C:\>mvn	-version

Apache	Maven	3.2.1	(ea8b2b07643dbb1b84b6d16e1f08391b666bc1e9;	2014-02-

14T12:37:52-05:00)

Maven	home:	C:\Program	Files\apache-maven-3.2.1

Java	version:	1.7.0_51,	vendor:	Oracle	Corporation

Java	home:	C:\Program	Files\Java\jdk1.7.0_51\jre

Default	locale:	en_SG,	platform	encoding:	Cp1252

OS	name:	"windows	7",	version:	"6.1",	arch:	"amd64",	family:	"windows"

http://maven.apache.org/download.cgi

Installing	a	web	server
So	far,	we	have	learned	how	to	install	JDK	and	Maven.	Using	these	tools,	we	can	compile
the	Java	source	code	into	the	.class	files	and	package	these	.class	files	into	the	.jar	or
.war	archives.	However,	how	do	we	run	our	packaged	archives?	To	do	this,	we	take	the
help	of	a	web	server;	a	web	server	will	host	our	packaged	archives	as	a	running
application.

Time	for	action	–	installing	the	Tomcat
web	server
Apache	Tomcat	is	a	popular	Java	web	server	cum	servlet	container.	We	are	going	use
Apache	Tomcat	Version	7.0.	Let’s	take	a	look	at	how	we	can	install	the	Tomcat	web
server:

1.	 Go	to	the	Apache	Tomcat	home	page	using	the	following	URL	link:

http://tomcat.apache.org/

2.	 Click	on	the	Tomcat	7.0	download	link,	and	it	will	take	you	to	the	download	page.
3.	 Click	on	the	32-bit/64-bit	Windows	Service	Installer	link;	it	will	start	downloading

the	installer.
4.	 Once	the	download	is	finished,	go	to	the	downloaded	directory	and	double-click	on

the	installer;	this	will	open	up	a	wizard	window.
5.	 Just	click	through	the	next	buttons	in	the	wizard,	leaving	the	default	options	alone,

and	click	on	the	Finish	button	at	the	end	of	the	wizard.	Note	that	before	clicking	on
the	Finish	button,	just	ensure	that	you	have	unchecked	Run	Apache	Tomcat
checkbox.

Installing	Apache	Tomcat	with	the	default	option	works	successfully	only	if	you	have
installed	Java	in	the	default	location.	Otherwise,	you	have	to	correctly	provide	the	JRE
path	according	to	the	location	of	your	Java	installation	during	the	installation	of	Tomcat,
as	shown	in	the	following	screenshot:

The	Java	runtime	selection	for	the	Tomcat	installation

http://tomcat.apache.org/

Configuring	a	development	environment
We	installed	Java	and	Maven	to	compile	and	package	Java	source	code,	and	we	installed
Tomcat	to	deploy	and	run	our	application.	However,	prior	to	all	this,	we	have	to	write	the
Spring	MVC	code	so	that	we	can	compile,	package,	and	run	the	code.

We	can	use	any	simple	text	editor	on	our	computer	to	write	our	code,	but	that	won’t	help
us	much	with	features	such	as	finding	syntax	errors	as	we	type,	autosuggesting	important
key	words,	syntax	highlighting,	easy	navigation,	and	so	on.

Integrated	Development	Environment	(IDE)	can	help	us	with	these	features	to	develop
the	code	faster	and	error	free.	We	are	going	to	use	Spring	Tool	Suite	(STS)	as	our	IDE.

Time	for	action	–	installing	Spring	Tool
Suite
STS	is	the	best	Eclipse-powered	development	environment	to	build	Spring	applications.
Let’s	take	a	look	at	how	we	can	install	STS:

1.	 Go	to	the	STS	download	page	at	http://spring.io/tools/sts/all.
2.	 Click	on	the	STS	installer	.exe	link	to	download	the	file	that	corresponds	to	your

windows	operating	system	architecture	type	(32	bit	or	62	bit);	this	will	start	the
download	of	the	installer.	The	STS	stable	release	version	at	the	time	of	writing	this
book	is	STS	3.4.0.RELEASE	based	on	Eclipse	4.3.1.

3.	 Once	the	download	is	finished,	go	to	the	downloaded	directory	and	double-click	on
the	installer;	this	will	open	up	a	wizard	window.

4.	 Just	click	through	the	next	buttons	in	the	wizard,	leaving	the	default	options	alone;	if
you	want	to	customize	the	installation	directory,	you	can	specify	that	in	the	steps	you
perform	in	the	wizard.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased
from	your	account	at	http://www.packtpub.com.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the
files	e-mailed	directly	to	you.

5.	 In	step	5	of	the	wizard,	you	have	to	provide	the	JDK	path;	just	enter	the	JDK	path
that	you	configured	for	the	JAVA_HOME	environment	variable,	as	shown	in	the
following	screenshot:

http://spring.io/tools/sts/all
http://www.packtpub.com
http://www.packtpub.com/support

Setting	the	JDK	path	during	the	STS	installation

We	have	almost	installed	all	the	tools	and	software	required	to	develop	a	Spring	MVC
application,	so	now,	we	can	create	our	Spring	MVC	project	on	STS.	However,	before
jumping	into	creating	a	project,	we	need	to	perform	a	final	configuration	for	STS.

Time	for	action	–	configuring	Tomcat	on
STS
As	I	already	mentioned,	we	can	use	the	Tomcat	web	server	to	deploy	our	application,	but
we	have	to	inform	STS	about	the	location	of	the	Tomcat	container	so	that	we	can	easily
deploy	our	project	from	STS	to	Tomcat.	Let’s	configure	Tomcat	on	STS:

1.	 Open	STS	from	the	start	menu	option	or	the	desktop	icon.
2.	 STS	will	ask	you	to	provide	a	workspace	directory	location;	provide	a	workspace

directory	path	as	you	wish	and	click	on	the	OK	button.
3.	 Now,	STS	will	show	you	a	welcome	screen.	Close	the	welcome	screen	and	go	to	the

menu	bar	and	navigate	to	Window	|	preferences	|	Server	|	Runtime	Environments.
4.	 You	can	see	the	available	servers	listed	on	the	right-hand	side;	you	may	also	see

VMware	vFabric	tc	Server	listed	under	the	available	servers,	which	comes	along
with	the	STS	installation.

5.	 Now	click	on	the	Add	button	to	add	our	Tomcat	web	server.
6.	 A	wizard	window	will	appear;	type	tomcat	in	the	Select	the	type	of	runtime

environment:	text	box,	and	a	list	of	available	Tomcat	versions	will	be	shown.	Just
select	Tomcat	v7.0	and	select	the	Create	a	new	local	server	checkbox.	Finally,	click
on	the	Next	button,	as	shown	in	the	following	screenshot:

Selecting	the	server	type	during	the	Tomcat	configuration	on	STS

7.	 In	the	next	window,	click	on	the	Browse	button	and	locate	Tomcat’s	installed
directory,	and	click	on	the	OK	button.	You	can	find	Tomcat’s	installed	directory
under	C:\Program	Files\Apache	Software	Foundation\Tomcat	7.0	if	you	have
installed	Tomcat	in	the	default	location.	Then,	click	on	the	Finish	button,	as	shown	in
the	following	screenshot:

Selecting	the	Tomcat	location	during	the	Tomcat	configuration	on	STS

What	just	happened?
In	step	2,	we	provided	a	workspace	path	for	STS.	When	you	open	STS	for	the	very	first
time	after	installing	STS,	it	will	ask	you	to	provide	a	workspace	location.	This	is	because
when	you	create	a	project	on	STS,	all	your	project	files	will	be	created	under	this	location
only.

Once	we	enter	STS,	we	should	inform	STS	where	the	Tomcat	has	been	installed.	Only
then	can	STS	use	your	Tomcat	web	server	to	deploy	the	project.	This	is	also	a	one-time
configuration;	you	need	not	perform	this	configuration	every	time	you	open	STS.	We	did
this	by	creating	a	new	server	runtime	environment	in	step	5.	Although	STS	might	come
with	an	internal	VMware	vFabric	tc	Server,	we	chose	to	use	the	Tomcat	web	server	as
our	server	runtime	environment.

Time	for	action	–	configuring	Maven	on
STS
We	learned	how	to	configure	Tomcat	on	STS.	Similarly,	to	build	our	project,	STS	will	use
Maven.	But	we	have	to	tell	STS	where	Maven	has	been	installed	so	that	it	can	use	the
Maven	installation	to	build	our	projects.	Let’s	take	a	look	at	how	we	can	configure	Maven
on	STS:

1.	 Open	STS	if	it	is	not	already	open.
2.	 Navigate	to	Window	|	Preferences	|	Maven	|	Installations.
3.	 On	the	right-hand	side,	you	can	see	the	Add	button,	to	locate	Maven’s	installation.
4.	 Click	on	the	Add	button	and	choose	Maven’s	installed	directory,	as	shown	in	the

following	screenshot:

Selecting	Maven’s	location	during	the	Maven	configuration	on	STS

5.	 Now	click	on	the	OK	button	in	the	Preferences	window	and	close	it.

Creating	our	first	Spring	MVC	project
So	far,	we	have	learned	how	we	can	install	all	the	prerequisite	tools	and	software.	Now	we
are	going	to	develop	our	first	Spring	MVC	application	using	STS.	STS	provides	an	easy-
to-use	project	template.	Using	these	templates,	we	can	quickly	create	our	project	directory
structures	without	many	problems.

Time	for	action	–	creating	a	Spring	MVC
project	in	STS
Let’s	create	our	first	spring	MVC	project	in	STS:

1.	 In	STS,	navigate	to	File	|	New	|	Project;	a	New	Project	wizard	window	will	appear.
2.	 Select	Maven	Project	from	the	list	and	click	on	the	Next	button,	as	shown	in	the

following	screenshot:

Maven	project’s	template	selection

3.	 Now,	a	New	Maven	Project	dialog	window	will	appear;	just	select	the	checkbox	that
has	the	Create	a	simple	project	(skip	archetype	selection)	caption,	and	click	on	the
Next	button.

4.	 The	wizard	will	ask	you	to	specify	artifact-related	information	for	your	project;	just
enter	Group	Id	as	com.packt,	Artifact	Id	as	webstore.	Then,	select	Packaging	as
war	and	click	on	the	Finish	button,	as	shown	in	the	following	screenshot:

What	just	happened?
We	just	created	the	basic	project	structure.	Any	Java	project	follows	a	certain	directory
structure	to	organize	its	source	code	and	static	resources.	Instead	of	manually	creating	the
whole	directory	hierarchy	by	ourselves,	we	just	handed	over	that	job	to	STS.	By	collecting
some	basic	information	about	our	project,	such	as	Group	Id,	Artifact	Id,	and	the
Packaging	style	from	us,	it	is	clear	that	STS	is	smart	enough	to	create	the	whole	project
directory	structure	with	the	help	of	the	Maven	plugin.	Actually,	what	is	happening	behind
the	screen	is	that	STS	is	internally	using	Maven	to	create	the	project	structure.

We	want	our	project	to	be	deployable	in	any	servlet	container-based	web	server,	such	as
Tomcat,	and	that’s	why	we	selected	the	Packaging	style	as	war.	After	executing	step	4,
you	will	see	the	project	structure	in	Package	Explorer,	as	shown	in	the	following
screenshot:

The	project	structure	of	the	application

Spring	MVC	dependencies
As	we	are	going	to	use	Spring	MVC	APIs	heavily	in	our	project,	we	need	the	Spring	jars
in	our	project	during	the	development.	As	I	already	mentioned,	Maven	will	take	care	of
managing	dependencies	and	packaging	the	project.

Time	for	action	–	adding	Spring	jars	to
the	project
Let’s	take	a	look	at	how	we	can	add	the	spring-related	jars	via	the	Maven	configuration:

1.	 Open	pom.xml;	you	can	find	pom.xml	under	the	root	directory	of	the	project	itself.
2.	 You	will	see	some	tabs	at	the	bottom	of	the	pom.xml	file.	If	you	do	not	see	these	tabs,

then	right-click	on	pom.xml	and	select	the	Open	With	option	from	the	context	menu
and	choose	Maven	POM	editor.	Select	the	Dependencies	tab	and	click	on	the	Add
button	in	the	Dependencies	section.	Don’t	get	confused	with	the	Add	button	of	the
Dependencies	Management	section.	You	should	choose	the	Add	button	in	the	left-
hand	side	pane.

3.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as
org.springframework,	Artifact	Id	as	spring-webmvc,	and	Version	as
4.0.3.RELEASE.	Select	Scope	as	compile	and	then	click	on	the	OK	button,	as	shown
in	the	following	screenshot:

4.	 Similarly,	add	the	dependency	for	JavaServer	Pages	Standard	Tag	Library	(JSTL)
by	clicking	on	the	same	Add	button;	this	time,	enter	Group	Id	as	javax.servlet,
Artifact	Id	as	jstl,	Version	as	1.2,	and	select	Scope	as	compile.

5.	 Finally,	add	one	more	dependency	for	servlet-api;	repeat	the	same	step	with	Group
Id	as	javax.servlet,	Artifact	Id	as	javax.servlet-api,	and	Version	as	3.1.0,	but
this	time,	select	Scope	as	provided	and	then	click	on	the	OK	button.

6.	 As	a	last	step,	don’t	forget	to	save	the	pom.xml	file.

What	just	happened?
In	the	Maven	world,	pom.xml	(Project	Object	Model)	is	the	configuration	file	that	defines
the	required	dependencies.	While	building	our	project,	Maven	will	read	that	file	and	try	to
download	the	specified	jars	from	the	Maven	central	binary	repository.	You	need	Internet
access	in	order	to	download	jars	from	Maven’s	central	repository.	Maven	uses	an
addressing	system	to	locate	a	jar	in	the	central	repository,	which	consists	of	Group	Id,
Artifact	Id,	and	Version.

Every	time	we	add	a	dependency,	an	entry	will	be	made	within	the	<dependencies>	</
dependencies>	tags	in	the	pom.xml	file.	For	example,	if	you	go	to	the	pom.xml	tab	after
finishing	step	3,	you	will	see	an	entry	for	spring-mvc	as	follows	within	the
<dependencies>	</	dependencies>	tag:

<dependency>

			<groupId>org.springframework</groupId>

			<artifactId>spring-webmvc</artifactId>

			<version>4.0.3.RELEASE</version>

</dependency>

We	added	the	dependency	for	spring-mvc	in	step	3,	and	in	step	4,	we	added	the
dependency	for	JSTL.	JSTL	is	a	collection	of	useful	JSP	tags	that	can	be	used	to	write	JSP
pages	easily.	Finally,	we	need	a	servlet-api	jar	in	order	to	use	servlet-related	code;	this	is
what	we	added	in	step	5.

However,	there	is	a	little	difference	in	the	scope	of	the	servlet-api	dependency	compared
to	the	other	two	dependencies.	We	only	need	servlet-api	while	compiling	our	project.
While	packaging	our	project	as	war,	we	don’t	want	to	the	ship	servlet-api	jar	as	part	of	our
project.	This	is	because	the	Tomcat	web	server	would	provide	the	servlet-api	jar	while
deploying	our	project.	This	is	why	we	selected	the	scope	as	provided	for	the	servlet-api.

After	finishing	step	6,	you	will	see	all	the	dependent	jars	configured	in	your	project,	as
shown	in	the	following	screenshot,	under	the	Maven	Dependencies	library:

We	added	only	three	jars	as	our	dependencies,	but	if	you	notice	in	our	Maven	dependency
library	list,	you	will	see	more	than	three	jar	entries.	Can	you	guess	why?	What	if	our
dependent	jars	have	a	dependency	on	other	jars	and	so	on?

For	example,	our	spring-mvc	jar	is	dependent	on	the	spring-core,	spring-context,	and
spring-aop	jars,	but	we	have	not	specified	those	jars	in	our	pom.xml	file;	this	is	called
transitive	dependencies	in	the	Maven	world.	In	other	words,	we	can	say	that	our	project
is	transitively	dependent	on	these	jars.	Maven	will	automatically	download	all	these
transitive	dependent	jars;	this	is	the	beauty	of	Maven.	It	will	take	care	of	all	the
dependency	management	automatically;	we	need	to	inform	Maven	only	about	the	first
level	dependencies.

Time	for	action	–	adding	Java	version
properties	in	pom.xml
We	successfully	added	all	the	required	jars	to	our	project,	but	we	need	to	perform	one
small	configuration	in	our	pom.xml	file,	that	is,	telling	Maven	to	use	Java	Version	7	while
building	our	project.	How	do	we	tell	Maven	to	do	this?	Simply	add	two	property	entries	in
pom.xml.	Let’s	do	this.

1.	 Open	pom.xml.	You	will	see	some	tabs	at	the	bottom	of	pom.xml;	select	the	Overview
tab	from	the	bottom	of	pom.xml,	expand	the	properties	accordion,	and	click	on	the
Create	button.

2.	 Now,	an	Add	property	window	will	appear;	enter	Name	as	maven.compiler.source
and	Value	as	1.7.

Adding	the	Java	compiler	version	properties	to	POM

3.	 Similarly,	create	one	more	property	with	Name	as	maven.compiler.target	and
Value	as	1.7.

4.	 Finally,	save	pom.xml.

A	jump-start	to	MVC
We	created	our	project	and	added	all	the	required	jars,	so	we	are	ready	to	code.	We	are
going	to	incrementally	build	an	online	web	store	throughout	this	book,	chapter	by	chapter.
As	a	first	step,	let’s	create	a	home	page	in	our	project	to	welcome	our	customers.

Our	aim	is	simple;	when	we	enter	the	http://localhost:8080/webstore/	URL	on	the
browser,	we	would	like	to	show	a	welcome	page	that	is	similar	to	the	following
screenshot:

Don’t	worry	if	you	are	not	able	to	understand	some	of	the	code;	we	are	going	to	take	a
look	at	each	concept	in	detail	in	the	upcoming	chapters.	As	of	now,	our	aim	is	to	have
quick	hands-on	experience	of	developing	a	simple	web	page	using	Spring	MVC.

Time	for	action	–	adding	a	welcome	page
To	create	and	add	a	welcome	page,	we	need	to	execute	the	following	steps:

1.	 Create	a	WEB-INF/jsp/	directory	structure	under	the	src/main/webapp/	directory;
create	a	jsp	view	file	called	welcome.jsp	under	the	src/main/webapp/WEB-INF/jsp/
directory,	and	add	the	following	code	snippets	into	it	and	save	it:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<html>

<head>

<meta	http-equiv="Content-Type"	content="text/html;	charset=ISO-8859-

1">

<link	rel="stylesheet"	

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

<title>Welcome</title>

</head>

<body>

		<section>

				<div	class="jumbotron">

						<div	class="container">

								<h1>	${greeting}	</h1>

								<p>	${tagline}	</p>

						</div>

				</div>

		</section>

</body>

</html>

2.	 Create	a	class	called	HomeController	under	the	com.packt.webstore.controller
package	in	the	source	directory	src/main/java,	and	add	the	following	code	into	it:

package	com.packt.webstore.controller;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.RequestMapping;

@Controller

public	class	HomeController	{

		@RequestMapping("/")

		public	String	welcome(Model	model)	{

				model.addAttribute("greeting",	"Welcome	to	Web	Store!");

				model.addAttribute("tagline",	"The	one	and	only	amazing	webstore");

				

				return	"welcome";

		}

}

What	just	happened?
In	step	1,	we	just	created	a	JSP	view;	the	important	thing	we	need	to	notice	here	is	the
<h1>	tag	and	the	<p>	tag.	Both	the	tags	have	some	expression	that	is	surrounded	by	curly
braces	and	prefixed	by	the	$	symbol:

<h1>	${greeting}	</h1>

<p>	${tagline}	</p>

So,	what	is	the	meaning	of	${greeting}?	It	means	that	greeting	is	a	kind	of	variable;
during	the	rendering	of	this	JSP	page,	the	value	stored	in	the	greeting	variable	will	be
shown	in	the	header	1	style,	and	similarly,	the	value	stored	in	the	tagline	variable	will	be
shown	as	a	paragraph.

So	now,	the	next	question	of	where	we	will	assign	values	to	those	variables	arises.	This	is
where	the	controller	will	be	of	help;	within	the	welcome	method	of	the	HomeController
class,	take	a	look	at	the	following	lines	of	code:

model.addAttribute("greeting",	"Welcome	to	Web	Store!");

model.addAttribute("tagline",	"The	one	and	only	amazing	web	store");

You	can	observe	that	the	two	variable	names,	greeting	and	tagline,	are	passed	as	a	first
parameter	of	the	addAttribute	method	and	the	corresponding	second	parameter	is	the
value	for	each	variable.	So	what	we	are	doing	here	is	simply	putting	two	strings,	"Welcome
to	Web	Store!"	and	"The	one	and	only	amazing	web	store",	into	the	model	with	their
corresponding	keys	as	greeting	and	tagline.	As	of	now,	simply	consider	the	fact	that
model	is	a	kind	of	map.	Folks	with	knowledge	of	servlet	programming	can	consider	the
fact	that	model.addAttribute	works	exactly	like	request.setAttribute.

So,	whatever	value	we	put	into	the	model	can	be	retrieved	from	the	view	(jsp)	using	the
corresponding	key	with	the	help	of	the	${}	placeholder	expression	notation.

The	dispatcher	servlet
We	created	a	controller	that	can	put	values	into	the	model,	and	we	created	the	view	that
can	read	those	values	from	the	model.	So,	the	model	acts	as	an	intermediate	between	the
view	and	the	controller;	with	this,	we	have	finished	all	the	coding	part	required	to	present
the	welcome	page.	So	will	we	be	able	to	run	our	project	now?	No;	at	this	stage,	if	we	run
our	project	and	enter	the	http://localhost:8080/webstore/	URL	on	the	browser,	we
will	get	an	HTTP	Status	404	error.	This	is	because	we	have	not	performed	any	servlet
mapping	yet.	In	a	Spring	MVC	project,	we	must	configure	a	front	servlet	mapping.	The
front	servlet	(sometimes	called	the	front	controller)	mapping	is	a	design	pattern	where	all
requests	for	a	particular	web	application	are	directed	to	the	same	servlet.	One	such	front
servlet	given	by	Spring	MVC	framework	is	the	dispatcher	servlet
(org.springframework.web.servlet.DispatcherServlet).	We	have	not	configured	a
dispatcher	servlet	for	our	project	yet;	this	is	why	we	get	the	HTTP	Status	404	error.

Time	for	action	–	configuring	the
dispatcher	servlet
The	dispatcher	servlet	is	what	examines	the	incoming	request	URL	and	invokes	the	right
corresponding	controller	method.	In	our	case,	the	welcome	method	from	the
HomeController	class	needs	to	be	invoked	if	we	enter	the
http://localhost:8080/webstore/	URL	on	the	browser.	So	let’s	configure	the
dispatcher	servlet	for	our	project:

1.	 Create	web.xml	under	the	src/main/webapp/WEB-INF/	directory	in	your	project	and
enter	the	following	content	inside	web.xml	and	save	it:

<web-app	version="3.0"	xmlns="http://java.sun.com/xml/ns/javaee"

						xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

						xsi:schemaLocation="http://java.sun.com/xml/ns/javaee	

																		http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

		<servlet>

				<servlet-name>DefaultServlet</servlet-name>

				<servlet-class>	org.springframework.web.servlet.DispatcherServlet	

</servlet-class>

		</servlet>

		

		<servlet-mapping>

				<servlet-name>DefaultServlet</servlet-name>

				<url-pattern>/</url-pattern>

		</servlet-mapping>

</web-app>

2.	 Now	create	one	more	xml	file	called	DefaultServlet-servlet.xml	under	the	same
src/main/webapp/WEB-INF/	directory	and	enter	the	following	content	into	it	and
save	it:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xmlns:context="http://www.springframework.org/schema/context"

		xmlns:mvc="http://www.springframework.org/schema/mvc"

		xsi:schemaLocation="http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans.xsd

				http://www.springframework.org/schema/context	

http://www.springframework.org/schema/context/spring-context-4.0.xsd

				http://www.springframework.org/schema/mvc	

http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd">

		<mvc:annotation-driven	/>

		<context:component-scan	base-package="com.packt.webstore"	/>

		

		<bean	

class="org.springframework.web.servlet.view.InternalResourceViewResolver

">

				<property	name="prefix"	value="/WEB-INF/jsp/"	/>

				<property	name="suffix"	value=".jsp"	/>

		</bean>

</beans>

What	just	happened?
If	you	know	about	servlet	programming,	you	might	be	quite	familiar	with	the	servlet
configuration	and	web.xml.	In	web.xml,	we	configured	a	servlet	named	DefaultServlet,
which	is	more	or	less	similar	to	any	other	normal	servlet	configuration.	The	only
difference	is	that	we	have	not	created	any	servlet	class	for	that	configuration.	Instead,	the
servlet	class	(org.springframework.web.servlet.DispatcherServlet)	is	provided	by
the	Spring	MVC	framework,	and	we	make	use	of	it	in	web.xml.	After	this	step,	our
configured	DispatcherServlet	(DefaultServlet)	will	be	ready	to	handle	any	requests
that	come	to	our	application	on	runtime	and	will	dispatch	the	request	to	the	correct
controller’s	method.

However,	DispatcherServlet	should	know	where	our	controllers	and	view	files	are
located	in	our	project,	and	only	then	can	it	properly	dispatch	the	request	to	the	correct
controllers.	So	we	have	to	give	some	hint	to	DispatcherServlet	to	locate	the	controllers
and	view	files.	This	is	what	we	configured	in	step	2	through	the	DispatcherServlet-
servlet.xml	file.

Don’t	worry	if	you	are	not	able	to	understand	each	and	every	configuration	in	web.xml	and
DispatcherServlet-servlet.xml;	we	will	take	a	look	at	these	configuration	files	in	next
chapter.	As	of	now,	just	remember	that	this	is	a	one-time	configuration	that	is	needed	to
run	our	project	successfully.

Deploying	our	project
We	successfully	created	the	project	in	the	last	section,	so	you	might	be	curious	to	know
what	would	happen	if	we	run	our	project	now.	As	our	project	is	a	web	project,	we	need	a
web	server	to	run	it.

Time	for	action	–	running	the	project
As	we	already	configured	the	Tomcat	web	server	in	our	STS,	let’s	use	Tomcat	to	deploy
and	run	our	project:

1.	 Right-click	on	your	project	from	Package	Explorer	and	navigate	to	Run	As	|	Run
on	Server.

2.	 A	server	selection	window	will	appear	with	all	the	available	servers	listed;	just	select
the	server	that	we	have	configured,	Tomcat	v7.0.

3.	 At	the	bottom	of	the	window,	you	can	see	a	checkbox	with	the	caption	that	says
Always	use	this	server	when	running	this	project;	select	this	checkbox	and	enter
the	Finish	button,	as	shown	in	the	following	screenshot:

Configuring	the	default	server	for	a	Spring	MVC	project

4.	 Now	you	will	see	a	web	page	that	will	show	you	a	welcome	message.

Summary
In	this	chapter,	we	saw	how	to	install	all	the	prerequisites	that	are	needed	to	get	started	and
run	our	first	Spring	MVC	application,	for	example,	installing	JDK,	the	Maven	build	tool,
the	Tomcat	servlet	container,	and	STS	IDE.

We	also	learned	how	to	perform	various	configurations	in	our	STS	IDE	for	Maven	and
Tomcat,	created	our	first	Spring	MVC	project,	and	added	all	Spring-related	dependent	jars
through	the	Maven	configuration.

We	had	a	quick	hands-on	experience	of	developing	a	welcome	page	for	our	web	store
application.	During	that	course,	we	learned	how	to	put	values	into	a	model	and	how	to
retrieve	these	values	from	the	model.

Whatever	we	have	seen	so	far	is	just	a	glimpse	of	Spring	MVC,	but	there	is	much	more	to
uncover,	for	example,	how	the	model	and	view	controller	are	connected	to	each	other	and
how	the	request	flow	occurs.	We	are	going	to	explore	these	topics	in	the	next	chapter,	so
see	you	there!

Chapter	2.	Spring	MVC	Architecture	–
Architecting	Your	Web	Store
What	we	saw	in	the	first	chapter	is	nothing	but	a	glimpse	of	Spring	MVC;	in	the	previous
chapter,	our	total	focus	was	just	on	getting	it	to	run	a	Spring	MVC	application.	Now,	it’s
time	for	us	to	deep-dive	into	Spring	MVC	architecture.

By	the	end	of	this	chapter,	you	will	have	a	clear	understanding	of:

The	dispatcher	servlet	and	request	mapping
The	web	application	context	and	configuration
The	Spring	MVC	request	flow	and	Web	MVC
The	web	application	architecture

The	dispatcher	servlet
In	the	first	chapter,	we	were	introduced	to	the	dispatcher	servlet	and	saw	how	to	define	a
dispatcher	servlet	in	web.xml.	We	learned	that	every	web	request	first	comes	to	the
dispatcher	servlet.	The	dispatcher	servlet	is	the	one	that	decides	the	controller	method	that
it	should	dispatch	the	web	request	to.	In	the	previous	chapter,	we	created	a	welcome	page
that	will	be	shown	whenever	we	enter	the	URL	http://localhost:8080/webstore/	on
the	browser.	Mapping	a	URL	to	the	appropriate	controller	method	is	the	primary	duty	of	a
dispatcher	servlet.

So	the	dispatcher	servlet	reads	the	web	request	URL	and	finds	the	appropriate	controller
method	that	can	serve	that	web	request	and	invokes	it.	This	process	of	mapping	a	web
request	to	a	specific	controller	method	is	called	request	mapping,	and	the	dispatcher
servlet	is	able	to	do	this	with	the	help	of	the	@RequestMapping	annotation
(org.springframework.web.bind.annotation.RequestMapping).

Time	for	action	–	examining	request
mapping
Let’s	observe	what	will	happen	when	you	change	the	value	attribute	of	the
@RequestMapping	annotation	by	executing	the	following	steps:

1.	 Open	your	STS	and	run	the	webstore	project;	just	right-click	on	your	project	and
choose	Run	As	|	Run	on	Server.	You	will	be	able	to	view	the	same	welcome
message	on	the	browser.

2.	 Now,	go	to	the	address	bar	of	the	browser	and	enter	the	URL,
http://localhost:8080/webstore/welcome.

3.	 You	will	see	the	HTTP	Status	404	error	page	on	the	browser,	and	you	will	also	see
the	following	warning	in	the	console:

WARNING:	No	mapping	found	for	HTTP	request	with	URI	[/webstore/welcome]	

in	DispatcherServlet	with	name	'	DefaultServlet'

An	error	log	displaying	the	“No	mapping	found”	warning	message

4.	 Now,	open	the	HomeController	class,	change	the	@RequestMapping	annotation’s
value	attribute	to	/welcome,	and	save	it.	Basically,	your	new	request	mapping
annotation	will	look	like	@RequestMapping("/welcome").

5.	 Again,	run	the	application	and	enter	the	same	URL	that	you	entered	in	step	2;	now
you	will	be	able	to	see	the	same	welcome	message	on	the	browser,	without	any
request	mapping	error.

6.	 Finally,	open	the	HomeController	class	and	revert	the	changes	that	were	made	to	the

@RequestMapping	annotation’s	value;	just	make	it	@RequestMapping("/")	again	and
save	it.

What	just	happened?
After	starting	our	application,	when	we	enter	the	URL
http://localhost:8080/webstore/welcome	on	the	browser,	the	dispatcher	servlet
(org.springframework.web.servlet.DispatcherServlet)	immediately	tries	to	find	a
matching	controller	method	for	the	request	path,	/welcome.

Tip
In	a	Spring	MVC	application,	the	URL	can	logically	be	divided	into	five	parts	(see	the
following	figure);	the	@RequestMapping	annotation	only	matches	against	the	URL	request
path.	It	omits	the	scheme,	hostname,	application	name,	and	so	on.

The	@RequestMapping	annotation	has	one	more	attribute	called	method	to	further	narrow
down	the	mapping	based	on	the	HTTP	request	method	types	(GET,	POST,	HEAD,	OPTIONS,
PUT,	DELETE,	and	TRACE).	If	we	do	not	specify	the	method	attribute	in	the
@RequestMapping	annotation,	the	default	method	will	be	GET.	We	will	learn	more	about
the	method	attribute	of	the	@RequestMapping	annotation	in	Chapter	4,	Working	with	Spring
Tag	Libraries,	under	the	section	on	form	processing.

The	logical	parts	of	a	typical	Spring	MVC	application	URL

Since	we	don’t	have	a	corresponding	request	mapping	for	the	given	URL	path,	/welcome,
we	get	the	HTTP	Status	404	error	on	the	browser	and	the	following	error	log	on	the
console:

WARNING:	No	mapping	found	for	HTTP	request	with	URI	[/webstore/welcome]	in	

DispatcherServlet	with	name	'DefaultServlet'

From	the	error	log,	we	can	clearly	understand	that	there	is	no	request	mapping	for	the
URL	path,	/webstore/welcome.	So,	we	try	to	map	this	URL	path	to	the	existing	controller
method;	that’s	why,	in	step	4,	we	put	only	the	request	path	value,	/welcome,	in	the
@RequestMapping	annotation	as	the	value	attribute.	Now	everything	works	perfectly	fine.

Finally,	we	reverted	our	@RequestMapping	annotation’s	value	to	/	again	in	step	6.	Why	did
we	do	this?	Because	we	want	it	to	show	the	welcome	page	under	the	web	request	URL
http://localhost:8080/webstore/	again.	Observe	carefully	that	here	the	last	single
character	/	is	the	request	path.	We	will	see	more	about	request	mapping	in	upcoming
chapters.

Pop	quiz	–	request	mapping
Q1.	If	we	have	a	Spring	MVC	application	for	library	management	called	BookPedia	and
want	to	map	a	web	request	URL,
http://localhost:8080/BookPedia/category/fiction,	to	a	controller	method,	how
will	we	form	the	@RequestMapping	annotation?

1.	 @RequestMapping("/fiction").
2.	 @RequestMapping("/category/fiction").
3.	 @RequestMapping("/BookPedia/category/fiction").

The	web	application	context
In	a	Spring-based	application,	our	application	objects	live	within	an	object	container.	This
container	creates	objects	and	associations	between	objects,	and	manages	their	complete
life	cycle.	These	container	objects	are	called	Spring-managed	beans	(or	simply	beans),	and
the	container	is	called	an	application	context	in	the	Spring	world.

A	Spring	container	uses	dependency	injection	(DI)	to	manage	the	beans	that	make	up	an
application.	An	application	context
(org.springframework.context.ApplicationContext)	creates	beans	and	associate
beans	together	based	on	the	bean	configuration	and	dispenses	beans	on	request.	A	bean
configuration	can	be	defined	via	an	XML	file,	annotation,	or	even	via	Java	configuration
classes.	We	will	use	only	XML-	and	annotation-based	bean	configurations	in	our	chapters.

A	web	application	context	is	the	extension	of	an	application	context,	designed	to	work
with	the	standard	servlet	context	(javax.servlet.ServletContext).	A	web	application
context	typically	contains	frontend-related	beans,	such	as	views	and	view	resolvers.	In	the
first	chapter,	we	created	an	XML	file	called	DefaultServlet-servlet.xml,	which	is
nothing	but	a	bean	configuration	file	for	our	web	application	context.

Time	for	action	–	understanding	the	web
application	context
You	have	received	enough	of	an	introduction	on	the	web	application	context;	now,	tweak	a
little	bit	with	the	name	and	location	of	the	web	application	context	configuration	file
(DefaultServlet-servlet.xml)	and	observe	the	effect.	Perform	the	following	steps:

1.	 Rename	the	DefaultServlet-servlet.xml	file	to	DispatcherServlet-
servlet.xml;	you	can	find	DefaultServlet-servlet.xml	under	the
src/main/webapp/WEB-INF/	directory.

2.	 Then,	run	your	webstore	project	again	and	enter	the	URL,
http://localhost:8080/webstore/;	you	will	see	an	HTTP	Status	500	error
message	on	your	web	page	and	a	FileNotFoundException	error	in	the	stack	trace	as
follows:

java.io.FileNotFoundException:	Could	not	open	ServletContext	resource	

[/WEB-INF/DefaultServlet-servlet.xml]

An	error	message	displaying	FileNotFoundException	for	DefaultServlet-servlet.xml

3.	 To	fix	this	error,	change	the	name	of	DefaultServlet	to	DispatcherServlet	in
web.xml;	basically,	after	changing	the	name	to	DispatcherServlet,	your	servlet
configuration	will	look	like	the	following	in	the	web.xml	file:

<servlet>

		<servlet-name>DispatcherServlet</servlet-name>

		<servlet-

class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

</servlet>

		

<servlet-mapping>

		<servlet-name>DispatcherServlet</servlet-name>

		<url-pattern>/</url-pattern>

</servlet-mapping>

4.	 Now,	run	your	application	and	enter	the	URL,	http://localhost:8080/webstore/;
you	will	see	the	welcome	message	again.

5.	 Rename	your	DispatcherServlet-servlet.xml	file	to	DispatcherServlet-
context.xml	once	more.

6.	 Next,	create	a	directory	structure	spring/webcontext/	under	the	WEB-INF	directory
and	move	the	DispatcherServlet-context.xml	file	to	the	src/main/webapp/WEB-
INF/spring/webcontext/	directory.

7.	 Then,	run	your	application,	and	you	will	see	an	HTTP	Status	500	error	message	on
your	web	page	again	and	a	FileNotFoundException	error	message	in	the	stack	trace:

java.io.FileNotFoundException:	Could	not	open	ServletContext	resource	

[/WEB-INF/DispatcherServlet-servlet.xml]

8.	 To	fix	this	error,	add	the	following	tags	within	the	<servlet>	and	</	servlet>	tags
in	web.xml	as	shown	in	the	following	code:

<init-param>

		<param-name>contextConfigLocation</param-name>

		<param-value>

				/WEB-INF/spring/webcontext/DispatcherServlet-context.xml

		</param-value>

</init-param>

9.	 Now,	run	the	application	again	and	enter	the	URL,
http://localhost:8080/webstore/;	you	will	be	able	to	see	the	welcome	message
again.

What	just	happened?
So,	what	we	did	first	was	renamed	the	DefaultServlet-servlet.xml	file	to
DispatcherServlet-servlet.xml,	and	we	got	a	FileNotFoundException	error	at
runtime,	as	follows:

java.io.FileNotFoundException:	Could	not	open	ServletContext	resource	

[/WEB-INF/DefaultServlet-servlet.xml]

To	fix	the	error,	we	changed	our	dispatcher	servlet	configuration,	as	follows,	in	the
web.xml	file:

<servlet>

		<servlet-name>DispatcherServlet</servlet-name>

		<servlet-class>	org.springframework.web.servlet.DispatcherServlet	

		</servlet-class>

</servlet>

<servlet-mapping>

		<servlet-name>DispatcherServlet</servlet-name>

		<url-pattern>/</url-pattern>

</servlet-mapping>

We	changed	the	servlet	name	to	DispatcherServlet	in	order	to	align	with	the	web
application	context	configuration	file	named	DispatcherServlet-servlet.xml.	So,	based
on	this	exercise,	we	can	learn	that	during	the	start-up	of	any	Spring	MVC	project,	the
dispatcher	servlet	will	look	for	a	web	application	context	configuration	file	of	the	pattern
<Configured	dispatcher	Servlet	Name>-servlet.xml	under	the	WEB-INF	directory.	It
is	our	responsibility	to	keep	the	web	application	context	configuration	file	under	the	WEB-
INF	directory	with	the	right	name.	However,	what	if	we	wish	to	keep	the	file	in	some	other
directory?

Tip
One	of	the	important	things	to	be	noted	in	<servlet-mapping>	is	the	value	of	the	<url-
pattern>/</url-pattern>	tag.	By	assigning	/	as	the	URL	pattern	for	the	dispatcher
servlet,	we	make	DispatcherServlet	the	default	servlet	for	our	web	application.	So,
every	web	request	coming	to	our	web	application	will	be	handled	by	DispatcherServlet.

For	instance,	in	steps	5	and	6,	we	renamed	the	web	application	context	configuration	file
and	moved	it	to	a	completely	new	directory	(src/main/webapp/WEB-
INF/spring/webcontext/).	In	that	case,	how	did	we	fix	the	HTTP	Status	500	error?	The
answer	lies	within	a	property	called	contextConfigLocation.	For	the	dispatcher	servlet	to
locate	the	web	context	configuration	file	easily,	we	gave	the	location	of	this	file	to	the
dispatcher	servlet	through	a	property	called	contextConfigLocation.	That’s	why	we
added	this	property	to	the	dispatcher	servlet	in	step	8,	as	follows:

<servlet>

		<servlet-name>DispatcherServlet</servlet-name>

		<servlet-

class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

		<init-param>

				<param-name>contextConfigLocation</param-name>

				<param-value>

						/WEB-INF/spring/webcontext/DispatcherServlet-context.xml

				</param-value>

		</init-param>

</servlet>

Now,	we	are	able	to	run	our	application	without	any	problem.	Okay,	we	played	a	lot	with
the	web	application	context	configuration	file	and	learned	that	the	dispatcher	servlet
should	know	about	the	web	application	context	configuration	file	during	the	start-up	of
our	project.	So	the	next	question	is:	why	is	the	dispatcher	servlet	looking	for	this	web
context	configuration	file,	and	what	is	defined	inside	this	file?	Let’s	find	out	the	answer,
but	before	that,	you	may	answer	the	following	pop	quiz	questions	to	make	sure	you
understand	the	concept	of	the	web	application	context	configuration.

Pop	quiz	–	the	web	application	context
Q1.	If	the	contextConfigLocation	property	was	not	configured	in	our	dispatcher	servlet
configuration,	under	which	location	would	Spring	MVC	look	for	the	web	application
context	configuration	file?

1.	 In	the	WEB-INF	directory
2.	 In	WEB-INF/spring
3.	 In	WEB-INF/spring/appServlet

Q2.	If	we	do	not	want	to	provide	contextConfigLocation	to	the	following	dispatcher
servlet	configuration,	how	do	we	avoid	the	HTTP	Status	500	error?

<servlet>

		<servlet-name>FrontController</servlet-name>

		<servlet-

class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

</servlet>

1.	 By	creating	a	context	file	called	FrontController-context.xml	in	the	WEB-INF
directory

2.	 By	creating	a	file	called	DispatcherServlet-context.xml	in	WEB-INF
3.	 By	creating	a	file	called	FrontController-servlet.xml	in	WEB-INF

The	web	application	context	configuration
The	web	application	context	configuration	file	(DispatcherServlet-context.xml)	is
nothing	but	a	simple	Spring	bean	configuration	file.	Spring	will	create	beans	(objects)	for
every	bean	definition	mentioned	in	this	file	during	bootup	of	our	application.	If	you	open
this	web	application	context	configuration	file	(/WEB-
INF/spring/webcontext/DispatcherServlet-context.xml),	you	will	find	some
configuration	and	bean	definition	as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xmlns:context="http://www.springframework.org/schema/context"

		xmlns:mvc="http://www.springframework.org/schema/mvc"

		xsi:schemaLocation="http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans.xsd

				http://www.springframework.org/schema/context	

http://www.springframework.org/schema/context/spring-context-4.0.xsd

				http://www.springframework.org/schema/mvc	

http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd">

		<mvc:annotation-driven	/>

		<context:component-scan	base-package="com.packt.webstore"	/>

		

		<bean	

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

				<property	name="prefix"	value="/WEB-INF/jsp/"	/>

				<property	name="suffix"	value=".jsp"	/>

		</bean>

</beans>

The	first	tag	within	the	<beans>	definition	is	<mvc:annotation-driven	/>.	By	this	tag,
we	tell	Spring	MVC	to	configure	the	DefaultAnnotationHandlerMapping,
AnnotationMethodHandlerAdapter,	and	ExceptionHandlerExceptionResolver	beans.
These	beans	are	required	for	Spring	MVC	to	dispatch	requests	to	the	controllers.

Actually	<mvc:annotation-driven	/>	does	many	things	behind	the	screen.	It	also
enables	support	for	various	convenient	annotations	such	as	@NumberFormat	and
@DateTimeFormat	to	format	the	form	bean	fields	during	form	binding.	Similarly,	we	have
the	@Valid	annotation	to	validate	the	controller	method’s	parameters.	It	also	supports	Java
objects	to/from	an	XML	or	JSON	conversion	via	the	@RequestBody	and	@ResponseBody
annotations	in	the	@RequestMapping	or	@ExceptionHandler	method	during	form	binding.
We	will	see	the	usage	of	these	annotations	in	later	chapters.	As	of	now,	just	remember	that
the	<mvc:annotation-driven	/>	tag	is	needed	to	enable	annotations	such	as
@controller	and	@RequestMapping.

What	is	the	purpose	of	the	second	tag,	<context:component-scan>?	You	need	a	bit	of
background	information	to	understand	the	purpose	of	the	<context:component-scan>	tag.
The	@Controller	annotation	indicates	that	a	particular	class	serves	the	role	of	a	controller.

We	already	learned	that	the	dispatcher	servlet	searches	such	annotated	classes	for	mapped
methods	(the	@RequestMapping	annotated	methods)	to	serve	a	web	request.	In	order	to
make	the	controller	available	for	searching,	we	need	to	create	a	bean	for	this	controller	in
our	web	application	context.

We	can	create	beans	for	controllers	explicitly	via	the	bean	configuration	(using	the	<bean>
tag—you	can	see	how	we	created	a	bean	for	the	InternalResourceViewResolver	class
using	the	<bean>	tag	in	the	next	section),	or	we	can	hand	over	that	task	to	Spring	via	the
autodetection	mechanism.	To	enable	the	autodetection	of	the	@Controller	annotated
classes,	we	need	to	add	component	scanning	to	our	configuration	using	the
<context:component-scan>	tag.	Now,	you	finally	understand	the	purpose	of	the
<context:component-scan>	tag.

Spring	will	create	beans	(objects)	for	every	@Controller	class	at	runtime.	The	dispatcher
servlet	will	search	for	the	correct	request	mapping	method	in	every	@Controller	bean
based	on	the	@RequestMapping	annotation,	to	serve	a	web	request.	The	base-package
property	of	a	<context:component-scan>	tag	indicates	the	package	under	which	Spring
should	search	for	controller	classes	to	create	beans:

<context:component-scan	base-package="com.packt.webstore"	/>

The	preceding	line	instructs	Spring	to	search	for	controller	classes	within	the
com.packt.webstore	package	and	its	subpackages.

Tip
The	<context:component-scan>	tag	not	only	recognizes	controller	classes,	it	also
recognizes	other	stereotypes	such	as	services	and	repository	classes	as	well.	We	will	learn
more	about	services	and	repositories	later.

Pop	quiz	–	web	application	context	configuration
Q1.	What	needs	to	be	done	to	identify	a	class	by	Spring	as	a	controller?

1.	 That	particular	class	should	have	the	@Controller	annotation.
2.	 The	<mvc:annotation-driven	/>	and	<context:component-scan>	tags	should	be

specified	in	the	web	application	context	configuration	file.
3.	 That	particular	class	should	be	put	up	in	a	package	or	subpackage	that	has	been

specified	as	a	base	package	in	the	<context:component-scan>	tag.
4.	 All	of	the	above.

View	resolvers
We	saw	the	purpose	of	the	first	two	tags	that	are	specified	within	the	web	application
context	configuration	file:

<mvc:annotation-driven	/>

<context:component-scan	base-package="com.packt.webstore"	/>

Based	on	these	tags,	Spring	creates	the	necessary	beans	to	handle	a	web	request	and	also
creates	beans	for	all	the	@Controller	classes.	However,	to	run	a	Spring	MVC	application
successfully,	Spring	needs	one	more	bean;	this	bean	is	called	a	view	resolver.

A	view	resolver	helps	the	dispatcher	servlet	identify	the	views	that	have	to	be	rendered	as
the	response	for	a	specific	web	request.	Spring	MVC	provides	various	view	resolver
implementations	to	identify	views,	and	InternalResourceViewResolver	is	one	such
implementation.	The	final	tag	in	the	web	application	context	configuration	is	the	bean
definition	for	the	InternalResourceViewResolver	class	as	follows:

<bean	

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property	name="prefix"	value="/WEB-INF/jsp/"	/>

			<property	name="suffix"	value=".jsp"	/>

</bean>

Through	the	preceding	bean	definition	in	the	web	application	context	configuration,	we
instruct	Spring	MVC	to	create	a	bean	for	the	InternalResourceViewResolver	class
(org.springframework.web.servlet.view.InternalResourceViewResolver).	We	will
learn	more	about	the	view	resolver	in	Chapter	5,	Working	with	View	Resolver.

Time	for	action	–	understanding
InternalResourceViewResolver
We	instruct	Spring	to	create	a	bean	for	an	InternalResourceViewResolver	class,	but
why?	Who	is	going	to	use	this	bean?	What	is	the	role	of	the
InternalResourceViewResolver	bean	in	Spring	MVC?	Find	the	answer	to	these
questions	through	the	following	exercise:

1.	 Open	DispatcherServlet-context.xml;	you	can	find	this	file	under	the
src/main/webapp/WEB-INF/spring/webcontext/	directory	in	your	project.

2.	 Change	the	prefix	property	value	of	the	InternalResourceViewResolver	bean	as
follows:

<property	name="prefix"	value="/WEB-INF/views/"	/>

3.	 Now,	run	your	webstore	project	again	and	enter	the	URL
http://localhost:8080/webstore/.	You	will	see	an	HTTP	Status	404	error
message	in	your	browser	as	shown	in	the	following	screenshot:

An	error	page	displaying	the	no	resource	found	message

4.	 Then,	rename	the	jsp	directory	(/src/main/webapp/WEB-INF/jsp)	to	views.
5.	 Finally,	run	your	application	and	enter	the	URL,

http://localhost:8080/webstore/.	You	will	see	the	welcome	message	again.

What	just	happened?
After	changing	the	prefix	property	value	of	the	InternalResourceViewResolver	bean,
we	got	an	HTTP	Status	404	error	when	we	entered	the	URL,
http://localhost:8080/webstore/,	in	the	browser.	The	HTTP	Status	404	error	means
that	the	server	could	not	find	the	web	page	that	we	asked	for.	If	that	is	the	case,	then	which
web	page	did	we	ask	for?

As	a	matter	of	fact,	we	didn’t	ask	for	any	web	page	from	the	server	directly;	instead,	the
dispatcher	servlet	asks	a	particular	web	page	from	the	server.	What	we	already	learned	is
that	the	dispatcher	servlet	invokes	a	method	in	any	of	the	controller	beans	that	can	serve
this	web	request.	In	our	case,	this	method	is	nothing	but	the	welcome	method	of	our
HomeController	class,	because	this	is	the	only	request	mapping	method	that	can	match
the	request	path	of	the	given	URL,	http://localhost:8080/webstore/,	in	its
@RequestMapping	annotation.

Now,	observe	the	following:

The	prefix	property	value	of	the	InternalResourceViewResolver	bean	definition	in
DispatcherServlet-context.xml;	that	is,	/WEB-INF/views/
The	return	value	of	the	welcome	method	from	the	HomeController	class;	that	is,
welcome

Finally,	the	suffix	property	value	of	the	InternalResourceViewResolver	bean,	that
is,	.jsp

If	you	combine	these	three	values	together,	you	will	get	a	web	page	request	URL:	/WEB-
INF/views/welcome.jsp.	Now,	note	the	error	message	in	the	previous	screenshot,
showing	the	HTTP	Status	404	error	for	the	same	web	page	URL:	/WEB-
INF/views/welcome.jsp	under	the	application	name,	webstore/.

So,	the	conclusion	is	that	InternalResourceViewResolver	resolves	the	actual	view	file
path	by	prepending	the	configured	prefix	value	and	appending	the	suffix	value	with	the
view	name—the	view	name	is	the	value	usually	returned	by	the	controller	method.	So,	the
controller	method	doesn’t	return	the	path	of	the	actual	view	file;	it	returns	only	the	logical
view	name.	It	is	the	job	of	InternalResourceViewResolver	to	form	the	URL	of	the	actual
view	file	correctly.

Who	is	going	to	use	this	final	formed	URL?	The	answer	is	the	dispatcher	servlet.	After
getting	the	final	formed	URL	of	the	view	file	from	the	view	resolver,	the	dispatcher	servlet
will	try	to	get	the	view	file	from	the	server.	During	this	time,	if	the	formed	URL	is	found
to	be	wrong,	then	you	will	get	the	HTTP	Status	404	error.

Usually,	after	invoking	the	controller	method,	the	dispatcher	servlet	will	wait	to	get	the
logical	view	name	from	it.	Once	the	dispatcher	servlet	gets	the	logical	view	name,	it	gives
this	name	to	the	view	resolver	(InternalResourceViewResolver)	to	get	the	URL	path	of
the	actual	view	file;	once	the	view	resolver	returns	the	URL	path	to	the	dispatcher	servlet,
the	rendered	view	file	is	served	to	the	client	browser	as	a	web	page	by	the	dispatcher
servlet.

However,	why	did	we	get	the	error	in	step	3?	Since	we	changed	the	prefix	property	of	the
InternalResourceViewResolver	bean	in	step	2,	the	URL	path	value	returned	from
InternalResourceViewResolver	became	/WEB-INF/views/welcome.jsp	in	step	3,	which
is	an	invalid	path	value	(there	is	no	directory	called	views	under	WEB-INF).	That’s	why,	we
renamed	the	directory	jsp	to	views	in	step	4	to	align	it	with	the	path	generated	by
InternalResourceViewResolver	so	that	everything	works	fine	again.

Model	View	Controller
So	far,	we	have	seen	lots	of	concepts,	such	as	the	dispatcher	servlet,	request	mapping,
controllers,	and	view	resolver;	it	would	be	good	to	see	the	overall	picture	of	the	Spring
MVC	request	flow	so	that	we	can	understand	each	component’s	responsibilities.	However,
before	that,	we	need	to	understand	the	Model	View	Controller	(MVC)	concept	some
more.	Every	enterprise-level	application’s	presentation	layer	can	logically	be	divided	into
the	following	three	major	parts:

The	part	that	manages	the	data	(Model)
The	part	that	creates	the	user	interface	and	screens	(View)
The	part	that	handles	interactions	between	the	user,	user	interface,	and	data
(Controller)

The	following	diagram	will	help	you	understand	the	event	flow	and	command	flow	within
an	MVC	pattern:

The	classic	MVC	pattern

Whenever	a	user	interacts	with	the	view	by	clicking	on	a	link	or	button,	the	view	issues	an
event	notification	to	the	controller,	and	the	controller	issues	a	command	notification	to	the
model	to	update	the	data.	Similarly,	whenever	the	data	in	the	model	gets	updated	or
changed,	a	change	notification	event	is	issued	to	the	view	by	the	model	in	response,	and
the	view	issues	a	state	query	command	to	the	model	to	get	the	latest	data	from	the	model.
Here,	the	model	and	view	can	interact	directly;	this	pattern	is	called	the	classic	MVC
pattern.	However,	what	Spring	MVC	employs	is	something	called	a	web	MVC	pattern
due	to	the	limitations	in	the	HTTP	protocol.

Tip
Web	applications	rely	on	the	HTTP	protocol,	which	is	a	stateless	pull	protocol.	This	means
that	no	request	implies	no	reply;	every	time,	we	need	to	request	the	application	to	know	its
state.	The	MVC	design	pattern	requires	a	push	protocol	for	the	views	to	be	notified	by	the

model.	So	in	web	MVC,	the	controller	takes	more	responsibility	for	the	state	changing,
state	querying,	and	change	notification.

In	web	MVC,	every	interaction	between	the	model	and	view	is	taken	through	the
controller	only.	So,	the	controller	acts	as	a	bridge	between	the	model	and	view.	There	is	no
direct	interaction	between	the	model	and	view,	as	in	the	classic	MVC	pattern.

An	overview	of	the	Spring	MVC	request
flow
The	main	entry	point	for	a	web	request	in	a	Spring	MVC	application	is	via	the	dispatcher
servlet.	The	dispatcher	servlet	acts	as	the	front	controller	and	dispatches	the	requests	to	the
other	controller.	The	front	controller’s	main	duty	is	to	find	the	appropriate	controller	to
hand	over	the	request	for	further	processing.	The	following	diagram	shows	an	overview	of
the	request	flow	in	a	Spring	MVC	application:

The	Spring	MVC	request	flow

Now,	let’s	review	the	Spring	MVC	request	flow	in	short:

1.	 When	we	enter	a	URL	in	the	browser,	the	request	comes	to	the	dispatcher	servlet.
The	dispatcher	servlet	then	acts	as	a	centralized	entry	point	to	the	web	application.

2.	 The	dispatcher	servlet	determines	a	suitable	controller	that	is	capable	of	handling	the
request	and	dispatching	this	request	to	the	controller.

3.	 The	controller	method	updates	objects	in	the	model	and	returns	the	logical	view	name
and	updated	model	to	the	dispatcher	servlet.

4.	 The	dispatcher	servlet	consults	with	the	view	resolver	to	determine	which	view	to
render	and	passes	the	model	data	to	that	view.

5.	 The	view	furnishes	the	dynamic	values	in	the	web	page	using	the	model	data,	renders
the	final	web	page,	and	returns	this	web	page	to	the	dispatcher	servlet.

6.	 At	the	end,	the	dispatcher	servlet	returns	the	final,	rendered	page	as	a	response	to	the
browser.

The	web	application	architecture
Now,	we	understand	the	overall	request	flow	and	responsibility	of	each	component	in	a
typical	Spring	MVC	application.	However,	this	is	not	enough	for	us	to	build	an	online	web
store	application.	We	also	need	to	know	the	best	practices	to	develop	an	enterprise-level
web	application.	One	of	the	best	practices	in	a	typical	web	application	is	to	organize
source	code	into	layers,	which	will	improve	reusability	and	loose	coupling.	A	typical	web
application	normally	has	four	layers:	the	presentation,	domain,	services,	and	persistence.
So	far,	whatever	we	have	seen,	such	as	the	dispatcher	servlet,	controllers,	view	resolvers,
and	so	on,	is	considered	a	part	of	the	presentation	layer	components.	Let’s	understand	the
remaining	layers	and	components	one	by	one.

The	domain	layer
Let’s	start	with	the	domain	layer.	A	domain	layer	typically	consists	of	a	domain	model.	So,
what	is	a	domain	model?	A	domain	model	is	a	representation	of	the	data	storage	types
required	by	the	business	logic.	It	describes	the	various	domain	objects	(entities);	their
attributes,	roles,	and	relationships;	plus	the	constraints	that	govern	the	problem	domain.
Take	a	look	at	the	following	domain	model	diagram	for	order	processing	to	get	a	quick
idea	about	the	domain	model:

Sample	domain	model

Each	block	in	the	preceding	diagram	represents	a	business	entity,	and	the	lines	represent
the	associations	between	the	entities.	Based	on	the	preceding	domain	model	diagram,	we
can	understand	that,	in	an	order	processing	domain,	a	customer	can	have	many	orders,
each	order	can	have	many	order	items,	and	each	order	item	represents	a	single	product.

During	coding,	the	domain	model	will	be	converted	into	corresponding	domain	objects
and	associations	by	a	developer.	A	domain	object	is	a	logical	container	of	pure	domain
information.	Since	we	are	going	to	build	an	online	web	store	application,	in	our	domain,
the	primary	domain	object	might	be	a	product.	So,	let’s	start	with	the	domain	object	to
represent	a	product.

Time	for	action	–	creating	a	domain	object
So	far,	in	your	webstore,	you	have	showed	only	a	welcome	message.	It	is	now	time	for
you	to	show	your	first	product	on	the	web	page.	Do	this	by	creating	a	domain	object,	as
follows,	to	represent	the	product	information:

1.	 Create	a	class	called	Product	under	the	com.packt.webstore.domain	package	in	the
source	folder	src/main/java.	Now,	add	the	following	code	into	it:

package	com.packt.webstore.domain;

import	java.math.BigDecimal;

public	class	Product	{

		private	String	productId;

		private	String	name;

		private	BigDecimal	unitPrice;

		private	String	description;

		private	String	manufacturer;

		private	String	category;

		private	long	unitsInStock;

		private	long	unitsInOrder;

		private	boolean	discontinued;

private	String	condition;

		public	Product()	{

				super();

}

		public	Product(String	productId,	String	name,	BigDecimal	unitPrice)	{

				this.productId	=	productId;

				this.name	=	name;

				this.unitPrice	=	unitPrice;

		}

		//	add	setters	and	getters	for	all	the	fields	here

		@Override

		public	boolean	equals(Object	obj)	{

				if	(this	==	obj)

						return	true;

				if	(obj	==	null)

						return	false;

				if	(getClass()	!=	obj.getClass())

						return	false;

				Product	other	=	(Product)	obj;

				if	(productId	==	null)	{

						if	(other.productId	!=	null)

								return	false;

				}	else	if	(!productId.equals(other.productId))

						return	false;

				return	true;

		}

		@Override

		public	int	hashCode()	{

				final	int	prime	=	31;

				int	result	=	1;

				result	=	prime	*	result

								+	((productId	==	null)	?	0	:	productId.hashCode());

				return	result;

		}

		@Override

		public	String	toString()	{

				return	"Product	[productId="	+	productId	+	",	name="	+	name	+	"]";

		}

}

Add	setters	and	getters	for	all	of	the	fields	in	the	preceding	class.	I	have	omitted	it	to
make	the	code	compact,	but	it	is	a	must,	so	please	do	add	it.

2.	 Now,	create	one	more	class	called	ProductController	under	the
com.packt.webstore.controller	package	in	the	source	folder	src/main/java	and
add	the	following	code	into	it:

package	com.packt.webstore.controller;

import	java.math.BigDecimal;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.RequestMapping;

import	com.packt.webstore.domain.Product;

@Controller

public	class	ProductController	{

		@RequestMapping("/products")

		public	String	list(Model	model)	{

				Product	iphone	=	new	Product("P1234","iPhone	5s",	new		

BigDecimal(500));

				iphone.setDescription("Apple	iPhone	5s	smartphone	with	4.00-inch	

640x1136	display	and	8-megapixel	rear	camera");

				iphone.setCategory("Smart	Phone");

				iphone.setManufacturer("Apple");

				iphone.setUnitsInStock(1000);

				

				model.addAttribute("product",	iphone);

				

				return	"products";

		}

}

3.	 Finally,	add	one	more	JSP	view	file	called	products.jsp	under	the	directory
src/main/webapp/WEB-INF/views/,	add	the	following	code	snippets	into	it,	and	save
it:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<html>

<head>

<meta	http-equiv="Content-Type"	content="text/html;	charset=ISO-8859-

1">

<link	rel="stylesheet"

		

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

<title>Products</title>

</head>

<body>

		<section>

				<div	class="jumbotron">

						<div	class="container">

								<h1>Products</h1>

								<p>All	the	available	products	in	our	store</p>

						</div>

				</div>

		</section>

		<section	class="container">

				<div	class="row">

						<div	class="col-sm-6	col-md-3"	style="padding-bottom:	15px">

								<div	class="thumbnail">

										<div	class="caption">

												<h3>${product.name}</h3>

												<p>${product.description}</p>

		<p>${product.unitPrice}	USD</p>

			<p>Available	${product.unitsInStock}	units	in	stock</p>

										</div>

								</div>

						</div>

				</div>

		</section>

</body>

</html>

4.	 Finally,	run	the	application	and	enter	the	URL
http://localhost:8080/webstore/products.	You	will	be	able	to	see	a	web	page
displaying	the	product	information	as	shown	in	the	following	screenshot:

The	Products	page	displaying	the	product	information

What	just	happened?
Our	aim	is	to	show	the	details	of	a	product	on	our	web	page;	thus,	in	order	to	do	this,	we
first	need	a	domain	object	to	hold	the	details	of	the	product.	That’s	what	we	did	in	step	1;
we	just	created	a	class	called	Product	(Product.java)	to	store	information	about	the
product,	such	as	the	name,	description,	price,	and	so	on.

As	we	have	already	learned	from	the	An	overview	of	the	Spring	MVC	request	flow	section,
to	show	any	dynamic	data	on	a	web	page,	prior	to	this,	we	need	to	put	this	data	in	a	model;
only	then	will	the	view	be	able	to	read	this	data	from	the	model	and	render	it	on	the	web
page.	So,	to	put	the	product	information	in	a	model,	we	just	created	one	more	controller
called	ProductController	(ProductController.java)	in	step	3.

In	the	ProductController	class,	we	just	have	a	single	method	called	list	whose
responsibility	is	to	create	a	product	domain	object	to	hold	the	information	about	the	Apple
iPhone	5s	and	add	that	object	to	the	model.	And	finally,	we	return	the	view	name	as
products.	That’s	what	we	were	doing	through	the	following	lines	in	the	list	method	of
ProductController:

model.addAttribute("product",	iphone);

return	"products";

Since	we	configured	InternalResourceViewResolver	as	our	view	resolver	in	the	web
application	context	configuration	file,	in	the	process	of	resolving	the	view	file	for	the
given	view	name	(in	our	case,	the	view	name	is	products),	the	view	resolver	will	try	to
look	for	a	file	products.jsp	under	/WEB-INF/views/.	That’s	why,	we	created
products.jsp	in	step	4.	If	you	skip	step	4,	you	will	get	the	HTTP	Status	404	error	when
running	the	project.

For	a	better	visual	experience,	products.jsp	contains	lots	of	div	tags	with	Bootstrap	CSS
styles	applied	(Bootstrap	is	an	open	source	CSS	framework),	so	don’t	think	that
products.jsp	is	very	complex;	as	a	matter	of	fact,	it	is	very	simple.	You	need	not	bother
about	the	div	tags.	These	are	present	just	for	the	appeal.	You	only	need	to	observe	the
following	four	tags	carefully	in	products.jsp	to	understand	data	retrieval	from	the	model:

		<h3>${product.name}</h3>

		<p>${product.description}</p>

		<p>${product.unitPrice}	USD</p>	

		<p>Available	${product.unitsInStock}	units	in	stock</p>

Note	the	${product.unitPrice}	expression	carefully;	the	text	product	in	the	expression
is	the	name	of	the	key	that	we	used	to	store	the	iphone	object	in	the	model.	(Remember
this	line	model.addAttribute("product",	iphone);from	the	ProductController
class.)	The	text	unitPrice	is	nothing	but	one	of	the	fields	from	the	Product	domain	class
(Product.java).	Similarly,	we	show	some	important	fields	of	the	product	domain	class	in
the	products.jsp	file.

Tip
When	I	say	that	price	is	the	field	name,	I	am	actually	making	an	assumption	here	that	you

have	followed	the	standard	Java	bean	naming	conventions	for	the	getters	and	setters	of
your	domain	class.

This	is	because,	when	Spring	evaluates	the	expression	${product.unitPrice},	it	is
actually	trying	to	call	the	getter	method	of	the	field	to	get	the	value,	so	it	will	expect	a
getUnitPrice()	method	in	the	Product.java	file.

After	completing	step	4,	if	we	run	our	application	and	enter	the	URL
http://localhost:8080/WebStore/products,	we	will	be	able	to	see	a	web	page
displaying	the	product	information	as	shown	in	the	previous	screenshot.

So,	we	have	created	a	domain	class	to	hold	information	about	a	product,	created	a	single
product	object	in	the	controller,	and	added	it	to	the	model.	Finally,	we	showed	the	product
information	in	the	view.

The	persistence	layer
Since	we	had	a	single	product,	we	just	instantiated	it	in	the	controller	itself	and	displayed
this	product	information	on	our	web	page	successfully.	However,	a	typical	webstore
contains	thousands	of	products;	all	the	information	for	these	products	is	usually	stored	in	a
database.	So,	we	need	to	make	our	ProductController	class	smart	enough	to	load	all	the
product	information	from	the	database	into	the	model.	However,	if	we	write	all	the	data
retrieval	logic	in	the	ProductController	class	itself	to	retrieve	product	information	from
the	database,	our	ProductController	class	will	blow	down	into	a	big	chunk	of	file.
Logically	speaking,	data	retrieval	is	not	the	duty	of	the	controller	because	the	controller	is
a	presentation	layer	component.	Moreover,	we	need	to	organize	data	retrieval	code	in	a
separate	layer	so	that	we	can	reuse	this	logic	as	much	as	possible	from	other	controllers
and	layers.

How	do	we	retrieve	data	from	the	database	the	Spring	MVC	way?	There	comes	the
concept	of	the	persistence	layer.	A	persistence	layer	usually	contains	repository	objects	to
access	domain	objects.	A	repository	object	makes	queries	to	the	data	source	for	the	data,
thereafter	maps	the	data	from	the	data	source	to	a	domain	object,	and	finally,	persists	the
changes	in	the	domain	object	to	the	data	source.	So,	a	repository	object	is	typically
responsible	for	CRUD	operations	(Create,	Read,	Update,	and	Delete)	on	domain	objects.
The	@Repository	annotation	(org.springframework.stereotype.Repository)	is	an
annotation	that	marks	a	specific	class	as	a	repository.	The	@Repository	annotation	also
indicates	that	the	SQL	exceptions	thrown	from	the	repository	object’s	methods	should	be
translated	into	Spring’s	DataAccessExceptions.	Let’s	create	a	repository	layer	for	our
application.

Time	for	action	–	creating	a	repository
object
Perform	the	following	steps	to	create	a	repository	class	to	access	your	product	domain
objects:

1.	 Create	an	interface	called	ProductRepository	under	the	package
com.packt.webstore.domain.repository	in	the	source	folder	src/main/java.	Add
a	single	method	declaration	in	it,	as	follows:

List	<Product>	getAllProducts();

2.	 Create	a	class	called	InMemoryProductRepository	under	the	package
com.packt.webstore.domain.repository.impl	in	the	source	folder
src/main/java.	Now,	add	the	following	code	into	it:

package	com.packt.webstore.domain.repository.impl;

import	java.math.BigDecimal;

import	java.util.ArrayList;

import	java.util.List;

import	org.springframework.stereotype.Repository;

import	com.packt.webstore.domain.Product;

import	com.packt.webstore.domain.repository.ProductRepository;

@Repository

public	class	InMemoryProductRepository	implements	ProductRepository{

		

		private	List<Product>	listOfProducts	=	new	ArrayList<Product>();

		

		public	InMemoryProductRepository()	{

				Product	iphone	=	new	Product("P1234","iPhone	5s",	new	

BigDecimal(500));

				iphone.setDescription("Apple	iPhone	5s	smartphone	with	4.00-inch	

640x1136	display	and	8-megapixel	rear	camera");

				iphone.setCategory("Smart	Phone");

				iphone.setManufacturer("Apple");

				iphone.setUnitsInStock(1000);

				

				Product	laptop_dell	=	new	Product("P1235","Dell	Inspiron",	new	

BigDecimal(700));

				laptop_dell.setDescription("Dell	Inspiron	14-inch	Laptop	(Black)	

with	3rd	Generation	Intel	Core	processors");

				laptop_dell.setCategory("Laptop");

				laptop_dell.setManufacturer("Dell");

				laptop_dell.setUnitsInStock(1000);

				

				Product	tablet_Nexus	=	new	Product("P1236","Nexus	7",	new	

BigDecimal(300));

				tablet_Nexus.setDescription("Google	Nexus	7	is	the	lightest	7	inch	

tablet	With	a	quad-core	Qualcomm	Snapdragon™	S4	Pro	processor");

				tablet_Nexus.setCategory("Tablet");

				tablet_Nexus.setManufacturer("Google");

				tablet_Nexus.setUnitsInStock(1000);

				

				listOfProducts.add(iphone);

				listOfProducts.add(laptop_dell);

				listOfProducts.add(tablet_Nexus);

		}

		public	List<Product>	getAllProducts()	{

				return	listOfProducts;

		}

}

3.	 Open	ProductController	from	the	package	com.packt.webstore.controller	in
the	source	folder	src/main/java,	and	add	a	private	reference	to	ProductRepository
with	the	@Autowired	annotation
(org.springframework.beans.factory.annotation.Autowired),	as	follows:

@Autowired

private	ProductRepository	productRepository;

4.	 Now,	alter	the	body	of	the	list	method,	as	follows,	in	ProductController:

@RequestMapping("/products")

public	String	list(Model	model)	{

		model.addAttribute("products",	productRepository.getAllProducts());

		return	"products";

}

5.	 Then,	open	the	view	file	products.jsp	from	src/main/webapp/WEB-INF/views/,
and	remove	all	of	the	existing	code	and	replace	it	with	the	following	code	snippet:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset=ISO-

8859-1">

				<link	rel="stylesheet"

				

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

				<title>Products</title>

		</head>

		<body>

				<section>

						<div	class="jumbotron">

								<div	class="container">

										<h1>Products</h1>

										<p>All	the	available	products	in	our	store</p>

								</div>

						</div>

				</section>

				<section	class="container">

						<div	class="row">

								<c:forEach	items="${products}"	var="product">

										<div	class="col-sm-6	col-md-3"	style="padding-bottom:	15px">

												<div	class="thumbnail">

														<div	class="caption">

																<h3>${product.name}</h3>

																<p>${product.description}</p>

																<p>$${product.unitPrice}</p>

																<p>Available	${product.unitsInStock}	units	in	stock</p>

														</div>

												</div>

										</div>

								</c:forEach>

						</div>

				</section>

		</body>

</html>

6.	 Finally,	run	the	application	and	enter	the	URL
http://localhost:8080/webstore/products.	You	will	see	a	web	page	displaying
the	product	information	as	shown	in	the	following	screenshot:

The	Products	page	displaying	all	of	the	product	information	from	the	in-memory
repository

What	just	happened?
Since	we	don’t	want	to	write	all	of	the	data	retrieval	logic	inside	ProductController
itself,	we	delegated	this	task	to	another	class	called	InMemoryProductRepository.	The
InMemoryProductRepository	class	has	a	single	method	called	getAllProducts(),	which
returns	a	list	of	product	domain	objects.

As	the	name	implies,	InMemoryProductRepository	is	just	a	dummy,	in-memory	product
repository.	It	does	not	retrieve	any	real	product	domain	object	information	from	any
database	as	such;	rather,	it	just	instantiates	a	list	of	product	domain	objects	in	its
constructor.	So,	in	step	2,	we	just	created	the	InMemoryProductRepository	class,	added	a
single	method	getAllProducts()	to	it,	and	instantiated	some	products	in	the	constructor.

You	may	wonder,	then,	what	we	did	in	step	1.	In	step	1,	we	just	created	an	interface	called
ProductRepository,	which	defines	the	expected	behavior	of	a	product	repository.	As	of
now,	the	only	expected	behavior	of	a	ProductRepository	interface	is	to	return	a	list	of
product	domain	objects	(getAllProducts),	and	our	InMemoryProductRepository	class	is
just	an	implementation	of	this	interface.

Writing	real	data	retrieval	code	is	beyond	the	scope	of	this	book,	so	I	have	created
InMemoryProductRepository	just	for	demonstration	purposes.	However,	it	is	possible	to
replace	the	InMemoryProductRepository	class	with	any	other	real	implementation	that
can	retrieve	real	data	from	the	database.

Why	do	we	have	an	interface	and	an	implementation	for	the	product	repository?
Remember	that	we	are	actually	creating	a	persistence	layer	for	our	application.	Who	is
going	to	use	our	persistence	layer	repository	object?	It	will	possibly	be	used	by	a
controller	object	(in	our	case,	ProductController)	from	the	controller	layer,	so	it	is	not
the	best	practice	to	connect	two	layers	(controller	and	persistence)	with	a	direct	reference.
Instead,	we	can,	in	future,	have	an	interface	reference	in	the	controller	so	that	we	can
easily	switch	to	different	implementations	of	the	repository	without	doing	any	code
changes	in	the	controller	class,	if	we	want.

That’s	the	reason	why	we	had	the	ProductRepository	reference	in	our
ProductController	class	in	step	3,	and	not	the	InMemoryProductRepository	class
reference.	Note	the	following	lines	in	ProductController:

@Autowired

private	ProductRepository	productRepository;

What	is	the	need	of	the	@Autowired	annotation	here?	If	you	observe	the
ProductController	class	carefully,	you	may	wonder	why	we	didn’t	instantiate	any	object
for	the	reference,	productRepository.	Nowhere	could	we	see	a	single	line	saying
something	like	productRepository	=	new	InMemoryProductRepository();.

So	how	come	the	execution	of	the	line	productRepository.getAllProducts()	works	just
fine	without	any	NullPointerException	error	in	the	list	method	of	the
ProductController	class?

model.addAttribute("products",	productRepository.getAllProducts());

Who	assigns	the	InMemoryProductRepository	object	to	the	productRepository
reference?	The	answer	is	that	the	Spring	Framework	assigns	the
InMemoryProductRepository	object	to	the	productRepository	reference.

Remember	we	learned	that	Spring	creates	and	manages	beans	(objects)	for	every
@controller	class?	Similarly,	Spring	creates	and	manages	beans	for	@Repository	classes
as	well.	As	soon	as	Spring	sees	the	@Autowired	annotation	on	top	of	the
ProductRepository	reference,	it	assigns	the	object	of	InMemoryProductRepository	to
this	reference	since	Spring	already	created	and	holds	the	InMemoryProductRepository
object	in	its	object	container	(the	web	application	context).

If	you	remember,	we	configured	a	component	scan	through	the	following	tag	in	the	web
application	context	configuration	file:

<context:component-scan	base-package="	com.packt.webstore"	/>

Also,	we	learned	earlier	that	if	we	configure	our	web	application	context	as	mentioned,	it
not	only	detects	controllers	(@controller),	but	it	also	detects	other	stereotypes	such	as
repositories	(@Repository)	and	services	(@Service).

Since	we	added	the	@Repository	annotation	on	top	of	the	InMemoryProductRepository
class,	Spring	knows	that	if	any	reference	of	the	type	productRepository	has	an
@Autowired	annotation	on	top	of	it,	then	it	should	assign	the	implementation	object
InMemoryProductRepository	to	that	reference.	This	process	of	managing	the	dependency
between	classes	is	called	dependency	injection	or	wiring	in	the	Spring	world.	So,	to	mark
any	class	as	a	repository	object,	we	need	to	annotate	that	class	with	the	@Repository
annotation	(org.springframework.stereotype.Repository).

We	understand	how	the	persistence	layer	works,	but	after	the	repository	object	returns	a
list	of	products,	how	do	we	show	it	on	the	web	page?	If	you	remember	how	we	added	our
first	product	to	the	model,	it	is	very	similar	to	that.	Instead	of	a	single	object,	this	time	we
add	a	list	of	objects	to	the	model	through	the	following	line	in	the	list	method	of
ProductController:

model.addAttribute("products",	productRepository.getAllProducts());

In	the	preceding	code,	productRepository.getAllProducts()	just	returns	a	list	of
product	domain	objects	(List<Product>),	and	we	directly	add	this	list	to	the	model.

In	the	corresponding	view	file	(products.jsp),	using	the	<C:forEach>	tag,	we	loop
through	the	list	and	display	the	information	for	each	product	inside	a	styled	div	tag:

<c:forEach	items="${products}"	var="product">

		<div	class="col-sm-6	col-md-3"	style="padding-bottom:	15px">

				<div	class="thumbnail">

						<div	class="caption">

								<h3>${product.name}</h3>

								<p>${product.description}</p>

								<p>${product.unitPrice}	USD</p>

								<p>	Available	${product.unitsInStock}	units	in	stock	</p>

						</div>

				</div>

		</div>

</c:forEach>

Again,	note	that	the	text	products	in	the	expression	${products}	is	nothing	but	the	key
that	we	used	when	adding	the	product	list	to	the	model	from	the	ProductController
class.

The	for	each	loop	is	a	special	JSTL	looping	tag	that	will	run	through	the	list	of	products
and	assign	each	product	to	a	variable	called	product	(var="product")	on	each	iteration.
From	the	product	variable,	we	fetch	information	such	as	the	name,	description,	and
unitPrice	of	the	product	and	display	it	within	the	<h3>	and	<p>	tags.	That’s	how	we	are
finally	able	to	see	the	list	of	products	on	the	products	web	page.

The	service	layer
So	far	so	good;	we	created	a	presentation	layer	that	contains	a	controller,	dispatcher
servlet,	view	resolvers,	and	so	on.	Then,	we	created	a	domain	layer	that	contains	a	single
domain	class,	Product.	Finally,	we	created	the	persistence	layer,	which	contains	a
repository	interface	and	an	implementation	to	access	our	Product	domain	objects.

However,	we	are	still	missing	one	more	concept	called	the	service	layer.	Why	do	we	need
the	service	layer?	We	saw	how	a	persistence	layer	deals	with	all	of	the	logic	related	to	data
access	(CRUD)	and	the	presentation	layer	deals	with	all	of	the	activities	related	to	the	web
request	and	view;	the	domain	layer	contains	classes	to	hold	information	that	is	retrieved
from	database	records	/	the	persistence	layer.	However,	where	can	we	put	the	code	for
business	operations?

The	service	layer	exposes	business	operations	that	could	be	composed	of	multiple	CRUD
operations.	These	CRUD	operations	are	usually	performed	by	the	repository	objects.	For
example,	you	could	have	a	business	operation	to	process	a	customer	order,	and	in	order	to
perform	such	a	business	operation,	you	would	need	to	perform	the	following	operations:

1.	 First,	ensure	that	all	of	the	products	in	the	requested	order	are	available	in	your	store.
2.	 Second,	have	a	sufficient	quantity	of	these	products	in	your	store.
3.	 Finally,	update	the	product	inventory	by	reducing	the	available	count	for	each

product	that	was	ordered.

Service	objects	are	good	candidates	for	such	business	operations	logic.	The	service
operations	could	also	represent	the	boundaries	of	SQL	transactions;	this	means	that	all	of
the	elementary	CRUD	operations	performed	inside	the	business	operation	should	be	inside
a	transaction:	either	all	of	them	should	succeed	or	they	should	roll	back	in	case	of	error.

Time	for	action	–	creating	a	service	object
Perform	the	following	steps	to	create	a	service	object	that	will	perform	the	simple	business
operation	of	order	processing:

1.	 Open	the	interface	ProductRepository	from	the	package
com.packt.webstore.domain.repository	in	the	source	folder	src/main/java,	and
add	one	more	method	declaration	on	it,	as	follows:

Product	getProductById(String	productID);

2.	 Open	the	implementation	class	InMemoryProductRepository	and	add	an
implantation	for	the	previously	declared	method,	as	follows:

public	Product	getProductById(String	productId)	{

				Product	productById	=	null;

				

				for(Product	product	:	listOfProducts)	{

						if(product!=null	&&	product.getProductId()!=null	&&	

product.getProductId().equals(productId)){

								productById	=	product;

								break;

						}

				}

				

				if(productById	==	null){

						throw	new	IllegalArgumentException("No	products	found	with	the	

product	id:	"+	productId);

				}

				

				return	productById;

}

3.	 Create	an	interface	called	OrderService	under	the	package
com.packt.webstore.service	in	the	source	folder	src/main/java.	Now,	add	a
method	declaration	in	it	as	follows:

void	processOrder(String		productId,	int	count);

4.	 Create	a	class	called	OrderServiceImpl	under	the	package
com.packt.webstore.service.impl	in	the	source	folder	src/main/java.	Then,	add
the	following	code	into	it:

package	com.packt.webstore.service.impl;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Service;

import	com.packt.webstore.domain.Product;

import	com.packt.webstore.domain.repository.ProductRepository;

import	com.packt.webstore.service.OrderService;

@Service

public	class	OrderServiceImpl	implements	OrderService{

		@Autowired

		private	ProductRepository	productRepository;

		

		public	void	processOrder(String	productId,	long	quantity)	{

				Product	productById	=	productRepository.getProductById(productId);

				

				if(productById.getUnitsInStock()	<	quantity){

						throw	new	IllegalArgumentException("Out	of	Stock.	Available	Units	

in	stock"+	productById.getUnitsInStock());

				}

				

				productById.setUnitsInStock(productById.getUnitsInStock()	-	

quantity);

		}

}

5.	 Now,	create	one	more	controller	class	called	OrderController	under	the	package
com.packt.webstore.controller	in	the	source	folder	src/main/java,	and	add	the
following	code	into	it:

package	com.packt.webstore.controller;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.RequestMapping;

import	com.packt.webstore.service.OrderService;

@Controller

public	class	OrderController	{

		

		@Autowired

		private	OrderService	orderService;

		@RequestMapping("/order/P1234/2")

		public	String	process()	{

				orderService.processOrder("P1234",	2);

				return	"redirect:/products";

		}

}

6.	 Finally,	run	the	application	and	enter	the	URL
http://localhost:8080/webstore/order/P1234/2.	You	will	be	able	to	see	a	web
page	displaying	the	product	information	as	shown	in	the	following	screenshot	(note
that	the	available	units	in	stock	for	iPhone	5s	show	as	Available	998	units	in	stock):

The	Products	page	displaying	the	product	information	after	the	stock	was	updated
via	a	service	call

What	just	happened?
Before	going	through	the	steps,	I	just	want	to	remind	you	of	a	fact	regarding	repository
objects:	all	of	the	data	access	(CRUD)	operations	on	a	domain	object	should	be	carried
through	repository	objects	only.	Fact	number	two	is	that	service	objects	rely	on	repository
objects	to	carry	out	all	operations	related	to	data	access.	That’s	why,	before	creating	the
actual	service	interface/implementation,	we	created	a	repository	interface	/
implementation	method	(getProductById)	in	steps	1	and	2.

The	getProductById	method	from	the	InMemoryProductRepository	class	just	returns	a
product	domain	object	for	the	given	product	ID.	We	need	this	method	when	we	write	the
logic	for	our	service	object	method	(processOrder)	in	the	OrderServiceImpl	class.	If	the
product	is	not	found	for	the	given	ID,	then	InMemoryProductRepository	throws
IllegalArgumentException.

Now,	let’s	review	steps	3	and	4,	where	we	created	the	actual	service	definition	and
implementation.	In	step	3,	we	created	an	interface	called	OrderService	to	define	all	of	the
expected	responsibility	of	an	order	service.	We	defined	only	one	responsibility,	as	of	now,
within	that	interface;	that	is,	to	process	the	order	via	the	method,	processOrder.	The
processOrder	method	has	two	parameters:	one	is	productId	and	the	other	is	quantity.	In
step	4,	we	implemented	the	processOrder	method	within	the	OrderServiceImpl	class,
where	we	reduced	the	amount	of	stock	available	for	the	given	productId	by	the	quantity
parameter.

In	the	previous	exercise,	within	the	ProductController	class,	we	connected	controller
and	repository	through	the	ProductRepository	interface	reference	to	maximize	loose
coupling.	Similarly,	we	have	now	connected	the	service	layer	and	repository	layer	through
the	ProductRepository	interface	reference,	as	follows,	in	the	OrderServiceImpl	class:

@Autowired

private	ProductRepository	productRepository;

As	we	have	already	learned,	Spring	assigned	the	InMemoryProductRepository	object	to
the	productRepository	reference	in	the	previously	mentioned	code	because	the
productRepository	reference	has	the	@Autowired	annotation,	and	we	know	that	Spring
creates	and	manages	all	of	the	@Service	and	@Repository	objects.	Note	that
OrderServiceImpl	has	the	@Service	annotation
(org.springframework.stereotype.Service)	on	top	of	it.	We	used	the
productRepository	reference	to	get	the	product	for	the	given	ID	within	the	processOrder
method	of	the	OrderServiceImpl	class	as	follows:

public	void	processOrder(String	productId,	long	quantity)	{

		Product	productById	=	productRepository.getProductById(productId);

				

		if(productById.getUnitsInStock()	<	quantity){

				throw	new	IllegalArgumentException("Out	of	Stock.	Available	Units	in	

stock"+	productById.getUnitsInStock());

		}

		

		productById.setUnitsInStock(productById.getUnitsInStock()	-	quantity);

}

Tip
To	ensure	transactional	behavior,	Spring	provides	the	@Transactional	annotation
(org.springframework.transaction.annotation.Transactional).	We	need	to	annotate
service	methods	with	the	@Transactional	annotation	to	define	transaction	attributes,	and
we	need	to	do	some	more	configuration	in	our	application	context	for	transactional
behavior	to	take	effect.

However,	since	we	are	using	dummy,	in-memory	repositories	to	mimic	data	access,	to
annotate	service	methods	with	the	@Transactional	annotation	is	meaningless.	To	know
more	about	transaction	management	in	Spring,	refer	to
http://docs.spring.io/spring/docs/current/spring-framework-
reference/html/transaction.html.

We	already	created	the	service	layer,	and	now	it	is	ready	to	be	consumed	from	the
presentation	layer.	It	is	time	for	us	to	connect	our	service	layer	with	the	controller.	In	step
5,	we	created	one	more	controller,	OrderController,	with	a	request	mapping	method
called	process	in	it	that	is	shown	in	the	following	code	snippet:

@RequestMapping("/order/P1234/2")

public	String	process()	{

		orderService.processOrder("P1234",	2);

		return	"redirect:/products";

}

The	process	method	from	the	OrderController	class	uses	our	orderService	reference	to
process	the	order	for	the	product	ID,	P1234.	After	successfully	executing	the	process
method	of	OrderController,	the	available	units	in	stock	should	get	reduced	by	2	for	the
product	with	the	ID,	P1234.

You	will	also	notice	that	we	mapped	the	/order/P1234/2	URL	path	to	the	process
method	using	the	@RequestMapping	annotation.	So,	when	we	finally	try	to	hit	the	URL
http://localhost:8080/webshop/order/P1234/2,	we	will	be	able	to	see	that	the
available	units	in	stock	get	reduced	by	two	for	the	product,	P1234.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/transaction.html

Have	a	go	hero	–	accessing	the	product	domain
object	via	a	service
In	our	ProductController	class,	we	only	have	the	ProductRepository	reference	to
access	the	Product	domain	object.	However,	to	access	ProductRepository	directly	from
ProductController	is	not	the	best	practice;	it	is	always	good	to	access	the	persistence
layer	repository	via	the	service	object.	However,	we	have	not	created	any	service	object	to
mediate	between	ProductController	and	ProductRepository.

Why	don’t	you	create	a	service	layer	to	mediate	between	ProductController	and
ProductRepository?	The	following	are	some	of	the	things	you	can	try	out:

1.	 Create	an	interface	called	ProductService	with	a	method	declaration,	List
<Products>	getAllProducts();.

2.	 Create	an	implementation	class,	ProductServiceImpl,	for	the	ProductService
interface.

3.	 Autowire	the	ProductRepository	reference	in	the	ProductServiceImpl	class	and
use	this	reference	within	the	getAllProducts	method	to	get	all	of	the	products	from
ProductRepository.

4.	 Replace	the	ProductRepository	reference	with	the	ProductService	reference	in	the
ProductController	class.	Accordingly,	change	the	list	method	in	the
ProductController	class.

5.	 After	finishing	this,	you	will	be	able	to	see	the	same	product	listings	under	the	URL,
http://localhost:8080/webshop/products/.

An	overview	of	the	web	application
architecture
So	far,	we	have	seen	how	to	organize	our	code	into	layers	so	that	we	can	avoid	tight
coupling	between	various	code	files,	and	improve	reusability	and	the	separation	of
concerns.	We	just	created	one	domain	class,	one	repository	class,	and	one	service	class	for
demonstration	purposes,	but	a	typical,	real-world	MVC	application	may	contain	as	many
domain,	repository,	and	service	classes	as	required.	Each	layer	is	usually	connected
through	interfaces	and	always	controller	access	domain	objects	from	the	repository	via	the
service	interface	only.

Every	typical,	enterprise-level	Spring	MVC	application	will	logically	have	four	layers:
presentation,	domains,	persistence,	and	services.	The	domain	layer	is	sometimes	called	the
model	layer.	The	following	block	diagram	will	help	you	conceptualize	this	idea:

The	layers	of	a	Spring	MVC	application

So,	we	learned	how	to	create	a	service	layer	object	and	repository	layer	object;	what	we
saw	in	the	service	layer	and	repository	layer	was	just	a	glimpse.	Spring	has	extensive
support	to	deal	with	databases	and	transactions;	handling	these	is	a	very	vast	topic	and
deserves	its	own	book.	In	the	upcoming	chapters,	we	will	concentrate	more	on	the
presentation	layer,	which	contains	most	of	the	concepts	related	to	Spring	MVC	rather	than
those	related	to	the	database	and	transaction.

Have	a	go	hero	–	listing	all	our	customers
It	is	great	that	you	have	listed	all	of	the	products	in	your	web	application	under	the	URL,
http://localhost:8080/webstore/products,	but	in	order	to	become	a	successful	web
store,	maintaining	only	the	product	information	is	not	enough.	You	need	to	maintain
information	about	the	customer	as	well	so	that	you	can	attract	them	by	giving	special
discounts	based	on	their	purchase	history.

Why	don’t	you	maintain	customer	information	in	your	application?	Execute	the	following
steps	to	make	some	improvements	to	your	application	to	maintain	customer	information:

1.	 Add	one	more	domain	class	called	the	Customer	domain	class	in	the	same	package
where	the	product	exists.

2.	 Add	fields	such	as	customerId,	name,	address,	and	noOfOrdersMade	to	the	Customer
class.

3.	 Create	a	persistence	layer	to	return	all	customers.
4.	 Create	an	interface	called	CustomerRepository	with	a	method	declaration,	List

<Customers>	getAllCustomers();.
5.	 Create	an	implementation	InMemoryCustomerRepository	for	CustomerRepository

and	instantiate	a	dummy	customer	in	the	constructor	of
InMemoryCustomerRepository,	as	you	did	for	InMemoryProductRepository.

6.	 Create	a	service	layer	to	get	all	of	the	customers	from	the	repository.
7.	 Create	an	interface	called	CustomerService	with	a	method	declaration,	List

<Customers>	getAllCustomers().
8.	 Create	an	implementation	CustomerServiceImpl	for	CustomerService.
9.	 Create	one	more	controller	called	CustomerController.
10.	 Add	a	request	mapping	method	to	map	the	URL,

http://localhost:8080/webstore/customers.
11.	 Create	a	view	file	called	customers.jsp.

After	finishing	this	exercise,	you	will	be	able	to	see	all	of	your	customers	under	the	URL,
http://localhost:8080/webstore/customers.	This	is	very	similar	to	the	way	we	listed
all	of	our	products	under	the	URL,	http://localhost:8080/webstore/products.

Summary
At	the	start	of	this	chapter,	we	learned	the	duty	of	a	dispatcher	servlet	and	how	it	maps	a
request	using	the	@RequestMapping	annotation.	Next,	we	saw	what	a	web	application
context	is	and	how	to	configure	it	for	our	web	application.	After	that,	we	got	a	little
introduction	about	view	resolvers	and	how	InternalResourceViewResolver	resolves	the
view	file	for	the	given	logical	view	name.	We	also	learned	the	concept	of	MVC	and	the
overall	request	flow	of	a	Spring	MVC	application,	and	then	we	learned	about	web
application	architecture.	In	the	web	application	architecture	section,	we	saw	how	to	create
and	organize	code	under	the	various	layers	of	a	Spring	MVC	application,	such	as	the
domain	layer,	persistence	layer,	and	service	layer.	At	the	same	time,	we	saw	how	to
retrieve	product	domain	objects	from	the	repository	and	present	them	on	the	web	page
using	the	controller.	We	also	learned	where	a	service	object	fits	in.	Finally,	we	saw	an
overview	of	the	web	application	architecture.

I	hope	you	got	a	good	overview	of	Spring	MVC	and	the	various	components	involved	in
developing	a	Spring	MVC	application.	In	the	next	chapter,	we	are	specifically	going	to
learn	more	about	controllers	and	related	concepts.	Meet	you	in	the	next	chapter!

Chapter	3.	Control	Your	Store	with
Controllers
In	Chapter	2,	Spring	MVC	Architecture	–	Architecting	Your	Web	Store,	we	learned	the
overall	architecture	of	a	Spring	MVC	application.	We	didn’t	go	into	any	of	the	concepts	in
detail;	our	total	aim	was	to	understand	the	overall	flow.	In	this	chapter,	we	are	going	to
have	an	in-depth	look	at	the	controllers	in	Spring	MVC	as	they	have	an	important	role.

This	chapter	will	cover	the	following	concepts:

Defining	a	controller
URI	template	patterns
Matrix	variables
Request	parameters

Defining	a	controller
Controllers	are	presentation	layer	components	that	are	responsible	for	responding	to	user
actions.	These	actions	could	be	entering	a	particular	URL	on	the	browser,	clicking	on	a
link,	submitting	a	form	on	a	web	page,	and	so	on.	Any	regular	Java	class	can	be
transformed	into	a	controller	by	simply	being	annotated	with	the	@Controller	annotation
(org.springframework.stereotype.Controller).

And	we	had	already	learned	that	the	@Controller	annotation	supports	Spring’s
autodetection	mechanism	for	auto-registering	the	bean	definition	in	the	web	application
context.	To	enable	such	auto-registering,	we	must	add	the	<context:component-scan>	tag
in	the	web	application	context	configuration	file;	we	have	seen	how	to	do	that	in	the	The
web	application	context	configuration	section	of	Chapter	2,	Spring	MVC	Architecture	–
Architecting	Your	Web	Store.

A	controller	class	is	made	up	of	request-mapped	methods,	also	called	handler	methods.
Handler	methods	are	annotated	with	the	@RequestMapping	annotation
(org.springframework.web.bind.annotation.RequestMapping).	The	@RequestMapping
annotation	is	used	to	map	URLs	to	particular	handler	methods.	In	Chapter	2,	Spring	MVC
Architecture	–	Architecting	Your	Web	Store,	we	saw	a	brief	introduction	on	the
@RequestMapping	annotation	and	learned	how	to	apply	the	@RequestMapping	annotation
on	the	handler	method	level.	However,	in	Spring	MVC,	we	can	even	specify	the
@RequestMapping	annotation	at	the	controller	class	level.	In	that	case,	Spring	MVC	will
consider	the	controller	class	level	@RequestMapping	annotation	value	before	mapping	the
URL	to	the	handler	methods.	This	feature	is	called	relative	request	mapping.

Note
The	terms	request	mapped	method,	mapped	method,	handler	method,	and	controller
method	all	mean	the	same	thing;	these	terms	are	used	to	specify	the	controller	method
with	an	@RequestMapping	annotation.	They	have	been	used	interchangeably	in	this	book.

Time	for	action	–	adding	class-level
request	mapping
Let’s	add	a	@RequestMapping	annotation	on	our	ProductController	class	to	demonstrate
the	relative	request	mapping	feature.	However,	before	that,	we	just	want	to	ensure	that	you
have	already	replaced	the	ProductRepository	reference	with	the	ProductService
reference	in	the	ProductController	class	as	part	of	the	previous	chapter’s	Time	for	action
–	creating	a	service	object	section.	Because	contacting	the	persistence	layer	directly	from
the	presentation	layer	is	not	a	best	practice,	all	access	to	the	persistence	layer	should	go
through	the	service	layer.	Perform	the	following	steps	(those	who	have	completed	this
exercise	can	directly	start	from	step	5;	others	please	continue	from	step	1):

1.	 Create	an	interface	called	ProductService	under	the	com.packt.webstore.service
package	in	src/main/java	and	add	two	method	declarations	in	it	as	follows:

List<Product>	getAllProducts();

Product	getProductById(String	productID);

2.	 Create	a	class	called	ProductServiceImpl	under	the
com.packt.webstore.service.impl	package	in	src/main/java	and	add	the
following	code	into	it:

package	com.packt.webstore.service.impl;

import	java.util.List;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Service;

import	com.packt.webstore.domain.Product;

import	com.packt.webstore.domain.repository.ProductRepository;

import	com.packt.webstore.service.ProductService;

@Service

public	class	ProductServiceImpl	implements	ProductService{

		

		@Autowired

		private	ProductRepository	productRepository;

		public	List<Product>	getAllProducts()	{

				return	productRepository.getAllProducts();

		}

		public	Product	getProductById(String	productID)	{

				return	productRepository.getProductById(productID);

		}

}

3.	 Open	ProductController,	remove	the	existing	ProductRepository	reference,	and
add	the	ProductService	reference	as	follows:

@Autowired

private	ProductService	productService;

4.	 Now,	alter	the	body	of	the	list	method	in	the	ProductController	class	as	follows
(note	that	this	time	we	used	the	productService	reference	to	get	all	of	the	products):

@RequestMapping("/products")

public	String	list(Model	model)	{

		model.addAttribute("products",	productService.getAllProducts());

		

return	"products";

}

5.	 In	the	ProductController	class,	add	the	following	annotation	on	top	of	the	class:

@RequestMapping("/products")

6.	 From	the	list	method’s	@RequestMapping	annotation,	remove	the	value	attribute
completely;	so	now,	the	list	method	will	have	a	plain	@RequestMapping	annotation
without	any	attributes	as	follows:

@RequestMapping

public	String	list(Model	model)	{

7.	 Now,	add	one	more	handler	method	in	the	ProductController	class	as	follows:

@RequestMapping("/all")

public	String	allProducts(Model	model)	{

		model.addAttribute("products",	productService.getAllProducts());

		

return	"products";

}

8.	 Finally,	run	the	application	again	and	enter	the	URL
http://localhost:8080/webstore/products/all	in	the	browser	to	view	all	of	the
products.

What	just	happened?
What	we	have	demonstrated	here	is	a	simple	concept	called	relative	request	mapping.	We
did	the	following	three	things	in	the	ProductController	class:

We	added	an	@RequestMapping	annotation	at	the	class	level	with	a	value	attribute
defined	as	"/products"	in	step	5
We	removed	the	value	attribute	from	the	@RequestMapping	annotation	of	the	list
method	in	step	6
Finally,	we	added	one	more	handler	method	called	allProducts,	which	also	puts	the
same	list	of	products	on	the	model	as	the	list	method,	but	under	a	different	URL
mapping—@RequestMapping("/all")

In	all	our	previous	examples,	we	annotated	the	@RequestMapping	annotations	only	at	the
controller	method	level,	but	Spring	MVC	also	allows	us	to	specify	request	mapping	at	the
controller	class	level.	In	this	case,	Spring	MVC	maps	a	specific	URL	path	at	the	method
level	that	is	relative	to	the	class	level	@RequestMapping	URL	value.

In	step	5,	we	just	added	the	@RequestMapping	annotation	at	the	ProductController	class
level	with	the	URL	mapping	value	/products.	And	in	step	7,	we	added	a	new	handler
method	called	allProducts	with	a	URL	mapping	value	/all.	So,	the	final	request	path	for
the	allProducts	method	is	formed	by	combining	the	class	and	method	request	mapping
values,	which	is	/products/all.	So,	if	we	defined	any	class	level	request	mapping,
Spring	MVC	would	consider	that	class	level	request	path	before	mapping	the	request	to
the	method.

Note
Steps	1	to	4	just	teach	you	how	to	create	and	connect	a	service	layer	object	with	the
ProductController	class.	As	of	now,	the	ProductServiceImpl	class	does	not	have	any
distinguishable	business	logic	in	it;	rather,	it	simply	delegates	the	call	to	the	persistence
layer’s	repository	object	(ProductRepository)	to	access	the	Product	domain	object.	So	as
of	now,	there	is	no	real	meaning	to	have	a	service	layer	for	ProductRepository;	however,
in	future,	if	we	decide	to	replace	the	InMemoryProductRepository	object	with	a	real
database	backed	repository	object,	we	will	definitely	need	this	service	layer	to	write	code
to	handle	transaction-related	tasks.	So,	just	to	maintain	the	industry’s	best	practices,	I	have
retained	the	service	layers	in	most	of	the	examples	in	this	book.

In	step	6,	we	simply	didn’t	specify	any	request	path	value	in	the	@RequestMapping
annotation	of	the	list	method.	By	doing	so,	we	made	the	list	method	the	default	request
mapping	method	for	the	ProductController	class.	So,	whenever	a	request	URL	ends	up
with	the	controller	class	level	request	path	value	without	any	further	relative	path,	Spring
MVC	invokes	this	method	as	a	response	to	the	request.

So,	finally	in	our	case,	the	URL	http://localhost:8080/webstore/products	will	be
mapped	to	the	list	method	and	http://localhost:8080/webstore/products/all	will
be	mapped	to	the	allProducts	method.

Note

If	you	specify	more	than	one	default	mapping	method	inside	a	controller,	you	will	get
IllegalStateException	with	the	message	Ambiguous	mapping	found.	So,	a	controller
can	have	only	one	default	request	mapping	method	at	most.

Pop	quiz	–	class-level	request	mapping
Q1.	In	a	web	application	called	library	that	has	the	following	request	mapping	at	a
controller	class	level	and	in	the	method	level,	which	is	the	appropriate	request	URL	to
map	the	request	to	the	books	method?

@RequestMapping("/books")

public	class	BookController	{

...

@RequestMapping(value	=	"/list")

public	String	books(Model	model)	{

...

1.	 http://localhost:8080/library/books/list
2.	 http://localhost:8080/library/list
3.	 http://localhost:8080/library/list/books
4.	 http://localhost:8080/library/

Q2.	If	we	have	another	handler	method	called	bookDetails	under	BookController	as
follows,	what	will	the	URL	that	maps	to	that	method	be?

@RequestMapping()

public	String	bookDetails(Model	model)	{

...

1.	 http://localhost:8080/library/books/details
2.	 http://localhost:8080/library/books
3.	 http://localhost:8080/library/details
4.	 http://localhost:8080/library/

The	role	of	a	controller	in	Spring	MVC
In	Spring	MVC,	controller	methods	are	the	final	destination	point	that	a	web	request	can
reach.	After	being	invoked,	the	controller	method	starts	to	process	the	web	request	by
interacting	with	the	service	layer	to	complete	the	work	that	needs	to	be	done.	Usually,	the
service	layer	executes	some	business	operations	on	domain	objects	and	calls	the
persistence	layer	to	update	the	domain	objects.	After	the	processing	has	been	completed
by	the	service	layer	object,	the	controller	is	responsible	for	updating	and	building	up	the
model	object	and	chooses	a	view	for	the	user	to	see	next	as	a	response.

Remember	that	Spring	MVC	always	keeps	the	controllers	unaware	of	any	view
technology	used.	That’s	why	the	controller	returns	only	a	logical	view	name;	later,
DispatcherServlet	consults	with	ViewResolver	to	find	out	the	exact	view	to	be
rendered.	According	to	the	controller,	Model	is	a	collection	of	arbitrary	objects	and	View	is
specified	with	a	logical	name.

In	all	our	previous	exercises,	the	controllers	used	to	return	the	logical	view	name	and
update	the	model	via	the	model	parameter	available	in	the	controller	method.	There	is
another,	seldom	used	way	of	updating	the	model	and	returning	the	view	name	from	the
controller	with	the	help	of	the	ModelAndView	object
(org.springframework.web.servlet.ModelAndView).	Look	at	the	following	code
snippet,	for	example:

@RequestMapping("/all")

public	ModelAndView	allProducts()	{

		ModelAndView	modelAndView	=	new	ModelAndView();

				

		modelAndView.addObject("products",	productService.getAllProducts());

		modelAndView.setViewName("products");

		return	modelAndView;

		}

The	preceding	code	snippet	just	shows	how	we	can	encapsulate	the	model	and	view	using
the	ModelAndView	object.

Handler	mapping
We	have	learned	that	DispatcherServlet	is	the	one	that	dispatches	the	request	to	the
handler	methods	based	on	the	request	mapping;	however,	in	order	to	interpret	the
mappings	defined	in	the	request	mapping,	DispatcherServlet	needs	a	HandlerMapping
implementation	(org.springframework.web.servlet.HandlerMapping).	The
DispatcherServlet	consults	with	one	or	more	HandlerMapping	implementations	to	find
out	which	controller	(handler)	can	handle	the	request.	So,	HandlerMapping
determines	which	controller	to	call.

The	HandlerMapping	interface	provides	the	abstraction	for	mapping	requests	to	handlers.
The	HandlerMapping	implementations	are	capable	of	inspecting	the	request	and	coming
up	with	an	appropriate	controller.	Spring	MVC	provides	many	HandlerMapping
implementations,	and	the	one	we	are	using	to	detect	and	interpret	mappings	from	the
@RequestMapping	annotation	is	the	RequestMappingHandlerMapping	class
(org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping
To	start	using	RequestMappingHandlerMapping,	we	have	to	add	the	<mvc:annotation-
driven>	element	in	our	web	application	context	configuration	file	so	that	Spring	MVC
can	create	and	register	a	bean	for	RequestMappingHandlerMapping	in	our	web	application
context.	We	already	configured	<mvc:annotation-driven>	in	Chapter	2,	Spring	MVC
Architecture	–	Architecting	Your	Web	Store,	in	the	The	web	application	context
configuration	section.

Using	URI	template	patterns
In	the	previous	chapters,	we	saw	how	to	map	a	particular	URL	to	a	controller	method;	for
example,	if	the	URL	entered	was	http://localhost:8080/webstore/products,	we
mapped	that	request	to	the	list	method	of	ProductController	and	listed	all	the	product
information	on	the	web	page.

What	if	we	want	to	list	only	a	subset	of	the	products	based	on	category,	for	instance,	we
want	to	display	only	the	products	that	fall	under	the	category	of	laptops	if	the	user	entered
the	URL	http://localhost:8080/webstore/products/laptop?	Similarly,	what	if	the
URL	is	http://localhost:8080/webstore/products/tablet	and	we	would	like	to	show
only	tablets	on	the	web	page?

One	way	to	do	this	is	to	have	a	separate	request	mapping	method	in	the	controller	for
every	unique	category.	However,	it	won’t	scale	if	we	have	hundreds	of	categories;	in	that
case,	we’ll	have	to	write	a	hundred	request	mapping	methods	in	the	controller.	So	how	do
we	do	this	in	an	elegant	way?

We	use	the	Spring	MVC	URI	template	pattern	feature.	If	you	note	the	following	URLs,
the	only	part	that	changes	in	the	URL	is	the	category	type	(laptop	and	tablet);	other	than
that,	everything	remains	the	same:

http://localhost:8080/webstore/products/laptop

http://localhost:8080/webstore/products/tablet

So,	we	can	define	a	common	URI	template	for	the	previously	mentioned	URLs,	which
might	look	like	http://localhost:8080/webstore/products/{category}.	Spring	MVC
can	leverage	this	fact	and	make	that	template	portion	({category})	of	the	URL	a	variable,
called	a	path	variable	in	the	Spring	world.

Time	for	action	–	showing	products	based
on	category
Let’s	add	a	category	view	to	the	products	page	using	the	path	variable:

1.	 Open	the	ProductRepository	interface	and	add	one	more	method	declaration	on	its
getProductsByCategory	method:

List<Product>	getProductsByCategory(String	category);

2.	 Open	the	implementation	class	InMemoryProductRepository	and	add	an
implementation	for	the	previously	declared	method	as	follows:

public	List<Product>	getProductsByCategory(String	category)	{

		List<Product>	productsByCategory	=	new	ArrayList<Product>();

				

		for(Product	product:	listOfProducts)	{

				if(category.equalsIgnoreCase(product.getCategory())){

						productsByCategory.add(product);

				}

		}

		

		return	productsByCategory;

}

3.	 Similarly,	open	the	ProductService	interface	and	add	one	more	method	declaration
on	its	getProductsByCategory	method:

List<Product>	getProductsByCategory(String	category);

4.	 Open	the	service	implementation	class	ProductServiceImpl	and	add	an
implementation	as	follows:

public	List<Product>	getProductsByCategory(String	category)	{

		return	productRepository.getProductsByCategory(category);

}

5.	 Open	the	ProductController	class	and	add	one	more	request	mapping	method	as
follows:

@RequestMapping("/{category}")

public	String	getProductsByCategory(Model	model,	

@PathVariable("category")	String	productCategory)	{

		model.addAttribute("products",	

productService.getProductsByCategory(productCategory));

		return	"products";

}

6.	 Run	the	application	and	enter	the	URL
http://localhost:8080/webstore/products/tablet;	you	will	see	something	as
specified	in	the	following	screenshot:

Showing	products	by	category	with	the	help	of	path	variables

What	just	happened?
Step	5	is	the	most	important	in	the	whole	sequence	from	the	previous	list,	because	all	the
steps	prior	to	step	5	are	the	prerequisites	for	step	5.	What	we	are	doing	in	step	5	is	nothing
but	adding	a	list	of	product	objects	to	the	model	like	we	normally	would:

model.addAttribute("products",productService.getProductsByCategory(ProductC

ategory));

One	thing	we	need	to	note	here	is	the	getProductsByCategory	method	from
productService;	we	need	this	method	to	get	the	list	of	products	for	the	given	category,
and	productService	as	such	cannot	give	the	list	of	products	for	the	given	category.	It	will
ask	the	repository.	That’s	why,	in	step	4,	we	used	the	productRepository	reference	to	get
the	list	of	products	by	category	within	the	ProductServiceImpl	class.	Note	the	following
code	snippet	from	ProductServiceImpl:

return	productRepository.getProductsByCategory(category);

Another	important	thing	to	be	noted	in	the	code	snippet	from	step	5	is	the
@RequestMapping	annotation’s	request	path	value	as	follows:

@RequestMapping("/{category}")

By	enclosing	a	portion	of	a	request	path	within	curly	braces,	we	indicate	to	the	Spring
MVC	that	it	is	a	URI	template	variable.	According	to	Spring	MVC	documentation,	a	URI
template	is	a	URI-like	string	that	contains	one	or	more	variable	names.	When	you
substitute	values	for	these	variables,	the	template	becomes	a	URI.

For	example,	the	URI	template
http://localhost:8080/webstore/products/{category}	contains	the	variable
category.	Assigning	the	value	laptop	to	the	variable	yields
http://localhost:8080/webstore/products/laptop.	In	Spring	MVC,	we	can	use	the
@PathVariable	annotation
(org.springframework.web.bind.annotation.PathVariable)	to	read	a	URI	template
variable.

Since	we	have	the	@RequestMapping("/products")	annotation	at	the	ProductController
level,	the	actual	request	path	of	the	getProductsByCategory	method	will	be
/products/{category}.	So	at	runtime,	if	we	give	a	web	request	URL	as
http://localhost:8080/webstore/products/laptop,	then	the	category	path	variable
will	have	the	value	laptop.	Similarly,	for	the	web	request
http://localhost:8080/webstore/products/tablet,	the	category	path	variable	will
have	the	value	tablet.

How	do	we	retrieve	the	value	stored	in	the	URI	template	path	variable	category?	As	we
already	mentioned,	the	@PathVariable	annotation	will	help	us	read	that	variable.	All	we
need	to	do	is	simply	annotate	the	getProductsByCategory	method	parameter	with	the
@PathVariable	annotation	as	follows:

public	String	getProductsByCategory(@PathVariable("category")	String	

productCategory,	Model	model)	{

So,	Spring	MVC	will	read	whatever	value	is	present	in	the	category	URI	template
variable	and	assign	it	to	the	method	parameter	productCategory.	So,	we	have	the
category	value	in	a	variable,	and	we	just	pass	it	to	productService	to	get	the	list	of
products	in	that	category.	Once	we	get	that	list	of	products,	we	simply	add	it	to	the	model
and	return	the	same	view	name	that	we	have	used	to	list	all	the	products.

The	value	attribute	in	the	@PathVariable	annotation	should	be	the	same	as	the	variable
name	in	the	path	expression	of	the	@RequestMapping	annotation.	For	example,	if	the	path
expression	is	"/products/{identity}",	then	to	retrieve	the	path	variable	identity,	you
have	to	form	the	@PathVariable	annotation	as	@PathVariable("identity").

Note
If	the	@PathVariable	annotation	has	been	specified	without	any	value	attribute,	it	will	try
to	retrieve	a	path	variable	with	the	same	name	as	that	of	the	variable	that	it	has	been
annotated	with.

For	example,	if	you	specify	simply	@PathVariable	String	productId,	then	Spring	will
assume	that	it	should	look	for	a	URI	template	variable	"{productId}"	in	the	URL.	A
request	mapping	method	can	have	any	number	of	@PathVariable	annotations.

Finally,	in	step	6,	when	we	enter	the	URL
http://localhost:8080/webstore/products/tablet,	we	see	information	about
Google’s	Nexus	7,	which	is	a	tablet.	Similarly,	if	we	enter	the	URL
http://localhost:8080/webstore/products/laptop,	we	see	information	about	Dell’s
Inspiron	laptop.

Pop	quiz	–	request	path	variable
Q1.	In	a	web	application	called	WebStore	that	has	the	following	request	mapping	at	a
controller	class	level	and	in	the	method	level,	which	is	the	appropriate	request	URL	that
can	be	used?

@RequestMapping("/items")

public	class	ProductController	{

...

@RequestMapping(value	=	"/type/{type}",	method	=	RequestMethod.GET)

public	String	productDetails(@PathVariable("type")	String	productType,	

Model	model)	{

1.	 http://localhost:8080/WebStore/items/electronics
2.	 http://localhost:8080/WebStore/items/type/electronics
3.	 http://localhost:8080/WebStore/items/productType/electronics
4.	 http://localhost:8080/WebStore/type/electronics

Q2.	For	the	following	request	mapping	annotation,	which	are	the	correct	method
signatures	to	retrieve	the	path	variables?

@RequestMapping(value="/manufacturer/{	

manufacturerId}/product/{productId}")

1.	 public	String	productByManufacturer(@PathVariable	String
manufacturerId,	@PathVariable	String	productId,	Model	model)

2.	 public	String	productByManufacturer	(@PathVariable	String	manufacturer,
@PathVariable	String	product,	Model	model)

3.	 public	String	productByManufacturer	(@PathVariable("manufacturer")
String	manufacturerId,	@PathVariable("product")	String	productId,	Model

model)

4.	 public	String	productByManufacturer	(@PathVariable("manufacturerId")
String	manufacturer,	@PathVariable("productId")	String	product,	Model

model)

Using	matrix	variables
In	the	last	section,	we	saw	the	URI	template	facility	to	bind	variables	in	the	URL	request
path.	However,	there	is	one	more	way	to	bind	variables	in	the	request	URL	in	a	name-
value	pair	style;	these	bound	variables	are	referred	to	as	matrix	variables	within	Spring
MVC.	Look	at	the	following	URL:
http://localhost:8080/webstore/products/filter/price;low=500;high=1000

In	this	URL,	the	actual	request	path	is	just	up	to
http://localhost:8080/webstore/products/filter/price,	after	which	we	have
something	like	low=500;high=1000;	here,	low	and	high	are	just	matrix	variables.
However,	what	makes	matrix	variables	so	special	is	the	ability	to	assign	multiple	values
for	a	single	variable;	this	means	that	we	can	assign	a	list	of	values	to	a	URI	variable.	Take
a	look	at	the	following	URL:
http://localhost:8080/webstore/products/filter/ByCriteria;brand=google,dell;category=tablet,laptop

In	the	given	URL,	we	have	two	variables,	namely,	brand	and	category;	both	have
multiple	values,	brand=google,	dell	and	category=tablet,	laptop.	How	do	we	read
these	variables	from	the	URL	during	request	mapping?	We	use	the	special	binding
annotation	@MatrixVariable
(org.springframework.web.bind.annotation.MatrixVariable).	One	cool	thing	about
the	@MatrixVariable	annotation	is	that	it	allows	us	to	collect	the	matrix	variables	in	a
map	of	collections	(Map<String,	List<String>>),	which	will	be	more	helpful	when	we
are	dealing	with	complex	web	requests.

Time	for	action	–	showing	the	products
based	on	filter
Consider	a	situation	where	we	want	to	filter	the	product	list	based	on	the	brand	and
category	variables.	For	example,	you	want	to	list	all	the	products	that	fall	under	the
category	laptop	and	tablets	and	from	the	manufacturers	google	and	dell.	With	the	help
of	the	matrix	variables,	we	can	form	a	URL	to	bind	the	brand	and	category	variables’
values	into	the	URL	as	follows:
http://localhost:8080/webstore/products/filter/ByCriteria;brand=google,dell;category=tablet,laptop

Let’s	map	this	URL	to	a	handler	method	with	the	help	of	the	@MatrixVariable	annotation:

1.	 Open	the	ProductRepository	interface	and	add	one	more	method	declaration,
getProductsByFilter,	on	it:

Set<Product>	getProductsByFilter(Map<String,	List<String>>	

filterParams);

2.	 Open	the	implementation	class,	InMemoryProductRepository,	and	add	the	following
method	implementation	for	getProductsByFilter:

public	Set<Product>	getProductsByFilter(Map<String,	List<String>>	

filterParams)	{

				Set<Product>	productsByBrand	=	new	HashSet<Product>();

				Set<Product>	productsByCategory	=	new	HashSet<Product>();

				Set<String>	criterias	=	filterParams.keySet();

				

				if(criterias.contains("brand"))	{

						for(String	brandName:	filterParams.get("brand"))	{

								for(Product	product:	listOfProducts)	{

										if(brandName.equalsIgnoreCase(product.getManufacturer())){

												productsByBrand.add(product);

										}

								}

						}

				}

				

				if(criterias.contains("category"))	{

						for(String	category:	filterParams.get("category"))	{

								

productsByCategory.addAll(this.getProductsByCategory(category));

						}

				}

				

				productsByCategory.retainAll(productsByBrand);

				

				return	productsByCategory;

}

3.	 Open	the	interface	ProductService	and	add	one	more	method	declaration	on	it
called	getProductsByFilter	as	follows:

Set<Product>	getProductsByFilter(Map<String,	List<String>>	

filterParams);

4.	 Open	the	service	implementation	class,	ProductServiceImpl,	and	add	the	following
method	implementation	for	getProductsByFilter:

public	Set<Product>	getProductsByFilter(Map<String,	List<String>>	

filterParams)	{

				return	productRepository.getProductsByFilter(filterParams);

}

5.	 Open	ProductController	and	add	one	more	request	mapping	method	as	follows:

@RequestMapping("/filter/{ByCriteria}")

		public	String	getProductsByFilter(@MatrixVariable(pathVar=	

"ByCriteria")	Map<String,List<String>>	filterParams,Model	model)	{

				model.addAttribute("products",	

productService.getProductsByFilter(filterParams));

				return	"products";

		}

6.	 Open	the	web	application	context	configuration	file	(DispatcherServlet-
context.xml)	from	src/main/webapp/WEB-INF/spring/webcontext/	and	enable
matrix	variable	support	by	setting	enable-matrix-variables	to	true	in	the
<mvc:annotation-driven>	tag	as	follows:

<mvc:annotation-driven	enable-matrix-variables="true"/>

7.	 Finally,	run	the	application	and	enter	the	URL
http://localhost:8080/webstore/products/filter/ByCriteria;brand=google,dell;category=tablet,laptop

you	will	see	the	product	listing	as	shown	in	the	following	screenshot:

Usage	of	matrix	variables	showing	product	list	filtered	by	criteria

What	just	happened?
Our	aim	is	to	retrieve	the	matrix	variable	values	from	the	URL	and	do	something	useful;
in	our	case,	the	URL	we	are	trying	to	map	is
http://localhost:8080/webstore/products/filter/ByCriteria;brand=google,dell;category=tablet,laptop

where	we	want	to	extract	the	matrix	variables	brand	and	category.	The	brand	and
category	variables	have	the	values	google,	dell	and	tablet,	laptop,	respectively.	In	the
previous	URL,	the	request	path	is	up	to
http://localhost:8080/webstore/products/filter/ByCriteria	only.	That’s	why,	in
step	5,	we	annotated	our	getProductsByFilter	request	mapping	method	as	follows:

@RequestMapping("/filter/{ByCriteria}")

However,	you	may	wonder	why	we	have	a	URI	template	(/{ByCriteria})	in	the
@RequestMapping	annotation,	which	is	like	mapping	to	a	path	variable.	It	is	because	if	our
request	URL	contains	the	matrix	variable,	then	we	will	have	to	form	the	@RequestMapping
annotation	with	a	URI	template	to	identify	the	starting	of	matrix	variable’s	segments
within	URL.	That’s	why	we	defined	ByCriteria	as	a	URI	template	in	the	request	mapping
annotation	(@RequestMapping("/filter/{ByCriteria}")).

Note
A	URL	can	have	multiple	matrix	variables;	each	matrix	variable	will	be	separated	with	a	;
(semicolon).	To	assign	multiple	values	to	a	single	variable,	each	value	must	be	separated
by	a	“,”	(comma),	or	we	can	repeat	the	variable	name.	See	the	following	URL,	which	is	a
repeated	variable	version	of	the	same	URL	that	we	used	in	our	example:
http://localhost:8080/webstore/products/filter/ByCategory;brand=google;brand=dell;category=tablet;category=laptop

Note	that	we	repeated	the	variables	brand	and	category	twice	in	the	URL.

We	mapped	the	web	request	to	the	getProductsByFilter	method,	but	how	do	we	retrieve
the	value	from	the	matrix	variables?	The	answer	is	the	@MatrixVariable	annotation.	It	is
quite	similar	to	the	@PathVariable	annotation;	if	you	notice	the	getProductsByFilter
method	signature	in	step	5,	we	annotated	the	method	parameter	filterParams	with	the
@MatrixVariable	annotation	as	follows:

public	String	getProductsByFilter(@MatrixVariable(pathVar=		"ByCriteria")	

Map<String,List<String>>	filterParams,	Model	model)

So,	Spring	MVC	will	read	all	the	matrix	variables	found	in	the	URL	after	the
{ByCriteria}	URI	template	and	place	those	matrix	variables	into	the	map	of	the	method
parameter	filterParams.	The	filterParams	map	will	have	each	matrix	variable	name	as
key	and	the	corresponding	list	will	contain	the	multiple	values	assigned	for	the	matrix
variable.	The	pathVar	attribute	from	the	@MatrixVariable	annotation	is	used	to	identify
the	matrix	variable	segment	in	the	URL;	that’s	why	it	has	the	value	ByCriteria,	which	is
nothing	but	the	URI	template	value	that	we	used	in	our	request	mapping	URL.

A	URL	can	have	multiple	matrix	variable	segments.	Take	a	look	at	the	following	URL:
http://localhost:8080/webstore/products/filter/ByCriteria;brand=google,dell;category=tablet,laptop/BySpecification;dimention=10,20,15;color=red,green,blue

It	contains	two	matrix	variable	segments,	each	identified	by	the	prefixes	ByCriteria	and
BySpecification,	respectively.	So	in	order	to	capture	each	matrix	variable	segment	into	a
map,	we	have	to	form	the	controller	method	signature	as	follows:

@RequestMapping("/filter/{ByCriteria}/{BySpecification}")

public	String	filter(@MatrixVariable(pathVar="ByCriteria")	

Map<String,List<String>>	criteriaFilter,	@MatrixVariable(pathVar=		"	

BySpecification")	Map<String,List<String>>	specFilter,Model	model)	{

We	got	the	value	of	the	matrix	variables	into	the	method	parameter	filterParams,	but
what	did	we	do	with	that	filterParams	map?	We	simply	passed	it	as	a	parameter	to	the
service	method	to	retrieve	the	products	based	on	criteria	as	follows:

productService.getProductsByFilter(filterParams)

Again,	the	service	passes	that	map	to	the	repository	to	get	the	list	of	products	based	on	the
criteria.	Once	we	get	the	list,	we	simply	add	that	list	to	the	model	and	return	the	same
view	name	that	was	used	to	list	the	products.

To	enable	the	use	of	matrix	variables	in	Spring	MVC,	we	set	the	enable-matrix-
variables	attribute	of	the	<mvc:annotation-driven>	tag	to	true;	we	did	this	in	step	6.
Finally,	we	were	able	to	view	the	products	based	on	the	specified	criteria	in	step	7	on	our
product	listing	page.

Understanding	request	parameters
Matrix	variables	and	path	variables	are	a	great	way	of	binding	variables	in	the	URL
request	path.	However,	there	is	one	more	way	to	bind	variables	in	the	HTTP	request,	not
only	as	a	part	of	the	URL	but	also	in	the	body	of	the	HTTP	web	request,	which	are	the	so-
called	HTTP	parameters.	You	might	have	heard	about	the	GET	or	POST	parameters.	GET
parameters	have	been	used	for	years	as	a	standard	way	to	bind	variables	in	the	URL,	and
POST	parameters	are	used	to	bind	variables	in	the	body	of	the	HTTP	request.	We	will
learn	about	POST	parameters	in	the	next	chapter	during	form	submission.

Okay,	now	let’s	see	how	to	read	GET	request	parameters	using	the	Spring	MVC	style.	To
demonstrate	the	use	of	the	request	parameter,	let’s	add	a	product	details	page	to	our
application.

Time	for	action	–	adding	the	product
details	page
So	far	in	our	product	listing	page,	we	have	only	shown	product	information	such	as	the
product’s	name,	description,	price,	and	available	units	in	stock.	However,	we	haven’t
shown	information	such	as	the	manufacturer’s	name,	category,	product	ID,	and	so	on.
Let’s	create	a	product	details	page	displaying	this	information	as	follows:

1.	 Open	the	ProductController	class	and	add	one	more	request	mapping	method	as
follows:

@RequestMapping("/product")

public	String	getProductById(@RequestParam("id")	String	productId,	

Model	model)	{

		model.addAttribute("product",	

productService.getProductById(productId));

		return	"product";

}

2.	 Add	one	more	JSP	view	file	called	product.jsp	under	the	directory
src/main/webapp/WEB-INF/views/,	and	add	the	following	code	snippet	into	it	and
save	it:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<html>

<head>

<meta	http-equiv="Content-Type"	content="text/html;	charset=ISO-8859-

1">

<link	rel="stylesheet"

		

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

<title>Products</title>

</head>

<body>

		<section>

				<div	class="jumbotron">

						<div	class="container">

								<h1>Products</h1>

						</div>

				</div>

		</section>

		<section	class="container">

				<div	class="row">

						<div	class="col-md-5">

								<h3>${product.name}</h3>

								<p>${product.description}</p>

								<p>

										Item	Code	:	<span	class="label	label-

warning">${product.productId}

								</p>

								<p>

										manufacturer	:	${product.manufacturer}

								</p>

								<p>

										category	:	${product.category}

								</p>

								<p>

										Availble	units	in	stock		:	

${product.unitsInStock}

								</p>

								<h4>${product.unitPrice}	USD</h4>

								<p>

											<span

												class="glyphicon-shopping-cart	glyphicon">	Order	Now

										

								</p>

						</div>

				</div>

		</section>

</body>

</html>

3.	 Now,	run	the	application	and	enter	the	URL
http://localhost:8080/webstore/products/product?id=P1234;	you	will	see	the
product	details	page	as	shown	in	the	following	screenshot:

Usage	of	request	parameter	showing	product	details	page

What	just	happened?
What	we	did	in	step	1	is	very	similar	to	what	we	did	in	the	getProductsByCategory
method	of	ProductController.	We	just	added	a	product	object	to	the	model	that	is
returned	by	the	service	object	as	follows:

model.addAttribute("product",	productService.getProductById(productId));

However,	the	important	question	here	is,	who	is	giving	the	value	of	the	parameter
productId?	The	answer	is	simple,	as	you	guessed;	since	we	annotated	the	parameter
productId	with	the	@RequestParam("id")	annotation
(org.springframework.web.bind.annotation.RequestParam),	Spring	MVC	will	try	to
read	a	GET	request	parameter	with	the	name	id	from	the	URL	and	assign	it	to	the
getProductById	method	parameter,	productId.

The	@RequestParam	annotation	also	follows	the	same	convention	for	other	binding
annotations;	that	is,	if	the	name	of	the	GET	request	parameter	and	the	name	of	the	variable
it	is	annotated	with	are	the	same,	then	there	will	be	no	need	to	specify	the	value	attribute
in	the	@RequestParam	annotation.

Finally,	in	step	6,	we	added	one	more	view	file	called	product.jsp	because	we	wanted	a
detailed	view	of	the	product	so	that	we	could	display	all	the	information	about	the	product.
Nothing	fancy	in	this	product.jsp;	as	usual,	we	get	the	value	from	the	model	and	show	it
within	HTML	tags	using	the	usual	JSTL	expression	language	notation	${}	as	follows:

<h3>${product.name}</h3>

			<p>${product.description}</p>

...	...

We	saw	how	to	retrieve	a	GET	request	parameter	from	the	URL,	but	how	do	we	pass	more
than	one	GET	request	parameter	in	the	URL?	The	answer	is	that	we	need	to	delimit	each
parameter	value	pair	with	an	&	symbol;	for	example,	if	we	want	to	pass	category	and
price	as	GET	request	parameters	in	a	URL,	we	have	to	form	the	URL	as	follows:
http://localhost:8080/WebStore/products/product?category=laptop&price=700

Similarly,	to	map	the	preceding	URL	in	a	request	mapping	method,	our	request	mapping
method	should	have	at	least	two	parameters	with	the	@RequestParam	annotation:

public	String	getProducts(@RequestParam	String	category,	@RequestParam	

String	price)	{

Pop	quiz	–	the	request	parameter
Q1.	Which	is	the	appropriate	request	URL	for	the	following	request	mapping	method
signature?

@RequestMapping(value	=	"/products",	method	=	RequestMethod.GET)

public	String	productDetails(@RequestParam	String	rate,	Model	model)

1.	 http://localhost:8080/webstore/products/rate=400
2.	 http://localhost:8080/webstore/products?rate=400
3.	 http://localhost:8080/webstore/products?rate/400
4.	 http://localhost:8080/webstore/products/rate=400

Time	for	action	–	implementing	a	master
detail	view
A	master	detail	view	is	nothing	but	the	display	of	very	important	information	on	a	master
page.	Once	we	select	an	item	in	the	master	view,	a	detailed	page	of	the	selected	item	will
be	shown	in	the	detail	view	page.	Let’s	build	a	master	detail	view	for	our	product	listing
page	so	that	when	we	click	on	any	product,	we	see	the	detailed	view	of	that	product.

We	have	already	implemented	the	product	listing	page
(http://localhost:8080/webshop/products)	and	product	details	page
(http://localhost:8080/webstore/products/product?id=P1234),	so	the	only	thing
needed	is	to	connect	these	two	views	to	make	a	master	detail	view.	Perform	the	following
steps:

1.	 Open	products.jsp;	you	can	find	products.jsp	under	src/main/webapp/WEB-
INF/views/	in	your	project	and	add	the	following	spring	tag	lib	reference	on	top	of
the	file:

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>

2.	 Add	the	following	lines	after	the	Available	units	in	stock	paragraph	tag	in
products.jsp:

<p>	

<a	href="	<spring:url	value=		"/products/product?

id=${product.productId}"	/>	"	class="btn	btn-primary">

	Details

</p>

3.	 Now,	open	product.jsp;	you	can	find	product.jsp	under	src/main/webapp/WEB-
INF/views/	in	your	project	and	add	the	following	spring	tag	lib	reference	on	top	of
the	file:

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>	

And,	add	the	following	lines	just	before	the	Order	Now	link	in	product.jsp:

<a	href="<spring:url	value="/products"	/>"	class="btn	btn-default">

				back

4.	 Run	the	application	and	enter	the	URL
http://localhost:8080/webstore/products;	you	will	be	able	to	see	a	product	list
page	that	has	a	Details	button	with	every	product,	as	specified	in	the	following
screenshot:

The	master	view	of	the	product	listing

5.	 Finally,	click	on	any	product’s	Details	button,	and	you	will	be	able	to	see	the	detail
view	with	the	back	button	link	to	the	product	listing	page.

What	just	happened?
What	we	did	is	simple.	In	step	2,	we	added	a	hyperlink	using	the	following	tag	in
products.jsp:

<a	href="	<spring:url	value=		"/products/product?id=${product.productId}"	

/>	"	htmlEscape="true"	/>"	class="btn	btn-primary">

			Details

Note	the	href	attribute	of	the	<a>	tag	as	follows,	which	has	a	<spring:url>	tag	as	the
value:

<spring:url	value="/products/product?id=${product.productId}"	/>

This	<spring:url>	tag	is	used	to	construct	a	valid	Spring	URL.	We	needed	this
<spring:url>	to	be	used	in	step	2;	that’s	why	we	added	a	reference	to	the	spring	tag
library	in	step	1.	Observe	the	value	attribute	of	the	<spring:url>	tag;	we	can	note	that	for
the	id	URL	parameter,	we	assigned	the	expression	${product.productId}.	So,	while
rendering	this	link,	Spring	MVC	will	assign	the	corresponding	product	ID	in	that
expression.

For	example,	while	rendering	the	link	of	the	first	product,	Spring	MVC	will	assign	the
value	P1234	for	the	product	ID.	So,	the	final	URL	value	within	<spring:url>	will	become
/products/product?id=P1234,	which	is	nothing	but	the	request	mapping	path	of	the
product	details	page.	So,	when	you	click	on	this	link,	you	land	on	the	details	page	of	that
product.

Similarly,	we	need	a	link	to	the	product	listing	page	from	the	product	details	page;	that’s
why	we	added	another	link	in	the	product.jsp	tag	in	step	4	as	follows:

<a	href="<spring:url	value="/products"	/>"	class="btn	btn-default">

				back

Note	that	the	span	tag	is	just	for	styling	the	button	with	the	icon,	so	you	needn’t	mind	it
that	much.	The	only	interesting	thing	for	us	is	the	href	attribute	of	the	<a>	tag,	which	has
the	<spring:url>	tag	with	the	value	attribute	/products	on	it.

Have	a	go	hero	–	adding	multiple	filters	to	list
products
It	is	good	that	we	learned	various	techniques	to	bind	parameters	with	URLs,	such	as	using
path	variables,	matrix	variables,	and	GET	parameters.	We	saw	how	to	get	products	of	a
particular	category	using	path	variables,	how	to	get	products	within	a	particular	price
range,	and	finally,	we	saw	how	to	get	a	particular	product	by	the	product	ID.

Now,	imagine	that	you	want	to	apply	multiple	criteria	to	view	a	desired	product;	for
example,	what	if	you	want	to	view	a	product	that	falls	under	the	tablet	category,	is	within
the	price	range	of	$200	to	$400,	and	has	been	manufactured	by	Google?

To	retrieve	a	product	that	can	satisfy	all	of	the	previously	mentioned	criteria,	we	can	form
a	URL	as	follows:
http://localhost:8080/webstore/products/tablet/price;low=200;high=400?

manufacturer="Google"

Why	don’t	you	write	a	corresponding	controller	method	to	serve	the	preceding	request
URL?	Here	are	some	hints	to	accomplish	the	requirement:

Create	a	repository	layer	method	to	return	all	the	products	based	on	manufacturer.
For	this,	add	a	method	declaration	in	the	productRepository	interface	to	get	the
products	by	manufacturer	as	follows:

List	<Product>	getProductsByManufacturer(String	manufacturer);

Add	an	implementation	for	the	getProductsByManufacturer()	method	in
InMemoryProductRepository.	It	is	like	the	getProductsByCategory()	method;	the
only	difference	is	that	instead	of	the	category,	we	fetch	the	products	by	manufacturer
name.

Extend	the	productService	interface	with	the	getProductsByManufacturer()
method	and	implement	the	same	method	in	the	productServiceImpl	class.
Create	one	more	request	mapping	method	called	filterProducts	in	the
productController	class	to	map	the	following	URL:
http://localhost:8080/webstore/products/tablet/price;low=200;high=400?

manufacturer="Google"

Remember	that	this	URL	contains	the	matrix	variables	low	and	high	to	represent	the
price	range,	the	GET	parameter	manufacturer	to	identify	the	manufacturer,	and
finally,	a	URI	template	path	variable	tablet	to	represent	the	category.

Use	the	same	view	file	products.jsp	to	list	the	filtered	products.

Remember	that	getProductsByCategory	from	productService	returns	products	based	on
category,	the	getProductsBypriceFilter	method	returns	products	within	a	certain	price
range,	and	finally,	our	newly	introduced	method,	getProductsByManufacturer,	returns
products	belonging	to	a	particular	manufacturer.	You	have	to	combine	these	three	method
results	before	updating	the	model	with	the	product	list	in	the	filterProducts	controller

method.	You	can	probably	use	java.util.Set	to	combine	the	results	of	these	three
service	methods	to	avoid	duplication.	Good	luck!

Summary
In	this	chapter,	we	learned	how	to	define	a	controller	and	the	usage	of	the	@Controller
annotation.	After	that,	we	learned	the	concept	of	relative	request	mapping,	where	we	saw
how	to	define	request	mapping	at	the	controller	level	and	understood	how	Spring
relatively	maps	a	web	request	to	the	controller	request	mapping	method.	We	then	learned
about	the	role	of	a	controller	in	Spring	MVC	and	about	how	the	dispatcher	servlet	uses
handler	mapping	to	find	out	the	exact	handler	methods.	We	also	saw	various	parameter
binding	techniques,	such	as	URI	template	patterns,	matrix	variables,	and	HTTP	GET
request	parameters	to	bind	parameters	with	URLs.	Finally,	we	saw	how	to	implement	a
master	detail	view.

In	the	next	chapter,	we	are	going	to	explore	various	Spring	tags	that	are	available	in	the
spring	tag	library.	We	will	also	learn	more	about	form	processing	and	how	to	bind	form
data	with	the	HTTP	POST	parameter.	Get	ready	for	the	next	chapter!

Chapter	4.	Working	with	Spring	Tag
Libraries
In	previous	chapters,	we	learned	how	to	put	data	into	the	model	from	the	controller,	but
we	haven’t	seen	how	to	do	this	the	other	way	around.	This	means	that	we	haven’t	learned
how	to	put	the	data	from	the	view	into	the	model.	In	Spring	MVC,	the	process	of	putting	an
HTML	form	element’s	values	into	model	data	is	called	form	binding.

Spring	MVC	provides	some	JSP	tag	libraries	to	make	it	easier	to	bind	form	elements	to
model	data.	Spring	tag	libraries	also	support	various	other	common	functionalities,	such
as,	externalizing	messages	and	error	handling.	In	this	chapter,	we	are	going	to	learn	more
about	how	to	make	use	of	these	predefined	tag	libraries	of	Spring.

After	finishing	this	chapter,	we	will	have	a	good	idea	about	the	following	topics:

Serving	and	processing	web	forms
Form	binding	and	whitelisting
Spring	tag	libraries

Serving	and	processing	forms
Spring	supports	different	view	technologies,	but	if	we	are	using	JSP-based	views,	we	can
make	use	of	the	Spring	tag	library	tags	to	make	up	our	JSP	pages.	These	tags	provide
many	useful,	common	functionalities	such	as	form	binding,	evaluating	errors	outputting
internationalized	messages,	and	so	on.	In	order	to	use	these	tags,	we	must	add	references
to	this	tag	library	in	our	JSP	pages	as	follows:

<%@taglib	prefix="form"	uri="http://www.springframework.org/tags/form"	%>

<%@taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>

In	all	of	our	previous	chapters’	examples,	we	saw	that	the	data	transfer	took	place	from
model	to	view	via	the	controller.	The	following	line	is	a	typical	example	of	how	we	put
data	into	the	model	from	a	controller:

model.addAttribute(greeting,"Welcome")

Similarly	the	next	line	shows	how	we	retrieve	that	data	in	the	view	using	the	JSTL
expression:

<p>	${greeting}	</p>

Note
JavaServer	Pages	Standard	Tag	Library	(JSTL)	is	also	a	tag	library	provided	by
Oracle.	And	it	is	a	collection	of	useful	JSP	tags	that	encapsulates	the	core	functionality
common	to	many	JSP	pages.	We	can	add	a	reference	to	the	JSTL	tag	library	in	our	JSP
pages	as	<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>.

However,	what	if	we	want	to	put	data	into	the	model	from	the	view?	How	do	we	retrieve
that	data	from	the	controller?	For	example,	consider	a	scenario	where	an	admin	of	our
store	wants	to	add	new	product	information	in	our	store	by	filling	and	submitting	an
HTML	form.	How	can	we	collect	the	values	filled	in	the	HTML	form	elements	and
process	it	in	the	controller?	This	is	where	the	Spring	tag	library	tags	help	us	to	bind	the
HTML	tag	element’s	values	to	a	form-backing	bean	in	the	model.	Later,	the	controller	can
retrieve	the	form-backing	bean	from	the	model	using	the	@ModelAttribute	annotation
(org.springframework.web.bind.annotation.ModelAttribute).

Note
Form-backing	beans	(sometimes	called	form	beans)	are	used	to	store	form	data.	We	can
even	use	our	domain	objects	as	form	beans;	this	works	well	when	there’s	a	close	match
between	the	fields	on	the	form	and	the	properties	on	our	domain	object.	Another	approach
is	to	create	separate	classes	for	form	beans,	which	are	sometimes	called	Data	Transfer
Objects	(DTOs).

Time	for	action	–	serving	and	processing
forms
The	Spring	tag	library	provides	some	special	<form>	and	<input>	tags	that	are	more	or
less	similar	to	HTML	form	and	input	tags,	but	it	has	some	special	attributes	to	bind	the
form	elements	data	with	the	form-backing	bean.	Let’s	create	a	Spring	web	form	in	our
application	to	add	new	products	to	our	product	list	by	performing	the	following	steps:

1.	 We	open	our	ProductRepository	interface	and	add	one	more	method	declaration	in
it	as	follows:

void	addProduct(Product	product);

2.	 We	then	add	an	implementation	for	this	method	in	the	InMemoryProductRepository
class	as	follows:

public	void	addProduct(Product	product)	{

			listOfProducts.add(product);

}

3.	 We	open	our	ProductService	interface	and	add	one	more	method	declaration	in	it	as
follows:

void	addProduct(Product	product);

4.	 And,	we	add	an	implementation	for	this	method	in	the	ProductServiceImpl	class	as
follows:

public	void	addProduct(Product	product)	{

			productRepository.addProduct(product);

}

5.	 We	open	our	ProductController	class	and	add	two	more	request	mapping	methods
as	follows:

@RequestMapping(value	=	"/add",	method	=	RequestMethod.GET)

public	String	getAddNewProductForm(Model	model)	{

			Product	newProduct	=	new	Product();

			model.addAttribute("newProduct",	newProduct);

			return	"addProduct";

}

			

@RequestMapping(value	=	"/add",	method	=	RequestMethod.POST)

public	String	processAddNewProductForm(@ModelAttribute("newProduct")	

Product	newProduct)	{

			productService.addProduct(newProduct);

			return	"redirect:/products";

}

6.	 Finally,	we	add	one	more	JSP	view	file	called	addProduct.jsp	under
src/main/webapp/WEB-INF/views/	and	add	the	following	tag	reference	declaration
in	it	as	the	very	first	line:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="form"	uri="http://www.springframework.org/tags/form"		

%>

7.	 Now,	we	add	the	following	code	snippet	under	the	tag	declaration	line	and	save
addProduct.jsp	(note	that	I	have	skipped	the	<form:input>	binding	tags	for	some	of
the	fields	of	the	product	domain	object,	but	I	strongly	encourage	that	you	add	binding
tags	for	the	skipped	fields	when	you	try	out	this	exercise):

<html>

<head>

<meta	http-equiv="Content-Type"	content="text/html;	charset=ISO-8859-

1">

<link	

rel="stylesheet"href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/boo

tstrap.min.css">

<title>Products</title>

</head>

<body>

		<section>

				<div	class="jumbotron">

						<div	class="container">

								<h1>Products</h1>

								<p>Add	products</p>

						</div>

				</div>

		</section>

		<section	class="container">

				<form:form		modelAttribute="newProduct"	class="form-horizontal">

						<fieldset>

								<legend>Add	new	product</legend>

								<div	class="form-group">

										<label	class="control-label	col-lg-2	col-lg-2"	

for="productId">Product	Id</label>

										<div	class="col-lg-10">

												<form:input	id="productId"	path="productId"	type="text"	

class="form:input-large"/>

										</div>

								</div>

								<!--	Similarly	bind	<form:input>	tag	for	

name,unitPrice,manufacturer,category,unitsInStock	and	unitsInOrder	

fields-->

								<div	class="form-group">

										<label	class="control-label	col-lg-2"	

for="description">Description</label>

										<div	class="col-lg-10">

												form:textarea	id="description"	path="description"	rows	=	

"2"/>

										</div>

								</div>

								<div	class="form-group">

										<label	class="control-label	col-lg-2"	

for="discontinued">Discontinued</label>

										<div	class="col-lg-10">

												<form:checkbox		id="discontinued"	path="discontinued"/>

										</div>

								</div>

								

								<div	class="form-group">

										<label	class="control-label	col-lg-2"	

for="condition">Condition</label>

										<div	class="col-lg-10">

												<form:radiobutton	path="condition"	value="New"	/>New	

												<form:radiobutton	path="condition"	value="Old"	/>Old	

												<form:radiobutton	path="condition"	value="Refurbished"	

/>Refurbished

										</div>

								</div>

								

								<div	class="form-group">

										<div	class="col-lg-offset-2	col-lg-10">

												<input	type="submit"	id="btnAdd"	class="btn	btn-primary"	

value	="Add"/>

										</div>

								</div>

						</fieldset>

				</form:form>

		</section>

</body>

</html>

8.	 Now,	we	run	our	application	and	enter	the	URL
http://localhost:8080/webstore/products/add.	We	will	be	able	to	see	a	web
page	that	displays	a	web	form	where	we	can	add	the	product	information	as	shown	in
the	following	screenshot:

Add	the	product’s	web	form

9.	 Now,	we	enter	all	the	information	related	to	the	new	product	that	we	want	to	add	and
click	on	the	Add	button;	we	will	see	the	new	product	added	in	the	product	listing
page	under	the	URL	http://localhost:8080/webstore/products.

What	just	happened?
In	the	whole	sequence,	steps	5	and	6	are	very	important	steps	that	need	to	be	observed
carefully.	Whatever	is	mentioned	prior	to	step	5	is	familiar	as	we	have	seen	it	in	previous
recipes;	anyhow,	I	will	give	you	a	brief	note	on	what	we	have	done	in	steps	1	to	4.

In	step	1,	we	created	a	method	declaration	addProduct	in	our	ProductRepository
interface	to	add	new	products.	In	step	2,	we	implemented	the	addProduct	method	in	our
InMemoryProductRepository	class;	the	implementation	is	just	to	update	the	existing
listOfProducts	by	adding	a	new	product	to	the	list.	Steps	3	and	4	are	just	a	service	layer
extension	for	ProductRepository.	In	step	3,	we	declared	a	similar	method,	addProduct,
in	our	ProductService	interface	and	implemented	it	in	step	4	to	add	products	to	the
repository	via	the	productRepository	reference.

Okay,	coming	back	to	the	important	step;	we	have	done	nothing	but	added	two	request
mapping	methods,	namely,	getAddNewProductForm	and	processAddNewProductForm,	in
step	5	as	follows:

		@RequestMapping(value	=	"/add",	method	=	RequestMethod.GET)

		public	String	getAddNewProductForm(Model	model)	{

					Product	newProduct	=	new	Product();

					model.addAttribute("newProduct",	newProduct);

					return	"addProduct";

		}

					

		@RequestMapping(value	=	"/add",	method	=	RequestMethod.POST)

		public	String	processAddNewProductForm(@ModelAttribute("newProduct")	

Product	productToBeAdded)	{

					productService.addProduct(productToBeAdded);

					return	"redirect:/products";

		}

If	you	observe	these	methods	carefully,	you	will	notice	a	peculiar	thing,	which	is	that	both
the	methods	have	the	same	URL	mapping	value	in	their	@RequestMapping	annotation
(value	=	"/add").	So,	if	we	enter	the	URL
http://localhost:8080/webstore/products/add	in	the	browser,	which	method	will
Spring	MVC	map	that	request	to?

The	answer	lies	in	the	second	attribute	of	the	@RequestMapping	annotation	(method	=
RequestMethod.GET	and	method	=	RequestMethod.POST).	If	you	will	notice	again,	even
though	both	methods	have	the	same	URL	mapping,	they	differ	in	request	method.

So,	what	is	happening	behind	the	screen	is	that	when	we	enter	the	URL
http://localhost:8080/webstore/products/add	in	the	browser,	it	is	considered	as	a
GET	request.	So,	Spring	MVC	maps	this	request	to	the	getAddNewProductForm	method,
and	within	this	method,	we	simply	attach	a	new	empty	Product	domain	object	to	the
model	under	the	attribute	name,	newProduct.

Product	newProduct	=	new	Product();

model.addAttribute("newProduct",	newProduct);

So	in	the	view	addproduct.jsp,	we	can	access	this	model	object,	newProduct.	Before
jumping	into	the	processAddNewProductForm	method,	let’s	review	the	addproduct.jsp
view	file	for	some	time	so	that	we	are	able	to	understand	the	form	processing	flow	without
confusion.	In	addproduct.jsp,	we	have	just	added	a	<form:form>	tag	from	the	Spring	tag
library	using	the	following	line	of	code:

<form:form		modelAttribute="newProduct"	class="form-horizontal">

Since	this	special	<form:form>	tag	is	acquired	from	the	Spring	tag	library,	we	need	to	add
a	reference	to	this	tag	library	in	our	JSP	file.	That’s	why	we	have	added	the	following	line
at	the	top	of	the	addProducts.jsp	file	in	step	6:

<%@	taglib	prefix="form"	uri="http://www.springframework.org/tags/form"		%>

In	the	Spring	<form:form>	tag,	one	of	the	important	attributes	is	modelAttribute.	In	our
case,	we	assigned	the	value	newProduct	as	the	value	of	modelAttribute	in	the
<form:form>	tag.	If	you	recall	correctly,	you	will	notice	that	this	value	of	modelAttribute
and	the	attribute	name	we	used	to	store	the	newProduct	object	in	the	model	from	our
getAddNewProductForm	method	are	the	same.	So,	the	newProduct	object	that	we	attached
to	the	model	in	the	controller	method	(getAddNewProductForm)	is	now	bound	to	the	form.
This	object	is	called	the	form-backing	bean	in	Spring	MVC.

Okay,	now	notice	each	<form:input>	tag	inside	the	<form:form>	tag	shown	in	the
following	code.	You	will	observe	that	there	is	a	common	attribute	in	every	tag.	This
attribute	name	is	path:

<form:input	id="productId"	path="productId"	type="text"	class="form:input-

large"/>

The	path	attribute	just	indicates	the	field	name	that	is	relative	to	the	form-backing	bean.
So,	the	value	that	is	entered	in	this	input	box	at	runtime	will	be	bound	to	the
corresponding	field	of	the	form	bean.

Okay,	now	is	the	time	to	come	back	and	review	our	processAddNewProductForm	method.
When	will	this	method	be	invoked?	This	method	will	be	invoked	once	we	press	the	submit
button	of	our	form.	Yes,	since	every	form	submission	is	considered	as	a	POST	request,
this	time	the	browser	will	send	a	POST	request	to	the	same	URL,	that	is,
http://localhost:8080/webstore/products/add.

So,	this	time,	the	processAddNewProductForm	method	will	get	invoked	since	it	is	a	POST
request.	Inside	the	processAddNewProductForm	method,	we	simply	call	the	service
method	addProduct	to	add	the	new	product	to	the	repository,	as	follows:

			productService.addProduct(productToBeAdded);

However,	the	interesting	question	here	is,	how	is	the	productToBeAdded	object	populated
with	the	data	that	we	entered	in	the	form?	The	answer	lies	within	the	@ModelAttribute
annotation	(org.springframework.web.bind.annotation.ModelAttribute).	Note	the
method	signature	of	the	processAddNewProductForm	method	shown	in	the	following	line
of	code:

public	String	processAddNewProductForm(@ModelAttribute("newProduct")	

Product	productToBeAdded)

Here,	if	you	notice	the	value	attribute	of	the	@ModelAttribute	annotation,	you	will
observe	a	pattern.	The	values	of	the	@ModelAttribute	annotation	and	modelAttribute
from	the	<form:form>	tag	are	the	same.	So,	Spring	MVC	knows	that	it	should	assign	the
form-bound	newProduct	object	to	the	productToBeAdded	parameter	of	the
processAddNewProductForm	method.

The	@ModelAttribute	annotation	is	not	only	used	to	retrieve	an	object	from	a	model,	but
if	we	want	to,	we	can	even	use	it	to	add	objects	to	the	model.	For	instance,	we	rewrite	our
getAddNewProductForm	method	to	something	like	the	following	code	with	the	use	of	the
@ModelAttribute	annotation:

@RequestMapping(value	=	"/add",	method	=	RequestMethod.GET)

		public	String	getAddNewProductForm(@ModelAttribute("newProduct")	Product	

newProduct)	{

				return	"addProduct";

}

You	can	notice	that	we	haven’t	created	any	new	empty	Product	domain	object	and
attached	it	to	the	model.	All	we	have	done	was	added	a	parameter	of	the	type	Product	and
annotated	it	with	the	@ModelAttribute	annotation	so	that	Spring	MVC	would	know	that	it
should	create	an	object	of	Product	and	attach	it	to	the	model	under	the	name	newProduct.

One	more	thing	that	needs	to	be	observed	in	the	processAddNewProductForm	method	is
the	logical	view	name,	redirect:/products,	that	it	returns.	So,	what	are	we	trying	to	tell
Spring	MVC	by	returning	a	string	redirect:/products?	To	get	the	answer,	observe	the
logical	view	name	string	carefully.	If	we	split	this	string	with	the	:	(colon)	symbol,	we
will	get	two	parts;	the	first	part	is	the	prefix	redirect	and	the	second	part	is	something
that	looks	like	a	request	path,	/products.	So,	instead	of	returning	a	view	name,	we	simply
instruct	Spring	to	issue	a	redirect	request	to	the	request	path,	/products,	which	is	the
request	path	for	the	list	method	of	our	ProductController	class.	So,	after	submitting	the
form,	we	list	the	products	using	the	list	method	of	ProductController.

Note
As	a	matter	of	fact,	when	we	return	any	request	path	with	the	redirect:	prefix	from	a
request	mapping	method,	Spring	uses	a	special	view	object,	RedirectView
(org.springframework.web.servlet.view.RedirectView),	to	issue	a	redirect	command
behind	the	screen.	We	will	see	more	about	RedirectView	in	the	upcoming	chapter.

Instead	of	landing	in	a	web	page	after	the	successful	submission	of	a	web	form,	we	are
spawning	a	new	request	to	the	request	path	/products	with	the	help	of	RedirectView.
This	pattern	is	called	Redirect	After	Post,	which	is	a	common	pattern	to	use	with	web-
based	forms.	We	are	using	this	pattern	to	avoid	double	submission	of	the	same	form;
sometimes,	if	we	press	the	browser’s	refresh	button	or	back	button	after	submitting	the
form,	there	are	chances	that	the	same	form	will	be	resubmitted.

Customizing	data	binding
In	the	last	section,	we	saw	how	to	bind	data	submitted	by	an	HTML	form	or	by	query
string	parameters	to	a	form-backing	bean.	In	order	to	do	the	binding,	Spring	MVC
internally	uses	a	special	binding	object	called	WebDataBinder
(org.springframework.web.bind.WebDataBinder).

The	WebDataBinder	object	extracts	the	data	out	of	the	HttpServletRequest	object,
converts	it	to	a	proper	data	format,	loads	it	into	a	form-backing	bean,	and	validates	it.	To
customize	the	behavior	of	the	data	binding,	we	can	initialize	and	configure	the
WebDataBinder	object	in	our	controller.	The	@InitBinder	annotation
(org.springframework.web.bind.annotation.InitBinder)	helps	us	do	this.	The
@InitBinder	annotation	designates	a	method	to	initialize	WebDataBinder.

Let’s	see	a	practical	way	of	customizing	WebDataBinder.	Since	we	are	using	the	actual
domain	object	itself	as	the	form-backing	bean,	during	form	submission,	there	is	a	chance
of	security	vulnerability.	Since	Spring	automatically	binds	HTTP	parameters	to	form	bean
properties,	an	attacker	could	bind	suitably	named	HTTP	parameters	with	form	properties
that	weren’t	intended	for	binding.	To	address	this	problem,	we	can	explicitly	tell	Spring
which	fields	are	allowed	for	form	binding.	Technically	speaking,	the	process	of	explicitly
specifying	the	allowed	fields	for	form	binding	is	called	whitelisting	form	fields	in	Spring
MVC;	we	can	do	whitelisting	using	WebDataBinder.

Time	for	action	–	whitelisting	form	fields
In	the	previous	exercise,	while	adding	a	new	product,	we	bound	every	field	of	the	Product
domain	in	the	form.	However,	it	is	meaningless	to	specify	the	unitsInOrder	and
discontinued	values	during	the	addition	of	a	new	product	because	nobody	can	make	an
order	before	adding	the	product	to	the	store,	and	similarly,	the	discontinued	products
need	not	be	added	in	our	product	list.	So,	we	should	not	allow	these	fields	to	be	bound	to
the	form	bean	while	adding	a	new	product	to	our	store.	However,	all	the	other	fields	of	the
Product	domain	object	need	to	be	bound.	Let’s	see	how	to	do	this	with	the	following
steps:

1.	 We	open	our	ProductController	class	and	add	a	method	as	follows:

@InitBinder

public	void	initialiseBinder(WebDataBinder	binder)	{

			binder.setDisallowedFields("unitsInOrder",	"discontinued");

}

2.	 We	then	add	an	extra	parameter	of	the	type	BindingResult
(org.springframework.validation.BindingResult)	to	the
processAddNewProductForm	method	as	follows:

public	String	processAddNewProductForm(@ModelAttribute("newProduct")	

Product	productToBeAdded,	BindingResult	result)

3.	 In	the	same	processAddNewProductForm	method,	we	add	the	following	condition	just
before	the	line	where	we	saved	the	productToBeAdded	object:

String[]	suppressedFields	=	result.getSuppressedFields();

		if	(suppressedFields.length	>	0)	{

				throw	new	RuntimeException("Attempting	to	bind	disallowed	fields:	"	

+	StringUtils.arrayToCommaDelimitedString(suppressedFields));

		}

4.	 Now,	we	run	our	application	and	enter	the	URL
http://localhost:8080/webstore/products/add;	we	will	be	able	to	see	a	web
page	that	displays	a	web	form	where	we	can	add	new	product	information.	Let’s	fill
every	field,	particularly	Units	in	order	and	Discontinued.

5.	 Now,	click	on	the	Add	button.	You	will	see	an	HTTP	Status	500	error	on	the	web
page,	as	shown	in	the	following	screenshot:

Add	product	page	showing	error	for	disallowed	fields

6.	 Now,	we	open	addProduct.jsp	from	/webstore/src/main/webapp/WEB-INF/views/
in	our	project	and	remove	the	input	tags	that	are	related	to	the	Units	in	order	and
Discontinued	fields.	Basically,	we	need	to	remove	the	following	block	of	code:

<div	class="form-group">

		<label	class="control-label	col-lg-2"	for="unitsInOrder">Units	In

				Order</label>

		<div	class="col-lg-10">

				<form:input	id="unitsInOrder"	path="unitsInOrder"		type="text"	

class="form:input-large"/>

		</div>

</div>

<div	class="form-group">

		<label	class="control-label	col-lg-2"	

for="discontinued">Discontinued</label>

		<div	class="col-lg-10">

				<form:checkbox		id="discontinued"	path="discontinued"/>

		</div>

</div>

7.	 Now,	we	run	our	application	again	and	enter	the	URL
http://localhost:8080/webstore/products/add.	We	will	be	able	to	see	a	web
page	that	displays	a	web	form	where	we	can	add	a	new	product,	but	this	time,
without	the	Units	in	order	and	Discontinued	fields.

8.	 Now,	we	enter	all	of	the	information	related	to	the	new	product	and	click	on	the	Add
button;	we	will	see	the	new	product	added	in	the	product	listing	page	under	the	URL
http://localhost:8080/webstore/products.

What	just	happened?
Our	intention	was	to	put	some	restrictions	on	binding	the	HTTP	parameters	with	the	form-
backing	bean.	As	we	already	discussed,	the	automatic	binding	feature	of	Spring	could	lead
to	a	potential	security	vulnerability,	in	case	we	used	the	domain	object	itself	as	the	form
bean.	So,	we	have	to	explicitly	specify	to	Spring	MVC	what	the	only	allowed	fields	are.
That’s	what	we	did	in	step	1.

The	@InitBinder	annotation	designates	a	controller	method	as	a	hook	method	to	do	some
custom	configuration	regarding	data	binding	on	WebDataBinder.	And,	WebDataBinder	is
the	one	that	does	the	data	binding	at	runtime,	so	we	need	to	specify	to	WebDataBinder
only	the	fields	allowed	for	binding.	If	you	observe	our	initialiseBinder	method	from
ProductController,	it	has	a	parameter	called	binder,	which	is	of	the	type
WebDataBinder.	We	simply	call	the	setAllowedFields	method	on	the	binder	object	and
pass	the	fields’	names	that	are	allowed	for	binding.	Spring	MVC	calls	this	method	to
initialize	WebDataBinder	before	binding	since	it	has	the	@InitBinder	annotation.

Note
The	WebDataBinder	class	also	has	a	method	called	setDisallowedFields	to	strictly
specify	the	disallowed	fields	for	binding.	If	you	use	this	method,	Spring	MVC	allows	any
HTTP	request	parameters	to	be	bound,	except	that	these	field	names	are	specified	in	the
setDisallowedFields	method.

Okay,	we	configured	which	fields	are	allowed	for	binding,	but	we	need	to	verify	whether
any	other	fields	other	than	the	ones	allowed	are	bound	with	the	form-backing	bean.	That’s
what	we	did	in	steps	2	and	3.

We	changed	processAddNewProductForm	by	adding	one	extra	parameter	called	result,
which	is	of	the	type	BindingResult.	Spring	MVC	will	fill	this	object	with	the	result	of	the
binding.	If	any	attempt	is	made	to	bind	anything	other	than	the	allowed	fields,	the
getSuppressedFields	count	of	the	BindingResult	object	will	be	greater	than	zero.	That’s
why,	we	checked	suppressed	field	count	and	threw	RuntimeException	as	follows:

if	(suppressedFields.length	>	0)	{

throw	new	RuntimeException("Attempting	to	bind	disallowed	fields:	"	+	

StringUtils.arrayToCommaDelimitedString(suppressedFields));

}

We	wanted	to	ensure	that	our	binding	configuration	is	working;	that’s	why,	we	ran	our
application	without	changing	the	view	file	addProduct.jsp	in	step	4.	As	expected,	we	got
the	HTTP	Status	500	error	saying	Attempting	to	bind	disallowed	fields	when	we
submitted	the	add	product	form	with	the	unitsInOrder	and	discontinued	fields	filled.
We	realized	that	our	binder	configuration	is	working,	so	we	changed	our	view	file	to	not
bind	the	disallowed	fields.	That’s	what	we	did	in	step	6;	we	just	removed	the	input	field
elements	that	are	related	to	the	disallowed	fields	from	the	addProduct.jsp	file.

After	this,	our	page	for	adding	new	products	works	just	fine,	as	expected.	In	case	any	of
the	outside	attackers	try	to	tamper	the	POST	request	and	attach	a	HTTP	parameter	with	the

same	field	name	of	the	form-backing	bean,	they	will	get	RuntimeException.

Whitelisting	is	just	an	example	of	how	we	can	customize	the	binding	with	the	help	of
WebDataBinder.	However,	using	WebDataBinder,	we	can	do	other	types	of	binding
customizations	as	well.	For	example,	WebDataBinder	internally	uses	many
PropertyEditor	(java.beans.PropertyEditor)	implementations	to	convert	HTTP
request	parameters	to	the	target	field	of	the	form-backing	bean.	We	can	even	register	the
custom	PropertyEditor	objects	with	WebDataBinder	to	convert	more	complex	data	types.
For	instance,	take	a	look	at	the	following	code	snippet	that	shows	how	to	register	the
custom	PropertyEditor	class	to	convert	a	Date	type:

@InitBinder

public	void	initialiseBinder	(WebDataBinder	binder)	{

		DateFormat	dateFormat	=	new	SimpleDateFormat("MMM	d,	YYYY");

		CustomDateEditor	orderDateEditor	=	new	CustomDateEditor(dateFormat,	

true);

		binder.registerCustomEditor(Date.class,	orderDateEditor);

}

There	are	many	advanced	configurations	we	can	do	with	WebDataBinder	in	terms	of	data
binding,	but	for	a	beginner	level,	we	don’t	need	to	go	so	deep.

Externalizing	text	messages
So	far,	in	all	our	view	files,	we	hardcoded	text	values	for	all	of	the	labels.	For	instance,
take	our	addProduct.jsp	file	for	the	product	ID	input	tag;	we	have	a	label	tag	with	a
hardcoded	text	value	as	ProductId,	as	follows:

<label	class="control-label	col-lg-2	col-lg-2"	for="productId">Product	

Id</label>

Externalizing	these	texts	from	a	view	file	into	a	properties	file	will	help	us	have	single,
centralized	control	of	all	the	label	messages,	and	moreover,	it	will	help	us	make	our	web
pages	ready	for	internationalization.	We	will	see	more	about	internationalization	in
Chapter	6,	Intercept	Your	Store	with	Interceptor,	but	in	order	to	do	internationalization,	we
need	to	externalize	the	label	messages	first.	So	now,	we	are	going	to	see	only	how	to
externalize	the	locale-sensitive	text	messages	from	our	web	page.

Time	for	action	–	externalizing	messages
Let’s	see	how	to	externalize	the	label	texts	in	our	addProduct.jsp	file:

1.	 We	open	our	addProduct.jsp	file	and	add	the	following	taglib	reference	at	the	top:

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>

2.	 Change	the	product	ID	<label>	tag’s	value	as	<spring:message
code="addProdcut.form.productId.label"/>,	as	shown	as	follows:

<label	class="control-label	col-lg-2	col-lg-2"	for="productId">	

<spring:message	code=		"addProduct.form.productId.label"/>	</label>

3.	 We	create	a	file	called	messages.properties	under	/src/main/resources	in	our
project	and	add	the	following	line	in	it:

addProduct.form.productId.label	=	New	Product	ID

4.	 Now,	we	open	our	web	application	context	configuration	file	DispatcherServlet-
context.xml	from	src/main/webapp/WEB-INF/spring/webcontext/	and	add	the
following	bean	definition	in	it:

<bean	id=	"messageSource"	

class="org.springframework.context.support.ResourceBundleMessageSource"

>

			<property	name="basename"	value="messages"/>	

</bean>

5.	 Now,	we	run	our	application	again	and	enter	the	URL
http://localhost:8080/webstore/products/add.	We	will	be	able	to	see	the	add
product	page	with	the	product	ID	label	New	Product	ID.

What	just	happened?
Spring	MVC	has	a	special	a	tag	called	<spring:message>	to	externalize	texts	from	JSP
files.	In	order	to	use	this	tag,	we	need	to	add	a	reference	to	the	Spring	tag	library,	which	is
what	we	did	in	step	1.	We	just	added	a	reference	to	the	Spring	tag	library	in	our
addProduct.jsp	file	as	follows:

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>

In	step	2,	we	used	this	tag	to	externalize	the	label	text	of	the	productId	input	tag,	as
follows:

<label	class="control-label	col-lg-2	col-lg-2"	for="productId">	

<spring:message	code=		"addProduct.form.productId.label"/>	</label>

Here,	an	important	thing	that	needs	to	be	noted	is	the	code	attribute	of	the
<spring:message>	tag	that	we	have	assigned	the	value
addProduct.form.productId.label	as	the	code	for	this	<spring:message>	tag.	This
code	attribute	is	a	kind	of	key,	and	at	runtime,	Spring	will	try	to	read	the	corresponding
value	for	the	given	key	(code)	from	a	message	source	property	file.

We	said	that	Spring	will	read	the	message	value	from	a	message	source	property	file,	so
we	need	to	create	that	property	file,	which	is	what	we	did	in	step	3.	We	just	created	a
property	file	with	the	name	messages.properties	under	the	resource	directory.	Inside	this
file,	we	assigned	the	label	text	value	to	the	message	tag	code	as	follows:

addProduct.form.productId.label	=	New	Product	ID

Note	that	for	demonstration	purposes,	I	just	externalized	a	single	label,	but	a	typical	web
application	will	have	externalized	messages	almost	for	all	of	the	labels.	In	that	case,	the
messages.properties	file	will	have	many	code-value	pair	entries.

Okay,	we	have	created	the	message	source	property	file	and	added	the	<spring:message>
tag	in	our	JSP	file.	However,	to	connect	these	two,	we	need	to	create	one	more	Spring
bean	in	our	web	application	context	for	the
org.springframework.context.support.ResourceBundleMessageSource	class	with	the
name	messageSource.	We	did	this	in	step	4	as	follows:

<bean	id=	"messageSource"	

class="org.springframework.context.support.ResourceBundleMessageSource">

			<property	name="basename"	value="messages"/>	

</bean>

One	important	property	that	needs	to	be	noted	here	is	the	basename	property.	We	assigned
the	value	messages	for	that	property;	if	you	remember,	this	is	the	name	of	the	property	file
that	we	created	in	step	3.

That	is	all	that	we	have	done	to	enable	the	externalization	of	messages	in	a	JSP	file.	Now,
if	we	run	the	application	and	open	up	the	add	product	page,	we	can	see	that	the	product	ID
label	has	the	same	text	as	that	assigned	to	the	code	addProduct.form.productId.label
in	the	messages.properties	file.

Using	Spring	Security	tags
At	the	start	of	this	chapter,	we	saw	how	to	serve	and	process	web	forms.	In	that	exercise,
we	created	a	web	page	to	add	products.	Anyone	with	access	to	the	add	products	page	can
add	new	products	to	our	web	store.	However,	in	a	typical	web	store,	only	the	administrator
can	add	products.	So,	how	do	we	restrict	other	users	from	accessing	the	add	products
page?	There	comes	Spring	Security	to	help	us.

Spring	Security	is	a	vast	topic,	so	we	are	not	going	to	see	all	of	the	capabilities	of	Spring
Security;	instead,	we	are	only	going	to	see	how	to	add	basic	authentication	to	our	web
pages.

Time	for	action	–	adding	a	login	page
We	are	going	to	use	Spring	Security	features	to	restrict	access	to	the	add	products	page.
Only	an	authorized	user	with	a	valid	username	and	password	will	be	able	to	access	the	add
products	page.	Let’s	see	how	we	can	do	this	in	Spring	MVC	with	the	following	steps:

1.	 We	open	pom.xml,	which	can	be	found	under	the	project	root	folder	itself.
2.	 We	will	be	able	to	see	some	tabs	at	the	bottom,	under	the	pom.xml	file;	we	select	the

Dependencies	tab	and	click	on	the	Add	button	of	the	Dependencies	section.
3.	 A	Select	Dependency	window	will	appear;	here,	we	enter	Group	Id	as

org.springframework.security,	Artifact	Id	as	spring-security-config,	Version
as	3.1.4.RELEASE,	and	select	Scope	as	compile	and	click	on	the	OK	button.

4.	 Similarly,	we	add	one	more	dependency	Group	Id	as
org.springframework.security,	Artifact	Id	as	spring-security-web,	Version	as
3.1.4.RELEASE,	and	select	Scope	as	compile	and	click	on	the	OK	button.	And	most
importantly,	we	save	pom.xml.

5.	 Now,	we	go	to	the	adjacent	tab,	which	is	the	Dependency	Hierarchy	tab	in	pom.xml.
We	can	see	the	Resolved	Dependencies	section	on	the	right,	which	lists	all	the
resolved	dependency	entries.

6.	 We	just	right-click	on	the	entry	with	the	name	spring-
asm:3.0.7.RELEASE[compile]	from	the	Resolved	Dependencies	list	and	choose	the
Exclude	Maven	Artifact…	option	and	click	on	OK.	Then,	we	save	pom.xml.

7.	 Now,	we	create	one	more	controller	class	called	LoginController	under	the
com.packt.webstore.controller	package	in	src/main/java	and	add	the	following
code	into	it:

package	com.packt.webstore.controller;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.bind.annotation.RequestMethod;

@Controller

public	class	LoginController	{

		@RequestMapping(value="/login",	method	=	RequestMethod.GET)

		public	String	login()	{

				return	"login";

		}

	

		@RequestMapping(value="/loginfailed",	method	=	RequestMethod.GET)

		public	String	loginerror(Model	model)	{

	

				model.addAttribute("error",	"true");

				return	"login";

	

		}

	

		@RequestMapping(value="/logout",	method	=	RequestMethod.GET)

		public	String	logout(Model	model)	{

				return	"login";

		}

}

8.	 And,	we	add	one	more	JSP	view	file	called	login.jsp	under	src/main/webapp/WEB-
INF/views/	and	add	the	following	code	snippet	into	it	and	save	it:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="form"	uri="http://www.springframework.org/tags/form"		

%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"		

%>

<html>

<head>

<meta	http-equiv="Content-Type"	content="text/html;	charset=ISO-8859-

1">

<link	

rel="stylesheet"href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/boo

tstrap.min.css">

<title>Products</title>

</head>

<body>

		<section>

				<div	class="jumbotron">

						<div	class="container">

								<h1>Products</h1>

								<p>Add	products</p>

						</div>

				</div>

		</section>

<div	class="container">

				<div	class="row">

				<div	class="col-md-4	col-md-offset-4">

								<div	class="panel	panel-default">

										<div	class="panel-heading">

												<h3	class="panel-title">Please	sign	in</h3>

										</div>

										<div	class="panel-body">

										<c:if	test="${not	empty	error}">

										<div	class="alert	alert-danger">

												<spring:message	

code="AbstractUserDetailsAuthenticationProvider.

														badCredentials"/>

										</div>

								</c:if>

												<form	action="<c:url	value=	"/j_spring_security_check">

</c:url>"	method="post">

																				<fieldset>

																<div	class="form-group">

																		<input	class="form-control"	placeholder="User	Name"	

name='j_username'	type="text">

														</div>

														<div	class="form-group">

																<input	class="form-control"	placeholder="Password"	

name='j_password'		type="password"	value="">

														</div>

														<input	class="btn	btn-lg	btn-success	btn-block"	

type="submit"	value="Login">

												</fieldset>

														</form>

										</div>

						</div>

				</div>

		</div>

</div>

</body>

9.	 Now,	we	open	our	addProduct.jsp	file	and	add	the	following	code	tag	within	the
jumbotron	div	tag:

<a	href="<c:url	value="/j_spring_security_logout"	/>"	class="btn	btn-

danger	btn-mini	pull-right">logout		

10.	 Then,	we	open	our	message	source	file	messages.properties	from
/src/main/resources	and	add	the	following	line	in	it:

AbstractUserDetailsAuthenticationProvider.badCredentials=The	username	

or	password	you	entered	is	incorrect.

11.	 Now,	we	create	one	more	bean	configuration	file	called	security-context.xml
under	src/main/webapp/WEB-INF/spring/webcontext	and	add	the	following
content	into	it	and	save	it:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xmlns:context="http://www.springframework.org/schema/context"

		xmlns:mvc="http://www.springframework.org/schema/mvc"

		xmlns:security="http://www.springframework.org/schema/security"

		xsi:schemaLocation="http://www.springframework.org/schema/mvc	

http://www.springframework.org/schema/mvc/spring-mvc-3.2.xsd

				http://www.springframework.org/schema/security	

http://www.springframework.org/schema/security/spring-security-3.1.xsd

				http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans.xsd

				http://www.springframework.org/schema/context	

http://www.springframework.org/schema/context/spring-context-3.2.xsd">

				

		<security:http	auto-config="true">

				<security:intercept-url	pattern="/products/add"	access="ROLE_ADMIN"	

/>

				

				<security:form-login	login-page="/login"	

															default-target-url="/products/add"			

															authentication-failure-url="/loginfailed"/>

								<security:logout	logout-success-url="/logout"	/>

		</security:http>

		

		<security:authentication-manager>

				<security:authentication-provider>

						<security:user-service>

								<security:user	name="Admin"	password="Admin123"	

authorities="ROLE_ADMIN"	/>

						</security:user-service>

				</security:authentication-provider>

		</security:authentication-manager>

</beans>

12.	 Then,	we	add	the	following	tags	in	web.xml	under	the	<web-app>	tag:

<context-param>

				<param-name>contextConfigLocation</param-name>

				<param-value>

/WEB-INF/spring/webcontext/security-context.xml	

</param-value>

</context-param>

		

		<listener>

<listener-class>

org.springframework.web.context.ContextLoaderListener	

</listener-class>

		</listener>

13.	 Now,	we	also	add	the	following	tags	in	web.xml	under	the	<web-app>	tag	and	save	it:

<filter>

		<filter-name>springSecurityFilterChain</filter-name>

		<filter-class>

				org.springframework.web.filter.DelegatingFilterProxy

		</filter-class>

</filter>

		

<filter-mapping>

		<filter-name>springSecurityFilterChain</filter-name>

		<url-pattern>/*</url-pattern>

</filter-mapping>

14.	 We	run	our	application	and	enter	the	URL
http://localhost:8080/webstore/products/add.	We	will	be	able	to	see	a	login
page,	as	shown	in	the	following	screenshot:

The	login	page	showing	an	error	message	for	invalid	credentials

15.	 Now,	we	enter	User	Name	as	Admin	and	Password	as	Admin123	and	click	on	the
Login	button.	Finally,	we	will	be	able	to	see	the	regular	add	products	page	with	a
Logout	button.

What	just	happened?
As	usual,	in	order	to	use	Spring	Security	in	our	project,	we	need	some	Spring	Security
related	jars;	from	steps	1	to	4,	we	just	added	those	jars	as	Maven	dependencies.	However,
we	did	something	unusual	in	steps	5	and	6.	We	excluded	the	spring-	asm	dependency
(spring-asm:3.0.7.RELEASE[compile])	from	the	resolved	dependencies	list.

From	the	Spring	3.2	version	onwards,	the	spring-asm	module	had	already	been	included
in	the	spring-core	module,	so	there	is	no	need	to	have	spring-asm	as	a	separate
transitive	dependency.	If	you	have	skipped	steps	5	and	6,	you	will	get
java.lang.IncompatibleClassChangeError	when	starting	up	the	project.

In	step	7,	we	created	one	more	controller	(LoginController)	to	handle	all	our	login-
related	web	requests	that	contain	simply	three	request	mapping	methods	correspondingly
to	handle	login,	login	failure,	and	log	out	requests.	All	three	methods	return	the	same	view
name,	out	of	which	the	loginerror	method	sets	a	model	variable	error	to	true	in	the
model.

Since	in	step	7,	all	the	request	mapping	methods	return	the	view	name	login,	we	need	to
create	a	view	file	login.jsp,	which	is	what	we	did	in	step	8.

The	login.jsp	file	contains	many	tags	with	a	Bootstrap-style	class	applied	to	enhance	the
look	and	feel	of	the	login	form;	we	don’t	need	to	concentrate	on	these	tags.	However,
there	are	some	important	tags	out	there	that	can	be	used	to	understand	the	flow;	the	first
one	is	the	<c:if>	tag,	as	shown	in	the	following	code:

<c:if	test="${not	empty	error}">

		<div	class="alert	alert-danger">

				<spring:message	

code="AbstractUserDetailsAuthenticationProvider.badCredentials"/>

		</div>

</c:if>

The	<c:if>	tag	is	a	special	JSTL	tag	used	to	check	a	condition;	it	is	more	like	an	if
condition	that	we	use	in	our	programming	language.	Using	this	<c:if>	tag,	we	simply
check	whether	the	model	variable	error	contains	any	value.	If	the	model	variable	error	is
not	empty,	we	simply	show	an	error	message	within	the	div	tag	using	the
<spring:message>	tag.

Remember	that	from	the	Externalizing	text	messages	exercise,	we	already	learned
how	to	externalize	messages.	In	this	recipe,	we	simply	used	the	predefined	error	key,
AbstractUserDetailsAuthenticationProvider.badCredentials,	of	Spring	Security	as
the	message	key.	Since	we	did	this,	we	just	overrode	the	default	error	message	in	step	10.

Okay,	coming	back	to	step	8,	what	are	the	other	important	tags	in	the	login.jsp	file?	The
next	important	tag	is	the	form	tag,	which	represents	the	login	form.	Note	the	action
attribute	of	the	form	tag	shown	in	the	following	code:

<form	action="<c:url	value="/j_spring_security_check"></c:url>"	

method="post">

We	simply	post	our	login	form	values,	such	as	username	and	password,	to	the	Spring
Security	authentication	handler	URL,	which	is	/j_spring_security_check.	Here,	the
special	<c:url>	JSTL	tag	is	used	to	format	the	URL.

While	posting	the	username	and	password	to	the	Spring	Security	authentication	handler,
Spring	expects	these	values	to	be	bound	under	the	variable	names	j_username	and
j_password	correspondingly.	That’s	why,	if	you	notice	the	input	tag	for	the	username	and
password,	it	carries	the	name	attributes	as	j_username	and	j_password,	as	follows:

<input	class="form-control"	placeholder="User	Name"	name='j_username'	

type="text">

<input	class="form-control"	placeholder="Password"	name='j_password'		

type="password"	value="">

Similarly,	Spring	handles	the	logout	operation	under	the	j_spring_security_logout
URL;	that’s	why,	in	step	9,	we	formed	the	logout	link	on	the	add	products	page	as	follows:

<a	href="<c:url	value="/j_spring_security_logout"	/>"	class="btn	btn-danger	

btn-mini	pull-right">logout

We	are	almost	done	with	the	coding	to	incorporate	Spring	Security	into	our	project,	but
still	we	need	to	do	some	more	configuration	to	get	it	up	and	running	with	the	basic
authentication	for	the	add	products	page.	For	the	first	configuration,	we	need	to	define	our
authentication	manager	and	specify	the	authenticated	users	and	roles	to	Spring	Security.
We	did	this	with	the	help	of	a	security	context	file.

A	security	context	file	is	more	similar	to	a	web	application	context	configuration	file.
Based	on	the	configuration	and	bean	definition	found	in	this	file,	Spring	creates	and
manages	the	necessary	beans	related	to	Spring	Security.	We	created	such	a	security
context	file	in	step	11.	The	first	configuration	tag	that	is	found	in	this	security	context	file
(security-context.xml)	is	<security:http>,	as	follows:

<security:http	auto-config="true">

				<security:intercept-url	pattern="/products/add"	access="ROLE_ADMIN"	/>

				

				<security:form-login	login-page="/login"	

																													default-target-url="/products/add"			

																													authentication-failure-url="/loginfailed"/>

								<security:logout	logout-success-url="/logout"	/>

		</security:http>

The	<security:http>	tag	contains	a	lot	of	information,	and	we	will	see	them	one	by	one.
The	first	configuration	within	the	<security:http>	tag	is	as	follows:

<security:intercept-url	pattern="/products/add"	access="ROLE_ADMIN"	/>

This	instructs	Spring	to	intercept	every	web	request	that	is	received	by	the	request	path
/products/add	and	only	allows	access	to	whichever	user	has	the	role	of	ROLE_ADMIN.	If
you	recall,	/products/add	is	nothing	but	the	request	path	for	our	add	products	page.

The	next	configuration	within	the	<security:http>	tag	is	as	follows:

<security:form-login	login-page="/login"	

															default-target-url="/products/add"			

															authentication-failure-url="/loginfailed"/>

Here,	the	login-page	attribute	denotes	the	URL	that	it	should	forward	the	request	to,	to
get	the	login	form;	remember	that	this	request	path	should	be	the	same	as	the	request
mapping	of	the	login()	method	of	LoginController.	Also,	default-target-url	denotes
the	default	landing	page	after	a	successful	login,	and	the	final	attribute	authentication-
failure-url	indicates	the	URL	that	the	request	needs	to	be	forwarded	to	in	the	case	of	a
login	failure.

The	final	configuration,	<security:logout	logout-success-url="/logout"	/>,	denotes
where	the	request	needs	to	be	forwarded	after	a	logout.	Remember	that	this	also	carries	the
same	request	mapping	value,	which	is	the	value	of	the	logout	method,	from	the
LoginController	class.

The	next	configuration	tag	in	the	security	context	file	is	the	<security:authentication-
manager>	tag;	refer	to	the	following	code:

		<security:authentication-manager>

				<security:authentication-provider>

						<security:user-service>

								<security:user	name="Admin"	password="Admin123"	

authorities="ROLE_ADMIN"	/>

						</security:user-service>

				</security:authentication-provider>

		</security:authentication-manager>

The	important	information	configured	under	the	authentication	manager	is	who	the	users
are,	what	their	corresponding	password	is,	and	which	roles	they	have,	as	follows:

<security:user	name="Admin"	password="Admin123"	authorities="ROLE_ADMIN"	/>

The	preceding	piece	of	configuration	says	that	it	is	a	user	with	the	name	Admin	and	has	a
password	Admin123	and	a	role	ROLE_ADMIN.	We	can	add	as	many	roles	as	we	want	by
separating	them	with	a	comma.

Okay,	we	defined	the	security-related	configuration	in	the	security	context	file,	but	Spring
should	know	about	this	file	and	have	to	read	this	file	before	booting	the	application.	Then
only	will	it	be	able	to	create	and	manage	the	security-related	beans.	How	do	we	instruct
Spring	to	pick	up	this	file?	The	answer	is	the	same:	the	contextConfigLocation	location
property	that	we	have	used	to	locate	the	web	application	context	configuration	file.
However,	this	time,	we	loaded	the	security	context	file	through	the
ContextLoaderListener	class	and	not	through	the	dispatcher	servlet.	That’s	why,	we
initiated	ContextLoaderListener	in	web.xml	and	gave	contextConfigLocation	via	the
<context-param>	tag	in	step	12,	as	follows:

<context-param>

				<param-name>contextConfigLocation</param-name>

				<param-value>/WEB-INF/spring/webcontext/security-	context.xml</param-

value>

</context-param>

		

<listener>

					<listener-class>	

							org.springframework.web.context.ContextLoaderListener	

</listener-class>

</listener>

Based	on	the	preceding	configuration,	the	ContextLoaderListener	class	will	load	our
security	context	file	(/WEB-INF/spring/webcontext/security-context.xml)	into	the
Spring	runtime	so	that	Spring	can	create	the	necessary	beans	while	booting	the
application.

As	a	final	step,	we	need	to	configure	the	Spring	Security	filter	in	our	web.xml	file	so	that
every	web	request	can	be	examined	for	user	authentication.	This	is	what	we	configured	in
step	13,	as	follows:

<filter>

		<filter-name>springSecurityFilterChain</filter-name>

		<filter-class>

				org.springframework.web.filter.DelegatingFilterProxy

		</filter-class>

</filter>

		

<filter-mapping>

		<filter-name>springSecurityFilterChain</filter-name>

		<url-pattern>/*</url-pattern>

</filter-mapping>

After	finishing	all	the	steps,	if	we	access	the	URL
http://localhost:8080/WebStore/products/add,	Spring	MVC	will	prompt	us	to
provide	the	username	and	password.	Since	we	have	configured	an	admin	user	in	step	11
with	User	Name	as	Admin	and	Password	as	Admin123,	we	have	to	provide	these
credentials	to	proceed	to	the	add	products	page.

Summary
At	the	start	of	this	chapter,	we	saw	how	to	serve	and	process	forms;	we	learned	how	to
bind	form	data	with	a	form-backing	bean	and	read	that	bean	in	the	controller.	After	that,
we	went	a	little	deeper	into	form	bean	binding	and	configured	the	binder	in	our	controller
to	whitelist	some	of	the	POST	parameters	from	being	bound	to	the	form	bean.	We	saw
how	to	use	one	more	special	tag,	<spring:message>,	of	Spring	to	externalize	messages	in
a	JSP	file.	Finally	we	also	saw	how	to	incorporate	spring	security	to	do	basic
authentication	to	access	product	add	page.

In	the	next	chapter,	we	will	learn	more	about	view	and	view	resolvers.

Chapter	5.	Working	with	View	Resolver
In	the	previous	chapter,	we	learned	how	we	can	use	some	of	the	Spring	tags	that	can	only
be	used	in	JSP	and	JSTL	views.	However,	Spring	has	excellent	support	for	other	view
technologies	as	well,	such	as	the	XML	view,	JSON	view,	and	so	on.	Spring	MVC	maintains
a	high	level	of	decoupling	between	the	view	and	controller.	The	controller	knows	nothing
about	view	except	the	view	name.	It	is	the	responsibility	of	the	view	resolver	to	map	the
correct	view	for	the	given	view	name.

In	this	chapter,	we	will	take	a	deeper	look	into	views	and	view	resolvers.	After	finishing
this	chapter,	you	will	have	a	clear	idea	about	the	following	topics:

Views	and	resolving	views
Static	views
The	multipart	view	resolver
Content	negotiation
The	handler	exception	resolver

Resolving	views
As	we	already	mentioned,	Spring	MVC	does	not	make	any	assumption	about	any	specific
view	technology.	According	to	Spring	MVC,	a	view	is	identifiable	as	an	implementation
of	the	org.springframework.web.servlet.View	interface,	shown	as	follows:

public	interface	View	{

		String	getContentType();

		void	render(Map<String,	?>	model,	HttpServletRequest	request,	

HttpServletResponse	response)	throws	Exception;

}

The	render	method	from	the	Spring	MVC	View	interface	defines	the	main	responsibility
of	a	view	object.	The	responsibility	is	that	it	should	render	of	proper	content	as	a	response
(javax.servlet.http.HttpServletResponse)	based	on	Model	and	request
(javax.servlet.http.HttpServletRequest).

Because	of	the	simplicity	of	Spring	MVC’s	View	interface,	we	can	write	our	own	view
implementation	if	we	want.	However,	Spring	MVC	provides	many	convenient	view
implementations	that	are	ready	for	use	by	simply	configuring	it	in	our	web	application’s
context	configuration	file.

One	such	view	is	InternalResourceView
(org.springframework.web.servlet.view.InternalResourceView),	which	renders	the
response	as	a	JSP	page.	Similarly,	there	are	other	view	implementations	such	as
RedirectView,	TilesView,	FreeMarkerView,	and	VelocityView,	which	are	available	for
specific	view	technologies.	Spring	MVC	does	not	encourage	coupling	the	view	object
with	the	controller	as	it	will	lead	the	controller	method	to	tightly	couple	with	one	specific
view	technology.	However,	if	you	want	to	do	so,	you	can	do	something	similar	to	what	is
shown	in	the	following	code	snippet:

@RequestMapping("/home")

public	ModelAndView	greeting(Map<String,	Object>	model)	{

		

		model.put("greeting",	"Welcome	to	Web	Store!");

		model.put("tagline",	"The	one	and	only	amazing	web	store");

		

		View	view	=	new	InternalResourceView("/WEB-INF/views/welcome.jsp");

		

		return	new	ModelAndView(view,	model);

}

In	the	preceding	code	handler	method,	we	haven’t	returned	any	logical	view	name;	rather,
we	directly	instantiated	InternalResourceView	out	of	welcome.jsp	and	composed	it	into
the	ModelAndView	(org.springframework.web.servlet.ModelAndView)	object.	The
preceding	example	is	not	encouraged	since	it	has	tightly	coupled	the	greeting	handler
method	with	InternalResourceView.	Instead,	what	we	can	do	is	return	a	logical	view

name	and	configure	an	appropriate	view	resolver	of	our	choice	in	our	web	application’s
context	to	create	a	view	object.

Spring	comes	with	quite	a	few	view	resolvers	to	resolve	various	types	of	views.	We
already	learned	how	we	can	configure	InternalResourceViewResolver	as	our	view
resolver	to	resolve	JSP	views	in	Chapter	2,	Spring	MVC	Architecture	–	Architecting	Your
Web	Store,	and	we	also	learned	how	InternalResourceViewResolver	resolves	a
particular	logical	view	name	into	a	view	(see	the	View	resolvers	section,	in	Chapter	2,
Spring	MVC	Architecture	–	Architecting	Your	Web	Store).	Anyhow,	I	will	repeat	it	briefly
here.

InternalResourceViewResolver	will	resolve	the	actual	view’s	file	path	by	prepending
the	configured	prefix	value	and	appending	the	suffix	value	with	the	logical	view	name;	the
logical	view	name	is	the	value	usually	returned	by	the	controller	method.	So,	the
controller	method	didn’t	return	any	actual	view;	it	just	returned	the	view	name.	It	is	the
job	of	InternalResourceViewResolver	to	form	the	correct	URL	path	of	actual	JSP	view
file	for	InternalResourceView.

The	redirect	view
In	a	web	application,	URL	redirection	or	forwarding	are	the	techniques	to	move	visitors	to
a	different	web	page	than	the	one	they	request.	Most	of	the	time,	this	technique	is	used
after	submitting	a	web	form	to	avoid	resubmission	of	the	same	form	due	to	the	event	of
pressing	the	browser’s	back	button	or	refresh	button.	Spring	MVC	has	a	special	View
object	called	Redirectview	to	handle	redirection	and	forwarding.	To	use	Redirectview
(org.springframework.web.servlet.view.Redirectview)	with	our	controller,	we
simply	need	to	return	the	target	URL	string	with	the	redirection	prefix	from	the	controller.
There	are	two	redirection	prefixes	available	in	Spring	MVC,	as	shown	in	the	following
code	snippet:

return	redirect:/products/productDetail

And:

return	forward:/products/productDetail

Time	for	action	–	examining	RedirectView
Though	both	redirection	and	forwarding	are	used	to	present	a	different	web	page	than	the
one	requested,	there	is	a	little	difference	between	them.	Let’s	try	to	understand	these	by
examining	them:

1.	 Open	our	HomeController	class	and	add	one	more	request	mapping	method	as
follows:

@RequestMapping("/welcome/greeting")

public	String	greeting()	{

		return	"welcome";

}

2.	 Now,	alter	the	return	statement	of	the	existing	welcome	request	mapping	method,
and	save	it	as	follows:

return	"forward:/welcome/greeting";

3.	 Now,	run	our	application	and	enter	http://localhost:8080/webstore/.	You	will	be
able	to	see	a	welcome	message	on	the	web	page.

4.	 Now,	alter	the	return	statement	of	the	existing	welcome	request	mapping	method
again	and	save	it	as	follows:

return	"redirect:/welcome/greeting";

5.	 Now,	run	our	application	and	enter	http://localhost:8080/webstore/.	You	will
see	a	blank	page	without	any	welcome	message.

6.	 Finally,	revert	the	return	value	of	the	welcome	method	of	HomeController	to	the
original	value,	shown	as	follows:

return	"welcome";

What	just	happened?
So,	what	we	have	demonstrated	here	is	how	we	can	invoke	the	redirect	view	from	the
controller	method.	In	step	1,	we	simply	created	a	request	mapping	method	called
greeting	for	the	welcome/greeting	request	path.	This	method	simply	returns	a	logical
view	name	as	welcome.

Since	we	returned	the	logical	view	name	as	welcome,	the	welcome.jsp	file	will	be
rendered	by	InternalResourceView	at	runtime.	The	welcome.jsp	file	expects	two	model
attributes,	namely	greeting	and	tagline,	during	rendering.	In	step	2,	we	altered	the
return	statement	of	the	exiting	request	mapping	method	to	return	a	redirected	URL,	as
follows:

@RequestMapping("/")

public	String	welcome(Model	model)	{

		model.addAttribute("greeting",	"Welcome	to	Web	Store!");

		model.addAttribute("tagline",	"The	one	and	only	amazing	web	store");

		return	"forward:/welcome/greeting";

}

What	we	have	done	in	step	2	is	more	important;	instead	of	returning	a	logical	view	name,
we	simply	return	the	request	path	value	of	the	greeting	handler	method	with	the
forward:	keyword	prefixed.

The	moment	Spring	MVC	sees	this,	it	can	understand	that	it	is	not	a	regular	logical	view
name,	so	it	won’t	search	for	any	view	file	under	the	src/main/webapp/WEB-INF/views/
directory;	rather,	it	will	consider	this	request	for	it	to	be	forwarded	to	another	request
mapping	method	based	on	the	request	path	attached	after	the	forward:	keyword.

One	important	thing	to	remember	here	is	that	the	forwarded	request	is	still	the	active
original	request,	so	whatever	value	we	have	put	in	the	model	at	the	start	of	the	request
would	still	be	available.	This	is	why	we	did	not	add	any	value	to	Model	inside	the
greeting	method.	We	simply	return	the	view	name	as	welcome	and	the	welcome.jsp	file
on	the	assumption	that	there	will	be	model	attributes,	namely	greeting	and	tagline,
available	in	the	model.	So,	when	we	finally	run	our	application,	as	mentioned	in	step	3,
even	though	we	issued	the	request	to	the	URL	http://localhost:8080/webstore/,	the
RedirectView	will	forward	our	request	to
http://localhost:8080/webstore/welcome/greeting,	and	we	will	able	to	see	the
welcome	message	on	the	web	page.

Again	in	step	4,	we	simply	changed	the	return	statement	of	the	welcome	method	with	the
redirect:	prefix.	This	time,	Spring	will	consider	this	request	as	a	new	request,	so
whatever	value	we	have	put	in	the	model	(inside	the	welcome	method)	at	the	start	of	the
original	request	would	have	been	gone.	This	is	why	you	saw	an	empty	welcome	page	in
step	6,	since	the	welcome.jsp	page	can’t	read	the	greeting	and	tagline	model	attributes
from	the	model.

So,	based	on	this	exercise,	we	understand	that	RedirectView	will	get	into	the	picture	if	we

return	a	redirected	URL	with	the	appropriate	prefix	from	the	controller	method.
RedirectView	will	keep	the	original	request	or	spawn	a	new	request	based	on	redirection
or	forwarding.

Pop	quiz	–	redirect	view
Consider	the	following	customer	controller:

@Controller("/customers")

public	class	CustomerController	{

		@RequestMapping("/list")

		public	String	list(Model	model)	{

				return	"customers";

		}

		@RequestMapping("/process")

		public	String	process(Model	model)	{

				//	return	

		}

}

Q1.	If	I	want	to	get	redirected	to	the	list	method	from	process,	how	should	I	form	the
return	statement	within	the	process	method?

1.	 return	"redirect:list";.
2.	 return	"redirect:/list";.
3.	 return	"redirect:customers/list";.
4.	 return	"redirect:/customers/list";.

Serving	static	resources
So	far,	we	have	seen	that	every	request	goes	through	the	controller	and	returns	a
corresponding	view	file	for	the	request;	most	of	the	time,	these	view	files	contain	dynamic
content.	By	dynamic	content,	I	mean	the	model	values	that	are	dynamically	populated	in
the	view	file	during	the	request	processing.	For	example,	if	the	view	file	is	of	the	JSP	type,
then	we	populate	model	values	in	the	JSP	file	using	the	JSP	expression	notation,	${}.

However,	what	if	we	have	some	static	content	that	we	want	to	serve	to	the	client?	For
example,	consider	an	image	that	is	static	content;	we	don’t	want	to	go	through	controllers
in	order	to	serve	(fetch)	an	image	as	there	is	nothing	to	process	or	update	any	values	in	the
model.	We	simply	need	to	return	the	requested	image.

Let’s	say	we	have	a	directory	(/resources/images/)	that	contains	some	product	images,
and	we	want	to	serve	these	images	upon	request.	For	example,	if	the	requested	URL	is
http://localhost:8080/webstore/resource/images/P1234.png,	then	we	would	like	to
serve	the	image	with	the	P1234.png	name.	Similarly,	if	the	requested	URL	is
http://localhost:8080/webstore/resource/images/P1236.png,	then	an	image	with
the	name	P1236.png	needs	to	be	served.

Time	for	action	–	serving	static	resources
Let’s	see	how	we	can	serve	static	images	with	Spring	MVC:

1.	 Place	some	images	under	the	src/main/webapp/resources/images/	directory;	I
have	used	three	product	images,	namely	P1234.png,	P1235.png,	and	P1236.png.

2.	 Add	the	following	tag	in	our	web	application	context’s	configuration
DispatcherServlet-context.xml	file:

<mvc:resources		location="/resources/"		mapping="/resource/**"/>

3.	 Now,	run	our	application	and	enter
http://localhost:8080/webstore/resource/images/P1234.png	(change	the
image	name	in	the	URL	based	on	the	images	you	placed	in	step	1).

4.	 You	are	now	able	to	view	the	image	you	requested	in	the	browser.

What	just	happened?
What	just	happened	was	simple;	in	step	1,	we	placed	some	image	files	under	the
src/main/webapp/resources/images/	directory.	In	step	2,	we	just	added	the
<mvc:resources>	tag	in	the	web	application	context	configuration	to	tell	Spring	where
these	image	files	are	located	in	our	project	so	that	spring	can	serve	those	files	upon
request.	Consider	the	following	code	snippet:

<mvc:resources		location="/resources/"		mapping="/resource/**"/>

The	location	attribute	of	the	<mvc:resources>	tag	defines	the	base	directory	location	of
static	resources	that	you	want	to	serve.	In	our	case,	we	want	to	serve	all	images	that	are
available	under	the	src/main/webapp/resources/images/	directory;	you	may	wonder
why	we	have	given	only	/resources/	as	the	location	value	instead	of
src/main/webapp/resources/images/.	This	is	because	we	consider	the	resources
directory	as	the	base	directory	for	all	resources,	we	can	have	multiple	subdirectories	under
resources	directory	to	put	our	images	and	other	static	resource	files

The	second	attribute,	mapping,	just	indicates	the	request	path	that	needs	to	be	mapped	to
this	resource	directory.	In	our	case,	we	have	assigned	/resources/**	as	the	mapping
value.	So,	if	any	web	request	starts	with	the	/resource	request	path,	then	it	will	be
mapped	to	the	resources	directory,	and	the	/**	symbol	indicates	the	recursive	look	for
any	resource	files	underneath	the	base	resource	directory.

This	is	why,	if	you	notice	in	step	3,	we	formed	the	URL	as
http://localhost:8080/webstore/resource/images/P1234.png.	So,	while	serving	this
web	request,	Spring	MVC	will	consider	/resource/images/P1234.png	as	the	request
path.	So,	it	will	try	to	map	/resource	to	the	resource	base	directory,	resources.	From	this
directory,	it	will	try	to	look	for	the	remaining	path	of	the	URL,	which	is
/images/P1234.png.	Since	we	have	the	images	directory	under	the	resources	directory,
Spring	can	easily	locate	the	image	file	from	the	images	directory.

As	a	matter	of	fact,	behind	the	screen,	Spring	MVC	uses
org.springframework.web.servlet.resource.ResourceHttpRequestHandler	to	serve
the	resources	that	are	configured	by	the	<mvc:resources>	tag.	So,	in	our	application,	if
any	request	comes	with	the	request	path’s	/resource	prefix	in	its	URL,	then	Spring	will
look	into	the	location	directory	that	is	configured	in	the	<mvc:resources>	tag	and	will
return	the	requested	file	to	the	browser.	Remember,	Spring	allows	you	to	host	not	only
images,	but	also	any	type	of	static	files,	such	as	PDFs,	Word	documents,	Excel	sheets,	and
so	on	in	this	fashion.

It	is	good	that	we	are	able	to	serve	product	images	without	adding	any	extra	request
mapping	methods	in	the	controller.

Pop	quiz	–	static	view
Consider	the	following	resource	configuration:

<mvc:resources		location="/pdf/"		mapping="/resources/**"/>

Q1.	Under	the	pdf	directory,	if	I	have	a	sub	directory	such	as	product/manuals/,	which
contains	a	.pdf	file	called	manual-P1234.pdf,	how	can	I	form	the	request	path	to	access
that	.pdf	file?

1.	 /pdf/product/manuals/manual-P1234.pdf.
2.	 /resources/pdf/product/manuals/manual-P1234.pdf.
3.	 /product/manuals/manual-P1234.pdf.
4.	 /resource/pdf/product/manuals/manual-P1234.pdf.

Time	for	action	–	adding	images	to	the
product	detail	page
Let’s	extend	this	technique	to	show	product	images	in	our	product	listing	page	and	in	the
product	detail	page.	Perform	the	following	steps:

1.	 Open	products.jsp;	you	can	find	products.jsp	under	the	/src/main/webapp/WEB-
INF/views/	directory	in	your	project.	Now,	add	the	following		tag	after	the
<div	class="thumbnail">	tag:

<img	src="<c:url	value="/resource/images/${product.productId}.png">

</c:url>"	alt="image"		style	=	"width:100%"/>

2.	 Similarly,	open	product.jsp	and	add	the	following		tag	after	the	<div
class="row">	tag:

<div	class="col-md-5">

		<img	src="<c:url	value="/resource/images/${product.productId}.png">

</c:url>"	alt="image"		style	=	"width:100%"/>

</div>

3.	 Now,	run	our	application	and	enter	http://localhost:8080/webstore/products.
You	will	be	able	to	see	the	product	list	page	with	every	product	that	has	a	product
image,	as	shown	in	the	following	figure:

Product	listings	with	the	image	attached

4.	 Now,	click	on	the	Details	button	of	any	product,	and	you	will	be	able	to	see	the
corresponding	view	of	the	product	details	with	the	image	attached	to	the	details	page,
as	follows:

The	product	detail	page	with	the	image	attached

What	just	happened?
What	we	have	done	is	simple.	We	learned	how	we	can	serve	static	resources	and	how	we
can	host	product	images.	During	this	exercise,	we	learned	that	in	our	application,	if	any
request	comes	with	the	request	path’s	/resource	prefix,	it	would	get	mapped	to	the	base
resource	directory,	and	any	remaining	URL	path	would	lead	to	the	static	file.

We	leveraged	this	fact,	and	formed	the	image’s	src	URL	accordingly;	notice	the	src
attribute	of	the		tag	we	added	in	step	1:

<img	src="<c:url	value="/resource/images/${product.productId}.png">

</c:url>"	alt="image"		style	=	"width:100%"/>

The	src	attribute	value	that	we	are	forming	in	the	preceding		tag	has	an	expression
language	notation	to	fetch	the	product	ID;	after	getting	the	product	ID,	we	simply
concatenate	it	to	the	existing	value	to	form	a	valid	request	path,	shown	as	follows:

/resource/images/${product.productId}.png

For	example,	if	the	product	ID	is	P1234,	then	we	would	get	an	image	request	URL	as
/resource/images/P1234.png,	which	is	nothing	but	one	of	the	image	file	names	that	we
have	already	put	up	in	the	/resources/images	directory.	So,	Spring	can	easily	return	the
image	file	that	we	showed	using	the		tag	in	steps	1	and	2.

The	multipart	request	in	action
In	the	preceding	exercise,	we	learned	how	we	can	incorporate	the	static	view	to	show
product	images	in	the	products’	details	page.	We	simply	put	some	images	in	a	directory	in
the	server	and	performed	a	configuration,	and	Spring	MVC	was	able	to	pick	up	these	files
during	the	rendering	of	the	page	that	had	the	product	details.	What	if	we	automate	this
process?	I	mean	instead	of	putting	these	images,	what	if	we	are	able	to	upload	images	to
the	image	directory?

How	can	we	do	this?	There	comes	the	multipart	request.	The	multipart	request	is	a	type	of
HTTP	request	that	sends	the	file	and	data	to	the	server.	Spring	MVC	has	good	support	for
a	multipart	request.	Let’s	say	we	want	to	upload	some	files	to	the	server.	To	accomplish
this,	we	will	have	to	form	a	multipart	request.

Time	for	action	–	adding	images	to	the
product	page
Let’s	add	the	image	upload	facility	to	our	add	products	page:

1.	 Add	a	bean	definition	in	our	web	application’s	context	configuration	file
(DispatcherServlet-context.xml)	for	CommonsMultipartResolver,	as	follows:

<bean	id="multipartResolver"	

class="org.springframework.web.multipart.commons.CommonsMultipartResolv

er">

		<property	name="maxUploadSize"	value="10240000"/>

</bean>

2.	 Open	pom.xml;	you	can	find	pom.xml	under	the	project	root	directory	itself.
3.	 You	will	be	able	to	see	some	tabs	at	the	bottom	of	the	pom.xml	file.	Select	the

Dependencies	tab	and	click	on	the	Add	button	of	the	Dependencies	section.
4.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as	commons-fileupload,

Artifact	Id	as	commons-fileupload,	Version	as	1.2.2;	select	Scope	as	compile;	and
click	on	the	OK	button.

5.	 Similarly,	add	one	more	Group	Id	dependency	as	org.apache.commons,	Artifact	Id
as	commons-io,	Version	as	1.3.2;	select	Scope	as	compile;	click	on	the	OK	button;
and	save	the	pom.xml	file.

6.	 Open	our	product’s	domain	class	(Product.java)	and	add	a	reference	to
org.springframework.web.multipart.MultipartFile	with	the	corresponding
setters	and	getters	as	follows:

private	MultipartFile		productImage;

7.	 Open	addProduct.jsp;	you	can	find	addProduct.jsp	under	the
/src/main/webapp/WEB-INF/views/	directory	in	your	project.	Add	the	following	set
of	tags	after	the	<form:input	id="condition">	tag	group:

<div	class="form-group">

		<label	class="control-label	col-lg-2"	for="productImage">

<spring:message	code="addProdcut.form.productImage.label"/></label>

		<div	class="col-lg-10">

				<form:input	id="productImage"	path="productImage"type="file"	

class="form:input-large"	/>

		</div>

</div>

8.	 Add	an	entry	in	our	message	bundle	source	(messages.properties)	for	the	product’s
image	label,	as	follows:

addProdcut.form.productImage.label	=	Product	Image	file

9.	 Now,	set	the	enctype	attribute	to	multipart/form-data	in	the	form	tag	as	follows
and	save	addProduct.jsp:

<form:form		modelAttribute="newProduct"	class="form-

horizontal"enctype="multipart/form-data">

10.	 Open	our	ProductController.java	file	and	modify	the	processAddNewProductForm
method’s	signature	by	adding	an	extra	method	parameter	of	the	HttpServletRequest
type	(javax.servlet.http.HttpServletRequest);	so	basically,	your
processAddNewProductForm	method	signature	should	look	like	the	following	code
snippet:

public	String	processAddNewProductForm(@ModelAttribute("newProduct")	

Product	newProduct,	BindingResultresult,	HttpServletRequest	request)	{

11.	 Add	the	following	code	snippet	inside	the	processAddNewProductForm	method	just
before	productService.addProduct(newProduct);:

MultipartFile	productImage	=productToBeAdded.getProductImage();

String	rootDirectory	

=request.getSession().getServletContext().getRealPath("/");

if	(productImage!=null	&&	!productImage.isEmpty())	{

		try	{

				

productImage.transferTo(newFile(rootDirectory+"resources\\images\\"+pro

ductToBeAdded.getProductId()	+	".png"));

		}	catch	(Exception	e)	{

				throw	new	RuntimeException("Product	Image	saving	failed",e);

		}

}

12.	 Within	the	initialiseBinder	method,	add	the	productImage	field	to	the	whitelisting
set	as	follows:

binder.setAllowedFields("productId","name","unitPrice","description","m

anufacturer","category","unitsInStock",	"productImage");

13.	 Now,	run	our	application	and	enter	the	URL
http://localhost:8080/webstore/products/add.	You	will	be	able	to	see	our	add
products	page	with	an	extra	input	field	to	choose	a	file	to	upload.	Just	fill	every
information	as	usual	and	more	importantly,	choose	an	image	file	of	your	choice	to
add	a	new	image	file,	and	click	on	the	Add	button.	You	will	then	be	able	to	see	that
the	image	has	been	added	to	the	products	page	and	the	product	details	page,	as	shown
in	the	following	screenshot:

Add	product	page	with	image	selection	option

What	just	happened?
Spring’s	CommonsMultipartResolver
(org.springframework.web.multipart.commons.CommonsMultipartResolver)	class
determines	whether	the	given	request	contains	multipart	content	or	not	and	parses	the
given	HTTP	request	into	multipart	files	and	parameters.	This	is	why	we	initiated	this	class
within	our	servlet	context	in	step	1.	Through	the	maxUploadSize	property,	we	have	set	a
maximum	of	10240000	bytes	as	the	allowed	file	size	to	be	uploaded:

<bean	

id="multipartResolver"class="org.springframework.web.multipart.commons.Comm

onsMultipartResolver">

		<property	name="maxUploadSize"	value="10240000"/>

</bean>

From	steps	2	to	5,	we	added	some	of	the	org.apache.commons	libraries	as	our	maven
dependency.	This	is	because	Spring	uses	these	libraries	internally	to	support	the	file
uploading	feature.

Since	the	image	that	we	were	uploading	belongs	to	a	product,	it	is	better	to	keep	that
image	as	part	of	the	product	information;	this	is	why	in	step	6,	we	added	a	reference	to
MultipartFile	in	our	domain	class	(Product.java)	and	added	corresponding	setters	and
getters.	This	MultipartFile	reference	holds	the	actual	product	image	file	that	we	were
uploading.

We	want	to	incorporate	the	image	uploading	facility	in	our	add	products	page;	this	is	why,
in	the	addProduct.jsp	view	file,	we	added	a	file	input	tag	to	choose	the	desired	image,
shown	as	follows:

<div	class="form-group">

		<label	class="control-label	col-lg-2"	for="productImage"><spring:message	

code="addProdcut.form.productImage.label"/>

		</label>

		<div	class="col-lg-10">

				<form:input	id="productImage"	path="productImage"	type="file"	

class="form:input-large"	/>

		</div>

</div>

In	the	preceding	set	of	tag,	the	important	one	is	the	<form:input>	tag.	It	has	the	type
attribute	as	file	so	that	it	can	have	the	Choose	File	button	to	display	the	file	chooser
window.	As	usual,	we	want	this	form	field	to	be	bound	with	the	domain	object	field;	this	is
why	we	have	set	the	path	attribute	as	productImage.	If	you	remember	correctly,	this
pathname	is	nothing	but	the	same	MultipartFile	reference	name	that	we	added	in	step	6.

As	usual,	we	want	to	externalize	the	label	message	for	this	file	input	tag	as	well,	and	that’s
why	we	added	the	<spring:message>	tag,	and	in	step	8,	we	added	the	corresponding
message	entry	in	the	message	source	file	(messages.properties).

Since	our	add	product	form	is	now	capable	of	sending	image	files	as	well	as	part	of	the
request,	we	need	to	encode	the	request	as	a	multipart	request.	This	is	why,	in	step	9,	we

added	the	enctype	attribute	to	the	<form:form>	tag	and	set	its	value	as	multipart/form-
data.	The	enctype	attribute	indicates	how	the	form	data	should	be	encoded	when	we	are
submitting	it	to	the	server.

We	wanted	to	save	the	image	file	in	the	server	under	the	location’s	resources/images
directory;	this	directory	structure	would	be	available	directly	under	the	root	directory	of
our	web	application	at	runtime.	So,	in	order	to	get	the	root	directory	of	our	web
application,	we	need	HttpServletRequest.	See	the	following	code	snippet:

String	rootDirectory	=	

request.getSession().getServletContext().getRealPath("/");

This	is	why	we	added	an	extra	method	parameter	called	request	of	the
HttpServletRequest	type	to	our	processAddNewProductForm	method	in	step	10.
Remember,	Spring	will	fill	this	request	parameter	with	the	actual	HTTP	request.

In	step	11,	we	simply	read	the	image	file	from	the	domain	object	and	wrote	it	into	a	new
file	with	the	product	ID	as	the	name,	as	shown	in	the	following	code	snippet:

MultipartFile	productImage	=	productToBeAdded.getProductImage();

String	rootDirectory	=	

request.getSession().getServletContext().getRealPath("/");

if	(productImage!=null	&&	!productImage.isEmpty())	{

		try	{

				productImage.transferTo(new

						File(rootDirectory+"resources\\images\\"+

						productToBeAdded.getProductId()	+	".png"));

				}	catch	(Exception	e)	{

						throw	new	RuntimeException("Product	Image	saving	failed",	e);

				}

}

Remember,	we	purposely	save	the	images	with	the	product	ID	name	because	we	have
already	designed	our	products	(products.jsp)	page	and	detail	(product.jsp)	page
accordingly	in	order	to	display	the	right	image	based	on	the	product	ID.

As	a	final	step,	we	added	the	newly	introduced	productImage	file	to	the	whitelisting	set	in
the	binder	configuration	within	the	initialiseBinder	method.

Now,	if	you	run	our	application	and	enter
http://localhost:8080/webstore/products/add,	you	will	be	able	to	see	our	add
products	page	with	an	extra	input	field	to	choose	the	file	to	upload.

Have	a	go	hero	–	uploading	product	user	manuals
to	the	server
It	is	nice	that	we	were	able	to	upload	the	product	image	to	the	server	while	adding	a	new
product.	Why	don’t	you	extend	this	facility	to	upload	a	PDF	file	to	server?	For	example,
consider	that	every	product	has	a	user	manual	and	you	want	to	upload	these	user	manuals
as	well	while	adding	a	product.

Here	are	some	of	the	things	you	can	do	to	upload	PDF	files:

Create	a	directory	with	the	pdf	name	under	the	src/main/webapp/resources/
directory	in	your	project.
Add	one	more	MultipartFile	reference	in	your	product	domain	class
(Product.java)	to	hold	the	PDF	file	and	change	Product.java	accordingly.
Extend	addProduct.jsp.
Extend	ProductController.java	accordingly;	don’t	forget	to	add	the	newly	added
field	to	the	whitelist.
So	finally,	you	will	be	able	to	access	the	PDF	under
http://localhost:8080/webstore/resource/pdf/P1237.pdf	if	the	newly	added
product	id	is	P1237.	Good	luck!

Using	ContentNegotiatingViewResolver
Content	negotiation	is	a	mechanism	that	makes	it	possible	to	serve	a	different
representation	of	the	same	resource.	For	example,	so	far	we	have	displayed	our	product
detail	page	in	a	JSP	representation.	What	if	we	want	to	represent	the	same	content	in	an
XML	format,	and	similarly,	what	if	we	want	the	same	content	in	a	JSON	format?	There
comes	Spring	MVC’s	ContentNegotiatingViewResolver
(org.springframework.web.servlet.view.ContentNegotiatingViewResolver)	to	help
us.	The	XML	and	JSON	formats	are	popular	data	interchange	formats	that	are	used	in	web
service	communications	heavily.	So,	using	ContentNegotiatingViewResolver,	we	can
incorporate	many	views	such	as	MappingJacksonJsonView	(for	JSON)	and
MarshallingView	(for	XML)	to	represent	the	same	product	information	as	the
XML/JSON	format.

Time	for	action	–	configuring
ContentNegotiatingViewResolver
ContentNegotiatingViewResolver	does	not	resolve	views	itself	but	delegates	them	to
other	view	resolvers	based	on	the	request.	Now,	let’s	add	the	content	negotiation	capability
to	our	application:

1.	 Open	pom.xml;	you	can	find	pom.xml	under	the	project	root	directory	itself.
2.	 You	will	be	able	to	see	some	tabs	at	the	bottom	of	pom.xml	file.	Select	the

Dependencies	tab	and	click	on	the	Add	button	of	the	Dependencies	section.
3.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as

org.springframework,	Artifact	Id	as	spring-oxm,	Version	as	4.0.3.RELEASE;
select	Scope	as	compile;	and	then	click	on	the	OK	button.

4.	 Similarly,	add	one	more	dependency	Group	Id	as	org.codehaus.jackson,	Artifact
Id	as	jackson-mapper-asl,	Version	as	1.9.10,	and	select	Scope	as	compile.	Then,
click	on	the	OK	button	and	save	pom.xml.

5.	 Add	the	bean	configuration	for	ContentNegotiatingViewResolver	in	our	web
application’s	context	configuration	file,	DispatcherServlet-context.xml,	as
follows:

<bean	

class="org.springframework.web.servlet.view.ContentNegotiatingViewResol

ver">

		<property	name="defaultViews">

				<list>

						<ref	bean="jsonView"/>

						<ref	bean="xmlView"/>

				</list>

		</property>

</bean>

6.	 Now,	add	the	bean	configuration	for	the	JSON	view	as	follows:

<bean	id="jsonView"	

class="org.springframework.web.servlet.view.json.MappingJacksonJsonView

">

		<property	name="prettyPrint"	value="true"/>

</bean>

7.	 Finally,	add	the	bean	configuration	for	the	XML	view	as	follows:

<bean	id="xmlView"	

class="org.springframework.web.servlet.view.xml.MarshallingView">

		<constructor-arg>

				<bean	class="org.springframework.oxm.jaxb.Jaxb2Marshaller">

						<property	name="classesToBeBound">

								<list>

										<value>com.packt.webstore.domain.Product</value>

								</list>

						</property>

				</bean>

		</constructor-arg>

</bean>

8.	 Open	our	product	domain	class	(Product.java),	and	add	the	@XmlRootElement
annotation	at	the	top	of	the	class.

9.	 Similarly,	add	the	@XmlTransient	annotation	at	the	top	of	the	getProductImage()
method	and	add	another	@JsonIgnore	annotation	on	top	of	the	proudctImage	field.

10.	 Now,	run	our	application	and	enter
http://localhost:8080/webstore/products/product?id=P1234.	You	will	now	be
able	to	view	the	detail	page	of	the	product	with	the	P1234	ID.

11.	 Now	change	the	URL	with	the	.xml	extension
(http://localhost:8080/webstore/products/product.xml?id=P1234).	You	will
be	able	to	see	the	same	content	in	the	XML	format,	as	shown	in	the	following
screenshot:

The	product	detail	page	that	shows	the	product	information	in	the	XML	format

12.	 Similarly,	this	time	change	the	URL	with	the	.json	extension
(http://localhost:8080/webstore/products/product.json?id=P1234).	You	will
be	able	to	see	the	JSON	representation	of	that	content	as	shown	in	the	following
screenshot:

The	product	detail	page	that	shows	the	product	information	in	the	JSON	format

What	just	happened?
Since	we	want	an	XML	representation	for	our	model	data	to	convert	our	model	objects
into	XML,	we	need	Spring’s	object/XML	mapping	support.	This	is	why	we	added	the
dependency	for	spring-oxm.jar	in	steps	1	to	3.	The	spring-oxm	notation	will	help	us
convert	an	XML	document	to	and	from	a	Java	object.

Similarly,	to	convert	model	objects	into	JSON,	Spring	MVC	will	use	jackson-mapper-
asl.jar,	so	we	need	that	JAR	in	our	project	as	well.	In	step	4,	we	just	added	the
dependency	configuration	for	that	jar.

If	you	remember,	we	have	already	defined	InternalResourceViewResolver	in	our	web
application	context	as	our	view	resolver	to	resolve	JSP-based	views.	However,	this	time,
we	want	a	view	resolver	to	resolve	XML	and	JSON	views.	This	is	why,	in	step	6	and	7,	we
configured	MappingJacksonJsonView	(for	JSON)	and	MarshallingView	(for	XML)	in	our
web	application	context.

As	I	already	mentioned,	ContentNegotiatingViewResolver	does	not	resolve	views	itself.
Instead,	it	delegates	to	other	views	based	on	the	request,	so	we	need	to	introduce	other
views	to	ContentNegotiatingViewResolver.	We	did	that	in	step	5	through	the
defaultViews	property	in	ContentNegotiatingViewResolver.	Note	that	in	the
ContentNegotiatingViewResolver	bean	configuration,	we	just	added	the	bean	reference
for	the	JSON	view	and	XML	view	under	the	defaultViews	property:

<bean	

class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver"

>

		<property	name="defaultViews">

				<list>

						<ref	bean="jsonView"/>

						<ref	bean="xmlView"/>

				</list>

		</property>

</bean>

We	configured	bean	references	for	jsonView	and	xmlView	inside
ContentNegotiatingViewResolver.

The	xmlView	bean	configuration,	especially,	has	one	important	property	called
classesToBeBound,	which	lists	the	domain	objects	that	needs	XML	conversion	during	the
request	processing.	Since	our	product	domain	object	needs	the	XML	conversion,	we	added
com.packt.webstore.domain.Product	in	the	list	of	classesToBeBound,	shown	as
follows:

<bean	id="xmlView"	

class="org.springframework.web.servlet.view.xml.MarshallingView">

		<constructor-arg>

				<bean	class="org.springframework.oxm.jaxb.Jaxb2Marshaller">

						<property	name="classesToBeBound">

								<list>

										<value>

												com.packt.webstore.domain.Product	

										</value>

								</list>

						</property>

				</bean>

		</constructor-arg>

</bean>

In	order	to	convert	to	XML,	we	need	to	give	one	more	hint	to	MarshallingView	to
identify	the	root	XML	element	in	the	Product	domain	object.	This	is	why,	in	step	8,	we
annotated	our	class	with	the	@XmlRootElement	annotation
(javax.xml.bind.annotation.XmlRootElement).

In	step	9,	we	added	the	@XmlTransient	annotation
(javax.xml.bind.annotation.XmlTransient)	on	top	of	the	getProductImage()	method
and	added	another	annotation,	@JsonIgnore
(org.codehaus.jackson.annotate.JsonIgnore),	on	top	of	the	productImage	field.	This
is	because	we	don’t	want	to	represent	the	product	image	as	part	of	the	XML	view	or	JSON
view.	Since	both	formats	are	purely	text-based	representation,	it	is	not	possible	to
represent	images	in	texts.

In	step	10,	we	simply	accessed	our	product	detail	page	in	a	regular	way	by	firing	the	web
request	http://localhost:8080/webstore/products/product?id=P1234	from	the
browser,	and	we	will	be	able	to	see	the	normal	JSP	view,	as	expected.

In	step	11,	we	just	changed	the	URL	slightly	by	adding	a	.xml	extension	to	the
http://localhost:8080/webstore/products/product	.xml	?id=P1234	request	path.
This	time,	we	will	be	able	to	see	the	same	product	information	in	the	XML	format.

Similarly,	for	the	JSON	view,	we	changed	the	extension	by	adding.json	to	the
http://localhost:8080/webstore/products/product	.json	?id=P1234	path,	and	we
will	be	able	to	see	the	JSON	representation	of	the	same	product	information.

Working	with	the	handler	exception
resolver
Spring	MVC	provides	several	approaches	to	exception	handling.	In	Spring,	one	of	the
main	exception	handling	constructs	is	the	HandlerExceptionResolver	interface
(org.springframework.web.servlet.HandlerExceptionResolver).	Any	objects	that
implement	this	interface	can	resolve	exceptions	that	are	thrown	during	controller	mapping
or	execution.	The	HandlerExceptionResolver	implementers	are	typically	registered	as
beans	in	the	web	application	context.

Spring	MVC	creates	two	such	HandlerExceptionResolver	implementations	by	default	to
facilitate	exception	handling:

ResponseStatusExceptionResolver	is	created	to	support	the	@ResponseStatus
annotation
ExceptionHandlerExceptionResolver	is	created	to	support	the	@ExceptionHandler
annotation

Time	for	action	–	adding	the	response
status	exception
First,	we	will	look	at	the	@ResponseStatus	annotation
(org.springframework.web.bind.annotation.ResponseStatus).	In	Chapter	3,	Control
Your	Store	with	Controllers,	we	created	a	request	mapping	method	to	display	products	by
category	under	the	URI	template,
http://localhost:8080/webstore/products/{category}.	If	no	products	were	found
under	the	given	category,	we	would	show	an	empty	web	page,	which	is	not	correct
semantically.	We	should	show	an	HTTP	status	error	to	indicate	that	no	products	exist
under	the	given	category.	Let’s	see	how	we	can	do	that	with	the	help	of	the
@ResponseStatus	annotation:

1.	 Create	a	class	called	NoProductsFoundUnderCategoryException	under	the
com.packt.webstore.exception	package	in	the	source	folder,	src/main/java.	Now
add	the	following	code	into	it:

package	com.packt.webstore.exception;

import	org.springframework.http.HttpStatus;

import	org.springframework.web.bind.annotation.ResponseStatus;

@ResponseStatus(value=HttpStatus.NOT_FOUND,	reason="No	products	found	

under	this	category")

public	class	NoProductsFoundUnderCategoryException	extends	

RuntimeException{

		private	static	final	long	serialVersionUID	=3935230281455340039L;

}

2.	 Now,	open	our	ProductController	class	and	modify	the	getProductsByCategory
method	as	follows:

@RequestMapping("/{category}")

public	String	getProductsByCategory(Model	

model,@PathVariable("category")	String	category)	{

		List<Product>	products	

=productService.getProductsByCategory(category);

		if	(products	==	null	||	products.isEmpty())	{

				throw	new	NoProductsFoundUnderCategoryException();

		}

		model.addAttribute("products",	products);

		return	"products";

}

3.	 Now	run	our	application	and	enter
http://localhost:8080/webstore/products/HeadPhones.	You	will	see	an	HTTP
status	error	that	says	No	products	found	under	this	category,	shown	as	follows:

The	product	category	page	that	shows	HTTP	Status	404	for	“No	products	found
under	this	category”

What	just	happened?
In	step	1,	we	just	created	a	runtime	exception	called
NoProductsFoundUnderCategoryException	to	indicate	no	products	found	under	the	given
category.	One	of	the	important	constructs	that	need	to	be	noticed	in	the
NoProductsFoundUnderCategoryException	class	is	the	@ResponseStatus	annotation,
which	instructs	the	Spring	MVC	to	return	a	specific	HTTP	status	if	this	exception	has
been	thrown	from	a	request-mapping	method.

We	can	configure	the	HTTP	status	that	needs	to	be	returned	via	the	value	attribute	of	the
@ResponseStatus	annotation;	in	our	case,	we	configured	HttpStatus.NOT_FOUND
(org.springframework.http.HttpStatus),	which	indicates	the	familiar	HTTP	404
response.	The	second	attribute,	reason,	denotes	the	reason	to	be	used	for	the	HTTP
response	error.

In	step	2,	we	just	modified	the	getProductsByCategory	method	in	the
ProductController	class	to	check	whether	the	product	list	for	the	given	category	is
empty.	If	so,	we	simply	throw	the	exception	we	created	in	step	1,	which	causes	the	HTTP
404	status	error	to	return	to	the	client	saying	No	products	found	under	this	category.

So	finally,	in	step	3,	we	fired	the	web	request,
http://localhost:8080/webstore/products/HeadPhones,	which	would	try	to	look	for
products	under	the	HeadPhones	category,	but	since	we	didn’t	have	any	products	under	the
HeadPhones	category,	we	got	the	HTTP	404	status	error.

It	is	good	that	we	have	shown	the	HTTP	status	error	for	products	not	found	under	a	given
category,	but	sometimes,	you	may	wish	to	have	an	error	page	where	you	want	to	show
your	error	message	in	a	detailed	manner.

For	example,	run	our	application	and	enter	the
http://localhost:8080/webstore/products/product?id=P1234	URL.	You	will	be	able
to	see	a	detailed	view	of	Iphone	5s;	now,	change	the	product	ID	in	the	URL	to	an	invalid
one	such	as	http://localhost:8080/webstore/products/product?id=P1000.	You	will
see	an	error	page.

Time	for	action	–	adding	an	exception
handler
We	must	show	a	nice	error	message	that	says	that	no	products	were	found	with	the	given
product	ID.	Let’s	do	that	with	the	help	of	@ExceptionHandler:

1.	 Create	a	class	called	ProductNotFoundException	under	the
com.packt.webstore.exception	package	in	the	source	folder	src/main/java.	Now,
add	the	following	code	to	it:

package	com.packt.webstore.exception;

public	class	ProductNotFoundException	extends	RuntimeException{

		private	static	final	long	serialVersionUID	=-694354952032299587L;

		private	String	productId;

		public	ProductNotFoundException(String	productId)	{

				this.productId	=	productId;

		}

		public	String	getProductId()	{

				return	productId;

		}

}

2.	 Now,	open	our	InMemoryProductRepository	class	and	modify	the	getProductById
method	as	follows:

public	Product	getProductById(String	productId)	{

		Product	productById	=	null;

		

		for(Product	product	:	listOfProducts)	{

				if(product!=null	&&	product.getProductId()!=null	

&&product.getProductId().equals(productId)){

						productById	=	product;

						break;

				}

		}

		

		if(productById	==	null){

				throw	new	ProductNotFoundException("No	products	found	withthe	

product	id:	"+	productId);

		}

		

		return	productById;

}

3.	 Add	an	exception	handler	method	with	the	@ExceptionHandler	annotation
(org.springframework.web.bind.annotation.ExceptionHandler)	as	shown	in	the

ProductController	class:

@ExceptionHandler(ProductNotFoundException.class)

public	ModelAndView	handleError(HttpServletRequest	

req,ProductNotFoundException	exception)	{

		ModelAndView	mav	=	new	ModelAndView();

		mav.addObject("invalidProductId",	exception.getProductId());

		mav.addObject("exception",	exception);

		mav.addObject("url",req.getRequestURL()+"?"+req.getQueryString());

		mav.setViewName("productNotFound");

		return	mav;

}

4.	 Finally,	add	one	more	JSP	view	file	called	productNotFound.jsp,	under	the
src/main/webapp/WEB-INF/views/	directory	and	add	the	following	code	snippets	to
it	and	save	it:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>		

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/htmlcharset=ISO-8859-

1">

				<link	

rel="stylesheet"href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/boo

tstrap.min.css">

				<title>Welcome</title>

				</head>

		<body>

				<section>

						<div	class="jumbotron">

								<div	class="container">

										<h1	class="alert	alert-danger">	There	is	no	product	found	

with	the	Product	id	${invalidProductId}</h1>

								</div>

						</div>

				</section>

				<section>

						<div	class="container">

								<p>${url}</p>

								<p>${exception}</p>

						</div>

						<div	class="container">

								<p>

										<a	href="<spring:url	value="/products"	/>"class="btn	btn-

primary">

													

products

										

								</p>

						</div>

				</section>

		</body>

</html>

5.	 Now,	run	our	application	and	enter
http://localhost:8080/webstore/products/product?id=P1000.	You	will	see	an
error	page	that	says	There	is	no	product	found	with	the	Product	id	P1000,	shown
as	follows:

A	product	detail	page	that	shows	the	custom	error	page	for	the	invalid	product	id
P1000

What	just	happened?
We	thought	of	showing	a	custom-made	error	page	instead	of	a	raw	exception	in	case	the
product	is	not	found	in	the	given	product	ID.	So,	in	order	to	achieve	this	in	step	1,	we	just
created	a	runtime	exception	called	ProductNotFoundException	to	be	thrown	when	the
product	has	not	been	found	for	the	given	product	ID.

In	step	2,	we	just	modified	the	getProductById	method	of	the
InMemoryProductRepository	class	to	check	whether	any	products	were	found	for	the
given	product	ID.	If	not,	we	simply	throw	the	exception	(ProductNotFoundException)	we
created	in	step	1.

In	step	3,	we	added	our	exception	handler	method	to	handle	ProductNotFoundException
with	the	help	of	the	@ExceptionHandler	annotation.	Within	the	handleError	method,	we
just	created	a	ModelAndView	object	(org.springframework.web.servlet.ModelAndView)
and	stored	the	requested	invalid	product	ID,	exception,	and	requested	URL,	and	returned	it
with	the	view	name,	productNotFound:

@ExceptionHandler(ProductNotFoundException.class)

public	ModelAndView	handleError(HttpServletRequest	

req,ProductNotFoundException	exception)	{

		ModelAndView	mav	=	new	ModelAndView();

		mav.addObject("invalidProductId",	exception.getProductId());

		mav.addObject("exception",	exception);

		mav.addObject("url",	req.getRequestURL()+"?"+req.getQueryString());

		mav.setViewName("productNotFound");

		return	mav;

}

Since	we	returned	the	ModelAndView	object	with	the	productNotFound	view	name,	we
must	have	a	view	file	with	the	productNotFound	name.	This	is	why	we	created	such	a
view	file	(productNotFound.jsp)	in	step	4.	The	productNotFound.jsp	file	just	contains	a
CSS-styled	<h1>	tag	to	show	the	error	message	and	a	link	button	to	the	product	listing
page.

So,	whenever	we	requested	to	show	a	product	with	an	invalid	ID	such	as
http://localhost:8080/webstore/products/product?id=P1000,	the
ProductController	class	would	throw	ProductNotFoundException,	which	will	be
handled	by	the	handleError	method	to	show	the	custom	error	page
(productNotFound.jsp).

Summary
In	this	chapter,	we	learned	how	InternalResourceViewResolver	resolves	views,	and	we
learned	how	we	can	kick	RedirectView	from	a	controller	method.	We	learned	the
important	difference	between	redirect	and	forward.	After	that,	we	learned	how	we	can
host	static	resource	files	without	going	through	the	controllers’	configuration.	We	also
learned	how	to	attach	a	static	image	file	with	the	product	details	page.	We	learned	how	we
can	upload	files	to	server.	Finally,	we	saw	how	we	can	configure
ContentNegotiatingViewResolver	to	give	alternate	XML	and	JSON	views	for	the
product	domain	object	in	our	application.	Finally,	we	learned	how	we	can	make	use	of
HandlerExceptionResolver	to	resolve	an	exception.

In	the	next	chapter,	we	will	learn	how	we	can	intercept	regular	web	requests	with	the	help
of	an	interceptor.	See	you	in	next	chapter!

Chapter	6.	Intercept	Your	Store	with
Interceptor
In	all	the	previous	chapters,	we	have	only	learned	how	to	map	a	request	to	a	controller
method.	Once	the	request	reaches	the	controller	method,	we	execute	some	logic	and	return
a	logical	view	name	that	can	be	used	by	the	view	resolver	to	resolve	views.	However,	what
if	we	want	to	execute	some	logic	before	the	actual	request	process	is	performed?	Similarly,
what	if	we	want	to	execute	another	instruction	before	dispatching	the	response?

The	Spring	MVC	interceptor	can	be	used	to	intercept	the	actual	request	and	response.
Interceptors	are	a	special	web	programming	technique	where	one	can	execute	a	certain
piece	of	logic	before	or	after	a	web	request	is	processed.	In	this	chapter,	we	are	going	to
learn	more	about	the	interceptor.	We	will	learn	the	following:

How	to	configure	an	interceptor
How	to	add	internalization	support
Data	auditing	using	an	interceptor
Conditional	redirecting	using	an	interceptor

Working	with	interceptors
As	I	already	mentioned,	interceptors	are	used	to	intercept	actual	web	requests	before	or
after	they	are	processed.	We	can	relate	the	interceptor’s	concept	in	Spring	MVC	with	the
filter	concept	of	servlet	programming.	In	Spring	MVC,	interceptors	are	the	special	classes
that	must	implement	the	org.springframework.web.servlet.HandlerInterceptor
interface.

The	HandlerInterceptor	interface	defines	three	important	methods,	as	follows:

preHandle:	This	method	gets	called	just	before	the	web	request	reaches	the	controller
method	to	be	executed
postHandle:	This	method	will	get	called	just	after	the	execution	of	the	controller
method
afterCompletion:	This	method	will	get	called	after	the	completion	of	the	entire	web
request	cycle

Once	we	have	created	our	own	interceptor	by	implementing	the	HandlerInterceptor
interface,	we	need	to	configure	it	in	our	web	application	context	for	it	to	take	effect.

Time	for	action	–	configuring	an
interceptor
Every	web	request	takes	a	certain	amount	of	time	to	get	processed	in	the	server.	In	order	to
find	out	how	much	time	it	takes	to	process	a	web	request,	we	need	to	calculate	the	time
difference	between	the	start	time	and	end	time	of	the	web	request	process.	We	can	achieve
this	using	the	interceptor	concept.	Let’s	configure	our	own	interceptor	in	our	project	to	log
the	execution	time	of	each	web	request	by	performing	the	following	steps:

1.	 Open	pom.xml—you	can	find	pom.xml	under	the	root	directory	of	the	project	itself.
2.	 You	will	be	able	to	see	some	tabs	at	the	bottom	of	the	pom.xml	file;	select	the

Dependencies	tab	and	click	on	the	Add	button	of	the	Dependencies	section.
3.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as	log4j,	enter	Artifact

Id	as	log4j,	enter	Version	as	1.2.12,	select	Scope	as	compile,	and	click	on	the	OK
button	to	save	pom.xml.

4.	 Create	a	class	named	PerformanceMonitorInterceptor	under	the
com.packt.webstore.interceptor	package	in	the	source	folder	src/main/java	and
add	the	following	code	into	it:

package	com.packt.webstore.interceptor;

import	java.text.DateFormat;

import	java.text.SimpleDateFormat;

import	java.util.Calendar;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.apache.log4j.Logger;

import	org.springframework.util.StopWatch;

import	org.springframework.web.servlet.HandlerInterceptor;

import	org.springframework.web.servlet.ModelAndView;

public	class	PerformanceMonitorInterceptor	implements	

HandlerInterceptor	{

		ThreadLocal<StopWatch>	stopWatchLocal	=	newThreadLocal<StopWatch>();

		Logger	logger	=	Logger.getLogger(this.getClass());

		public	boolean	preHandle(HttpServletRequest	

request,HttpServletResponse	response,	Object	handler)	throwsException	{

				StopWatch	stopWatch	=	new	StopWatch(handler.toString());

				stopWatch.start(handler.toString());

				stopWatchLocal.set(stopWatch);

				logger.info("Accessing	URL	path:	"	+	getURLPath(request));

				logger.info("Request	processing	started	on:	"	+getCurrentTime());

				return	true;

		}

		public	void	postHandle(HttpServletRequest	arg0,HttpServletResponse	

response,	Object	handler,	ModelAndViewmodelAndView)	throws	Exception	{

				logger.info("Request	processing	ended	on	"	+getCurrentTime());

		}

		public	void	afterCompletion(HttpServletRequest	

request,HttpServletResponse	response,	Object	handler,Exception	

exception)	throws	Exception	{

				StopWatch	stopWatch	=	stopWatchLocal.get();

				stopWatch.stop();

				logger.info("Total	time	taken	for	processing:	"	

+stopWatch.getTotalTimeMillis()+	"	ms");

				stopWatchLocal.set(null);

				

logger.info("===");

		}

		private	String	getURLPath(HttpServletRequest	request)	{

				String	currentPath	=	request.getRequestURI();

				String	queryString	=	request.getQueryString();

				queryString	=	queryString	==	null	?	""	:	"?"	+	queryString;

				return	currentPath+queryString;

		}

		private	String	getCurrentTime()	{

				DateFormat	formatter	=	new	SimpleDateFormat("dd/MM/yyyy	'at'	

hh:mm:ss");

				Calendar	calendar	=	Calendar.getInstance();

				calendar.setTimeInMillis(System.currentTimeMillis());

				return	formatter.format(calendar.getTime());

		}

}

5.	 Now,	open	the	web	application	context	configuration	file	DispatcherServlet-
context.xml	from	src/main/webapp/WEB-INF/spring/webcontext/,	and	add	the
following	element	in	it	and	save	the	file:

<mvc:interceptors>

		<bean	

class="com.packt.webstore.interceptor.PerformanceMonitorInterceptor"/>

</mvc:interceptors>

6.	 Create	a	property	file	named	log4j.properties	under	the	directory
src/main/resources	and	add	the	following	content	to	it.	Then,	save	the	file:

#	Root	logger	option

log4j.rootLogger=INFO,	file,	stdout

#	Direct	log	messages	to	a	log	file

log4j.appender.file=org.apache.log4j.RollingFileAppender

log4j.appender.file.File=	C:\\webstore\\webstore-performance.log

log4j.appender.file.MaxFileSize=1MB

log4j.appender.file.MaxBackupIndex=1

log4j.appender.file.layout=org.apache.log4j.PatternLayout

log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd	HH:mm:ss}	

%-5p	%c{1}:%L	-	%m%n

#	Direct	log	messages	to	stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.Target=System.out

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd	HH:mm:ss}	

%-5p	%c{1}:%L	-	%m%n

7.	 Now,	run	the	application	and	enter	http://localhost:8080/webstore/products.
You	will	be	able	to	see	the	performance	logging	in	the	console	as	follows:

The	PerformanceMonitorInterceptor	logging	message	is	shown	in	the	console

8.	 Just	open	C:\webstore-performance.log;	you	will	see	the	same	log	message	in	the
logging	file	as	well.

What	just	happened?
Our	intention	was	to	record	the	execution	time	of	every	request	that	is	being	received	by
our	web	application;	we	decided	to	record	the	execution	time	in	a	logfile.	So,	in	order	to
use	a	logger,	we	need	the	log4j	library;	we	added	the	log4j	library	as	a	maven
dependency	in	step	3.

In	step	4,	we	just	defined	an	interceptor	class	named	PerformanceMonitorInterceptor
by	implementing	the	HandlerInterceptor	interface.	As	mentioned	previously,	there	are
three	methods	that	need	to	be	implemented.	We	will	see	each	method	one	by	one.	The	first
method	is	preHandle(),	which	is	called	before	the	execution	of	the	controller	method:

public	boolean	preHandle(HttpServletRequest	request,	HttpServletResponse	

response,	Object	handler)	throws	Exception	{

		StopWatch	stopWatch	=	new	StopWatch(handler.toString());

		stopWatch.start(handler.toString());

		stopWatchLocal.set(stopWatch);

		logger.info("Accessing	URL	path:	"	+	getURLPath(request));

		logger.info("Request	processing	started	on:	"	+	getCurrentTime());

return	true;

}

In	the	preceding	preHandle	method,	we	just	initiated	a	StopWatch	class	to	start	recording
the	time.	In	the	next	step,	we	put	that	stopWatch	instance	in	a	ThreadLocal	variable	called
the	stopWatchLocal	for	the	purpose	of	retrieval	later	on.

Note
Java	provides	a	ThreadLocal	class	that	we	can	set/get	thread	scoped	variables.	The	values
stored	in	ThreadLocal	are	local	to	the	thread,	which	means	that	each	thread	will	have	its
own	ThreadLocal	variable.	One	thread	cannot	access/modify	the	ThreadLocal	variables
of	other	threads.	Since	Spring	MVC	is	based	on	the	servlet	programming	model,	each	web
request	is	an	individual	thread.

Finally,	we	just	logged	the	requested	URL	path	and	current	server	time	with	the	help	of
logger.	Therefore,	whenever	a	request	comes	to	our	web	application,	it	is	first	received
through	this	preHandle	method	and	initiates	stopWatch	before	reaching	the	controller
method.

The	second	method	is	postHandle,	which	will	get	called	after	the	execution	of	the
controller	method:

public	void	postHandle(HttpServletRequest	arg0,	HttpServletResponse	

response,	Object	handler,	ModelAndView	modelAndView)	throws	Exception	{

		logger.info("Request	processing	ended	on	"	+	getCurrentTime());

}

In	the	preceding	method,	we	simply	log	the	current	time,	which	is	considered	the	request
processing	finished	time.	Our	final	method	is	afterCompletion,	which	is	called	after	the
complete	request	has	been	processed:

public	void	afterCompletion(HttpServletRequest	request,HttpServletResponse	

response,	Object	handler,	Exception	exception)throws	Exception	{

		StopWatch	stopWatch	=	stopWatchLocal.get();

		stopWatch.stop();

		logger.info("Total	time	taken	for	processing:	"	

+stopWatch.getTotalTimeMillis()+	"	ms");

		stopWatchLocal.set(null);

		logger.info("===");

}

In	the	afterCompletion	method,	we	retrieved	the	stopwatch	instance	from	ThreadLocal
and	immediately	stopped	it;	now,	the	stopwatch	instance	will	have	a	record	of	the	total
time	that	was	taken	between	the	preHandle	and	afterCompletion	methods,	which	is
considered	as	the	total	time	taken	to	complete	a	request.	We	simply	logged	this	duration	in
milliseconds	and	removed	stopwatch	from	ThreadLocal.

Tip
If	you	don’t	want	to	implement	all	the	methods	from	the	HandlerInterceptor	interface	in
your	interceptor	class,	you	may	consider	extending	your	interceptor	from
org.springframework.web.servlet.handler.HandlerInterceptorAdapter.	This	is	a
convenient	class	provided	by	Spring	MVC	as	a	default	implementation	of	all	of	the
methods	from	the	HandlerInterceptor	interface.

After	creating	PerformanceMonitorInterceptor,	we	need	to	register	our	interceptor	with
Spring	MVC,	which	is	what	we	did	in	step	5	through	Spring’s	special	interceptor
configuration	element:

<mvc:interceptors>

		<bean	

class="com.packt.webstore.interceptor.PerformanceMonitorInterceptor"/>

</mvc:interceptors>

In	step	6,	we	added	a	log4j.properties	file	in	order	to	specify	some	of	the	logger-related
configuration.	You	can	see	that	we	configured	the	logfile	location	in	log4j.properties	as
follows:

log4j.appender.file.File=	C:\\webstore\\webstore-performance.log

Finally,	in	step	7,	we	ran	our	application	in	order	to	record	some	of	the	performance
logging,	and	we	were	able	to	see	that	the	logger	is	working	just	fine	via	the	console.	You
can	open	the	logfile	to	view	the	performance	logs.

So,	we	understood	how	to	configure	an	interceptor	and	have	seen
PerformanceMonitorInterceptor	in	action.	In	the	next	exercise,	we	will	learn	how	to	use
some	of	Spring’s	preconfigured	interceptors.

Pop	quiz	–	interceptor
Consider	the	following	interceptor:

public	class	SecurityInterceptor	extends	HandlerInterceptorAdapter{

		@Override

		public	void	afterCompletion(HttpServletRequest	

request,HttpServletResponse	response,	Object	handler,	Exception	ex)throws	

Exception	{

				//	just	some	code	related	to	after	completion

		}

}

Q1.	Is	the	mentioned	SecurityInterceptor	class	a	valid	interceptor?

1.	 It	is	not	valid	because	it	does	not	implement	the	HandlerInterceptor	interface.
2.	 It	is	valid	because	it	extends	the	HandlerInterceptorAdapter	class.

Q2.	What	is	the	order	of	execution	within	the	interceptor	methods?

1.	 preHandle,	afterCompletion,	postHandle.
2.	 preHandle,	postHandle,	afterCompletion.

Internationalization	(i18n)
Internationalization	means	adapting	computer	software	to	different	languages	and	regional
differences.	For	example,	if	you	are	developing	a	web	application	for	a	Dutch-based
company,	they	may	expect	all	the	web	page	text	to	be	displayed	in	the	Dutch	language,
use	the	Euro	for	currency	calculations,	expect	a	space	as	a	thousand	separator	when
displaying	numbers,	and	“,”	(comma)	as	a	decimal	point.	On	the	other	hand,	when	the
same	Dutch	company	wants	to	open	a	market	in	America,	they	expect	the	same	web
application	to	be	adapted	for	American	locales;	for	example,	the	web	pages	should	be
displayed	in	English,	dollars	should	be	used	for	currency	calculations,	numbers	should	be
formatted	with	“,”	(comma)	as	a	thousand	separator,	and	“.”	(dot)	should	be	used	as	a
decimal	point,	and	so	on.

The	technique	of	designing	a	web	application	that	can	automatically	adapt	to	different
regions	and	countries	without	needing	to	be	reengineered	is	called	internationalization,
sometimes	shortened	to	i18N	(I-eighteen	letters-N).

In	Spring	MVC,	we	can	achieve	internationalization	through	LocaleChangeInterceptor
(org.springframework.web.servlet.i18n.LocaleChangeInterceptor).	The
LocaleChangeInterceptor	allows	us	to	change	the	current	locale	on	every	web	request
via	a	configurable	request	parameter.	In	Chapter	4,	Working	with	Spring	Tag	Libraries,	we
learned	how	to	externalize	text	messages	in	the	add	products	page.	Now,	we	are	going	to
add	internationalization	support	for	the	same	add	products	page	(addProducts.jsp)
because	in	Spring	MVC,	prior	to	internationalizing	a	label,	we	must	externalize	that	label
first.	Since	we	already	externalized	all	the	label	messages	in	the	add	products	page
(addProducts.jsp),	we	shall	proceed	to	internationalize	the	add	products	page.

Time	for	action	–	adding
internationalization
Technically,	we	can	add	as	much	language	support	as	we	want	for	internationalization,	but
for	demonstration	purposes,	I	am	going	to	show	you	how	to	make	an	add	product	page	for
Dutch	language	support.	Perform	the	following	steps:

1.	 Create	a	file	called	messages_nl.properties	under	/src/main/resources	in	your
project,	add	the	following	lines	in	it,	and	save	the	file:

addProduct.form.productId.label	=	Nieuw	product	ID

addProduct.form.name.label	=	Naam

addProduct.form.unitPrice.label	=	Prijs	unit

addProduct.form.description.label	=	Beschrijving

addProduct.form.manufacturer.label	=	Manufacturer

addProduct.form.category.label	=	Fabrikant

addProduct.form.unitsInStock.label	=	Aantal	op	voorraad

addProduct.form.condition.label	=	Product	Staat

addProduct.form.productImage.label	=	Product	image

2.	 Open	the	addProduct.jsp	page	and	add	the	following	set	of	tags	right	after	the
logout	link:

<div	class="pull-right"	style="padding-right:50px">

		English|Dutch

</div>

3.	 Now,	open	the	web	application	context	configuration	file	DispatcherServlet-
context.xml	from	src/main/webapp/WEB-INF/spring/webcontext/	and	add	one
more	bean	definition	for	the	locale	resolver	as	follows:

<bean	id="localeResolver"	

class="org.springframework.web.servlet.i18n.SessionLocaleResolver">

		<property	name="defaultLocale"	value="en"/>

</bean>

4.	 Now,	configure	one	more	interceptor	in	the	web	application	context	configuration;
that	means,	add	one	more	interceptor	bean	entry	in	the	existing	<mvc:interceptors>
element	for	LocaleChangeInterceptor	as	follows:

<mvc:interceptors>

		<bean	class=	

"com.packt.webstore.interceptor.PerformanceMonitorInterceptor"/>

		<bean	class=	

"org.springframework.web.servlet.i18n.LocaleChangeInterceptor">

		<property	name="paramName"	value="language"/>

		</bean>

</mvc:interceptors>

5.	 Now,	run	the	application	and	enter
http://localhost:8080/webstore/products/add.	You	will	be	able	to	see	the
regular	Add	products	page	with	two	extra	links	in	the	top-right	corner	where	you

can	choose	the	language:

The	add	product	page	displaying	internationalization	support	to	choose	languages

6.	 Now,	click	on	the	Dutch	link.	You	will	see	that	the	product	ID	label	has	transformed
into	the	Dutch	caption	Nieuw	product	ID.

7.	 Since	the	configured	LocaleChangeInterceptor	will	add	a	request	parameter	called
language	to	the	web	request,	you	need	to	add	this	language	request	parameter	to	the
whitelisting	set	in	your	ProductController	page.	Open	the	ProductController
page,	and	within	the	initialiseBinder	method,	add	the	language	request	parameter
to	the	whitelisting	set	as	follows:

binder.setAllowedFields("productId","name","unitPrice","description","m

anufacturer","category","unitsInStock",	"productImage","language");

What	just	happened?
In	step	1,	we	just	created	a	property	file	called	messages_nl.properties.	This	file	acts	as
a	Dutch-based	message	source	for	all	our	externalized	label	messages	in	the
addProducts.jsp	file.	In	order	to	display	the	externalized	label	messages,	we	used	the
<spring:message>	tag	in	the	addProducts.jsp	file.

However,	by	default,	the	<spring:message>	tag	will	read	the	messages	from	the
messages.properties	file	only,	but	we	need	to	make	a	provision	for	our	end	user	to
switch	to	the	Dutch	locale	when	they	view	the	web	page	so	that	the	label	messages	can
come	from	the	messages_nl.properties	file.	We	provided	this	kind	of	a	provision
though	a	locale	choosing	link	in	addProducts.jsp,	as	mentioned	in	step	2.	Consider	the
following	code:

English|Dutch

In	step	2,	we	created	two	links	each	to	choose	either	English	or	Dutch	as	the	preferred
locale.	When	the	user	clicks	on	these	links,	it	will	add	a	request	parameter	called	language
to	the	URL	with	the	corresponding	locale	value.	For	example,	when	we	click	on	the
English	link	in	the	add	products	page	at	runtime,	it	will	change	the	request	URL	to
http://localhost:8080/webstore/products/add?	language=en.	Similarly,	if	we	click
on	the	Dutch	link,	it	will	change	the	request	URL	to
http://localhost:8080/webstore/products/add?	language=nl.

In	step	3,	we	created	a	SessionLocaleResolver	bean	in	our	web	application	context	as
follows:

<bean	id="localeResolver"	

class="org.springframework.web.servlet.i18n.SessionLocaleResolver">

		<property	name="defaultLocale"	value="en"/>

</bean>

SessionLocaleResolver	is	the	one	that	sets	the	locale	attribute	in	the	user	session.	One
important	property	of	SessionLocaleResolver	is	defaultLocale.	We	assigned	en	as	the
value	for	defaultLocale,	which	indicates	that	our	page	should	use	the	language	English
as	the	default	locale.

In	step	4,	we	created	a	LocaleChangeInterceptor	bean	and	configured	it	in	the	existing
interceptor	list,	as	follows:

<bean	class=	

"org.springframework.web.servlet.i18n.LocaleChangeInterceptor">

		<property	name="paramName"	value="language"/>

</bean>

We	assigned	the	name	language	as	the	value	of	the	paramName	property	in
LocaleChangeInterceptor.	The	reason	for	this	is	because,	if	you	notice	in	step	2,	when
we	created	the	locale	choosing	link	in	the	add	products	page	(addProduct.jsp),	we	used
the	same	parameter	name	as	the	request	parameter	within	the	<a>	tag:

English|Dutch

This	way,	we	gave	a	hint	to	LocaleChangeInterceptor	to	choose	the	correct	locale
preferred	by	the	user.	So,	whichever	parameter	name	you	planned	to	use	in	your	URL,	use
the	same	name	as	the	value	for	the	paramName	property	in	LocaleChangeInterceptor.
And,	one	more	thing	to	keep	in	mind	is	that	the	value	you	have	given	to	the	language
request	parameter	in	the	link	should	match	one	of	the	suffixes	of	the	translation	message
source	file.	For	example,	in	our	case,	we	created	a	Dutch	translation	message	source	file
and	named	it	messages_nl.properties.	Here,	the	suffix	is	nl.	If	messages.properties
was	without	any	suffix,	the	default	en	suffix	will	be	considered.	That’s	why,	in	step	2,	we
gave	nl	and	en	as	the	values	of	the	language	parameters	correspondingly	for	Dutch	and
English:

English|Dutch

Finally,	when	we	run	our	application	and	enter
http://localhost:8080/webstore/products/add,	we	will	be	able	to	see	our	regular
product	add	page	with	extra	two	links	in	the	top-right	corner	for	choosing	the	language.

Clicking	on	the	Dutch	link	will	change	the	request	URL	to
http://localhost:8080/webstore/products/add?language=nl,	which	will	bring
LocaleChangeInterceptor	to	action	and	will	read	Dutch-based	label	messages	from
messages_nl.properties.

Note	that	if	we	didn’t	give	any	language	parameter	in	our	URL,	Spring	will	use	a	normal
message	source	file	(messages.properties)	for	translation.	If	we	gave	a	language
parameter,	Spring	will	use	that	parameter	value	as	the	suffix	to	identify	the	correct
language	message	source	file	(messages_nl.properties).

Have	a	go	hero	–	fully	internationalize	the	product
detail	page
As	already	mentioned,	I	have	internationalized	a	single	web	page	(addProducts.jsp)	for
demonstration	purposes.	I	encourage	you	to	internationalize	the	product	detail	web	page
(product.jsp)	in	your	project.	You	can	use	the	Google	Translate	service
(https://translate.google.com/)	to	find	the	Dutch	translation	of	the	labels.	Along	with	that,
try	to	add	one	more	language	support	option	of	your	choice.

https://translate.google.com/

Audit	logging
Audit	logging	means	maintaining	a	log	record	to	show	who	had	accessed	a	computer
system	and	what	operations	they	had	performed.	In	our	project,	we	have	a	web	page	to
add	products;	we	may	need	to	maintain	a	record	of	who	added	which	product	on	which
date.	We	can	create	an	interceptor	to	make	such	a	log	record.

Time	for	action	–	adding	the	data	audit
interceptor
Using	a	simple	MVC	interceptor,	you	can	accomplish	audit	logging	without	making
changes	to	your	application	code.	Create	an	interceptor	to	record	an	audit	log	using	the
following	steps:

1.	 Create	a	class	called	AuditingInterceptor	under	the	package
com.packt.webstore.interceptor	in	the	source	folder	src/main/java	and	add	the
following	code	into	it:

package	com.packt.webstore.interceptor;

import	java.text.DateFormat;

import	java.text.SimpleDateFormat;

import	java.util.Calendar;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.apache.log4j.Logger;

import	

org.springframework.web.servlet.handler.HandlerInterceptorAdapter;

public	class	AuditingInterceptor	extends	HandlerInterceptorAdapter	{

		Logger	logger	=	Logger.getLogger("auditLogger");

		private	String	user;

		private	String	productId;

		public	boolean	preHandle(HttpServletRequest	

request,HttpServletResponse	arg1,	Object	handler)	throws	Exception	{

				if(request.getRequestURI().endsWith("products/add")	

&&request.getMethod().equals("POST")){

						user	=	request.getRemoteUser();

						productId	=	request.getParameterValues("productId")[0];

				}

				return	true;

		}

		public	void	

afterCompletion(HttpServletRequestrequest,HttpServletResponse	response,	

Object	handler,Exception	arg3)	throws	Exception	{

				if(request.getRequestURI().endsWith("products/add")	

&&response.getStatus()==302){

						logger.info(String.format("A	New	product[%s]	Added	by	%son	%s",	

productId,	user,	getCurrentTime()));

				}

		}

		private	String	getCurrentTime()	{

		DateFormat	formatter	=	new	SimpleDateFormat("dd/MM/yyyy	

'at'hh:mm:ss");

		Calendar	calendar	=	Calendar.getInstance();

		calendar.setTimeInMillis(System.currentTimeMillis());

		return	formatter.format(calendar.getTime());

		}

}

2.	 Now,	configure	one	more	interceptor	in	the	web	application	context	configuration	file
DispatcherServlet-context.xml;	this	means,	add	one	more	interceptor	bean	entry
in	the	existing	<mvc:interceptors>	tag	for	AuditingInterceptor	as	follows:

<mvc:interceptors>

		<bean	

class="com.packt.webstore.interceptor.PerformanceMonitorInterceptor"/>

		<bean	class=	

"org.springframework.web.servlet.i18n.LocaleChangeInterceptor">

		<property	name="paramName"	value="language"/>

		</bean>

		<bean	class=	"com.packt.webstore.interceptor.AuditingInterceptor"/>

</mvc:interceptors>

3.	 Open	the	property	file	called	log4j.properties	from	the	directory
src/main/resources	and	add	the	following	content	at	the	end	of	the	file	and	save	it:

#	Auditing	Logger

log4j.logger.auditLogger=INFO,	auditLogger

log4j.appender.auditLogger=org.apache.log4j.RollingFileAppender

log4j.appender.auditLogger.File=	C:\\webstore\\webstore-Audit.log

log4j.appender.auditLogger.maxFileSize=1MB

log4j.appender.file.auditLogger.MaxBackupIndex=1

log4j.appender.auditLogger.layout=org.apache.log4j.PatternLayout

log4j.appender.auditLogger.layout.ConversionPattern=%d{yyyy-MM-dd	

HH:mm:ss}	%c	:	%m%n

4.	 Now,	run	the	application	and	enter
http://localhost:8080/webstore/products/add.	You	will	be	able	to	see	the
regular	product	add	page;	just	enter	some	valid	values	and	press	the	Add	button.

5.	 Now,	just	open	the	audit	logfile	from	C:\\webstore\\webstore-Audit.log.	You	will
be	able	to	see	the	audit	logs,	which	are	somewhat	similar	to	the	following:

2013-12-17	12:11:54	auditLogger	:	A	New	product[P12345]	Added	by	Admin	

on	17/12/2013	at	12:11:54

What	just	happened?
In	step	1,	we	just	created	the	AuditingInterceptor	class	by	extending	the	abstract	class
HandlerInterceptorAdapter,	and	we	only	overrode	two	methods,	namely,	preHandle
and	afterCompletion.	Let’s	review	each	method	in	depth,	one	by	one.

As	we	know,	preHandle	will	be	called	before	the	controller	method	is	executed.	Inside
preHandle,	we	simply	check	whether	the	incoming	request	is	of	the	type	POST	and
whether	it	tries	to	map	the	request	to	the	add	product	page	products/add.	If	it	does,	the
remote	username	and	newly	added	product	ID	were	stored	in	the	corresponding	member
variables	of	the	AuditingInterceptor	class:

public	boolean	preHandle(HttpServletRequest	request,	HttpServletResponse	

arg1,	Object	handler)	throws	Exception	{

		if(request.getRequestURI().endsWith("products/add")	&&	

request.getMethod().equals("POST")){

				user	=	request.getRemoteUser();

				productId	=	request.getParameterValues("productId")[0];

		}

		return	true;

}

In	the	afterCompletion	method,	we	are	simply	logging	the	username	and	newly	added
product	ID	after	checking	whether	the	response	status	is	of	the	type	redirecting	(the
HTTP	response	status	302):

public	void	afterCompletion(HttpServletRequest	request,HttpServletResponse	

response,	Object	handler,	Exception	arg3)	throws	Exception	{

		if(request.getRequestURI().endsWith("products/add")	

&&response.getStatus()==302){

				logger.info(String.format("A	New	product[%s]	Added	by	%s	on	%s",	

productId,	user,	getCurrentTime()));

		}

}

In	step	2,	we	registered	AuditingInterceptor	with	Spring	MVC	through	Spring’s	special
interceptor	configuration	tag.	We	want	to	record	our	related	data	auditing	logs	in	a
separate	file.	That’s	why,	in	step	3,	we	added	a	configuration	related	to	data	auditing	in	the
log4j.properties	file.	You	can	see	that	we	have	configured	the	data	auditing	logfile
location	in	log4j.properties	as	follows:

log4j.appender.auditLogger.File=	C:\\webstore\\webstore-Audit.log

Finally,	when	we	run	our	application	and	add	some	new	products,	we	will	be	able	to	see
the	recorded	data	audit	log	entry	in	the	webstore-Audit.log	file.

Conditional	redirecting
So	far,	we	have	seen	many	applications	of	the	interceptor	in	Spring	MVC,	such	as
performance	logging,	internationalization,	and	audit	logging.	However,	using	interceptor,
not	only	can	we	intercept	the	web	request,	but	even	bypass	or	redirect	the	original	web
request.

Time	for	action	–	intercepting	offer	page
requests
For	example,	consider	a	situation	where	you	want	to	show	the	special	offer	products	page
to	only	those	users	who	have	a	valid	promo	code.	The	others	trying	to	access	the	special
offer	products	page	with	an	invalid	promo	code	should	be	redirected	to	an	error	page.
Achieve	this	piece	of	functionality	with	the	help	of	the	interceptor	by	performing	the
following	steps:

1.	 Create	a	class	named	PromoCodeInterceptor	under	the
com.packt.webstore.interceptor	package	in	the	source	folder	src/main/java	and
add	the	following	code	into	it:

package	com.packt.webstore.interceptor;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	

org.springframework.web.servlet.handler.HandlerInterceptorAdapter;

public	class	PromoCodeInterceptor	extendsHandlerInterceptorAdapter	{

		private	String	promoCode;

		private	String	errorRedirect;

		private	String	offerRedirect;

		public	boolean	preHandle(HttpServletRequest	

request,HttpServletResponse	response,	Object	handler)	throwsException	{

				String	givenPromoCode	=request.getParameterValues("promo")==null	

?"":request.getParameterValues("promo")[0];

				if(request.getRequestURI().endsWith("products/specialOffer")){

						if(givenPromoCode.equals(promoCode)){

								

response.sendRedirect(request.getContextPath()+"/"+offerRedirect);

						}	else{

								response.sendRedirect(errorRedirect);

						}

						return	false;

				}

				return	true;

		}

		public	String	getPromoCode()	{

				return	promoCode;

		}

		public	void	setPromoCode(String	promoCode)	{

				this.promoCode	=	promoCode;

		}

		public	String	getErrorRedirect()	{

				return	errorRedirect;

		}

		public	void	setErrorRedirect(String	errorRedirect)	{

				this.errorRedirect	=	errorRedirect;

		}

		public	String	getOfferRedirect()	{

				return	offerRedirect;

		}

		public	void	setOfferRedirect(String	offerRedirect)	{

				this.offerRedirect	=	offerRedirect;

		}

}

2.	 Now,	configure	one	more	interceptor	in	the	web	application	context
DispatcherServlet-context.xml;	that	means,	add	one	more	interceptor	bean	entry
in	the	existing	<mvc:interceptors>	tag	for	PromoCodeInterceptor,	as	follows:

<mvc:interceptors>

		<bean	class=	

"com.packt.webstore.interceptor.PerformanceMonitorInterceptor"/>

		<bean	

class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">

		<property	name="paramName"	value="language"/>

		</bean>

		<bean	class="com.packt.webstore.interceptor.AuditingInterceptor"/>

		<bean	class="com.packt.webstore.interceptor.PromoCodeInterceptor">

		<property	name="promoCode"	value="OFF3R"/>

		<property	name="errorRedirect"	value="invalidPromoCode"/>

		<property	name="offerRedirect"	value="products"/>

		</bean>

</mvc:interceptors>

3.	 Open	the	ProductController	class,	and	add	one	more	request	mapping	method	to	it
as	follows:

@RequestMapping("/invalidPromoCode")

public	String	invalidPromoCode()	{

		return	"invalidPromoCode";

}

4.	 Finally,	add	one	more	JSP	view	file	called	invalidPromoCode.jsp	under	the
directory	src/main/webapp/WEB-INF/views/,	and	add	the	following	code	snippet
into	it	and	save	it:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>		

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;charset=ISO-

8859-1">

				<link	

rel="stylesheet"href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/boo

tstrap.min.css">

				<title>Invalid	promo	code</title>

		</head>

		<body>

				<section>

						<div	class="jumbotron">

								<div	class="container">

										<h1	class="alert	alert-danger">Invalid	promo	code</h1>

								</div>

						</div>

				</section>

				<section>

						<div	class="container">

								<p>

										<a	href="<spring:url	value="/products"	/>"class="btn	btn-

primary">

													

products

										

								</p>

						</div>

				</section>

		</body>

</html>

5.	 Now,	run	the	application	and	enter
http://localhost:8080/webstore/products/specialOffer?promo=offer.	You
will	see	a	page	displaying	an	error	message	as	follows:

6.	 Now,	enter	http://localhost:8080/webstore/products/specialOffer?
promo=OFF3R.	You	will	be	redirected	to	a	special	offer	product	page.

What	just	happened?
The	PromoCodeInterceptor	class	we	created	in	step	1	is	similar	to
AuditingInterceptor;	the	only	difference	is	that	we	overrode	only	the	preHandle
method.	In	the	preHandle	method,	we	simply	checked	whether	the	incoming	request	was
trying	to	access	the	special	offer	product	page	(products/specialOffer):

public	boolean	preHandle(HttpServletRequest	request,	HttpServletResponse	

response,	Object	handler)	throws	Exception	{

		String	givenPromoCode	=	request.getParameterValues("promo")==null	

?"":request.getParameterValues("promo")[0];

		if(request.getRequestURI().endsWith("products/specialOffer")){

				if(givenPromoCode.equals(promoCode)){

						response.sendRedirect(request.getContextPath()+"/"+offerRedirect);

				}	else{

						response.sendRedirect(errorRedirect);

				}

				return	false;

		}

		return	true;

}

We	check	again	whether	the	request	contains	the	correct	promo	code	as	the	HTTP
parameter	and	redirect	the	request	to	the	configured	special	offer	page;	otherwise,	we
redirect	it	to	the	configured	error	page.

Okay,	we	created	the	PromoCodeInterceptor	class,	but	we	have	to	configure	this
interceptor	with	our	Spring	MVC	runtime,	which	is	what	we	did	in	step	2,	by	adding	the
following	bean	definition	within	the	Spring	MVC	special	interceptor	configuration	tag:

<bean	class=	"com.packt.webstore.interceptor.PromoCodeInterceptor">

		<property	name="promoCode"	value="OFF3R"/>

		<property	name="errorRedirect"	value="invalidPromoCode"/>

		<property	name="offerRedirect"	value="products"/>

</bean>

The	PromoCodeInterceptor	class	has	three	properties,	namely,	promoCode,
errorRedirect,	and	offerRedirect.	The	promoCode	property	is	used	to	configure	the
valid	promo	code;	in	our	case,	we	assigned	OFF3R	as	the	valid	promo	code,	so	whoever	is
accessing	the	special	offer	page	should	provide	OFF3R	as	the	promo	code	in	their	HTTP
parameter	in	order	to	access	the	page.

The	next	two	attributes,	errorRedirect	and	offerRedirect,	are	used	in	redirection.	The
errorRedirect	property	indicates	the	redirect	URL	mapping	in	the	case	of	an	invalid
promo	code,	and	the	offerRedirect	property	indicates	the	redirect	URL	mapping	for
successful	promo	code	redirection.

Tip
Note	that	I	did	not	create	any	special	offer	product	page.	Just	for	demonstration	purposes,
I	reused	the	same	regular	products	page	as	the	special	offer	products	page;	that’s	why,	I

assigned	products	as	the	value	for	the	offerRedirect	attribute,	so	in	the	case	of	a	valid
promo	code,	I	will	be	redirected	to	the	regular	products/	page.	However,	if	I	created	any
special	offer	product	JSP	page,	I	can	assign	that	page’s	URL	as	the	value	for
offerRedirect.

In	step	3,	we	added	one	more	request	mapping	method	called	invalidPromoCode	to	show
an	error	page	in	the	case	of	an	invalid	promo	code.	And	in	step	4,	we	added	the
corresponding	error	view	file	called	invalidPromoCode.jsp.

Finally,	in	step	5,	we	purposely	entered
http://localhost:8080/webstore/products/specialOffer?promo=offer	in	our
running	application	to	demonstrate	the	PromoCodeInterceptor	action;	additionally,	we
saw	the	error	page	because	the	promo	code	we	provided	in	the	URL	is	offer	(?
promo=offer),	which	is	incorrect.	In	step	6,	we	provided	the	correct	promo	code	in	the
URL	http://localhost:8080/webstore/products/specialOffer?promo=OFF3R	so	that
we	are	able	to	see	the	configured	special	offer	products	page.

Summary
In	this	chapter,	we	understood	the	concept	of	the	interceptor	and	learned	how	to	configure
the	interceptor	in	Spring	MVC.	We	learned	how	to	do	performance	logging	using	the
interceptor.	We	also	learned	how	to	use	Spring’s	LocaleChangeInterceptor	to	support
internationalization.	Later,	we	learned	how	to	do	audit	logging	using	the	interceptor.
Finally,	we	learned	how	to	do	conditional	redirecting	using	the	interceptor.

In	the	next	chapter,	I	will	introduce	you	to	validation.	You	will	learn	how	to	do	form
validation	and	other	types	of	custom	validations.

Chapter	7.	Validate	Your	Products	with	a
Validator
The	most	common	expected	behavior	of	any	web	application	is	that	it	should	validate	user
data.	Every	time	a	user	submits	data	into	our	web	application,	it	needs	to	be	validated.
This	is	to	prevent	security	attacks,	wrong	data,	or	simple	user	mistake	errors.	We	don’t
have	control	over	what	users	may	type	when	submitting	data	into	our	web	application.
For	example,	they	may	type	some	text	instead	of	a	date,	they	may	forget	to	fill	mandatory
fields,	or	suppose	we	used	a	length	of	12	characters	for	a	field	in	the	database	and	the
user	entered	data	the	length	of	15	characters,	then	the	data	cannot	be	saved	in	the
database.	Similarly,	there	are	lots	of	ways	that	a	user	can	feed	incorrect	data	into	our	web
application.	If	we	accept	these	values	as	valid,	then	it	will	create	errors	and	bugs	when	we
process	such	inputs.	This	chapter	will	explain	the	basics	of	setting	up	validation	with
Spring	MVC.

After	finishing	this	chapter,	you	will	have	a	clear	idea	about	the	following:

JSR-303	bean	validation
Custom	validation
Spring	validation

Bean	validation
Java	bean	validation	(JSR-303)	is	a	Java	specification	that	allows	us	to	express	validation
constraints	on	objects	via	annotations.	It	provides	the	APIs	to	validate	and	report
violations.	The	hibernate	validator	is	the	reference	implementation	of	the	bean	validation
specification.	We	are	going	use	the	hibernate	validator	for	validation.	You	can	see	the
available	bean	validation	annotation	at	the	following	URL:

http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html

http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html

Time	for	action	–	adding	bean	validation
support
In	this	section,	you	will	learn	how	to	validate	a	form	submission	in	a	Spring	MVC
application.	In	our	project,	we	have	the	add	products	form	already.	Add	some	validation	to
this	form	by	performing	the	following	steps:

1.	 Open	the	pom.xml	file—you	can	find	pom.xml	under	the	root	directory	of	the	project
itself.

2.	 You	will	see	some	tabs	at	the	bottom	of	the	pom.xml	file.	Select	the	Dependencies
tab	and	click	on	the	Add	button	in	the	Dependencies	section.

3.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as	org.hibernate,	enter
Artifact	Id	as	hibernate-validator,	enter	Version	as	4.3.1.Final,	select	Scope	as
compile,	and	click	on	the	OK	button	and	save	pom.xml.

4.	 Open	the	Product	domain	class	and	add	the	@Pattern	annotation
(javax.validation.constraints.Pattern)	at	the	top	of	the	productId	field	as
follows:

@Pattern(regexp="P[0-9]+",	message="

{Pattern.Product.productId.validation}")

private	String	productId;

5.	 Similarly,	add	the	@Size,	@Min,	@Digits,	and	@NotNull	annotations
(javax.validation.constraints.*)	at	the	top	of	the	name	and	unitPrice	fields,
respectively,	as	follows:

@Size(min=4,	max=50,	message="{Size.Product.name.validation}")

private	String	name;

@Min(value=0,	message="Min.Product.unitPrice.validation}")

@Digits(integer=8,	fraction=2,	message="

{Digits.Product.unitPrice.validation}")

@NotNull(message=	"{NotNull.Product.unitPrice.validation}")

private	BigDecimal	unitPrice;

6.	 Open	the	message	source	file	messages.properties	from	/src/main/resources	in
your	project	and	add	the	following	entries	in	it:

Pattern.Product.productId.validation	=	Invalid	product	ID.	It	should	

start	with	character	P	followed	by	number.

Size.Product.name.validation	=	Invalid	product	name.	It	should	be	

minimum	4	characters	to	maximum	50	characters	long.

Min.Product.unitPrice.validation	=	Unit	price	is	Invalid.	It	cannot	

have	negative	values.

Digits.Product.unitPrice.validation	=	Unit	price	is	Invalid.It	can	have	

maximum	of	2	digit	fraction	and	8	digit	integer.	

NotNull.Product.unitPrice.validation	=	Unit	price	is	Invalid.	It	cannot	

be	empty.

7.	 Open	the	ProductController	class	and	change	the	processAddNewProductForm
request	mapping	method	by	adding	an	@Valid	annotation
(javax.validation.Valid)	in	front	of	the	productToBeAdded	parameter.	After	you
are	done	with	this,	your	processAddNewProductForm	method	signature	should	look
as	follows:

public	String	processAddNewProductForm(@ModelAttribute("newProduct")	

@Valid	Product	productToBeAdded,	BindingResult	result,	

HttpServletRequest	request)	{

8.	 Now,	within	the	body	of	the	processAddNewProductForm	method,	add	the	following
condition	as	the	first	statement:

if(result.hasErrors())	{

		return	"addProduct";

}

9.	 Open	the	addProduct.jsp	page	from	src/main/webapp/WEB-INF/views/	in	your
project	and	add	the	<form:errors>	tag	for	the	productId,	name,	and	unitPrice	input
elements.	For	example,	the	product	ID	input	tag	will	have	the	<form:errors>	tag
beside	it,	as	follows:

<form:input	id="productId"	path="productId"	type="text"	

class="form:input-large"/>	

<form:errors	path="productId"	cssClass="text-danger"/>

Remember	that	the	path	attribute	value	should	always	be	the	same	as	the
corresponding	input	tag.

10.	 Now,	add	a	global	<form:errors>	tag	within	the	<form:form>	tag	as	follows:

<form:errors	path="*"	cssClass="alert	alert-danger"	element="div"/>

11.	 Add	the	bean	configuration	for	LocalValidatorFactoryBean	in	your	web	application
context	configuration	file	DispatcherServlet-context.xml	as	follows:

<bean	id="validator"	

class="org.springframework.validation.beanvalidation.LocalValidatorFact

oryBean">

		<property	name="validationMessageSource"	ref="messageSource"/>

</bean>

12.	 Finally,	assign	the	validator	property	value	to	the	<mvc:annotation-driven>	tag	as
follows:

<mvc:annotation-driven	enable-matrix-variables="true"	

validator="validator"/>

13.	 Now,	run	the	application	and	enter
http://localhost:8080/webstore/products/add.	You	will	see	a	web	page
displaying	a	web	form	to	add	the	product	information;	without	filling	any	value	in	the
form,	simply	click	on	the	Add	button.	You	will	see	validation	messages	at	the	top	of
the	form	as	follows:

The	Add	new	product	web	form	displaying	the	validation	message

What	just	happened?
Since	we	decided	to	use	the	bean	validation	(JSR-303)	specification,	we	need	an
implementation	of	the	bean	validation	specification.	We	decided	to	use	the	hibernate
validator	implementation	in	our	project,	so	we	need	to	add	that	JAR	file	to	our	project	as	a
dependency.	That’s	what	we	did	in	steps	1	to	3.

In	steps	4	and	5,	we	added	some	javax.validation.constraints	annotations,	such	as
@Pattern,	@Size,	@Min,	@Digits,	and	@NotNull	to	our	domain	class	fields
(Product.java).	Using	these	annotations,	we	can	define	validation	constraints	on	fields.
There	are	more	validation	constraint	annotations	available	under	the
javax.validation.constraints	package.	Just	for	demonstration	purposes,	I	used	a
couple	of	annotations;	you	can	check	out	the	bean	validation	documentation	for	all	the
available	lists	of	constraints.

For	example,	take	the	@Pattern	annotation	above	the	productId	field;	it	will	check
whether	the	given	value	of	the	field	matches	the	regular	expression	specified	in	the	regexp
attribute	of	the	@Pattern	annotation.	In	our	example,	we	just	enforce	that	the	value	given
for	the	productId	field	should	start	with	the	character	P	and	be	followed	by	digits,	as
follows:

@Pattern(regexp="P[0-9]+",	message="

{Pattern.Product.productId.validation}")

private	String	productId;

The	message	attribute	of	every	validation	annotation	just	acts	as	a	key	to	the	actual
message	from	the	message	source	file	(messages.properties).	In	our	case,	we	specified
Pattern.Product.productId.validation	as	the	key,	so	we	need	to	define	the	actual
validation	message	in	the	message	source	file.	That’s	why,	we	added	some	message	entries
in	step	6.	If	you	noticed	the	corresponding	value	for	the	key
Pattern.Product.productId.validation	in	the	messages.properties	file,	you	will
notice	the	following	value:

Pattern.Product.productId.validation	=	Invalid	product	ID.	It	should	start	

with	character	P	followed	by	number.

Tip
Note	that	you	can	even	add	localized	error	messages	in	the	corresponding	message	source
file	if	you	want.	For	example,	if	you	want	to	show	error	messages	in	Dutch,	simply	add
error	message	entries	in	the	messages_nl.properties	file	as	well.	During	validation,	this
message	source	will	be	picked	up	automatically	by	Spring	based	on	the	chosen	locale.

We	defined	the	validation	constraints	in	our	domain	object	and	also	defined	the	validation
error	messages	in	our	message	source	file;	what	else	do	we	need	to	do?	We	need	to	tell	our
controller	to	validate	the	form	submission	request.	We	did	this	in	steps	7	and	8	in	the
processAddNewProductForm	method.	Consider	the	following	code	snippet:

@RequestMapping(value	=	"/add",	method	=	RequestMethod.POST)

public	String	processAddNewProductForm(@Valid	@ModelAttribute("newProduct")	

Product	productToBeAdded,	BindingResult	result)	{

		if(result.hasErrors())	{

				return	"addProduct";

		}

		if(result.getSuppressedFields().length	>	0)	{

				throw	new	IllegalAccessError("Attempting	to	bind	disallowedfields");

		}

		productService.addProduct(productToBeAdded);

		return	"redirect:/products";

}

We	first	annotated	our	method	parameter	productToBeAdded	with	the	@Valid	annotation
(javax.val	idation.Valid).	By	doing	so,	we	directed	Spring	MVC	to	use	the	bean
validation	framework	to	validate	the	productToBeAdded	object—as	you	already	know,	the
productToBeAdded	object	is	our	form-backed	bean.	After	validating	the	incoming	form
bean	(productToBeAdded),	Spring	will	store	the	results	in	the	result	object,	which	again
is	another	method	parameter	of	the	processAddNewProductForm	method.

In	step	8,	we	simply	checked	whether	the	result	object	contains	any	errors;	if	it	does,	we
redirect	to	the	same	add	product	page.	Otherwise,	we	proceed	to	add	productToBeAdded	to
our	repository.

So	far,	everything	is	fine.	First,	we	defined	the	constraints	on	our	domain	object	and	the
error	messages	in	the	message	source	file	(messages.properties).	Later,	we	validated
and	checked	the	validation	result	in	the	controller	form	processing	method
(processAddNewProductForm).	However,	we	haven’t	mentioned	how	to	display	the	error
messages	in	the	view	file.	We	use	Spring’s	special	<form:errors>	tag	for	this	purpose.

We	added	this	tag	for	the	productId,	name,	and	unitPrice	input	elements	in	step	9.	If	any
of	the	input	fields	failed	during	validation,	the	corresponding	error	message	will	be	picked
up	by	this	<form:errors>	tag:

<form:errors	path="productId"	cssClass="text-danger"/>

The	path	attribute	is	used	to	identify	the	field	in	the	form	bean	to	look	for	errors,	and	the
cssClass	attribute	is	used	to	style	the	error	message.	I	have	used	Bootstrap’s	style	class,
text-danger,	but	you	can	use	any	valid	CSS	style	class	that	you	prefer	to	apply	on	the
error	message.

Similarly,	in	step	10,	we	added	a	global	<form:errors>	tag	to	show	all	error	messages	as
a	consolidated	view	at	the	top	of	the	form,	as	follows:

<form:errors	path="*"	cssClass="alert	alert-danger"	element="div"/>

Here,	we	used	the	*	symbol	for	the	path	attribute;	this	means	that	we	want	to	show	all	of
the	errors.	And	element	attributes	indicate	which	type	of	element	Spring	should	use	to	list
all	of	the	errors.

So	far,	we	have	performed	all	of	the	coding-related	exercises	needed	to	enable	validation,
but	we	have	to	do	one	final	configuration	in	our	web	application	context	to	enable

validation;	that	is,	we	need	to	introduce	the	bean	validation	framework	to	Spring	MVC.	In
steps	11	and	12,	we	did	just	that;	we	created	a	bean	configuration	for
LocalValidatorFactoryBean

(org.springframework.validation.beanvalidation.LocalValidatorFactoryBean):

<bean	id="validator"	

class="org.springframework.validation.beanvalidation.LocalValidatorFactoryB

ean">

		<property	name="validationMessageSource"	ref="messageSource"	/>

</bean>

This	LocalValidatorFactoryBean	will	initiate	the	hibernate	validator	when	our
application	is	being	booted.	The	validationMessageSource	property	of
LocalValidatorFactoryBean	indicates	which	message	source	bean	should	look	for	error
messages.	Since	we	already	configured	a	message	source	bean	in	our	web	application
context	as	part	of	Chapter	6,	Intercept	Your	Store	with	Interceptor,	can	make	use	of	that
messageSource	bean	as	the	value	for	the	validationMessageSource	property.	We	will
already	be	able	to	see	a	bean	definition	with	the	name	messageSource	in	our	web
application	context.

Finally,	we	introduced	our	validator	bean	to	Spring	MVC	through	the
<mvc:annotation-driven>	tag	by	adding	one	extra	property	called	validator,	as
follows:

<mvc:annotation-driven	enable-matrix-variables="true"	

validator="validator"/>

That	is	all	we	did	to	enable	validation;	now	if	we	run	our	application	and	get	the	add
product	page	using	the	URL	http://localhost:8080/webstore/products/add,	we	will
see	the	empty	form	ready	to	be	submitted.	If	we	submit	this	form	without	filling	any
information,	we	see	error	messages	in	red.

Have	a	go	hero	–	adding	more	validation	in	the	add
products	page
I	just	added	validation	for	the	first	three	fields	in	the	product	domain	class;	you	can	extend
the	validation	for	the	remaining	fields.	Try	to	add	localized	error	messages	for	the
validation	that	you	are	defining.

The	following	are	some	hints	that	you	can	try	out:

Add	a	validation	to	show	a	validation	message	if	the	category	filed	is	empty
Try	to	add	a	validation	to	the	unitsInStock	field	to	validate	that	the	minimum
allowed	number	of	units	in	stock	is	zero

Custom	validation	with	JSR-303	/	bean
validation
In	the	previous	Time	for	action	section,	we	learned	how	to	use	standard	JSR-303	bean
validation	annotations	to	validate	the	fields	of	our	domain	object.	This	works	great	for
simple	validations,	but	sometimes,	we	need	to	validate	some	custom	rules	that	aren’t
available	in	standard	annotations.	For	example,	what	if	we	need	to	validate	that	the	newly
added	product	ID	is	not	the	same	as	any	of	the	existing	product	IDs?	To	accomplish	such
kinds	of	validations,	we	can	use	custom	validation	annotations.

Time	for	action	–	adding	custom
validation	support
In	this	section,	you	will	learn	how	to	create	custom	validation	annotations	and	use	them.
Add	a	custom	product	ID	validation	to	your	add	product	page	to	validate	duplicate	product
IDs	by	performing	the	following	steps:

1.	 Create	an	annotation	interface	called	ProductId	(ProductId.java)	under	the
package	com.packt.webstore.validator	in	the	source	folder	src/main/java.	Then,
add	the	following	code	snippet	in	it:

package	com.packt.webstore.validator;

import	static	java.lang.annotation.ElementType.ANNOTATION_TYPE;

import	static	java.lang.annotation.ElementType.FIELD;

import	static	java.lang.annotation.ElementType.METHOD;

import	static	java.lang.annotation.RetentionPolicy.RUNTIME;

import	java.lang.annotation.Documented;

import	java.lang.annotation.Retention;

import	java.lang.annotation.Target;

import	javax.validation.Constraint;

import	javax.validation.Payload;

@Target({	METHOD,	FIELD,	ANNOTATION_TYPE	})

@Retention(RUNTIME)

@Constraint(validatedBy	=	ProductIdValidator.class)

@Documented

public	@interface	ProductId	{

		String	message()	default"

{com.packt.webstore.validator.ProductId.message}";

		Class<?>[]	groups()	default	{};

		public	abstract	Class<?	extends	Payload>[]	payload()	default{};

}

2.	 Now,	create	a	class	called	ProductIdValidator	under	the	package
com.packt.webstore.validator	in	the	source	folder	src/main/java.	Then,	add	the
following	code	into	it:

package	com.packt.webstore.validator;

import	javax.validation.ConstraintValidator;

import	javax.validation.ConstraintValidatorContext;

import	org.springframework.beans.factory.annotation.Autowired;

import	com.packt.webstore.domain.Product;

import	com.packt.webstore.service.ProductService;

public	class	ProductIdValidator	implements	

ConstraintValidator<ProductId,	String>{

		@Autowired

		private	ProductService	productService;

		public	void	initialize(ProductId	constraintAnnotation)	{

				//		intentionally	left	blank;	this	is	the	place	toinitialize	the	

constraint	annotation	for	any	sensibledefault	values.

		}

		public	boolean	isValid(String	value,ConstraintValidatorContext	

context)	{

				Product	product;

				try	{

						product	=	productService.getProductById(value);

				}	catch	(ProductNotFoundException	e)	{

						return	true;

				}

				if(product!=	null)	{

						return	false;

				}

				return	true;

		}

}

3.	 Open	the	message	source	file	messages.properties	from	/src/main/resources	in
your	project	and	add	the	following	entry	in	it:

com.packt.webstore.validator.ProductId.message	=	A	product	already	

exists	with	this	product	id.

4.	 Finally,	open	the	Product	domain	class	(Product.java)	and	annotate	the	productId
field	with	the	newly	created	ProductId	annotation	as	follows:

@Pattern(regexp="P[0-9]+",	message="

{Pattern.Product.productId.validation}")

@ProductId	

private	String	productId;

5.	 Now,	run	the	application	and	enter
http://localhost:8080/webstore/products/add.	You	will	see	a	web	page
displaying	a	web	form	to	add	the	product	information.	Fill	the	complete	value	in	the
form;	particularly,	fill	the	product	ID	field	with	the	value	P1234	and	simply	click	on
the	Add	button.	You	will	see	validation	messages	at	the	top	of	the	form,	as	follows:

The	Add	new	product	web	form	displaying	custom	validation

What	just	happened?
In	step	1,	we	just	created	our	custom	validation	annotation	called	ProductId.	Every
custom	validation	annotation	we	create	should	need	to	be	annotated	with	the	@Constraint
annotation	(javax.validation.Constraint).	The	@Constraint	annotation	has	an
important	property	called	validatedBy,	which	indicates	the	class	that	is	performing	the
actual	validation.	In	our	case,	we	gave	a	value	ProductIdValidator.class	for	the
validatedBy	property.	So,	our	ProductId	validation	annotation	will	expect	a	class	called
ProductIdValidator.	That’s	why,	in	step	2,	we	created	the	ProductIdValidator	class	by
implementing	the	ConstraintValidator	interface
(javax.validation.ConstraintValidator).

We	annotated	the	ProductIdValidator	class	with	the	@Component	annotation
(org.springframework.stereotype.Component);	the	@Component	annotation	is	another
stereotype	annotation	that	is	available	in	Spring.	It	is	similar	to	the	@Repository	or
@Service	annotation.	When	our	application	is	being	booted,	Spring	creates	and	maintains
an	object	for	the	ProductIdValidator	class.	So,	ProductIdValidator	becomes	a
managed	bean	in	our	web	application	context,	which	is	the	reason	we	are	able	to	autowire
the	productService	bean	in	ProductIdValidator.

Next,	we	autowired	the	ProductService	object	in	the	ProductIdValidator	class;	why	did
we	do	this?	It	is	because	inside	the	isValid	method	of	the	ProductIdValidator	class,	we
used	productService	to	check	whether	any	product	exists	that	has	the	given	ID.	Consider
the	following	code	snippet:

public	boolean	isValid(String	value,	ConstraintValidatorContext	context)	{

		Product	product;

		try	{

				product	=	productService.getProductById(value);

		}	catch	(ProductNotFoundException	e)	{

				return	true;

		}

		if(product!=	null)	{

				return	false;

		}

		return	true;

}

If	any	product	exists	that	has	the	given	product	ID,	we	invalidate	the	validation	by
returning	false;	otherwise,	we	pass	the	validation	by	returning	true.

In	step	3,	we	just	added	our	default	error	message	for	our	custom	validation	annotation	in
the	message	source	file	(messages.properties).	If	you	observed	carefully,	the	key
(com.packt.webstore.validator.ProductId.message)	we	used	in	our	message	source
file	is	the	same	as	the	default	key	that	we	defined	in	the	ProductId	(ProductId.java)
validation	annotation:

String	message()	default	"

{com.packt.webstore.validator.ProductId.message}";

Finally,	in	step	4,	we	used	the	newly	created	ProductId	validation	annotation	in	our
domain	class	(Product.java).	It	acts	in	a	way	similar	to	any	other	JSR-303	validation
annotation.

Thus,	you	will	be	able	to	see	the	error	message	on	the	screen	when	you	enter	the	existing
product	ID	as	the	product	ID	for	the	newly	added	product.

Have	a	go	hero	–	adding	custom	validation	to	a
category
Create	a	custom	validation	annotation	called	@Category	that	will	allow	only	some	of	the
predefined	configured	categories	to	be	entered.	Consider	the	following	things	while
implementing	your	custom	annotation:

Create	an	annotation	interface	called	CategoryValidator	under	the
com.packt.webstore.validator	package
Create	a	corresponding	constraint	validator	called	CategoryValidator	under	the
package	com.packt.webstore.validator
Add	the	corresponding	error	message	in	the	message	source	file
Your	CategoryValidator	interface	should	maintain	a	list	of	allowed	categories
(List<String>	allowedCategories)	to	check	whether	the	given	category	exists
under	the	list	of	allowed	categories
Don’t	forget	to	initialize	the	allowedCategories	list	in	the	constructor	of	the
CategoryValidator	class
Annotate	the	category	field	of	the	Product	domain	class	with	the	@Category
annotation

After	applying	your	custom	validation	annotation,	@category,	on	the	category	field	of	the
Product	domain	class,	your	add	product	page	should	reject	the	products	of	other
categories	that	have	not	been	configured	in	CategoryValidator.

Spring	validation
We	have	seen	how	to	incorporate	the	JSR-303	bean	validation	with	Spring	MVC.	In
addition	to	bean	validation,	Spring	has	its	own	classic	mechanism	to	perform	validation	as
well	what	is	called	Spring	validation.	The	JSR-303	bean	validation	is	much	more	elegant,
expressive,	and,	in	general,	simpler	to	use	compared	to	the	classic	Spring	validation.
However,	the	classic	Spring	validation	is	very	flexible	and	extensible.	For	example,
consider	a	cross-field	validation	where	we	want	to	compare	two	or	more	fields	to	see	if
their	values	can	be	considered	as	valid	when	combined.	In	such	a	case,	we	can	use	Spring
validation.

In	the	last	section,	where	we	elaborated	on	the	use	of	the	JSR-303	bean	validation,	we
validated	some	of	the	individual	fields	on	our	product	domain	object;	we	haven’t	done	any
validation	that	combines	two	or	more	fields.	We	don’t	know	whether	the	combination	of
different	fields	makes	sense.

Time	for	action	–	adding	Spring
validation
If	you	have	a	constraint	that	doesn’t	allow	anyone	to	add	more	than	99	units	of	any
product	if	the	unit	price	is	greater	than	1000	USD	for	that	product,	add	such	a	validation
using	Spring	validation	in	the	project.	Perform	the	following	steps:

1.	 Create	a	class	called	UnitsInStockValidator	under	the
com.packt.webstore.validator	package	in	the	source	folder	src/main/java.	Add
the	following	code	into	it:

package	com.packt.webstore.validator;

import	java.math.BigDecimal;

import	org.springframework.stereotype.Component;

import	org.springframework.validation.Errors;

import	org.springframework.validation.Validator;

import	com.packt.webstore.domain.Product;

@Component

public	class	UnitsInStockValidator	implements	Validator{

		public	boolean	supports(Class<?>	clazz)	{

				return	Product.class.isAssignableFrom(clazz);		

		}

		public	void	validate(Object	target,	Errors	errors)	{

				Product	product	=	(Product)	target;

				if(product.getUnitPrice()!=	null	&&	

newBigDecimal(10000).compareTo(product.getUnitPrice())<=0	

&&product.getUnitsInStock()>99)	{

						

errors.rejectValue("unitsInStock","com.packt.webstore.validator.UnitsIn

StockValidator.message");

				}

		}

}

2.	 Open	the	message	source	file	messages.properties	from	/src/main/resources	in
the	project	and	add	the	following	entry	in	it:

com.packt.webstore.validator.UnitsInStockValidator.message	=You	cannot	

add	more	than	99	units	if	the	unit	price	isgreater	than	10000.

3.	 Open	the	ProductController	class	and	autowire	a	reference	to	the
UnitsInStockValidator	class	as	follows:

@Autowired

private	UnitsInStockValidator	unitsInStockValidator;

4.	 Now,	inside	the	initialiseBinder	method	in	the	ProductController	class,	add	the

following	line:

binder.setValidator(unitsInStockValidator);

5.	 Now,	run	the	application	and	enter
http://localhost:8080/webstore/products/add.	You	will	be	able	to	see	a	web
page	showing	a	web	form	to	add	product	information.	Fill	all	the	values	in	the	form;
in	particular,	fill	the	Unit	Price	field	with	the	value	10000	and	the	Units	In	Stock
field	with	the	value	100;	now	simply	click	on	the	Add	button.	You	will	see	validation
messages	on	the	top	of	the	form,	shown	as	follows:

The	Add	new	product	web	form	displaying	cross-field	validation

What	just	happened?
In	classic	Spring	validation,	the	main	validation	construct	is	the	Validator	interface
(org.springframework.validation.Validator).	The	Spring	Validator	interface	defines
two	methods	for	validation	purposes,	namely,	supports	and	validate.	The	supports
method	indicates	whether	the	validator	can	validate	a	specific	class.	If	it	can,	the	validate
method	can	be	called	to	validate	an	object	of	that	class.

Every	Spring-based	validator	we	create	should	implement	this	interface.	In	step	1,	we	did
just	that;	we	simply	created	a	class	called	UnitsInStockValidator,	which	implements	the
Spring	Validator	interface.

Inside	the	validate	method	of	the	UnitsInStockValidator	class,	we	simply	check
whether	the	given	Product	object	has	a	unit	price	greater	than	1000	and	the	number	of
units	in	stock	is	more	than	99;	if	it	does,	we	reject	that	value	with	a	corresponding	error
key	to	show	the	error	message	from	the	message	source	file,	shown	as	follows:

@Override

public	void	validate(Object	target,	Errors	errors)	{

		Product	product	=	(Product)	target;

		if(product.getUnitPrice()!=	null	&&	

newBigDecimal(10000).compareTo(product.getUnitPrice())<=0	

&&product.getUnitsInStock()>99)	{

				

errors.rejectValue("unitsInStock","com.packt.webstore.validator.UnitsInStoc

kValidator.message");

		}

}

In	step	2,	we	simply	added	the	actual	error	message	for	the	error	key
com.packt.webstore.validator.UnitsInStockValidator.message	in	the	message
source	file	(messages.properties).

We	created	the	validator,	but	to	kick	in	the	validation,	we	need	to	associate	that	validator
with	the	controller.	That’s	what	we	did	in	steps	3	and	4.	In	step	3,	we	simply	added	and
autowired	the	reference	to	UnitsInStockValidator	in	the	ProductController	class.	We
also	associated	unitsInStockValidator	with	WebDataBinder	in	the	initialiseBinder
method	as	follows:

@InitBinder

public	void	initialiseBinder(WebDataBinder	binder)	{

		

binder.setAllowedFields("productId","name","unitPrice","description","manuf

acturer","category","unitsInStock","productImage");

		binder.setValidator(unitsInStockValidator);

}

That’s	it!	We	created	and	configured	our	Spring-based	validator	to	do	the	validation.	Now,
we	run	our	application	and	enter	http://localhost:8080/webstore/products/add	to
show	the	web	form	used	for	adding	the	product	information.	Fill	the	value	in	the	form;	in
particular,	fill	the	Unit	Price	field	with	the	value	10000	and	the	Units	In	Stock	field	with

the	value	100.	Then,	click	on	the	Add	button.	You	will	see	validation	messages	at	the	top
of	the	form	stating	You	cannot	add	more	than	99	units	if	the	unit	price	is	greater	than
10000.

It	is	good	that	we	have	added	Spring-based	validation	into	our	application.	However,	since
we	configured	our	Spring-based	validator	(unitsInStockValidator)	with
WebDataBinder,	the	bean	validation	that	we	configured	earlier	will	not	take	effect.	Spring
MVC	simply	ignores	these	JSR-303	bean	validation	annotations	(@Pattern,	@Size,	@Min,
@Digits,	@NotNull,	and	so	on).

Time	for	action	–	combining	Spring	and
bean	validations
You	need	to	write	the	previous	bean	validations	again	in	a	classic	Spring-based	validation,
which	is	not	a	good	idea,	but	thanks	to	the	flexibility	and	extensibility	of	Spring
validation,	you	can	combine	both	a	Spring-based	validation	and	bean	validation	together
with	a	little	extra	code.	Perform	the	following	steps:

1.	 Create	a	class	called	ProductValidator	under	the	com.packt.webstore.validator
package	in	the	source	folder	src/main/java.	Then,	add	the	following	code	into	it:

package	com.packt.webstore.validator;

import	java.util.HashSet;

import	java.util.Set;

import	javax.validation.ConstraintViolation;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.validation.Errors;

import	org.springframework.validation.Validator;

import	com.packt.webstore.domain.Product;

public	class	ProductValidator	implements	Validator{

		@Autowired

		private	javax.validation.Validator	beanValidator;

		private	Set<Validator>	springValidators;

		public	ProductValidator()	{

				springValidators	=	new	HashSet<Validator>();

		}

		public	void	setSpringValidators(Set<Validator>springValidators)	{

				this.springValidators	=	springValidators;

		}

		public	boolean	supports(Class<?>	clazz)	{

				return	Product.class.isAssignableFrom(clazz);

		}

		public	void	validate(Object	target,	Errors	errors)	{

				Set<ConstraintViolation<Object>>	constraintViolations	

=beanValidator.validate(target);

				for	(ConstraintViolation<Object>	constraintViolation	

:constraintViolations)	{

						String	propertyPath	

=constraintViolation.getPropertyPath().toString();

						String	message	=	constraintViolation.getMessage();

						errors.rejectValue(propertyPath,	"",	message);

				}

				for(Validator	validator:	springValidators)	{

						validator.validate(target,	errors);

				}

		}

}

2.	 Now,	open	the	web	application	context	configuration	file	DispatcherServlet-
context.xml	and	add	the	following	bean	definition	to	it:

<bean	

id="productValidator"class="com.packt.webstore.validator.ProductValidat

or">

		<property	name	=	"springValidators">

				<set>

						<ref	bean	=	"unitsInStockValidator"/>

				</set>

		</property>

</bean>

3.	 Create	one	more	bean	definition	for	the	UnitsInStockValidator	class,	as	follows,
and	save	DispatcherServlet-context.xml:

<bean	id="unitsInStockValidator"	

class="com.packt.webstore.validator.UnitsInStockValidator"/>

4.	 Open	the	ProductController	class	and	replace	the	existing	reference	of	the
UnitsInStockValidator	class	with	the	newly	created	ProductValidator	class,	as
follows:

@Autowired

private	ProductValidator	productValidator;

5.	 Now,	inside	the	initialiseBinder	method	of	the	ProductController	class,	replace
the	binder.setValidator(unitsInStockValidator);	statement	with	the	following
statement:

binder.setValidator(productValidator);

6.	 Now,	run	the	application	and	enter
http://localhost:8080/webstore/products/add	to	check	whether	all	the
validations	are	working	fine.	Just	click	on	the	Add	button	without	filling	anything	on
the	form;	you	will	notice	bean	validation	taking	place.	Similarly,	fill	the	Unit	Price
field	with	the	value	10000	and	the	Units	In	Stock	field	with	the	value	100	to	see
Spring	validation.	Consider	the	following	screenshot:

The	Add	new	product	web	form	displaying	bean	validation	and	Spring	validation
together

What	just	happened?
Our	aim	was	to	combine	bean	validation	and	Spring-based	validation
(unitsInStockValidator)	together.	To	achieve	this,	we	created	a	common	adapter
validator	called	ProductValidator	in	step	1.	If	you’ll	look	closely,	the	ProductValidator
class	is	nothing	but	an	implementation	of	a	regular	Spring	validator.

We	autowired	our	existing	bean	validator	into	the	ProductValidator	class	through	the
following	line:

@Autowired

private	javax.validation.Validator	beanValidator;

Later,	we	used	this	beanValidator	reference	inside	the	validate	method	of	the
ProductValidator	class,	as	follows,	to	validate	all	of	the	bean	validation	annotations:

Set<ConstraintViolation<Object>>	constraintViolations	

=beanValidator.validate(target);

for	(ConstraintViolation<Object>	constraintViolation	:constraintViolations)	

{

		String	propertyPath	=constraintViolation.getPropertyPath().toString();

		String	message	=	constraintViolation.getMessage();

		errors.rejectValue(propertyPath,	"",	message);

}

The	beanValidator.validate(target);	statement	returns	all	of	the	constraint	violations.
Then,	using	the	errors	object,	we	threw	all	of	the	invalid	constraints	as	error	messages.
So,	every	bean	validation	annotation	that	we	specified	in	the	Product	domain	class	will
get	handled	within	for	loop.

Similarly,	we	have	one	more	for	loop	to	handle	all	of	the	Spring	validations	in	the
validate	method	of	the	ProductValidator	class,	as	shown	as	follows:

for(Validator	validator:	springValidators)	{

		validator.validate(target,	errors);

}

This	for	loop	iterates	through	the	set	of	Spring	validators	and	validates	the	entries	one	by
one;	however,	if	you	notice,	we	haven’t	initiated	the	springValidators	reference,	so	you
may	wonder	where	we	have	initiated	the	springValidators	set.	You	can	find	the	answer
in	step	2;	we	created	a	bean	for	the	ProductValidator	class	in	our	web	application
context	(DispatcherServlet-context.xml)	and	instantiated	the	springValidators	set	as
follows:

<bean	

id="productValidtor"class="com.packt.webstore.validator.ProductValidator">

		<property	name	=	"springValidators">

				<set>

						<ref	bean	=	"unitsInStockValidator"/>

				</set>

		</property>

</bean>

We	referred	a	bean	called	unitsInStockValidator	within	the	springValidators	set	of
the	productValidator	bean,	so	we	have	to	create	a	bean	for	the	UnitsInStockValidator
class,	which	is	what	we	did	in	step	3.

Then,	we	created	a	common	adapter	validator	that	can	adopt	bean	validation	and	Spring
validation	and	validates	all	Spring-	and	bean-based	validations	together.	Now,	we	have	to
replace	the	UnitsInStockValidator	reference	with	the	ProductValidator	reference	in
our	ProductController	class	to	kick	in	our	new	ProductValidator	reference.	We	did
that	in	steps	4	and	5.	We	simply	replaced	UnitsInStockValidator	with
ProductValidator	in	the	binder,	as	follows:

@InitBinder

public	void	initialiseBinder(WebDataBinder	binder)	{

		

binder.setAllowedFields("productId","name","unitPrice","description","manuf

acturer","category","unitsInStock","productImage",	"language");

		binder.setValidator(productValidator);

}

We	successfully	configured	our	newly	created	ProductValidator	with
ProductController.	To	see	it	in	action,	we	can	just	run	our	application	and	enter
http://localhost:8080/webstore/products/add.	Then,	we	enter	some	invalid	values
such	as	the	existing	product	ID	or	fill	the	Unit	Price	field	with	the	value	10000	and	the
Units	In	Stock	field	with	the	value	100;	you	will	notice	the	bean	and	Spring	validation
error	messages	on	the	screen.

Have	a	go	hero	–	adding	Spring	validation	to	the
product	image
Create	a	Spring	validation	class	called	ProductImageValidator	that	will	validate	the	size
of	the	product	image.	It	should	only	allow	an	image	of	a	size	that	is	less	than	or	equal	to
the	predefined	configured	size.	Do	the	following	when	implementing
ProductImageValidator:

Create	a	validation	class	called	ProductImageValidator	under	the
com.packt.webstore.validator	package	by	implementing	the
org.springframework.validation.Validator	interface
Add	the	corresponding	error	message	in	the	message	source	file
Your	ProductImageValidator	class	should	maintain	a	long	variable	called
allowedSize	to	check	whether	the	given	image	size	is	less	than	or	equal	it
Create	a	bean	for	the	ProductImageValidator	class	in	the	servlet	context	and	add	it
under	the	springValidators	set	of	the	productValidtor	bean
Remember	to	set	the	allowedSize	property	in	the	ProductImageValidator	bean

After	applying	your	custom	validation	annotation	@category	on	the	category	field	of	the
Product	domain	class,	your	add	product	page	should	reject	the	products	of	other
categories	that	have	not	been	configured	in	CategoryValidator.

Summary
In	this	chapter,	we	learned	the	concept	of	validation	and	learned	how	to	enable	bean
validation	in	Spring	MVC	to	process	forms.	We	also	learned	how	to	set	up	custom
validation	using	the	extension	capability	of	the	bean	validation	framework.	After	that,	we
learned	how	to	do	cross-field	validation	using	Spring	validation.	Finally,	we	learned	how
to	integrate	bean	validation	and	Spring	validation	together.

In	the	next	chapter,	we	will	learn	how	to	develop	an	application	using	RESTful	services.
We	will	cover	the	basic	concepts	of	HTTP	verbs	and	try	to	understand	how	they	are
related	to	standard	CRUD	operations.	We	will	also	cover	how	to	fire	an	Ajax	request	and
how	to	handle	it.

Chapter	8.	Give	REST	to	Your
Application	with	Ajax
REST	stands	for	Representational	State	Transfer	and	is	a	style	of	web	application
architecture.	Everything	in	REST	is	considered	as	a	resource,	and	every	resource	is
identified	by	a	URI.	RESTful	web	services	have	been	embraced	by	large	service	providers
across	the	Web	as	an	alternative	to	SOAP-based	web	services	due	to	its	simplicity.

After	finishing	this	chapter,	you	will	have	a	clear	idea	about	the	following:

REST	web	services
Ajax

Introducing	REST
As	I	already	mentioned,	in	a	REST-based	application,	everything,	including	static
resources,	data,	and	operations,	are	considered	as	resources	and	identified	by	a	URI.	For
example,	consider	a	piece	of	functionality	that	can	help	us	add	a	new	product	to	our	store;
we	can	represent	this	operation	by	a	URI,	something	like
http://localhost:8080/webstore/products/add,	and	we	can	pass	the	new	product
details	in	XML	or	JSON	representation	to	that	URL.	So,	in	REST,	URIs	are	used	to
connect	clients	and	servers	to	exchange	resources	in	the	form	of	representations	(HTML,
XML,	JSON,	and	so	on).	In	order	to	exchange	data,	REST	relies	on	basic	HTTP	protocol
methods:	GET,	POST,	PUT,	and	DELETE.

Spring	provides	extensive	support	to	develop	REST-based	web	services.	In	our	previous
chapters,	we	saw	that	whenever	a	web	request	was	made,	we	returned	a	web	page	to	serve
that	request;	usually,	such	web	pages	will	always	contain	some	states	(dynamic	data).
However,	in	REST-based	applications,	we	only	return	the	states,	and	it	is	up	to	the	client
to	decide	on	how	to	render	or	present	the	data	to	the	end	user.

Normally,	REST-based	web	services	return	data	in	two	formats:	XML	and	JSON.	We	are
going	to	develop	some	REST-based	web	services	that	will	return	data	in	the	JSON	format.
Once	we	get	the	JSON	data,	we’ll	then	render	it	as	an	HTML	page	in	the	browser	using	a
JavaScript	library.

In	our	web	store	application,	we	have	successfully	listed	some	of	the	products;	however,
the	store	cannot	make	profit	without	facilitating	the	end	user	to	pick	up	some	products	and
place	them	in	his/her	shopping	cart.	So	let’s	add	a	shopping	cart	facility	to	our	store.

Time	for	action	–	implementing	RESTful
web	services
We	are	going	to	add	a	shopping	cart	facility	in	two	phases.	Firstly,	we	will	create	a	REST-
style	controller	to	handle	all	shopping-cart-related	web	requests.	Secondly,	we	will	add
some	JavaScript	code	to	render	the	JSON	data	returned	by	the	REST	web	service
controller.	First,	let’s	implement	some	RESTful	web	services	using	Spring	MVC
controllers	so	that	later	we	can	add	some	JavaScript	code	to	consume	those	web	services.

1.	 Create	a	domain	class	named	CartItem	under	the	package
com.packt.webstore.domain	in	the	source	folder	src/main/java;	then,	add	the
following	code	to	it:

package	com.packt.webstore.domain;

import	java.math.BigDecimal;

public	class	CartItem	{

		private	Product	product;

		private	int	quantity;

		private	BigDecimal	totalPrice;

		

		public	CartItem()	{

				//	TODO	Auto-generated	constructor	stub

		}

		

		public	CartItem(Product	product)	{

				super();

				this.product	=	product;

				this.quantity	=	1;

				this.totalPrice	=	product.getUnitPrice();

		}

		

		public	Product	getProduct()	{

				return	product;

		}

		

		public	void	setProduct(Product	product)	{

				this.product	=	product;

				this.updateTotalPrice();

		}

		

		public	int	getQuantity()	{

				return	quantity;

		}

		

		public	void	setQuantity(int	quantity)	{

				this.quantity	=	quantity;

				this.updateTotalPrice();

		}

		

		public	BigDecimal	getTotalPrice()	{

				return	totalPrice;

		}

		

		public	void	updateTotalPrice()	{

				totalPrice	=	

this.product.getUnitPrice().multiply(newBigDecimal(this.quantity));

		}

		

		@Override

		public	int	hashCode()	{

				final	int	prime	=	311;

				int	result	=	1;

				result	=	prime	*	result	+	((product	==	null)	?	0	

:product.hashCode());

				return	result;

		}

		@Override

		public	boolean	equals(Object	obj)	{

				if	(this	==	obj)

				return	true;

				if	(obj	==	null)

				return	false;

				if	(getClass()	!=	obj.getClass())

				return	false;

				CartItem	other	=	(CartItem)	obj;

				if	(product	==	null)	{

						if	(other.product	!=	null)

						return	false;

				}	else	if	(!product.equals(other.product))

				return	false;

				return	true;

		}

}

2.	 Similarly,	add	one	more	domain	class	named	Cart	to	the	same	package,	and	add	the
following	code	to	it:

package	com.packt.webstore.domain;

import	java.math.BigDecimal;

import	java.util.HashMap;

import	java.util.Map;

public	class	Cart	{

		private	String	cartId;

		private	Map<String,CartItem>	cartItems;

		private	BigDecimal	grandTotal;

		

		public	Cart()	{

				cartItems	=	new	HashMap<String,	CartItem>();

				grandTotal	=	new	BigDecimal(0);

		}

		

		public	Cart(String	cartId)	{

				this();

				this.cartId	=	cartId;

		}

		

		public	String	getCartId()	{

				return	cartId;

		}

		

		public	void	setCartId(String	cartId)	{

				this.cartId	=	cartId;

		}

		

		public	Map<String,	CartItem>	getCartItems()	{

				return	cartItems;

		}

		

		public	void	setCartItems(Map<String,	CartItem>	cartItems)	{

				this.cartItems	=	cartItems;

		}

		

		public	BigDecimal	getGrandTotal()	{

				return	grandTotal;

		}

		

		public	void	addCartItem(CartItem	item)	{

				String	productId	=	item.getProduct().getProductId();

				

				if(cartItems.containsKey(productId))	{

						CartItem	existingCartItem	=	cartItems.get(productId);

						existingCartItem.setQuantity(existingCartItem.getQuantity()+	

item.getQuantity());

						cartItems.put(productId,	existingCartItem);

				}	else	{

						cartItems.put(productId,	item);

				}

				updateGrandTotal();

		}

		

		public	void	removeCartItem(CartItem	item)	{

				String	productId	=	item.getProduct().getProductId();

				cartItems.remove(productId);

				updateGrandTotal();

		}

		

		public	void	updateGrandTotal()	{

				grandTotal=	new	BigDecimal(0);

				for(CartItem	item	:	cartItems.values()){

						grandTotal	=	grandTotal.add(item.getTotalPrice());

				}

		}

		

		@Override

		public	int	hashCode()	{

				final	int	prime	=	71;

				int	result	=	1;

				result	=	prime	*	result	+	((cartId	==	null)	?	0	

:cartId.hashCode());

				return	result;

		}

		

		@Override

		public	boolean	equals(Object	obj)	{

				if	(this	==	obj)

				return	true;

				if	(obj	==	null)

				return	false;

				if	(getClass()	!=	obj.getClass())

				return	false;

				Cart	other	=	(Cart)	obj;

				if	(cartId	==	null)	{

						if	(other.cartId	!=	null)

						return	false;

				}	else	if	(!cartId.equals(other.cartId))

				return	false;

				return	true;

		}

}

3.	 Create	an	interface	named	CartRepository	under	the	package
com.packt.webstore.domain.repository	in	the	source	folder	src/main/java;	then,
add	the	following	method	declarations	to	it:

Cart	create(Cart	cart);

Cart	read(String	cartId);

void	update(String	cartId,	Cart	cart);

void	delete(String	cartId);

4.	 Create	an	implementation	class	named	InMemoryCartRepository	for	the	preceding
interface	under	the	package	com.packt.webstore.domain.repository.impl	in	the
source	folder	src/main/java;	then,	add	the	following	code	to	it:

package	com.packt.webstore.domain.repository.impl;

import	java.util.HashMap;

import	java.util.Map;

import	org.springframework.stereotype.Repository;

import	com.packt.webstore.domain.Cart;

import	com.packt.webstore.domain.repository.CartRepository;

@Repository

public	class	InMemoryCartRepository	implements	CartRepository{

		

		private	Map<String,	Cart>	listOfCarts;

		

		

		public	InMemoryCartRepository()	{

				listOfCarts	=	new	HashMap<String,Cart>();

				

		}

		

		public	Cart	create(Cart	cart)	{

				if(listOfCarts.keySet().contains(cart.getCartId()))	{

						throw	new	IllegalArgumentException(String.format("Can	not	create	

a	cart.	A	cart	with	the	give	id	(%)	aldrady	exist",cart.getCartId()));

				}

				listOfCarts.put(cart.getCartId(),	cart);

				return	cart;

		}

		

		public	Cart	read(String	cartId)	{

				return	listOfCarts.get(cartId);

		}

		public	void	update(String	cartId,	Cart	cart)	{

				if(!listOfCarts.keySet().contains(cartId))	{

						throw	new	IllegalArgumentException(String.format("Can	not	update	

cart.	The	cart	with	the	give	id	(%)	does	not	does	not	exist",cartId));

				}

				listOfCarts.put(cartId,	cart);

		}

		public	void	delete(String	cartId)	{

				if(!listOfCarts.keySet().contains(cartId))	{

						throw	new	IllegalArgumentException(String.format("Can	not	delete	

cart.	The	cart	with	the	give	id	(%)	does	not	does	not	exist",cartId));

				}

				listOfCarts.remove(cartId);

		}

}

5.	 Create	an	interface	named	CartService	under	the	package
com.packt.webstore.service	in	the	source	folder	src/main/java;	then,	add	the
following	method	declarations	to	it:

package	com.packt.webstore.service;

import	com.packt.webstore.domain.Cart;

public	interface	CartService	{

		

		Cart	create(Cart	cart);

		

		Cart	read(String	cartId);

		

		void	update(String	cartId,	Cart	cart);

		

		void	delete(String	cartId);

}

6.	 Create	an	implementation	class	named	CartServiceImpl	for	the	earlier	interface

under	the	package	com.packt.webstore.service.impl	in	the	source	folder
src/main/java;	then,	add	the	following	code	to	it:

package	com.packt.webstore.service.impl;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Service;

import	org.springframework.transaction.annotation.Transactional;

import	com.packt.webstore.domain.Cart;

import	com.packt.webstore.domain.repository.CartRepository;

import	com.packt.webstore.service.CartService;

@Service

public	class	CartServiceImpl	implements	CartService{

		

		@Autowired

		private	CartRepository	cartRepository;

		public	Cart	create(Cart	cart)	{

				return	cartRepository.create(cart);

		}

		public	Cart	read(String	cartId)	{

				return	cartRepository.read(cartId);

		}

		public	void	update(String	cartId,	Cart	cart)	{

				cartRepository.update(cartId,	cart);

		}

		public	void	delete(String	cartId)	{

				cartRepository.delete(cartId);

				

		}

}

7.	 Now,	create	a	class	named	CartRestController	under	the	package
com.packt.webstore.controller	in	the	source	folder	src/main/java;	then,	add	the
following	code	to	it:

package	com.packt.webstore.controller;

import	javax.servlet.http.HttpServletRequest;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.http.HttpStatus;

import	org.springframework.stereotype.Controller;

import	org.springframework.web.bind.annotation.ExceptionHandler;

import	org.springframework.web.bind.annotation.PathVariable;

import	org.springframework.web.bind.annotation.RequestBody;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.bind.annotation.RequestMethod;

import	org.springframework.web.bind.annotation.ResponseBody;

import	org.springframework.web.bind.annotation.ResponseStatus;

import	com.packt.webstore.domain.Cart;

import	com.packt.webstore.domain.CartItem;

import	com.packt.webstore.domain.Product;

import	com.packt.webstore.exception.ProductNotFoundException;

import	com.packt.webstore.service.CartService;

import	com.packt.webstore.service.ProductService;

@Controller

@RequestMapping(value	=	"rest/cart")

public	class	CartRestController	{

		@Autowired

		private	CartService	cartService;

		

		@Autowired

		private	ProductService	productService;

		

		@RequestMapping(method	=	RequestMethod.POST)

		public	@ResponseBody	Cart	create(@RequestBody	Cart	cart)	{

				return		cartService.create(cart);

		}

		@RequestMapping(value	=	"/{cartId}",	method	=	RequestMethod.GET)

		public	@ResponseBody	Cart	read(@PathVariable(value	=	"cartId")	String	

cartId)	{

				return	cartService.read(cartId);

		}

		@RequestMapping(value	=	"/{cartId}",	method	=	RequestMethod.PUT)

		@ResponseStatus(value	=	HttpStatus.NO_CONTENT)

		public	void	update(@PathVariable(value	=	"cartId")	String	cartId,		

@RequestBody	Cart	cart)	{

				cartService.update(cartId,	cart);

		}

		@RequestMapping(value	=	"/{cartId}",	method	=	RequestMethod.DELETE)

		@ResponseStatus(value	=	HttpStatus.NO_CONTENT)

		public	void	delete(@PathVariable(value	=	"cartId")	String	cartId)	{

				cartService.delete(cartId);

		}

		

		@RequestMapping(value	=	"/add/{productId}",	method	=	

RequestMethod.PUT)

		@ResponseStatus(value	=	HttpStatus.NO_CONTENT)

		public	void	addItem(@PathVariable	String	productId,	

HttpServletRequest	request)	{

				

				String	sessionId	=	request.getSession(true).getId();

				Cart	cart	=	cartService.read(sessionId);

				if(cart==	null)	{

						cart	=	cartService.create(new	Cart(sessionId));

				}

				

				Product	product	=	productService.getProductById(productId);

				if(product	==	null)	{

						throw	new	IllegalArgumentException(new	

ProductNotFoundException(productId));

				}

				

				cart.addCartItem(new	CartItem(product));

				

				cartService.update(sessionId,	cart);

		}

		

		@RequestMapping(value	=	"/remove/{productId}",	method	=	

RequestMethod.PUT)

		@ResponseStatus(value	=	HttpStatus.NO_CONTENT)

		public	void	removeItem(@PathVariable	String	productId,	

HttpServletRequest	request)	{

				

				String	sessionId	=	request.getSession(true).getId();

				Cart	cart	=	cartService.read(sessionId);

				if(cart==	null)	{

						cart	=	cartService.create(new	Cart(sessionId));

				}

				

				Product	product	=	productService.getProductById(productId);

				if(product	==	null)	{

						throw	new	IllegalArgumentException(new	

ProductNotFoundException(productId));

				}

				

				cart.removeCartItem(new	CartItem(product));

				

				cartService.update(sessionId,	cart);

		}

		@ExceptionHandler(IllegalArgumentException.class)

		@ResponseStatus(value	=	HttpStatus.BAD_REQUEST,		reason="Illegal	

request,	please	verify	your	payload")

		public	void	handleClientErrors(Exception	ex)	{	}

		@ExceptionHandler(Exception.class)

		@ResponseStatus(value	=	HttpStatus.INTERNAL_SERVER_ERROR,	

reason="Internal	server	error")

		public	void	handleServerErrors(Exception	ex)	{		}

}

8.	 Now,	run	our	webstore	project	from	STS.

What	just	happened?
In	step	1	and	2,	we	created	two	domain	classes	called	CartItem	and	Cart	to	hold	the
information	about	the	shopping	cart.	The	CartItem	class	represents	a	single	item	in	a
shopping	cart,	and	it	holds	information	such	as	product,	quantity,	and	totalPrice.
Similarly,	Cart	represents	the	whole	shopping	cart	itself,	and	Cart	can	have	a	collection	of
cartItems	and	grandTotal.

In	steps	3	and	4,	we	created	a	repository	layer	to	manage	the	Cart	objects.	In	the
CartRepository	interface,	we	defined	four	methods	to	take	care	of	CRUD	operations
(create,	read,	update,	and	delete)	on	the	Cart	objects.	InMemoryCartRepository	is	just
an	implementation	of	CartRepository.

Similarly,	in	steps	5	and	6,	we	created	the	service	layer	for	the	Cart	objects.	The
CartService	interface	has	the	same	methods	as	that	of	the	CartRepository	and
CartServiceImpl	class;	the	only	difference	is	that	it	internally	uses
InMemoryCartRepository	to	carry	out	all	the	CRUD	operations.

Step	7	is	very	crucial	in	the	whole	sequence	because	in	that	step	we	created	our	REST-
styled	controller	to	handle	all	REST	web	services	related	to	Cart.	The
CartRestController	class	mainly	has	four	methods	to	handle	web	requests	for	CRUD
operations	on	the	Cart	objects,	namely	create,	read,	update,	and	delete.	Additionally,	it
has	two	methods,	addItem	and	removeItem,	to	handle	the	adding	and	removing	of
CartItem	from	the	Cart	objects.	We	will	have	a	deeper	look	at	the	first	four	CRUD
methods.

If	you	see,	on	the	surface,	the	CartRestController	class	is	just	like	any	other	normal
Spring	MVC	controller	because	it	just	has	the	same	@Controller	and	@RequestMapping
annotations.	So	what	makes	it	so	special	to	become	a	REST-styled	controller	is	the
@ResponseBody	and	@RequestBody	annotations;	see	the	following	controller	method:

@RequestMapping(method	=	RequestMethod.POST)

public	@ResponseBody	Cart	create(@RequestBody	Cart	cart)	{

		return		cartService.create(cart);

}

Usually,	every	controller	method	is	used	to	return	a	view	name	so	that	the	dispatcher
servlet	can	find	the	appropriate	view	file	and	dispatch	that	view	file	to	the	client,	but	here
we	have	returned	the	object	(the	Cart	object).	Instead	of	putting	the	object	into	the	model,
we	have	returned	the	object	because	we	want	to	return	the	state	of	the	object	in	JSON
format.	Remember	that	REST-based	web	services	should	return	data	in	either	JSON	or
XML	format,	and	the	client	can	use	this	data	in	their	desired	way;	they	may	render	it	to	an
HTML	page,	or	they	may	send	it	to	some	external	system	as	is	in	the	form	of	raw
JSON/XML	data.

Okay!	Let’s	come	to	the	point;	the	create	controller	method	just	returned	a	newly	created
Cart	java	object.	How	is	it	that	this	Java	object	got	converted	into	JSON	or	XML	format?
Here,	the	@ResponseBody	annotation	steps	into	the	picture.	The	@ResponseBody	annotation
will	convert	the	given	Java	object	into	JSON/XML	format	and	send	it	as	a	response	in	the

body	of	an	HTTP	response.	Similarly,	when	you	send	an	HTTP	request	to	a	controller
method	with	JSON/XML	data	in	it,	the	@RequestBody	annotation	will	convert	it	into	the
corresponding	Java	object.	This	is	why	the	create	method	has	the	cart	parameter
annotated	with	the	@RequestBody	annotation	and	the	return	object	annotated	with	the
@ResponseBody	annotation.

If	you	closely	observe	the	@RequestMapping	annotation	of	all	those	four	CRUD	methods,
you	will	end	up	with	the	following	table:

URL HTTP	method Description

http://localhost:8080/webstore/rest/cart POST Creates	a	new	cart

http://localhost:8080/webstore/rest/cart/1234 GET Retrieves	cart	with	the	ID	1234

http://localhost:8080/webstore/rest/cart/1234 PUT Updates	cart	with	the	ID	1234

http://localhost:8080/webstore/rest/cart/1234 DELETE Deletes	cart	with	the	ID	1234

Though	the	request	mapping	URL	is	more	or	less	the	same,	we	can	perform	different
operations	based	on	the	HTTP	method;	for	example,	if	you	send	a	GET	request	to	the
URL	http://localhost:8080/webstore/rest/cart/1234,	the	read	controller	method
will	get	executed	and	the	Cart	object	with	the	ID	1234	will	get	returned	in	the	JSON
format.	Similarly,	if	you	send	a	PUT	or	DELETE	request	to	the	same	URL,	the	update	or
delete	controller	method	would	get	called	correspondingly.

In	addition	to	those	four	CRUD	request-mapping	methods,	we	have	two	more	request-
mapping	methods	that	take	care	of	adding	and	removing	CartItem	from	the	Cart	object.
These	methods	are	considered	as	update	methods;	this	is	why	both	the	addItem	and
removeItem	methods	have	PUT	as	the	request	method	type	in	their	@RequestMapping
annotation.	For	instance,	if	you	send	a	PUT	request	to	the	URL
http://localhost:8080/webstore/rest/cart/add/P1236,	a	product	with	the	product	ID
P1236	will	be	added	to	the	Cart	object.	Similarly,	if	you	send	a	PUT	request	to	the	URL
http://localhost:8080/webstore/rest/cart/remove/P1236,	a	product	with	P1236	will
be	removed	from	the	Cart	object.

Time	for	action	–	consuming	REST	web
services
Okay!	We	have	created	our	REST-style	controller	that	can	serve	some	REST-based	web
requests,	but	we	have	not	seen	our	CartRestController	class	in	action.	Using	a	standard
browser,	we	can	only	send	GET	or	POST	requests;	in	order	to	send	a	PUT	or	DELETE	request,
we	need	a	special	tool.	There	are	plenty	of	HTTP	client	tools	available	to	send	such
requests.	Let’s	use	one	such	tool	called	Postman	to	test	our	CartRestController.	Postman
is	a	Google	Chrome	browser	extension,	so	you’d	better	install	Google	Chrome	in	your
system	before	you	download	the	Postman	HTTP	client.	Perform	the	following	steps:

1.	 Go	to	the	Postman	download	page,	http://www.getpostman.com/,	from	your	Google
Chrome	browser	and	click	on	the	Download	Postman	link.	It	will	take	you	to	the
Chrome	web	store	page;	click	on	the	+	FREE	button	to	install	the	Postman	tool	in
your	browser.	Consider	the	following	screenshot:

Postman—HTTP	client	app	installation

2.	 Now,	a	Google	login	page	will	appear	asking	you	to	log	in.	Log	in	using	your	Google
account.

3.	 A	confirm	dialog	will	be	shown	on	your	screen	asking	your	permission	to	add	the
Postman	extension	to	your	browser;	click	on	the	Add	button	as	shown	in	the
following	screenshot:

http://www.getpostman.com/

Postman—HTTP	client	app	installation

4.	 Now	open	your	Google	Chrome	browser	and	enter	the	URL,	chrome://apps/.	A	web
page	will	get	loaded	with	all	the	available	apps	for	your	Chrome	browser.	Just	click
on	the	Postman	icon	to	launch	the	Postman	app.	Before	you	launch	Postman,	ensure
that	your	webstore	project	is	running.

5.	 Now,	in	the	Postman	app,	enter	the	request	URL	as
http://localhost:8080/webstore/rest/cart,	the	request	method	as	POST,	then
select	the	raw	format,	and	finally	the	content	type	as	JSON(application/json).
Consider	the	following	screenshot:

Postman–posting	a	web	request

6.	 Now,	enter	the	following	JSON	content	in	the	content	box	and	click	on	the	Send
button.	You	will	get	HTTP	respond	status	200	OK.	Consider	the	following	code
snippet:

{

		"cartId":	"1234",

		"cartItems":	{

				"P1234":	{

						"product":	{

								"productId":	"P1234",

								"name":	"iPhone	5s",

								"unitPrice":	500,

								"description":	"Apple	iPhone	5s	smartphone	with	4.00-inch	

640x1136	display	and	8-megapixel	rear	camera",

								"manufacturer":	"Apple",

								"category":	"Smart	Phone",

								"unitsInStock":	1000,

								"unitsInOrder":	0,

								"discontinued":	false,

								"condition":	"NEW"

						},

						"quantity":	1,

						"totalPrice":	500

				}

		},

		"grandTotal":	500

}

7.	 Now,	similarly	in	the	Postman	app,	enter	the	target	URL	as
http://localhost:8080/webstore/rest/cart/1234,	the	request	method	as	GET,
and	click	on	the	Send	button.	You	will	get	the	same	JSON	cart	data	that	you	just
posted	in	step	7	as	the	response.

8.	 To	update	the	cart,	in	the	Postman	app,	enter	the	target	URL	as
http://localhost:8080/webstore/rest/cart/1234	and	just	change	the	JSON	data.
For	instance,	in	the	content	box,	just	change	quantity	to	3,	totalPrice	to	1500	and
grandTotal	to	1500,	choose	the	request	method	as	PUT	and	the	content	type	as
JSON(application/json),	and	send	the	request	to	the	same	URL	by	clicking	on	the
Send	button.	To	verify	whether	your	changes	took	place,	just	repeat	step	7.	Consider
the	following	code	snippet:

{

		"cartId":	"1234",

		"cartItems":	{

				"P1234":	{

						"product":	{

								"productId":	"P1234",

								"name":	"iPhone	5s",

								"unitPrice":	500,

								"description":	"Apple	iPhone	5s	smartphone	with	4.00-inch	

640x1136	display	and	8-megapixel	rear	camera",

								"manufacturer":	"Apple",

								"category":	"Smart	Phone",

								"unitsInStock":	1000,

								"unitsInOrder":	0,

								"discontinued":	false,

								"condition":	"NEW"

						},

						"quantity":	3,

						"totalPrice":	1500

				}

		},

		"grandTotal":	1500

}

9.	 Similarly,	to	delete	the	cart,	just	enter	the
http://localhost:8080/webstore/rest/cart/1234	URL.	In	the	Postman	app,
enter	the	target	URL	and	request	method	as	DELETE	and	click	on	the	Send	button.
You	will	get	an	HTTP	status	204	No	Content	as	the	response.	To	verify	whether	the
cart	got	deleted,	just	repeat	step	7;	you	will	get	an	empty	response.

What	just	happened?
At	the	start	of	the	chapter,	we	discussed	that	most	of	the	REST-based	web	services	are
designed	to	exchange	data	in	JSON	or	XML	format.	This	is	because	JSON	and	XML
formats	are	considered	to	be	universal	formats,	and	any	system	can	easily	understand,
parse,	and	interpret	that	data.	In	order	to	test	REST-based	web	services	that	we	have
created,	we	need	a	tool	that	can	send	different	(GET,	PUT,	POST,	or	DELETE)	types	of	HTTP
requests	with	JSON	data	in	its	request	body.	Postman	is	one	such	tool	that	is	available	as	a
Google	Chrome	extension.

From	step	1	to	4,	we	installed	the	Postman	app	in	our	Google	Chrome	browser.	In	step	6
we	sent	our	first	REST-based	web	request	to	the	target	URL
http://localhost:8080/webstore/rest/cart	to	create	a	new	cart	in	our	webstore
application.	We	did	this	by	sending	a	POST	request	with	the	whole	cart	information	as
JSON	data	to	the	target	URL.	If	you	notice	the	following	JSON	data,	it	represents	a	cart
with	the	cart	ID	as	1234,	and	it	has	just	one	product	cart	item	(iPhone	5s)	in	it.	Consider
the	following	code	snippet:

{

		"cartId":	"1234",

		"cartItems":	{

				"P1234":	{

						"product":	{

								"productId":	"P1234",

								"name":	"iPhone	5s",

								"unitPrice":	500,

								"description":	"Apple	iPhone	5s	smartphone	with	4.00-inch	640x1136	

display	and	8-megapixel	rear	camera",

								"manufacturer":	"Apple",

								"category":	"Smart	Phone",

								"unitsInStock":	1000,

								"unitsInOrder":	0,

								"discontinued":	false,

								"condition":	"NEW"

						},

						"quantity":	1,

						"totalPrice":	500

				}

		},

		"grandTotal":	500

}

Now	that	we	have	posted	our	first	cart,	to	verify	whether	that	cart	got	stored	in	our	system,
we	have	sent	another	REST	web	request	in	step	7	to	get	the	whole	cart	information	in
JSON	format.	Notice	that	this	time	the	request	type	is	GET	and	the	target	URL	is
http://localhost:8080/webstore/rest/cart/1234.	Remember	we	learned	that	in	a
REST-based	application,	every	resource	is	identifiable	by	a	URI.	Here,	the	URL
http://localhost:8080/webstore/rest/cart/1234	represents	a	cart	whose	ID	is	1234.
If	you	send	a	GET	request	to	the	URL	mentioned	earlier,	you	will	get	the	cart	information
in	the	form	of	JSON	data;	similarly,	you	can	even	update	the	whole	cart	by	sending	an

updated	JSON	data	as	a	PUT	request	to	the	same	URL.	This	is	what	we	did	in	step	8.	In	a
similar	fashion,	we	sent	a	DELETE	request	to	the	same	URL	to	delete	the	cart	whose	ID	is
1234.

Okay!	We	have	tested	or	consumed	our	REST-based	web	services	with	the	help	of	the
Postman	HTTP	client	tool,	which	is	working	quite	well.	However,	in	a	real-world
application,	most	of	the	time,	these	kinds	of	REST-based	web	services	are	consumed	from
the	frontend	with	the	help	of	a	concept	called	Ajax.	Using	a	JavaScript	library,	we	can
send	an	Ajax	request	to	the	backend.	In	the	next	section,	we	will	see	what	Ajax	requests
are	and	how	to	consume	a	REST-based	web	service	using	JavaScript/Ajax	libraries.

Handling	a	web	service	in	Ajax
Asynchronous	JavaScript	and	XML	(Ajax)	is	a	web	development	technique	used	on	the
client	side	to	create	asynchronous	web	applications.	In	a	typical	web	application,	every
time	a	web	request	is	fired	as	a	response,	we	get	a	full	web	page	loaded	as	a	response;
however,	in	an	Ajax-based	asynchronous	web	application,	web	pages	are	updated
asynchronously	by	polling	small	data	with	the	server	behind	the	scenes.	This	means	that
using	Ajax,	it	is	possible	to	update	parts	of	a	web	page	without	reloading	the	entire	web
page.	With	Ajax,	web	applications	can	send	data	to	and	retrieve	data	from	a	server
asynchronously.	The	asynchronous	aspect	of	Ajax	allows	us	to	write	code	that	can	send	a
request	to	a	server	and	handle	a	server	response	without	reloading	the	entire	web	page.

In	an	Ajax-based	application,	the	XMLHttpRequest	object	is	used	to	exchange	data
asynchronously	with	the	server,	where	XML	or	JSON	is	often	used	as	the	format	for
transferring	data.	The	“X”	in	AJAX	stands	for	XML,	but	JSON	is	used	instead	of	XML
nowadays	because	of	its	simplicity;	also,	it	uses	fewer	characters	to	represent	the	same
data	compared	to	XML.	So,	it	can	reduce	the	bandwidth	requirements	over	the	network	to
ensure	data	transfer	is	faster	than	normal.

Okay!	We	have	implemented	some	REST-based	web	services	that	can	manage	the
shopping	cart	in	our	application,	but	we	need	a	frontend	that	can	facilitate	the	end	user	to
manage	the	shopping	cart	visually.	So,	let’s	consume	those	web	services	via	Ajax	in	the
frontend	to	manage	the	shopping	cart.

Time	for	action	–	consuming	REST	web
services	via	Ajax
In	order	to	consume	Rest	web	services	via	Ajax,	perform	the	following	steps:

1.	 Add	a	JavaScript	file	named	controllers.js	under	the	directory
/src/main/webapp/resources/js/;	then,	add	the	following	code	snippets	to	it	and
save	it:

var	cartApp	=	angular.module('cartApp',	[]);

cartApp.controller('cartCtrl',		function	($scope,	$http)	{

		

		$scope.refreshCart	=	function(cartId)	{

				$http.get('/webstore/rest/cart/'+$scope.cartId)

				.success(function(data)	{

						$scope.cart	=	data;

				});

		};

		

		$scope.clearCart	=	function()	{

				$http.delete('/webstore/rest/cart/'+$scope.cartId)

				.success($scope.refreshCart($scope.cartId));

				

		};

		

		$scope.initCartId	=	function(cartId)	{

				$scope.cartId=cartId;

				$scope.refreshCart($scope.cartId);

		};

		

		$scope.addToCart	=	function(productId)	{

				$http.put('/webstore/rest/cart/add/'+productId)

				.success(function(data)	{

						$scope.refreshCart($http.get('/webstore/rest/cart/get/cartId'));

						alert("Product	Successfully	added	to	the	Cart!");

				});

		};

		$scope.removeFromCart	=	function(productId)	{

				$http.put('/webstore/rest/cart/remove/'+productId)

				.success(function(data)	{

						$scope.refreshCart($http.get('/webstore/rest/cart/get/cartId'));

				});

		};

});

2.	 Now,	create	a	class	named	CartController	under	the	package
com.packt.webstore.controller	in	the	source	folder	src/main/java;	then,	add	the
following	code	to	it:

package	com.packt.webstore.controller;

import	javax.servlet.http.HttpServletRequest;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.PathVariable;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.bind.annotation.RequestMethod;

@Controller

@RequestMapping(value	=	"/cart")

public	class	CartController	{

		@RequestMapping

		public	String	get(HttpServletRequest	request)	{

				return	"redirect:/cart/"+request.getSession(true).getId();

		}

		

		@RequestMapping(value	=	"/{cartId}",	method	=	RequestMethod.GET)

		public	String	getCart(@PathVariable(value	=	"cartId")	String	cartId,	

Model	model)	{

				model.addAttribute("cartId",cartId);

				return	"cart";

		}

}

3.	 Add	one	more	JSP	view	file	named	cart.jsp	under	the	directory
src/main/webapp/WEB-INF/views/;	then,	add	the	following	code	snippets	to	it	and
save	it:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

<html>

<head>

<meta	http-equiv="Content-Type"	content="text/html;	charset=ISO-8859-

1">

<link	rel="stylesheet"

		

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

<script		

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.1/angular.min.

js"></script>

<script	src="/webstore/resource/js/controllers.js"></script>

<title>Cart</title>

</head>

<body>

		<section>

				<div	class="jumbotron">

						<div	class="container">

								<h1>Cart</h1>

								<p>All	the	selected	products	in	your	cart</p>

						</div>

				</div>

		</section>

		<section	class="container"	ng-app="cartApp">

				<div	ng-controller="cartCtrl"	ng-init="initCartId('${cartId}')">

						<div>

								<a	class="btn	btn-danger	pull-left"

										ng-click="clearCart()">	<span

										class="glyphicon	glyphicon-remove-sign">	Clear	Cart

										<span

										class="glyphicon-shopping-cart	glyphicon">	Check	out

								

						</div>

						<table	class="table	table-hover">

								<tr>

										<th>Product</th>

										<th>Unit	price</th>

										<th>Qauntity</th>

										<th>Price</th>

										<th>Action</th>

								</tr>

								<tr	ng-repeat="item	in	cart.cartItems">

										<td>{{item.product.productId}}-{{item.product.name}}</td>

										<td>{{item.product.unitPrice}}</td>

										<td>{{item.quantity}}</td>

										<td>{{item.totalPrice}}</td>

										<td><a	href="#"	class="label	label-danger"	ng-

click="removeFromCart(item.product.productId)">	<span

														class="glyphicon	glyphicon-remove"	/>	Remove

										</td>

								</tr>

								<tr>

										<th></th>

										<th></th>

										<th>Grand	Total</th>

										<th>{{cart.grandTotal}}</th>

										<th></th>

								</tr>

						</table>

						

						<a	href="<spring:url	value="/products"	/>"	class="btn	btn-

default">

													

Continue	shopping

						

				</div>

		</section>

</body>

</html>

4.	 Open	product.jsp	from	src/main/webapp/WEB-INF/views/	and	add	the	following
AngularJS-related	script	links	in	the	head	section	as	follows:

<script	

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.1/angular.min.

js">

</script>

5.	 Similarly,	in	the	same	head	section	add	one	more	script	links	to	our	controller.js

in	the	following	manner:

<script	src="/webstore/resource/js/controllers.js"></script>

6.	 Now,	add	the	ng-click	AngularJs	directive	to	the	Order	Now	<a>	tag	as	follows:

<a	href="#"	class="btn	btn-warning	btn-large"	ng-

click="addToCart('${product.productId}')">

			Order	Now

7.	 Finally,	add	one	more	<a>	tag	as	follows	besides	the	Order	Now	<a>	tag	to	show	the
View	Cart	button,	then	save	the	product.jsp	page:

<a	href="<spring:url	value="/cart"	/>"	class="btn	btn-default">

			View	Cart

8.	 Now	add	the	ng-app	AngularJS	directive	to	the	Order	Now	<section>	tag	as
follows:

<section	class="container"	ng-app="cartApp">

9.	 Then,	add	the	ng-controller	AngularJS	directive	to	the	surrounding	<p>	tag	of	the
Order	Now	link	as	follows:

<p	ng-controller="cartCtrl">

10.	 Now,	run	your	application	and	enter	the	URL
http://localhost:8080/webstore/products/product?id=P1234.	You	will	be	able
to	see	the	product	details	page	of	a	product	whose	product	ID	is	P1234.

11.	 Now	click	on	the	Order	Now	button;	an	alert	message	will	be	shown	that	says
Product	successfully	added	to	the	cart!!.

12.	 Now,	click	on	the	View	Cart	button;	you	will	see	a	web	page	that	shows	a	shopping
cart	page,	as	shown	in	the	following	screenshot:

The	shopping	cart	page

What	just	happened?
There	are	plenty	of	JavaScript	frameworks	available	to	send	an	Ajax	request	to	the	server;
we	decided	to	use	AngularJs	(http://angularjs.org/)	as	our	frontend	JavaScript	library	to
send	Ajax	requests.	It	also	has	the	concepts	of	Model,	View,	Controller,	and	so	on,	but	the
only	difference	is	that	it	is	designed	to	work	in	the	frontend	using	JavaScript.

In	step	1,	we	created	our	AngularJS-based	controller	called	controllers.js	in
/src/main/webapp/resources/js/.	Remember	that	we	purposely	put	this	file	under	the
resources	directory	because	from	the	client	side,	we	want	to	access	this	file	as	a	static
resource;	we	don’t	want	to	go	through	Spring	MVC	controllers	in	order	to	get	this	file.	If
you	remember	correctly,	we	have	already	configured	the	location	of	the	Spring	MVC’s
resources	in	DispatcherServlet-context.xml	in	the	previous	chapters;	it	was	done	in	the
following	manner:

<mvc:resources		location="/resources/"		mapping="/resource/**"/>

Okay!	Let’s	get	to	the	point;	what	have	we	written	in	controllers.js?	We	have	written
five	frontend	controller	methods,	namely	refreshCart,	clearCart,	initCartId,
addToCart,	and	removeFromCart.	These	methods	are	used	to	communicate	with	the	server
using	Ajax	calls.	For	example,	consider	the	following	controller	method:

$scope.refreshCart	=	function(cartId)	{

		$http.get('/webstore/rest/cart/'+$scope.cartId)

		.success(function(data)	{

				$scope.cart	=	data;

		});

};

Within	the	refreshCart	method,	using	AngularJS’	$http	object,	we	sent	an	HTTP	GET
request	to	the	URI	template	/webstore/rest/cart/'+$scope.cartId.	Based	on	the	value
stored	in	the	$scope.cartId	variable,	the	actual	request	is	sent	to	the	target	REST	URL.
For	instance,	if	$scope.cartId	contains	a	value	of	1234,	then	a	GET	request	will	be	sent	to
http://localhost:8080/webstore/rest/cart/1234	to	get	a	cart	object	as	JSON	data
whose	ID	is	1234.	Once	we	got	the	cart	object	as	JSON	data,	we	stored	it	in	the	frontend
Angular	model	using	the	$scope	object	as	follows:

.success(function(data)	{

		$scope.cart	=	data;

}

Similarly,	all	other	AngularJS	controller	methods	fire	some	Ajax	web	requests	to	the
server,	and	retrieve	or	update	cart.	For	example,	the	addToCart	and	removeFromCart
methods	just	added	cartItem	and	removed	cartItem	from	the	cart	object.

We	have	just	defined	our	AngularJS	controller	methods,	but	we	have	to	invoke	this
method	in	order	to	do	something	useful.	This	is	what	we	did	in	step	2;	we	just	defined	our
regular	Spring	MVC	controller	named	CartController,	which	has	two	request	mapping
methods,	namely	get	and	getCart.	Whenever	a	usual	web	request	comes	to	the	URL
http://localhost:8080/webstore/cart,	the	get	method	will	be	invoked,	and	inside	the

http://angularjs.org/

get	method,	we	retrieved	the	session	ID	and	used	it	as	a	cart	ID	to	invoke	the	getCart
method.	Here	we	maintained	the	session	ID	as	a	cart	ID.	Consider	the	following	code
snippet:

@RequestMapping

public	String	get(HttpServletRequest	request)	{

		return	"redirect:/cart/"+request.getSession(true).getId();

}

Within	the	getCart	method,	we	simply	stored	cartId	in	the	Spring	MVC	model	and
returned	a	view	name	as	cart.	We	did	this	kind	of	setup	because	we	want	our	application
to	redirect	the	request	to	the	correct	cart	based	on	the	session	ID	whenever	a	request
comes	to	http://localhost:8080/webstore/cart.	Since	we	have	returned	a	view	name
as	cart,	our	dispatcher	servlet	definitely	would	look	for	a	view	file	called	cart.jsp.	This
is	why	we	created	the	cart.jsp	file	in	step	3.

The	cart.jsp	file	just	acts	as	a	template	for	our	shopping	cart	page.	The	cart.jsp	page
internally	uses	the	AngularJs	controller’s	methods	that	we	created	in	step	1	to
communicate	with	the	server.	The	ng-repeat	directive	of	AngularJS	would	repeat	the
HTML	table	rows	dynamically	based	on	cartItems	that	are	available	in	cart:

<tr	ng-repeat="item	in	cart.cartItems">

		<td>{{item.product.productId}}-{{item.product.name}}</td>

		<td>{{item.product.unitPrice}}</td>

		<td>{{item.quantity}}</td>

		<td>{{item.totalPrice}}</td>

		<td><a	href="#"	class="label	label-danger"	ng-

click="removeFromCart(item.product.productId)">

					Remove

		</td>

</tr>

The	ng-click	directive	from	the	remove	<a>	tag	will	call	the	removeFromCart	controller
method.	Similarly,	to	add	cartItem	to	the	cart,	in	product.jsp,	we	added	another	ng-
click	directive	in	step	6	to	invoke	the	addToCart	method;	we	did	this	in	the	following
manner:

		<a	href="#"	class="btn	btn-warning	btn-large"	ng-

click="addToCart('${product.productId}')">	<span

				class="glyphicon-shopping-cart	glyphicon">	Order	Now

		

So	that’s	it!	We	have	done	everything	to	roll	out	our	shopping	cart	in	our	application,
After	running	our	application,	we	can	access	our	shopping	cart	under	the	URL
http://localhost:8080/webstore/cart	and	we	can	even	add	products	to	the	cart	from
each	product	details	page	as	well.

Summary
In	this	chapter,	we	learned	how	to	develop	REST-based	web	services	using	Spring	MVC,
and	we	also	learned	how	to	test	those	web	services	using	the	Postman	HTTP	client	tool.
We	also	covered	the	basic	concepts	of	HTTP	verbs	and	understood	how	it	is	related	to
standard	CRUD	operations.	Finally,	we	learned	how	to	use	the	AngularJs	JavaScript
framework	to	send	an	Ajax	request	to	our	server.

In	the	next	chapter,	we	will	see	how	to	integrate	tiles	and	webflow	frameworks.

Chapter	9.	Apache	Tiles	and	Spring	Web
Flow	in	Action
When	it	comes	to	web	application	development,	reusability	and	maintenance	are	two
important	factors	that	need	to	be	considered.	Spring	Web	Flow	is	an	independent
framework	that	facilitates	you	to	develop	highly	configurable	and	maintainable	flow-
based	web	applications.	On	the	other	hand,	Apache	Tiles	is	another	popular	open	source
framework	that	encourages	the	use	of	reusable	template-based	web	application
development.

In	this	chapter,	we	are	going	to	learn	how	to	incorporate	these	two	frameworks	within	a
Spring	MVC	application	so	that	we	can	obtain	maximum	reusability	of	frontend	templates
with	the	help	of	Apache	Tiles	and	less	maintenance	in	our	application	logic	with	the	help
of	Spring	Web	Flow.	Again,	remember	that	these	two	frameworks	are	totally	independent;
there	is	no	requirement	that	we	should	always	use	these	frameworks	together.	Apache
Tiles	is	mostly	used	to	reduce	redundant	code	in	the	frontend	by	leveraging	frontend
templates,	whereas	Spring	Web	Flow	facilitates	the	development	of	a	stateful	web
application	with	controlled	navigation	flow.	After	finishing	this	chapter,	you	will	have	a
clear	idea	about	the	following	concepts:

Developing	flow-based	applications	using	Spring	Web	Flow
Decomposing	pages	using	reusable	Apache	Tiles	templates

Working	with	Spring	Web	Flow
Spring	Web	Flow	facilitates	us	to	develop	a	flow-based	web	application	easily.	A	flow	in	a
web	application	encapsulates	a	series	of	steps	that	guides	a	user	through	the	execution	of	a
business	task,	such	as	checking	in	to	a	hotel,	applying	for	a	job,	and	shopping	cart
checkout.	Usually,	a	flow	will	have	a	clear	start	and	end	point.	It	includes	multiple	HTTP
requests/responses,	and	the	user	must	go	through	a	set	of	screens	in	a	specific	order	to
complete	the	flow.

In	all	our	previous	chapters—the	responsibility	of	defining	the	page	(user	interface)	flow
specifically	lies	on	controllers—we	weaved	the	page	flows	into	individual	controllers	and
views;	for	instance,	we	usually	mapped	a	web	request	to	a	controller,	and	the	controller
was	the	one	that	decided	which	logical	view	needed	to	be	returned	as	a	response.	This	is
simple	to	understand	and	sufficient	for	straightforward	page	flows,	but	when	web
applications	get	more	and	more	complex	in	terms	of	user	interface	flows,	maintaining	a
large	and	complex	page	flow	becomes	a	nightmare.

If	you	are	going	to	develop	such	a	complex	flow-based	application,	then	Spring	Web
Flow	(SWF)	can	be	a	good	companion.	Spring	Web	Flow	allows	you	to	define	and
execute	user	interface	(UI)	flows	within	your	web	application.	Without	further	ado,	let’s
dive	straight	into	Spring	Web	Flow	by	defining	some	page	flows	in	our	project.

It	is	nice	that	we	have	implemented	the	shopping	cart	in	our	previous	chapter;	however,	it
is	of	no	use	if	we	do	not	provide	a	checkout	facility	to	complete	the	processing	of	the
order	and	then	ship	the	products	to	the	right	customers.	Let’s	do	that	in	two	phases.	Firstly,
let’s	create	the	required	backend	services,	domain	objects,	and	repository	implementation
in	order	to	complete	the	order	processing	(here,	strictly	nothing	related	to	Spring	Web
Flow	is	involved;	it	is	just	a	supportive	backend	service	that	can	be	used	later	by	the	web
flow	definition	in	order	to	complete	the	checkout	process).	Secondly,	we	need	to	define
the	actual	Spring	Web	Flow	definition	that	can	use	our	backend	services	in	order	to
execute	the	flow	definition.	Here,	we	will	set	the	configuration	and	definition	of	the	actual
web	flow.

Time	for	action	–	implementing	the	order-
processing	service
We	will	start	with	implementing	our	order	processing	backend	service	first.	We	proceed	as
follows:

1.	 Create	a	class	named	Address	under	the	com.packt.webstore.domain	package	in	the
source	folder	src/main/java	and	add	the	following	code	into	it.	Note	that	I	have
skipped	the	getters,	setters,	equals,	and	hashcode	methods	in	the	following	snippet.
Please	do	add	those	when	you	create	this	class:

package	com.packt.webstore.domain;

import	java.io.Serializable;

public	class	Address	implements	Serializable{

		private	static	final	long	serialVersionUID	=	-530086768384258062L;

		private	String	doorNo;

		private	String	streetName;

		private	String	areaName;

		private	String	state;

		private	String	country;

		private	String	zipCode;

		//	add	getters	and	setters	for	all	the	fields	here.

		//	Override	equals	and	hashCode	based	on	all	the	fields.

				//	the	code	for	the	same	is	available	in	the	code	bundle	which	can	

be	downloaded	from	www.packtpub.com/support

}

2.	 Create	another	class	named	Customer	under	the	same	package	and	add	the	following
code	into	it:

package	com.packt.webstore.domain;

import	java.io.Serializable;

public	class	Customer	implements	Serializable{

		private	static	final	long	serialVersionUID	=	2284040482222162898L;

		private	String	customerId;

		private	String	name;

		private	Address	billingAddress;

		private	String	phoneNumber;

		public	Customer()	{

				super();

				this.billingAddress	=	new	Address();

		}

		public	Customer(String	customerId,	String	name)	{

				this();

				this.customerId	=	customerId;

				this.name	=	name;

		}

		//	add	getters	and	setters	for	all	the	fields	here.

		//	Override	equals	and	hashCode	based	on	customerId	field.

				//	the	code	for	the	same	is	available	in	the	code	bundle	which	can	

be	downloaded	from	www.packtpub.com/support

}

3.	 Create	one	more	domain	class	named	ShippingDetail	under	the	same	package	and
add	the	following	code	into	it:

package	com.packt.webstore.domain;

import	java.io.Serializable;

import	java.util.Date;

import	org.springframework.format.annotation.DateTimeFormat;

public	class	ShippingDetail	implements	Serializable{

		private	static	final	long	serialVersionUID	=	6350930334140807514L;

		private	String	name;

		@DateTimeFormat(pattern	=	"dd/MM/yyyy")

		private	Date	shippingDate;

		private	Address	shippingAddress;

		public	ShippingDetail()	{

				this.shippingAddress	=	new	Address();

		}

		//	add	getters	and	setters	for	all	the	fields	here.

}

4.	 Similarly,	create	our	final	domain	class	named	Order	under	the	same	package	and
add	the	following	code	into	it:

package	com.packt.webstore.domain;

import	java.io.Serializable;

public	class	Order		implements	Serializable{

		private	static	final	long	serialVersionUID	=	-3560539622417210365L;

		

		private	Long	orderId;

		private	Cart	cart;

		private	Customer	customer;

		private	ShippingDetail	shippingDetail;

		

		public	Order()	{

				this.customer	=	new	Customer();

				this.shippingDetail	=	new	ShippingDetail();

		}

		//	add	getters	and	setters	for	all	the	fields	here.

		//	Override	equals	and	hashCode	based	on	orderId	field.

					//	the	code	for	the	same	is	available	in	the	code	bundle	which	can	

be	downloaded	from	www.packtpub.com/support

}

5.	 Now	make	the	Product,	CartItem,	and	Cart	domain	classes	serializable	by
implementing	the	Serializable	interface	(java.io.Serializable)	for	all	of	these
classes;	we	also	need	to	add	a	serialVersionUID	field	to	each	of	the	earlier
mentioned	classes	as	well.

6.	 Next,	create	an	interface	named	OrderRepository	under	the
com.packt.webstore.domain.repository	package	in	the	source	folder
src/main/java,	and	add	a	single	method	declaration	to	it	as	follows:

Long	saveOrder(Order	order);

7.	 Create	an	implementation	class	called	InMemoryOrderRepositoryImpl	under	the
com.packt.webstore.domain.repository.impl	package	in	the	source	folder
src/main/java	and	add	the	following	code	into	it:

package	com.packt.webstore.domain.repository.impl;

import	java.util.HashMap;

import	java.util.Map;

import	org.springframework.stereotype.Repository;

import	com.packt.webstore.domain.Order;

import	com.packt.webstore.domain.repository.OrderRepository;

@Repository

public	class	InMemoryOrderRepositoryImpl	implements	OrderRepository{

		private	Map<Long,	Order>	listOfOrders;

		private	long	nextOrderId;

		

		public	InMemoryOrderRepositoryImpl()	{

				listOfOrders	=	new	HashMap<Long,	Order>();

				nextOrderId	=	1000;

		}

		public	Long	saveOrder(Order	order)	{

				order.setOrderId(getNextOrderId());

				listOfOrders.put(order.getOrderId(),	order);

				return	order.getOrderId();

		}

		private	synchronized	long	getNextOrderId()	{

				return	nextOrderId++;

		}

}

8.	 Now,	open	the	OrderService	interface	from	the	com.packt.webstore.service
package	in	the	source	folder	src/main/java	and	add	single	method	declarations	to	it
as	follows:

package	com.packt.webstore.domain.repository;

import	com.packt.webstore.domain.Order;

		public	interface	OrderRepository	{

				Long	saveOrder(Order	order);

		}

}

9.	 Next,	open	the	implementation	class	OrderServiceImpl	from	the
com.packt.webstore.service.impl	package	in	the	source	folder	src/main/java
and	add	the	following	two	autowired	references	to	it:

		@Autowired

		private	OrderRepository	orderRepository;

		

		@Autowired

		private	CartService	cartService;

10.	 Now	add	a	method	implementation	for	the	saveOrder	method	as	follows	in	the
OrderServiceImpl	class:

public	Long	saveOrder(Order	order)	{

		Long	orderId	=	orderRepository.saveOrder(order);

		cartService.delete(order.getCart().getCartId());

		return	orderId;

}

11.	 Next,	create	an	exception	class	called	InvalidCartException	under	the
com.packt.webstore.exception	package	in	the	source	folder	src/main/java	and
add	the	following	code	into	it:

package	com.packt.webstore.exception;

public	class	InvalidCartException	extends	RuntimeException	{

		private	static	final	long	serialVersionUID	=	-5192041563033358491L;

		private	String	cartId;

		public	InvalidCartException(String	cartId)	{

				this.cartId	=	cartId;

		}

		public	String	getCartId()	{

				return	cartId;

		}

}

12.	 Now,	open	the	CartService	interface	from	the	com.packt.webstore.service
package	in	the	source	folder	src/main/java	and	add	one	more	method	declaration	to
it	as	follows:

Cart	validate(String	cartId);

13.	 Next,	open	the	implementation	class	CartServiceImpl	from	the	package
com.packt.webstore.service.impl	in	the	source	folder	src/main/java	and	add	a
method	implementation	for	the	validate	method	as	follows:

		public	Cart	validate(String	cartId)	{

				Cart	cart	=	cartRepository.read(cartId);

				if(cart==null	||	cart.getCartItems().size()==0)	{

						throw	new	InvalidCartException(cartId);

				}

				

				return	cart;

		}

What	just	happened?
What	we	have	done	so	far	is	familiar	to	you	I	guess;	we	created	some	domain	classes
(Address,	Customer,	ShippingDetail,	and	Order)	as	well	as	an	OrderRepository
interface	and	its	implementation	class	InMemoryOrderRepositoryImpl	to	store	the
processed	Order	domain	objects.	Finally,	we	also	created	the	corresponding	OrderService
interface	and	its	implementation	class,	namely	OrderServiceImpl.

On	the	surface,	it	looks	as	usual,	but	there	are	some	minute	details	that	need	to	be
explained.	If	you	notice,	all	the	domain	classes	we	created	from	steps	1	to	4	have	just
implemented	the	Serializable	interface;	not	only	that,	we	even	implemented	the
Serializable	interface	for	other	existing	domain	classes	as	well,	such	as	Product,
CartItem,	and	Cart	in	step	5.	This	is	because	later	we	will	use	these	domain	objects	in
Spring	Web	Flow,	and	Spring	Web	Flow	will	store	these	domain	objects	in	a	session	to
manage	the	state	between	page	flows.	Session	data	could	be	saved	into	a	disk	or
transferred	to	another	web	server	during	clustering.	So,	while	bringing	back	the	session
object	from	the	disk,	Spring	Web	Flow	will	deserialize	the	domain	object	(form-backing
bean)	to	maintain	the	state	of	the	page.	That’s	why	it	is	a	must	to	serialize	the	domain
object	/	form	backing	bean.	Spring	Web	Flow	uses	a	term	called	Snapshot	to	mention
these	states	within	a	session.

The	remaining	steps	from	step	6	to	13	are	self-explanatory.	We	created	the
OrderRepository	and	OrderService	interfaces	and	their	corresponding
InMemoryOrderRepositoryImpl	and	OrderServiceImpl	implementations.	The	purpose	of
these	classes	is	to	save	the	Order	domain	object.	The	saveOrder	method	from
OrderServiceImpl	just	deletes	the	corresponding	Cart	object	from	CartRepository	after
successfully	saving	the	order	domain	object.	Now,	we	have	successfully	created	all	the
required	backend	services	and	domain	objects	in	order	to	kick	off	the	configuration	and
definition	of	our	Spring	Web	Flow.

Time	for	action	–	implementing	the
checkout	flow
We	will	now	add	Spring	Web	Flow	support	to	our	project	and	define	the	checkout	flow	for
our	shopping	cart.	Consider	the	following	steps:

1.	 Open	pom.xml;	you	will	find	pom.xml	under	the	root	directory	of	the	project.
2.	 You	will	be	able	to	see	some	tabs	at	the	bottom	of	the	pom.xml	file.	Select	the

Dependencies	tab	and	click	on	the	Add	button	in	the	Dependencies	section.
3.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as

org.springframework.webflow,	Artifact	Id	as	spring-webflow,	Version	as
2.3.3.RELEASE,	select	Scope	as	compile,	and	click	on	the	OK	button	and	save
pom.xml.

4.	 Create	a	directory	structure,	flows/checkout/,	under	the	directory
src/main/webapp/WEB-INF/	and	create	an	XML	file	called	checkout-flow.xml.
Then,	add	the	following	content	into	it	and	save	it:

<?xml	version="1.0"	encoding="UTF-8"?>

<flow	xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow.xsd">

		<var	name="order"	class="com.packt.webstore.domain.Order"	/>

		<action-state	id="addCartToOrder">

				<evaluate	

expression="cartServiceImpl.validate(requestParameters.cartId)"

						result="order.cart"	/>

				<transition	to="InvalidCartWarning"

						on-exception="com.packt.webstore.exception.InvalidCartException"	

/>

				<transition	to="collectCustomerInfo"	/>

		</action-state>

		<view-state	id="collectCustomerInfo"	view="collectCustomerInfo.jsp"	

model="order">

				<transition	on="customerInfoCollected"	to="collectShippingDetail"	

/>

		</view-state>

		<view-state	id="collectShippingDetail"	model="order">

				<transition	on="shippingDetailCollected"	to="orderConfirmation"	/>

				<transition	on="backToCollectCustomerInfo"	to="collectCustomerInfo"	

/>

		</view-state>

		<view-state	id="orderConfirmation">

				<transition	on="orderConfirmed"	to="processOrder"	/>

				<transition	on="backToCollectShippingDetail"	

to="collectShippingDetail"	/>

		</view-state>

		

		<action-state	id="processOrder">

				<evaluate	expression="orderServiceImpl.saveOrder(order)"	

result="order.orderId"/>

				<transition	to="thankCustomer"	/>

		</action-state>

		

		<view-state	id="InvalidCartWarning">

				<transition	to="endState"/>

		</view-state>

		

		<view-state	id="thankCustomer"	model="order">

				<transition	to="endState"/>

		</view-state>

		<end-state	id="endState"/>		

		<end-state	id="cancelCheckout"	view	=	"checkOutCancelled.jsp"/>				

		

		<global-transitions>

				<transition	on	=	"cancel"	to="endState"	/>

		</global-transitions>

</flow>

5.	 Now	open	the	web	application	context	configuration	file	DispatcherServlet-
context.xml	and	add	the	following	web	flow	namespace	attribute	to	the	<beans>	tag
at	the	top:

xmlns:webflow-config="http://www.springframework.org/schema/webflow-

config"

6.	 Append	the	following	schema	location	entry	to	the	existing	xsi:schemaLocation
attribute	of	the	<beans>	tag:

http://www.springframework.org/schema/webflow-config	

http://www.springframework.org/schema/webflow-config/spring-webflow-

config-2.3.xsd

7.	 Now	add	the	following	web	flow	configuration	tags	to	the	web	application	context
configuration	file	(DispatcherServlet-context.xml):

<webflow-config:flow-executor	id="flowExecutor"		flow-

registry="flowRegistry"	/>

<webflow-config:flow-registry	id="flowRegistry"		base-path="/WEB-

INF/flows">

		<webflow-config:flow-location	path="/checkout/checkout-flow.xml"	

id="checkout"/>

</webflow-config:flow-registry>

8.	 Finally,	define	the	beans	for	FlowHandlerMapping	and	FlowHandlerAdapter	in
DispatcherServlet-context.xml	as	follows	and	save	the	file:

<bean	id="flowHandlerMapping"	

class="org.springframework.webflow.mvc.servlet.FlowHandlerMapping">

				<property	name="flowRegistry"	ref="flowRegistry"	/>

		</bean>

<bean	id="flowHandlerAdapter"	

class="org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">

				<property	name="flowExecutor"	ref="flowExecutor"	/>

</bean>

What	just	happened?
From	steps	1	to	3,	we	just	added	the	Spring	Web	Flow	dependency	to	our	project	through
a	Maven	configuration.	It	will	download	and	configure	all	the	required	jars	related	to	web
flow	in	our	project.	In	step	4,	we	created	our	first	flow	definition	file	called	checkout-
flow.xml	under	the	directory	/src/main/webapp/WEB-INF/flows/checkout/.

Spring	Web	Flow	uses	the	flow	definition	file	as	a	basis	to	execute	the	flow.	In	order	to
understand	what	has	been	written	in	this	file,	we	need	to	get	a	clear	idea	about	some	of	the
basic	concepts	of	Spring	Web	Flow.	We	will	learn	about	those	concepts	a	little	bit	and	then
we	will	come	back	to	checkout-flow.xml	to	understand	it.

Understanding	the	flow	definition
A	flow	definition	is	composed	of	a	set	of	states.	Each	state	will	have	a	unique	ID	in	the
flow	definition.	There	are	six	types	of	states	available	in	Spring	Web	Flow:

start-state:	Each	flow	must	have	a	single	start	state	that	helps	in	the	creation	of	the
initial	state	of	the	flow.	Note	that	if	the	start	state	is	not	specified,	the	very	first
defined	state	within	the	flow	definition	file	becomes	the	start	state.
action-state:	A	flow	can	have	many	action	states,	and	an	action	state	executes	a
particular	action.	An	action	normally	involves	interaction	with	backend	services,
such	as	executing	some	methods	in	a	Spring-managed	bean;	Spring	Web	Flow	uses
Spring	Expression	Language	to	interact	with	backend	service	beans.
view-state:	A	view	state	defines	a	logical	view	and	model	to	interact	with	the	end
user.	A	web	flow	can	have	multiple	view	states.	If	the	view	attribute	is	not	specified,
then	the	ID	of	the	view	state	acts	as	the	logical	view	name.
decision-state:	The	decision	state	is	used	to	branch	the	flow;	based	on	the	test
condition,	it	routes	the	transition	to	the	next	possible	state.
subflow-state:	A	subflow	is	an	independent	flow	that	can	be	reused	from	inside
another	flow.	When	an	application	enters	a	subflow,	the	main	flow	is	paused	until	the
concerned	subflow	is	completed.
end-state:	An	end	state	denotes	the	end	of	a	flow’s	execution.	A	web	flow	can	have
multiple	end	states,	and	through	the	view	attribute	of	end-state,	we	can	specify	a
view	that	will	be	rendered	when	the	end	state	is	reached.

We	have	just	learned	that	a	flow	definition	is	composed	of	a	set	of	states,	but	in	order	to
make	a	move	from	one	state	to	another,	we	need	to	define	transitions	in	these	states.	Each
state	in	a	web	flow	(except	for	the	start	and	end	states)	defines	a	number	of	transitions	to
move	from	one	state	to	another.	A	transition	can	be	triggered	by	an	event	that	is	signaled
from	the	state.

Understanding	the	checkout	flow
Okay!	We	just	got	the	minimum	required	introduction	for	Spring	Web	Flow	concepts.
There	are	plenty	of	advanced	concepts	out	there	to	master	in	Spring	Web	Flow;	we	are	not
going	to	look	at	all	of	those	because	that	itself	deserves	a	separate	book.	As	of	now,	it	is
enough	to	understand	the	checkout-flow.xml	flow	definition	file.	However,	before	we	do
this,	we	will	have	a	quick	overview	of	our	checkout	flow.	The	following	diagram	will	give
you	the	overall	idea	of	the	checkout	flow	that	we	have	just	implemented:

Our	checkout	flow	diagram	has	a	start	state	and	an	end	state;	each	rounded	rectangle	in	the
diagram	defines	an	action	state,	and	each	double-line-bordered	rounded	rectangle	defines
a	view	state.	Similarly,	each	arrowed	line	defines	a	transition,	and	the	name	associated
with	it	defines	the	event	that	causes	that	particular	transition.	The	checkout-flow.xml	file
just	contains	the	earlier	mentioned	flow	in	an	XML	representation.

If	you	open	the	checkout-flow.xml	file,	the	first	tag	you	will	encounter	within	the	<flow>
tag	is	the	<var>	tag:

<var	name="order"	class="com.packt.webstore.domain.Order"	/>

The	<var>	tag	creates	a	variable	in	a	flow.	This	variable	will	be	available	to	all	the	states
in	a	flow,	which	means	we	can	reference	and	use	this	variable	inside	any	state	within	the
flow.	In	the	just	mentioned	<var>	tag,	we	created	a	new	instance	of	the	Order	class	and
stored	it	in	a	variable	called	order.

The	next	thing	we	defined	within	the	checkout-flow.xml	file	was	the	<action-state>
definition;	as	already	learned,	action	states	are	normally	used	to	invoke	backend	services.
In	the	following	<action-state>	definition,	we	will	invoke	the	validate	method	of	the
cartServiceImpl	object	and	store	the	result	in	the	order.cart	object:

<action-state	id="addCartToOrder">

		<evaluate	expression	

="cartServiceImpl.validate(requestParameters.cartId)"

		result="order.cart"	/>

		<transition	to="InvalidCartWarning"	on-exception	

="com.packt.webstore.exception.InvalidCartException"	/>

		<transition	to="collectCustomerInfo"	/>

</action-state>

As	already	defined,	the	order	variable	at	the	start	of	the	flow	will	be	available	in	every
state	of	this	flow.	So,	we	have	used	that	variable	(order.cart)	in	the	<evaluate>	tag	to
store	the	result	of	the	evaluated	expression,	namely
cartServiceImpl.validate(requestParameters.cartId).

The	validate	method	of	cartServiceImpl	will	try	to	read	a	cart	object	based	on	the
given	cartId.	If	it	finds	a	valid	cart	object,	then	it	will	return	it;	otherwise,	it	will	throw
InvalidCartException.	In	such	a	case,	we	will	route	the	transition	to	another	state	whose
ID	is	InvalidCartWarning:

<transition	to="InvalidCartWarning"	on-exception	=	

"com.packt.webstore.exception.InvalidCartException"	/>

If	such	an	exception	is	not	thrown	from	the	expression	evaluation,	we	will	naturally	transit
from	the	addCartToOrder	state	to	the	collectCustomerInfo	state,	as	follows:

<transition	to="collectCustomerInfo"	/>

If	you	notice	the	collectCustomerInfo	state,	it	is	nothing	but	a	view	state	in	checkout-
flow.xml.	We	defined	the	view	that	needs	to	be	rendered	via	the	view	attribute	and	the
model	that	needs	to	be	attached	via	the	model	attribute,	as	follows:

<view-state	id="collectCustomerInfo"	view="collectCustomerInfo.jsp"	

model="order">

		<transition	on="customerInfoCollected"	to="collectShippingDetail"	/>

</view-state>

Upon	reaching	this	view	state,	Spring	Web	Flow	will	render	the	collectCustomerInfo
view	and	wait	for	the	user	to	interact.	Once	the	user	enters	the	customer	info	details	and
presses	the	submit	button,	it	will	resume	its	transition	to	the	collectShippingDetail
view	state.	As	already	learned,	a	transition	can	be	triggered	via	an	event,	so	here	the
transition	to	the	collectShippingDetail	state	would	get	triggered	when	the
customerInfoCollected	event	is	triggered.	But	how	do	you	fire	this	event
(customerInfoCollected)	from	the	view?	We	will	see	this	later	in	the	chapter.	Consider
the	following	code	snippet:

<transition	on="customerInfoCollected"	to="collectShippingDetail"	/>

The	next	state	defined	within	the	checkout	flow	is	collectShippingDetail.	Again,	this	is
also	a	view	state,	and	it	has	two	transitions	back	and	forth;	one	is	to	go	back	to	the
collectCustomerInfo	state	and	the	next	is	to	go	forward	to	the	orderConfirmation	state,
as	shown	as	follows:

<view-state	id="collectShippingDetail"	model="order">

		<transition	on="shippingDetailCollected"	to="orderConfirmation"	/>

		<transition	on="backToCollectCustomerInfo"	to="collectCustomerInfo"	/>

</view-state>

Note	here	that	we	haven’t	mentioned	the	view	attribute	in	the	collectShippingDetail
state;	in	this	case,	Spring	Web	Flow	would	consider	the	ID	of	the	view	state	as	its	view
name.

The	orderConfirmation	state	definition	doesn’t	need	much	explanation;	it	is	more	like
the	collectShippingDetail	view	state	where	we	furnish	all	the	order-related	details	and
then	ask	the	user	to	confirm.	Upon	confirmation,	we	move	to	the	next	state,	that	is,
processOrder:

<view-state	id="orderConfirmation">

		<transition	on="orderConfirmed"	to="processOrder"	/>

		<transition	on="backToCollectShippingDetail"	to	=	"collectShippingDetail"	

/>

</view-state>

Next,	the	processOrder	state	is	an	action	state	that	interacts	with	the	orderServiceImpl
object	to	save	the	order	object.	Upon	successfully	saving	the	order	object,	it	stores	the
order	ID	in	the	flow	variable	(order.orderId)	and	transits	it	to	the	next	state,	which	is
thankCustomer:

<action-state	id="processOrder">

		<evaluate	expression="orderServiceImpl.saveOrder(order)"	

result="order.orderId"/>

		<transition	to="thankCustomer"	/>

</action-state>

The	thankCustomer	state	is	a	view	state	that	simply	shows	a	thank	you	message	with	the
confirmed	order	ID	to	the	end	user	and	transits	it	to	the	end	state,	as	follows:

<view-state	id="thankCustomer"	model="order">

		<transition	to="endState"/>

</view-state>

In	our	checkout	flow,	we	have	two	end	states:	one	is	the	normal	end	state	where	the	flow
execution	arrives	naturally	after	the	flow	ends,	and	the	other	one	is	the	end	state	that	is
reached	when	the	user	presses	the	cancel	button	in	any	one	of	the	views.	Consider	the
following	code	snippet:

<end-state	id="endState"/>

<end-state	id="cancelCheckout"	view="checkOutCancelled.jsp"/>

Note	that	in	the	cancelCheckout	end	state,	we	specified	the	name	of	the	landing	page	via

the	view	attribute,	and	the	transition	to	the	cancelCheckout	end	state	happened	through
the	global-transitions	configuration:

<global-transitions>

		<transition	on	=	"cancel"	to="cancelCheckout"	/>

</global-transitions>

A	global	transition	is	for	sharing	some	common	transitions	between	states.	Instead	of
repeating	the	transition	definition	every	time	within	the	state	definition,	we	can	define
them	within	one	global	transition	so	that	that	transition	will	be	available	implicitly	for
every	state	in	the	flow.	In	our	case,	the	end	user	may	cancel	the	checkout	process	in	any
state;	this	is	why	we	defined	the	transition	to	the	cancelCheckout	state	in	global-
transitions.

We	have	totally	understood	the	checkout	flow	definition	(checkout-flow.xml).	Now	our
Spring	MVC	should	read	this	file	during	the	boot	up	of	our	application	so	that	it	can	be
ready	to	dispatch	any	flow-related	requests	to	the	Spring	Web	Flow	framework.	We	will
be	able	to	do	this	via	some	web	flow	configuration	tags	in	the	web	application	context
(DispatcherServlet-context.xml)	as	mentioned	in	steps	5	to	8.

In	steps	5	and	6,	we	added	the	required	webflow-config	namespace	and	schema	location
in	DispatcherServlet-context.xml.	In	step	7,	we	created	flow-executor	and	flow-
registry.	As	the	name	implies,	flow-executor	executes	a	flow	based	on	the	given	flow
definition.	The	flow-executor	configuration	tag	gets	its	flow	definition	from	flow-
registry.	We	can	configure	as	many	flow	definitions	as	we	want	in	flow-registry.	A
flow-registry	configuration	tag	is	a	collection	of	flow	definitions.	When	a	user	enters	a
flow,	the	flow	executor	creates	and	launches	an	exclusive	flow	instance	for	that	user	based
on	the	flow	definition:

<webflow-config:flow-executor	id="flowExecutor"		flow-

registry="flowRegistry"	/>

<webflow-config:flow-registry	id="flowRegistry"		base-path="/WEB-

INF/flows">

		<webflow-config:flow-location	path="/checkout/checkout-flow.xml"	

id="checkout"/>

</webflow-config:flow-registry>

In	the	preceding	web	flow	configuration,	we	created	flow-registry	whose	base-path	is
/WEB-INF/flows,	so	we	need	to	put	all	our	flow	definitions	under	the	/WEB-INF/flows
directory	in	order	to	be	picked	up	by	flow-registry.	That’s	why,	in	step	4,	we	created	our
checkout-flow.xml	file	under	the	directory	src/main/webapp/WEB-
INF/flows/checkout/.	As	already	mentioned,	flow-registry	can	have	many	flow
definitions,	and	each	flow	definition	is	identified	by	its	ID	within	flow-registry.	In	our
case,	we	added	a	single	flow	definition	whose	ID	is	checkout	and	whose	relative	location
is	/checkout/checkout-flow.xml.	Remember	that	the	path	attribute	of	a	<webflow-
config:flow-location>	tag	is	relative	to	the	base-path	attribute	of	the	<webflow-
config:flow-registry>	tag.

One	important	thing	to	understand	before	we	wind	up	the	web	flow	configuration	is	that

the	ID	of	a	flow	definition	forms	the	relative	URL	to	invoke	the	flow.	By	this,	what	I	mean
is	that	in	order	to	invoke	the	flow	of	our	checkout	via	a	web	request,	we	need	to	fire	a	GET
request	to	the	URL	http://localhost:8080/webstore/checkout	because	our	flow	ID	is
checkout.	Moreover,	in	our	flow	definition	(checkout-flow.xml),	we	haven’t	configured
any	start	state,	so	the	first	state	definition	(the	addCartToOrder	action	state)	will	become
the	start	state;	also,	the	addCartToOrder	action	state	expecting	cartId	should	be	present
in	the	request	parameter	of	the	invoking	URL,	which	is	shown	as	follows:

<action-state	id="addCartToOrder">

		<evaluate	expression	=	

"cartServiceImpl.validate(requestParameters.cartId)"	result="order.cart"	/>

		<transition	to="InvalidCartWarning"		on-

exception="com.packt.webstore.exception.InvalidCartException"	/>

		<transition	to="collectCustomerInfo"	/>

</action-state>

So,	the	actual	URL	that	can	invoke	this	flow	would	be	something	similar	to
http://localhost:8080/webstore/checkout?	cartId=55AD1472D4EC,	where	the	part
after	the	question	mark	(cartId=55AD1472D4EC)	is	considered	as	a	request	parameter.

It	is	good	that	we	have	defined	our	checkout	flow	and	configured	it	with	Spring	Web
Flow;	however,	we	need	to	define	two	more	beans	in	our	web	application	context
(DispatcherServlet-context.xml)	to	dispatch	all	flow-invoking	requests	to	flow-
executor.	We	did	this	in	step	8:

<bean	id="flowHandlerMapping"	class=	

"org.springframework.webflow.mvc.servlet.FlowHandlerMapping">

		<property	name="flowRegistry"	ref="flowRegistry"	/>

</bean>

<bean	id="flowHandlerAdapter"	class=	

"org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">

		<property	name="flowExecutor"	ref="flowExecutor"	/>

</bean>

The	flowHandlerMapping	parameter	creates	and	configures	a	handler	mapping	based	on
the	flow	ID	for	each	defined	flow	from	flowRegistry.	The	flowHandlerAdapter	acts	as	a
bridge	between	the	dispatcher	servlet	and	Spring	Web	Flow	in	order	to	execute	the
instances	of	the	flow.

Pop	quiz	–	web	flow
Q1.	Consider	the	following	web	flow	registry	configuration;	it	has	a	single	flow	definition
file.	How	will	you	form	the	URL	to	invoke	the	flow?

<webflow-config:flow-registry	id="flowRegistry"		base-path="/WEB-

INF/flows">

		<webflow-config:flow-location	path="/customer/validate.xml"	

id="validateCustomer"/>

</webflow-config:flow-registry>

1.	 http://localhost:8080/webstore/customer/validate
2.	 http://localhost:8080/webstore/validate
3.	 http://localhost:8080/webstore/validateCustomer

Q2.	Consider	this	flow-invoking	URL:	http://localhost:8080/webstore/validate?
customerId=C1234.	In	a	flow	definition	file,	how	will	you	retrieve	the	customerId	HTTP
request	parameter?

1.	 <evaluate	expression	=	"requestParameters.customerId	"	result	=
"customerId"	/>

2.	 <evaluate	expression	=	"requestParameters(customerId)"	result	=
"customerId"	/>

3.	 <evaluate	expression	=	"requestParameters[customerId]"	result	=
"customerId"	/>

Time	for	action	–	creating	views	for	every
view	state
We	have	done	everything	to	roll	out	our	checkout	flow,	but	one	last	thing	is	pending,	that
is,	creating	all	the	views	that	need	to	be	used	in	the	view	states	of	our	checkout	flow.	In
total,	we	have	six	view	states	in	our	flow	definition	(collectCustomerInfo,
collectShippingDetail,	orderConfirmation,	InvalidCartWarning,	thankCustomer,
and	cancelCheckout),	so	we	need	to	create	six	JSP	files.	Let’s	create	all	of	them:

1.	 Create	a	JSP	view	file	called	collectCustomerInfo.jsp	under	the	directory
src/main/webapp/WEB-INF/flows/checkout/,	and	add	the	following	code	snippet
into	it	and	save	it.	In	the	following	code	snippet,	I	have	skipped	the	<input>	tags	for
some	of	the	fields	of	the	Customer	domain	object.	You	can	find	the	complete	code	for
collectCustomerInfo.jsp	in	the	code	bundle	of	this	book,	which	can	be
downloaded	from	www.packtpub.com/support.	Consider	the	following	code	snippet:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="form"	

uri="http://www.springframework.org/tags/form"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset="utf-

8">

				<link	rel="stylesheet"

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

				<title>Customer</title>

		</head>

		<body>

				<section>

						<div	class="jumbotron">

								<div	class="container">

										<h1>Customer</h1>

										<p>Customer	details</p>

								</div>

						</div>

				</section>

				<section	class="container">

						<form:form	modelAttribute="order.customer"	class="form-

horizontal">

								<fieldset>

										<legend>Customer	Details</legend>

										<div	class="form-group">

												<label	class="control-label	col-lg-2	col-lg-2"	

for="customerId"	/>Customer	Id</label>

												<div	class="col-lg-10">

														<form:input	id="customerId"	path="customerId"	type="text"	

class="form:input-large"	/>

												</div>

http://www.packtpub.com/support

										</div>

<!--		Similarly,	add	input	tags	for	the	remaining	fields	of	the	

customer	domain	object.	I	have	skipped	those	tags	here	-->

										<input	type="hidden"	name="_flowExecutionKey"	

value="${flowExecutionKey}"/>

										<div	class="form-group">

												<div	class="col-lg-offset-2	col-lg-10">

														<input	type="submit"	id="btnAdd"	class="btn	btn-primary"		

value="Add"	name="_eventId_customerInfoCollected"	/>

														<button	id="btnCancel"	class="btn	btn-default"	

name="_eventId_cancel">Cancel</button>

												</div>

										</div>

								</fieldset>

						</form:form>

				</section>

		</body>

</html>

2.	 Similarly,	create	one	more	JSP	view	file	called	collectShippingDetail.jsp	under
the	same	directory,	and	add	the	following	code	snippet	into	it	and	save	it.	In	the
following	code	snippet,	I	have	skipped	the	<input>	tags	for	some	of	the	fields	of	the
Address	(shippingAddress)	domain	object.	You	can	find	the	complete	code	for
collectShippingDetail.jsp	in	the	code	bundle	of	this	book,	which	can	be
downloaded	from	www.packtpub.com/support.	Consider	the	following	code	snippet:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="form"	

uri="http://www.springframework.org/tags/form"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset="utf-

8">

				<link	rel="stylesheet"

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

				<title>Customer</title>

		</head>

		<body>

				<section>

						<div	class="jumbotron">

								<div	class="container">

										<h1>Shipping</h1>

										<p>Shipping	details</p>

								</div>

						</div>

				</section>

				<section	class="container">

						<form:form	modelAttribute="order.shippingDetail"	class="form-

horizontal">

http://www.packtpub.com/support

								<fieldset>

										<legend>Shipping	Details</legend>

										<div	class="form-group">

												<label	class="control-label	col-lg-2	col-lg-2"	for="name"	

/>Name</label>

												<div	class="col-lg-10">

														<form:input	id="name"	path="name"	type="text"	

class="form:input-large"	/>

												</div>

										</div>

										<div	class="form-group">

												<label	class="control-label	col-lg-2	col-lg-2"	

for="shippingDate"	/>shipping	Date	(dd/mm/yyyy)</label>

												<div	class="col-lg-10">

														<form:input	id="shippingDate"	path="shippingDate"	

type="text"	class="form:input-large"	/>

												</div>

										</div>

										<div	class="form-group">

												<label	class="control-label	col-lg-2"	for="doorNo">Door	

No</label>

												<div	class="col-lg-10">

														<form:input	id="doorNo"	path="shippingAddress.doorNo"	

type="text"

																class="form:input-large"	/>

												</div>

										</div>

<!--		Similarly,	add	input	tags	for	the	remaining	fields	of	the	

shippingAddress	domain	object.	I	have	skipped	those	tags	here	-->

										<input	type="hidden"	name="_flowExecutionKey"	

value="${flowExecutionKey}"/>

										<div	class="form-group">

												<div	class="col-lg-offset-2	col-lg-10">

														<button	id="back"	class="btn	btn-default"	

name="_eventId_backToCollectCustomerInfo">back</button>

														<input	type="submit"	id="btnAdd"	class="btn	btn-primary"

																value="Add"		name="_eventId_shippingDetailCollected"/>

														<button	id="btnCancel"	class="btn	btn-default"	

name="_eventId_cancel">Cancel</button>

												</div>

										</div>

								</fieldset>

						</form:form>

				</section>

		</body>

</html>

3.	 Also,	create	one	more	JSP	view	file	called	orderConfirmation.jsp	to	confirm	the
order	from	the	user	under	the	same	directory,	and	add	the	following	code	snippet	into

it	and	save	it.	In	the	following	code	snippet,	I	have	skipped	the	<input>	tags	for	some
of	the	fields	of	the	Order	domain	object.	You	can	find	the	complete	code	for
orderConfirmation.jsp	in	the	code	bundle	of	this	book,	which	can	be	downloaded
from	www.packtpub.com/support.	Consider	the	following	code	snippet:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="form"	

uri="http://www.springframework.org/tags/form"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

<%@	taglib	prefix="fmt"	uri="http://java.sun.com/jsp/jstl/fmt"%>

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset="utf-

8">

				<link	rel="stylesheet"

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

				<title>Order	Confirmation</title>

		</head>

		<body>

				<section>

						<div	class="jumbotron">

								<div	class="container">

										<h1>Order</h1>

										<p>Order	Confirmation</p>

								</div>

						</div>

				</section>

				<div	class="container">

						<div	class="row">

								<form:form	modelAttribute="order"	class="form-horizontal">

										<input	type="hidden"	name="_flowExecutionKey"

												value="${flowExecutionKey}"	/>

										<div	class="well	col-xs-10	col-sm-10	col-md-6	col-xs-offset-1	

col-sm-offset-1	col-md-offset-3">

												<div	class="text-center">

														<h1>Receipt</h1>

												</div>

												<div	class="row">

														<div	class="col-xs-6	col-sm-6	col-md-6">

																<address>

																		Shipping	Address	

																		${order.shippingDetail.name}

<!--		Similarly,	furnish	every	field	of	the	order	object	within	an	html	

table	using	expression	notation	"${}".	I	have	skipped	those	tags	here	-

->

														<button	id="back"	class="btn	btn-default"

name="_eventId_backToCollectShippingDetail">back</button>

http://www.packtpub.com/support

														<button	type="submit"	class="btn	btn-success"

																name="_eventId_orderConfirmed">

																Confirm			<span	class="glyphicon	glyphicon-chevron-

right">

														</button>

														<button	id="btnCancel"	class="btn	btn-default"

																name="_eventId_cancel">Cancel</button>

												</div>

										</div>

								</form:form>

						</div>

				</div>

		</body>

</html>

4.	 Next,	we	need	to	create	another	JSP	view	file	called	InvalidCartWarning.jsp	to
show	an	error	message	in	the	case	of	an	empty	cart	checkout;	add	the	following	code
snippet	to	InvalidCartWarning.jsp	and	save	it:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>		

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset="utf-

8">

				<link	rel="stylesheet"	

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

				<title>Invalid	cart	</title>

		</head>

		<body>

				<section>

						<div	class="jumbotron">

								<div	class="container">

										<h1	class="alert	alert-danger">	Invalid	Cart</h1>

								</div>

						</div>

				</section>

				<section>

						<div	class="container">

								<p>

										<a	href="<spring:url	value="/products"	/>"	class="btn	btn-

primary">

													

products

										

								</p>

						</div>

				</section>

		</body>

</html>

5.	 To	thank	the	customer	after	a	successful	checkout	flow,	we	need	to	create	one	more
JSP	view	file	called	thankCustomer.jsp	as	follows:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>		

<%@	taglib	prefix="fmt"	uri="http://java.sun.com/jsp/jstl/fmt"%>

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset="utf-

8">

				<link	rel="stylesheet"	

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

				<title>Invalid	cart	</title>

		</head>

		<body>

				<section>

						<div	class="jumbotron">

								<div	class="container">

										<h1	class="alert	alert-danger">	Thank	you</h1>

										<p>Thanks	for	the	order.	your	order	will	be	delivered	to	you	

on	

										<fmt:formatDate	type="date"		

value="${order.shippingDetail.shippingDate}"	/>!</p>

										<p>Your	Order	Number	is	${order.orderId}</p>

								</div>

						</div>

				</section>

				<section>

						<div	class="container">

								<p>

										<a	href="<spring:url	value="/products"	/>"	class="btn	btn-

primary">

													

products

										

								</p>

						</div>

				</section>

		</body>

</html>

6.	 If	the	user	cancels	the	checkout	in	any	of	the	views,	we	need	to	show	the	checkout
cancelled	message;	for	that,	we	need	to	have	a	JSP	file	called
checkOutCancelled.jsp	as	follows:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"	%>		

<html>

		<head>

				<meta	http-equiv="Content-Type"	content="text/html;	charset="utf-

8">

				<link	rel="stylesheet"	

href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

				<title>Invalid	cart	</title>

		</head>

		<body>

				<section>

						<div	class="jumbotron">

								<div	class="container">

										<h1	class="alert	alert-danger">check	out	cancelled</h1>

										<p>Your	Check	out	process	cancelled!	you	may	continue	

shopping..</p>

								</div>

						</div>

				</section>

				<section>

						<div	class="container">

								<p>

										<a	href="<spring:url	value="/products"	/>"	class="btn	btn-

primary">

													

products

										

								</p>

						</div>

						

				</section>

		</body>

</html>

7.	 As	the	last	step,	open	cart.jsp	from	src\main\webapp\WEB-INF\views\	and	assign
the	<spring:url	value="/checkout?cartId=${cartId}"/>	value	for	the	href
attribute	of	the	checkout	link	as	follows:

<a	href=	"<spring:url	value="/checkout?cartId=${cartId}"/>"	class="btn	

btn-success	pull-right">	<span

class="glyphicon-shopping-cart	glyphicon">	Check	out

8.	 Now	run	the	application	and	enter	the	http://localhost:8080/webstore/products
URL.	Next,	click	on	the	Details	button	of	any	of	the	products	and	click	on	the	Order
Now	button	on	the	product	details	page	to	add	products	to	the	shopping	cart.	Now	go
to	the	cart	page	by	clicking	on	the	View	Cart	button;	you	will	be	able	to	see	the
Checkout	button	on	that	page.	Click	on	the	Checkout	button;	you	will	be	able	to	see
a	web	page	as	follows	for	collecting	customer	info:

Customer	details	collection	form

9.	 After	furnishing	all	the	customer	details,	if	you	click	on	the	Add	button,	Spring	Web
Flow	will	take	you	to	the	next	view	state,	which	is	collecting	the	shipping	details	and
so	on	up	to	confirming	the	order.	Upon	confirming	the	order,	Spring	Web	Flow	will
show	you	the	thank	you	message	view	as	the	end	state.

What	just	happened?
What	we	have	done	from	step	1	to	6	is	kind	of	similar,	that	is,	creating	the	JSP	view	files
for	each	view	state.	If	you	remember,	we	defined	the	model	attribute	for	each	view	state	in
checkout-flow.xml.	Consider	the	following	code	snippet:

<view-state	id="collectCustomerInfo"	view="collectCustomerInfo.jsp"	

model="order">

		<transition	on="customerInfoCollected"	to="collectShippingDetail"	/>

</view-state>

This	model	object	will	get	bound	to	the	view	via	modelAttribute	of	the	<form:form>	tag
as	follows:

<form:form	modelAttribute="order.customer"	class="form-horizontal">

		<fieldset>

				<legend>Customer	Details</legend>

				<div	class="form-group">

						<label	class="control-label	col-lg-2	col-lg-2"	for="customerId"	

/>Customer	Id</label>

						<div	class="col-lg-10">

								<form:input	id="customerId"	path="customerId"	type="text"	

class="form:input-large"	/>

						</div>

				</div>

In	the	preceding	snippet	of	collectCustomerInfo.jsp,	you	can	notice	that	we	bounded
the	<form:input>	tag	with	the	customerId	field	of	the	customer	object,	which	comes
from	the	model	object	(order.customer).	Similarly,	we	bounded	the	shippingDetail	and
order	objects	with	collectShippingDetail.jsp	and	orderConfirmation.jsp
respectively.

It’s	good	that	we	bounded	the	Order,	Customer,	and	ShippingDetail	objects	with	the
views,	but	what	will	happen	after	we	click	on	the	submit	button	in	each	view,	or	say	the
the	cancel	or	back	buttons.	To	know	the	answer,	we	need	to	investigate	the	following	code
snippet	from	collectCustomerInfo.jsp:

<input	type="submit"	id="btnAdd"	class="btn	btn-primary"	value="Add"	

name="_eventId_customerInfoCollected"	/>

On	the	surface,	the	<input>	tag	we	just	mentioned	acts	as	a	submit	button,	but	the	real
difference	comes	from	the	name	attribute	(name="_eventId_customerInfoCollected").
We	have	assigned	the	value	_eventId_customerInfoCollected	to	the	name	attribute	of
the	<input>	tag	with	a	purpose.	The	purpose	is	to	instruct	Spring	Web	Flow	to	raise	an
event	once	this	form	is	submitted.	When	submitting	this	form,	Spring	Web	Flow	will	raise
an	event	based	on	the	name	attribute.	Since	we	have	assigned	a	value	with	the	_eventId_
prefix	(_eventId_customerInfoCollected),	Spring	Web	Flow	could	recognize	it	as	an
event	name	and	raise	an	event	with	the	name	customerInfoCollected.

As	already	learned,	transition	from	one	state	to	another	happens	with	the	help	of	events.
So,	upon	submitting	the	collectCustomerInfo	form,	Spring	Web	Flow	will	take	us	to	the

next	view	state,	that	is,	collectShippingDetail:

<view-state	id="collectCustomerInfo"	view="collectCustomerInfo.jsp"	

model="order">

		<transition	on="customerInfoCollected"	to="collectShippingDetail"	/>

</view-state>

Similarly,	we	can	raise	events	while	clicking	on	the	cancel	or	back	buttons;	see	the
following	code	snippet	from	collectShippingDetail.jsp:

<button	id="back"	class="btn	btn-default"	

name="_eventId_backToCollectCustomerInfo">back</button>

<button	id="btnCancel"	class="btn	btn-default"	

name="_eventId_cancel">Cancel</button>

Okay!	So	we	understand	how	to	raise	Spring	Web	Flow	events	from	the	view	to	direct	the
transition	from	one	view	state	to	another.	However,	we	need	to	understand	one	more
important	concept	regarding	the	Spring	Web	Flow	execution,	that	is,	each	flow	execution
is	identified	by	the	flow	execution	key	at	runtime.	During	the	flow	execution,	when	a	view
state	is	entered,	the	flow	execution	pauses	and	waits	for	the	user	to	perform	an	action
(such	as	entering	some	data	in	the	form).	When	the	user	submits	the	form	or	chooses	to
cancel	it,	the	flow	execution	key	is	also	sent	along	with	the	form	data	in	order	to	resume
the	flow	where	it	left	off.	This	is	done	with	the	help	of	the	hidden	<input>	tag	as	follows:

<input	type="hidden"	name="_flowExecutionKey"	value="${flowExecutionKey}"/>

If	you	look	carefully,	we	have	the	earlier	mentioned	tag	in	every	flow-related	view	file
such	as	collectCustomerInfo.jsp,	collectShippingDetail.jsp,	and	so	on.	Spring	Web
Flow	will	store	a	unique	flow	execution	key	under	the	model	attribute	name
flowExecutionKey	in	every	flow-related	view;	we	need	to	store	this	value	in	the	form	of	a
variable	called	_flowExecutionKey	in	order	to	get	identified	by	Spring	Web	Flow.

So	that’s	all	about	view	files	that	are	associated	with	the	definition	of	our	checkout	flow.
However,	we	need	to	invoke	the	flow	upon	clicking	the	checkout	button	from	the	cart
page.	As	we	have	already	learned	how	to	invoke	our	checkout	flow,	we	need	to	fire	a	web
request	with	the	cart	ID	as	a	request	parameter.	In	step	7,	we	changed	the	href	attribute	of
the	checkout	link	as	follows	to	form	a	request	URL	that	is	something	similar	to
http://localhost:8080/webstore/checkout?cartId=55AD1472D4EC.

So,	now	if	you	click	on	the	checkout	button	after	selecting	some	products	into	the
shopping	cart,	you	will	be	able	to	initiate	the	checkout	flow.	The	following	is	the	order
confirmation	page	that	will	appear	as	the	outcome	of	reaching	the	orderConfirmation
state:

Order	confirmation	page

Have	a	go	hero	–	adding	a	decision	state
Although	we	have	finished	with	our	checkout	flow,	there	is	still	some	room	to	improve	the
flow.	Every	time	the	checkout	flow	starts,	it	collects	the	customer’s	details.	What	if	a
returning	customer	places	an	order?	Probably,	he/she	may	not	like	to	provide	customer
details	repeatedly	every	time.	However,	you	can	autofill	details,	thereby	picking	up
customer	details	from	existing	records.	Here	are	some	of	the	improvements	you	can
introduce	to	avoid	collecting	customer	details	in	the	case	of	regular	customers:

Create	a	customer	repository	and	service	layer	to	store,	retrieve,	and	find	customer
objects.	Probably,	you	can	have	methods	such	as	the	following	in	your
CustomerRepositoy	and	CustomerService	interfaces	and	in	their	corresponding
implementation	classes:

public	void	saveCustomer(Customer	customer)

public	Customer	getCustomer(String	customerId)

public	Boolean	isCustomerExist(String	customerId)

Define	a	view	state	in	checkout-flow.xml	to	collect	the	customer	ID.	Don’t	forget	to
create	the	corresponding	JSP	view	file	to	collect	the	customer	ID.
Define	a	decision	state	in	checkout-flow.xml	to	check	whether	a	customer	exists	in
CustomerRepositoy	through	CustomerService.	Based	on	the	retuning	Boolean
value,	direct	the	transition	to	collect	the	customer	details	view	state	or	prefill	the
order.customer	object	from	CustomerRepositoy.	The	following	is	a	sample
decision	state:

<decision-stateid="checkCustomerExist">

<if	test="customerServiceImpl.isCustomerExist(order.customer.	

customerId)"

then="	collectShippingDetail"

else="	collectCustomerInfo"/>

</decision-state>

After	collecting	customer	details,	don’t	forget	to	store	the	information	in
CustomerRepositoy	through	an	action	state.	Similarly,	fill	the	order.customer
object	after	the	decision	state.

Enhancing	reusability	through	Apache
Tiles
In	the	past,	we	developed	a	series	of	web	pages	(views),	such	as	a	page	to	show	products,
another	page	to	add	products,	and	so	on,	as	part	of	our	webstore	application;	though	every
view	serves	a	different	purpose,	all	of	them	share	a	common	visual	pattern,	for	example,
each	page	has	a	header,	content	area,	and	so	on.	We	have	hardcoded	and	repeated	those
common	elements	in	every	JSP	view	page.	This	is	not	a	good	idea	because	in	future,	if	we
want	to	change	the	look	and	feel	of	any	of	these	common	elements,	we	will	have	to
change	every	page	in	order	to	maintain	a	consistent	look	and	feel	across	all	the	web	pages.

To	address	this	problem,	modern	web	applications	use	template	mechanisms;	Apache
Tiles	is	one	such	template	composition	framework.	Tiles	allow	developers	to	define
reusable	page	fragments	(tiles)	that	can	be	assembled	into	a	complete	web	page	at	runtime.
These	fragments	can	have	parameters	to	allow	dynamic	content.	This	increases	the
reusability	of	templates	and	reduces	code	duplication.

Time	for	action	–	creating	views	for	every
view	state
Enough	of	introduction;	let’s	dive	into	Apache	Tiles	by	defining	a	common	layout	for	our
web	application	and	let	the	pages	extend	the	layout:

1.	 Open	pom.xml;	you	will	find	pom.xml	under	the	project	root	directory.
2.	 You	will	be	able	to	see	some	bottom	tabs	under	pom.xml;	select	the	Dependencies	tab

and	click	on	the	Add	button	of	the	Dependencies	section.
3.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as	org.apache.tiles,

Artifact	Id	as	tiles-extras,	and	Version	as	3.0.3.	Then,	select	Scope	as	compile,
click	on	the	OK	button,	and	save	pom.xml.

4.	 Similarly,	add	one	more	dependency	with	Group	Id	as	org.slf4j,	Artifact	Id	as
slf4j-api,	and	Version	as	1.7.5.	Then,	select	Scope	as	compile,	click	on	the	OK
button,	and	save	pom.xml.

5.	 Now	create	a	directory	structure,	tiles/definitions/,	under	the	directory
src/main/webapp/WEB-INF/;	then,	create	an	XML	file	called	tile-definition.xml,
add	the	following	content	into	it,	and	save	it.	In	the	following	code	snippet,	I	have
skipped	the	<definition>	tags	for	some	of	the	fields	of	logical	view	names.	You	can
find	the	complete	code	for	definition.xml	in	the	code	bundle	of	this	book,	which
can	be	downloaded	from	www.packtpub.com/support:

<?xml	version="1.0"	encoding="UTF-8"	?>

<!DOCTYPE	tiles-definitions	PUBLIC	"-//Apache	Software	Foundation//DTD	

Tiles	Configuration	3.0//EN"	

		"http://tiles.apache.org/dtds/tiles-config_3_0.dtd">

<tiles-definitions>

		

		<definition	name="baseLayout"	template="/WEB-

INF/tiles/template/baseLayout.jsp">

				<put-attribute	name="title"	value="Sample	Title"	/>

				<put-attribute	name="heading"	value=""	/>

				<put-attribute	name="tagline"	value=""	/>

				<put-attribute	name="navigation"	value="/WEB-

INF/tiles/template/navigation.jsp"	/>

				<put-attribute	name="content"	value=""	/>

				<put-attribute	name="footer"	value="/WEB-

INF/tiles/template/footer.jsp"	/>

		</definition>

		

		<definition	name="welcome"	extends="baseLayout">

				<put-attribute	name="title"	value="Products"	/>

				<put-attribute	name="heading"	value="Products"	/>

				<put-attribute	name="tagline"	value="Available	Products"	/>

				<put-attribute	name="content"	value="/WEB-INF/views/products.jsp"	

/>

		</definition>

		

		<definition	name="products"	extends="baseLayout">

http://www.packtpub.com/support

				<put-attribute	name="title"	value="Products"	/>

				<put-attribute	name="heading"	value="Products"	/>

				<put-attribute	name="tagline"	value="Available	Products"	/>

				<put-attribute	name="content"	value="/WEB-INF/views/products.jsp"	

/>

		</definition>

		

		<definition	name="product"	extends="baseLayout">

				<put-attribute	name="title"	value="Product"	/>

				<put-attribute	name="heading"	value="Products"	/>

				<put-attribute	name="tagline"	value="Product"	/>

				<put-attribute	name="content"	value="/WEB-INF/views/product.jsp"	/>

		</definition>

		

		

		<!—similarly,	add	definition	tags	for	every	logical	view	name.	I	have	

skipped	this	here,	but	you	can	find	the	full	definition	file	in	the	

code	bundle	of	this	book.-->

</tiles-definitions>

6.	 Now	create	a	directory	called	template	under	the	directory	src/main/webapp/WEB-
INF/tiles/;	then,	create	a	JSP	file	called	baseLayout.jsp,	add	the	following	content
into	it,	and	save	it:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

<%@	taglib	prefix="tiles"	uri="http://tiles.apache.org/tags-tiles"%>

<!DOCTYPE	html>

<html	lang="en">

		<head>

				<meta	charset="utf-8">

				<meta	http-equiv="X-UA-Compatible"	content="IE=edge">

				<meta	name="viewport"	content="width=device-width,	initial-

scale=1.0">

				<title><tiles:insertAttribute	name="title"	/></title>

				<link	href="http://getbootstrap.com/dist/css/bootstrap.css"		

rel="stylesheet">

				<link	

href="http://getbootstrap.com/examples/jumbotron/jumbotron.css"		

rel="stylesheet">

		</head>

		<body>

				<div	class="container">

						<div	class="header">

								<ul	class="nav	nav-pills	pull-right">

										<tiles:insertAttribute	name="navigation"	/>

								

								<h3	class="text-muted">Web	Store</h3>

						</div>

						<div	class="jumbotron">

								<h1>

										<tiles:insertAttribute	name="heading"	/>

								</h1>

								<p>

										<tiles:insertAttribute	name="tagline"	/>

								</p>

						</div>

						<div	class="row">

								<tiles:insertAttribute	name="content"	/>

						</div>

						<div	class="footer">

								<tiles:insertAttribute	name="footer"	/>

						</div>

				</div>

		</body>

</html>

7.	 Under	the	same	directory	(template),	create	another	template	JSP	file	called
navigation.jsp	and	add	the	following	content	into	it:

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

<a	href="<spring:url	value="/products"/>">Home

<a	href="<spring:URL	value="/products/"/>">Products

<a	href="<spring:url	value="/products/add"/>">Add	Product

<a	href="<spring:url	value="/cart/"/>">Cart

8.	 Similarly,	create	one	last	template	JSP	file	called	footer.jsp	and	add	the	following
content	to	it:

<p>©	Company	2014</p>

9.	 We	have	created	the	common	base	layout	template	and	the	tile	definition	for	all	our
pages.	Now	we	need	to	remove	the	common	page	elements	from	all	our	JSP	view
files.	For	example,	if	you	remove	the	jumbotron	section	from	products.jsp	and
keep	only	the	container	section,	it	would	look	like	the	following.	Note	that	you
should	not	remove	the	taglib	references	and	link	references	to	JavaScript	files:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

<section	class="container">

		<div	class="row">

				<c:forEach	var="product"	items="${products}">

						<div	class="col-sm-6	col-md-3"	style="padding-bottom:	15px">

								<div	class="thumbnail">

										<img

												src="<c:url	

value="/resource/images/${product.productId}.png"></c:url>"

												alt="image"	style="width:	100%"	/>

										<div	class="caption">

												<h3>${product.name}</h3>

												<p>${product.description}</p>

												<p>${product.unitPrice}	USD</p>

												<p>Available	${product.unitsInStock}	units	in	stock</p>

												<p>

														<a

																href="	<spring:url	value="/products/product?

id=${product.productId}"	/>	"

																class="btn	btn-primary">	<span

																class="glyphicon-info-sign	glyphicon"	/>	Details

														

												</p>

										</div>

								</div>

						</div>

				</c:forEach>

		</div>

</section>

10.	 Similarly,	remove	the	jumbotron	section	from	every	JSP	view	file	that	is	under	the
/src/main/webapp/WEB-INF/views	directory;	do	not	remove	the	taglib	references
and	link	references	to	JavaScript	files;	for	example,	in	cart.jsp,	you	should	retain
the	following	lines:

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"%>

<%@	taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

<script	

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.1/angular.min.

js"></script>

<script	src="/webstore/resource/js/controllers.js"></script>

11.	 Finally,	for	TilesView,	add	a	UrlBasedViewResolver	bean	to	our	web	application
context	configuration	file	(DispatcherServlet-context.xml),	as	follows:

<bean	id="tilesViewResolver"	

class="org.springframework.web.servlet.view.UrlBasedViewResolver">

		<property	name="viewClass"	

value="org.springframework.web.servlet.view.tiles3.TilesView"	/>

		<property	name="order"	value="-2"	/>

</bean>

12.	 In	order	to	locate	the	tile	definition	file,	we	need	to	add	a	bean	definition	for
TilesConfigurer	in	DispatcherServlet-context.xml,	as	follows:

<bean	id="tilesConfigurer"	

class="org.springframework.web.servlet.view.tiles3.TilesConfigurer">

		<property	name="definitions">

				<list>

						<value>/WEB-INF/tiles/definitions/tile-definition.xml</value>

				</list>

		</property>

</bean>

13.	 Now	run	the	application	and	enter	the	URL
http://localhost:8080/webstore/products;	you	will	be	able	to	see	our	regular
product	add	page	with	an	extra	navigation	bar	at	the	top	and	footer	at	the	bottom.	You
can	navigate	to	add	the	products	page	by	clicking	on	the	Add	Product	link.

Products	page	with	Apache	Tiles	view

What	just	happened?
To	work	with	Apache	Tiles,	we	need	jars	related	to	Apache	Tiles;	from	steps	1	to	4,	we
added	those	jars	via	Maven	dependencies.	Step	5	is	very	important	because	we	created	our
tiles	definition	file	(tile-definition.xml)	in	this	step.	Understanding	the	tile	definition
file	is	crucial	for	developing	applications	based	on	Apache	Tiles,	so	we	will	try	to
understand	our	tile	definition	file	(tile-definition.xml).

A	tile’s	definition	file	is	a	collection	of	definitions,	and	each	definition	can	be	associated
with	a	template	via	the	template	attribute	for	the	layout;	refer	to	the	following	code	to
know	how	to	do	this:

<definition	name="baseLayout"	template	=	"/WEB-

INF/tiles/template/baseLayout.jsp"	>

		<put-attribute	name="title"	value="Sample	Title"	/>

		<put-attribute	name="heading"	value="Sample	Header"	/>

		<put-attribute	name="tagline"	value="Sample	Tagline"	/>

		<put-attribute	name="navigation"	value	=	"/WEB-

INF/tiles/template/navigation.jsp"	/>

		<put-attribute	name="content"	value=""	/>

		<put-attribute	name="footer"	value	=	"/WEB-INF/tiles/template/footer.jsp"	

/>

</definition>

Within	each	definition,	we	can	define	many	attributes.	These	attributes	can	be	a	simple
text	value	or	a	full-blown	markup	file.	These	attributes	would	be	available	in	the	template
file	via	the	<tiles:insertAttribute>	tag.	For	example,	if	you	open	the	base	layout
template	(baseLayout.jsp),	you	will	notice	the	following	snippet	under	the	jumbotron
<div>	tag:

<h1>

		<tiles:insertAttribute	name="heading"	/>

</h1>

<p>

		<tiles:insertAttribute	name="tagline"	/>

</p>

So,	at	runtime,	Apache	Tiles	will	replace	the	<tiles:insertAttribute	name="heading"
/>	tag	with	the	value	Sample	Header;	similarly,	the	<tiles:insertAttribute
name="tagline"	/>	tag	will	also	be	replaced	with	the	Sample	Tagline	value.

So,	baseLayout	is	associated	with	the	template	/WEB-
INF/tiles/template/baseLayout.jsp,	and	we	can	insert	the	defined	attributes	such	as
tile,	heading,	and	tagline	in	the	template	using	the	<tiles:insertAttribute>	tag.

Apache	Tiles	allows	us	to	extend	a	definition	just	like	how	we	extend	a	Java	class	so	that
the	defined	attributes	will	be	available	for	the	derived	definition,	and	we	can	even	override
these	attribute	values	if	we	want.	For	example,	look	at	the	following	definition	from	tile-
definition.xml:

<definition	name="products"	extends="baseLayout">

		<put-attribute	name="title"	value="Products"	/>

		<put-attribute	name="heading"	value="Products"	/>

		<put-attribute	name="tagline"	value="Available	Products"	/>

		<put-attribute	name="content"	value="/WEB-INF/views/products.jsp"	/>

		</definition>

The	mentioned	definition	is	an	extension	of	the	baseLayout	definition.	We	have	only
overridden	the	title,	heading,	tagline,	and	content	attributes,	and	since	we	have	not
defined	any	template	for	this	definition,	it	uses	the	same	template	that	we	configured	for
the	baseLayout	definition.

Similarly,	we	have	defined	the	tile	definition	for	every	possible	logical	view	name	that	can
be	returned	from	our	controllers.	Note	that	each	definition	name	(except	the	baseLayout
definition)	is	a	logical	view	name.

From	steps	6	to	8,	we	created	the	templates	that	can	be	used	in	the	tile	definition;	first	we
created	the	base	layout	template	(baseLayout.jsp),	then	the	navigation	template
(navigation.jsp),	and	finally	the	footer	template	(footer.jsp).

Steps	9	and	10	explained	how	to	remove	the	existing	redundant	content,	such	as	the
jumbotron	<div>	tag,	from	every	JSP	view	page.	Note	that	you	have	to	be	careful	while
doing	things;	don’t	accidently	remove	the	taglib	references	and	link	references	to
JavaScript	files.

In	Step	11,	we	defined	UrlBasedViewResolver	for	TilesView
(org.springframework.web.servlet.view.tiles3.TilesView)	in	order	to	resolve
logical	view	names	into	the	tile’s	view.	Finally,	in	step	12,	we	configured
TilesConfigurer

(org.springframework.web.servlet.view.tiles3.TilesConfigurer)	to	locate	the	tile’s
definition	files	by	the	Apache	Tiles	framework.

That’s	it!	If	you	run	the	application	and	enter	the	URL
http://localhost:8080/webstore/products,	you	will	be	able	to	see	our	regular
products	page	with	an	extra	navigation	bar	at	the	top	and	footer	at	the	bottom	as
mentioned	in	step	13.	You	can	navigate	to	add	the	products	page	by	clicking	on	the	Add
Product	link.	Previously,	every	time	a	logical	view	name	was	returned	by	the	controller
method,	the	InternalResourceViewResolver	came	into	action	and	found	the
corresponding	jsp	view	for	the	given	logical	view	name.	Now,	for	every	logical	view
name,	UrlBasedViewResolver	will	come	into	action	and	compose	the	corresponding	view
based	on	the	template’s	definition.

Pop	quiz	–	Apache	Tiles
Q1.	Which	of	the	following	statements	are	true	according	to	Apache	Tiles?

1.	 A	logical	view	name	returned	by	the	controller	must	be	equal	to	the	<definition>
tag	name

2.	 The	<tiles:insertAttribute>	tag	acts	as	a	placeholder	in	the	template
3.	 A	<definition>	tag	can	extend	another	<definition>	tag

Summary
Spring	Web	Flow	and	Apache	Tiles	are	two	separate	frameworks.	We	only	saw	the
minimum	required	concepts	to	get	a	quick	overview	of	these	frameworks	in	this	chapter.
In	the	beginning,	we	learned	some	of	the	basic	concepts	of	the	Spring	Web	Flow
framework	and	then	created	the	checkout	flow	for	our	webstore	application.	In	the	second
part	of	this	chapter,	we	saw	how	to	use	and	leverage	the	Apache	Tiles	framework	in	order
to	bring	maximum	reusability	in	view	files	and	maintain	a	consistent	look	and	feel
throughout	all	the	web	pages	of	our	application.

In	the	next	chapter,	we	will	see	how	to	test	our	web	application	using	various	APIs
provided	by	Spring	MVC.

Chapter	10.	Testing	Your	Application
For	a	web	application	developer,	testing	the	web	applications	is	always	a	challenging
task,	because	getting	a	real-time	test	environment	for	web	applications	requires	a	lot	of
effort.	Thanks	to	the	Spring	MVC	Test	framework,	testing	Spring	MVC	applications	is
simplified.

But	why	do	we	need	to	consider	putting	in	efforts	to	test	our	application?	Writing	good
test	cases	for	our	application	is	kind	of	like	buying	insurance	for	your	application.
Although	it	does	not	add	any	functional	values	to	your	application,	it	will	definitely	save
your	time	and	effort	by	detecting	of	functionality	failures	early.	Consider	that	your
application	is	growing	bigger	and	bigger	in	terms	of	functionality;	you	need	some
mechanism	to	ensure	that	existing	functionalities	are	not	disturbed	due	to	the	introduction
of	new	functionalities.

Testing	frameworks	provide	you	with	this	kind	of	mechanism	to	ensure	that	your
application	behavior	is	not	altered	due	to	refactoring	or	the	addition	of	new	code.	It	also
ensures	that	the	existing	functionality	works	as	expected.

In	this	chapter,	we	are	going	to	see	the	following	topics:

Testing	the	domain	object	and	validator
Testing	controllers
Testing	RESTful	web	services

Unit	testing
In	software	development,	unit	testing	is	a	software	testing	method	in	which	the	smallest
testable	parts	of	source	code,	called	units,	are	individually	and	independently	tested	to
determine	whether	they	behave	exactly	as	we	expect.	To	unit	test	our	source	code,	all	we
need	is	a	test	program	that	can	run	a	bit	of	our	source	code	(unit),	provide	some	input	to
each	unit,	and	check	the	results	for	the	expected	output.	Most	unit	tests	are	written	using
some	sort	of	test	framework	set	of	library	code,	designed	to	make	writing	and	running
tests	easier.	One	such	framework	is	called	JUnit.	It	is	a	unit	testing	framework	for	the	Java
programming	language.

Time	for	action	–	unit-testing	domain
objects
Let’s	see	how	to	test	one	of	our	domain	object	using	the	JUnit	framework	to	ensure	it
functions	as	expected.	In	an	earlier	chapter,	we	created	a	domain	object	to	represent	an
item	in	a	shopping	cart,	called	CartItem.	The	CartItem	class	has	a	method	called
getTotalPrice	to	return	the	total	price	of	that	particular	cart	item	based	on	the	product
and	number	of	items	it	represents.	Let’s	test	whether	the	getTotalPrice	method	behaves
properly.	Follow	these	steps:

1.	 Open	pom.xml	and	you	will	find	pom.xml	under	the	root	directory	of	the	project	itself.
2.	 You	will	see	some	tabs	at	the	bottom	of	the	pom.xml	file.	Select	the	Dependencies

tab	and	click	on	the	Add	button	of	the	Dependencies	section.
3.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as	junit,	Artifact	Id	as

junit,	and	Version	as	4.11;	then	select	test	as	Scope,	click	on	the	OK	button,	and
save	pom.xml.

4.	 Now	create	a	class	called	CartItemTest	under	the	package
com.packt.webstore.domain	in	the	source	folder,	src/test/java.	Add	the
following	code	into	it	and	save	the	file:

package	com.packt.webstore.domain;

import	java.math.BigDecimal;

import	org.junit.Assert;

import	org.junit.Before;

import	org.junit.Test;

public	class	CartItemTest	{

		

		private	CartItem	cartItem;

		@Before

		public	void	setup()	{

				cartItem	=	new	CartItem();

		}

		

		@Test

		public	void	

cartItem_total_price_should_be_eaual_to_product_unit_price_in_case_of_s

ingle_quantity()	{

				//Arrange

				Product	iphone	=	new	Product("P1234","iPhone	5s",	new	

BigDecimal(500));

				cartItem.setProduct(iphone);

				

				//Act

				BigDecimal	totalPrice	=	cartItem.getTotalPrice();

				

				//Assert

				Assert.assertEquals(iphone.getUnitPrice(),	totalPrice);

		}

}

5.	 Now	right-click	on	CartItemTest.java	and	go	to	Run	As	|	JUnit	Test.	You	will	see
a	failing	test	case	in	the	JUnit	window,	as	shown	in	the	following	screenshot:

JUnit	failing	test	case	in	CartItemTest

6.	 To	make	the	test	case	pass,	assign	the	value	1	to	the	quantity	field	of	CartItem	in
the	zero	argument	constructor	of	the	CartItem	class	(as	follows)	and	save	the	file:

public	CartItem()	{

				this.quantity	=	1;

		}

7.	 Now,	right-click	again	on	CartItemTest.java	and	go	to	Run	As	|	JUnit	Test.	You
will	see	that	the	test	case	has	passed	in	the	JUnit	window,	as	shown	in	the	following
screenshot:

JUnit	passed	test	case	in	CartItemTest

What	just	happened?
As	I	already	mentioned,	the	getTotalPrice	method	of	the	CartItem	class	is	designed	to
return	the	correct	total	price	based	on	the	product	and	the	number	of	products	it	represents.
But	to	ensure	its	proper	behavior,	we	have	written	a	test	program	called	CartItemTest
under	the	com.packt.webstore.domain	package	in	the	source	folder,	src/test/java,	as
mentioned	in	step	4.

In	CartItemTest,	we	used	some	of	the	JUnit	framework	APIs,	such	as	the	@Test	and
@Before	annotations.	So,	before	we	can	use	these	annotations	in	our	CartItemTest	class,
we	need	to	add	a	JUnit	jar	as	dependency	in	our	project.	That’s	what	we	did	in	steps	1
through	3.

Now,	let’s	get	to	know	the	CartItemTest	class	thoroughly.	The	important	method	in	the
CartItemTest	class	is	the	one	that	is	annotated	with	@Test,	called
cartItem_total_price_should_be_eaual_to_product_unit_price_in_case_of_single_quantity

The	@Test	annotation	(org.junit.Test)	marks	a	particular	method	as	a	test	method.	This
is	so	that	the	JUnit	framework	can	treat	that	method	as	a	test	method	and	execute	it	when
we	go	to	Run	As	|	JUnit	Test.	Consider	the	following	code	snippet:

@Test

public	void	

cartItem_total_price_should_be_eaual_to_product_unit_price_in_case_of_singl

e_quantity()	{

		//Arrange

		Product	iphone	=	new	Product("P1234","iPhone	5s",	new	BigDecimal(500));

		cartItem.setProduct(iphone);

		

		//Act

		BigDecimal	totalPrice	=	cartItem.getTotalPrice();

		

		//Assert

		Assert.assertEquals(iphone.getUnitPrice(),	totalPrice);

}

If	you	notice,	the	preceding	method	has	been	divided	into	three	logical	parts	called
Arrange,	Act,	and	Assert:

Arrange:	This	section	arranges	all	the	necessary	preconditions	and	inputs	to	perform
a	test
Act:	This	section	acts	on	the	object	or	method	under	test
Assert:	This	section	asserts	that	the	expected	results	have	occurred

In	the	Arrange	part,	we	just	instantiated	a	product	domain	object	(iphone)	with	a	unit
price	value	of	500	and	added	that	product	object	to	the	cartItem	object	by	calling
cartItem.setProduct(iphone);.	We	then	added	a	single	product	to	cartItem.	We
haven’t	altered	the	quantity	aspect	of	the	cartItem	object.	So,	if	we	call	the
getTotalPrice	method	of	cartItem.	We	must	get	500	(in	BigDecimal),	because	the	unit
price	of	the	domain	object	(iphone)	we	have	added	in	cartItem	is	500.

In	the	Act	part,	we	just	called	the	method	under	test,	which	is	the	getTotalPrice	method

of	the	cartItem	object,	and	stored	the	result	in	a	BigDecimal	variable	called	totalPrice.
Later,	in	the	Assert	part,	we	used	the	JUnit	API	(Assert.assertEquals)	to	assert	the
equality	between	the	unitPrice	value	of	the	product	domain	object	and	the	calculated
totalPrice	of	cartItem.	Have	a	look	at	the	following	code:

Assert.assertEquals(iphone.getUnitPrice(),	totalPrice);

The	totalPrice	parameter	of	cartItem	must	be	equal	to	the	unitPrice	value	of	the
product	domain	object	we	have	added	to	cartItem.	This	is	because	we	added	the	single-
product	domain	object	whose	unitPrice	and	totalPrice	value	need	to	be	the	same.

When	we	run	CartItemTest	as	mentioned	in	step	5,	the	JUnit	framework	tries	to	execute
all	the	methods	annotated	with	@Test	in	the	CartItemTest	class.	So,	based	on	the
assertions’	results,	a	test	case	may	fail	or	pass.	In	our	case,	our	test	case	failed.	You	can
see	that	the	failure	trace	shows	an	error	message	that	says	expected	<500>	but	was:	<0>
in	the	screenshot	immediately	after	step	5.	This	is	because	it	didn’t	update	the	quantity
field	of	the	cartItem	object	when	we	added	a	product	domain	object	to	cartItem	in	the
Arrange	part.	It	is	a	bug.	To	fix	this	bug,	we	default	the	quantity	field	value	to	1
whenever	we	instantiate	cartItem,	using	the	zero	argument	constructor	as	mentioned	in
the	step	6.	Now,	if	you	run	the	test	case	again,	it	passes	as	expected.

Have	a	go	hero	–	adding	tests	for	cart
It	is	good	that	we	have	tested	and	verified	the	getTotalPrice	method	of	the	CartItem
class.	You	can	similarly	write	a	test	class	for	the	Cart	domain	object	class.	In	the	Cart
domain	object	class,	there	is	a	method	to	get	the	grand	total	(getGrandTotal)	and	write
various	test	cases	to	check	whether	the	getGrandTotal	method	works	as	expected.

Integration	testing	with	the	Spring	Test
Context	framework
When	individual	program	units	are	combined	and	tested	as	a	group,	it	is	known	as
integration	testing.	The	Spring	Test	Context	framework	gives	first	class	support	for	the
integration	testing	of	Spring-based	applications.	We	have	defined	lots	of	Spring-managed
beans	in	our	web	application	context	(DispatcherServlet-context.xml),	such	as
services,	repositories,	and	view	resolvers,	to	run	our	application.	These	managed	beans	are
instantiated	during	the	startup	of	an	application	by	the	Spring	framework.	While
performing	integration	testing,	our	test	environment	must	also	have	those	beans	to	test	our
application	successfully.	The	Spring	Test	Context	framework	gives	us	the	ability	to	define
a	test	context,	which	is	similar	to	the	web	application	context	(DispatcherServlet-
context.xml).	Let’s	see	how	to	incorporate	Spring	Test	Context	to	test	our
ProductValidator	class.

Time	for	action	–	testing	the	product
validator
Let’s	see	how	we	can	boot	up	our	test	context	using	the	Spring	Test	Context	framework	to
test	our	ProductValidator	class:

1.	 Open	pom.xml	and	you	will	find	pom.xml	under	the	root	directory	of	the	project	itself.
2.	 You	will	be	able	to	see	some	tabs	at	the	bottom	of	the	pom.xml	file;	select	the

Dependencies	tab	and	click	on	the	Add	button	of	the	Dependencies	section.
3.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as

org.springframework,	Artifact	Id	as	spring-test,	and	Version	as	4.0.3.RELEASE;
then	select	Scope	as	test,	click	on	the	OK	button,	and	save	pom.xml.

4.	 Now	create	an	XML	file	called	test-DispatcherServlet-context.xml	under	the
com.packt.webstore.validator	package	in	the	source	folder,	src/test/resources.
Add	the	following	code	into	it	and	save	it:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xmlns:context="http://www.springframework.org/schema/context"

		xmlns:mvc="http://www.springframework.org/schema/mvc"

		xmlns:webflow-config="http://www.springframework.org/schema/webflow-

config"

		

		xsi:schemaLocation="http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans.xsd

				http://www.springframework.org/schema/context	

http://www.springframework.org/schema/context/spring-context-4.0.xsd

				http://www.springframework.org/schema/mvc	

http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd	

				http://www.springframework.org/schema/webflow-config	

http://www.springframework.org/schema/webflow-config/spring-webflow-

config-2.3.xsd">

		<mvc:annotation-driven	validator="validator"/>

		

		<context:component-scan	base-package="com.packt.webstore"	/>

		

		<bean	id=	"messageSource"	

class="org.springframework.context.support.ResourceBundleMessageSource"

>

				<property	name="basename"	value="messages"/>	

		</bean>

		

		<bean	id="validator"	

class="org.springframework.validation.beanvalidation.LocalValidatorFact

oryBean">

				<property	name="validationMessageSource"	ref="messageSource"	/>

		</bean>

		

		<bean	id="productValidator"	

class="com.packt.webstore.validator.ProductValidator">

				<property	name	=	"springValidators">

						<set>

								<ref	bean	=	"unitsInStockValidator"/>

						</set>

				</property>

		</bean>

		

		<bean	id="unitsInStockValidator"	

class="com.packt.webstore.validator.UnitsInStockValidator"/>

		

</beans>

5.	 Next,	create	a	class	called	ProductValidatorTest	under	the
com.packt.webstore.validator	package	in	the	source	folder,	src/test/java.	Add
the	following	code	to	it:

package	com.packt.webstore.domain;

package	com.packt.webstore.validator;

import	java.math.BigDecimal;

import	org.junit.Assert;

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.test.context.ContextConfiguration;

import	org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import	org.springframework.test.context.web.WebAppConfiguration;

import	org.springframework.validation.BindException;

import	org.springframework.validation.ValidationUtils;

import	com.packt.webstore.domain.Product;

import	com.packt.webstore.validator.ProductValidator;

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration("test-DispatcherServlet-context.xml")

@WebAppConfiguration

public	class	ProductValidatorTest	{

		

		@Autowired

		private	ProductValidator	productValidator;

			

		@Test

		public	void	product_without_UnitPrice_should_be_invalid()	{

				//Arrange

				Product	product	=	new	Product();

				BindException	bindException	=	new	BindException(product,	

"product");

				//Act

				ValidationUtils.invokeValidator(productValidator,	product,	

bindException);

				

				//Assert

				Assert.assertEquals(1,	bindException.getErrorCount());	

				

Assert.assertTrue(bindException.getLocalizedMessage().contains("Unit	

price	is	Invalid.	It	cannot	be	empty."));

		}

		

		@Test

		public	void	product_with_existing_productId_invalid()	{

				//Arrange

				Product	product	=	new	Product("P1234","iPhone	5s",	new	

BigDecimal(500));

				product.setCategory("Tablet");

				

				BindException	bindException	=	new	BindException(product,	

"product");

				//Act

				ValidationUtils.invokeValidator(productValidator,	product,	

bindException);

				

				//Assert

				Assert.assertEquals(1,	bindException.getErrorCount());	

				Assert.assertTrue(bindException.getLocalizedMessage().contains("A	

product	already	exists	with	this	product	id."));

		}

		

		@Test

		public	void	

a_valid_product_should_not_get_any_error_during_validation()	{

				//Arrange

				Product	product	=	new	Product("P9876","iPhone	5s",	new	

BigDecimal(500));

				product.setCategory("Tablet");

				

				BindException	bindException	=	new	BindException(product,	

"product");

				//Act

				ValidationUtils.invokeValidator(productValidator,	product,	

bindException);

				

				//Assert

				Assert.assertEquals(0,	bindException.getErrorCount());	

		}

}

6.	 Now	right-click	on	ProductValidatorTest	and	go	to	Run	As	|	JUnit	Test.	You	will
be	able	to	see	the	test	cases	that	pass,	as	shown	in	the	following	screenshot:

Customer	details	collection	form

What	just	happened?
As	I	have	already	mentioned,	Spring	provides	extensive	support	for	integration	testing.	In
order	to	develop	a	test	case	using	the	Spring	Test	Context	framework,	we	need	the
spring-test	jar.	In	step	3,	we	just	added	dependency	to	the	spring-test	jar.	The	Spring
Test	Context	framework	cannot	run	without	the	support	of	the	JUnit	jar.	In	step	4,	we	just
created	a	test	web	application	context	configuration	file	called	test-DispatcherServlet-
context.xml	that	only	defines	the	beans	that	are	required	for	our	test	to	execute.	Later,	in
step	5,	when	we	created	our	actual	test	case,	the	Spring	Test	Context	framework	used	this
file	as	base	to	create	the	test	context.

Step	5	is	very	important	because	it	represents	the	actual	test	class
(ProductValidatorTest)	to	test	the	validity	of	our	Product	domain	object.	The	goal	of
the	test	class	is	to	check	whether	all	the	validations	(including	bean	validation	and	Spring
validation)	that	are	specified	in	the	Product	domain	class	are	working.	I	hope	you
remember	that	we	specified	some	of	the	bean	validation	annotation,	such	as	@NotNull	and
@Pattern,	on	the	Product	domain	class	in	Chapter	7,	Validate	Your	Products	with	a
Validator.

One	way	to	test	whether	those	validations	are	taking	place	is	by	manually	running	our
application	and	trying	to	enter	invalid	values.	This	approach	is	called	manual	testing.	This
is	a	very	difficult	job,	whereas	in	automated	testing,	we	can	write	some	test	classes	to	run
test	cases	in	a	repeated	fashion	to	test	the	functionality.	Using	JUnit,	we	can	write	such
kinds	of	test	classes.

The	ProductValidatorTest	class	contains	three	test	methods	in	total;	we	can	identify	a
test	method	by	the	@Test	annotation	(org.junit.Test)	of	JUnit.	Every	test	method	can	be
logically	separated	into	three	parts,	that	is,	Arrange,	Act,	and	Assert.	In	the	Arrange	part,
we	instantiate	and	instrument	the	required	objects	for	testing;	in	the	Act	part,	we	invoke
the	actual	functionality	that	needs	to	be	tested;	and	finally	in	the	Assert	part,	we	compare
the	expected	result	and	the	actual	result	that	is	the	output	of	the	invoked	functionality.
Have	a	look	at	the	following	code:

@Test

public	void	product_without_UnitPrice_should_be_invalid()	{

		//Arrange

		Product	product	=	new	Product();

		BindException	bindException	=	new	BindException(product,	"product");

		//Act

		ValidationUtils.invokeValidator(productValidator,	product,	

bindException);

		

		//Assert

		Assert.assertEquals(1,	bindException.getErrorCount());	

		Assert.assertTrue(bindException.getLocalizedMessage().contains("Unit	

price	is	Invalid.	It	cannot	be	empty."));

}

In	the	Arrange	part	of	this	test	method,	we	just	instantiated	a	bare	minimum	Product

domain	object.	We	have	not	set	any	values	for	the	productId,	unitPrice,	and	category
fields.	We	purposely	set	up	such	a	bare	minimum	domain	object	in	the	Arrange	part	to
check	whether	our	ProductValidator	class	works	properly	in	the	Act	part.	According	to
the	ProductValidator	class	logic,	the	present	state	of	the	product	domain	object	is
invalid.	In	the	Act	part,	we	invoke	the	productValidator	object	using	the
ValidationUtils	class	to	check	whether	the	validation	works	or	not.	During	validation,
productValidator	will	store	the	errors	in	a	BindException	object.	In	the	Assert	part,	we
simply	checked	whether	the	bindException	object	contained	one	error,	using	the	JUnit
Assert	APIs,	and	checked	whether	the	error	message	was	as	expected.

Another	important	thing	we	need	to	understand	in	our	ProductValidatorTest	class	is	that
we	used	Spring’s	standard	@Autowired	annotation	to	get	the	instance	of
ProductValidator;	the	question	here	is	who	instantiated	the	productValidator	object?
The	answer	is	in	the	@ContextConfiguration	annotation.	Note	the	locations	attribute
specified	in	the	@ContextConfiguration	annotation	–	it	has	the	same	name	as	our	test
context	file	(test-DispatcherServlet-context.xml).

As	you	might	remember,	we	have	learned	that	during	the	booting	up	of	our	application,
Spring	MVC	will	create	a	web	application	context	(Spring	container)	with	the	necessary
beans,	as	defined	in	the	web	application	context	configuration	file.	We	need	a	similar	kind
of	context	even	before	running	our	test	classes	so	that	we	can	use	those	defined	beans
(objects)	in	our	test	class	to	test	it	properly.	The	Spring	Test	framework	makes	it	possible
via	the	@ContextConfiguration	annotation.

Now	we	need	a	similar	kind	of	running	application	environment	with	all	the	resource	files.
To	achieve	this,	we	used	the	@WebAppConfiguration	annotation	from	the	Spring	Test
framework.	The	@WebAppConfiguration	annotation	instructs	the	Spring	Test	framework	to
load	the	application	context	as	WebApplicationContext.

Now	we	have	seen	almost	all	the	important	things	related	to	executing	a	Spring	integration
test,	but	one	final	configuration	we	need	to	understand	is	how	to	integrate	JUnit	and	the
Spring	Test	Context	framework	in	our	test	class.	The
@RunWith(SpringJUnit4ClassRunner.class)	annotation	does	that	job.

So,	finally,	when	we	run	our	test	cases,	we	will	see	a	green	bar	in	the	JUnit	window,
indicating	that	the	tests	were	successful.

Time	for	action	–	testing	the	product
controller
Let’s	see	now	how	to	test	our	controllers:

1.	 Create	an	XML	file	called	test-DispatcherServlet-context.xml	under	the
com.packt.webstore.controller	package	in	the	source	folder,
src/test/resources.	Add	the	following	code	into	it	and	save	it:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xmlns:context="http://www.springframework.org/schema/context"

		xmlns:mvc="http://www.springframework.org/schema/mvc"

		xmlns:webflow-config="http://www.springframework.org/schema/webflow-

config"

		

		xsi:schemaLocation="http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans.xsd

				http://www.springframework.org/schema/context	

http://www.springframework.org/schema/context/spring-context-4.0.xsd

				http://www.springframework.org/schema/mvc	

http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd	

				http://www.springframework.org/schema/webflow-config	

http://www.springframework.org/schema/webflow-config/spring-webflow-

config-2.3.xsd">

		<mvc:annotation-driven	validator="validator"/>

		

		<context:component-scan	base-package="com.packt.webstore"	/>

		

		<bean	

class="org.springframework.web.servlet.view.InternalResourceViewResolve

r">

				<property	name="prefix"	value="/WEB-INF/views/"	/>

				<property	name="suffix"	value=".jsp"	/>

		</bean>

		

		

		<bean	id=	"messageSource"	

class="org.springframework.context.support.ResourceBundleMessageSource"

>

							<property	name="basename"	value="messages"/>	

		</bean>

		

		<bean	id="validator"	

class="org.springframework.validation.beanvalidation.LocalValidatorFact

oryBean">

				<property	name="validationMessageSource"	ref="messageSource"	/>

		</bean>

		

		<bean	id="productValidator"	

class="com.packt.webstore.validator.ProductValidator">

				<property	name	=	"springValidators">

						<set>

								<ref	bean	=	"unitsInStockValidator"/>

						</set>

				</property>

		</bean>

		

		<bean	id="unitsInStockValidator"	

class="com.packt.webstore.validator.UnitsInStockValidator"/>

		

</beans>

2.	 Create	a	class	called	ProductControllerTest	under	the
com.packt.webstore.controller	package	in	the	source	folder,	src/test/java,	and
add	the	following	code	into	it:

package	com.packt.webstore.controller;

import	static	

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get

;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.model

;

import	java.math.BigDecimal;

import	org.junit.Before;

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.test.context.ContextConfiguration;

import	org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import	org.springframework.test.context.web.WebAppConfiguration;

import	org.springframework.test.web.servlet.MockMvc;

import	org.springframework.test.web.servlet.setup.MockMvcBuilders;

import	org.springframework.web.context.WebApplicationContext;

import	com.packt.webstore.domain.Product;

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration("test-DispatcherServlet-context.xml")

@WebAppConfiguration

public	class	ProductControllerTest	{

		@Autowired

		private	WebApplicationContext	wac;

		private	MockMvc	mockMvc;

		@Before

		public	void	setup()	{

				this.mockMvc	=	

MockMvcBuilders.webAppContextSetup(this.wac).build();

		}

		@Test

		public	void	testGetProducts()	throws	Exception	{

				this.mockMvc.perform(get("/products"))

				.andExpect(model().attributeExists("products"));

		}

		

		@Test

		public	void	testGetProductById()	throws	Exception	{

				//Arrange

				Product	product	=	new	Product("P1234","iPhone	5s",	new	

BigDecimal(500));

				

				//Act	&	Assert

				this.mockMvc.perform(get("/products/product")

				.param("id",	"P1234"))

				.andExpect(model().attributeExists("product"))

				.andExpect(model().attribute("product",	product));

		}

}

3.	 Now	right-click	on	the	ProductControllerTest	class	and	go	to	Run	As	|	JUnit	Test.
You	will	be	able	to	see	that	the	test	cases	are	being	executed.	You	will	be	able	to	see
the	test	results	in	the	JUnit	window.

What	just	happened?
Just	like	with	the	ProductValidatorTest	class,	we	need	to	boot	up	the	test	context	and
run	our	ProductControllerTest	class	as	the	Spring	integration	test.	So	we	used	similar
annotations	on	top	of	ProductControllerTest,	as	follows:

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration("test-DispatcherServlet-context.xml")

@WebAppConfiguration

public	class	ProductControllerTest	{

Apart	from	the	two	test	methods	that	are	available	under	ProductControllerTest,	a
single	setup	method	is	available	as	follows:

@Before

public	void	setup()	{

		this.mockMvc	=	MockMvcBuilders.webAppContextSetup(this.wac).build();

}

The	@Before	annotation	that	is	present	on	top	of	the	preceding	method	indicates	that	this
method	should	be	executed	before	every	test	method.	And	within	that	method,	we	simply
build	our	MockMvc	object	in	order	to	use	it	in	the	following	test	methods.	The	MockMvc
class	is	a	special	class	provided	by	the	Spring	Test	Context	framework	to	simulate	browser
actions	within	a	test	case,	such	as	firing	HTTP	requests.	Have	a	look	at	the	following
code:

@Test

public	void	testGetProducts()	throws	Exception	{

		this.mockMvc.perform(get("/products"))

		.andExpect(model().attributeExists("products"));

}

The	preceding	test	method	simply	fires	a	GET	HTTP	request	to	our	application	using	the
mockMvc	object,	and	as	a	result,	we	ensure	that	the	returned	model	contains	an	attribute
named	products.	Remember	that	the	list	method	in	the	ProductController	class	is	the
one	that	handles	the	preceding	web	request,	so	it	will	fill	the	model	with	the	available
products	under	the	attribute	named	products.

After	running	your	test	case,	you	will	be	able	to	see	the	green	bar	in	the	JUnit	window	that
indicates	the	tests	have	passed.

Time	for	action	–	testing	REST	controllers
Similarly,	we	can	test	the	REST-based	controllers	as	well.	Just	perform	the	following
steps:

1.	 Open	pom.xml	and	you	will	find	pom.xml	under	the	root	directory	of	the	project	itself.
2.	 You	will	be	able	to	see	some	tabs	at	the	bottom	of	the	pom.xml	file;	select	the

Dependencies	tab	and	click	on	the	Add	button	of	the	Dependencies	section.
3.	 A	Select	Dependency	window	will	appear;	enter	Group	Id	as

com.jayway.jsonpath,	Artifact	Id	as	json-path-assert,	and	Version	as	0.8.1.
Select	Scope	as	test,	click	on	the	OK	button,	and	save	pom.xml.

4.	 Now	create	a	class	called	CartRestControllerTest	under	the
com.packt.webstore.controller	package	in	the	source	folder,	src/test/java.
Now	add	the	following	code	to	it:

package	com.packt.webstore.controller;

import	static	

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get

;

import	static	

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.put

;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.jsonP

ath;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.statu

s;

import	org.junit.Before;

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.mock.web.MockHttpSession;

import	org.springframework.test.context.ContextConfiguration;

import	org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import	org.springframework.test.context.web.WebAppConfiguration;

import	org.springframework.test.web.servlet.MockMvc;

import	org.springframework.test.web.servlet.setup.MockMvcBuilders;

import	org.springframework.web.context.WebApplicationContext;

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration("test-DispatcherServlet-context.xml")

@WebAppConfiguration

public	class	CartRestControllerTest	{

		

		@Autowired

		private	WebApplicationContext	wac;

		@Autowired

		MockHttpSession	session;

		

		private	MockMvc	mockMvc;

		@Before

		public	void	setup()	{

				this.mockMvc	=	

MockMvcBuilders.webAppContextSetup(this.wac).build();

		}

		

		@Test

		public	void	read_method_should_return_correct_cart_Json_object()	

throws	Exception	{

				//Arrange

				this.mockMvc.perform(put("/rest/cart/add/P1234").session(session))

				.andExpect(status().is(204));

				

				//Act

				this.mockMvc.perform(get("/rest/cart/"+	

session.getId()).session(session))

				.andExpect(status().isOk())

				

.andExpect(jsonPath("$.cartItems.P1234.product.productId").value("P1234

"));

		}

}

5.	 Now	right-click	on	CartRestControllerTest	and	go	to	Run	As	|	JUnit	Test.	You
will	be	able	to	see	that	test	cases	are	being	executed,	and	the	test	results	will	be	seen
in	the	JUnit	window.

What	just	happened?
While	testing	REST	controllers,	we	need	to	ensure	that	the	web	response	for	the	given
web	request	contains	the	expected	JSON	object.	To	verify	that,	we	need	some	specialized
APIs	to	check	the	format	of	the	JSON	object.	The	json-path-assert	jar	provides	these
APIs.	We	added	the	Maven	dependency	to	the	json-path-assert	jar	from	step	1	through
3.

In	step	4,	we	created	CartRestControllerTest	to	verify	whether	our
CartRestController	class	works	properly.	The	CartRestControllerTest	class	is	very
similar	to	ProductControllerTest;	the	only	difference	is	the	way	we	assert	the	result	of	a
web	request.	In	CartRestControllerTest,	we	have	one	test	method	to	test	the	read
method	of	the	CartRestController	class.

The	read	method	of	CartRestController	is	designed	to	return	a	cart	object	as	a	JSON
object	for	the	given	cart	ID.	In	CartRestControllerTest,	we	have	tested	this	behavior
through	the	read_method_should_return_correct_cart_Json_object	test	method.	Have
a	look	at	the	following	code:

@Test

public	void	read_method_should_return_correct_cart_Json_object()	throws	

Exception	{

		//Arrange

		this.mockMvc.perform(put("/rest/cart/add/P1234").session(session))

		.andExpect(status().is(204));

		

		//Act

		this.mockMvc.perform(get("/rest/cart/"+	

session.getId()).session(session))

		.andExpect(status().isOk())

		

.andExpect(jsonPath("$.cartItems.P1234.product.productId").value("P1234"));

}

In	order	to	get	a	cart	object	for	the	given	cart	ID,	we	first	need	to	store	the	cart	object	in
our	cart	repository	through	a	web	request.	That	is	what	we	did	in	the	Arrange	part	of	the
preceding	test	method.	The	first	web	request	we	fired	in	the	arrange	part	will	add	a
product	domain	object	in	the	cart	whose	ID	is	the	same	as	the	session	ID.

In	the	Act	part	of	the	test	case,	we	simply	fired	another	REST-based	web	request	to	get	the
cart	object	as	a	JSON	object.	Remember	that	we	used	the	session	ID	as	our	cart	ID	to
store	our	cart	object,	so	while	retrieving,	we	need	to	give	the	same	session	ID	in	the
request	URL.	For	this,	we	can	use	the	mock	session	object	given	by	the	Spring	Test
framework.	You	can	see	in	the	following	code	that	we	have	autowired	the	session	object	in
our	CartRestControllerTest	class:

this.mockMvc.perform(get("/rest/cart/"+	session.getId()).session(session))

.andExpect(status().isOk())

.andExpect(

jsonPath("$.cartItems.P1234.product.productId").value("P1234"));

Once	we	get	the	cart	domain	object	as	a	JSON	object,	we	have	to	verify	that	it	contains
the	correct	product.	We	will	be	able	to	do	that	with	the	help	of	the	jsonPath	method	of
MockMvcResultMatchers,	as	specified	in	the	preceding	code	snippets.	After	sending	the
REST	web	request	go	get	the	cart	object,	we	verified	that	the	response	status	is	as
expected	and	also	checked	whether	the	JSON	object	contains	a	product	with	the	ID	P1234.

Finally,	when	we	run	this	test	case,	you	will	be	able	to	see	that	the	test	cases	are	being
executed	and	you	will	see	the	test	results	in	the	JUnit	window.

Have	a	go	hero	–	adding	tests	for	the	remaining
REST	methods
It	is	good	that	we	have	tested	and	verified	the	read	method	of	CartRestController,	but
we	have	not	tested	the	other	methods	of	CartRestController.	You	can	add	tests	for	other
methods	of	CartRestController	in	the	CartRestControllerTest	class	to	get	familiar
with	the	Spring	Test	framework.

Summary
In	this	final	chapter,	you	learned	the	importance	of	testing	a	web	application	and	saw	how
to	unit	test	the	domain	object.	Next	we	learned	how	to	perform	integration	test	on
validator	using	the	Spring	Test	framework.	You	also	saw	how	to	test	a	normal	controller
using	the	Spring	Test	Context	framework.	As	the	last	exercise,	you	saw	how	to	test	REST-
based	controllers	and	how	to	use	the	mock	session	object	from	the	Spring	Test	framework.
In	that	exercise,	you	also	learned	how	to	verify	the	JSON	path.

Appendix	A.	Using	the	Gradle	Build	Tool
Throughout	this	book,	we	have	used	Apache	Maven	as	our	build	tool,	but	there	are	other
popular	build	tools	also	used	widely	in	the	Java	community.	One	such	build	tool	is	Gradle.
Instead	of	XML,	Gradle	uses	a	Groovy-based	Domain	Specific	Language	(DSL)	as	the
base	for	the	build	script,	which	provides	more	flexibility	when	defining	complex	build
scripts.	Compared	to	Maven,	Gradle	takes	less	time	for	incremental	builds.	So,	Gradle
builds	are	very	fast	and	effective	for	large	projects.

In	this	appendix,	we	will	see	how	to	install	and	use	Gradle	as	the	build	tool	in	our	project.

Installing	Gradle
Perform	the	following	steps	to	install	Gradle:

1.	 Go	to	the	Gradle	download	page	by	entering	the	URL
http://www.gradle.org/downloads	in	your	browser.

2.	 Click	on	the	latest	Gradle	stable	release	download	link;	at	the	time	of	writing	this,	the
stable	release	is	gradle-1.11-all.zip.

3.	 Once	the	download	is	finished,	go	to	the	downloaded	directory	and	extract	the	ZIP
file	into	a	convenient	directory	of	your	choice.

4.	 Create	an	environment	variable	called	GRADLE_HOME.	Enter	the	extracted	Gradle	ZIP
directory	path	as	the	value	for	the	GRADLE_HOME	environment	variable.

5.	 Finally,	append	the	GRADLE_HOME	variable	to	PATH	by	simply	appending	the	text
;%GRADLE_HOME%\bin	to	the	PATH	variable.

Now	that	you	have	installed	Gradle	on	your	Windows-based	computer,	to	verify	whether
the	installation	was	completed	correctly,	go	to	the	command	prompt,	type	gradle	-v,	and
press	Enter.	The	output	shows	the	Gradle	version	and	also	the	local	environment
configuration.

http://www.gradle.org/downloads

The	Gradle	build	script	for	your	project
To	configure	the	Gradle	build	script	for	your	project,	perform	the	following	steps:

1.	 Go	to	the	root	directory	of	your	project	from	the	filesystem,	create	a	file	called
build.gradle,	and	add	the	following	content	into	the	file	and	save	it:

apply	plugin:	'war'

apply	plugin:	'eclipse-wtp'

repositories	{

		mavenCentral()	//add	central	maven	repo	to	your	buildfile

}

		

dependencies	{

		compile	'org.springframework:spring-webmvc:4.0.3.RELEASE',	

		'javax.servlet:jstl:1.2',

		'org.springframework.security:spring-security-web:3.1.4.RELEASE',

		'commons-fileupload:commons-fileupload:1.2.2',

		'org.apache.commons:commons-io:1.3.2',

		'org.springframework:spring-oxm:4.0.3.RELEASE',

		'org.codehaus.jackson:jackson-mapper-asl:1.9.10',

		'log4j:log4j:1.2.12',

		'org.hibernate:hibernate-validator:4.3.1.Final',

		'org.springframework.webflow:spring-webflow:2.3.3.RELEASE',

		'org.apache.tiles:tiles-extras:3.0.3',

		'org.slf4j:slf4j-api:1.7.5'

		

		compile('org.springframework.security:spring-security-

config:3.1.4.RELEASE')	{

				//excluding	a	particular	transitive	dependency:

				exclude	group:	'org.springframework',	module:	'spring-asm'

		}

		

		providedCompile	'javax.servlet:javax.servlet-api:3.1.0'	

		

		testCompile	'junit:junit:4.11',	

		'org.springframework:spring-test:4.0.3.RELEASE',	

		'com.jayway.jsonpath:json-path-assert:0.8.1'

}

2.	 Now	go	to	the	root	directory	of	your	project	from	the	command	prompt	and	issue	the
following	command:

>	gradle	eclipse

3.	 Next,	open	a	new	workspace	in	your	STS,	go	to	File	|	Import,	select	the	Existing
Projects	into	Workspace	option	from	the	tree	list	(you	can	find	this	option	under	the
General	node),	and	then	click	on	the	Next	button.

4.	 Click	on	the	Browse	button	to	select	the	root	directory	and	locate	your	project
directory.	Click	on	OK	and	then	on	Finish.

Now,	you	will	be	able	to	see	your	project	configured	with	the	right	dependencies	in	your

STS.

Understanding	the	Gradle	script
A	task	in	Gradle	is	similar	to	a	goal	in	Maven.	The	Gradle	script	supports	many	in-built
plugins	to	execute	build-related	tasks.	One	such	plugin	is	the	war	plugin,	which	provides
many	convenient	tasks	to	help	you	build	a	web	project.	We	can	incorporate	these	tasks	in
our	build	script	easily	by	applying	a	plugin	in	our	Gradle	script	as	follows:

apply	plugin:	'war'

Similar	to	the	war	plugin,	there	is	another	plugin	called	eclipse-wtp	to	incorporate	tasks
related	to	converting	a	project	into	an	eclipse	project.	The	eclipse	command	we	used	in
step	2	is	actually	provided	by	the	eclipse-wtp	plugin.

Inside	the	repositories	section,	we	can	define	our	remote	binary	repository	location.
When	we	build	our	Gradle	project,	we	use	this	remote	binary	repository	to	download	the
required	JARs.	In	our	case,	we	defined	our	remote	repository	as	the	Maven	central
repository,	as	follows:

repositories	{

		mavenCentral()	

}

All	of	the	project	dependencies	need	to	be	defined	inside	of	the	dependencies	section
grouped	under	the	scope	declaration,	such	as	compile,	providedCompile,	and
testCompile.	Consider	the	following	code	snippet:

dependencies	{

		compile	

		'org.springframework:spring-webmvc:4.0.3.RELEASE',

		'javax.servlet:jstl:1.2'.

}

If	you	look	closely	at	the	following	dependency	declaration	line,	the	compile	scope
declaration,	you	see	that	each	dependency	declaration	line	is	delimited	with	a	:	(colon)
symbol,	as	follows:

'org.springframework:spring-webmvc:4.0.3.RELEASE'

The	first	part	of	the	previous	line	is	the	group	ID,	the	second	part	is	the	artifact	ID,	and	the
final	part	is	the	version	information	as	provided	in	Maven.

So,	it	is	more	like	a	Maven	build	script	but	defined	using	a	Gradle	script,	which	is	based
on	the	Groovy	language.

Appendix	B.	Pop	Quiz	Answers

Chapter	2,	Spring	MVC	Architecture	–
Architecting	Your	Web	Store

Pop	quiz	–	request	mapping
Q1 2

Pop	quiz	–	the	web	application	context
Q1 1

Q2 3

Pop	quiz	–	web	application	context	configuration
Q1 4

Chapter	3,	Control	Your	Store	with
Controllers

Pop	quiz	–	class-level	request	mapping
Q1 1

Q2 2

Pop	quiz	–	request	path	variable
Q1 4

Q2 1	and	4

Pop	quiz	–	the	request	parameter
Q1 2

Chapter	5,	Working	with	View	Resolver

Pop	quiz	–	redirect	view
Q1 3

Pop	quiz	–	static	view
Q1 2

Chapter	6,	Intercept	Your	Store	with
Interceptor

Pop	quiz	–	interceptor
Q1 2

Q2 2

Chapter	9,	Apache	Tiles	and	Spring	Web
Flow	in	Action

Pop	quiz	–	web	flow
Q1 3

Q2 1

Pop	quiz	–	Apache	Tiles
Q1 All	three	(1,	2,	and	3)

Index
A

action	state,	flow	definition	/	Understanding	the	flow	definition
addToCart	method,	controllers.js	/	What	just	happened?
afterCompletion	method

about	/	Working	with	interceptors
Ajax

about	/	Handling	a	web	service	in	Ajax
web	service,	handling	/	Handling	a	web	service	in	Ajax

AngularJs
using	/	Time	for	action	–	consuming	REST	web	services	via	Ajax,	What	just
happened?
URL	/	What	just	happened?
ng-repeat	directive	/	What	just	happened?
ng-click	directive	/	What	just	happened?

Apache	Tiles
reusability,	enhancing	through	/	Enhancing	reusability	through	Apache	Tiles
views,	creating	for	view	state	/	Time	for	action	–	creating	views	for	every	view
state
template	attribute	/	What	just	happened?
<tiles*insertAttribute>	tag	/	What	just	happened?

Apache	Tomcat
about	/	Time	for	action	–	installing	the	Tomcat	web	server
URL	/	Time	for	action	–	installing	the	Tomcat	web	server

audit	logging
about	/	Audit	logging
performing,	interceptor	used	/	Audit	logging

B
@Before	annotation	/	What	just	happened?
bean	validation	annotation

URL	/	Bean	validation
build	tool

configuring	/	Configuring	a	build	tool

C
<C*forEach>	tag	/	What	just	happened?
<c*if>	tag	/	What	just	happened?
@Category	annotation	/	Have	a	go	hero	–	adding	custom	validation	to	a	category
@Component	annotation	/	What	just	happened?
@ContextConfiguration	annotation	/	What	just	happened?
@Controller	annotation	/	Defining	a	controller

about	/	What	just	happened?
cart.jsp	file	/	What	just	happened?
Cart	class

creating	/	Time	for	action	–	implementing	RESTful	web	services
about	/	What	just	happened?

CartController	class
creating	/	Time	for	action	–	consuming	REST	web	services	via	Ajax
about	/	What	just	happened?
get	method	/	What	just	happened?
getCart	method	/	What	just	happened?

CartItem	class
creating	/	Time	for	action	–	implementing	RESTful	web	services
about	/	What	just	happened?,	Time	for	action	–	unit-testing	domain	objects

CartRepository	interface
creating	/	Time	for	action	–	implementing	RESTful	web	services
about	/	What	just	happened?

CartRestController	class
creating	/	Time	for	action	–	implementing	RESTful	web	services
about	/	What	just	happened?
addItem	method	/	What	just	happened?
removeItem	method	/	What	just	happened?

CartRestControllerTest	class	/	What	just	happened?
CartServiceImpl	class

creating	/	Time	for	action	–	implementing	RESTful	web	services
CartService	interface

creating	/	Time	for	action	–	implementing	RESTful	web	services
about	/	What	just	happened?

category	view
adding,	to	products	page	/	Time	for	action	–	showing	products	based	on
category,	What	just	happened?

checkout	flow	definition
about	/	Understanding	the	checkout	flow
diagrammatic	representation	/	Understanding	the	checkout	flow
<flow>	tag	/	Understanding	the	checkout	flow
<var>	tag	/	Understanding	the	checkout	flow
Order	class	/	Understanding	the	checkout	flow

order	variable	/	Understanding	the	checkout	flow
<action-state>	definition	/	Understanding	the	checkout	flow
validate	method,	invoking	/	Understanding	the	checkout	flow
<evaluate>	tag	/	Understanding	the	checkout	flow
InvalidCartWarning	state	/	Understanding	the	checkout	flow
addCartToOrder	state	/	Understanding	the	checkout	flow
collectCustomerInfo	state	/	Understanding	the	checkout	flow
collectShippingDetail	state	/	Understanding	the	checkout	flow
orderConfirmation	state	/	Understanding	the	checkout	flow
processOrder	state	/	Understanding	the	checkout	flow
thankCustomer	state	/	Understanding	the	checkout	flow
cancelCheckout	end	state	/	Understanding	the	checkout	flow
views,	creating	for	view	states	/	Time	for	action	–	creating	views	for	every	view
state
collectCustomerInfo.jsp,	creating	/	Time	for	action	–	creating	views	for	every
view	state
collectShippingDetail.jsp,	creating	/	Time	for	action	–	creating	views	for	every
view	state
orderConfirmation.jsp,	creating	/	Time	for	action	–	creating	views	for	every
view	state
InvalidCartWarning.jsp,	creating	/	Time	for	action	–	creating	views	for	every
view	state
thankCustomer.jsp,	creating	/	Time	for	action	–	creating	views	for	every	view
state
checkOutCancelled.jsp,	creating	/	Time	for	action	–	creating	views	for	every
view	state
decision	state,	adding	/	Have	a	go	hero	–	adding	a	decision	state

class-level	request	mapping
adding	/	Time	for	action	–	adding	class-level	request	mapping,	What	just
happened?

classesToBeBound	property,	xmlView	bean	/	What	just	happened?
conditional	redirecting

about	/	Conditional	redirecting
performing,	interceptor	used	/	Conditional	redirecting
offer	page	requests,	intercepting	/	Time	for	action	–	intercepting	offer	page
requests

ContentNegotiatingViewResolver
about	/	Using	ContentNegotiatingViewResolver
configuring	/	Time	for	action	–	configuring	ContentNegotiatingViewResolver,
What	just	happened?

content	negotiation
about	/	Using	ContentNegotiatingViewResolver

controller
defining	/	Defining	a	controller

class-level	request	mapping,	adding	/	Time	for	action	–	adding	class-level
request	mapping,	What	just	happened?

controllers.js
creating	/	What	just	happened?
refreshCart	method	/	What	just	happened?
initCartId	method	/	What	just	happened?
clearCart	method	/	What	just	happened?
addToCart	method	/	What	just	happened?
removeFromCart	method	/	What	just	happened?

CRUD	operations
about	/	What	just	happened?

custom	validation	annotation
creating	/	Have	a	go	hero	–	adding	custom	validation	to	a	category
considerations	/	Have	a	go	hero	–	adding	custom	validation	to	a	category

custom	validation	support
adding	/	Time	for	action	–	adding	custom	validation	support

D
data	audit	interceptor

adding	/	Time	for	action	–	adding	the	data	audit	interceptor,	What	just
happened?

data	binding,	Spring	tag	libraries
customizing	/	Customizing	data	binding
form	binding	whitelisting,	adding	/	Time	for	action	–	whitelisting	form	fields,
What	just	happened?

Data	Transfer	Objects	(DTOs)	/	Serving	and	processing	forms
decision	state,	flow	definition	/	Understanding	the	flow	definition
dependency	injection	(DI)

about	/	The	web	application	context
development	environment

configuring	/	Configuring	a	development	environment
dispatcher	servlet

about	/	The	dispatcher	servlet
Dispatcher	servlet

about	/	The	dispatcher	servlet
configuring	/	Time	for	action	–	configuring	the	dispatcher	servlet,	What	just
happened?

domain	layer,	web	application	architecture
about	/	The	domain	layer
domain	object,	creating	/	Time	for	action	–	creating	a	domain	object,	What	just
happened?

domain	objects
unit	testing	/	Time	for	action	–	unit-testing	domain	objects,	What	just	happened?

E
eclipse-wtp	plugin	/	Understanding	the	Gradle	script
eclipse	command	/	Understanding	the	Gradle	script
end	state,	flow	definition	/	Understanding	the	flow	definition
environment	variables,	JDK

setting	up	/	Time	for	action	–	setting	up	environment	variables
errorRedirect	property,	PromoCodeInterceptor	class

about	/	What	just	happened?
exception	handler

adding	/	Time	for	action	–	adding	an	exception	handler

F
<form*form>	tag	/	What	just	happened?
<form*input>	tag	/	What	just	happened?

about	/	What	just	happened?
type	attribute	/	What	just	happened?

flow-executor	configuration	/	Understanding	the	checkout	flow
flow-registry	configuration	tag	/	Understanding	the	checkout	flow
flow	definition

about	/	Understanding	the	flow	definition
start	state	/	Understanding	the	flow	definition
action	state	/	Understanding	the	flow	definition
view	state	/	Understanding	the	flow	definition
decision	state	/	Understanding	the	flow	definition
subflow	state	/	Understanding	the	flow	definition
end	state	/	Understanding	the	flow	definition

flowHandlerAdapter	/	Understanding	the	checkout	flow
flowHandlerMapping	parameter	/	Understanding	the	checkout	flow
for	each	loop	/	What	just	happened?
for	loop

about	/	What	just	happened?
form-backing	bean	/	What	just	happened?
forms,	Spring	tag	libraries

serving	/	Serving	and	processing	forms,	Time	for	action	–	serving	and
processing	forms,	What	just	happened?
processing	/	Serving	and	processing	forms,	Time	for	action	–	serving	and
processing	forms,	What	just	happened?

G
getCart	method,	CartController	class	/	What	just	happened?
getProductById	method	/	What	just	happened?
getProductsByFilter	method	/	What	just	happened?
getTotalPrice	method

about	/	Time	for	action	–	unit-testing	domain	objects
Gradle

installing	/	Installing	Gradle
build	script,	configuring	/	The	Gradle	build	script	for	your	project

Gradle	script
about	/	Understanding	the	Gradle	script

GRADLE_HOME	variable	/	Installing	Gradle

H
handler	exception	resolver

implementing	/	Working	with	the	handler	exception	resolver
response	status	exception,	adding	/	Time	for	action	–	adding	the	response	status
exception,	What	just	happened?
exception	handler,	adding	/	Time	for	action	–	adding	an	exception	handler,	What
just	happened?

HandlerExceptionResolver	implementations
ResponseStatusExceptionResolver	/	Working	with	the	handler	exception
resolver
ExceptionHandlerExceptionResolver	/	Working	with	the	handler	exception
resolver

HandlerInterceptor	interface
preHandle	method	/	Working	with	interceptors
postHandle	method	/	Working	with	interceptors
afterCompletion	method	/	Working	with	interceptors

HandlerMapping	implementations
about	/	Handler	mapping

HandlerMapping	interface
about	/	Handler	mapping

HTTP	requests
GET	/	Time	for	action	–	consuming	REST	web	services
POST	/	Time	for	action	–	consuming	REST	web	services
PUT	/	Time	for	action	–	consuming	REST	web	services
DELETE	/	Time	for	action	–	consuming	REST	web	services

I
IDE

about	/	Configuring	a	development	environment
InitBinder	annotation	/	What	just	happened?
InMemoryCartRepository	class

creating	/	Time	for	action	–	implementing	RESTful	web	services
about	/	What	just	happened?

InternalResourceView
about	/	Resolving	views

InternalResourceViewResolver
about	/	Resolving	views

internationalization
about	/	Internationalization	(i18n)
adding	/	Time	for	action	–	adding	internationalization,	What	just	happened?

J
Java	bean	validation

about	/	Bean	validation
adding,	to	products	page	/	Time	for	action	–	adding	bean	validation	support,
What	just	happened?,	Have	a	go	hero	–	adding	more	validation	in	the	add
products	page
custom	validation	support,	adding	/	Custom	validation	with	JSR-303	/	bean
validation,	Time	for	action	–	adding	custom	validation	support,	What	just
happened?
custom	validation,	adding	to	category	/	Have	a	go	hero	–	adding	custom
validation	to	a	category

Java	Runtime	Environment	(JRE)	/	Time	for	action	–	installing	JDK
JavaServer	Pages	Standard	Tag	Library	(JSTL)	/	Time	for	action	–	adding	Spring	jars
to	the	project,	Serving	and	processing	forms
JDK

about	/	Setting	up	Java
setting	up	/	Setting	up	Java
installing	/	Time	for	action	–	installing	JDK
environment	variables,	setting	up	/	Time	for	action	–	setting	up	environment
variables

JUnit
about	/	Time	for	action	–	unit-testing	domain	objects

L
LocalValidatorFactoryBean	/	What	just	happened?

validationMessageSource	property	/	What	just	happened?

M
@MatrixVariable	annotation	/	Using	matrix	variables
@ModelAttribute	annotation	/	What	just	happened?
master	detail	view

implementing	/	Time	for	action	–	implementing	a	master	detail	view
matrix	variables

using	/	Using	matrix	variables
product	list,	filtering	/	Time	for	action	–	showing	the	products	based	on	filter,
What	just	happened?
enabling	/	What	just	happened?

Maven	build	tool
installing	/	Time	for	action	–	installing	the	Maven	build	tool
configuring,	on	STS	/	Time	for	action	–	configuring	Maven	on	STS

message	attribute	/	What	just	happened?
messages_nl.properties	file	/	What	just	happened?
multipart	request

about	/	The	multipart	request	in	action
image	upload	facility,	adding	to	product	page	/	Time	for	action	–	adding	images
to	the	product	page
product	user	manuals,	uploading	to	server	/	Have	a	go	hero	–	uploading	product
user	manuals	to	the	server

multiple	filters
adding,	to	list	products	/	Have	a	go	hero	–	adding	multiple	filters	to	list	products

N
ng-click	AngularJs	directive	/	What	just	happened?
ng-repeat	AngularJs	directive	/	What	just	happened?

O
offer	page	requests,	conditional	redirecting

intercepting	/	Time	for	action	–	intercepting	offer	page	requests
offerRedirect	property,	PromoCodeInterceptor	class

about	/	What	just	happened?

P
@PathVariable	annotation	/	What	just	happened?
path	attribute	/	What	just	happened?
persistence	layer,	web	application	architecture

about	/	The	persistence	layer
repository	object,	creating	/	Time	for	action	–	creating	a	repository	object,	What
just	happened?

pom.xml	file
configuring	/	Time	for	action	–	adding	Java	version	properties	in	pom.xml

postHandle	method
about	/	Working	with	interceptors

Postman
about	/	Time	for	action	–	consuming	REST	web	services
download	page	/	Time	for	action	–	consuming	REST	web	services
installing	/	Time	for	action	–	consuming	REST	web	services

preHandle	method
about	/	Working	with	interceptors

processAddNewProductForm	method	/	What	just	happened?
product	controller

testing	/	Time	for	action	–	testing	the	product	controller
ProductControllerTest	class

creating	/	Time	for	action	–	testing	the	product	controller
/	What	just	happened?
product	details	page

creating	/	Time	for	action	–	adding	the	product	details	page
ProductImageValidator	class

about	/	Have	a	go	hero	–	adding	Spring	validation	to	the	product	image
productToBeAdded	object	/	What	just	happened?
product	validator

testing	/	Time	for	action	–	testing	the	product	validator
ProductValidator	class	/	Time	for	action	–	testing	the	product	validator
ProductValidatorTest	class	/	What	just	happened?
PromoCodeInterceptor	class

promoCode	property	/	What	just	happened?
errorRedirect	property	/	What	just	happened?
offerRedirect	property	/	What	just	happened?

promoCode	property,	PromoCodeInterceptor	class
about	/	What	just	happened?

R
@Repository	annotation	/	What	just	happened?
@RequestMapping	annotation	/	Time	for	action	–	examining	request	mapping,	What
just	happened?,	Defining	a	controller,	What	just	happened?

about	/	What	just	happened?
Redirect	After	Post	/	What	just	happened?
redirect	view

about	/	The	redirect	view
RedirectView

examining	/	Time	for	action	–	examining	RedirectView,	What	just	happened?
refreshCart	method,	controllers.js	/	What	just	happened?
removeFromCart	method,	controllers.js	/	What	just	happened?
request	mapping

examining	/	Time	for	action	–	examining	request	mapping,	What	just	happened?
request	parameters

about	/	Understanding	request	parameters
product	details	page,	adding	/	Time	for	action	–	adding	the	product	details	page
master	detail	view,	implementing	/	Time	for	action	–	implementing	a	master
detail	view,	What	just	happened?
multiple	filters,	adding	to	list	products	/	Have	a	go	hero	–	adding	multiple	filters
to	list	products

response	status	exception
adding	/	Time	for	action	–	adding	the	response	status	exception

REST
about	/	Introducing	REST

REST	controllers
testing	/	Time	for	action	–	testing	REST	controllers,	What	just	happened?

RESTful	web	services
implementing	/	Time	for	action	–	implementing	RESTful	web	services

REST	web	services
consuming	/	Time	for	action	–	consuming	REST	web	services
consuming,	via	Ajax	/	Time	for	action	–	consuming	REST	web	services	via
Ajax

S
<security*authentication-manager>	tag	/	What	just	happened?
<security*http>	tag	/	What	just	happened?
<spring*message>	tag	/	What	just	happened?,	What	just	happened?
service	layer,	web	application	architecture

about	/	The	service	layer
service	object,	creating	/	Time	for	action	–	creating	a	service	object,	What	just
happened?
product	domain	object,	accessing	/	Have	a	go	hero	–	accessing	the	product
domain	object	via	a	service

servlet-api	/	Time	for	action	–	adding	Spring	jars	to	the	project
SessionLocaleResolver	bean	/	What	just	happened?
spring-oxm	notation	/	What	just	happened?
Spring	Expression	Language	/	Understanding	the	flow	definition
Spring	MVC

controller,	defining	/	Defining	a	controller
controller	/	The	role	of	a	controller	in	Spring	MVC
URI	template	patterns,	using	/	Using	URI	template	patterns

Spring	MVC	architecture
dispatcher	servlet	/	The	dispatcher	servlet
request	mapping	/	Time	for	action	–	examining	request	mapping
web	application	context	/	The	web	application	context
web	application	context	configuration	file	/	The	web	application	context
configuration
view	resolver	/	View	resolvers
web	application	architecture	/	An	overview	of	the	web	application	architecture

Spring	MVC	interceptor
about	/	Working	with	interceptors
HandlerInterceptor	interface	/	Working	with	interceptors
configuring	/	Time	for	action	–	configuring	an	interceptor,	What	just	happened?
internationalization	/	Internationalization	(i18n)

Spring	MVC	project
creating	/	Creating	our	first	Spring	MVC	project,	Time	for	action	–	creating	a
Spring	MVC	project	in	STS,	What	just	happened?
dependencies,	managing	/	Spring	MVC	dependencies
Spring	jars,	adding	/	Time	for	action	–	adding	Spring	jars	to	the	project,	What
just	happened?
Java	version	properties,	adding	in	pom.xml	file	/	Time	for	action	–	adding	Java
version	properties	in	pom.xml
welcome	page,	creating	/	A	jump-start	to	MVC,	Time	for	action	–	adding	a
welcome	page
welcome	page,	adding	/	Time	for	action	–	adding	a	welcome	page,	What	just
happened?

deploying	/	Deploying	our	project
running	/	Time	for	action	–	running	the	project

Spring	Security
using	/	Using	Spring	Security	tags

Spring	Security	tags
using	/	Using	Spring	Security	tags
login	page,	adding	/	Time	for	action	–	adding	a	login	page,	What	just	happened?

Spring	tag	libraries
forms,	serving	/	Serving	and	processing	forms,	Time	for	action	–	serving	and
processing	forms,	What	just	happened?
forms,	processing	/	Serving	and	processing	forms,	Time	for	action	–	serving	and
processing	forms,	What	just	happened?
data	binding,	customizing	/	Customizing	data	binding
text	messages,	externalizing	/	Externalizing	text	messages
Spring	Security	tags	/	Using	Spring	Security	tags

Spring	Test	Context
incorporating,	to	test	/	Integration	testing	with	the	Spring	Test	Context
framework

Spring	Tool	Suite	(STS)	/	Configuring	a	development	environment
installing	/	Time	for	action	–	installing	Spring	Tool	Suite
URL	/	Time	for	action	–	installing	Spring	Tool	Suite
Tomcat,	configuring	/	Time	for	action	–	configuring	Tomcat	on	STS,	What	just
happened?
Maven,	configuring	/	Time	for	action	–	configuring	Maven	on	STS
Spring	MVC	project,	creating	/	Creating	our	first	Spring	MVC	project,	What
just	happened?

Spring	validation
about	/	Spring	validation
using	/	Spring	validation
adding	/	Time	for	action	–	adding	Spring	validation,	What	just	happened?
combining,	with	bean	validation	/	Time	for	action	–	combining	Spring	and	bean
validations,	What	just	happened?
adding,	to	product	image	/	Have	a	go	hero	–	adding	Spring	validation	to	the
product	image

Spring	Validator	interface	/	What	just	happened?
Spring	Web	Flow

about	/	Working	with	Spring	Web	Flow
order	processing	service,	implementing	/	Time	for	action	–	implementing	the
order-processing	service
checkout	flow,	implementing	/	Time	for	action	–	implementing	the	checkout
flow
flow	definition	/	Understanding	the	flow	definition
checkout	flow	definition	/	Understanding	the	checkout	flow
application,	running	/	Time	for	action	–	creating	views	for	every	view	state,

What	just	happened?
start	state,	flow	definition	/	Understanding	the	flow	definition
static	resources

serving	/	Serving	static	resources,	Time	for	action	–	serving	static	resources,
What	just	happened?
images,	adding	to	product	detail	page	/	Time	for	action	–	adding	images	to	the
product	detail	page

subflow	state,	flow	definition	/	Understanding	the	flow	definition

T
testing

integrating,	with	Spring	Test	Context	/	Integration	testing	with	the	Spring	Test
Context	framework

tests
adding,	for	cart	/	Have	a	go	hero	–	adding	tests	for	cart
adding,	for	remaining	REST	methods	/	Have	a	go	hero	–	adding	tests	for	the
remaining	REST	methods

text	messages,	Spring	tag	libraries
externalizing	/	Externalizing	text	messages,	Time	for	action	–	externalizing
messages,	What	just	happened?

Tomcat	web	server
installing	/	Time	for	action	–	installing	the	Tomcat	web	server
configuring,	on	STS	/	Time	for	action	–	configuring	Tomcat	on	STS,	What	just
happened?

transitive	dependencies	/	What	just	happened?

U
UnitsInStockValidator	class	/	What	just	happened?
unit	testing

about	/	Unit	testing
domain	objects	/	Time	for	action	–	unit-testing	domain	objects,	What	just
happened?

URI	template	patterns
using	/	Using	URI	template	patterns
category	view,	adding	to	products	page	/	Time	for	action	–	showing	products
based	on	category,	What	just	happened?

user	interface	(UI)	/	Working	with	Spring	Web	Flow

V
validationMessageSource	property,	LocalValidatorFactoryBean	/	What	just
happened?
view	resolver

about	/	View	resolvers
view	resolvers

about	/	Resolving	views
views

resolving	/	Resolving	views
InternalResourceView	/	Resolving	views
VelocityView	/	Resolving	views
FreeMarkerView	/	Resolving	views
TilesView	/	Resolving	views
RedirectView	/	Resolving	views
redirect	view	/	The	redirect	view

view	state,	flow	definition	/	Understanding	the	flow	definition

W
<web-app>	tag	/	Time	for	action	–	adding	a	login	page
@WebAppConfiguration	annotation	/	What	just	happened?
war	plugin	/	Understanding	the	Gradle	script
web	application	architecture

domain	layer	/	The	domain	layer
persistence	layer	/	The	persistence	layer
service	layer	/	The	service	layer
overview	/	An	overview	of	the	web	application	architecture
customers,	listing	/	Have	a	go	hero	–	listing	all	our	customers

web	application	context
about	/	The	web	application	context
name	and	location,	tweaking	/	Time	for	action	–	understanding	the	web
application	context,	What	just	happened?
configuration	file	/	The	web	application	context	configuration

web	server
installing	/	Installing	a	web	server

web	service
handling,	in	Ajax	/	Handling	a	web	service	in	Ajax

	Spring MVC Beginner's Guide
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Time for action – heading
	What just happened?
	Pop quiz – heading
	Have a go hero – heading
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Configuring a Spring Development Environment
	Setting up Java
	Time for action – installing JDK
	Time for action – setting up environment variables
	Configuring a build tool
	Time for action – installing the Maven build tool
	Installing a web server
	Time for action – installing the Tomcat web server
	Configuring a development environment
	Time for action – installing Spring Tool Suite
	Time for action – configuring Tomcat on STS
	What just happened?
	Time for action – configuring Maven on STS
	Creating our first Spring MVC project
	Time for action – creating a Spring MVC project in STS
	What just happened?
	Spring MVC dependencies
	Time for action – adding Spring jars to the project
	What just happened?
	Time for action – adding Java version properties in pom.xml
	A jump-start to MVC
	Time for action – adding a welcome page
	What just happened?
	The dispatcher servlet
	Time for action – configuring the dispatcher servlet
	What just happened?
	Deploying our project
	Time for action – running the project
	Summary
	2. Spring MVC Architecture – Architecting Your Web Store
	The dispatcher servlet
	Time for action – examining request mapping
	What just happened?
	Pop quiz – request mapping
	The web application context
	Time for action – understanding the web application context
	What just happened?
	Pop quiz – the web application context
	The web application context configuration
	Pop quiz – web application context configuration
	View resolvers
	Time for action – understanding InternalResourceViewResolver
	What just happened?
	Model View Controller
	An overview of the Spring MVC request flow
	The web application architecture
	The domain layer
	Time for action – creating a domain object
	What just happened?
	The persistence layer
	Time for action – creating a repository object
	What just happened?
	The service layer
	Time for action – creating a service object
	What just happened?
	Have a go hero – accessing the product domain object via a service
	An overview of the web application architecture
	Have a go hero – listing all our customers
	Summary
	3. Control Your Store with Controllers
	Defining a controller
	Time for action – adding class-level request mapping
	What just happened?
	Pop quiz – class-level request mapping
	The role of a controller in Spring MVC
	Handler mapping
	Using URI template patterns
	Time for action – showing products based on category
	What just happened?
	Pop quiz – request path variable
	Using matrix variables
	Time for action – showing the products based on filter
	What just happened?
	Understanding request parameters
	Time for action – adding the product details page
	What just happened?
	Pop quiz – the request parameter
	Time for action – implementing a master detail view
	What just happened?
	Have a go hero – adding multiple filters to list products
	Summary
	4. Working with Spring Tag Libraries
	Serving and processing forms
	Time for action – serving and processing forms
	What just happened?
	Customizing data binding
	Time for action – whitelisting form fields
	What just happened?
	Externalizing text messages
	Time for action – externalizing messages
	What just happened?
	Using Spring Security tags
	Time for action – adding a login page
	What just happened?
	Summary
	5. Working with View Resolver
	Resolving views
	The redirect view
	Time for action – examining RedirectView
	What just happened?
	Pop quiz – redirect view
	Serving static resources
	Time for action – serving static resources
	What just happened?
	Pop quiz – static view
	Time for action – adding images to the product detail page
	What just happened?
	The multipart request in action
	Time for action – adding images to the product page
	What just happened?
	Have a go hero – uploading product user manuals to the server
	Using ContentNegotiatingViewResolver
	Time for action – configuring ContentNegotiatingViewResolver
	What just happened?
	Working with the handler exception resolver
	Time for action – adding the response status exception
	What just happened?
	Time for action – adding an exception handler
	What just happened?
	Summary
	6. Intercept Your Store with Interceptor
	Working with interceptors
	Time for action – configuring an interceptor
	What just happened?
	Pop quiz – interceptor
	Internationalization (i18n)
	Time for action – adding internationalization
	What just happened?
	Have a go hero – fully internationalize the product detail page
	Audit logging
	Time for action – adding the data audit interceptor
	What just happened?
	Conditional redirecting
	Time for action – intercepting offer page requests
	What just happened?
	Summary
	7. Validate Your Products with a Validator
	Bean validation
	Time for action – adding bean validation support
	What just happened?
	Have a go hero – adding more validation in the add products page
	Custom validation with JSR-303 / bean validation
	Time for action – adding custom validation support
	What just happened?
	Have a go hero – adding custom validation to a category
	Spring validation
	Time for action – adding Spring validation
	What just happened?
	Time for action – combining Spring and bean validations
	What just happened?
	Have a go hero – adding Spring validation to the product image
	Summary
	8. Give REST to Your Application with Ajax
	Introducing REST
	Time for action – implementing RESTful web services
	What just happened?
	Time for action – consuming REST web services
	What just happened?
	Handling a web service in Ajax
	Time for action – consuming REST web services via Ajax
	What just happened?
	Summary
	9. Apache Tiles and Spring Web Flow in Action
	Working with Spring Web Flow
	Time for action – implementing the order-processing service
	What just happened?
	Time for action – implementing the checkout flow
	What just happened?
	Understanding the flow definition
	Understanding the checkout flow
	Pop quiz – web flow
	Time for action – creating views for every view state
	What just happened?
	Have a go hero – adding a decision state
	Enhancing reusability through Apache Tiles
	Time for action – creating views for every view state
	What just happened?
	Pop quiz – Apache Tiles
	Summary
	10. Testing Your Application
	Unit testing
	Time for action – unit-testing domain objects
	What just happened?
	Have a go hero – adding tests for cart
	Integration testing with the Spring Test Context framework
	Time for action – testing the product validator
	What just happened?
	Time for action – testing the product controller
	What just happened?
	Time for action – testing REST controllers
	What just happened?
	Have a go hero – adding tests for the remaining REST methods
	Summary
	A. Using the Gradle Build Tool
	Installing Gradle
	The Gradle build script for your project
	Understanding the Gradle script
	B. Pop Quiz Answers
	Chapter 2, Spring MVC Architecture – Architecting Your Web Store
	Pop quiz – request mapping
	Pop quiz – the web application context
	Pop quiz – web application context configuration
	Chapter 3, Control Your Store with Controllers
	Pop quiz – class-level request mapping
	Pop quiz – request path variable
	Pop quiz – the request parameter
	Chapter 5, Working with View Resolver
	Pop quiz – redirect view
	Pop quiz – static view
	Chapter 6, Intercept Your Store with Interceptor
	Pop quiz – interceptor
	Chapter 9, Apache Tiles and Spring Web Flow in Action
	Pop quiz – web flow
	Pop quiz – Apache Tiles
	Index

