
Project Step 4 — Part 1: Expressions 
 
Your goal in part 1 is to generate code for expressions. To do this, we will build semantic 
actions that generate code in an intermediate representation (IR) for assignment statements 
and expressions, and then translate that intermediate representation to assembly code. 
 
We recommend that you do this in three steps, as it will make it easier to debug your code, 
but you can also choose to do it in two steps (step 1 is optional): 
 

1. Generate an abstract syntax tree (AST) for the code in your function. 
2. Convert the AST into a sequence of IR Nodes that implement your function using three 

address code. 
3. Traverse your sequence of IR Nodes to generate assembly code. 

 
We will discuss each of these steps next. (Note: in this step 4, we will only have one function 
in our program, main. You can assume that all variables are defined globally. There will not 
be any additional variables defined in main().) 
 
Abstract Syntax Tree 
An Abstract Syntax Tree is essentially, a cleaned-up form of your parse tree that more 
straightforwardly captures the structure of expressions, control constructs, etc. in your 
program. For many compilers, the AST is the intermediate representation, though we will 
further convert the AST into another intermediate representation. 
 
What is the difference between a parse tree and an AST? 

Parse trees capture all of the little details necessary to implement your grammar. This means 
that it often contains extraneous information beyond what is necessary to capture the details 
of a piece of code (e.g., there are nodes for tokens like ";", and nodes for all of the sub-
constructs we used to correctly implement order of operations). ASTs, in contrast, contain 
exactly the information needed to capture the meaning of an expression, including being 
structured to preserve order of operations. 
 
For example, consider the parse tree for a + b * c: 



 
 
Complicated, huh? Here's an abstract syntax tree that captures the same thing: 
 

 
 
Much simpler! We aren't preserving anything except the bare minimum needed to describe 
the expression (note that we included the type of each of the variables in the program -- we 
can get that information from our symbol table!). 
 
Building an AST 

Note that the information in the AST is associated with various nodes in the parse tree. We 
can use semantic actions, just as we did in Step 3, to pass information "up" the parse tree to 
build up the AST. Instead of passing information about a declaration, we can instead pass 
partially constructed abstract syntax tree nodes (you may want to define a class or structure 
called ASTNode that can be the "return type" for the relevant constructs). For example: 



§ add_op : generate an AddExpr AST node that has two children (that you leave uninitialized) and 
keeps track of the operator (+ or -). 

§ expr_prefix: this will have three AST Nodes passed up from its sub rules: one 
from expr_prefix (which may be NULL, but otherwise will be an AddExpr node missing its right 
child), one passed up from factor (which will be a complete AST Node with all its fields filled 
in), and one passed up from add_op (which will be an AddExpr node that has neither its left nor 
its right child filled in). 

1. If expr_prefix is NULL, make the add_op node's left child the node from factor and 
return up the add_op node (note that it won't have its right child filled in!) 

2. If expr_prefix isn't NULL, note that it will be missing its right child. Make 
the factor node its right child, then make the expr_prefix node the add_op node's left 
child, which you pass up. 
 

This basic idea: creating AST nodes when you have the information for a new node, then 
filling in various fields of the node as you work your way up the parse tree, will let you 
eventually create an AST for all the statements in the function. 
 
Hint: you should also create an AST node to capture lists of statements; each element of the 
list will point to an AST node for a single assign_stmt. 

 
IR: 3 Address Code 
The next step in our compilation process is to generate 3 Address Code (3AC), which is our 
intermediate representation. 3AC is an intermediate representation where each instruction 
has at most two source operands and one destination operand. Unlike assembly code, 3AC 
does not have any notion of registers. Instead, the key to 3AC is to generate temporaries -- 
variables that are used to hold the intermediate results of computations. For example, the 
3AC for d := a + b * c (where all variables are integers) will be: 
 
MULTI b c $T1 
ADDI a $T1 $T2 
STOREI $T2 d 

 

Generating 3AC 

Generating 3AC is straightforward from an AST. We can perform a post-order walk of the 
tree, passing up increasingly longer sequences of IR code called CodeObjects. Each code 
object retains three pieces of information: 
 

1. A sequence of IR Nodes (a structure representing a single 3AC instruction) that holds 
the code for this part of the AST (i.e., that implements this part of the expression) 



2. An indication of where the "result" of the IR code is being stored (think: the name of 
the temporary or variable where the result of the expression is stored) 

3. An indication of the type of the result (INT or FLOAT) 
 

Then, when we encounter something like an AddExpr Node, we can generate code for the 
overall expression as follows: 
 

1. Create a new CodeObject whose code list is all the code from the left child of 
the AddExpr followed by all the code for the right child. 

2. Use the result fields of the left and right CodeObjects to create a new 3AC instruction 
performing the add, storing the result in a new temporary. Add this new instruction to 
the end of your code list 

3. Indicate in your CodeObject the temporary where the result is stored, and its type. 
4. Return the new CodeObject up the AST as part of your post-order walk. 

 
Hint: the CodeObject for a simple variable won't have any 3AC code associated with it. Instead, 
mark the variable itself as the "temporary" the result is stored in. 
Hint: You may find it useful to write a helper function to generate "fresh" temporaries. 

 
Then, when you get to the top of the AST, you will have a single CodeObject that contains all 
of the IR code for the entire main function. 
 
Note: We are generating code by performing a post-order walk of the AST. You can also 
generate code using this strategy by performing a post-order walk of the parse-tree (which is 
why you can optionally skip building the AST). 

 
3AC instructions 

Here are the 3AC instructions you should use: 
 
ADDI  OP1 OP2 RESULT (Integer add; RESULT = OP1 + OP2) 
SUBI  OP1 OP2 RESULT (Integer sub; RESULT = OP1 - OP2) 
MULTI  OP1 OP2 RESULT (Integer mul; RESULT = OP1 * OP2) 
DIVI  OP1 OP2 RESULT (Integer div; RESULT = OP1 / OP2) 
 
ADDF  OP1 OP2 RESULT (Floating point add; RESULT = OP1 + OP2) 
SUBF  OP1 OP2 RESULT (Floating point sub; RESULT = OP1 - OP2) 
MULTF  OP1 OP2 RESULT (Floating point mul; RESULT = OP1 * OP2) 
DIVF  OP1 OP2 RESULT (Floating point div; RESULT = OP1 / OP2) 
 
STOREI OP1 RESULT (Integer store; store OP1 in RESULT) 
STOREF OP1 RESULT (Floating point store; store OP1 in RESULT) 
 
READI RESULT (Read integer from console; store in RESULT) 
READF RESULT (Read float from console; store in RESULT) 
 



WRITEI OP1 (Write integer OP1 to console) 
WRITEF OP1 (Write float OP1 to console) 
WRITES OP1 (Write string OP1 to console) 

 

Generating Assembly 
Once you have your IR, your final task is to generate assembly code. In this class, we will be 
using an assembly instruction set called Tiny. The tiny simulator is meant to work as a 
simplified version of a real machine. It works by executing a stream of assembly instructions. 
The “tinyNew.C” file is the source code for the tiny simulator. You can compile the source 
code using the following command: g++ -o tiny tinyNew.C 
 
See the tinyDoc.txt for details about the instruction set. 
 
This task is fairly straightforward: iterate over the list of 3AC you generated in the previous 
step and convert each individual instruction into the necessary Tiny code (note that Tiny 
instructions reuse one of the source operands as the destination, so you may need to 
generate multiple Tiny instructions for each 3AC instruction). 
 
We will be using a version of Tiny emulator that supports 1000 registers, so you can more or 
less directly translate each temporary you generate into a register (i.e. you don’t have to worry 
about efficient register allocation). 
 

What you need to do 
In this part, you will be generating assembly code for assignment statements, expressions, 
and READ and WRITE commands. Use the steps outlined above to generate Tiny code. Your 
code should output a list of tiny code (which will be displayed as Non-graded Output) that we 
will then run through the Tiny emulator to make sure you generated the right result (which will 
be displayed as Graded Output). 
 
For debugging purposes, it may also be helpful to emit your list of IR code. You can precede 
a statement with a ; to turn it into a comment that our simulator will not interpret. 
 
Handling errors 

All the inputs we will give you in this step will be valid programs. We will also ensure that all 
expressions are type safe: a given expression will operate on either INTs or FLOATs, but not 
a mix, and all assignment statements will assign INT results to variables that are declared as 
INTs (and respectively for FLOATs). 
 
Grading 



In this step, we will only grade your compiler on the correctness of the generated Tiny code. 
We will run your generated code through the Tiny simulator and check to make sure that you 
produce the same result as our code. When we say result, we mean the outputs of any WRITE 
statements in the program. Any testcase that requires console input (sys read) will receive 
random inputs and result(s) will be calculated based on these random inputs. 
 
We will not check to see if you generate exactly the same Tiny code that we. In other words, 
we only care if your generated Tiny code works correctly. You may generate slightly different 
Tiny code than we did. 
 

Project Step 4 — Part 2: Control Structures 
This step builds on Part 1. Now that we are able to generate code for lists of statements, what 
happens if those lists of statements are embedded in control structures? (IF statements and 
FOR loops)? 
 
(Note: as in part 1, we will only have one function in our program, main. You can assume that 
all variables are defined globally. There will not be any additional variables defined in main()) 
 
ASTs for Control Structures 
ASTs for control structures are, intuitively, simple: each control structure will have several 
children (3 in the case of an IF statement, etc.) that are themselves ASTs (ASTs for statement 
lists in the case of the bodies of IF statements and WHILE loops, ASTs for conditional 
expressions in the case of the conditions in the IF statements and WHILE loops, etc.). 
Because you already have working code for building an AST for statement lists (and can 
readily adapt your code for binary expressions to build ASTs for conditional expressions), all 
you have to do is create semantic actions for the control structures that "stitch together" the 
existing ASTs. 
 
Generating 3AC for Control Structures 
Generating 3AC for control structures builds directly on your code for part 1, which is able to 
generate code for lists of statements. This means that when you are generating code for an 
IF AST node, you know that the 3AC for the three children already exists. All that is left is to 
put them together in the correct order and insert any necessary labels and jumps. 
 
There are two things that you need to pay attention to when putting together 3AC: 
 
Generating Labels 



At various points in your code, you will need to insert labels and jumps to allow control to 
transfer from one part of your code to another. You will need to make sure that you can 
generate unique labels every time (since your code will not work properly if there are multiple 
labels with the same name). 
 
The 3AC you will generate for labels looks like: 
 
LABEL STRING 

 

Where STRING is whatever name you decide to give to your label 
 
Generating Jumps 
Unconditional jumps (like you might use to jump over an ELSE block) are easy: 
 
JUMP STRING 

 

Where STRING is the label you want to jump to. 
 
Conditional jumps are a little bit tricky in our 3AC (and in Tiny): you need to generate the right 
kind of jump: 
 
GT  OP1 OP2 LABEL (Jump to Label if OP1 > OP2) 
GE  OP1 OP2 LABEL (Jump to Label if OP1 >= OP2) 
LT  OP1 OP2 LABEL (Jump to Label if OP1 < OP2) 
LE  OP1 OP2 LABEL (Jump to Label if OP1 <= OP2) 
NE  OP1 OP2 LABEL (Jump to Label if OP1 != OP2) 
EQ  OP1 OP2 LABEL (Jump to Label if OP1 == OP2) 

 

To generate the right kind of jump for a conditional expression, you will need to inspect the 
AST node for the comparison operation and use that information to select the right 3AC 
instruction. 
 
Note: the 3AC does not preserve type information about what kind of comparison you are 
doing, but the Tiny code for jumps does; you may want to extend either your 3AC or your 
data structure to keep track of this information. 
 
What you need to do 
In this part, you will be generating assembly code for IF statements and WHILE loops. Use 
the steps outlined above to generate Tiny code. Your compiler should output a list of tiny code 
that we will then run through the Tiny simulator to make sure you generated the right result. 
 
For debugging purposes, it may also be helpful to emit your list of IR code. You can precede 
a statement with a ; to turn it into a comment that our simulator will not interpret. 



 
Handling errors 

All the inputs we will give you in this step will be valid programs. We will also ensure that all 
expressions are type safe: a given expression will operate on either INTs or FLOATs, but not 
a mix, and all assignment statements will assign INT results to variables that are declared as 
INTs (and respectively for FLOATs). 
 
Grading 

In this step, we will only grade your compiler on the correctness of the generated Tiny code. 
We will run your generated code through the Tiny simulator and check to make sure that you 
produce the same result as our code. When we say result, we mean the outputs of any WRITE 
statements in the program. 
 
We will not check to see if you generate exactly the same Tiny code that we. In other words, 
we only care if your generated Tiny code works correctly. You may generate slightly different 
Tiny code than we did. 
 
 
 
 
 
 
 
 
 


