
Machine Learning Study Guide
William Watson

Johns Hopkins University

billwatson@jhu.edu

Contents

1 Linear Algebra and Calculus 4
1.1 General Notation 4

1.1.1 Indentity Matrix 4
1.1.2 Diagonal Matrix 4
1.1.3 Orthogonal Matrix 4

1.2 Matrix Operations 5
1.2.1 Vector-Vector Products 5
1.2.2 Vector-Matrix Products 5
1.2.3 Matrix-Matrix Products 5
1.2.4 The Transpose 6
1.2.5 The Trace 6
1.2.6 The Inverse 6
1.2.7 The Determinant 6

1.3 Matrix Properties 7
1.3.1 Norms 7
1.3.2 Linear Dependence and Rank . . 7
1.3.3 Span, Range, and Nullspace . . . 8
1.3.4 Symmetric Matrices 8
1.3.5 Positive Semidefinite Matrices . . 8
1.3.6 Eigendecomposition 9
1.3.7 Singlular Value Decomposition . 9
1.3.8 The Moore-Penrose Pseudoinverse 9

1.4 Matrix Calculus 10
1.4.1 The Gradient 10
1.4.2 The Hessian 10
1.4.3 Gradient Properties 11

2 Convex Optimization 11
2.1 Convexity 11

2.1.1 Convex Sets 11
2.1.2 Convex Functions 11
2.1.3 First-Order Conditions 11
2.1.4 Second-Order Conditions 12
2.1.5 Jensen’s Inequality 12
2.1.6 Sublevel Sets 12

2.2 Convex Optimization 12
2.2.1 Global Optimality 12
2.2.2 Gradient Descent 13
2.2.3 Newton’s Algorithm 13

2.3 Lagrange Duality and KKT Conditions 13
2.3.1 The Lagrangian 13
2.3.2 Primal and Dual Problems . . . 13
2.3.3 Strong and Weak Duality 14
2.3.4 Complementary Slackness 14
2.3.5 The KKT Conditions 14

3 Probability and Statistics 14
3.1 Basics 14

3.1.1 Axioms of Probability 15
3.1.2 Permutation 15
3.1.3 Combination 15

3.2 Conditional Probability 15
3.2.1 Bayes Rule 15
3.2.2 Independence 16

3.3 Random Variables 16
3.3.1 Cumulative Distribution Func-

tion (CDF) 16
3.3.2 Probability Density Function

(PDF) 16
3.3.3 Discrete PDF/CDF 16
3.3.4 Continuous PDF/CDF 17
3.3.5 Expectation 17
3.3.6 Variance and Standard Deviation 17

3.4 Discrete Random Variables 18
3.4.1 Bernoulli 18
3.4.2 Binomial 18
3.4.3 Geometric 18
3.4.4 Poisson 19

3.5 Continuous Random Variables 19
3.5.1 Uniform 19
3.5.2 Exponential 19
3.5.3 Gaussian (Normal) 20

3.6 Jointly Distributed Random Variables . 20
3.6.1 Marginal Density 20
3.6.2 Cumulative Distribution 20
3.6.3 Conditional Density 20
3.6.4 Independence 20
3.6.5 Expectation 21
3.6.6 Covariance 21
3.6.7 Correlation 21

1

mailto:billwatson@jhu.edu

Machine Learning Study Guide

3.7 Parameter Estimation 21
3.7.1 Definitions 21
3.7.2 Bias 21
3.7.3 Mean and Central Limit Theorem 21
3.7.4 Variance 21

3.8 Probability Bounds and Inequalities . . 21
3.8.1 Markov 21
3.8.2 Chebyshev 21
3.8.3 Chernoff 22
3.8.4 Hoeffding 22

4 Information Theory 22

5 Learning Theory 24
5.1 Bias and Variance 24
5.2 Notation 24

5.2.1 Union Bound 24
5.2.2 Hoeffding Inequality For

Bernoulli Variables 24
5.3 Training Error 24
5.4 Probably Approximately Correct (PAC) 24
5.5 Hypothesis Classes 24

5.5.1 Shattering 24
5.5.2 Upper Bound Theorem 24
5.5.3 VC Dimension 24
5.5.4 Vapnik Theorem 24

6 Linear Regression 24
6.1 LMS Algorithm 24
6.2 The Normal Equations 25
6.3 Probabilistic Interpretation 26
6.4 Locally Weighted Linear Regression . . 26

7 Logistic Regression 27
7.1 The Logistic Function 27
7.2 Cost Function 27
7.3 Gradient Descent 28
7.4 Newton-Raphson Algorithm 28

8 Softmax Regression 28
8.1 Softmax Function 28
8.2 MLE and Cost Function 29
8.3 Gradient Descent 29

9 Generalized Linear Models 30
9.1 Exponentional Family 30
9.2 Assumptions of GLMs 30
9.3 Examples 30

9.3.1 Ordinary Least Squares 30
9.3.2 Logistic Regression 30
9.3.3 Softmax Regression 30

10 Perceptron 30

11 Support Vector Machines 30

12 Margin Classification 30

13 Generative Learning: Gaussian Discrimi-
nant Analysis 30

13.1 Assumptions 30

13.2 Estimation 30

13.3 Prediction 31

14 Generative Learning: Naive Bayes 31

14.1 Assumptions 31

14.2 Estimation 31

14.2.1 Laplace Smoothing 31

14.3 Prediction 32

15 Tree-based Methods 32

15.1 Decision Trees 32

15.2 Random Forest 32

15.3 Boosting 32

16 K-Nearest Neighbors 32

16.1 Classification 32

16.2 Regression 32

17 K-Means Clustering 33

17.1 Algorithm 33

17.2 Hierarchical Clustering 33

17.3 Clustering Metrics 33

18 Expectation-Maximization 34

18.1 Mixture of Gaussians 34

18.2 Factor Analysis 34

19 Principal Component Analysis 34

19.1 Eigenvalues, Eigenvectors, and the Spec-
tral Theorem 34

19.2 Algorithm 34

19.3 Algorithm: SVD 35

20 Independent Component Analysis 35

21 Reinforcement Learning 35

21.1 Markov Decision Processes 35

21.2 Policy and Value Functions 35

21.3 Value Iteration Algorithm 35

21.4 Q-Learning 35

2

Machine Learning Study Guide

22 Probabilistic Graphical Models 35
22.1 Bayesian Networks 36

22.1.1 Hidden Markov Models 37
22.2 Markov Random Fields 37
22.3 Conditional Random Fields 37

23 Deep Learning: Basics 37
23.1 Basics 37
23.2 Activation Functions 37
23.3 Loss Functions 37
23.4 Backpropagation 37
23.5 Regularization Methods 37
23.6 Optimization Algorithms 37
23.7 Convolutional Networks 37
23.8 Recurrent Networks 37

23.8.1 Elman RNN 37
23.8.2 Long Short-Term Memory 37
23.8.3 Gated Recurrent Unit 38
23.8.4 Bidirectional RNNs 38
23.8.5 Vanishing/Exploding Gradient . 38
23.8.6 Gradient Clipping 38

24 Deep Learning: Advanced 38
24.1 Autoencoders 38

24.1.1 Variational Autoencoders 38
24.2 General Adversarial Networks 38
24.3 Encoder-Decoder Models 38

24.3.1 Encoders 39
24.3.2 Decoders 39

24.4 Attention Models 39
24.4.1 Context Vector 39
24.4.2 Concat (Bahdanau) Attention . . 39
24.4.3 Luong Attention Mechanisms . . 39

24.5 Word Embeddings 40
24.5.1 N-Gram Models 40
24.5.2 Continuous Bag-of-Words Mod-

els (CBOW) 40
24.5.3 Skip-Gram Model 41
24.5.4 Negative Sampling 41

3

Machine Learning Study Guide

1 Linear Algebra and Calculus

1.1 General Notation

A vector x ∈ Rn has n entries, and xi ∈ R is the i-th entry:

x =

x1
x2
...
xn

 ∈ Rn (1)

We denote a matrix A ∈ Rm×n with m rows and n columns, and Aij ∈ R is the entry in the i-th row and j-th
column:

A =

 A11 · · · A1n

...
...

Am1 · · · Amn

 ∈ Rm×n (2)

Vectors can be viewed as a n× 1 matrix.

1.1.1 Indentity Matrix

The identity matrix I ∈ Rn×n is a square matrix with ones along the diagonal and zero everywhere else:

I =

1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

 (3)

For all matrices A ∈ Rn×n we have A× I = I ×A = A.

1.1.2 Diagonal Matrix

A diagonal matrix D ∈ Rn×n is a square matrix with nonzero values along the diagonal and zero everywhere else:

D =

d1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 dn

 (4)

The diagonal matrix D is also written as diag(d1, . . . , dn).

1.1.3 Orthogonal Matrix

Two vectors x, y ∈ Rn are orthogonal if xT y = 0. A vector x ∈ Rn is normalized if ||x||2 = 1. A square matrix
U ∈ Rn×n is orthogonal if all its columns are orthogonal to each other and are normalized. Hence:

UTU = I = UUT (5)

Hence the inverse of an orthogonal matrix is its transpose.m

4

Machine Learning Study Guide

1.2 Matrix Operations

1.2.1 Vector-Vector Products

Given two vectors x, y ∈ Rn, the inner product is:

xT y =

n∑
i=1

xiyi ∈ R (6)

The outer product for a vector x ∈ Rm, y ∈ Rn is:

xyT =

 x1y1 · · · x1yn
...

. . .
...

xmy1 · · · xmyn

 ∈ Rm×n (7)

1.2.2 Vector-Matrix Products

The product of a matrix A ∈ Rm×n and vector x ∈ Rn is a vector y = Ax ∈ Rm. If we write A by the rows, Ax is
expressed as:

y = Ax =

− aT1 −
− aT2 −

...
− aTm −

x =

aT1 x
aT2 x

...
aTmx

 (8)

Here, the i-th entry of y is the inner product of the i-th row of A and x, yi = aTi x. If we write A is column form:

y = Ax =

 | | |
a1 a2 · · · an
| | |

x1
x2
...
xn

 = a1x1 + a2x2 + . . .+ anxn (9)

Here, y is a linear combination of the columns of A, where the coefficients of the linear combination are given by
the entries of x.

1.2.3 Matrix-Matrix Products

Given a matrix A ∈ m×n and matrix B ∈ n× p, we can define C = AB as follows:

C = AB =

aT1 b1 aT1 b2 · · · aT1 bp
aT2 b1 aT2 b2 · · · aT2 bp

...
...

. . .
...

aTmb1 aTmb2 · · · aTmbp

 (10)

Hence, each (i, j)-th entry of C is equal to the inner product of the i-th row of A and the j-th column of B.
Compactly:

Cij = aTi bj =

n∑
k=1

aikbkj (11)

5

Machine Learning Study Guide

1.2.4 The Transpose

The transpose of a matrix A ∈ Rm×n is AT ∈ Rn×m matrix whose entries are:

(AT)ij = Aji (12)

Properties of the transpose:

1. (AT)T = A

2. (AB)T = BTAT

3. (A+B)T = AT +BT

1.2.5 The Trace

The trace of a square matrix A ∈ Rn×m is denoted tr(A). It is the sum of diagonal elements in the matrix:

trA =

n∑
i=1

Aii (13)

Properties of the trace:

1. For A ∈ Rn×n, trA = trAT

2. For A,B ∈ Rn×n, tr(A+B) = trA+ trB

3. For A ∈ Rn×n, t ∈ R, tr(tA) = t · trA

4. For A,B such that AB is square, trAB = trBA

5. For A,B,C such that ABC is square, trABC = trBCA = trCAB, and so on

1.2.6 The Inverse

The inverse of a matrix A is noted A−1 and is the unique matrix such that:

A−1A = I = AA−1 (14)

Not all square matrices are invertible. In addition, assuming A,B ∈ Rn×n are non-singular:

1. (A−1)−1 = A

2. (AB)−1 = B−1A−1

3. (A−1)T = (AT)−1

1.2.7 The Determinant

The determinant of a square matrix A ∈ Rn×n, noted |A| or det(A) is expressed recursively in terms of A\i,\j ,
which is the matrix A without its i-th row and j-th column, as follows:

det(A) = |A| =
n∑
j=1

(−1)i+jAi,j |A\i,\j | (15)

Remark that A is invertible if and only if |A| 6= 0. Also, |AB| = |A||B| and |AT | = |A|.

6

Machine Learning Study Guide

1.3 Matrix Properties

1.3.1 Norms

A norm of a vector x is any function f : Rn → R that satisfies 4 properties:

1. Non-negativity: For all x ∈ Rn, f(x) ≥ 0

2. Definiteness: f(x) = 0 if and only if x = 0

3. Homogeneity: For all x ∈ Rn, t ∈ R, f(tx) = |t|f(x)

4. Triangle Inequality: For all x, y ∈ Rn, f(x+ y) ≤ f(x) + f(y)

However, most norms used come from the family of `p norms:

`p = ||x||p =

(
n∑
i=1

xpi

) 1
p

(16)

The p-norm is used in Holder’s inequality. The Manhattan norm, used in LASSO regularization, is:

`1 = ||x||1 =

n∑
i=1

|xi| (17)

The euclidean norm, `2 is used in ridge regularization and distance measures:

`2 = ||x||2 =

√√√√ n∑
i=1

x2i (18)

Finally, the infinity norm is used in uniform convergence:

`∞ = ||x||∞ = max
i
|xi| (19)

The Frobenius norm of a matrix is analogous to the `2 norm of a vector:

||A||F =

√∑
ij

A2
ij (20)

The dot product of two vectors can be expressed in terms of norms:

xT y = ||x||2||y||2 cos θ (21)

where θ is the angle between vectors x and y.

1.3.2 Linear Dependence and Rank

A set of vectors {x1, x2, . . . , xn} ⊂ Rm is linearly independent if no vector can be represented as a linear combination
of the remaining vectors. Conversely, if one vector in the set can be represented as a linear combination of the
remaining vectors, then the vectors are said to be linearly dependent. Formally, for scalar values α1, . . . , αn−1 ∈ R:

xn =

n−1∑
i=1

αixi (22)

The rank of a given matrix A is noted rank(A) and is the dimension of the vector space generated by its columns.
This is equivalent to the maximum number of linearly independent columns of A. If rank(A) = min(m,n), then A
is said to be full rank.m

7

Machine Learning Study Guide

1.3.3 Span, Range, and Nullspace

The span of a set of vectors {x1, x2, . . . , xn} is the set of all vectors that can be expressed as a linear combination
of {x1, x2, . . . , xn}. Formally,

span ({x1, . . . xn}) =

{
v : v =

n∑
i=1

αixi, αi ∈ R

}
(23)

The projection of a vector y ∈ Rn onto the span of {x1, x2, . . . , xn} is the vector v ∈ span ({x1, . . . xn}) such that v
is as close as possible to y as measured by the euclidean norm:

Proj (y; {x1, . . . xn}) = argminv∈span({x1,...,xn}) ‖y − v‖2 (24)

The range of a matrix A ∈ Rm×n is the span of the columns of A:

R(A) = {v ∈ Rm : v = Ax, x ∈ Rn} (25)

The nullspace of a matrix A ∈ Rm×n is the set of all vectors that equal 0 when multiplied by A:

N (A) = {x ∈ Rn : Ax = 0} (26)

1.3.4 Symmetric Matrices

A square matrix A ∈ Rn×n is symmetric if A = AT . It is anti-symmetric if A = −AT . For any matrix A ∈ Rn×n
the matrix A+AT is symmetric and the matrix A−AT is anti-symmetric. From this, any square matrix A ∈ Rn×n
can be represented as a sum of a symmetric matrix and an anti-symmetric matrix:

A =
A+AT

2︸ ︷︷ ︸
Symmetric

+
A−AT

2︸ ︷︷ ︸
Antisymmetric

(27)

1.3.5 Positive Semidefinite Matrices

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar value xTAx is called the quadratic form:

xTAx =

n∑
i=1

n∑
j=1

Aijxixj (28)

A symmetric matrix A is:

1. Positive definite (PD) if for all nonzero vectors, xTAx > 0

2. Positive semidefinite (PSD) if for all nonzero vectors, xTAx ≥ 0

3. Negative definite (ND) if for all nonzero vectors, xTAx < 0

4. Negative semidefinite (NSD) if for all nonzero vectors, xTAx ≤ 0

5. Indefinite if it is neiter PSD nor NSD, i.e. if there exists a x1, x2 such that xT1 Ax1 > 0 and xT2 Ax2 < 0

Given any matrix A ∈ Rm×n, the gram matrix G = ATA is always PSD. If m ≥ n and A is full rank, then G is PD.

8

Machine Learning Study Guide

1.3.6 Eigendecomposition

Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an eigenvalue of A and v ∈ C is the corresponding eigenvector
if

Av = λv, v 6= 0 (29)

The trace of A is equal to the sum of its eigenvalues:

trA =

n∑
i=1

λi (30)

The determinant of A is equal to the product of its eigenvalues:

|A| =
n∏
i=1

λi (31)

Suppose matrix A has n linearly independent eigenvectors {v1, . . . , vn} with corresponding eigenvalues {λ1, . . . , λn}.
Let V be a matrix with one eigenvalue per column: V = [v1, . . . , vn]. Let Λ = diag(λ1, . . . , λn). Then the
eigendecomposition of A is given by:

A = V ΛV −1 (32)

For when A is symmetric, then the eigenvalues of A are real, the eigenvectors of A are orthonormal, and hence V
is an orthogonal matrix (henceforth renamed U). Hence A = UΛUT . A matrix whose eigenvalues are all positive
is called positive definite. A matrix whose eigenvalues are all positive or zero valued is called positive semidefinite.
Likewise, if all eigenvalues are negative, the matrix is negative definite, and if all eigenvalues are negative or zero
valued, it is negative semidefinite. In addition, assuming sorted eigenvalues, for the following optimization problem:

max
x∈Rn

xTAx subject to ‖x‖22 = 1 (33)

The solution is v1 the eigenvector corresponding to λ1. For the minimization problem:

min
x∈Rn

xTAx subject to ‖x‖22 = 1 (34)

the optimal solution for x is vn, the eigenvector corresponding to eigenvalue λn.

1.3.7 Singlular Value Decomposition

The singular value decomposition provides a way to factorize a m× n matrix A into singular vectors and singular
values. It is defined as:

A = UDV T (35)

Suppose A ∈ Rm×n matrix. Then U ∈ Rm×m, D ∈ Rm×n, V ∈ Rn×n matrices. The matricies U and V are
orthogonal, and matrix D is diagonal. The elements along the diagonal of D are known as the singular values of
matrix A. The columns of U are known as the left-singular vectors while the columns of V are the right-singular
vectors. The left-singular vectors of A are the eigenvectors of AAT . The right-singular vectors of A are the
eigenvectors of ATA. We can use SVD to partially generalize matrix inversion to nonsquare matrices.

1.3.8 The Moore-Penrose Pseudoinverse

Matrix inversion is not defined for matrices that are not square. Note that for nonsingular A:

AA−1A = A (36)

9

Machine Learning Study Guide

However, if the inverse is not defined, we seek to find a matrix A+ such that:

AA+A = A (37)

The moore-penrose pseudoinverse A+ is defined as follows:

A+ = lim
α→0

(ATA+ αI)−1AT (38)

Practical algorithms use the singular value decomposition of A such that:

A+ = V D+UT (39)

where U,D, V are from the SVD of A, and the pseudoinverse of D+ is obtained by taking the reciprocal of the
nonzero diagonal elements of D. If A has more columns than rows, then using the pseudoinverse to solve a linear
equation Ax = y provides one of many solutions, but provides x = A+y with minimal euclidean norm ||x||2. When
A has more rows than columns, the pseudoinverse gives us the x for which Ax is as close as possible to y, i.e.
minimizing ||Ax− y||2.

1.4 Matrix Calculus

1.4.1 The Gradient

Let f : Rm×n → R be a function and A ∈ Rm×n be a matrix. The gradient of f with respect to A is a m×n matrix
noted as ∇Af(A) such that:

∇Af(A) ∈ Rm×n =

∂f(A)
∂A11

∂f(A)
∂A12

· · · ∂f(A)
∂A1

∂f(A)
∂A21

∂f(A)
∂A22

· · · ∂f(A)
∂A2n

...
...

. . .
...

∂f(A)
∂Am1

∂f(A)
∂Am2

· · · ∂f(A)
∂Amn

 (40)

Or compactly for each ij entry:

∇Af(A)ij =
∂f(A)

∂Aij
(41)

However, the gradient of a vector x ∈ Rn is:

∇xf(x) =

∂f(x)
∂x1
∂f(x)
∂x2

...
∂f(x)
∂xn

 (42)

1.4.2 The Hessian

Let f : Rn → R be a function and x ∈ Rn be a vector. The hessian of f with respect to x is a n × n symmetric
matrix noted as H = ∇2

xf(x) such that:

∇2
xf(x) ∈ Rn×n =

∂2f(x)
∂x2

1

∂2f(x)
∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xn
...

...
. . .

...
∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2
n

 (43)

10

Machine Learning Study Guide

Or compactly:

∇2
xf(x)ij =

∂2f(x)

∂xi∂xj
(44)

Note that the hessian is only defined when f(x) is real-valued.

1.4.3 Gradient Properties

For matrices A,B,C and vectors x, b:

1. ∇xbTx = b

2. ∇xxTAx = 2Ax (if A symmetric)

3. ∇2
xx

TAx = 2A (if A symmetric)

4. ∇Atr(AB) = BT

5. ∇AT f(A) = (∇Af(A))
T

6. ∇Atr(ABATC) = CAB + CTABT

7. ∇A|A| = |A|(A−1)T

2 Convex Optimization

2.1 Convexity

2.1.1 Convex Sets

A set C is convex if, for any x, y ∈ C and α ∈ R with 0 ≤ α ≤ 1, we have

αx+ (1− α)y ∈ C (45)

This point is known as a convex combination of x and y.

2.1.2 Convex Functions

A function f : Rn → R is convex if its domain D(f) is a convex set, and if, for all x, y ∈ D(f) and α ∈ R, 0 ≤ α ≤ 1,
we have:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (46)

A function is strictly convex if:
f(αx+ (1− α)y) < αf(x) + (1− α)f(y) (47)

2.1.3 First-Order Conditions

Suppose a function f : Rn → R is differentiable, then f is convex if and only if D(f) is a convex set and for all
x, y ∈ D(f) we have:

f(y) ≥ f(x) +∇xf(x)T (y − x) (48)

This is called the first-order approximation to the function f at point x. This is approximating f with its tangent
line at point x. The first order condition for convexity says that f is convex if and only if the tangent line is a
global underestimator of the function f . In other words, if we take our function and draw a tangent line at any
point, then every point on this line will lie below the corresponding point on f .

11

Machine Learning Study Guide

2.1.4 Second-Order Conditions

Suppose a function f : Rn → R is twice differentiable, i.e. the hessian ∇2
xf(x) is defined for all points x in the

domain of f . Then f is convex if and only if D(f) is a convex set and its hessian is PSD:

∇2
xf(y) � 0 (49)

2.1.5 Jensen’s Inequality

Suppose we start with the inequality in the basic definition of a convex function:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (50)

We can extend this to convex combinations of more than one point:

f

(
k∑
i=1

αixi

)
≤

k∑
i=1

αif(xi) (51)

For
∑
k α = 1 and all α ≥ 0. This can be extended to integrals:

f

(∫
p(x)xdx

)
≤
∫
p(x)f(x)dx (52)

For
∫
p(x)dx = 1 and p(x) ≥ 0∀x. This implies p(x) is a probability density, and we can write our inequality in

terms of expectations:
f(E[x]) ≤ E[f(x)] (53)

And is known as Jensen’s inequality.

2.1.6 Sublevel Sets

Given a convex function f : Rn → R and a real number α ∈ R, the α-sublevel set is:

{x ∈ D(f) : f(x) ≤ α} (54)

In other words, the α-sublevel set is the set of all points x such that f(x) ≤ α.

2.2 Convex Optimization

A convex optimization problem seeks to optimize a convex function f with respect to a variable x and possible
constraints.

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
(55)

where f is a convex function, gi are convex functions, and hi are affine functions. The optimal value p∗ is equal to
the minimum possible value of the objective function in the feasible region:

p? = min {f(x) : gi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p} (56)

The optimal point x∗ is a point such that f(x∗) = p∗.

2.2.1 Global Optimality

A point x is locally optimal if it is feasible and if there exists some R > 0 such that all feasible points z with
||x − z||2 ≤ R, satisfy f(x) ≤ f(z). This means that for x to be locally optimal, there exists no nerby points that
have a lower objective value. A point x is globally optimal if it is feadible and for all feasible points z, f(x) ≤ f(z).
For a convex optimization problem, all locally optimal points are globally optimal.

12

Machine Learning Study Guide

2.2.2 Gradient Descent

Using α ∈ R as the learning rate, we can update a set of parameters θ with respect to minimizing a function f as
follows:

θ := θ − α∇f(θ) (57)

Stochastic gradient descent (SGD) is updating the parameter based on each training example, and batch gradient
descent is on a batch of training examples.

2.2.3 Newton’s Algorithm

Newton’s algorithm is a numerical method using information from the second derivative to find θ such that f ′(θ) = 0.

θ := θ − f ′(θ)

f ′′(θ)
(58)

For multidimensional parameters:
θ := θ − αH−1∇θf(θ) (59)

Where H is the hessian matrix of second partial derivatives.

Hij =
∂2f(θ)

∂θi∂θj
(60)

2.3 Lagrange Duality and KKT Conditions

Generic differentiable convex optimization problems are of the form:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
(61)

where x ∈ Rn is the optimization variable, f : Rn → R and gi : Rn → R are differentiable convex functions, and
hi : Rn → R are affine functions.

2.3.1 The Lagrangian

Given a convex constrained minimization problem, the generalized lagrangian is a function L : Rn ×Rm ×Rp → R
defined as:

L(x, α, β) = f(x) +

m∑
i=1

αigi(x) +

p∑
i=1

βihi(x) (62)

We refer to x as the primal variables of the Lagrangian. The α and β are refered to as the dual variables or lagrange
multipliers. The key idea behind Lagrangian duality is for any convex optimization problem, there always exist
settings of the dual variables such that the unconstrained minimum of the Lagrangian with respect to the primal
variables (keeping the dual variables fixed) coincides with the solution of the original constrained minimization
problem.

2.3.2 Primal and Dual Problems

The primal problem is:

min
x

[
max

α,β:αi≥0,∀i
L(x, α, β)

]
︸ ︷︷ ︸

θP(x)

= min
x
θP(x) (63)

13

Machine Learning Study Guide

Here, θP : Rn → R is the primal objective, and the right hand side is the primal problem. In addition, p∗ = θP(x∗)
is the optimal value of the primal objective.
The dual problem is:

max
α,β:αi≥0,∀i

[
min
x
L(x, α, β)

]
︸ ︷︷ ︸

θD(x)

= max
α,β:αi≥0,∀i

θD(x) (64)

Here, θD : Rm × Rp → R is the dual objective, and the right hand side is the dual problem. In addition, s∗ =
θD(α∗, β∗) is the optimal value of the dual objective.

2.3.3 Strong and Weak Duality

Weak duality for any pair of primal and dual problems, with d∗ the optimal objective value of the dual problem
and p∗ as the optimal objective value of the primal problem we have:

d∗ ≤ p∗ (65)

Strong duality is when for any pair of primal and dual problems which satisfy certain technical conditions called
constraint qualifications, then:

d∗ = p∗ (66)

2.3.4 Complementary Slackness

If strong duality holds, then α∗i g(x∗i) = 0 for each i = 1, . . . ,m. This property is known as complementary slackness.
This implies the following:

α∗i > 0 =⇒ gi (x∗) = 0 (67)

gi (x∗) < 0 =⇒ α∗i = 0 (68)

2.3.5 The KKT Conditions

Suppose that x∗ ∈ Rn, α∗ ∈ Rm and β∗ ∈ Rp satisfy the following conditions:

1. Primal feasibility: gi(x
∗) ≤ 0, for i = 1, . . . ,m and hi(x

∗) = 0 for i = 1, . . . , p

2. Dual feasibility: α∗i ≥ 0 for i = 1, . . . ,m

3. Complementary slackness: α∗i gi(x
∗) = 0 for i = 1, . . . ,m

4. Lagrangian stationarity: ∇xL(x∗, α∗, β∗) = ~0

Then x∗ is primal optimal and (α∗, β∗) are dual optimal. Furthermore, if strong duality holds, then any primal
optimal x∗ and dual optimal (α∗, β∗) must satisfy the conditions 1 through 4. These conditions are known as the
Karush-Kuhn-Tucker (KKT) conditions.

3 Probability and Statistics

3.1 Basics

The set of all possible outcomes of an experiment is known as the sample space and denoted by S. Any subset E
of the sample space is known as an event. An event is a set consisting of possible outcomes of the experiment.

14

Machine Learning Study Guide

3.1.1 Axioms of Probability

For each event E, we denote P (E) as the probability of event E occuring. P (E) satisfies the following properties:

1. Every probability is between 0 and 1 included:

0 ≤ P (E) ≤ 1 (69)

2. The probability that at least one event in the sample space will occur is 1:

P (S) = 1 (70)

3. For any sequence of mutually exclusive events E1, . . . , En we have:

P

(
n⋃
i=1

Ei

)
=

n∑
i=1

P (Ei) (71)

3.1.2 Permutation

A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such
arrangements is given by P (n, r):

P (n, r) =
n!

(n− r)!
(72)

3.1.3 Combination

A combination is an arrangement of r objects from a pool of n objects, where order does not matter. The number
of such arrangements is given by C(n, r):

C(n, r) =
P (n, r)

r!
=

n!

r!(n− r)!
(73)

Note that for 0 ≤ r ≤ n we have P (n, r) ≥ C(n, r).

3.2 Conditional Probability

Let B be an event with non-zero probability, the conditional proability of any event A given B is:

P (A|B) =
P (A ∩B)

P (B)
(74)

3.2.1 Bayes Rule

For events A,B such that P (B) > 0, we have:

P (A|B) =
P (B|A)P (A)

P (B)
(75)

From Bayes rule, we have:
P (A ∩B) = P (A|B)P (B) = P (A)P (B|A) (76)

Let {Ai, i ∈ [1, n]} be such that for all i, Ai 6= ∅. We say that {Ai} is a partition if we have:

∀i 6= j, Ai ∩Aj = ∅ and

n⋃
i=1

Ai = S (77)

15

Machine Learning Study Guide

Remark that for any event B in the sample space, we have:

P (B) =

n∑
i=1

P (B|Ai)P (Ai) (78)

Let {Ai, i ∈ [1, n]} be a partition of the sample space, we can extend bayes rule as:

P (Ak|B) =
P (B|Ak)P (Ak)
n∑
i=1

P (B|Ai)P (Ai)

(79)

3.2.2 Independence

Two events A and B are independent if and only if we have:

P (A ∩B) = P (A)P (B) (80)

3.3 Random Variables

A random variable X is a function that maps every element in a sample space to a real line.

3.3.1 Cumulative Distribution Function (CDF)

The cumulative distribution function F , which is monotonically non-decreasing and is such that limx→−∞ F (X) = 0
and limx→∞ F (X) = 1 is defined as:

F (x) = P (X ≤ x) (81)

In addition:
P (a < X ≤ b) = F (b)− F (a) (82)

3.3.2 Probability Density Function (PDF)

The probability density function is the derivative of the CDF. It has the following properties:

1. f(x) ≥ 0

2.
∫∞
−∞ f(x) = 1

3.
∫
x∈A f(x)dx = P (X ∈ A)

3.3.3 Discrete PDF/CDF

If X is discrete, by denoting f as the PDF and F as the CDF, we have:

F (X) =
∑
xi≤x

P (X = xi) (83)

f(xj) = P (X = xj) (84)

And the following properties for the PDF:
0 ≤ f(xj) ≤ 1 (85)

∑
j

f(xj) = 1 (86)

16

Machine Learning Study Guide

3.3.4 Continuous PDF/CDF

If X is continuous, by denoting f as the PDF and F as the CDF, we have:

F (X) =

∫ x

−∞
f(y)dy (87)

f(x) =
dF

dx
(88)

And the following properties for the PDF:
f(x) ≥ 0 (89)∫ ∞

−∞
f(x)dx = 1 (90)

3.3.5 Expectation

The expected value of a random variable, also known as the mean value or first moment, is denoted as E[X] or µ.
It is the value obtained by averaging the results of a random variable. We use (D) for discrete, (C) for continuous.

(D) E[X] =

n∑
i=1

xif(xi) and (C) E[X] =

∫ +∞

−∞
xf(x)dx (91)

The expected value of a function of a random variable g(X) is:

(D) E[g(X)] =

n∑
i=1

g(xi)f(xi) and (C) E[g(X)] =

∫ +∞

−∞
g(x)f(x)dx (92)

The k-th moment, noted E[Xk] is the value of Xk that we expect to observe on average on infinitely many trials.
The k-th moment is a case of the previous definition with g : X 7→ Xk.

(D) E[Xk] =

n∑
i=1

xki f(xi) and (C) E[Xk] =

∫ +∞

−∞
xkf(x)dx (93)

A characteristic function ψ(ω) is derived from a probability density function f(x) and is defined as:

(D) ψ(ω) =

n∑
i=1

f(xi)e
iωxi and (C) ψ(ω) =

∫ +∞

−∞
f(x)eiωxdx (94)

Remark that eiωx = cos(ωx) + i sin(ωx). The k-th moment can also be computed with the characteristic function
as:

E[Xk] =
1

ik

[
∂kψ

∂ωk

]
ω=0

(95)

3.3.6 Variance and Standard Deviation

The variance of a random variable, often noted Var(X) or σ2, is a measure of the spread of its distribution function.
It is determined as follows:

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2 (96)

The standard deviation of a random variable, often noted σ, is a measure of the spread of its distribution function
which is compatible with the units of the actual random variable. It is determined as follows:

σ =
√

Var[X] (97)

Note that the variance for any constant a is Var[a] = 0, and Var[af(X)] = a2Var[f(X)].

17

Machine Learning Study Guide

3.4 Discrete Random Variables

3.4.1 Bernoulli

For X ∼ Bernoulli(p), we define a binary event with a probability of p for a true event, and a false event with
probability of q = 1− p.

P (X = x) =

{
q = 1− p if x = 0

p if x = 1
(98)

It can also be expressed as:

f(x; p) = pk(1− p)1−k for k ∈ {0, 1} (99)

Other properties:

E[X] = p (100)

Var[X] = pq = p(1− p) (101)

ψ(ω) = (1− p) + peiω (102)

3.4.2 Binomial

For X ∼ Binomial(n, p), the number of true events in n independent experiments, with true probability of p, false
probability of q = 1− p.

P (X = x) =

(
n

x

)
px(1− p)n−x (103)

Other properties:

E[X] = np (104)

Var[X] = npq = np(1− p) (105)

ψ(ω) = (peiω + (1− p))n (106)

3.4.3 Geometric

For X ∼ Geometric(p), is the number of experiments with true probability of p until the first true event (number
of trials to get one success).

P (X = x) = p(1− p)x−1 (107)

Other properties:

E[X] =
1

p
(108)

Var[X] =
1− p
p2

(109)

ψ(ω) =
peiω

1− (1− p)eiω
(110)

18

Machine Learning Study Guide

3.4.4 Poisson

For X ∼ Poisson(λ), for λ > 0, a probability distribution over the nonnegative integers used for modeling the
frequency of rare events.

P (X = x) =
λx

x!
e−λ (111)

Other properties:

E[X] = λ (112)

Var[X] = λ (113)

ψ(ω) = eλ(e
iω−1) (114)

3.5 Continuous Random Variables

3.5.1 Uniform

For X ∼ Uniform(a, b), we have equal probability density to every value between a and b.

f(x) =

{
1
b−a if a ≤ x ≤ b
0 otherwise

(115)

Other properties:

E[X] =
a+ b

2
(116)

Var[X] =
(b− a)2

12
(117)

ψ(ω) =
eiωb − eiωa

(b− a)iω
(118)

3.5.2 Exponential

For X ∼ Exponential(λ), λ > 0, is the decaying probability density over the nonnegative reals.

f(x) =

{
λe−λx if x ≥ 0

0 otherwise
(119)

Other properties:

E[X] =
1

λ
(120)

Var[X] =
1

λ2
(121)

ψ(ω) =
1

1− iω
λ

(122)

19

Machine Learning Study Guide

3.5.3 Gaussian (Normal)

For X ∼ Normal(µ, σ), denoted also X ∼ N (µ, σ).

f(x) =
1√
2πσ

e−
1
2 (x−µσ)

2

(123)

Other properties:

E[X] = µ (124)

Var[X] = σ2 (125)

ψ(ω) = eiωµ−
1
2ω

2σ2

(126)

3.6 Jointly Distributed Random Variables

The joint probability distribution of two random variables X and Y , denoted as fXY is defined as:

(D) fXY (xi, yj) = P (X = xi and Y = yj) (127)

(C) fXY (x, y)∆x∆y = P (x 6 X 6 x+ ∆x and y 6 Y 6 y + ∆y) (128)

Again, denote (D) as the discrete case, and (C) as the continuous case.

3.6.1 Marginal Density

The marginal density for a random variable X is:

(D) fX(xi) =
∑
j

fXY (xi, yj) and (C) fX(x) =

∫ +∞

−∞
fXY (x, y)dy (129)

3.6.2 Cumulative Distribution

The cumulative distribution FXY is:

(D) FXY (x, y) =
∑
xi6x

∑
yj6y

fXY (xi, yj) and (C) FXY (x, y) =

∫ x

−∞

∫ y

−∞
fXY (x′, y′)dx′dy′ (130)

3.6.3 Conditional Density

The conditional density of X with respect to Y , denoted fX|Y is defined as:

fX|Y =
fXY (x, y)

fY (y)
(131)

3.6.4 Independence

Two random variables X and Y are independent if:

fXY (x, y) = fX(x)fY (y) (132)

20

Machine Learning Study Guide

3.6.5 Expectation

Given two random variables X,Y and g : R2 → R is a function of these two variables. Then the expected value of
g is:

(D) E[g(X,Y)] =
∑
i

∑
j

g(xi, yi)f(xi, yi) and (C) E[g(X,Y)] =

∫ ∞
−∞

∫ ∞
−∞

g(xi, yi)f(xi, yi)dydx (133)

3.6.6 Covariance

The covariance of two random variables X and Y , denoted σ2
XY or as Cov[X,Y] is defined as:

Cov[X,Y] , σ2
XY = E[(X − µX)(Y − µY)] = E[XY]− µXµY (134)

Where µX = E[X] and µY = E[Y] respectively. If X and Y are independent, the covariance is 0.

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X,Y] (135)

3.6.7 Correlation

By noting σX , σY as the standard deviations of X and Y , we define the correlation between the random variables
X and Y as ρXY :

ρXY =
σ2
XY

σXσY
(136)

Correlation for X,Y is ρXY ∈ [−1, 1]. If X,Y independent, then ρXY = 0

3.7 Parameter Estimation

3.7.1 Definitions

3.7.2 Bias

3.7.3 Mean and Central Limit Theorem

3.7.4 Variance

3.8 Probability Bounds and Inequalities

This section looks at various bounds that define how likely a random variable is to be close to its expectation.

3.8.1 Markov

Let X ≥ 0 be a non-negative random variable. Then for all a ≥ 0:

P (X ≥ a) ≤ E[X]

a
(137)

3.8.2 Chebyshev

Let X be any random variable with finite expected value µ = E[X] and finite non-zero variance σ2. Then for all
k > 0:

P (|X − E[X]| ≥ kσ) ≤ 1

k2
(138)

21

Machine Learning Study Guide

3.8.3 Chernoff

Recall that the moment generating function for a random variable X is:

MX(λ) := E[eλX] (139)

Then the chernoff bound for a random variable X, obtained by applying the markov inequality to eλX , for every
λ > 0:

P (X ≥ a) = P (eλX ≥ eλa) ≤ E[eλX]

eλa
(140)

For the multiplicative chernoff bound, suppose X1, . . . , Xn are independent random variables taking values in {0, 1}.
Let X denote the sum, µ = E[X] denote the sum’s expected value. Then for any 0 < δ < 1,

P (X > (1 + δ)µ) <

(
eδ

(1 + δ)(1+δ)

)µ
≤ e−

δ2µ
3 (141)

P (X < (1− δ)µ) <

(
e−δ

(1− δ)(1−δ)

)µ
≤ e−

δ2µ
2 (142)

For δ ≥ 0,

P (X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ (143)

P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2 (144)

3.8.4 Hoeffding

Let X1, . . . , Xn be independent random variables such that ai ≤ Xi ≤ bi. The sum of these variables Sn =
∑
iXi,

then the Hoeffding inequality is:

P (Sn − E [Sn] ≥ t) ≤ exp

(
− 2t2∑

i(bi − ai)2

)
(145)

P (|Sn − E [Sn]| ≥ t) ≤ 2 exp

(
− 2t2∑

i(bi − ai)2

)
(146)

The hoeffding lemma states that for a real-valued random variable X with expected value E[X] = 0 and such that
a ≤ X ≤ b, then for all λ ∈ R we have,

E[eλX] ≤ exp

(
λ2(b− a)2

8

)
(147)

4 Information Theory

Information Theory revolves around quantifying how much information is present in a signal. The basic intuition
lies in the fact that learning an unlikely event has occured is more informative than learning that a likely event has
occured. The basics are:

1. Likely events should have low information content, and in the extreme case, events that are guaranteed to
happen should have no information content whatsoever.

2. Less likely events should have higher information content.

3. Independent events should have additive information.

22

Machine Learning Study Guide

We satisfy all three properties by defining self-information of an event x for a probability distribution P as:

I(x) = − logP (x) (148)

We can quantify the amount of uncertainty in a distribution using Shannon entropy:

H(P) = Ex∼P [I(x)] = −Ex∼P [logP (x)] (149)

Which in the discrete setting is written as:

H(P) = −
∑
x

P (x) logP (x) (150)

In other words, the Shannon entropy of a distribution is the expected amount of information in an event drawn
from that distribution. It gives a lower bound on the number of bits needed on average to encode symbols drawn
from a distribution P . If we have two separate probability distributions P (x) and Q(x) over the same random
variable x, we can measure how different these two distributions are using the Kullback-Leibler (KL) divergence:

DKL(P‖Q) = Ex∼P

[
log

P (x)

Q(x)

]

= Ex∼P [logP (x)− logQ(x)]

=
∑
x

P (x)
logP (x)

logQ(x)

(151)

In the case of discrete variables, it is the extra amount of information needed to send a message containing symbols
drawn from probability distribution P , when we use a code that was designed to minimize the length of messages
drawn from probability distribution Q. The KL divergence is always non-negative, and is 0 if and only if P and Q
are the same. We can relate the KL divergence to cross-entropy.

H(P,Q) = H(P) +DKL(P‖Q)

= − Ex∼P [logQ(x)]

= −
∑
x

P (x) logQ(x)

(152)

Minimizing the cross-entropy with respect to Q is equivalent to minimizing the KL divergence, because Q does not
participate in the omitted term (entropy is constant).

23

Machine Learning Study Guide

5 Learning Theory

5.1 Bias and Variance

5.2 Notation

5.2.1 Union Bound

5.2.2 Hoeffding Inequality For Bernoulli Variables

5.3 Training Error

For a given classifier h, we define the training error ε̂(h), also known as the empirical risk or empirical error, to be:

ε̂(h) =
1

m

m∑
i=1

1{h(x(i)) 6=y(i)} (153)

5.4 Probably Approximately Correct (PAC)

PAC learning is a framework with the following set of assumptions:

5.5 Hypothesis Classes

5.5.1 Shattering

5.5.2 Upper Bound Theorem

5.5.3 VC Dimension

5.5.4 Vapnik Theorem

6 Linear Regression

Linear Regression seeks to approximate a real valued label y as a linear function of x:

hθ(x) = θ0 + θ1 · x1 + · · ·+ θn · xn (154)

The θi’s are the parameters, or weights. If we include the intercept term via x0 = 1, we can write our model more
compactly as:

h(x) =

n∑
i=0

θi · xi = θTx (155)

Here n is the number of input variables, or features. In Linear Regression, we seek to make h(x) as close to y for a
set of training examples. We define the cost function as:

J(θ) =
1

2

m∑
i=1

(
h
(
x(i)
)
− y(i)

)2
(156)

6.1 LMS Algorithm

We seek to find a set of θ such that we minimize J(θ) via a search algorithm that starts at some initial guess for our
parameters and takes incremental steps to make J(θ) smaller until convergence. This is know as gradient descent:

θj := θj − α
∂

∂θj
J(θ) (157)

24

Machine Learning Study Guide

Here, α is the learning rate. We can derive the partial derivative as:

∂

∂θj
J(θ) =

∂

∂θj

1

2
(h(x)− y)

2

= 2 · 1

2
(h(x)− y) · ∂

∂θj
(h(x)− y)

= (h(x)− y) · ∂

∂θj

(
n∑
i=0

θixi − y

)
= (h(x)− y)xj

(158)

Hence, for a single example (stochastic gradient descent):

θj := θj + α
(
y(i) − h

(
x(i)
))

x
(i)
j (159)

This is called the LMS update rule. For a batched version, we can evaluate the gradient on a set of examples (batch
gradient descent), or the full set (gradient descent).

θj := θj + α

m∑
i=1

(
y(i) − h

(
x(i)
))

x
(i)
j (160)

6.2 The Normal Equations

We can also directly minimize J without using an iterative algorithm. We define X as the matrix of all samples of
size m by n. We let ~y be a m dimensional vector of all target values. We can define our cost function J as:

J(θ) =
1

2
(Xθ − ~y)T (Xθ − ~y) =

1

2

m∑
i=1

(
h
(
x(i)
)
− y(i)

)2
(161)

We then take the derivative and find its roots.

∇θJ(θ) = ∇θ
1

2
(Xθ − ~y)T (Xθ − ~y)

=
1

2
∇θ
(
θTXTXθ − θTXT~y − ~yTXθ + ~yT~y

)
=

1

2
∇θ
(
tr θTXTXθ − 2 tr ~yTXθ

)
=

1

2

(
XTXθ +XTXθ − 2XT~y

)
= XTXθ −XT~y

(162)

To minimize J , we set its derivatives to zero, and obtain the normal equations:

XTXθ = XT~y (163)

Which solves θ for a value that minimizes J(θ) in closed form:

θ =
(
XTX

)−1
XT~y (164)

25

Machine Learning Study Guide

6.3 Probabilistic Interpretation

Why does linear regression use the least-squares cost function? Assume that the target variables and inputs are
related via:

y(i) = θTx(i) + ε(i) (165)

Here, ε(i) is an error term for noise. We assume each ε(i) is independently and identically distributed according to a
Gaussian distribution with mean zero and some variance σ2. Hence, ε(i) ∼ N

(
0, σ2

)
, so the density for any sample

x(i) with label y(i) is y(i)|x(i); θ ∼ N
(
θTx(i), σ2

)
. This implies:

p
(
y(i)|x(i); θ

)
=

1√
2πσ

exp

(
−
(
y(i) − θTx(i)

)2
2σ2

)
(166)

The probability of a dataset X is quantified by a likelihood function:

L(θ) = L(θ;X, ~y) = p(~y|X; θ) (167)

Since we assume independence on each noise term (and samples), we can write the likelihood function as:

L(θ) =

m∏
i=1

p
(
y(i)|x(i); θ

)
=

m∏
i=1

1√
2πσ

exp

(
−
(
y(i) − θTx(i)

)2
2σ2

) (168)

To get the best choice of parameters θ, we perform maximum likelihood estimation such that L(θ) is maximized.
Usually we take the negative log and minimize:

`(θ) = − logL(θ)

= − log

m∏
i=1

1√
2πσ

exp

(
−
(
y(i) − θTx(i)

)2
2σ2

)

= −
m∑
i=1

log
1√
2πσ

exp

(
−
(
y(i) − θTx(i)

)2
2σ2

)

= −m log
1√
2πσ

+
1

σ2
· 1

2

m∑
i=1

(
y(i) − θTx(i)

)2
(169)

Hence, maximizing L(θ) is the same as minimizing the negative log likelihood `(θ), which for linear regression is
the least squares cost function:

1

2

m∑
i=1

(
y(i) − θTx(i)

)2
(170)

Under the previous probabilistic assumptions on the data, least-squares regression corresponds to finding the max-
imum likelihood estimate of θ. This is thus one set of assumptions under which least-squares regression can be
justified as performing maximum likelihood estimation. Note that θ is independent of σ2.

6.4 Locally Weighted Linear Regression

Locally Weighted Regression, also known as LWR, is a variant of linear regression that weights each training example
in its cost function by w(i)(x), which is defined with parameter τ ∈ R as:

w(i)(x) = exp

(
− (x(i) − x)2

2τ2

)
(171)

Hence, in LWR, we do the following:

26

Machine Learning Study Guide

1. Fit θ to minimize
∑
i w

(i)
(
y(i) − θTx(i)

)2
2. Output θTx

This is a non-parametric algorithm, where non-parametric refers to the fact that the amount of information we
need to represent the hypothesis h grows linearly with the size of the training set.

7 Logistic Regression

We can extend this learning to classification problems, where we have binary labels y that are either 0 or 1.

7.1 The Logistic Function

For logistic regression, our new hypothesis for estimating the class of a sample x is:

h(x) = g
(
θTx

)
=

1

1 + e−θT x
(172)

where g(z) is the logistic or sigmoid function:

g(z) =
1

1 + e−z
(173)

The sigmoid function is bounded between 0 and 1, and tends towards 1 as z → ∞. It tends towards 0 when
z → −∞. A useful property of the sigmoid function is the form of its derivative:

g′(z) =
d

dz

1

1 + e−z

=
1

(1 + e−z)
2

(
e−z
)

=
1

(1 + e−z)
·
(

1− 1

(1 + e−z)

)
= g(z)(1− g(z))

(174)

7.2 Cost Function

To fit θ for a set of training examples, we assume that:

P (y = 1|x; θ) = h(x)

P (y = 0|x; θ) = 1− h(x)
(175)

This can be written more compactly as:

p(y|x; θ) = (h(x))
y

(1− h(x))
1−y

(176)

Assume m training examples generated independently, we define the likelihood function of the parameters as:

L(θ) = p (~y|X; θ)

=

m∏
i=1

p
(
y(i)|x(i); θ

)
=

m∏
i=1

(
h
(
x(i)
))y(i) (

1− h
(
x(i)
))1−y(i) (177)

27

Machine Learning Study Guide

And taking the negative log likelihood to minimize:

`(θ) = − logL(θ)

= −
m∑
i=1

y(i) log h
(
x(i)
)

+
(

1− y(i)
)

log
(

1− h
(
x(i)
))

= −
m∑
i=1

y(i)θTx(i) − log
(

1 + eθ
T x(i)

) (178)

This is known as the binary cross-entropy loss function.

7.3 Gradient Descent

Lets start by working with just one training example (x,y), and take derivatives to derive the stochastic gradient
ascent rule:

∂

∂θj
`(θ) = −

(
y

1

g (θTx)
− (1− y)

1

1− g (θTx)

)
∂

∂θj
g
(
θTx

)
= −

(
y

1

g (θTx)
− (1− y)

1

1− g (θTx)

)
g
(
θTx

) (
1− g

(
θTx

)) ∂

∂θj
θTx

= −
(
y
(
1− g

(
θTx

))
− (1− y)g

(
θTx

))
xj

= − (y − h(x))xj

(179)

This therefore gives us the stochastic gradient ascent rule:

θj := θj + α
(
y(i) − h

(
x(i)
))

x
(i)
j (180)

We must use gradient descent for logistic regression since there is no closed form solution for this problem.

7.4 Newton-Raphson Algorithm

The Hessian matrix for logistic regression is:

∂2`(θ)

∂θ∂θ
= −

m∑
i=1

x(i)x(i)T · h
(
x(i)
)
·
(

1− h
(
x(i)
))

(181)

Hence the second order update is:

θ := θ −
(
∂2`(θ)

∂θ∂θ

)−1
∂`(θ)

∂θ
(182)

8 Softmax Regression

A softmax regression, also called a multiclass logistic regression, is used to generalize logistic regression when there
are more than 2 outcome classes.

8.1 Softmax Function

The softmax function creates a probability distribution over a set of k classes for a training example x, with θk
denoting the set of parameters to be optimzed for the k-th class.

p(y = k|x; θ) =
exp

(
θTk x

)∑
j exp

(
θTj x

) (183)

28

Machine Learning Study Guide

8.2 MLE and Cost Function

We can write the maximum likelihood function for softmax regression as:

L(θ) =

m∏
i=1

∏
k

p(y = k|x; θ)1{yi=k} (184)

Where 1{yi = k} is the indicator function which is 1 if its argument is true, 0 otherwise. By taking the negative
log likelihood:

`(θ) = − logL(θ)

= − log

m∏
i=1

∏
k

p(y = k|x; θ)1{yi=k}

= −
m∑
i=1

∑
k

1{yi = k} ·

θTk xi − log

∑
j

exp
(
θTj xi

)
=

m∑
i=1

−θTyixi + log

∑
j

exp
(
θTj xi

)
(185)

This is known as the cross-entropy loss function.

8.3 Gradient Descent

To perform gradient descent, we must take the derivative of our cost function, but it is important to note that the
derivative for the correct class is different than the other classes.

∇θj `(θ) = ∇θj

(
m∑
i=1

−θTyixi + log

(∑
k

exp
(
θTk xi

)))

=

m∑
i=1

∇θj
(
−θTyixi

)
+∇θj

(
log

(∑
k

exp
(
θTk xi

)))

=

m∑
i=1

1{yi = j} · (−xi) +
exp(θTj xi)∑
k exp(θTk xi)

· xi

=

m∑
i=1

(
exp(θTj xi)∑
k exp(θTk xi)

− 1{yi = j}

)
· xi

(186)

And our update equation for the j-th parameter weights is:

θj := θj − α

(
exp(θTj xi)∑
k exp(θTk xi)

− 1{yi = j}

)
· xi (187)

Note that since each class has a set of weights, our gradient is a matrix known as the jacobian J, with k classes
each with n feature weights.

Jθ =
[

∂`(θ)
∂θ1

· · · ∂`(θ)
∂θk

]
=

∂`(θ)
∂θ11

· · · ∂`(θ)
∂θk1

...
. . .

...
∂`(θ)
∂θ1n

· · · ∂`(θ)
∂θkn

 (188)

29

Machine Learning Study Guide

9 Generalized Linear Models

9.1 Exponentional Family

9.2 Assumptions of GLMs

9.3 Examples

9.3.1 Ordinary Least Squares

9.3.2 Logistic Regression

9.3.3 Softmax Regression

10 Perceptron

11 Support Vector Machines

12 Margin Classification

13 Generative Learning: Gaussian Discriminant Analysis

A generative model learns who the data is generated by estimating P (x|y) which is then used to estimate P (y|x)
via Bayes rule.

13.1 Assumptions

Gaussian Discriminant Analysis assumes the following:

1. y ∼ Bernoulli(φ)

2. x|y = 0 ∼ N (µ0,Σ)

3. x|y = 1 ∼ N (µ1,Σ)

Writing out the distributions be have:
P (y) = φy · (1− φ)1−y (189)

P (x|y = k) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µk)TΣ−1(x− µk)

)
(190)

13.2 Estimation

The log-likelihood of the data is given by:

`(φ, µ0, µ1,Σ) = log

m∏
i=1

P (x(i), y(i);φ, µ0, µ1,Σ)

= log

m∏
i=1

P (x(i)|y(i);φ, µ0, µ1,Σ) · P (y(i);φ)

(191)

By maximizing ` with respect to the parameters, we get the following MLE of the parameters:

φ =
1

m

m∑
i=1

1{y(i)=1} (192)

30

Machine Learning Study Guide

µk =

∑m
i=1 1{y(i)=k}x

(i)∑m
i=1 1{y(i)=k}

(193)

Σ =
1

m

m∑
i=1

(x(i) − µy(i))(x(i) − µy(i))T (194)

13.3 Prediction

To classify a point x, we find the class y = k which maximizes the probability:

ŷ = arg max
k

P (y = k) ·
∏
j

P (xj |y = k) (195)

14 Generative Learning: Naive Bayes

14.1 Assumptions

The naive bayes model supposes that the features of each data point are all independent:

P (x|y) = P (x1, x2, ..., xn|y) = P (x1|y)P (x2|y)...P (xn|y) =

n∏
i=1

P (xi|y) (196)

14.2 Estimation

We can write the likelihood of the data as:

L(φy, φj=l|y=k) =

m∏
i=1

P (x(i), y(i)) (197)

with classes denoted by k and features xj = l (xj takes on value l). By maximizing the estimates, we get:

φy = P (y = k) =
1

m

m∑
i=1

1{y(i)=k} (198)

φj=l|y=k = P (xj = l|y = k) =

∑m
i=1 1{y(i)=k∧ x(i)

j =l}∑m
i=1 1{y(i)=k}

(199)

14.2.1 Laplace Smoothing

Laplace smoothing allows for unseen data to have a probability, and not automatically destory the prediciton process
by setting all classes to 0. We can replace our feature estimates with the following:

φj =

∑m
i=1 1{x(i)=j} + 1

m+ k
(200)

Or more generically:

φj=l|y=k =

∑m
i=1 1{x(i)

j =l∧y(i)=k} + 1∑m
i=1 1{y(i)=k} + |K|

(201)

where |K| is the number of classes

31

Machine Learning Study Guide

14.3 Prediction

To classify a point x, we find the class y = k which maximizes the probability:

ŷ = arg max
k

P (y = k) ·
n∏
i=j

P (xj |y = k) (202)

15 Tree-based Methods

15.1 Decision Trees

Decision Trees are created via the Classification and Regression Trees (CART) training algorithm. They can be
represent as binary trees where at each node the partition the data space according to a threshold to minimize
either gini impurity or entropy between the two child nodes.

15.2 Random Forest

Random forests are a tree-based technique that uses a high number of decision trees built out of randomly selected
sets of features. Contrary to the simple decision tree, it is highly uninterpretable but its generally good performance
makes it a popular algorithm. It averages the decisions across several trees to combat overfitting. Random forests
are a type of ensemble methods.

15.3 Boosting

The idea of boosting methods is to combine several weak learners to form a stronger one. The main ones are
summed up below:

1. Adaptive boosting: Known as adaboost, it places high weights on errors to improve at the next boosting step.

2. Gradient boosting: Weak learners are trained on the remaining errors.

Boosting requires training several models to improve upon previous ones.

16 K-Nearest Neighbors

The k-nearest neighbors algorithm, commonly known as k-NN, is a non-parametric approach where the response of
a data point is determined by the nature of its k neighbors from the training set. It can be used in both classification
and regression settings. The higher the parameter k, the higher the bias, and the lower the parameter k, the higher
the variance.

16.1 Classification

In k-NN classification, the output is a class membership. An object is classified by a majority vote of its neighbors,
with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer,
typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor.

16.2 Regression

In k-NN regression, the output is the property value for the object. This value is the average of the values of its k
nearest neighbors.

y =
1

k

∑
xi∈Nk(x)

yi (203)

where Nk(x) is the k nearest points around x.

32

Machine Learning Study Guide

17 K-Means Clustering

CLustering seeks to group similiar points of data together in a cluster. We denote c(i) as the cluster for data point
i and µj as the center for cluster j. We denote k as the number of clusters and n as the dimension of our data.

17.1 Algorithm

After randomly initializing the cluster centroids µ1, µ2, . . . , µk ∈ Rn, repeat until convergence:

1. For every data point i:

c(i) = arg min
j
||x(i) − µj ||2 (204)

2. For each cluster j:

µj =

m∑
i=1

1{c(i)=j}x
(i)

m∑
i=1

1{c(i)=j}

(205)

The first step is known as cluster assignment, and the second updates the cluster center (i.e. the average of all
points in the cluster). In order to see if it converges, use the distortion function:

J(c, µ) =

m∑
i=1

||x(i) − µc(i) ||2 (206)

The distortion function J is non-convex, and coordinate descent of J is not guaranteed to converge to the global
minimum (i.e. susceptible to local optima).

17.2 Hierarchical Clustering

Hierarchical clustering is a clustering algorithm with an agglomerative hierarchical approach that builds nested
clusters in a successive manner. The types are:

1. Ward Linkage: minimize within cluster distance

2. Average Linkage: minimize average distance between cluster pairs

3. Complete Linkage: minimize maximum distance between cluster pairs

17.3 Clustering Metrics

In an unsupervised learning setting, it is often hard to assess the performance of a model since we don’t have the
ground truth labels as was the case in the supervised learning setting.

Silhouette coefficient By noting a and b the mean distance between a sample and all other points in the same
class, and between a sample and all other points in the next nearest cluster, the silhouette coefficient s for a single
sample is defined as follows:

s =
b− a

max(a, b)
(207)

33

Machine Learning Study Guide

Calinskli-Harabaz Index By noting k the number of clusters, Bk and Wk the between and within-clustering
dispersion matricies defined as:

Bk =

k∑
j=1

nc(i)(µc(i) − µ)(µc(i) − µ)T (208)

Wk =

m∑
i=1

(x(i) − µc(i))(x(i) − µc(i))T (209)

the Calinksli-Harabaz index s(k) indicated how well a clustering model defines its clusters, such that higher scores
indicate more dense and well separated cluster assignments. It is defined as:

s(k) =
Tr(Bk)

Tr(Wk)
× N − k

k − 1
(210)

18 Expectation-Maximization

18.1 Mixture of Gaussians

18.2 Factor Analysis

19 Principal Component Analysis

Principal Component Analysis is a dimension reduction technique that finds the variance maximizing the directions
onto which to project the data.

19.1 Eigenvalues, Eigenvectors, and the Spectral Theorem

Recall that for a given matrix A ∈ Rn×n, λ is said to be an eigenvalue of A if there exists a vector z ∈ Rn\{0},
called an eigenvector, such that:

Az = λz (211)

The spectral theorem states that given matrix A ∈ Rn×n, if A is symmetric then A is diagonalizable by a real
orthogonal matrix U ∈ Rn×n. Note Λ = diag(λ1, . . . , λn). Then ∃Λ such that:

A = UΛUT (212)

Note that the eigenvector associated with the largest eigenvalue is called the principal eigenvector of matrix A.

19.2 Algorithm

The PCA procedure projects the data onto k dimensions by maximizing the variance of the data as follows:

1. Normalize the data to have mean 0, standard deviation 1:

x(i) ← x(i) − µ
σ

(213)

where µ and σ2 are:

µ =
1

m

m∑
i=1

x(i) (214)

σ2 =
1

m

m∑
i=1

(x(i) − µ)2 (215)

34

Machine Learning Study Guide

2. Compute covariance matrix Σ, which is symmetric with real eigenvalues.

Σ =
1

m

m∑
i=1

x(i)x(i)
T

∈ Rn×n (216)

3. Compute u1, . . . , uk ∈ Rn the k orthogonal principal eigenvectors of Σ, i.e. the orthogonal eigenvectors of the
k largest eigenvalues.

4. Project the data on spanR(u1, ..., uk) to create a vector y(i) from point x(i):

y(i) = UTx(i) =

uT1 x

(i)

uT2 x
(i)

...
uTk x

(i)

 ∈ Rk (217)

This procedure maximizes the variance among all k-dimensional spaces.

19.3 Algorithm: SVD

Eigenvalue decomposition is deifned for square matricies, and using the SVD of a data matrix X is often used in
practice.

1. Zero-mean the data to have mean 0:
x(i) ← x(i) − µ (218)

where µ is:

µ =
1

m

m∑
i=1

x(i) (219)

2. Computed the singular value decomposition of Xµ, our zero-meaned data matrix:

Xµ = USV (220)

3. Take the first k columns of U as our transform matrix, denoted Uk.

4. Project the data to create a matrix Y from data matrix Xµ:

Y = XUk (221)

20 Independent Component Analysis

21 Reinforcement Learning

21.1 Markov Decision Processes

21.2 Policy and Value Functions

21.3 Value Iteration Algorithm

21.4 Q-Learning

22 Probabilistic Graphical Models

Probabilistic Graphical Models are models for which a graph can express the conditional dependence structure
between random variables. We will define the basics used to understand PGMs here.

35

Machine Learning Study Guide

For starters, a model is a set of probability distributions that may have generated data. For example, a model could
be the set of normal distributions

{
p(x) : p(x) =

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
, µ ∈ R, σ2 ∈ R+

}
(222)

A graphical model is defined to be a pair (G,P) where G is a graph and P is a set of distributions which factorizes
according to G. A graph G = (V,E) consists of a set of vertices V and a set of edges E. Typically the vertices are
random variables and the edges relate the random variables.

22.1 Bayesian Networks

Bayesian Networks are a type of PGM constructed from directed acyclic graphs. A directed acyclic graph (DAG)
is a graph G = (V,E) such that E contains only directed edges (→) and there does not exist a sequence of directed
edges from Xi to Xi for all nodes in the graph.
Due to the structure of the DAG, we can factorize the joint distribution p(x) with respect to the graph as:

p(x) =

n∏
i=1

p(xi | pa(xi,G)) (223)

Here, pa(xi,G) are the parents of xi with respect to graph G.
Using this factorization, we can specify conditional independencies from the graph’s structure. We define three
useful set construction operations for these networks:

an(xi,G) ≡ {xj |xj → · · · → xi ∈ G} (ancestors of xi)
de(xi,G) ≡ {xj |xj ← · · · ← xi ∈ G} (descendants of xi)
nd(xi,G) ≡ {xj |xj /∈ de(xi,G)} (non-descendants of xi)

(224)

A distribution p(x) satisfies the local Markov property wrt DAG G if:

xi ⊥⊥ nd∗(xi,G) | pa(xi,G) (225)

where nd∗(xi,G) ≡ nd(xi,G) \ pa(xi,G)
For the global markov property, let A,B,C be disjoint subsets of X. A distribution p(X) satisfies the global markov
property wrt DAG G if:

A ⊥d B |C =⇒ A ⊥⊥ B |C (226)

36

Machine Learning Study Guide

22.1.1 Hidden Markov Models

22.2 Markov Random Fields

22.3 Conditional Random Fields

23 Deep Learning: Basics

23.1 Basics

23.2 Activation Functions

23.3 Loss Functions

23.4 Backpropagation

23.5 Regularization Methods

23.6 Optimization Algorithms

23.7 Convolutional Networks

23.8 Recurrent Networks

Recurrent networks allow us to work with sequences, where xt is the input at time t, ht is the hidden state at time
t, and ht−1 is the previous hidden state. RNNs allow us to propagate information through the hidden state h.
Hidden states defualt to zero.

23.8.1 Elman RNN

The Elman RNN is the simplest layers, yet prone to both the vanishing and exploding gradient problem.

ht = tanh (Wihxt + bih +Whhht−1 + bhh) (227)

Here, W are weight matricies, and b are bias vectors, one each for the input and hidden vectors.

23.8.2 Long Short-Term Memory

LSTM RNNs mitigate the vanishing gradient problem. They involve a more complex set of equations corresponding
to gates that control the amount of infomation to propagate through the sequence. Here, i is the input gate, f is
the forget gate, g is the cell gate, and o is the output gate. LSTMs have two hidden inputs, hidden state ht and
cell state ct.

it = σ (Wiixt + bii +Whiht−1 + bhi)

ft = σ (Wifxt + bif +Whfht−1 + bhf)

gt = tanh (Wigxt + big +Whght−1 + bhg)

ot = σ (Wioxt + bio +Whoht−1 + bho)

ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh (ct)

(228)

Here, σ is the sigmoid function.

37

Machine Learning Study Guide

23.8.3 Gated Recurrent Unit

GRU RNNs are another rnn layer designed to mitigate the vanishing gradient problem. Here, we have the r reset
gate, z update gate, and n is the new gate. σ is the sigmoid function.

rt = σ (Wirxt + bir +Whrht−1 + bhr)

zt = σ (Wizxt + biz +Whzht−1 + bhz)

nt = tanh (Winxt + bin + rt ◦ (Whnht−1 + bhn))

ht = (1− zt) ◦ nt + zt ◦ ht−1

(229)

23.8.4 Bidirectional RNNs

Bidirectional RNNs run two separate RNN layers on the forward and reverse sequence, and then concatenates them
into one output vector.

−→
hf = RNN (−→x)

←−
hr = RNN (←−x)

ho =
[−→
hf ;
−→
hr

]
(230)

Where RNN can be any of the 3 previously mentioned layers.

23.8.5 Vanishing/Exploding Gradient

The vanishing and exploding gradient phenomena are often encountered in the context of RNNs. The reason why
they happen is that it is difficult to capture long term dependencies because of multiplicative gradient that can be
exponentially decreasing/increasing with respect to the number of layers.

23.8.6 Gradient Clipping

Gradient clipping is a technique used to cope with the exploding gradient problem sometimes encountered when
performing backpropagation. By capping the maximum value for the gradient, this phenomenon is controlled in
practice.

∇Lclipped = min (∇L, C) (231)

For some max value C.

24 Deep Learning: Advanced

24.1 Autoencoders

24.1.1 Variational Autoencoders

24.2 General Adversarial Networks

24.3 Encoder-Decoder Models

Encoder-decoder models allow for many to many RNN sequence learning. The idea for them is two take a source
sequence, encode it to a vectorized output, and pass the hidden state over to the decoder (and possible the encodings
themselves) to generate output. These models come up in machine tranlsations, allowing models to translate a source
language into a target language.

38

Machine Learning Study Guide

24.3.1 Encoders

24.3.2 Decoders

24.4 Attention Models

Attention models were discussed by Bahdanau, and later Luong. They are a means to alter the representation of a
set of encodings to pay attention to certain sequence elements more so than others. In an encoder-decoder model
with out attention, the decoder relies exclusivly on the hidden state to hold all information. Attention, by contrast,
uses the hidden state to create a context vector of the encodings.

24.4.1 Context Vector

Attention mechanisms rely on one simple concept: producing context vectors. Hence, given a set of encodeings
h = [hi, · · · , hj , · · ·hn] from the encoder, and the current hidden state si−1, we compute a score for each encoding
hj , denoted score(si−1, hj). These scores are discussed in later sections. With a score computed for each encoding,
we apply a softmax across all scores:

a(si−1, hj) =
exp(score(si−1, hj))∑
j′ exp(score(si−1, hj′))

(232)

These softmax proabilities are attention weights, and our context vector ci is the weighted sum of the encodings
given these weights:

ci =
∑
j′

a(si−1, hj′) · hj′ (233)

These context vectors are appended to the embedding of the token set into the decoder.

24.4.2 Concat (Bahdanau) Attention

The concat attention scoring mechanism has two learnable weights, va and Wa and is defined as:

score(si−1, hj) = vTa · tanh (Wa · [si−1;hj]) (234)

24.4.3 Luong Attention Mechanisms

Luong defined several global attention mechanisms, defined here:

score(si−1, hj) =

{
sTi−1 ·Wa · hj general

sTi−1 · hj dot
(235)

Luong also explored local attention weights, with monotonic alignment and predictive alignment. The difference
in local attention is that the context vector is derived on source hidden states within the window [pt −D, pt +D]
for some D and decoder time step t (i.e. i − 1). In monotonic alignment, aligned position pt = t. In predicitve
alignment, the aligned position is:

pt = S · σ
(
vTp tanh (Wpsi−1)

)
(236)

where vp and Wp are learnable parameters, S is the source sentence length. In addition, the weights are gaussian
centered around pt:

a(si−1, hj) =
exp(score(si−1, hj))∑
j′ exp(score(si−1, hj′))

· exp

(
− (s− pt)2

2
(
D
2

)2
)

(237)

Here, s is an integer within the window centered at pt.

39

Machine Learning Study Guide

24.5 Word Embeddings

Word Embeddings seek to create a dense vector representation of real values to represent a single word in a euclidean
space. Word vectors are weight matrices where each row corresponds to a word, acessed through a numerical token
representing the word itself. However, several models have been developed to train these word embedding weights
to encode lexical meaning.

24.5.1 N-Gram Models

A simple apporach is to take a context of size n words that appear before our target word, and attempt to train a
model to predict a word wi that appears in a training corpus. We effectively average the input word embeddings,
apply a linear layer to project the data to the vocab size, and maximize the probability of predicitng the target
word (i.e. apply a softmax of the output vector).

max p(wi |wi−n, . . . , wi−1) = max
exp f(wi−n, . . . , wi−1)i∑|V |
j=1 exp f(wi−n, . . . , wi−1)j

(238)

Where our model is:

f(wi−n, . . . , wi−1) = Wd ·

 1

n

n∑
j=1

We[wi−j]

+ bd ∈ R|V | (239)

Here, |V | is the size of the vocabulary, Wd ∈ Rd×|V | is a projection matrix used for training along with bias bd, and
We ∈ R|V |×d are the word embeddings we seek to train. d is the embedding dimension.
Now we can write the negative log likelihood as:

min− log p(wi |wi−n, . . . , wi−1) = −f(wi−n, . . . , wi−1)i + log

|V |∑
j=1

exp f(wi−n, . . . , wi−1)j (240)

24.5.2 Continuous Bag-of-Words Models (CBOW)

The continuous bag of words model, or CBOW, seeks to predict a center word given the surrounding con-
text words. For instance, given a context size of n, for a target center word wi, we are given context words
wi−n, . . . wi−1, wi+1, . . . wi+n and attempt to predict wi. Hence:

max p(wi |wi−n, . . . , wi−1, wi+1, . . . , wi+n) = max
exp f(wi−n, . . . , wi−1, wi+1, . . . , wi+n)i∑|V |
j=1 exp f(wi−n, . . . , wi−1, wi+1, . . . , wi+n)j

(241)

Where our model is:

f(wi−n, . . . , wi−1, wi+1, . . . , wi+n) = Wd ·

 1

2 ∗ n

n∑
j=−n,j 6=0

We[wi+j]

+ bd ∈ R|V | (242)

Here, |V | is the size of the vocabulary, Wd ∈ Rd×|V | is a projection matrix used for training along with bias bd, and
We ∈ R|V |×d are the word embeddings we seek to train. d is the embedding dimension.
Now we can write the negative log likelihood as:

min− log p(wi |wi−n, . . . , wi−1, wi+1, . . . , wi+n) =− f(wi−n, . . . , wi−1, wi+1, . . . , wi+n)i

+ log

|V |∑
j=1

exp f(wi−n, . . . , wi−1, wi+1, . . . , wi+n)j
(243)

40

Machine Learning Study Guide

24.5.3 Skip-Gram Model

24.5.4 Negative Sampling

41

	Linear Algebra and Calculus
	General Notation
	Indentity Matrix
	Diagonal Matrix
	Orthogonal Matrix

	Matrix Operations
	Vector-Vector Products
	Vector-Matrix Products
	Matrix-Matrix Products
	The Transpose
	The Trace
	The Inverse
	The Determinant

	Matrix Properties
	Norms
	Linear Dependence and Rank
	Span, Range, and Nullspace
	Symmetric Matrices
	Positive Semidefinite Matrices
	Eigendecomposition
	Singlular Value Decomposition
	The Moore-Penrose Pseudoinverse

	Matrix Calculus
	The Gradient
	The Hessian
	Gradient Properties

	Convex Optimization
	Convexity
	Convex Sets
	Convex Functions
	First-Order Conditions
	Second-Order Conditions
	Jensen's Inequality
	Sublevel Sets

	Convex Optimization
	Global Optimality
	Gradient Descent
	Newton's Algorithm

	Lagrange Duality and KKT Conditions
	The Lagrangian
	Primal and Dual Problems
	Strong and Weak Duality
	Complementary Slackness
	The KKT Conditions

	Probability and Statistics
	Basics
	Axioms of Probability
	Permutation
	Combination

	Conditional Probability
	Bayes Rule
	Independence

	Random Variables
	Cumulative Distribution Function (CDF)
	Probability Density Function (PDF)
	Discrete PDF/CDF
	Continuous PDF/CDF
	Expectation
	Variance and Standard Deviation

	Discrete Random Variables
	Bernoulli
	Binomial
	Geometric
	Poisson

	Continuous Random Variables
	Uniform
	Exponential
	Gaussian (Normal)

	Jointly Distributed Random Variables
	Marginal Density
	Cumulative Distribution
	Conditional Density
	Independence
	Expectation
	Covariance
	Correlation

	Parameter Estimation
	Definitions
	Bias
	Mean and Central Limit Theorem
	Variance

	Probability Bounds and Inequalities
	Markov
	Chebyshev
	Chernoff
	Hoeffding

	Information Theory
	Learning Theory
	Bias and Variance
	Notation
	Union Bound
	Hoeffding Inequality For Bernoulli Variables

	Training Error
	Probably Approximately Correct (PAC)
	Hypothesis Classes
	Shattering
	Upper Bound Theorem
	VC Dimension
	Vapnik Theorem

	Linear Regression
	LMS Algorithm
	The Normal Equations
	Probabilistic Interpretation
	Locally Weighted Linear Regression

	Logistic Regression
	The Logistic Function
	Cost Function
	Gradient Descent
	Newton-Raphson Algorithm

	Softmax Regression
	Softmax Function
	MLE and Cost Function
	Gradient Descent

	Generalized Linear Models
	Exponentional Family
	Assumptions of GLMs
	Examples
	Ordinary Least Squares
	Logistic Regression
	Softmax Regression

	Perceptron
	Support Vector Machines
	Margin Classification
	Generative Learning: Gaussian Discriminant Analysis
	Assumptions
	Estimation
	Prediction

	Generative Learning: Naive Bayes
	Assumptions
	Estimation
	Laplace Smoothing

	Prediction

	Tree-based Methods
	Decision Trees
	Random Forest
	Boosting

	K-Nearest Neighbors
	Classification
	Regression

	K-Means Clustering
	Algorithm
	Hierarchical Clustering
	Clustering Metrics

	Expectation-Maximization
	Mixture of Gaussians
	Factor Analysis

	Principal Component Analysis
	Eigenvalues, Eigenvectors, and the Spectral Theorem
	Algorithm
	Algorithm: SVD

	Independent Component Analysis
	Reinforcement Learning
	Markov Decision Processes
	Policy and Value Functions
	Value Iteration Algorithm
	Q-Learning

	Probabilistic Graphical Models
	Bayesian Networks
	Hidden Markov Models

	Markov Random Fields
	Conditional Random Fields

	Deep Learning: Basics
	Basics
	Activation Functions
	Loss Functions
	Backpropagation
	Regularization Methods
	Optimization Algorithms
	Convolutional Networks
	Recurrent Networks
	Elman RNN
	Long Short-Term Memory
	Gated Recurrent Unit
	Bidirectional RNNs
	Vanishing/Exploding Gradient
	Gradient Clipping

	Deep Learning: Advanced
	Autoencoders
	Variational Autoencoders

	General Adversarial Networks
	Encoder-Decoder Models
	Encoders
	Decoders

	Attention Models
	Context Vector
	Concat (Bahdanau) Attention
	Luong Attention Mechanisms

	Word Embeddings
	N-Gram Models
	Continuous Bag-of-Words Models (CBOW)
	Skip-Gram Model
	Negative Sampling

