UNISONIC TECHNOLOGIES CO., LTD

TDA7375

LINEAR INTEGRATED CIRCUIT

2 x 35W DUAL/OUAD POWER AMPLIFIER FOR CAR RADIO

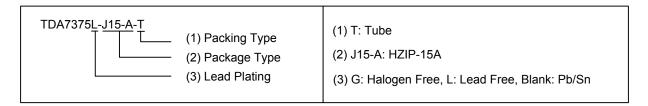
DESCRIPTION

The UTC TDA7375 is a class AB car radio amplifier for car radio, it can work either in dual bridge or quad single ended configuration. The exclusive fully complementary structure of the output stage and the internally fixed gain guarantees the highest possible power performances with few external components. The on-board clip detector simplifies gain compression operation. The fault diagnostics makes it possible to detect mistakes during car radio set assembly and wiring in the car.

FEATURES

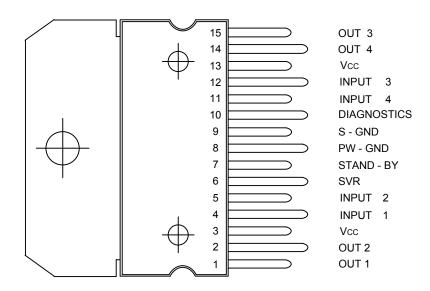
- * High output power capability:
 - $-2 \times 40W$ Max. $/4\Omega$
 - 2 x 25W / 4Ω@14.4V, 1KHz, 10%
 - 2 x 35W / 4Ω EIAJ
 - $-4 \times 7 \text{ W} / 4\Omega@14.4\text{V}, 1\text{KHz}, 10\%$
 - $-4 \times 12W / 2\Omega@14.4V$, 1KHz, 10%
- * Minimum external components:
 - No bootstrap capacitors
 - No Boucherot cells
 - Internally fixed gain (26dB BTL)
- * Stand-by function (CMOS compatible)
- * No audible pop during st-by operations
- * Diagnostics facility for:
 - Clipping
 - Out to GND short
 - Out to V_S short
 - Soft short at turn-on
 - Thermal shutdown proximity

HZIP-15A

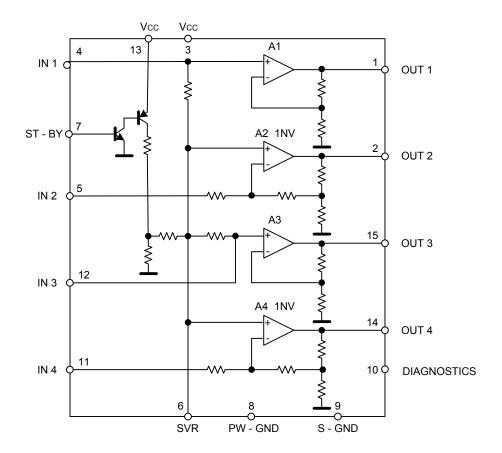

Lead-free: TDA7375L Halogen-free: TDA7375G

PROTECTIONS

- * Output AC/DC short circuit
- to GND
- to Vs
- across the load
- * Soft short at turn-on
- * Overrating chip temperature with soft thermal limiter
- * Load dump voltages urge
- * Very inductive loads
- * Fortuitous open GND
- * Reversed battery
- * ESD


ORDERING INFORMATION

	Daakaga	Dooking			
Normal	Lead Free Plating	Halogen Free	Package	Packing	
TDA7375-J15-A-T	TDA7375L-J15-A-T	TDA7375G-J15-A-T	HZIP-15A	Tube	



www.unisonic.com.tw 1 of 9

■ PIN CONNECTION (Top view)

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

PARAMETE	SYMBOL	RATINGS	UNIT	
Operating Supply Voltage	V _{OP}	18	V	
DC Supply Voltage	Vs	28	V	
Peak Supply Voltage (for t = 50ms)	V _{S(PEAK)}	50	V	
Output Book Current	not repetitive t = 100µs		4.5	Α
Output Peak Current	repetitive f >10Hz	IO(PEAK)	3.5	Α
Power Dissipation (T _C = 85°C)	P_D	36	W	
Junction Temperature	TJ	+150	°C	
Storage Temperature	T_{STG}, T_{J}	-40~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case	θ_{JC}	1.8	°C/W

■ ELECTRICAL CHARACTERISTICS

 $(V_S = 14.4V; R_L = 4\Omega; f = 1 \text{ KHz}; Ta = 25^{\circ}\text{C}, unless otherwise specified})$

(10 1111)		,								
PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT		
Supply Voltage Range		Vs			8		18	V		
ST-BY Threshold Voltage	IN	V _{I(ST-BY)}						1.5	V	
	OUT	V _{O(ST-BY)}				3.5				
Voltage Saturation on pin	10	V_{SAT}	Sink Current at Pin 10 = 1mA				0.7	V		
Output Offset Voltage		$V_{O(OFF)}$					150	mV		
Input Noise Voltage		eN	Rg = 0; S.E.		Non Inverting Channels		2		/	
			"A" weighted	eighted, Inverting Channels			5		μV	
			Bridge, Rg = 0; 22Hz ~ 22KHz				3.5		μV	
Total Quiescent Drain Cur	Total Quiescent Drain Current		R _L = ∞				200	mA		
ST-BY Pin Current(pin 7)			Max Driving Current Under Fault					5	mA	
		I _{ST-BY}	Play Mode Vpin7 = 5V				50	μA		
ST-BY Current Consumption		I _{ST-BY}	V _{ST-BY} = 0 ~ 1.5V				100	μA		
Clipping Detector Output	OFF	I _{CD(OFF)}	d = 1% (Note 2)			90		μA		
Average Current	ON	I _{CD(ON)}	d = 5% (Note 2)				160		μA	
la a chilara a da a a a			Single Ended		20	30				
Input Impedance		R _{IN}	Bridge		10	15		ΚΩ		
Output Power		Роит		В	ridge	23	25			
			IR: = 40	ISINGIA ENGAG		6.5	7		W	
				S	ingle Ended, $R_L = 2\Omega$		12		1	
Outsid Devise (Note 2)		P _{O(MAX)}	V _S = 14.4V, Bridge		36	40		W		
Output Power (Note 3)	EIAJ	P _{O(EIAJ)}	V _S = 13.7V, Bridge			32	35		W	
B: 4 #	1				-		0.02			
Distortion		THD	$R_L = 4\Omega$ Bridg		Ended, P _{OUT} =0.1~4W , P _{OUT} = 0.1 ~ 10W		0.03	0.3	%	
Cross Talk		СТ	f = 1KHz Single Ended			70		dB		
			f = 10KHz Single Ended			60		dB		
			f = 1KHz Bridge		55			dB		
			f = 10KHz Bridge			60		dB		
Voltage Gain		0	Single Ended		19	20	21	dB		
		G∨	Bridge		25	26	27	dB		
Voltage Gain Match		G∨					0.5	dB		
Supply Voltage Rejection		SVR	Rg = 0; f = 300Hz		50			dB		
Stand-by Attenuation		A _{ST-BY}	P _O = 1W		80	90		dB		
			•							

Notes: 1. See built-in S/C protection description

- 2. Pin 10 Pulled-up to 5V with 10K Ω ; R_L = 4 Ω
- 3. Saturated square wave output.

■ TYPICAL TEST AND APPLICATION CIRCUIT

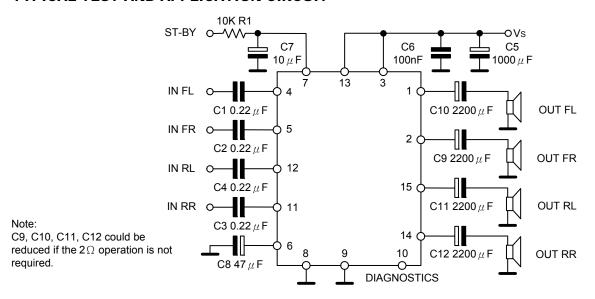


Figure 1: Quad Stereo

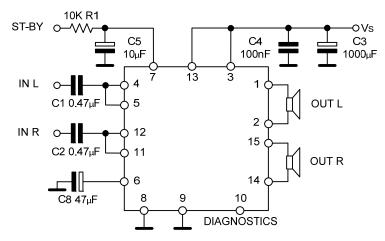


Figure 2: Double Bridge

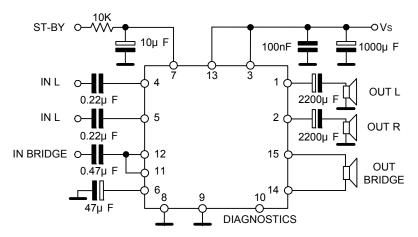


Figure 3: Stereo/Bridge

TYPICAL APPLICATION INFORMATION

1. High Application Flexibility

It is possible that accomplish several kinds of applications ranging from 4 speakers stereo (F/R) to 2 speakers bridge solutions with 4 independent channels

In order to avoid phase inconveniences causing sound alterations especially during the reproduction of low frequencies. When working in single ended conditions the polarity of the speakers driven by the inverting amplifier must be reversed respect to those driven by non inverting channels.

2. Easy Single Ended to Bridge Transition

The change from single ended to bridge configurations is made simply by means of a short circuit across the inputs, further external component is unnecessary.

3. Gain Internally Fixed to 20dB in Single Ended, 26dB in Bridge

The function advantages not only to save component, PCB space but also optimize output noise, supply voltage rejection and distortion

4. Silent Turn On/Off and Muting/Stand-by Function

The stand-by can be easily activated by means of a CMOS level applied to pin 7 through a RC filter. Under stand-by condition the device is turned off completely (Vs=1mA typ.; Ast-By= 80dB min.).

Every ON/OFF operation is virtually pop free. Furthermore, at turn-on the device stays in muting condition for a time determined by the value assigned to the SVR capacitor. While in muting the device outputs becomes insensitive to any kinds of signal that may be present at the input terminals.

5 .STAND-BY DRIVING (pin 7)

The definition of stand-by driving networks is most important that pin 7 cannot be directly driven by a voltage source whose current capability is higher than 5mA. In practical cases a series resistance has always to be inserted to limit the current at pin 7 and to smooth down the stand-by ON/OFF transitions - in combination with a capacitor - for output pop prevention. In any case, a capacitor of at least 100nF from pin 7 to S-GND, with no resistance in between, is necessary to ensure correct turn-on.

6. BUILT-IN SHORTCIRCUIT PROTECTION

Reliable and safe operation, in presence of all kinds of short circuit involving the outputs is assured by BUILT-IN protectors. Additionally to the AC/DC short circuit to GND, to V_S , across the speaker, a SOFT SHORT condition is signaled out during the TURN-ON PHASE so assuring correct operation for the device itself and for the loudspeaker.

This particular kind of protection acts in a way to avoid that the device is turned on (by ST-BY) when a resistive path (less than 16 ohms) is present between the output and GND. As the involved circuitry is normally disabled when a current higher than 5mA is flowing into the ST-BY pin, it is important, in order not to disable it, to have the external current source driving the STBY pin limited to 5mA.

This extra function becomes particularly attractive when, in the single ended configuration, one capacitor is shared between two outputs (see Fig. 4).

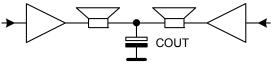


Figure 4

Supposing that the output capacitor Cout for any reason is shorted, the loudspeaker will not be damaged being this soft short circuit condition revealed.

Diagnostics Facility

The IC is equipped with a diagnostic circuitry able to detect clipping in the output signal, thermal shutdown, and output fault including short to GND, short to $V_{S \text{ and}}$ soft short at turn on.

The information is available across an open collector output (pin 10) through a current sinking when the event is detected.

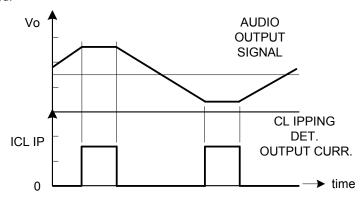


Figure 5: Clipping Detection Waveforms

A current sinking at pin 10 is triggered when a certain distortion level is reached at any of the outputs. This function allows gain compression possibility whenever the amplifier is overdriven.

Thermal Shutdown
 In this case the output 10 will signal the proximity of the junction temperature to the shutdown threshold.
 Typically current sinking at pin 10 will start ~10°C before the shutdown threshold is reached.

7. HANDLING OF THE DIAGNOSTICS SIGNAL

Since various kinds of information is available at the same pin (clipping detection, output fault, thermal proximity), this signal must be handled properly in order to discriminate each event. This could be done by taking into account the different timing of the diagnostic output during each case.

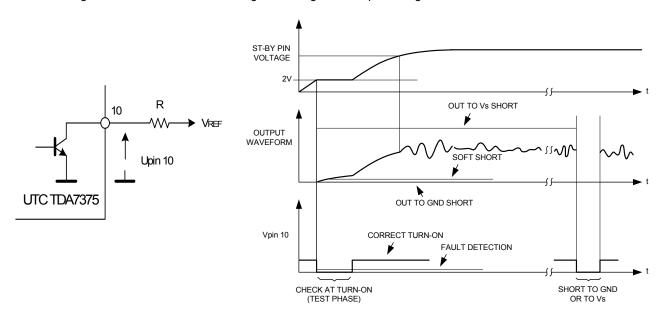


Figure 6: Output Fault Waveforms (see Fig. 7)

Figure 7: Fault Waveforms

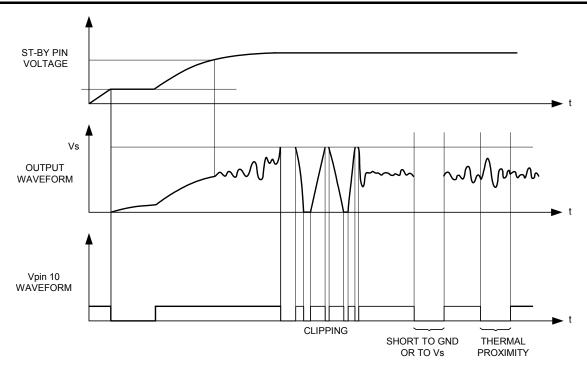
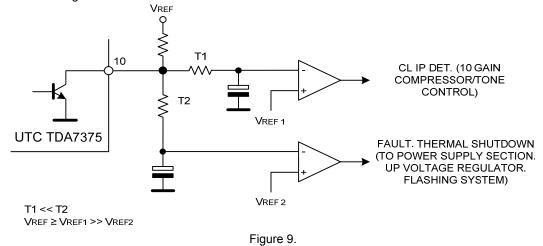
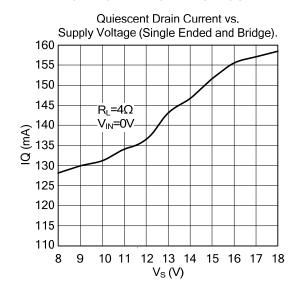
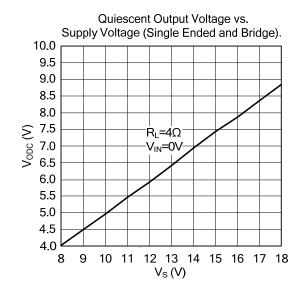
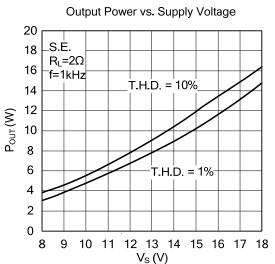



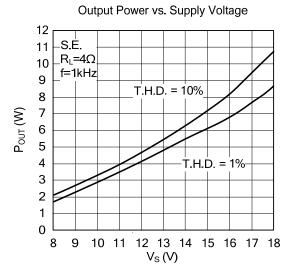
Figure 8: Waveforms

Normally the clip detector signalling produces a low level at pin 10 that is shorter than that present under faulty conditions; based on this assumption an interface circuitry to differentiate the information is represented in the schematic of Fig. 9.

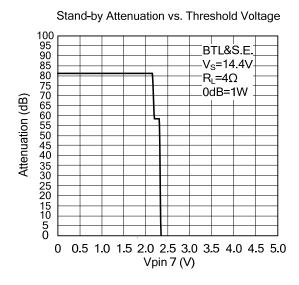

8. PCB-LAYOUT GROUNDING


The device has 2 distinct ground leads, P-GND (POWER GROUND) and S-GND (SIGNAL GROUND) which are practically disconnected from each other at chip level. Proper operation requires that P-GND and S-GND leads be connected together on the PCB-layout by means of reasonably low-resistance tracks.


As to the PCB-ground configuration, a starlike arrangement whose center is represented by the supply-filtering electrolytic capacitor ground is highly advisable. In such context, at least 2 separate paths have to be provided, one for P-GND and one for S-GND. The correct ground assignments are as follows:


- STANDBY CAPACITOR(pin 7, or any other standby driving networks): on S-GND
- SVR CAPACITOR (pin 6): on S-GND and to be placed as close as possible to the device.
- INPUT SIGNAL GROUND (from active/passive signal processor stages): on S-GND.
- SUPPLY FILTERING CAPACITORS (pins 3,13): on P-GND. The (-) terminal of the electrolytic capacitor
 has to be directly tied to the battery (-) line and this should represent the starting point for all the ground
 paths.

■ TYPICAL CHARACTERISTICS



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

www.s-manuals.com