
Open	Freelance	hub

Technical	Manual

Dean	Lynch	&	David	Weir

Table	of	Contents

1.	Introduction
1.1	Overview
1.2	Glossary
1.3	Initial	Design	Vs	Final	Application

2.	System	Architecture
3.	High	Level	Design

3.1	Architectural	Overview	Diagram
3.2	Component	Diagram
3.3	Data	Flow	Diagram
3.4	State	Diagram

4.	Problems	and	Resolutions
5.	Installation	Guide
6.	Future	Work

#1-introduction
#11-overview
#12-glossary
#13-initial-design-vs-final-application
#2-system-architecture
#3-high-level-design
#31-architectural-overview-diagram
#32-component-diagram
#33-data-flow-diagram
#34-state-diagram
#4-problems-and-resolutions
#5-installation-guide
#6-future-work

1.	Introduction

1.1	Overview

The	goal	of	Open	Freelance	Hub	is	to	create	a	more	open	and	transparent	marketplace	for
freelance	or	casual	work	transactions.	This	application	allows	users	to	trade	Ether,	a
cryptocurrency,	for	some	amount	of	work	completed.	For	example,	a	proofreader	could	be	paid
by	a	student	for	completing	an	analysis	of	their	dissertation.	With	the	growing	popularity	of
blockchain	based	technologies,	this	application	is	a	showcase	of	how	blockchain	"decentralised
applications"	can	be	used	in	place	of	commonly	used	applications.

1.2	Glossary

Blockchain:	A	distributed	digital	public	ledger	that	records	transactions	across	multiple
computers	to	prevent	transaction	history	from	being	altered.
Smart	Contracts:	Self-executing	programmable	contracts	that	allow	for	the	transfer	of
currencies	on	the	blockchain,	and	the	updating	of	the	public	ledger.
Ethereum:	An	open	platform	that	allows	for	the	development	of	decentralised	applications.
Ether:	The	common	cryptocurrency	used	in	the	Ethereum	environment.
Ðapp:	An	app	consisting	of	a	user	interface	and	a	decentralised	backend	built	on	the	the
Ethereum	blockchain.
Gas	Price:	The	price	paid	to	process	a	contract	or	transaction	onto	the	Ethereum
blockchain.
Solidity:	The	language	used	to	program	smart	contracts	for	the	Ethereum	blockchain.
web3.js:	A	JavaScript	API	compatible	with	the	Ethereum	blockchain.
MetaMask:	A	browser	plugin	for	Chrome	and	Firefox	which	allows	you	to	browse	Ðapps
without	running	a	full	Ethereum	Node.

1.3	Initial	Design	Vs.	Final	Application

The	application	that	was	developed	achieves	the	minimum	viable	product	that	was	outlined	as
part	of	the	functional	specification.	Registered	users	have	the	ability	to	post	jobs,	browse	both
all	jobs	and	all	open	jobs,	apply	to	relevant	jobs	as	a	worker,	and	search	for	jobs	based	on	job
title	and	description.

Time	was	spent	in	an	attempt	to	develop	a	chat	functionality	using	the	Whisper	protocol,	in
hindsight	this	time	was	wasted	as	we	discovered	that	the	Whisper	protocol	is	still	heavily	in
development	and	severely	lacking	documentation,	and	therefore	it	would	not	be	possible	to
integrate	a	chat	functionality	in	time.

2.	System	Architecture

The	Ðapp	web	browser	or	Ethereum	enabled	browser	is	a	browser	capable	of	interacting	with
the	Ethereum	blockchain	through	web3js.	Development	took	place	primarily	on	Chrome	with
the	MetaMask	extension.	The	Mist	browser	is	also	another	option	to	interact	with	the	Ethereum
blockchain.

The	front	end	of	the	application	is	written	in	HTML,	CSS,	&	JavaScript,	using	Bootstrap	and
AngularJS.	The	content	for	the	front-end	is	populated	using	web3js,	a	JavaScript	library
specifically	used	for	interacting	with	smart	contracts	stored	on	the	Ethereum	blockchain.	Ideally
in	a	fully	decentralised	application,	you	would	not	use	a	web	server;	you	would	use	a	service
called	'swarm'	which	can	provide	the	front	end	via	a	peer-to-peer	network.	This	was	not	used
for	this	application	as	'swarm'	is	still	too	early	in	development.

The	smart	contracts	contained	on	the	Ethereum	blockchain	are	where	the	data	for	the
application	is	stored.	Written	in	Solidity,	they	perform	the	transactions	necessary	for	completing
a	piece	of	work	and	store	the	relevant	data	for	our	users	and	their	jobs.

3.	High	Level	Design

3.1	Architectural	Overview	Diagram

Note:	Each	of	the	users	shown	in	the	architectural	overview	diagram	can	collectively	be	one
user.	For	example,	the	employer	user	for	one	job	could	be	the	worker	user	for	a	different	job	at
the	same	time,	and	an	unregistered	user	could	become	an	employer	user	after	they	register
their	Ethereum	account	and	post	a	job.

The	A.O.D.	is	a	high-level	shared	vision	of	the	architecture	and	scope	of	the	proposed
application.	It	explores	and	evaluates	alternative	architectural	options	and	enables	early
recognition	and	validation	of	the	implications	of	the	architectural	approach.	It	helps	to	provides
a	conceptual	understanding	of	the	system.	As	shown	in	the	diagram,	the	user	interface
interacts	with	a	contract	interaction	section	which	will	complete	the	main	functionalities	on	the
site	using	the	smart	contracts	stored	on	the	Ethereum	blockchain.

3.2	Component	Diagram

The	component	model	is	used	to	illustrate	at	a	high	level	how	components	will	interact	within	a
system.	The	component	diagram	can	be	viewed	as	a	lower	level	version	of	the	architectural
overview	diagram.	The	different	sections	of	the	architecural	overview	diagram	are	displayed	as

components.	Components	are	functionalities	in	the	system	that	complete	a	certain	task.

For	instance,	the	user	interface	section	is	broken	down	into	page	generation,	user	input
validation	and	the	different	functionalities	for	the	application.	The	contract	interaction	section	is
broken	down	into	the	various	setters	for	the	contracts	and	the	contract	getter	used	to	populate
the	dynamic	page	generation.

3.3	Data	Flow	Diagram

Note:	As	in	the	architectural	overview	diagram,	the	two	employer	and	worker	users	can	be	one
user.

A	data	flow	diagram	shows	the	flow	of	information	for	each	process	in	our	system.

3.4	State	diagram

A	state	diagram	describes	the	behaviour	of	a	system.

This	state	diagram	displays	the	different	possible	states	for	a	job	as	it	is	completed	by	users	on
the	application.

4.	Problems	and	Resolutions

Profanity	in	the	application

Problem:	It	was	mentioned	at	our	project	proposal	demonstration	that	we	should	be	wary
of	the	use	of	profanity	by	users	in	our	application.	As	the	storage	for	this	application	in	on	a
blockchain,	traditional	moderation	would	be	extremely	difficult.
Solution:	We	developed	a	profanity	filter	with	3000+	profane	words.	These	words	were
gathered	by	scraping	a	number	of	online	profanity	lists	and	compiling	our	own	list	of	the
unique	words.	Much	of	these	words	are	slight	variations	of	the	same	word.	In	the	filter	we
strip	the	words	of	any	special	characters	in	order	to	catch	attempts	circumvent	the	filter	by
appending	special	characters.

Dynamically	creating	unique	webpages

Problem:	Each	job	created	and	account	registered	would	need	to	have	a	unique	webpage
for	displaying	the	information	related	to	it.	Accounts	need	to	display	user	information,	and
jobs	need	to	display	the	title,	description	of	the	work	and	payment	amount	for	completeing
the	work.	Similarly,	it	was	necessary	to	generate	a	page	of	search	results	dynamically
based	on	the	search	input.
Solution:	Passing	the	job	ID's	and	account	addresses	as	part	of	the	URL	for	the
webpages.	This	information	is	parsed	when	generating	the	page	and	it	pulls	the	relevant
information	from	the	blockchain.

Note:	This	had	the	added	benefit	of	allowing	our	users	to	share	links	with	one	another,	as	the
data	for	generating	each	page	would	be	parsed	from	the	URL	they	shared.

Deploying	to	a	live	network

Problem:	There	are	many	conflicting	tutorials	on	how	to	deploy	certain	applications	to	the
Ropsten	test	network,	most	of	which	did	not	work	for	our	application.	Deploying	to	a	test
network	allowed	us	to	see	how	our	application	would	act	on	a	live	network.
Solution:	After	trial	and	error,	our	application	was	deployed	to	the	Ropsten	test	network.
We	created	a	tutorial	as	part	of	our	blog	in	order	for	us	to	remember	how	to	deploy	our
application	to	the	test	network.

Returning	an	array	of	values	from	a	contract

Problem:	Solidity	does	not	allow	you	to	return	an	array	of	struct	type,	instead	you	must
return	a	single	struct	as	an	array	of	multiple	types.	This	was	necessary	in	order	for	us	to
display	lists	of	jobs	(including	all	job	details).
Solution:	It	was	beneficial	to	keep	a	count	of	all	jobs	in	the	job	contract,	and	allow	easy
access	using	a	getter	function.	This	meant	we	could	retrieve	this	total	and	get	each	job

between	0	and	total	individually	in	a	loop.

Lack	of	documentation

Problem:	Solidity,	Truffle	and	many	Ethereum	based	technologies	are	still	in	active
development,	this	means	that	there	is	very	little	official	documentation	for	many	of	the
technologies	we	used.	Of	the	documentation	that	is	available,	quite	a	lot	of	it	is	depreciated
or	conflicts	with	other	documentation.
Solution:	We	became	members	of	publilc	forum	sites	such	as	Ethereum	Stack	Exchange,
Ethereum.org	forum	and	Gitter	chatrooms	for	some	of	the	technologies	used	in	this	project.
The	Gitter	chatrooms	were	particularly	useful	as	in	some	cases	we	could	interact	with
some	of	the	open	source	developers	of	the	projects.

Updating	smart-contract	ABI's	for	JavaScript	interaction

Problem:	When	interacting	with	smart	contracts	on	Ethereum	using	JavaScript	you	must
include	the	ABI	of	the	contracts	you	are	interacting	with.	When	developing	the	application
we	had	to	generate	a	new	ABI	whenever	any	changes	were	made	to	the	contracts	in	any
way.	Each	JavaScript	file	that	interacts	with	the	contracts	must	have	access	to	this	ABI	and
the	address	of	the	contract	on	the	blockchain.
Solution:	In	order	to	prevent	us	having	to	edit	every	JavaScript	file	whenever	a	change
was	made	to	one	of	the	contracts,	we	centralised	these	ABI's	and	contract	addresses.
Each	contract	ABI	and	address	is	stored	in	a	file	called	contractInfo.js	which	every
JavaScript	file	has	access	to.

Creating	a	"fuzzy	search"

Problem:	Originally,	we	had	planned	to	search	for	jobs	purely	by	keyword	but	we	decided
later	on	that	it	was	best	to	implement	a	"fuzzy	search"	to	allow	our	system	to	return	jobs	or
users	that	are	spelled	similarly	to	the	search	input.	Fuse.js	is	a	JavaScript	library	which
provides	a	"fuzzy	search",	however	it	is	a	node	module	which	means	that	it	cannot	be	run
by	the	browser	on	our	site.
Solution:	In	order	to	allow	the	use	of	fuse.js	by	the	browser	we	had	to	bundle	the	search.js
file	using	a	tool	called	browserify.

Populating	pages	using	angular	js	and	smart-contract	calls

Problem:	The	angular	js	used	to	populate	pages	would	complete	before	many	of	the	calls
to	get	data	from	the	contracts	on	the	blockchain	had	returned,	resulting	in	a	blank	page	or
an	error.
Solution:	Once	the	data	had	been	returned	from	the	contracts	we	had	to	force	angular	to
update	any	relevant	variables	using	$apply.

Job	List	scalability

Problem:	As	a	larger	number	of	jobs	were	added	to	the	application,	the	job	list	&	open	job
list	slowed	down	greatly	as	initially	every	job	posted	on	the	application	would	be	retrieved
from	the	blockchain	in	order	to	display	them	all	in	one	page.
Solution:	Modified	job	list	and	open	job	list	to	display	jobs	in	a	series	of	pages	rather	than
on	one	page.	The	page	information	is	passed	as	part	of	the	URL	similarly	to	the	dynamic
creation	of	webpages	mentioned	previously.

5.	Installation	Guide

5.1	Local	Installation

These	steps	will	function	as	a	walkthrough	for	deploying	the	application	for	use	on	a	private
blockchain	on	a	local	machine.	All	users	will	have	to	use	the	same	machine	when	interacting
with	the	site.

Requirements:	testrpc,	truffle	framework,	chrome	with	MetaMask	extension,	lite-server	node
module

Run	testrpc	in	a	terminal	instance	using	the	command	testrpc.	This	will	run	a	local	instance
of	the	blockchain.
In	a	different	terminal	instance	enter	the	code	directory	of	this	project,	run	the	command
npm	run	dev.	This	will	run	lite-server	to	host	the	website	frontend.
In	another	terminal	instance,	in	the	same	directory,	run	the	command	truffle	migrate.	This
will	post	the	smart	contracts	to	the	local	instance	of	the	blockchain	running	with	testrpc.
Copy	the	addresses	of	each	of	the	contracts,	which	are	returned	by	the	truffle	migrate
command,	and	place	them	into	the	contractInfo.js	file	in	the	js	directory.

truffle	migrate	result contractInfo.js	file

Open	chrome,	choose	Restore	from	seed	in	the	MetaMask	extension,	copy	the	12	word
mnemonic	from	the	testrpc	terminal	window	into	the	popup	and	create	a	password.

MetaMask	restore
from	seed

testrpc	mnemonic

The	application	can	now	be	used	in	chrome,	at	localhost:3000.

5.2	Ropsten	Deployment

These	steps	will	function	as	a	walkthrough	for	deplying	the	smart	contracts	to	the	Ropsten
network.	The	front	end	can	be	hosted	either	locally	using	npm	run	dev	as	in	this	walkthrough	or
a	server	for	public	users	to	access	it.	Similar	steps	have	also	ben	outlined	on	our	project	blog.

Requirements:	geth	(Ethereum	implement	using	go),	truffle	framework,	chrome	with	MetaMask
extension,	lite-server	node	module

Run	geth	using	the	following	command	in	a	terminal	window:	geth	--testnet	--syncmode
"fast"	--rpc	--rpcapi	db,eth,net,web3,personal	--rpcport	8545

geth	running	in	terminal

In	a	separate	terminal	instance	run	the	truffle	console	using:	truffle	console	--network
ropsten
In	the	truffle	console	run:	web3.personal.unlockAccount(web3.eth.accounts[0],	"-
PASSWORD-HERE-")
Now	run	migrate	in	the	truffle	terminal	to	deploy	the	contracts	to	the	ropsten	network.
To	run	the	front	end	simply	run	npm	run	dev	in	a	terminal	as	specified	in	the	local
installation	steps	above.

6.	Future	work

Ability	to	add	to	the	profanity	filter	based	on	a	report	system.
Allow	users	to	update	their	biography	through	the	application	after	registratio	has
completed.
Whisper	chat	functionality	between	an	employer	and	an	applicant.
Swarm	hosting	of	the	appliction	front-end	to	allow	a	fully	decentralised	deployment.

