N Password manager with
P2P Synchronisation

Technical Manual

Student Name: Dean Lynch
Student Number: 15359921
Supervisor: Brian Stone

18/05/19

Abstract: This is a unique application that combines password database management and
synchronisation into a unified application. The application reads from a locally stored
password database file, which can then be synchronised across a users devices using a
peer-to-peer connection. This eliminates the need to expose the password database to
third-party servers or cloud storage services, as well as saving the user the need to manually
synchronise the database or manage their own self-hosted solution.

Table of Contents

1.

o A

Introduction
1.1. Overview
1.2. Glossary

1.3. Initial Design Vs Final Application

System Design & Architecture

2.1. Password Database Design

2.2. File Synchronisation Design

2.3. System Architecture

Design decisions

3.1. Front end - JavaScript vs Java

3.2. Swing Vs. JavaFx

3.3. Using KDBX Vs. my own password database format
3.4. Two factor authentication (2FA) exclusion
Problems & Resolutions

Future Work

1 Introduction

1.1 Overview

This is a unique application that combines password database management and
synchronisation into a unified application. The application reads from a locally stored
password database file, which can then be synchronised across a users devices using a
peer-to-peer connection. This eliminates the need to expose the password database to
third-party servers or cloud storage services, as well as saving the user the need to manually
synchronise the database or manage their own self-hosted solution.

1.2 Glossary

Password manager: A program used to store, manage and generate passwords.
Password database: A file containing the users login information, but may also
contain private information such as addresses, ID information etc.

Keepass: KeePass is an open source password manager.

KDBX: Keepass Database file format.

1.3 Initial Design Vs. Final Application

The application created achieves the minimum viable product outlined in the functional
specification with the exception of two factor authentication.

The final iteration of the project before the deadline achieved the goal of creating a password
manager that allows the user to create, edit, and manage password entries while also
allowing the user to synchronise their password databases across devices using a secure
peer-to-peer connection.

The two factor authentication feature, however was not included in this iteration of the
application due to time constraints.

2 System Design & Architecture

2.1 Password Database Design

As writing a library to interact with KDBX databases would be a huge task and worthy of a
full project in itself, | used an existing library called KeepassJava2. Further information about
this library can be found at https://github.com/jorabin/KeePassJavaZ2. This library is listed as

an unofficial library on the official Keepass website, meaning that the creator of the Keepass

and the KDBX file format has given this library their approval.

The diagram below shows the format of a KDBX 3.1 database file.

KDBX 3.1 File

Hashed Blocks

http/fkeepass. nfo/help/khldbe 4 html

Hashed Block
Format

Byte
Offset

0 |eScmurneg
MDS Hash
30 ERleuni
40
Unencrypted
Payload

[Optionally
Compressed)

https://github.com/jorabin/KeePassJava2
https://keepass.info/download.html

This project implements the Keepass KDBX 3.1 file format. KDBX 3.1 uses an AES key
derivation function (AES-KDF) to encrypt the password database with a master password.
Unfortunately this library does not yet support the KDBX 4 file format, so therefore | have not
included support for this format in the final iteration of the project. The library also does not
support changing the number of rounds for AES-KDF, so that is also not included in this
application.

AES-KDF:

Advanced Encryption Standard (AES) is a symmetric encryption algorithm. The algorithm
was developed by two Belgian cryptographer Joan Daemen and Vincent Rijmen. AES is
designed to be efficient in both hardware and software, and supports a block length of 128
bits and key lengths of 128, 192, and 256 bits. The KDBX 3.1 file format uses a key length of
256. AES is trusted by the US government for securing sensitive but unclassified material,
which speaks highly of its implementation. The same key is used to encrypt and decrypt the
database, which in this case is the master password.

KDF stands for Key Derivation Function. Key derivation functions derive bytes suitable for
cryptographic operations from passwords (such as a master password used for a password
database) or other data sources using a pseudo-random function. This is to derive a key
suitable for use as input to a encryption algorithm, which in this case is AES.

2.2 File Synchronisation Design

The file synchronisation feature of the application is implemented using the Java Secure
Socket Extension (JSSE). This is a java implementation of the SSL and TLS protocols and
provides data encryption, server and client authentication and data integrity,

SSL (Secure Socket Layer) enables a secure connection between the two devices, ensuring
that the password database file cannot be compromised by another party with access to the
network when the file is being transferred from one device to another.

This ensures 3 main security principles:
1. Encryption: The data being transferred between the two devices (the password
database file) is protected from other parties with access to the network.
2. Authentication: Ensure the device we connect to is the right one.
3. Data Integrity: Ensure the requested data is transferred without being corrupted in
any way.

This application also adds extra checks to ensure that the file is not sent to an unwanted
recipient. The file transfer process will not begin if the recipient’'s hostname does not match
the one entered when starting the sending process. The recipient must know the exact name
of the file and it is also not possible to request files with a format other than .kdbx.

For added privacy and security, the error messages provided on the recipient devices side
during the transfer process will not include any details as to why exactly the file transfer has
failed. Detailed error messages are only displayed on the sending devices side.

https://docs.oracle.com/javase/10/security/java-secure-socket-extension-jsse-reference-guide.htm#JSSEC-GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345
https://docs.oracle.com/javase/10/security/java-secure-socket-extension-jsse-reference-guide.htm#JSSEC-GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345

SSL/TLS Handshake diagram for the application:

SEL Server
7 :

S5L Client

Client hello
e

ServerHello, Certificate, , Certificate Request, Server Hello Done

Certificate

Server Key Exchange

Certificate Request

Server Hello Done

Certificate

oy ¥ ¥ ¥

Client Key Exchange

Certificate Key Exchange

Certificate Verify

Change Cipher Spec

Finished

A A A A A A

Change Cipher Spec

IFinished

Encrypted kdbx file data

Close Messages

i
SEL Server

il

S5L Client

10.

11.

12.

13.

14.

15.

Client hello: The client sends the server information including the version of SSL
and TLS that it supports.

Server hello: The server chooses the highest version of SSL and TLS that both the
client and server support and sends this information to the client.

Certificate: The server sends the client a certificate chain.

Certificate request: The server sends the client a certificate request.

Server key exchange: The server sends the client a server key exchange message
if the public key information from the Certificate is not sufficient for key exchange.
Server hello done: The server tells the client that it is finished with its initial
negotiation messages.

Certificate: The client sends its certificate chain.

Client key exchange: The client generates information used to create a key to use
for symmetric encryption.

Certificate verify: This message is sent by the client when the client presents a
certificate. The client sends information that it digitally signs using a cryptographic
hash function. When the server decrypts this information with the client's public key,
the server is able to authenticate the client.

Change cipher spec: The client sends a message telling the server to change to
encrypted mode.

Finished: The client tells the server that it is ready for secure data communication to
begin.

Change cipher spec: The server sends a message telling the client to change to
encrypted mode.

Finished: The server tells the client that it is ready for secure data communication to
begin. This is the end of the SSL handshake.

Encrypted .kdbx data: The client and the server communicate using the symmetric
encryption algorithm and the cryptographic hash function negotiated during the client
hello and server hello, and using the secret key that the client sent to the server
during the client key exchange. This is where the .kdbx file is transferred from the
server to the client.

Close Messages: At the end of the connection, each side sends a close notify alert
to inform the peer that the connection is closed.

2.3 System Architecture

| Java Virtual Machine (JVM) |

|i H Graphical User Interface

(JavaFx)

55L Server

Password File
Management S5L Client Synchronisation

Keepass 3.1
Database
(. kdbx)

The above diagram shows a high level structure for the application. The application backend
and frontend are tightly knit together as they are all written in Java.

The password management portion handles the encryption and decryption of the password
database, as well as reading and writing to the database. The Synchronisation portion
consists of two parts: a server and a client. The job of the server is to send .kdbx files directly
to the recipient device using a secure SSL connection. The job of the client is to request and
receive the file using the same secure SSL connection.

The GUI of the application is written entirely in Java using JavaFx. This mean that the GUI
code can interact with the password management and synchronisation implementations
without the need for an API layer between the GUI and the rest of the implementation.

2.4 Context Diagram

Password
Entry

Hier ~ —Password Entry N ™™]
Information ~ Entry i
\..\ - ----f
_ ", i Generated
-."-\ 1"‘._ ..'_-" Password g
M 4 ¥y 4
o / Y &
, mﬁﬂ_q__— Password Entry
(Application L == Iyl
>-\"""--\.
r
AR T
' . . ¢
{ |I \ RI
MNew MNew Remove Remove
Entry

Group Entry Group
¥

3 Design Decisions

3.1 Front end - JavaScript vs Java:

Despite having a good amount of experience with JavaScript and AngularJS based front-end
implementations from working on my third year project and on my INTRA work placement, |
decided to use a GUI implementation written entirely in Java.

| had a few ideas in mind when | decided this. Firstly | believe the lack of a REST API middle
layer between the Java backend implementation and the frond end would reduce the
number of potential entry points or security flaws. | also didn’t like the idea of exposing the
backend or decrypted database file to a web browser connected to the internet. My only
other real option would then be to use Electron instead of a web browser, but it is costly in
performance and memory usage. Lastly, | wanted to challenge myself to learn something
new, and | had never worked with a cross platform GUI implementation that wasn’t entirely
written in JavaScript of some kind. So | chose to write it entirely in Java.

3.1 Swing vs JavaFx:

| has originally intended on writing the application using Swing, rather than JavaFx. | based
this initial decision on the fact that major applications such as Intellij & PyCharm were written
using Swing. Swing is also included in the default JDK, whereas JavaFx is not as of Java 8.
After using Swing for a couple of days and feeling slightly unsatisfied with it, | decided to try
out JavaFx. After using JavaFx for a couple of days | was much happier with it. | felt it was
much easier to work with and provided a more modern looking GUI out of the box.

It's a quite a steep curve to learn either Swing or JavaFx, but after using JavaFx over the
course of the project | now feel quite comfortable using it. However | do slightly regret using
JavaFx over Swing. Since it has been removed from the JDK, it's not included in some
distributions of Java 8. For this reason | decided to use Java 11, as it's the latest LTS
offering of Java, and the JavaFx integration is a bit more straightforward and better
documented since the split. This has limited me to Java 11, which | understand can be a
problem with compatibility on some devices (Mainly Ubuntu 18.04, which for some reason
runs Java 10 labelled as Java 11, which caused me a lot of confusion).

3.3 Using KDBX Vs. my own password database format:

Creating my own database implementation with the time | had available and with the little
experience | had would have been a massive task. It would have been too rushed and full of
flaws. It would also be limited to only my application. For this reason | decided to use the
tried and tested KDBX format. This is a format trusted by millions of users already. This
decision was solidified by the fact that there is an existing Java library available called
KeepassJdava2 which is endorsed by Keepass which allowed me to easily integrate the
database operations with the project.

3.4 Two factor authentication (2FA) exclusion:

As this was one of the only suggestions given to me in the project proposal stage, | would
have really liked to include 2FA in the application, as it gives another layer of security to the
password database and a greater piece of mind to the user. However, | simply did not have
sufficient time to implement it, and rushing a security feature like this would be a very bad
idea!

5. Problems & Resolutions

Merging the database when it is transferred from one database to another:

e Problem: When a database file was transferred from one device to another, |
intended to merge both databases into one database file with the most up to date
information. Unfortunately the KeepassJavaZ2 library prevents me from copying
entries from one database to another.

e Resolution: There was no real solution to this problem outside of forking the
KeepassJavaz library and allowing this. In the end | had to settle with transfering the
database to the recipient device without merging.

Password database format:
e Problem: Creating my own database format would be time consuming due to the
design and security requirements
e Resolution: Use the an existing password database format: .kdbx. This format is
already extremely popular and is one | use myself to store my personal passwords.

Unit testing Java sockets:

Problem: I'd never worked with Java sockets before, and as a result had no idea
how to go about writing unit tests for them.

Resolution: | looked online but struggled to find consistent answers for my specific
scenario. So | created a post on Stack Overflow with my queries. After a couple of
weeks | received some good answers detailing how | could achieve this.
Unfortunately by this point I'd already changed the implementation of the sockets and
the information was no longer as useful.

4. Future Work

Change original password

Two factor authentication

Open a new database without restarting the application
Streamlined Group and Entry management such as ‘drag and drop’
Fully automated synchronisation

KDF lterations

