Getting TEMOA running with CPLEX and SQLite

By Jeff Bennett, jab6ft@virginia.edu, 9/8/2017

The purpose of this document is to formally record how to get TEMOA running with CPLEX and SQLite so that it can be quickly transferred to another machine. The steps are based on http://www.temoaproject.org/download/ and Joseph Saylor's readMe file with elaborated steps to make it more straightforward for a user with little or no python experience. These steps were developed for a Windows machine.

Notes: anything in italics are code segments; skip installation of any software already present on the machine

1. Install Git

- a. Purpose: Version control software
 - i. https://www.slideshare.net/HubSpot/git-101-git-and-github-for-beginners
 - ii. http://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
- b. Download latest version from https://git-scm.com/
- c. Installation instructions
 - i. Select the second option "Use Git from the Windows Comand Prompt" to ensure git is added to your computer's path
 - ii. Select "Use the OpenSSL library"
 - iii. Select "Checkout Windows-style, commit Unix-style line endings"
 - iv. Select "Use Windows' default console window"
 - v. Leave configuration options as-is
 - vi. Finish installing.

2. Install Anaconda2 for Python 2.7

- a. Purpose: Distribution of the Python language and common libraries
- b. Download the latest version of Anaconda2 for Python version 2.7 https://www.anaconda.com/download/
- c. Install using default settings

3. Install Pyomo

- a. Purpose: Library from Sandia National Labs for optimization modeling
- b. Installation steps:
 - i. Start Anaconda2 terminal (Programs>Anaconda2>Anaconda Prompt)
 - ii. Verify version of Python

python --version

1. If Python 2.7.X does not appear, then troubleshooting is necessary

iii. Install Pyomo

pip install pyomo

pip install pyomo.extras

Note: If errors – may need to first install MS Visual C++ Compiler for

Python https://www.microsoft.com/en-

us/download/details.aspx?id=44266

iv. Exit Anaconda

exit

4. Install CPLEX

- a. Purpose: Powerful linear optimization solver
- Navigate to CPLEX website
 https://www.ibm.com/developerworks/community/blogs/jfp/entry/CPLEX_Is_Free_For
 Students?lang=en
- c. Select the appropriate link either a) Students or b)Teachers, researchers and university staff
- d. Follow the steps to create an account using your institutional email address (i.e. abc123@virgina.edu) and download CPLEX
- e. Install using default settings

5. Install DB Browser for SQLite

- a. Purpose: Viewer for SQLite files
- b. Download the latest version http://sqlitebrowser.org/
- c. Install with default settings

6. Install **TEMOA**

- a. Select the directory where TEMOA will be installed and record the pathname, i.e. "C:\"
- b. Decide what name to give the folder with temoa files, "temoa" is recommended and is used below
- c. Start Windows command prompt terminal (Start, type cmd, hit enter)
- d. Navigate to the path

cd pathname

e. Clone git (copies all of TEMOA's files from the repository)

git clone https://github.com/TemoaProject/temoa/

7. Install GLPK

- a. Purpose: Required to prepare input files for CPLEX
- b. Download the latest version: https://sourceforge.net/projects/winglpk/
- c. Unzip and copy files to location of your choice
- d. Record directory to w32 folder (for 32 bit OS) or w64 folder (for 64 bit OS)
- e. Add directory to path
- f. Test glpsol works
 - i. Start windows command prompt (Start, type "cmd", enter) glpsol --help
 - ii. Output should resemble this:

```
Options specific to MIP solver:

--nomip consider all integer variables as continuous
(allows solving MIP as pure LP)

--first branch on first integer variable
--last branch on last integer variable
branch on most fractional variable
branch using heuristic by Driebeck and Tomlin
(default)
                                                            canch using hybrid pseudocost heuristic (may be
eful for hard instances)
acktrack using depth first search
                                                                                               the best projection heuristic node with best local bound
                                                       use MIP presolver (default)
do not use MIP presolver
replace general integer variables by binary ones
             nointopt
binarize
                                                              sumes ——intopt)
ply feasibility pump heuristic
ply proximity search heuristic (nnn is time limit
seconds; default is 60)
           -fpump
-proxy [nnn]
                                                                             ds; default is 60)
Gomory's mixed integer cuts
MIR (mixed integer rounding) cuts
            gomory
mir
             clique
                                                         generate clique cuts
generate all cuts above
                                                       generate all tuts above set relative mip gap tolerance to tol translate integer feasibility problem to CNF-SAT and solve it with MiniSat solver add inequality obj <= bound (minimization) or obj >= bound (maxinization) to integer feasibility problem (assumes --minisat)
            mipgap tol
minisat
          -objbnd bound
  or description of the MPS and CPLEX LP formats see Reference Manual.
or description of the modeling language see "GLPK: Modeling Language
NU MathProg". Both documents are included in the GLPK distribution.
See GLPK web page at <a href="http://www.gnu.org/software/glpk/glpk.html">http://www.gnu.org/software/glpk/glpk.html</a>.
 Please report bugs to <bug-glpk@gnu.org>.
```

8. Optional: Install Notepad++

- a. Purpose: Text editor with increased abilities for searching and highlighting code syntax
- b. Download latest version from https://notepad-plus-plus.org/
- c. Install using default settings
- d. It is recommended to make this the default program for opening *.txt files

9. Create test cases

- a. Navigate to the directory "temoa_model" in the directory where TEMOA is installed
- b. Open config sample
- c. Save As a new file (if using Notepad++)
 - i. File name: "config sample cplex"
 - ii. Save as type: "All Types(*.*)"
- d. Confirm the below lines are set as follows
 - i. Line 11: --input=db_io/temoa_utopia.sqlite
 - ii. Line 15: --output=db io/temoa utopia.sqlite
- e. Update the code as follows
 - i. Line 19: --scenario=test_run_cplex
 - ii. Line 35: --solver=CPLEX # Optional, indicate the solver
- f. Save
- g. Save As a new file (if using Notepad++)
 - i. File name: "config sample glpk"
- h. Update the code as follows
 - i. Line 19: --scenario=test_run_glpk
 - ii. Line 35: --solver=GLPK # Optional, indicate the solver

10. Run test case

- a. Start Anaconda2 terminal (Programs>Anaconda2>Anaconda Prompt)
- b. Verify version of Python

python --version

- i. If Python 2.7.X does not appear, then troubleshooting is necessary
- c. Change directory to the location of temoa (shown as "C:\temoa")

cd C:\temoa

d. Run test case 1

python temoa_model/--config=temoa_model/config_sample_cplex

e. Expected Results

After submitting command:

After hitting enter to continue:

```
U-FlowOut12010.summer.night.DSL.TXD.2000.TX1
U-FlowOut12010.summer.night.DSL.TXD.2010.TX1
U-FlowOut12010.summer.night.DSL.TXD.2010.TX1
U-FlowOut12010.summer.night.GSL.TXG.2000.TX1
U-FlowOut12010.summer.night.GSL.TXG.2010.TX1
U-FlowOut12010.summer.night.GSL.TXG.2010.TX1
U-FlowOut12010.summer.night.GSL.TXG.2010.TX1
U-FlowOut12010.summer.night.HCO.E01.1980.ELC1
U-FlowOut12010.summer.night.HCO.E01.2010.ELC1
U-FlowOut12010.summer.night.HCO.E01.2010.ELC1
U-FlowOut12010.summer.night.HYD.E31.1980.ELC1
U-FlowOut12010.summer.night.HYD.E31.1980.ELC1
U-FlowOut12010.summer.night.ethos.IMPBSL1.1990.DSI
U-FlowOut12010.summer.night.ethos.IMPBSL1.1990.GSI
U-FlowOut12010.summer.night.ethos.IMPHYD.1990.HVD1
U-FlowOut12010.winmer.day.DSL.RHO.1990.RH1
U-FlowOut12010.winter.day.DSL.RHO.2000.RH1
U-FlowOut12010.winter.day.DSL.RHO.2000.RH1
U-FlowOut12010.winter.day.DSL.RHO.2000.RH1
U-FlowOut12010.winter.day.DSL.TXD.2000.TX1
U-FlowOut12010.winter.day.BSL.TXD.2000.TX1
U-FlowOut12010.winter.day.BSL.TXD.2000.TX1
U-FlowOut12010.winter.day.BSL.TXD.2000.TX1
U-FlowOut12010.winter.day.BSL.TXD.2000.TX1
U-FlowOut12010.winter.day.BSL.TXD.2000.TX1
U-FlowOut12010.winter.day.BSL.TXD.2000.TX1
U-FlowOut12010.winter.day.BSL.TXD.2000.TX1
U-FlowOut12010.winter.day.HCO.E01.2000.ELC1
U-FlowOut12010.winter.day.HCO.E01.2000.ELC1
U-FlowOut12010.winter.day.HCO.E01.2000.ELC1
U-FlowOut12010.winter.day.HCO.E01.2000.ELC1
U-FlowOut12010.winter.day.HCO.E01.2010.ELC1
U-FlowOut12010.winter.day.HCO.E01.2010.ELC1
U-FlowOut12010.winter.day.HCO.E01.2010.ELC1
U-FlowOut12010.winter.day.HCO.E01.2010.RH1
U-FlowOut12010.winter.day.HCO.E01.2010.RH1
U-FlowOut12010.winter.day.HCO.E01.2010.RH1
U-FlowOut12010.winter.night.DSL.TXD.2010.TX1
U-FlowOut12010.winter.night.DSL.TXD.2010.TX1
U-FlowOut12010.winter.night.DSL.TXD.2010.TX1
U-FlowOut12010.winter.night.DSL.TXD.2010.TX1
U-FlowOut12010.winter.night.DSL.TXD.2010.TX1
U-FlowOut12010.winter.night.DSL.TXD.2010.TX1
U-FlowOut12010.winter.night.DSL.TXD.2010.TX1
U-FlowOut12010.winter.night.DSL.TXD.2010.TX1
U-FlowOut12010.winter.night.HCO.E01
                                                                                                                                                                                                                                                                                                 _FlowOut[2010,summer,nig
_FlowOut[2010,summer,nig
                                                             0.18909099999999995
                                                                                                               4848484848485
                                                                                                      ,
2850643055865
                                                                                                                                9999999998
                                                                                                                                  48963991306
                                                                                                    672632649999999
                                                                                                            40899999999983
Selected Coopr solver plugin does not give constraint data.
```

If you use these results for a published article, please run Temoa with the '--how_to_cite' comma nd line argument for citation information.

f. Run test case 2

python temoa_model/ --config=temoa_model/config_sample_glpk

Expected Results

After submitting command:

```
.db DD file(s) converted
              Config file: C:\temoa\temoa_model\config_sample_glpk
Input file: C:\temoa\db_io\dbs\temoa_utopia.dat
Output file: C:\temoa\db_io\dbs\temoa_utopia.sqlite
Scenario: test_run_glpk
Spreadsheet output: True
      Citation output status: None
Version output status: False
      Selected solver status: glpk
Solver LP write status: False
Pyomo LP write status: False
MGA slack value: None
MGA # of iterations: None
MGA weighting method: None
**NOTE: If you are performing MGA runs, navigate to the DAT file and make any modifications to tle
MGA sets before proceeding.
Please press enter to continue or Ctrl+C to quit.
Notice: Using the GLPK solver interface.
Continue Operation? [Press enter to continue or CTRL+C to abort]
```

After hitting enter to continue:

```
U_FlowOut [2010, summer, night, HCO, E01, 2010, ELC]
U_FlowOut [2010, summer, night, HYD, E31, 1980, ELC]
U_FlowOut [2010, summer, night, HYD, E31, 1990, ELC]
U_FlowOut [2010, summer, night, ethos, IMPDSL1, 1990, DSL]
U_FlowOut [2010, summer, night, ethos, IMPGSL1, 1990, DSL]
U_FlowOut [2010, summer, night, ethos, IMPHCO1, 1990, HCO]
U_FlowOut [2010, summer, night, ethos, IMPHCO1, 1990, HYD]
U_FlowOut [2010, summer, night, ethos, IMPHCO1, 1990, HYD]
U_FlowOut [2010, winter, day, DSL, RHO, 1990, RH]
U_FlowOut [2010, winter, day, DSL, RHO, 2000, RH]
U_FlowOut [2010, winter, day, DSL, RHO, 2010, RH]
U_FlowOut [2010, winter, day, DSL, TXD, 2010, TX]
U_FlowOut [2010, winter, day, ELC, RL1, 2010, TX]
U_FlowOut [2010, winter, day, ELC, RL1, 2010, TX]
U_FlowOut [2010, winter, day, CSL, TXG, 2000, TX]
U_FlowOut [2010, winter, day, CSL, TXG, 2000, TX]
U_FlowOut [2010, winter, day, HCO, E01, 1980, ELC]
U_FlowOut [2010, winter, day, HCO, E01, 2010, ELC]
U_FlowOut [2010, winter, day, HCO, E01, 2010, ELC]
U_FlowOut [2010, winter, day, HCO, E01, 2010, ELC]
U_FlowOut [2010, winter, day, HYD, E31, 1990, ELC]
U_FlowOut [2010, winter, day, ethos, IMPDSL1, 1990, DSL]
U_FlowOut [2010, winter, day, ethos, IMPDSL1, 1990, HCO]
U_FlowOut [2010, winter, day, ethos, IMPDSL1, 1990, HYD]
U_FlowOut [2010, winter, day, ethos, IMPDSL1, 1990, HYD]
U_FlowOut [2010, winter, night, DSL, RHO, 1990, RH]
U_FlowOut [2010, winter, night, DSL, RHO, 2000, TX]
U_FlowOut [2010, winter, night, DSL, RHO, 2000, TX]
U_FlowOut [2010, winter, night, DSL, RHO, 2000, TX]
U_FlowOut [2010, winter, night, HYD, E31, 1990, ELC]
U_FlowOut [2010, winter, night, HYD, E31, 1990, HYD]
in does not give constraint
          0.7673122057777877
0.072250255
0.0216750765
1.71648484848485
2.499
2.39785064305586
             2.39785064305586
0.2935166609375
                                  26147384
423653212100869
                                                                       51489639913
             0.289087755
0.0867263265
15.7207560890625
1.1744190046875
2.72167207243461
5.5263239637827
7.2481139637827
   0.663406
1.26
0.378409
0.776822
0.630926159999999
0.211890160387683
1.67325932562177
0.144587245
0.0433761735
25.5723303030303
5.001
7.86273639377953
0.5873856828125
                                                                                                                                                                                                                                                 V_FlowOut[2010,winter,night,ethos,IMPHYD,1990,HYD]
```

Selected Coopr solver plugin does not give constraint data.

If you use these results for a published article, please run Temoa with the '--how_to_cite' comma nd line argument for citation information.

Exit Anaconda

Addendum – Background on TEMOA

DeCarolis, J., Hunter, K., Sreepathi, S., "The TEMOA Project: Tools for Energy Model Optimization and Analysis," International Energy Workshop 2010, 21-23 June 2010, Stockholm, Sweden.

Hunter, K., Sreepathi, S., DeCarolis, J., "Modeling for insight using Tools for Energy Model Optimization Analysis (Temoa)", Journal of Energy Economics, 40 (2013), 339-349.

<u>Addendum – Background on creating TEMOA configuration files</u>

- Example located in temoa_model\config_sample
- Config files can have any file extension, .txt makes it easy to read in
- There are a number of flags that you need to specify (mandatory and optional)
- first two are source of input and source of output: where to direct
- if running from database, input and output will be there same
- there will be a set of database tables that contain input data that you specify for your energy system
- blank tables will contain output data
 - a. two different flags to specify text file as input and database as output if wanted
- name the scenario: model stores results in output tables and indexes by scenario name so results get aggregated an you can query by name of scenario (mandatory)
- need to specify path to db_io folder (database input/output) for necessary files and scripts
- optional files:
 - a. save excel: saves output to excel workbook where each sheet contains different sets of data, dividing by sectors with each sector having a different sheet for activity and capacity
 - b. save text file: saves log of information from shell
 - c. solver: specify solver if needed
 - d. keep pyomo lp file: lp file gets generated by pyomo and set to solver to solve helps with debugging
 - e. modeling to generate alternatives: for uncertainty analysis
 - i. if choosing to run modeling to generate alternatives (mga): need to specify slack file, iteration number, how many mga iterations you want to generate, and the method by which you want to update the objective function: either integer or normalized weighting