

The	Laravel	Survival	Guide

	

Tony	Lea
	

©	2015	-	2016	Tony	Lea

Table	of	Contents

Thanks

Introduction

Chapter	1	-	Getting	Started

Chapter	2	-	Composer	&	The	Laravel	Installer

Chapter	3	-	The	Laravel	Structure

Chapter	4	-	Routing

Chapter	5	-	Models

Chapter	6	-	Model	Relationships

Chapter	7	-	Mutators

Chapter	8	-	Views

Chapter	9	-	Blade

Chapter	10	-	Controllers

Chapter	11	-	Piecing	It	Together

Chapter	12	-	Artisan

Chapter	13	-	Middleware

Chapter	14	-	Authentication

Chapter	15	-	Requests

Chapter	16	-	Responses

Chapter	17	-	Migrations

Chapter	18	-	Seeds

Chapter	19	-	Security

Chapter	20	-	Testing

Chapter	21	-	Wrapping	Up

Thanks

I	want	to	give	a	special	thanks	to	my	family	for	always	being	supportive.	I	especially	want
to	thank	my	wife	for	being	an	amazing	woman	and	for	pushing	me	to	try	and	be	the	best
person	I	can	be.	This	book	would	not	be	possible	without	the	love	and	support	of	my
amazing	family.

Additionally,	I	want	to	thank	to	David	Cullinan	for	helping	out	with	book.

Ok,	enough	with	all	the	thanks.	Let’s	start	learning	Laravel!

Introduction

Why	The	Book?	Well,	it’s	not	really	a	book…	It’s	more	of	a	guide	(hence	the	title).	A
guide	to	save	yourself	and	others	from	becoming	a	zombie	developer!

What	exactly	is	a	zombie	developer?	Well,	a	zombie	developer	is	a	developer	like	you	or
I,	yet	they	mindlessly	hack	on	PHP	apps	and	do	the	same	thing	over	and	over.	These
repetitive	tasks	are	incredibly	time	consuming,	and	make	the	developer	brain	dead.	When
this	happens	it	gives	them	a	thirst	for	blood	and	an	urge	to	kill.

So,	instead	of	letting	this	happen	the	developer	could	have	used	the	amazing	Laravel
framework	for	rapid	application	development.	This	will	help	them	keep	their	sanity	and	it
will	make	coding	enjoyable	again.	Oh,	yeah…	And	it’ll	save	lives.

By	learning	the	basics	of	Laravel	you	can	save	yourself,	and	possibly	others,	from
becoming	a	deteriorating	zombie	developer.

Don’t	let	that	inner	zombie	revive,	be	sure	to	keep	in	hand	this	Laravel	survival	guide.

Chapter	1	-	Getting	Started

A	zombie	developer	is	very	slow	at	setting	up	a	new	project,	whereas	a	Laravel	developer
can	run	a	few	commands	to	set	up	a	new	project	in	a	matter	of	seconds!

Being	aware	of	one’s	environment	is	crucial	to	surviving	the	zombie	developer
apocalypse.	In	this	chapter,	we	will	briefly	go	over	setting	up	your	local	environment.

Quick	note:	We	will	not	go	into	full	detail	of	installing	system	requirements	such	as	PHP,	MySQL,	and
Apache.	Instead,	we	are	just	going	to	give	a	quick	overview	on	setting	up	your	local	development
environment	so	that	way	we	can	start	getting	into	the	code	as	soon	as	possible.

Your	Local	Development	Environment
A	local	environment,	also	referred	to	as	the	“development	environment”,	is	when	you
work	on	your	web	app	from	your	computer.	When	you	are	ready	to	make	your	application
available	for	the	world	to	see	you	will	move	your	code	to	another	server	referred	to	as	the
“production	environment”.

So,	when	we	set	up	your	local	development	environment	we	are	referring	to	setting	up	the
required	applications	to	run	a	Laravel	app	on	your	computer.

A	basic	local	development	environment	for	Laravel	typically	requires	3	applications,
which	are:

1.	 Apache	or	Nginx	(the	web	server	for	your	application)
2.	 MySQL	(the	database	for	your	application)
3.	 PHP	(the	server-side	scripting	language	for	your	application)

There	are	many	programs	for	each	operating	system	that	will	install	all	these	applications
for	you.	Just	to	name	a	few	there	is	MAMP,	WampServer,	and	XAMPP.	You	can	feel	free
to	check	out	the	links	below	for	these	applications:

https://www.mamp.info/en/	(Mac	and	Windows)
http://www.wampserver.com/en/	(Windows)
https://www.apachefriends.org/	(Mac,	Windows,	and	Linux)

Be	sure	to	read	the	docs	for	all	the	system	requirements	at	http://laravel.com/docs.

There	is	also	one	last	way	of	getting	your	local	development	environment	setup	for
Laravel	that	is	well	worth	mentioning.	It	is	called	a	virtual	machine	that	has	all	the	system
requirements	already	installed.	You	can	learn	more	about	setting	up	a	Laravel	virtual
machine	at	http://laravel.com/docs/homestead.

There	is	no	right	or	wrong	way	to	setup	your	local	development	environment	as	long	as
you	meet	the	minimum	system	requirements	for	Laravel.	Find	a	way	that	works	for	you
and	start	building	the	next	latest	and	greatest	web	app!

Okay,	Let’s	move	on	to	Composer	and	the	Laravel	Installer.

Chapter	2	-	Composer	&	The	Laravel	Installer

A	zombie	developer	manually	moves	files	into	their	project,	whereas	a	Laravel	developer
leverages	composer	to	install	tools	and	libraries.

Taking	on	the	zombie	developer	apocalypse	on	your	own	would	be	almost	impossible.
Getting	help	from	others	is	essential,	and	that’s	exactly	what	composer	allows	us	to	do.
Composer	is	used	to	include	libraries	from	other	developers	into	our	application.

Let’s	continue.

Composer	&	The	Laravel	Installer
How	easy	would	it	be	if	you	could	open	up	a	command	prompt	and	type	in:

$	

And	a	Laravel	app	is	created	inside	a	folder	named	“blog”.	Well,	that’s	what	the	laravel
installer	does.	So,	let’s	learn	how	we	can	use	this	on	our	computer.

The	Laravel	installer,	as	well	as	many	PHP	packages,	make	use	of	a	dependency	manager
called	Composer	(http://getcomposer.org)	to	add	this	functionality.

So,	What	exactly	is	a	dependency	manager?

Well,	a	dependency	manager	is	nothing	more	than	a	tool	to	manage	your	dependencies.

“WHAT!!!?”,	yeah	the	definition	still	sounds	pretty	abstract,	right?

Let	me	put	this	another	way	to	help	you	understand	how	Composer	works.

I	know	you	are	probably	a	fan	of	eating	pizza	instead	of	eating	brains,	so	let’s	pretend	we
could	use	a	command	to	make	us	a	pizza:

$	

By	default,	we	are	given	a	pepperoni	pizza.	But	let’s	say	we	wanted	this	command	to
make	us	a	pizza	with	different	toppings.	Perhaps	we	wanted	a	meat-lovers	pizza.	We
would	probably	need	the	following	toppings:

{

"toppings" : [

"peperoni", "ham", "bacon", "beef", "sausage"

]

}

Now,	if	we	save	this	file	in	our	current	directory	and	name	it	‘composer.json’	and	run	the
command	again:

$	

DING!	We	now	get	our	meat-lovers	pizza	instead	of	our	pepperoni	pizza.

Hazzzaa!

As	you	can	see	Composer	is	a	way	of	managing	the	things	we	need	to	build	our	app	(or
pizza).

Composer	is	also	a	command	line	tool	we	can	use	it	to	install	other	command	line	tools.

One	of	those	tools	is	the	Laravel	installer.

To	add	the	Laravel	installer	to	our	computer,	we	must	first	install	composer.

Visit	https://getcomposer.org/,	click	on	the	‘Getting	Started’	button,	navigate	to	‘Installing
Globally’,	and	walk	through	how	to	globally	install	composer	on	your	machine.

After	downloading	and	installing	composer	you	can	run	the	following	command	to	add	the
Laravel	installer.

$	 "laravel/installer=~1.1"

Now	we	have	successfully	added	the	laravel	installer	to	your	machine,	and	you	can	easily
create	a	new	laravel	app	by	typing:

$	

Then	navigate	to	your	new	app_name	folder	in	a	command	prompt.	And	run:

$	

Finally,	navigate	to	http://localhost:8000/	in	your	browser	and	you	will	see	a	‘Welcome	to
Laravel’	screen.

Now	you’re	ready	to	start	building	your	amazing	app!

Warning:	If	the	laravel	installer	does	not	globally	work	you	may	need	to	specify	where	the	composer	bin
directory	is	located	on	your	machine.	Visit	http://devdojo.com/post/composer-bin-directory-path	to	learn
how	to	do	this.

How	awesome	is	this?

With	a	single	command	line,	you	can	be	up	and	running	with	a	new	Laravel	app	in	a	few
seconds!

You	can	learn	more	about	the	Laravel	installer	at	http://laravel.com/docs.

Chapter	3	-	The	Laravel	Structure

A	zombie	developer	puts	files	all	over	the	place	causing	an	unstable	structure,	whereas	a
Laravel	developer	keeps	their	structure	clean	and	consistent.

A	solid	structure	is	essential	for	making	your	app	efficient	and	awesome.	Zombie
developers	are	used	to	ruins	and	destruction,	but	as	a	new	Laravel	developer,	you	will	get
accustomed	to	a	solid	foundation	and	structure.

In	this	chapter,	we	are	going	to	give	you	a	brief	overview	of	the	Laravel	file	structure.

The	Laravel	Structure
In	a	new	laravel	project	you	will	have	the	following	code	structure:

You	will	see	nine	folders	which	are:

1.	 app
2.	 bootstrap
3.	 config
4.	 database
5.	 public
6.	 resources
7.	 storage
8.	 tests
9.	 vendor

I’m	not	going	to	go	into	detail	with	all	the	files;	however,	I	will	give	you	a	brief	rundown
of	each	folder.

App

This	is	the	directory	that	has	all	our	application	logic.	In	this	folder,	we	will	put	all	our
models,	controllers,	services,	and	many	other	classes.

Bootstrap

This	folder	is	used	to	bootstrap	laravel	(startup	laravel).

Config

This	file	will	contain	many	of	our	global	configurations	for	our	application.

Database

This	folder	contains	our	database	files	such	as	migrations	and	seeds.

Public

This	public	folder	contains	many	of	the	applications	assets	such	as	images,	stylesheets,
and	scripts.

Resources

We	will	put	our	view	files	in	this	folder.	The	views	are	the	pages	that	a	user	sees.

Storage

Laravel	uses	this	folder	to	store	sessions,	caches,	and	logs	in	this	folder.

Test

This	folder	contains	files	that	we	use	to	test	the	logic	of	our	application.

Vendor

This	is	the	folder	that	contains	our	dependencies.	When	you	add	new	libraries	(toppings)
to	your	app,	this	is	the	folder	that	will	contain	those	libraries.

Do	you	recognize	the	composer.json	file	from	the	image	above?	Remember	this	is	where
we	define	our	dependencies	(pizza	toppings)	for	our	app.

One	important	file	worth	mentioning	is	a	file	called	.env;	this	is	the	file	that	contains
configurations	such	as	debug	mode	and	database	credentials.	So,	when	you	need	to
connect	a	database	to	your	Laravel	app	you	will	need	to	update	the	following	code	in	that
file:

1	

2	

3	

4	

You	will	replace	the	database	name,	username,	and	password	accordingly	based	on	your
credentials.	Add	your	database	credentials	to	these	variables	and	it	will	be	available	for
your	app	to	use.

Finally,	there	is	one	particular	file	that	I	want	to	point	out.	The	routes.php	file,	which	is
located	in	app/Http/routes.php.	This	is	the	file	that	we	will	add	all	of	the	routes	for	our
application,	and	this	is	what	we	are	going	to	cover	in	the	next	chapter.

So,	Let’s	move	onto	some	fun	stuff!

Chapter	4	-	Routing

A	zombie	developer	reinvents	the	wheel	and	creates	their	own	routing	system,	whereas	a
Laravel	developer	leverages	the	built-in	router	that	is	simple	to	use,	extremely	flexible,
and	super	efficient.

Using	a	powerful	routing	system	in	your	app	is	crucial	for	keeping	your	sanity	and
preventing	brain	deterioration.	When	a	user	navigates	your	app	they	won’t	run	into	a	dead
end;	they’ll	hit	the	correct	“route”	instead.

Routing	overview
Just	to	be	sure	everyone	is	on	the	same	page,	we’ll	give	you	a	brief	run	down	of	app
routing.

You	can	think	of	a	route	as	being	similar	to	a	road.	For	instance,	“We	drove	down	the	road
(route)	to	the	graveyard.”	When	referring	to	routes	in	an	application,	it	is	essentially	the
same.	When	you	type	a	website	URL	like	site.com/graveyard,	you	are	telling	the
browser	that	the	graveyard	is	the	route	you	want	to	take.	The	application	then	says,	“Ok,
you	want	to	go	to	the	‘graveyard’?	This	is	the	output	I	have	for	the	graveyard	route.”

This	can	be	done	very	easily	using	Laravel,	for	instance:

1	<?php

2	

3	Route::get('graveyard', function(){

4	 echo 'Welcome	to	the	graveyard!';

5	});

The	code	above	states	that	when	the	browser	says	‘get’	the	‘graveyard’	route,	our	app	will
perform	the	following	function.	In	the	code	above	our	page	will	display	‘Welcome	to	the
graveyard!’.

Couldn’t	be	easier,	right?

Let’s	learn	more	about	the	Laravel	routing	service.

Routing	in	Laravel
The	Laravel	route	file	is	located	at	app\Http\routes.php.	This	is	where	we	will	be
adding	all	our	routes	for	our	application.

There	are	4	basic	types	of	routes	we	can	add.	These	types	are	POST,	GET,	PUT,	and
DELETE,	and	look	like	the	following:

	1	<?php

	2	

	3	Route::post('/zombie', function () {

	4	 echo "We	want	to	create	a	new	zombie";

	5	});

	6	

	7	Route::get('/zombie', function () {

	8	 echo 'We	want	to	read	or	view	a	zombie';

	9	});

10	

11	Route::put('/zombie', function () {

12	 echo "We	want	to	update	an	existing	zombie";

13	});

14	

15	Route::delete('/zombie', function () {

16	 echo "We	want	to	destroy	a	zombie";

17	});

The	POST,	GET,	PUT,	and	DELETE	methods	are	all	part	of	a	RESTful	architecture,
where	each	verb	corresponds	to	an	action.

POST

When	we	POST	data	to	a	page,	we	Create	an	item.

GET

When	we	GET	data	from	a	page,	we	Read	an	item	or	a	list	of	items.

PUT

When	we	PUT	data	into	a	page,	we	Update	an	item.

DELETE

Finally,	when	we	DELETE	data	from	a	page,	we	DELETE	an	item.

This	technique	is	also	referred	to	as	CRUD	(Create,	Read,	Update,	Delete).

Most	often	we	will	use	the	GET	method,	but	there	is	also	a	route	we	can	use	to	capture
any	method:

1	<?php

2	

3	Route::any('/zombie', function () {

4	 echo "Any	request	from	this	zombie	route";

5	});

Awesome!

Ok,	how	might	we	access	our	routes	from	a	browser?	Well,	like	we	said,	the	GET	request
is	usually	the	method	we	will	use	for	most	requests.	If	you	typed	in	site.com/zombie	we
would	be	directed	to	the	GET	method.	But,	how	would	we	POST	data	to	a	route?

Simple	enough!	We	can	create	a	form	in	HTML	that	looks	like	the	following:

1	<form method="POST" action="/zombie">

2	

3	 <input type="submit">

4	</form>

When	the	user	submits	the	form	in	the	code	above	the	data	inside	the	form	will	be	posted
to	the	site.com/zombie	POST	route.

How	about	the	PUT	and	DELETE	method?	Well,	the	next	2	methods	will	need	to	have	a
hidden	input	type	to	specify	that	it	is	a	PUT	or	a	DELETE.	For	example:

	1	<!--	PUT	METHOD	-->

	2	<form method="POST" action="/zombie">

	3	

	4	 <input type="hidden" name="_method" value="PUT">

	5	 <input type="submit">

	6	</form>

	7	

	8	<!--	DELETE	METHOD	-->

	9	<form method="POST" action="/zombie">

10	

11	 <input type="hidden" name="_method" value="DELETE">

12	 <input type="submit">

13	</form>

In	the	previous	code	sample	the	forms	will	send	data	to	the	PUT	&	DELETE	route
respectively.

Quick	Routing	example
Let’s	go	through	a	quick	route	example	of	how	we	might	destroy	a	zombie!

First	we	need	to	have	a	form	where	we	can	delete	a	zombie.	Let’s	say	that	we	have	the
following	code	in	one	of	our	views:

1	<form method="POST" action="/zombie">

2	 <input type="hidden" name="id" value="2">

3	 <input type="hidden" name="_method" value="DELETE">

4	 <input type="submit" value="Destroy">

5	</form>

The	view	above	will	show	a	button	titled	‘Destroy’.	For	simplicity	purposes	we	are	just
hard-coding	an	input	with	an	ID	of	2,	but	normally	this	would	change	based	on	the	ID	of
the	zombie	you	actually	want	to	delete.

Next	we	need	to	create	our	route	that	will	delete	that	zombie:

1	<?php

2	

3	use Illuminate\Http\Request;

4	

5	Route::delete('/zombie', function(Request $request){

6	 $id = $request->input('id');

7	 Zombie::destroy($id);

8	});

And	just	like	that	we	have	destroyed	the	zombie	with	an	ID	of	2	:)	Pretty	cool!

Additionally,	notice	that	we	specified	a	Request	variable	in	the	function	above.	This	is
simply	a	class	provided	by	Laravel	that	allows	us	to	capture	request	information.	But,
before	we	can	use	the	Request	class	we	have	to	specify	the	namespace:

1	

Quick	Note:	Unfortunately,	the	above	example	will	not	fully	work	since	we	have	not	setup	our	database	or
models	just	yet,	but	we	will	do	that	in	the	next	chapter.

In	the	above	route	examples,	we	are	using	route	closures.	Let’s	move	on	to	talk	about
route	closures	vs	route	controllers.

Route	Closures	vs	Route	Controller	Actions
A	route	closure	is	when	we	specify	a	route,	and	we	run	a	function	containing	code.	This	is
a	route	closure:

1	<?php

2	

3	Route::get('/zombie', function(){

4	 echo 'Welcome	to	the	Zombie	Page!';

5	});

Whereas,	with	a	route	controller	action	we	run	a	controller	method	for	a	specific	route.
This	is	a	route	controller	action:

1	<?php

2	

3	Route::get('/zombie', 'ZombieController@index');

When	using	a	route	controller	action,	a	method	will	be	run	when	the	route	is	accessed.

We	will	talk	more	about	Controllers	in	the	next	couple	chapters.	Just	make	sure	to	keep
this	in	mind	and	it	will	all	start	coming	together	:)

Route	Parameters
There	may	be	times	that	you	want	to	pass	a	few	parameters	in	your	routes.	As	an	example,
let’s	say	that	we	have	a	zombie	with	an	ID	of	5,	and	we	want	to	view	that	zombie
information	by	visiting	site.com/zombie/5.	We	could	easily	do	that	with	the	following
route:

1	<?php

2	

3	Route::get('/zombie/{id}', function($id){

4	 echo 'This	zombie	has	an	id	of' . $id;

5	});

The	above	would	print	out	“This	zombie	has	an	id	of	5”.

So,	if	we	had	our	models	and	database	all	set	up	we	could	get	the	zombie	with	an	ID	of	5
and	print	out	his	info,	which	would	look	like	the	following:

1	<?php

2	

3	Route::get('/zombie/{id}', function($id){

4	 $zombie = Zombie::find($id);

5	 echo 'Name:	' . $zombie->name . '
';

6	 echo 'Strength:	' . $zombie->strength . '
';

7	 echo 'Health:	' . $zombie->health . '
';

8	});

Above	we	are	getting	the	zombie	with	an	ID	5	and	we	are	displaying	their	name,	strength,
and	their	health	level.

The	example	above	will	not	entirely	work	since	we	have	not	set	up	our	Models	or	our	database	yet.	So,	with
that	being	said	let’s	move	on	to	talk	about	our	model	classes.

Chapter	5	-	Models

A	zombie	developer	creates	complex	SQL	queries,	whereas	a	Laravel	developer	extends
the	Eloquent	Model	Class	and	benefits	from	beautiful	and	readable	database	interaction.

Zombie	Developers	often	use	complicated	queries	that	can	lead	to	bad	and	infectious
code.	As	a	Laravel	developer	we	must	keep	our	queries	strong	&	healthy.

We	must	MODEL	some	good	behavior.

Models
A	model	is	a	PHP	class	that	handles	all	the	interaction	between	the	code	and	the	database.
When	using	Laravel	we	can	extend	the	Eloquent	Model	class	and	all	our	interaction	will
automatically	be	built-in.

Take	a	look	at	what	an	example	zombie	model	would	look	like	(this	file	would	be	placed
inside	of	the	/app	folder):

<?php namespace App;

use Illuminate\Database\Eloquent\Model;

class Zombie extends Model {

protected $table = 'zombies';

}

In	the	code	above	we	are	saying	that	the	class	Zombie	extends	from	the	Illuminate
Eloquent	Model.	And	we	are	saying	that	our	database	table	name	is	zombies.	So,	to	map
the	zombie	model	with	the	database,	we	create	a	simple	zombies	table	in	our	database	that
looks	like	the	following:

zombies

Field Type Length
id INT 11
name VARCHAR 50
strength VARCHAR 20
health INT 3
created_at TIMESTAMP 	
updated_at TIMESTAMP 	

In	the	zombies	table	we	have	a	unique	ID,	the	name	of	the	zombie,	their	strength,	and	their
health.	Let’s	assume	that	we	have	this	table	in	our	database.	In	a	future	chapter,	we	will	be
talking	about	migrations,	which	allow	us	to	easily	create	database	tables	in	our	code.

After	we	have	a	table	like	the	one	above,	we	are	free	to	interact	with	the	database	using
the	Eloquent	Model	class.

Quick	Note:	Before	interacting	with	the	database	you	will	need	to	add	your	database	credentials	to	your
.env	file	(briefly	covered	in	chapter	3).

Let’s	move	on	to	learning	more	about	this	Eloquent	Model	class.

Eloquent
Models	in	Laravel	extend	from	the	Eloquent	class	that	make	your	database	interactions	as
clean	and	easy	to	use	as	possible.	Eloquent	is	appropriately	named,	because,	that’s	exactly
how	it	feels	to	interact	with	the	database,	“Very	eloquent.”	You	might	remember	this	code
from	the	previous	chapter:

	1	<?php

	2	

	3	use App\Zombie as Zombie;

	4	

	5	Route::get('/zombie/{id}', function($id){

	6	 $zombie = Zombie::find($id);

	7	 echo 'Name:	' . $zombie->name . '
';

	8	 echo 'Strength:	' . $zombie->strength . '
';

	9	 echo 'Health:	' . $zombie->health . '
';

10	});

Before	we	would	not	be	able	to	run	our	application	because	our	code	would	not	know
where	to	access	the	Zombie	class,	but	now	that	the	Model	is	created	we	can	access	it.

Note	that	we	are	telling	our	app	that	when	we	call	Zombie	we	want	to	use	the	zombie	class	located	at
App\Zombie.	This	is	referred	to	as	namespaces,	something	that	we	will	dig	further	into	in	a	future	chapter.

We	still	have	a	problem,	though.

We	will	not	be	able	to	access	the	route	from	above	because	we	do	not	have	any	zombies	in
our	database,	so	let’s	go	ahead	and	create	a	new	zombie	with	the	following	route.

	1	<?php

	2	

	3	Route::get('/admin/zombies/create', function(){

	4	 echo '<form	method="POST"	action="/admin/zombies/create">

	5															<input	type="text"	name="name"	placeholder="Name">

	6															<input	type="text"	name="strength"	placeholder="Strength">

	7															<input	type="text"	name="health"	placeholder="Health">

	8															<input	type="submit"	value="Create	New	Zombie">

	9											</form>';

10	});

And	if	we	visited	that	route	in	our	browser	(site.com/admin/zombies/create),	we	would
end	up	with	a	simple	form.

When	this	form	gets	submitted	it	will	post	to	the	site.com/admin/zombies/create	POST
route,	which	should	look	like	the	following:

1	<?php

2	

3	Route::post('/admin/zombies/create', function () {

4	 //	create	a	new	zombie

5	});

So,	if	we	added	the	following	functionality:

	1	<?php

	2	

	3	use App\Zombie as Zombie;

	4	use Illuminate\Http\Request;

	5	

	6	Route::post('/admin/zombies/create', function(Request $request){

	7	 //	get	all	the	data	that	has	been	posted	from	the	form

	8	 $post_data = $request->all();

	9	

10	 //	create	a	new	zombie

11	 $zombie = new Zombie();

12	 $zombie->name = $post_data['name'];

13	 $zombie->strength = $post_data['strength'];

14	 $zombie->health = $post_data['health'];

15	 $zombie->save();

16	});

And	we	submitted	the	form	with	the	following	data:

Name:	Johnny	Bullet	Holes
Strength:	Strong
Health:	70

Then	we	would	end	up	with	the	following	row	in	our	database.

How	easy	is	that!	We	just	created	our	first	Zombie.	So,	if	we	were	to	visit	the	following
route	(site.com/zombie/1),	we	would	be	directed	to	the	following	route	from	above:

1	Route::get('/zombie/{id}', function($id){

2	 $zombie = Zombie::find($id);

3	 echo 'Name:	' . $zombie->name . '
';

4	 echo 'Strength:	' . $zombie->strength . '
';

5	 echo 'Health:	' . $zombie->health . '
';

6	});

And	we	would	see	the	following	output	in	our	browser.

Awesome,	right?	How	much	easier	could	it	be?	Well,	it	gets	a	little	easier,	instead	of
creating	a	zombie	by	adding	the	name,	strength,	and	health	manually	we	could	always	do
this	in	one	line.

Check	out	the	following:

	1	<?php

	2	

	3	use App\Zombie as Zombie;

	4	use Illuminate\Http\Request;

	5	

	6	Route::post('/admin/zombies/create', function(Request $request){

	7	 //	get	all	the	data	that	has	been	posted	from	the	form

	8	 $post_data = $request->all();

	9	

10	 //	create	a	new	zombie

11	 $zombie = Zombie::create($post_data);

12	});

13	?>

If	we	tried	to	submit	to	the	route	above,	we	would	probably	get	an	error	message	saying
‘MassAssignmentException’.	This	means	that	we	are	trying	to	assign	a	mass	amount	of
data	to	our	Zombie	class,	but	we	have	not	specified	what	is	ok	to	add	when	creating	a	new
Zombie.

This	is	a	level	of	security	that	Laravel	offers.

To	tell	our	zombie	class	that	we	want	to	be	able	to	create	a	zombie	and	allow	name,
strength,	and	health	all	at	once	we	would	add	the	following	in	our	Zombie	class:

1	protected	$fillable	=	['name',	'strength',	'health'];

So,	the	full	class	would	look	like:

	1	<?php namespace App;

	2	

	3	use Illuminate\Database\Eloquent\Model;

	4	

	5	class Zombie extends Model {

	6	

	7	 protected $table = 'zombies';

	8	 protected $fillable = ['name', 'strength', 'health'];

	9	

10	}

And	now,	if	we	submitted	our	form	with	the	new	create	route	above	we	would	not	get	that
mass	assignment	error.	Instead,	we	would	have	successfully	created	another	new	Zombie.

Let’s	say	that	we	created	another	new	zombie	with	the	following	data:

Name:	Ted	Manwalking
Strength:	Weak
Health:	90

We	would	now	have	the	following	two	rows	in	our	database:

Using	Eloquent	makes	it	super	easy	to	create,	read,	update,	and	delete	data	from	our
database.	Let’s	move	onto	relationships,	which	allow	us	to	easily	bind	data	between	tables
in	a	database.

Chapter	6	-	Model	Relationships

A	zombie	developer	is	not	very	good	at	relationships,	whereas	a	Laravel	developer	is	great
at	implementing	database	relationships.

Zombies	lack	the	intellegence	to	build	meaningful	relationships.

If	they	were	to	use	Laravel’s	Eloquent	class	they	could	create	easy	to	use	relationships
between	tables.

Model	Relationships
Relationships	are	a	way	of	binding	data	between	tables.	Let’s	say	for	instance	you	have	a
blog	that	has	a	‘posts’	and	a	‘comments’	table.

These	two	tables	probably	have	a	relationship.	As	an	example,	a	POST	probably	HAS
MANY	COMMENTS,	and	vice	versa	a	COMMENT	probably	BELONGS	TO	a	POST.
The	relationship	between	the	POST	to	COMMENTS	is	a	HAS	MANY	relationship,	and
the	relationship	between	the	COMMENTS	and	POSTS	is	a	BELONGS	TO	relationship.

Using	our	Zombie	table	from	above	we	are	also	going	to	create	another	table	called
weapons:

weapons

Field Type Length
id INT 11
zombie_id INT 11
name VARCHAR 50

Notice	the	‘zombie_id’	row	in	the	table	above.

This	references	the	‘id’	row	in	the	Zombies	table,	and	is	referred	to	as	a	Foreign	Key
which	occurs	when	a	row	in	one	table	uniquely	identifies	a	row	in	another	table.	This
Foreign	Key	is	what	ties	a	relationship	between	the	Weapons	table	and	the	Zombies	table.

Let’s	say	that	we	already	have	two	weapons	in	our	database	that	belong	to	each	of	our
zombies:

In	the	example	above	you	can	see	that	we	have	added	two	rows	to	our	weapons	table.	We
have	added	an	“Axe”	that	belongs	to	a	zombie	with	an	ID	of	2	and	we	have	a	“Shot	Gun”
which	belongs	to	our	zombie	with	an	ID	of	1.

Next	we	are	going	to	display	information	about	the	Zombie,	including	their	weapon;	but
first	we	need	to	create	our	Weapon	Model,	located	at	app\Weapon.php:

1	<?php namespace App;

2	

3	use Illuminate\Database\Eloquent\Model;

4	

5	class Weapon extends Model {

6	

7	 protected $table = 'weapons';

8	

9	}

Now,	we	could	add	the	following	to	display	all	the	information	about	our	zombie
including	their	weapon:

	1	<?php

	2	

	3	use App\Zombie as Zombie;

	4	use App\Weapon as Weapon;

	5	

	6	Route::get('/zombie/{id}', function($id){

	7	 $zombie = Zombie::find($id);

	8	 echo 'Name:	' . $zombie->name . '
';

	9	 echo 'Strength:	' . $zombie->strength . '
';

10	 echo 'Health:	' . $zombie->health . '
';

11	

12	 $weapon = Weapon::where('zombie_id', '=', $zombie->id)->first();

13	 echo 'Weapon:	' . $weapon->name . '
';

14	});

We	just	introduced	another	new	helper	provided	by	the	Eloquent	library;	this	is	the	where
function.	Before	we	just	used	find	which	returned	the	object	with	an	ID.

Above	we	are	using	Weapon::where('zombie_id',	'=',	$zombie->id)-	>first();.
What	is	happening	here	is	that	we	want	to	get	the	weapon	where	the	zombie_id	is	equal	to
our	zombie	id,	and	we	want	to	get	the	first	row.

You	can	learn	more	about	all	the	different	ways	to	retrieve	data	from	our	models	by
checking	out	the	full	documentation	on	Eloquent	here:	http://laravel.com/docs/eloquent.

The	above	example	will	get	the	job	done;	however,	there	is	an	even	easier	way	of	doing
this.	If	we	specify	our	relationship	between	the	zombie	and	the	weapon	we	can	minify	the
amount	of	code	we	need	to	add.	We	could	add	our	relationship	to	our	Zombie	Model,	and
that	would	look	something	like	this:

	1	<?php namespace App;

	2	

	3	use Illuminate\Database\Eloquent\Model;

	4	

	5	class Zombie extends Model {

	6	

	7	 protected $table = 'zombies';

	8	 protected $fillable = ['name', 'strength', 'health'];

	9	

10	 public function weapon()

11	 {

12	 return $this->hasOne('App\Weapon');

13	 }

14	}

Above	we	are	saying	that	a	Zombie	has	one	Weapon.	We	just	create	a	new	public	function
called	weapon()	and	return	the	weapon.

So,	with	that	addition	to	our	Zombie	Model	we	can	now	refactor	our	code	and	display	all
the	information	about	our	Zombie	like	this:

	1	<?php

	2	

	3	use App\Zombie as Zombie;

	4	

	5	Route::get('/zombie/{id}', function($id){

	6	 $zombie = Zombie::find($id);

	7	 echo 'Name:	' . $zombie->name . '
';

	8	 echo 'Strength:	' . $zombie->strength . '
';

	9	 echo 'Health:	' . $zombie->health . '
';

10	 echo 'Weapon:	' . $zombie->weapon->name . '
';

11	});

How	great	is	that!	By	adding	that	relationship	we	just	took	these	two	lines	of	code:

1	$weapon = Weapon::where('zombie_id', '=', $zombie->id)->first();

2	echo 'Weapon:	' . $weapon->name . '
';

and	turned	it	into	this	one	line:

1	echo 'Weapon:	' . $zombie->weapon->name . '
';

Being	more	readable	and	easier	to	work	with,	If	we	now	visit	(site.com/zombie/1)	we
should	get	our	output	which	will	look	like	the	following:

To	see	all	the	information	about	our	zombie	with	an	ID	of	2	we	could	then	visit
(site.com/zombie/2)

One	last	thing	before	we	move	on,	what	if	we	had	the	ID	of	our	weapon	and	we	wanted	to
see	to	which	zombie	it	belonged?	This	can	be	achieved	in	the	same	way.

We	can	add	our	relationship	in	our	Weapon	class,	but	instead	of	the	hasOne	relationship,
we	will	use	the	belongsTo	relationship	since	a	Weapon	belongs	to	a	zombie.	To	add	this
relationship	we	will	add	a	zombie	method	to	our	Weapons	model	that	will	return	a	Zombie
object	like	so:

	1	<?php namespace App;

	2	

	3	use Illuminate\Database\Eloquent\Model;

	4	

	5	class Weapon extends Model {

	6	

	7	 protected $table = 'weapons';

	8	

	9	 public function zombie(){

10	 return $this->belongsTo('App\Zombie');

11	 }

12	}

Now,	we	could	add	the	following	route:

1	use App\Weapon as Weapon;

2	

3	Route::get('/weapon/{id}', function($id){

4	 $weapon = Weapon::find($id);

5	 echo "This	" . $weapon->name . "	belongs	to	" . $weapon->zombie->name;

6	});

We	can	now	get	to	the	zombie	that	owns	this	weapon	by	accessing	$weapon->zombie.	And
if	we	were	to	visit	(site.com/weapon/1)	we	would	get	the	following	output:

Using	relationships	in	Laravel	makes	interacting	with	your	data	easy	and	fun.

The	relationship	between	hasOne	and	belongsTo	is	referred	to	as	a	One-to-One
relationship	(since	each	of	them	has	one	of	the	other).	If	you	wish	to	learn	about	the	other
relationships	in	depth	head	on	over	to	http://laravel.com/docs/eloquent-relationships.

Models	and	relationships	are	a	big	part	of	what	makes	Laravel	amazing.	Instead	of
creating	complex	queries	and	bloated	models,	we	can	focus	on	more	the	fun	stuff	and
build	our	application	quicker	than	ever	before.

Next	up	we	are	going	to	talk	about	mutators,	which	allow	us	to	manipulate(mutate)	data
before	it	gets	entered	into	or	retrieved	from	the	database.

Chapter	7	-	Mutators

A	zombie	developer	does	not	sanitize	data	when	sending	or	receiving	it	from	their
database,	whereas	a	Laravel	developer	uses	mutators	to	manipulate	data	before	and	after
getting	data	from	the	database.

Mutators	are	our	friends,	and	they	will	help	us	defeat	the	zombie	developer	apocalypse	by
helping	us	sanitize	or	manipulate	data	in	our	Models.

Mutators
Mutators	allow	us	to	change	data	before	sending	it	to	or	retrieving	it	from	the	database.
When	we	manipulate	data	before	it	gets	entered	into	the	database,	it	is	referred	to	as	a
Mutator,	when	we	manipulate	data	after	we	retrieve	it	from	the	database	it	is	referred	to	as
an	Accessor.

We	are	going	to	use	a	pretty	simple	example	to	show	you	the	basics	of	using	mutators.

We	will	use	our	zombies	table	as	an	example	from	the	previous	chapters.	Let’s	say	that
anytime	we	get	a	zombie	name	from	the	database	we	want	to	make	sure	the	name	is
capitalized.	We	could	easily	do	this	using	an	Accessor.

In	our	Zombie	Model	from	our	past	examples	we	would	want	to	add	the	following
method:

1	public function getNameAttribute($value){

2	 return ucwords($value);

3	}

And	now	any	time	we	get	a	zombie	name	from	the	database	it	will	be	capitalized.	You	will
want	to	make	the	name	of	the	function	correspond	to	the	name	of	the	database	row	you
want	to	change.	Since	our	database	row	was	name	our	function	name	is	getNameAttribute.

This	can	be	done	just	as	easy	using	Mutators,	except	we	will	modify	the	data	before	it	gets
put	into	the	database.	To	add	this	mutator	we	would	add	the	following	method	to	our
Zombie	model:

1	public function setNameAttribute($value){

2	 $this->attributes['name'] = ucwords($value);

3	}

The	name	would	also	be	capitalized	before	we	saved	the	data	to	the	database.	Our	full
zombie	model	with	our	Accessor	and	Mutator	methods	would	look	like	the	following:

	1	<?php namespace App;

	2	

	3	use Illuminate\Database\Eloquent\Model;

	4	

	5	class Zombie extends Model {

	6	

	7	 protected $table = 'zombies';

	8	

	9	 public function getNameAttribute($value){

10	 return ucfirst($value);

11	 }

12	

13	 public function setNameAttribute($value){

14	 $this->attributes['name'] = ucwords($value);

15	 }

16	}

Most	likely	you	wouldn’t	need	the	Accessor	and	Mutator	to	do	the	same	thing,	it	would	be
a	preference	as	to	which	one	you	wanted	to	use.

From	the	examples	above,	if	anyone	were	to	enter	a	zombie	name	into	our	database	it
would	be	capitalized.	Hopefully,	you	can	see	the	advantage	of	using	mutators;	it	makes	it
easy	to	send	and	retrieve	manipulated	or	formatted	data	from	your	database.	Just	another
awesome	functionality	to	help	make	our	lives	as	developers	easier.

Next	up	we	are	going	to	learn	about	views.	Views	are	the	files	that	typically	contain	the
HTML	&	CSS.	In	the	previous	examples	we	have	just	been	outputting	our	data	from	our
routes.php	file,	but	when	we	want	to	output	data	to	the	screen	we	will	typically	use	our
views.	Let’s	move	on	to	the	next	chapter	to	learn	more.

Chapter	8	-	Views

A	zombie	developer	entangles	logic	and	HTML	elements	in	the	same	page,	whereas	a
Laravel	developer	separates	their	views	from	their	logic.

Zombies	are	considered	to	be	messy	and	not	too	friendly	because	they	write	code	all	over
the	place.	As	a	Laravel	developer	we	separate	our	data	output	from	our	data	logic.	In	this
chapter,	we’re	going	to	talk	about	using	views.	Leveraging	the	powerful	features	of
Laravel	will	help	us	gain	a	clear	VIEW	of	what	we	want	to	build	(sorry	for	the	cheesy
pun).

Views
Views	are	essentially	the	HTML	and	the	layout	elements	of	a	page.	A	view	is	what	our
user	will	see	when	they	visit	a	page.

So,	how	might	we	go	about	creating	a	new	VIEW	for	a	specified	route?	Glad	you	asked,
as	it’s	very	straightforward.	Back	in	Chapter	2,	we	created	a	simple	route	called
‘graveyard’	that	printed	out	a	string,	which	looked	like	this:

1	<?php

2	

3	Route::get('graveyard', function(){

4	 echo 'Welcome	to	the	graveyard!';

5	});

If	we	wanted	to	implement	the	functionality	above	with	a	view,	our	code	would	look	like
this:

1	<?php

2	

3	Route::get('graveyard', function(){

4	 return view('graveyard');

5	});

And	this	will	load	the	file	located	at	resources/views/graveyard.php.	So,	if	we	created
that	file	and	added	the	following	code	to	this	file:

	1	<html>

	2	<head>

	3	 <title> </title>

	4	</head>

	5	<body>

	6	

	7	 <p> </p>

	8	

	9	</body>

10	</html>

We	would	get	the	same	functionality	as	the	first	view,	except	when	using	the	view	we
would	add	valid	HTML	to	our	page,	and	this	would	be	the	correct	way	of	structuring	our
code	and	displaying	data	on	the	screen.

All	of	your	view	files	will	be	located	inside	of	the	resources/views/directory.	Keeping
our	files	well	organized	and	in	proper	locations	will	help	us	keep	our	sanity	and	will	make
our	jobs	and	lives	much	easier.

Now	let’s	say	that	we	wanted	to	get	all	the	zombies	from	our	database	and	pass	them	to
our	view,	how	might	we	do	this.	Simple	enough,	our	route	would	look	like	this:

1	<?php

2	

3	use App\Zombie as Zombie;

4	

5	Route::get('zombies', function(){

6	 $data = array('zombies' => Zombie::all());

7	 return view('zombies', $data);

8	});

And	that	would	pass	all	our	zombies	to	a	view	called	zombies.php	located	in
resources/views/	folder.	After	creating	a	new	file	at	resources\views\zombies.php	we
could	list	out	our	zombies	by	adding	the	following	code:

	1	<html>

	2	<head>

	3	 <title>Zombies</title>

	4	</head>

	5	<body>

	6	

	7	

	8	 <?php foreach($zombies as $zombie): ?>

	9													<?php echo $zombie->name; ?>

10									<?php endforeach; ?>

11					

12	

13	</body>

14	</html>

If	we	were	to	open	up	a	web	browser	and	navigate	to	site.com/zombies	we	would	get	an
unordered	list	of	our	zombie	names,	which	would	look	like	the	following:

To	pass	data	to	your	views,	you	can	just	include	all	of	the	variables	inside	of	an	array	that
gets	passed	as	a	second	argument	in	the	view	function.
return	view('zombies',	array('zombies'	=>	Zombie::all()));

Using	views	in	Laravel	is	super	easy,	and	it	gets	even	easier	if	we	choose	to	use	the	built-
in	blade	templating	engine.	What	is	the	blade	templating	engine?	Let’s	discuss	that	next.

Chapter	9	-	Blade

A	zombie	developer’s	code	has	long	and	combersome	syntax,	whereas	a	Laravel
developer’s	code	contains	clean	and	readable	views	by	using	the	blade	templating	engine.

Using	Blade	Templating	in	your	app	will	make	your	views	look	super	clean	and	easily
readable.	Blade	templating	is	optional	to	use,	but	after	you	get	the	hang	of	it,	you’ll	find
yourself	wanting	to	use	it	over	and	over	again.

Blade
Blade	templating	is	an	easy	way	to	render	your	views	in	a	more	readable	fashion.	Blade
templating	is	a	syntax	that	you	can	use	in	your	view	files	that	will	then	render	into	valid
PHP	code.	Let	me	give	you	a	quick	example.	Taking	the	foreach	loop	from	our	previous
chapter	we	have	the	following	code	that	displayed	our	zombies	in	an	unordered	list:

1	

2	 <?php foreach($zombies as $zombie): ?>

3									<?php echo $zombie->name; ?>

4					<?php endforeach; ?>

5	

If	we	wanted	to	use	blade	templating	we	could	re-write	that	code	using	blade	templating
like	so:

1	

2	 @foreach($zombies as $zombie)

3	 {{ $zombie->name; }}

4	 @endforeach

5	

And	this	makes	it	so	much	easier	to	read	and	write!

As	you	can	see	from	the	example	above	instead	of	doing	a	foreach	and	having	to	open
and	close	your	PHP	tags,	you	can	just	use	the	@	symbol.	Additionally,	when	we	add
anything	inside	of	{{	}}	it	will	automatically	be	output	to	the	screen.

The	only	thing	that	we	need	to	do	to	use	the	blade	templating	engine	is	to	rename	our	files
from	.php	to	.blade.php.	So,	from	the	example	in	the	previous	chapter	we	created	a	new
file	located	at	resources\views\zombies.php.

Instead,	if	we	named	it	resources\views\zombies.blade.php,	we	could	then	use	blade
templating	inside	of	that	file.

Here	is	another	quick	example	of	using	blade	templating	engine.	Let’s	say	that	we	have
the	following	code	in	a	blade.php	view:

1	<?php if($var){ ?>

2					The	statement	is	true.	variable	=	<?php echo $var ?>

3	<?php } else {

4	 The statement is false. variable = <?php echo $var ?>

5	<?php } ?>

All	this	does	is	print	to	the	screen	whether	the	statement	is	true	or	false,	and	then	it
displays	the	value	of	the	variable.	To	clean	this	up	using	the	blade	templating	engine,	it
could	be	written	as	follows:

1	@if($var)

2	 The statement is true. variable = {{ $var }}

3	@else

4	 The statement is false. variable = {{ $var }}

5	@endif

As	you	can	see	the	above	code	is	much	cleaner	and	easier	to	read.	All	thanks	to	Blade
Templates!

There	are	many	other	shorthands	that	you	can	use	in	your	blade	templates	including
layouts,	loops,	if	statements,	and	much	much	more.

Be	sure	to	checkout	the	full	documentation	on	using	all	the	blade	shorthand	syntax	here:
http://laravel.com/docs/blade

Now	that	we’ve	got	the	hang	of	how	Views	work	in	a	Laravel	app	we	are	going	to	move
on	to	Controllers,	which	is	where	most	of	our	functionality	for	our	app	will	live.

Let’s	read	on	and	learn	more	about	controllers.

Chapter	10	-	Controllers

A	zombie	developer	does	not	control	situations	well	since	their	logic	is	all	over	the	place,
whereas	a	Laravel	developer	uses	Controllers	to	separate	their	logic	from	the	rest	of	their
app.

Let’s	get	control	of	the	situation	and	add	some	logic	to	our	app.

Controllers	can	be	looked	at	as	the	brains	of	the	operation	because	this	is	where	all	the
logic	occurs.

Controllers
Models	will	get/set	data	from	our	database,	the	View	is	what’s	displayed	in	the	browser,
and	the	Controller	is	where	the	logic	happens	in	our	app.	Your	controllers	for	your
application	will	live	inside	of	the	app\Http\Controllers	folder.

Back	in	chapter	2,	we	had	a	section	called	‘Route	Closures	vs.	Route	Controller	Actions’
where	a	Route	Closure	creates	an	anonymous	function,	and	you	put	the	code	directly	in
that	function.	This	looks	like	the	following:

1	<?php

2	

3	Route::get('/zombie', function(){

4	 echo 'Welcome	to	the	Zombie	Page!';

5	});

And	a	Route	Controller,	which	maps	the	route	to	a	controller,	which	looks	like	this:

1	<?php

2	

3	Route::get('/zombie', 'ZombieController@index');

The	example	above	will	look	to	the	index()	method	in	the	ZombieController.

So,	let’s	go	ahead	and	create	a	new	file	inside	of	app\Http\Controllers	and	call	it
ZombieController.php	and	insert	the	following	code:

	1	<?php

	2	

	3	namespace App\Http\Controllers;

	4	

	5	use App\Http\Controllers\Controller;

	6	

	7	class ZombieController extends Controller

	8	{

	9	 public function index(){

10	 echo 'Welcome	to	the	Zombie	Page!';

11	 }

12	}

If	we	navigate	to	site.com/zombie	we	will	get	the	same	output	of	‘Welcome	to	the	Zombie
Page!’.

This	is	obviously	a	very	simple	example,	usually	the	logic	in	your	controllers	will	contain
more	code	than	what	we	did	above.

You	may	have	noticed	it	seems	like	using	a	Route	Closure	was	a	much	simpler	way	of	doing	things,	but
believe	me,	once	your	app	starts	to	get	bigger	you	will	want	to	put	all	your	logic	inside	of	your	Controllers
and	keep	the	routes.php	file	as	clean	as	possible.	Adding	logic	to	your	controllers	keeps	everything	more
organized	and	will	make	your	workflow	more	efficient.

So	let’s	go	ahead	and	explain	the	code	in	the	ZombieController.php	real	quick.	After
opening	our	PHP	tags	we	specify	the	namespace:

1	

The	namespace	is	the	current	folder	where	our	class	is	located,	which	is	inside	the
AppHttpControllers	folder.

Then,	we	are	going	to	extend	the	Laravel	default	controller	(You	will	typically	use	this
same	code	in	future	controllers	that	you	create).	We	need	to	tell	our	class	which	Controller
class	we	need	to	use	which	is	inside	of	the	AppHttpControllers	folder	as	well,	so	we	will
write:

1	

And	we	need	to	give	our	controller	a	name	and	say	that	we	want	it	to	extend	from	the
default	controller:

1	class ZombieController extends Controller

Finally,	we	need	to	specify	our	index()	method	and	print	out	our	message	to	the	screen:

1	 public function index(){

2	 echo 'Welcome	to	the	Zombie	Page!';

3	 }

This	is	fantastic!	We	can	map	any	route	to	any	controller	method.	This	will	help	keep	our
route	file	clean,	and	it	will	put	the	logic	in	our	controller	files.

In	the	next	chapter,	we	will	show	you	more	about	Controllers	as	we	show	you	the	process
of	piecing	together	functionality	from	the	route	to	the	controller	and	then	to	the	view.	Let’s
continue	and	learn	more	about	how	these	pieces	come	together.

Chapter	11	-	Piecing	It	Together

A	zombie	developer	may	write	all	the	logic	and	views	in	one	file,	whereas	a	Laravel
developer	uses	routes,	models,	views,	and	controllers	to	piece	their	app	together	making	it
cleaner,	more	flexible,	and	better	organized.

Leveraging	all	the	different	classes	and	functionality	that	Laravel	offers	will	make	our
application	more	flexible.	By	separating	our	functionality	in	routes,	models,	views,	and
controllers,	our	code	will	be	a	lot	cleaner	and	more	enjoyable	to	work	with.

Piecing	It	Together
In	the	last	couple	chapters,	we	talked	about	Routes,	Models,	Views,	and	Controllers.	Now,
let’s	go	through	an	example	of	“Piecing	those	together”	and	show	you	how	we	might
display	a	list	of	all	our	current	zombies	using	routes,	models,	views,	and	controllers.

When	we	go	to	our	site.com/zombies	route,	we	want	to	be	able	to	see	all	our	current
zombies.	Here	is	the	process	that	we	will	need	in	order	to	accomplish	this.	We	will	need
to:

1.	 Create	a	route	that	maps	to	a	controller	method
2.	 Create	our	controller
3.	 Retrieve	the	zombies	from	the	zombie	model	in	our	controller
4.	 Pass	our	zombie	data	to	our	view
5.	 Output	our	zombie	data	in	our	view

1.	Create	a	route	that	maps	to	a	controller	method

This	is	fairly	straightforward,	we	simply	need	to	create	a	route	inside	of	our
App\Http\routes.php	file	that	links	to	a	controller	method:

1	Route::get('zombies', 'ZombieController@show');

2.	Create	a	controller

We	can	use	the	same	zombie	controller	that	we	created	at

App\Http\Controllers\ZombieController.php	which	looks	like	this:

	1	<?php

	2	

	3	namespace App\Http\Controllers;

	4	

	5	use App\Http\Controllers\Controller;

	6	

	7	class ZombieController extends Controller

	8	{

	9	 public function show(){

10	 //	Show	our	zombies

11	 }

12	}

Above	you	can	see	that	instead	of	the	public	function	index()	we	used	public
function	show()	because	show()	is	the	method	that	we	used	in	the	previous	step.

3.	Retrieve	the	zombies	from	the	zombie	model	in	our	controller

Ok,	inside	of	our	Zombie	Controller	we	need	to	get	all	our	zombies	from	our	Zombie
model.	We	will	add	this	code	inside	of	the	show()	function	and	store	it	in	a	variable	like
so:

1	 public function show(){

2	 //	Show	our	zombies

3	 $zombies = Zombie::all();

4	 }

Great,	we’ve	stored	all	our	zombies	from	our	zombie	model	inside	of	the	$zombies
variable.

Before	we	go	to	the	next	step,	I	want	to	point	out	that	our	app	will	not	know	where	to	find
Zombie::all().

If	you	go	back	to	chapter	5	where	we	created	this	zombie	model	we	put	it	inside	of	the	App
namespace	since	it	is	in	the	app	folder,	so	we	would	need	to	call	App\Zombie::all().	Or
we	could	just	tell	our	controller	which	zombie	to	use,	like	so:

1	use App\Zombie as Zombie;

And	now,	Altogether	our	controller	would	look	like	this:

	1	 php

	2	

	3	namespace App Http Controllers

	4	

	5	use App Http Controllers Controller

	6	use App Zombie as Zombie

	7	

	8	class ZombieController extends Controller

	9	

10	 public function show

11	 Show our zombies

12	 $zombies Zombie::all

13	

14	

4.	Pass	our	zombie	data	to	our	view

Passing	our	zombie	data	to	our	views	is	very	straightforward.	Inside	of	the	show()
function,	we	need	to	load	a	view	file	and	pass	along	the	zombie	data.	To	load	a	view	file
we	can	return	a	view	function	at	the	end	of	our	method	like	so:

1	return view('zombies', $data);

The	first	argument	is	a	string	with	the	view	we	want	to	load	(located	at	re
sources\views\zombies.blade.php)	and	the	second	argument	is	an	array	of	data	that	we
wish	to	pass	to	our	view.

So,	all	together	we	would	want	our	show()	function	from	our	controller	to	look	like	the
following:

	1	public function show(){

	2	 //	Show	our	zombies

	3	 $zombies = Zombie::all();

	4	

	5	 //	Store	the	zombies	in	an	array	of	data

	6	 $data = array('zombies' => $zombies);

	7	

	8	 //	Load	the	view	and	pass	it	our	data	array

	9	 return view('zombies', $data);

10	}

Simple	enough,	now	inside	of	our	resources\views\zombies.blade.php	we	will	have	an
array	of	zombies	stored	in	a	variable	called	$zombies.

Notice	that	if	we	were	to	create	a	data	array	that	looked	like

$data	=	array('zombie	guys'	=>	$zombies)	we	would	then	have	an	array	of	zombies	available	in	a
variable	called	$zombie_guys.

The	last	thing	we	need	to	do	is	to	display	our	zombies	in	our	views.

5.	Output	our	zombie	data	in	our	view

Inside	of	our	zombie	view	file	located	at	resources\views\zombies.blade.php	we	can
add	a	basic	HTML	page	with	an	unordered	list	and	loop	through	each	of	our	zombies	like
so:

	1	<html>

	2	<head>

	3	 <title>Zombies</title>

	4	</head>

	5	<body>

	6	

	7	

	8	 @foreach($zombies as $zombie)

	9	 {{ $zombie->name; }}

10	 @endforeach

11	

12	

13	</body>

14	</html>

In	the	example	above	we	do	a	simple	foreach	statement	and	loop	through	each	of	the
zombies	and	list	out	their	name.

Also,	notice	that	above	we	are	using	blade	syntax	that	we	covered	previously.

	

There	you	go!	That	was	a	fundamental	overview	of	how	each	piece	will	work	from	your
route,	model,	controller,	and	view.

Pretty	fun	stuff,	right!

Now	that	we	have	a	basic	overview	of	how	our	app	works	let’s	move	on	to	talking	about
an	excellent	helper	tool	in	Laravel	called	artisan	that	will	make	our	lives	much	easier.

Chapter	12	-	Artisan

A	zombie	developer	creates	files	manually,	whereas	a	Laravel	developer	uses	artisan	to
help	generate	files	and	functionality	for	them.

When	fighting	a	zombie	would	you	rather	have	a	shotgun	or	an	axe?

Probably	a	shotgun,	it	would	make	killing	zombies	much	faster	and	a	lot	easier.	Well,	if
there	were	an	easier	weapon	or	tool	to	use	that	would	make	creating	your	app	faster	and
easier	wouldn’t	you	want	to	use	it?

That’s	exactly	what	Laravel’s	artisan	command	provides	for	us.

Artisan
We’ve	used	the	artisan	command	in	previous	chapters	a	handful	of	times,	so	you	might
have	a	basic	idea	of	what	this	command	does.

A	quick	and	short	definition	of	artisan	is	that	it	is	a	command	line	tool	that	can	help
generate	files	and	run	php	commands.

If	you	run	php	artisan	in	a	command	prompt,	you	will	see	a	list	of	available	commands
available	to	use.

In	this	chapter,	we	are	only	going	to	go	over	a	few	basic	commands	to	get	you	started.
First	let’s	talk	about	how	you	can	create	new	files.

Making	new	files	with	Artisan

Using	the	php	artisan	make	command	we	can	generate	files	that	we	need	for	our	app.

In	the	last	chapter	and	back	in	chapter	5	when	we	needed	a	new	Controller	we	just	created
a	new	file	and	started	adding	our	code.	Well,	instead	of	manually	creating	the	file	we
could	have	run	an	artisan	command	to	do	this	for	us:

$	

And	if	we	look	inside	of	our	App\Http\Controllers	folder	we	will	see	a	new	file	called
ZombieController.php	that	has	the	following	code	inside	of	it:

	1	<?php

	2	

	3	namespace App\Http\Controllers;

	4	

	5	use Illuminate\Http\Request;

	6	

	7	use App\Http\Requests;

	8	use App\Http\Controllers\Controller;

	9	

10	class ZombieController extends Controller

11	{

12	 //

13	}

How	great	is	that!	We	just	ran	one	command,	and	our	controller	is	ready	for	us	to	start
adding	methods!

We	could	also	have	used	a	similar	command	to	create	our	Zombie	Model,	like	so:

$	

And	now	if	we	look	inside	our	app	folder	we	will	see	a	new	file	called	Zombie.php	with
the	following	contents:

	1	<?php

	2	

	3	namespace App;

	4	

	5	use Illuminate\Database\Eloquent\Model;

	6	

	7	class Zombie extends Model

	8	{

	9	 //

10	}

And	just	like	that	we’ve	created	our	model	class	that	can	interact	with	our	zombies	table	in
our	database.

Quick	side	note:	if	you	want	this	Model	to	interact	with	another	database	table	you	could	always	add	a
protected	variable	called	table,	like	so	protected	$	table	=	'zombie_folks';	and	now	this	model	will
interact	with	the	‘zombie_folks’	table	in	your	database.

It’s	amazing	how	much	easier	our	Laravel	programming	will	be	if	we	leverage	the	power
of	artisan.

In	this	chapter	we	only	covered	2	basic	uses	of	the	artisan	command	php	artisan
make:controller	&	php	artisan	make:model,	but	there	are	so	many	more	artisan
commands	for	you	to	master	and	add	arsenal	of	helpers	as	you	program	the	next	greatest
app.

Be	sure	to	head	on	over	to	https://laravel.com/docs/artisan	to	learn	all	about	artisan	and	all
the	other	commands	you	can	use.

In	the	next	chapter,	we	are	going	to	cover	middleware,	which	is	a	great	way	to	run	code
between	page	requests.

Chapter	13	-	Middleware

A	zombie	developer	does	not	have	any	functionality	between	page	requests,	whereas	a
Laravel	developer	leverages	Middleware	to	keep	their	app	more	secure	and	flexible.

You	can	think	of	middleware	as	the	gatekeeper	for	requests.	Before	our	app	allows	a
request	it	must	first	pass	through	the	gatekeeper.	If	the	gatekeeper	grants	the	user	access
the	app	will	move	on	to	the	next	request;	however,	if	the	user	is	denied	access	then	the
gatekeeper	will	not	allow	them	to	pass.

Middleware
Middleware	is	an	easy	way	to	run	functionality	betwee	HTTP	requests.	An	example
middleware	might	disallow	users	access	to	certain	routes	if	they	are	not	authenticated.

As	an	example	let’s	run	some	functionality	to	check	if	our	current	user	is	a	zombie	or	not.
If	the	user	is	a	zombie,	they	are	not	allowed	to	access	the	route.	For	the	sake	of	simplicity
we	are	going	to	hard-code	a	variable	to	be	true(1)	or	false(0)	if	the	user	is	a	zombie.	Check
out	the	following	route:

1	Route::get('arsenal', function(){

2	 $is_zombie = rand(0, 1);

3	

4	 if($is_zombie){

5	 return redirect('/home');

6	 }

7	

8	 //	If	the	user	is	not	a	zombie	we	can	run	any	code	below

9	});

So,	in	the	code	above	we	are	saying	that	if	the	user	is	a	zombie	we	want	to	redirect	them	to
the	homepage	route.	Now,	if	we	wanted	another	route	we	could	do	the	same	thing	here:

1	Route::get('armory', function(){

2	 $is_zombie = rand(0, 1);

3	

4	 if($is_zombie){

5	 return redirect('/home');

6	 }

7	

8	 //	If	the	user	is	not	a	zombie	we	can	run	any	code	below

9	});

And	now,	any	user	who	is	a	zombie	will	not	be	allowed	access	to	any	of	those	routes.
Let’s	say	we	wanted	to	create	one	more	route…	Uhhh…	We	have	to	do	the	same	code
again…

Instead	of	continually	adding	the	same	code	to	protect	against	a	zombie	user	we	could
instead	create	a	Middleware	to	handle	this	functionality	for	us.	We	can	use	our	good
friend	artisan	to	create	a	new	middleware	file	for	us.	Run	the	following	in	your	command
line:

$	

And	now	you	should	see	a	new	file	inside	of	app\Http\Middleware\isNotZombie.php,
which	has	the	following	contents:

	1	<?php

	2	

	3	namespace App\Http\Middleware;

	4	

	5	use Closure;

	6	

	7	class isNotZombie

	8	{

	9	 /**

10						*	Handle	an	incoming	request.

11						*

12						*	@param		\Illuminate\Http\Request		$request

13						*	@param		\Closure		$next

14						*	@return	mixed

15						*/

16	 public function handle($request, Closure $next)

17	 {

18	 return $next($request);

19	 }

20	}

In	the	code	above	you	can	see	that	we	have	a	function	called	handle,	and	inside	this
function	is	where	we	will	add	our	functionality	to	check	if	the	user	is	a	zombie	or	not,	so
we’ll	go	ahead	and	change	the	handle	function	above	to	look	like	the	following:

	1	public function handle($request, Closure $next)

	2	{

	3	 $is_zombie = rand(0, 1);

	4	

	5	 if($is_zombie){

	6	 return redirect('/home');

	7	 }

	8	

	9	 //	If	the	user	is	not	a	zombie	we	can	run	any	code	below

10	 return $next($request);

11	}

Above	we	are	running	the	same	functionality	to	make	sure	the	user	was	not	a	zombie.	In
the	code	above	if	the	user	is	a	zombie	they	will	be	redirected	to	the	homepage;	however,	if
not,	we	just	continue	to	the	rest	of	the	code.

The	final	step	is	to	register	our	middleware	in	our	app	by	giving	it	a	specific	name	and
adding	our	middleware	class	to	our	application	Kernel	located	in	app\Http\Kernel.php.

We	will	need	to	add	our	class	to	the	protected	$routeMiddleware	=	[]	array	like	so

1	protected	$routeMiddleware	=	[

2					'auth'	=>	\App\Http\Middleware\Authenticate::class,

3					'auth.basic'	=>	\Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::c\

4	lass,

5					'guest'	=>	\App\Http\Middleware\RedirectIfAuthenticated::class,

6					'throttle'	=>	\Illuminate\Routing\Middleware\ThrottleRequests::class,

7					'zombie'	=>	\App\Http\Middleware\isNotZombie::class,

8];

Notice	above	there	are	already	a	few	middleware	routes	that	come	packaged	with	Laravel.
In	fact,	we’ll	be	learning	more	about	the	‘auth’	middleware	in	the	next	chapter.

Now,	to	run	our	middleware	we	can	create	a	Middleware	Group	and	add	our	routes	inside:

1	Route::group(['middleware' => ['zombie']], function () {

2	 Route::get('arsenal', function(){

3	 //	If	the	user	is	not	a	zombie	we	can	run	any	code	below

4	 });

5	 Route::get('armory', function(){

6	 //	If	the	user	is	not	a	zombie	we	can	run	any	code	below

7	 });

8	});

This	is	great,	now	any	routes	that	we	want	to	protect	against	any	user	that	is	a	zombie	can
be	wrapped	in	the	zombie	middleware	group.

Web	Middleware
If	you	looked	inside	the	routes.php	of	a	new	Laravel	app,	you	may	have	noticed	that	you
already	had	a	middleware	group	available	to	you,	which	was	the	web	middleware:

1	Route::group(['middleware' => ['web']], function () {

2	 //

3	});

This	middleware	will	allow	you	to	have	access	to	sessions	and	certain	kinds	of	security	in
your	app.	All	routes	in	your	web	app	will	typically	be	placed	inside	of	this	middleware
group.

Multiple	Middleware
We	can	even	nest	groups	inside	of	each	other.	The	following	will	group	our	routes	in	the
web	and	the	zombie	middleware:

1	Route::group(['middleware' => ['web']], function () {

2	 //

3	 Route::group(['middleware' => ['zombie']], function () {

4	 //	Add	our	routes	here

5	 });

6	});

Fantastic!	But	we	could	make	this	even	more	efficient	if	we	want	to	include	both
middlewares	in	the	same	group:

1	Route::group(['middleware' => ['web', 'zombie']], function () {

2	 //	Add	our	routes	here

3	});

You	can	see	that	we	can	add	an	array	of	middleware	classes	in	our	group,	and	they	will	all
be	run	before	we	access	the	specified	routes	within.

Route	Specific	Middleware
As	an	alternative	to	using	Middleware	Groups	we	can	add	Middleware	to	each	route
specifically,	like	so:

1	Route::get('arsenal', ['middleware' => 'zombie', function () {

2	 //

3	}]);

We	could	also	chain	the	middleware	method	to	our	route	definition,	like	so:

1	Route::get('arsenal', function () {

2	 //

3	})->middleware(['first', 'second']);

You	can	see	there	are	multiple	ways	to	add	your	middleware	and	it	depends	on	the	way
that	works	best	for	you.

Controller	Middleware
You	could	also	specify	Middleware	in	a	controller.

The	methods	in	that	controller	will	always	run	the	Middleware	before	running	any
method.	Let’s	say	that	our	routes	above	linked	to	a	controller	method,	like	so:

Route::get('arsenal', 'WeaponsController@arsenal');

Route::get('armory', 'WeaponsController@armory');

Our	above	routes	will	use	methods	from	a	WeaponsController.	So	let’s	create	that
‘WeaponsController’	by	running	the	following	artisan	command:

$	

And	a	new	file	will	be	created	at	app\Http\Controllers\WeaponsController.php	with
the	following	contents:

	1	<?php

	2	

	3	namespace App\Http\Controllers;

	4	

	5	use Illuminate\Http\Request;

	6	

	7	use App\Http\Requests;

	8	use App\Http\Controllers\Controller;

	9	

10	class WeaponsController extends Controller

11	{

12	 //

13	}

Inside	of	our	new	class	we	can	create	a	constructor,	and	easily	specify	any	type	of
middleware	like	so:

	1	<?php

	2	

	3	namespace App\Http\Controllers;

	4	

	5	use Illuminate\Http\Request;

	6	

	7	use App\Http\Requests;

	8	use App\Http\Controllers\Controller;

	9	

10	class WeaponsController extends Controller

11	{

12	 //

13	 public function __construct()

14	 {

15	 $this->middleware('zombie');

16	 }

17	}

Any	WeaponsController	method	will	run	through	this	Middleware	before	being	executed.
This	kind	of	flexibility	makes	it	easy	to	add	functionality	between	any	HTTP	request	of

any	controller.

We	could	always	get	by	without	using	middleware	in	our	projects,	but	after	you	get	the
hang	of	how	to	use	them	it	will	make	your	code	more	flexible,	readable,	and	fun	to	work
with.

Let’s	move	on	now	to	Authentication	and	you’ll	see	another	example	of	middleware	and
how	we	can	protect	certain	routes	from	only	being	accessible	to	authenticated	users.

Chapter	14	-	Authentication

A	zombie	developer	spends	a	few	weeks	building	authentication	into	their	apps,	whereas	a
Laravel	developer	uses	the	built-in	feature	to	add	authentication	to	their	app	in	minutes.

During	the	zombie	developer	apocalypse,	you	will	need	to	be	very	cautious.	Before	letting
anyone	inside	your	home	you	probably	need	to	authenticate	that	they	are	not	a	zombie.
Similarly,	when	building	your	app	you	will	most	likely	need	to	verify	certain	users	before
allowing	them	access	to	certain	pages.

This	is	called	authentication	and	it	allows	or	disallows	certain	types	of	users	to	different
sections	of	your	app.

Authentication
When	you	login	to	an	account	on	any	website,	it	is	referred	to	as	authentication.

When	you	build	your	application	in	Laravel	you	will	possibly	need	a	way	to	allow	your
users	to	login	to	your	application.	This	feature	is	built-in	with	Laravel	and	can	be	created
in	a	matter	of	minutes.

In	this	chapter	we’ll	be	going	over	just	how	easy	it	is	to	add	authentication	to	your	Laravel
app.	Let’s	start	out	with	a	new	laravel	application:

$	

Then	you	will	need	to	(change	directory)	into	your	new	laravel	app:

$	cd	

Next,	we’ll	run	an	artisan	command	to	setup	our	authentication	files.

$	

That	command	will	generate	a	few	views,	controllers,	and	routes.	If	everything	went	as
planned	with	that	command	you	will	see	a	message	that	says	Authentication
scaffolding	generated	successfully!.

Now,	we	only	have	a	couple	more	steps	to	finish	our	full	authentication	system	in	our	app.
We	need	to	connect	a	database	to	our	application	and	add	our	users	table	to	the	database.

To	connect	a	database	to	your	laravel	app	you	will	need	to	modify	a	file	located	in	the	root
of	your	directory.	This	is	called	the	.env	file.

If	you	don’t	see	this	file,	then	hidden	files	may	not	be	visible	on	your	machine.	Any	file	that	starts	with	a	.	is
typically	hidden	on	most	machines.	If	you	google	How	to	show	hidden	files	on	Mac/Windows,	you’ll
find	a	quick	solution	that	will	show	hidden	files	:)

So,	open	up	the	.env	file	and	you	will	see	something	that	looks	like	the	following:

	1	

	2	

	3	

	4	

	5	

	6	

	7	

	8	

	9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

The	only	part	we	will	be	concerned	with	is	the	DB_HOST,	DB_DATABASE,
DB_USERNAME,	and	DB_PASSWORD.	For	each	of	these	variables,	we	will	need	to
add	in	our	local	database	credentials.

If	you	haven’t	already,	you	will	need	to	create	a	new	database.	Let’s	say	that	we	called	this
database	my-first-authentication.	We	would	then	need	to	update	our	credentials	like
so:

1	

2	

3	

4	

And	above	your	database	username	and	password	will	depend	on	your	environment.

Alright,	so	that’s	it	as	far	as	connecting	our	database	to	our	application.

The	final	step	is	going	to	be	to	add	the	users	table	to	our	database.	We	are	going	to	do	this
by	using	our	artisan	helper	and	another	new	concept	called	migrations	we’ll	go	into
further	details	on	migrations	in	chapter	17.

Let’s	run	the	following	command	in	our	command	prompt:

$	

If	all	went	well	you’ll	see	an	output	similar	to:

And	if	you	checkout	your	my-first-authentication	database	you’ll	see	that	you	now
have	a	couple	of	tables.

One	last	step.	Make	sure	that	all	your	current	routes	are	wrapped	inside	of	the	‘web’
middleware	group	we	talked	about	in	the	previous	chapter.

Your	routes.php	file	should	look	like	this:

	1	<?php

	2	

	3	Route::group(['middleware' => 'web'], function () {

	4	 Route::get('/', function () {

	5	 return view('welcome');

	6	 });

	7	

	8	 Route::auth();

	9	 Route::get('/home', 'HomeController@index');

10	});

AND	BOOM!	THATS	IT!

We’ve	just	added	a	full	authentication	system	in	our	laravel	up.	If	you	run	your	laravel	app
in	a	browser	you’ll	see	that	you	now	have	a	new	homepage:

Quick	Note:	If	you	don’t	have	a	virtual	host	(local	URL)	setup	with	your	laravel	app	you	can	always	use	the
artisan	tool	to	start	up	a	quick	server.	In	the	root	of	your	application,	you	can	run	php	artisan	serve	and
your	app	will	be	available	in	a	browser	if	you	navigate	to	http://localhost:8000

On	your	new	Laravel	homepage	you’ll	have	a	few	buttons	on	your	navigation.	You	can
click	on	the	register	button	and	you	will	have	a	registration	form	in	front	of	you:

Go	ahead	and	register	for	an	account	and	the	app	should	automatically	log	you	in	and
redirect	you	to	the	homepage.	As	you	can	see	you	now	have	a	dropdown	at	the	top	right	of
your	app	that	contains	your	username.	If	you	click	on	the	dropdown	you	will	see	a	logout
button:

Before	you	logout	let’s	go	ahead	and	visit	a	route	at:	site.com/home.	It	will	give	you	a
message	that	you	are	currently	logged	in.	Try	going	up	to	your	username	dropdown	in	the

right	hand	corner	and	click	the	logout	button.	You	will	then	be	redirected	back	to	the	main
URL.	If	you	try	visiting	the	/home	URL	you	will	no	longer	be	able	to	access	it.

Additionally,	to	access	the	login	page	you	can	always	click	on	the	login	button	on	the	top
right.

How	great	is	that?	Our	full	authentication	system	is	already	built	for	us!

Let’s	do	one	last	thing	to	show	you	how	to	check	if	a	user	is	authenticated.	Let’s	create	a
route	that	will	show	the	current	authenticated	user	profile.

To	do	this	we	would	create	a	new	route	in	the	‘web’	middleware	group	inside	of
app\Http\routes.php,	which	looks	like	this:

1	Route::get('profile', 'UserController@profile');

So,	our	‘profile’	route	links	to	a	UserController	class	that	we	will	need	to	create	at
app\Http\Controllers\UserController.php	and	that	would	look	like	this:

	1	<?php

	2	

	3	namespace App\Http\Controllers;

	4	

	5	use Illuminate\Http\Request;

	6	

	7	use App\Http\Requests;

	8	use App\Http\Controllers\Controller;

	9	

10	class UserController extends Controller

11	{

12	 public function profile(){

13	 echo 'welcome	to	your	profile';

14	 }

15	}

Now,	if	we	visit	that	route	/profile	we	will	see	a	message	that	says	‘welcome	to	your
profile’.

Great	so	far.

Inside	of	this	function	let’s	check	to	see	if	the	user	is	logged	in	and	display	their	email
address;	otherwise,	we	will	redirect	them	to	the	homepage.

1	public function profile(){

2	 if (Auth::check()) {

3	 echo 'Welcome	to	your	profile
';

4	 echo Auth::user()->email;

5	 echo '
Logout';

6	 } else {

7	 return back();

8	 }

9	}

In	the	above	code	we	can	use	the	‘Auth’	class	and	all	the	helpers	it	provides.	So	we	can
use	the	following	code	to	check	if	the	user	is	logged	in	or	not.

Auth::check()

The	Auth::check()	method	will	return	true	if	the	user	is	logged	in	or	it	will	return	false	if
the	user	is	not	logged	in.

Another	helper	method	that	we	used	in	the	code	above	is	the	Auth::user()	method	and
this	will	return	the	current	logged	in	user	object.	We	could	easily	echo	out	the	users	email
address	by	doing	this:

$user = Auth::user();

echo $user->email;

Or	all	in	one	line	we	could	write	it	like	this:

echo Auth::user()->email;

Make	sure	to	note	that	we	are	using	the	Auth	class	above.	We	need	to	specify	that	we	want
to	use	the	Auth	class	in	this	file	by	adding	this	to	the	top	of	the	UserController	file:

1	<?php

2	

3	namespace App\Http\Controllers;

4	

5	use Illuminate\Http\Request;

6	

7	use App\Http\Requests;

8	use App\Http\Controllers\Controller;

9	use Auth;

Make	sure	that	you	only	run	the	Auth::user()	method	after	you	have	checked	that	the
user	is	logged	in.

From	the	example	above,	if	the	user	is	not	logged	in	we	want	to	redirect	to	them	back	to
their	previous	URL:

return back();

The	back()	call	is	a	helper	function	that	will	redirect	the	user	back	to	the	previous	page.

Moving	on,	if	we	were	to	visit	the	‘/profile’	route	in	our	app	and	we’re	logged	in	we
would	see	a	simple	output	like	the	following:

Otherwise,	if	we	are	not	logged	in	we	will	be	redirected	back	to	our	previous	URL.

This	code	works	just	fine,	but	in	most	cases,	we	want	to	make	sure	that	we	aren’t
outputting	data	from	our	controller,	that’s	what	views	are	for.

Let’s	rewrite	our	UserController.php	to	look	like	the	following:

	1	<?php

	2	

	3	namespace App\Http\Controllers;

	4	

	5	use Illuminate\Http\Request;

	6	

	7	use App\Http\Requests;

	8	use App\Http\Controllers\Controller;

	9	use Auth;

10	use Redirect;

11	

12	class UserController extends Controller

13	{

14	 public function profile(){

15	 if (Auth::check()) {

16	 $user = Auth::user();

17	 $data = array('user' => $user);

18	 return view('profile', $data);

19	 } else {

20	 return back();

21	 }

22	 }

23	}

Inside	of	our	profile()	function,	if	the	user	is	authenticated	we	get	the	user	object	and
pass	it	in	an	array	of	data	to	a	view	called	profile.	So,	now	we	need	to	create	a	new	view
file	located	at	resources\views\profile.blade.php	with	the	following	contents:

	1	<!DOCTYPE	html>

	2	<html>

	3	<head>

	4	 <title> </title>

	5	</head>

	6	<body>

	7	 <p> </p>

	8	 <p>{{ Auth::user()->email; }}</p>

	9	

10	</body>

11	</html>

And	the	code	above	will	print	out	a	valid	HTML	page	with	the	similar	output	from	the

screenshot	above.

I	hope	you	can	see	the	power	of	this	built-in	authentication	system	and	how	much	time	it
will	save	you	in	the	future.	If	your	app	needs	an	authentication	system,	you	can	have	this
fully	integrated	within	minutes	thanks	to	Laravel!

Chapter	15	-	Requests

A	zombie	developer	doesn’t	handle	requests	efficiently,	whereas	a	Laravel	developer	uses
the	built-in	Request	class	to	handle	input	sanitization	and	security.

Requests	allow	our	app	to	receive	messages	from	the	client.	If	these	are	not	handled	well
or	efficiently	it	can	lead	to	a	deteriorating	user	experience	and	could	have	significant
vulnerabilities.

Requests
Laravel	is	built	on	top	of	PHP,	which	is	a	server-side	scripting	language.

This	server	side	language	can	accept	requests	from	the	client	(web	browser)	such	as
submitting	a	form	or	even	requesting	a	route	URL.

When	a	user	types	in	a	URL	in	their	browser,	the	browser	will	then	contact	or	send	a
request	to	the	server.	So,	when	data	is	sent	from	the	browser	to	the	server	it	is	called	a
‘Request’.

We	used	the	request	object	in	previous	chapters.	Back	in	chapter	4,	we	used	it	to	capture
the	id	of	a	zombie:

1	<?php

2	

3	use Illuminate\Http\Request;

4	

5	Route::delete('/zombie', function(Request $request){

6	 $id = $request->input('id');

7	 Zombie::destroy($id);

8	});

So,	whenever	we	want	to	use	the	Request	Class	we	need	to	make	sure	to	specify	that	we
want	to	use	the	Illuminate\Http\Request	namespace,	then	we	can	simply	pass	the
(Request	$request)	object	as	a	parameter.

The	request	class	offers	us	a	ton	of	awesome	information	including:

The	Request	URI
The	Request	Method
The	Request	Input
The	Request	Cookies
The	Request	Files

The	Request	URI

To	get	the	current	request	URI	we	could	do	the	following:

$uri = $request->path();

So,	if	we	tried	to	access	the	following	route:	site.com/zombie/1,	the	$uri	in	the	above
example	would	be	zombie/1.	Another	cool	thing	that	we	can	do	is	check	if	we	are
currently	on	a	particular	route,	like	this:

1	if	($request->is('zombie/*'))	{

2					//	we	have	hit	the	zombie/{id}	route

3	}

Inside	of	the	is	method	we	can	use	an	asterisk	*	as	a	wildcard.

If	we	wanted	to	fetch	the	full	URL	instead	we	could	simply	get	it	like	this:

$url = $request->url();

Request	Method

Now,	let’s	say	we	wanted	to	figure	out	what	kind	of	request	this	is.

Is	it	a	GET,	POST,	PUT,	or	DELETE	method?	Easy	peasy,	we	can	do	that	like	this:

$method = $request->method();

Or	we	could	use	the	isMethod	function	to	check	if	it	is	a	certain	request:

1	if	($request->isMethod('post'))	{

2					//	we	have	a	post	method

3	}

The	Request	Input

This	is	the	request	method	that	we	have	used	in	the	previous	chapters.	This	is	where	we
get	input	that	has	been	submitted	via	a	form	like	this:

$zombie_name = $request->input('name');

We	could	also	get	all	the	input	data	as	an	array	by	doing	the	following:

$input = $request->all();

Finally,	we	could	do	a	quick	check	to	see	if	the	request	has	a	certain	input	value:

1	if	($request->has('name'))	{

2					//

3	}

The	Request	Cookies

To	retrieve	a	cookie	value	from	our	request	we	could	simply	do	the	following:

$cookie = $request->cookie('name');

The	Request	Files

We	could	also	use	the	Request	class	to	retrieve	uploaded	files	like	so:

$file = $request->file('name');

And	we	could	check	if	the	request	has	a	file:

1	if	($request->hasFile('name'))	{

2					//

3	}

There	are	a	few	more	request	types	that	are	provided	by	the	Laravel	Request	class.	Be	sure
to	checkout	the	full	documentation	(https://laravel.com/docs/requests)	to	learn	more.

So,	we	just	learned	all	the	awesome	things	that	the	Request	class	offers	and	we	know	how
our	app	can	accept	requests,	but	what	can	it	do	after	it	gets	a	request?	Well,	it	can	also

send	a	response.	Our	application	can	receive	input,	and	it	can	also	send	output.	Let’s	learn
more	about	the	output	that	our	application	can	send.

Chapter	16	-	Responses

A	zombie	developer	does	not	respond	well	to	their	clients,	whereas	a	Laravel	developer
sends	clear	and	concise	responses.

When	we	refer	to	Responses	we	are	primarily	referring	to	the	output	that	we	send	to	the
client.	When	our	Laravel	app	receives	a	request,	it	can	then	send	a	response.

Responses
In	the	previous	chapter,	we	talked	about	requests	and	how	our	Laravel	app	can	accept
them.	In	this	chapter	we	are	going	to	go	over	the	Responses	our	app	can	send.

When	our	app	get’s	a	request,	it	can	also	return	a	response.

Here’s	a	simple	example	of	a	response:

1	Route::get('/apocalypse', function () {

2	 return 'End	of	the	World!';

3	});

In	the	example	above	our	laravel	app	retrieves	the	Request	of	a	GET	method	to	the
apocolypse	route	and	it	simply	returns	a	string	as	the	Response.	This	is	the	simplest	form
of	a	response.

So,	when	we	return	a	response	that	contains	HTML	our	Laravel	app	is	essentially
returning	an	HTML	document	that	gets	displayed	in	the	users	browser.

Attach	a	Cookie	to	a	Response

In	the	previous	chapter	we	talked	about	how	your	app	can	retrieve	a	cookie,	now	lets	see
how	we	can	set	a	cookie	by	attaching	it	to	a	response.	Remember	a	cookie	is	stored	on	the
client	side	(browser),	so	when	our	app	sends	a	response	it	will	need	to	attach	a	cookie	to
be	set	by	the	browser.

We	can	easily	do	this	by	attaching	it	to	the	end	of	a	view	response	like	so:

1	Route::get('set_cookie', function(){

2	 return response()->view('apocalypse')->withCookie('name', 'value');

3	});

JSON	responses

If	we	wanted	to	output	a	JSON	response	for	a	particular	route	we	could	use	the	following
syntax:

1	Route::get('json_response', function(){

2	 $data = array(

3	 'name' => 'Johnny	Bullet	Holes',

4	 'strength' => 'strong');

5	

6	 return response()->json($data);

7	});

By	running	the	route	above,	we	get	a	nice	JSON	output	as	the	response.

Lastly,	we	can	perform	a	redirect	as	a	response	like	so:

1	Route:get('redirect_me', function(){

2	 return redirect('zombie/1');

3	});

The	route	above	will	redirect	to	the	site.com/zombie/1	route	as	a	response.

It’s	pretty	straightforward,	right?	Our	application	gets	requests	and	sends	responses.	There
are	a	few	more	responses	that	you	may	want	learn	about	by	checking	out	the	docs	here
https://laravel.com/docs/responses.

Next,	let’s	move	on	to	something	exciting	called	migrations.

Migrations	are	a	way	of	storing	our	database	schemas	in	files	so	they	can	easily	be
versioned,	shared,	and	backed	up.

Chapter	17	-	Migrations

A	zombie	developer	exports	and	imports	SQL	files,	whereas	a	Laravel	developer	uses
migrations	to	import	and	export	database	schemas.

Exporting	and	importing	SQL	files	are	dead,	anyone	who	performs	these	actions	have
zombie	like	tendencies.

There	is	a	new	way	of	doing	data	backup	which	is	called	Migrations.

Migrations
If	you	have	ever	backed	up	any	of	your	PHP	web	apps,	you	are	probably	familiar	with
performing	a	MySQL	dump	backup,	which	is	a	dump	of	all	your	database	data	into	a
single	file.	This	way	when	you	want	to	restore	your	app	you	have	to	import	all	the
database	data.

If	you	are	familiar	with	working	on	a	team	and	someone	adds	a	new	row	to	the	database,
they’ll	have	to	send	you	over	an	updated	database	schema	which	may	conflict	with
another	modification.

Bleh…	It	just	gets	too	complicated	managing	multiple	iterations	of	your	database.

Well,	thanks	to	migrations,	MySQL	dumps	will	be	a	thing	of	the	past	and	sharing	your
updated	schemas	with	teammates	will	be	super	simple.	By	using	migrations,	you	can
create	files	in	your	app	that	store	the	database	structure.

If	you	remember	back	in	chapter	5	we	created	a	zombies	table	that	looked	like	the
following:

zombies

Field Type Length
id INT 11
name VARCHAR 50
strength VARCHAR 20
health INT 3
created_at TIMESTAMP 	
updated_at TIMESTAMP 	

Usually	to	create	a	database	table	we	would	open	up	phpMyAdmin,	Sequel	Pro,	or	some
other	kind	of	sequel	application	and	add	each	of	these	rows	one	at	a	time.

Alternatively	if	we	are	using	migrations	we	can	leverage	our	good	‘ol	friend	artisan	to
help	us	with	this.

Let’s	create	our	first	migration	using	the	artisan	tool:

$	

After	running	the	following	command,	you	will	see	a	new	file	that	has	been	created	inside
your	project	located	in	the	database\migrations	folder,	and	it	probably	looks	something
like:

XXXX_XX_XX_XXXXXX_create_zombie_table.php,	the	X's	resemble	a	datetimestamp.

Make	sure	to	notice	that	there	are	already	2	files	in	this	folder	which	are
*_create_users_table.php	and	*_create_password_resets_table.php.	These	are
migrations	that	come	prepackaged	with	Laravel	and	are	used	to	create	the	tables	used	by
the	built-in	authentication	functionality	we	discussed	in	Chapter	14.

Let’s	open	up	our	new	zombie	migration	file	and	you	should	see	something	similar	to	the
following:

	1	<?php

	2	

	3	use Illuminate\Database\Schema\Blueprint;

	4	use Illuminate\Database\Migrations\Migration;

	5	

	6	class CreateZombieTable extends Migration

	7	{

	8	 /**

	9						*	Run	the	migrations.

10						*

11						*	@return	void

12						*/

13	 public function up()

14	 {

15	 //

16	 }

17	

18	 /**

19						*	Reverse	the	migrations.

20						*

21						*	@return	void

22						*/

23	 public function down()

24	 {

25	 //

26	 }

27	}

Notice	that	there	are	2	methods	available	in	our	new	migration	class.

We	have	an	up()	method	and	a	down()	method.	The	up	method	is	used	to	modify
something	in	our	database	and	the	down	method	is	used	to	reverse	what	we	did	in	the	up
method.

Let’s	add	some	code	to	the	up()	method	that	looks	like	the	following:

	1	public function up()

	2	{

	3	 Schema::create('zombies', function (Blueprint $table) {

	4	 $table->increments('id');

	5	 $table->string('name');

	6	 $table->string('strength');

	7	 $table->tinyInteger('health');

	8	 $table->timestamps();

	9	 });

10	}

Now,	if	we	have	an	empty	database	and	we	were	to	run	the	following	command:

$	

All	our	migrations	will	then	be	run	and	we	should	see	a	few	tables	inside	our	database
including	the	zombies	table.

If	we	were	to	add	the	following	to	our	down	function:

1	public function down()

2	{

3	 Schema::drop('zombies');

4	}

And	we	run:

$	

It	will	run	our	down()	method	and	we	will	no	longer	see	our	zombies	table	in	our
database.

Hopefully,	you	can	see	the	power	of	migrations.	We	could	easily	share	a	GitHub	repo	with
another	user	and	they	could	pull	our	code	down	and	create	a	new	database.	Then	they	can
run	the	migrations	and	they	will	have	the	most	up-to-date	database	schema.

There	are	many	other	types	of	functionality	you	can	run	in	your	up	and	down	methods,	be
sure	to	checkout	the	full	documentation	on	migrations	at	Laravel’s	documentation	to	learn
more.

Fantastic!

Migrations	allow	us	to	save	and	version	our	database	schema	in	our	project	files!	What
about	the	actual	data	that	gets	inserted	into	our	database?	What	if	we	had	some	data	that
we	wanted	to	seed	into	our	database	schema.	Simple	enough	we	can	do	that	by	using
Seeds.

Chapter	18	-	Seeds

A	zombie	developer	imports	data	into	their	database	with	an	SQL	data	dump,	whereas	a
Laravel	developer	uses	Seeds	to	input	default	data	into	their	application.

If	you	were	to	build	an	application	that	does	not	have	any	data,	it	would	look	pretty
useless.	Luckily	we	can	leverage	seeds,	which	allow	us	to	add	default	data	into	our
database	schemas.	So,	when	we	hand	over	our	app	to	another	developer	we	can	always
make	sure	there	is	a	little	bit	of	seed	data	to	work	with.

Seeds
Laravel	allows	us	to	add	test	data	into	our	application.	This	is	referred	to	as	seeding	the
database.	In	the	previous	chapter	we	talked	about	migrations	and	in	this	chapter	we	will
talk	about	seeds	which	is	the	data	stored	in	our	database.

Let’s	work	off	of	our	previous	examples	where	we	had	a	zombie	table	in	the	previous
chapters.	Inside	of	the	database	we	had	2	test	zombies	that	were:

Johnny	Bullet	Holes
Ted	Manwalking

Now	if	we	have	the	database	migration	for	the	zombies	table	in	the	previous	example	we
could	hand	over	our	application	to	another	developer	and	they	can	run	php	artisan
migrate	and	be	up	and	running	with	the	zombies	table.	Well,	what	if	we	also	wanted	to
include	our	two	zombies	in	the	database?

We	can	create	a	Zombie	Table	Seeder	for	that.

Let’s	go	ahead	and	use	our	friend	artisan	again:

$	

After	running	this	command	we	will	see	a	new	file	has	been	created	inside	of
database\seeds\ZombieTableSeeder.php,	and	the	contents	of	that	file	will	look	similar
to	the	following:

	1	<?php

	2	

	3	use Illuminate\Database\Seeder;

	4	

	5	class ZombieTableSeeder extends Seeder

	6	{

	7	 /**

	8						*	Run	the	database	seeds.

	9						*

10						*	@return	void

11						*/

12	 public function run()

13	 {

14	 //

15	 }

16	}

The	function	that	will	run	when	we	want	to	seed	the	database	is	the	run()	method,	and
this	is	where	we	will	want	to	put	our	code.	To	seed	our	zombie	database	with	our	two
zombies	we	could	add	this	to	our	run	method:

1	public function run()

2	{

3	 $zombies = array(

4	 ['name' => 'Johnny	Bullet	Holes', 'strength' => 'Strong', 'health' =\

5	> 70],

6	 ['name' => 'Ted	Manwalking', 'strength' => 'Weak', 'health' => 90]);

7	 DB::table('zombies')->insert($zombies);

8	}

What	we	have	done	is	create	an	array	of	zombies	containing	their	name,	strength,	and
health.	We	then	use	the	DB	facade	class	to	insert	our	zombies	into	the	Zombies	table.	To
run	this	seeder	we	will	run	the	following	artisan	command:

$ php artisan db:seed

And	now	if	we	look	in	our	database	we	will	have	our	2	zombies	in	the	Zombies	table.

Now	we	can	use	version	control	for	our	data,	so	when	a	new	developer	pulls	a	fresh	copy
of	our	app	on	their	computer	they	will	also	have	the	data	from	our	database.

Gone	are	the	days	of	passing	around	an	.sql	file	and	now	are	the	days	of	creating
migrations	and	seeds.	This	is	just	another	example	of	how	Laravel	makes	our	lives	easier.
Let’s	move	on	to	learning	about	the	built-in	security	that	laravel	provides.

Chapter	19	-	Security

A	zombie	developer	doesn’t	care	about	security,	whereas	a	Laravel	developer	can	rest
assure	that	their	app	is	secure	from	some	of	the	most	common	app	vulnerabilities.

We	want	to	make	sure	that	no	one	can	hack	into	our	application,	and	luckily	Laravel	has
been	built	to	prevent	some	of	the	more	common	ways	that	users	hack	into	systems.

Security
Security	is	an	important	thing	when	it	comes	to	building	applications.	Luckily	for	us,	we
have	decided	to	use	Laravel	which	includes	security	features	such	as	SQL	Injection,	Cross
Site	Scripting,	and	Cross	Site	Request	Forgery.

Don’t	worry	if	you	don’t	know	much	about	any	of	these	protections.	We’ll	explain	them
below:

SQL	Injection

SQL	Injection	is	when	someone	tries	to	hack	an	input	that	gets	submitted	into	the
database.	Say	we	were	to	run	a	SQL	command	like	so:

1	$weapon_name = $_POST['weapon_name'];

2	$query = 'INSERT	INTO	weapons	VALUES	('1', $weapon_name);

The	user	could	easily	enter	in	a	value	to	the	weapon	name	to	Inject	SQL	into	our	query.
So,	they	could	potentially	run	a	query	and	drop	a	table	or	a	database.

Check	out	this	XKCD.com	comic:

Thanks	to	Laravel	and	Eloquent	we	don’t	have	to	worry	about	SQL	injection.

Cross	Site	Scripting

Cross-site	scripting	occurs	when	a	hacker	adds	malicious	code	in	the	form	of	a	client	side
script.	So,	pretend	you	have	a	comment	text	area	and	someone	put	in	the	following	and
submitted	it	as	a	comment:

<script> </script>

Now	whenever	someone	visits	that	page,	they	will	be	alerted	with	this	annoying	popup.
You	can	see	that	this	could	be	dangerous	because	the	user	could	even	redirect	that	page	to
another	page.

Thankfully	by	using	the	blade	templating	engine	we	can	output	any	data	and	protect
against	Cross-site	Scripting	attacks	by	using	the	triple	curly	brace	syntax:

{{{ $user_comment }}}

That	output	above	would	be	sanitized	to	prevent	any	Cross-site	Scripting	(also	referred	to
as	XSS	attack).

Cross-site	Request	Forgery

Finally,	there	is	another	attack	called	Cross	Site	Request	Forgery	that	Laravel	can	prevent
against.	This	occurs	someone	modifies	a	POST/PUT/DELETE	request	being	sent	to	your
server.

A	possible	scenario	is	a	hacker	who	modifies	the	data	being	sent	by	a	request	from	the
browser	to	the	server.	The	hacker	could	intercept	the	request	and	swap	out	values,	causing
the	web	application	to	perform	functionality	that	it	normally	might	not	have.

Thankfully,	Laravel	is	here	to	save	the	day	against	CSRF	attacks.

When	you	submit	a	form	you	can	include	a	hidden	input	type	with	a	name	of	_token	and
the	value	of	csrf_token()	and	Laravel	will	handle	the	rest.	The	form	will	look	similar	to
the	following:

1	<form method="POST" action="/zombie">

2	

3	 <input type="hidden" name="_token" value="{{ csrf_token() }}">

4	 <input type="submit">

5	</form>

And	Laravel	will	handle	all	the	rest.	If	a	POST/PUT/DELETE	request	is	submitted	and	the
security	token	does	not	match,	the	data	will	not	be	posted	to	the	application.

Note:	To	leverage	this	CSRF	protection	you	will	need	to	use	the	web	middleware	group
that	we	talked	about	in	previous	chapters:

1	Route::group(['middleware' => ['web']], function () {

2	 //	Your	routes	here	will	use	CSRF	protection

3	});

And	you	can	sleep	peacefully	knowing	that	your	site	is	safe	against	any	CSRF	attacks.

It	can	get	very	tiring	making	sure	your	app	is	as	secure	as	possible,	but	thanks	to	Laravel
we	can	focus	on	what	we	enjoy	most,	building	our	app.

Chapter	20	-	Testing

A	zombie	developer	releases	code	and	hopes	it	doesn’t	break,	whereas	a	Laravel	developer
writes	automated	tests	to	guarantee	that	new	code	does	not	break	any	functionality	in	their
app.

Say	that	you	are	given	a	few	grenades	during	the	zombie	apocalypse	and	the	person	giving
you	these	grenades	says,	“I	think	they	should	work,	they’ve	been	stored	away	for	many
years”.	Wouldn’t	you	rather	have	them	say,	“These	are	our	finest	top	of	the	line,	tested	to
blow	the	roof	off	of	anything	grenades”

Yeah,	of	course	you	would	feel	better	throwing	the	grenade	into	a	swarm	full	of	zombies
that	you	know	are	tested	to	work.	That’s	why	testing	is	so	important.	We	want	to	guarantee
that	our	app	works	in	any	situation.

Testing
Testing	your	app	is	essential	for	ensuring	it	works	correctly.

I’m	sure	we’ve	all	done	some	testing	to	some	extent.	If	we	open	our	application,	look	at
data,	or	even	click	a	few	links	then	we	have	tested	our	application.	The	only	problem	with
manual	testing	is	that	it	can	be	very	time	consuming.

Imagine	for	every	line	of	code	you	change	you	have	to	go	back	and	run	through	your
whole	application	to	make	sure	it’s	all	functioning	correctly.	That	would	be	absurd,	right?
Only	a	zombie	would	mindlessly	perform	these	repetitive	tasks	over	and	over	again.

Lucky	for	us	we	can	automate	our	testing	by	using	PHPUnit	that	is	included	by	default
with	a	fresh	install	of	Laravel.

Let’s	go	over	an	easy	example	of	how	testing	can	help	us	out.	Let’s	say	that	we	have	a
page	with	a	simple	link	called	‘Invetory	of	Weapons’	that	would	bring	us	to	a	page	that
says	‘Weapons.’

Well,	in	that	case,	we	would	probably	have	a	view	file	called	artillery.blade.php	that
contained	the	following	HTML:

	1	<html>

	2	<head>

	3	 <title> </title>

	4	</head>

	5	<body>

	6	

	7	

	8	

	9	</body>

10	</html>

So,	this	page	is	loaded	when	we	go	to	site.com/artillery	and	when	that	link	is	clicked
we	go	to	a	page	at	site.com/weapons,	so	we	would	need	2	routes	for	this,	which	would
look	like	the	following:

1	Route::get('artillery', function(){

2	 return view('artillery');

3	});

4	

5	Route::get('weapons', function(){

6	 return view('weapons');

7	});

And	each	of	these	will	load	the	view.	Now,	we	want	to	guarantee	that	anytime	we	visit	the
artillery	page	we	see	‘Inventory	of	Weapons’	and	when	we	click	on	the	link,	we	then	end
up	on	the	weapons	page.

For	simplicity	sake	we	will	just	assume	that	when	you	land	on	the	weapons	page	(located
at	resources\views\weapons.blade.php)	that	it	has	the	text	‘Weapons’	on	the	page,	like
so:

	1	<html>

	2	<head>

	3	 <title> </title>

	4	</head>

	5	<body>

	6	

	7	 <h1> </h1>

	8	

	9	</body>

10	</html>

Next,	lets	create	our	first	test.

$	

After	running	the	artisan	command	above,	we	will	end	up	with	the	following	code	inside
of	a	new	file	created	at	tests\ArtilleryTest.php:

	1	<?php

	2	

	3	use Illuminate\Foundation\Testing\WithoutMiddleware;

	4	use Illuminate\Foundation\Testing\DatabaseMigrations;

	5	use Illuminate\Foundation\Testing\DatabaseTransactions;

	6	

	7	class ArtilleryTest extends TestCase

	8	{

	9	 /**

10						*	A	basic	test	example.

11						*

12						*	@return	void

13						*/

14	 public function testExample()

15	 {

16	 $this->assertTrue(true);

17	 }

18	}

So,	by	default,	we	are	given	a	test	example.	This	test	example	is	just	hard-coded	to	be	true.
So,	let’s	run	this	test	by	typing	in	the	following	command:

$	

After	running	this	command	you	should	see	a	message	in	your	command	line	that	says
something	similar	to:

OK (1 test, 1 assertion)

Which	means	that	we	have	run	1	test	and	1	assertion	and	everything	was	fine.

Why	don’t	we	go	ahead	and	add	a	new	method	to	our	ArtilleryTest	class	that	looks	like	the
following:

1	public function testArtilleryPage(){

2	 $this->visit('/artillery')

3	 ->see('Inventory	of	Weapons')

4	 ->click('Inventory	of	Weapons')

5	 ->seePageIs('/weapons');

6	}

Notice	that	each	function	must	be	prepended	with	test.	Let’s	run	our	test	again:

$	

And	we	should	see	a	green	success	message	since	we	went	to	the	artillery	route	and
clicked	the	‘Inventory	of	Weapons’	and	then	landed	on	the	weapons	page.

Try	changing	up	the	text.	Say	for	instance	that	the	link	in	the	artillery.blade.php	file	said
‘Inventory	of	our	Weapons’	instead	of	‘Inventory	of	Weapons’.	If	we	run	the	test	again,	we
will	see	a	red	error	message	saying	that	our	tests	have	failed.

You	can	think	of	this	as	a	game	if	you	like.	When	we	see	green	we	are	currently	winning!
But	if	we	see	red	that	means	we	have	a	problem	and	we	need	to	figure	out	what	needs	to
be	fixed	to	pass	our	test.

Just	imagine	every	time	we	make	a	modification	to	our	code	we	could	simply	run	through
our	tests	and	guarantee	that	we	have	not	broken	anything.	How	much	easier	would	it	be	to
sleep	at	night	knowing	that	the	code	you	just	pushed	didn’t	break	anything?

This	was	a	very	simple	example	just	to	give	you	a	quick	idea	of	how	tests	can	work,	but
there	are	many	more	things	that	you	can	test	besides	user	interaction.	Be	sure	to	read	up
more	about	Laravel	tests	on	the	documentation	page.	We’ll	also	provide	some	awesome
resources	you’ll	want	to	check	out	in	the	next	chapter.

Chapter	21	-	Wrapping	Up

A	zombie	developer	does	not	typically	read	books,	whereas	a	Laravel	developer	finishes
books	they	have	started	and	they	always	continue	learning.

It	looks	like	you’re	on	your	way	to	becoming	an	awesome	Laravel	Developer!

Wrapping	Up
Whoa!	We	made	it!	You	just	learned	the	basics	of	Laravel,	and	shortly	you’ll	be	on	your
way	to	building	the	latest	and	greatest	app!

There	are	so	many	more	fun	things	to	learn	about	Laravel	that	we	have	not	included	in	this
book,	so	be	sure	to	head	over	to	the	Laravel	documentation	and	give	it	a	read.

It’s	one	of	the	most	enjoyable	documentations	available.	http://laravel.com/docs

Resources
Laravel	has	quickly	become	one	of	the	most	popular	PHP	frameworks	available	today.	It
should	be	no	doubt	that	there	are	plenty	of	resources	out	there	that	you	will	want	to	have
in	your	back	pocket.

Here	are	some	resources	that	will	help	you	on	your	way	to	advancing	your	Laravel	skills:

https://laravel.com/docs	(The	Laravel	Docs)
https://laracasts.com/	(Best	Video	Resource	for	Modern	PHP	and	Laravel)
https://laravel-news.com/	(Latest	news	on	Laravel)
https://scotch.io/	(Awesome	resource	for	Laravel	Articles)
http://devdojo.com/	(Video	resource	with	Dev	&	Laravel	Screencasts)

Words	of	Encouragement
Before	you	set	off	on	your	journey	to	becoming	a	better	PHP	developer	and	leveraging	the
powers	of	Laravel	I	want	to	share	a	bit	of	wisdom	with	you.

Having	fellow	developers	around	you	can	help	you	grow	and	increase	your	skills;
however,	there	may	also	be	other	developers	who	will	tell	you	the	way	you	are	doing
things	are	wrong	and	that	you	should	be	doing	things	this	way	or	that	way.

These	kinds	of	people	can	distract	or	discourage	you	from	time	to	time.

So,	my	words	of	encouragement	when	you	encounter	people	like	that	is	to	take	what	they
have	to	say	with	a	grain	of	salt.	Many	people	will	help	you	learn	something	new,	but	some
may	prevent	you	from	learning	something	new.

Never	be	afraid	to	take	chances	and	to	keep	pushing	the	envelope.

My	advice	is	to	block	out	any	negativity	or	discouragement.	We	are	all	in	this	together	and
when	it	comes	down	to	it,	there	is	no	right	or	wrong	way	to	do	things.	If	you	have	done
something	wrong	and	it	has	forced	you	to	learn,	then	that	wrong	thing	was	the	right	thing
to	do	to	get	you	to	your	next	level.

A	New	Reality
Using	Laravel	and	bettering	your	knowledge	of	development	will	open	up	a	wide	array	of
opportunities.	A	new	reality	will	open	up,	whether	that	is	to	work	for	yourself	one	day	or
to	make	some	extra	money	on	the	side.

Being	a	web	developer	is	an	excellent	and	exciting	career	choice.	The	demand	for	web
developers	is	at	an	all	time	high.

If	you	are	just	starting	off	in	web	development,	I	would	like	to	encourage	you	to	keep	on
going!	If	you	have	already	been	doing	web	development	for	some	time,	give	yourself	a	pat
on	the	back	because	you’ve	made	a	great	choice.

Most	people	will	agree	that	building	or	creating	something	is	very	gratifying,	and	as	web
developers	we	get	to	do	just	that!	We	get	to	take	an	idea	and	make	it	come	to	life!

The	web	development	world	is	always	evolving	and	constantly	changing,	so	to	continue
growing	as	a	web	developer	here	are	some	key	points	that	you’ll	want	to	remember:	keep
learning,	keep	encouraging,	and	keep	creating.

	Thanks
	Introduction
	Chapter 1 - Getting Started
	Chapter 2 - Composer & The Laravel Installer
	Chapter 3 - The Laravel Structure
	Chapter 4 - Routing
	Chapter 5 - Models
	Chapter 6 - Model Relationships
	Chapter 7 - Mutators
	Chapter 8 - Views
	Chapter 9 - Blade
	Chapter 10 - Controllers
	Chapter 11 - Piecing It Together
	Chapter 12 - Artisan
	Chapter 13 - Middleware
	Chapter 14 - Authentication
	Chapter 15 - Requests
	Chapter 16 - Responses
	Chapter 17 - Migrations
	Chapter 18 - Seeds
	Chapter 19 - Security
	Chapter 20 - Testing
	Chapter 21 - Wrapping Up

