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2 INTRODUCTION 

2.1 USING THE MANUAL 

2.1.1 About The Manual 

This manual provides an overview about uFVM code. The manual describes with sufficient 

details the structure of the code, the range of applicability and who may use it. The way through 

which a CFD case is prepared is then described and plenty of tutorials are accordingly provided. 

In other words, this manual presents a complete set of instructions for the user to follow in 

order to setup a CFD problem. 

2.1.2 Terms of Use 

uFVM is an academic CFD tool made for learning purposes. It provides a package of libraries and 

algorithms that the user can comfortably follow up. Handling, distributing or modifying is fully 

permissible; the user has the full permission to add any piece of code or modify an existing one. 

2.2 ABOUT THE CODE DEVELOPMENT AND AUTHORS 

2.2.1 What’s uFVM? 

The name of the code presents an abbreviation letters of the finite volume method (FVM) that 

the code is based on. The “u” at the beginning of the name points for a fluid flow. The code is 

developed in Matlab® environment because it is assumed that the majority of interested people 

are familiar with this environment. 

2.2.2 The Place and Time of Development 

The code is developed in the computational mechanics lab at the American University of Beirut, 

Beirut, Lebanon. The development has started in 2003 and was built and updated gradually 

through years. Lots of versions were made each of them had a different structure but 

necessarily the same theoretical background. 

2.2.3 Developers 

The code is a direct accomplishment of the CFD group at the American University of Beirut. The 

CFD group is a team of professors, graduate and undergraduate students. Their main objective is 

to build computational knowledge and work on plenty of related topics in both tracks 

development and application. The team is very familiar with Ansys Fluent® and OpenFOAM®; 

they utilize these packages for many purposes. uFVM for example was validated in reference to 

these packages. The group’s accomplishments, research topics and published work are posted 

on their website https://feaweb.aub.edu.lb/research/cfd. The major contributor to the code is 

https://feaweb.aub.edu.lb/research/cfd
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Professor Marwan Darwish1. A co-contributor to the code is Professor Fadl Moukalled2. The 

other contributors to the code are Master and PhD students who accomplished their theses and 

dissertations from the computational mechanics lab at the American University of Beirut. 

2.3 RANGE OF APPLICABILITY 
uFVM works for incompressible fluid flows with any type of mesh (structured and unstructured). 

For consistency, the code doesn’t include any geometry modeling or meshing capabilities. It 

accepts mesh files of OpenFOAM format. 

 It is worth mentioning that uFVM is a solver which solves the conservation equations (transport 

equations) where the user is able to investigate any physical quantity of interest which is 

transported by means of a physical phenomenon like convection and diffusion. It is possible also 

to set any form of an explicit term into the conservation equation like external forces; these are 

treated as source terms. A transient treatment is also included. The domain usually assumes a 

fluid flow. However, the code may still apply to solid domains if the user seeks certain transport 

quantities in a solid, obviously the temperature distribution. 

The code may also handle multi-phase flows. The current distributed version of uFVM doesn’t 

include compressible and multi-phase solvers as they are still under construction and revision. 

For further information about the status of multi-phase solver, the user may contact any of the 

contributors. 

It is not the purpose of this code to provide a CFD tool for conducting fluid flow simulations for 

heavy/complex applications. There are two issues to raise here. First, this code is made for those 

who are mainly learning CFD and/or interested in CFD code development. This code provides a 

very useful and helpful means for those people. Second, the user should necessarily realize that 

Matlab is a highly user friendly language; this makes it very convenient for learning issues much 

more than it is for conducting real life engineering applications. However, this friendly user 

specialty had an expense at the computational time; Matlab is slower than other lower level 

languages. 

2.4 A GLANCE INTO UFVM’S DISCRETIZATION AND SOLUTION METHODS 
Only pressure-based methods are available in uFVM with SIMPLE method as the default scheme. 

The default convection scheme is the Upwind scheme, but however, different convection 

schemes are also available like (SOU, QUICK, SMART, etc.). Gradient computation is based on 

the first-order Gauss approximation whether it is cell-based or nodal-based. The “ILU” and 

“SOR” solvers are available along with a multi-grid (AMG) solver which utilizes any of the fixed 

cycles (V, F, or W Cycle). Under-relaxation factors for any given quantity are treated implicitly in 

                                                           
1 Professor Darwish has gained his PhD from Brunel University in 1985. His major research topics are 
computational fluid dynamics, classical fluid mechanics and material sciences. He’s currently acting as a 
full time professor at the American University of Beirut. 
2 Professor Moukalled has gained his PhD from Louisiana University in 1987. His major research topics are 
compressible flows, computational fluid dynamics, modeling energy systems. He’s currently acting as a 
full time professor at the American University of Beirut.  
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the equations. All these solution methods and controls are presented in a more detailed 

framework in later parts of the manual. 
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3 STRUCTURE OF THE CODE 

The uFVM directories are distributed into sources, which are the routines that make up the 

code, and tutorials that include the test cases. 

3.1 SOURCE FILES 
The source code is available in the ‘ufvm/src’ directory.  It is distributed to different folders, 

‘fvm’ and ‘utilities’. ‘fvm’ contains the finites volume methods, algorithms and solution. ‘utilities’ 

contains all auxiliary functions. 

3.2 TUTORIALS 
There are set of tutorials that allows the user to work with ufvm. These tutorials are classified as 

basic, incompressible, compressible, multiphase and heatTransfer. Cases that are to be 

simulated are to be made in OpenFOAM format. OpenFOAM cases include 3 main directories: 

‘0’, ‘system’ and ‘constant’. The ‘0’ directory is where initial and boundary conditions are 

specified. The ‘system’ directory includes the solution methods, the finite volume schemes and 

the time and write controls of the simulation. The ‘constant’ directory includes the mesh files, 

the fluid properties (transport and/or thermophysical), gravity properties and turbulence 

properties. For further information, refer to the tutorials. 
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4 INTRODUCTORY TEST CASE 

4.1 MAIN FILE: RUNNING A CASE 
The code runs from a main script, usually called ‘run’. The ‘run’ file has to be located in an 

OpenFOAM case as mentioned earlier.  It represents the case study or the problem definition. 

This is the only file of importance for the user. The main file contains a set of functions that build 

up the model. However, the user has to add the path of uFVM source files by typing the 

following command into the command window: 

addpath(genpath('~location of uFVM~/uFVM/src')); 

 

4.2 EXAMPLE 
The incompressible ‘elbow’ example will be presented here. 

 

Listing 1 - Run file of the case named ‘elbow’ in the incompressible tutorials directory 

 

4.2.1 Header 

The script starts by few words expressing a header and providing a summary of the case: 

%-------------------------------------------------------------------------- 
% 
%  written by the CFD Group @ AUB, 2017  
%  contact us at: cfd@aub.edu.lb 
%========================================================================== 
% Case Description: 
%     In this test case a water flow in an elbow is simulated 
%-------------------------------------------------------------------------- 

 

%-------------------------------------------------------------------------- 
% 
%  written by the CFD Group @ AUB, 2017  
%  contact us at: cfd@aub.edu.lb 
%========================================================================== 
% Case Description: 
%     In this test case a water flow in an elbow is simulated 
%-------------------------------------------------------------------------- 

  
% Setup Case 
cfdSetupSolverClass('incompressible'); 
  

% Read OpenFOAM Files 

cfdReadOpenFoamFiles; 

  

% Setup Time Settings 

cfdSetupTime; 

  

% Setup Equations 

cfdDefineEquation('U', 'ddt(rho*U) + div(rho*U*U) = laplacian(mu*U) + div(mu*transp(grad(U))) 

 - grad(p) + rho*g'); % Momentum 

cfdDefineEquation('p', 'div(U) = 0'); % Continuity 

cfdDefineEquation('T', 'ddt(rho*Cp*T) + div(rho*Cp*U*T) = laplacian(k*T)'); % Energy 

  

% Initialize case 

cfdInitializeCase; 

  
% Run case 
cfdRunCase; 
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4.2.2 Setup Solver Class 

The user has to set the class of the application. The application can be one of the following: 

basic-incompressible-compressible-multiphase-heatTransfer. These are the standard 

OpenFOAM tutorial classes. 

4.2.3 Read OpenFOAM Files 

OpenFOAM files are imported at this level to Matlab and stored in a global variable called 

‘Domain’. In fact, all OpenFOAM input information are stored in a structure called foam within 

the global Domain variable. The table below presents the settings that the user must or may 

include in the OpenFOAM files: 

Option/Setting Name Description Location 
residualControl 

 
The equations’ tolerances 
(convergence criteria) 

system/fvSolution 

relaxationFactors The under-relaxation factors 
to be applied to the 
equations 

system/fvSolution 

ddtSchemes The transient scheme (steady 
or transient). The options 
are: 
steadyState 
Euler 

system/fvSchemes 

divSchemes 

 
The convection scheme. The 
options are: 
Gauss upwind 
Gauss linear 

system/fvSchemes 

startFrom 
 

This tells the solver from 
where to start. The options 
are: 
firstTime 
startTime 
latestTime 

system/controlDict 

startTime 

 
The initial time of the 
simulation 

system/controlDict 

stopAt 

 
This tells the solver until 
when to stop. The options 
are: 
endTime 

system/controlDict 

endTime 

 
The final time of the 
simulation 

system/controlDict 

deltaT 

 
The time step of the 
simulation 

system/controlDict 

writeControl 

 
The criterion that the solver 
writes the results based on. 
The options are: 
timeStep 

system/controlDict 

writeInterval Write results every specified 
number of time steps (if the 

system/controlDict 
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writeControl is set to 
timeStep) 

 

4.2.4 Setup Time 

The function cfdSetupTime sets time controls and other conditions for the simulation. Other 
conditions of the simulation are related to multiphase flow model which will not be considered 
in the current uFVM version. The following table presents the valid arguments of the function: 
 

4.2.5  Setup Equations 

The user has to define the equations that are to be solved. The equations that are being solved 

in the above example are described below. 

Momentum: 

𝜕(𝜌𝒗)

𝜕𝑡
+ ∇. (𝜌𝒗𝒗) = 𝜇∇2𝒗 + ∇. {𝜇(∇𝒗)𝑇} − ∇𝑝 + 𝜌𝒈 

Continuity: 

∇. 𝒗 = 0 

Energy: 

𝜕(𝜌𝑐𝑝𝑇)

𝜕𝑡
+ ∇. (𝜌𝑐𝑝𝒗𝑇) = 𝑘∇

2𝑇 

 

4.2.6 Initialize Case 

The case is initialized after that by evaluating all the fields with their corresponding values on 

the mesh. For example, the field variables (variables to be solved for), have initial values that are 

imported from the OpenFOAM ‘0’ directory. The properties are evaluated based on their values 

dictated by the ‘transportProperties’ file or ‘thermophysicalProperties’ file in case of a 

compressible flow; these are found in the ‘constant’ directory. 

4.2.7 Running the Case 

The case is made to run at this level, iterating over the equations until convergence. The 

convergence criteria can be found in the ‘fvSolution’ file in the ‘system’ directory within 

OpenFOAM folders. 
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5 READING AND PLOTTING OPENFOAM MESH 

When in the case, a user may read the OpenFOAM mesh and visualize it before running the 

case. The following commands are all what the user needs to do so: 

To read the mesh, the function cfdReadPolyMesh has to be called. The uFVM will go to the 

‘constant/polyMesh’ directory, read the files there, and store the mesh information in the 

database. To plot the mesh, the user has to use the function cfdPlotMesh; the mesh will then 

be plotted: 

 

Figure 1 - Plotted mesh 

 

To witness the details of the read mesh, the user has to call for the mesh from the database by 

writing: 

mesh = cfdGetMesh 
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The mesh will be printed out such as: 

 

The information printed out above are structures and values that store the quantitative and 

qualitative details of the mesh. For instance, see the number of elements (numberOfElements: 

4000) and the number of patches (numberOfPatches: 3). The information of any element or face 

can be witnessed by accessing it from the corresponding structure. If I want to see the details of 

element number 100 in the mesh, I can simply write mesh.elements(100)and the output is: 

mesh =  

 

  struct with fields: 

 

                    nodes: [1×4851 struct] 

            numberOfNodes: 4851 

            caseDirectory: 'constant/polyMesh' 

            numberOfFaces: 12800 

         numberOfElements: 4000 

                    faces: [1×12800 struct] 

    numberOfInteriorFaces: 11200 

               boundaries: [1×3 struct] 

       numberOfBoundaries: 3 

          numberOfPatches: 3 

                 elements: [1×4000 struct] 

        numberOfBElements: 1600 

           numberOfBFaces: 1600 

                    cconn: {4000×1 cell} 

                    csize: [4000×1 double] 
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The previous commands can also be applied to faces and nodes. The user may also visualize the 

elements, faces and patches. In order to plot patch #1 for instance, the function 

cfdPlotPatches(1) has to be called. The output figure is: 

 

>> theMesh.elements(100) 

 

ans =  

 

  struct with fields: 

 

                 index: 100 

           iNeighbours: [80 99 120 300] 

                iFaces: [235 291 294 295 12205 12595] 

                iNodes: [104 335 336 105 125 356 357 126] 

                volume: 0.1250 

              faceSign: [-1 -1 1 1 1 1] 

    numberOfNeighbours: 4 

             OldVolume: 0.1250 

              centroid: [3×1 double] 
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Figure 2 - Plotted mesh and patch number 1 

 

Elements and faces may also be visualized using the functions cfdPlotElements and 

cfdPlotFaces. If more than an entity are to be plotted, say 3 entities of indecis 1, 2 and 3, and 

considering plotting the elements, the user has to call cfdPlotElements([1 2 3]). The 

output figure is: 
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Figure 3 - Visualizing elements 1, 2 and 3 
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6 AN INTRODUCTORY PRESENTATION OF UFVM FUNCTIONS 

6.1 APPLICATION CLASS 
Different applications give rise to different ways of treating the fluid flow equations. Thus a user 

has to set an application class by choosing any of the following applications (basic, 

incompressible, compressible, heatTransfer and multiphase). It is significantly important to set 

the right application class because it is the basis of many things inside the code. 

6.2 READING OPENFOAM FILES AND TRANSLATION TO UFVM 
As mentioned previously, uFVM cases are prepared in OpenFOAM format. This choice was made 

because OpenFOAM is a widely used CFD library (C++ based). Preparing an OpenFOAM case is 

quite straight forward for each application class. Refer to the tutorials and check the way in 

which each application is being prepared. 

uFVM’s function cfdReadOpenFoamFiles reads all the files that exist in the 3 standard 

OpenFOAM directories ‘0’, ‘constant’ and ‘system’. It searches for specific entries and blocks 

within the files and stores them in the uFVM’s data base. See the following table for details 

about the read files: 

 

The above FOAM details are imported and stored in the data base ‘Domain’ under the structure 

‘foam’ as such: 

OpenFOAM 
Case 
Directory

'system' 
Directory

fvSolution block: solvers

block: SIMPLE/PISO/ALGORITHM

block: relaxationFactors

fvSchemes block: ddtSchemes

block: divSchemes

block: laplcaianSchemes

Other Finite Volume Operators

controlDict key: startFrom
key: startTime
key: stopAt
key: endTime
other control options

'constant' 
Directory

polyMesh boundary
points
faces
owner
neighbour
Others

transportProperties/thermophysicalProperties Collect all properties and their attributes (values, 
dimensions, models, expressions)

turbulenceProperties key: simulationType i.e. RAS
key: RASModel
key: turbulence
key: printCoeffs

g Collect gravitational acceleration vale i.e. (0 0 -9.8)

'0' 
Directory

U class

internalField

boundaryField

p class

internalField

boundaryField

T class

internalField

boundaryField

Other fields
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6.3 FIXING TIME SETTINGS 
Of the imported control settings, the time controls which exist in the controlDict structure in the 

global Domain variable, are stored again in a more useful way in another structure called time. 

The structure ‘time’ contains the following info for the arbitrary case of elbow: 

 

The above settings will be used later on to set the start and end of the time loop or convergence 

loop. If the case is transient, ‘deltaT’ in the above structure is the time step. 

6.4 INTERPRETING THE MODEL/EQUATIONS 
The equations in uFVM are interpreted in such a way that each term of the equation has its own 

attributes. Generally, any conservation equation has the following form: 

 

>> Domain.time 

 

ans =  

 

  struct with fields: 

 

    startFrom: 'latestTime' 

    startTime: 0 

       stopAt: 'endTime' 

      endTime: 10000 

       deltaT: 10 

          fdt: 1.0000e+09 

         type: 'Transient' 
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𝜕(𝜌𝜙)

𝜕𝑡⏟  
𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡

+ ∇. (𝜌𝒗𝜙)⏟    
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= ∇. (𝛤𝜙 ∇𝜙)⏟      
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ 𝑄𝜙 ⏟
𝑆𝑜𝑢𝑟𝑐𝑒

 

 

Note: The diffusion term ∇. (𝛤𝜙 ∇𝜙) can only be written as 𝛤∇2𝜙 when the diffusion coefficient 

𝛤 is constant. However, when implementing the diffusion term in uFVM, it is always written as 

laplacian(tau*phi) whether 𝛤 is constant or not. 

The general conservation equation above is expressed in uFVM as follows: 

cfdDefineEquation('phi', 'ddt(rho*phi) + div(rho*U*phi) = laplacian(tau*phi) + Q'); 

 
 

𝑄 in the above implementation has to be an explicit expression that includes fields and/or 

properties. Inside uFVM, each of the above terms is interpreted in a different way. Each term 

consists of an explicit part and an implicit one; the explicit part is the part which holds the 

previous iteration value, and the implicit part is kept as an unknown to be assembled with other 

implicit parts of other terms in a global matrix. The explicit part is roughly all the parameters 

that are multiplied with 𝜙 and the implicit part is 𝜙. In the case of a general conservation 

equation, the explicit part of the transient term 
𝜕(𝜌𝜙)

𝜕𝑡
  is 𝜌 and the implicit part is 𝜙. In addition, 

the explicit part of the transient term, is called the rho field. For the convection and diffusion 

terms, the explicit parts are 𝜌𝒗 and 𝛤 respectively, and the names of the latter explicit fields are 

the psi field and the gamma field respectively. The source term is treated explicitly; it is 

evaluated based on available field values. 

The table below summarizes the treatment of the terms of a general conservation equation: 

 

 

𝜕(𝜌𝜙)

𝜕𝑡

The term type: Transient Term

the rho field: 𝜌

the variable field: 𝜙

𝛻. (𝜌𝒗𝜙) The term type: Convection Term

the psi field: 𝜌𝒗

the variable field: 𝜙

𝛻. (𝛤𝜙𝛻𝜙) The term type: DiffusionTerm

the gamma field: 𝛤𝜙

the variable name: 𝜙

𝑄𝜙 The term type: Source term
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Example1: 

Take the momentum equation in the elbow case as an example:  

𝜕(𝜌𝒗)

𝜕𝑡
+ ∇. (𝜌𝒗𝒗) = 𝜇∇2𝒗 + ∇. {𝜇(∇𝒗)𝑇} − ∇𝑝 + 𝜌𝒈 

It is written in uFVM in the following form: 

'ddt(rho*U) + div(rho*U*U) = laplacian(mu*U) + div(mu*transp(grad(U))) - grad(p) + rho*g' 

 

The momentum equation above includes 6 terms, each of them is interpreted in uFVM as shown 

here: 

 
 

Example2: 

Take the Energy equation in the elbow case as another example:  

𝜕(𝜌𝑐𝑝𝑇)

𝜕𝑡
+ ∇. (𝜌𝑐𝑝𝒗𝑇) = 𝑘∇

2𝑇 

It is written in uFVM in the following form: 

'ddt(rho*Cp*T) + div(rho*Cp*U*T) = laplacian(k*T)' 

 

The Energy equation above includes 3 terms, each of them is interpreted in uFVM as shown 

here: 

ddt(rho*U) The term type: Transient Term

Finite Volume Operation: Implicit

the rho field: rho

the variable field: U

term sign: 1

div(rho*U*U) The term type: Convection Term

Finite Volume Operation: Implicit

the psi field: rho*U

the variable field: U

term sign: 1

laplacian(mu*U) The term type: Stress Term

Finite Volume Operation: Implicit

the gamma field: mu

the variable name: U

term sign = -1

div(mu*transp(grad(U))) The term type: Source term

Finite Volume Operation: Explicit

explicit operators available: grad

term sign: -1

grad(p) The term type: Source term

Finite Volume Operation: Explicit

explicit operators available: grad

term sign: 1

rho*g The term type: Source term

Finite Volume Operation: Explicit

explicit operators available: none

term sign: -1
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However, a special case arises for the continuity equation which is usually called also the 

pressure equation ‘p’. The ‘p’ equation is treated in a different way. The pressure equation for 

an incompressible application class is the same for any fluid flow problem within the 

incompressible category. Thus, the user may ignore the pressure equation expression keeping 

only the equation name (‘p’). The reason that the pressure equation expression is included in 

the Matlab listing above and we are repeating it here is just for showing the exact models that 

this code is solving: 

cfdDefineEquation('p', 'div(U) = 0'); 

 

While it is sufficient to write: 

cfdDefineEquation('p'); 

 

Automatically, all the terms of the continuity equation are treated in a single term assembly 

process, this term is called ‘mdot’. For incompressible fluid flows, the continuity equation stated 

above is theoretically converted into another equation called the pressure equation, and that’s 

why the name ‘p’ corresponds to the continuity equation.  

A summary of how the pressure equation is derived from the continuity equation is presented 

here: 

The continuity equation for an incompressible flow: 

∇. 𝒗 = 𝟎 

ddt(rho*Cp*T) The term type: Transient Term

Finite Volume Operation: Implicit

the rho field: rho*Cp

the variable field: T

term sign: 1

div(rho*Cp*U*T) The term type: Convection Term

Finite Volume Operation: Implicit

the psi field: rho*Cp*U

the variable field: T

term sign: 1

laplacian(k*T) The term type: Stress Term

Finite Volume Operation: Implicit

the gamma field: k

the variable name: T

term sign = -1



20 
 

→ ∑ �̇�𝑓
𝑓~𝑛𝑏(𝐶)

=  0 

Dividing �̇�𝑓 into a predicted and correction components: 

�̇�𝑓 = �̇�𝑓
∗ + �̇�𝑓

′  

So, 

∑ �̇�𝑓
′

𝑓~𝑛𝑏(𝐶)

+ ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)

= 0 

The Rhie-Chow interpolation for �̇�𝑓
∗ is 

�̇�𝑓
∗ = 𝜌𝒇𝒗𝑓

∗̅̅ ̅. 𝑺𝑓 − 𝜌𝒇𝑫𝑓
𝒗̅̅ ̅̅ (∇𝑝𝑓

(𝑛)
− ∇𝑝𝑓

(𝑛)̅̅ ̅̅ ̅̅ ̅
) . 𝑺𝑓 

 and for �̇�𝑓
′  is 

�̇�𝑓
′ = −𝜌𝒇𝑫𝑓

𝒗̅̅ ̅̅ ∇𝑝𝑓
′ . 𝑺𝑓 

Therefore, the equation of the incompressible pressure equation is: 

∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶)

(∇𝑝′
𝑓
). 𝑆𝑓 + ∑ �̇�𝑓

∗

𝑓~𝑛𝑏(𝐶)⏟                        
𝑚𝑑𝑜𝑡_𝑓

= 0 

For a compressible continuity equation, the resulting pressure equation is a follows (you may 

find the proof in the book): 

𝑉𝐶𝐶𝜌

∆𝑡
𝑝𝐶
′ + ∑ 𝐶𝜌,𝑓

𝑓~𝑛𝑏(𝐶)

(
�̇�𝑓
∗

𝜌𝑓
∗ )𝑝𝑓

′ + ∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶)

(∇𝑝′
𝑓
). 𝑆𝑓 +

(𝜌𝐶
∗ − 𝜌𝐶

° )

∆𝑡
+ ∑ �̇�𝑓

∗

𝑓~𝑛𝑏(𝐶)⏟                                                        
𝑚𝑑𝑜𝑡_𝑓

= 0 

6.5 RUNNING THE CASE 

6.5.1 Time Loop/Convergence Loop 

The time loop and the convergence loop are located in the cfdRunCase where the time 

settings are utilized. The following listing shows the time and convergence loops for a transient 

simulation: 
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Listing 2 – Time loop 

Note that the time settings startTime, endTime and deltaT are retrieved from the structure 

called ‘time’ in the data base. 

 

6.5.2 Assembling Equation Terms 

The main function which includes all the finite volume methods (assembling equation terms, 

solving and correcting) is cfdAssembleAndCorrectEquation. The aim of discretizing is to 

assemble the algebraic coefficients and build the algebraic system of the model equation: 

𝑎𝐶𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹
𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶  

And after that, the function proceeds to solve a set of algebraic system 𝐴𝜙 = 𝑏 which yields a 

solution of the system. 

The following listing shows the main content of this function: 

time = cfdGetTime; 

startTime = time.startTime; 

endTime = time.endTime; 

deltaT = time.deltaT; 

 

% Time Loop: Loop until the final time 
timeIter = 1; 
cumulativeIter = 1; 
for t=startTime:deltaT:endTime 
    % Time settings 
    currentTime = t + deltaT; 
    cfdSetCurrentTime(currentTime); 

     
    % Update previous time step fields 
    cfdTransientUpdate; 

     
    cfdPrintCurrentTime(currentTime); 

     
    % Convergence Loop: Loop until convergence for the current time step 
    for iter=1:20 
        cfdPrintIteration(cumulativeIter); 
        cfdPrintResidualsHeader; 
        % 
        cfdUpdateFields; 
        % 
        for iEquation=1:theNumberOfEquations 
            % Assemble the current equation and correct it 
            [rmsResidual, maxResidual, lsResBefore, lsResAfter] = cfdAssembleAndCorrectEquation(theEquationNames{iEquation}); 

             
            % Print the equation residuals 
            cfdPrintResiduals(cfdGetBaseName(theEquationNames{iEquation}),rmsResidual,maxResidual,lsResBefore,lsResAfter); 

             
            % If multigrid solver is assigned, print the AMG solver 
            % settings 
            theEquation = cfdGetModel(theEquationNames{iEquation}); 
            isMultigrid = theEquation.multigrid.isActive; 
            if isMultigrid 
                cfdPrintLinearSolver(theEquationNames{iEquation}); 
                if iEquation<theNumberOfEquations 
                    cfdPrintResidualsHeader; 
                end 
            end 

             
            % Store RMS residuals to check for convergence later on 
            convergenceCriterion{iEquation}(1:length(maxResidual)) = rmsResidual; 
        end 
        fprintf('|==========================================================================|\n'); 
        cfdPrintCPUTime; 

         
        cfdPlotRealTimeResiduals(cumulativeIter); 

         
        % Check for convergence at each iteration at the current time 
        % step 
        isConverged = cfdCheckConvergence(convergenceCriterion); 
        if isConverged 
            fprintf('Solution is converged!\n') 
            break; 
        end 
        cumulativeIter = cumulativeIter + 1; 
    end 
    cfdWriteResults(timeIter, currentTime); 
    timeIter = timeIter + 1; 
end 
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Listing 3 - Assembling, solving, correcting the equation and storing its residuals 

Starting with assembling the equation, the function cfdAssembleEquation executes the 

following commands: 

 

Listing 4 - Assembling equation terms and post assembling 

The function cfdAssembleEquationTerms is in fact the function that includes the term 

assembly and it is shown in the listing below, while the function cfdPostAssembleEquation 

includes some methods that are done after assembling. 

 

Listing 5 - Assembling of the terms in cfdAssembleEquationTerms 

The assembling of the terms is made according to the finite volume method. The finite volume 

method states that the conservation equation is integrated on an element 𝐶 of volume 𝑉𝐶. The 

figure below shows an element 𝐶 with neighboring element 𝐹: 

 

    for iCorrector=1:nCorrectors 

        % Assemble Equation 

        [rmsResidual(iComponent), maxResidual(iComponent)] = cfdAssembleEquation(theEquationName,iComponent); 

         

        % Solve Equation 

        [initialResidual(iComponent),finalResidual(iComponent)] = cfdSolveEquation(theEquationName); 

         

        % Correct Equation 

        cfdCorrectEquation(theEquationName,iComponent); 

    end 

     

    % Store rms residual in the equation model 

    cfdStoreResiduals(theEquationName, iComponent, rmsResidual(iComponent));     

end 

 

% Assemble Equation Terms 

[rmsResidual, maxResidual] = cfdAssembleEquationTerms(theEquationName,iComponent); 

  

% Post Assemble Equation 

cfdPostAssembleEquation(theEquationName,iComponent); 

 

 

for iTerm = 1:theNumberOfTerms 

    theTerm = theEquation.terms{iTerm}; 

    if strcmp(theTerm.name,'Transient') 

        cfdAssembleTransientTerm(theEquationName,theTerm,iComponent); 

    elseif strcmp(theTerm.name,'Convection') 

        cfdAssembleConvectionTerm(theEquationName,theTerm,iComponent); 

    elseif strcmp(theTerm.name,'Diffusion') 

        cfdAssembleDiffusionTerm(theEquationName,theTerm);         

    elseif strcmp(theTerm.name,'Stress') 

        cfdAssembleStressTerm(theEquationName,theTerm,iComponent); 

    elseif strcmp(theTerm.name,'mdot_f') 

        cfdAssembleMdotTerm(theEquationName,theTerm); 

    elseif strcmp(theTerm.name,'Source') 

        cfdAssembleSourceTerm(theEquationName,theTerm,iComponent);  

    elseif strcmp(theTerm.name,'Implicit Source') 

        cfdAssembleSourceTerm(theEquationName,theTerm,iComponent);          

    else 

        error('\n%s\n',[theTerm.name,' term is not defined']); 

    end 

end 
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The general conservation equation is: 

𝜕(𝜌𝜙)

𝜕𝑡
+ ∇. (𝜌𝒗𝜙) = ∇. (𝛤𝜙∇𝜙) + 𝑄𝜙 

Integrating the equation over the volume of element 𝐶: 

→ ∫
𝜕(𝜌𝜙)

𝜕𝑡𝑉𝐶

𝑑𝑉 +∫ ∇. (𝜌𝒗𝜙)
𝑉𝐶

= ∫ ∇. (𝛤𝜙∇𝜙)𝑑𝑉
𝑉𝐶

+∫ 𝑄𝜙

𝑉𝐶

𝑑𝑉 

Applying finite volume time discretization approach for transient term and Greens’ theorem to 

convection and diffusion terms: 

→
𝜌𝐶𝜙𝐶 − 𝜌𝐶

°𝜙𝐶
°

∆𝑡
𝑉𝐶 + ∑ (𝜌𝑓𝒗𝑓 . 𝑺𝑓𝜙𝑓)

𝑓~𝑛𝑏(𝐶)

= ∑ (𝛤𝑓
𝜙
∇𝜙𝑓 . 𝑺𝑓)

𝑓~𝑛𝑏(𝐶)

+ 𝑄𝐶
𝜙
𝑉𝐶  

The coefficient 𝜌𝑓𝒗𝑓 . 𝑺𝑓 in the second term (convection term) is referred to as 𝜓𝑓; this is 

mentioned earlier. So, the equation is now: 

𝜌𝐶𝜙𝐶 − 𝜌𝐶
°𝜙𝐶

°

∆𝑡
𝑉𝐶 + ∑ (𝜓𝑓𝜙𝑓)

𝑓~𝑛𝑏(𝐶)

= ∑ (𝛤𝑓
𝜙
∇𝜙𝑓 . 𝑺𝑓)

𝑓~𝑛𝑏(𝐶)

+ 𝑄𝐶
𝜙
𝑉𝐶 

For each element, this is the semi-discretized equation. The terms above are now distributed 

into element and face fluxes.  

 

6.5.2.1 Transient Term 

The semi-discretized transient term 
𝜌𝐶𝜙𝐶−𝜌𝐶

°𝜙𝐶
°

∆𝑡
𝑉𝐶  is a contribution from the element itself but 

not from the surrounding (through faces) like the convection and diffusion terms, so it is added 

to the element flux such as follows: 

𝑓𝑙𝑢𝑥𝐶 =  
𝜌𝐶
∆𝑡
𝑉𝐶  

𝑓𝑙𝑢𝑥𝐶° = −
𝜌𝐶
°

∆𝑡
𝑉𝐶  

𝑓𝑙𝑢𝑥𝑉 =  0 

𝑓𝑙𝑢𝑥𝑇 =  𝑓𝑙𝑢𝑥𝐶𝜙𝐶 + 𝑓𝑙𝑢𝑥𝐶
°𝜙𝐶

° + 𝑓𝑙𝑢𝑥𝑉 

In uFVM, the function cfdAssembleTransientTermEuler calculates the above fluxes as 
shown in the listing below: 
 

 

Listing 6 - Assmebling transient term based on Euler's method 

theFluxes.FLUXCE    =   theTerm.sign * vol .* rho / deltaT; 

theFluxes.FLUXCEOLD = - theTerm.sign * vol .* rho_old / deltaT; 

theFluxes.FLUXTE    =   theFluxes.FLUXCE .* phi' + theFluxes.FLUXCEOLD .* phi_old'; 
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6.5.2.2 Convection Term 

The face fluxes of the convection term ∑ (𝜓𝑓𝜙𝑓)𝑓~𝑁𝐵(𝐶)  based on a first order upwind scheme 

are calculated as follows: 

𝑓𝑙𝑢𝑥𝐶𝑓 =  ‖𝜓𝑓 , 0‖ 

𝑓𝑙𝑢𝑥𝐹𝑓 =  −‖−𝜓𝑓 , 0‖ 

𝑓𝑙𝑢𝑥𝑉𝑓 =  0 

𝑓𝑙𝑢𝑥𝑇𝑓 =  𝑓𝑙𝑢𝑥𝐶𝑓𝜙𝐶 + 𝑓𝑙𝑢𝑥𝐹𝑓𝜙𝐹 + 𝑓𝑙𝑢𝑥𝑉𝑓 

The listing below is retrieved from cfdAssembleConvectionTerm: 

 

Listing 7 - Calculating face fluxes from the convection term contribution. It is retrieved from the function  

The above assembly is based on a first order upwind convection scheme. If a higher order 

scheme is required and additional non-linear face flux arises. For a second order upwind 

convection scheme, we have in addition to the above fluxes: 

𝑓𝑙𝑢𝑥𝑉𝑓 = (2∇𝜙𝐶 − ∇𝜙𝑓). 𝒅𝐶𝐹  

A glance to the implementation is shown here: 

 

Listing 8 - Assembling of the correction term for higher order convection scheme (SOU) 

 

6.5.2.3 Diffusion Term 

The face fluxes of the diffusion term ∑ (𝛤𝑓
𝜙
∇𝜙𝑓 . 𝑺𝑓)𝑓~𝑛𝑏(𝐶)  are calculated as follows. The linear 

face fluxes are: 

𝑓𝑙𝑢𝑥𝐶𝑓 =  −𝛤𝑓
𝜙
𝑔𝐷𝑖𝑓𝑓𝑓 

𝑓𝑙𝑢𝑥𝐹𝑓 =  𝛤𝑓
𝜙
𝑔𝐷𝑖𝑓𝑓𝑓 

 

𝑔𝐷𝑖𝑓𝑓𝑓 is the geometric difference at the face; it is calculated as: 

𝑔𝐷𝑖𝑓𝑓𝑓 =
𝐸𝑓

𝒅𝐶𝐹
 

theFluxes.FLUXC1f(iFaces,1) =   theTerm.sign * max(psi,0); 

theFluxes.FLUXC2f(iFaces,1) = - theTerm.sign * max(-psi,0); 

theFluxes.FLUXVf(iFaces,1) =    0; 

theFluxes.FLUXTf(iFaces,1) = theFluxes.FLUXC1f(iFaces) .* phi(iOwners) + theFluxes.FLUXC2f(iFaces) .* 

phi(iNeighbours) + theFluxes.FLUXVf(iFaces); 

 

 

rC = [theMesh.elements(iUpwind).centroid]'; 

rf = [theMesh.faces(iFaces).centroid]'; 

rCf = rf - rC; 

  

corr = psi .* dot(2*phiGradC' - phiGradf(iUpwind, :)',rCf')'; 

  

theFluxes.FLUXTf(iFaces) = theFluxes.FLUXTf(iFaces) +  corr; 
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Where 𝐸𝑓 is the norm of the vector 𝑬𝑓, which is the non-orthogonal component of 𝑺𝑓: 

𝑺𝑓 = 𝑬𝑓 + 𝑻𝑓 

The non-linear face flux is: 

𝑓𝑙𝑢𝑥𝑉𝑓 =  𝛤𝑓
𝜙
∇𝜙𝑓 . 𝑻𝑓  

The above non-linear face flux includes the previous iteration value of ∇𝜙𝑓 as well as the non-

orthogonal component of the face surface vector 𝑺𝑓 which is shown in the figure below: 

 

The total flux is then: 

𝑓𝑙𝑢𝑥𝑇𝑓 =  𝑓𝑙𝑢𝑥𝐶𝑓𝜙𝐶 + 𝑓𝑙𝑢𝑥𝐹𝑓𝜙𝐹 + 𝑓𝑙𝑢𝑥𝑉𝑓 

The following piece of code is retrieved from the function cfdAssembleDiffusionTerm: 
 

 

Listing 9 - Assembling diffusion term to face fluxes 

 

6.5.2.4 Source Term 

The source terms are all terms that are to be treated explicitly in the equation assembly. Any 

source term is discretized and assembled as an element flux as follows: 

𝑓𝑙𝑢𝑥𝑉 =  𝑄𝐶
𝜙
𝑉𝐶 

𝑓𝑙𝑢𝑥𝑇 =  𝑓𝑙𝑢𝑥𝑉 

theFluxes.FLUXC1f(iFaces,1) = - theTerm.sign * gamma .* gDiff_f; 

theFluxes.FLUXC2f(iFaces,1) =   theTerm.sign * gamma .* gDiff_f; 

theFluxes.FLUXVf(iFaces,1)  =   theTerm.sign * gamma .* dot(grad_f(:,:)',Tf(:,:)')'; 

theFluxes.FLUXTf(iFaces,1)  =   theFluxes.FLUXC1f(iFaces) .* phi(iOwners) + theFluxes.FLUXC2f(iFaces) .* 

phi(iNeighbours) + theFluxes.FLUXVf(iFaces); 
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It is worth mentioning that in uFVM, source terms are either recognized as standard source 

terms or non-standard source terms. Of the standard source terms are gradients of equation 

fields (∇𝒗, ∇𝑝, ∇𝑇, 𝑒𝑡𝑐). In the momentum equation for example, there’s a pressure gradient 

term ∇𝑝. Instead of calculating the pressure gradient to assemble it, it is available in the data 

base. So it is only called from the data base; this saves some time. 

The non-standard source terms are evaluated directly as they appear in the equation. Of the 

non-standard terms are: 

 ∇. {𝜇(∇𝒗)𝑇} The second part of shear stress term. It appears in the momentum equation 

−
2

3
∇(𝜇∇. 𝒗) The third part of the shear stress term which includes the bulk viscosity for 

compressible flows. It appears in the momentum equation. 

𝜌𝒈  A body force (weight of fluid) which appears in the momentum equation 

 

The following listing shows the assembly of a non-standard term retrieved from the function 
cfdAssembleSourceTerm: 
 

 

Listing 10 - Assembling non-standard source term 

 

6.5.2.5 ‘mdot_f’ Term 

The pressure correction equation is treated within a single term called ‘mdot_f’ term. The 

incompressible pressure equation 

∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶)

(∇𝑝′
𝑓
). 𝑺𝑓

⏟                
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛−𝑙𝑖𝑘𝑒

+ ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)⏟      
𝑆𝑜𝑢𝑟𝑐𝑒−𝑙𝑖𝑘𝑒

= 0 

consists of a diffusion-like term ∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶) (∇𝑝′
𝑓
). 𝑺𝑓 of a gamma coefficient 𝛤𝑓 =

−𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ . It also includes a source term ∑ �̇�𝑓

∗
𝑓~𝑛𝑏(𝐶) .  

The diffusion-like term is discretized into face fluxes such as: 

𝑓𝑙𝑢𝑥𝐶𝑓 =  −𝛤𝑓
𝜙
𝑔𝐷𝑖𝑓𝑓𝑓 = 𝜌𝑓𝑫𝑓

𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓 

𝑓𝑙𝑢𝑥𝐹𝑓 =  𝛤𝑓
𝜙
𝑔𝐷𝑖𝑓𝑓𝑓 = −𝜌𝑓𝑫𝑓

𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓 

𝑓𝑙𝑢𝑥𝑉𝑓 =  −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ ∇𝑝𝑓 . 𝑻𝑓  

We introduce here 𝒟𝑓: 

% If source term is not standard 

S = cfdEvaluateNonstandardSourceTerm(theTerm, iComponent); 

  

% Assemble Source Term as element flux 

theFluxes.FLUXTE = theTerm.sign * S .* volume; 

cfdAssembleIntoGlobalMatrixElementFluxes(theEquationName,theFluxes,iComponent); 
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𝒟𝑓 = 𝑫𝑓
𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓 

So, 

𝑓𝑙𝑢𝑥𝐶𝑓 =  𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓 = 𝜌𝑓𝒟𝑓 

𝑓𝑙𝑢𝑥𝐹𝑓 =  −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓 = −𝜌𝑓𝒟𝑓 

Usually, the non-linear flux of the diffusion term −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ ∇𝑝𝑓 . 𝑻𝑓  is neglected, because it doesn’t 

affect the final solution as it is a correction term, so the non-linear flux contribution of the 

diffusion-like term 𝑓𝑙𝑢𝑥𝑉𝑓 = 0. 

The source term ∑ �̇�𝑓
∗

𝑓~𝑁𝐵  can be regarded as face fluxes contribution instead of element 

fluxes. So, the face flux contribution of the source term is: 

𝑓𝑙𝑢𝑥𝑉𝑓 = �̇�𝑓
∗  

The total flux 𝑓𝑙𝑢𝑥𝑇𝑓 is: 

𝑓𝑙𝑢𝑥𝑇𝑓 =  𝑓𝑙𝑢𝑥𝐶𝑓𝑝𝐶 + 𝑓𝑙𝑢𝑥𝐹𝑓𝑝𝐹 + 𝑓𝑙𝑢𝑥𝑉𝑓 

 

Whereas for the compressible pressure correction equation 

𝑉𝐶𝐶𝜌

∆𝑡
𝑝𝐶
′

⏟    
𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡−𝑙𝑖𝑘𝑒

+ ∑ 𝐶𝜌,𝑓
𝑓~𝑛𝑏(𝐶)

(
�̇�𝑓
∗

𝜌𝑓
∗ )𝑝𝑓

′

⏟            
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛−𝑙𝑖𝑘𝑒

+ ∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶)

(∇𝑝′
𝑓
). 𝑺𝑓

⏟                
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛−𝑙𝑖𝑘𝑒

+
(𝜌𝐶
∗ − 𝜌𝐶

° )

∆𝑡
+ ∑ �̇�𝑓

∗

𝑓~𝑛𝑏(𝐶)⏟              
𝑆𝑜𝑢𝑟𝑐𝑒−𝑙𝑖𝑘𝑒

= 0 

there are additional terms (transient and convection). They are discretized regularly.  

The transient term 
𝑉𝐶𝐶𝜌

∆𝑡
𝑝𝐶
′  element flux contribution is: 

𝑓𝑙𝑢𝑥𝐶 =
𝑉𝐶𝐶𝜌

∆𝑡
 

𝑓𝑙𝑢𝑥𝐶° = 0 

𝑓𝑙𝑢𝑥𝑉 =  0 

𝑓𝑙𝑢𝑥𝑇 = 𝑓𝑙𝑢𝑥𝐶𝑝𝐶 + 𝑓𝑙𝑢𝑥𝑉 

 

The convection term ∑ 𝐶𝜌𝑓~𝑛𝑏(𝐶) (
�̇�𝑓
∗

𝜌𝑓
∗ ) 𝑝𝑓

′  has a psi coefficient 𝜓𝑓 = 𝐶𝜌,𝑓 (
�̇�𝑓
∗

𝜌𝑓
∗ ), so the face fluxes 

are: 

𝑓𝑙𝑢𝑥𝐶𝑓 =  ‖𝜓𝑓 , 0‖ = ‖𝐶𝜌,𝑓 (
�̇�𝑓
∗

𝜌𝑓
∗ ) , 0‖ 

𝑓𝑙𝑢𝑥𝐹𝑓 =  −‖−𝜓𝑓 , 0‖ = −‖−𝐶𝜌,𝑓 (
�̇�𝑓
∗

𝜌𝑓
∗ ) , 0‖ 
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𝑓𝑙𝑢𝑥𝑉𝑓 =  0 

𝑓𝑙𝑢𝑥𝑇𝑓 =  𝑓𝑙𝑢𝑥𝐶𝑓𝑝𝐶 + 𝑓𝑙𝑢𝑥𝐹𝑓𝑝𝐹 + 𝑓𝑙𝑢𝑥𝑉𝑓 

The source term includes an additional component. It is the 
(𝜌𝐶
∗−𝜌𝐶

° )

∆𝑡
 term which is in fact a result of 

the transient term but will be here regarded as a source term because it is not standard. 

𝑓𝑙𝑢𝑥𝑉 =  
(𝜌
𝐶
∗ − 𝜌

𝐶
° )

∆𝑡
 

𝑓𝑙𝑢𝑥𝑇 = 𝑓𝑙𝑢𝑥𝑉 

The corresponding code will be presented in the algebraic system section for convenience. 

 

6.5.2.6 Pressure Correction Treatment for Free Surface Flow 

In case the application is ‘multiphase’, uFVM is able to simulate homogeneous flows with a well-

defined interface. In this case, the OpenFOAM case to be prepared is quite different, you may 

refer to the ‘damBreak’ case in the tutorials directory. 

∑{
𝜕(𝛼𝑘𝜌𝑘)

𝜕𝑡
+ ∇. (𝛼𝑘𝜌𝑘𝒗) = 𝑀𝑘̇ }

𝑘

 

 

6.5.2.7 False Transience 

For steady simulations, it is usually advantageous to insert a transient-like treatment. It acts as 

an under-relaxation to the equation yet is enhances diagonal dominance. It also adds a non-zero 

contribution to the diagonal coefficient even in the extreme cases where the diagonal 

coefficient is zero. Consider the following system: 

𝑎𝐶𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹
𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶  

A false transient contributes to the equation above as shown here: 

(𝑎𝐶 + 𝑎𝐶
° )𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 + 𝑎𝐶
° 𝜙𝐶

°  

where  

𝑎𝐶
° =

𝜌𝐶𝑉𝐶
∆𝑡

 

The following listing is a retrieved from the function cfdAssembleFalseTransientTerm in 
the source files: 
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Listing 11 - Assembling false transience term 

 

6.5.2.8 Gradient Computation 

The gradient of a field 𝜙 can be calculated using Green-Gauss method. The gradient ∇𝜙 is 

calculated as follows: 

∇𝜙 =
1

𝑉𝐶
∑ 𝜙𝑓𝑺𝑓

𝑓~𝑛𝑏(𝐶)

 

However, the face value 𝜙𝑓 can be calculated in two approaches, a cell-based method and a 

node-base method. In the cell based method, the face value is calculated as the average values 

of the two cells sharing the face: 

𝜙𝑓 = 𝑔𝐶𝜙𝐶 + (1 − 𝑔𝐶)𝜙𝐹 

where 𝑔𝐶  is the geometric weighing factor equal to 

𝑔𝐶 =
‖𝒓𝐹 − 𝒓𝑓‖

‖𝒓𝐹 − 𝒓𝐶‖
=
𝑑𝐹𝑓

𝑑𝐹𝐶
 

The listing below shows the calculation of the face values and the gradient in the function 
cfdComputeGradientGauss0: 
 

 
Listing 12 - Calculation of gradient based on Green-Gauss method 

volumes = [theMesh.elements(iElements).volume]'; 

theFluxes.FLUXCE(iElements,1)    =   volumes .* rho / fdt; 

theFluxes.FLUXCEOLD(iElements,1) = - volumes .* rho_old / fdt; 

theFluxes.FLUXTE(iElements,1)    =   theFluxes.FLUXCE(iElements,1) .* phi; 

theFluxes.FLUXTEOLD(iElements,1) =   theFluxes.FLUXCEOLD(iElements,1) .* phi_old; 

  

cfdAssembleIntoGlobalMatrixElementFluxes(theEquationName,theFluxes,iComponent); 

 

for iComponent=1:theNumberOfComponents     

    phi_f = gf.*phi(iNeighbours,iComponent) + (1-gf).*phi(iOwners,iComponent); 

    for iFace=iFaces 

        phiGrad(iOwners(iFace),:,iComponent)     = phiGrad(iOwners(iFace),:,iComponent)     + 

phi_f(iFace)*Sf(iFace,:); 

        phiGrad(iNeighbours(iFace),:,iComponent) = phiGrad(iNeighbours(iFace),:,iComponent) - 

phi_f(iFace)*Sf(iFace,:); 

    end     

end 

  

%----------------------------------------------------- 

% BOUNDARY FACES contribution to gradient 

%----------------------------------------------------- 

iBOwners = [theMesh.faces(iBFaces).iOwner]'; 

phi_b = phi(iBElements,:); 

Sb = [theMesh.faces(iBFaces).Sf]'; 

for iComponent=1:theNumberOfComponents 

    % 

    for k=1:theMesh.numberOfBFaces 

        phiGrad(iBOwners(k),:,iComponent) = phiGrad(iBOwners(k),:,iComponent) + phi_b(k)*Sb(k,:); 

    end 

end 

  

  

%----------------------------------------------------- 

% Get Average Gradient by dividing with element volume 

%----------------------------------------------------- 

volumes = [theMesh.elements(iElements).volume]'; 

for iComponent=1:theNumberOfComponents 

    for iElement =1:theMesh.numberOfElements 

        phiGrad(iElement,:,iComponent) = phiGrad(iElement,:,iComponent)/volumes(iElement); 

    end 

end 
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The node-based method requires that the node value is first calculated from the elements 

surrounding the node 

𝜙𝑛 =

∑
𝜙𝐹𝑘

‖𝒓𝑛 − 𝒓𝐹𝑘‖
𝑁𝐵(𝑛)
𝑘=1

∑
1

‖𝒓𝑛 − 𝒓𝐹𝑘‖
𝑁𝐵(𝑛)
𝑘=1

 

And then the face value is calculated from the values of its nodes 

𝜙𝑓 =

∑
𝜙𝑛𝑘

‖𝒓𝑛𝑘 − 𝒓𝑓‖

𝑛𝑏(𝑓)
𝑘=1

∑
1

‖𝒓𝑛𝑘 − 𝒓𝑓‖
𝑛𝑏(𝑓)
𝑘=1

 

The listing below in the function cfdInterpolateFromElementsToNodes calculates the 
values at the nodes: 
 

 

Listing 13 - Interpolating the cell values to the nodes 

 

Then the following code calculates the node values to the faces, and can be found in the 
function cfdInterpolateFromNodesToFaces: 
 

for iNode = 1:numberOfNodes 

    theNode = fvmNodes(iNode); 

    N = theNode.centroid; 

  

    localPhiNode=0; 

    localInverseDistanceSum = 0; 

  

    if(isempty(theNode.iFaces(theNode.iFaces>numberOfInteriorFaces))) 

        localElementIndices = theNode.iElements; 

  

        for iElement = localElementIndices 

            theElement = fvmElements(iElement); 

            C = theElement.centroid; 

  

            d = cfdMagnitude(N-C); 

            localPhi = phi(iElement); 

  

            localPhiNode = localPhiNode + localPhi/d; 

            localInverseDistanceSum = localInverseDistanceSum + 1/d;        

        end 

    else  

        localBFacesIndices = theNode.iFaces(theNode.iFaces>numberOfInteriorFaces); 

        for iBFace = localBFacesIndices 

            theFace = fvmFaces(iBFace); 

            C = theFace.centroid; 

            iBElement = numberOfElements+(iBFace-numberOfInteriorFaces); 

  

            d = cfdMagnitude(N-C); 

            localPhi = phi(iBElement); 

  

            localPhiNode = localPhiNode + localPhi/d; 

            localInverseDistanceSum = localInverseDistanceSum + 1/d;        

        end 

         

    end 

    localPhiNode = localPhiNode/localInverseDistanceSum; 

    % 

    % 

    phi_n(iNode) = localPhiNode; 

    % 

end 
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Listing 14 - Interpolating the node values to the faces 

Finally, we calculate the gradient according to the Green-Gauss method which can be found in 
the function cfdComputeGradientNodal: 
 

 

Listing 15 - Calculation of the Green-Gauss gradient based on the face values calculated from node values 

 

6.5.2.9 Implicit Under-Relaxation 

As suggested by Patankar’s approach, a relaxation factor 𝜆𝜙 is introduced into the algebraic 

system. 

for iFace=1:numberOfFaces 

     

    theFace = fvmFaces(iFace); 

    iNodes = theFace.iNodes; 

     

    C = theFace.centroid; 

     

    localSumOfInverseDistance=0; 

    localPhi=0; 

    for iNode=iNodes 

        theNode = fvmNodes(iNode); 

        N=theNode.centroid; 

        d=cfdMagnitude(C-N); 

         

        localPhi = localPhi + phiNodes(iNode)/d; 

        localSumOfInverseDistance = localSumOfInverseDistance+1/d; 

    end 

    localPhi = localPhi/localSumOfInverseDistance; 

     

    phi_f(iFace) = localPhi;    

end 

 

for iFace=1:theNumberOfInteriorFaces 

   % 

   theFace = fvmFaces(iFace); 

   % 

   iElement1 = theFace.iOwner; 

   iElement2 = theFace.iNeighbour; 

   % 

   Sf = theFace.Sf; 

   % 

   % 

   phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_f(iFace)*Sf; 

   phiGrad(:,iElement2) = phiGrad(:,iElement2) - phi_f(iFace)*Sf; 

    

end 

  

  

%===================================================== 

% BOUNDARY FACES contribution to gradient  

%===================================================== 

for iBPatch=1:theNumberOfBElements 

    % 

    iBFace = theNumberOfInteriorFaces+iBPatch; 

    iBElement = theNumberOfElements+iBPatch; 

    theFace = fvmFaces(iBFace); 

    % 

    iElement1 = theFace.iOwner; 

    % 

    Sb = theFace.Sf; 

    phi_b = phi(iBElement); 

    % 

    phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_b*Sb; 

     

end 

  

  

%----------------------------------------------------- 

% Get Average Gradient by dividing with element volume  

%----------------------------------------------------- 

for iElement =1:theNumberOfElements 

   theElement = fvmElements(iElement); 

   phiGrad(:,iElement) = phiGrad(:,iElement)/theElement.volume; 

end 
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𝑎𝐶
𝜆𝜙
𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 +
(1 − 𝜆𝜙)

𝜆𝜙
𝑎𝐶𝜙𝐶

∗  

However, for an equation in the correction form, an implicit under-relaxation is made as follows: 

𝑎𝐶
𝜆𝜙
𝜙𝐶
′ + ∑ 𝑎𝐹𝜙𝐹

′

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 − (𝑎𝐶𝜙𝐶
∗ + ∑ 𝑎𝐹𝜙𝐹

∗

𝐹~𝑁𝐵(𝐶)

) 

In uFVM, it is done in the function cfdApplyURF: 

 
Listing 16 - Introducing under-relaxation to the algebraic equation 

 

6.5.2.10 Residual Form of the Equation 

In fact, uFVM assembles a residual or correction form of the equation instead of the direct 

equation. This correction makes use of the previous iteration values of 𝜙𝐶  such that: 

𝜙𝐶 = 𝜙𝐶
∗ + 𝜙𝐶

′  

Satisfying in the standard equation form: 

𝑎𝐶(𝜙𝐶
∗ + 𝜙𝐶

′ ) + ∑ 𝑎𝐹(𝜙𝐹
∗ + 𝜙𝐹

′ )

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 

→ 𝑎𝐶𝜙𝐶
′ + ∑ 𝑎𝐹𝜙𝐹

′

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 − (𝑎𝐶𝜙𝐶
∗ + ∑ 𝑎𝐹𝜙𝐹

∗

𝐹~𝑁𝐵(𝐶)

) 

Once the algebraic system is calculated and 𝜙𝐶
′  is determined, the exact value 𝜙𝐶  is updated as: 

𝜙𝐶 = 𝜙𝐶
∗ + 𝜙𝐶

′  

 

6.5.2.11 Residual Computation 

The residuals are criteria upon which the user decides to consider the results correct enough. 

The residual 𝑅𝐶
𝜙

 of the algebraic equation at element 𝐶 is calculated as: 

𝑅𝐶
𝜙
= |𝑏𝐶 − (𝑎𝐶𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹

𝐹~𝑁𝐵(𝐶)

)| 

The maximum residual over the cells is calculated as: 

theEquation = cfdGetModel(theEquationName); 

  

urf = theEquation.urf; 

  

theCoefficients = cfdGetCoefficients; 

theCoefficients.ac = theCoefficients.ac/urf; 

  

cfdSetCoefficients(theCoefficients); 
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𝑅𝐶,𝑚𝑎𝑥
𝜙

= max (𝑅𝐶
𝜙
) 

And the root-mean-squared of the residuals over the cells is: 

𝑅𝐶,𝑟𝑚𝑠
𝜙

= √
∑ (𝑅𝐶

𝜙
)
2

𝐶~𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
 

Normalized residuals provide better insight of the convergence. They are calculated as follows: 

𝑅𝐶,𝑠𝑐𝑎𝑙𝑒𝑑
𝜙

=
𝑅𝐶
𝜙

max (𝑎𝐶𝜙𝐶)
 

After that, you we calculate the maximum and root-mean square scaled residual. 

 

 

However, since in uFVM the equations are assembled in the residual (correction) form as 

mentioned earlier, the residual at element 𝐶 is simply: 

 𝑎𝐶𝜙𝐶
′ + ∑ 𝑎𝐹𝜙𝐹

′

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 − (𝑎𝐶𝜙𝐶
∗ + ∑ 𝑎𝐹𝜙𝐹

∗

𝐹~𝑁𝐵(𝐶)

) = 

So, 

𝑅𝐶
𝜙
= |𝑏𝐶,𝑟𝑒𝑠| 

The following listing presents the residual calculation; it is available in the function 
cfdComputeNormalizedResidual: 
 

 

Listing 17 - Residual calculation 

 

A special case arises with the pressure correction equation as it is by default in the correction 

form as shown here: 

    % Loop over elements and calculate residual at each element 

    Rc = abs(bc); 

     

    % Residuals. Calculate for convenience. Otherwise, they are not used 

    Rc_max = max(Rc); 

    Rc_rms = sqrt(sum(Rc.^2)/theNumberOfElements); 

         

    % Get phi scale from data base.  

    % phi_scale = max(abs(phi)). And if phi is zero, phi_scale is set to 1 

    phi_scale = cfdGetScale(theEquationUserName);     

     

    % Normalized Residuals 

    Rc_scaled = Rc / (max(abs(ac))*phi_scale); 

    Rc_max_scaled = max(Rc_scaled); 

    Rc_rms_scaled = sqrt(sum(Rc_scaled.^2)/theNumberOfElements); 

     

    MAXResidual = Rc_max_scaled; 

    RMSResidual = Rc_rms_scaled; 

 



34 
 

 𝑎𝐶𝑝𝐶
′ + ∑ 𝑎𝐹𝑝𝐹

′

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶
𝑝

 

However, the residual of this equation is determined as a continuity criterion 

∇. 𝒗 = 0 

→ ∑ �̇�𝑓
𝑓~𝑛𝑏(𝐶)

= 0 

Thus, a quantity called 𝐷𝑖𝑣𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = ∑ �̇�𝑓𝑓~𝑛𝑏(𝐶)  is calculated at each iteration to judge the 

convergence of the continuity equation, so, we have for the continuity equation: 

𝑅𝐶
𝜙
= 𝐷𝑖𝑣𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 

The corresponding implementation can be found in the function: 
cfdComputeEffectiveDivergence: 
 

 

Listing 18 - Calculating the effective divergence as a residual criterion for the continuity equation 

 

6.5.2.12 Assembling Fluxes to Global Assembly Matrix 

After calculating the face or/and element fluxes from each term, these fluxes are to be summed 

to construct the algebraic system coefficients. 

6.5.2.12.1 Algebraic Systems Representation 

The algebraic system 𝐴𝜙′ = 𝑏 is constructed: 

[

𝑎11 … 𝑎1𝑁
⋮ ⋱ ⋮
𝑎𝑁1 … 𝑎𝑁𝑁

] [
𝜙1
′

⋮
𝜙𝑁
′
] = [

𝑏1
⋮
𝑏𝑁

] 

% Interior Faces Contribution 

theNumberOfInteriorFaces = cfdGetNumberOfInteriorFaces; 

iFaces = 1:theNumberOfInteriorFaces; 

owners = [theMesh.faces(iFaces).iOwner]'; 

neighbours = [theMesh.faces(iFaces).iNeighbour]'; 

for iFace=1:theNumberOfInteriorFaces 

    iOwner = owners(iFace); 

    iNeighbour = neighbours(iFace); 

    % 

    effDiv(iOwner)     = effDiv(iOwner)     + mdot_f(iFace); 

    effDiv(iNeighbour) = effDiv(iNeighbour) - mdot_f(iFace); 

end 

  

% Boundary Faces Contribution 

theNumberOfPatches = cfdGetNumberOfPatches; 

for iPatch=1:theNumberOfPatches     

    theBoundary = theMesh.boundaries(iPatch); 

    numberOfBFaces = theBoundary.numberOfBFaces; 

     

    % cfdGetBoundaryIndex 

    iFaceStart = theBoundary.startFace; 

    iFaceEnd = iFaceStart+numberOfBFaces-1; 

    iBFaces = iFaceStart:iFaceEnd; 

  

    owners = [theMesh.faces(iBFaces).iOwner]'; 

    mdot_b = theMdotField.phi(iBFaces); 

     

    for iBFace=1:numberOfBFaces 

        iOwner = owners(iBFace); 

        effDiv(iOwner) = effDiv(iOwner) + mdot_b(iBFace); 

    end     

end 
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The coefficient matrix 𝐴 is a highly sparse matrix, so it is stored as an array for the diagonal 

coefficients in addition of a data structure containing the non-zeros at each row (off-diagonal 

coefficients). The diagonal array is named in uFVM as ac and the off-diagonal coefficient data 

structure as anb. 

6.5.2.12.2 Assembling Algebraic System coefficients 

If the discretized term gives rise to element fluxes like the transient and source terms, the fluxes 

𝑓𝑙𝑢𝑥𝐶, 𝑓𝑙𝑢𝑥𝐶°, 𝑓𝑙𝑢𝑥𝑉 and 𝑓𝑙𝑢𝑥𝑇 are assembled as follows given that the algebraic equation is 

in the residual (correction) form: 

𝑎𝐶 = 𝑎𝐶 + 𝑓𝑙𝑢𝑥𝐶 

𝑎𝐶
° = 𝑎𝐶

° + 𝑓𝑙𝑢𝑥𝐶° 

𝑏𝐶 = 𝑏𝐶 − 𝑓𝑙𝑢𝑥𝑇 

If the term includes faces fluxes (𝑓𝑙𝑢𝑥𝐶𝑓, 𝑓𝑙𝑢𝑥𝐹𝑓, 𝑓𝑙𝑢𝑥𝑉𝑓 and 𝑓𝑙𝑢𝑥𝑇𝑓) like the convection and 

diffusion terms, the assembling is done such as: 

𝑎𝐶 = 𝑎𝐶 + ∑ 𝑓𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

 

𝑎𝐹 = 𝑎𝐹 + 𝑓𝑙𝑢𝑥𝐹𝑓 

𝑏𝐶 = 𝑏𝐶 − ∑ 𝑓𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

 

Recall that for element fluxes: 

𝑓𝑙𝑢𝑥𝑇 =  𝑓𝑙𝑢𝑥𝐶𝜙𝐶
∗ + 𝑓𝑙𝑢𝑥𝐶°𝜙𝐶

° + 𝑓𝑙𝑢𝑥𝑉 

And for face fluxes, 

𝑓𝑙𝑢𝑥𝑇𝑓 =  𝑓𝑙𝑢𝑥𝐶𝑓𝜙𝐶
∗ + 𝑓𝑙𝑢𝑥𝐹𝑓𝜙𝐹

∗ + 𝑓𝑙𝑢𝑥𝑉𝑓 

 

Therefore, the algebraic equation has the general form: 

 

(𝑓𝑙𝑢𝑥𝐶 + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

)

⏟                  
𝑎𝐶

𝜙𝐶
′ + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓⏟    

𝑎𝐹

𝜙𝐹
′

𝐹~𝑁𝐵(𝐶)
𝑓~𝑛𝑏(𝐶)

= −(𝑓𝑙𝑢𝑥𝑇 + ∑ 𝐹𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

)

⏟                  
𝑏𝐶

 

 
So, 

𝑎𝐶 =  𝑓𝑙𝑢𝑥𝐶 + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

 

 
𝑎𝐹 = 𝐹𝑙𝑢𝑥𝐶𝑓 
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𝑏𝐶 = −(𝑓𝑙𝑢𝑥𝑇 + ∑ 𝐹𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

) 

 
 
The pressure equation again has a special case since it is already in the residual form. The 
discretized incompressible pressure correction equation: 
 

( ∑ 𝜌𝑓𝒟𝑓
𝑓~𝑛𝑏(𝐶)

)

⏟          
𝑎𝐶

𝑝𝐶
′ + ∑ −𝜌𝑓𝒟𝑓⏟    

𝑎𝐹

 𝑝𝐹
′

𝐹~𝑁𝐵(𝐶)
𝑓~𝑛𝑏(𝐶)

= − ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)⏟        
𝑏𝐶

 

So, the fluxes here are to be calculated as: 

1) Diagonal coefficient 𝑎𝐶: 

𝑎𝐶 =  𝑓𝑙𝑢𝑥𝐶 + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

= ∑ 𝜌𝑓𝒟𝑓
𝑓~𝑛𝑏(𝐶)

 

 
→  𝑓𝑙𝑢𝑥𝐶 = 0 and 𝐹𝑙𝑢𝑥𝐶𝑓 = 𝜌𝑓𝒟𝑓 

 
2) Off-diagonal coefficients 𝑎𝐹: 

 

𝑎𝐹 = 𝐹𝑙𝑢𝑥𝐹𝑓 = −𝜌𝑓𝒟𝑓 

 
3) Right-hand-side: 

 

𝑏𝐶 = −(𝑓𝑙𝑢𝑥𝑇 + ∑ 𝐹𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

) = − ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)

 

 
→  𝑓𝑙𝑢𝑥𝑇 = 0 and 𝐹𝑙𝑢𝑥𝑇𝑓 = �̇�𝑓

∗ 

 
For the compressible pressure correction equation, the discretized equation is: 
 

(
𝑉𝐶𝐶𝜌

∆𝑡
+ ∑ (

𝐶𝜌,𝑓

𝜌𝑓
∗ ‖�̇�𝑓

∗ , 0‖)

𝑓~𝑛𝑏(𝐶)

+ ∑ 𝜌𝑓
∗𝒟𝑓

𝑓~𝑛𝑏(𝐶)

)

⏟                                
𝑎𝐶

𝑝𝐶
′ + ∑ (−

𝐶𝜌,𝑓

𝜌𝑓
∗ ‖−�̇�𝑓

∗ , 0‖ − 𝜌𝑓
∗𝒟𝑓)

⏟                
𝑎𝐹

 𝑝𝐹
′

𝐹~𝑁𝐵(𝐶)

𝑓~𝑛𝑏(𝐶)

= − ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)

−
(𝜌𝐶
∗ − 𝜌𝐶

° )

∆𝑡
⏟                

𝑏𝐶

 

So, the fluxes of the compressible pressure correction equation are calculated as: 

 

1) Diagonal coefficient 𝑎𝐶: 
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𝑎𝐶 =  𝑓𝑙𝑢𝑥𝐶 + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

=
𝑉𝐶𝐶𝜌

∆𝑡
+ ∑ (

𝐶𝜌,𝑓

𝜌
𝑓
∗
‖�̇�𝑓

∗
, 0‖)

𝑓~𝑛𝑏(𝐶)

+ ∑ 𝜌
𝑓

∗
𝒟𝑓

𝑓~𝑛𝑏(𝐶)

 

 

→  𝑓𝑙𝑢𝑥𝐶 =
𝑉𝐶𝐶𝜌

∆𝑡
 and 𝐹𝑙𝑢𝑥𝐶𝑓 =

𝐶𝜌,𝑓

𝜌
𝑓
∗
‖�̇�𝑓

∗
, 0‖ + 𝜌

𝑓

∗𝒟𝑓 

 
2) Off-diagonal coefficients 𝑎𝐹: 

 

𝑎𝐹 = 𝐹𝑙𝑢𝑥𝐹𝑓 = − 𝐶𝜌,𝑓

𝜌𝑓
∗ ‖−�̇�𝑓

∗ , 0‖ − 𝜌𝑓
∗𝒟𝑓 

 
3) Right-hand-side: 

 

𝑏𝐶 = −(𝑓𝑙𝑢𝑥𝑇 + ∑ 𝐹𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

) = −(
(𝜌
𝐶
∗ − 𝜌

𝐶
° )

∆𝑡
+ ∑ �̇�𝑓

∗

𝑓~𝑛𝑏(𝐶)

) 

 

→  𝑓𝑙𝑢𝑥𝑇 =
(𝜌𝐶
∗−𝜌𝐶

° )

∆𝑡
 and 𝐹𝑙𝑢𝑥𝑇𝑓 = �̇�𝑓

∗ 

 

The listing below shows the calculation of the fluxes of the pressure correction equation: 
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Listing 19 - Calculating fluxes of the pressure correction equation 

 
In uFVM, the assembling of element fluxes is shown here in the listing below retrieved from the 
function cfdAssembleIntoGlobalMatrixElementFluxes: 
 

% 

% assemble term I 

%     rho_f [v]_f.Sf 

% 

U_bar_f = dot(vel_bar_f(:,:)',Sf(:,:)')'; 

FLUXVf = FLUXVf + rho_f.*U_bar_f; 

% 

% Assemble term II and linearize it 

%      - rho_f ([DPVOL]_f.P_grad_f).Sf 

% 

DUSf = [DU1_f.*Sf(:,1),DU2_f.*Sf(:,2),DU3_f.*Sf(:,3)]; % S'f 

eDUSf = [DUSf(:,1)./cfdMagnitude(DUSf),DUSf(:,2)./cfdMagnitude(DUSf),DUSf(:,3)./cfdMagnitude(DUSf)]; 

  

DUEf = 

[cfdMagnitude(DUSf).*eCN(:,1)./dot(eCN(:,:)',eDUSf(:,:)')',cfdMagnitude(DUSf).*eCN(:,2)./dot(eCN(:,:)',eDUSf(:,:)'

)',cfdMagnitude(DUSf).*eCN(:,3)./dot(eCN(:,:)',eDUSf(:,:)')']; 

geoDiff = cfdMagnitude(DUEf)./cfdMagnitude(CN); 

  

DUTf = DUSf - DUEf; 

  

FLUXCf = FLUXCf + rho_f.*geoDiff; 

FLUXFf = FLUXFf - rho_f.*geoDiff; 

FLUXVf  = FLUXVf  - rho_f.*dot(p_grad_f(iFaces,:)',DUTf(:,:)')'; 

% 

%  assemble term III 

%    rho_f ([P_grad]_f.([DPVOL]_f.Sf)) 

% 

FLUXVf = FLUXVf + rho_f.*dot(p_grad_bar_f(iFaces,:)',DUSf(:,:)')'; 

% 

% assemble terms VIII and IX 

%     (1-URF)(U_f -[v]_f.S_f) 

% 

FLUXVf = FLUXVf + (1.0 - mdot_f_URF)*(mdot_f_previous - rho_f.*U_bar_f); 

% 

% compute Rhie-Chow interpolation of mdot_f and updated it in the data base 

% 

mdot_f = FLUXCf .* pressureC + FLUXFf .* pressureN + FLUXVf; 

theMdotField.phi(iFaces) = mdot_f; 

cfdSetMeshField(theMdotField); 

% 

% assemble total flux 

% 

FLUXTf = mdot_f; 

% 

% assemble terms X (for compressible flow) 

% 

applicationClass = cfdGetApplicationClass; 

if strcmp(applicationClass, 'compressible') 

    theDrhodpField = cfdGetMeshField('C_rho'); 

    C_rho = theDrhodpField.phi; 

    C_rho_f = cfdInterpolateFromElementsToFaces('Average', C_rho); 

    C_rho_f = C_rho_f(iFaces); 

     

    FLUXCf = FLUXCf + (C_rho_f ./ rho_f) .* max(mdot_f, 0); 

    FLUXFf = FLUXFf - (C_rho_f ./ rho_f) .* max(-mdot_f, 0);    

     

    % Add transient contribution 

    if isTransient 

        deltaT = cfdGetDt; 

        volume = [theMesh.elements.volume]'; 

         

        FLUXCE = volume(iElements) .* C_rho(iElements) / deltaT; 

        FLUXTE = (rho(iElements) - density_old(iElements)) .* volume(iElements) / deltaT ; 

    end 

end 
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Listing 20 - Assembling element fluxes 

The assembly of face fluxes is shown here, and it is retrieved from the function 
cfdAssembleIntoGlobalMatrixFaceFluxes: 
 

 

Listing 21 - Assembling face fluxes 

6.5.3 Solving the Equation Algebraic System 

The algebraic system is solved 𝐴𝜙′ = 𝑏 iteratively. Direct solving of the system using Gaussian 

elimination is very expensive because the matrix 𝐴 is usually large and highly sparse. There are 

plenty of solvers which iteratively try to approximate the solution of the system. In uFVM, two 

iterative solvers are implemented, Successive Over-relaxation (SOR) and Incomplete Lower 

Upper (ILU). 

% Call coefficients 

ac = theCoefficients.ac; 

ac_old = theCoefficients.ac_old; 

bc = theCoefficients.bc; 

  

% Assemble element fluxes 

for iElement = 1:numberOfElements 

    ac(iElement)     = ac(iElement)     + theFluxes.FLUXCE(iElement); 

    ac_old(iElement) = ac_old(iElement) + theFluxes.FLUXCEOLD(iElement); 

    bc(iElement)     = bc(iElement)     - theFluxes.FLUXTE(iElement); 

end 

  

% Store updated coefficients 

theCoefficients.ac = ac; 

theCoefficients.ac_old = ac_old; 

theCoefficients.bc = bc; 

 

% Call coefficients 

ac = theCoefficients.ac; 

anb = theCoefficients.anb; 

bc = theCoefficients.bc; 

% 

% Assemble fluxes of interior faces 

% 

for iFace = 1:numberOfInteriorFaces 

    theFace                 = theMesh.faces(iFace); 

    iOwner                  = theFace.iOwner; 

    iOwnerNeighbourCoef     = theFace.iOwnerNeighbourCoef; 

    iNeighbour              = theFace.iNeighbour; 

    iNeighbourOwnerCoef     = theFace.iNeighbourOwnerCoef; 

    %  

    %  assemble fluxes for owner cell 

    % 

    ac(iOwner)                       = ac(iOwner)                       + theFluxes.FLUXC1f(iFace); 

    anb{iOwner}(iOwnerNeighbourCoef) = anb{iOwner}(iOwnerNeighbourCoef) + theFluxes.FLUXC2f(iFace); 

    bc(iOwner)                       = bc(iOwner)                       - theFluxes.FLUXTf(iFace); 

    %  

    %  assemble fluxes for neighbour cell 

    % 

    ac(iNeighbour)                       = ac(iNeighbour)                       - theFluxes.FLUXC2f(iFace); 

    anb{iNeighbour}(iNeighbourOwnerCoef) = anb{iNeighbour}(iNeighbourOwnerCoef) - theFluxes.FLUXC1f(iFace); 

    bc(iNeighbour)                       = bc(iNeighbour)                       + theFluxes.FLUXTf(iFace); 

end 

% 

% assemble fluxes of boundary faces 

% 

for iBFace=numberOfInteriorFaces+1:numberOfFaces 

    theBFace = theMesh.faces(iBFace); 

    iOwner         = theBFace.iOwner; 

    % 

    %  assemble fluxes for owner cell 

    % 

    ac(iOwner) = ac(iOwner) + theFluxes.FLUXC1f(iBFace); 

    bc(iOwner) = bc(iOwner) - theFluxes.FLUXTf(iBFace); 

end 

 

% Store updated coefficients  

theCoefficients.ac = ac; 

theCoefficients.anb = anb; 

theCoefficients.bc = bc; 
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6.5.3.1 SOR Solver 

The SOR is a Gauss-Seidal solver except that it includes a factor 𝜔 which enhances the progress 
of the solver. Check the function cfdSORSolver: 
 

 

Listing 22 - SOR solver 

6.5.3.2 ILU Solver 

Incomplete factorization of the matrix 𝐴 is an efficient preconditioner which allows for an 

accelerated convergence rate of the solver. The corresponding function is: cfdILUSolver 

 

Listing 23 - ILU solver 

6.5.3.3 AMG Linear Solver 

An algebraic multigrid solver remove low-frequency error components. In the context of 
multigrid solvers, the direct iterative solvers like ILU solver are regarded as smoothers. Below is 

for iElement=1:numberOfElements 

    cconn = theCoefficients.cconn{iElement}; 

    local_dphi = bc(iElement); 

    for iLocalNeighbour = 1:length(cconn) 

        iNeighbour = cconn(iLocalNeighbour); 

        local_dphi = local_dphi - anb{iElement}(iLocalNeighbour)*dphi(iNeighbour); 

    end 

    dphi(iElement) = local_dphi/ac(iElement); 

end 

  

for iElement=numberOfElements:-1:1 

    cconn = theCoefficients.cconn{iElement}; 

    local_dphi = bc(iElement); 

    for iLocalNeighbour = 1:length(cconn) 

        iNeighbour = cconn(iLocalNeighbour); 

        local_dphi = local_dphi - anb{iElement}(iLocalNeighbour)*dphi(iNeighbour); 

    end 

    dphi(iElement) = local_dphi/ac(iElement); 

end 

 

for i1=1:numberOfElements 

    dc(i1) = ac(i1); 

end 

  

for i1=1:numberOfElements 

    dc(i1) = 1.0/dc(i1); 

    rc(i1) = bc(i1); 

     

    i1NbList = theCoefficients.cconn{i1}; 

    i1NNb = length(i1NbList); 

     

    if(i1~=numberOfElements-1) 

        % loop over neighbours of iElement 

        j1_ = 1; 

        while(j1_<=i1NNb)             

            jj1 = i1NbList(j1_); 

            % for all neighbour j > i do 

            if((jj1>i1) && (jj1<=numberOfElements)) 

                j1NbList = theCoefficients.cconn{jj1}; 

                j1NNb = length(j1NbList); 

                i1_= 0; 

                k1 = -1; 

                % find _i index to get A[j][_i] 

                while((i1_<=j1NNb) && (k1 ~= i1)) 

                    i1_ = i1_ + 1; 

                    k1 = j1NbList(i1_); 

                end 

                % Compute A[j][i]*D[i]*A[i][j] 

                if(k1 == i1) 

                    dc(jj1) = dc(jj1) - anb{jj1}(i1_)*dc(i1)*anb{i1}(j1_); 

                else 

                    disp('the index for i in j is not found'); 

                end 

            end 

            j1_ = j1_ + 1; 

        end 

    end 

end 
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a glance to the AMG code, it is advisable to access the code to see much more details about it. 

Refer to cfdApplyAMG. 
 

 

Listing 24 - Multigrid solver 

Note: uFVM utilizes the AMG solver by default for the pressure equation only, while applies 
direct iterative solvers for all other equations. 

6.5.4 Correcting Equation Solution 

All the equations are corrected just after solving the algebraic system 𝐴𝜙′ = 𝑏 such that: 

𝜙𝐶 = 𝜙𝐶
∗ + 𝜙𝐶

′  

However, after solving the pressure correction equation, the other fields have also to be 

corrected: 

For incompressible flow: 

𝒗𝐶
∗∗ = 𝒗𝐶

∗ −𝑫𝐶
𝒗(∇𝑝′)𝐶  

𝑝𝐶
∗ = 𝑝𝐶

(𝑛)
+ 𝜆𝑝𝑝𝐶

′  

�̇�𝑓
∗∗ = �̇�𝑓

∗ − 𝜌𝑓
∗𝑫𝑓

𝒗̅̅ ̅̅ ∇𝑝𝑓
′ . 𝑺𝑓 

 

For compressible flow: 

𝒗𝐶
∗∗ = 𝒗𝐶

∗ −𝑫𝐶
𝒗(∇𝑝′)𝐶  

𝑝𝐶
∗ = 𝑝𝐶

(𝑛)
+ 𝜆𝑝𝑝𝐶

′  

𝜌𝐶
∗∗ = 𝜌𝐶

∗ + 𝜆𝜌𝐶𝜌𝑝𝐶
′  

gridLevel = 1; 

nCycle = 1; 

if(strcmp(cycleType,'V-Cycle')) 

    while ((nCycle<=maxCycles)&&(finalResidual>rrf*initialResidual)) 

        % 

        % Apply V-Cycle 

        % 

        finalResidual = cfdApplyVCycle(gridLevel,smootherType,maxLevels,preSweep,postSweep,rrf); 

        % 

        nCycle = nCycle + 1; 

    end 

elseif(strcmp(cycleType,'F-Cycle')) 

    while ((nCycle<=maxCycles)&&(finalResidual>rrf*initialResidual)) 

        % 

        % Apply F-Cycle 

        % 

        finalResidual = cfdApplyFCycle(gridLevel,smootherType,maxLevels,preSweep,postSweep,rrf); 

        % 

        nCycle = nCycle + 1; 

    end 

elseif(strcmp(cycleType,'W-Cycle')) 

    while ((nCycle<=maxCycles)&&(finalResidual>rrf*initialResidual)) 

        % 

        % Apply W-Cycle 

        % 

        finalResidual = cfdApplyWCycle(gridLevel,smootherType,maxLevels,preSweep,postSweep,rrf); 

        % 

        nCycle = nCycle + 1; 

    end 

end 
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�̇�𝑓
∗∗ = �̇�𝑓

∗ − 𝜌𝑓
∗𝑫𝑓

𝒗̅̅ ̅̅ ∇𝑝𝑓
′ . 𝑺𝑓 + (

�̇�𝑓
∗

𝜌𝑓
∗ )𝐶𝜌,𝑓𝑝𝑓

′  

 

Listing of correcting �̇�𝑓
∗: 

 

Listing 25 - Correcting �̇�𝑓
∗ 

Listing of correcting 𝒗𝐶
∗ : 

 

Listing 26 – Correcting 𝒗𝐶
∗  

Listing of correcting 𝜌𝐶
∗ : 

 

Listing 27 – Correcting 𝜌𝐶
∗  

Further details of the implementation of field corrections can be found at 
cfdCorrectEquation. 
 

 

applicationClass = cfdGetApplicationClass; 

if strcmp(applicationClass, 'compressible') 

    % Get density field 

    theDensityField = cfdGetMeshField('rho'); 

    rho = theDensityField.phi; 

     

    % Get the convected density at the faces 

    pos = zeros(size(mdot_f)); 

    pos(mdot_f>0) = 1; 

    rho_f = rho(iOwners).*pos(iFaces) + rho(iNeighbours).*(1 - pos(iFaces)); 

  

    % Get drhodp field 

    theDrhodpField = cfdGetMeshField('C_rho'); 

    C_rho = theDrhodpField.phi; 

    C_rho_f = cfdInterpolateFromElementsToFaces('Average', C_rho); 

    C_rho_f = C_rho_f(iFaces); 

     

    % Correct bt adding compressible contribution 

    mdot_f(iFaces) = mdot_f(iFaces) + (mdot_f(iFaces) ./ rho_f) .* C_rho_f .* pp(iOwners); 

end 

  

% Correct 

mdot_f(iFaces) = mdot_f(iFaces) + FLUXC1f(iFaces).*pp(iOwners) + FLUXC2f(iFaces).*pp(iNeighbours); 

 

thePPField = cfdGetMeshField('PP'); 

ppGrad = thePPField.phiGradient; 

% 

DUPPGRAD = [DU1.*ppGrad(iElements,1),DU2.*ppGrad(iElements,2),DU3.*ppGrad(iElements,3)]; 

% 

theVelocityField = cfdGetMeshField('U'); 

vel = theVelocityField.phi; 

% 

vel(iElements,:) = vel(iElements,:) - DUPPGRAD(iElements,:); 

 

thePressureCorrectionField = cfdGetMeshField('PP'); 

pp = thePressureCorrectionField.phi; 

  

theDensityField = cfdGetMeshField('rho'); 

rho = theDensityField.phi; 

  

theDrhodpField = cfdGetMeshField('C_rho'); 

C_rho = theDrhodpField.phi; 

  

theEquation = cfdGetModel('rho'); 

URFRho = theEquation.urf; 

  

rho = rho + 0.7 .* C_rho .* pp; 
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6.6 CONVERGENCE 
Once the case is run, the solution will be updated at each iteration while at the mean time a 

real-time plot will be displayed showing the residuals of the equations. A sample is shown in the 

figure below: 

 

Figure 4 - Real-time residuals monitor 

Once the case is run until convergence, or the maximum number of iterations are reached in a 

steady state simulation, a phrase ‘Solution is converged!’ will show up on the screen notifying 

the user. 

In case of divergence, a pop-up message box will be displayed notifying the user that the 

program has detected divergence. The box is presented below: 

 

Figure 5 - Divergence notification 
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6.7 POST-PROCESSING 
The user may plot the results on figures. The corresponding functions to plot the resulting fields 

is cfdPlotField. The function takes an argument the name of the field to be plotted. 

Considering that the user wants to plot the velocity field, they have to call the following in the 

command window: 

cfdPlotField('U') 

 

To plot the velocity vectors, the function to be used is cfdPlotVelocity. The function takes 
as arguments the vector scale, the transparency of the faces and the vector skipping criterion. If 
the user wants to plot the vector field with vector scale of 1, full transparency and 10 vector 
skips (skip a vector every 10 vectors), they have to call the following in the command window: 
 

cfdPlotVelocity('vectorScale',1,'faceAlpha',0,'vectorSkip',0); 
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7 TUTORIALS 

In this chapter, some tutorials will be provided from each application class. 5 application classes 

can be simulated so far within uFVM: basic, incompressible, compressible, Heat Transfer and 

multiphase. 

7.1 BASIC 
The ‘stepProfile’ case is considered here. The mesh is a square domain with 20 by 20 structured 

cells. A constant velocity profile (2𝑖̂ + 1𝑗̂) is assumed over the domain as shown in the figure 

below. We attempt to solve a pure convection problem in order to evaluate the quality of 

convection schemes. The convected quantity is 𝜙 and has dirichlet boundary conditions at two 

patches shown below in the figure, while on the other part of the boundary, the quantity 𝜙 is 

set to zero gradient. 

 

 

 

The equation that is to be solved is 

∇. (𝜌𝒗𝜙) = 0 

where 𝒗 is the velocity field set as constant field (Refer to the 0 directory in the tutorials and 

look at the file named ‘U’). The corresponding run file is as shown here: 

𝜙 = 1 

𝜙 = 0 

 

𝜕𝜙

𝜕𝑛
= 0 
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In addition, we set the default option of the divSchemes in the ‘fvShemes’ directory to ‘Gauss 

upwind’ which corresponds to first order upwind. Running the case generates the following 

residuals plot: 

 

Figure 6 - Residuals monitor for the upwind convection of the quantity 𝜙 

%-------------------------------------------------------------------------- 

% 

%  written by the CFD Group @ AUB, 2017  

%  contact us at: cfd@aub.edu.lb 

%========================================================================== 

% Case Description: 

%     In this test case the square cavity problem is considered with a 

%     uniform velocity profile throughout the domain. The objective is to 

%     investigate the convection schemes (the default now is set to first 

%     order upwind). 

%-------------------------------------------------------------------------- 

  

% Setup Case 

cfdSetupSolverClass('basic'); 

  

% Read OpenFOAM Files 

cfdReadOpenFoamFiles; 

  

% Setup Time Settings 

cfdSetupTime; 

  

% Setup Equations 

cfdDefineEquation('phi', 'div(rho*U*phi) = 0'); % Convection 

  

% Initialize case 

cfdInitializeCase; 

  

% Run case 

cfdRunCase; 
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The contour of 𝜙 is as follows: 

 

Figure 7 - Contour plot of phi subject to first order upwind convection 
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7.2 INCOMPRESSIBLE 
The ‘elbow’ case is considered here. The following is the mesh with inlet velocities shown: 

 

 

 

 

This case simulates a water flow in the elbow at steady state conditions with no gravitational 

acceleration. The governing equations are: 

Momentum: 

∇. (𝜌𝒗𝒗) = 𝜇∇2𝒗 + ∇. {𝜇(∇𝒗)𝑇} − ∇𝑝 

Continuity: 

∇. 𝒗 = 0 

Energy: 

∇. (𝜌𝑐𝑝𝒗𝑇) = 𝑘∇
2𝑇 

 

The corresponding run case is: 

16 

64 

4  

1 m/s  

3 m/s  
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Listing 28 - Run file of the 'elbow' case 

 

Refer to the ‘elbow’ case in the tutorials directory. Running the case will solve the problem 

where it converges after 105 iterations, and the figure below shows the residuals history of the 

equations (U, p, and T): 

 

Figure 8 - Residuals history of the elbow case 

%-------------------------------------------------------------------------- 

% 

%  written by the CFD Group @ AUB, 2017  

%  contact us at: cfd@aub.edu.lb 

%========================================================================== 

% Case Description: 

%     In this test case a water flow in an elbow is simulated at steady state 

%-------------------------------------------------------------------------- 

  

% Setup Case 

cfdSetupSolverClass('incompressible'); 

  

% Read OpenFOAM Files 

cfdReadOpenFoamFiles; 

  

% Setup Time Settings 

cfdSetupTime; 

  

% Setup Equations 

cfdDefineEquation('U', 'div(rho*U*U) = laplacian(mu*U) + div(mu*transp(grad(U))) - grad(p)'); % Momentum 

cfdDefineEquation('p', 'div(U) = 0'); % Continuity 

cfdDefineEquation('T', 'div(rho*Cp*U*T) = laplacian(k*T)'); % Energy 

  

% Initialize case 

cfdInitializeCase; 

  

% Run case 

cfdRunCase; 
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We call the following functions: 

cfdPlotField('U') 
cfdPlotField('p') 
cfdPlotField('T') 
cfdPlotVelocity('vectorScale',1,'faceAlpha',0,'vectorSkip',0); 

 

The results for velocity ‘U’, pressure ‘p’ and temperature ‘T’ in addition to the velocity vector 

field will be plotted. Presented below are the results: 

 

Figure 9 - Velocity magnitude contour (m/s) 
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Figure 10 - Pressure contour (pa) 
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Figure 11 - Temperature contour (k) 
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Figure 12 - Velocity vectors 

 

7.3 HEAT TRANSFER 
A hot room case will be presented here. A buoyancy driven air flow is simulated in a room which 

has different temperature values on its floor and ceiling while the walls are adiabatic. The mesh 

is shown here: 

 

Floor 𝑇 = 320 𝐾 

Ceiling 𝑇 = 290 𝐾 
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In this problem, Boussinesq approximation is implemented to account for buoyancy effects due 

to temperature gradients. 

The governing equations are: 

Momentum: 

∇. (𝒗𝒗) = 𝜈∇2𝒗 + ∇. {𝜈(∇𝒗)𝑇} − ∇𝑝 − 𝑔𝛽(𝑇 − 𝑇𝑟𝑒𝑓) 

Continuity: 

∇. 𝒗 = 0 

Energy: 

∇. (𝒗𝑇) = 𝛼∇2𝑇 

 

The corresponding run case is: 

 

 

Running the case, gives the following velocity field at an arbitrary section plane: 

%-------------------------------------------------------------------------- 

% 

%  written by the CFD Group @ AUB, 2017  

%  contact us at: cfd@aub.edu.lb 

%========================================================================== 

% Case Description: 

%     In this test case a hot room is simulated with boussinesq 

%     approximation 

%-------------------------------------------------------------------------- 

  

% Setup Case 

cfdSetupSolverClass('heatTransfer'); 

  

% Read OpenFOAM Files 

cfdReadOpenFoamFiles; 

  

% Setup Time Settings 

cfdSetupTime; 

  

% Define new properties 

cfdSetupProperty('alpha', 'model', 'nu/Pr'); 

  

% Setup Equations 

cfdDefineEquation('U', 'div(U*U) = laplacian(nu*U) + div(nu*transp(grad(U))) - grad(p) - g*beta*(T - TRef)'); % 

Momentum 

cfdDefineEquation('p', 'div(U) = 0'); % Continuity 

cfdDefineEquation('T', 'div(U*T) = laplacian(alpha*T)'); % Energy 

  

% Initialize case 

cfdInitializeCase; 

  

% Run case 

cfdRunCase; 
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Figure 13 - Velocity field at a section plane 

 

 

 


