
9/6/2017

uFVM v1.0
CFD Academic Tool developed in

MATLAB® – User Manual

Computational Mechanics Lab
AMERICAN UNIVERSITY OF BEIRUT

1

1 CONTENTS

2 Introduction ... 3

2.1 Using The Manual .. 3

2.1.1 About The Manual ... 3

2.1.2 Terms of Use .. 3

2.2 About The Code Development and Authors ... 3

2.2.1 What’s uFVM? ... 3

2.2.2 The Place and Time of Development ... 3

2.2.3 Developers ... 3

2.3 Range of Applicability .. 4

2.4 A Glance into uFVM’s Discretization and Solution Methods .. 4

3 Structure of The Code ... 6

3.1 Source Files .. 6

3.2 Tutorials ... 6

4 Introductory Test Case .. 7

4.1 Main File: Running a Case ... 7

4.2 Example ... 7

4.2.1 Header ... 7

4.2.2 Setup Solver Class .. 8

4.2.3 Read OpenFOAM Files ... 8

4.2.4 Setup Time ... 9

4.2.5 Setup Equations ... 9

4.2.6 Initialize Case ... 9

4.2.7 Running the Case ... 9

5 Reading and Plotting OpenFOAM Mesh .. 10

6 An Introductory Presentation of uFVM Functions .. 15

6.1 Application Class .. 15

6.2 Reading OpenFOAM Files and Translation to uFVM ... 15

6.3 Fixing Time Settings ... 16

6.4 Interpreting the Model/Equations .. 16

6.5 Running the Case ... 20

6.5.1 Time Loop/Convergence Loop ... 20

2

6.5.2 Assembling Equation Terms .. 21

6.5.2.1 Transient Term .. 23

6.5.2.2 Convection Term ... 24

6.5.2.3 Diffusion Term ... 24

6.5.2.4 Source Term... 25

6.5.2.5 ‘mdot_f’ Term .. 26

6.5.2.6 Pressure Correction Treatment for Free Surface Flow 28

6.5.2.7 False Transience .. 28

6.5.2.8 Gradient Computation ... 29

6.5.2.9 Implicit Under-Relaxation .. 31

6.5.2.10 Residual Form of the Equation .. 32

6.5.2.11 Residual Computation ... 32

6.5.2.12 Assembling Fluxes to Global Assembly Matrix .. 34

6.5.3 Solving the Equation Algebraic System ... 39

6.5.3.1 SOR Solver ... 40

6.5.3.2 ILU Solver ... 40

6.5.3.3 AMG Linear Solver ... 40

6.5.4 Correcting Equation Solution .. 41

6.6 Convergence .. 43

6.7 Post-processing ... 44

7 Tutorials ... 45

7.1 Basic ... 45

7.2 Incompressible .. 48

7.3 Heat Transfer ... 53

3

2 INTRODUCTION

2.1 USING THE MANUAL

2.1.1 About The Manual

This manual provides an overview about uFVM code. The manual describes with sufficient

details the structure of the code, the range of applicability and who may use it. The way through

which a CFD case is prepared is then described and plenty of tutorials are accordingly provided.

In other words, this manual presents a complete set of instructions for the user to follow in

order to setup a CFD problem.

2.1.2 Terms of Use

uFVM is an academic CFD tool made for learning purposes. It provides a package of libraries and

algorithms that the user can comfortably follow up. Handling, distributing or modifying is fully

permissible; the user has the full permission to add any piece of code or modify an existing one.

2.2 ABOUT THE CODE DEVELOPMENT AND AUTHORS

2.2.1 What’s uFVM?

The name of the code presents an abbreviation letters of the finite volume method (FVM) that

the code is based on. The “u” at the beginning of the name points for a fluid flow. The code is

developed in Matlab® environment because it is assumed that the majority of interested people

are familiar with this environment.

2.2.2 The Place and Time of Development

The code is developed in the computational mechanics lab at the American University of Beirut,

Beirut, Lebanon. The development has started in 2003 and was built and updated gradually

through years. Lots of versions were made each of them had a different structure but

necessarily the same theoretical background.

2.2.3 Developers

The code is a direct accomplishment of the CFD group at the American University of Beirut. The

CFD group is a team of professors, graduate and undergraduate students. Their main objective is

to build computational knowledge and work on plenty of related topics in both tracks

development and application. The team is very familiar with Ansys Fluent® and OpenFOAM®;

they utilize these packages for many purposes. uFVM for example was validated in reference to

these packages. The group’s accomplishments, research topics and published work are posted

on their website https://feaweb.aub.edu.lb/research/cfd. The major contributor to the code is

https://feaweb.aub.edu.lb/research/cfd

4

Professor Marwan Darwish1. A co-contributor to the code is Professor Fadl Moukalled2. The

other contributors to the code are Master and PhD students who accomplished their theses and

dissertations from the computational mechanics lab at the American University of Beirut.

2.3 RANGE OF APPLICABILITY
uFVM works for incompressible fluid flows with any type of mesh (structured and unstructured).

For consistency, the code doesn’t include any geometry modeling or meshing capabilities. It

accepts mesh files of OpenFOAM format.

 It is worth mentioning that uFVM is a solver which solves the conservation equations (transport

equations) where the user is able to investigate any physical quantity of interest which is

transported by means of a physical phenomenon like convection and diffusion. It is possible also

to set any form of an explicit term into the conservation equation like external forces; these are

treated as source terms. A transient treatment is also included. The domain usually assumes a

fluid flow. However, the code may still apply to solid domains if the user seeks certain transport

quantities in a solid, obviously the temperature distribution.

The code may also handle multi-phase flows. The current distributed version of uFVM doesn’t

include compressible and multi-phase solvers as they are still under construction and revision.

For further information about the status of multi-phase solver, the user may contact any of the

contributors.

It is not the purpose of this code to provide a CFD tool for conducting fluid flow simulations for

heavy/complex applications. There are two issues to raise here. First, this code is made for those

who are mainly learning CFD and/or interested in CFD code development. This code provides a

very useful and helpful means for those people. Second, the user should necessarily realize that

Matlab is a highly user friendly language; this makes it very convenient for learning issues much

more than it is for conducting real life engineering applications. However, this friendly user

specialty had an expense at the computational time; Matlab is slower than other lower level

languages.

2.4 A GLANCE INTO UFVM’S DISCRETIZATION AND SOLUTION METHODS
Only pressure-based methods are available in uFVM with SIMPLE method as the default scheme.

The default convection scheme is the Upwind scheme, but however, different convection

schemes are also available like (SOU, QUICK, SMART, etc.). Gradient computation is based on

the first-order Gauss approximation whether it is cell-based or nodal-based. The “ILU” and

“SOR” solvers are available along with a multi-grid (AMG) solver which utilizes any of the fixed

cycles (V, F, or W Cycle). Under-relaxation factors for any given quantity are treated implicitly in

1 Professor Darwish has gained his PhD from Brunel University in 1985. His major research topics are
computational fluid dynamics, classical fluid mechanics and material sciences. He’s currently acting as a
full time professor at the American University of Beirut.
2 Professor Moukalled has gained his PhD from Louisiana University in 1987. His major research topics are
compressible flows, computational fluid dynamics, modeling energy systems. He’s currently acting as a
full time professor at the American University of Beirut.

5

the equations. All these solution methods and controls are presented in a more detailed

framework in later parts of the manual.

6

3 STRUCTURE OF THE CODE

The uFVM directories are distributed into sources, which are the routines that make up the

code, and tutorials that include the test cases.

3.1 SOURCE FILES
The source code is available in the ‘ufvm/src’ directory. It is distributed to different folders,

‘fvm’ and ‘utilities’. ‘fvm’ contains the finites volume methods, algorithms and solution. ‘utilities’

contains all auxiliary functions.

3.2 TUTORIALS
There are set of tutorials that allows the user to work with ufvm. These tutorials are classified as

basic, incompressible, compressible, multiphase and heatTransfer. Cases that are to be

simulated are to be made in OpenFOAM format. OpenFOAM cases include 3 main directories:

‘0’, ‘system’ and ‘constant’. The ‘0’ directory is where initial and boundary conditions are

specified. The ‘system’ directory includes the solution methods, the finite volume schemes and

the time and write controls of the simulation. The ‘constant’ directory includes the mesh files,

the fluid properties (transport and/or thermophysical), gravity properties and turbulence

properties. For further information, refer to the tutorials.

7

4 INTRODUCTORY TEST CASE

4.1 MAIN FILE: RUNNING A CASE
The code runs from a main script, usually called ‘run’. The ‘run’ file has to be located in an

OpenFOAM case as mentioned earlier. It represents the case study or the problem definition.

This is the only file of importance for the user. The main file contains a set of functions that build

up the model. However, the user has to add the path of uFVM source files by typing the

following command into the command window:

addpath(genpath('~location of uFVM~/uFVM/src'));

4.2 EXAMPLE
The incompressible ‘elbow’ example will be presented here.

Listing 1 - Run file of the case named ‘elbow’ in the incompressible tutorials directory

4.2.1 Header

The script starts by few words expressing a header and providing a summary of the case:

%--
%
% written by the CFD Group @ AUB, 2017
% contact us at: cfd@aub.edu.lb
%==
% Case Description:
% In this test case a water flow in an elbow is simulated
%--

%--
%
% written by the CFD Group @ AUB, 2017
% contact us at: cfd@aub.edu.lb
%==
% Case Description:
% In this test case a water flow in an elbow is simulated
%--

% Setup Case
cfdSetupSolverClass('incompressible');

% Read OpenFOAM Files

cfdReadOpenFoamFiles;

% Setup Time Settings

cfdSetupTime;

% Setup Equations

cfdDefineEquation('U', 'ddt(rho*U) + div(rho*U*U) = laplacian(mu*U) + div(mu*transp(grad(U)))

 - grad(p) + rho*g'); % Momentum

cfdDefineEquation('p', 'div(U) = 0'); % Continuity

cfdDefineEquation('T', 'ddt(rho*Cp*T) + div(rho*Cp*U*T) = laplacian(k*T)'); % Energy

% Initialize case

cfdInitializeCase;

% Run case
cfdRunCase;

8

4.2.2 Setup Solver Class

The user has to set the class of the application. The application can be one of the following:

basic-incompressible-compressible-multiphase-heatTransfer. These are the standard

OpenFOAM tutorial classes.

4.2.3 Read OpenFOAM Files

OpenFOAM files are imported at this level to Matlab and stored in a global variable called

‘Domain’. In fact, all OpenFOAM input information are stored in a structure called foam within

the global Domain variable. The table below presents the settings that the user must or may

include in the OpenFOAM files:

Option/Setting Name Description Location
residualControl

The equations’ tolerances
(convergence criteria)

system/fvSolution

relaxationFactors The under-relaxation factors
to be applied to the
equations

system/fvSolution

ddtSchemes The transient scheme (steady
or transient). The options
are:
steadyState
Euler

system/fvSchemes

divSchemes

The convection scheme. The
options are:
Gauss upwind
Gauss linear

system/fvSchemes

startFrom

This tells the solver from
where to start. The options
are:
firstTime
startTime
latestTime

system/controlDict

startTime

The initial time of the
simulation

system/controlDict

stopAt

This tells the solver until
when to stop. The options
are:
endTime

system/controlDict

endTime

The final time of the
simulation

system/controlDict

deltaT

The time step of the
simulation

system/controlDict

writeControl

The criterion that the solver
writes the results based on.
The options are:
timeStep

system/controlDict

writeInterval Write results every specified
number of time steps (if the

system/controlDict

9

writeControl is set to
timeStep)

4.2.4 Setup Time

The function cfdSetupTime sets time controls and other conditions for the simulation. Other
conditions of the simulation are related to multiphase flow model which will not be considered
in the current uFVM version. The following table presents the valid arguments of the function:

4.2.5 Setup Equations

The user has to define the equations that are to be solved. The equations that are being solved

in the above example are described below.

Momentum:

𝜕(𝜌𝒗)

𝜕𝑡
+ ∇. (𝜌𝒗𝒗) = 𝜇∇2𝒗 + ∇. {𝜇(∇𝒗)𝑇} − ∇𝑝 + 𝜌𝒈

Continuity:

∇. 𝒗 = 0

Energy:

𝜕(𝜌𝑐𝑝𝑇)

𝜕𝑡
+ ∇. (𝜌𝑐𝑝𝒗𝑇) = 𝑘∇

2𝑇

4.2.6 Initialize Case

The case is initialized after that by evaluating all the fields with their corresponding values on

the mesh. For example, the field variables (variables to be solved for), have initial values that are

imported from the OpenFOAM ‘0’ directory. The properties are evaluated based on their values

dictated by the ‘transportProperties’ file or ‘thermophysicalProperties’ file in case of a

compressible flow; these are found in the ‘constant’ directory.

4.2.7 Running the Case

The case is made to run at this level, iterating over the equations until convergence. The

convergence criteria can be found in the ‘fvSolution’ file in the ‘system’ directory within

OpenFOAM folders.

10

5 READING AND PLOTTING OPENFOAM MESH

When in the case, a user may read the OpenFOAM mesh and visualize it before running the

case. The following commands are all what the user needs to do so:

To read the mesh, the function cfdReadPolyMesh has to be called. The uFVM will go to the

‘constant/polyMesh’ directory, read the files there, and store the mesh information in the

database. To plot the mesh, the user has to use the function cfdPlotMesh; the mesh will then

be plotted:

Figure 1 - Plotted mesh

To witness the details of the read mesh, the user has to call for the mesh from the database by

writing:

mesh = cfdGetMesh

11

The mesh will be printed out such as:

The information printed out above are structures and values that store the quantitative and

qualitative details of the mesh. For instance, see the number of elements (numberOfElements:

4000) and the number of patches (numberOfPatches: 3). The information of any element or face

can be witnessed by accessing it from the corresponding structure. If I want to see the details of

element number 100 in the mesh, I can simply write mesh.elements(100)and the output is:

mesh =

 struct with fields:

 nodes: [1×4851 struct]

 numberOfNodes: 4851

 caseDirectory: 'constant/polyMesh'

 numberOfFaces: 12800

 numberOfElements: 4000

 faces: [1×12800 struct]

 numberOfInteriorFaces: 11200

 boundaries: [1×3 struct]

 numberOfBoundaries: 3

 numberOfPatches: 3

 elements: [1×4000 struct]

 numberOfBElements: 1600

 numberOfBFaces: 1600

 cconn: {4000×1 cell}

 csize: [4000×1 double]

12

The previous commands can also be applied to faces and nodes. The user may also visualize the

elements, faces and patches. In order to plot patch #1 for instance, the function

cfdPlotPatches(1) has to be called. The output figure is:

>> theMesh.elements(100)

ans =

 struct with fields:

 index: 100

 iNeighbours: [80 99 120 300]

 iFaces: [235 291 294 295 12205 12595]

 iNodes: [104 335 336 105 125 356 357 126]

 volume: 0.1250

 faceSign: [-1 -1 1 1 1 1]

 numberOfNeighbours: 4

 OldVolume: 0.1250

 centroid: [3×1 double]

13

Figure 2 - Plotted mesh and patch number 1

Elements and faces may also be visualized using the functions cfdPlotElements and

cfdPlotFaces. If more than an entity are to be plotted, say 3 entities of indecis 1, 2 and 3, and

considering plotting the elements, the user has to call cfdPlotElements([1 2 3]). The

output figure is:

14

Figure 3 - Visualizing elements 1, 2 and 3

15

6 AN INTRODUCTORY PRESENTATION OF UFVM FUNCTIONS

6.1 APPLICATION CLASS
Different applications give rise to different ways of treating the fluid flow equations. Thus a user

has to set an application class by choosing any of the following applications (basic,

incompressible, compressible, heatTransfer and multiphase). It is significantly important to set

the right application class because it is the basis of many things inside the code.

6.2 READING OPENFOAM FILES AND TRANSLATION TO UFVM
As mentioned previously, uFVM cases are prepared in OpenFOAM format. This choice was made

because OpenFOAM is a widely used CFD library (C++ based). Preparing an OpenFOAM case is

quite straight forward for each application class. Refer to the tutorials and check the way in

which each application is being prepared.

uFVM’s function cfdReadOpenFoamFiles reads all the files that exist in the 3 standard

OpenFOAM directories ‘0’, ‘constant’ and ‘system’. It searches for specific entries and blocks

within the files and stores them in the uFVM’s data base. See the following table for details

about the read files:

The above FOAM details are imported and stored in the data base ‘Domain’ under the structure

‘foam’ as such:

OpenFOAM
Case
Directory

'system'
Directory

fvSolution block: solvers

block: SIMPLE/PISO/ALGORITHM

block: relaxationFactors

fvSchemes block: ddtSchemes

block: divSchemes

block: laplcaianSchemes

Other Finite Volume Operators

controlDict key: startFrom
key: startTime
key: stopAt
key: endTime
other control options

'constant'
Directory

polyMesh boundary
points
faces
owner
neighbour
Others

transportProperties/thermophysicalProperties Collect all properties and their attributes (values,
dimensions, models, expressions)

turbulenceProperties key: simulationType i.e. RAS
key: RASModel
key: turbulence
key: printCoeffs

g Collect gravitational acceleration vale i.e. (0 0 -9.8)

'0'
Directory

U class

internalField

boundaryField

p class

internalField

boundaryField

T class

internalField

boundaryField

Other fields

16

6.3 FIXING TIME SETTINGS
Of the imported control settings, the time controls which exist in the controlDict structure in the

global Domain variable, are stored again in a more useful way in another structure called time.

The structure ‘time’ contains the following info for the arbitrary case of elbow:

The above settings will be used later on to set the start and end of the time loop or convergence

loop. If the case is transient, ‘deltaT’ in the above structure is the time step.

6.4 INTERPRETING THE MODEL/EQUATIONS
The equations in uFVM are interpreted in such a way that each term of the equation has its own

attributes. Generally, any conservation equation has the following form:

>> Domain.time

ans =

 struct with fields:

 startFrom: 'latestTime'

 startTime: 0

 stopAt: 'endTime'

 endTime: 10000

 deltaT: 10

 fdt: 1.0000e+09

 type: 'Transient'

17

𝜕(𝜌𝜙)

𝜕𝑡⏟
𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡

+ ∇. (𝜌𝒗𝜙)⏟
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= ∇. (𝛤𝜙 ∇𝜙)⏟
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ 𝑄𝜙 ⏟
𝑆𝑜𝑢𝑟𝑐𝑒

Note: The diffusion term ∇. (𝛤𝜙 ∇𝜙) can only be written as 𝛤∇2𝜙 when the diffusion coefficient

𝛤 is constant. However, when implementing the diffusion term in uFVM, it is always written as

laplacian(tau*phi) whether 𝛤 is constant or not.

The general conservation equation above is expressed in uFVM as follows:

cfdDefineEquation('phi', 'ddt(rho*phi) + div(rho*U*phi) = laplacian(tau*phi) + Q');

𝑄 in the above implementation has to be an explicit expression that includes fields and/or

properties. Inside uFVM, each of the above terms is interpreted in a different way. Each term

consists of an explicit part and an implicit one; the explicit part is the part which holds the

previous iteration value, and the implicit part is kept as an unknown to be assembled with other

implicit parts of other terms in a global matrix. The explicit part is roughly all the parameters

that are multiplied with 𝜙 and the implicit part is 𝜙. In the case of a general conservation

equation, the explicit part of the transient term
𝜕(𝜌𝜙)

𝜕𝑡
 is 𝜌 and the implicit part is 𝜙. In addition,

the explicit part of the transient term, is called the rho field. For the convection and diffusion

terms, the explicit parts are 𝜌𝒗 and 𝛤 respectively, and the names of the latter explicit fields are

the psi field and the gamma field respectively. The source term is treated explicitly; it is

evaluated based on available field values.

The table below summarizes the treatment of the terms of a general conservation equation:

𝜕(𝜌𝜙)

𝜕𝑡

The term type: Transient Term

the rho field: 𝜌

the variable field: 𝜙

𝛻. (𝜌𝒗𝜙) The term type: Convection Term

the psi field: 𝜌𝒗

the variable field: 𝜙

𝛻. (𝛤𝜙𝛻𝜙) The term type: DiffusionTerm

the gamma field: 𝛤𝜙

the variable name: 𝜙

𝑄𝜙 The term type: Source term

18

Example1:

Take the momentum equation in the elbow case as an example:

𝜕(𝜌𝒗)

𝜕𝑡
+ ∇. (𝜌𝒗𝒗) = 𝜇∇2𝒗 + ∇. {𝜇(∇𝒗)𝑇} − ∇𝑝 + 𝜌𝒈

It is written in uFVM in the following form:

'ddt(rho*U) + div(rho*U*U) = laplacian(mu*U) + div(mu*transp(grad(U))) - grad(p) + rho*g'

The momentum equation above includes 6 terms, each of them is interpreted in uFVM as shown

here:

Example2:

Take the Energy equation in the elbow case as another example:

𝜕(𝜌𝑐𝑝𝑇)

𝜕𝑡
+ ∇. (𝜌𝑐𝑝𝒗𝑇) = 𝑘∇

2𝑇

It is written in uFVM in the following form:

'ddt(rho*Cp*T) + div(rho*Cp*U*T) = laplacian(k*T)'

The Energy equation above includes 3 terms, each of them is interpreted in uFVM as shown

here:

ddt(rho*U) The term type: Transient Term

Finite Volume Operation: Implicit

the rho field: rho

the variable field: U

term sign: 1

div(rho*U*U) The term type: Convection Term

Finite Volume Operation: Implicit

the psi field: rho*U

the variable field: U

term sign: 1

laplacian(mu*U) The term type: Stress Term

Finite Volume Operation: Implicit

the gamma field: mu

the variable name: U

term sign = -1

div(mu*transp(grad(U))) The term type: Source term

Finite Volume Operation: Explicit

explicit operators available: grad

term sign: -1

grad(p) The term type: Source term

Finite Volume Operation: Explicit

explicit operators available: grad

term sign: 1

rho*g The term type: Source term

Finite Volume Operation: Explicit

explicit operators available: none

term sign: -1

19

However, a special case arises for the continuity equation which is usually called also the

pressure equation ‘p’. The ‘p’ equation is treated in a different way. The pressure equation for

an incompressible application class is the same for any fluid flow problem within the

incompressible category. Thus, the user may ignore the pressure equation expression keeping

only the equation name (‘p’). The reason that the pressure equation expression is included in

the Matlab listing above and we are repeating it here is just for showing the exact models that

this code is solving:

cfdDefineEquation('p', 'div(U) = 0');

While it is sufficient to write:

cfdDefineEquation('p');

Automatically, all the terms of the continuity equation are treated in a single term assembly

process, this term is called ‘mdot’. For incompressible fluid flows, the continuity equation stated

above is theoretically converted into another equation called the pressure equation, and that’s

why the name ‘p’ corresponds to the continuity equation.

A summary of how the pressure equation is derived from the continuity equation is presented

here:

The continuity equation for an incompressible flow:

∇. 𝒗 = 𝟎

ddt(rho*Cp*T) The term type: Transient Term

Finite Volume Operation: Implicit

the rho field: rho*Cp

the variable field: T

term sign: 1

div(rho*Cp*U*T) The term type: Convection Term

Finite Volume Operation: Implicit

the psi field: rho*Cp*U

the variable field: T

term sign: 1

laplacian(k*T) The term type: Stress Term

Finite Volume Operation: Implicit

the gamma field: k

the variable name: T

term sign = -1

20

→ ∑ �̇�𝑓
𝑓~𝑛𝑏(𝐶)

= 0

Dividing �̇�𝑓 into a predicted and correction components:

�̇�𝑓 = �̇�𝑓
∗ + �̇�𝑓

′

So,

∑ �̇�𝑓
′

𝑓~𝑛𝑏(𝐶)

+ ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)

= 0

The Rhie-Chow interpolation for �̇�𝑓
∗ is

�̇�𝑓
∗ = 𝜌𝒇𝒗𝑓

∗̅̅ ̅. 𝑺𝑓 − 𝜌𝒇𝑫𝑓
𝒗̅̅ ̅̅ (∇𝑝𝑓

(𝑛)
− ∇𝑝𝑓

(𝑛)̅̅ ̅̅ ̅̅ ̅
) . 𝑺𝑓

 and for �̇�𝑓
′ is

�̇�𝑓
′ = −𝜌𝒇𝑫𝑓

𝒗̅̅ ̅̅ ∇𝑝𝑓
′ . 𝑺𝑓

Therefore, the equation of the incompressible pressure equation is:

∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶)

(∇𝑝′
𝑓
). 𝑆𝑓 + ∑ �̇�𝑓

∗

𝑓~𝑛𝑏(𝐶)⏟
𝑚𝑑𝑜𝑡_𝑓

= 0

For a compressible continuity equation, the resulting pressure equation is a follows (you may

find the proof in the book):

𝑉𝐶𝐶𝜌

∆𝑡
𝑝𝐶
′ + ∑ 𝐶𝜌,𝑓

𝑓~𝑛𝑏(𝐶)

(
�̇�𝑓
∗

𝜌𝑓
∗)𝑝𝑓

′ + ∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶)

(∇𝑝′
𝑓
). 𝑆𝑓 +

(𝜌𝐶
∗ − 𝜌𝐶

°)

∆𝑡
+ ∑ �̇�𝑓

∗

𝑓~𝑛𝑏(𝐶)⏟
𝑚𝑑𝑜𝑡_𝑓

= 0

6.5 RUNNING THE CASE

6.5.1 Time Loop/Convergence Loop

The time loop and the convergence loop are located in the cfdRunCase where the time

settings are utilized. The following listing shows the time and convergence loops for a transient

simulation:

21

Listing 2 – Time loop

Note that the time settings startTime, endTime and deltaT are retrieved from the structure

called ‘time’ in the data base.

6.5.2 Assembling Equation Terms

The main function which includes all the finite volume methods (assembling equation terms,

solving and correcting) is cfdAssembleAndCorrectEquation. The aim of discretizing is to

assemble the algebraic coefficients and build the algebraic system of the model equation:

𝑎𝐶𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹
𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶

And after that, the function proceeds to solve a set of algebraic system 𝐴𝜙 = 𝑏 which yields a

solution of the system.

The following listing shows the main content of this function:

time = cfdGetTime;

startTime = time.startTime;

endTime = time.endTime;

deltaT = time.deltaT;

% Time Loop: Loop until the final time
timeIter = 1;
cumulativeIter = 1;
for t=startTime:deltaT:endTime
 % Time settings
 currentTime = t + deltaT;
 cfdSetCurrentTime(currentTime);

 % Update previous time step fields
 cfdTransientUpdate;

 cfdPrintCurrentTime(currentTime);

 % Convergence Loop: Loop until convergence for the current time step
 for iter=1:20
 cfdPrintIteration(cumulativeIter);
 cfdPrintResidualsHeader;
 %
 cfdUpdateFields;
 %
 for iEquation=1:theNumberOfEquations
 % Assemble the current equation and correct it
 [rmsResidual, maxResidual, lsResBefore, lsResAfter] = cfdAssembleAndCorrectEquation(theEquationNames{iEquation});

 % Print the equation residuals
 cfdPrintResiduals(cfdGetBaseName(theEquationNames{iEquation}),rmsResidual,maxResidual,lsResBefore,lsResAfter);

 % If multigrid solver is assigned, print the AMG solver
 % settings
 theEquation = cfdGetModel(theEquationNames{iEquation});
 isMultigrid = theEquation.multigrid.isActive;
 if isMultigrid
 cfdPrintLinearSolver(theEquationNames{iEquation});
 if iEquation<theNumberOfEquations
 cfdPrintResidualsHeader;
 end
 end

 % Store RMS residuals to check for convergence later on
 convergenceCriterion{iEquation}(1:length(maxResidual)) = rmsResidual;
 end
 fprintf('|==|\n');
 cfdPrintCPUTime;

 cfdPlotRealTimeResiduals(cumulativeIter);

 % Check for convergence at each iteration at the current time
 % step
 isConverged = cfdCheckConvergence(convergenceCriterion);
 if isConverged
 fprintf('Solution is converged!\n')
 break;
 end
 cumulativeIter = cumulativeIter + 1;
 end
 cfdWriteResults(timeIter, currentTime);
 timeIter = timeIter + 1;
end

22

Listing 3 - Assembling, solving, correcting the equation and storing its residuals

Starting with assembling the equation, the function cfdAssembleEquation executes the

following commands:

Listing 4 - Assembling equation terms and post assembling

The function cfdAssembleEquationTerms is in fact the function that includes the term

assembly and it is shown in the listing below, while the function cfdPostAssembleEquation

includes some methods that are done after assembling.

Listing 5 - Assembling of the terms in cfdAssembleEquationTerms

The assembling of the terms is made according to the finite volume method. The finite volume

method states that the conservation equation is integrated on an element 𝐶 of volume 𝑉𝐶. The

figure below shows an element 𝐶 with neighboring element 𝐹:

 for iCorrector=1:nCorrectors

 % Assemble Equation

 [rmsResidual(iComponent), maxResidual(iComponent)] = cfdAssembleEquation(theEquationName,iComponent);

 % Solve Equation

 [initialResidual(iComponent),finalResidual(iComponent)] = cfdSolveEquation(theEquationName);

 % Correct Equation

 cfdCorrectEquation(theEquationName,iComponent);

 end

 % Store rms residual in the equation model

 cfdStoreResiduals(theEquationName, iComponent, rmsResidual(iComponent));

end

% Assemble Equation Terms

[rmsResidual, maxResidual] = cfdAssembleEquationTerms(theEquationName,iComponent);

% Post Assemble Equation

cfdPostAssembleEquation(theEquationName,iComponent);

for iTerm = 1:theNumberOfTerms

 theTerm = theEquation.terms{iTerm};

 if strcmp(theTerm.name,'Transient')

 cfdAssembleTransientTerm(theEquationName,theTerm,iComponent);

 elseif strcmp(theTerm.name,'Convection')

 cfdAssembleConvectionTerm(theEquationName,theTerm,iComponent);

 elseif strcmp(theTerm.name,'Diffusion')

 cfdAssembleDiffusionTerm(theEquationName,theTerm);

 elseif strcmp(theTerm.name,'Stress')

 cfdAssembleStressTerm(theEquationName,theTerm,iComponent);

 elseif strcmp(theTerm.name,'mdot_f')

 cfdAssembleMdotTerm(theEquationName,theTerm);

 elseif strcmp(theTerm.name,'Source')

 cfdAssembleSourceTerm(theEquationName,theTerm,iComponent);

 elseif strcmp(theTerm.name,'Implicit Source')

 cfdAssembleSourceTerm(theEquationName,theTerm,iComponent);

 else

 error('\n%s\n',[theTerm.name,' term is not defined']);

 end

end

23

The general conservation equation is:

𝜕(𝜌𝜙)

𝜕𝑡
+ ∇. (𝜌𝒗𝜙) = ∇. (𝛤𝜙∇𝜙) + 𝑄𝜙

Integrating the equation over the volume of element 𝐶:

→ ∫
𝜕(𝜌𝜙)

𝜕𝑡𝑉𝐶

𝑑𝑉 +∫ ∇. (𝜌𝒗𝜙)
𝑉𝐶

= ∫ ∇. (𝛤𝜙∇𝜙)𝑑𝑉
𝑉𝐶

+∫ 𝑄𝜙

𝑉𝐶

𝑑𝑉

Applying finite volume time discretization approach for transient term and Greens’ theorem to

convection and diffusion terms:

→
𝜌𝐶𝜙𝐶 − 𝜌𝐶

°𝜙𝐶
°

∆𝑡
𝑉𝐶 + ∑ (𝜌𝑓𝒗𝑓 . 𝑺𝑓𝜙𝑓)

𝑓~𝑛𝑏(𝐶)

= ∑ (𝛤𝑓
𝜙
∇𝜙𝑓 . 𝑺𝑓)

𝑓~𝑛𝑏(𝐶)

+ 𝑄𝐶
𝜙
𝑉𝐶

The coefficient 𝜌𝑓𝒗𝑓 . 𝑺𝑓 in the second term (convection term) is referred to as 𝜓𝑓; this is

mentioned earlier. So, the equation is now:

𝜌𝐶𝜙𝐶 − 𝜌𝐶
°𝜙𝐶

°

∆𝑡
𝑉𝐶 + ∑ (𝜓𝑓𝜙𝑓)

𝑓~𝑛𝑏(𝐶)

= ∑ (𝛤𝑓
𝜙
∇𝜙𝑓 . 𝑺𝑓)

𝑓~𝑛𝑏(𝐶)

+ 𝑄𝐶
𝜙
𝑉𝐶

For each element, this is the semi-discretized equation. The terms above are now distributed

into element and face fluxes.

6.5.2.1 Transient Term

The semi-discretized transient term
𝜌𝐶𝜙𝐶−𝜌𝐶

°𝜙𝐶
°

∆𝑡
𝑉𝐶 is a contribution from the element itself but

not from the surrounding (through faces) like the convection and diffusion terms, so it is added

to the element flux such as follows:

𝑓𝑙𝑢𝑥𝐶 =
𝜌𝐶
∆𝑡
𝑉𝐶

𝑓𝑙𝑢𝑥𝐶° = −
𝜌𝐶
°

∆𝑡
𝑉𝐶

𝑓𝑙𝑢𝑥𝑉 = 0

𝑓𝑙𝑢𝑥𝑇 = 𝑓𝑙𝑢𝑥𝐶𝜙𝐶 + 𝑓𝑙𝑢𝑥𝐶
°𝜙𝐶

° + 𝑓𝑙𝑢𝑥𝑉

In uFVM, the function cfdAssembleTransientTermEuler calculates the above fluxes as
shown in the listing below:

Listing 6 - Assmebling transient term based on Euler's method

theFluxes.FLUXCE = theTerm.sign * vol .* rho / deltaT;

theFluxes.FLUXCEOLD = - theTerm.sign * vol .* rho_old / deltaT;

theFluxes.FLUXTE = theFluxes.FLUXCE .* phi' + theFluxes.FLUXCEOLD .* phi_old';

24

6.5.2.2 Convection Term

The face fluxes of the convection term ∑ (𝜓𝑓𝜙𝑓)𝑓~𝑁𝐵(𝐶) based on a first order upwind scheme

are calculated as follows:

𝑓𝑙𝑢𝑥𝐶𝑓 = ‖𝜓𝑓 , 0‖

𝑓𝑙𝑢𝑥𝐹𝑓 = −‖−𝜓𝑓 , 0‖

𝑓𝑙𝑢𝑥𝑉𝑓 = 0

𝑓𝑙𝑢𝑥𝑇𝑓 = 𝑓𝑙𝑢𝑥𝐶𝑓𝜙𝐶 + 𝑓𝑙𝑢𝑥𝐹𝑓𝜙𝐹 + 𝑓𝑙𝑢𝑥𝑉𝑓

The listing below is retrieved from cfdAssembleConvectionTerm:

Listing 7 - Calculating face fluxes from the convection term contribution. It is retrieved from the function

The above assembly is based on a first order upwind convection scheme. If a higher order

scheme is required and additional non-linear face flux arises. For a second order upwind

convection scheme, we have in addition to the above fluxes:

𝑓𝑙𝑢𝑥𝑉𝑓 = (2∇𝜙𝐶 − ∇𝜙𝑓). 𝒅𝐶𝐹

A glance to the implementation is shown here:

Listing 8 - Assembling of the correction term for higher order convection scheme (SOU)

6.5.2.3 Diffusion Term

The face fluxes of the diffusion term ∑ (𝛤𝑓
𝜙
∇𝜙𝑓 . 𝑺𝑓)𝑓~𝑛𝑏(𝐶) are calculated as follows. The linear

face fluxes are:

𝑓𝑙𝑢𝑥𝐶𝑓 = −𝛤𝑓
𝜙
𝑔𝐷𝑖𝑓𝑓𝑓

𝑓𝑙𝑢𝑥𝐹𝑓 = 𝛤𝑓
𝜙
𝑔𝐷𝑖𝑓𝑓𝑓

𝑔𝐷𝑖𝑓𝑓𝑓 is the geometric difference at the face; it is calculated as:

𝑔𝐷𝑖𝑓𝑓𝑓 =
𝐸𝑓

𝒅𝐶𝐹

theFluxes.FLUXC1f(iFaces,1) = theTerm.sign * max(psi,0);

theFluxes.FLUXC2f(iFaces,1) = - theTerm.sign * max(-psi,0);

theFluxes.FLUXVf(iFaces,1) = 0;

theFluxes.FLUXTf(iFaces,1) = theFluxes.FLUXC1f(iFaces) .* phi(iOwners) + theFluxes.FLUXC2f(iFaces) .*

phi(iNeighbours) + theFluxes.FLUXVf(iFaces);

rC = [theMesh.elements(iUpwind).centroid]';

rf = [theMesh.faces(iFaces).centroid]';

rCf = rf - rC;

corr = psi .* dot(2*phiGradC' - phiGradf(iUpwind, :)',rCf')';

theFluxes.FLUXTf(iFaces) = theFluxes.FLUXTf(iFaces) + corr;

25

Where 𝐸𝑓 is the norm of the vector 𝑬𝑓, which is the non-orthogonal component of 𝑺𝑓:

𝑺𝑓 = 𝑬𝑓 + 𝑻𝑓

The non-linear face flux is:

𝑓𝑙𝑢𝑥𝑉𝑓 = 𝛤𝑓
𝜙
∇𝜙𝑓 . 𝑻𝑓

The above non-linear face flux includes the previous iteration value of ∇𝜙𝑓 as well as the non-

orthogonal component of the face surface vector 𝑺𝑓 which is shown in the figure below:

The total flux is then:

𝑓𝑙𝑢𝑥𝑇𝑓 = 𝑓𝑙𝑢𝑥𝐶𝑓𝜙𝐶 + 𝑓𝑙𝑢𝑥𝐹𝑓𝜙𝐹 + 𝑓𝑙𝑢𝑥𝑉𝑓

The following piece of code is retrieved from the function cfdAssembleDiffusionTerm:

Listing 9 - Assembling diffusion term to face fluxes

6.5.2.4 Source Term

The source terms are all terms that are to be treated explicitly in the equation assembly. Any

source term is discretized and assembled as an element flux as follows:

𝑓𝑙𝑢𝑥𝑉 = 𝑄𝐶
𝜙
𝑉𝐶

𝑓𝑙𝑢𝑥𝑇 = 𝑓𝑙𝑢𝑥𝑉

theFluxes.FLUXC1f(iFaces,1) = - theTerm.sign * gamma .* gDiff_f;

theFluxes.FLUXC2f(iFaces,1) = theTerm.sign * gamma .* gDiff_f;

theFluxes.FLUXVf(iFaces,1) = theTerm.sign * gamma .* dot(grad_f(:,:)',Tf(:,:)')';

theFluxes.FLUXTf(iFaces,1) = theFluxes.FLUXC1f(iFaces) .* phi(iOwners) + theFluxes.FLUXC2f(iFaces) .*

phi(iNeighbours) + theFluxes.FLUXVf(iFaces);

26

It is worth mentioning that in uFVM, source terms are either recognized as standard source

terms or non-standard source terms. Of the standard source terms are gradients of equation

fields (∇𝒗, ∇𝑝, ∇𝑇, 𝑒𝑡𝑐). In the momentum equation for example, there’s a pressure gradient

term ∇𝑝. Instead of calculating the pressure gradient to assemble it, it is available in the data

base. So it is only called from the data base; this saves some time.

The non-standard source terms are evaluated directly as they appear in the equation. Of the

non-standard terms are:

 ∇. {𝜇(∇𝒗)𝑇} The second part of shear stress term. It appears in the momentum equation

−
2

3
∇(𝜇∇. 𝒗) The third part of the shear stress term which includes the bulk viscosity for

compressible flows. It appears in the momentum equation.

𝜌𝒈 A body force (weight of fluid) which appears in the momentum equation

The following listing shows the assembly of a non-standard term retrieved from the function
cfdAssembleSourceTerm:

Listing 10 - Assembling non-standard source term

6.5.2.5 ‘mdot_f’ Term

The pressure correction equation is treated within a single term called ‘mdot_f’ term. The

incompressible pressure equation

∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶)

(∇𝑝′
𝑓
). 𝑺𝑓

⏟
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛−𝑙𝑖𝑘𝑒

+ ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)⏟
𝑆𝑜𝑢𝑟𝑐𝑒−𝑙𝑖𝑘𝑒

= 0

consists of a diffusion-like term ∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶) (∇𝑝′
𝑓
). 𝑺𝑓 of a gamma coefficient 𝛤𝑓 =

−𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ . It also includes a source term ∑ �̇�𝑓

∗
𝑓~𝑛𝑏(𝐶) .

The diffusion-like term is discretized into face fluxes such as:

𝑓𝑙𝑢𝑥𝐶𝑓 = −𝛤𝑓
𝜙
𝑔𝐷𝑖𝑓𝑓𝑓 = 𝜌𝑓𝑫𝑓

𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓

𝑓𝑙𝑢𝑥𝐹𝑓 = 𝛤𝑓
𝜙
𝑔𝐷𝑖𝑓𝑓𝑓 = −𝜌𝑓𝑫𝑓

𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓

𝑓𝑙𝑢𝑥𝑉𝑓 = −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ ∇𝑝𝑓 . 𝑻𝑓

We introduce here 𝒟𝑓:

% If source term is not standard

S = cfdEvaluateNonstandardSourceTerm(theTerm, iComponent);

% Assemble Source Term as element flux

theFluxes.FLUXTE = theTerm.sign * S .* volume;

cfdAssembleIntoGlobalMatrixElementFluxes(theEquationName,theFluxes,iComponent);

27

𝒟𝑓 = 𝑫𝑓
𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓

So,

𝑓𝑙𝑢𝑥𝐶𝑓 = 𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓 = 𝜌𝑓𝒟𝑓

𝑓𝑙𝑢𝑥𝐹𝑓 = −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ 𝑔𝐷𝑖𝑓𝑓𝑓 = −𝜌𝑓𝒟𝑓

Usually, the non-linear flux of the diffusion term −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅ ∇𝑝𝑓 . 𝑻𝑓 is neglected, because it doesn’t

affect the final solution as it is a correction term, so the non-linear flux contribution of the

diffusion-like term 𝑓𝑙𝑢𝑥𝑉𝑓 = 0.

The source term ∑ �̇�𝑓
∗

𝑓~𝑁𝐵 can be regarded as face fluxes contribution instead of element

fluxes. So, the face flux contribution of the source term is:

𝑓𝑙𝑢𝑥𝑉𝑓 = �̇�𝑓
∗

The total flux 𝑓𝑙𝑢𝑥𝑇𝑓 is:

𝑓𝑙𝑢𝑥𝑇𝑓 = 𝑓𝑙𝑢𝑥𝐶𝑓𝑝𝐶 + 𝑓𝑙𝑢𝑥𝐹𝑓𝑝𝐹 + 𝑓𝑙𝑢𝑥𝑉𝑓

Whereas for the compressible pressure correction equation

𝑉𝐶𝐶𝜌

∆𝑡
𝑝𝐶
′

⏟
𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡−𝑙𝑖𝑘𝑒

+ ∑ 𝐶𝜌,𝑓
𝑓~𝑛𝑏(𝐶)

(
�̇�𝑓
∗

𝜌𝑓
∗)𝑝𝑓

′

⏟
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛−𝑙𝑖𝑘𝑒

+ ∑ −𝜌𝑓𝑫𝑓
𝒗̅̅ ̅̅

𝑓~𝑛𝑏(𝐶)

(∇𝑝′
𝑓
). 𝑺𝑓

⏟
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛−𝑙𝑖𝑘𝑒

+
(𝜌𝐶
∗ − 𝜌𝐶

°)

∆𝑡
+ ∑ �̇�𝑓

∗

𝑓~𝑛𝑏(𝐶)⏟
𝑆𝑜𝑢𝑟𝑐𝑒−𝑙𝑖𝑘𝑒

= 0

there are additional terms (transient and convection). They are discretized regularly.

The transient term
𝑉𝐶𝐶𝜌

∆𝑡
𝑝𝐶
′ element flux contribution is:

𝑓𝑙𝑢𝑥𝐶 =
𝑉𝐶𝐶𝜌

∆𝑡

𝑓𝑙𝑢𝑥𝐶° = 0

𝑓𝑙𝑢𝑥𝑉 = 0

𝑓𝑙𝑢𝑥𝑇 = 𝑓𝑙𝑢𝑥𝐶𝑝𝐶 + 𝑓𝑙𝑢𝑥𝑉

The convection term ∑ 𝐶𝜌𝑓~𝑛𝑏(𝐶) (
�̇�𝑓
∗

𝜌𝑓
∗) 𝑝𝑓

′ has a psi coefficient 𝜓𝑓 = 𝐶𝜌,𝑓 (
�̇�𝑓
∗

𝜌𝑓
∗), so the face fluxes

are:

𝑓𝑙𝑢𝑥𝐶𝑓 = ‖𝜓𝑓 , 0‖ = ‖𝐶𝜌,𝑓 (
�̇�𝑓
∗

𝜌𝑓
∗) , 0‖

𝑓𝑙𝑢𝑥𝐹𝑓 = −‖−𝜓𝑓 , 0‖ = −‖−𝐶𝜌,𝑓 (
�̇�𝑓
∗

𝜌𝑓
∗) , 0‖

28

𝑓𝑙𝑢𝑥𝑉𝑓 = 0

𝑓𝑙𝑢𝑥𝑇𝑓 = 𝑓𝑙𝑢𝑥𝐶𝑓𝑝𝐶 + 𝑓𝑙𝑢𝑥𝐹𝑓𝑝𝐹 + 𝑓𝑙𝑢𝑥𝑉𝑓

The source term includes an additional component. It is the
(𝜌𝐶
∗−𝜌𝐶

°)

∆𝑡
 term which is in fact a result of

the transient term but will be here regarded as a source term because it is not standard.

𝑓𝑙𝑢𝑥𝑉 =
(𝜌
𝐶
∗ − 𝜌

𝐶
°)

∆𝑡

𝑓𝑙𝑢𝑥𝑇 = 𝑓𝑙𝑢𝑥𝑉

The corresponding code will be presented in the algebraic system section for convenience.

6.5.2.6 Pressure Correction Treatment for Free Surface Flow

In case the application is ‘multiphase’, uFVM is able to simulate homogeneous flows with a well-

defined interface. In this case, the OpenFOAM case to be prepared is quite different, you may

refer to the ‘damBreak’ case in the tutorials directory.

∑{
𝜕(𝛼𝑘𝜌𝑘)

𝜕𝑡
+ ∇. (𝛼𝑘𝜌𝑘𝒗) = 𝑀𝑘̇ }

𝑘

6.5.2.7 False Transience

For steady simulations, it is usually advantageous to insert a transient-like treatment. It acts as

an under-relaxation to the equation yet is enhances diagonal dominance. It also adds a non-zero

contribution to the diagonal coefficient even in the extreme cases where the diagonal

coefficient is zero. Consider the following system:

𝑎𝐶𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹
𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶

A false transient contributes to the equation above as shown here:

(𝑎𝐶 + 𝑎𝐶
°)𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 + 𝑎𝐶
° 𝜙𝐶

°

where

𝑎𝐶
° =

𝜌𝐶𝑉𝐶
∆𝑡

The following listing is a retrieved from the function cfdAssembleFalseTransientTerm in
the source files:

29

Listing 11 - Assembling false transience term

6.5.2.8 Gradient Computation

The gradient of a field 𝜙 can be calculated using Green-Gauss method. The gradient ∇𝜙 is

calculated as follows:

∇𝜙 =
1

𝑉𝐶
∑ 𝜙𝑓𝑺𝑓

𝑓~𝑛𝑏(𝐶)

However, the face value 𝜙𝑓 can be calculated in two approaches, a cell-based method and a

node-base method. In the cell based method, the face value is calculated as the average values

of the two cells sharing the face:

𝜙𝑓 = 𝑔𝐶𝜙𝐶 + (1 − 𝑔𝐶)𝜙𝐹

where 𝑔𝐶 is the geometric weighing factor equal to

𝑔𝐶 =
‖𝒓𝐹 − 𝒓𝑓‖

‖𝒓𝐹 − 𝒓𝐶‖
=
𝑑𝐹𝑓

𝑑𝐹𝐶

The listing below shows the calculation of the face values and the gradient in the function
cfdComputeGradientGauss0:

Listing 12 - Calculation of gradient based on Green-Gauss method

volumes = [theMesh.elements(iElements).volume]';

theFluxes.FLUXCE(iElements,1) = volumes .* rho / fdt;

theFluxes.FLUXCEOLD(iElements,1) = - volumes .* rho_old / fdt;

theFluxes.FLUXTE(iElements,1) = theFluxes.FLUXCE(iElements,1) .* phi;

theFluxes.FLUXTEOLD(iElements,1) = theFluxes.FLUXCEOLD(iElements,1) .* phi_old;

cfdAssembleIntoGlobalMatrixElementFluxes(theEquationName,theFluxes,iComponent);

for iComponent=1:theNumberOfComponents

 phi_f = gf.*phi(iNeighbours,iComponent) + (1-gf).*phi(iOwners,iComponent);

 for iFace=iFaces

 phiGrad(iOwners(iFace),:,iComponent) = phiGrad(iOwners(iFace),:,iComponent) +

phi_f(iFace)*Sf(iFace,:);

 phiGrad(iNeighbours(iFace),:,iComponent) = phiGrad(iNeighbours(iFace),:,iComponent) -

phi_f(iFace)*Sf(iFace,:);

 end

end

%---

% BOUNDARY FACES contribution to gradient

%---

iBOwners = [theMesh.faces(iBFaces).iOwner]';

phi_b = phi(iBElements,:);

Sb = [theMesh.faces(iBFaces).Sf]';

for iComponent=1:theNumberOfComponents

 %

 for k=1:theMesh.numberOfBFaces

 phiGrad(iBOwners(k),:,iComponent) = phiGrad(iBOwners(k),:,iComponent) + phi_b(k)*Sb(k,:);

 end

end

%---

% Get Average Gradient by dividing with element volume

%---

volumes = [theMesh.elements(iElements).volume]';

for iComponent=1:theNumberOfComponents

 for iElement =1:theMesh.numberOfElements

 phiGrad(iElement,:,iComponent) = phiGrad(iElement,:,iComponent)/volumes(iElement);

 end

end

30

The node-based method requires that the node value is first calculated from the elements

surrounding the node

𝜙𝑛 =

∑
𝜙𝐹𝑘

‖𝒓𝑛 − 𝒓𝐹𝑘‖
𝑁𝐵(𝑛)
𝑘=1

∑
1

‖𝒓𝑛 − 𝒓𝐹𝑘‖
𝑁𝐵(𝑛)
𝑘=1

And then the face value is calculated from the values of its nodes

𝜙𝑓 =

∑
𝜙𝑛𝑘

‖𝒓𝑛𝑘 − 𝒓𝑓‖

𝑛𝑏(𝑓)
𝑘=1

∑
1

‖𝒓𝑛𝑘 − 𝒓𝑓‖
𝑛𝑏(𝑓)
𝑘=1

The listing below in the function cfdInterpolateFromElementsToNodes calculates the
values at the nodes:

Listing 13 - Interpolating the cell values to the nodes

Then the following code calculates the node values to the faces, and can be found in the
function cfdInterpolateFromNodesToFaces:

for iNode = 1:numberOfNodes

 theNode = fvmNodes(iNode);

 N = theNode.centroid;

 localPhiNode=0;

 localInverseDistanceSum = 0;

 if(isempty(theNode.iFaces(theNode.iFaces>numberOfInteriorFaces)))

 localElementIndices = theNode.iElements;

 for iElement = localElementIndices

 theElement = fvmElements(iElement);

 C = theElement.centroid;

 d = cfdMagnitude(N-C);

 localPhi = phi(iElement);

 localPhiNode = localPhiNode + localPhi/d;

 localInverseDistanceSum = localInverseDistanceSum + 1/d;

 end

 else

 localBFacesIndices = theNode.iFaces(theNode.iFaces>numberOfInteriorFaces);

 for iBFace = localBFacesIndices

 theFace = fvmFaces(iBFace);

 C = theFace.centroid;

 iBElement = numberOfElements+(iBFace-numberOfInteriorFaces);

 d = cfdMagnitude(N-C);

 localPhi = phi(iBElement);

 localPhiNode = localPhiNode + localPhi/d;

 localInverseDistanceSum = localInverseDistanceSum + 1/d;

 end

 end

 localPhiNode = localPhiNode/localInverseDistanceSum;

 %

 %

 phi_n(iNode) = localPhiNode;

 %

end

31

Listing 14 - Interpolating the node values to the faces

Finally, we calculate the gradient according to the Green-Gauss method which can be found in
the function cfdComputeGradientNodal:

Listing 15 - Calculation of the Green-Gauss gradient based on the face values calculated from node values

6.5.2.9 Implicit Under-Relaxation

As suggested by Patankar’s approach, a relaxation factor 𝜆𝜙 is introduced into the algebraic

system.

for iFace=1:numberOfFaces

 theFace = fvmFaces(iFace);

 iNodes = theFace.iNodes;

 C = theFace.centroid;

 localSumOfInverseDistance=0;

 localPhi=0;

 for iNode=iNodes

 theNode = fvmNodes(iNode);

 N=theNode.centroid;

 d=cfdMagnitude(C-N);

 localPhi = localPhi + phiNodes(iNode)/d;

 localSumOfInverseDistance = localSumOfInverseDistance+1/d;

 end

 localPhi = localPhi/localSumOfInverseDistance;

 phi_f(iFace) = localPhi;

end

for iFace=1:theNumberOfInteriorFaces

 %

 theFace = fvmFaces(iFace);

 %

 iElement1 = theFace.iOwner;

 iElement2 = theFace.iNeighbour;

 %

 Sf = theFace.Sf;

 %

 %

 phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_f(iFace)*Sf;

 phiGrad(:,iElement2) = phiGrad(:,iElement2) - phi_f(iFace)*Sf;

end

%===

% BOUNDARY FACES contribution to gradient

%===

for iBPatch=1:theNumberOfBElements

 %

 iBFace = theNumberOfInteriorFaces+iBPatch;

 iBElement = theNumberOfElements+iBPatch;

 theFace = fvmFaces(iBFace);

 %

 iElement1 = theFace.iOwner;

 %

 Sb = theFace.Sf;

 phi_b = phi(iBElement);

 %

 phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_b*Sb;

end

%---

% Get Average Gradient by dividing with element volume

%---

for iElement =1:theNumberOfElements

 theElement = fvmElements(iElement);

 phiGrad(:,iElement) = phiGrad(:,iElement)/theElement.volume;

end

32

𝑎𝐶
𝜆𝜙
𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 +
(1 − 𝜆𝜙)

𝜆𝜙
𝑎𝐶𝜙𝐶

∗

However, for an equation in the correction form, an implicit under-relaxation is made as follows:

𝑎𝐶
𝜆𝜙
𝜙𝐶
′ + ∑ 𝑎𝐹𝜙𝐹

′

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 − (𝑎𝐶𝜙𝐶
∗ + ∑ 𝑎𝐹𝜙𝐹

∗

𝐹~𝑁𝐵(𝐶)

)

In uFVM, it is done in the function cfdApplyURF:

Listing 16 - Introducing under-relaxation to the algebraic equation

6.5.2.10 Residual Form of the Equation

In fact, uFVM assembles a residual or correction form of the equation instead of the direct

equation. This correction makes use of the previous iteration values of 𝜙𝐶 such that:

𝜙𝐶 = 𝜙𝐶
∗ + 𝜙𝐶

′

Satisfying in the standard equation form:

𝑎𝐶(𝜙𝐶
∗ + 𝜙𝐶

′) + ∑ 𝑎𝐹(𝜙𝐹
∗ + 𝜙𝐹

′)

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶

→ 𝑎𝐶𝜙𝐶
′ + ∑ 𝑎𝐹𝜙𝐹

′

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 − (𝑎𝐶𝜙𝐶
∗ + ∑ 𝑎𝐹𝜙𝐹

∗

𝐹~𝑁𝐵(𝐶)

)

Once the algebraic system is calculated and 𝜙𝐶
′ is determined, the exact value 𝜙𝐶 is updated as:

𝜙𝐶 = 𝜙𝐶
∗ + 𝜙𝐶

′

6.5.2.11 Residual Computation

The residuals are criteria upon which the user decides to consider the results correct enough.

The residual 𝑅𝐶
𝜙

 of the algebraic equation at element 𝐶 is calculated as:

𝑅𝐶
𝜙
= |𝑏𝐶 − (𝑎𝐶𝜙𝐶 + ∑ 𝑎𝐹𝜙𝐹

𝐹~𝑁𝐵(𝐶)

)|

The maximum residual over the cells is calculated as:

theEquation = cfdGetModel(theEquationName);

urf = theEquation.urf;

theCoefficients = cfdGetCoefficients;

theCoefficients.ac = theCoefficients.ac/urf;

cfdSetCoefficients(theCoefficients);

33

𝑅𝐶,𝑚𝑎𝑥
𝜙

= max (𝑅𝐶
𝜙
)

And the root-mean-squared of the residuals over the cells is:

𝑅𝐶,𝑟𝑚𝑠
𝜙

= √
∑ (𝑅𝐶

𝜙
)
2

𝐶~𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

Normalized residuals provide better insight of the convergence. They are calculated as follows:

𝑅𝐶,𝑠𝑐𝑎𝑙𝑒𝑑
𝜙

=
𝑅𝐶
𝜙

max (𝑎𝐶𝜙𝐶)

After that, you we calculate the maximum and root-mean square scaled residual.

However, since in uFVM the equations are assembled in the residual (correction) form as

mentioned earlier, the residual at element 𝐶 is simply:

 𝑎𝐶𝜙𝐶
′ + ∑ 𝑎𝐹𝜙𝐹

′

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶 − (𝑎𝐶𝜙𝐶
∗ + ∑ 𝑎𝐹𝜙𝐹

∗

𝐹~𝑁𝐵(𝐶)

) =

So,

𝑅𝐶
𝜙
= |𝑏𝐶,𝑟𝑒𝑠|

The following listing presents the residual calculation; it is available in the function
cfdComputeNormalizedResidual:

Listing 17 - Residual calculation

A special case arises with the pressure correction equation as it is by default in the correction

form as shown here:

 % Loop over elements and calculate residual at each element

 Rc = abs(bc);

 % Residuals. Calculate for convenience. Otherwise, they are not used

 Rc_max = max(Rc);

 Rc_rms = sqrt(sum(Rc.^2)/theNumberOfElements);

 % Get phi scale from data base.

 % phi_scale = max(abs(phi)). And if phi is zero, phi_scale is set to 1

 phi_scale = cfdGetScale(theEquationUserName);

 % Normalized Residuals

 Rc_scaled = Rc / (max(abs(ac))*phi_scale);

 Rc_max_scaled = max(Rc_scaled);

 Rc_rms_scaled = sqrt(sum(Rc_scaled.^2)/theNumberOfElements);

 MAXResidual = Rc_max_scaled;

 RMSResidual = Rc_rms_scaled;

34

 𝑎𝐶𝑝𝐶
′ + ∑ 𝑎𝐹𝑝𝐹

′

𝐹~𝑁𝐵(𝐶)

= 𝑏𝐶
𝑝

However, the residual of this equation is determined as a continuity criterion

∇. 𝒗 = 0

→ ∑ �̇�𝑓
𝑓~𝑛𝑏(𝐶)

= 0

Thus, a quantity called 𝐷𝑖𝑣𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = ∑ �̇�𝑓𝑓~𝑛𝑏(𝐶) is calculated at each iteration to judge the

convergence of the continuity equation, so, we have for the continuity equation:

𝑅𝐶
𝜙
= 𝐷𝑖𝑣𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

The corresponding implementation can be found in the function:
cfdComputeEffectiveDivergence:

Listing 18 - Calculating the effective divergence as a residual criterion for the continuity equation

6.5.2.12 Assembling Fluxes to Global Assembly Matrix

After calculating the face or/and element fluxes from each term, these fluxes are to be summed

to construct the algebraic system coefficients.

6.5.2.12.1 Algebraic Systems Representation

The algebraic system 𝐴𝜙′ = 𝑏 is constructed:

[

𝑎11 … 𝑎1𝑁
⋮ ⋱ ⋮
𝑎𝑁1 … 𝑎𝑁𝑁

] [
𝜙1
′

⋮
𝜙𝑁
′
] = [

𝑏1
⋮
𝑏𝑁

]

% Interior Faces Contribution

theNumberOfInteriorFaces = cfdGetNumberOfInteriorFaces;

iFaces = 1:theNumberOfInteriorFaces;

owners = [theMesh.faces(iFaces).iOwner]';

neighbours = [theMesh.faces(iFaces).iNeighbour]';

for iFace=1:theNumberOfInteriorFaces

 iOwner = owners(iFace);

 iNeighbour = neighbours(iFace);

 %

 effDiv(iOwner) = effDiv(iOwner) + mdot_f(iFace);

 effDiv(iNeighbour) = effDiv(iNeighbour) - mdot_f(iFace);

end

% Boundary Faces Contribution

theNumberOfPatches = cfdGetNumberOfPatches;

for iPatch=1:theNumberOfPatches

 theBoundary = theMesh.boundaries(iPatch);

 numberOfBFaces = theBoundary.numberOfBFaces;

 % cfdGetBoundaryIndex

 iFaceStart = theBoundary.startFace;

 iFaceEnd = iFaceStart+numberOfBFaces-1;

 iBFaces = iFaceStart:iFaceEnd;

 owners = [theMesh.faces(iBFaces).iOwner]';

 mdot_b = theMdotField.phi(iBFaces);

 for iBFace=1:numberOfBFaces

 iOwner = owners(iBFace);

 effDiv(iOwner) = effDiv(iOwner) + mdot_b(iBFace);

 end

end

35

The coefficient matrix 𝐴 is a highly sparse matrix, so it is stored as an array for the diagonal

coefficients in addition of a data structure containing the non-zeros at each row (off-diagonal

coefficients). The diagonal array is named in uFVM as ac and the off-diagonal coefficient data

structure as anb.

6.5.2.12.2 Assembling Algebraic System coefficients

If the discretized term gives rise to element fluxes like the transient and source terms, the fluxes

𝑓𝑙𝑢𝑥𝐶, 𝑓𝑙𝑢𝑥𝐶°, 𝑓𝑙𝑢𝑥𝑉 and 𝑓𝑙𝑢𝑥𝑇 are assembled as follows given that the algebraic equation is

in the residual (correction) form:

𝑎𝐶 = 𝑎𝐶 + 𝑓𝑙𝑢𝑥𝐶

𝑎𝐶
° = 𝑎𝐶

° + 𝑓𝑙𝑢𝑥𝐶°

𝑏𝐶 = 𝑏𝐶 − 𝑓𝑙𝑢𝑥𝑇

If the term includes faces fluxes (𝑓𝑙𝑢𝑥𝐶𝑓, 𝑓𝑙𝑢𝑥𝐹𝑓, 𝑓𝑙𝑢𝑥𝑉𝑓 and 𝑓𝑙𝑢𝑥𝑇𝑓) like the convection and

diffusion terms, the assembling is done such as:

𝑎𝐶 = 𝑎𝐶 + ∑ 𝑓𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

𝑎𝐹 = 𝑎𝐹 + 𝑓𝑙𝑢𝑥𝐹𝑓

𝑏𝐶 = 𝑏𝐶 − ∑ 𝑓𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

Recall that for element fluxes:

𝑓𝑙𝑢𝑥𝑇 = 𝑓𝑙𝑢𝑥𝐶𝜙𝐶
∗ + 𝑓𝑙𝑢𝑥𝐶°𝜙𝐶

° + 𝑓𝑙𝑢𝑥𝑉

And for face fluxes,

𝑓𝑙𝑢𝑥𝑇𝑓 = 𝑓𝑙𝑢𝑥𝐶𝑓𝜙𝐶
∗ + 𝑓𝑙𝑢𝑥𝐹𝑓𝜙𝐹

∗ + 𝑓𝑙𝑢𝑥𝑉𝑓

Therefore, the algebraic equation has the general form:

(𝑓𝑙𝑢𝑥𝐶 + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

)

⏟
𝑎𝐶

𝜙𝐶
′ + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓⏟

𝑎𝐹

𝜙𝐹
′

𝐹~𝑁𝐵(𝐶)
𝑓~𝑛𝑏(𝐶)

= −(𝑓𝑙𝑢𝑥𝑇 + ∑ 𝐹𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

)

⏟
𝑏𝐶

So,

𝑎𝐶 = 𝑓𝑙𝑢𝑥𝐶 + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

𝑎𝐹 = 𝐹𝑙𝑢𝑥𝐶𝑓

36

𝑏𝐶 = −(𝑓𝑙𝑢𝑥𝑇 + ∑ 𝐹𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

)

The pressure equation again has a special case since it is already in the residual form. The
discretized incompressible pressure correction equation:

(∑ 𝜌𝑓𝒟𝑓
𝑓~𝑛𝑏(𝐶)

)

⏟
𝑎𝐶

𝑝𝐶
′ + ∑ −𝜌𝑓𝒟𝑓⏟

𝑎𝐹

 𝑝𝐹
′

𝐹~𝑁𝐵(𝐶)
𝑓~𝑛𝑏(𝐶)

= − ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)⏟
𝑏𝐶

So, the fluxes here are to be calculated as:

1) Diagonal coefficient 𝑎𝐶:

𝑎𝐶 = 𝑓𝑙𝑢𝑥𝐶 + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

= ∑ 𝜌𝑓𝒟𝑓
𝑓~𝑛𝑏(𝐶)

→ 𝑓𝑙𝑢𝑥𝐶 = 0 and 𝐹𝑙𝑢𝑥𝐶𝑓 = 𝜌𝑓𝒟𝑓

2) Off-diagonal coefficients 𝑎𝐹:

𝑎𝐹 = 𝐹𝑙𝑢𝑥𝐹𝑓 = −𝜌𝑓𝒟𝑓

3) Right-hand-side:

𝑏𝐶 = −(𝑓𝑙𝑢𝑥𝑇 + ∑ 𝐹𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

) = − ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)

→ 𝑓𝑙𝑢𝑥𝑇 = 0 and 𝐹𝑙𝑢𝑥𝑇𝑓 = �̇�𝑓

∗

For the compressible pressure correction equation, the discretized equation is:

(
𝑉𝐶𝐶𝜌

∆𝑡
+ ∑ (

𝐶𝜌,𝑓

𝜌𝑓
∗ ‖�̇�𝑓

∗ , 0‖)

𝑓~𝑛𝑏(𝐶)

+ ∑ 𝜌𝑓
∗𝒟𝑓

𝑓~𝑛𝑏(𝐶)

)

⏟
𝑎𝐶

𝑝𝐶
′ + ∑ (−

𝐶𝜌,𝑓

𝜌𝑓
∗ ‖−�̇�𝑓

∗ , 0‖ − 𝜌𝑓
∗𝒟𝑓)

⏟
𝑎𝐹

 𝑝𝐹
′

𝐹~𝑁𝐵(𝐶)

𝑓~𝑛𝑏(𝐶)

= − ∑ �̇�𝑓
∗

𝑓~𝑛𝑏(𝐶)

−
(𝜌𝐶
∗ − 𝜌𝐶

°)

∆𝑡
⏟

𝑏𝐶

So, the fluxes of the compressible pressure correction equation are calculated as:

1) Diagonal coefficient 𝑎𝐶:

37

𝑎𝐶 = 𝑓𝑙𝑢𝑥𝐶 + ∑ 𝐹𝑙𝑢𝑥𝐶𝑓

𝑓~𝑛𝑏(𝐶)

=
𝑉𝐶𝐶𝜌

∆𝑡
+ ∑ (

𝐶𝜌,𝑓

𝜌
𝑓
∗
‖�̇�𝑓

∗
, 0‖)

𝑓~𝑛𝑏(𝐶)

+ ∑ 𝜌
𝑓

∗
𝒟𝑓

𝑓~𝑛𝑏(𝐶)

→ 𝑓𝑙𝑢𝑥𝐶 =
𝑉𝐶𝐶𝜌

∆𝑡
 and 𝐹𝑙𝑢𝑥𝐶𝑓 =

𝐶𝜌,𝑓

𝜌
𝑓
∗
‖�̇�𝑓

∗
, 0‖ + 𝜌

𝑓

∗𝒟𝑓

2) Off-diagonal coefficients 𝑎𝐹:

𝑎𝐹 = 𝐹𝑙𝑢𝑥𝐹𝑓 = − 𝐶𝜌,𝑓

𝜌𝑓
∗ ‖−�̇�𝑓

∗ , 0‖ − 𝜌𝑓
∗𝒟𝑓

3) Right-hand-side:

𝑏𝐶 = −(𝑓𝑙𝑢𝑥𝑇 + ∑ 𝐹𝑙𝑢𝑥𝑇𝑓

𝑓~𝑛𝑏(𝐶)

) = −(
(𝜌
𝐶
∗ − 𝜌

𝐶
°)

∆𝑡
+ ∑ �̇�𝑓

∗

𝑓~𝑛𝑏(𝐶)

)

→ 𝑓𝑙𝑢𝑥𝑇 =
(𝜌𝐶
∗−𝜌𝐶

°)

∆𝑡
 and 𝐹𝑙𝑢𝑥𝑇𝑓 = �̇�𝑓

∗

The listing below shows the calculation of the fluxes of the pressure correction equation:

38

Listing 19 - Calculating fluxes of the pressure correction equation

In uFVM, the assembling of element fluxes is shown here in the listing below retrieved from the
function cfdAssembleIntoGlobalMatrixElementFluxes:

%

% assemble term I

% rho_f [v]_f.Sf

%

U_bar_f = dot(vel_bar_f(:,:)',Sf(:,:)')';

FLUXVf = FLUXVf + rho_f.*U_bar_f;

%

% Assemble term II and linearize it

% - rho_f ([DPVOL]_f.P_grad_f).Sf

%

DUSf = [DU1_f.*Sf(:,1),DU2_f.*Sf(:,2),DU3_f.*Sf(:,3)]; % S'f

eDUSf = [DUSf(:,1)./cfdMagnitude(DUSf),DUSf(:,2)./cfdMagnitude(DUSf),DUSf(:,3)./cfdMagnitude(DUSf)];

DUEf =

[cfdMagnitude(DUSf).*eCN(:,1)./dot(eCN(:,:)',eDUSf(:,:)')',cfdMagnitude(DUSf).*eCN(:,2)./dot(eCN(:,:)',eDUSf(:,:)'

)',cfdMagnitude(DUSf).*eCN(:,3)./dot(eCN(:,:)',eDUSf(:,:)')'];

geoDiff = cfdMagnitude(DUEf)./cfdMagnitude(CN);

DUTf = DUSf - DUEf;

FLUXCf = FLUXCf + rho_f.*geoDiff;

FLUXFf = FLUXFf - rho_f.*geoDiff;

FLUXVf = FLUXVf - rho_f.*dot(p_grad_f(iFaces,:)',DUTf(:,:)')';

%

% assemble term III

% rho_f ([P_grad]_f.([DPVOL]_f.Sf))

%

FLUXVf = FLUXVf + rho_f.*dot(p_grad_bar_f(iFaces,:)',DUSf(:,:)')';

%

% assemble terms VIII and IX

% (1-URF)(U_f -[v]_f.S_f)

%

FLUXVf = FLUXVf + (1.0 - mdot_f_URF)*(mdot_f_previous - rho_f.*U_bar_f);

%

% compute Rhie-Chow interpolation of mdot_f and updated it in the data base

%

mdot_f = FLUXCf .* pressureC + FLUXFf .* pressureN + FLUXVf;

theMdotField.phi(iFaces) = mdot_f;

cfdSetMeshField(theMdotField);

%

% assemble total flux

%

FLUXTf = mdot_f;

%

% assemble terms X (for compressible flow)

%

applicationClass = cfdGetApplicationClass;

if strcmp(applicationClass, 'compressible')

 theDrhodpField = cfdGetMeshField('C_rho');

 C_rho = theDrhodpField.phi;

 C_rho_f = cfdInterpolateFromElementsToFaces('Average', C_rho);

 C_rho_f = C_rho_f(iFaces);

 FLUXCf = FLUXCf + (C_rho_f ./ rho_f) .* max(mdot_f, 0);

 FLUXFf = FLUXFf - (C_rho_f ./ rho_f) .* max(-mdot_f, 0);

 % Add transient contribution

 if isTransient

 deltaT = cfdGetDt;

 volume = [theMesh.elements.volume]';

 FLUXCE = volume(iElements) .* C_rho(iElements) / deltaT;

 FLUXTE = (rho(iElements) - density_old(iElements)) .* volume(iElements) / deltaT ;

 end

end

39

Listing 20 - Assembling element fluxes

The assembly of face fluxes is shown here, and it is retrieved from the function
cfdAssembleIntoGlobalMatrixFaceFluxes:

Listing 21 - Assembling face fluxes

6.5.3 Solving the Equation Algebraic System

The algebraic system is solved 𝐴𝜙′ = 𝑏 iteratively. Direct solving of the system using Gaussian

elimination is very expensive because the matrix 𝐴 is usually large and highly sparse. There are

plenty of solvers which iteratively try to approximate the solution of the system. In uFVM, two

iterative solvers are implemented, Successive Over-relaxation (SOR) and Incomplete Lower

Upper (ILU).

% Call coefficients

ac = theCoefficients.ac;

ac_old = theCoefficients.ac_old;

bc = theCoefficients.bc;

% Assemble element fluxes

for iElement = 1:numberOfElements

 ac(iElement) = ac(iElement) + theFluxes.FLUXCE(iElement);

 ac_old(iElement) = ac_old(iElement) + theFluxes.FLUXCEOLD(iElement);

 bc(iElement) = bc(iElement) - theFluxes.FLUXTE(iElement);

end

% Store updated coefficients

theCoefficients.ac = ac;

theCoefficients.ac_old = ac_old;

theCoefficients.bc = bc;

% Call coefficients

ac = theCoefficients.ac;

anb = theCoefficients.anb;

bc = theCoefficients.bc;

%

% Assemble fluxes of interior faces

%

for iFace = 1:numberOfInteriorFaces

 theFace = theMesh.faces(iFace);

 iOwner = theFace.iOwner;

 iOwnerNeighbourCoef = theFace.iOwnerNeighbourCoef;

 iNeighbour = theFace.iNeighbour;

 iNeighbourOwnerCoef = theFace.iNeighbourOwnerCoef;

 %

 % assemble fluxes for owner cell

 %

 ac(iOwner) = ac(iOwner) + theFluxes.FLUXC1f(iFace);

 anb{iOwner}(iOwnerNeighbourCoef) = anb{iOwner}(iOwnerNeighbourCoef) + theFluxes.FLUXC2f(iFace);

 bc(iOwner) = bc(iOwner) - theFluxes.FLUXTf(iFace);

 %

 % assemble fluxes for neighbour cell

 %

 ac(iNeighbour) = ac(iNeighbour) - theFluxes.FLUXC2f(iFace);

 anb{iNeighbour}(iNeighbourOwnerCoef) = anb{iNeighbour}(iNeighbourOwnerCoef) - theFluxes.FLUXC1f(iFace);

 bc(iNeighbour) = bc(iNeighbour) + theFluxes.FLUXTf(iFace);

end

%

% assemble fluxes of boundary faces

%

for iBFace=numberOfInteriorFaces+1:numberOfFaces

 theBFace = theMesh.faces(iBFace);

 iOwner = theBFace.iOwner;

 %

 % assemble fluxes for owner cell

 %

 ac(iOwner) = ac(iOwner) + theFluxes.FLUXC1f(iBFace);

 bc(iOwner) = bc(iOwner) - theFluxes.FLUXTf(iBFace);

end

% Store updated coefficients

theCoefficients.ac = ac;

theCoefficients.anb = anb;

theCoefficients.bc = bc;

40

6.5.3.1 SOR Solver

The SOR is a Gauss-Seidal solver except that it includes a factor 𝜔 which enhances the progress
of the solver. Check the function cfdSORSolver:

Listing 22 - SOR solver

6.5.3.2 ILU Solver

Incomplete factorization of the matrix 𝐴 is an efficient preconditioner which allows for an

accelerated convergence rate of the solver. The corresponding function is: cfdILUSolver

Listing 23 - ILU solver

6.5.3.3 AMG Linear Solver

An algebraic multigrid solver remove low-frequency error components. In the context of
multigrid solvers, the direct iterative solvers like ILU solver are regarded as smoothers. Below is

for iElement=1:numberOfElements

 cconn = theCoefficients.cconn{iElement};

 local_dphi = bc(iElement);

 for iLocalNeighbour = 1:length(cconn)

 iNeighbour = cconn(iLocalNeighbour);

 local_dphi = local_dphi - anb{iElement}(iLocalNeighbour)*dphi(iNeighbour);

 end

 dphi(iElement) = local_dphi/ac(iElement);

end

for iElement=numberOfElements:-1:1

 cconn = theCoefficients.cconn{iElement};

 local_dphi = bc(iElement);

 for iLocalNeighbour = 1:length(cconn)

 iNeighbour = cconn(iLocalNeighbour);

 local_dphi = local_dphi - anb{iElement}(iLocalNeighbour)*dphi(iNeighbour);

 end

 dphi(iElement) = local_dphi/ac(iElement);

end

for i1=1:numberOfElements

 dc(i1) = ac(i1);

end

for i1=1:numberOfElements

 dc(i1) = 1.0/dc(i1);

 rc(i1) = bc(i1);

 i1NbList = theCoefficients.cconn{i1};

 i1NNb = length(i1NbList);

 if(i1~=numberOfElements-1)

 % loop over neighbours of iElement

 j1_ = 1;

 while(j1_<=i1NNb)

 jj1 = i1NbList(j1_);

 % for all neighbour j > i do

 if((jj1>i1) && (jj1<=numberOfElements))

 j1NbList = theCoefficients.cconn{jj1};

 j1NNb = length(j1NbList);

 i1_= 0;

 k1 = -1;

 % find _i index to get A[j][_i]

 while((i1_<=j1NNb) && (k1 ~= i1))

 i1_ = i1_ + 1;

 k1 = j1NbList(i1_);

 end

 % Compute A[j][i]*D[i]*A[i][j]

 if(k1 == i1)

 dc(jj1) = dc(jj1) - anb{jj1}(i1_)*dc(i1)*anb{i1}(j1_);

 else

 disp('the index for i in j is not found');

 end

 end

 j1_ = j1_ + 1;

 end

 end

end

41

a glance to the AMG code, it is advisable to access the code to see much more details about it.

Refer to cfdApplyAMG.

Listing 24 - Multigrid solver

Note: uFVM utilizes the AMG solver by default for the pressure equation only, while applies
direct iterative solvers for all other equations.

6.5.4 Correcting Equation Solution

All the equations are corrected just after solving the algebraic system 𝐴𝜙′ = 𝑏 such that:

𝜙𝐶 = 𝜙𝐶
∗ + 𝜙𝐶

′

However, after solving the pressure correction equation, the other fields have also to be

corrected:

For incompressible flow:

𝒗𝐶
∗∗ = 𝒗𝐶

∗ −𝑫𝐶
𝒗(∇𝑝′)𝐶

𝑝𝐶
∗ = 𝑝𝐶

(𝑛)
+ 𝜆𝑝𝑝𝐶

′

�̇�𝑓
∗∗ = �̇�𝑓

∗ − 𝜌𝑓
∗𝑫𝑓

𝒗̅̅ ̅̅ ∇𝑝𝑓
′ . 𝑺𝑓

For compressible flow:

𝒗𝐶
∗∗ = 𝒗𝐶

∗ −𝑫𝐶
𝒗(∇𝑝′)𝐶

𝑝𝐶
∗ = 𝑝𝐶

(𝑛)
+ 𝜆𝑝𝑝𝐶

′

𝜌𝐶
∗∗ = 𝜌𝐶

∗ + 𝜆𝜌𝐶𝜌𝑝𝐶
′

gridLevel = 1;

nCycle = 1;

if(strcmp(cycleType,'V-Cycle'))

 while ((nCycle<=maxCycles)&&(finalResidual>rrf*initialResidual))

 %

 % Apply V-Cycle

 %

 finalResidual = cfdApplyVCycle(gridLevel,smootherType,maxLevels,preSweep,postSweep,rrf);

 %

 nCycle = nCycle + 1;

 end

elseif(strcmp(cycleType,'F-Cycle'))

 while ((nCycle<=maxCycles)&&(finalResidual>rrf*initialResidual))

 %

 % Apply F-Cycle

 %

 finalResidual = cfdApplyFCycle(gridLevel,smootherType,maxLevels,preSweep,postSweep,rrf);

 %

 nCycle = nCycle + 1;

 end

elseif(strcmp(cycleType,'W-Cycle'))

 while ((nCycle<=maxCycles)&&(finalResidual>rrf*initialResidual))

 %

 % Apply W-Cycle

 %

 finalResidual = cfdApplyWCycle(gridLevel,smootherType,maxLevels,preSweep,postSweep,rrf);

 %

 nCycle = nCycle + 1;

 end

end

42

�̇�𝑓
∗∗ = �̇�𝑓

∗ − 𝜌𝑓
∗𝑫𝑓

𝒗̅̅ ̅̅ ∇𝑝𝑓
′ . 𝑺𝑓 + (

�̇�𝑓
∗

𝜌𝑓
∗)𝐶𝜌,𝑓𝑝𝑓

′

Listing of correcting �̇�𝑓
∗:

Listing 25 - Correcting �̇�𝑓
∗

Listing of correcting 𝒗𝐶
∗ :

Listing 26 – Correcting 𝒗𝐶
∗

Listing of correcting 𝜌𝐶
∗ :

Listing 27 – Correcting 𝜌𝐶
∗

Further details of the implementation of field corrections can be found at
cfdCorrectEquation.

applicationClass = cfdGetApplicationClass;

if strcmp(applicationClass, 'compressible')

 % Get density field

 theDensityField = cfdGetMeshField('rho');

 rho = theDensityField.phi;

 % Get the convected density at the faces

 pos = zeros(size(mdot_f));

 pos(mdot_f>0) = 1;

 rho_f = rho(iOwners).*pos(iFaces) + rho(iNeighbours).*(1 - pos(iFaces));

 % Get drhodp field

 theDrhodpField = cfdGetMeshField('C_rho');

 C_rho = theDrhodpField.phi;

 C_rho_f = cfdInterpolateFromElementsToFaces('Average', C_rho);

 C_rho_f = C_rho_f(iFaces);

 % Correct bt adding compressible contribution

 mdot_f(iFaces) = mdot_f(iFaces) + (mdot_f(iFaces) ./ rho_f) .* C_rho_f .* pp(iOwners);

end

% Correct

mdot_f(iFaces) = mdot_f(iFaces) + FLUXC1f(iFaces).*pp(iOwners) + FLUXC2f(iFaces).*pp(iNeighbours);

thePPField = cfdGetMeshField('PP');

ppGrad = thePPField.phiGradient;

%

DUPPGRAD = [DU1.*ppGrad(iElements,1),DU2.*ppGrad(iElements,2),DU3.*ppGrad(iElements,3)];

%

theVelocityField = cfdGetMeshField('U');

vel = theVelocityField.phi;

%

vel(iElements,:) = vel(iElements,:) - DUPPGRAD(iElements,:);

thePressureCorrectionField = cfdGetMeshField('PP');

pp = thePressureCorrectionField.phi;

theDensityField = cfdGetMeshField('rho');

rho = theDensityField.phi;

theDrhodpField = cfdGetMeshField('C_rho');

C_rho = theDrhodpField.phi;

theEquation = cfdGetModel('rho');

URFRho = theEquation.urf;

rho = rho + 0.7 .* C_rho .* pp;

43

6.6 CONVERGENCE
Once the case is run, the solution will be updated at each iteration while at the mean time a

real-time plot will be displayed showing the residuals of the equations. A sample is shown in the

figure below:

Figure 4 - Real-time residuals monitor

Once the case is run until convergence, or the maximum number of iterations are reached in a

steady state simulation, a phrase ‘Solution is converged!’ will show up on the screen notifying

the user.

In case of divergence, a pop-up message box will be displayed notifying the user that the

program has detected divergence. The box is presented below:

Figure 5 - Divergence notification

44

6.7 POST-PROCESSING
The user may plot the results on figures. The corresponding functions to plot the resulting fields

is cfdPlotField. The function takes an argument the name of the field to be plotted.

Considering that the user wants to plot the velocity field, they have to call the following in the

command window:

cfdPlotField('U')

To plot the velocity vectors, the function to be used is cfdPlotVelocity. The function takes
as arguments the vector scale, the transparency of the faces and the vector skipping criterion. If
the user wants to plot the vector field with vector scale of 1, full transparency and 10 vector
skips (skip a vector every 10 vectors), they have to call the following in the command window:

cfdPlotVelocity('vectorScale',1,'faceAlpha',0,'vectorSkip',0);

45

7 TUTORIALS

In this chapter, some tutorials will be provided from each application class. 5 application classes

can be simulated so far within uFVM: basic, incompressible, compressible, Heat Transfer and

multiphase.

7.1 BASIC
The ‘stepProfile’ case is considered here. The mesh is a square domain with 20 by 20 structured

cells. A constant velocity profile (2𝑖̂ + 1𝑗̂) is assumed over the domain as shown in the figure

below. We attempt to solve a pure convection problem in order to evaluate the quality of

convection schemes. The convected quantity is 𝜙 and has dirichlet boundary conditions at two

patches shown below in the figure, while on the other part of the boundary, the quantity 𝜙 is

set to zero gradient.

The equation that is to be solved is

∇. (𝜌𝒗𝜙) = 0

where 𝒗 is the velocity field set as constant field (Refer to the 0 directory in the tutorials and

look at the file named ‘U’). The corresponding run file is as shown here:

𝜙 = 1

𝜙 = 0

𝜕𝜙

𝜕𝑛
= 0

46

In addition, we set the default option of the divSchemes in the ‘fvShemes’ directory to ‘Gauss

upwind’ which corresponds to first order upwind. Running the case generates the following

residuals plot:

Figure 6 - Residuals monitor for the upwind convection of the quantity 𝜙

%--

%

% written by the CFD Group @ AUB, 2017

% contact us at: cfd@aub.edu.lb

%==

% Case Description:

% In this test case the square cavity problem is considered with a

% uniform velocity profile throughout the domain. The objective is to

% investigate the convection schemes (the default now is set to first

% order upwind).

%--

% Setup Case

cfdSetupSolverClass('basic');

% Read OpenFOAM Files

cfdReadOpenFoamFiles;

% Setup Time Settings

cfdSetupTime;

% Setup Equations

cfdDefineEquation('phi', 'div(rho*U*phi) = 0'); % Convection

% Initialize case

cfdInitializeCase;

% Run case

cfdRunCase;

47

The contour of 𝜙 is as follows:

Figure 7 - Contour plot of phi subject to first order upwind convection

48

7.2 INCOMPRESSIBLE
The ‘elbow’ case is considered here. The following is the mesh with inlet velocities shown:

This case simulates a water flow in the elbow at steady state conditions with no gravitational

acceleration. The governing equations are:

Momentum:

∇. (𝜌𝒗𝒗) = 𝜇∇2𝒗 + ∇. {𝜇(∇𝒗)𝑇} − ∇𝑝

Continuity:

∇. 𝒗 = 0

Energy:

∇. (𝜌𝑐𝑝𝒗𝑇) = 𝑘∇
2𝑇

The corresponding run case is:

16

64

4

1 m/s

3 m/s

49

Listing 28 - Run file of the 'elbow' case

Refer to the ‘elbow’ case in the tutorials directory. Running the case will solve the problem

where it converges after 105 iterations, and the figure below shows the residuals history of the

equations (U, p, and T):

Figure 8 - Residuals history of the elbow case

%--

%

% written by the CFD Group @ AUB, 2017

% contact us at: cfd@aub.edu.lb

%==

% Case Description:

% In this test case a water flow in an elbow is simulated at steady state

%--

% Setup Case

cfdSetupSolverClass('incompressible');

% Read OpenFOAM Files

cfdReadOpenFoamFiles;

% Setup Time Settings

cfdSetupTime;

% Setup Equations

cfdDefineEquation('U', 'div(rho*U*U) = laplacian(mu*U) + div(mu*transp(grad(U))) - grad(p)'); % Momentum

cfdDefineEquation('p', 'div(U) = 0'); % Continuity

cfdDefineEquation('T', 'div(rho*Cp*U*T) = laplacian(k*T)'); % Energy

% Initialize case

cfdInitializeCase;

% Run case

cfdRunCase;

50

We call the following functions:

cfdPlotField('U')
cfdPlotField('p')
cfdPlotField('T')
cfdPlotVelocity('vectorScale',1,'faceAlpha',0,'vectorSkip',0);

The results for velocity ‘U’, pressure ‘p’ and temperature ‘T’ in addition to the velocity vector

field will be plotted. Presented below are the results:

Figure 9 - Velocity magnitude contour (m/s)

51

Figure 10 - Pressure contour (pa)

52

Figure 11 - Temperature contour (k)

53

Figure 12 - Velocity vectors

7.3 HEAT TRANSFER
A hot room case will be presented here. A buoyancy driven air flow is simulated in a room which

has different temperature values on its floor and ceiling while the walls are adiabatic. The mesh

is shown here:

Floor 𝑇 = 320 𝐾

Ceiling 𝑇 = 290 𝐾

54

In this problem, Boussinesq approximation is implemented to account for buoyancy effects due

to temperature gradients.

The governing equations are:

Momentum:

∇. (𝒗𝒗) = 𝜈∇2𝒗 + ∇. {𝜈(∇𝒗)𝑇} − ∇𝑝 − 𝑔𝛽(𝑇 − 𝑇𝑟𝑒𝑓)

Continuity:

∇. 𝒗 = 0

Energy:

∇. (𝒗𝑇) = 𝛼∇2𝑇

The corresponding run case is:

Running the case, gives the following velocity field at an arbitrary section plane:

%--

%

% written by the CFD Group @ AUB, 2017

% contact us at: cfd@aub.edu.lb

%==

% Case Description:

% In this test case a hot room is simulated with boussinesq

% approximation

%--

% Setup Case

cfdSetupSolverClass('heatTransfer');

% Read OpenFOAM Files

cfdReadOpenFoamFiles;

% Setup Time Settings

cfdSetupTime;

% Define new properties

cfdSetupProperty('alpha', 'model', 'nu/Pr');

% Setup Equations

cfdDefineEquation('U', 'div(U*U) = laplacian(nu*U) + div(nu*transp(grad(U))) - grad(p) - g*beta*(T - TRef)'); %

Momentum

cfdDefineEquation('p', 'div(U) = 0'); % Continuity

cfdDefineEquation('T', 'div(U*T) = laplacian(alpha*T)'); % Energy

% Initialize case

cfdInitializeCase;

% Run case

cfdRunCase;

55

Figure 13 - Velocity field at a section plane

