
GENERAL APPLICATION NOTE FOR STARTECH UART FAMILY

The AN-450 provides additional information to guide
users to design or utilize the STARTECH product line.
This document can also be used for all the
STARTECH UART product lines.

GENERAL INFORMATION

STARTECH offers UART’s with or without FIFO capa-
bilities, and are marked as 45X for non FIFO families
and 55X for FIFO families. All parts with sharing part
numbers are foot print compatible in some extent, like
ST16C450 and ST16C550, ST16C2450 and
ST16C2550, etc.

This section will describe general terms for commonly
used flags and registers.

OVERRUN ERROR:
The flag is set to “1” to warn the user that a serial data
has been received and previous serial data has not
been read from receive holding register. The new
serial data will over write the previous data in the
receive holding register. Note that previous serial data
has been lost and user does not have an access to that
data.

PARITY ERROR:
This flag is set “1” to indicate that received serial data
contains mismatched parity or data bit error in the
received data.

PARITY:
Four common types of parities are used in the
STARTECH Uart families; Odd Parity, Even Parity,
Forced Mark Parity and Forced Space Parity.

ODD PARITY:
Odd Parity is calculated by adding all the “1’s” in a data
stream and adding a parity bit to the total bits, to make
the total count an odd number.

Example -1: A data byte with the following pattern
11010010 will require to add a parity bit of “1” to bring
the total count for “1’s” to an odd number. Based on
this data pattern, serial data with odd parity will be
transmitted as 110100101.

Example -2: A data byte with the following pattern
10011000 will require to add a parity bit of “0” to
maintain the total count of “1’s” to an odd number.

Based on this data pattern, serial data with odd parity
will be transmitted as 100110000.

EVEN PARITY:
Even Parity is calculated by adding all the “1’s” in a
data stream and adding a parity bit to the total bits, to
make the count an even number.

Example -3: A data byte with the following pattern
10000101 will require to add a parity bit of “1” to bring
the total count for “1’s” to an even number. Based on
this data pattern, serial data with even parity will be
transmitted as 100001011.

Example -4: A data byte with the following pattern
00001111 will require to add a parity bit of “0” to
maintain the total count for “1’s” to an even number.
Based on this data pattern, serial data with even
parity, will be transmitted as 000011110.

FORCED SPACE PARITY:
 Parity bit on the serial byte is set to “0” regardless of
total number of “1’s” (even or odd counts).

FORCED MARK PARITY:
Parity bit on the serial byte is set to “1” regardless of
total number of “1’s” (even or odd counts).

FRAMING ERROR:
The flag is set to “1” to indicate that received data does
not have correct start or stop bits. This can cause when
the Uarts are set for 8-bits word and receiving a serial
data of 7-bits word or any mismatched data patterns.

BREAK SIGNAL INDICATION:
This flag is set to “1” to warn the user that transmitter
is sending continuous “0” data without stop bit (RX
input is low for more that one word).

TRANSMIT/RECEIVE FIFO:
STARTECH offers 16 byte transmit FIFO and 16 byte
receive FIFO for all its products with 55X part num-
bers. These FIFO’s are static 19 X 16 bit RAM with
control logic to form a ring counter. Initializing the
FIFO will set the write and read pointers to the same
location.

TRANSMIT EMPTY:
This flag is set “1” to indicate that, there is no
character in the transmit holding and transmit shift
register

7-5

UART APPLICATION NOTES

Rev. 1.0

Printed December 17, 1996

7-6

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LI
C

A
T

IO
N

 N
O

T
E

TRANSMIT HOLDING EMPTY:
This flag is set “1” to indicate that, there is one or more
empty locations in the transmit holding register. User
has to check this bit before loading characters in the
transmit holding register. In non FIFO mode, user can
load one character at a time when this flag is set and
16 characters when FIFO mode is utilized.

RECEIVER DATA READY:
This bit is set “1” to indicate that, receiver has one or
more character in the receive holding register. User
has to check this bit prior to read receive holding
register. In non FIFO mode, only one character at time
can be read. In FIFO mode up to 16 characters can be
read if time bit is set.

RECEIVE TIME-OUT:
This mode is enabled when STARTECH UART is
operating in FIFO mode. Receive time out will not
occur if the receive FIFO is empty. The time out
counter will be reset at the center of each stop bit
received or each time receive holding register is read.
The actual time out value is T (Time out length in
bits)= 4 X P (Programmed word length) + 12. To
convert time out value to a character value, user has
to divide this number to its complete word length +
parity (if used) + number of stop bits and start bit.

Example -7: If user programs the word length = 7, and
no parity and one stop bit, Time out will be:
T = 4 X 7(programmed word length) +12 = 40 bits
Character time = 40 / 9 [(programmed word length =
7) + (stop bit = 1) + (start bit = 1)] = 4.4 characters.

Example -8: If user programs the word length = 7, with
parity and one stop bit, the time out will be:
T = 4 X 7(programmed word length) + 12 = 40 bits
Character time = 40 / 10 [(programmed word length
= 7) + (parity = 1) + (stop bit = 1) + (start bit = 1) = 4
characters.

BAUD RATE GENERATOR:
STARTECH provides a 16 bit digital divider to obtain
all necessary baud rates. The 16 bit divider is broken
down in to two 8-bit dividers which will be addressed
as MSB divider (upper 8-bits) and LSB divider (lower
8-bits). To calculate the transmit/receive data rate it
is necessary to know the provided clock rate (fre-
quency) to STARTECH parts. STARTECH utilizes 16
clocks for each transmit bit and 16 clocks to sample
the received data. Note that inorder to access these

dividers, user has to enable the divisor latch access bit
through the Line Control Register.

Bit rate is calculated by:
Dividing decimal number = (Clock rate) / (16 X bit
rate).
To program the digital divider, dividing decimal num-
ber should be converted to hex (base 16) number and
split into two 8-bits sections.

Example -5: To obtain 4800 Hz baud rate, assuming
1.8432 MHz input clock, the dividing decimal value is
(input clock=1843200) / (16 X 4800) = 24

24 decimal = 0018 Hex, this value is translated to MSB
= 00 Hex and LSB = 18 Hex.

BAUD RATE VERSUS BIT RATE:
The baud rate defines the width of each bit regardless
of word, parity and stop bit length. Bit rate, is the rate
of the transmission which each character is transmit-
ted or received. The 2400 baud rate transmission is
translated to 2400 Hz per bit for each character in a
word. With 2400 baud you can transmit between 7 to
12 characters per slot.

PROGRAMMING STEPS:
The AN-450 provides the easy steps to program
STARTECH Uart family. Note that all numbers are in
Hex format not decimal.

Write 80 Hex to LCR (Line Control Register) to enable
baud rate generator divider latch
to set 2400 Hz baud rate:
write 00 Hex to MSB of baud rate generator (address
location 1).
Write 30 Hex to LSB of baud rate generator (address
location 0).

Select you word, parity and stop bit format from
STARTECH Uart data sheet.
to set 8 bits, no parity and one top bit and disable the
divisor access latch
write 03 Hex to LCR (Line Control Register):

if you need to use Uarts with FIFO, select your receive
trigger level from data sheet.
to enable FIFO with 14 character trigger level
write CF Hex to FCR (FIFO Control Register)

7-7

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LIC
A

T
IO

N
 N

O
T

E

enable interrupt sources
write 01 Hex to IER (Interrupt Enable Register) to
select receive interrupt.

to set RTS and DTR outputs to low and enable the
interrupt output
write 0B Hex to MCR (Modem Control Register).

The STARTECH Uart is ready for transmit and receive
operation.

Read MSR (Modem Status Register) to check the
status of CD, RI, DSR, CTS input pins.

Read LSR (Line Status Register).

For polling applications (non interrupt mode) user has
to monitor bit zero of this register to verify valid data
in the receive holding register.

Check the Transmit Holding Empty bit before loading
data in the transmit holding register,

continue the transmission.

External Clock Connections
ST16C450

XTAL1 XTAL2

ST16C550
ST16C1450

ST16C2450

ST16C454

XTAL1 XTAL2

ST16C554
ST68C454
ST68C554

C1
0.047uF

External Clock

ST16C2550

ST16C1550

External Clock

X1

1.8432 MHz

C1
27pF

C2
27pF

R1

1M

XTAL1 XTAL2

X1

1.8432 MHz

C1
27pF

C2
27pF

ST16C454

XTAL1 XTAL2

ST16C554
ST68C454
ST68C554

Parallel Crystal Connections
ST16C450
ST16C550
ST16C1450

ST16C2450
ST16C2550

ST16C1550

Serial Crystal Connections

X1

1.8432 MHz

C1
27pF

C2
27pF

R1

1M

XTAL1 XTAL2

X1

1.8432 MHz

C1
27pF

C2
27pF

ST16C454

XTAL1 XTAL2

ST16C554
ST68C454
ST68C554

R2
50-300

R1
50-300

ST16C450
ST16C550
ST16C1450

ST16C2450
ST16C2550

ST16C1550

7-8

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LI
C

A
T

IO
N

 N
O

T
E

C PROGRAM SAMPLE

; File: sample.c Package:UART init
; This is a sample code to show how to initialize the UART series of chips
; from Startech Semiconductors.
; This also includes some basic external loop back thru’ two different
; ports using the FIFO capability.
; This also includes external loop back thru a different computer

#include <stdio.h>
#include <string.h>
#include <fcntl.h>

#define TRUE 1
#define FALSE 0

/* These are the various offsets for the registers inside the chip */
#define RHR 0x00 /* Receive Holding Register */
#define THR 0x00 /* Receive Holding Register */
#define IER 0x01 /* Interrupt Enable Register */
#define FCR 0x02 /* FIFO control Register */
#define ISR 0x02 /* Interrupt Status Register */
#define LCR 0x03 /* Line control register */
#define MCR 0x04 /* Modem Control Register */
#define LSR 0x05 /* Line Status Register */
#define MSR 0x06 /* Modem Status Register */
#define SCR 0x07 /* Scratch pad Register */

/* This two offsets are used for defining the baud rate */
#define DIVLSB 0x00 /* Divisor LSB latch address */
#define DIVMSB 0x01 /* Divisor MSB Latch address */

/*\
 * Program table for baud rate
 * This represents the LSB and MSB divisor latch data
*/
char baud_table[8][2] = {
 { 0x80, 0x01 }, /* 300 */
 { 0x60, 0x00 }, /* 1200 */
 { 0x30, 0x00 }, /* 2400 */
 { 0x0c, 0x00 }, /* 9600 */
 { 0x06, 0x00 }, /* 19K */
 { 0x03, 0x00 }, /* 38k */
 { 0x02, 0x00 }, /* 56k */
 { 0x01, 0x00 } /* 115k */
};

7-9

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LIC
A

T
IO

N
 N

O
T

E

/* Baud Rates */
#define _COM_300_ 0
#define _COM_1200_ 1
#define _COM_2400_ 2
#define _COM_9600_ 3
#define _COM_19K_ 4
#define _COM_38K_ 5
#define _COM_56K_ 6
#define _COM_115K_ 7

/* Parity */
#define _COM_NOPARITY_ 0
#define _COM_ODDPARITY_ 1
#define _COM_EVENPARITY_ 2

/* Stopbits */
#define _COM_STOP1_ 0
#define _COM_STOP2_ 1
#define _COM_STOP1_5_ 1

/* word length */
#define _COM_CHR5_ 0
#define _COM_CHR6_ 1
#define _COM_CHR7_ 2
#define _COM_CHR8_ 3

/* word length */
#define _COM_FIFO1_ 0
#define _COM_FIFO4_ 1
#define _COM_FIFO8_ 2
#define _COM_FIFO14_ 3

/*\
 * This function checks the existence of a port.
 * It is very simple. Take the port address then write to the scratch pad
 * an the read it back. If the data read back the same as one that was
 * written then return TRUE else return FALSE.
*/
int
check_port(com_port)
int com_port;
{

 int i;

 printf(“Checking for port %4xH\n”,com_port);
 /* Write 1010 1010 (0xaa) to scratch pad*/

7-10

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LI
C

A
T

IO
N

 N
O

T
E

 printf(“Writing AAH in %4xH\n”,com_port);
 outportb(com_port + SCR, 0xaa);

 /* read it back. If it the same then return TRUE */
 i = inportb(com_port + SCR);

 printf(“Read back %2xH from %4xH\n”,i,com_port);

 if(i == 0xaa)
 return TRUE;
 else
 return FALSE;

}

/*\
 * This is the work horse function which actually setups the UART.
 * It needs to know every thing.
*/
int
init_uart(port,baud,parity,data,stop,fifo,trigger)
int port,baud,parity,data,stop,fifo,trigger;
{

 char lcr_byte;

 /* Set divisor latch */
 outportb(port+LCR, 0x80) ;

 printf(“Divisor Latch is %2xH %2xH (High Low)\n”,
 baud_table[baud][1],baud_table[baud][0]);
 outportb(port+DIVLSB, baud_table[baud][0]) ;
 outportb(port+DIVMSB, baud_table[baud][1]) ;

 /* Reset to normal Programming */
 /* Program the lcr_byte for the above parameters */
 lcr_byte = 0x00;
 lcr_byte = data; /* Set the bit0 & bit1 for word length */
 lcr_byte ;= stop << 3; /* Set the bit2 for stop bit */
 if(parity != _COM_NOPARITY_) {
 lcr_byte ;= 1 << 4; /* Set the bit3 for parity */
 if(parity == _COM_EVENPARITY_)
 lcr_byte ;= 1 << 5; /* Set the bit4 for EVEN parity */
 }

 printf(“LCR byte is %2xH\n”,lcr_byte);
 /* Program LCR */

7-11

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LIC
A

T
IO

N
 N

O
T

E

 outportb(port+LCR, lcr_byte) ;

 if(fifo) {
 char fifo_byte;

 printf(“Programming FIFOs without DMA mode\n”);

 /* Have to first set the fifo enable */
 fifo_byte = 0x01;
 outportb(port+FCR,fifo_byte);

 /* Now program the FIFO */
 fifo_byte = 0x07; /* set bit0 - FIFO enable, Reset RCVR and XMIT FIFO */
 fifo_byte ;= trigger << 7; /* set bit6 and bit7 with the trigger level */

 /* Program FCR */
 outportb(port+FCR,fifo_byte);
 if(~(inportb(port + ISR) & 0xc0)) {
 printf(“This port %4xH does not have FIFOs\n”);
 printf(“Hence did not program Enable FIFOs\n”);
 }
 }

 /* Program IER */
 printf(“Programming IER for interrupt on bit0 RCV holding Register\n”);
 outportb(port+IER, 0x01);

 return TRUE;
}

/*\
 * This is the test mode.
 * It gets the address of the ports checks to see if they are there.
 * Note: If a driver already exists I am not sure how to temporarily remove it.
 * Well we will worry about it later.
 * Warn the use to remove any drivers that are on the ports.
 * Especially the mouse driver.
 * pass the address to the test552 routine.
*/
int test_mode()
{
 int i,j,k; /* generic variables */
 char port1[10], port2[10];
 int pt1,pt2; /* this are the integer port numbers */

 void test552();

 printf(“WARNING: This program will not work if the ports to be tested\n”);

7-12

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LI
C

A
T

IO
N

 N
O

T
E

 printf(“ have drivers installed in them. e.g Mouse driver\n”);
 printf(“ Please remove the drivers before doing this test.\n”);

 while(TRUE) {
 printf(“First Port Address (In HEX) > “);
 scanf(“%s”,port1);
 pt1 = strtol(port1,NULL,16);
 fflush(stdin);
 /*\
 * Check if this port exists. else loop
 */
 if(check_port(pt1))
 break;
 printf(“Error: Port %4xH does not exist. Try again\n”,pt1);
 }

 while(TRUE) {
 printf(“Second Port Address (In HEX) > “);
 scanf(“%s”,port2);
 pt2 = strtol(port2,NULL,16);
 fflush(stdin);
 /*\
 * Check if this port exists. else loop
 */
 if(check_port(pt2))
 break;
 printf(“Error: Port %4xH does not exist. Try again\n”,pt2);
 }

 /* Test 554 with the two port addresses */
 test552(pt1,pt2);

 return TRUE;

}

/*\
 * It first generates a random number for the data size to be generated.
 * Then generates a random data whose length is equal to the data size.
 * It puts it out on both the ports and polls for the interrupt to occur.
 * It reads both the ports until all characters are received OR a timeout
 * has occured. It then prints out the error Messages if any.
 * This loop is done for ever.
*/

7-13

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LIC
A

T
IO

N
 N

O
T

E

void test552(p1,p2)
unsigned int p1, p2;
{
 int i,j,c,w,n;
 unsigned char outbuf[20], inbuf1[20], inbuf2[20];
 unsigned char pbuf[200];
 unsigned long timeout, pass;

 printf(“ST16C552 External Loop Test Beginning\n”) ;
 printf(“Testing ports %4x and %4x\n\n”, p1, p2) ;
 printf(“Programing ports for 56K,8 bit,no parity,1 stop bit,FIFO trigger level 01\n”);
 printf(“This program uses POLLED mode for testing\n”);
 printf(“Press Cntrl-C to stop the testing and quit\n”);
 printf(“Note: The ports will remain at the above settings after the TEST\n”);

 /* Programming ports for 8 bits, no parity, 56K baud,
 FIFO enabled at level 01 */
 /* Program first port */
 printf(“Programming port %x4\n”,p1);
 init_uart(p1,_COM_56K_,_COM_NOPARITY_,
 _COM_CHR8_,_COM_STOP1_,TRUE,_COM_FIFO1_);

 /* Program Second Port */
 printf(“Programming port %x4\n”,p2);
 init_uart(p2,_COM_56K_,_COM_NOPARITY_,
 _COM_CHR8_,_COM_STOP1_,TRUE,_COM_FIFO1_);

 printf(“Starting test\n”);
 for (pass = 1 ; ; pass++) {
 /* generate random size for data */
 n = rand() ;
 n += n >> 8 ;
 n &= 0x0f ;

 /* Make sure we never get a 0 as the random size data */
 if(n != 0x0f)
 n++ ;

 /* generate random data */
 for (w = 0 ; w < n ; w++) {
 c = rand() ;
 c += c >> 8 ;
 c &= 0xff ;
 c ;= 0x01 ; /* no NULLs allowed */
 outbuf[w] = c ;
 }

7-14

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LI
C

A
T

IO
N

 N
O

T
E

 outbuf[w] = NULL;

 printf(“******** Pass %10ld Sending %d *********\015”, pass, n) ;

 /* Transmitt the data */
 for (i = 0 ; i < n ; i++) {
 outportb(p1, outbuf[i]) ;
 outportb(p2, outbuf[i]) ;
 }

 /* loop waiting for intr pending */
 for (i = 0;;i++) {
 if ((~inportb(p1+ISR) & 0x01) && (~inportb(p2+ISR) & 0x01))
 break;
 }

 /* receive data until all has been received OR timeout */
 timeout = 0x0008F ;
 for (i = j = 0; ((i < 20) && (j < 20));) {
 if (inportb(p1+LSR) & 0x01) inbuf1[i++] = inportb(p1) ;
 c = rand() ;
 c += c >> 8 ;
 c &= 0x001f ;
 c++ ;
 for (; c != 0; c—) ;
 if (inportb(p2+LSR) & 0x01) inbuf2[j++] = inportb(p2) ;
 if (timeout— == 0) break ;
 }

 /* If timed out then print message else comparse data */
 if(timeout == 0)
 printf(“Timed out on Ports\n”);
 else {
 inbuf1[i] = inbuf2[j] = NULL;
 /* compare results */
 if (strcmp(outbuf, inbuf1) ;; (i != n)) {
 printf(“\nError:%04x Sent: “, p2) ;
 for (w = 0; w < n; w++)
 printf(“ %02x”, outbuf[w]) ;
 printf(“\n%04x Received:”, p1) ;
 for (w = 0; w < i; w++)
 printf(“ %02x”, inbuf1[w]) ;
 printf(“\n”) ;
 }
 if (strcmp(outbuf, inbuf2) ;; (j != n)) {
 printf(“\nError:%04x Sent: “, p1);
 for (w = 0; w < n; w++)
 printf(“ %02x”, outbuf[w]) ;

7-15

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LIC
A

T
IO

N
 N

O
T

E

 printf(“\n%04x Received:”, p2) ;
 for (w = 0; w < j; w++)
 printf(“ %02x”, inbuf2[w]) ;
 printf(“\n”) ;
 }
 }
 }
}

7-16

APPLICATION NOTES

U
A

R
T

S
 A

P
P

LI
C

A
T

IO
N

 N
O

T
E

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to im-
prove design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits de-
scribed herein, conveys no license under any patent or other right, and makes no representation that the circuits are
free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary
depending upon a user’s specific application. While the information in this publication has been carefully checked;
no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circum-
stances.

Copyright 1991 EXAR Corporation
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

