
DNNDK User Guide

UG1327 (v 2.08 Beta) December 12, 2018

DNNDK User Guide www.xilinx.com 2
UG1327 (v 2.08 Beta) December 12, 2018

Revision History
The following table shows the revision history for this document.

Section Revision Summary

11/15/2018

General updates Initial Xilinx release.

12/12/2018

General updates Updated for v2.08 Beta release.

www.xilinx.com

DNNDK User Guide www.xilinx.com 3
UG1327 (v 2.08 Beta) December 12, 2018

Table of Contents

Revision History .. 2

Table of Contents ... 3

Chapter 1: Quick Start ... 5

Get DNNDK .. 5

Host setup... 7

Evaluation board setup .. 9

Running DNNDK examples ... 26

Support ... 32

Chapter 2: Copyright and Version ... 33

Copyright ... 33

Version .. 33

Chapter 3: Upgrade and Porting.. 38

Since v2.08 ... 38

Since v2.07 ... 39

Since v2.06 ... 39

Since v1.10 ... 41

Upgrading from previous versions ... 42

Chapter 4: DNNDK .. 44

Overview ... 44

Deep learning processor unit (DPU) .. 45

DNNDK framework ... 46

Chapter 5: Network deployment overview .. 48

DECENT overview .. 48

Network compression ... 49

Network compilation ... 50

Programming with DNNDK ... 51

Hybrid compilation ... 54

Running .. 54

www.xilinx.com

 Table of Contents

DNNDK User Guide www.xilinx.com 4
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 5: Network compression .. 55

DECENT overview .. 55

DECETN usage .. 55

Working flow .. 56

Chapter 6: Network compilation .. 58

DNNC overview ... 58

DNNC usage ... 58

Compiling ResNet50 .. 60

Chapter 7: Programming with DNNDK ... 63

Programming model .. 63

Programming interface ... 65

Chapter 8: Hybrid compilation ... 66

Chapter 9: Running ... 67

Chapter 10: Utilities... 68

DExplorer .. 68

DSight .. 71

Chapter 11: DNNDK Programming APIs ... 73

Library libn2cube ... 73

Library libdputils .. 138

Legal Notices 144

Please Read: Important Legal Notices .. 144

www.xilinx.com

DNNDK User Guide www.xilinx.com 5
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 1: Quick Start

Get DNNDK
The DeePhi DNNDK package can be freely downloaded after registration from the DeePhi website

http://www.deephi.com/technology/dnndk.

Using a DNNDK-supported evaluation board is recommended to allow the user to become familiar with

the DNNDK toolchain. Please visit http://www.deephi.com/technology/boards for more details about

the DNNDK-supported evaluation boards.

The package name for the DNNDK v2.08 release is “deephi_dnndk_v2.08_beta.tar.gz”. The directory

structure for the DNNDK release package is shown below. In the subsequent part of this document,

“$deephi_dnndk_package” is used to represent the name of “deephi_dnndk_v2.08_beta” for

convenience. The evaluation boards supported for this release are the DeePhi DP-8020 and DP-N1 AI

Box, the Xilinx ZCU102 and ZCU104, and the Avnet Ultra96.

The “docs” folder contains this user guide. The “common” folder contains image files used by various

DNNDK example applications.

The “host_x86” folder contains files which need to be copied to the host computer running the 64-bit

version of Ubuntu 14.04 LTS or Ubuntu 16.04 LTS.

The “board_name” folder contains files to be used on the evaluation board. The actual name of the

folder will correspond to the DNNDK-supported boards: “DP-8020”, “DP-N1”, “Ultra96”, “ZCU102”, or

“ZCU104”. Utility tools, DPU drivers, DPU runtime and development libraries are device-specific and will

be different for the various boards.

NOTE: Folder “DP-8020” is for the DeePhi DP-8020; “DP-N1” is for the DeePhi DP-N1 AI Box; “Ultra96” is for the
Avnet Ultra96; “ZCU102” is for the Xilinx ZCU102; and “ZCU104” is for the Xilinx ZCU104.

www.xilinx.com
http://www.deephi.com/technology/dnndk
http://www.deephi.com/technology/boards

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 6
UG1327 (v 2.08 Beta) December 12, 2018

$deephi_dnndk_package

 ├── common

 ├── docs

 ├── COPYRIGHT

 ├── host_x86

 │ ├── install.sh

 │ ├── models

 │ └── pkgs

 │ └─ ubuntu14.04

 │ └─ ubuntu16.04

 └── board_name

 ├── install.sh

 ├── pkgs

 │ ├── bin

 │ ├── driver

 │ ├── include

 │ └── lib

 └── samples

 ├── common

 ├── inception_v1

 ├── inception_v1_mt

 ├── resnet50

 ├── resnet50_mt

 ├── mobilenet

 ├── mobilenet_mt

 ├── face_detection

 ├── pose_detection

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 7
UG1327 (v 2.08 Beta) December 12, 2018

 ├── video_analysis

 ├── adas_detection

 ├── segmentation

Host setup
The “host_x86” folder contains the DECENT (Deep Compression Tool) and DNNC (Deep Neural Network

Compiler) programs which allow a neural network to be optimized and accelerated on the DPU

inference engine.

After downloading and unpacking the DNNDK package, copy the “host_x86” folder to a 64-bit Ubuntu

14.04 LTS or Ubuntu 16.04 LTS machine with a Nvidia GPU card. Execute the command

“./install.sh board_name” under the “host_x86” folder to install the software on the host.

board_name must be replaced with DP-8020 or DP-N1 or Ultra96 or ZCU104 or ZCU102 according

to the evaluation board to be used.

The DNNDK host side tools require the third-party packages listed in Table 1 to run.

DNNDK v2.08 supports 64-bit Ubuntu 14.04 LTS and Ubuntu 16.04 LTS, with Nvidia cuDNN 7.0.5 and

CUDA 8.0, or 9.0, or 9.1.

Table 1: Supported 64-bit host OS platforms and required packages

ID OS Platform Required Packages

1 Ubuntu 14.04 LTS CUDA 8.0 (GA2), cuDNN 7.0.5

2 Ubuntu 16.04 LTS

CUDA 8.0 (GA2), cuDNN 7.0.5

CUDA 9.0, cuDNN 7.0.5

CUDA 9.1, cuDNN 7.0.5

Install required libraries

Run the following command to install the dependent libraries required by Caffe v1.0.

$ apt-get install -y --force-yes build-essential autoconf libtool libopenblas-dev libgflags-dev libgoogle-

glog-dev libopencv-dev libprotobuf-dev protobuf-compiler libleveldb-dev liblmdb-dev libhdf5-dev

libsnappy-dev libboost-all-dev libyaml-cpp-dev libssl-dev

Install CUDA

Get the CUDA package associated with the Ubuntu version on the host platform from the Nvidia

website https://developer.nvidia.com/cuda-toolkit and install it under the “/usr/local/” directory.

www.xilinx.com
https://developer.nvidia.com/cuda-toolkit

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 8
UG1327 (v 2.08 Beta) December 12, 2018

Install cuDNN

Get the appropriate version of cuDNN to match CUDA from https://developer.nvidia.com/cudnn.

Decompress and copy it into the “/usr/local/” directory using the commands shown below.

$ sudo tar -xzvf cudnn-9.1-linux-x64-v7.tgz

$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

www.xilinx.com
https://developer.nvidia.com/cudnn

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 9
UG1327 (v 2.08 Beta) December 12, 2018

Evaluation board setup

Introduction

In the following sections, the evaluation boards supported by DNNDK are described. The DeePhi DP-

8020, DP-N1 and Ultra96 are intended for evaluating low-power, low-throughput deep learning

applications and the Xilinx ZCU102 and ZCU104 are geared towards higher throughput deep learning

inference requiring low latency. The SD card system image files for all DNNDN supported evaluation

boards are available for download from http://www.deephi.com/technology/boards. Before trying

DNNDK v2.08 on the evaluation boards, the users need to download the updated version image file;

otherwise, DNNDK package can’t work on the previous version image file. The throughput performance

in FPS for each DNNDK sample is listed for all these evaluation boards.

Note1: Do download the updated version image file from http://www.deephi.com/technology/boards before
installing DNNDK v2.08 into your evaluation board.

Note2: The performance numbers in FPS for all DNNDK examples on each evaluation board below are end-to-end
throughput results for the neural network algorithms used. They are measured with the time span from the image
fed into DPU to the completed running of algorithms. And the time spent on image reading and displaying isn’t
counted.

Note3: The FPS numbers for ResNet-50, Inception-v1 and MobileNet are measured with multithreaded version
examples.

DP-8020

The DeePhi DP-8020 evaluation board uses the Xilinx ZU2 Zynq UltraScale+ device. It is intended to

demonstrate the capability of the Xilinx ZU2 device to meet the intensive computation workload

requirements of edge AI applications, such as surveillance cameras, ADAS/AD, and robotics. The

hardware user guide for DP-8020 is available for download on

http://www.deephi.com/technology/boards.

One B1152F DPU core is implemented in the programmable logic and delivers 495 GOPs INT8 peak

performance for deep learning inference acceleration with low latency and low energy consumption.

The main connectivity interfaces for the DP-8020 are shown in Figure 1.

www.xilinx.com
http://www.deephi.com/technology/boards
http://www.deephi.com/technology/boards
http://www.deephi.com/technology/boards

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 10
UG1327 (v 2.08 Beta) December 12, 2018

Figure 1: DeePhi DP-8020 evaluation board and peripheral connections

The DExplorer utility tool can be used to display DPU specification information, which is named as DPU

signature, covering target version, working frequency, DPU core numbers, etc. In the screenshot below,

one B1152F DPU core running at 430 MHz is implemented on the Xilinx ZU2 device.

Figure 2: DeePhi DP-8020 DPU signature viewed with DExplorer

Please refer to Table 2 for the throughput performance (in frames/sec or fps) for various DNNDK

samples on DP-8020.

Table 2: DP-8020 performance

Neural Network MAC (GOPS) fps

ResNet-50 7.7 35

Inception-v1 3.2 79

MobileNet 0.56 162

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 11
UG1327 (v 2.08 Beta) December 12, 2018

Face detection 1.1 181

Video analysis 5.5 37

Pose detection 5.0 21

ADAS detection 5.5 31

Semantic segmentation 8.8 32

DP-N1

The DP-N1 AI Box designed by DeePhi is based on XILINX XCZU2CG-L1SFVA625I device. With high

speed 2GB DDR4 chips, 8GB eMMC flash, mini Display Port, Micro SD, Gigabit Ethernet, and USB 3.0, the

DP-N1 enables rapid prototyping of deep learning applications with DNNDK. The hardware user guide

for DP-N1 is available for download on http://www.deephi.com/technology/boards.

One DPU core B1152F is implemented in the programmable logic and delivers 426 GOPs INT8 peak

performance for deep learning inference acceleration. The main connectivity interfaces for the DP-8020

are shown in Figure 3.

Figure 3: DeePhi DP-N1 evaluation board and peripheral connections

www.xilinx.com
http://www.deephi.com/technology/boards

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 12
UG1327 (v 2.08 Beta) December 12, 2018

The DPU signature information is shown in the screenshot below. One B1152F DPU core running at 370

MHz is implemented on the Xilinx ZU2 device.

Figure 4: DeePhi DP-N1 DPU signature viewed with DExplorer

Please refer to Table 3 for the throughput performance (in frames/sec or fps) for various DNNDK

samples on DP-N1.

Table 3: DP-N1 performance

Neural Network MAC (GOPS) fps

ResNet-50 7.7 32

Inception-v1 3.2 72

MobileNet 0.56 145

Face detection 1.1 168

Video analysis 5.5 24

Pose detection 5.0 19

ADAS detection 5.5 25

Semantic segmentation 8.8 26

Ultra96

Ultra96 is an ARM-based, Xilinx Zynq UltraScale+™ MPSoC development board based on the Linaro

96Boards specification. The 96Boards’ specifications are open and define a standard board layout for

development platforms that can be used by software application, hardware device, kernel, and other

system software developers. Ultra96 represents a unique position in the 96Boards community with a

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 13
UG1327 (v 2.08 Beta) December 12, 2018

wide range of potential peripherals and acceleration engines in the programmable logic that is not

available from other offerings. The hardware user guide for Ultra96 is available for download on

http://zedboard.org/product/ultra96.

One B1152F DPU core is implemented in the programmable logic of Ultra96 and delivers 383 GOPs

INT8 peak performance for deep learning inference acceleration. The main connectivity interfaces for

Ultra96 are shown in Figure 5.

Figure 5: Ultra96 evaluation board and peripheral connections

The DPU signature information is shown in the screenshot below. One B1152F DPU core running at 333

MHz is implemented on the Xilinx ZU3 device.

Figure 6: Ultra96 DPU signature viewed with DExplorer

www.xilinx.com
http://zedboard.org/product/ultra96

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 14
UG1327 (v 2.08 Beta) December 12, 2018

Please refer to Table 4 for the throughput performance (in frames/sec or fps) for various DNNDK

samples on Ultrta96.

Table 4: Ultra96 performance

Neural Network MAC (GOPS) fps

ResNet-50 7.7 25

Inception-v1 3.2 58

MobileNet 0.56 116

Face detection 1.1 133

Video analysis 5.5 33

Pose detection 5.0 20

ADAS detection 5.5 30

Semantic segmentation 8.8 23

Refer to Figure 7 and Figure 8 to setup WIFI network connection for the Ultra96 board.

Figure 7: Ultra96 WIFI connection

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 15
UG1327 (v 2.08 Beta) December 12, 2018

Figure 8: Ultra96 WIFI configuration

ZCU102

The Xilinx ZCU102 evaluation board uses the mid-range ZU9 UltraScale+ device to enable users to

jumpstart their machine learning applications. For more information on the ZCU102, please refer to the

Xilinx site https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html.

Triple B4096F DPU cores are implemented in program logic and delivers 4 TOPs INT8 peak performance

for deep learning inference acceleration. The main connectivity interfaces for the ZCU102 are shown in

Figure 9.

www.xilinx.com
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 16
UG1327 (v 2.08 Beta) December 12, 2018

Figure 9: Xilinx ZCU102 evaluation board and peripheral connections

The DPU signature information is shown in the screenshot below. Triple B4096F DPU cores running at

333MHz are implemented on the Xilinx ZU9 device.

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 17
UG1327 (v 2.08 Beta) December 12, 2018

Figure 10: Xilinx ZCU102 DPU signature viewed with DExplorer

Refer to Table 5 for the throughput performance (in frames/sec or fps) for various DNNDK samples on

ZCU102.

Table 5: ZCU102 performance

Neural Network MAC (GOPS) fps

ResNet-50 7.7 175

Inception-v1 3.2 428

Face detection 1.1 686

Video analysis 5.5 56

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 18
UG1327 (v 2.08 Beta) December 12, 2018

Pose detection 5.0 44

ADAS detection 5.5 62

Semantic segmentation 8.8 64

ZCU104

The Xilinx ZCU104 evaluation board uses the mid-range ZU7 UltraScale+ device to enable users to

jumpstart their machine learning applications. For more information on the ZCU104, please refer to the

Xilinx site https://www.xilinx.com/products/boards-and-kits/zcu104.html.

Dual B4096F DPU cores are implemented in program logic and delivers 2.4 TOPs INT8 peak

performance for deep learning inference acceleration. The main connectivity interfaces for ZCU104 are

shown in Figure 11.

Figure 11: Xilinx ZCU104 evaluation board and peripheral connections

The DPU signature information is shown in the screenshot below. Dual B4096F DPU cores running at

333 MHz are implemented on the Xilinx ZU7 device.

www.xilinx.com
https://www.xilinx.com/products/boards-and-kits/zcu104.html

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 19
UG1327 (v 2.08 Beta) December 12, 2018

Figure 12: Xilinx ZCU104 DPU signature viewed with DExplorer

Refer to Table 6 for the throughput performance (in frames/sec or fps) for various DNNDK samples on

ZCU104.

Table 6: ZCU104 performance

Neural Network MAC (GOPS) fps

ResNet-50 7.7 127

Inception-v1 3.2 299

Face detection 1.1 566

Video analysis 5.5 55

Pose detection 5.0 66

ADAS detection 5.5 53

Semantic segmentation 8.8 63

Note: For the ZCU104 board, the examples of multithreaded ResNet-50, ADAS detection and segmentation are
not included in the DNNDK v2.08 package because they demand more power supply, however which can’t be

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 20
UG1327 (v 2.08 Beta) December 12, 2018

offered by ZCU104 default setting. There is a separate patch available to resolve this power issue. Contact DNNDK
support team if these 3 samples are necessary for your project evaluation.

In the following sections, DP-8020 is used as an example to show the steps to setup the DNNDK

running environment on evaluation boards.

Flash OS image to SD card

One suggested software application for flashing the SD card is Etcher. It is a cross-platform tool for

flashing OS images to SD cards, available for Windows, Linux and Mac systems. In the following let’s

take Windows as the example to go through the steps.

1. Download Etcher from https://etcher.io/ and save the file as shown in Figure 13.

Figure 13: Saving the Etcher file

2. Install Etcher as shown in Figure 14.

www.xilinx.com
https://etcher.io/

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 21
UG1327 (v 2.08 Beta) December 12, 2018

Figure 14: Install Etcher

3. Eject can operate on any external storage devices such as USB flash drives and backup hard disks.

The first step will be to insert the SD card into the slot on your computer or into the reader.

Run the Etcher program by double clicking on the Etcher icon shown in Figure 15, or select it from

the Start menu. This will launch Etcher as shown in Figure 16.

Figure 15: Etcher icon

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 22
UG1327 (v 2.08 Beta) December 12, 2018

Figure 16: The Etcher GUI

4. Select the image file by clicking Select Image. “.zip” or “.gz” format compressed file may be

selected.

5. Etcher will try to detect the SD drive. Verify the drive designation and check the image size and

ensue that it is the right. Then, click Flash as shown in Figure 17.

Figure 17: Flash SD card

Booting the evaluation board

For DP-8020, please follow the steps below to boot the evaluation board.

1. Connect the power supply (12V ~ 2A)

2. Connect the UART debug interface to the host and other peripherals as required

3. Turn on the power and wait for the system to boot

4. Log into the system

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 23
UG1327 (v 2.08 Beta) December 12, 2018

5. The system needs to perform some configurations for its first boot. Then reboot the board for these

configurations to take effect.

Accessing the evaluation board

There are three ways to access the DP-8020 evaluation board: via UART, ethernet, or standalone.

UART

Aside from monitoring the boot process and viewing kernel messages for debugging, users can log into

the board through the UART. The configuration parameters of the UART are shown below. A screenshot

of a sample boot is shown in Figure 18. Log into system with username “root” and password “root”.

• baud rate: 115200 bps

• data bit: 8

• stop bit: 1

• no parity

Figure 18: Screenshot of boot process

Note: On a Linux system, Minicom may be used to connect to the target board directly; for a Windows system, a
USB to UART driver is needed before connecting to the board through a serial port.

Ethernet

The DP-8020 has an ethernet interface, and SSH service is enabled by default. You can log into the

system using an SSH client after the board has booted.

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 24
UG1327 (v 2.08 Beta) December 12, 2018

Figure 19: Logging in to the evaluation board using SSH

Use the “ifconfig” command via the UART interface to set the IP address of the board and then use SSH

client to log into the system.

Standalone

The DP-8020 board allows a keyboard, mouse and monitor to be connected. After a successful boot,

the Linux windows desktop will be displayed as shown in Figure 20. Then the board can be access as a

standalone embedded system.

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 25
UG1327 (v 2.08 Beta) December 12, 2018

Figure 20: Screenshot of standalone Linux desktop

Copy DNNDK tools to the evaluation board

With an ethernet connection established, you can copy the DNNDK package from the host machine to

the evaluation board. To minimize the size of DNNDK package, the directory

“$deephi_dnndk_package/board_name/samples/common” for all DNNDK evaluation boards is symbol

link to the unique directory “$deephi_dnndk_package/common”, which contains the dependent image

files for all DNNDK examples. Extraction of DNNDK package on Windows system will break these

symbol links and bring issues while running DNNDK examples on the evaluation boards.

The steps below illustrate how to setup DNNDK running environment for DP-8020 provided that

DNNDK package is stored on Windows system.

1. Download and install MobaXterm (https://mobaxterm.mobatek.net/) on Windows system

2. Launch MobaXterm and click “Start local terminal” to open a terminal, where the filesystem of

Windows can be accessed.

3. Supposed that DNNDK package is located under the root directory of disk “D”, run the following

steps to extract and copy the package for the DP-8020 board with IP address 192.168.0.10.

cd d:

tar -xzvf deephi_dnndk_v2.08_beta.tar.gz

cd deephi_dnndk_v2.08_beta/

scp -r ./DP-8020 root@192.168.0.10:~/

www.xilinx.com
https://mobaxterm.mobatek.net/

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 26
UG1327 (v 2.08 Beta) December 12, 2018

4. On the DP-8020 board, change to the “~/DP-8020/” directory and run “install.sh”. The following

messages will be shown if the installation completes successfully. Then reboot the board for the

installation to take effect.

Begin to install DeePhi DNNDK ...

Install DeePhi DPU driver ...

Install DeePhi tools, runtime & libraries ...

Complete installation successfully.

Note1: DO reboot the board after installation

Note2: Installing DNNDK v2.08 will replace previous releases automatically. There is no need to manually uninstall
previous versions. And DO reboot the board after installation

Running DNNDK examples
This section will illustrate how to run each example included in the DNNDK package, using the DeePhi

DP-8020 board as a reference as well.

All examples may be compiled and launched after successful installation of the DNNDK package. They

are stored under the “$deephi_dnndk_package/DP-8020/samples” folder. In the following sections, we

will use the string “$dnndk_sample_base” to represent the folder name of

“$deephi_dnndk_package/DP-8020”.

Make sure to enable X11 forwarding with the following command (supposed that host machine IP

address is 192.168.0.10) when logging in to the board using an SSH terminal since all the examples

require a Linux windows system to work properly.

export DISPLAY=192.168.0.10:0.0

For each DNNDK example, after entering into its directory, run the "make" command first to generate

the hybrid DPU executable file, then launch it just like a normal Linux application.

Note1: The DNNDK examples won’t work through a UART connection due to the lack of Linux windows.

Note2: The monitor flickers while running for some DNNDK examples because DPU demands heavy memory
bandwidth.

ResNet-50

“$DNNDK_SAMPLE_BASE/samples/resnet50” contains an example of image classification using the

ResNet-50 network. It reads the images under the “$dnndk_sample_base/samples/common” directory

and outputs the classification result for each input image.

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 27
UG1327 (v 2.08 Beta) December 12, 2018

Figure 21: Screenshot of ResNet-50 example

After running “make” and launching it with the command “./resnet50”, the result is shown in Figure 16,

including the top-5 labels and corresponding probabilities.

Multithreaded ResNet-50

“$DNNDK_SAMPLE_BASE/samples/resnet50_mt” contains a ResNet-50 image classification example,

programmed in multithreaded mode to achieve higher throughput. It demonstrates how to use DNNDK

APIs to develop multithreaded DPU applications for better performance.

With the command “./resnet50 4”, the throughput (in fps) will be reported after processing 1000 input

images. The option “4” means four threads will be spawned and share the usage of DPU core. This

allows the reduction of DPU idle time, thereby increasing throughput.

Note: The thread number for best throughput of multithread ResNet-50 example varies among evaluation boards
since DPU computation power and core number are differently equipped. Use “dexplorer -w” to view DPU
signature information for each evaluation board.

Inception-v1

The “$dnndk_sample_base/samples/inception_v1” directory contains an example for image classification

using the Inception-v1 network. After running make, launch it with the command “./inception_v1”. A

screenshot of a sample run is shown in Figure 22.

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 28
UG1327 (v 2.08 Beta) December 12, 2018

Figure 22: Screenshot of Inception-V1 example

Multithreaded Inception-v1

“$dnndk_sample_base/samples/inception_v1_mt” contains a multithreaded image classification example

of the Inception-v1 network. With the command “./inception_v1_mt 4”, it will run with 4 threads. The

throughput (in fps) will be reported after it completes.

Note: The thread number for best throughput of multithread Incepion-v1 example varies among evaluation
boards since the DPU computation power and core number are differently equipped. Use “dexplorer -w” to view
DPU signature information for each evaluation board.

MobileNet

The “$dnndk_sample_base/samples/mobilenet” directory contains an example for image classification

using the MobileNet network. After running make, launch it with the command “./mobilenet”. A

screenshot of a sample run is shown in Figure 23.

Figure 23: Screenshot of MobieNet example

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 29
UG1327 (v 2.08 Beta) December 12, 2018

Note: The MobileNet example is not included in the DNNDK v2.08 release for the ZCU102 and ZCU104 evaluation
boards. Contact DNNDK support team if it is necessary for your project evaluation.

Multithreaded MoblieNet

“$dnndk_sample_base/samples/mobilenet_mt” contains a multithreaded image classification example of

the MobileNet network. With the command “./mobilenet_mt 4”, it will run with 4 threads. The

throughput (in fps) will be reported after it completes.

Note1: The multithreaded MobileNet example is not included in the DNNDK v2.08 package for the ZCU102 and
ZCU104 evaluation boards. Contact DNNDK support team if it is necessary for your project evaluation.

Note2: The thread number for best throughput of multithread MobileNet example varies among evaluation
boards since the DPU computation power and core number are differently equipped. Use “dexplorer -w” to view
DPU signature information for each evaluation board.

Face detection

A face detection example is located under the “$dnndk_sample_base/samples/face_detection” directory.

It reads image frames from a USB camera and annotates the detected faces in real-time. Run make and

launch it with the command “./face_detection”. A screenshot of the result is shown in Figure 24.

Figure 24: Screenshot of face detection example

Note: For some USB cameras, face detection example may hang after stopping or killing the process. When this
occurs, unplug the USB camera and plug in it again.

Pose detection

A pose detection example is located under the “$dnndk_sample_base/samples/pose_detection”

directory. It reads image frames from a video file and annotates the detected human body in real-time.

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 30
UG1327 (v 2.08 Beta) December 12, 2018

Run make and launch it with the command “./pose_detection video/pose.mp4” (where video/pose.mp4

is the input video file). A screenshot is show in Figure 25.

Figure 25: Screenshot of pose detection example

Video analytics

An object detection example is located under the “$dnndk_sample_base/samples/video_analysis”

directory. It reads image frames from a video file and annotates detected vehicles and pedestrians in

real-time. Run make and launch it with the command “./video_analysis video/structure.mp4” (where

video/structure.mp4 is the input video file). A screenshot is shown in Figure 26.

Figure 26: Screenshot of object detection example

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 31
UG1327 (v 2.08 Beta) December 12, 2018

ADAS detection

An example of object detection for ADAS (Advanced Driver Assistance Systems) application using

YOLO-v3 network model is located under the “$dnndk_sample_base/samples/adas_detection” directory.

It reads image frames from a video file and annotates in real-time. Run make and launch it with the

command “./adas_detection video/adas.avi” (where video/adas.mp4 is the input video file). A

screenshot is shown inFigure 27.

Figure 27: Screenshot of ADAS detection example

Semantic segmentation

An example of semantic segmentation in the “$dnndk_sample_base/samples/segmentation” directory. It

reads image frames from a video file and annotates in real-time. Run make and launch it with the

command “./segmentation video/traffic.mp4” (where video/traffic.mp4 is the input video file). A

screenshot is shown inFigure 28.

www.xilinx.com

 Chapter 1: Quick Start

DNNDK User Guide www.xilinx.com 32
UG1327 (v 2.08 Beta) December 12, 2018

Figure 28: Screenshot of semantic segmentation example

Support

Welcome to visit Deephi DNNDK community forum on Xilinx website

https://forums.xilinx.com/t5/Deephi-DNNDK/bd-p/Deephi for topics discussing, knowledge sharing,

FAQ and requests for technical support.

www.xilinx.com
https://forums.xilinx.com/t5/Deephi-DNNDK/bd-p/Deephi

DNNDK User Guide www.xilinx.com 33
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 2: Copyright and Version

Copyright

Some third-party source code are used in DNNDK toolchain. Please refer to the file

$deephi_dnndk_package/COPYRIGHT for the related copyright declaration.

Version

Host package

The “host_x86” directory in the DNNDK release package contains the host side tools DECENT and

DNNC. The version information is shown below. Contact DNNDK support team and provide the version

information with command “decent --version” and “dnnc --version” if you encounter issues while using

DECENT or DNNC.

DP-8020, DP-N1 and Ultra96

decent version 1.2.4

Build Label Dec 7 2018 02:47:58

(c) Copyright 2016 – 2018 Xilinx, Inc. All rights reserved.

dnnc version v2.03

DPU Target : v1.3.7

Build Label: Dec 11 2018 11:57:45

Copyright @2018 Xilinx Inc. All Rights Reserved.

www.xilinx.com

 Chapter 2: Copyright and Version

DNNDK User Guide www.xilinx.com 34
UG1327 (v 2.08 Beta) December 12, 2018

ZCU102 and ZCU104

decent version 1.2.4

Build Label Dec 7 2018 02:47:58

(c) Copyright 2016 – 2018 Xilinx, Inc. All rights reserved.

dnnc version v2.03

DPU Target : v1.3.0

Build Label: Dec 11 2018 11:52:13

Copyright @2018 Xilinx Inc. All Rights Reserved.

NOTE: At present, the host machine tool DNNC version varies among different DNNDK evaluation boards. It will
be unified into a single version in the future DNNDK release.

Target package

The package for the DNNDK evaluation boards contains several components: DExplorer, DSight, DPU

driver, and runtime N2Cube. The component versions for each evaluation board are shown below.

Contact DNNDK support team and provide the version information with command “dexplorer -v” if you

encounter issues while running DNNDK applications on evaluation boards.

DP-8020

DNNDK version 2.08 beta

Copyright @ 2016-2018 DeePhi Inc. All Rights Reserved.

DExplorer version 1.5

Build Label: Dec 11 2018 20:51:06

DSight version 1.4

Build Label: Dec 11 2018 20:51:07

N2Cube Core library version 2.2

Build Label: Dec 11 2018 20:51:29

www.xilinx.com

 Chapter 2: Copyright and Version

DNNDK User Guide www.xilinx.com 35
UG1327 (v 2.08 Beta) December 12, 2018

DPU Driver version 2.0

Build Label: Dec 11 2018 20:51:02

DP-N1

DNNDK version 2.08 beta

Copyright @ 2016-2018 DeePhi Inc. All Rights Reserved.

DExplorer version 1.5

Build Label: Dec 11 2018 20:24:43

DSight version 1.4

Build Label: Dec 11 2018 20:24:44

N2Cube Core library version 2.2

Build Label: Dec 11 2018 20:25:07

DPU Driver version 2.0

Build Label: Dec 11 2018 20:24:39

Ultra96

DNNDK version 2.08 beta

Copyright @ 2016-2018 DeePhi Inc. All Rights Reserved.

DExplorer version 1.5

Build Label: Dec 11 2018 21:12:17

DSight version 1.4

Build Label: Dec 11 2018 21:12:18

N2Cube Core library version 2.2

Build Label: Dec 11 2018 21:12:42

www.xilinx.com

 Chapter 2: Copyright and Version

DNNDK User Guide www.xilinx.com 36
UG1327 (v 2.08 Beta) December 12, 2018

DPU Driver version 2.0

Build Label: Dec 11 2018 21:12:13

ZCU102

DNNDK version 2.08 beta

Copyright @ 2016-2018 DeePhi Inc. All Rights Reserved.

DExplorer version 1.5

Build Label: Dec 11 2018 21:13:45

DSight version 1.4

Build Label: Dec 11 2018 21:13:46

N2Cube Core library version 2.2

Build Label: Dec 11 2018 21:14:07

DPU Driver version 2.0

Build Label: Dec 11 2018 21:13:42

ZCU104

DNNDK version 2.08 beta

Copyright @ 2016-2018 DeePhi Inc. All Rights Reserved.

DExplorer version 1.5

Build Label: Dec 11 2018 21:15:32

DSight version 1.4

Build Label: Dec 11 2018 21:15:33

N2Cube Core library version 2.2

www.xilinx.com

 Chapter 2: Copyright and Version

DNNDK User Guide www.xilinx.com 37
UG1327 (v 2.08 Beta) December 12, 2018

Build Label: Dec 11 2018 21:15:54

DPU Driver version 2.0

Build Label: Dec 11 2018 21:15:28

www.xilinx.com

DNNDK User Guide www.xilinx.com 38
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 3: Upgrade and Porting

The key improvements and changes in each release of the DNNDK toolchain since the first version 1.07

published in Oct. 2017 are summarized in this chapter. A guide is provided to allow the users to port

DPU applications from a previous DNNDK version to the latest version.

Since v2.08
Another two new evaluation boards DeePhi DP-N1 AI Box and Ultra96 are enabled since v2.08 release.

Together with the existing three boards DP-8020, ZCU102 and ZCU104, there are total five evaluation

boards available now. Meanwhile, DNNDK toolchains are under the continuous enhancements to

improve DPU’s performance, to make tools easy to use, to make DNNDK more suitable for production

environment, etc.

Toolchain changes

DNNC

New option “--abi” is introduced since DNNC v2.03 for the purpose of DNNDK forward compatibility.

Please refer to the section DNNC usage for detailed description.

Exception handling changes

A new exception handling mode for N2Cube runtime APIs is introduced. For the former releases,

N2Cube will output the error message and terminate the running of DNNDK application when any error

occurs. Since v2.08, N2Cube runtime APIs will return corresponding error code and won’t exit in case of

errors. The APIs’ callers need to take charge of the following exception handling process, such as

logging the error message with API dpuGetExceptionMessage(), resource release, etc.

To keep forward compatibility, the former exception handling manner is the default mode, but it can be

changed to new mode by calling to dpuSetExceptionMode().

API changes

Four new APIs are introduced into library libn2cube. Please refer to Chapter 11: DNNDK Programming

APIs for details.

- dpuRunSoftmax()

- dpuSetExceptionMode()

- dpuGetExceptionMode()

www.xilinx.com

 Chapter 3: Upgrade and Porting

DNNDK User Guide www.xilinx.com 39
UG1327 (v 2.08 Beta) December 12, 2018

- dpuGetExceptionMessage()

Example changes

Three new DNNDK examples are added to demonstrate DPU’s capabilities and scalabilities, including:

- MobileNet

- Multithreaded MobileNet

- ADAS detection with YOLO-v3 network model

Since v2.07
Only one evaluation board was supported in previous releases. Beginning with the v2.07 release, the

supported evaluation boards are DP-8020, ZCU102 and ZCU104.

Toolchain changes

DNNC

Some minor updates are added to DNNC to improve its easy-to-use.

1. The kernel graph description file “<net_name>_kernel_graph.jpg” in JPEG format will be generated

by DNNC if the “dot” is already installed the host system; otherwise, the original gv format file with

the same name will be generated.

2. Instead of simply printing input/output node name for DPUKernel in the kernel description,

input/output index for node name is also added in “node_name(index)” format. When setting input

or getting output using the API provided by N2Cube, the “node_name” and “index” act as unique

identifiers.

3. A dump option has been added to DNNC for error probing (see 0 section for more details).

Since v2.06

Toolchain changes

DECENT

1. Support more operators

- Dilation convolution

- Deconvolution

www.xilinx.com

 Chapter 3: Upgrade and Porting

DNNDK User Guide www.xilinx.com 40
UG1327 (v 2.08 Beta) December 12, 2018

- Flatten

- Concat

- Scale

- Reorg

2. Support more layer fusing patterns

- Fuse BatchNorm + Scale + Convolution into Convolution layer

- Fuse standalone BatchNorm + Scale into Scale layer

3. Support for TensorFlow framework (for DeePhi internal evaluation only at present)

4. Other minor changes

- Support auto test for cityscapes segmentation dataset

- Support for CV_16U image input

DNNC

1. Support more operators:

- Dilation convolution

- Deconvolution

- Flatten

- Concat

- Scale

- Reorg

2. Implement more optimizing compilation techniques:

- Add more flexible node fusion strategies

- Perform adaptive optimizations for concat and flatten operators

3. Support for TensorFlow framework (for DeePhi internal evaluation only)

4. Support for DPU ABI v1.7

DExplorer

DExplorer is updated with the new option “-w” to display the DPU signature information, such as DPU

architecture version, target version, working frequency, DPU core numbers, etc.

www.xilinx.com

 Chapter 3: Upgrade and Porting

DNNDK User Guide www.xilinx.com 41
UG1327 (v 2.08 Beta) December 12, 2018

API Changes

Multiple IO supported in this release, hence all the DNNDK API around input/output tensor such as

dpuGetInputXXX()/dpuGetOutputXXX()/dpuSetInputXX()/dpuSetOutputXX() have been changed to

preserve backward compatibility. If multiple IO is not required in your application, no change is

required. Otherwise, pass an “idx” to specify a single tensor as the last parameter to the APIs, and refer

to the kernel_graph.gv file generated by DNNC to get the value of “idx”.

At the same time, another two new APIs dpuGetInputTensorCnt() and dpuGetOutputTensorCnt() are

introduced to get the total number of input/output tensors for the specific node.

Example changes

VGG-16 has been removed in this release due to its large size. And several new examples have been

added, including:

• Multithreaded ResNet-50

• Multithreaded Inception-v1

• Semantic segmentation

• Pose detection

Since v1.10

Toolchain changes

DECENT

When performing neural network model compression, DECENT will incorporate the fix info into the

compressed Caffe model file, instead of generating a separate file “fix_info.txt”. The DNNC compiler will

deal with the fix info automatically.

The mean value was encapsulated into the prototxt file during model compression. The DNNC compiler

handles this automatically.

Note: Use the DECENT and DNNC version included in the DNNDK release when compressing and compiling
network models to avoid unexpected errors.

www.xilinx.com

 Chapter 3: Upgrade and Porting

DNNDK User Guide www.xilinx.com 42
UG1327 (v 2.08 Beta) December 12, 2018

DNNC

Automatic CPU and DPU mapping.

1. DNNC compiler optimization for multiplexed memory access.

2. One-click compilation support for more neural networks including ResNet-50, VGG-16, Inception,

SSD, YOLO, SqueezeNet and DenseBox.

3. Bug fixes, more hints and error checking for handling user input.

DExplorer

The DExplorer utility has been added into this release, which can be used to show the DNNDK

component version and DPU information.

DSight

The DSight utility is a performance profiling tool which has been added to this release.

API Changes

New API

dpuSetInputImage2() – set input image to DPU Task, bypassing the requirement to specify the mean

values parameter. Pay attention to the difference between it with dpuSetInputImage().

Changed API

dpuEnableTaskDebug() has been renamed to dpuEnableTaskDump().

Upgrading from previous versions

From v1.10 to v2.06

In this section, upgrading DNNDK application deployed with DNNDK v1.10 to DNNDK v2.06 using

ResNet-50 is shown as an example.

1. Recompress the network model using DECENT from DNNDK v2.06 to generate new

“deploy.prototxt” and “deploy.caffemodel” files.

2. Recompile the network model to generate ELF for the new DPU kernel. Note that there is a change

in the output file in v2.06: a new file named “kernel_graph.gv” will be generated by DNNC, which

shows the structure of the network. It can be converted to JPEG format using a dot command (e.g.

“dot -Tjpg -o xxx.jpg kernel_graph.gv”).

www.xilinx.com

 Chapter 3: Upgrade and Porting

DNNDK User Guide www.xilinx.com 43
UG1327 (v 2.08 Beta) December 12, 2018

3. The kernel_graph.gv will show the input and output tensors at each node. Use

dpuGetOutputTensorCnt() or dpuGetInputTensorCnt() to get the number of tensors at a node, and

use an extra parameter “idx” to specify the tensor in subsequent processing functions. The “idx” is

the index (beginning with 0, from left to right in x.jpg) of the tensor for a node. No changes are

needed for the deployed code if the network has not changed.

From v1.07 to v1.10

In this section, upgrading a deep learning application deployed with DNNDK v1.07 to DNNDK v1.10

using ResNet-50 is shown as an example.

1. Recompress the network model using DECENT from DNNDK v1.10 to generate new

“deploy.prototxt” and “deploy.caffemodel” files.

2. Recompile the network model to generate ELF for the new DPU kernel. Note that the suffix “_fixed”

has been removed in the generated files. For example, if the network is compiled with the option

“—net_name=resnet50”, v1.07 would have generated “dpu_resnet50_fixed.elf” and

“dpu_reset50_fc_fixed.elf”. In v1.10, the generated files will be named “dpu_resnet50_0.elf” and

“dpu_resnet50_2.elf”. Make sure that the source code is modified to load the proper DPU kernel file

when calling dpuLoadKernel().

3. Modify Makefile to change the DPU kernel ELF file name from “dpu_resnet50_fixed.elf” and

“dpu_resnet50_fc_fixed.elf” to “dpu_resnet50_0.elf” and “dpu_resnet50_2.elf”.

4. Consider using the new simplified API dpuSetInputImage2() instead of dpuSetInputImage().

www.xilinx.com

DNNDK User Guide www.xilinx.com 44
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 4: DNNDK

Overview

DNNDK (Deep Neural Network Development Kit) is a full-stack deep learning SDK for the DPU (Deep-

learning Processor Unit). It provides a unified solution for deep neural network inference applications by

providing pruning, quantization, compilation, optimization, and run time support. Key highlights and

features are listed below:

Innovative full-stack solution for deep learning inference application development

• A complete set of optimized tool chains, including compression, compilation and runtime

• Lightweight C/C++ programming APIs

• Easy-to-use with gradual learning curve

Figure 29: DNNDK Framework

www.xilinx.com

 Chapter 4: DNNDK

DNNDK User Guide www.xilinx.com 45
UG1327 (v 2.08 Beta) December 12, 2018

DNNDK makes it simple for users without FPGA knowledge to develop deep learning inference

applications by providing a set of lightweight C/C++ APIs while abstracting away the intricacies of the

underlying FPGA device.

Deep learning processor unit (DPU)

The DPU is designed to accelerate the computing workloads of deep learning inference algorithms

widely adopted in various computer vision applications, such as image/video classification, semantic

segmentation, object detection/tracking.

Figure 30: DPU architecture

An efficient tensor-level instruction set is designed to support popular convolutional neutral networks,

such as VGG, ResNet, GoogLeNet, YOLO, SSD, and MobileNet, among others. The DPU is scalable to fit

various Xilinx Zynq/MPSoC devices from edge to cloud to meet many diverse applications’

requirements.

www.xilinx.com

 Chapter 4: DNNDK

DNNDK User Guide www.xilinx.com 46
UG1327 (v 2.08 Beta) December 12, 2018

DNNDK framework

As shown in Figure 31, DNNDK is composed of Deep Compression Tool (DECENT), Deep Neural

Network Compiler (DNNC), Deep Neural Network Assembler (DNNAS), Neural Network Runtime

(N2Cube), DPU Simulator and Profiler.

Figure 31: DNNDK Toolchain

NOTE: The DECENT tool can perform pruning and quantization; however, only quantization is included in this
package.

DECENT

The process of inference is computation intensive and requires a high memory bandwidth to satisfy the

low-latency and high-throughput requirement of edge applications.

DECENTTM (Deep Compression Tool), employs coarse-grained pruning, trained quantization and weight

sharing to address these issues while achieving high performance and high energy efficiency with very

small accuracy degradation.

DNNC

DNNC™ (Deep Neural Network Compiler) is the dedicated compiler designed for the DPU. It maps the

neural network algorithm to the DPU instructions to achieve maxim utilization of DPU resources by

balancing computing workload and memory access.

www.xilinx.com

 Chapter 4: DNNDK

DNNDK User Guide www.xilinx.com 47
UG1327 (v 2.08 Beta) December 12, 2018

N2Cube

N2Cube (Cube of Neutral Networks) is the DPU runtime engine. It acts as the loader for the DNNDK

applications and handles resource allocation and DPU scheduling. Its core components include DPU

driver, DPU loader, tracer and programming APIs for application development.

N2Cube provides a lightweight set of programming interfaces through a library which abstracts away

the details of the underlying hardware implementation.

The DPU driver runs in the kernel space of the Linux OS and includes DPU functions such as task

scheduling, and efficient memory management to avoid memory copy overhead between the DPU and

the CPU.

The DPU loader is responsible for dynamically loading DPU code and data into the DPU dedicated

memory space and performs runtime address relocation.

The DPU performance profiler makes it possible for programmers to analyze the efficiency of DPU code

and the utilization of resources layer by layer.

DNNAS

DNNAS (Deep Neural Network Assembler) is responsible for assembling DPU instructions into ELF

format binary code. It belongs to the sub-component of the DNNC code generation backend, and can’t

be invoked alone.

Profiler

The DPU profiler is composed of two components: DPU tracer and DSight. DPU tracer is implemented in

the DNNDK runtime N2cube, and it is responsible for gathering the raw profiling data while running

neural networks on DPU. With the provided raw profiling data, DSight can help to generate the

visualized charts for performance analysis.

www.xilinx.com

DNNDK User Guide www.xilinx.com 48
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 5: Network deployment overview

DECENT overview

There are two stages for developing deep learning applications: training and inference. The training

stage is used to design a neural network for a specific task (e.g. image classification) using a huge

amount of training data. The inference stage involves the deployment of the previously designed neural

network to handle new input data not seen during the training stage.

The DNNDK toolchain provides an innovative workflow to efficiently deploy deep learning inference

applications on the DPU with 5 simple steps:

1. Compress the neural network model

2. Compile the neural network model

3. Program with DNNDK APIs

4. Compile the hybrid DPU application

5. Run the hybrid DPU executable

In this chapter, ResNet-50 is used as an example to walk through each step. The floating-point models

for Resnet-50 and Inception-v1 can be found from DNNDK package as Table 7 shows.

Table 7: Neural network models in DNNDK package

Model Directory

ResNet-50 $deephi_dnndk_package/host_x86/models/resnet50

Inception-v1 $deephi_dnndk_package/host_x86/models/inception_v1

Note: This chapter only covers model quantization with DECENT since the pruning tool isn’t included in this
release.

www.xilinx.com

 Chapter 5: Network deployment overview

DNNDK User Guide www.xilinx.com 49
UG1327 (v 2.08 Beta) December 12, 2018

Network compression
DECENT takes a floating-point network model, pre-trained weights and a calibration dataset in Caffe

format as inputs to generate a lightweight quantized model with INT8 weights.

Table 8: Input files for DECENT

No. Name description

1 float.prototxt Floating-point model for ResNet-50

2 float.caffemodel Pre-trained weights file for ResNet-50

3 calibration dataset A subset of the training set containing 100 to 1000 images

A script file named “decen.sh” can be found from $deephi_dnndk_package/host_x86/models/resnet50,

shown in Figure 32. This invokes the DECENT tool to perform quantization with the appropriate

parameters.

Figure 32: Screenshot of sample DECENT quantization script

Note: Before launching quantitation for ResNet-50, the calibration dataset used by DECENT should be prepared
first. You can download 100 to 1000 images from ImageNet training dataset from http://www.image-net.org/an
and then change the settings for “source” and “root_folder” of “image_data_param” in ResNet-50 prototxt
accordingly.

The script may take several minutes to finish. Once quantization is done, two files “deploy.prototxt” and

“deploy.caffemodel” will be generated under the “decent_output” directory, which could be fed to

DNNC compiler for following compilation process.

Table 9: DECENT output files

N0. Name Description

1 deploy.prototxt Quantized network description file

2 deploy.caffemodel Quantized Caffe model parameter file (non-standard Caffe format)

www.xilinx.com
http://www.image-net.org/an

 Chapter 5: Network deployment overview

DNNDK User Guide www.xilinx.com 50
UG1327 (v 2.08 Beta) December 12, 2018

Network compilation
Another script file named “dnnc.sh” can be found from

$deephi_dnndk_package/host_x86/models/resnet50, shown in Figure 33. It invokes the DNNC tool to

perform model compilation with the appropriate options.

Figure 33: Screenshot of sample DNNC compilation script

Running this script will compile the ResNet-50 model into two DPU kernels, which are ELF format files

containing DPU instructions and parameters for ResNet-50. This will also show the information about

layers unsupported by the DPU, as shown in Figure 34. The ResNet-50 network model is compiled and

transformed into four different kernels:

• Kernel 0： resnet50_0 （run on DPU）

• Kernel 1： resnet50_1 （deploy on the CPU）

• Kernel 2： resnet50_2 （run on DPU）

• Kernel 3： resnet50_3 （deploy on the CPU）

www.xilinx.com

 Chapter 5: Network deployment overview

DNNDK User Guide www.xilinx.com 51
UG1327 (v 2.08 Beta) December 12, 2018

Figure 34: Screenshot of DNNC compilation log

“resnet50_0” and “resnet50_2” are kernels running on the DPU. DNNC generates an ELF object file for

each kernel under the “output_dir” directory with names “dpu_resnet50_0.elf” and “dpu_resnet50_2.elf”.

The other two kernels “resnet50_1” and “resnet50_3” are for “Average Pooling” and “Softmax”

operations, which aren’t supported by DPU and need to be deployed and run on CPU.

Programming with DNNDK
To develop deep learning applications on the DPU, there are three types of work need be done.

• Use DNNDK APIs to manage DPU kernels

- DPU kernel creation and destruction

- DPU task creation

- Managing input and output tensors

• Implement kernels not supported by the DPU on the CPU

• Add pre-processing and post-processing routines to read in data or calculate results

www.xilinx.com

 Chapter 5: Network deployment overview

DNNDK User Guide www.xilinx.com 52
UG1327 (v 2.08 Beta) December 12, 2018

For the ZCU102 board, the ResNet-50 example is located under the

“$deephi_dnndk_package/ZCU102/samples/resnet50/” directory. The code for managing the DPU

kernels and tasks are programmed in the function “main”.

int main(void) {

 /* DPU Kernels/Tasks for running ResNet-50 */

 DPUKernel* kernelConv;

 DPUKernel* kernelFC;

 DPUTask* taskConv;

 DPUTask* taskFC;

 /* Attach to DPU driver and prepare for running */

 dpuOpen();

 /* Create DPU Kernels for CONV & FC Nodes in ResNet-50 */

 kernelConv = dpuLoadKernel(KERNEL_CONV);

 kernelFC = dpuLoadKernel(KERNEL_FC);

 /* Create DPU Tasks for CONV & FC Nodes in ResNet-50 */

 taskConv = dpuCreateTask(kernelConv, 0);

 taskFC = dpuCreateTask(kernelFC, 0);

 /* Run CONV & FC Kernels for ResNet-50 */

runResnet50(taskConv, taskFC);

 /* Destroy DPU Tasks & release resources */

 dpuDestroyTask(taskConv);

 dpuDestroyTask(taskFC);

 /* Destroy DPU Kernels & release resources */

 dpuDestroyKernel(kernelConv);

 dpuDestroyKernel(kernelFC);

 /* Detach DPU driver & release resources */

 dpuClose();

 return 0;

}

www.xilinx.com

 Chapter 5: Network deployment overview

DNNDK User Guide www.xilinx.com 53
UG1327 (v 2.08 Beta) December 12, 2018

The main operations include:

- Call dpuOpen() to open the DPU device.

- Call dpuLoadKernel() to load the DPU kernels reset50_0 and reset50_2.

- Call dpuCreateTask() to create tasks for each DPU kernel

- Call the CPU functions “CPUCalcAvgPool”(for average poolilng) and “CPUCalcSoftmax” (for

softmax)

- Call dpuDestroyKernel() and dpuDestroyTask() to destroy DPU kernels and tasks

- Call dpuClose() to close the DPU device

The main image classification work is done in the function runResnet50(), which performs the following

operations:

- Fetch an image using the OpenCV function imread() and set it as the input to the DPU kernel

resnet50_0 by calling the dpuSetInputImage2() API.

- Call dpuRunTask() to run the taskConv convolution operation in the ResNet-50 network model.

- Do average pooling on the output of the previous convolution operation and set the input of

the taskFC operation as output.

- Call dpuRunTask to do the fully connected operation taskFC on the DPU.

- Do softmax on the CPU using the output of the fully connected operation as input.

- Output the top-5 classification category and the corresponding probability.

 Mat image = imread(baseImagePath + imageName);

 dpuSetInputImage2(taskConv, CONV_INPUT_NODE, image);

 dpuRunTask(taskConv);

 CPUCalcAvgPool(taskConv, taskFC);

 dpuRunTask(taskFC);

 /* Get FC result and convert from INT8 to FP32 format */

 dpuGetOutputTensorInHWCFP32(taskFC, FC_OUTPUT_NODE,

 FCResult, channel);

 CPUCalcSoftmax(FCResult, channel, softmax);

 TopK(softmax, channel, 5, kinds);

www.xilinx.com

 Chapter 5: Network deployment overview

DNNDK User Guide www.xilinx.com 54
UG1327 (v 2.08 Beta) December 12, 2018

Hybrid compilation
To generate the hybrid executable, change to the “$deephi_dnndk_package/samples/resnet50” directory

and run “make”. This will compile the application source code to CPU binary code and then link it

against the DPU kernels “dpu_resnet50_0.elf” and “dpu_resnet50_2.elf”.

Running
In “$deephi_dnndk_package/samples/resnet50”, execute “./resnet50” to run this application and check its

output.

www.xilinx.com

DNNDK User Guide www.xilinx.com 55
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 5: Network compression

DECENT overview

DECENT (Deep Compression Tool) includes two capabilities: Coarse-Grained Pruning and trained

quantization. These reduce the number of required operations and quantize the weights. The whole

working flow of DECENT is shown in Figure 35. In this release, only the quantization tool is included.

Contact with DNNDK support team if pruning tool is necessary for your project evaluation.

Figure 35: DECENT flow

Generally, 32-bit floating-point weights and activation values are used when training neural networks.

By converting the 32-bit floating-point weights and activations to 8-bit integer (INT8), the DECENT

quantize tool can reduce the computing complexity without losing prediction accuracy. The fixed-point

network model requires less memory bandwidth, thus providing faster speed and higher power

efficiency than the floating-point model. This tool supports common layers in neural networks, such as

convolution, pooling, fully-connected, and batchnorm among others.

There is no need to retrain the network after the quantization process, instead only a small set of

images is needed to analyze the distribution of activation values for calibration. The quantization time

ranges from a few seconds to several minutes, depending on the size of the neural network.

DECENT is based on Caffe 1.0 and a GPU is required to run it. In this release, only the Caffe format is

supported.

Note: The output file of DECENT is an extended Caffe model, which can only be used as input to the DNNC
compiler.

DECETN usage
The options supported by DECENT are shown in Table 10.

Table 10: DECENT options list

Name Type Optional Default description

www.xilinx.com

 Chapter 5: Network compression

DNNDK User Guide www.xilinx.com 56
UG1327 (v 2.08 Beta) December 12, 2018

model String Required -
Floating-point prototxt file (e.g.

“float.prototxt”)

weights String Required -
The pre-trained floating-point

weights (e.g.” float.caffemodel”)

weights_bit Int32 Optional 8
Bit width for quantized weight and

bias

data_bit Int32 Optional 8 Bit width for quantized activation

method Int32 Optional 0 Fix method, 0: OVER_FLOW; 1: DIFF_S.

calib_iter Int32 Optional 100 Max iterations for calibration

auto_test Bool Optional FALSE
Run test after calibration, test dataset

required

test_iter Int32 Optional 50 Max iterations for testing

output_dir String Optional fix_results
Output directory for the fixed-point

results

gpu String Optional 0 GPU device id for calibration and test

ignore_layers String Optional none
List of layers to ignore during

quantization

ignore_layers_file String Optional none

YAML file which defines the layers to

ignore during quantization, starting

with 'ignore_layers:'

Working flow

Prepare neural network model

Before running DECENT, prepare the Caffe model in floating-point format and calibration set, including:

1. Caffe floating-point network model prototxt file

2. Pre-trained Caffe floating-point network model caffemodel file.

3. Calibration data set. The calibration set is usually a subset of the training set or actual application

images (at least 100 images). Make sure to set the source and root_folder in image_data_param to

the actual calibration image list and image folder path, as shown in Figure 36.

www.xilinx.com

 Chapter 5: Network compression

DNNDK User Guide www.xilinx.com 57
UG1327 (v 2.08 Beta) December 12, 2018

Figure 36: Screenshot of sample Caffe layer for quantization

Note: Only the 3-mean-value format is supported by DECENT. Convert to the 3-mean-value format as required.

Running

Run the following command line to generate a fixed-point model:

$decent quantize -model float.prototxt -weights float.caffemodel [options]

In the above command line, the [options] stands for optional parameters. The 3 commonly used options

are shown below:

• weights_bit: bit width for quantized weight and bias (default is 8)

• data_bit: bit width for quantized activation (default is 8)

• method: quantization method. 0 stands for OVER_FLOW and 1 stands for DIFF_S (default is 0,

which has a shorter execution time)

Output

After successful execution of the above command, two files will be generated (under the default

directory ". /quantize_results/"), which can be used as the input files to DNNC:

• fixed-point model network (deploy.prototxt)

• fixed-point weights (deploy.caffemodel)

www.xilinx.com

 Chapter 6: Network compilation

DNNDK User Guide www.xilinx.com 58
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 6: Network compilation

DNNC overview
The architecture of the DNNC compiler is shown in Figure 37. The front-end parser is responsible for

parsing the Caffe model and generates an intermediate representation (IR) of the input model; the

optimizer handles optimizations based on the IR; and the code generator maps the optimized IR to DPU

instructions.

Figure 37: DNNC components

DNNC usage
DNNC requires options to control the compilation process for neural network models. These options

are divided into two categories: the first group shows the required ones; and the next group shows

optional ones.

Table 11: DNNC required option list

Parameters Description

--prototxt Path of Caffe prototxt file

--caffemodel Path of caffemodel file

--output_dir Path of output directory

--net_name Name of neural network

--dpu DPU target (supported list: 1024FA, 1152FA, 4096FA)

--cpu_arch CPU target (supported list: arm32, arm64)

www.xilinx.com

 Chapter 6: Network compilation

DNNDK User Guide www.xilinx.com 59
UG1327 (v 2.08 Beta) December 12, 2018

Table 12: DNNC optional option list

Parameters Description

--help Show all options of DNNC

--version Show DNNC version

--save_kernel Whether save kernel description in file or not

--abi

Indicate the ABI version for DPU ELF generated by DNNC.

- 0 for DNNC to produce legacy ABI version DPU ELF. For prior

version N2Cube, it only supports the legacy version DPU ELF. With

option “--abi=0”, newer version DNNC can generate legacy DPU ELF

for forward compatibility.

- 1 for DNNC to produce the latest ABI version DPU ELF.

Note: this option is available since DNNC v2.03.

--mode

Compilation mode of DPU kernel - debug or normal.

- debug: the layers of network model run one by one under the

scheduling of N2Cube. With the help of DExplorer, the users can

perform debugging or performance profiling for debug mode DPU

kernel.

- normal: all layers of network model are packaged into one single

DPU execution unit, and there isn’t any interrupt involved during

running. Normal mode DPU kernel delivers better performance and

should be used during production releaser phase.

--dump

Dump different type information, use commas as delimiter when multiple

types are given:

- graph: original graph and transformed graph in gv format.

- weights: weights and bias data for different layers.

- ir: immediate representation for different layer in DNNC.

- quant_info: quaternization information for different layers.

- log: other compilation log generated by DNNC.

- all: dump all listed above.

Note: all the dumped files except for graph type is decrypted by DNNC. In

case of network compilation errors, these dump files can be delivered to

DNNDK support team for further analysis.

www.xilinx.com

 Chapter 6: Network compilation

DNNDK User Guide www.xilinx.com 60
UG1327 (v 2.08 Beta) December 12, 2018

Compiling ResNet50
When compiling a neural network, the required options should be specified to DNNC compiler. For

convenience, the script files to compiler ResNet50 and Inceptoin-v1 are provided inside DNNDK release

package. They are helpful for uses to become familiar with the usages various DNNC options.

Once the compilation is successful, DNNC will generate ELF objects and kernel information for

deployment. These files are located under the folder specified by the parameter “output_dir”. Figure 38

shows a screenshot of the DNNC output when compiling the Inception-v1 network.

Figure 38: Screenshot of sample DNNC output

Due to the limited number of operations supported by the DPU (see Table 13), DNNC will automatically

partition the target neural network into different kernels when there are operations that are not

supported by DPU. The user is responsible for the data transfer and communication between different

kernels, using APIs provided by N2Cube that can be used for retrieving input and output address based

on the input and output nodes of the kernel. The kernel description information generated by DNNC

includes two parts. The first part describes the number of kernels and the topology:

www.xilinx.com

 Chapter 6: Network compilation

DNNDK User Guide www.xilinx.com 61
UG1327 (v 2.08 Beta) December 12, 2018

• Kernel number: The number of kernels generated by DNNC after compilation. Different neural

networks will be compiled to different number of kernels depending on which operators can be

supported in the DPU and each kernel will be described in detail in the second part.

• Kernel topology: The kernel topology description file describes the kernels in the kernel graph view

when compilation is finished. The file named “kernel_graph” is saved in standard ‘DOT (graph

description language)’ format with file extension ‘gv’ in the current DNNC working directory. By

using the following command, the gv format file can be converted to a JPEG file:

 dot -Tjpg -o kernel_graph.jpg kernel_graph.gv

For example, the kernel graph in JPEG format for Inception-v1 is shown in. The kernel graph node

describes the kernel id and its type while the edge shows the relationship between different kernels in

two tuples: the first item represents the output tensor from the source kernel while the second item

shows the input tensor to the destination kernel. The tuple contains two parts: the name of

input/output node binding to the tensor and the tensor index of the input/output node. Using the node

name and index provided in the tuple, users can use the APIs provided by N2Cube to get the input or

output tensor address.

Figure 39: DPU Kernel graph for Inception-v1

The second one describes each kernel in detail:

• Kernel id: id of the current kernel. Every kernel has a unique id assigned by DNNC.

• Kernel name: name of the current kernel. Each kernel supported by the DPU will have a

corresponding ELF object file with a name that is the same as the kernel name prefixed by “dpu_”

with extension “.elf”. For example, the dpu_resnet50_0.elf and dpu_resnet50_2.elf correspond to

kernels with names “resnet50_0” and “resnet50_2”, respectively. The kernel name will be used in the

application code, allowing N2Cube to identify different kernels correctly.

• Type: the kernel type. Three types of kernel are supported by DNNC, see Table 14 for details.

www.xilinx.com

 Chapter 6: Network compilation

DNNDK User Guide www.xilinx.com 62
UG1327 (v 2.08 Beta) December 12, 2018

• Nodes: All nodes included in the current kernel. For kernels supported by the DPU, “NA” is used to

avoid printing all names.

• Input nodes: All input nodes of the current kernel. For kernels not supported by the DPU, the user

must get the output of the preceding kernel through output nodes and feed them into input nodes

of the current node using APIs provided by N2Cube.

• Output nodes: All output nodes of the current kernel. The address and size of output nodes can be

extracted using APIs provided by N2Cube.

Table 13: Operations supported by the DPU

Type Limitations

Convolution
Support kernel-w and kernel-h values ranging from 1

to 8 in any combination

ReLU No limitations

Pooling
Only max-pooling is supported, and kernel size must

be 2x2 or 3x3

Concat No limitations

Element-wise No limitations

InnerProduct No limitations

Note: Operations supported by the DPU may vary between FPGA devices due to the differences in the amount of
available hardware resources.

Table 14: DNNC kernel types

Type Description

DPUKernel Kernel running on the DPU

CPUKernel
Kernel running on a CPU; must be implemented by the

user

ParamKernel
Same as CPUKernel; except that DNNC will also

generate weights and bias parameters

www.xilinx.com

DNNDK User Guide www.xilinx.com 63
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 7: Programming with DNNDK

Programming model
Understanding the DNNDK programming model makes it easier to develop and deploy deep learning

applications on the DPU platform. The related concepts include “DPU Kernel”, “DPU Task”, “DPU Node”

and “DPU Tensor”. “DPU kernel” and “DPU task” are two core concepts for DNNDK programming.

DPU Kernel

After being compiled by DNNC compiler, the neural network model is transformed into an equivalent

DPU assembly file, which is then assembled into one ELF object file by DNNAS. DPU ELF object file is

regarded as DPU kernel, which becomes one execution unit from the perspective of runtime N2Cube

after invoking the API dpuLoadKernel(). N2Cube will load DPU kernel, including DPU instructions and

network parameters, into the DPU dedicated memory space and allocate hardware resources. After that,

each DPU kernel may be instantiated into several DPU tasks by calling dpuCreateTask() to enable the

multithreaded programming.

DPU Task

Each DPU task is a running entity of a DPU kernel. It has its own private memory space so that

multithreaded applications may be used to process several tasks in parallel to improve efficiency and

system throughput.

DPU Node

A DPU node is considered as a basic element of a network model deployed on the DPU. Each DPU node

is associated with input, output and some parameters. Every DPU node has a unique name to allow APIs

exported by DNNDK to access its information.

There are three types of nodes: boundary input node, boundary output node and internal node.

- A boundary input node is a node which doesn’t have any precursor in the DPU kernel’s

topology; it is usually the first node in a kernel. Sometimes there may be multiple boundary

input nodes in a kernel.

- A boundary output node is a node which doesn’t have any successor node in the DPU kernel’s

topology.

- All other nodes which aren’t both boundary input nodes and boundary output nodes are

considered as internal nodes.

After compilation, DNNC will give information about the kernel and its boundary input/output Nodes.

Figure 40 shows an example after compiling Inception-v1; “conv1_7x7_s2” is the boundary input node,

and “inception_5b_output” is the boundary output node for DPU Kernel 0.

www.xilinx.com

 Chapter 7: Programming with DNNDK

DNNDK User Guide www.xilinx.com 64
UG1327 (v 2.08 Beta) December 12, 2018

Figure 40: Screenshot of sample DNNC compilation log

When using dpuGetInputTensor*/dpuSetInputTensor*, the “nodeName” parameter is required to

specify the boundary input node. When a “nodeName” which does not correspond to a valid boundary

input node is used, DNNDK will give an error message:

[DNNDK] Node “inception_5b_output” is not a Boundary Input Node for Kernel inception_v1_0.

[DNNDK] Please refer to DNNDK user guide for more info about “Boundary Input Node”.

Similarly, when using dpuGetOutputTensor*/dpuSetOutputTensor*, an error will be generated when a

“nodeName” which does not correspond to a valid boundary output node is used:

 [DNNDK] Node “conv1_7x7_s2” is not a Boundary Output Node for Kernel inception_v1_0.

[DNNDK] Please refer to DNNDK user guide for more info about “Boundary Output Node”.

DPU Tensor

DPU tensor is a collection of multi-dimensional data which is used to store information while running.

Tensor properties (e.g. height, width, channel etc.) may be obtained using APIs exported by DNNDK.

www.xilinx.com

 Chapter 7: Programming with DNNDK

DNNDK User Guide www.xilinx.com 65
UG1327 (v 2.08 Beta) December 12, 2018

Programming interface
DNNDK offers a set of lightweight C/C++ programming APIs encapsulated in several libraries to

smooth the deep learning application development for the DPU. For detailed description of each API,

please refer to Chapter 12.

It is common to exchange data between a CPU and the DPU when programming for the DPU. For

example, data preprocessed by a CPU may be sent to the DPU for acceleration; and the output

produced by the DPU may need to be copied back to a CPU for further processing. To handle this type

of operation, DNNDK provides a set of APIs to make it easy for data exchange. Some examples are

shown below.

APIs to set input tensor for a computation layer or node:

- dpuSetInputTensor()

- dpuSetInputTensorInCHWInt8()

- dpuSetInputTensorInCHWFP32()

- dpuSetInputTensorInHWCInt8()

- dpuSetInputTensorInHWCFP32()

APIs to get output tensor from a n a computation layer or node:

- dpuGetOutputTensor()

- dpuGetOutputTensorInCHWInt8()

- dpuGetOutputTensorInCHWFP32()

- dpuGetOutputTensorInHWCInt8()

- dpuGetOutputTensorInHWCFP32()

www.xilinx.com

DNNDK User Guide www.xilinx.com 66
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 8: Hybrid compilation

Deep learning applications developed for the DPU are heterogeneous programs which will contain code

running on a host CPU (such as x86 or ARM), and code running on the DPU. The compilation process

for DPU-accelerated deep learning applications is depicted in Figure 41.

Figure 41: Hybrid compilation process

Code that will run on a CPU are programmed in the C/C++ language, which is then processed by a

compiler, such as GCC or LLVM. At the same time, computation intensive neural networks are compiled

by DNNC into DPU binary code for acceleration. In the final stage, CPU and DPU code are linked

together by a linker (e.g. GCC) to produce a single hybrid binary executable, which contains all the

required information for heterogeneously running on both CPU and DPU.

Note: The hybrid executable cannot be stripped using a strip tool. Otherwise, a “DPU Kernel load failed” error will
occur.

www.xilinx.com

DNNDK User Guide www.xilinx.com 67
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 9: Running

As described in previous chapters, a deep learning application is compiled and linked into a hybrid

binary executable. It looks like the same as normal applications. Under the hood, a standard Linux

loader and the DPU loader handles how to load and run the hybrid deep learning application. The

running model of DPU deep learning applications is shown in Figure 42. It is composed of DPU Loader,

DPU profiler, DPU runtime library and DPU driver.

Figure 42: DPU Runtime

The DPU loader handles the transfer of DPU kernels from the hybrid ELF executable into memory and

dynamically relocates the memory of DPU code.

www.xilinx.com

DNNDK User Guide www.xilinx.com 68
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 10: Utilities

This chapter describes the tools included within the DNNDK package, including DPU configuration and

checking tool DExplorer and profiling tool DSight.

DExplorer
DExplorer is a utility running on the target board. It provides DPU running mode configuration, DNNDK

version checking, DPU status checking, and DPU core signature checking. Figure 43 shows the help

information about the usage of DExplorer.

Figure 43: DExplorer usage options

Check DNNDK version

Running “dexplore -v” will display version information for each component in DNNDK, including

N2cube, DPU driver, DExplorer and DSight.

Check DPU status

DExplorer provides DPU status information, including running mode of N2cube, DPU timeout threshold,

DPU debugging level, DPU core status, DPU register information, DPU memory resource and utilization.

Figure 44 shows a screenshot of DPU status.

www.xilinx.com

 Chapter 10: Utilities

DNNDK User Guide www.xilinx.com 69
UG1327 (v 2.08 Beta) December 12, 2018

Figure 44: DPU status

Configure DPU running mode

DNNDK runtime N2cube supports three kinds of DPU execution modes to help developers to debug

and profile DNNDK applications.

Normal mode

In normal mode, the DPU application can get the best performance without any overhead.

Profile mode

In this mode, the DPU will turn on the profiling switch. When running deep learning applications in

profile mode, N2cube will output to the console the performance data layer by layer while executing the

www.xilinx.com

 Chapter 10: Utilities

DNNDK User Guide www.xilinx.com 70
UG1327 (v 2.08 Beta) December 12, 2018

neural network; at the same time, a profile with the name “dpu_trace_[PID].prof” will be produced under

the current folder. This file can be used with the DSight tool. Figure 45 shows a screenshot of this mode.

Figure 45: N2Cube profile mode

Debug mode

In this mode, the DPU will dump raw data for each DPU computation node during execution, including

DPU instruction code in binary format, network parameters, DPU input tensor and output tensor. This

makes it easy to debug and locate issues in a DPU application.

Note: Profile mode and debug mode are only available to neural network models compiled into debug mode DPU
ELF objects by the DNNC compiler.

DPU signature

New DPU cores have been introduced to meet various deep learning acceleration requirements across

different Xilinx FPGA devices. For example, DPU architectures B1024F, B1152F, B1600F, B2304F, and

www.xilinx.com

 Chapter 10: Utilities

DNNDK User Guide www.xilinx.com 71
UG1327 (v 2.08 Beta) December 12, 2018

B4096F are now offered by DeePhi. Each DPU architecture can implement a different version of the DPU

instruction set (which is named to a DPU target version by DeePhi) to support the rapid improvements

in deep learning algorithms.

The DPU signature refers to the specification information of a specific DPU architecture version,

covering target version, working frequency, DPU core numbers, harden acceleration modules (such as

softmax), etc. The “-w” option may be used to check the DPU signature. Figure 46 shows a screenshot of

a sample run of “dexplorer -w”.

Figure 46: Screenshot of sample DPU signature

DSight
DSight is the DNNDK performance profiling tool, and it is a visual performance analysis tool for neural

network model profiling. Figure 47 shows its usage:

Figure 47: DSight help info

By processing the log file produced by the N2cube tracer, DSight can generate an html file which

provides a visual analysis interface for the neural network model. The steps below describe how to use

the profiler:

1. Set N2Cube to profile mode using the command “dexplorer -m profile”.

www.xilinx.com

 Chapter 10: Utilities

DNNDK User Guide www.xilinx.com 72
UG1327 (v 2.08 Beta) December 12, 2018

2. Run the deep learning application. When finished, a profile file with the name “dpu_trace_[PID].prof”

will be generated for further checking and analysis (PID is the process ID of the deep learning

application).

3. Generate the html file with the DSight tool using the command: “dsight -p dpu_trace_[PID].prof”. An

html file with the name “dpu_trace_[PID].html” will be generated.

4. Open the generated html file with web browser.

Figure 48: DSight profiling charts

www.xilinx.com

DNNDK User Guide www.xilinx.com 73
UG1327 (v 2.08 Beta) December 12, 2018

Chapter 11: DNNDK Programming APIs

DNNDK provides a lightweight set of C/C++ programming APIs for deep learning application

developers. It consists of two dynamic libraries, DPU runtime N2Cube library “libn2cube” and DPU utility

library “libdputils”. The exported APIs for them are individually contained in header file “n2cube.h” and

“dputils.h”, which will be described in detail in this chapter.

Note: For simplification, the users only need to include header file “dnndk.h” into DNNDK applications. It includes
both “n2cube.h” and “dputils.h” by default.

Note: The subsequent sections give detailed description to each API. Item “AVAILABILITY” indicates since which
DNNDK version the corresponding API becomes available.

Library libn2cube

Overview

Library libn2cube is DNNDK core library. It implements the functionality of DPU loader and

encapsulates the system calls to invoke DPU driver for DPU Task scheduling, monitoring, profiling and

resources management. The exported APIs is briefly summarized in the table below.

NAME libn2cube.so

DESCRIPTION DPU runtime library

ROUTINES dpuOpen() - Open & initialize the usage of DPU device

dpuClose() - Close & finalize the usage of DPU device

dpuLoadKernel() - Load a DPU Kernel and allocate DPU memory space for its

Code/Weight/Bias segments

dpuDestroyKernel() - Destroy a DPU Kernel and release its associated

resources

dpuCreateTask() - Instantiate a DPU Task from one DPU Kernel, allocate its

private working memory buffer and prepare for its execution context

dpuRunTask() - Launch the running of DPU Task

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 74
UG1327 (v 2.08 Beta) December 12, 2018

dpuDestroyTask() - Remove a DPU Task, release its working memory buffer

and destroy associated execution context

dpuEnableTaskDump() - Enable dump facility of DPU Task while running for

debugging purpose

dpuEnableTaskProfile() - Enable profiling facility of DPU Task while running to

get its performance metrics

dpuGetTaskProfile() - Get the execution time of DPU Task

dpuGetNodeProfile() - Get the execution time of DPU Node

dpuGetInputTensorCnt() - Get total number of input Tensor of one DPU Task

dpuGetInputTensor() - Get input Tensor of one DPU Task

dpuGetInputTensorAddress() - Get the start address of one DPU Task’s input

Tensor

dpuGetInputTensorSize() - Get the size (in byte) of one DPU Task’s input

Tensor

dpuGetInputTensorScale() - Get the scale value of one DPU Task’s input

Tensor

dpuGetInputTensorHeight() - Get the height dimension of one DPU Task’s

input Tensor

dpuGetInputTensorWidth() - Get the width dimension of one DPU Task’s

input Tensor

dpuGetInputTensorChannel() - Get the channel dimension of one DPU Task’s

input Tensor

dpuGetOutputTensorCnt() - Get total number of output Tensor of one DPU

Task

dpuGetOutputTensor() - Get output Tensor of one DPU Task

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 75
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetOutputTensorAddress() - Get the start address of one DPU Task’s

output Tensor

dpuGetOutputTensorSize() - Get the size in byte of one DPU Task’s output

Tensor

dpuGetOutputTensorScale() - Get the scale value of one DPU Task’s output

Tensor

dpuGetOutputTensorHeight() - Get the height dimension of one DPU Task’s

output Tensor

dpuGetOutputTensorWidth() - Get the width dimension of one DPU Task’s

output Tensor

dpuGetOutputTensorChannel() - Get the channel dimension of one DPU

Task’s output Tensor

dpuGetTensorSize() - Get the size of one DPU Tensor

dpuGetTensorAddress() - Get the start address of one DPU Tensor

dpuGetTensorScale() - Get the scale value of one DPU Tensor

dpuGetTensorHeight() - Get the height dimension of one DPU Tensor

dpuGetTensorWidth() - Get the width dimension of one DPU Tensor

dpuGetTensorChannel() - Get the channel dimension of one DPU Tensor

dpuSetIntputTensorInCHWInt8() - Set DPU Task’s input Tensor with data

stored under Caffe order (channel/height/width) in INT8 format

dpuSetIntputTensorInCHWFP32() - Set DPU Task’s input Tensor with data

stored under Caffe order (channel/height/width) in FP32 format

dpuSetIntputTensorInHWCInt8() - Set DPU Task’s input Tensor with data

stored under DPU order (height/width/channel) in INT8 format

dpuSetIntputTensorInHWCFP32() - Set DPU Task’s input Tensor with data

stored under DPU order (channel/height/width) in FP32 format

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 76
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetOutputTensorInCHWInt8() - Get DPU Task’s output Tensor and store

them under Caffe order (channel/height/width) in INT8 format

dpuGetOutputTensorInCHWFP32() - Get DPU Task’s output Tensor and store

them under Caffe order (channel/height/width) in FP32 format

dpuGetOutputTensorInHWCInt8() - Get DPU Task’s output Tensor and store

them under DPU order (channel/height/width) in INT8 format

dpuGetOutputTensorInHWCFP32() - Get DPU Task’s output Tensor and store

them under DPU order (channel/height/width) in FP32 format

INCLUDE FILE n2cube.h

APIs

The prototype and parameter for each API of library libn2cube are depicted in detail in the following

sections.

dpuOpen()

NAME dpuOpen()

SYNOPSIS int dpuOpen()

ARGUMENTS None

DESCRIPTION Attach and open DPU device file “/dev/dpu” before the utilization of DPU

resources.

RETURNS 0 on success, or negative value in case of failure. Error message “Fail to

open DPU device” will be reported if any error takes place.

SEE ALSO dpuClose()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 77
UG1327 (v 2.08 Beta) December 12, 2018

dpuClose()

NAME dpuClose()

SYNOPSIS int dpuClose()

ARGUMENTS None

DESCRIPTION Detach and close DPU device file “/dev/dpu” after utilization of DPU

resources.

RETURNS 0 on success, or negative error ID in case of failure. Error message “Fail to

close DPU device” will be reported if any error takes place.

SEE ALSO dpuOpen()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuLoadKernel()

NAME dpuLoadKernel()

SYNOPSIS DPUKernel *dpuLoadKernel

(

const char *netName

)

ARGUMENTS netName The pointer to neural network name. Please use the names

produced by DNNC after the compilation of neural network.

For each DL application, perhaps there are many DPU Kernels

existing in its hybrid CPU+DPU binary executable. For each

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 78
UG1327 (v 2.08 Beta) December 12, 2018

DPU Kernel, it has one unique name for differentiation

purpose.

DESCRIPTION Load a DPU Kernel for the specified neural network from hybrid CPU+DPU

binary executable into DPU memory space, including Kernel’s DPU

instructions, weight and bias.

RETURNS The pointer to the loaded DPU Kernel on success, or report error in case of

any failure.

SEE ALSO dpuDestroyKernel()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuDestroyKernel()

NAME dpuDestroyKernel()

SYNOPSIS int dpuDestroyKernel

(

DPUKernel *kernel

)

ARGUMENTS kernel The pointer to DPU kernel to be destroyed.

DESCRIPTION Destroy a DPU kernel and release its related resources.

RETURNS 0 on success, or report error in case of any failure.

SEE ALSO dpuLoadKernel()

INCLUDE FILE n2cube.h

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 79
UG1327 (v 2.08 Beta) December 12, 2018

AVAILABILITY v1.07

dpuCreateTask()

NAME dpuCreateTask()

SYNOPSIS int dpuCreateTask

(

DPUKernel *kernel,

Int mode

);

ARGUMENTS kernel The pointer to DPU Kernel.

mode The running mode of DPU Task. There are 3 available modes:

MODE_NORMAL: default mode identical to the mode value

“0”.

MODE_PROF: output profiling information layer by layer while

running of DPU Task, which is useful for performance analysis.

MODE_DUMP: dump the raw data for DPU Task’s

CODE/BIAS/WEIGHT/INPUT/OUTPUT layer by layer.

The file names are in the following format (“netName” refers

to the name of neural network; “layerName” refers to the

index ID of layer (or Node)):

For CODE: netName_layerName_code.txt

For WEIGHT: netName_layerName_w.txt

For BIAS: netName_layerName_b.txt

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 80
UG1327 (v 2.08 Beta) December 12, 2018

For INPUT: netName_layerName_i.txt

For OUTPUT: netName_layerName_o.txt

NOTE: profiling and dump functionality is available only for

DPU Kernel generated by DNNC in debug mode.

DESCRIPTION Instantiate a DPU Task from DPU Kernel and allocate corresponding DPU

memory buffer.

RETURNS 0 on success, or report error in case of any failure.

SEE ALSO

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuDestroyTask()

NAME dpuDestroyTask()

SYNOPSIS int dpuDestroyTask

(

DPUTask *task

)

ARGUMENTS task The pointer to DPU Task to be destroyed.

DESCRIPTION Destroy a DPU Task and release its related resources.

RETURNS 0 on success, or negative value in case of any failure.

SEE ALSO dpuCreateTask()

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 81
UG1327 (v 2.08 Beta) December 12, 2018

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuRunTask()

NAME dpuRunTask ()

SYNOPSIS int dpuRunTask

(

DPUTask *task

);

ARGUMENTS task The pointer to DPU Task.

DESCRIPTION Launch the running of DPU Task.

RETURNS 0 on success, or negative value in case of any failure.

SEE ALSO

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuEnableTaskProfile()

NAME dpuEnableTaskProfile()

SYNOPSIS int dpuEnableTaskProfile

(

DPUTask *task

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 82
UG1327 (v 2.08 Beta) December 12, 2018

);

ARGUMENTS task The pointer to DPU Task.

DESCRIPTION Set DPU Task in profiling mode. Please be noted that profiling functionality

is available only for DPU Kernel generated by DNNC in debug mode.

RETURNS 0 on success, or report error in case of any failure.

SEE ALSO dpuCreateTask()

dpuEnableTaskDump()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuEnableTaskDump()

NAME dpuEnableTaskDump()

SYNOPSIS int dpuEnableTaskDump

(

DPUTask *task

);

ARGUMENTS task The pointer to DPU Task.

DESCRIPTION Set DPU Task in dump mode. Please be noted that dump functionality is

available only for DPU Kernel generated by DNNC in debug mode.

RETURNS 0 on success, or report error in case of any failure.

SEE ALSO dpuCreateTask()

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 83
UG1327 (v 2.08 Beta) December 12, 2018

dpuEnableTaskProfile()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetTaskProfile()

NAME dpuGetTaskProfile()

SYNOPSIS int dpuGetTaskProfile

(

DPUTask *task

);

ARGUMENTS task The pointer to DPU Task.

DESCRIPTION Get DPU Task’s execution time (us) after its running.

RETURNS 0 on success, or negative value in case of any failure.

SEE ALSO dpuGetNodeProfile()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetNodeProfile()

NAME dpuGetNodeProfile()

SYNOPSIS int dpuGetNodeProfile

(

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 84
UG1327 (v 2.08 Beta) December 12, 2018

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name

DESCRIPTION Get DPU Node’s execution time (us) after DPU Task completes its running.

RETURNS 0 on success, or negative value in case of any failure. Please be noted that

this functionality is available only for DPU Kernel generated by DNNC in

debug mode.

SEE ALSO dpuGetTaskProfile()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetInputTensorCnt()

NAME dpuGetInputTensorCnt()

SYNOPSIS Int dpuGetInputTensorCnt

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 85
UG1327 (v 2.08 Beta) December 12, 2018

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get total number of input Tensor of one DPU Task’s

RETURNS The total number of input tensor for specified Node.

SEE ALSO dpuGetOutputTensorCnt()

INCLUDE FILE n2cube.h

AVAILABILITY V2.06

dpuGetInputTensor()

NAME dpuGetInputTensor()

SYNOPSIS DPUTensor*dpuGetInputTensor

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 86
UG1327 (v 2.08 Beta) December 12, 2018

invalid Node name specified, failure message will be

reported.

idx The index of a single input tensor for the Node, with default

value as 0.

DESCRIPTION Get DPU Task’s input Tensor.

RETURNS The pointer to Task’s input Tensor on success, or report error in case of any

failure.

SEE ALSO dpuGetOutputTensor()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetInputTensor()

SYNOPSIS DPUTensor*dpuGetInputTensor

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 87
UG1327 (v 2.08 Beta) December 12, 2018

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get DPU Task’s input Tensor.

RETURNS The pointer to Task’s input Tensor on success, or report error in case of any

failure.

SEE ALSO dpuGetOutputTensor()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetInputTensorAddress()

NAME dpuGetInputTensorAddress()

SYNOPSIS int8_t* dpuGetInputTensorAddress

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 88
UG1327 (v 2.08 Beta) December 12, 2018

idx The index of a single input tensor for the Node, with default

value as 0.

DESCRIPTION Get the start address of DPU Task’s input Tensor.

RETURNS The start addresses to Task’s input Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetOutputTensorAddress()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetInputTensorAddress()

SYNOPSIS int8_t* dpuGetInputTensorAddress

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 89
UG1327 (v 2.08 Beta) December 12, 2018

DESCRIPTION Get the start address of DPU Task’s input Tensor.

RETURNS The start addresses to Task’s input Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetOutputTensorAddress()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 90
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetInputTensorSize()

NAME dpuGetInputTensorSize()

SYNOPSIS int dpuGetInputTensorSize

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

idx The index of a single input tensor for the Node, with default

value as 0.

DESCRIPTION Get the size (in Byte) of DPU Task’s input Tensor.

RETURNS The size of Task’s input Tensor on success, or report error in case of any

failure.

SEE ALSO dpuGetOutputTensorSize()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 91
UG1327 (v 2.08 Beta) December 12, 2018

NAME dpuGetInputTensorSize()

SYNOPSIS int dpuGetInputTensorSize

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the size (in Byte) of DPU Task’s input Tensor.

RETURNS The size of Task’s input Tensor on success, or report error in case of any

failure.

SEE ALSO dpuGetOutputTensorSize()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 92
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetInputTensorScale()

NAME dpuGetInputTensorScale()

SYNOPSIS float dpuGetInputTensorScale

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

idx The index of a single input tensor for the Node, with default

value as 0.

DESCRIPTION Get the scale value of DPU Task’s input Tensor. For each DPU input Tensor,

it has one unified scale value indicating its quantization information for

reformatting between data types of INT8 and FP32.

RETURNS The scale value of Task’s input Tensor on success, or report error in case of

any failure.

SEE ALSO dpuGetOutputTensorScale()

INCLUDE FILE n2cube.h

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 93
UG1327 (v 2.08 Beta) December 12, 2018

AVAILABILITY v2.06

NAME dpuGetInputTensorScale()

SYNOPSIS float dpuGetInputTensorScale

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the scale value of DPU Task’s input Tensor. For each DPU input Tensor,

it has one unified scale value indicating its quantization information for

reformatting between data types of INT8 and FP32.

RETURNS The scale value of Task’s input Tensor on success, or report error in case of

any failure.

SEE ALSO dpuGetOutputTensorScale()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 94
UG1327 (v 2.08 Beta) December 12, 2018

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 95
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetInputTensorHeight()

NAME dpuGetInputTensorHeight()

SYNOPSIS int dpuGetInputTensorHeight

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

idx The index of a single input tensor for the Node, with default

value as 0.

DESCRIPTION Get the height dimension of DPU Task’s input Tensor.

RETURNS The height dimension of Task’s input Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 96
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetOutputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetInputTensorHeight()

SYNOPSIS int dpuGetInputTensorHeight

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the height dimension of DPU Task’s input Tensor.

RETURNS The height dimension of Task’s input Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

dpuGetOutputTensorHeight()

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 97
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetInputTensorWidth()

NAME dpuGetInputTensorWidth()

SYNOPSIS int dpuGetInputTensorWidth

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

idx The index of a single input tensor for the Node, with default

value as 0.

DESCRIPTION Get the width dimension of DPU Task’s input Tensor.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 98
UG1327 (v 2.08 Beta) December 12, 2018

RETURNS The width dimension of Task’s input Tensor on success, or report error in

case of any failure.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 99
UG1327 (v 2.08 Beta) December 12, 2018

SEE ALSO dpuGetInputTensorHeight()

dpuGetInputTensorChannel()

dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetInputTensorWidth()

SYNOPSIS int dpuGetInputTensorWidth

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the width dimension of DPU Task’s input Tensor.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 100
UG1327 (v 2.08 Beta) December 12, 2018

RETURNS The width dimension of Task’s input Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetInputTensorHeight()

dpuGetInputTensorChannel()

dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetInputTensorChannel()

NAME dpuGetInputTensorChannel()

SYNOPSIS int dpuGetInputTensorChannel

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 101
UG1327 (v 2.08 Beta) December 12, 2018

invalid Node name specified, failure message will be

reported.

idx The index of a single input tensor for the Node, with default

value as 0.

DESCRIPTION Get the channel dimension of DPU Task’s input Tensor.

RETURNS The channel dimension of Task’s input Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetInputTensorChannel()

SYNOPSIS int dpuGetInputTensorChannel

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 102
UG1327 (v 2.08 Beta) December 12, 2018

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s input Node are

listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the channel dimension of DPU Task’s input Tensor.

RETURNS The channel dimension of Task’s input Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetOutputTensorCnt()

NAME dpuGetOutputTensorCnt()

SYNOPSIS Int dpuGetOutputTensorCnt

(

DPUTask *task,

const char*nodeName

);

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 103
UG1327 (v 2.08 Beta) December 12, 2018

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get total number of output Tensor for the DPU Task.

RETURNS The total number of output tensor for the DPU Task.

SEE ALSO dpuGetInputTensorCnt()

INCLUDE FILE n2cube.h

AVAILABILITY V2.06

dpuGetOutputTensor()

NAME dpuGetOutputTensor()

SYNOPSIS DPUTensor*dpuGetOutputTensor

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 104
UG1327 (v 2.08 Beta) December 12, 2018

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

idx The index of a single output tensor for the Node, with default

value as 0.

DESCRIPTION Get DPU Task’s output Tensor.

RETURNS The pointer to Task’s output Tensor on success, or report error in case of

any failure.

SEE ALSO dpuGetInputTensor()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetOutputTensor()

SYNOPSIS DPUTensor*dpuGetOutputTensor

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 105
UG1327 (v 2.08 Beta) December 12, 2018

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get DPU Task’s output Tensor.

RETURNS The pointer to Task’s output Tensor on success, or report error in case of

any failure.

SEE ALSO dpuGetInputTensor()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetOutputTensorAddress()

NAME dpuGetOutputTensorAddress()

SYNOPSIS int8_t* dpuGetOutputTensorAddress

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 106
UG1327 (v 2.08 Beta) December 12, 2018

invalid Node name specified, failure message will be

reported.

idx The index of a single output tensor for the Node, with default

value as 0.

DESCRIPTION Get the start address of DPU Task’s output Tensor.

RETURNS The start addresses to Task’s output Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetInputTensorAddress()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetOutputTensorAddress()

SYNOPSIS int8_t* dpuGetOutputTensorAddress

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 107
UG1327 (v 2.08 Beta) December 12, 2018

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the start address of DPU Task’s output Tensor.

RETURNS The start addresses to Task’s output Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetInputTensorAddress()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetOutputTensorSize()

NAME dpuGetOutputTensorSize()

SYNOPSIS int dpuGetOutputTensorSize

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 108
UG1327 (v 2.08 Beta) December 12, 2018

idx The index of a single output tensor for the Node, with default

value as 0.

DESCRIPTION Get the size (in Byte) of DPU Task’s output Tensor.

RETURNS The size of Task’s output Tensor on success, or report error in case of any

failure.

SEE ALSO dpuGetInputTensorSize()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetOutputTensorSize()

SYNOPSIS int dpuGetOutputTensorSize

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 109
UG1327 (v 2.08 Beta) December 12, 2018

DESCRIPTION Get the size (in Byte) of DPU Task’s output Tensor.

RETURNS The size of Task’s output Tensor on success, or report error in case of any

failure.

SEE ALSO dpuGetInputTensorSize()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 110
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetOutputTensorScale()

NAME dpuGetOutputTensorScale()

SYNOPSIS float dpuGetOutputTensorScale

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

idx The index of a single output tensor for the Node, with default

value as 0.

DESCRIPTION Get the scale value of DPU Task’s output Tensor. For each DPU output

Tensor, it has one unified scale value indicating its quantization information

for reformatting between data types of INT8 and FP32.

RETURNS The scale value of Task’s output Tensor on success, or report error in case

of any failure.

SEE ALSO dpuGetOutputTensorScale()

INCLUDE FILE n2cube.h

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 111
UG1327 (v 2.08 Beta) December 12, 2018

AVAILABILITY v2.06

NAME dpuGetOutputTensorScale()

SYNOPSIS float dpuGetOutputTensorScale

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the scale value of DPU Task’s output Tensor. For each DPU output

Tensor, it has one unified scale value indicating its quantization information

for reformatting between data types of INT8 and FP32.

RETURNS The scale value of Task’s output Tensor on success, or report error in case

of any failure.

SEE ALSO dpuGetOutputTensorScale()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 112
UG1327 (v 2.08 Beta) December 12, 2018

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 113
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetOutputTensorHeight()

NAME dpuGetOutputTensorHeight()

SYNOPSIS int dpuGetOutputTensorHeight

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

idx The index of a single output tensor for the Node, with default

value as 0.

DESCRIPTION Get the height dimension of DPU Task’s output Tensor.

RETURNS The height dimension of Task’s output Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()

dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 114
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetInputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetOutputTensorHeight()

SYNOPSIS int dpuGetOutputTensorHeight

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the height dimension of DPU Task’s output Tensor.

RETURNS The height dimension of Task’s output Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()

dpuGetInputTensorHeight()

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 115
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetOutputTensorWidth()

NAME dpuGetOutputTensorWidth()

SYNOPSIS int dpuGetOutputTensorWidth

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

idx The index of a single output tensor for the Node, with default

value as 0.

DESCRIPTION Get the width dimension of DPU Task’s output Tensor.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 116
UG1327 (v 2.08 Beta) December 12, 2018

RETURNS The width dimension of Task’s output Tensor on success, or report error in

case of any failure.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 117
UG1327 (v 2.08 Beta) December 12, 2018

SEE ALSO dpuGetOutputTensorHeight()

dpuGetOutputTensorChannel()

dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v2.06

NAME dpuGetOutputTensorWidth()

SYNOPSIS int dpuGetOutputTensorWidth

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the width dimension of DPU Task’s output Tensor.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 118
UG1327 (v 2.08 Beta) December 12, 2018

RETURNS The width dimension of Task’s output Tensor on success, or report error in

case of any failure.

SEE ALSO dpuGetOutputTensorHeight()

dpuGetOutputTensorChannel()

dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetOutputTensorChannel()

NAME dpuGetOutputTensorChannel()

SYNOPSIS int dpuGetOutputTensorChannel

(

DPUTask *task,

const char*nodeName,

int idx = 0

);

ARGUMENTS task The pointer to DPU Task.

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 119
UG1327 (v 2.08 Beta) December 12, 2018

invalid Node name specified, failure message will be

reported.

idx The index of a single output tensor for the Node, with default

value as 0.

DESCRIPTION Get the channel dimension of DPU Task’s output Tensor.

RETURNS The channel dimension of Task’s output Tensor on success, or report error

in case of any failure.

SEE ALSO dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY V2.06

NAME dpuGetOutputTensorChannel()

SYNOPSIS int dpuGetOutputTensorChannel

(

DPUTask *task,

const char*nodeName

);

ARGUMENTS task The pointer to DPU Task.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 120
UG1327 (v 2.08 Beta) December 12, 2018

nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC. If

invalid Node name specified, failure message will be

reported.

DESCRIPTION Get the channel dimension of DPU Task’s output Tensor.

RETURNS The channel dimension of Task’s output Tensor on success, or report error

in case of any failure.

SEE ALSO dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetTensorSize()

NAME dpuGetTensorSize()

SYNOPSIS int dpuGetTensorSize

(

DPUTensor* tensor

);

ARGUMENTS tensor The pointer to DPU Tensor.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 121
UG1327 (v 2.08 Beta) December 12, 2018

DESCRIPTION Get the size (in Byte) of one DPU Tensor.

RETURNS The size of Tensor, or report error in case of any failure.

SEE ALSO dpuGetInputTensorSize()

dpuGetOutputTensorSize()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetTensorScale()

NAME dpuGetTensorScale()

SYNOPSIS float dpuGetTensorScale

(

DPUTensor* tensor

);

ARGUMENTS tensor The pointer to DPU Tensor.

DESCRIPTION Get the scale value of one DPU Tensor.

RETURNS The scale value of Tensor, or report error in case of any failure.

SEE ALSO dpuGetInputTensorScale()

dpuGetOutputTensorScale()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 122
UG1327 (v 2.08 Beta) December 12, 2018

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 123
UG1327 (v 2.08 Beta) December 12, 2018

dpuGetTensorHeight()

NAME dpuGetTensorHeight()

SYNOPSIS float dpuGetTensorHeight

(

DPUTensor* tensor

);

ARGUMENTS tensor The pointer to DPU Tensor.

DESCRIPTION Get the height dimension of one DPU Tensor.

RETURNS The height dimension of Tensor, or report error in case of any failure.

SEE ALSO dpuGetInputTensorHeight()

dpuGetOutputTensorHeight()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetTensorWidth()

NAME dpuGetTensorWidth()

SYNOPSIS float dpuGetTensorWidth

(

DPUTensor* tensor

);

ARGUMENTS tensor The pointer to DPU Tensor.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 124
UG1327 (v 2.08 Beta) December 12, 2018

DESCRIPTION Get the width dimension of one DPU Tensor.

RETURNS The width dimension of Tensor, or report error in case of any failure.

SEE ALSO dpuGetInputTensorWidth()

dpuGetOutputTensorWidth()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetTensorChannel()

NAME dpuGetTensorChannel()

SYNOPSIS float dpuGetTensorChannel

(

DPUTensor* tensor

);

ARGUMENTS tensor The pointer to DPU Tensor.

DESCRIPTION Get the channel dimension of one DPU Tensor.

RETURNS The channel dimension of Tensor, or report error in case of any failure.

SEE ALSO dpuGetInputTensorChannel()

dpuGetOutputTensorChannel()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 125
UG1327 (v 2.08 Beta) December 12, 2018

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 126
UG1327 (v 2.08 Beta) December 12, 2018

dpuSetIntputTensorInCHWInt8()

NAME dpuSetIntputTensorInCHWInt8()

SYNOPSIS int dpuSetIntputTensorInCHWInt8

(

DPUTask *task,

const char*nodeName,

int8_t *data,

int size

)

ARGUMENTS task The pointer to DPU Task

nodeName The pointer to DPU Node’s name.

data The pointer to the start address of input data.

size The size (in Byte) of input data to be set.

DESCRIPTION Set DPU Task’s input Tensor with data from a CPU memory block. Data is in

type of INT8 and stored in Caffe Blob’s order: channel, height and weight.

RETURNS 0 on success, or report error in case of failure.

SEE ALSO dpuSetIntputTensorInCHWFP32()

dpuSetIntputTensorInHWCInt8()

dpuSetIntputTensorInHWCFP32()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 127
UG1327 (v 2.08 Beta) December 12, 2018

dpuSetIntputTensorInCHWFP32()

NAME dpuSetIntputTensorInCHWFP32()

SYNOPSIS int dpuSetIntputTensorInCHWFP32

(

DPUTask *task,

const char*nodeName,

float *data,

int size

)

ARGUMENTS task The pointer to DPU Task

nodeName The pointer to DPU Node’s name.

data The pointer to the start address of input data.

size The size (in Byte) of input data to be set.

DESCRIPTION Set DPU Task’s input Tensor with data from a CPU memory block. Data is in

type of 32-bit-float and stored in Caffe Blob’s order: channel, height and

weight.

RETURNS 0 on success, or report error in case of failure.

SEE ALSO dpuSetIntputTensorInCHWInt8()

dpuSetIntputTensorInHWCInt8()

dpuSetIntputTensorInHWCFP32()

INCLUDE FILE n2cube.h

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 128
UG1327 (v 2.08 Beta) December 12, 2018

AVAILABILITY v1.07

dpuSetIntputTensorInHWCInt8()

NAME dpuSetIntputTensorInHWCInt8()

SYNOPSIS int dpuSetIntputTensorInHWCInt8

(

DPUTask *task,

const char*nodeName,

int8_t *data,

int size

)

ARGUMENTS task The pointer to DPU Task

nodeName The pointer to DPU Node’s name.

data The pointer to the start address of input data.

size The size (in Byte) of input data to be set.

DESCRIPTION Set DPU Task’s input Tensor with data from a CPU memory block. Data is in

type of INT8 and stored in DPU Tensor’s order: height, weight and channel.

RETURNS 0 on success, or report error in case of failure.

SEE ALSO dpuSetIntputTensorInCHWInt8()

dpuSetIntputTensorInCHWFP32()

dpuSetIntputTensorInHWCFP32()

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 129
UG1327 (v 2.08 Beta) December 12, 2018

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuSetIntputTensorInHWCFP32()

NAME dpuSetIntputTensorInHWCFP32()

SYNOPSIS int dpuSetIntputTensorInHWCFP32

(

DPUTask *task,

const char*nodeName,

float *data,

int size

)

ARGUMENTS task The pointer to DPU Task

nodeName The pointer to DPU Node’s name.

data The pointer to the start address of input data.

size The size (in Byte) of input data to be set.

DESCRIPTION Set DPU Task’s input Tensor with data from a CPU memory block. Data is in

type of 32-bit-float and stored in DPU Tensor’s order: height, weight and

channel.

RETURNS 0 on success, or report error in case of failure.

SEE ALSO dpuSetIntputTensorInCHWInt8()

dpuSetIntputTensorInCHWFP32()

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 130
UG1327 (v 2.08 Beta) December 12, 2018

dpuSetIntputTensorInHWCInt8()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetOutputTensorInCHWInt8()

NAME dpuGetOutputTensorInCHWInt8()

SYNOPSIS int dpuGetOutputTensorInCHWInt8

(

DPUTask *task,

const char*nodeName,

int8_t *data,

int size

)

ARGUMENTS task The pointer to DPU Task

nodeName The pointer to DPU Node’s name.

data The start address of CPU memory block for storing output

Tensor’s data.

size The size (in Byte) of output data to be stored.

DESCRIPTION Get DPU Task’s output Tensor and store its data into a CPU memory block.

Data will be stored in type of INT8 and in Caffe Blob’s order: channel,

height and weight.

RETURNS 0 on success, or report error in case of failure.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 131
UG1327 (v 2.08 Beta) December 12, 2018

SEE ALSO dpuGetOutputTensorInCHWFP32()

dpuGetOutputTensorInHWCInt8()

dpuGetOutputTensorInHWCFP32()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetOutputTensorInCHWFP32()

NAME dpuGetOutputTensorInCHWFP32()

SYNOPSIS int dpuGetOutputTensorInCHWFP32

(

DPUTask *task,

const char*nodeName,

float *data,

int size

)

ARGUMENTS task The pointer to DPU Task

nodeName The pointer to DPU Node’s name.

data The start address of CPU memory block for storing output

Tensor’s data.

size The size (in Byte) of output data to be stored.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 132
UG1327 (v 2.08 Beta) December 12, 2018

DESCRIPTION Get DPU Task’s output Tensor and store its data into a CPU memory block.

Data will be stored in type of 32-bit-float and in Caffe Blob’s order: channel,

height and weight.

RETURNS 0 on success, or report error in case of failure.

SEE ALSO dpuGetOutputTensorInCHWInt8()

dpuGetOutputTensorInHWCInt8(),

dpuGetOutputTensorInHWCFP32()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetOutputTensorInHWCInt8()

NAME dpuGetOutputTensorInHWCInt8()

SYNOPSIS int dpuGetOutputTensorInHWCInt8

(

DPUTask *task,

const char*nodeName,

int8_t *data,

int size

)

ARGUMENTS task The pointer to DPU Task

nodeName The pointer to DPU Node’s name.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 133
UG1327 (v 2.08 Beta) December 12, 2018

data The start address of CPU memory block for storing output

Tensor’s data.

size The size (in Byte) of output data to be stored.

DESCRIPTION Get DPU Task’s output Tensor and store its data into a CPU memory block.

Data will be stored in type of INT8 and in DPU Tensor’s order: height,

weight and channel.

RETURNS 0 on success, or report error in case of failure.

SEE ALSO dpuGetOutputTensorInCHWInt8()

dpuGetOutputTensorInCHWFP32()

dpuGetOutputTensorInHWCFP32()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuGetOutputTensorInHWCFP32()

NAME dpuGetOutputTensorInHWCFP32()

SYNOPSIS int dpuGetOutputTensorInHWCFP32

(

DPUTask *task,

const char*nodeName,

float *data,

int size

)

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 134
UG1327 (v 2.08 Beta) December 12, 2018

ARGUMENTS task The pointer to DPU Task

nodeName The pointer to DPU Node’s name.

data The start address of CPU memory block for storing output

Tensor’s data.

size The size (in Byte) of output data to be stored.

DESCRIPTION Get DPU Task’s output Tensor and store its data into a CPU memory block.

Data will be stored in type of 32-bit-float and in DPU Tensor’s order:

height, weight and channel.

RETURNS 0 on success, or report error in case of failure.

SEE ALSO dpuGetOutputTensorInCHWInt8()

dpuGetOutputTensorInCHWFP32()

dpuGetOutputTensorInHWCInt8()

INCLUDE FILE n2cube.h

AVAILABILITY v1.07

dpuRunSoftmax()

NAME dpuRunSoftmax ()

SYNOPSIS int dpuRunSoftmax

(

int8_t *input,

float *output,

int numClasses,

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 135
UG1327 (v 2.08 Beta) December 12, 2018

int batchSize,

float scale

)

ARGUMENTS input The pointer to store softmax input elements in int8_t type.

output The pointer to store softmax running results in floating point

type. This memory space should be allocated and managed

by caller function.

numClasses The number of classes that softmax calculation operates on.

batchSize Batch size for the softmax calculation. This parameter should

be specified with the division of the element number by

inputs by numClasses.

scale The scale value applied to the input elements before softmax

calculation. This parameter typically can be obtained by using

DNNDK API dpuGetRensorScale().

DESCRIPTION Perform softmax calculation for the input elements and save the results to

output memory buffer. This API will leverage DPU core for acceleration if

harden softmax module is available. Run “dexplorer -w” to view DPU

signature information.

RETURNS 0 for success.

SEE ALSO None

INCLUDE FILE n2cube.h

AVAILABILITY V2.08

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 136
UG1327 (v 2.08 Beta) December 12, 2018

dpuSetExceptionMode()

NAME dpuSetExceptionMode()

SYNOPSIS int dpuSetExceptionMode

(

int mode

)

ARGUMENTS mode The exception handling mode for runtime N2Cube to be

specified. Available values include:

- N2CUBE_EXCEPTION_MODE_PRINT_AND_EXIT

- N2CUBE_EXCEPTION_MODE_RET_ERR_CODE

DESCRIPTION Set the exception handling mode for DNNDK runtime N2Cube. It will affect

all the APIs included in the libn2cube library.

If N2CUBE_EXCEPTION_MODE_PRINT_AND_EXIT is specified, the invoked

N2Cube APIs will output the error message and terminate the running of

DNNDK application when any error occurs. It is the default mode for

N2Cube APIs.

If N2CUBE_EXCEPTION_MODE_RET_ERR_CODE is specified, the invoked

N2Cube APIs only return error code in case of errors. The callers need to

take charge of the following exception handling process, such as logging

the error message with API dpuGetExceptionMessage(), resource release,

etc.

RETURNS 0 on success, or negative value in case of failure.

SEE ALSO dpuGetExceptionMode()

dpuGetExceptionMessage()

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 137
UG1327 (v 2.08 Beta) December 12, 2018

INCLUDE FILE n2cube.h

AVAILABILITY v2.08

dpuGetExceptionMode()

NAME dpuGetExceptionMode()

SYNOPSIS int dpuGetExceptionMode()

ARGUMENTS None

DESCRIPTION Get the exception handling mode for runtime N2Cube.

RETURNS Current exception handing mode for N2Cube APIs.

Available values include:

- N2CUBE_EXCEPTION_MODE_PRINT_AND_EXIT

- N2CUBE_EXCEPTION_MODE_RET_ERR_CODE

SEE ALSO dpuSetExceptionMode()

dpuGetExceptionMessage()

INCLUDE FILE n2cube.h

AVAILABILITY v2.08

dpuGetExceptionMessage()

NAME dpuGetExceptionMessage()

SYNOPSIS const char *dpuGetExceptionMessage

(

int error_code

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 138
UG1327 (v 2.08 Beta) December 12, 2018

)

ARGUMENTS error_code The error code returned by N2Cube APIs.

DESCRIPTION Get the error message from error code (always negative value) returned by

N2Cube APIs.

RETURNS A pointer to a const string, indicating the error message for error_code.

SEE ALSO dpuSetExceptionMode()

dpuGetExceptionMode()

INCLUDE FILE n2cube.h

AVAILABILITY v2.08

Library libdputils

Overview

Library libdputils.so is DPU utility library. It wraps up various highly optimized C/C++ APIs to facilitate

DL applications development on DPU platform. The exported APIs is briefly summarized in the table

below.

NAME libdputils.so

DESCRIPTION DPU utility library

ROUTINES
dpuSetInputImage() – set DPU Task’s input image with mean

values specified from network model

dpuSetInputImage2() – set DPU Task’s input image without

mean values

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 139
UG1327 (v 2.08 Beta) December 12, 2018

dpuSetInputImageWithScale() – set DPU Task’s input image

according to the given scale value

INCLUDE FILE dputils.h

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 140
UG1327 (v 2.08 Beta) December 12, 2018

APIs

The prototype and parameter for each API of library libdputils are depicted in detail in the following

sections.

dpuSetInputImage()

NAME dpuSetInputImage ()

SYNOPSIS
int dpuSetInputImage

(

DPUTask *task,

const char *nodeName,

const cv::Mat &image,

float *mean

)

ARGUMENTS task The pointer to DPU Task.

 nodeName The pointer to DPU Node’s name. Please be noted that

the available names of one DPU Kernel’s or Task’s output

Node are listed out after a neural network is compiled by

DNNC. If invalid Node name specified, failure message

will be reported.

 image Input image in OpenCV’s Mat format. Single channel

and 3-channel input image are supported.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 141
UG1327 (v 2.08 Beta) December 12, 2018

 mean Pointer to mean value array which contains 1

member for single channel input image or 3

members for 3-channel input image.

Note: you can get the mean values from the input

Caffe prototxt. At present, the format of mean value

file isn’t supported so far.

DESCRIPTION set DPU Task’s input image

RETURNS
0 on success, or report error in case of any failure.

SEE ALSO dpuSetInputImageWithScale ()

INCLUDE FILE dputil.h

AVAILABILITY v1.07

dpuSetInputImage2()

NAME dpuSetInputImage2 ()

SYNOPSIS
int dpuSetInputImage

(

DPUTask *task,

const char *nodeName,

const cv::Mat &image

)

ARGUMENTS task The pointer to DPU Task.

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 142
UG1327 (v 2.08 Beta) December 12, 2018

 nodeName The pointer to DPU Node’s name. Please be noted that

the available names of one DPU Kernel’s or Task’s output

Node are listed out after a neural network is compiled by

DNNC. If invalid Node name specified, failure message

will be reported.

 image Input image in OpenCV’s Mat format. Single channel

and 3-channel input image are supported.

DESCRIPTION set DPU Task’s input image without specify the mean value

RETURNS
0 on success, or report error in case of any failure.

SEE ALSO dpuSetInputImageWithScale ()

INCLUDE FILE dputil.h

AVAILABILITY v1.10

dpuSetInputImageWithScale()

NAME dpuSetInputImageWithScale ()

SYNOPSIS
int dpuSetInputImageWithScale

(

DPUTask *task,

const char *nodeName,

const cv::Mat &image,

float *mean,

float scale

)

www.xilinx.com

 Chapter 11: DNNDK Programming APIs

DNNDK User Guide www.xilinx.com 143
UG1327 (v 2.08 Beta) December 12, 2018

ARGUMENTS task The pointer to DPU Task.

 nodeName The pointer to DPU Node’s name. Please be noted that the

available names of one DPU Kernel’s or Task’s output Node

are listed out after a neural network is compiled by DNNC.

If invalid Node name specified, failure message will be

reported.

 image Input image in OpenCV’s Mat format. Single channel

and 3-channel input image are supported.

 mean Pointer to mean array which containing 3 elements

Note: you can get the mean values from the input

Caffe prototxt and mean file is not supported so far.

 scale Scale value of input image

DESCRIPTION set DPU Task’s input image with the mean value and scale

specified from network model

RETURNS
0 on success, or report error in case of any failure.

SEE ALSO dpuSetInputImage ()

INCLUDE FILE dputil.h

AVAILABILITY v1.07

www.xilinx.com

DNNDK User Guide www.xilinx.com 144
UG1327 (v 2.08 Beta) December 12, 2018

Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum

extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES

AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,

including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in

connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss

or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party)

even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no

obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not

reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and

conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP

cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or

intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products

in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF

AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A

SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY

DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS,

THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A

SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING

LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2012-2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein

are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos

	Revision History
	Table of Contents
	Chapter 1: Quick Start
	Get DNNDK
	Host setup
	Install required libraries
	Install CUDA
	Install cuDNN

	Evaluation board setup
	Introduction
	DP-8020
	DP-N1
	Ultra96
	ZCU102
	ZCU104

	Flash OS image to SD card
	Booting the evaluation board
	Accessing the evaluation board
	UART
	Ethernet
	Standalone

	Copy DNNDK tools to the evaluation board

	Running DNNDK examples
	ResNet-50
	Multithreaded ResNet-50
	Inception-v1
	Multithreaded Inception-v1
	MobileNet
	Multithreaded MoblieNet
	Face detection
	Pose detection
	Video analytics
	ADAS detection
	Semantic segmentation

	Support

	Chapter 2: Copyright and Version
	Copyright
	Version
	Host package
	DP-8020, DP-N1 and Ultra96
	ZCU102 and ZCU104

	Target package
	DP-8020
	DP-N1
	Ultra96
	ZCU102
	ZCU104

	Chapter 3: Upgrade and Porting
	Since v2.08
	Toolchain changes
	DNNC

	Exception handling changes
	API changes
	Example changes

	Since v2.07
	Toolchain changes
	DNNC

	Since v2.06
	Toolchain changes
	DECENT
	DNNC
	DExplorer

	API Changes
	Example changes

	Since v1.10
	Toolchain changes
	DECENT
	DNNC
	DExplorer
	DSight

	API Changes
	New API
	Changed API

	Upgrading from previous versions
	From v1.10 to v2.06
	From v1.07 to v1.10

	Chapter 4: DNNDK
	Overview
	Deep learning processor unit (DPU)
	DNNDK framework
	DECENT
	DNNC
	N2Cube
	DNNAS
	Profiler

	Chapter 5: Network deployment overview
	DECENT overview
	Network compression
	Network compilation
	Programming with DNNDK
	Hybrid compilation
	Running

	Chapter 5: Network compression
	DECENT overview
	DECETN usage
	Working flow
	Prepare neural network model
	Running
	Output

	Chapter 6: Network compilation
	DNNC overview
	DNNC usage
	Compiling ResNet50

	Chapter 7: Programming with DNNDK
	Programming model
	DPU Kernel
	DPU Task
	DPU Node
	DPU Tensor

	Programming interface

	Chapter 8: Hybrid compilation
	Chapter 9: Running
	Chapter 10: Utilities
	DExplorer
	Check DNNDK version
	Check DPU status
	Configure DPU running mode
	Normal mode
	Profile mode
	Debug mode

	DPU signature

	DSight

	Chapter 11: DNNDK Programming APIs
	Library libn2cube
	Overview
	APIs
	dpuOpen()
	dpuClose()
	dpuLoadKernel()
	dpuDestroyKernel()
	dpuCreateTask()
	dpuDestroyTask()
	dpuRunTask()
	dpuEnableTaskProfile()
	dpuEnableTaskDump()
	dpuGetTaskProfile()
	dpuGetNodeProfile()
	dpuGetInputTensorCnt()
	dpuGetInputTensor()
	dpuGetInputTensorAddress()
	dpuGetInputTensorSize()
	dpuGetInputTensorScale()
	dpuGetInputTensorHeight()
	dpuGetInputTensorWidth()
	dpuGetInputTensorChannel()
	dpuGetOutputTensorCnt()
	dpuGetOutputTensor()
	dpuGetOutputTensorAddress()
	dpuGetOutputTensorSize()
	dpuGetOutputTensorScale()
	dpuGetOutputTensorHeight()
	dpuGetOutputTensorWidth()
	dpuGetOutputTensorChannel()
	dpuGetTensorSize()
	dpuGetTensorScale()
	dpuGetTensorHeight()
	dpuGetTensorWidth()
	dpuGetTensorChannel()
	dpuSetIntputTensorInCHWInt8()
	dpuSetIntputTensorInCHWFP32()
	dpuSetIntputTensorInHWCInt8()
	dpuSetIntputTensorInHWCFP32()
	dpuGetOutputTensorInCHWInt8()
	dpuGetOutputTensorInCHWFP32()
	dpuGetOutputTensorInHWCInt8()
	dpuGetOutputTensorInHWCFP32()
	dpuRunSoftmax()
	dpuSetExceptionMode()
	dpuGetExceptionMode()
	dpuGetExceptionMessage()

	Library libdputils
	Overview
	APIs
	dpuSetInputImage()
	dpuSetInputImage2()
	dpuSetInputImageWithScale()

	Legal Notices
	Please Read: Important Legal Notices

