
3-
�

126 OMG-UML V1.3 March 2000

3

3.
�

73 Statechart Diagram

3.73.1 Semantics

Statec
�

hart diagrams represent the behavior of entities capable of dynamic behavior by
sp� ecifyin g its response to the receipt of event instances. Typically, it is used for
de

�
scribing the behavior of classes, but statecharts may also describe the behavior of

oth� er model entities such as use-cases, actors, subsystems, operations, or methods.

3.73.2 Notation

A statec
�

hart diagram is a graph that represents a state machine. States and various
o� ther types of vertices (pseudostates) in the state machine graph are rendered by
app� ropriate state and pseudostate symbols, while transitions are generally rendered by
dir

�
ected arcs that inter-connect them. States may also contain subdiagrams by physical

con� tainment or tilin g. Note that every state machine has a top state, which contains all
th

	
e other elements of the entire state machine. The graphical rendering of this top state

is o

ptional.

Th
�

e association between a state machine and its context does not have a special
notation.

An example statechart diagram for a simple telephone object is depicted in Figure 3-59
on� page 3-127.

O
�

MG-UML V1.3 State March 2000 3-127

3

Figure 3-59 S

tate Diagram

3.73.3 Mapping

A statechart diagram maps into a StateMachine. That StateMachine may be owned by
a � model element capable of dynamic behavior, such as classifier or a behavioral
feature, which provides the context for that state machine. Different contexts may
ap� ply dif ferent semantic constraints on the state machine.

3.
�

74 State

3.74.1 Semantics

A state is a condition during the life of an object or an interaction during which it
satisf� ies some condition, performs some action, or waits for some event. A compo� site
state is a state� that, in contrast to a si� mple state, has a graphical decomposition.
(

�
Composite states and their notation are described in more detail in Section 3.75,

“Composite States,” on page 3-130.) Conceptually, an object remains in a state for an
interval of time. However, the semantics allow for modeling “flow-through” states that
ar� e instantaneous, as well as transitions that are not instantaneous.

DialTone
Dialing

Talking
Ringing

Busy

di
�

al digit(n)

co� nnected

ca� llee answers

Idle

busy

lift
receiver

ca� ller
hangs up

ca� llee
hangs up

Active
�

d
�

ial digit(n)

/ge
�

t dial tone

do
�

/ play busy
to

�
ne

do/ p
�

lay ringing
tone

�
/ena

�
ble speech

/d
�

isconnect

d
�

o/ play dial tone

Pinned

ca� llee
an� swers

Connecting
�

di
�

al digit(n)[valid]

Timeout
do

�
/ play message

di
�

al digit(n)[invalid]

/c
�

onnectInvalid
do

�
/ play message

[incomplete]after (� 15 sec.)

after (� 15 sec.)

3-
�

128 OMG-UML V1.3 March 2000

3

A state m
�

ay be used to model an ongoing activity. Such an activity is specif ied either
b

�
y a nested state machine or by a computational expression.

3.74.2 Notation

A state is shown as a rectangle with rounded corners (Figure 3-60 on page3-129).
Optio

�
nally, it may have an attached name tab. The name tab is a rectangle, usually

resting on the outside of the top side of a state and it contains the name of that state. It
is normally used to keep the name of a composite state that has concurrent regions, but
ma� y be used in other cases as well (the Process state in Figure 3-65 on page3-137
illustrates the use of the name tab).

A state may be optionally subdivided into multiple compartments separated from each
o� ther by a horizontal l ine. They are as follows:

• Nam
�

e compartment

This c
�

ompartment holds the (optional) name of the state, as a string. States without
names are anonymous and are all distinct. It is undesirable to show the same named
state twic� e in the same diagram, as confusion may ensue. Name compartments
sh� ould not be used if a name tab is used and vice versa.

• Internal transitions compartment

This compartment holds a list of internal actions or activities that are performed
while th� e element is in the state. The notation for each of these list items has the
f

�
ollowing general format:

actio� n-label ‘/’ act� ion-expression

The ac
�

tion label identifies the circumstances under which the action specified by the
ac� tion expression will b e invoked. The action expression may use any attributes and
links that are in the scope of the owning entity. For list items where the action
e� xpression is empty, the backslash separator is optional.

A nu
�

mber of action labels are reserved for various special purposes and cannot be used
as e� vent names. The following are the reserved action labels and their meaning:

• en� try

This label identifies an action, specified by the corresponding action expression,
which� is performed upon entry to the state (entry action).

• ex� it

This label identifies an action, specified by the corresponding action expression,
that is p

	
erformed upon exit from the state (exit action).

• do
�

This label
�

identifies an ongoing activity (“ do activity”) that is performed as long as
the m

	
odeled element is in the state or until the computation specif ied by the action

e� xpression is completed (the latter may result in a completion event being
ge nerated).

O
�

MG-UML V1.3 State March 2000 3-129

3

• inclu

de

This lab
�

el is used to identif y a submachine invocation. The action expression
co� ntains the name of the submachine that is to be invoked. Submachine states and
t

	
he corresponding notation are described in Section 3.81, “Submachine States,” on

p! age3-142.

I
"
n all other cases, the action label identifies the event that triggers the corresponding

ac� tion expression. These events are called internal transitions and are semantically
equ� ivalent to self transitions e# xcept that the state is n ot exited o r re-entered. This
m� eans that the corresponding exit and entry actions are not performed. The general
format for the list item of an internal transition is:

e# vent-name ‘(’ comma� -separated-parameter-list ‘) ’ ‘ [’ g$ uard-condition‘] ’ ‘ /’
 action-expression

Each event name may appear more than once per state if the guard conditions are
dif

�
ferent. The event parameters and the guard conditions are optional. If the event has

para! meters, they can be used in the action expression through the current event
va% riable.

3.74.3 Example

F
&

igure 3-60 St

ate

3.74.4 Mapping

A
�

 state symbol maps into a State. See Section 3.75, “Composite States,” on page3-130
for further details on which kind of state.

The name string in the symbol maps to the name of the state. Two symbols with the
sam� e name map into the same state. However, each state symbol with no name (or an
em� pty name string) maps into a distinct anonymous State.

A list item
�

 in the internal transition compartment maps into a corresponding Action
asso� ciated with a state. An “entry” list item (i.e., an item with the “entry” label) maps
to th

	
e “entry” role, an “exit” list item maps to the “exit” role, and a “do” item maps to

the “do
	

Activity” role. (The mapping of “in clude” items is discussed in Section3.81,
“Submachine States,” on page3-142.)

Typing Password

help / display help

ent' ry / set echo invisible
ex' it / set echo normal
ch� aracter / handle character

3-
�

130 OMG-UML V1.3 March 2000

3

A
�

list item with an event name maps to a Transition associated with the “internal” role
relative to the state. The action expression maps into the ActionSequence and Guard
for the Transition. The event name and arguments map into an Event corresponding to
the e

	
vent name and arguments. The Transition has a trig(ger Asso

�
ciation to the Event.

3.
�

75 Composite States

3.75.1 Semantics

A com
�

posite state is decomposed into two or more concurrent substates (called
regions) or into

)
 mutually exclusive disjoint substates. A given state may only be

refined in one of these two ways. Naturally, any substate of a composite state can also
b

�
e a composite state of either type.

A ne
�

wly-created object takes its topmost default transition, originating from the
top

	
most initial pseudostate. An object that transitions to its outermost final state is

ter
	

minated.

Each region of a state may have initial pseudostates and final states. A transition to the
enclos� ing state represents a transition to the initial pseudostate. A transition to a final
state r� epresents the completion of activity in the enclosing region. Completion of
ac� tivity in all co ncurrent regions represents completion of activity by the enclosing
state and� triggers a completion event on the enclosing state. Completion of the top state
of an o� bject corresponds to its termination.

3.75.2 Notation

An expansion of a state shows its internal state machine structure. In addition to the
(

�
optional) name and internal transition compartments, the state may have an additional

co� mpartment that contains a region holding a nested diagram. For convenience and
ap� pearance, the text compartments may be shrunk horizontally with in the graphic
regi* on.

An
�

expansion of a state into concurrent substates is shown by tiling the graphic region
of the state us� ing dashed lines to divide it into regions. Each region is a concurrent
su� bstate. Each region may have an optional name and must contain a nested state
d

�
iagram with disjoint states. The text compartments of the entire state are separated

from the concurrent substates by a solid line. It is also possible to use a tab notation to
p! lace the name of a concurrent state. The tab notation is more space efficient.

An expansion of a state into disjoint substates is shown by showing a nested state
diag

�
ram within the graphic region.

An in
�

itial pseudostate is shown as a small solid f illed circle. In a top-level state
machine, the transition from an initial pseudostate may be labeled with the event that
cr� eates the object; otherwise, it must be unlabeled. If it is unlabeled, it represents any
tr

	
ansition to the enclosing state. The initial transition may have an action.

OMG-
�

UML V1.3 Composite States March 2000 3-131

3

A f
�

inal state is shown as a circle surrounding a small solid f illed circle (a bull’ s eye). It
represents the completion of activity in the enclosing state and it triggers a transition
on� the enclosing state labeled by the implicit activity completion event (usually
dis

�
played as an unlabeled transition), if such a transition is defined.

I
"
n some cases, it is convenient to hide the decomposition of a composite state. For

e� xample, the state machine inside a composite state may be very large and may simply
not fit in the graphical space available for the diagram. In that case, the composite state
m� ay be represented by a simple state graphic with a special “composite” icon, usually
in the lower right-hand corner. This icon, consisting of two horizontally placed and
co� nnected states, is an op+ tional visual cue that the state has a decomposition that is not
s� hown in this particular statechart diagram (Figure 3-62 on page3-131). Instead, the
co� ntents of the composite state are shown in a separate diagram. Note that the “hiding”
here is purely a matter of graphical convenience and has no semantic signif icance in
ter

	
ms of access restrictions.

3.75.3 Examples

F
&

igure 3-61 S

equential Substates

Figure 3-62 C
,

omposite State with hidden decomposition indicator icon

St
-

art

en' try/ start dial tone

Partial Dial

en' try/number.append(n)

digit(n)
.

digit(n)
.

[number.isValid()]

Dialing

e' xit/ stop dial tone

HiddenComposite

e' ntry/ start dial tone
ex' it/ stop dial tone

3-
�

132 OMG-UML V1.3 March 2000

3

F
&

igure 3-63 C
,

oncurrent Substates

3.75.4 Mapping

A state sy
�

mbol maps into a State. If the symbol has no subdiagrams in it, it maps into
a Sim� pleState. If it is tiled by dashed lines into regions, then it maps into a
Co

/
mpositeState with the i

0
sConcurrent value true; otherwise, it maps into a

Co
/

mpositeState with the i
0
sConcurrent value false. A region maps into a

Co
/

mpositeState with the isRe
0

gion value true and the is
0

Concurrent value false.

An initial pseudostate symbol map into a Pseudostate of kind in
0

itial. A final state
sy� mbol maps to a fi

1
nal state.�

3.
�

76 Events

3.76.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an
occurre� nce that may trigger a state transition. Events may be of several k inds (not
necessarily mutually exclusive).

Lab1 Lab2

Term

lab done

pr2 oj
3
ect done

Passed

Incomplete

Project

Final pa2 ss

Test

Failed
fail

lab
done

T
4

aking Class

OMG-
�

UML V1.3 Events March 2000 3-133

3

• A d
�

esignated condition becoming true (described by a Boolean expression) results
in a change event instance. The event occurs whenever the value of the expression
chang� es from false to true. Note that this is different f rom a guard condition. A
gu ard condition is evaluated on+ ce whenever its event fires. If it is false, then the
tr

	
ansition does not occur and the event is lost.

• The receipt of an explicit signal from one object to another results in a signal event
ins

tance. It i s denoted by the signature of the event as a trigger on a transition.

• The receipt of a call for an operation implemented as a transition by an object
represents a call event instance.

• Th
�

e passage of a designated period of time after a designated event (often the entry
of the curre� nt state) or the occurrence of a given date/time is a TimeEvent.

The event declaration has scope within the package it appears in and may be used in
state diag� rams for classes that have visibility inside the package. An event is no5 t local
to

	
 a single class.

3.76.2 Notation

A signal or call event can be defined using the following format:

e# vent-name ‘(‘ comma� -separated-parameter-list ‘)

A parameter has the format:

pa6 rameter-name ‘:’ typ(e-expression

A signal can be declared using the «signal» keyword on a class symbol in a class
d

�
iagram. The parameters are specif ied as attributes. A signal can be specif ied as a

su� bclass of another signal. This indicates that an occurrence of the subevent triggers
an� y transition that depends on the event or any of its ancestors.

An elapsed-time event can be specif ied with the keyword af7 ter followed by an
e� xpression that evaluates (at modeling time) to an amount of time, such as “af7 ter (5

�

seco� nds)” or a7 fter (10
�

 seconds since exit fr om state A).” If no starting point is
indicated, then it is the time since the entry to the current state. Other time events can
be sp

�
ecif ied as conditions, such as wh8 en (

�
date = Jan. 1, 2000).

A condition becoming true is shown with the keyword when 8 followed by a Boolean
e� xpression. This may be regarded as a continuous test for the condition until it is tr ue,
alth� ough in practice it would only be checked on a change of values.

Sig
�

nals can be declared on a class diagram with the keyword «signal» on a rectangle
sy� mbol. These define signal names that may be used to trigger transitions. Their
para! meters are shown in the attribute compartment. They have no operations. They
may appear in a generalization hierarchy.

3-
�

134 OMG-UML V1.3 March 2000

3

3.76.3 Example

Figure 3-64 S

ignal Declaration

3.76.4 Mapping

A class box with stereotype «signal» maps into a Signal. The name and parameters are
gi ven by the name string and the attribute list of the box. Generalization arrows
between sig

�
nal class boxes map into Generalization relationships between the Signal.

Th
�

e usage of an event string expression in a context requiring an event maps into an
implicit reference of the Event with the given name. It is an error if various uses of the
sam� e name (including any explicit declarations) do not match.

UserInput
device

Mouse

location

Button
Keyboard
C
9

haracter

character

InputEvent

ti
:
me

Control Graphic

PunctuationAlphanumericSp
;

ace

Mouse Mouse
Button
Down

Button
Up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»

Character Character

OMG-
�

UML V1.3 Simple Transitions March 2000 3-135

3

3.
�

77 Simple Transitions

3.77.1 Semantics

A simple transition is a relationship between two states indicating that an object in the
f

�
irst state will enter the second state and perform specif ic actions when a specif ied

e� vent occurs provided that certain specified conditions are satisfied. On such a change
of state� , the transition is said to “fire.” The trigger for a transition is the occurrence of
th

	
e event labeling the transition. The event may have parameters, which are accessible

b
�
y the actions specified on the transition as well as in the corresponding exit and entry

a� ctions associated with the source and target states respectively. Events are processed
on� e at a time. If an event does not trigger any transition, it is discarded. If it can trigger
more than one transition within the same sequential region (i.e., not in different
con� current regions), only one will f ire. If these conflicti ng transitions are of the same
priority! , an arbitrary one is selected and triggered.

3.77.2 Notation

A transition is shown as a solid line originating from the sou� rce state and terminated
b

�
y an arrow on the tar(get state. It may be labeled by a tr(ansition string that has the

f
�
ollowing general format:

e# vent-signature ‘ [’ guard-condition ‘]’ ‘ /’ a� ction-expression

Th
�

e e# vent-signature describes an event with its arguments:

e# vent-name ‘(’ comma� -separated-parameter-list ‘)’

Th
�

e gu$ ard-condition is a Boolean expression written in terms of parameters of the
tr

	
iggering event and attributes and links of the object that owns the state machine. The

gu ard condition may also involve tests of concurrent states of the current machine, or
e� xplicitly designated states of some reachable object (for example, “ in

<
State1

�
” or “not=

in Sta
�

te2”). State names may be fully qualif ied by the nested states that contain them,
yield> ing pathnames of the form “State1::State2::State3.” This may be used in case
sam� e state name occurs in different composite state regions of the overall machine.

Th
�

e a� ction-expression is executed if and when the transition fires. It may be written in
ter

	
ms of operations, attributes, and links of the owning object and the parameters of the

tr
	

iggering event, or any other features visible in its scope. The corresponding action
m� ust be executed entirely before any other actions are considered. This model of
e� xecution is referred to as run-to-completion semantics. The action expression may be
an� action sequence comprising a number of distinct actions including actions that
e� xplicitly g enerate events, such as sending signals or invoking operations. The details
of this� expression are dependent on the action language chosen for the model.

3.77.2.1 Transition times

Nam
�

es may be placed on transitions to designate the times at which they fire. See
Section

�
3.62, “Transition Times,” on page 3-104.

3-
�

136 OMG-UML V1.3 March 2000

3

3.77.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location);
obje? ct.highlight ()

The event may be any of the standard event types. Selecting the type depends on the
syn� tax of the name (for time events, for example); however, SignalEvents and
Ca

/
llEvents are not distinguishable by syntax and must be discriminated by their

d
�
eclaration elsewhere.

3.77.4 Mapping

A tr
�

ansition string and the transition arrow that it labels together map into a Transition
and� its attachments. The arrow connects two state symbols. The Transition has the
co� rresponding States as its source (the state at the tail) and destination (the state at the
head) States in ass

@
ociation to the Transition.

Th
�

e event name and parameters map into an Event element, which may be a
Sig

�
nalEvent, a CallEvent, a TimeExpression (if it has the proper syntax), or a

C
/

hangeEvent (if it is expressed as a Boolean expression). The event is attached as a
“t rigger” role in* the association to the transition.

The g
�

uard condition maps into a Guard element attached to the Transition. Note that a
gu ard condition is distinguished graphically from a change event specification by being
en� closed in brackets.

An action expression maps into an Action attached as an “effect” role relative to the
T

�
ransition.

3.78
�

Transitions to and from Concurrent States

A concurrent transition may have multiple source states and target states. It represents
a syn� chronization and/or a splitting of control into concurrent threads without
c� oncurrent substates.

3.78.1 Semantics

A concurrent transition is enabled when all the source states are occupied. After a
com� pound transition fires, all its destination states are occupied.

3.78.2 Notation

A concurrent transition includes a short heavy bar (a s� ynchronization bar, which can
represent synchronization, forking, or both). The bar may have one or more arrows
f

�
rom states to the bar (these are the sou� rce sta tes)

)
. The bar may have one or more

a� rrows from the bar to states (these are the d
A

estination states).
)

 A transition string may
be sh

�
own near the bar. Individual arrows do not have their own transition strings.

OMG-
�

UML V1.3 Transitions to and from Composite States March 2000 3-137

3

3.78.3 Example

Figure 3-65 C
,

oncurrent Transitions

3.78.4 Mapping

A bar with multiple transition arrows leaving it maps into a fork pseudostate. A bar
with m� ultiple transition arrows entering it maps into a join pseudostate. The transitions
corr� esponding to the incoming and outgoing arrows attach to the pseudostate as if it
wer� e a regular state. If a bar has multip le incoming and multip le outgoing arrows, then
it m

aps into a join connected to a fork pseudostate by a single transition with no

atta� chments.

3.79
�

Transitions to and from Composite States

3.79.1 Semantics

A transition drawn to the boundary of a composite state is equivalent to a transition to
its initial point (or to a complex transition to the initial point of each of its concurrent
r* egions, if it is concurrent). The entry action is always performed when a state is
enter� ed from outside.

A transition from a composite state indicates a transition that applies to each of the
states with� in the state region (at any depth). It is “in herited” by the nested states.
I

"
nherited transitions can be masked by the presence of nested transitions with the same

tr
	

igger.

3.79.2 Notation

A transition drawn to a composite state boundary indicates a transition to the
com� posite state. This is equivalent to a transition to the initial pseudostate within the
com� posite state region. The initial pseudostate must be present. If the state is a
con� current composite state, then the transition indicates a transition to the initial
ps! eudostate of each of its concurrent substates.

Process

Se
-

tup C
�

leanup

A1
�

A2

B2B1

3-
�

138 OMG-UML V1.3 March 2000

3

T
�

ransitions may be drawn directly to states within a composite state region at any
nesting depth. All entry actions are performed for any states that are entered on any
tr

	
ansition. On a transition within a concurrent composite state, transition arrows from

the
	

 synchronization bar may be drawn to one or more concurrent states. Any other
con� current regions start with their default initial p seudostate.

A transition drawn from a composite state boundary indicates a transition of the
com� posite state. If such a transition fires, any nested states are forcibly terminated and
perf! orm their exit actions, then the transition actions occur and the new state is
establish� ed.

Transitions may be drawn directly from states within a composite state region at any
nesting depth to outside states. All exit actions are performed for any states that are
e� xited on any transition. On a transition from within a concurrent composite state,
tr

	
ansition arrows may be specified from one or more concurrent states to a

sy� nchronization bar; therefore, specif ic states in the other regions are irrelevant to
tr

	
iggering the transition.

A state
�

 region may contain a hi
B

story state indicator shown as a small circle containing
an� ‘H.’ The history indicator applies to the state region that directly contains it. A
history indicator may have any number of incoming transitions from outside states. It
m� ay have at most one outgoing unlabeled transition. This identif ies the default
“previous state” if the region has never been entered. If a transition to the history
indicator fires, it indicates that the object resumes the state it last had within the
c� omposite region. Any necessary entry actions are performed. The history indicator
may also be ‘H*’ for d

A
eep histo ry. This indicates that the object resumes the state it

last had at any depth within the composite region, rather than being restricted to the
state a� t the same level as the history indicator. A region may have both shallow and
d

�
eep history indicators.

3.79.3 Presentation Options

3.79.3.1 Stubbed transitions

Nested states
�

may be suppressed. Transitions to nested states are subsumed to the most
sp� ecif ic visible enclosing state of the suppressed state. Subsumed transitions that do
not come from an unlabeled final state or go to an unlabeled initial pseudostate may
(b

�
ut need not) be shown as coming from or going to stu� bs. A stu� b is shown as a small

v% ertical line (bar) drawn inside the boundary of the enclosing state. It indicates a
tr

	
ansition connected to a suppressed internal state. Stubs are not used for transitions to

initial or from final states.

Note th
�

at events should be shown on transitions leading into a state, either to the state
bo

�
undary or to an internal substate, including a transition to a stubbed state. Normally

e� vents should not be shown on transitions leading from a stubbed state to an external
state.� Think of a transition as belonging to its source state. If the source state is
su� ppressed, then so are the details of the transition. Note also that a transition from a
final state is summarized by an unlabeled transition from the composite state contour
(

�
denoting the implicit event “action complete” for the corresponding state).

OMG-
�

UML V1.3 Transitions to and from Composite States March 2000 3-139

3

3.79.4 Example

S
�

ee Figure 3-64 on page3-134 and Figure 3-65 on page3-137 for examples of
com� posite transitions. The following are examples of stubbed transitions and the
history indicator.

F
&

igure 3-66 S

tubbed Transitions

Figure 3-67 History Indicator

A
C

C
D

A C
D

B
D

E

F

p sE

t
�

B

r

p

r

D

W

W

may be abstracted as

u

sE

sE

A C
D

H

A1
C

A2

interrupt

resume

3-
�

140 OMG-UML V1.3 March 2000

3

3.79.5 Mapping

An arr
�

ow to any state boundary, nested or not, maps into a Transition between the
corr� esponding States and similarly for transitions directly to history states.

A history indicator maps into a Pseudostate of kind s� hallowHistory or� de
A

epHistory.

A stubbed transition does not map into anything in the model. It is a notational elision
that in

	
dicates the presence of transitions to additional states in the model that are not

v% isible in the diagram.

3.
�

80 Factored Transition Paths

3.80.1 Semantics

By
F

 definition, a transition connects exactly two vertices in the state machine graph.
However, since some of these vertices may be pseudostates (which are transient in
nature) there is a need for describing chains of transitions that may be executed in the
con� text of a single run-to-completion step. Such a transition is known as a c� ompound
tr(ansition.

As a practical measure, it is often useful to share segments of a compound transition.
For example, two or more distinct compound transitions may come together and
con� tinue via a common path, sharing its action, and possibly terminating on the same
tar

	
get state. In other cases, it may be useful to split a transition into separate mutually

e� xclusive (i.e., non-concurrent) paths.

Both of these examples of graphical factoring in which some transitions are shared
r* esult in simplif ied diagrams. However, factoring is also useful for modeling
d

�
ynamically adaptive behavior. An example of this occurs when a single event may

lead to any of a set of possible target states, but where the final target state is only
deter

�
mined as the result of an action (calculation) performed after the triggering of the

com� pound transition.

Note th
�

at the splitting and joining of paths due to factoring is different from the
sp� lit ting and joining of concurrent transitions described in Section3.78, “Transitions to
an� d from Concurrent States,” on page3-136. The sources and targets of these factored
tr

	
ansitions are not concurrent.

3.80.2 Notation

Two or more transitions emanating from different non-concurrent states or
p! seudostates can terminate on a common junction point. This allows their respective
com� pound transitions to share the path that emanates from that junction point. A
jun

G
ction point is represented by a small black circle. Alternatively, it may be

r* epresented by a diamond shape (see Section 3.86, “ Decisions,” on page3-150).

T
�
wo or more guarded transitions emanating from the same junction point represent a

s� tatic branch point. Normally, the guards are mutually exclusive. This is equivalent to
a set o� f individual transitions, one for each path through the tree, whose guard

OMG-
�

UML V1.3 Factored Transition Paths March 2000 3-141

3

con� dition is the “and” of all of the conditions along the path. Note that the semantics
o� f static branches is that all the outgoing guards are evaluated be

H
fore any transition is

tak
	

en.

Two or more guarded transitions emanating from a common d
A

ynamic choice point are
usI ed to model dynamic choices. In this case, the guards of the outgoing transitions are
e� valuated at the time the choice point has been reached. The value of these guards may
be a f

�
unction of some calculations performed in the actions of the incoming

tr
	

ansition(s). A dynamic choice point is represented by a small wh ite circle
(

�
reminiscent of a small state icon).

3.80.3 Examples

In Figure 3-68 a single junction point is used to merge and split transitions. Regardless
o� f whether the junction point was reached from state State0 or from state State1, the
ou� tgoing paths are the same for both cases.

If the state machine in this example is in state State1 and b is less than 0 when event
e1 o� ccurs, the outgoing transition will b e taken only if on e of the three downstream
gu ards is true. Thus, if a is equal to 6 at that point, no transition will b e triggered.

Figure 3-68 Junct
J

ion points

I
"
n the dynamic choice point example in Figure 3-69 on page3-142, the decision on

which� branch to take is only made after the transition from State1 is taken and the
ch� oice point is reached. Note that the action associated with that incoming transition
co� mputes a new value for a. This new value can then be used to determine the outgoing
tr

	
ansition to be taken. The use of the predefined condition[else] is recommended to

a� void run-time errors.

[a < 0]

St
-

ate1

St
-

ate2 S
-

tate3 St
-

ate4

e1' [b < 0]e2' [b < 0]

St
-

ate0

[a = 5]

[a > 7]

3-
�

142 OMG-UML V1.3 March 2000

3

Figure 3-69 Dynami
K

c choice points

3.
�

81 Submachine States

3.81.1 Semantics

A su
�

bmachine state represents the in
0

vocation of a state machine defined elsewhere. It
is similar to a macro call in the sense that it represents a (graphical) shorthand that
implies embedding of a complex specification within another specification. The
sub� machine must be contained in the same context as the invoking state machine.

I
"
n the general case, an invoked state machine can be entered at any of its substates or

throu
	

gh its default (initial) pseudostate. Similarly, it can be exited from any substate or
as a r� esult of the invoked state machine reaching its f inal state or by an “inherited” or
“group” transition that applies to all substates in the submachine.

Th
�

e non-default entry and exits are specified through special stub states.

3.81.2 Notation

The submachine state is depicted as a normal state with the appropriate “include”
declar

�
ation within its internal transitions compartment (see Section 3.74, “ State,” on

p! age3-127). The expression following the include reserved word is the name of the
invoked submachine.

O
�

ptionally, the submachine state may contain one or more entry stub states and one or
more exit stub states. The notation for these is similar to that used for stub ends of
stu� bbed transitions, except that the ends are labeled. The labels represent the names of
the corr

	
esponding substates within the invoked submachine. A pathname may be used

if the substate is not defined at the top level of the invoked submachine. Naturally, this
nL ame must be a valid name of a state in the invoked state machine.

[a < 0]

S
-

tate1

St
-

ate2 S
-

tate3 St
-

ate4

e1[' b < 0]/a := f(m)

[a = 5]

[else]

OMG-
�

UML V1.3 Submachine States March 2000 3-143

3

I
"
f the submachine is entered through its default pseudostate or if it is exited as a result

of the com� pletion of the submachine, it is not necessary to use the stub state notation
for these cases. Similarly, a stub state is not required if the exit occurs through an
e� xplicit “grou p” transition that emanates from the boundary of the submachine state
(

�
implying that it applies to all the substates of the submachine).

Sub
�

machine states invoking the same submachine may occur multip le times in the
sam� e state diagram with different entry and exit configurations and with different
internal tr

ansitions and exit and entry action specifications in each case.

3.81.3 Example

The following diagram shows a fragment from a statechart diagram in which a
su� bmachine (the FailureSubmachine) is invoked in a particular way. The actual
s� ubmachine is presumably defined elsewhere and is not shown in this diagram. Note
th

	
at the same submachine could be invoked elsewhere in the same statechart diagram

with d� ifferent entry and exit configurations.

Figure 3-70 S

ubmachine State

I
"
n the above example, the transition triggered by event “error1” will term inate on state

“sub1” of the FailureSubmachine state machine. Since the entry point does not contain
a path n� ame, this means that “sub1” is defined at the top level of that submachine. In
con� trast, the transition triggered by “error2” will ter minate on the “sub12” substate of
the “su

	
b1”substate (as indicated by the path name), while the “error3” transition

implies taking of the default transition of the FailureSubmachine.

The transition triggered by the event “fixed1” emanates from the “subEnd” substate of
the su

	
bmachine. Finally, the transition emanating from the edge of the submachine

state is tak� en as a result of the completion event generated when the
FailureSubmachine reaches its final state.

Handle Failure

include / FailureSubmachine

suE b1 suE b1::sub12

sE ubEnd

e' rror2/e' rror1/

e' rror3/

f
M
ixed1/

3-
�

144 OMG-UML V1.3 March 2000

3

3.81.4 Mapping

A
�

submachine state in a statechart diagram maps directly to a SubmachineState in the
metamodel. The name following the “include” reserved action label represents the state
machine indicated by the “submachine” attribute. Stub states map to the Stub State
con� cept in the metamodel. The label on the diagram corresponds to the pathname
represented by the “referenceState” attribute of the stub state.

3.
�

82 Synch States

3.82.1 Semantics

A synch state is for synchronizing concurrent regions of a state machine. It is used in
con� junction with forks and joins to insure that one region leaves a particular state or
states be� fore another region can enter a particular state or states. The firing of outgoing
tr

	
ansitions from a synch state can be lim ited by specify ing a bound on the difference

between th
�

e number of times outgoing and incoming transiti ons have fired.

3.82.2 Notation

A syn
�

ch state is shown as a small circle with the upper bound inside it. The bound is
either� a positive integer or a star ('* ') for unlimited. Synch states are drawn on the
bo

�
undary between two regions when possible.

OMG-
�

UML V1.3 Activity Diagram March 2000 3-145

3

3.82.3 Example

Figure 3-71 S

ynch states

3.82.4 Mapping

A synch state circle maps into a SynchState, contained by the least common containing
state of the re� gions it is synchronizing. The number inside it maps onto the bound
attr� ibute of the synch state. A star ('*') inside the synch state circle maps to a value of
Unlim

N
ited for the bound attribute.

Part 10 - Activity Diagrams

3.83
�

Activity Diagram

3.83.1 Semantics

An activity graph is a variation of a state machine in which the states represent the
perf! ormance of actions or subactivities and the transitions are triggered by the
com� pletion of the actions or subactivities. It represents a state machine of a procedure
itself.

Build

Install
Electricity

Build House

Inspect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

Install
Electricity
Outs

O
ide

Install
Walls

**

3-
�

146 OMG-UML V1.3 March 2000

3

3.83.2 Notation

An
�

 activity diagram is a special case of a state diagram in which all (o r at least most)
o� f the states are action or subactivity states and in which all (or at least most) of the
tr

	
ansitions are triggered by completion of the actions or subactivities in the source

states. Th� e entire activity diagram is attached (through the model) to a class, such as a
uI se case, or to a package, or to the implementation of an operation. The purpose of this
diag

�
ram is to focus on f lows driven by internal processing (as opposed to external

e� vents). Use activity diagrams in situations where all or most of the events represent
the com

	
pletion of internally-generated actions (that is, procedural flow of control). Use

o� rdinary state diagrams in situations where asynchronous events occur.

OMG-
�

UML V1.3 Activity Diagram March 2000 3-147

3

3.83.3 Example

Figure 3-72 Activity Diagram

Ge
P

t
Cu
Q

ps

Put Coffee
in Filter Add Water

to
R

 Reservoir

[found coffee]

[no coffee]Find
Beverage

Ge
P

t cans
ofS cola

[no cola]

[found cola]

Put Filter
in Machine

Turn on
Machine

Person::Prepare Beverage

Brew coffee

Pour Coffee

Dr
T

ink

/co
U

ffeePot.turnOn

light goes out

3-
�

148 OMG-UML V1.3 March 2000

3

3.83.4 Mapping

An acti
�

vity diagram maps into an ActivityGraph.

3.
�

84 Action State

3.84.1 Semantics

An
�

 a� ction s tate is shorthand for a state with an entry action and at least one outgoing
tr

	
ansition involving the implicit event of completing the entry action (there may be

se� veral such transitions if they have guard conditions). Action states should not have
internal tr

ansitions or outgoing transitions based on explicit events, use normal states

for this situation. The normal use of an action state is to model a step in the execution
of� an algorithm (a procedure) or a workflow process.

3.84.2 Notation

An
�

 action state is shown as a shape with straight top and bottom and with convex arcs
on� the two sides. The ac� tion-expression is placed in the symbol. The action expression
need not be unique within the diagram.

Transitions leaving an action state should not include an event signature. Such
tr

	
ansitions are implicitly triggered by the completion of the action in the state. The

tr
	

ansitions may include guard conditions and actions.

3.84.3 Presentation options

The action may be described by natural language, pseudocode, or programming
la

V
nguage code. It may use only attributes and links of the owning object.

Note th
�

at action state notation may be used wi thin ordinary state diagrams; however,
th

	
ey are more commonly used with activity diagrams, which are special cases of state

dia
�

grams.

3.84.4 Example

Figure 3-73 Action States

maW tri x.invert (tolerance:Real) dr ive to work

OMG-
�

UML V1.3 Subactivity State March 2000 3-149

3

3.84.5 Mapping

An action
�

 state symbol maps into an ActionState with the action-expression mapped to
th

	
e entry action of the State. There is no ex# it nor any internal transitions. T

�
he State is

normally anonymous.

3.
�

85 Subactivity State

3.85.1 Semantics

A sub� activity sta te invokes an activity graph. When a subactivity state is entered, the
ac� tivity graph “nested” in it is executed as any activity graph would be. The subactivity
state is no� t exited until the f inal state of the nested graph is reached, or when trigger
e� vents occur on transitions coming out of the subactivity state. Since states in activity
graph s do not normally have trigger events, subactivity states are normally exited when
th

	
eir nested graph is f inished. A single activity graph may be invoked by many

sub� activity states.

3.85.2 Notation

A
�

subactivity state is shown in the same way as an action state with the addition of an
icon in the lower right corner depicting a nested activity diagram. The name of the
su� bactivity is placed in the symbol. The subactivity need not be unique within the
dia

�
gram.

This n
�

otation is applicable to any UML construct that supports “nested” structure. The
icon must suggest the type of nested structure.

3.85.3 Example

Figure 3-74 S

ubactivity States

3.85.4 Mapping

A subactivity state symbol maps into a SubactivityState. The name of the subactivity
maps to a submachine link between the SubactivityState and a StateMachine of that
naL me. The SubactivityState is normally anonymous.

Build Product Fi
X

ll Order

3-
�

150 OMG-UML V1.3 March 2000

3

3.
�

86 Decisions

3.86.1 Semantics

A state diagram (and by derivation an activity diagram) expresses a decision when
gu ard conditions are used to indicate different possible transitions that depend on
Boolean conditions of the owning object. UML provides a shorthand for showing
decisio

�
ns and merging their separate paths back together.

3.86.2 Notation

A decisio
�

n may be shown by labeling multip le output transitions of an action with
dif

�
ferent guard conditions.

The icon provided for a decision is the traditional diamond shape, with one incoming
ar� row and with two or more outgoing arrows, each labeled by a distinct guard
con� dition with no event trigger. All possible outcomes should appear on one of the
ou� tgoing transitions. A predefined guard denoted “else” may be defined for at most
on� e outgoing transition. This transition is enabled i f all the guards labeling the other
tr

	
ansitions are false.

Th
�

e same icon can be used to merge decision branches back together, in which case it
is called a merge. A merge has two or more incoming arrows and one outgoing arrow.

Note th
�

at a chain of decisions may be part of a complex transition, but only the first
se� gment in such a chain may contain an event trigger label. All segments may have
gu ard expressions. The transition coming from a merge may not have a trigger label or
g uard expressions.

3.86.3 Example

Figure 3-75 Decision and merge

Calculate
total cost

[cost < $50] C
Q

harge
cuY stomer’s
accZ ount

Get
authorization

[cost ≥[$50]

OMG-
�

UML V1.3 Swimlanes March 2000 3-151

3

3.86.4 Mapping

A
�

 decision symbol maps into a Pseudostate of kind jun
\

ction. Ea
]

ch label on an outgoing
ar� row maps into a Guard on the corresponding Transition leaving the Pseudostate. A
merge symbol also maps into a Pseudostate of kind jun

\
ction.

3.
�

87 Swimlanes

3.87.1 Semantics

Actions and subactivities may be organized into s� wimlanes. Swim
�

lanes are used to
o� rganize responsibility for actions and subactivities according to class. They often
corr� espond to organizational units in a business model.

3.87.2 Notation

An activity diagram may be divided visually into “swimlanes,” each separated from
neigL hboring swimlanes by vertical solid lines on both sides. Each swimlane represents
responsibility for part of the overall activity, and may eventually be implemented by
on� e or more objects. The relative ordering of the swimlanes has no semantic
sig� nif icance, but might indicate some affinity. Each action is assigned to one swimlane.
Transitions may cross lanes. There is no signif icance to the routing of a transition path.

3-
�

152 OMG-UML V1.3 March 2000

3

3.87.3 Example

F
&

igure 3-76 Sw

imlanes in Activity Diagram

3.87.4 Mapping

A swim
�

lane maps into a Partition of the States in the ActivityGraph. A state symbol in
a swim� lane causes the corresponding State to belong to the corresponding Partition.

Request service

Take order

Fill order

Collect order

Cus
^

tomer Sa
_

les St
_

ockroom

Pa
`

y

Deliver order

OMG-
�

UML V1.3 Action-Object Flow Relationships March 2000 3-153

3

3.
�

88 Action-Object Flow Relationships

3.88.1 Semantics

Actions operate by and on objects. These objects either have primary responsibility for
initiatin

g an action, or are used or determined by the action. Actions usually specify

ca� lls sent between the object owning the activity graph, which initiates actions, and the
o� bjects that are the targets of the actions.

3.88.2 Notation

3.88.2.1 Object responsible for an action

I
"
n sequence diagrams, the object responsible for performing an action is shown by

dra
�

wing a lifeline and placing actions on life lines. See Section 3.58, “Sequence
Diagram,” on page3-94. Activity diagrams do not show the lifeline, but each action
sp� ecif ies which object performs its operation. These objects may also be related to the
swim� lane in some way. The actions within a swimlane can all be handled by the same
ob� ject or by multiple objects.

3.88.2.2 Object flow

Ob
�

jects that are input to or output from an action may be shown as object symbols. A
d

�
ashed arrow is drawn from an action state to an output object, and a dashed arrow is

d
�
rawn from an input object to an action state. The same object may be (and usually is)

the
	

 output of one action and the input of one or more subsequent actions.

The control flow (solid) arrows must be omitted when the object flow (dashed) arrows
sup� ply a redundant constraint. In other words, when a state produces an output that is
inp

ut to a subsequent state, that object flow relationship implies a control constraint.

3.88.2.3 Object in state

Frequently the same object is manipulated by a number of successive actions or
su� bactivities. It is possible to show one object with arrows to and from all o f the
r* elevant actions and subactivities, but for greater clarity, the object may be displayed
multiple tim es on a diagram. Each appearance denotes a dif ferent point during the
o� bject’s life. To distinguish the various appearances of the same object, the state of the
o� bject at each point may be placed in brackets and appended to the name of the object
(

�
for example, PurchaseOrder[approved]). This n

�
otation may also be used in

co� llaboration and sequence diagrams.

3-
�

154 OMG-UML V1.3 March 2000

3

3.88.3 Example

F
&

igure 3-77 Actions and Object Flow

3.88.4 Mapping

An
�

 object flow symbol maps into an ObjectFlowState whose incoming and outgoing
Transitions correspond to the incoming and outgoing arrows. The Transitions have no
atta� chments. The class name and (optional) state name of the object flow symbol map
in

to a Class or a ClassifierInState corresponding to the name(s). Solid and dashed

ar� rows both map to transitions.

Request service

Tak
�

e order

Fill order

C
/

ollect order

Cus
^

tomer Sa
_

les St
_

ockroom

Pay
a

Deliv
b

er order

O
c

rder
[entered]

Or
c

der
[filled]

O
c

rder
[delivered]

Or
c

der
[placed]

OMG-
�

UML V1.3 Control Icons March 2000 3-155

3

3.
�

89 Control Icons

The following icons provide explicit symbols for certain kinds of information that can
be sp

�
ecif ied on transitions. These icons are not necessary for constructing activity

d
�
iagrams, but many users prefer the added impact that they provide.

3.89.1 Notation

3.89.1.1 Signal receipt

The receipt of a signal may be shown as a concave pentagon that looks like a rectangle
with a tria� ngular notch in its side (either side). The signature of the signal is shown
ins

ide the symbol. An unlabeled transition arrow is drawn from the previous action

state to th� e pentagon and another unlabeled transition arrow is drawn from the
p! entagon to the next action state. A dashed arrow may be drawn from an object symbol
to th

	
e notch on the pentagon to show the sender of the signal; this is optional.

3.89.1.2 Signal sending

Th
�

e sending of a signal may be shown as a convex pentagon that looks like a rectangle
with a tria� ngular point on one side (either side). The signature of the signal is shown
inside the symbol. A unlabeled transition arrow is drawn from the previous action state
to th

	
e pentagon and another unlabeled transition arrow is drawn from the pentagon to

th
	

e next action state. A dashed arrow may be drawn from the point on the pentagon to
an o� bject symbol to show the receiver of the signal, this is optional.

3-
�

156 OMG-UML V1.3 March 2000

3

F
&

igure 3-78 S

ymbols for Signal Receipt and Sending

3.89.1.3 Deferred events

A frequent situation is when an event that occurs must be “deferred” for later use while
so� me other action or subactivity is underway. (Normally an event that is not handled
immediately is lost.) This may be thought of as having an internal transition that
handles the event and places it on an internal queue until it is needed or until it is
d

�
iscarded. Each state specif ies a set of events that are deferred if they occur during the

state� and are not used to trigger a transition. If an event is not included in the set of
defe

�
rrable events for a state, and it does not trigger a transition, then it is discarded

f
�
rom the queue even if it has already occurred. If a transition depends on an event, the

tr
	

ansition fires immediately if the event is already on the internal queue. If several
tr

	
ansitions are possible, the leading event in the queue takes precedence.

A deferrable event is shown by l isting it within th e state followed by a slash and the
sp� ecial operation de

A
fer. I

"
f the event occurs, it is saved and it recurs when the object

tr
	

ansitions to another state, where it may be deferred again. When the object reaches a
state � in which the event is not deferred, it must be accepted or lost. The indication may
b

�
e placed on a composite state or its equivalents, submachine and subactivity states, in

which� case it remains deferrable throughout the composite state. A contained transition
may still be triggered by a deferrable event, whereupon it is removed from the queue.

Turn on
Ma
d

chine

Brew coffee

Pour Coffee

tu
	

rnOn

light goes out

c� offeePot

OMG-
�

UML V1.3 Control Icons March 2000 3-157

3

I
"
t is not necessary to defer events on action states, because these states are not

interruptible for event processing. In this case, both deferred and undeferred events that
occur� during the state are deferred until the state is completed. This means that the
tim

	
ing of the transition will be the same regardless of the relative order of the event

an� d the state completion, and regardless of whether events are deferred.

F
&

igure 3-79 Deferred Event

3.89.2 Mapping

A sig
�

nal receipt symbol maps into a state with no actions or internal transitions. Its
sp� ecif ied event maps to a trigger event on the outgoing transition between it and the
following state.

A signal send symbol maps into a SendAction on the incoming transition between it
an� d the previous state.

A d
�

eferred event attached to a state maps into a d
A

eferredEvent association from the
State to

�
 the Event.

Turn o
e

n
Machine

Brew coffee

Po
`

ur Coffee

turnOn

light goes out / defer

Ge
P

t Cups

light goes out

l
f
ight goes out / defer

3-
�

158 OMG-UML V1.3 March 2000

3

3.
�

90 Synch States

The SynchState notation may be omitted in Activity Diagrams when a SynchState has
on� e incoming and one outgoing transition, and an unlimited bound. The semantics and
m� apping are the same as if the synch state circles were included, as defined for state
machine notation.

F
&

igure 3-80 S

ynchronizing parallel activities

3.
�

91 Dynamic Invocation

3.91.1 Semantics

The actions of an action state or the activity graph of a subactivity state may be
e� xecuted more than once concurrently. The number of concurrent invocations is
d

�
etermined at runtime by a concurrency expression, which evaluates to a set of

ar� gument lists, one argument list for each invocation.

3.91.2 Notation

I
"
f the dynamic concurrency of an action or subactivity state is not always exactly one,

its multiplicity is shown in the upper right corner of the state. Otherwise, nothing is
sh� own.

Bu
g

ild

Install
Electricity

B
h

uild H ouse

In
i

spect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

In
i

stall
Electricity
Outside

Install
Walls

OMG-
�

UML V1.3 Conditional Forks March 2000 3-159

3

3.91.3 Mapping

A m
�

ultiplicity string in the upper right corner of an action or subactivity state maps to
the sam

	
e value in the dynamicMultiplicity attrib ute of the state. The presence of a

multiplicity string also maps to a value of true for the isDynamic attribute of the state.
I

"
f no multiplicity is present, the value of the isDynamic attribute is false.

3.92
�

Conditional Forks

In Activity Diagrams, transitions outgoing from forks may have guards. This means the
r* egion initiated by a fork transition might not start, and therefore is not required to
com� plete at the corresponding join. The usual notation and mapping for guards may be
usI ed on the transition outgoing from a fork.

Part 11 - Implementation Diagrams
Implementation diagrams show aspects of implementation, including source code
stru� cture and run-time implementation structure. They come in two forms:

1. component diagrams show the structure of the code itself and

2. deployment diagrams show the structure of the run-time system.

They can also be applied in a broader sense to business modeling in which the “code”
co� mponents are the business procedures and documents and the “ run-time structure” is
t

	
he organization units and resources (human and other) of the business.

3.
�

93 Component Diagram

3.93.1 Semantics

A component diagram shows the dependencies among software components, including
sou� rce code components, binary code components, and executable components. For a
b

�
usiness, “ software” components are taken in the broad sense to include business

p! rocedures and documents. A software module may be represented as a component
ster� eotype. Some components exist at compile time, some exist at link time, some exist
at r� un time, and some exist at more than one time. A compile-only component is one
that

	
is only meaningful at compile time. The run-time component in this case would be

a� n executable program.

A component diagram has only a type form, not an instance form. To show component
ins

tances, use a deployment diagram (possibly a degenerate one without nodes).

3.93.2 Notation

A component diagram is a graph of components connected by dependency
relationships. Components may also be connected to components by physical
con� tainment representing composition relationships.

