
Securing Digital Assets - Bitcoin Full Node API for kdb+

Jeremy Lucid

September 5, 2018

Table of Contents

1 Introduction . 1

2 Why run a Full Node . 2

3 Running and Connecting to a Full Node . 3
3.1 Configuring . 3
3.2 Installing the q library . 4
3.3 Watch only addresses . 5
3.4 Address Balances . 5
3.5 Transaction IDs . 6

4 Running Bitcoin Core Wallet in Offline Mode . 7
4.1 Address generation . 8
4.2 Encrypted wallet . 8
4.3 Creating a wallet backup . 9
4.4 Multi-Signature Wallet . 9
4.5 Proof of Ownership . 10

5 Receiving and Sending funds securely . 11
5.1 Create a receive address . 11
5.2 Confirming Received Funds . 12
5.3 Create Transaction . 13
5.4 Sign Transaction . 15
5.5 Broadcast Transaction . 16

1 Introduction

Bitcoin is a peer-to-peer, globally distributed and decentralised payments network where each par-
ticipant computer in the network runs a software which implements the Bitcoin protocol. This
protocol is used to control the issuance and secure transfer of bitcoin (BTC) tokens, the native cur-
rency of the network. In the original Satoshi whitepaper [1], Bitcoin is presented as an ”electronic
cash” which can be used in a permission-less way and transacted with across the internet without
requiring a trusted third party. As a new form of money, not issued by a government or central
authority, Bitcoin has often been accessed by its ability to perform the three traditional functions
of money: store of value, medium of exchange and unit of account.

1

Of these functions, the store of value proposition is one of the most interesting. Historically,
stores of value have been associated with scarce tangible commodities like gold, however, while
intangible, bitcoin shares with gold the property of scarcity, albeit digital. Specifically, the rules
of the Bitcoin software ensure that bitcoin tokens exhibit a strict digital scarcity, with a maximum
total cap and disinflationary supply schedule which is mathematically regulated, predictable and
unchangable. Regardless of demand from investors and exchanges, new bitcoin supply remains
inelastic, in that the number of bitcoins mined into existence, roughly ever ten minutes, is inde-
pendent of demand. Even the ever increasing growth of the bitcoin mining industry, together with
technological advancements in bitcoin mining, cannot increase supply beyond what the protocol
rules permit. This strict adherence to a dis-inflationary monetary policy has likened Bitcoin to a
’digital-gold’, or ’hard money’ in monetary economics. In addition, the property of being purely
digital, and software driven, in turn makes Bitcoin highly extensible, meaning it can evolve and be
improved upon over time. Today, this extensibility can be clearly seen in the continued development
taking place on both the base protocol and layer-two protocols, such as the lightening network [2].

While exposure and usage of Bitcoin is increasing for both retail and institutional investors, still
many have expressed concern about how best to store this digital asset in a way which is secure
and legally compliant. Although many secure and user-friendly options such as hardware-wallets
are available for retail investors, enabling self custody, suitable third party Custodian services for
institutions are less further developed. In response to demand, specialised ’Crypto-Custodian’ ser-
vices are currently being developed by Nomura and Ledger, Xapo, Gemini and Coinbase. For such
Custodians, some of the major challenges include

� How best to safeguard such assets from a cyber security aspect. For example, making use of
cold storage solutions and multi-signature wallets.

� The technological infastructure required for maximum privacy and trust, notably full nodes
and wallet software.

� The end-to-end process of receiving funds, implementing access-control, managing funds and
providing auditable proof of ownership

One of the most essential and core tools for addressing these challenges are Bitcoin full nodes,
the topic of this paper. In particular, the following chapters will explore some of the general key
concepts and best practice methodologies with regards to Bitcoin security and full nodes. This
paper will demonstrate usage of the qbitcoind library, a q library designed to interact with the
Bitcoin Core full node and wallet implementations. While this demonstration focuses on Bitcoin,
the concepts can largely be applied across a wide range of cryptocurrency assets.

2 Why run a Full Node

Computers which participate in the Bitcoin network are called nodes, and those which fully verify
all of the rules of Bitcoin are called full nodes. These nodes are an integral software component of
the Bitcoin network and along with validating all transactions and blocks, also help relay them to
other nodes. The full node software is essential for users who wish to use Bitcoin in a trustless way
to maximise security, privacy and avail of the full Bitcoin functionality. Therefore, this software is
often run by individual Bitcoin users, miners, cryptocurrency exchanges, wallet providers, payment

2

https://github.com/jlucid/qbitcoind

processors and blockchain analytics providers.

Without running a full node, a user would be dependant on third party services, such as blockchain
explorer services, for all transactional information, block information and address balance infor-
mation. This reliance on a third party could result in receiving misleading information, or open
the possibility for man-in-the-middle attacks. Even the act of requesting transactional information
from a third party introduces a risk of revealing sensitive transactional and account information.
By running a full node, users can create their own transactions, monitor all incoming and outgoing
funds, confirm that all blocks and transactions follow the consensus rules, that there have been
no double spends, that the correct signatures are present on transactions, and that transactions
and blocks are in the correct data format. While maintaining a full node has associated hardware
requirements in terms of memory and bandwidth, see Full Node Setup, these costs can be viewed
as the cost of certainty, privacy and security when using Bitcoin.

In the following sections, some of the most recommended security practices for running a full
node securely and managing the core wallet will be described, together with examples on how to
perform particular actions using the qbitcoind library. This library can be used to communicate
with a node running on the same server. While qbitcoind is designed to be a convenient option for
q enthusiasts, dealing primariliy with q dictionary, list and table structures, the bitcoin-cli software
(a command line based RPC tool) should still be considered the most secure and functional.

3 Running and Connecting to a Full Node

The most popular and trusted implementation of full nodes is called Bitcoin Core, and its latest
release can be found on Github. To install and run a Bitcoin Core full node (bitcoind) follow the
instructions as described on the following webpage, Install. Upon startup the full node will connect
to multiple peers and begin downloading and validating the Bitcoin blockchain. In this paper, the
node will be used to perform the following tasks.

� Creating watch-only wallets, allowing address balances to be monitored without compromising
security

� Confirming the settlement of incoming funds and viewing transactional information on the
Bitcoin blockchain

� Creating and broadcasting transactions which were signed off-line

3.1 Configuring

The Bitcoin Core implementation, bitcoind, is a headless daemon which syncs the Bitcoin blockchain
on startup and provides a JSON-RPC interface to enable easy integration with other software or
payment systems. It can be interacted with by using the Bitcoin command line utility, bitcoin-cli,
or via HTTP JSON-RPC commands. To enable communication via JSON-RPC set the server=1
value in the bitcoin.conf file prior to startup, as shown below. By default, bitcoind will only
accept connections from other processes running on the same machine, and requires basic access
authentication when being communicated with. To enable username and password authentication,
set the rpc username and password values in the bitcoin.conf file before running the daemon.

3

https://bitcoin.org/en/full-node
https://github.com/bitcoin/bitcoin/releases
https://bitcoin.org/en/full-node

Instructions to be added to the bitcoin.conf file
[rpc]
Accept command line and JSON -RPC commands.
server =1
rpcuser=<username >
rpcpassword=<password >

Starting bitcoind on the command line
$bitcoind -daemon

3.2 Installing the q library

To load the qbitcoind library follow the instructions given on Github. The library can be loaded
using two methods, either by using the standard library loading package qutil, or by simply loading
the load.q script in the lib folder, \l load.q. Once loaded into a q session, this library can be
used to communicate directly with the node running on the localhost. Connections will only be
accepted after the rpc username and password values have been set. To set these credentials use the
.bitcoind.initPass function, as shown below, and ensure the values match those in the bitcoin.conf
file. To confirm authentication with the node is working correctly, run a simple command like
.bitcoind.getblockcount to retrieve the current block height.

q).utl.require "qbitcoind" // or q)\l /path/to/bitcoind/lib/load.q
q). bitcoind.initPass["MyUserName";"MyPassword"]
q). bitcoind.getblockcount []

result| 522825
error |
id | 0

To confirm the node has indeed made connections to other nodes on the network, call the
.bitcoind.getnetworkinfo function with no arguments. Below is shown a typical output of this
function, highlightng that 80 connections have been created with other network peers.

q). bitcoind.getnetworkinfo [][` result]
version | 160000f
subversion | "/Satoshi :0.16.0/"
protocolversion| 70015f
localservices | "000000000000040d"
localrelay | 1b
timeoffset | 0f
networkactive | 1b
connections | 80f

4

https://github.com/jlucid/qbitcoind
https://github.com/nugend/qutil

3.3 Watch only addresses

When the Bitcoin Core full node software is running online it is continuously validating transactions
and blocks, but it also has fully in-built wallet functionality allowing the user to create receive
addresses and manage funds. There are, however, security concerns to consider when using the
wallet functionality while the node is online. In particular, it is not recommended to generate or
store bitcoin private keys on an online computer as this greatly increases the risk of cyber theft.
A much better solution is to either generate the addresses on an offline hardware wallet device, or
run another instance of the bitcoind software on a completely offline computer, so as to securely
generate valid bitcoin addresses and sign transactions using the wallet functionality. To see how to
do this, go to Section - Offline wallet.

The online node can then be used, in conjunction, to monitor those addresses for incoming and
outgoing transactions, and to broadcast transactions which were signed offline. While this practice
will be explained in more detail in coming sections, for now we will focus on using the online full node
for creating watch-only wallets. Wallet addresses generated offline can be imported into the online
bitcoin node while keeping the private keeps on the offline wallet. Below the .bitcoind.importaddress
function is used to load an address into an account called ”Watch Only Addr One”.

// Arguments:
// 1. "script" (string ,required) The hex -encoded script (or address)
// 2. "label" (string ,optional ,default ="") An optional label
// 3. rescan (boolean ,optional ,default=true) Rescan the wallet
// 4. p2sh (boolean ,optional ,default=false) Add the P2SH version

q)Address:"37 cCd24chWjXSi7xmQahTzyGjbJauTp9xq"
q). bitcoind.importaddress[Address;"Watch Only Addr One"]

3.4 Address Balances

Once the previous watch-only address has been loaded, the wallet will continue to track all ingoing
and outgoing transactions to this address and keep track of the total balance. The balance can be
viewed using the .bitcoind.getbalance function, which takes three optional argument: the account
name, the minimum number of confirmations a transaction should have to be included, and whether
to include watch only addresses or not. In this case, we can specify the same wallet account name
as above, a minimum number of confirmations of 6 and a boolean value of 1b to include watch
only addresses. The balance on the address is reported in the results field. By using the node to
determine address balances, multiple accounts (whose private keys are kept in cold storage) can be
kept track of securely and without requiring a third party.

// Arguments:
// 1. account (string ,optional ,default ="") The acount name

5

// 2. minconf (int ,optional ,default ="") Min number of confirmations
// 3. watchonly (boolean ,optional ,default =0b) Include watchonly

q). bitcoind.getbalance["Watch Only Addr One";6;1b]
result| 0.1245
error |
id | 0

3.5 Transaction IDs

Transaction IDs (txid) are identification numbers associated with transactions on the Bitcoin
blockchain. They are always 32 bytes long and encoded in hexidecimal format. In Section -
Broadcast Transaction, a sample txid is returned when a new transaction is broadcast to the
Bitcoin network from the full node using the .bitcoind.sendrawtransaction function. To perform
a lookup against the local copy of the blockchain for this particular txid, we can use the .bit-
coind.getrawtransaction or .bitcoind.gettransaction functions, as shown below.

// Arguments:
// 1. "txid" (string ,required) The transaction id
// 2. verbose (bool ,optional ,default=false)
// If false , return string , else json object
// 3. "blockhash" (string ,optional) The block in which
// to look for the transaction

t:"78889 f97c5d105b5b5a13807d10438bab700db08cb88581a1f8bb3c10ad368e0"
q). bitcoind.getrawtransaction[t;1][` result]
txid | "78889 f97c5d105b5b5a13807d10438bab700db08cb885 ..."
hash | "8208 dc54d4a44d2d972a51246fcc61d38912f81015215 ..."
version | 2f
size | 192f
vsize | 110f
locktime | 0f

// Arguments:
// 1. "txid" (string ,required) The transaction id
// 2. "include_watchonly" (bool ,optional ,default=false) Whether to
// include watch -only addresses in balance calculation and details []

q). bitcoind.gettransaction[t;1b][`result]
amount | -0.01071
fee | -2.73e-06
confirmations | 3540f
blockhash | "0000000000000000002732151191 c6f43487f591 ..."
blockindex | 2825f
blocktime | 1.532991e+09

6

txid | "78889 f97c5d105b5b5a13807d10438bab700db08 ..."
walletconflicts | ()
time | 1.532988e+09
timereceived | 1.532988e+09
bip125 -replaceable| "no"

4 Running Bitcoin Core Wallet in Offline Mode

The Bitcoin Core software contains a secure digital wallet which can be used to generate wallet
addresses, store private keys, and create valid transactions. Running the bitcoin core wallet in an
offline mode is a highly recommended and necessary step to help mitigate the risk of cyber attacks,
malicous software, and help keep funds secure. This approach, also known as cold storage, involves
running the wallet software and storing the recovery wallet file (wallet.dat) in a secured place that
is not connected to the internet. This security step is followed by Custodians such as the Swiss
Crypto Vault, Xapo and multiple cryptocurrency exchanges. To run a bitcoin core wallet in offline
mode, instruct it to connect to the localhost, as shown below.

$bitcoind -connect =0

As in the previous case, when the node was run in an on-line mode, the same queries can be
used to confirm the blockchain had not been downloaded, nor any connections made with other
nodes.

q).utl.require "qbitcoind"
q). bitcoind.initPass["MyUserName";"MyPassword"]
q). bitcoind.getblockcount []

result| 0
error |
id | 0

q). bitcoind.getnetworkinfo [][` result]
version | 160000f
subversion | "/Satoshi :0.16.0/"
protocolversion| 70015f
localservices | "000000000000040d"
localrelay | 1b
timeoffset | 0f
networkactive | 1b
connections | 0f

7

4.1 Address generation

In order for a user to receive and store bitcoin payments, a valid bitcoin address needs to be created
by the wallet and associated with a given account. Multiple addresses can be used to segregate the
funds of a given user, and separate users. Below the .bitcoind.getnewaddress function is used to
generate a new valid address and associate it with the account ”Account One”.

// Arguments:
// 1. "account" (string , optional) DEPRECATED. The account
// name for the address to be linked to. If not provided ,
// the default account "" is used. It can also be set to
// the empty string "" to represent the default account.
// The account does not need to exist , it will be created if
// there is no account by the given name.
// 2. "address_type" (string , optional) The address type to use.
// Options are "legacy", "p2sh -segwit", and "bech32 ". Default is
// set by -addresstype.

q). bitcoind.getnewaddress["Account One";"bech32"]
result| "bc1qxuhlv9kpq9zz07xm0at2w44ene6la7qm2ew6un"
error | 0n
id | 0f

4.2 Encrypted wallet

In addition to cold storage, one of the main security features of the Bitcoin core wallet is the ability
to encrypt the wallet.dat file which contains the key pairs for each address, account information,
transaction information and more. When the wallet is encrypted then the private keys cannot
be viewed or used to create a transaction, even by someone with physical access to the machine.
Only when the wallet is decrypted can private keys be viewed and transactions generated. The
wallet.dat file can be encrypted using a pass phrase, as shown below. Note this will not protect
against keylogging hardware or software.

// Arguments:
// 1. "passphrase" (string) The pass phrase to encrypt wallet with.
// It must be at least 1 character , but should be long.

q). bitcoind.encryptwallet["My Encrypt Pass Phrase"]

Once the wallet is encrypted, a user with physical access is still unable to view the private key
of any address without entering the correct decrypt pass phrase. To illustrate, below an attempt is
made to display the private key associated with a particular wallet address which is unsuccessful.

8

// Arguments:
// 1. "address" (string , required)
// The bitcoin address for the private key

q)R:. bitcoind.dumpprivkey["3JtpCVqn8cXseSCXLEYdYwvxziSYQSabGd"]
q)R[`error][`message]
"Error:Please enter the wallet passphrase with walletpassphrase first"

To minimise risk while the wallet is decrypted, a timer can be set at the time of decryption
allowing the wallet to be accessed for a brief period of time. Below, the wallet is decrypted for a
period of 30 seconds using the .bitcoind.walletpassphase function.

// Arguments:
// 1. "passphrase" (string , required) The wallet passphrase
// 2. timeout (numeric , required) The time to keep the
// decryption key in seconds; capped at 100000000 (˜3 years).

q). bitcoind.walletpassphrase["My Encrypt Pass Phrase";30]

4.3 Creating a wallet backup

To mitigate the risk of data loss due to either computer failures or human mistakes, additional
recovery wallet files can be created at any time and stored offline across multiple physical locations
so there is no single point of failure to prevent recovery. Below, the .bitcoind.backupwallet function
is used to write a new wallet.dat file to a backup directory.

// Arguments:
// 1. "destination" (string) The destination directory or file

q). bitcoind.backupwallet["/home/btc/mybackup/backupDir/"]

4.4 Multi-Signature Wallet

Multi-Signature wallet addresses are one of the best known ways to secure crypto-assets. These
are addresses which require a number of private keys to be used together to move funds. The
multiple private keys can be stored across different physical locations and by multiple individuals,
minimising the risk of funds being stolen should a single private key be comprimised. Below, the
.bitcoind.addmultisigaddress function is used to generate a multi-sig address requiring two private
keys to perform a transaction.

9

// Arguments:
// 1. nrequired (numeric , required)
// The number of required signatures out of the n keys or addresses.
// 2. "keys" (string , required) A json array of bitcoin addresses
// or hex -encoded public keys
// [
// "address" (string) bitcoin address or hex -encoded public key
// ...,
//]
// 3. "account" (string , optional) DEPRECATED.
// An account to assign the addresses to.
// 4. "address_type" (string , optional) The address type to use.
// Options are "legacy", "p2sh -segwit", and "bech32 ".

q). bitcoind.getnewaddress["MSig Acc";"bech32"]
result| "bc1q8j05t0m04lv7gkn2crkeq7g5gq9xn0alk6p5lu"
q). bitcoind.getnewaddress["MSig Acc";"bech32"]
result| "bc1qmaadgvjrqj45u758rc8grfppdaedwshz38l46a"
q). bitcoind.getnewaddress["MSig Acc";"bech32"]
result| "bc1qgkvxclhgf2yw2snh0pw0sf9yutug9pxhjl304z"

q)addressOne:"bc1q8j05t0m04lv7gkn2crkeq7g5gq9xn0alk6p5lu"
q)addressTwo:"bc1qmaadgvjrqj45u758rc8grfppdaedwshz38l46a"
q)addressThree:"bc1qgkvxclhgf2yw2snh0pw0sf9yutug9pxhjl304z"
q)Keys:(addressOne;addressTwo;addressThree)

q). bitcoind.addmultisigaddress [2; Keys;"multiSig";"bech32"][`result]
address |
"bc1qvadv2tzue3nvxg7u2lmfg9mrevrd2jjq7pa7afkscuvjl2j2xnhqcqq4qn"

redeemScript|
"5221030030 f8b96f11da696e5d1cbfb13b7bf1055dee22e7eee523179a192446
f6d77121022fd014adef186d4e1a3df09146d9fc0da653fba5d42ae31233aa38
8be9e53fac21027c0a88252ac7b4345b7351e3daccf1965da3ea214fda6fa6ec
ceb5c45a5986e453ae"

4.5 Proof of Ownership

One requirement for any custodian provider is to be able to prove that they are in full control
over their clients funds. For Bitcoin, this requires the custodian to have full cryptographic control
over all assets, meaning they are in possession of the private keys associated with the addesses
which hold funds. The core wallet provides a simple and effecive way to provide this proof-of-
ownership through the use of digital signatures. In this case, a challenge message is signed using
the private key associated with a given address which holds funds. The challenge message, signed
message and public address can then be used to validate that the private key used in signing is
valid. If the signature is valid then the signer has control over the funds held on the adddress. In

10

the example below, a short challenge message containing the text ”Proof of Ownership”, is signed
using the .bitcoind.signmessage function, and the signed message subsequently validated using the
.bitcoind.validatemessage function. Validation can be performed independently.

// Arguments:
// 1. "address" (string ,required)
// The bitcoin address to use for the private key.
// 2. "message" (string ,required)
// The message to create a signature of.

// Sign Challenge Message with Private Key
q)walletAddr:"1CzqfiNq6u3aF2CPq9LRKQ6pFJFV5tDVrG"
q)challengeMsg:"Proof of Ownership"
q). bitcoind.signmessage[walletAddr;challengeMsg]
result| "H0Pz8ndn+HFZNNHUHahXZhfBRPuNi29tJWfb4XEoos9TE3riI5K ..."
error | 0n
id | 0f

// Arguments:
// 1. "address" (string ,required)
// The bitcoin address to use for the signature.
// 2. "signature "(string ,required) The signature provided
// by the signer in base 64 encoding (see signmessage).
// 3. "message" (string , required) The message that was signed.

// Verify Signed Message
q)signedMsg :. bitcoind.signmessage[walletAddr;challengeMsg][`result]
q). bitcoind.verifymessage[walletAddr;signedMsg;challengeMsg]
result| 1b
error | 0n
id | 0f

5 Receiving and Sending funds securely

5.1 Create a receive address

The first step in receiving funds securely is to generate a new valid bitcoin address using either
a hardware wallet, or by running the bitcoin core wallet in offline mode and using the command
below, as previously described in Section - Address Generation

// Offline wallet
q). bitcoind.getnewaddress["TestAddr";"bech32"]

11

result | bc1qkmp5q4v8vzkcke8dxryv2qa2uarytx4t4srrgh

Next, import this public address into the online node so that ingoing and outgoing funds can
be monitored, see Section - Watch Only Wallet

// Online Full node
q)receiveAddress:"bc1qkmp5q4v8vzkcke8dxryv2qa2uarytx4t4srrgh"
q). bitcoind.importaddress[receiveAddress;"Watch Only Address";0b;0b]
result|
error |
id | 0

Confirm that the address has been assigned to the correct account using the .bitcoind.getaccount
function.

// Arguments:
// 1. "address" (string , required)
// The bitcoin address for account lookup.

q). bitcoind.getaccount["bc1qkmp5q4v8vzkcke8dxryv2qa2uarytx4t4srrgh"]
result| "Watch Only Address"
error | 0n
id | 0f

5.2 Confirming Received Funds

Once the watch-only address has been added to the ”Watch Only Address” account then the
.bitcoind.listaccounts function can be used to confirm the total balance of bitcoin on that account.
The function takes two optional arguments, the first being the minimum number of confirmations
a transaction (minconf) must have in order for its balance to be counted, and the second being
a boolean flag indicating whether to include watch-only addresses in the result. The number of
confirmations is a measure of how many blocks deep the transaction is, the higher the number the
more confident you can be in the transactions finalisation. Most merchants opt for 6 confirmations
to be received before deeming funds confirmed. In the example below, we can see that for an
incoming transaction with just one confirmation the listaccounts function shows a positive balance
for a minconf of 1 but a zero balance for a minconf value of 6.

// Arguments:
// 1. minconf (numeric , optional , default =1) Only include
// transactions with at least this many confirmations
// 2. include_watchonly (bool , optional , default=false)

12

// Include balances in watch -only addresses (see 'importaddress ')

q). bitcoind.listaccounts [1;1b][`result]
Watch Only Address | 0.01071273

q). bitcoind.listaccounts [6;1b][`result]
Watch Only Address | 0f

Once funds have been confirmed the .bitcoind.listunspent function can be used to display the
amount of unspent funds held on a given address together with some important transactional
information such as the transaction identifier, txid. The function takes 3 arguments, the minimum
and maximum number of confirmations and the list of addresses to filter. Below the spendable flag
returns a value of 0b, which indicates the wallet does not have the private key to spend the output,
because it is stored safely on the offline computer.

// Arguments:
// 1. minconf (numeric , required) The minimum confirmations to filter
// 2. maxconf (numeric , required) The maximum confirmations to filter
// 3. addresses (string) A json array of bitcoin addresses to filter
// [
// "address" (string) bitcoin address
// ,...
//]

q)flip .bitcoind.listunspent [1;100000;()][` result]
txid | "ee9abf639bf459aea85fdf353a362b8f99

db1d6c048fe55b69935b89b4c490fa"
vout | 0
address | "bc1qkmp5q4v8vzkcke8dxryv2qa2uarytx4t4srrgh"
account | "Watch Only Address"
scriptPubKey | "0014 b6c340558760ad8b64ed30c8c503aae746459aab"
amount | 0.01071273
confirmations| 1
spendable | 0
solvable | 0
safe | 1

5.3 Create Transaction

Bitcoin transactions involve inputs and outputs, inputs are bitcoins you can combine together to
use in a transaction, and outputs are where you wish to send the bitcoin to. In the example below,
a transaction is created to spend the funds associated with the address in the previous section. The
.bitcoind.createrawtransaction function takes as a first input a dictionary called inputs into which
we add the transaction ID (txid) and vout as given in previously. The outputs variable contains

13

a dictionary containing as key the address to which bitcoin should be sent, and the amount. The
final two parameters are optional and correspond to the locktime and replacable values which are
out of the scope of this paper.

// Arguments:
// 1. "inputs" (array , required) A json array of json objects
// [
// {
// "txid ":"id", (string , required) The transaction id
// "vout":n, (numeric , required) The output number
// "sequence ":n (numeric , optional) The sequence number
// }
// ,...
//]
// 2. "outputs" (object , required) a json object with outputs
// {
// "address ": x.xxx , (numeric or string , required)
// The key is the bitcoin address ,
// the numeric value is the BTC amount
// "data": "hex" (string , required) The key is "data",
// the value is hex encoded data
// ,...
// }
// 3. locktime (numeric , optional , default =0) Raw locktime.
// Non -0 value also locktime -activates inputs
// 4. replaceable (boolean , optional , default=false)
// Marks this transaction as BIP125 replaceable.
// Allows this transaction to be replaced by a transaction
// with higher fees. If provided , it is an error if explicit
// sequence numbers are incompatible.

q)t:"ee9abf639bf459aea85fdf353a362b8f99db1d6c048fe55b69935b89b4c490fa"
q)sendToAddr:`bc1qzsg3qkd9r3986q96h7kgqhhfrps9hpa5a2yn8j
q)inputs:enlist `txid `vout!(t;0)
q)outputs :(enlist sendToAddr)! enlist 0.01071
q). bitcoind.createrawtransaction[inputs;outputs ;0;1b]
result|"0200000001 fa90c4b4895b93695be58f046c1ddb998f2b363a35df5fa8ae

59 f49b63bf9aee0000000000fdffffff0198571000000000001600141411
1059 a51c4a7d00babfac805ee918605b87b400000000"

error | 0n
id | 0f

14

5.4 Sign Transaction

Signing a transaction is the next important step in which the private key associated with the
spending addresses are required. And so, this step should be performed on an offline computer for
increased security.

// Arguments:
// 1. "hexstring" (string , required) The transaction hex string
// 2. "prevtxs" (string , optional) An json array of previous
// dependent transaction outputs
// [(json array of json objects , or 'null')
// {
// "txid ":"id", (string , required) The transaction id
// "vout":n, (numeric , required) The output number
// "scriptPubKey ": "hex", (string , required) script key
// "redeemScript ": "hex", (string , required) redeem script
// "amount ": value (numeric , required) The amount spent
// }
// ,...
//]
// 3. "privkeys" (string , optional) A json array of base58 -encoded
// private keys for signing
// [(json array of strings , or 'null' if none provided)
// "privatekey" (string) private key in base58 -encoding
// ,...
//]
// 4. "sighashtype" (string , optional , default=ALL)
// The signature hash type. Must be one of
// "ALL"
// "NONE"
// "SINGLE"
// "ALL|ANYONECANPAY"
// "NONE|ANYONECANPAY"
// "SINGLE|ANYONECANPAY"

q)hexstring:"0200000001 fa90c4b4895b93695be58f046c1ddb998f2b363a35df
5fa8ae59f49b63bf9aee0000000000fdffffff0198571000000000
0016001414111059 a51c4a7d00babfac805ee918605b87b400000000"

q)t:"ee9abf639bf459aea85fdf353a362b8f99db1d6c048fe55b69935b89b4c490fa"
q)scriptPubKey:"0014 b6c340558760ad8b64ed30c8c503aae746459aab"
q)prevtxsValues :(t;0f;scriptPubKey ;0.01071273)
q)prevtxs:enlist `txid `vout `scriptPubKey `amount!prevtxsValues
q)privkeys:enlist "Private Key Goes Here"
q). bitcoind.signrawtransaction[hexstring;prevtxs;privkeys]
result| `hex `complete !("02000000000101 fa9...";1b)

15

error | 0n
id | 0f

Note that the previous two steps of creating a transaction and signing a transactions can also
be performed on the Trezor hardware wallet using the ”Sign without Sending” option, and will
produce a similar hex value as shown in the example above.

5.5 Broadcast Transaction

The output hex string from the signing action can now be broadcast to the bitcoin network from
the online full node by using the .bitcoind.sendrawtransaction function. If successful, the result
value contains a transaction ID which can be used to track the state of the transaction on the
blockchain.

// Arguments:
// 1. "hexstring" (string , required)
// The hex string of the raw transaction)
// 2. allowhighfees (boolean , optional , default=false)
// Allow high fees

q). bitcoind.sendrawtransaction["02000000000101 fa9...";1b][`result]
"78889 f97c5d105b5b5a13807d10438bab700db08cb88581a1f8bb3c10ad368e0"

References

[1] Nakamoto, Satoshi, Bitcoin: A Peer-to-Peer Electronic Cash System
https://bitcoin.org/bitcoin.pdf

[2] Poon, Joseph and Dryja, Thaddeus The Bitcoin Lightning Network: Scalable Off-Chain In-
stant Payments
https://lightning.network/lightning-network-paper.pdf

16

	Introduction
	Why run a Full Node
	Running and Connecting to a Full Node
	Configuring
	Installing the q library
	Watch only addresses
	Address Balances
	Transaction IDs

	Running Bitcoin Core Wallet in Offline Mode
	Address generation
	Encrypted wallet
	Creating a wallet backup
	Multi-Signature Wallet
	Proof of Ownership

	Receiving and Sending funds securely
	Create a receive address
	Confirming Received Funds
	Create Transaction
	Sign Transaction
	Broadcast Transaction

