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Introduction

Welcome to the mrgsolve user guide. The user guide is the main documentation source for how mrgsolve works and
how to best use mrgsolve in your modeling and simulation project. As with most of the mrgsolve documentation,
this is a work in progress. I am currently working to transition this to more of a refrence resource, rather than
demonstration. So key content in the user guide includes chapter 2 on model specification, chapter 1 on model
components and chapter 5 on the simulation sequence. Installation is a big topic but we defer to the wiki page for
installation help since requirements tend to change frequently with new R releases. The other content is hopefully
helpful as well. I’m leaving it all in place for now, but will gradually transition the “how-to” and demo type content
over to the vignettes repository or the gallery repository (see below).

Please feel free to ask questions about anything mrgsolve-related on the issue tracker on the main github repo:
https://github.com/metrumresearchgroup/mrgsolve/issues.

Other Resources

• Main resource page: mrgsolve.github.io
• Vignettes: mrgsolve.github.io/vignettes
• R documentation: mrgsolve.github.io/docs
• Gallery: github.com/mrgsolve/gallery

This book was assembled on Thu Jan 31 10:36:12 2019.

5

https://github.com/metrumresearchgroup/mrgsolve/issues
https://mrgsolve.github.io
https://mrgsolve.github.io/vignettes
https://mrgsolve.github.io/docs
https://github.com/mrgsolve/gallery


6 CONTENTS



Chapter 1

Model components

This chapter details the different components of a model in mrgsolve.
Each component listed here is maintained within a “model object”. This is an updatable S4 object in R that
contains all of the basic information required to properly configure and simulate from the model.

1.1 Parameter list

The parameter list is an updatable set of name-value pairs. Referencing the name of an item in the parameter
list will substitute the current value associated with that name. While the name “paramter” may have a certain
connotation in the modeling world, in mrgsolve a “parameter” could be any category of numeric data: covariates
(e.g. WT, AGE, SEX), flags, other numeric data that we commonly call “parameter” (e.g. CL or VC).

The parameter list is declared in the code block $PARAM. While there may be multiple $PARAM blocks in a model,
these are condensed to a single parameter list stored in the model object. The names and numbers of all parameters
in the model must be declared at the time that the model is compiled. Also, a default value for each parameter
must be declared at model compile time, but the value of each parameter may be updated in one of several ways.

The parameters in a model object can be queried or updated with the param() function.

See also: 2.2.2, ?param in the R help system after loading mrgsolve.

1.1.1 Central role of parameters in planning simulations

The data items in the parameter list are more than just values associated with a name. When an name is added to
the parameter list, that name becomes a key word that mrgsolve will start to recognize in input data sets or when
manipulting the model object.

For example, when you want to include a covariate in the model, say weight (WT), you’ll include a column in the
data set called WT that will indicate the weight of this or that patient. It is crutial that you also list WT in $PARAM
with some default value. It helps if that value is sensible too.
When mrgsolve receives the data set prior to simulating, the WT column is matched up with the WT parameter
name. As mrgsolve works its way through the input data set (from person to person or from time to time), the
value of WT is updated so that the symbol WT in $MAIN or $ODE or $TABLE always points to the value of WT. If the WT
name is not in the parameter list, it won’t matter if it is in the data set or not.
Only listing a name in $PARAM gets it “into the game”.

Understanding the parameter update mechanism is very important for planning complicated simulations with
mrgsolve. Please see the information in 3.1 and in 6.3.

7



8 CHAPTER 1. MODEL COMPONENTS

1.2 Compartment list

Like the parameter list, the compartment list is a series of name-value pairs.
The compartment list defines the number, names, and initial values of each compartment in the model. The
names, numbers, and order of the compartment in a model is established at the time of model compile and
changes to the compartment list require re-compilation of the model.

Compartments are declared in one of two code blocks: $INIT and $CMT. Nominal initial values must be supplied
for each compartment. The main difference between $INIT and $CMT is that $CMT assumes a default initial value
of 0 for each compartment; thus only compartment names are entered. When using $INIT, both names and
values must be explicitly stated for each compartment.

The initial values for each compartment can be queried with the init() function. There are several different
ways to set the initial conditions in a model; section 6.2 illustrates several of these.

See also: section 6.2 and ?init in the R help system after loading mrgsolve.

1.3 Simulation time grid

The mrgsolve model object stores the parameters for the series of time points to be output for a a simulation.
This is the default output time grid that will be used if not over-ridden by another mechanism.

The elements of the simulation time grid are: start, end, delta and add. start, end, delta are passed to seq()
as from, to, and by, respectively. add is any arbitrary vector of additional times to simulate.

The simulation time grid in a model object may be queried with the stime() function or by printing the model
object to the R console.

See also section 3.2 for discussion of the simulation time grid and input data sets and 1.3.1 and 6.4 for using time
grid objects .

1.3.1 tgrid objects

A tgrid object has start, end, delta and add attributes.
This object is independent of the model object. tgrid objects may be created and combined to create complex
sampling designs.

See section 6.4 for examples and usage.

1.4 Solver settings

mrgsolve uses the DLSODA solver from ODEPACK. Several of the settings for that solver are stored in the model
object and passed to the solver when the problem is started. Settings include: atol, rtol, maxsteps, hmax, hmin,
ixpr, mxhnil.

1.4.1 atol

Absolute tolerance parameter. Adjust this value lower when you see state variables (compartments) that are
becoming very small and possibly turning negative. Adjusting atol to 1E-20 or 1E-30 will prevent this.
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1.4.2 rtol

Relative tolerance parameter. Adjust this value lower when you want more precision around the calculation of
state variables as the system advances.

1.4.3 maxsteps

This is the maximum number of steps the solver will take when advancing from one time to the next. If the solver
can’t make it in maxsteps it will stop and give an error message like this:

DLSODA- At current T (=R1), MXSTEP (=I1) steps
taken on this call before reaching TOUT

In above message, I =
[1] 2000
In above message, R =
[1] 0.0004049985
DLSODA- ISTATE (=I1) illegal.
In above message, I =
[1] -1
DLSODA- Run aborted.. apparent infinite loop.
Error in (function (x, data, idata = null_idata, carry.out = character(0), :

error from XERRWD

You might see this when you have to integrate along time between records in a data set. There isn’t necessarily a
problem, but the solver might have to advance over many doses to get to the next record and it only has a limited
number of steps it can take between those records before it stops with this error.

When you see this, increase maxsteps to 50000 or larger.

But keep in mind that sometimes the solver can’t make it to the next record because there are issues with the
model. It might take thousands of steps to make it 24 hours down the road. In that case, go back to the model
code and look for problems in how it is coded.

1.4.4 hmax

The maximum step size. By default, the solver will take steps of different sizes based on what is happening in the
simulation. Setting hmax tells the solver not to take a step larger than that value. So in a model where time is in
hours, reducing hmax to 0.1 will prevent the solver from taking a step larger than 0.1 hours as it tries to advance
to the next time. The will slow down the simulation a bit. But somtimes helpful when the solver starts taking large
steps. We don’t recommend using this routinely; for most applications, it should be reserved for troubleshooting
situations. If your model doesn’t give the results that you want without setting hmax, we’d recommend a new setup
where this isn’t needed.

1.4.5 hmin

The minimum step size. Only set this if you know what you’re doing.

1.4.6 ixpr

A flag to enable printing messages to the R console when the solver switches between non-stiff and stiff solving
modes. Rarely used.
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1.4.7 mxhnil

The maximum number of messages printed when the model is solving. If you have a lot of messages, keep working
on your model code.

1.5 Functions

There are three C++ functions that mrgsolve creates and manages: MAIN, ODE, TABLE. Each function is created
from an entire code block in the model specification file. The user is responsible for writing correct C++ code in
each of these blocks. mrgsolve will parse these blocks and augment this code with the necessary elements to
create the C++ function.

These functions may be specified in any order in the model specification file, but there is a specific calling order
for these functions. Recognizing and understanding this calling order will help understand how the different
pieces of the model specification fit together. During advance from time T1 to T2, first $MAIN is called, then $ODE
is called repeatedly as the solver finds the values of state variables at T2, and, once the solution is found, $TABLE
is called to calculate derived quantities at T2 and to specify variables that should be included in the model output.
So, it is helpful to write model specification files in the order:

1. $MAIN - before advancing the system
2. $ODE - the system advances to T2
3. $TABLE - after advancing the system

But the order in which they are coded will not affect model compilation or the simulation result.

1.5.1 The $MAIN function

The MAIN function gets called at least once before the the solver advances from the current time (T1) to the next
time (T2). In the MAIN function, the user may:

• Set initial conditions for any compartment
• Derive new variables to be used in the model
• Write covariate models
• Add between-subject variability to quantities to structural model paramters (e.g. CL or VC).

In addition to getting called once per record, the MAIN function may be called several times prior to starting the
simulation run. The MAIN function is also called whenever the user queries the compartment list.

See 2.2.5 for details.

1.5.2 The $ODE function

The ODE function is where the user writes the model differential equations.
Any derived quantity that depends on a state variable and is used to to calculate the differentation must be
calculated inside $ODE. But, this function is called repeatedly during the simulation run, so any calculation that
can be moved out of $ODE (for example: to $MAIN) should be.

See 2.2.6 for details.
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1.5.3 The $TABLE function

The TABLE function is called after the solver advances in time. The purpose of TABLE is to allow the user to interact
with the values of the state variables after advancing, potentially derive new variables, and to insert different
outputs into the table of simulated results.

See 2.2.7 for details.

1.6 Random effect variances

The mrgsolve model object keeps track of a arbitrary number of block matrices that are used to simulate variates
from multivariate normal distributions. Users can specify OMEGA matrices for simulating between-subject random
effects (one draw per individual) or SIGMA matrices for simulating within-subject random effects (one draw per
observation).

The user may use the revar() function to query both OMEGA and SIGMA.

1.6.1 OMEGA

The matrices are specified in $OMEGA blocks in the model specification file.

OMEGA may be queried or updated with the omat() function.

1.6.2 SIGMA

The matrices are specified in $SIGMA blocks in the model specification file.

SIGMA may be queried or updated by the smat() function.
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Chapter 2

Model specification

This chapter details the mrgsolve model specification format.

2.1 How /where to write a model

There are two ways to write your model:

2.1.1 Separate file

Open a text editor and type the model into a file with name that has the format <model-name>.cpp. This filename
format identifies a “name” for your model (<model-name>, the “stem” of the file name). The extension MUST be
.cpp (mrgsolve curently assumes the extension). Note: this whole file will be read and parsed, so everything in it
must be valid mrgsolve model specification elements.

Use the mread() function to read and parse this file. For the model called mymodel saved in mymodel.cpp (in the
current working directory), issue the command:

mod <- mread("mymodel")

mread() returns a model object from which you can simulate.

2.1.2 Inline / code

Often it is more convenient to write a model right in your R script. The model might look something like this:

code <- '
$PARAM CL = 1, VC = 20
$PKMODEL ncmt=1
'

Here, we created a character vector of length 1 and saved it to the R object called code. The name of this object is
irrelevant. But code will be passed into mrgsolve as the model definition. When mrgsolve gets a model like this
along with a “name” for the model, mrgsolve will write the code to a file called <model-name>.cpp and read it
right back in as if you had typed the code into this file (section 2.1.1).

To parse and load this model, use the mcode() command:

13
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mod <- mcode("mymodel", code)

mcode() is a convenience wrapper for mread(). mcode writes the code to mymodel.cpp in tempdir(), reads it
back in, compiles and loads.

The mcode call is equivalent to:

mod <- mread("mymodel", tempdir(), code)

For help, see ?mread , ?mcode in the R help system after loading mrgsolve.

2.2 Code blocks

2.2.1 About code blocks

Block identifier The mrgsolve model specification involves several different types of code that are written in
different blocks. A block starts with an identifier that starts with $BLOCKID, where BLOCKID is a character designator.
For example, parameters are written in $PARAM, differential equations are written in $ODE etc. Users are free to
include block code on the same line as the block identifier, but must include a space after the identifier. For
example, the parser will recognize $PARAM CL = 1 but not $PARAMCL=1 as parameters.

Different blocks may require different syntax. For example, code written in $PARAM will be parsed by the R parser
and will generally need to adhere to R syntax requirements. On the other hand, code in $MAIN, $ODE, and $TABLE
will be used to make functions in C++ and therefore will need to be valid C++ code, including terminal ; on each
line.

Block options Options may be specified on some code blocks that signal how the code is to be parsed or used in
the simulation.

2.2.2 $PARAM

Define the parameter list in the current model.

Example:

$PARAM CL = 1, VC = 20, KA = 1.2
KM = 25, VMAX = 400, FLAG = 1, WT = 80
SEX = 0, N = sqrt(25)

Annotated example:

$PARAM @annotated
CL : 1 : Clearance (L/hr)
VC : 20 : Volume of distribution (L)
KA: 1.2 : Absorption rate constant (1/hr)

Notes:

• Multiple blocks are allowed
• Values are evaluated by the R interperter

See also: section 2.2.17 and 2.2.3.

See ?param in the R help system after loading mrgsolve.
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2.2.3 $FIXED

Like $PARAM, $FIXED is used to specify name=value pairs. Unlike $PARAM, however, the values associated with
names in $FIXED are not able to be updated.

By default, names in $FIXED are associated with their value through a C++ preprocessor #define statement.

Usually, $FIXED is only used when there are a very large number of parameters (> 100 or 200). When some of these
parameters never need to be updated, you can move them to a $FIXED block to get a modest gain in efficiency of
the simulation.

Items in $FIXED will not be shown when parameters are queried.

Example:

$PARAM CL = 2, VC = 20

$FIXED
g = 9.8

Annotated example:

$FIXED @annotated
g : 9.8 : Acceleration due to gravity (m/s^2)

See also: section 2.2.2 and 2.2.17.

Notes:

• Multiple blocks are allowed
• Values are evaluated by the R interpreter

2.2.4 $CMT and $INIT

Declare the names of all compartments in the model.

• For $CMT give the names of compartments; initial values are assumed to be 0
• For $INIT give the name and initial value for all compartments

Examples:

$CMT GUT CENT RESPONSE

$INIT GUT = 0, CENT = 0, RESPONSE = 25

Annotated examples:

$CMT @annotated
GUT : Dosing compartment (mg)
CENT : Central PK compartment (mg)
RESPONSE : Response

$INIT @annotated
GUT : 0 : Dosing compartment (mg)
CENT : 0 : Central PK compartment (mg)
RESPONSE : 25 : Response

See ?init in the R help system after loading mrgsolve.
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2.2.5 $MAIN

This code block has two main purposes:

• Derive new algebraic relationships between parameters, random, effects and other derived variables
• Set the initial conditions for model compartments

For users who are familiar with NONMEM, $MAIN is similar to $PK.

$MAIN is wrapped into a C++ function and compiled / loaded by mrgsolve.
The MAIN function gets called just prior to advancing the system from the current time to the next time for
each record in the data set. $MAIN also gets called several times before starting the problem (NEWIND == 0) and
just prior to simulating each individual (NEWIND == 1). Finally, $MAIN gets called every time the model initial
conditions are queried with init().

New variables may be declared in $MAIN. See section 2.4 for details.

Examples:

$CMT CENT RESP

$PARAM KIN = 100, KOUT = 2, CL = 1, VC = 20

$MAIN

RESP_0 = KIN/KOUT;

double ke = CL/VC;

2.2.6 $ODE

Use $ODE to define model differential equations. For all compartments assign the value of the differential equation
to dxdt_CMT where CMT is the name of the compartment. The dxdt_ equation may be a function of model
parameters (via $PARAM), the current value of any compartment (CMT) or any user-derived variable.

For example:

$CMT GUT CENT

$ODE
dxdt_GUT = -KA*GUT;
dxdt_CENT = KA*GUT - KE*CENT;

It is important to make sure that there is a dxdt_ expression defined for every compartment listed in $CMT or
$INIT, even if it is dxdt_CMT = 0;

The $ODE function is called repeatedly during a simulation run. So it is wise to do as many calculations as
possible outside of $ODE, usually in $MAIN. But remember that any calculation that depends on an amount in a
compartment and helps determine the dxdt_ expression in a model must be written in $ODE.

New variables may be declared in $ODE. See section 2.4 for details.

For example:

$CMT CENT RESP
$PARAM VC = 100, KE = 0.2, KOUT = 2, KIN = 100
$ODE
double CP = CENT/VC;
double INH = CP/(IMAX+CP)
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dxdt_CENT = -KE*CENT;
dxdt_RESP = KIN*(1 - INH) - RESP*KOUT;

If the model needs to refer to the current time, use the SOLVERTIME variable.

Notes:

• $ODE is written in C++ syntax; every line must end in ;
• There may be only one $ODE block in a model

2.2.7 $TABLE

Use $TABLE to interact with parameters, compartment values, and other user-defined variables after the system
advances to the next time.

For example:

$TABLE
double CP = CENT/VC;

NOTE mrgsolve formerly had a table() macro for inserting derived values into simulated output. This macro
has been deprecated. The only way to insert derived values into the simulated output is via $CAPTURE.

NOTE When variables are marked for capture (see 2.2.10), the values of those variables are saved at the end
of the $TABLE function. This process is carried out automatically by mrgsolve and therefore requires no user
intervention.

2.2.8 $PREAMBLE

This is the fourth C++ code block. It is called once in two different settings:

1. Immediately prior to starting the simulation run
2. Immediately prior to calling $MAIN when calculating initial conditions

$PREAMBLE is a function that allows you to set up your C++ environment. It is only called one time during the
simulation run (right at the start). The code in this block is typically used to configure or initialize C++ variables
or data structures that were declared in $GLOBAL.

For example:

$PLUGIN Rcpp

$GLOBAL
namespace{

Rcpp::NumericVector x;
}

$PREAMBLE
x.push_back(1);
x.push_back(2);
x.push_back(3);

$MAIN
<some code that uses x vector>
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In this example, we want to use a numeric vector x and declare it in $GLOBAL so that we can use it anywhere else in
the code (the declaration is also made in an unnamed namespace to ensure that the variable is local to the model
file). Then, in $PREAMBLE, we put 3 numbers into the vector and we use x in $MAIN. Since $MAIN, $TABLE and
(especially) $ODE are called repeatedly as the simulation run procees, we put the initialization of x in $PREAMBLE
to make sure the initialization of x only happens once.

Notes:

• $PREAMBLE is written in C++ syntax; every line must end in ;
• There may be only one $PREAMBLE block in a model
• Like $MAIN, $ODE and $TABLE, double, int and bool variables initialized in $PREAMBLE are actually initial-

ized for global (within the model file)

See also: 2.2.16.

2.2.9 $PRED

Use $PRED to write a model without differential equations. In this block, write all algebraic expressions for derived
parameters, the response, and any other derived output quantities.

For example:

$PARAM TVE0 = 100, AUC50 = 100, IMAX = 40, AUC = 0

$PRED
double E0 = EVE0*exp(ETA(1));

double RESP = E0 - IMAX*AUC/(AUC50+AUC);

In this example, the entire model is written in the $PRED block. It is an error to include the following blocks when
$PRED is being used: $MAIN, $TABLE, $PKMODEL, $ODE, $CMT, $INIT.

See the section 3.5 for additional information regarding data sets in use with $PRED block.

2.2.10 $CAPTURE

This is a block to identify variables that should be captured in the simulated output.

For example:

$PARAM A = 1, B = 2

$MAIN
double C = 3;
bool yes = true;

$CAPTURE A B C yes

This construct will result in 4 additional columns in the simulated output with names A, B, C, and yes.

Users can also rename captured variables by providing a newname = oldname specification.

$PARAM WT = 70, THETA1 = 2.2

$MAIN
double CL = THETA1*pow(WT/70,0.75)*exp(ETA(1));
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$OMEGA 1

$CAPTURE WEIGHT = WT TVCL = THETA2 CL ETA(1)

In this example, the names of the captured data items will be WEIGHT,TVCL,CL,ETA_1.

Users can use the capture type to declare variables in $MAIN and $TABLE. capture types are really doubles, but
using that type will signal mrgsolve to automatically capture that value. For example:

$PARAM VC = 300

$CMT CENT

$TABLE
capture DV = (CENT/VC);

Since we used type capture for DV, DV will show up as a column in the simulated data.

Annotated example:

$MAIN
double CLi = TVCL*exp(ECL);

$TABLE
double DV = (CENT/VC)*exp(PROP);

$CAPTURE @annotated
CLi : Individual clearance (L/hr)
DV : Plasma concentration (mcg/ml)

New variables may be declared in $TABLE. See section 2.4 for details.

2.2.11 $OMEGA

See ?modMATRIX for more details about options for this block.

Use this block to enter variance/covariance matrices for subject-level random effects drawn from multivariate
normal distribution. All random effects are assumed to have mean of 0. Off diagonal elements for block matrices
are assumed to be correlation coefficients if the @correlation option is used (see below).

By default, a diagonal matrix is assumed. So:

$OMEGA
1 2 3

will generate a 3x3 omega matrix.

A block matrix may be entered by using block=TRUE. So:

$OMEGA @block
0.1 0.02 0.3

will generate a 2x2 matrix with covariance 0.02.

A 2x2 matrix where the off-diagonal element is a correlation, not a covariance can be specified like this:

$OMEGA @correlation
0.1 0.67 0.3
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Here, the correlation is 0.67. mrgsolve will calculate the covariances and substitute these values. The matrix will
be stored and used with these covariances, not the correlation.

A name can be assigned to each matrix:

$OMEGA @name PK @block
0.2 0.02 0.3

$OMEGA @name PD
0.1 0.2 0.3 0.5

to distinguish between multiple $OMEGA blocks and to facilitate updating later. The model in the preceeding
example will have two $OMEGA matrices: 2x2 and 4x4.

Annotated example (diagonal matrix):

$OMEGA @annotated
ECL: 0.09 : ETA on clearance
EVC: 0.19 : ETA on volume
EKA: 0.45 : ETA on absorption rate constant

Annotated example (block matrix):

$OMEGA @annotated @block
ECL: 0.09 : ETA on clearance
EVC: 0.001 0.19 : ETA on volume
EKA: 0.001 0.001 0.45 : ETA on absorption rate constant

Notes:

• Multiple $OMEGA blocks are allowed

2.2.12 $SIGMA

See ?modMATRIX for more details about options for this block.

Use this block to enter variance/covariance matrices for within-subject random effects drawn from multivariate
normal distribution. All random effects are assumed to have mean of 0. Off diagonal elements for block matrices
are assumed to be correlation coefficients if the @correlation option is used (see below).

The $SIGMA block functions like the $OMEGA block. See $OMEGA for details.

2.2.13 $SET

Use this code block to set different options for the simulation. Use a name=value format, where value is evaluated
by the R interpreter.

Most of the options that can be entered in $SET are passed to update.

For example:

$SET end = 240, delta=0.5, req=s(RESP)

Here, we set the simulation end time to 240, set the time difference between two adjacent time points to 0.25 time
units, and request only the RESPonse compartment in the simulated output.
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2.2.14 $GLOBAL

The $GLOBAL block is for writing C++ code that is outside of $MAIN, $ODE, and $TABLE.

There are no artificial limit on what sort of C++ code can go in $GLOBAL. However there are two more-common
uses:

1. Write #define preprocessor statements
2. Define global variables, usually variables other than double, bool, int (see 2.4)

Preprocessor directives Preprocessor #define directives are direct substibutions that the C++ preprocessor
makes prior to compiling your code.

For example:

$GLOBAL
#define CP (CENT/VC)

When this preprocessor directive is included, everywhere the preprocessor finds a CP token it will substitute
(CENT/VC). Both CENT and VC must be defined and the ratio of CENT to VC will be calculated depending on
whatever the current values are. Notice that we included parentheses around (CENT/VC).
This makes sure the ratio between the two is taken first, before any other operations involving CP.

Declaring global variables Sometimes, you may wish to use global variables and have more control over how
they get declared.

$GLOBAL
bool cure = false;

With this construct, the boolean variable cure is declared and defined right as the model is compiled.

2.2.15 $PKMODEL

This code block implements a one- or two-compartment PK model where the system is calculated by algebraic
equations, not ODEs. mrgsolve handles the calculations and an error is generated if both $PKMODEL and $ODE
blocks are included in the same model specification file.

This is an options-only block. The user must specify the number of compartments (1 or 2) to use in the model as
well as whether or not to include a depot dosing compartment. See ?PKMODEL for more details about this block,
including specific requirements for symbols that must be defined in the model specification file.

The $CMT or $INIT block must also be included with an appropriate number of compartments. Compartment
names, however, may be determined by the user.

Example:

$CMT GUT CENT PERIPH
$PKMODEL ncmt=2, depot=TRUE

As of version 0.8.2, we can alternatively specify the compartments right in the $PKMODEL block:

$PKMODEL cmt="GUT CENT PERIPH", depot = TRUE

Specifying three compartments with depot=TRUE implies ncmt=2. Notice that a separate $CMT block is not
appropriate when cmt is specified in $PKMODEL.
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2.2.16 $PLUGIN

Plugins are a way to add extensions to your mrgsolve model. When a plugin is recruited into the model, mrgsolve
may do one or more of the following:

• Link to another R package during compilation, including
– Rcpp to allow you to write Rcpp code in your specification
– mrgx to provide some extra C++ functions (see below)
– RcppArmadillo to both Rcpp and Armadillo in your specification
– BH to use boost headers

• Include appropriate header files during compilation
– For example, when the Rcpp plugin is called, mrgsolve will ‘#include <Rcpp.h> at the top of your

model file

You recruit a plugin in the $PLUGIN block

$PLUGIN Rcpp

The example above will bring Rcpp headers into the model code.

Plugins that you can use: - Rcpp to write any Rcpp code - mrgx additional functions provided by mrgsolve that
help use Rcpp in your model - RcppArmadillo to write any Rcpp or RcppArmadillo code - BH to link to boost
headers

Note that Rcpp, RcppArmadillo and BH only allow you to link to those headers. To take advantage of that, you will
need to know how to use Rcpp, boost etc. For the BH plugin, no headers are included for you; you must include
the proper headers you want to use in $GLOBAL.

Rcpp example

$PLUGIN Rcpp

$MAIN

if(NEWIND <=1) {
double wt = R::rnorm(70,20);
double sex = R::rbinom(1,0.51);

}

mrgx

For example

$PLUGIN Rcpp mrgx

Functions provided by mrgx:

• T get<T>(std::string <pkgname>, std::string <objectname>)
– This gets an object of any Rcpp-representable type (T) from any package

• T get<T>(std::string <objectname)
– This gets an object of any Rcpp-representable type (T) from .GlobalEnv

• T get<T>(std::string <objectname>, databox& self)
– This gets an object of any Rcpp-representable type (T) from $ENV

• double rnorm(double mean, double sd, double min, double max)
– Simulate one variate from a normal distribution that is between min and max

• double rlognorm(double mean, double sd, double min, double max)
– Same as mrgx::rnorm, but the simulated value is passed to exp after simulating

• Rcpp::Function mt_fun()
– Returns mrgsolve::mt_fun; this is usually used when declaring a R function in $GLOBAL
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– Example: Rcpp::Function print = mrgx::mt_fun();

IMPORTANT All of these functions are in the mrgx namespace. So, in order to call these functions you must include
mrgx:: namespace identifier to the front of the function name. For example, don’t use rnorm(50,20,40,140);
use mrgx::rnorm(50,20,40,140).

Get a numeric vector from $ENV

$PLUGIN Rcpp mrgx

$ENV
x <- c(1,2,3,4,5)

$GLOBAL
Rcpp::NumericVector x;

$PREAMBLE
x = mrgx::get<Rcpp::NumericVector>("x", self);

Get the print function from package:base

$PLUGIN Rcpp mrgx

$GLOBAL
Rcpp::Function print = mrgx::mt_fun();

$PREAMBLE
print = mrgx::get<Rcpp::Function>("base", "print");

$MAIN
print(self.rown);

Note that we declare the print in $GLOBAL and use the mt_fun() place holder.

Simulate truncated normal variables This simulates a weight that has mean 80, standard deviation 20 and is
greater than 40 and less than 140.

$PLUGIN Rcpp mrgx

$MAIN
if(NEWIND <=1) {

double WT = mrgx::rnorm(80,20,40,140);
}

See also: 2.2.8.

2.2.17 $THETA

Use this code block as an efficient way to add to the parameter list where names are determined by a prefix and a
number. By default, the prefix is THETA and the number sequentially numbers the input values.

For example:

$THETA
0.1 0.2 0.3

is equivalent to
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$PARAM THETA1 = 0.1, THETA2 = 0.2, THETA3 = 0.3

Annotated example:

$THETA @annotated
0.1 : Typical value of clearance (L/hr)
0.2 : Typical value of volume (L)
0.3 : Typical value of ka (1/hr)

To change the prefix, use @name directive

$THETA @name theta
0.1 0.2 0.3

would be equivalent to

$PARAM theta1 = 0.1, theta2 = 0.2, theta3 = 0.3

See also: 2.2.2 .

2.2.18 $NMXML

The $NMXML block lets you read and incorporate results from a NONMEM run into your mrgsolve model. From
the NONMEM run, THETA will be imported into your parameter list (see 2.2.2 and 1.1), OMEGA will be captured as
an $OMEGA block (2.2.11) and SIGMA will be captured as a $SIGMA block (2.2.12). Users may optionally omit any
one of these from being imported.

$NMXML contains a project argument and a run argument. By default, the estimates are read from from the
file project/run/run.xml. That is, it is assumed that there is a directory named run that is inside the project
directory where $NMXML will find run.xml. Your NONMEM run directories may not be organized in a way that is
compatible with this default. In that case, you will need to provide the file argument, which should be the path
to the run.xml file, either as a full path or as a path relative to the current working directory.

For help on the arguments / options for $NMXML, please see the ?nmxml help topic in your R session after loading
the mrgsolve package.

An example

There is a NONMEM run embedded in the mrgsolve package

path <- file.path(path.package("mrgsolve"),"nonmem")
list.files(path, recursive=TRUE)

. [1] "1005/1005.cat" "1005/1005.coi" "1005/1005.cor"

. [4] "1005/1005.cov" "1005/1005.cpu" "1005/1005.ctl"

. [7] "1005/1005.ext" "1005/1005.grd" "1005/1005.lst"

. [10] "1005/1005.phi" "1005/1005.shk" "1005/1005.shm"

. [13] "1005/1005.tab" "1005/1005.xml" "1005/1005par.tab"

. [16] "1005/INTER"

We can create a mrgsolve control stream that will import THETA, OMEGA and SIGMA from that run using the $NMXML
code block.

code <- '
$NMXML
run = 1005
project = path
olabels = s_(ECL, EVC, EKA)
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slabels = s_(PROP, ADD)

$MAIN
double CL = THETA1*exp(ECL);
double V2 = THETA2*exp(EVC);
double KA = THETA3*exp(EKA);
double Q = THETA4;
double V3 = THETA5;

$PKMODEL ncmt=2, depot=TRUE

$CMT GUT CENT PERIPH

$TABLE
double CP = (CENT/V2)*(1+PROP) + ADD/5;

$CAPTURE CP

$SET delta=4, end=96
'

NOTE: in order to use this code, we need to install the XML package.

mod <- mcode("nmxml", code, quiet=TRUE)

. Loading required namespace: xml2
mod

.

.

. ------------ mrgsolve model object (unix) ------------

. project: /private/var/fol.../T/RtmpZVDJz0

. source: nmxml.cpp

. shared object: nmxml-so-1578133f4dbd3

.

. time: start: 0 end: 96 delta: 4

. add: <none>

. tscale: 1

.

. compartments: GUT CENT PERIPH [3]

. parameters: THETA1 THETA2 THETA3 THETA4 THETA5

. THETA6 THETA7 [7]

. omega: 3x3

. sigma: 2x2

.

. solver: atol: 1e-08 rtol: 1e-08

. maxsteps: 5000 hmin: 0 hmax: 0
param(mod)

.

. Model parameters (N=7):

. name value . name value

. THETA1 9.51 | THETA5 113

. THETA2 22.8 | THETA6 1.02
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. THETA3 0.0714 | THETA7 1.19

. THETA4 3.47 | . .
revar(mod)

. $omega

. $...

. [,1] [,2] [,3]

. ECL: 0.21387884 0.12077020 -0.01162777

. EVC: 0.12077020 0.09451047 -0.03720637

. EKA: -0.01162777 -0.03720637 0.04656315

.

.

. $sigma

. $...

. [,1] [,2]

. PROP: 0.04917071 0.0000000

. ADD: 0.00000000 0.2017688

An infusion into GUT:

set.seed(2922)
#+
mod %>%

ev(amt=1000, rate=1000/36, cmt="GUT") %>%
mrgsim(nid=10) %>%
plot
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2.2.19 $INCLUDE

To include your own header file(s) in a model use $INCLUDE
$INCLUDE
mystuff.h
otherstuff.h

or

$INCLUDE
mystuff.h, otherstuff.h

mrgsolve will insert proper #include preprocessor directives into the C++ code that gets compiled.

Requirements

• All header files listed in $INCLUDE are assumed (expected) to be under the project directory; don’t use
$INCLUDE for header files that are in any other location

• An error is generated if the header file does not exist
• An error is generated if any quotation marks are found in the file name (don’t use quotes around the file

name; mrgsolve will take care of that)
• A warning is issued if the header file does not end in .h
• When the header file is changed (MD5 checksum changes), the model will be forced to be rebuilt (recompiled)

when mread or mcode (but not mread_cache or mcode_cache) is called; this feature is only available for
header files listed in $INCLUDE (see below)

• Do not use $INCLUDE to include Rcpp, boost, RcppArmadillo or RcppEigen headers; use the appropriate
$PLUGIN instead

For applications that don’t fit into the requirements listed above, users can always include header files in the
model in $GLOBAL like this:

$GLOBAL
#include "/Users/me/libs/mystuff.h"

But be careful when doing this: if there are changes to mystuff.h but not to any other part of the model specifica-
tion, the model may not be fully compiled when calling mread. In this case, always use preclean=TRUE argument
to mread to force the model to be built when calling mread.

2.2.20 $ENV

This block is all R code (just as you would code in a stand-alone R script. The code is parsed and evaluated into a
new environment when the model is compiled. Objects inside $ENV can be utilized in different C++ functions
(see 2.2.16) or other parts of the simulation process.

For example:

$ENV

Sigma <- cmat(1,0.6,2)

mu <- c(2,4)

cama <- function(mod) {
mod %>%

ev(amt=100, ii=12, addl=10) %>%
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mrgsim(obsonly=TRUE,end=120)
}

2.3 Variables and Macros

This section describes some macros and internal variables that can be used in model specification files. It should
be clear from the usage examples which variables can be set by the user and which are to be read or checked. All
internal variables are pre-defined and pre-initialized. The user should never try to declare an internal variable;
this will always result in an compile-time error.

In the following section, we adopt the convention that CMT stands for a compartment in the model.

2.3.1 ID

The current subject identifier. ID is an alias for self.id.

2.3.2 TIME

Gives the time in the curent data set record. This is usually only used in $MAIN or $TABLE. TIME is an alias for
self.time. Contrast with SOLVERTIME.

2.3.3 SOLVERTIME

Gives the time of the current timestep taken by the solver. This is can only be used in $ODE. Contrast with TIME.

2.3.4 EVID

EVID is an event id indicator. mrgsolve recognized the following event IDs:

• 0 = an observation record
• 1 = a bolus or infusion dose
• 2 = other type event
• 3 = system reset
• 4 = system reset and dose
• 8 = replace

EVID is an alias for self.evid.

2.3.5 NEWIND

NEWIND is a new individual indicator, taking the following values:

• 0 for the first event record of the data set
• 1 for the first event record of a subsequent individual
• 2 for subsequent event record for an individual

For example:
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$GLOBAL
int counter = 0;

$MAIN
if(NEWIND <=1) {

counter = 0;
}

NEWIND is an alias for self.newind.

2.3.6 self.cmt

The current compartment number regardless of whether it was given as cmt or CMT in the data set. There is no
alias for self.cmt.

For example:

$TABLE
double DV = CENT/VC + EPS(1);
if(self.cmt==3) DV = RESPOSE + EPS(2);

2.3.7 self.amt

The current amt value regardless of whether it was given as amt or AMT in the data set. There is no alias for
self.amt.

2.3.8 self.nid

The number of IDs in the data set.

2.3.9 self.idn

The current id number. Numbers start at 0 and increase by one to self.nid-1.

2.3.10 self.nrow

The number of rows in the output data set.

2.3.11 self.rown

The current row number. Numbers start at 0 and increase by one to self.rown-1.

2.3.12 ETA(n)

ETA(n) is the value of the subject-level variate drawn from the model OMEGA matrix. ETA(1) through ETA(25)
have default values of zero so they may be used in a model even if appropriate OMEGA matrices have not been
provided.
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For example:

$OMEGA
1 2 3

$MAIN
double CL = TVCL*exp(ETA(1));
double VC = TVVC*exp(ETA(2));
double KA = TVKA*exp(ETA(3));

Here, we have a 3x3 OMEGA matrix. ETA(1), ETA(2), and ETA(3) will be populated with variates drawn from this
matrix. ETA(4) through ETA(25) will be populated with zero.

2.3.13 EPS(n)

EPS(n) holds the current value of the observation-level random variates drawn from SIGMA. The basic setup is
the same as detailed in ETA(n).

Example:

$CMT CENT

$PARAM CL=1, VC=20

$SIGMA
labels=s(ADD,PROP)
25 0.0025

$TABLE
double DV = (CENT/VC)*(1+PROP) + ADD;

2.3.14 table(name)

This macro has been deprecated. Users should not use code like this:

$TABLE
table(CP) = CENT/VC;

But rather this:

$TABLE
double CP = CENT/VC;

$CAPTURE CP

See: section 2.2.7 and also 2.2.10

2.3.15 F_CMT

For the CMT compartment, sets the bioavability fraction for that compartment.

Example:

$MAIN
F_CENT = 0.7;
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2.3.16 ALAG_CMT

For the CMT compartment, sets the lag time for doses into that compartment.

Example:

$MAIN
ALAG_CENT = 0.25;

2.3.17 R_CMT

For the CMT compartment, sets the infusion rate for that compartment. The infusion rate is only set via R_CMT
when rate in the data set or event object is set to -1.

Example:

$MAIN
R_CENT = 100;

2.3.18 D_CMT

For the CMT compartment, sets the infusion duration for that compartment.
The infusion duration is only set via D_CMT when rate in the data set or event object is set to -2.

Example:

$MAIN
D_CENT = 2;

2.4 Derive new variables

New C++ variables may be derived in $GLOBAL, $MAIN, $ODE and $TABLE. Because these are C++ variables, the
type of variable being used must be declared. For the vast majority of applications, the double type is used
(double-precision numeric value).

$MAIN
double CLi = TVCL*exp(ETA(1));

We want CLi to be a numeric value, so we use double. To derived a boolean variable, write

$MAIN
bool cure = false;

When variables of the type double, int, and bool are declared and initialized in $MAIN, $ODE, $TABLE, mrgsolve
will detect those declarations, and modify the code so that the variables are actually declared in $GLOBAL not in
$MAIN, $ODE, or $TABLE. This is done so that variables declared in one code block can be read and modified in
another code block.

For example, the following code:

$MAIN
double CLi = TVCL*exp(ETA(1));

gets translated to:
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$GLOBAL
double CLi;

$MAIN
CLi = TVCL*exp(ETA(1));

This way, we can still read CLi in $TABLE:

$MAIN
double CLi = TVCL*exp(ETA(1));
double VCi = TVVC*exp(ETA(2));

$TABLE
double KEi = CLi/VCi;

$CAPTURE KEi

To declare a variable that is local to a particular code block:

$MAIN
localdouble CLi = TVCL*exp(ETA(1));

2.5 Examples

The following sections show example model specification. The intention is to show how the different blocks,
macros and variables can work together to make a functional model. Some models are given purely for illustrative
purpose and may not be particularly useful in application.

2.5.1 Simple PK model

Notes:

• Basic PK parameters are declared in $PARAM; every parameter needs to be assigned a value
• Two compartments GUT and CENT are declared in $CMT; using $CMT assumes that both compartments start

with 0 mass
• Because we declared GUT and CENT as compartments, we write dxdt_ equations for both in $ODE
• In $ODE, we refer to parameters (CL/VC/KA) and the amounts in each compartment at any particular time

(GUT and CENT)
• $ODE should be C++ code; each line ends in ;
• We derive a variable called CP in $TABLE and $CAPTURE that value so that it appears in the simulated output

$PARAM CL = 1, VC = 30, KA = 1.3

$CMT GUT CENT

$ODE

dxdt_GUT = -KA*GUT;
dxdt_CENT = KA*GUT - (CL/VC)*CENT;

$TABLE
double CP = CENT/VC;
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$CAPTURE CP

2.5.2 PK/PD model

Notes:

• We use a preprocessor #define directive in $GLOBAL; everywhere in the model where a CP token is found,
the expression (CENT/VC) . . . with parentheses . . . is inserted

• We write the initial value for the RESP compartment in $MAIN as a function of two parameters KIN/KOUT
• A new variable - INH- is declared and used in $ODE
• Since CP is defined as CENT/VC, we can “capture” that name/value in $CAPTURE
• Both $MAIN and $ODE are C++ code blocks; don’t forget to add the ; at the end of each statement

$PARAM CL = 1, VC = 30, KA = 1.3
KIN = 100, KOUT = 2, IC50 = 2

$GLOBAL
#define CP (CENT/VC)

$CMT GUT CENT RESP

$MAIN
RESP_0 = KIN/KOUT;

$ODE

double INH = CP/(IC50+CP);

dxdt_GUT = -KA*GUT;
dxdt_CENT = KA*GUT - (CL/VC)*CENT;
dxdt_RESP = KIN*(1-INH) - KOUT*CENT;

$CAPTURE CP

2.5.3 Population PK model with covariates and IOV

Notes:

• Use $SET to set the simulation time grid from 0 to 240 by 0.1
• There are two $OMEGA matrices; we name them IIV and IOV
• The IIV “etas” are labeled as ECL/EVC/EKA; these are aliases to ETA(1)/ETA(2)/ETA(3). The IOV matrix is

unlabeled; we must refer to ETA(4)/ETA(5) for this
• Because ETA(1) and ETA(2) are labeled, we can “capture” them as ECL and EVC
• We added zeros for both $OMEGA matrices; all the etas will be zero until we populate those matrices (section

6.8)

$PARAM TVCL = 1.3, TVVC=28, TVKA=0.6, WT=70, OCC=1

$SET delta=0.1, end=240
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$CMT GUT CENT

$MAIN

double IOV = IOV1
if(OCC==2) IOV = IOV2;

double CLi = exp(log(TVCL) + 0.75*log(WT/70) + ECL + IOV);
double VCi = exp(log(TVVC) + EVC;
double KAi = exp(log(TVKA) + EKA;

$OMEGA @name IIV @labels ECL EVC EKA
0 0 0
$OMEGA @name IOV @labels IOV1 IOV2
0 0

$SIGMA 0

$ODE
dxdt_GUT = -KAi*GUT;
dxdt_CENT = KAi*GUT - (CLi/VCi)*CENT;

$TABLE
double CP = CENT/VCi;

$CAPTURE IOV ECL EVC CP
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Input data sets

Input data sets are used in mrgsolve to allow the user to specify interventions and input data items.

Please see the mrgsolve help topic ?exdatasets for examples of all of the data sets discussed in this chapter. The
example data sets are embedded in the mrgsolve package and may be used at any time.

3.1 Overview

Data sets are the primary mechanism for establishing the scope of your simulations in mrsolve, including
individuals, interventions, observation times, and parameter values. For both data_set and idata_set (see
below), you may include columns in the data sets that have the same names as the parameters in your model
(section 1.1, 2.2.2). mrgsolve can recognize these columns and update the parameter list as the simulation
proceeds. This process is of key importance when planning and executing complex simulations and is further
discussed in section 6.3.

3.2 Event data sets (data)

Event data sets are entered as data.frame, with one event per row. Events may be observations, doses, or other
type events. In mrgsolve documentation, we refer to these data sets as data or data_set (after the function that
is used to associate the data set with the model object prior to simulation).

Event data sets have several special column names that mrgsolve is always aware of:

• ID the subject id. This id does not need to be unique in the data_set: mrgsolve detects an new individual
when the current value of ID is different from the immediate preceeding value of ID. However, we always
recommend using unique ID.

• time or TIME: states the time of the data record

• evid or EVID: the event id indicator. evid can take the values:

– 0 = observation record
– 1 = dosing event (bolus or infusion)
– 2 = other type event, with solver stop and restart
– 3 = system reset
– 4 = reset and dose
– 8 = replace the amount in the compartment with amt

• amt or AMT: the dose amount (if evid==1)
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• cmt or CMT: the dosing compartment number. This may also be a character value naming the compartment
name. The compartment number must be consistent with the number of compartments in the model for
dosing records (evid==1).
For observation records, a cmt value of 0 is acceptable. Use a negative compartment number with evid 2 to
turn a compartment off.

• rate or RATE: if non-zero and evid=1 or evid=4, implements a zero-order infusion of duration
F_CMT*amt/rate, where F_CMT is the bioavailability fraction for the dosing compartment. Use rate = -1
to model the infusion rate and rate = -2 to model the infusion duration, both in $MAIN (see sections 2.2.5,
2.3.15,2.3.17, 2.3.18).

• ii or II: inter-dose interval; ii=24 means daily dosing when the model time unit is hours

• addl or ADDL: additional doses; a non-zero value in addl requires non-zero ii on the same record

• ss or SS steady state indicator; use 1 to implement steady-state dosing; 0 otherwise. mrgsolve also recoginzes
dosing records where ss=2. This allows combination of different steady state dosing regimens under linear
kinetics (e.g. 10 mg QAM and 20 mg QPM daily to steady state).

The column names in the preceeding list were written either as lower case form (e.g. amt) or upper case form (e.g.
AMT). Either may be used, however the data set will be checked for consistency of usage. An error will be issued in
case a mixture of lower and upper case names are found.

In addition to these special column names, mrgsolve will recognize columns in data_set that have the same
name as items in the parameter list (see 2.2.2 and 1.1). When mrgsolve sees that the names match up, it will
update the values of those matching names based on what it finds as it moves through the data set (see section
??(topic-parameter-update)).

3.2.1 Two types of data_set

mrgsolve distinguishes between two types of data sets: data sets that have at least one observation record (evid=0)
and data sets that have no records with evid=0.

• Full data sets have a mix of observations and dosing events (likely, but not required). When mrgsolve finds
one record with evid=0, it assumes that ALL output observation times are to come from the data set. In
this case the simulation output time grid discussed in 1.3 is ignored and only observations found in the
data set appear in the simulated output. Use full data sets when you want a highly customized sampling
schedule or you are working with a clinical data set.

• Condensed data sets have no records with evid=0. In this case, mrgsolve will fill the simulated output with
observations at times specified by the output time grid ( section 1.3 and see section 6.5). These are very
convenient to use because there is less data assembly burden and output data sets can easily be created with
very dense sampling scheme or highly customised sampling schemes with very little work. Use a condensed
data set when you want a uniform set of sampling times for all subjects in the data set.

Example of condensed data set data(extran1)

data(extran1)
extran1

. ID amt cmt time addl ii rate evid

. 1 1 1000 1 0 3 24 0 1

. 2 2 1000 2 0 0 0 20 1

. 3 3 1000 1 0 0 0 0 1

. 4 3 500 1 24 0 0 0 1

. 5 3 500 1 48 0 0 0 1

. 6 3 1000 1 72 0 0 0 1

. 7 4 2000 2 0 2 48 100 1
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. 8 5 1000 1 0 0 0 0 1

. 9 5 5000 1 24 0 0 60 1

See ?exdatasets in the R help system after loading mrgsolve.

Example of full data set data(extran1)

data(exTheoph)
head(exTheoph)

. ID WT Dose time conc cmt amt evid

. 1 1 79.6 4.02 0.00 0.00 1 4.02 1

. 2 1 79.6 4.02 0.25 2.84 0 0.00 0

. 3 1 79.6 4.02 0.57 6.57 0 0.00 0

. 4 1 79.6 4.02 1.12 10.50 0 0.00 0

. 5 1 79.6 4.02 2.02 9.66 0 0.00 0

. 6 1 79.6 4.02 3.82 8.58 0 0.00 0

See ?exdatasets in the R help system after loading mrgsolve.

Augmenting observations in a clinical data set Occassionally, we want to simulate from a clinical data set (with
observation records as actually observed in a population of patients) but we also want to augment those observa-
tions with a regular sequence of times (for example, to make a smooth profile on a plot). In that case, you can set
obsaug = TRUE when calling mrgsim.

For example:

mod <- mrgsolve:::house()

out <-
mod %>%

data_set(exTheoph, ID==1) %>%
carry.out(a.u.g) %>%
obsaug %>%
mrgsim(end=24, delta=1)

out

. Model: housemodel

. Dim: 36 x 8

. Time: 0 to 24.37

. ID: 1

. ID time a.u.g GUT CENT RESP DV CP

. [1,] 1 0.00 1 0.0000 0.000 50.00 0.00000 0.00000

. [2,] 1 0.00 0 4.0200 0.000 50.00 0.00000 0.00000

. [3,] 1 0.25 0 2.9781 1.035 49.95 0.04552 0.04552

. [4,] 1 0.57 0 2.0285 1.961 49.81 0.08624 0.08624

. [5,] 1 1.00 1 1.2108 2.729 49.61 0.12001 0.12001

. [6,] 1 1.12 0 1.0484 2.875 49.57 0.12643 0.12643

. [7,] 1 2.00 1 0.3647 3.422 49.34 0.15048 0.15048

. [8,] 1 2.02 0 0.3560 3.428 49.33 0.15072 0.15072
out %>% select(time) %>% unlist %>% unname

. [1] 0.00 0.00 0.25 0.57 1.00 1.12 2.00 2.02 3.00 3.82 4.00

. [12] 5.00 5.10 6.00 7.00 7.03 8.00 9.00 9.05 10.00 11.00 12.00

. [23] 12.12 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00

. [34] 23.00 24.00 24.37
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obsaug requests that the data set be augmented with observations from the simulation time grid. We can optionally
request an indicator called a.u.g to appear in the output that takes value of 1 for augmented observations and 0
for observations from the data set.

3.2.2 Sorting requirements

The IDs in the data set can appear in any order. However, an error will be generated if time on any record is less
that time on the previous record within any ID.

3.2.3 Creating data sets

The expand.ev function is provided by mrgsolve to help in creating data sets of a certain style. But any R code
that produces a valid data set is fine to use.

3.2.4 Example

To create a data set of 3 people each receiving 250 mg every 8 hours for 12 total doses:

data <- expand.ev(ID=1:3, amt=250, ii=8, addl=11)

data

. ID amt ii addl evid cmt time

. 1 1 250 8 11 1 1 0

. 2 2 250 8 11 1 1 0

. 3 3 250 8 11 1 1 0

Notice that expand.ev assumes that time is 0 and cmt is 1. To dose as a 2-hour infusion into the second compart-
ment use:

data <- expand.ev(ID=1:3, amt=250, rate=125, ii=8, addl=11, cmt=2)

data

. ID amt rate ii addl cmt evid time

. 1 1 250 125 8 11 2 1 0

. 2 2 250 125 8 11 2 1 0

. 3 3 250 125 8 11 2 1 0

Use data_set to pass the data into the problem.

For example:

mod <- mrgsolve:::house()

mod %>%
data_set(data) %>%
mrgsim(end=240) %>%
plot(CP~time|factor(ID))
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3.3 Individual data sets (idata)

Individual data sets carry individual-level data. This individual data is used in several different ways:

• Individual-level parameters: Just prior to simulating any individual, mrgsolve checks the appropriate row
in idata (if supplied) for any columns with parameter names. If parameter names are found, the parameter
list is updated and that update remains in effect for the duration of that individual’s data records.

• Individual- or group-level designs: Each individual or group of individual may be assigned a different
sampling design. For example, individuals in arm 1 may need to be simulated for 4 weeks whereas individuals
in arm 2 may need to be simulated for 8 weeks. idata may be used to identify one of several sampling
designs for each individual or group of individuals.

• Individual-level compartment initialization: if a model has a compartment called CMT and mrgsolve
finds a column in idata called CMT_0, the value of CMT_0 will be used to initialize that compartment
with, potentially a different value for each individual. Note that there are several other ways to initialize
compartments detailed in 6.2.

idata_set are entered as data.frame with one unique ID per row. In mrgsolve documentation, we refer to
individual data sets idata or idata_set to distinguish them from event data sets (see section 3.2).

An idata_set looks like this:

data(exidata)

exidata

. ID CL VC KA KOUT IC50 FOO

. 1 1 1.050 47.80 0.8390 2.450 1.280 4

. 2 2 0.730 30.10 0.0684 2.510 1.840 6

. 3 3 2.820 23.80 0.1180 3.880 2.480 5
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. 4 4 0.552 26.30 0.4950 1.180 0.977 2

. 5 5 0.483 4.36 0.1220 2.350 0.483 10

. 6 6 3.620 39.80 0.1260 1.890 4.240 1

. 7 7 0.395 12.10 0.0317 1.250 0.802 8

. 8 8 1.440 31.20 0.0931 4.030 1.310 7

. 9 9 2.570 18.20 0.0570 0.862 1.950 3

. 10 10 2.000 6.51 0.1540 3.220 0.699 9

Here we have an idata_set with 10 subjects, one subject per row. The ID column connects the data in each row
to the data in a data_set, which also requires an ID column.

The ID column is the only required column name in idata_set and ID should always be a unique identifier for
that row.

3.3.1 Use case

idata_set is usually helpful for implementing a batch of simulations when a data_set is not used. The batch
may be as a sensitivity analysis or for population simulation. Usually, an events object is used with idata, but it is
not required.

Use the idata_set function to pass the data set into the problem.

For example:

mod <- mrgsolve:::house()

mod %>%
idata_set(exidata) %>%
ev(amt=100) %>%
mrgsim %>% plot
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Because there were 10 subjects in the idata_set, we get 10 profiles in the output. Each “individual” or “unit”
received the same 100 mg dose. We would use a data_set to assign different doses to different individuals.

3.4 Numeric data only

The data.frame holding the data_set or idata_set may have any type of data in its columns. However, only
numeric data can actually get passed into the simulation engine. mrgsolve will automatically look for non-numeric
columns and drop them from the data_set or idata_set with a warning.

3.5 Data sets for use with $PRED

Because there are no compartments involved, there are relaxed data set requirements for models that utilize
$PRED.

• time or TIME is not required as input; when this is not supplied, a time column will be included in output
with value 0

• When time or TIME is supplied, it may be negative; but records must still be sorted by time or TIME
• If supplied, cmt or CMT must be zero
• An error is generated if rate or RATE is supplied
• An error is generated if ss or SS is supplied
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Simulated output

When mrgsim is used to simulate from a model, it returns an object with class mrgsims. It is an S4 object containing
a matrix of simulated output and a handful of other pieces of data related to the simulation run.

mrgsolve provides several methods for working with mrgsims objects or coercing the simulation matrix into
other R objects.

4.1 Coersion methods

• as.data.frame convert to data.frame
• as.matrix convert to matrix
• as.tbl convert to tbl
• as_data_frame convert to tbl via tibble package

4.2 Query methods

• head
• tail
• names
• dim
• summary
• show
• $

4.3 Methods for dplyr verbs

mrgsolve provides several S3 methods to make it possible to include dplyr verbs in your simulation pipeline.

For example

library(dplyr)

mod <- mrgsolve:::house()

mod %>%
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ev(amt=100) %>%
mrgsim %>%
filter(time >=10)

. # A tibble: 441 x 7

. ID time GUT CENT RESP DV CP

. <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

. 1 1 10 0.000614 63.3 37.7 3.16 3.16

. 2 1 10.2 0.000455 62.5 37.9 3.13 3.13

. 3 1 10.5 0.000337 61.7 38.0 3.09 3.09

. 4 1 10.8 0.000250 61.0 38.1 3.05 3.05

. 5 1 11 0.000185 60.2 38.2 3.01 3.01

. 6 1 11.2 0.000137 59.5 38.3 2.97 2.97

. 7 1 11.5 0.000102 58.7 38.4 2.94 2.94

. 8 1 11.8 0.0000752 58.0 38.5 2.90 2.90

. 9 1 12 0.0000557 57.3 38.7 2.86 2.86

. 10 1 12.2 0.0000413 56.6 38.8 2.83 2.83

. # ... with 431 more rows

Here, mrgsim returns an mrgsims object. When dplyr is also loaded, this object can be piped directly to
dplyr::summarise.

Other dplyr functions that can be used with mrgsims objects

• group_by
• mutate
• filter
• summarise
• select
• slice
• summarise.each (use a <dot> not an <underscore>)
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Simulation sequence

This section is intended to help the user understand the steps mrgsolve takes when working through a simulation
problem. The focus is on the order in which mrgsolve calls different user-defined functions as well as when
parameter updates and output writing happens during the simulation sequence.

5.1 Functions to call

The model specification results in the definition of four functions that mrgsolve calls during the simulation
sequence. Naming them by their code block identifiers, the functions are

1. $PREAMBLE
2. $MAIN
3. $ODE
4. $TABLE

5.2 Problem initiation

Just prior to starting the problem (when NEWIND is equal to 0), mrgsolve calls $PREAMBLE. This function is only
called once during the simulation sequence. The goal of $PREAMBLE is to allow the user to work with different C++
data structures to get them ready for the simulation run.

5.3 Subject initiation

After the $PREAMBLE call, mrgsolve simulates each ID in the data set, one after another. mrgsolve runs this
sequence just prior to simulating a given ID

1. Copy any parameters that are found in the idata_set to the working parameter list
2. Copy any parameters that are found in the data_set to the working parameter list, with the copy being

taken from the first actual data set row for that individual. If the first actual data set record in the data set
is not the first record for the individual, mrgsolve still copies from the first data set record as long as the
fillbak argument to mrgsim is TRUE.

3. Set initial estimates from the base initial estimate list
4. Copy initial estimates from idata_set if they are found there.
5. Call $MAIN
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6. Start simulating the records for that individual

5.4 Sequence for a single record

mrgsolve executes this sequence while working from record to record for a given ID

1. If nocb (next observation carried backward) is TRUE, then parameters are copied from the current record if
that is an actual data set record. Note that if nocb is FALSE then locf (first observation carried forward) is
assumed to be TRUE (see below). This is the last parameters will be copied from any input data set prior
to advancing the system (when locf is being used). Therefore, when parameter columns are found in
both an idata_set and a data_set, it will be the value found in the data_set that will overwrite both the
base list and any parameter value that was copied from an idata_set. It is not an error to have different
parameter values in an idata_set and a data-set, but the value found in the data_set will be used when
this happens. More on parameters and the parameter update sequence can be found in sections 6.3 and 1.1.

2. $MAIN is called
3. The system is advanced via $ODE or $PKMODEL, whichever one is invoked in the model specification file.
4. If the current record is a dosing record, the dose is implemented (e.g. bolus made or infusion started).
5. If the system is advancing according to locf, then parameters are copied from the current record if that is

an actual data set record. This is in contrast to nocb advance (see above).
6. The $TABLE function is called
7. If the current record is marked for inclusion in the simulated output, results are written to the output matrix.
8. Continue to the next record in the individual.
9. Once the last record is processed in an individual, a new individual is started.
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Topics

6.1 Annotated model specification

Here is a complete annotated mrgsolve model. The goal was to get in several of the most common blocks that
you might want to annotate. The different code blocks are rendered here separately for clarity in presentation;
but users should include all relevant blocks in a single file (or R string).

$PROB

# Final PK model

- Author: Pmetrics Scientist
- Client: Pharmaco, Inc.
- Date: `r Sys.Date()`
- NONMEM Run: 12345
- Structure: one compartment, first order absorption
- Implementation: closed form solutions
- Error model: Additive + proportional
- Covariates:

- WT on clearance
- SEX on volume
- Random effects on: `CL`, `V`, `KA`

[PARAM] @annotated
TVCL : 1.1 : Clearance (L/hr)
TVV : 35.6 : Volume of distribution (L)
TVKA : 1.35 : Absorption rate constant (1/hr)
WT : 70 : Weight (kg)
SEX : 1 : Male = 0, Female 1
WTCL : 0.75 : Exponent weight on CL
SEXV : 0.878 : Volume female/Volume male

[MAIN]
double CL = TVCL*pow(WT/70,WTCL)*exp(ECL);
double V = TVV *pow(SEXVC,SEX)*exp(EV);
double KA = TVKA*exp(EKA);

[OMEGA] @name OMGA @correlation @block
ECL : 1.23 : Random effect on CL
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EV : 0.67 0.4 : Random effect on V
EKA : 0.25 0.87 0.2 : Random effect on KA

[SIGMA] @name SGMA
PROP: 0.25 : Proportional residual error
ADD : 25 : Additive residual error

[CMT]
GUT : Dosing compartment (mg)
CENT : Central compartment (mg)

[PKMODEL] ncmt = 1, depot=TRUE

[TABLE]
capture IPRED = CENT/V;
double DV = IPRED*(1+PROP) + ADD;

[CAPTURE]
DV : Concentration (mg/L)
ECL : Random effect on CL
CL : Individual clearance (L/hr)

6.2 Set initial conditions

library(mrgsolve)
library(dplyr)

6.2.1 Summary

• mrgsolve keeps a base list of compartments and initial conditions that you can update either from R or
from inside the model specification

• When you use $CMT, the value in that base list is assumed to be 0 for every compartment
• mrgsolve will by default use the values in that base list when starting the problem
• When only the base list is available, every individual will get the same initial condition
• You can override this base list by including code in $MAIN to set the initial condition
• Most often, you do this so that the initial is calculated as a function of a parameter
• For example, $MAIN RESP_0 = KIN/KOUT; when KIN and KOUT have some value in $PARAM
• This code in $MAIN overwrites the value in the base list for the current ID
• For typical PK/PD type models, we most frequently initialize in $MAIN
• This is equivalent to what you might do in your NONMEM model
• For larger systems models, we often just set the initial value via the base list

6.2.2 Make a model only to examine init behavior

Note: IFLAG is my invention only for this demo. The demo is always responsible for setting and interpreting the
value (it is not reserved in any way and mrgsolve does not control the value).

For this demo

• Compartment A initial condition defaults to 0
• Compartment A initial condition will get set to BASE only if IFLAG > 0
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• Compartment A always stays at the initial condition

code <- '
$PARAM BASE=100, IFLAG = 0

$CMT A

$MAIN

if(IFLAG > 0) A_0 = BASE;

$ODE dxdt_A = 0;
'

mod <- mcode("init",code)

Check the initial condition

init(mod)

.

. Model initial conditions (N=1):

. name value . name value

. A (1) 0 | . ... .

Note:

• We used $CMT in the model spec; that implies that the base initial condition for A is set to 0
• In this chunk, the code in $MAIN doesn’t get run because IFLAG is 0
• So, if we don’t update something in $MAIN the initial condition is as we set it in the base list

mod %>% mrgsim %>% plot
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Next, we update the base initial condition for A to 50

Note:

• The code in $MAIN still doesn’t get run because IFLAG is 0

mod %>% init(A = 50) %>% mrgsim %>% plot
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Now, turn on IFLAG

Note:

• Now, that code in $MAIN gets run
• A_0 is set to the value of BASE

mod %>% param(IFLAG=1) %>% mrgsim %>% plot
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mod %>% param(IFLAG=1, BASE=300) %>% mrgsim %>% plot
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6.2.3 Example PK/PD model with initial condition

Just to be clear, there is no need to set any sort of flag to set the initial condition as seen here:

code <- '
$PARAM AUC=0, AUC50 = 75, KIN=200, KOUT=5

$CMT RESP

$MAIN
RESP_0 = KIN/KOUT;

$ODE

dxdt_RESP = KIN*(1-AUC/(AUC50+AUC)) - KOUT*RESP;

'

mod <- mcode("init2", code)

The initial condition is set to 40 per the values of KIN and KOUT
mod %>% mrgsim %>% plot
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Even when we change RESP_0 in R, the calculation in $MAIN gets the final say

mod %>% init(RESP=1E9) %>% mrgsim

. Model: init2

. Dim: 25 x 3

. Time: 0 to 24

. ID: 1
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. ID time RESP

. [1,] 1 0 40

. [2,] 1 1 40

. [3,] 1 2 40

. [4,] 1 3 40

. [5,] 1 4 40

. [6,] 1 5 40

. [7,] 1 6 40

. [8,] 1 7 40

6.2.4 Remember: calling init will let you check to see what is going on

• It’s a good idea to get in the habit of doing this when things aren’t clear
• init first takes the base initial condition list, then calls $MAIN and does any calculation you have in there;

so the result is the calculated initials

init(mod)

.

. Model initial conditions (N=1):

. name value . name value

. RESP (1) 0 | . ... .
mod %>% param(KIN=100) %>% init

.

. Model initial conditions (N=1):

. name value . name value

. RESP (1) 0 | . ... .

6.2.5 Set initial conditions via idata

Go back to house model

mod <- mrgsolve:::house()

init(mod)

.

. Model initial conditions (N=3):

. name value . name value

. CENT (2) 0 | RESP (3) 50

. GUT (1) 0 | . ... .

Notes

• In idata (only), include a column with CMT_0 (like you’d do in $MAIN).
• When each ID is simulated, the idata value will override the base initial list for that subject.
• But note that if CMT_0 is set in $MAIN, that will override the idata update.

idata <- expand.idata(CENT_0 = seq(0,25,1))

idata %>% head

. ID CENT_0

. 1 1 0
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out <-

mod %>%
idata_set(idata) %>%
mrgsim(end=40)

plot(out, CENT~.)
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6.3 Updating parameters

The parameter list was introduced in section 1.1 and the $PARAM code block was shown in 2.2.2. Once a model is
compiled, the names and number of parameters in a model is fixed. However, the values of parameters can be
changed: parameters may be updated either by the user (in R) or by mrgsolve (in the C++ simulation engine, as
the simulation proceeds).

• To update in R, use the param() function (see examples below)
• To have mrgsolve update the parameters, attach columns to your data set (either data_set or idata_set)

with the same name as items in the parameter list

Both of these methods are discussed and illustrated in the following sections.
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6.3.1 Parameter update hierarchy

As we noted above, new parameter values can come from three potential sources:

1. Modification of the (base) parameter list
2. A column in an idata_set that has the same name as a model parameter
3. A column in a data_set that has the same name as a model parameter

These sources for new parameter values are discussed below. We note here that the sources listed above are
listed in the order of the parameter update hierarchy. So, the base parameter list provides the value by default.
A parameter value coming from an idata_set will override the value in the base list. And a parameter value
coming from a data_set will override the value coming from the base list or an idata_set (in case a parameter
is listed in both the idata_set and the data_set). In other words, the hierarchy is:

1. base parameter list is the default
2. the idata_set overrides the base list
3. the data_set overrides the idata_set and the base list

The parameter update hierarchy is discussed in the following sections.

Base parameter set

• Every model has a base set of “parameters”
• These are named and set in $PARAM
• Parameters can only get into the parameter list in $PARAM (or $THETA)
• No changing the names or numbers of parameters once the model is compiled
• But, several ways to change the values

code <- '
$VCMT KYLE
$PARAM CL = 1.1, VC=23.1, KA=1.7, KM=10
$CAPTURE CL VC KA KM
'
mod <- mcode("tmp", code, warn=FALSE)

param(mod)

.

. Model parameters (N=4):

. name value . name value

. CL 1.1 | KM 10

. KA 1.7 | VC 23.1

The base parameter set is the default

The base parameter set allows you to run the model without entering any other data; there are some default
values in place.

The parameters in the base list can be changed or updated in R

Use the param() function to both set and get:

mod %<>% param(CL=2.1)

param(mod)

.

. Model parameters (N=4):

. name value . name value

. CL 2.1 | KM 10
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. KA 1.7 | VC 23.1

But whatever you’ve done in R, there is a base set (with values) to use. See section 6.3.2 for a more detailed
discussion of using param() to updated the base list.

Parameters can also be updated during the simulation run

Parameters can be updated by putting columns in idata set or data_set that have the same name as one of the
parameters in the parameter list. But there is no changing values in the base parameter set once the simulation
starts.
That is, the following model specification will not compile:

$PARAM CL = 2

$MAIN CL = 3; // ERROR

You cannot over-write the value of a parameter in the model specification.
Let mrgsolve do the updating.

mrgsolve always reverts to the base parameter set when starting work on a new individual.

Parameters updated from idata_set

When mrgsolve finds parameters in idata, it will update the base parameter list with those parameters prior to
starting that individual.

data(exidata)
head(exidata)

. ID CL VC KA KOUT IC50 FOO

. 1 1 1.050 47.80 0.8390 2.45 1.280 4

. 2 2 0.730 30.10 0.0684 2.51 1.840 6

. 3 3 2.820 23.80 0.1180 3.88 2.480 5

. 4 4 0.552 26.30 0.4950 1.18 0.977 2

. 5 5 0.483 4.36 0.1220 2.35 0.483 10

. 6 6 3.620 39.80 0.1260 1.89 4.240 1

Notice that there are several columns in exidata that match up with the names in the parameter list

names(exidata)

. [1] "ID" "CL" "VC" "KA" "KOUT" "IC50" "FOO"
names(param(mod))

. [1] "CL" "VC" "KA" "KM"

The matching names tell mrgsolve to update, assigning each individual their individual parameter.

out <-
mod %>%
idata_set(exidata) %>%
mrgsim(end=-1 , add=c(0,2))

out

. Model: tmp

. Dim: 20 x 7

. Time: 0 to 2

. ID: 10

. ID time KYLE CL VC KA KM

. 1: 1 0 0 1.050 47.8 0.8390 10
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. 2: 1 2 0 1.050 47.8 0.8390 10

. 3: 2 0 0 0.730 30.1 0.0684 10

. 4: 2 2 0 0.730 30.1 0.0684 10

. 5: 3 0 0 2.820 23.8 0.1180 10

. 6: 3 2 0 2.820 23.8 0.1180 10

. 7: 4 0 0 0.552 26.3 0.4950 10

. 8: 4 2 0 0.552 26.3 0.4950 10

Parameters updated from data_set

Like an idata set, we can put parameters on a data set

data <- expand.ev(amt=0, CL=c(1,2,3), VC=30)

out <-
mod %>%
data_set(data) %>%
obsonly %>%
mrgsim(end=-1, add=c(0,2))

out

. Model: tmp

. Dim: 6 x 7

. Time: 0 to 2

. ID: 3

. ID time KYLE CL VC KA KM

. 1: 1 0 0 1 30 1.7 10

. 2: 1 2 0 1 30 1.7 10

. 3: 2 0 0 2 30 1.7 10

. 4: 2 2 0 2 30 1.7 10

. 5: 3 0 0 3 30 1.7 10

. 6: 3 2 0 3 30 1.7 10

This is how we do time-varying parameters:

data <-
data_frame(CL=seq(1,5)) %>%
mutate(evid=0,ID=1,cmt=1,time=CL-1,amt=0)

. Warning: `data_frame()` is deprecated, use `tibble()`.

. This warning is displayed once per session.
mod %>%

data_set(data) %>%
mrgsim(end=-1)

. Model: tmp

. Dim: 5 x 7

. Time: 0 to 4

. ID: 1

. ID time KYLE CL VC KA KM

. 1: 1 0 0 1 23.1 1.7 10

. 2: 1 1 0 2 23.1 1.7 10

. 3: 1 2 0 3 23.1 1.7 10

. 4: 1 3 0 4 23.1 1.7 10

. 5: 1 4 0 5 23.1 1.7 10

For more information on time-varying covariates (parameters), see sections 6.9 and 5.
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Parameters are carried back when first record isn’t at time == 0

What about this?

data <- expand.ev(amt=100,time=24,CL=5,VC=32)
data

. ID amt time CL VC evid cmt

. 1 1 100 24 5 32 1 1

The first data record happens at time==24
mod %>%

data_set(data) %>%
mrgsim(end=-1, add=c(0,2))

. Model: tmp

. Dim: 3 x 7

. Time: 0 to 24

. ID: 1

. ID time KYLE CL VC KA KM

. 1: 1 0 0 5 32 1.7 10

. 2: 1 2 0 5 32 1.7 10

. 3: 1 24 100 5 32 1.7 10

Since the data set doesn’t start until time==5, we might think that CL doesn’t change from the base parameter set
until then.

But by default, mrgsolve carries those parameter values back to the start of the simulation. This is by design . . .
by far the more useful configuration.

If you wanted the base parameter set in play until that first data set record, do this:

mod %>%
data_set(data) %>%
mrgsim(end=-1,add=c(0,2), filbak=FALSE)

. Model: tmp

. Dim: 3 x 7

. Time: 0 to 24

. ID: 1

. ID time KYLE CL VC KA KM

. 1: 1 0 0 2.1 23.1 1.7 10

. 2: 1 2 0 2.1 23.1 1.7 10

. 3: 1 24 100 5.0 32.0 1.7 10

Will this work?

idata <- do.call("expand.idata", as.list(param(mod)))

idata

. ID CL VC KA KM

. 1 1 2.1 23.1 1.7 10

Here, we’ll pass in both data_set and idata_set and they have conflicting values for the parameters.

mod %>%
data_set(data) %>%
idata_set(idata) %>%
mrgsim(end=-1,add=c(0,2))
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. Model: tmp

. Dim: 3 x 7

. Time: 0 to 24

. ID: 1

. ID time KYLE CL VC KA KM

. 1: 1 0 0 5 32 1.7 10

. 2: 1 2 0 5 32 1.7 10

. 3: 1 24 100 5 32 1.7 10

The data set always gets the last word.

6.3.2 Updating the base parameter list

From the previous section

param(mod)

.

. Model parameters (N=4):

. name value . name value

. CL 2.1 | KM 10

. KA 1.7 | VC 23.1

Update with name-value pairs

We can call param() to update the model object, directly naming the parameter to update and the new value to
take

mod %>% param(CL = 777, KM = 999) %>% param

.

. Model parameters (N=4):

. name value . name value

. CL 777 | KM 999

. KA 1.7 | VC 23.1

The parameter list can also be updated by scanning the names in a list

what <- list(CL = 555, VC = 888, KYLE = 123, MN = 100)

mod %>% param(what) %>% param

.

. Model parameters (N=4):

. name value . name value

. CL 555 | KM 10

. KA 1.7 | VC 888

mrgsolve looks at the names to drive the update. KYLE (a compartment name) and MN (not in the model anywhere)
are ignored.

Alternatively, we can pick a row from a data frame to provide the input for the update

d <- data_frame(CL=c(9,10), VC=c(11,12), KTB=c(13,14))

mod %>% param(d[2,]) %>% param

.

. Model parameters (N=4):
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. name value . name value

. CL 10 | KM 10

. KA 1.7 | VC 12

Here the second row in the data frame drives the update. Other names are ignored.

A warning will be issued if an update is attempted, but no matching names are found

mod %>% param(ZIP = 1, CODE = 2) %>% param

Warning message:
Found nothing to update: param

6.4 Time grid objects

Simulation times in mrgsolve

mod <- mrgsolve:::house() %>% Req(CP) %>% ev(amt=1000,ii=24, addl=1000)

mrgsolve keeps track of a simulation start and end time and a fixed size step between start and end (called
delta). mrgsolve also keeps an arbitrary vector of simulation times called add.

mod %>%
mrgsim(end=4,delta=2,add=c(7,9,50)) %>%
as.data.frame

. ID time CP

. 1 1 0 0.00000

. 2 1 0 0.00000

. 3 1 2 42.47580

. 4 1 4 42.28701

. 5 1 7 36.75460

. 6 1 9 33.26649

. 7 1 50 60.97754

tgrid objects

The tgrid object abstracts this setup and allows us to make complicated sampling designs from elementary
building blocks.

Make a day 1 sampling with intensive sampling around the peak and sparser otherwise

peak1 <- tgrid(1,4,0.1)
sparse1 <- tgrid(0,24,4)

Use the c operator to combine simpler designs into more complicated designs

day1 <- c(peak1,sparse1)

Check this by calling stime
stime(day1)

. [1] 0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

. [15] 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6

. [29] 3.7 3.8 3.9 4.0 8.0 12.0 16.0 20.0 24.0

Pass this object in to mrgsim as tgrid. It will override the default start/end/delta/add sequence.
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mod %>%
mrgsim(tgrid=day1) %>%
plot(type='b')
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Now, look at both day 1 and day 10:

Adding a number to a tgrid object will offset those times by that amount.

des <- c(day1, day1+10*24)

mod %>%
mrgsim(tgrid=des) %>%
plot(type='b')
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Pick up day 5 as well

des <- c(des, day1+5*24)

mod %>%
mrgsim(tgrid=des) %>%
plot(type='b')
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6.5 Individualized sampling designs

Here is a PopPK model and a full data_set.

mod <- mrgsolve:::house()

data(exTheoph)

df <- exTheoph

head(df)

. ID WT Dose time conc cmt amt evid

. 1 1 79.6 4.02 0.00 0.00 1 4.02 1

. 2 1 79.6 4.02 0.25 2.84 0 0.00 0

. 3 1 79.6 4.02 0.57 6.57 0 0.00 0

. 4 1 79.6 4.02 1.12 10.50 0 0.00 0

. 5 1 79.6 4.02 2.02 9.66 0 0.00 0

. 6 1 79.6 4.02 3.82 8.58 0 0.00 0
mod %>%

Req(CP) %>%
carry.out(a.u.g) %>%
data_set(df) %>%
obsaug %>%
mrgsim

. Model: housemodel

. Dim: 5904 x 4
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. Time: 0 to 120

. ID: 12

. ID time a.u.g CP

. [1,] 1 0.00 1 0.00000

. [2,] 1 0.00 0 0.00000

. [3,] 1 0.25 1 0.04552

. [4,] 1 0.25 0 0.04552

. [5,] 1 0.50 1 0.07870

. [6,] 1 0.57 0 0.08624

. [7,] 1 0.75 1 0.10274

. [8,] 1 1.00 1 0.12001

Now, define two time grid objects: des1 runs from 0 to 24 and des2 runs from 0 to 96, both every hour.

des1 <- tgrid(0,24,1)
des2 <- tgrid(0,96,1)

range(stime(des1))

. [1] 0 24
range(stime(des2))

. [1] 0 96

Now, derive an idata_set after adding a grouping column (GRP) that splits the data set into two groups

df %<>% mutate(GRP = as.integer(ID > 5))

id <- df %>% distinct(ID,GRP)

id

. ID GRP

. 1 1 0

. 2 2 0

. 3 3 0

. 4 4 0

. 5 5 0

. 6 6 1

. 7 7 1

. 8 8 1

. 9 9 1

. 10 10 1

. 11 11 1

. 12 12 1

Now, we have two groups in GRP in idata_set and we have two tgrid objects.

• Pass in both the idata_set and the data_set
• Call design
• Identify GRP as descol; the column must be in idata_set
• Pass in a list of designs; it must be at least two because there are two levels in GRP

When we simulate, the individuals in GRP 1 will get des1 and those in GRP 2 will get des2
out <-

mod %>%
Req(CP) %>%
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carry.out(a.u.g,GRP) %>%
idata_set(id) %>%
data_set(df) %>%
design(descol="GRP", deslist=list(des1,des2)) %>%
obsaug %>%
mrgsim

plot(out, CP~time|GRP)
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6.6 Some helpful C++

// If
if(a == 2) b = 2;

// If else
if(b <= 2) {
c=3;
} else {
c=4;
}

// x <- ifelse(c == 4, 8, 10)
double x = c == 4 ? 8 : 10;

double d = pow(base,exponent);
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double e = exp(3);
double f = fabs(-4);
double g = sqrt(5);
double h = log(6);
double i = log10(7);
double j = floor(4.2);
double k = ceil(4.2);

6.7 Resimulate ETA and EPS

Call simeps() to resimulate ETA

• No $PLUGIN is required
• simeta() takes no arguments

For example, we can simulate individual-level covariates within a certain range:

code <- '
$PARAM TVCL = 1, TVWT = 70

$MAIN
capture WT = TVWT*exp(EWT);

int i = 0;

while((WT < 60) || (WT > 80)) {
if(++i > 100) break;
simeta();
WT = TVWT*exp(EWT);

}

$OMEGA @labels EWT
4

$CAPTURE EWT WT
'

mod <- mcode("simeta", code)

out <- mod %>% mrgsim(nid=100, end=-1)

sum <- summary(out)

sum

. ID time EWT WT

. Min. : 1.00 Min. :0 Min. :-0.147157 Min. :60.42

. 1st Qu.: 25.75 1st Qu.:0 1st Qu.:-0.067350 1st Qu.:65.44

. Median : 50.50 Median :0 Median : 0.002623 Median :70.18

. Mean : 50.50 Mean :0 Mean :-0.006769 Mean :69.73

. 3rd Qu.: 75.25 3rd Qu.:0 3rd Qu.: 0.053306 3rd Qu.:73.83

. Max. :100.00 Max. :0 Max. : 0.126415 Max. :79.43

Call simeps() to resimulate EPS
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• No $PLUGIN is required
• simeps() takes no arguments

For example, we can resimulate untill all concentrations are greater than zero:

code <- '
$PARAM CL = 1, V = 20,

$CMT CENT

$SIGMA 50

$PKMODEL ncmt=1

$TABLE
capture CP = CENT/V + EPS(1);

int i = 0;

while(CP < 0 && i < 100) {
simeps();
CP = CENT/V + EPS(1);
++i;

}

'

mod <- mcode("simeps", code)

out <- mod %>% ev(amt=100) %>% mrgsim(end=48)
sum <- summary(out)

sum

. ID time CENT CP

. Min. :1 Min. : 0.00 Min. : 0.00 Min. : 0.4829

. 1st Qu.:1 1st Qu.:11.25 1st Qu.: 15.93 1st Qu.: 3.4087

. Median :1 Median :23.50 Median : 29.38 Median : 6.4026

. Mean :1 Mean :23.52 Mean : 37.47 Mean : 6.9016

. 3rd Qu.:1 3rd Qu.:35.75 3rd Qu.: 54.21 3rd Qu.: 9.1498

. Max. :1 Max. :48.00 Max. :100.00 Max. :19.5884

A safety check is recommended Note that in both examples, we implement a safety check: an integer counter is
incremented every time we resimulated. The resimulation process stops if we don’t reach the desired condition
within 100 replicates. You might also consider issuing a message or a flag in the simulated data if you are not able
to reach the desired condition.

6.8 Updating $OMEGA and $SIGMA

Like the values of parameters in the parameter list, we may want to update the values in $OMEGA and $SIGMA
matrices. We can do so without re-compiling the model.
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6.8.1 Matrix helper functions

mrgsolve keeps $OMEGA and $SIGMA in block matrices (regardless of whether the off-diagonal elements are zeros
or not). Recall that in the model specification file we can enter data for $OMEGA and $SIGMA as the lower triangle
of the matrix (see section 2.2.11). In R, we need to provide a matrix (as an R object). mrgsolve provides some
convenience functions to help . . . allowing the user to enter lower diagonals instead of the full matrix.

dmat() for diagonal matrix

dmat(1,2,3)

. [,1] [,2] [,3]

. [1,] 1 0 0

. [2,] 0 2 0

. [3,] 0 0 3

bmat() for block matrix

bmat(1,2,3)

. [,1] [,2]

. [1,] 1 2

. [2,] 2 3

cmat() for a block matrix where the diagonal elements are variances and the off-diagonals are taken to be
correlations, not covariances

cmat(0.1, 0.87,0.3)

. [,1] [,2]

. [1,] 0.1000000 0.1506884

. [2,] 0.1506884 0.3000000

mrgsolve will convert the correlations to covariances.

mrgsolve also provides as_bmat() and as_dmat() for converting other R objects to matrices or lists of matrices.

Consider this list with named elements holding the data for a matrix:

m <- list(OMEGA1.1 = 0.9, OMEGA2.1 = 0.3, OMEGA2.2 = 0.4)

These data could form either a 3x3 diagonal matrix or a 2x2 block matrix. But the names suggest a 2x2 form.
as_bmat() can make the matrix like this

as_bmat(m, "OMEGA")

. [,1] [,2]

. [1,] 0.9 0.3

. [2,] 0.3 0.4

The second argument is a regular expression that mrgsolve uses to find elements in the list to use for building
the matrix.

Frequently, we have estimates in a data frame like this

data(exBoot)
head(exBoot)

. run THETA1 THETA2 THETA3 OMEGA11 OMEGA21 OMEGA22 OMEGA31 OMEGA32

. 1 1 -0.7634 2.280 0.8472 0.12860 0.046130 0.2874 0.13820 -0.02164

. 2 2 -0.4816 2.076 0.5355 0.12000 0.051000 0.2409 0.06754 -0.07759

. 3 3 -0.5865 2.334 -0.4597 0.11460 0.097150 0.2130 0.16650 0.18100
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. 4 4 -0.6881 1.824 0.7736 0.14990 0.000003 0.2738 0.24700 -0.05466

. 5 5 0.2909 1.519 -1.2440 0.07308 0.003842 0.2989 0.06475 0.05078

. 6 6 0.1135 2.144 -1.0040 0.13390 -0.019270 0.1640 0.10740 -0.01170

. OMEGA33 SIGMA11 SIGMA21 SIGMA22

. 1 0.3933 0.002579 0 1.0300

. 2 0.3342 0.002228 0 1.0050

. 3 0.4699 0.002418 0 1.0890

. 4 0.5536 0.002177 0 0.8684

. 5 0.2500 0.001606 0 0.8996

. 6 0.3412 0.002134 0 0.9744

We can use as_bmat() with this data frame to extract the $OMEGA matrices

omegas <- as_bmat(exBoot, "OMEGA")
length(omegas)

. [1] 100
dim(exBoot)

. [1] 100 13
omegas[[6]]

. [,1] [,2] [,3]

. [1,] 0.13390 -0.01927 0.1074

. [2,] -0.01927 0.16400 -0.0117

. [3,] 0.10740 -0.01170 0.3412
omegas[[16]]

. [,1] [,2] [,3]

. [1,] 0.08126 0.01252 0.1050

. [2,] 0.01252 0.16860 0.0149

. [3,] 0.10500 0.01490 0.4062

The result of calling as_bmat or as_dmat is a list of matrices, one for each row in the data frame.

Note in this example, we could have called

sigmas <- as_bmat(exBoot,"SIGMA")

to grab the $SIGMA matrices.

For help on these helper functions, see ?dmat, ?bmat, ?cmat, ?as_bmat, ?as_dmat in the R help system after
loading mrgsolve.

6.8.2 Fill a matrix with zeros

Sometimes we write a population model that includes random effects, but we would like to simulate from that
same model without the random effects implemented. For example, we want to simulate some typical PK profiles
from a population PK model that includes IIV on some parameters and / or RUV on the simulated outputs.

To do this, pass the model through the zero_re() function. By default, this will convert all $OMEGA and $SIGMA
matrix elements to zeros. See the R help file (?zero_re) to see some options for selectively zeroing out only one
or the other.

For example we have this population PK model
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mod <- mread("popex", modlib(), compile = FALSE)

omat(mod)

. $...

. [,1] [,2] [,3]

. ECL: 0.3 0.0 0.0

. EV: 0.0 0.1 0.0

. EKA: 0.0 0.0 0.5

We can turn that matrix to all zeros with

mod %>% zero_re() %>% omat

. $...

. [,1] [,2] [,3]

. ECL: 0 0 0

. EV: 0 0 0

. EKA: 0 0 0

And when we simulate right after that, all ETA(n) will be zero as well and you’ll get your fixed-effects simulation
(the following is for example only and is not evaluated)

mod %>%
zero_re() %>%
ev(amt = 100) %>%
mrgsim() %>%
plot()

6.8.3 Example: unnamed matrix

Here is a model with only a 3x3 $OMEGA matrix

code <- '
$OMEGA
1 2 3
'

mod <- mcode("matrix", code, compile=FALSE)

Let’s check the values in the matrix using omat()
mod %>% omat

. $...

. [,1] [,2] [,3]

. 1: 1 0 0

. 2: 0 2 0

. 3: 0 0 3

We also use omat() to update the values in the matrix

mod %>% omat(dmat(4,5,6)) %>% omat

. $...

. [,1] [,2] [,3]

. 1: 4 0 0
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. 2: 0 5 0

. 3: 0 0 6

To update $OMEGA, we must provide a matrix of the same dimension, in this case 3x3. An error is generated if we
provide a matrix with the wrong dimension.

ans <- try(mod %>% omat(dmat(11,23)))

ans

. [1] "Error : improper signature: omat\n"

. attr(,"class")

. [1] "try-error"

. attr(,"condition")

. <simpleError: improper signature: omat>

6.8.4 Example: named matrices

When there are multiple $OMEGA matrices, it can be helpful to assign them names. Here, there are two matrices:
one for interindividual variability (IIV) and one for interoccasion variability (IOV).

code <- '
$OMEGA @name IIV
1 2 3
$OMEGA @name IOV
4 5
'
mod <- mcode("iov", code, compile=FALSE)

revar(mod)

. $omega

. $IIV

. [,1] [,2] [,3]

. 1: 1 0 0

. 2: 0 2 0

. 3: 0 0 3

.

. $IOV

. [,1] [,2]

. 4: 4 0

. 5: 0 5

.

.

. $sigma

. No matrices found

Now, we can update either IIV or IOV (or both) by name

mod %>%
omat(IOV = dmat(11,12), IIV = dmat(13,14,15)) %>%
omat

. $IIV

. [,1] [,2] [,3]

. 1: 13 0 0
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. 2: 0 14 0

. 3: 0 0 15

.

. $IOV

. [,1] [,2]

. 4: 11 0

. 5: 0 12

Again, an error is generated if we try to assign a 3x3 matrix to the IOV position

ans <- try(mod %>% omat(IIV=dmat(1,2)))
ans

. [1] "Error : improper dimension: omat\n"

. attr(,"class")

. [1] "try-error"

. attr(,"condition")

. <simpleError: improper dimension: omat>

6.8.5 Example: unnamed matrices

If we do write the model with unnamed matrices, we can still update them

code <- '
$OMEGA
1 2 3

$OMEGA
4 5
'
mod <- mcode("multi", code, compile=FALSE)

In this case, the only way to update is to pass in a list of matrices, where (in this example) the first matrix is 3x3
and the second is 2x2

mod %>% omat(list(dmat(5,6,7),dmat(8,9))) %>% omat

. $...

. [,1] [,2] [,3]

. 1: 5 0 0

. 2: 0 6 0

. 3: 0 0 7

.

. $...

. [,1] [,2]

. 4: 8 0

. 5: 0 9

6.9 Time varying covariates

A note in a previous section showed how to implement time-varying covariates or other time-varying parameters
by including those parameters as column in the data set.
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By default, mrgsolve performs next observation carried backward (nocb) when processing time-varying covariates.
That is, when the system advances from TIME1 to TIME2, and the advance is a function of a covariate found in the
data set, the system advances using the covariate value COV2 rather than the covariate COV1.

The user can change the behavior to last observation carried forward (locf), so that the system uses the value of
COV1 to advance from TIME1 to TIME2. To use locf advance, set nocb to FALSE when calling mrgsim. For example,

mod %>% mrgsim(nocb = FALSE)

Note that time-varying covariates are not possible when using qsim simulation.

There is additional information about the sequence of events that takes place during system advance in section 5.
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Chapter 7

Installation

The most up to date installation instructions can be found on our github site:

https://github.com/metrumresearchgroup/mrgsolve/ https://github.com/metrumresearchgroup/mrgsolve/
wiki/mrgsolve-Installation
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