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Legal Information 
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, 
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY 
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, 
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, 
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO 
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT. 

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or 
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH 
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, 
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS 
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, 
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY 
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS 
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not 
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel 
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities 
arising from future changes to them. The information here is subject to change without notice. Do not finalize a 
design with this information. 

The products described in this document may contain design defects or errors known as errata which may cause 
the product to deviate from published specifications. Current characterized errata are available on request. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your 
product order. 

Copies of documents which have an order number and are referenced in this document, or other Intel literature, 
may be obtained by calling 1-800-548-4725, or go to: 

http://www.intel.com/design/literature.htm. 

Intel processor numbers are not a measure of performance.  Processor numbers differentiate features within each 
processor family, not across different processor families.  Go to: 
http://www.intel.com/products/processor_number/. 

Software and workloads used in performance tests may have been optimized for performance only on Intel 
microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions.  Any change to any of those factors may cause the 
results to vary.  You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products. 

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries. 

* Other names and brands may be claimed as the property of others. 

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos. 

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation. 

Copyright © 2010-2013 Intel Corporation. All rights reserved. 

 

Optimization Notice 

 Intel's compilers may or may not optimize to the same degree for non-Intel 
microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. 
Intel does not guarantee the availability, functionality, or effectiveness of any optimization 
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in 
this product are intended for use with Intel microprocessors. Certain optimizations not 
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to 
the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice. 
Notice revision #20110804 
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About General Matrix Multiply 
General Matrix Multiply (GEMM) sample demonstrates how to efficiently utilize an OpenCL* device to 
perform general matrix multiply operation on two dense square matrices. The primary target devices 
that are suitable for this sample are the devices with cache memory: Intel® Xeon Phi™ and Intel® 
Architecture CPU OpenCL devices. This implementation optimizes trivial matrix multiplication nested 
loop to utilize the memory cache more efficiently by introducing a well-known practice as tiling (or 
blocking), where matrices are divided into blocks and the blocks are multiplied separately to maintain 
better data locality. 

Algorithm 

General Matrix Multiply is a subroutine that performs matrix multiplication: 

C := alpha*A*B + beta*C, 

where A, B and C are dense matrices and alpha and beta are floating point scalar coefficients. The 
sample supports single-precision and double-precision data types for matrix elements (as well as 
alpha and beta constants). 

Matrix A and matrix B may come in the transposed or regular layouts. From the implementation point 
of view, the transposition of a matrix can be interpreted just as switch between the storage methods:  

• Row-major 
• Column-major 

This sample supports two modes: 

1. Normal-normal (NN), where A, B and C matrices are stored in the column-major order. 
2. Normal-transposed (NT), where A and C matrices are stored in column-major order, and the B 

matrix is stored in the row-major order. 

This matrix multiplication appears as the following pseudo-code (the NN variant for square matrices of 
a given size): 
for i from 0 to size-1 
 for j from 0 to size-1 
  c = 0 
  for k from 0 to size-1 
   c = c + A(k, i)*B(j, k) 
  end for 
  C(j, i) = alpha*c + beta*C(j, i) 
 end for 
end for 

Now consider the tiled (or blocked) matrix multiplication as an optimization technique that improves 
data reuse on architecture where at least two memory hierarchies exist: 

• Slow and big main memory  
• Fast but small memory 

For the Intel CPUs and the Intel Xeon Phi coprocessor devices the fast memory is the regular cache 
memory (data L1/L2), or regular CPU registers. To utilize it you need to maximize data reuse, so 
instead of producing one resulting element of matrix C in the inner loop above (loop by the k index), 
now calculate a block. For example: 

 
for i from 0 to NUM_OF_TILES_M-1 
 for j from 0 to NUM_OF_TILES_N-1 
  C_BLOCK = ZERO_MATRIX(TILE_SIZE_M, TILE_SIZE_N) 
  for k from 0 to size-1 
   for ib = from 0 to TILE_SIZE_M-1 
    for jb = from 0 to TILE_SIZE_N-1 
     C_BLOCK(jb, ib) = C_BLOCK(ib, jb) + 
                    A(k, i*TILE_SIZE_M + ib)*B(j*TILE_SIZE_N + jb, k) 
    end for 
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   end for 
  end for 
 
  for ib = from 0 to TILE_SIZE_M-1 
   for jb = from 0 to TILE_SIZE_N-1 
    C(j*TILE_SIZE_M + jb, i*TILE_SIZE_N + ib) = C_BLOCK(jb, 
ib) 
   end for 
  end for 
 
 end for 
end for 

 

OpenCL* Implementation 

General Matrix Multiplication sample implements the “blocked” variant of matrix multiplication. The 
gemm.cl file consists of the following kernels:  

• gemm_nn 
• gemm_nt  

The difference is in the format of matrix B as explained in the “Algorithm” section. Kernels are 
executed on a two-dimensional iteration space (NDrange). The global size for the dimensions is: 

0. size/TILE_SIZE_M for the zero dimension of NDRange (get_global_size(0)) 
1. size/TILE_SIZE_N for the first dimension of NDRange (get_global_size(1)) 

where ‘size’ is the matrix size.  

NOTE: All matrices are square and equally sized, so there is only one size parameter for all 
matrices.  

Hence TILE_SIZE_M*TILE_SIZE_N is the number of elements of matrix C, calculated by one work-
item in NDRange. This also defines one tile of matrix C, which is calculated from one tile of matrix A 
and one tile of matrix B. 

To utilize the automatic vectorizer in Intel OpenCL* implementation efficiently and avoid gathers, 
make all adjacent work-items in dimension 0 read the sequential memory addresses of elements in 
matrices A and B, which leads to the implementation, where each work-item processes a tile of the 
resulting matrix C in a stridden way. In fact, you should follow this rule in dimension 0 only, but for 
simplicity and symmetry you can use this rule for both 0 and 1 dimensions. 

The following picture illustrates matrix partitioning implemented in the OpenCL NN flavor kernel with 
TILE_SIZE_M = TILE_SIZE_N = 2 and TILE_GROUP_M = TILE_GROUP_N = 4, where TILE_GROUP_M 
and TILE_GROUP_N are work-group size for dimension 0 and 1 correspondingly. In this example 
work-group sizes are too small to be efficient and used for illustration purposes only. For more 
information, see the “Work-group Size Considerations” section.  
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An “internal loop” is one of the loops by ib or jb (depending on dimension considered: 0 or 1 
correspondingly) in the pseudo-code of the tiled matrix multiplication. Each work-item in this example 
processes one stridden 2x2 tile reading and writing with the following matrix elements: 

Items, read during 
one iteration of 
internal loop of a 
work-item (along the 0 
dimension) 

Items, read by 
the work-group 
(along the 1st 
dimension) 

 

x 

Items, read by 
the work-group 
(along the 0 
dimension) 

Matrix A 

Items, read during one 
iteration of internal 
loop for a work-group 
(along the 0 dimension) 

Matrix B 

Items, read during one 
iteration of internal loop 
for a work-group (along 
the 1st dimension) 

 

Items, read during 
one iteration of 
internal loop of a 
work-item (along 
the 1st dimension) 

= Matrix C 

Memory 
addresses 
direction (all 
matrices in 
column 
major order) 
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A difference between the gemm_nn and the gemm_nt variants of kernels exists. Gemm_nn variant has 
additional tiling parameter: along the k direction (loop over the k variable in the reference code in the 
previous section; dot product direction). The matrix B storage has different layout in comparison to 
the gemm_nt variant and it turns to be useful in performance terms to use blocking along this 
dimension also. In the source code of the sample this dimension is called the K dimension, and tile 
size is TILE_SIZE_K. 

Understanding the OpenCL Performance 
Characteristics 
Benefits of Compiler Implicit Vectorization 

Selecting proper values for work-group sizes you enable the Intel OpenCL compiler to auto-vectorize 
the kernel code, which gains performance in comparison to unvectorized version especially on the 
Intel Xeon Phi coprocessor device, where wide SIMD is used (16 work-items for FP and 8 work-items 
for DP). So by writing a kernel using scalar data types and proper work-group sizes you still utilize the 
underlying hardware efficiently. 

Work-group Size Considerations 
Work-group size in the 0-dimension should be not less than 16 work-items on the Intel Xeon Phi 
coprocessor device, and 8 work-items on the CPU devices with the Intel® Advanced Vector Extensions 
(Intel AVX) support, which enables auto-vectorizer to do its best. It also should be multiple of 16 (or 8 
correspondingly) for better performance. 

Elements, 
accessed by 
one work-
group 

x 

= Matrix C 

Stridden 2x2 tile, 
processed by one 
work-item 

Matrix A Matrix B 
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In the same time, work-group size together with the global size determines the number of work-
groups running in one clEnqueueNDRange call. Having enough work-groups is a crucial factor for 
achieving high utilization of the Intel Xeon Phi coprocessor cores. For more details, please refer to 
Intel SDK for OpenCL Applications - Optimization Guide. 

 

APIs Used 
This sample uses the following OpenCL host functions: 
 

• clGetPlatformIDs 
• clGetPlatformInfo 
• clGetDeviceIDs 
• clGetDeviceInfo 
• clCreateContext 
• clCreateCommandQueue 
• clCreateProgramWithSource 
• clBuildProgram 
• clGetProgramBuildInfo 
• clCreateKernel 
• clGetKernelWorkGroupInfo 
• clCreateBuffer 
• clSetKernelArg 
• clEnqueueNDRangeKernel 
• clEnqueueMapBuffer 
• clEnqueueUnmapMemObject 
• clFinish 
• clReleaseMemObject 
• clReleaseKernel 
• clReleaseProgram 
• clReleaseCommandQueue 
• clReleaseContext 

 

Reference (Native) Implementation 
Reference implementation is done in the checkValidity routine of the gemm.cpp file. This is a single-
threaded code, which performs matrix multiplication algorithm in native C++ as described in the 
“Algorithm” section. Validation is not enabled by default. To enable validation, use the --validation 
command-line switch. 

Controlling the Sample 
The sample executable is a console application.  

The sample supports the following command-line parameters: 

Option Description 

-h, --help Show this help text and exit. 

-p, --platform number-or-string Selects the platform, the devices of which are used. 

-t, --type all | cpu | gpu | acc | 
default | <OpenCL constant for device 
type> 

Selects the device by type on which the OpenCL 
kernel is executed. 

-d, --device number-or-string Selects the device on which all stuff is executed. 

-s, --size <integer> Size of matrix in elements. 
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-i, --iterations <integer> 

Number of kernel invocations. For each invoction, 
performance information will be printed. Zero is 
allowed: in this case no kernel invocation is 
performed but all other host stuff is created. 

-a, --arithmetic float | double Type of elements and all calculations. 

--kernel nt | nn 

Determines format of matrices involved in 
multiplication. There are two supported form: nn 
and nt; nn is for case when both matrices A and B 
are in column-major form; nt is for case when A is 
in column-major form, but B is in row major format 
(transposed). Matrices A and C are always in column 
major format. 

--validation Enables validation procedure on host (slow for big 
matrices). 

--tile-size-M <integer> Size of tile for matrix A. 

--tile-group-M <integer> Grouping parameter for matrix A. Also defines work 
group size in 0-dimension. 

--tile-size-N <integer> Size of tile for matrix B. 

--tile-group-N <integer> Grouping parameter for matrix B. Also defines work 
group size in 1-dimension. 

--tile-size-K <integer> Size of block in dot-product direction (applicable for 
nn kernel only). 

Understanding the Sample Output 
The following is an example of possible sample output: 

Platforms (1): 
 [0] Intel(R) OpenCL [Selected] 
Devices (2): 
[0]                 Genuine Intel(R) CPU  @ 2.60GHz [Selected] 
[1] Intel(R) Many Integrated Core Acceleration Card 
Build program options: "-DT=float -DTILE_SIZE_M=1 -DTILE_GROUP_M=16 
-DTILE_SIZE_N=128 -DTILE_GROUP_N=1 -DTILE_SIZE_K=8" 
Running gemm_nn kernel with matrix size: 3968x3968 
Memory row stride to ensure necessary alignment: 15872 bytes 
Size of memory region for one matrix: 62980096 bytes 
Using alpha = 0.57599 and beta = 0.872412 
Host time: 1.09695 sec. 
Host perf: 113.937 GFLOPS 
Host time: 1.03923 sec. 
Host perf: 120.266 GFLOPS 
Host time: 1.09934 sec. 
Host perf: 113.69 GFLOPS 
Host time: 1.05984 sec. 
Host perf: 117.927 GFLOPS 
Host time: 1.01676 sec. 
Host perf: 122.924 GFLOPS 
Host time: 1.04862 sec. 
Host perf: 119.189 GFLOPS 
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Host time: 0.95813 sec. 
Host perf: 130.446 GFLOPS 
Host time: 1.02999 sec. 
Host perf: 121.345 GFLOPS 
Host time: 1.04228 sec. 
Host perf: 119.914 GFLOPS 
Host time: 1.06426 sec. 
Host perf: 117.437 GFLOPS 

First, the sample outputs all available platforms and picks one of them (look at the line with 
[Selected]). Then goes the list of devices for the selected platform. The selected device is also 
marked. 

Then follows a "Build program options" section which is exact build options line passed to the 
clBuildProgram OpenCL call. 

In the end sample calls the kernel several times and for each iteration it prints two numbers: "Host 
time" and "Host perf". Host time is time measured on host for complete kernel invocation without any 
data transfer to/from device. Host perf is the number of GFLOPS calculated based on Host time and 
the number of floating point operations performed in GEMM kernel (which is easily calculated based on 
matrix size). 

In the case when --validation key is set in the command line, validation procedure prints validation 
status just after the first kernel iteration. It looks as "PASSED" if validation succeeded and "FAILED" 
otherwise. Be patient, validation procedure may need a long time to complete even for default 
arguments. 

This is an example of successful execution with validation enabled: 

Platforms (1): 
 [0] Intel(R) OpenCL [Selected] 
Devices (2): 
[0]                 Genuine Intel(R) CPU  @ 2.60GHz [Selected] 
[1] Intel(R) Many Integrated Core Acceleration Card 
Build program options: "-DT=float -DTILE_SIZE_M=1 -DTILE_GROUP_M=16 
-DTILE_SIZE_N=128 -DTILE_GROUP_N=1 -DTILE_SIZE_K=8" 
Running gemm_nn kernel with matrix size: 3968x3968 
Memory row stride to ensure necessary alignment: 15872 bytes 
Size of memory region for one matrix: 62980096 bytes 
Using alpha = 0.57599 and beta = 0.872412 
Host time: 1.11617 sec. 
Host perf: 111.976 GFLOPS 
Validate output... PASSED 
Host time: 1.02897 sec. 
Host perf: 121.465 GFLOPS 
Host time: 0.936836 sec. 
Host perf: 133.411 GFLOPS 
Host time: 1.10402 sec. 
Host perf: 113.208 GFLOPS 
Host time: 1.01172 sec. 
Host perf: 123.536 GFLOPS 
Host time: 0.991772 sec. 
Host perf: 126.021 GFLOPS 
Host time: 1.01842 sec. 
Host perf: 122.723 GFLOPS 
Host time: 1.03788 sec. 
Host perf: 120.422 GFLOPS 
Host time: 1.0272 sec. 
Host perf: 121.674 GFLOPS 
Host time: 1.06907 sec. 
Host perf: 116.909 GFLOPS 
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