
Singularity Container Documentation
Release 3.0

User Docs

Dec 04, 2018

CONTENTS

1 Quick Start 1
1.1 Quick Installation Steps . 1

1.1.1 Install system dependencies . 1
1.1.2 Install Go . 1
1.1.3 Clone the Singularity repository . 2
1.1.4 Install Go dependencies . 2
1.1.5 Compile the Singularity binary . 2

1.2 Overview of the Singularity Interface . 2
1.3 Download pre-built images . 4
1.4 Interact with images . 5

1.4.1 Shell . 6
1.4.2 Executing Commands . 6
1.4.3 Running a container . 7
1.4.4 Working with Files . 7

1.5 Build images from scratch . 8
1.5.1 Sandbox Directories . 8
1.5.2 Converting images from one format to another . 8
1.5.3 Singularity Definition Files . 9

2 Installation 11
2.1 Overview . 11
2.2 Install on Linux . 11

2.2.1 Before you begin . 11
2.2.1.1 Install Dependencies . 11
2.2.1.2 Install Go . 12

2.2.2 Install from source . 12
2.2.2.1 Download Singularity repo (and optionally check out a tag or branch) 12
2.2.2.2 Compile Singularity . 13
2.2.2.3 Source bash completion file . 13

2.2.3 Build and install an RPM . 13
2.2.4 Remove an old version . 14
2.2.5 Distribution packages of Singularity . 14

2.2.5.1 Install the Debian/Ubuntu package using apt . 15
2.2.5.2 Install the CentOS/RHEL package using yum . 16

2.3 Install on Windows or Mac . 16
2.3.1 Setup . 16

2.3.1.1 Windows . 16
2.3.1.2 Mac . 16

2.3.2 Singularity Vagrant Box . 17
2.4 Singularity on a shared resource . 17

i

3 Build a Container 19
3.1 Overview . 19
3.2 Downloading an existing container from the Container Library . 19
3.3 Downloading an existing container from Docker Hub . 20
3.4 Creating writable --sandbox directories . 20
3.5 Converting containers from one format to another . 20
3.6 Building containers from Singularity definition files . 20
3.7 Build options . 21

3.7.1 --builder . 21
3.7.2 --detached . 21
3.7.3 --force . 21
3.7.4 --json . 21
3.7.5 --library . 21
3.7.6 --notest . 21
3.7.7 --remote . 21
3.7.8 --sandbox . 22
3.7.9 --section . 22
3.7.10 --update . 22

3.8 More Build topics . 22

4 Bind Paths and Mounts 23
4.1 Overview . 23
4.2 System-defined bind paths . 23
4.3 User-defined bind paths . 23

4.3.1 Specifying bind paths . 23
4.3.2 A note on using --bind with the --writable flag . 24

5 Persistent Overlays 25
5.1 Overview . 25
5.2 Usage . 25

6 Signing and Verifying Containers 27
6.1 Verifying containers from the Container Library . 27
6.2 Signing your own containers . 27

6.2.1 Generating and managing PGP keys . 27
6.2.2 Signing and validating your own containers . 28

7 Security Options 31
7.1 Linux Capabilities . 31
7.2 Security related action options . 32

7.2.1 --add-caps . 32
7.2.2 --allow-setuid . 32
7.2.3 --keep-privs . 32
7.2.4 --drop-caps . 32
7.2.5 --security . 33

8 Network virtualization 35
8.1 --dns . 35
8.2 --hostname . 35
8.3 --net . 35
8.4 --network . 36
8.5 --network-args . 36

9 Limiting container resources with cgroups 39
9.1 Overview . 39

ii

9.2 Examples . 39
9.2.1 Limiting memory . 39
9.2.2 Limiting CPU . 40

9.2.2.1 shares . 40
9.2.2.2 quota/period . 40
9.2.2.3 cpus/mems . 40

9.2.3 Limiting IO . 41
9.2.3.1 Limiting device access . 42

iii

iv

CHAPTER

ONE

QUICK START

This guide is intended for running Singularity on a computer where you have root (administrative) privileges.

If you need to request an installation on your shared resource, see the requesting an installation help page for informa-
tion to send to your system administrator.

For any additional help or support contact the Sylabs team: https://www.sylabs.io/contact/

1.1 Quick Installation Steps

You will need a Linux system to run Singularity.

See the installation page for information about installing older versions of Singularity.

1.1.1 Install system dependencies

You must first install development libraries to your host. Assuming Ubuntu (apply similar to RHEL derivatives):

$ sudo apt-get update && sudo apt-get install -y \
build-essential \
libssl-dev \
uuid-dev \
libgpgme11-dev \
squashfs-tools

Note: Note that squashfs-tools is an image build dependency only and is not required for Singularity build
and run commands.

1.1.2 Install Go

Singularity 3.0 is written primarily in Go, and you will need Go installed to compile it from source.

This is one of several ways to install and configure Go.

First, visit the Go download page and pick the appropriate Go archive (>=1.11.1). Copy the link address and download
with wget like so:

$ export VERSION=1.11 OS=linux ARCH=amd64
$ cd /tmp
$ wget https://dl.google.com/go/go$VERSION.$OS-$ARCH.tar.gz

1

https://www.sylabs.io/contact/
https://golang.org/doc/install
https://golang.org/dl/

Singularity Container Documentation, Release 3.0

Then extract the archive to /usr/local

$ sudo tar -C /usr/local -xzf go$VERSION.$OS-$ARCH.tar.gz

Finally, set up your environment for Go

$ echo 'export GOPATH=${HOME}/go' >> ~/.bashrc
$ echo 'export PATH=/usr/local/go/bin:${PATH}:${GOPATH}/bin' >> ~/.bashrc
$ source ~/.bashrc

1.1.3 Clone the Singularity repository

Go is a bit finicky about where things are placed. Here is the correct way to build Singularity from source.

$ mkdir -p $GOPATH/src/github.com/sylabs
$ cd $GOPATH/src/github.com/sylabs
$ git clone https://github.com/sylabs/singularity.git
$ cd singularity

1.1.4 Install Go dependencies

Dependencies are managed using Dep. You can use go get to install it like so:

$ go get -u -v github.com/golang/dep/cmd/dep

1.1.5 Compile the Singularity binary

Now you are ready to build Singularity. Dependencies will be automatically downloaded. You can build Singularity
using the following commands:

$ cd $GOPATH/src/github.com/sylabs/singularity
$./mconfig
$ make -C builddir
$ sudo make -C builddir install

Singularity must be installed as root to function properly.

1.2 Overview of the Singularity Interface

Singularity’s command line interface allows you to build and interact with containers transparently. You can run
programs inside a container as if they were running on your host system. You can easily redirect IO, use pipes, pass
arguments, and access files, sockets, and ports on the host system from within a container.

The help command gives an overview of Singularity options and subcommands as follows:

$ singularity help

Linux container platform optimized for High Performance Computing (HPC) and
Enterprise Performance Computing (EPC)

Usage:

(continues on next page)

2 Chapter 1. Quick Start

https://github.com/golang/dep

Singularity Container Documentation, Release 3.0

(continued from previous page)

singularity [global options...]

Description:
Singularity containers provide an application virtualization layer enabling
mobility of compute via both application and environment portability. With
Singularity one is capable of building a root file system that runs on any
other Linux system where Singularity is installed.

Options:
-d, --debug print debugging information (highest verbosity)
-h, --help help for singularity
-q, --quiet suppress normal output
-s, --silent only print errors
-t, --tokenfile string path to the file holding your sylabs

authentication token (default
"/home/david/.singularity/sylabs-token")

-v, --verbose print additional information

Available Commands:
build Build a new Singularity container
capability Manage Linux capabilities on containers
exec Execute a command within container
help Help about any command
inspect Display metadata for container if available
instance Manage containers running in the background
keys Manage OpenPGP key stores
pull Pull a container from a URI
push Push a container to a Library URI
run Launch a runscript within container
run-help Display help for container if available
search Search the library
shell Run a Bourne shell within container
sign Attach cryptographic signatures to container
test Run defined tests for this particular container
verify Verify cryptographic signatures on container
version Show application version

Examples:
$ singularity help <command>

Additional help for any Singularity subcommand can be seen by appending
the subcommand name to the above command.

For additional help or support, please visit https://www.sylabs.io/docs/

Information about subcommand can also be viewed with the help command.

$ singularity help verify
Verify cryptographic signatures on container

Usage:
singularity verify [verify options...] <image path>

Description:
The verify command allows a user to verify cryptographic signatures on SIF
container files. There may be multiple signatures for data objects and
multiple data objects signed. By default the command searches for the primary

(continues on next page)

1.2. Overview of the Singularity Interface 3

Singularity Container Documentation, Release 3.0

(continued from previous page)

partition signature. If found, a list of all verification blocks applied on
the primary partition is gathered so that data integrity (hashing) and
signature verification is done for all those blocks.

Options:
-g, --groupid uint32 group ID to be verified
-h, --help help for verify
-i, --id uint32 descriptor ID to be verified
-u, --url string key server URL (default "https://keys.sylabs.io")

Examples:
$ singularity verify container.sif

For additional help or support, please visit https://www.sylabs.io/docs/

Singularity uses positional syntax (i.e. the order of commands and options matters).

Global options affecting the behavior of all commands follow the main singularity command. Then sub com-
mands are passed followed by their options and arguments.

For example, to pass the --debug option to the main singularity command and run Singularity with debugging
messages on:

$ singularity --debug run library://sylabsed/examples/lolcow

To pass the --containall option to the run command and run a Singularity image in an isolated manner:

$ singularity run --containall library://sylabsed/examples/lolcow

Singularity 2.4 introduced the concept of command groups. For instance, to list Linux capabilities for a particular user,
you would use the list command in the capabilities command group like so:

$ singularity capability list --user dave

Container authors might also write help docs specific to a container or for an internal module called an app. If those
help docs exist for a particular container, you can view them like so.

$ singularity help container.sif # See the container's help, if provided

$ singularity help --app foo container.sif # See the help for foo, if provided

1.3 Download pre-built images

You can use the search command to locate groups, collections, and containers of interest on the Container Library .

$ singularity search alp
No users found for 'alp'

Found 1 collections for 'alp'
library://jchavez/alpine

Found 5 containers for 'alp'

(continues on next page)

4 Chapter 1. Quick Start

https://cloud.sylabs.io/library

Singularity Container Documentation, Release 3.0

(continued from previous page)

library://jialipassion/official/alpine
Tags: latest

library://dtrudg/linux/alpine
Tags: 3.2 3.3 3.4 3.5 3.6 3.7 3.8 edge latest

library://sylabsed/linux/alpine
Tags: 3.6 3.7 latest

library://library/default/alpine
Tags: 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 latest

library://sylabsed/examples/alpine
Tags: latest

You can use the pull and build commands to download pre-built images from an external resource like the Container
Library or Docker Hub.

When called on a native Singularity image like those provided on the Container Library, pull simply downloads the
image file to your system.

$ singularity pull library://sylabsed/linux/alpine

You can also use pull with the docker:// uri to reference Docker images served from a registry. In this case
pull does not just download an image file. Docker images are stored in layers, so pull must also combine those
layers into a usable Singularity file.

$ singularity pull docker://godlovedc/lolcow

Pulling Docker images reduces reproducibility. If you were to pull a Docker image today and then wait six months
and pull again, you are not guaranteed to get the same image. If any of the source layers has changed the image will
be altered. If reproducibility is a priority for you, try building your images from the Container Library.

You can also use the build command to download pre-built images from an external resource. When using build
you must specify a name for your container like so:

$ singularity build ubuntu.sif library://ubuntu

$ singularity build lolcow.sif docker://godlovedc/lolcow

Unlike pull, build will convert your image to the latest Singularity image format after downloading it.

build is like a “Swiss Army knife” for container creation. In addition to downloading images, you can use build to
create images from other images or from scratch using a definition file. You can also use build to convert an image
between the container formats supported by Singularity.

1.4 Interact with images

You can interact with images in several ways. It is not actually necessary to pull or build an image to interact with
it. The commands listed here will work with image URIs in addition to accepting a local path to an image.

For these examples we will use a lolcow_latest.sif image that can be pulled from the Container Library like
so.

$ singularity pull library://sylabsed/examples/lolcow

1.4. Interact with images 5

https://cloud.sylabs.io/library
https://cloud.sylabs.io/library
https://hub.docker.com/

Singularity Container Documentation, Release 3.0

1.4.1 Shell

The shell command allows you to spawn a new shell within your container and interact with it as though it were a
small virtual machine.

$ singularity shell lolcow_latest.sif

Singularity lolcow_latest.sif:~>

The change in prompt indicates that you have entered the container (though you should not rely on that to determine
whether you are in container or not).

Once inside of a Singularity container, you are the same user as you are on the host system.

Singularity lolcow_latest.sif:~> whoami
david

Singularity lolcow_latest.sif:~> id
uid=1000(david) gid=1000(david) groups=1000(david),4(adm),24(cdrom),27(sudo),30(dip),
→˓46(plugdev),116(lpadmin),126(sambashare)

shell also works with the library://, docker://, and shub:// URIs. This creates an ephemeral container
that disappears when the shell is exited.

$ singularity shell library://sylabsed/examples/lolcow

1.4.2 Executing Commands

The exec command allows you to execute a custom command within a container by specifying the image file. For
instance, to execute the cowsay program within the lolcow_latest.sif container:

$ singularity exec lolcow_latest.sif cowsay moo

< moo >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

exec also works with the library://, docker://, and shub:// URIs. This creates an ephemeral container
that executes a command and disappears.

$ singularity exec library://sylabsed/examples/lolcow cowsay "Fresh from the library!"

< Fresh from the library! >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

6 Chapter 1. Quick Start

Singularity Container Documentation, Release 3.0

1.4.3 Running a container

Singularity containers contain runscripts. These are user defined scripts that define the actions a container should
perform when someone runs it. The runscript can be triggered with the run command, or simply by calling the
container as though it were an executable.

$ singularity run lolcow_latest.sif

/ You have been selected for a secret \
\ mission. /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

$./lolcow_latest.sif

/ Q: What is orange and goes "click, \
\ click?" A: A ball point carrot. /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

run also works with the library://, docker://, and shub:// URIs. This creates an ephemeral container
that runs and then disappears.

$ singularity run library://sylabsed/examples/lolcow

/ Is that really YOU that is reading \
\ this? /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

1.4.4 Working with Files

Files on the host are reachable from within the container.

$ echo "Hello from inside the container" > $HOME/hostfile.txt

$ singularity exec lolcow_latest.sif cat $HOME/hostfile.txt

Hello from inside the container

This example works because hostfile.txt exists in the user’s home directory. By default Singularity bind mounts
/home/$USER, /tmp, and $PWD into your container at runtime.

You can specify additional directories to bind mount into your container with the --bind option. In this example,
the data directory on the host system is bind mounted to the /mnt directory inside the container.

1.4. Interact with images 7

Singularity Container Documentation, Release 3.0

$ echo "Drink milk (and never eat hamburgers)." > /data/cow_advice.txt

$ singularity exec --bind /data:/mnt lolcow_latest.sif cat /mnt/cow_advice.txt
Drink milk (and never eat hamburgers).

Pipes and redirects also work with Singularity commands just like they do with normal Linux commands.

$ cat /data/cow_advice.txt | singularity exec lolcow_latest.sif cowsay
__

< Drink milk (and never eat hamburgers). >
--

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

1.5 Build images from scratch

Singularity v3.0 produces immutable images in the Singularity Image File (SIF) format. This ensures reproducible
and verifiable images and allows for many extra benefits such as the ability to sign and verify your containers.

However, during testing and debugging you may want an image format that is writable. This way you can shell into
the image and install software and dependencies until you are satisfied that your container will fulfill your needs. For
these scenarios, Singularity also supports the sandbox format (which is really just a directory).

For more details about the different build options and best practices, read about the Singularity flow.

1.5.1 Sandbox Directories

To build into a sandbox (container in a directory) use the build --sandbox command and option:

$ sudo singularity build --sandbox ubuntu/ library://ubuntu

This command creates a directory called ubuntu/ with an entire Ubuntu Operating System and some Singularity
metadata in your current working directory.

You can use commands like shell, exec , and runwith this directory just as you would with a Singularity image. If
you pass the --writable option when you use your container you can also write files within the sandbox directory
(provided you have the permissions to do so).

$ sudo singularity exec --writable ubuntu touch /foo

$ singularity exec ubuntu/ ls /foo
/foo

1.5.2 Converting images from one format to another

The build command allows you to build a container from an existing container. This means that you can use it to
convert a container from one format to another. For instance, if you have already created a sandbox (directory) and
want to convert it to the default immutable image format (squashfs) you can do so:

8 Chapter 1. Quick Start

Singularity Container Documentation, Release 3.0

$ singularity build new-sif sandbox

Doing so may break reproducibility if you have altered your sandbox outside of the context of a definition file, so you
are advised to exercise care.

1.5.3 Singularity Definition Files

For a reproducible, production-quality container you should build a SIF file using a Singularity definition file. This
also makes it easy to add files, environment variables, and install custom software, and still start from your base of
choice (e.g., the Container Library).

A definition file has a header and a body. The header determines the base container to begin with, and the body is
further divided into sections that do things like install software, setup the environment, and copy files into the container
from the host system.

Here is an example of a definition file:

BootStrap: library
From: ubuntu:16.04

%post
apt-get -y update
apt-get -y install fortune cowsay lolcat

%environment
export LC_ALL=C
export PATH=/usr/games:$PATH

%runscript
fortune | cowsay | lolcat

%labels
Author GodloveD

To build a container from this definition file (assuming it is a file named lolcow.def), you would call build like so:

$ sudo singularity build lolcow.sif lolcow.def

In this example, the header tells Singularity to use a base Ubuntu 16.04 image from the Container Library.

The %post section executes within the container at build time after the base OS has been installed. The %post
section is therefore the place to perform installations of new applications.

The %environment section defines some environment variables that will be available to the container at runtime.

The %runscript section defines actions for the container to take when it is executed.

And finally, the %labels section allows for custom metadata to be added to the container.

This is a very small example of the things that you can do with a definition file. In addition to building a container
from the Container Library, you can start with base images from Docker Hub and use images directly from official
repositories such as Ubuntu, Debian, CentOS, Arch, and BusyBox. You can also use an existing container on your
host system as a base.

If you want to build Singularity images but you don’t have administrative (root) access on your build system, you can
build images using the Remote Builder.

This quickstart document just scratches the surface of all of the things you can do with Singularity!

If you need additional help or support, contact the Sylabs team: https://www.sylabs.io/contact/

1.5. Build images from scratch 9

https://cloud.sylabs.io/builder
https://www.sylabs.io/contact/

Singularity Container Documentation, Release 3.0

10 Chapter 1. Quick Start

CHAPTER

TWO

INSTALLATION

This document will guide you through the process of installing Singularity >= 3.0.0 via several different methods. (For
instructions on installing earlier versions of Singularity please see earlier versions of the docs.)

2.1 Overview

Singularity runs on Linux natively and can also be run on Windows and Mac through virtual machines (VMs). Here we
cover several different methods of installing Singularity (>=v3.0.0) on Linux and also give methods for downloading
and running VMs with singularity pre-installed from Vagrant Cloud.

2.2 Install on Linux

Linux is the only operating system that can support containers because of kernel features like namespaces. You can
use these methods to install Singularity on bare metal Linux or a Linux VM.

2.2.1 Before you begin

If you have an earlier version of Singularity installed, you should remove it before executing the installation commands.
You will also need to install some dependencies and install Go.

2.2.1.1 Install Dependencies

Install these dependencies with apt-get or yum/rpm as shown below or similar with other package managers.

apt-get

$ sudo apt-get update && sudo apt-get install -y \
build-essential \
libssl-dev \
uuid-dev \
libgpgme11-dev \
squashfs-tools \
libseccomp-dev \
pkg-config

yum

11

https://www.sylabs.io/docs/
https://app.vagrantup.com/sylabs
https://golang.org/

Singularity Container Documentation, Release 3.0

$ sudo yum update -y && \
sudo yum groupinstall -y 'Development Tools' && \
sudo yum install -y \
openssl-devel \
libuuid-devel \
libseccomp-devel \
wget \
squashfs-tools

2.2.1.2 Install Go

This is one of several ways to install and configure Go.

Visit the Go download page and pick a package archive to download. Copy the link address and download with wget.
Then extract the archive to /usr/local (or use other instructions on go installation page).

$ export VERSION=1.11 OS=linux ARCH=amd64 && \
wget https://dl.google.com/go/go$VERSION.$OS-$ARCH.tar.gz && \
sudo tar -C /usr/local -xzvf go$VERSION.$OS-$ARCH.tar.gz && \
rm go$VERSION.$OS-$ARCH.tar.gz

Then, set up your environment for Go.

$ echo 'export GOPATH=${HOME}/go' >> ~/.bashrc && \
echo 'export PATH=/usr/local/go/bin:${PATH}:${GOPATH}/bin' >> ~/.bashrc && \
source ~/.bashrc

If you are installing Singularity v3.0.0 you will also need to install dep for dependency resolution.

$ go get -u github.com/golang/dep/cmd/dep

2.2.2 Install from source

The following commands will install Singularity from the GitHub repo to /usr/local. This method will work for
>=v3.0.0. To install an older tagged release see older versions of the docs.

When installing from source, you can decide to install from either a tag, a release branch, or from the master branch.

• tag: GitHub tags form the basis for releases, so installing from a tag is the same as downloading and installing
a specific release. Tags are expected to be relatively stable and well-tested.

• release branch: A release branch represents the latest version of a minor release with all the newest bug fixes
and enhancements (even those that have not yet made it into a point release). For instance, to install v3.0 with
the latest bug fixes and enhancements checkout release-3.0. Release branches may be less stable than code
in a tagged point release.

• master branch: The master branch contains the latest, bleeding edge version of Singularity. This is the
default branch when you clone the source code, so you don’t have to check out any new branches to install it.
The master branch changes quickly and may be unstable.

2.2.2.1 Download Singularity repo (and optionally check out a tag or branch)

To ensure that the Singularity source code is downloaded to the appropriate directory use these commands.

12 Chapter 2. Installation

https://golang.org/doc/install
https://golang.org/dl/
https://github.com/sylabs/singularity
https://www.sylabs.io/docs/
https://github.com/sylabs/singularity/releases

Singularity Container Documentation, Release 3.0

$ go get -d github.com/sylabs/singularity

Go will complain that there are no Go files, but it will still download the Singularity source code to the appropriate
directory within the $GOPATH.

Now checkout the version of Singularity you want to install.

$ export VERSION=v3.0.1 # or another tag or branch if you like && \
cd $GOPATH/src/github.com/sylabs/singularity && \
git fetch && \
git checkout $VERSION # omit this command to install the latest bleeding edge

→˓code from master

2.2.2.2 Compile Singularity

Singularity uses a custom build system called makeit. mconfig is called to generate a Makefile and then make
is used to compile and install.

$./mconfig && \
make -C ./builddir && \
sudo make -C ./builddir install

By default Singularity will be installed in the /usr/local directory hierarchy. You can specify a custom directory
with the --prefix option, to mconfig like so:

$./mconfig --prefix=/opt/singularity

This option can be useful if you want to install multiple versions of Singularity, install a personal version of Singularity
on a shared system, or if you want to remove Singularity easily after installing it.

For a full list of mconfig options, run mconfig --help. Here are some of the most common options that you
may need to use when building Singularity from source.

• --sysconfdir: Install read-only config files in sysconfdir. This option is important if you need the
singularity.conf file or other configuration files in a custom location.

• --localstatedir: Set the state directory where containers are mounted. This is a particularly important
option for administrators installing Singularity on a shared file system. The --localstatedir should be set
to a directory that is present on each individual node.

• -b: Build Singularity in a given directory. By default this is ./builddir.

2.2.2.3 Source bash completion file

To enjoy bash completion with Singularity commands and options, source the bash completion file like so. Add this
command to your ~/.bashrc file so that bash completion continues to work in new shells. (Obviously adjust this path
if you installed the bash completion file in a different location.)

$. /usr/local/etc/bash_completion.d/singularity

2.2.3 Build and install an RPM

Building and installing a Singularty RPM allows the installation be more easily managed, upgraded and removed. In
Singularity >=v3.0.1 you can build an RPM directly from the release tarball.

2.2. Install on Linux 13

https://github.com/sylabs/singularity/releases

Singularity Container Documentation, Release 3.0

Note: Be sure to download the correct asset from the GitHub releases page. It should be named singularity-
<version>.tar.gz.

After installing the dependencies and installing Go as detailed above, you are ready download the tarball and build
and install the RPM.

$ export VERSION=3.0.1 && # adjust this as necessary \
wget https://github.com/sylabs/singularity/releases/download/v${VERSION}/

→˓singularity-${VERSION}.tar.gz && \
rpmbuild -tb singularity-${VERSION}.tar.gz && \
sudo rpm -ivh ~/rpmbuild/RPMS/x86_64/singularity-$VERSION-1.el7.x86_64.rpm && \
rm -rf ~/rpmbuild singularity-$VERSION*.tar.gz

Options to mconfig can be passed using the familiar syntax to rpmbuild. For example, if you want to force the
local state directory to /mnt (instead of the default /var) you can do the following:

rpmbuild -tb --define='_localstatedir /mnt' singularity-$VERSION.tar.gz'

Note: It is very important to set the local state directory to a directory that physically exists on nodes within a cluster
when installing Singularity in an HPC environment with a shared file system. Thus the _localstatedir option
should be of considerable interest to HPC admins.

2.2.4 Remove an old version

When you run sudo make install, the command lists files as they are installed. They must all be removed in
order to completely remove Singularity.

For example, in a standard installation of Singularity 3.0.1 (when building from source) you must remove all of these
files and directories to completely remove Singularity.

Obviously, this list of files may differ depending on how you install Singularity or with newer versions of Singularity
released following the writing of this document.

$ sudo rm -rf \
/usr/local/libexec/singularity \
/usr/local/var/singularity \
/usr/local/etc/singularity \
/usr/local/bin/singularity \
/usr/local/bin/run-singularity \
/usr/local/etc/bash_completion.d/singularity

If you anticipate needing to remove Singularity, it might be easier to install it in a custom directory using the
--prefix option to mconfig. In that case Singularity can be uninstalled simply by deleting the parent direc-
tory. Or it may be useful to install Singularity using a package manager so that it can be updated and/or uninstalled
with ease in the future.

2.2.5 Distribution packages of Singularity

Note: Packaged versions of Singularity in Linux distribution repos are maintained by community members. They
(necessarily) tend to be older releases of Singularity. For the latest upstream versions of Singularity it is recommended

14 Chapter 2. Installation

https://github.com/sylabs/singularity/releases

Singularity Container Documentation, Release 3.0

that you build from source using one of the methods detailed above.

2.2.5.1 Install the Debian/Ubuntu package using apt

Singularity is available on Debian and derivative distributions starting with Debian stretch and the Ubuntu 16.10
releases. The package is called singularity-container. For more recent releases of singularity and backports
for older Debian and Ubuntu releases, it is recommended that you use the NeuroDebian repository.

Enable the NeuroDebian repository following instructions on the NeuroDebian site. Use the dropdown menus to find
the best mirror for your operating system and location. For example, after selecting Ubuntu 16.04 and selecting a
mirror in CA, you are instructed to add these lists:

$ sudo wget -O- http://neuro.debian.net/lists/xenial.us-ca.full | sudo tee /etc/apt/
→˓sources.list.d/neurodebian.sources.list && \

sudo apt-key adv --recv-keys --keyserver hkp://pool.sks-keyservers.net:80
→˓0xA5D32F012649A5A9 && \

sudo apt-get update

Now singularity can be installed like so:

sudo apt-get install -y singularity-container

During the above, if you have a previously installed configuration, you might be asked if you want to define a custom
configuration/init, or just use the default provided by the package, eg:

Configuration file '/etc/singularity/init'

==> File on system created by you or by a script.
==> File also in package provided by package maintainer.
What would you like to do about it ? Your options are:

Y or I : install the package maintainer's version
N or O : keep your currently-installed version

D : show the differences between the versions
Z : start a shell to examine the situation

The default action is to keep your current version.

*** init (Y/I/N/O/D/Z) [default=N] ? Y

Configuration file '/etc/singularity/singularity.conf'
==> File on system created by you or by a script.
==> File also in package provided by package maintainer.
What would you like to do about it ? Your options are:

Y or I : install the package maintainer's version
N or O : keep your currently-installed version

D : show the differences between the versions
Z : start a shell to examine the situation

The default action is to keep your current version.

*** singularity.conf (Y/I/N/O/D/Z) [default=N] ? Y

Most users should accept these defaults. For cluster admins, we recommend that you read the admin docs to get a
better understanding of the configuration file options available to you.

After following this procedure, you can check the Singularity version like so:

$ singularity --version
2.5.2-dist

2.2. Install on Linux 15

http://neuro.debian.net/pkgs/singularity-container.html
http://neuro.debian.net/
https://www.sylabs.io/guides/2.6/admin-guide/

Singularity Container Documentation, Release 3.0

If you need a backport build of the recent release of Singularity on those or older releases of Debian and Ubuntu, you
can see all the various builds and other information here.

2.2.5.2 Install the CentOS/RHEL package using yum

The epel (Extra Packages for Enterprise Linux) repos contain Singularity. The singularity package is actually split
into two packages called singularity-runtime (which simply contains the necessary bits to run singularity
containers) and singularity (which also gives you the ability to build Singularity containers).

To install Singularity from the epel repos, first install the repos and then install Singularity. For instance, on CentOS6/7
do the following:

$ sudo yum update -y && \
sudo yum install -y epel-release && \
sudo yum update -y && \
sudo yum install -y singularity-runtime singularity

After following this procedure, you can check the Singularity version like so:

$ singularity --version
2.6.0-dist

2.3 Install on Windows or Mac

Linux containers like Singularity cannot run natively on Windows or Mac because of basic incompatibilities with the
host kernel. (Contrary to a popular misconception, Mac does not run on a Linux kernel. It runs on a kernel called
Darwin originally forked from BSD.)

For this reason, the Singularity community maintains a set of Vagrant Boxes via Vagrant Cloud, one of Hashicorp’s
open source tools. The current versions can be found under the sylabs organization.

2.3.1 Setup

First, install the following software:

2.3.1.1 Windows

Install the following programs:

• Git for Windows

• VirtualBox for Windows

• Vagrant for Windows

• Vagrant Manager for Windows

2.3.1.2 Mac

You need to install several programs. This example uses Homebrew but you can also install these tools using the GUI.

First, optionally install Homebrew.

16 Chapter 2. Installation

http://neuro.debian.net/pkgs/singularity-container.html
https://www.vagrantup.com/
https://www.hashicorp.com/#open-source-tools
https://app.vagrantup.com/sylabs
https://git-for-windows.github.io/
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
http://vagrantmanager.com/downloads/
https://brew.sh/

Singularity Container Documentation, Release 3.0

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install)"

Next, install Vagrant and the necessary bits (either using this method or by downloading and installing the tools
manually).

$ brew cask install virtualbox && \
brew cask install vagrant && \
brew cask install vagrant-manager

2.3.2 Singularity Vagrant Box

Run GitBash (Windows) or open a terminal (Mac) and create and enter a directory to be used with your Vagrant VM.

$ mkdir vm-singularity && \
cd vm-singularity

If you have already created and used this folder for another VM, you will need to destroy the VM and delete the
Vagrantfile.

$ vagrant destroy && \
rm Vagrantfile

Then issue the following commands to bring up the Virtual Machine. (Substitute a different value for the $VM variable
if you like.)

$ export VM=sylabs/singularity-ubuntu-bionic64 && \
vagrant init $VM && \
vagrant up && \
vagrant ssh

You can check the installed version of Singularity with the following:

vagrant@ubuntu-bionic:~$ singularity version
3.0.1

Of course, you can also start with a plain OS Vagrant box as a base and then install Singularity using one of the above
methods for Linux.

2.4 Singularity on a shared resource

Perhaps you are a user who wants a few talking points and background to share with your administrator. Or maybe
you are an administrator who needs to decide whether to install Singularity.

This document, and the accompanying administrator documentation provides answers to many common questions.

If you need to request an installation you may decide to draft a message similar to this:

Dear shared resource administrator,

We are interested in having Singularity (https://www.sylabs.io/docs/)
installed on our shared resource. Singularity containers will allow us to
build encapsulated environments, meaning that our work is reproducible and

(continues on next page)

2.4. Singularity on a shared resource 17

Singularity Container Documentation, Release 3.0

(continued from previous page)

we are empowered to choose all dependencies including libraries, operating
system, and custom software. Singularity is already in use on many of the
top HPC centers around the world. Examples include:

Texas Advanced Computing Center
GSI Helmholtz Center for Heavy Ion Research
Oak Ridge Leadership Computing Facility
Purdue University
National Institutes of Health HPC
UFIT Research Computing at the University of Florida
San Diego Supercomputing Center
Lawrence Berkeley National Laboratory
University of Chicago
McGill HPC Centre/Calcul Québec
Barcelona Supercomputing Center
Sandia National Lab
Argonne National Lab

Importantly, it has a vibrant team of developers, scientists, and HPC
administrators that invest heavily in the security and development of the
software, and are quick to respond to the needs of the community. To help
learn more about Singularity, I thought these items might be of interest:

- Security: A discussion of security concerns is discussed at
https://www.sylabs.io/guides/2.5.2/user-guide/introduction.html#security-and-

→˓privilege-escalation

- Installation:
https://www.sylabs.io/guides/3.0/user-guide/installation.html

If you have questions about any of the above, you can email the open source
list (singularity@lbl.gov), join the open source slack channel
(singularity-container.slack.com), or contact the organization that supports
Singularity directly to get a human response (sylabs.io/contact). I can do
my best to facilitate this interaction if help is needed.

Thank you kindly for considering this request!

Best,

User

As is stated in the sample message above, you can always reach out to us for additional questions or support.

18 Chapter 2. Installation

https://www.sylabs.io/contact/

CHAPTER

THREE

BUILD A CONTAINER

build is the “Swiss army knife” of container creation. You can use it to download and assemble existing containers
from external resources like the Container Library and Docker Hub. You can use it to convert containers between
the formats supported by Singularity. And you can use it in conjunction with a Singularity definition file to create a
container from scratch and customized it to fit your needs.

3.1 Overview

The build command accepts a target as input and produces a container as output.

The target defines the method that build uses to create the container. It can be one of the following:

• URI beginning with library:// to build from the Container Library

• URI beginning with docker:// to build from Docker Hub

• URI beginning with shub:// to build from Singularity Hub

• path to a existing container on your local machine

• path to a directory to build from a sandbox

• path to a Singularity definition file

build can produce containers in two different formats that can be specified as follows.

• compressed read-only Singularity Image File (SIF) format suitable for production (default)

• writable (ch)root directory called a sandbox for interactive development (--sandbox option)

Because build can accept an existing container as a target and create a container in either supported format you can
convert existing containers from one format to another.

3.2 Downloading an existing container from the Container Library

You can use the build command to download a container from the Container Library.

$ sudo singularity build lolcow.simg library://sylabs-jms/testing/lolcow

The first argument (lolcow.simg) specifies a path and name for your container. The second argument
(library://sylabs-jms/testing/lolcow) gives the Container Library URI from which to download. By
default the container will be converted to a compressed, read-only SIF. If you want your container in a writable format
use the --sandbox option.

19

https://cloud.sylabs.io/library
https://hub.docker.com/

Singularity Container Documentation, Release 3.0

3.3 Downloading an existing container from Docker Hub

You can use build to download layers from Docker Hub and assemble them into Singularity containers.

$ sudo singularity build lolcow.sif docker://godlovedc/lolcow

3.4 Creating writable --sandbox directories

If you wanted to create a container within a writable directory (called a sandbox) you can do so with the --sandbox
option. It’s possible to create a sandbox without root privileges, but to ensure proper file permissions it is recommended
to do so as root.

$ sudo singularity build --sandbox lolcow/ library://sylabs-jms/testing/lolcow

The resulting directory operates just like a container in a SIF file. To make changes within the container, use the
--writable flag when you invoke your container. It’s a good idea to do this as root to ensure you have permission
to access the files and directories that you want to change.

$ sudo singularity shell --writable lolcow/

3.5 Converting containers from one format to another

If you already have a container saved locally, you can use it as a target to build a new container. This allows you
convert containers from one format to another. For example if you had a sandbox container called development/
and you wanted to convert it to SIF container called production.sif you could:

$ sudo singularity build production.sif development/

Use care when converting a sandbox directory to the default SIF format. If changes were made to the writable container
before conversion, there is no record of those changes in the Singularity definition file rendering your container non-
reproducible. It is a best practice to build your immutable production containers directly from a Singularity definition
file instead.

3.6 Building containers from Singularity definition files

Of course, Singularity definition files can be used as the target when building a container. For detailed information on
writing Singularity definition files, please see the Container Definition docs. Let’s say you already have the following
container definition file called lolcow.def, and you want to use it to build a SIF container.

Bootstrap: docker
From: ubuntu:16.04

%post
apt-get -y update
apt-get -y install fortune cowsay lolcat

%environment
export LC_ALL=C
export PATH=/usr/games:$PATH

(continues on next page)

20 Chapter 3. Build a Container

Singularity Container Documentation, Release 3.0

(continued from previous page)

%runscript
fortune | cowsay | lolcat

You can do so with the following command.

$ sudo singularity build lolcow.sif lolcow.def

The command requires sudo just as installing software on your local machine requires root privileges.

3.7 Build options

3.7.1 --builder

Singularity 3.0 introduces the option to perform a remote build. The --builder option allows you to specify a URL
to a different build service. For instance, you may need to specify a URL to build to an on premises installation of the
remote builder. This option must be used in conjunction with --remote.

3.7.2 --detached

When used in combination with the --remote option, the --detached option will detach the build from your
terminal and allow it to build in the background without echoing any output to your terminal.

3.7.3 --force

The --force option will delete and overwrite an existing Singularity image without presenting the normal interactive
prompt.

3.7.4 --json

The --json option will force Singularity to interpret a given definition file as a json.

3.7.5 --library

This command allows you to set a different library. (The default library is “https://library.sylabs.io”)

3.7.6 --notest

If you don’t want to run the %test section during the container build, you can skip it with the --notest option.
For instance, maybe you are building a container intended to run in a production environment with GPUs. But perhaps
your local build resource does not have GPUs. You want to include a %test section that runs a short validation but
you don’t want your build to exit with an error because it cannot find a GPU on your system.

3.7.7 --remote

Singularity 3.0 introduces the ability to build a container on an external resource running a remote builder. (The default
remote builder is located at “https://cloud.sylabs.io/builder”.)

3.7. Build options 21

https://library.sylabs.io
https://cloud.sylabs.io/builder

Singularity Container Documentation, Release 3.0

3.7.8 --sandbox

Build a sandbox (chroot directory) instead of the default SIF format.

3.7.9 --section

Instead of running the entire definition file, only run a specific section or sections. This option accepts a comma
delimited string of definition file sections. Acceptable arguments include all, none or any combination of the
following: setup, post, files, environment, test, labels.

Under normal build conditions, the Singularity definition file is saved into a container’s meta-data so that there is a
record showing how the container was built. Using the --section option may render this meta-data useless, so use
care if you value reproducibility.

3.7.10 --update

You can build into the same sandbox container multiple times (though the results may be unpredictable and it is
generally better to delete your container and start from scratch).

By default if you build into an existing sandbox container, the build command will prompt you to decide whether or
not to overwrite the container. Instead of this behavior you can use the --update option to build _into_ an existing
container. This will cause Singularity to skip the header and build any sections that are in the definition file into the
existing container.

The --update option is only valid when used with sandbox containers.

3.8 More Build topics

• If you want to customize the cache location (where Docker layers are downloaded on your system), specify
Docker credentials, or any custom tweaks to your build environment, see build environment.

• If you want to make internally modular containers, check out the getting started guide here

• If you want to build your containers on the Remote Builder, (because you don’t have root access on a Linux
machine or want to host your container on the cloud) check out this site

22 Chapter 3. Build a Container

https://sci-f.github.io/tutorials
https://cloud.sylabs.io/builder

CHAPTER

FOUR

BIND PATHS AND MOUNTS

If enabled by the system administrator, Singularity allows you to map directories on your host system to directories
within your container using bind mounts. This allows you to read and write data on the host system with ease.

4.1 Overview

When Singularity ‘swaps’ the host operating system for the one inside your container, the host file systems becomes
inaccessible. But you may want to read and write files on the host system from within the container. To enable this
functionality, Singularity will bind directories back into the container via two primary methods: system-defined bind
paths and user-defined bind paths.

4.2 System-defined bind paths

The system administrator has the ability to define what bind paths will be included automatically inside each container.
Some bind paths are automatically derived (e.g. a user’s home directory) and some are statically defined (e.g. bind
paths in the Singularity configuration file). In the default configuration, the directories $HOME , /tmp , /proc ,
/sys , /dev, and $PWD are among the system-defined bind paths.

4.3 User-defined bind paths

If the system administrator has enabled user control of binds, you will be able to request your own bind paths within
your container.

The Singularity action commands (run, exec, shell, and instance start will accept the --bind/
-B command-line option to specify bind paths, and will also honor the $SINGULARITY_BIND (or
$SINGULARITY_BINDPATH) environment variable. The argument for this option is a comma-delimited string
of bind path specifications in the format src[:dest[:opts]], where src and dest are paths outside and inside
of the container respectively. If dest is not given, it is set equal to src. Mount options (opts) may be specified as
ro (read-only) or rw (read/write, which is the default). The --bind/-B option can be specified multiple times, or a
comma-delimited string of bind path specifications can be used.

4.3.1 Specifying bind paths

Here’s an example of using the --bind option and binding /data on the host to /mnt in the container (/mnt does
not need to already exist in the container):

23

https://singularity-admindoc.readthedocs.io/en/latest/the_singularity_config_file.html#user-bind-control-boolean-default-yes
https://singularity-admindoc.readthedocs.io/en/latest/the_singularity_config_file.html#user-bind-control-boolean-default-yes

Singularity Container Documentation, Release 3.0

$ ls /data
bar foo

$ singularity exec --bind /data:/mnt my_container.sif ls /mnt
bar foo

You can bind multiple directories in a single command with this syntax:

$ singularity shell --bind /opt,/data:/mnt my_container.sif

This will bind /opt on the host to /opt in the container and /data on the host to /mnt in the container.

Using the environment variable instead of the command line argument, this would be:

$ export SINGULARITY_BIND="/opt,/data:/mnt"

$ singularity shell my_container.sif

Using the environment variable $SINGULARITY_BIND, you can bind paths even when you are running your con-
tainer as an executable file with a runscript. If you bind many directories into your Singularity containers and they
don’t change, you could even benefit by setting this variable in your .bashrc file.

4.3.2 A note on using --bind with the --writable flag

To mount a bind path inside the container, a bind point must be defined within the container. The bind point is a
directory within the container that Singularity can use as a destination to bind a directory on the host system.

Starting in version 3.0, Singularity will do its best to bind mount requested paths into a container regardless of whether
the appropriate bind point exists within the container. Singularity can often carry out this operation even in the absence
of the “overlay fs” feature.

However, binding paths to non-existent points within the container can result in unexpected behavior when used in
conjuction with the --writable flag, and is therefore disallowed. If you need to specify bind paths in combination
with the --writable flag, please ensure that the appropriate bind points exist within the container. If they do not
already exist, it will be necessary to modify the container and create them.

24 Chapter 4. Bind Paths and Mounts

CHAPTER

FIVE

PERSISTENT OVERLAYS

Persistent overlay directories allow you to overlay a writable file system on an immutable read-only container for the
illusion of read-write access.

5.1 Overview

A persistent overlay is a directory that “sits on top” of your compressed, immutable SIF container. When you install
new software or create and modify files the overlay directory stores the changes.

If you want to use a SIF container as though it were writable, you can create a directory to use as a persistent overlay.
Then you can specify that you want to use the directory as an overlay at runtime with the --overlay option.

You can use a persistent overlays with the following commands:

• run

• exec

• shell

• instance.start

5.2 Usage

To use a persistent overlay, you must first have a container.

$ sudo singularity build ubuntu.sif library://ubuntu

Then you must create a directory. (You can also use the --overlay option with a legacy writable ext3 image.)

$ mkdir my_overlay

Now you can use this overlay directory with your container. Note that it is necessary to be root to use an overlay
directory.

$ sudo singularity shell --overlay my_overlay/ ubuntu.sif

Singularity ubuntu.sif:~> touch /foo

Singularity ubuntu.sif:~> apt-get update && apt-get install -y vim

Singularity ubuntu.sif:~> which vim

(continues on next page)

25

Singularity Container Documentation, Release 3.0

(continued from previous page)

/usr/bin/vim

Singularity ubuntu.sif:~> exit

You will find that your changes persist across sessions as though you were using a writable container.

$ sudo singularity shell --overlay my_overlay/ ubuntu.sif

Singularity ubuntu.sif:~> ls /foo
/foo

Singularity ubuntu.sif:~> which vim
/usr/bin/vim

Singularity ubuntu.sif:~> exit

If you mount your container without the --overlay directory, your changes will be gone.

$ sudo singularity shell ubuntu.sif

Singularity ubuntu.sif:~> ls /foo
ls: cannot access 'foo': No such file or directory

Singularity ubuntu.sif:~> which vim

Singularity ubuntu.sif:~> exit

26 Chapter 5. Persistent Overlays

CHAPTER

SIX

SIGNING AND VERIFYING CONTAINERS

Singularity 3.0 introduces the abilities to create and manage PGP keys and use them to sign and verify containers. This
provides a trusted method for Singularity users to share containers. It ensures a bit-for-bit reproduction of the original
container as the author intended it.

6.1 Verifying containers from the Container Library

The verify command will allow you to verify that a container has been signed using a PGP key. To use this feature
with images that you pull from the container library, you must first generate an access token to the Sylabs Cloud. If
you don’t already have a valid access token, follow these steps:

1. Go to : https://cloud.sylabs.io/

2. Click “Sign in to Sylabs” and follow the sign in steps.

3. Click on your login id (same and updated button as the Sign in one).

4. Select “Access Tokens” from the drop down menu.

5. Click the “Manage my API tokens” button from the “Account Management” page.

6. Click “Create”.

7. Click “Copy token to Clipboard” from the “New API Token” page.

8. Paste the token string into your ~/.singularity/sylabs-token file.

Now you can verify containers that you pull from the library, ensuring they are bit-for-bit reproductions of the original
image.

$ singularity pull library://alpine

$ singularity verify alpine_latest.sif
Verifying image: alpine_latest.sif
Data integrity checked, authentic and signed by:

Sylabs Admin <support@sylabs.io>, KeyID 51BE5020C508C7E9

In this example you can see that Sylabs Admin has signed the container.

6.2 Signing your own containers

6.2.1 Generating and managing PGP keys

To sign your own containers you first need to generate one or more keys.

27

https://cloud.sylabs.io/

Singularity Container Documentation, Release 3.0

If you attempt to sign a container before you have generated any keys, Singularity will guide you through the interactive
process of creating a new key. Or you can use the newpair subcommand in the key command group like so:.

$ singularity keys newpair
Enter your name (e.g., John Doe) : Dave Godlove
Enter your email address (e.g., john.doe@example.com) : d@sylabs.io
Enter optional comment (e.g., development keys) : demo
Generating Entity and OpenPGP Key Pair... Done
Enter encryption passphrase :

The list subcommand will show you all of the keys you have created or saved locally.‘

$ singularity keys list
Public key listing (/home/david/.singularity/sypgp/pgp-public):

0) U: Dave Godlove (demo) <d@sylabs.io>
C: 2018-10-08 15:25:30 -0400 EDT
F: 135E426D67D8416DE1D6AC7FFED5BBA38EE0DC4A
L: 4096

In the output above, the letters stand for the following:

• U: User

• C: Creation date and time

• F: Fingerprint

• L: Key length

After generating your key you can optionally push it to the Keystore using the fingerprint like so:

$ singularity keys push 135E426D67D8416DE1D6AC7FFED5BBA38EE0DC4A
public key `135E426D67D8416DE1D6AC7FFED5BBA38EE0DC4A` pushed to server successfully

This will allow others to verify images that you have signed.

If you delete your local public PGP key, you can always locate and download it again like so.

$ singularity keys search Godlove
Search results for 'Godlove'

Type bits/keyID Date User ID
--
pub 4096R/8EE0DC4A 2018-10-08 Dave Godlove (demo) <d@sylabs.io>
--

$ singularity keys pull 8EE0DC4A
1 key(s) fetched and stored in local cache /home/david/.singularity/sypgp/pgp-public

But note that this only restores the public key (used for verifying) to your local machine and does not restore the
private key (used for signing).

6.2.2 Signing and validating your own containers

Now that you have a key generated, you can use it to sign images like so:

28 Chapter 6. Signing and Verifying Containers

https://cloud.sylabs.io/keystore

Singularity Container Documentation, Release 3.0

$ singularity sign my_container.sif
Signing image: my_container.sif
Enter key passphrase:
Signature created and applied to my_container.sif

Because your public PGP key is saved locally you can verify the image without needing to contact the Keystore.

$ singularity verify my_container.sif
Verifying image: my_container.sif
Data integrity checked, authentic and signed by:

Dave Godlove (demo) <d@sylabs.io>, KeyID FED5BBA38EE0DC4A

If you’ve pushed your key to the Keystore you can also verify this image in the absence of a local key. To demonstrate
this, first delete your local keys, and then try to use the verify command again.

$ rm ~/.singularity/sypgp/*

$ singularity verify my_container.sif
Verifying image: my_container.sif
INFO: key missing, searching key server for KeyID: FED5BBA38EE0DC4A...
INFO: key retreived successfully!
Store new public key 135E426D67D8416DE1D6AC7FFED5BBA38EE0DC4A? [Y/n] y
Data integrity checked, authentic and signed by:

Dave Godlove (demo) <d@sylabs.io>, KeyID FED5BBA38EE0DC4A

Answering yes at the interactive prompt will store the Public key locally so you will not have to contact the Keystore
again the next time you verify your container.

6.2. Signing your own containers 29

Singularity Container Documentation, Release 3.0

30 Chapter 6. Signing and Verifying Containers

CHAPTER

SEVEN

SECURITY OPTIONS

Singularity 3.0 introduces many new security related options to the container runtime. This document will describe
the new methods users have for specifying the security scope and context when running Singularity containers.

7.1 Linux Capabilities

Singularity provides full support for granting and revoking Linux capabilities on a user or group basis. For example,
let us suppose that an admin has decided to grant a user capabilities to open raw sockets so that they can use ping in
a container where the binary is controlled via capabilities (i.e. a recent version of CentOS).

To do so, the admin would issue a command such as this:

$ sudo singularity capability add --user david CAP_NET_RAW

This means the user david has just been granted permissions (through Linux capabilities) to open raw sockets within
Singularity containers.

The admin can check that this change is in effect with the capability list command.

$ sudo singularity capability list --user david
CAP_NET_RAW

To take advantage of this new capability, the user david must also request the capability when executing a container
with the --add-caps flag like so:

$ singularity exec --add-caps CAP_NET_RAW library://centos ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=128 time=18.3 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 18.320/18.320/18.320/0.000 ms

If the admin decides that it is no longer necessary to allow the user dave to open raw sockets within Singularity
containers, they can revoke the appropriate Linux capability like so:

$ sudo singularity capability drop --user david CAP_NET_RAW

The capabiltiy add and drop subcommands will also accept the case insensitive keyword all to grant or
revoke all Linux capabilities to a user or group. Similarly, the --add-caps option will accept the all keyword. Of
course appropriate caution should be exercised when using this keyword.

31

Singularity Container Documentation, Release 3.0

7.2 Security related action options

Singularity 3.0 introduces many new flags that can be passed to the action commands; shell, exec, and run
allowing fine grained control of security.

7.2.1 --add-caps

As explained above, --add-caps will “activate” Linux capabilities when a container is initiated, providing those
capabilities have been granted to the user by an administrator using the capability add command. This option
will also accept the case insensitive keyword all to add every capability granted by the administrator.

7.2.2 --allow-setuid

The SetUID bit allows a program to be executed as the user that owns the binary. The most well-known SetUID
binaries are owned by root and allow a user to execute a command with elevated privileges. But other SetUID binaries
may allow a user to execute a command as a service account.

By default SetUID is disallowed within Singularity containers as a security precaution. But the root user can
override this precaution and allow SetUID binaries to behave as expected within a Singularity container with the
--allow-setuid option like so:

$ sudo singularity shell --allow-setuid some_container.sif

7.2.3 --keep-privs

It is possible for an admin to set a different set of default capabilities or to reduce the default capabilities to zero for the
root user by setting the root default capabilities parameter in the singularity.conf file to file
or no respectively. If this change is in effect, the root user can override the singularity.conf file and enter the
container with full capabilities using the --keep-privs option.

$ sudo singularity exec --keep-privs library://centos ping -c 1 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=128 time=18.8 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 18.838/18.838/18.838/0.000 ms

7.2.4 --drop-caps

By default, the root user has a full set of capabilities when they enter the container. You may choose to drop specific
capabilities when you initiate a container as root to enhance security.

For instance, to drop the ability for the root user to open a raw socket inside the container:

$ sudo singularity exec --drop-caps CAP_NET_RAW library://centos ping -c 1 8.8.8.8
ping: socket: Operation not permitted

The drop-caps option will also accept the case insensitive keyword all as an option to drop all capabilities when
entering the container.

32 Chapter 7. Security Options

Singularity Container Documentation, Release 3.0

7.2.5 --security

The --security flag allows the root user to leverage security modules such as SELinux, AppArmor, and seccomp
within your Singularity container. You can also change the UID and GID of the user within the container at runtime.

For instance:

$ sudo whoami
root

$ sudo singularity exec --security uid:1000 my_container.sif whoami
david

To use seccomp to blacklist a command follow this procedure. (It is actually preferable from a security standpoint to
whitelist commands but this will suffice for a simple example.) Note that this example was run on Ubuntu and that
Singularity was installed with the libseccomp-dev and pkg-config packages as dependencies.

First write a configuration file. An example configuration file is installed with Singularity, normally at /usr/local/
etc/singularity/seccomp-profiles/default.json. For this example, we will use a much simpler
configuration file to blacklist the mkdir command.

{
"defaultAction": "SCMP_ACT_ALLOW",
"archMap": [

{
"architecture": "SCMP_ARCH_X86_64",
"subArchitectures": [

"SCMP_ARCH_X86",
"SCMP_ARCH_X32"

]
}

],
"syscalls": [

{
"names": [

"mkdir"
],
"action": "SCMP_ACT_KILL",
"args": [],
"comment": "",
"includes": {},
"excludes": {}

}
]

}

We’ll save the file at /home/david/no_mkdir.json. Then we can invoke the container like so:

$ sudo singularity shell --security seccomp:/home/david/no_mkdir.json my_container.sif

Singularity> mkdir /tmp/foo
Bad system call (core dumped)

Note that attempting to use the blacklisted mkdir command resulted in a core dump.

The full list of arguments accepted by the --security option are as follows:

7.2. Security related action options 33

Singularity Container Documentation, Release 3.0

--security="seccomp:/usr/local/etc/singularity/seccomp-profiles/default.json"
--security="apparmor:/usr/bin/man"
--security="selinux:context"
--security="uid:1000"
--security="gid:1000"
--security="gid:1000:1:0" (multiple gids, first is always the primary group)

34 Chapter 7. Security Options

CHAPTER

EIGHT

NETWORK VIRTUALIZATION

Singularity 3.0 introduces full integration with cni , and several new features to make network virtualization easy.

A few new options have been added to the action commands (exec, run, and shell) to facilitate these features, and
the --net option has been updated as well. These options can only be used by root.

8.1 --dns

The --dns option allows you to specify a comma separated list of DNS servers to add to the /etc/resolv.conf
file.

$ nslookup sylabs.io | grep Server
Server: 127.0.0.53

$ sudo singularity exec --dns 8.8.8.8 ubuntu.sif nslookup sylabs.io | grep Server
Server: 8.8.8.8

$ sudo singularity exec --dns 8.8.8.8 ubuntu.sif cat /etc/resolv.conf
nameserver 8.8.8.8

8.2 --hostname

The --hostname option accepts a string argument to change the hostname within the container.

$ hostname
ubuntu-bionic

$ sudo singularity exec --hostname hal-9000 my_container.sif hostname
hal-9000

8.3 --net

Passing the --net flag will cause the container to join a new network namespace when it initiates. New in Singularity
3.0, a bridge interface will also be set up by default.

$ hostname -I
10.0.2.15

(continues on next page)

35

https://github.com/containernetworking/cni

Singularity Container Documentation, Release 3.0

(continued from previous page)

$ sudo singularity exec --net my_container.sif hostname -I
10.22.0.4

8.4 --network

The --network option can only be invoked in combination with the --net flag. It accepts a comma delimited
string of network types. Each entry will bring up a dedicated interface inside container.

$ hostname -I
172.16.107.251 10.22.0.1

$ sudo singularity exec --net --network ptp ubuntu.sif hostname -I
10.23.0.6

$ sudo singularity exec --net --network bridge,ptp ubuntu.sif hostname -I
10.22.0.14 10.23.0.7

When invoked, the --network option searches the singularity configuration directory (commonly /usr/local/
etc/singularity/network/) for the cni configuration file corresponding to the requested network type(s).
Several configuration files are installed with Singularity by default corresponding to the following network types:

• bridge

• ptp

• ipvlan

• macvlan

Administrators can also define custom network configurations and place them in the same directory for the benefit of
users.

8.5 --network-args

The --network-args option provides a convenient way to specify arguments to pass directly to the cni plugins. It
must be used in conjuction with the --net flag.

For instance, let’s say you want to start an NGINX server on port 80 inside of the container, but you want to map it to
port 8080 outside of the container:

$ sudo singularity instance start --writable-tmpfs \
--net --network-args "portmap=8080:80/tcp" docker://nginx web2

The above command will start the Docker Hub official NGINX image running in a background instance called web2.
The NGINX instance will need to be able to write to disk, so we’ve used the --writable-tmpfs argument to allo-
cate some space in memory. The --net flag is necessary when using the --network-args option, and specifying
the portmap=8080:80/tcp argument which will map port 80 inside of the container to 8080 on the host.

Now we can start NGINX inside of the container:

$ sudo singularity exec instance://web2 nginx

And the curl command can be used to verify that NGINX is running on the host port 8080 as expected.

36 Chapter 8. Network virtualization

https://www.nginx.com/

Singularity Container Documentation, Release 3.0

$ curl localhost:8080
10.22.0.1 - - [16/Oct/2018:09:34:25 -0400] "GET / HTTP/1.1" 200 612 "-" "curl/7.58.0"
→˓"-"
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>

body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;

}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

For more information about cni, check the cni specification.

8.5. --network-args 37

https://github.com/containernetworking/cni/blob/master/SPEC.md

Singularity Container Documentation, Release 3.0

38 Chapter 8. Network virtualization

CHAPTER

NINE

LIMITING CONTAINER RESOURCES WITH CGROUPS

Starting in Singularity 3.0, users have the ability to limit container resources using cgroups.

9.1 Overview

Singularity cgroups support can be configured and utilized via a TOML file. An example file is typically installed
at /usr/local/etc/singularity/cgroups/cgroups.toml. You can copy and edit this file to suit your
needs. Then when you need to limit your container resources, apply the settings in the TOML file by using the path as
an argument to the --apply-cgroups option like so:

$ sudo singularity shell --apply-cgroups /path/to/cgroups.toml my_container.sif

The --apply-cgroups option can only be used with root privileges.

9.2 Examples

9.2.1 Limiting memory

To limit the amount of memory that your container uses to 500MB (524288000 bytes), follow this example. First,
create a cgroups.toml file like this and save it in your home directory.

[memory]
limit = 524288000

Start your container like so:

$ sudo singularity instance start --apply-cgroups /home/$USER/cgroups.toml \
my_container.sif instance1

After that, you can verify that the container is only using 500MB of memory. (This example assumes that instance1
is the only running instance.)

$ cat /sys/fs/cgroup/memory/singularity/*/memory.limit_in_bytes
524288000

After you are finished with this example, be sure to cleanup your instance with the following command.

$ sudo singularity instance stop instance1

39

Singularity Container Documentation, Release 3.0

Similarly, the remaining examples can be tested by starting instances and examining the contents of the appropriate
subdirectories of /sys/fs/cgroup/.

9.2.2 Limiting CPU

Limit CPU resources using one of the following strategies. The cpu section of the configuration file can limit memory
with the following:

9.2.2.1 shares

This corresponds to a ratio versus other cgroups with cpu shares. Usually the default value is 1024. That means if
you want to allow to use 50% of a single CPU, you will set 512 as value.

[cpu]
shares = 512

A cgroup can get more than its share of CPU if there are enough idle CPU cycles available in the system, due to the
work conserving nature of the scheduler, so a contained process can consume all CPU cycles even with a ratio of 50%.
The ratio is only applied when two or more processes conflicts with their needs of CPU cycles.

9.2.2.2 quota/period

You can enforce hard limits on the CPU cycles a cgroup can consume, so contained processes can’t use more than the
amount of CPU time set for the cgroup. quota allows you to configure the amount of CPU time that a cgroup can
use per period. The default is 100ms (100000us). So if you want to limit amount of CPU time to 20ms during period
of 100ms:

[cpu]
period = 100000
quota = 20000

9.2.2.3 cpus/mems

You can also restrict access to specific CPUs and associated memory nodes by using cpus/mems fields:

[cpu]
cpus = "0-1"
mems = "0-1"

Where container has limited access to CPU 0 and CPU 1.

Note: It’s important to set identical values for both cpus and mems.

For more information about limiting CPU with cgroups, see the following external links:

• Red Hat resource management guide section 3.2 CPU

• Red Hat resource management guide section 3.4 CPUSET

• Kernel scheduler documentation

40 Chapter 9. Limiting container resources with cgroups

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpu/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpuset
https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

Singularity Container Documentation, Release 3.0

9.2.3 Limiting IO

You can limit and monitor access to I/O for block devices. Use the [blockIO] section of the configuration file to do
this like so:

[blockIO]
weight = 1000
leafWeight = 1000

weight and leafWeight accept values between 10 and 1000.

weight is the default weight of the group on all the devices until and unless overridden by a per device rule.

leafWeight relates to weight for the purpose of deciding how heavily to weigh tasks in the given cgroup while
competing with the cgroup’s child cgroups.

To override weight/leafWeight for /dev/loop0 and /dev/loop1 block devices you would do something
like this:

[blockIO]
[[blockIO.weightDevice]]

major = 7
minor = 0
weight = 100
leafWeight = 50

[[blockIO.weightDevice]]
major = 7
minor = 1
weight = 100
leafWeight = 50

You could limit the IO read/write rate to 16MB per second for the /dev/loop0 block device with the following
configuration. The rate is specified in bytes per second.

[blockIO]
[[blockIO.throttleReadBpsDevice]]

major = 7
minor = 0
rate = 16777216

[[blockIO.throttleWriteBpsDevice]]
major = 7
minor = 0
rate = 16777216

To limit the IO read/write rate to 1000 IO per second (IOPS) on /dev/loop0 block device, you can do the following.
The rate is specified in IOPS.

[blockIO]
[[blockIO.throttleReadIOPSDevice]]

major = 7
minor = 0
rate = 1000

[[blockIO.throttleWriteIOPSDevice]]
major = 7
minor = 0
rate = 1000

For more information about limiting IO, see the following external links:

9.2. Examples 41

Singularity Container Documentation, Release 3.0

• Red Hat resource management guide section 3.1 blkio

• Kernel block IO controller documentation

• Kernel CFQ scheduler documentation

9.2.3.1 Limiting device access

You can limit read, write, or creation of devices. In this example, a container is configured to only be able to read from
or write to /dev/null.

[[devices]]
access = "rwm"
allow = false

[[devices]]
access = "rw"
allow = true
major = 1
minor = 3
type = "c"

For more information on limiting access to devices the Red Hat resource management guide section 3.5 DEVICES.

42 Chapter 9. Limiting container resources with cgroups

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch-subsystems_and_tunable_parameters#sec-blkio
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-devices

	Quick Start
	Quick Installation Steps
	Install system dependencies
	Install Go
	Clone the Singularity repository
	Install Go dependencies
	Compile the Singularity binary

	Overview of the Singularity Interface
	Download pre-built images
	Interact with images
	Shell
	Executing Commands
	Running a container
	Working with Files

	Build images from scratch
	Sandbox Directories
	Converting images from one format to another
	Singularity Definition Files

	Installation
	Overview
	Install on Linux
	Before you begin
	Install Dependencies
	Install Go

	Install from source
	Download Singularity repo (and optionally check out a tag or branch)
	Compile Singularity
	Source bash completion file

	Build and install an RPM
	Remove an old version
	Distribution packages of Singularity
	Install the Debian/Ubuntu package using apt
	Install the CentOS/RHEL package using yum

	Install on Windows or Mac
	Setup
	Windows
	Mac

	Singularity Vagrant Box

	Singularity on a shared resource

	Build a Container
	Overview
	Downloading an existing container from the Container Library
	Downloading an existing container from Docker Hub
	Creating writable --sandbox directories
	Converting containers from one format to another
	Building containers from Singularity definition files
	Build options
	--builder
	--detached
	--force
	--json
	--library
	--notest
	--remote
	--sandbox
	--section
	--update

	More Build topics

	Bind Paths and Mounts
	Overview
	System-defined bind paths
	User-defined bind paths
	Specifying bind paths
	A note on using --bind with the --writable flag

	Persistent Overlays
	Overview
	Usage

	Signing and Verifying Containers
	Verifying containers from the Container Library
	Signing your own containers
	Generating and managing PGP keys
	Signing and validating your own containers

	Security Options
	Linux Capabilities
	Security related action options
	--add-caps
	--allow-setuid
	--keep-privs
	--drop-caps
	--security

	Network virtualization
	--dns
	--hostname
	--net
	--network
	--network-args

	Limiting container resources with cgroups
	Overview
	Examples
	Limiting memory
	Limiting CPU
	shares
	quota/period
	cpus/mems

	Limiting IO
	Limiting device access

