

Choco3 Documentation

Release 3.3.1

Charles Prud'homme, Jean-Guillaume Fages, Xavier Lorca
I Preliminaries 3
1 Main concepts 5
1.1 What is Constraint Programming? 5
1.2 What is Choco ? 5
1.3 Technical overview 6
1.4 History 6
1.5 How to get support? 6
1.6 How to cite Choco ? 6
1.7 Who contributes to Choco? 7
2 Getting started 9
2.1 Installing Choco 3 9
2.2 Overview of Choco 3 12
2.3 Choco 3 quick documentation 13
2.4 Choco 3 : changes 14
II Modelling problems 17
3 The solver 19
3.1 Getters 20
3.2 Setters 22
3.3 Others 22
4 Declaring variables 23
4.1 Principle 23
4.2 Integer variable 23
4.3 Constants 25
4.4 Variable views 25
4.5 Set variable 26
4.6 Real variable 26
5 Constraints and propagators 27
5.1 Principle 27
5.2 Posting constraints 29
5.3 Reifying constraints 30
5.4 SAT constraints 31
III Solving problems 33
6 Finding solutions 35
6.1 Satisfaction problems 35
6.2 Optimization problems 36
6.3 Multi-objective optimization problems 37
6.4 Propagation 38
7 Recording solutions 39
7.1 Solution storage 39
7.2 Solution recording 39
7.3 Solution restoration 40
8 Search Strategies 41
8.1 Principle 41
8.2 Zoom on IntStrategy 41
8.3 Default search strategies 43
8.4 Composition of strategies 44
8.5 Restarts 44
8.6 Limiting the resolution 45
9 Resolution statistics 47
IV Advanced usage 51
10 Settings 53
11 Large Neighborhood Search (LNS) 55
11.1 Principle 55
11.2 Neighbors 56
11.3 Restarts 57
11.4 Walking 57
12 Multi-thread resolution 59
13 Explanations 61
13.1 Principle 61
13.2 In practice 61
13.3 Explanations for the system 63
13.4 Explanations for the end-user 64
14 Search monitor 65
14.1 Principle 65
15 Defining its own search strategy 67
15.1 Selecting the variable 67
15.2 Selecting the value 68
15.3 Making a decision 68
16 Defining its own constraint 71
16.1 Structure of a Propagator 71
16.2 Properties 72
16.3 How to make a propagator idempotent? 72
17 Ibex 75
17.1 Installing Ibex 75
V Elements of Choco 77
18 Constraints over integer variables 79
18.1 absolute 79
18.2 alldifferent 79
18.3 alldifferent_conditionnal 80
18.4 alldifferent_except_0 81
18.5 among 81
18.6 arithm 82
18.7 atleast_nvalues 83
18.8 atmost_nvalues 84
18.9 bin_packing 84
18.10 bit_channeling 85
18.11 boolean_channeling 86
18.12 clause_channeling 87
18.13 circuit 87
18.14 cost_regular 88
18.15 count 89
18.16 cumulative 90
18.17 diffn 91
18.18 distance 92
18.19 element 93
18.20 eucl_div 94
18.21 FALSE 94
18.22 global_cardinality 94
18.23 inverse_channeling 95
18.24 knapsack 96
18.25 lex_chain_less 96
18.26 lex_chain_less_eq 97
18.27 lex less 97
18.28 lex_less_eq 98
18.29 maximum 99
18.30 mddc 99
18.31 member 100
18.32 minimum 101
18.33 mod 101
18.34 multicost_regular 102
18.35 not_member 103
18.36 nvalues 104
18.37 path 104
18.38 regular 105
18.39 scalar 106
18.40 sort 106
18.41 square 107
18.42 subcircuit 108
18.43 subpath 108
18.44 sum 109
18.45 table 110
18.46 times 111
18.47 tree 111
18.48 TRUE 112
18.49 tsp 112
19 Constraints over set variables 115
19.1 all_different 115
19.2 all_disjoint 115
19.3 all_equal 115
19.4 bool_channel 115
19.5 cardinality 116
19.6 disjoint 116
19.7 element 116
19.8 int_channel 117
19.9 int values union 117
19.10 intersection 117
19.11 inverse_set 117
19.12 max 118
19.13 member 118
19.14 not_member 119
19.15 min 119
19.16 nbEmpty 120
19.17 notEmpty 120
19.18 offSet 120
19.19 partition 120
19.20 subsetEq 121
19.21 sum 121
19.22 symmetric 121
19.23 union 121
20 Constraints over real variables 123
21 Logical constraints 125
21.1 not 125
21.2 ifThen 125
21.3 ifThenElse 125
21.4 reification 125
22 Sat solver 127
22.1 addAtMostNMinusOne 127
22.2 addAtMostOne 127
22.3 addBoolAndArrayEqualFalse 128
22.4 addBoolAndArrayEqVar 128
22.5 addBoolAndEqVar 129
22.6 addBoolEq 129
22.7 addBoolIsEqVar 130
22.8 addBoolIsLeVar 130
22.9 addBoolIsLtVar 131
22.10 addBoolIsNeqVar 131
22.11 addBoolLe 132
22.12 addBoolLt 132
22.13 addBoolNot 133
22.14 addBoolOrArrayEqualTrue 133
22.15 addBoolOrArrayEqVar 134
22.16 addBoolOrEqVar 134
22.17 addBoolXorEqVar 135
22.18 addClauses 135

iv

22.19 addFalse 136
22.20 addMaxBoolArrayLessEqVar 137
22.21 addSumBoolArrayGreaterEqVar 137
22.22 addSumBoolArrayLessEqVar 138
22.23 addTrue 138
23 Variable selectors 141
23.1 lexico_var_selector 141
23.2 random_var_selector 141
23.3 minDomainSize_var_selector 141
23.4 maxDomainSize_var_selector 142
23.5 maxRegret_var_selector 142
24 Value selectors 143
24.1 min_value_selector 143
24.2 mid_value_selector 143
24.3 max_value_selector 143
24.4 randomBound_value_selector 144
24.5 random_value_selector 144
25 Decision operators 145
25.1 assign 145
25.2 remove 145
25.3 split 145
25.4 reverse_split 146
26 Built-in strategies 147
26.1 custom 147
26.2 force_first 147
26.3 force_maxDelta_first 148
26.4 force_minDelta_first 148
26.5 lexico_LB 148
26.6 lexico_Neq_LB 148
26.7 lexico_Split 149
26.8 lexico_UB 149
26.9 minDom_LB 149
26.10 minDom_MidValue 149
26.11 maxDom_Split 150
26.12 minDom_UB 150
26.13 maxReg_LB 150
26.14 random_bound 150
26.15 random_value 151
26.16 remove_first 151
26.17 sequencer 151
26.18 domOverWDeg 151
26.19 activity 152
26.20 impact 152
26.21 lastConflict 152
26.22 generateAndTest 153
27 Search Monitors 155
27.1 geometrical 155
27.2 luby 155
27.3 limitNode 155
27.4 limitSolution 156
27.5 limitTime 156
27.6 limitThreadTime 156
27.7 limitFail 157
27.8 limitBacktrack 157
27.9 restartAfterEachSolution 157
27.10 nogoodRecordingOnSolution 157
27.11 nogoodRecordingFromRestarts 157
VI Extensions of Choco 159
28 IO extensions 161
28.1 choco-parsers 161
28.2 choco-gui 161
28.3 choco-cpviz 161
29 Modeling extensions 163
29.1 choco-graph 163
29.2 choco-geost 163
29.3 choco-exppar 163
VII References 165
Bibliography 167

Warning: This is a work-in-progress documentation. If you have any questions, suggestions or requests, please send an email to choco@mines-nantes.fr.

Choco3 Documentation, Release 3.3.1

Part I

Preliminaries

Main concepts

1.1 What is Constraint Programming?

Such a paradigm takes its features from various domains (Operational Research, Artificial Intelligence, etc). Constraint programming is now part of the portfolio of global solutions for processing real combinatorial problems. Actually, this technique provides tools to deal with a wide range of combinatorial problems. These tools are designed to allow non-specialists to address strategic as well as operational problems, which include problems in planning, scheduling, logistics, financial analysis or bio-informatics. Constraint programming differs from other methods of Operational Research by how it is implemented. Usually, the algorithms must be adapted to the specifications of the problem addressed. This is not the case in Constraint Programming where the problem addressed is described using the tools available in the library. The exercise consists in choosing carefully what constraints combine to properly express the problem, while taking advantage of the benefits they offer in terms of efficiency.
[wikipedia]

1.2 What is Choco?

Choco is a Free and Open-Source Software dedicated to Constraint Programming. It is written in Java, under BSD license. It aims at describing real combinatorial problems in the form of Constraint Satisfaction Problems and solving them with Constraint Programming techniques.

Choco is used for:

- teaching : easy to use
- research : easy to extend
- real-life applications : easy to integrate

Choco is among the fastest CP solvers on the market. In 2013 and 2014, Choco has been awarded two silver medals and three bronze medals at the MiniZinc challenge that is the world-wide competition of constraint-programming solvers.

In addition to these performance results, Choco benefits from academic contributors, who provide support and long term improvements, and the consulting company COSLING, which provides services ranging from training to the development and the integration of CP models into larger applications.

Choco official website is: http://www.choco-solver.org

1.3 Technical overview

Choco 3 includes:

- various type of variables (integer, boolean, set and real),
- various state-of-the-art constraints (alldifferent, count, nvalues, etc.),
- various search strategies, from basic ones to most complex (impact-based and activity-based search),
- explanation-based engine, that enables conflict-based back jumping, dynamic backtracking and path repair,

But also facilities to interact with the search loop, factories to help modeling, many samples, an interface to Ibex, etc. The source code of choco-solver-3 is hosted on GitHub.

Choco also has many extensions, including a FlatZinc parser to solve minizinc instances and a graph variable module to better solve graph problems such as the TSP.

An overview of the features of Choco 3 may also be found in the presentation made in the " CP Solvers: Modeling, Applications, Integration, and Standardization" workshop of CP2013.

1.4 History

The first version of Choco dates from the early 2000s. A few years later, Choco 2 has encountered a great success in both the academic and the industrial world. For maintenance issue, Choco has been completely rewritten in 2011, leading to Choco 3. The first beta version of Choco 3 has been released in 2012. The latest version is Choco 3.3.1.

1.5 How to get support?

A forum is available on the website of Choco. It is dedicated to technical questions about the Choco solver and basic modeling helps. If you encounter any bug or would like some features to be added, please feel free to open a discussion on the forum. You can also use the following support mailing list: choco3-support@mines-nantes.fr. As can be seen on the Choco website, most support requests are answered very fast. However, this free service is provided with no guarantee.

If you want an expert to build a CP model for your application or if you need professional support, please contact COSLING.

1.6 How to cite Choco?

A reference to this manual, or more generally to Choco 3, is made like this:

```
@manual {choco3,
    author = {Charles Prud'homme and Jean-Guillaume Fages and Xavier Lorca},
    title = {Choco3 Documentation},
    year = {2014},
    organization = {TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.},
    timestamp = {Thu, 11 May 2015},
    url = {http://www.choco-solver.org },
}
```


1.7 Who contributes to Choco?

Core developers	Charles Prud'homme (TASC, INRIA Rennes, LINA CNRS UMR 6241) and Jean-Guillaume Fages (COSLING S.A.S.).
Main contributors	Xavier Lorca, Narendra Jussien, Fabien Hermenier, Jimmy Liang.
Previous versions contributors	François Laburthe, Hadrien Cambazard, Guillaume Rochart, Arnaud Malapert, Sophie Demassey, Nicolas Beldiceanu, Julien Menana, Guillaume Richaud, Thierry Petit, Julien Vion, Stéphane Zampelli.

If you want to contribute, let us know.
Choco is developed with Intellij IDEA and JProfiler, that are kindly provided for free.

Getting started

2.1 Installing Choco 3

Choco 3 is a java library based on Java 8. The main library is named choco-solver and can be seen as the core library. Some extensions are also provided, such as choco-parsers or choco-cpviz, and rely on but do not include choco-solver.

2.1.1 Which jar to select?

We provide a zip file which contains the following files:
choco-solver-3.3.1-with-dependencies.jar An ready-to-use jar file including dependencies; it provides tools to declare a Solver, the variables, the constraints, the search strategies, etc. In a few words, it enables modeling and solving CP problems.
choco-solver-3.3.1.jar A jar file excluding all dependencies and configuration file; Enable using choco-solver as a dependency of an application. Otherwise, it provides the same code as the jar with dependencies.
choco-solver-3.3.1-sources.jar The source of the core library.
choco-samples-3.3.1-sources.jar The source of the artifact choco-samples made of problems modeled with Choco. It is a good start point to see what it is possible to do with Choco.
apidocs-3.3.1.zip Javadoc of Choco-3.3.1
logback.xml The logback configuration file; may be needed when choco-solver is used as a library.
Please, refer to README.md for more details.
Note: Java 7 compliant jars are also available, post-fixed with 'jk7’.

Extensions

There are also official extensions, thus maintained by the Choco team. They are provided apart from the zip file. The available extensions are: choco-parsers, choco-gui, choco-cpviz, choco-graph, choco-geost, choco-exppar, 61_ext_eps.

Note: Each of those extensions include all dependencies but choco-solver classes, which ease their usage.

To start using Choco 3, you need to be make sure that the right version of java is installed. Then you can simply add the choco-solver jar file (and extension libraries) to your classpath or declare them as dependency of a Maven-based project.

2.1.2 Update the classpath

Simply add the jar file to the classpath of your project (in a terminal or in your favorite IDE).

2.1.3 As a Maven Dependency

Choco is build and managed using Maven3. Choco is available on Maven Central Repository, to declare Choco as a dependency of your project, simply update the pom. xml of your project by adding the following instruction:

```
<dependency>
    <groupId>org.choco-solver</groupId>
    <artifactId>choco-solver</artifactId>
    <version>X.Y.Z</version>
</dependency>
```

where X.Y. Z is replaced by 3.3.1. Note that the artifact does not include any dependencies or logback.xml. Please, refer to README.md for the list of required dependencies.

2.1.4 Compiling sources

As a Maven-based project, Choco can be installed in a few instructions. Once you have downloaded the source (from the zip file or GitHub, simply run the following command:

```
mvn clean install -DskipTests
```

This instruction downloads the dependencies required for Choco3 (such as the trove4j and logback) then compiles the sources. The instruction-DskipTests avoids running the tests after compilation (and saves you a couple of hours). Regression tests are run on a private continuous integration server.
Maven provides commands to generate files needed for an IDE project setup. For example, to create the project files for your favorite IDE:

IntelliJ Idea

```
mvn idea:idea
```


Eclipse

```
mvn eclipse:eclipse
```


2.1.5 Note about logging

In Choco, we distinguish user trace and developer trace. User trace is mainly dedicated to printing resolution statistics and solutions (and other useful services). The Chatterbox class is devoted to such aim, it centralises (almost) all
messaging services. Developer trace is for debugging purpose. In order to avoid imposing a logging framework on end-user ${ }^{1}$, Choco 3 relies on SLF4J for the logging system.
"SLF4J is a simple facade for logging systems allowing the end-user to plug-in the desired logging system at deployment time." - http://www.slf4j.org/faq.html

SLF4J is only a facade, meaning that it does not provide a complete logging solution, and a logging framework must be bound. Otherwise, you'll get the following error:

```
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
```

Choco is developed using Logback, but other framework are available such as $\log 4 \mathrm{j}$ (a exhaustive list is given on SL4J). Declaring a logging framework is as simple as adding jar files to the classpath of your application:

Command-line

For logback:

```
java \
-cp .:choco-solver-3.3.1.jar\
:logback-core-1.0.13.jar\
:logback-classic-1.0.13.jar \
my.project.Main
```

Note: Logback relies on property file, namely logback.xml, provided in the zip file. Where should the configuration files such as logback.groovy, logback-test.xml or logback.xml be located on the classpath?

For $\log 4 \mathrm{j}$:

```
java -cp .:choco-solver-3.3.1.jar\
:slf4j-log4j12-1.7.7.jar \
my.project.Main
```


Maven

For logback:

```
<dependency>
    <groupId>ch.qos.logback</groupId>
    <artifactId>logback-classic</artifactId>
    <version>1.0.13</version>
</dependency>
```

For $\log 4 \mathrm{j}$:

```
<dependency>
    <groupId>org.slf4j</groupId>
    <artifactId>slf4j-log4j12</artifactId>
    <version>1.7.7</version>
</dependency>
```

[^0]More details can be found on http://www.slf4j.org/manual.html.

2.2 Overview of Choco 3

The following steps should be enough to start using Choco 3. The minimal problem should at least contains a solver, some variables and constraints to linked them together.

To facilitate the modeling, Choco 3 provides factories for almost every required component of CSP and its resolution:

Factory	Shortcut	Enables to create
VariableFactory	VF	Variables and views (integer, boolean, set and real)
IntConstraintFactory	ICF	Constraints over integer variables
SetConstraintFactory	SCF	Constraints over set variables
LogicalConstraintFactory	LCF	(Manages constraint reification)
IntStrategyFactory	ISF	Custom or black-box search strategies
SetStrategyFactory	SSF	
Chatterbox		Output messages and statistics.
SearchMonitorFactory	SMF	resolution limits, restarts etc.

Note that, in order to have a concise and readable model, factories have shortcut names. Furthermore, they can be imported in a static way:

```
import static org.chocosolver.solver.search.strategy.ISF.*;
```

Let say we want to model and solve the following equation: $x+y<5$, where the $x \in \llbracket 0,5 \rrbracket$ and $y \in \llbracket 0,5 \rrbracket$. Here is a short example which illustrates the main steps of a CSP modeling and resolution with Choco 3 to treat this equation.

```
// 1. Create a Solver
Solver solver = new Solver("my first problem");
// 2. Create variables through the variable factory
IntVar x = VariableFactory.bounded("X", 0, 5, solver);
IntVar y = VariableFactory.bounded("Y", 0, 5, solver);
// 3. Create and post constraints by using constraint factories
solver.post(IntConstraintFactory.arithm(x, "+", y, "<", 5));
// 4. Define the search strategy
solver.set(IntStrategyFactory.lexico_LB(x, y));
// 5. Launch the resolution process
solver.findSolution();
//6. Print search statistics
Chatterbox.printStatistics(solver);
```

One may notice that there is no distinction between model objects and solver objects. This makes easier for beginners to model and solve problems (reduction of concepts and terms to know) and for developers to implement their own constraints and strategies (short cutting process).

Don't be afraid to take a look at the sources, we think it is a good start point.

2.3 Choco 3 quick documentation

2.3.1 Solver

The Solver is a central object and must be created first: Solver solver = new Solver();
[Solver]

2.3.2 Variables

The VariableFactory (VF for short) eases the creation of variables. Available variables are: BoolVar, IntVar, SetVar, GraphVar and RealVar. Note, that an IntVar domain can be bounded (only bounds are stored) or enumerated (all values are stored); a boolean variable is a 0-1 IntVar.

[Variables]

2.3.3 Views

A view is a variable whose domain is defined by a function over another variable domain. Available views are: not, offset, eq, minus, scale and real.
[Views]

2.3.4 Constants

Fixed-value integer variables should be created with the specific VF.fixed (int, Solver) function.
[Constants]

2.3.5 Constraints

Several constraint factories ease the creation of constraints: LogicalConstraintFactory (LCF), IntConstraintFactory (ICF) and SetConstraintsFactory (SCF).

RealConstraint is created with a call to new and to addFunction method. It requires the Ibex solver.
Constraints hold once posted: solver.post (c) ;
Reified constraints should not be posted.
[Constraints]

2.3.6 Search

Defining a specific way to traverse the search space is made thanks to: solver. set (AbstractStrategy). Predefined strategies are available in IntStrategyFactory (ISF), SetStrategyFactory and RealStrategyFactory.

2.3.7 Large Neighborhood Search (LNS)

Various LNS (random, propagation-guided, etc.) can be created from the LNSFactory to improve performance on optimization problems.

2.3.8 Monitors

An ISearchMonitor is a callback which enables to react on some resolution events (failure, branching, restarts, solutions, etc.). SearchMonitorFactory (SMF) lists most useful monitors. User-defined monitors can be added with solver.plugMonitor(...).

2.3.9 Limits

A limit may be imposed on the search. The search stops once a limit is reached. Available limits are SMF.limitTime(solver, 5000), SMF.limitFail(solver, 100), etc.

2.3.10 Restarts

Restart policies may also be applied SMF.geometrical (. . .) and SMF.luby (. . .) are available.

2.3.11 Logging

Logging the search is possible. There are variants but the main way to do it is made through the Chatterbox.printStatistics(solver). It prints the main statistics of the search (time, nodes, fails, etc.)

2.3.12 Solving

Finding if a problem has a solution is made through a call to: solver.findSolution(). Looking for the next solution is made thanks to nextSolution(). findAllSolutions() enables to enumerate all solutions of a problem. To optimize an objective function, call findOptimalSolution (...). Resolutions perform a Depth First Search.

2.3.13 Solutions

By default, the last solution is restored at the end of the search. Solutions can be accessed as they are discovered by using an IMonitorSolution.

2.3.14 Explanations

Choco natively supports explained constraints to reduce the search space and to give feedback to the user. Explanations are disabled by default.

2.4 Choco 3 : changes

2.4.1 3.3.1

- Addition:
- Search Monitors
- Defining its own constraint
- Major modification:
- Explanations
- Search monitor

2.4.2 3.3.0

- Addition:
- Things to know about constraints
- Automaton-based Constraints
- Declaring complex clauses
- Settings
- Search binder
- Resolution statistics
- New constraints:
- mddc
- not_member
- Major modification:
- Multi-thread resolution
- Defining its own search strategy

Part II

Modelling problems

The object Solver is the key component. It is built as following:

```
Solver solver = new Solver();
```

or:

```
Solver solver = new Solver("my problem");
```

This should be the first instruction, prior to any other modelling instructions. Indeed, a solver is needed to declare variables, and thus constraints.

Here is a list of the commonly used Solver API.
Note: The API related to resolution are not described here but detailed in Solving. Similarly, API provided to add a constraint to the solver are detailed in Constraints. The other missing methods are only useful for internal behavior.

3.1 Getters

3.1.1 Variables

Method	Definition
Variable [] getVars ()	Return the array of variables declared in the solver. It includes all type of variables declared, integer, boolean, etc. but also fixed variables such as Solver. ONE.
int getNbVars ()	Return the number of variables involved in the solver.
	Return the $i^{t} h$ variable declared in the solver.
Variable getVar (int i)	Extract from the solver variables those which are integer (ie whose KIND is set to INT, that is, including fixed integer variables).
	IntVar [] retrieveIntVars
retrieveBoolVars ((Extract from the solver variables those which are boolean (ie whose KIND is set to	
BOOL, that is, including Solver. ZERO and Solver. ONE).	
SetVar [] retrieveSetVars (Extract from the solver variables those which are set (ie whose KIND is set to SET)
RealVar [] retrieveRealVars ()	Extract from the solver variables those which are set (ie whose KIND is set to REAL)

3.1.2 Constraints

Method	Definition
Constraint [] getCstrs()	Return the array of constraints posted in the solver.
getNbCstrs ()	Return the number of constraints posted in the solver.

3.1.3 Other

Method	Definition
String getName ()	Return the name of the solver.
IMeasures getMeasures ()	Return a reference to the measure recorder which stores resolution statistics.
	Return a reference to the declared search strategy.
AbstractStrategy getStrategy ()	
	Return the current Settings used in the solver.
Settings getSettings ()	Return the solution recorder.
	Return the internal environment of the solver, essential to manage backtracking.
ISolutionRecorder getSolutionRecorder()	Return the objective manager of the solver, needed when an objective has to be optimized.
IEnvironment getEnvironment ()	Return the explanation engine declared, (default is NONE).
ObjectiveManager getobjectiveManager ()	Return the propagation engine of the solver, which orchestrate the propagation of constraints.
ExplanationEngine getExplainer ()	Return the search loop of the solver, which guide the search process.
	IPropagationEngine getEngine ()
	ISearchLoop getSearchLoop ()

3.2 Setters

Method	Definition
set (Settings settings)	Set the settings to use while modelling and solving.
	set (AbstractStrategy.. strategies)
	Set a strategy to explore the search space. In case many strategies are given, they will be called in sequence.
set (ISolutionRecorder sr)	Set a solution recorder, and erase the previous declared one (by default, Last SolutionRecorder is declared, it only stores the last solution found.
	Set the search loop to use during resolution. The default one is a binary search loop.
set (ISearchLoop searchLoop)	Set the propagation engine to use during resolution. The default one is SevenQueuesPropagatorEngine.
set (IPropagationEngine propagationEngine)	Set the explanation engine to use during resolution. The default one is ExplanationEngine which does nothing.
set (ExplanationEngine	
explainer)	Set the objective manager to use during the resolution. For advanced usage only.
	set (ObjectiveManager om)

3.3 Others

Method	Definition
Solver duplicateModel ()	Duplicate the model associates with a solver, ie only variables and constraints, and return a new solver.
void makeCompleteSearch (boolean isComplete)	Add a strategy to the declared one in order to ensure that all variables are covered by (at least) one strategy.
void plugMonitor(ISearchMonitor sm)	Put a search monitor to react on search events (solutions, decisions, fails, ...).
void plugMonitor(FilteringMonit fm)	Add an filtering monitor, that is an object that is kept informed of all

Declaring variables

4.1 Principle

A variable is an unknown, mathematically speaking. The goal of a resolution is to assign a value to each declared variable. In Constraint Programming, the domain -set of values that a variable can initially take- must be defined.

Choco 3 includes five types of variables: IntVar, BoolVar, SetVar and RealVar. A factory is available to ease the declaration of variables: VariableFactory (or VF for short). At least, a variable requires a name and a solver to be declared in. The name is only helpful for the user, to read the results computed.

4.2 Integer variable

An integer variable is based on domain made with integer values. There exists under three different forms: bounded, enumerated or boolean. An alternative is to declare variable-based views.

Important: It is highly advisable not to define domain like [Integer.MIN_VALUE, Integer.MAX_VALUE]. Indeed, such domain definition may lead to :

- incorrect domain size (Integer.MAX_VALUE - Integer.MIN_VALUE +1 = 0)
- and to numeric overflow/underflow operations during propagation.

If undefined domain is really required, the following range should be considered: [VariableFactory.MIN_INT_BOUND, VariableFactory.MAX_INT_BOUND]. Such an interval defines 42949673 values, from -21474836 to 21474836.

4.2.1 Bounded variable

Bounded (integer) variables take their value in $\llbracket a, b \rrbracket$ where a and b are integers such that $a<b$ (the case where $a=b$ is handled through views). Those variables are pretty light in memory (the domain requires two integers) but cannot represent holes in the domain.
To create a bounded variable, the VariableFactory should be used:

```
IntVar v = VariableFactory.bounded("v", 1, 12, solver);
```

To create an array of 5 bounded variables of initial domain $\llbracket-2,8 \rrbracket$:

```
IntVar[] vs = VariableFactory.boundedArray("vs", 5, -2, 8, solver);
```

To create a matrix of 5×6 bounded variables of initial domain $\llbracket 0,5 \rrbracket$:

```
IntVar[][] vs = VariableFactory.boundedMatrix("vs", 5, 6, 0, 5, solver);
```

Note: When using bounded variables, branching decisions must either be domain splits or bound assignments/removals. Indeed, assigning a bounded variable to a value strictly comprised between its bounds may results in disastrous performances, because such branching decisions will not be refutable.

4.2.2 Enumerated variable

Integer variables with enumerated domains, or shortly, enumerated variables, take their value in $\llbracket a, b \rrbracket$ where a and b are integers such that $a<b$ (the case where $a=b$ is handled through views) or in an array of ordered values $a, b, c, . ., z$, where $a<b<c \ldots<z$. Enumerated variables provide more information than bounded variables but are heavier in memory (usually the domain requires a bitset).

To create an enumerated variable, the VariableFactory should be used:

```
IntVar v = VariableFactory.enumerated("v", 1, 12, solver);
```

which is equivalent to :

```
IntVar v = VariableFactory.enumerated("v", new int[]{1,2,3,4,5,6,7,8,9,10,11,12}, solver);
```

To create a variable with holes in its initial domain:

```
IntVar v = VariableFactory.enumerated("v", new int[]{1,7,8}, solver);
```

To create an array of 5 enumerated variables with same domains:

```
IntVar[] vs = VariableFactory.enumeratedArray("vs", 5, -2, 8, solver);
IntVar[] vs = VariableFactory.enumeratedArray("vs", 5, new int[]{-10, 0, 10}, solver);
```

To create a matrix of 5×6 enumerated variables with same domains:

```
IntVar[][] vs = VariableFactory.enumeratedMatrix("vs", 5, 6, 0, 5, solver);
IntVar[][] vs = VariableFactory.enumeratedMatrix("vs", 5, 6, new int[]{1,2,3,5,6,99}, solver);
```


Modelling: Bounded or Enumerated?

The choice of representation of the domain variables should not be done lightly. Not only the memory consumption should be considered but also the used constraints. Indeed, some constraints only update bounds of integer variables, using them with bounded variables is enough. Others make holes in variables' domain, using them with enumerated variables takes advantage of the power of the filtering algorithm. Most of the time, variables are associated with propagators of various power. The choice of domain representation must then be done on a case by case basis.

4.2.3 Boolean variable

Boolean variables, BoolVar, are specific IntVar which take their value in $\llbracket 0,1 \rrbracket$.
To create a new boolean variable:

```
BoolVar b = VariableFactory.bool("b", solver);
```

To create an array of 5 boolean variables:

```
BoolVar[] bs = VariableFactory.boolArray("bs", 5, solver);
```

To create a matrix of 5×6 boolean variables:

```
BoolVar[] bs = VariableFactory.boolMatrix("bs", 5, 6, solver);
```


4.3 Constants

Fixed-value integer variables should be created with a call to the following functions:

```
VariableFactory.fixed("seven", 7, solver);
```

Or:

```
VariableFactory.fixed(8, Solver)
```

where 7 and 8 are the constant values. Not specifying a name to a constant enables the solver to use cache and avoid multiple occurrence of the same object in memory.

4.4 Variable views

Views are particular integer variables, they can be used inside constraints. Their domains are implicitly defined by a function and implied variables.
x is a constant :

```
IntVar x = VariableFactory.fixed(1, solver);
```

$x=y+2:$
IntVar $\mathrm{x}=$ VariableFactory.offset (y, 2);
$x=-y:$

```
IntVar x = VariableFactory.minus(y);
```

$x=3 * y:$

```
IntVar x = VariableFactory.scale(y, 3);
```

Views can be combined together:

```
IntVar x = VariableFactory.offset(VariableFactory.scale(y,2),5);
```


4.5 Set variable

A set variable SV represents a set of integers. Its domain is defined by a set interval: [S_E, S_K]

- the envelope $S _E$ is an ISet object which contains integers that potentially figure in at least one solution,
- the kernel S_K is an ISet object which contains integers that figure in every solutions.

Initial values for both S_K and S_E can be specified. If no initial value is given for $S _K$, it is empty by default. Then, decisions and filtering algorithms will remove integers from S_E and add some others to S_K. A set variable is instantiated if and only if $S _E=$ S_K.

A set variable can be created as follows:

```
// z initial domain
int[] z_envelope = new int[]{2,1,3,5,7,12};
int[] z_kernel = new int[]{2};
z = VariableFactory.set("z", z_envelope, z_kernel, solver);
```


4.6 Real variable

Real variables have a specific status in Choco 3. Indeed, continuous variables and constraints are managed with Ibex solver.

A real variable is declared with two doubles which defined its bound:

```
RealVar x = VariableFactory.real("y", 0.2d, 1.0e8d, 0.001d, solver);
```

Or a real variable can be declared on the basis of on integer variable:

```
IntVar ivar = VariableFactory.bounded("i", 0, 4, solver);
RealVar x = VariableFactory.real(ivar, 0.01d);
```


Constraints and propagators

5.1 Principle

A constraint is a logic formula that defines allowed combinations of values for its variables, that is, restrictions over variables that must be respected in order to get a feasible solution. A constraint is equipped with a (set of) filtering algorithm(s), named propagator (s). A propagator removes, from the domains of the targeted variables, values that cannot correspond to a valid combination of values. A solution of a problem is an assignment of all its variables simultaneously verifying all the constraints.

Constraint can be declared in extension, by defining the valid/invalid tuples, or in intension, by defining a relation between the variables. Choco 3 provides various factories to declare constraints (see Overview to have a list of available factories). A list of constraints available through factories is given in List of available constraints.

Modelling: Selecting the right constraints

Constraints, through propagators, suppress forbidden values of the domain of the variables. For a given paradigm, there can be several propagators available. A widely used example is the AllDifferent constraints which holds that all its variables should take a distinct value in a solution. Such a rule can be formulated :

- using a clique of inequality constraints,
- using a global constraint: either analysing bounds of variable (Bound consistency) or analysing all values of the variables (Arc consistency),
- or using a table constraint -an extension constraint which list the valid tuples.

The choice must be made by not only considering the gain in expressiveness of stress compared to others. Indeed, the effective yield of each option can be radically different as the efficiency in terms of computation time.

Many global constraints are used to model problems that are inherently NP-complete. And only a partial domain filtering variables can be done through a polynomial algorithm. This is for example the case of NValue constraint that one aspect relates to the problem of "minimum hitting set." Finally, the global nature of this type of constraint also simplifies the work of the solver in that it provides all or part of the structure of the problem.

If we want an integer variable sum to be equal to the sum of values of variables in the set at Least, we can use the IntConstraintFactory. sum constraint:

```
// all others configurations may be chosen
```

A constraint may define its specific checker through the method isSatisfied(), but most of the time the checker is given by checking the entailment of each of its propagators. The satisfaction of the constraints' solver is done on each solution if assertions are enabled.

Note: One can enable assertions by adding the -ea instruction in the JVM arguments.

It can thus be slower if the checker is often called (which is not the case in general). The advantage of this framework is the economy of code (less constraints need to be implemented), the avoidance of useless redundancy when several constraints use the same propagators (for instance IntegerChanneling constraint involves AllDifferent constraint), which leads to better performances and an easier maintenance.

Note: To ease modelling, it is not required to manipulate propagators, but only constraints. However, one can define specific constraints by defining combinations of propagators and/or its own propagators. More detailed are given in Defining its own constraint.

Choco 3 provides various types of constraints.

5.1.1 Available constraints

FALSE, TRUE

On one integer variable
arithm, member, not_member.
On two integer variables
absolute, arithm, distance, square, table, times.
On three integer variables
arithm, distance, eucl_div, maximum, minimum, mod, times.
On an undefined number of integer variables
element, sort, table, mddc.
alldifferent, alldifferent_conditionnal, alldifferent_except_0, global_cardinality,
among, atleast_nvalues, atmost_nvalues, count, nvalues,
boolean_channeling, clause_channeling, inverse_channeling.
cumulative, diffn.
lex_chain_less, lex_chain_less_eq, lex_less, lex_less_eq.
maximum, minimum,
scalar, sum.
cost_regular, multicost_regular, regular.
circuit, path, subcircuit, subpath, tree.
bin_packing, knapsack, tsp.
On one set variable
notEmpty.
On two set variables
disjoint, offSet.
On an undefined number of set variables
all_different, all_disjoint, all_equal, bool_channel, intersection, inverse_set, member, nbEmpty, partition, subsetEq, symmetric, union.

On integer and set variables
cardinality, element, int_channel, max, member, not_member, min, sum.
On real variables
Constraints over real variables.

5.1.2 Things to know about constraints

Automaton-based Constraints

cost_regular, multicost_regular and regular rely on an automaton, declared implicitly or explicitly. There are two kinds of IAutomaton : FiniteAutomaton, needed for cost_regular, and CostAutomaton, required for multicost_regular and regular. A CostAutomaton is an extension of FiniteAutomaton where costs can be declared per transition.

FiniteAutomaton embeds an Automaton object provided by the dk.brics.automaton library. Such an automaton accepts fixed-size words made of multiple char s, but the regular constraints rely on IntVar s. So, mapping between char (needed by the underlying library) and int (declared in IntVar) is made. The mapping enables declaring regular expressions where a symbol is not only a digit between 0 and 9 but any positive number. Then to distinct, in the word 101, the symbols $0,1,10$ and 101 , two additional char are allowed in a regexp: < and $>$ which delimits numbers.

In summary, a valid regexp for the cost_regular, multicost_regular and regular constraints is a combination of digits and Java Regexp special characters.

Examples of allowed RegExp

```
"0*11111110+10+10+11111110*","11(0|1|2)*00","(0|<10> |<20>)*(0|<10>)".
```


Example of forbidden RegExp

```
"abc(a|b|c)*".
```


5.2 Posting constraints

To be effective, a constraint must be posted to the solver. This is achieved using the method:

```
solver.post(Constraint cstr);
```

Otherwise, if the solver. post (Constraint cstr) method is not called, the constraint will not be taken into account during the resolution process : it may not be satisfied in all solutions.

Method	Definition
void post (Constraint c)	Post permanently a constraint in the constraint network defined by the solver. The constraint is not propagated on posting, but is added to the propagation engine.
void post (Constraint cs)	Post permanently the constraints in the constraint network defined by the solver.
void post Temp (Constrafirctrrent sub-tree and be removed upon backtrack. c)	Post a constrain temporar in traint will active on the void unpost (Constraint c)

5.3 Reifying constraints

In Choco 3, it is possible to reify any constraint. Reifying a constraint means associating it with a BoolVar to represent whether the constraint holds or not:

```
BoolVar b = constraint.reify();
```

Or:

```
BoolVar b = VF.bool("b", solver);
constraint.reifyWith(b);
```

The first API constraint.reify () creates the variable, if it does not already exists, and reify the constraint. The second API constraint.reifyWith (b) reify the constraint with the given variable.

Note: A constraint is reified with only one boolean variable. If multiple reification are required, equality constraints will be created.

The LogicalConstraintFactory enables to manipulate constraints through their reification.
Reifying a constraint means that we allow the constraint not to be satisfied. Therefore, the reified constraint should not be posted. Only the reifying constraint should be posted. Note also that, for performance reasons, some reifying constraints available in the LogicalConstraintFactory are automatically posted (the factory method returns void).

For instance, we can represent the constraint "either $\mathrm{x}<0$ or $\mathrm{y}>42$ " as the following:

```
Constraint a = IntConstraintFactory.arithm(x,"<",0);
Constraint b = IntConstraintFactory.arithm(y,">",42);
Constraint c = LogicalConstraintFactory.or(a,b);
solver.post (c);
```

This will actually reify both constraints a and b and say that at least one of the corresponding boolean variables must be true. Note that only the constraint c is posted.

As a second reification example, let us consider "if $\mathrm{x}<0$ then $\mathrm{y}>42$ ":

```
Constraint a = IntConstraintFactory.arithm(x,"<",0);
Constraint b = IntConstraintFactory.arithm(y,">",42);
LogicalConstraintFactory.ifThen(a,b);
```

This time the LogicalConstraintFactory.ifThen returns void, meaning that the constraint is automatically posted. If one really needs to access an ifthen Constraint object, then the LogicalConstraintFactory.ifThen_reifiable method should be used instead.

5.4 SAT constraints

A SAT solver is embedded in Choco. It is not designed to be accessed directly. The SAT solver is internally managed as a constraint (and a propagator), that's why it is referred as SAT constraint in the following.

Important: The SAT solver is directly inspired by MiniSat[EenSorensson03]. However, it only propagates clauses, no learning or search is implemented.

On a call to any methods of solver. constraints. SatFactory, the SAT constraint (and propagator) is created and automatically posted to the solver.

5.4.1 How to add clauses

Clauses can be added with calls to the solver. constraints. SatFactory.
On one boolean variable
addTrue, addFalse.
On two boolean variables
addBoolEq, addBoolLe, addBoolLt, addBoolNot.
Reification on two boolean variables
addBoolIsEqVar, addBoolIsLeVar, addBoolIsLtVar, addBoolIsNeqVar, addBoolOrEqVar, addBoolXorEqVar, addBoolAndEqVar.

On undefined number of boolean variables
addBoolOrArrayEqualTrue, addAtMostNMinusOne, addAtMostOne, addBoolAndArrayEqualFalse, addBoolAndArrayEqVar, addBoolOrArrayEqVar, addClauses, addMaxBoolArrayLessEqVar, addSumBoolArrayGreaterEqVar, addSumBoolArrayLessEqVar.

5.4.2 Declaring complex clauses

There is a convenient way to declare complex clauses by calling addClauses. The method takes a LogOp and an instance of Solver as input, extracts the underlying clauses and add them to the SatFactory.

A LogOp is an implementation of ILogical, just like BoolVar, and provides the following API:
LogOp and(ILogical... operands): create a conjunction, results in true if all of its operands are true.

LogOp ifOnlyIf(ILogical a, ILogical b): create a biconditional, results in true if and only if both operands are false or both operands are true.

LogOp ifThenElse(ILogical a, ILogical b, ILogical c): create an implication, results in true if a is true and b is true or a is false' and ' C is true.

LogOp implies(ILogical a, ILogical b): create an implication, results in true if a is false or b is true.

LogOp reified (BoolVar b, ILogical tree) : create a logical connection between b and tree.

LogOp or (ILogical... operands) : create a disjunction, results in true whenever one or more of its operands are true.

LogOp nand(ILogical... operands): create an alternative denial, results in if at least one of its operands is false.

LogOp nor(ILogical... operands): create a joint denial, results in true if all of its operands are false.
LogOp xor(ILogical a, ILogical b) : create an exclusive disjunction, results in true whenever both operands differ.

ILogical negate(ILogical l) : return the logical complement of l.
The resulting logical operation can be very verbose, but certainly more easy to declare:

```
SatFactory.addClauses(LogOp.and(LogOp.nand(LogOp.nor(a, b), LogOp.or(c, d)), e));
SatFactory.addClauses (LogOp.nor (LogOp.or(LogOp.nand (a, b), c), d));
SatFactory.addClauses(LogOp.and(LogOp.nand(LogOp.nor(a, b), LogOp.or(c, d)), e));
```


Part III

Solving problems

Choco 3 provides different API, offered by Solver, to launch the problem resolution. Before everything, there are two methods which help interpreting the results.
Feasibility: Once the resolution ends, a call to the solver.isFeasible () method will return a boolean which indicates whether or not the problem is feasible.

- true: at least one solution has been found, the problem is proven to be feasible,
- false: in principle, the problem has no solution. More precisely, if the search space is guaranteed to be explored entirely, it is proven that the problem has no solution.

Limitation: When the resolution is limited (See Limiting the resolution for details and examples), one may guess if a limit has been reached. The solver. hasReachedLimit () method returns true if a limit has bypassed the search process, false if it has ended naturally.

Warning: In some cases, the search may not be complete. For instance, if one enables restart on each failure with a static search strategy, there is a possibility that the same sub-tree is explored permanently. In those cases, the search may never stop or the two above methods may not be sufficient to confirm the lack of solution.

6.1 Satisfaction problems

6.1.1 Finding a solution

A call to solver.findSolution() launches a resolution which stops on the first solution found, if any.

```
// 1. Create a Solver
Solver solver = new Solver("my first problem");
// 2. Create variables through the variable factory
IntVar x = VariableFactory.bounded("X", 0, 5, solver);
IntVar y = VariableFactory.bounded("Y", 0, 5, solver);
// 3. Create and post constraints by using constraint factories
solver.post(IntConstraintFactory.arithm(x, "+", y, "<", 5));
// 4. Define the search strategy
solver.set(IntStrategyFactory.lexico_LB(x, y));
// 5. Launch the resolution process
solver.findSolution();
//6. Print search statistics
Chatterbox.printStatistics(solver);
```

If a solution has been found, the resolution process stops on that solution, thus each variable is instantiated to a value, and the method returns true.
If the method returns false, two cases must be considered:

- A limit has been reached. There may be a solution, but the solver has not been able to find it in the given limit or there is no solution but the solver has not been able to prove it (i.e., to close to search tree) in the given limit. The resolution process stops in no particular place in the search tree and the resolution can be run again.
- No limit has been declared. The problem has no solution, the complete exploration of the search tree proved it.

To ensure the problem has no solution, one may call solver.hasReachedLimit (). It returns true if a limit has been reached, false otherwise.

6.1.2 Enumerating solutions

Once the resolution has been started by a call to solver.findSolution() and if the problem is feasible, the resolution can be resumed using solver. nextSolution() from the last solution found. The method returns true if a new solution is found, false otherwise (a call to solver. hasReachedLimit () must confirm the lack of new solution). If a solution has been found, alike solver.findSolution (), the resolution stops on this solution, each variable is instantiated, and the resolution can be resumed again until there is no more new solution.

One may enumerate all solution like this:

```
if(solver.findSolution()) {
    do{
        // do something, e.g. print out variables' value
    }while(solver.nextSolution());
}
```

solver.findSolution() and solver.nextSolution() are the only ways to resume a resolution process which has already began.

Tip: On a solution, one can get the value assigned to each variable by calling

```
ivar.getValue(); // instantiation value of an IntVar, return a int
svar.getValues(); // instantiation values of a SerVar, return a int[]
rvar.getLB(); // lower bound of a RealVar, return a double
rvar.getUB(); // upper bound of a RealVar, return a double
```

An alternative is to call solver. findAllSolutions(). It attempts to find all solutions of the problem. It returns the number of solutions found (in the given limit if any).

6.2 Optimization problems

Choco 3 enables to solve optimization problems, that is, in which a variable must be optimized.
Tip: For functions, one should declare an objective variable and declare it as the result of the function:

```
// Function to maximize: 3X + 4Y
IntVar OBJ = VF.bounded("objective", 0, 999, solver);
solver.post(ICE.scalar(new IntVar[]{X,Y}, new int[]{3,4}, OBJ));
solver.findOptimalSolution(ResolutionPolicy.MAXIMIZE, OBJ);
```


6.2.1 Finding one optimal solution

Finding one optimal solution is made through a call to the solver.findOptimalSolution (ResolutionPolicy, IntVar) method. The first argument defines the kind of optimization required: minimization (ResolutionPolicy.MINIMIZE) or maximization (ResolutionPolicy.MAXIMIZE). The second argument indicates the variable to optimize.

For instance:

```
solver.findOptimalSolution(ResolutionPolicy.MAXIMIZE, OBJ);
```

states that the variable OBJ must be maximized.
The method does not return any value. However, the best solution found so far is restored.
Important: Because the best solution is restored, all variables are instantiated after a call to solver.findOptimalSolution(...).

The best solution found is the optimal one if the entire search space has been explored.
The process is the following: anytime a solution is found, the value of the objective variable is stored and a cut is posted. The cut is an additional constraint which states that the next solution must be strictly better than the current one, ie in minimization, strictly smaller.

6.2.2 Finding all optimal solutions

There could be more than one optimal solutions. To find them all, one can call findAlloptimalSolutions(ResolutionPolicy, IntVar, boolean). The two first arguments defines the optimisation policy and the variable to optimize. The last argument states the way the solutions are computed. Set to true the resolution will be achieved in two steps: first finding and proving an optimal solution, then enumerating all solutions of optimal cost. Set to false, the posted cuts are soft. When an equivalent solution is found, it is stored and the resolution goes on. When a strictly better solution is found, previous solutions are removed. Setting the boolean to false allow finding non-optimal intermediary solutions, which may be time consuming.

6.3 Multi-objective optimization problems

6.3.1 Finding the pareto front

It is possible to solve a multi-objective optimization problems with Choco 3, using solver.findParetoFront(ResolutionPolicy policy, IntVar... objectives). The first argument define the resolution policy, which can be Resolution.MINIMIZE or ResolutionPolicy.MAXIMIZE. Then, the second argument defines the list of variables to optimize.

Note: All variables should respect the same resolution policy.
The underlying approach is naive, but it simplifies the process. Anytime a solution is found, a cut is posted which states that at least one of the objective variables must be better. Such as $\left(X_{0}<b_{0} \vee X_{1}<b_{1} \vee \ldots \vee X_{n}<b_{n}\right.$ where X_{i} is the ith objective variable and b_{i} its best known value.
The method ends by restoring the last solution found so far, if any.

Here is a simple illustration:

6.4 Propagation

One may want to propagate each constraint manually. This can be achieved by calling solver.propagate (). This method runs, in turn, the domain reduction algorithms of the constraints until it reaches a fix point. It may throw a ContradictionException if a contradiction occurs. In that case, the propagation engine must be flushed calling solver.getEngine().flush() to ensure there is no pending events.

Warning: If there are still pending events in the propagation engine, the propagation may results in unexpected results.

Recording solutions

Choco 3 requires that each decision variable (that is, which is declared in the search strategy) is instantiated in a solution. Otherwise, an exception will be thrown. Non decision variables can be uninstantiated in a solution, however, if WARN logging is enable, a trace is shown to inform the user. Choco 3 includes several ways to record solutions, the recommended way is to plug a ISolutionMonitor in. See Search monitor for more details.

7.1 Solution storage

A solution is usually stored through a Solution object which maps every variable with its current value. Such an object can be erased to store new solutions.

7.2 Solution recording

7.2.1 Built-in solution recorders

A solution recorder (ISolutionRecorder) is an object in charge of recording variable values in solutions. There exists many built-in solution recorders:
LastSolutionRecorder only keeps variable values of the last solution found. It is the default solution recorder. Furthermore, it is possible to restore that solution after the search process ends. This is used by default when seeking an optimal solution.

AllSolutionsRecorder records all solutions that are found. As this may result in a memory explosion, it is not used by default.

BestSolutionsRecorder records all solutions but removes from the solution set each solution that is worse than the best solution value found so far. This may be used to enumerate all optimal (or at least, best) solutions of a problem.

ParetoSolutionsRecorder records all solutions of the pareto front of the multi-objective problem.

7.2.2 Custom recorder

You can build you own way of manipulating and recording solutions by either implementing your own ISolutionRecorder object or by simply using an ISolutionMonitor, as follows:

7.3 Solution restoration

A Solution object can be restored, i.e. variables are fixed back to their values in that solution. For this purpose, we recommend to restore initial domains and then restore the solution, with the following code:

```
try{
    solver.getSearchLoop().restoreRootNode();
    solver.getEnvironment().worldPush();
    solution.restore();
}catch (ContradictionException e){
    throw new UnsupportedOperationException("restoring the solution ended in a failure");
}
solver.getEngine().flush();
```

Note that if initial domains are not restored, then the solution restoration may lead to a failure. This would happen when trying to restore out of the current domain.

Search Strategies

8.1 Principle

The search space induces by variables' domain is equal to $S=\left|d_{1}\right| *\left|d_{2}\right| * \ldots *\left|d_{n}\right|$ where d_{i} is the domain of the $i^{t h}$ variable. Most of the time (not to say always), constraint propagation is not sufficient to build a solution, that is, to remove all values but one from (integer) variables' domain. Thus, the search space needs to be explored using one or more search strategies. A search strategy performs a performs a Depth First Search and reduces the search space by making decisions. A decision involves a variables, a value and an operator, for instance $x=5$. Decisions are computed and applied until all the variables are instantiated, that is, a solution is found, or a failure has been detected.

Choco 3.3.1 build a binary search tree: each decision can be refuted. When a decision has to be computed, the search strategy is called to provide one, for instance $x=5$. The decision is then applied, the variable, the domain of x is reduced to 5 , and the decision is validated thanks to the propagation. If the application of the decision leads to a failure, the search backtracks and the decision is refuted $(x \neq 5)$ and validated through propagation. Otherwise, if there is no more free variables then a solution has been found, else a new decision is computed.

Note: There are many ways to explore the search space and this steps should not be overlooked. Search strategies or heuristics have a strong impact on resolution performances. Thus, it is strongly recommended to adapt the search space exploration to the problem treated.

8.2 Zoom on IntStrategy

A search strategy Int Strategy is dedicated to IntVar only. It is based on a list of variables scope, a selector of variable varSelector, a value selector valSelector and an optional decoperator.

1. scope: array of variables to branch on.
2. varSelector: a variable selector, defines how to select the next variable to branch on.
3. valSelector: a value selector, defines how to select a value in the domain of the selected variable.
4. decOperator: a decision operator, defines how to modify the domain of the selected variable with the selected value.

On a call to IntStrategy.getDecision(), varSelector try to find, among scope, a variable not yet instantiated. If such a variable does not exist, the method returns null, saying that it can not compute decision anymore. Otherwise, valselector selects a value, within the domain of the selected variable. A decision can then be computed with the selected variable and the selected value, and is returned to the caller.

By default, the decision built is an assignment: its application leads to an instantiation, its refutation, to a value removal. It is possible create other types of decision by defining a decision operator DecisionOperator.
API

IntStrategyFactory.custom(VariableSelector<IntVar> VAR_SELECTOR, IntValueSelector VAL_SELECTOR, DecisionOperator<IntVar> DEC_OPERATOR, IntVar... VARS)
 IntStrategyFactory.custom(VariableSelector<IntVar> VAR_SELECTOR, IntValueSelector VAL_SELECTOR, IntVar... VARS)
 new IntStrategy(IntVar[] scope, VariableSelector<IntVar> varSelector, IntValueSelector valSelector) new IntStrategy(IntVar[] scope, VariableSelector<IntVar> varSelector, IntValueSelector valSelector,

DecisionOperator<IntVar> decOperator)
Sometimes, on a call to the variable selector, several variables could be selected. In that case, the order induced by VARS is used to break tie: the variable with the smallest index is selected. However, it is possible to break tie with other VAR_SELECTOR''s. They should be declared as parameters of ' 'VariablesSelectorWithTies.
solver.set (ISF.custom(
new VariableSelectorWithTies (new FirstFail(), new Random(123L)),
new IntDomainMin(), vars);
The variable with the smallest domain is selected first. If there are more than one variable whose domain size is the smallest, ties are randomly broken.

Note: Only variable selectors which implement VariableEvaluator can be used to break ties.

Very similar operations are achieved in SetStrategy and RealStrategy.
See solver.search.strategy.IntStrategyFactory and solver. search.strategy. SetStrategyFactory for built-in strategies and selectors.

8.2.1 Available variable selectors

For integer variables
lexico_var_selector, random_var_selector, minDomainSize_var_selector, maxDomainSize_var_selector, maxRegret_var_selector.

For set variables
See solver.search.strategy.selectors.variables.MaxDelta, solver.search.strategy.selectors.va
For real variables
See solver.search.strategy.selectors.variables.Cyclic.

8.2.2 Available value selectors

For integer variables
min_value_selector, mid_value_selector, max_value_selector, randomBound_value_selector, random_value_selector.

For set variables

See solver.search.strategy.selectors.values. SetDomainMin.
For real variables
See solver. search. strategy. selectors.values.RealDomainMiddle,
solver.search.strategy.selectors.values. RealDomainMin
solver.search.strategy.selectors.values.RealDomainMax.

8.2.3 Available decision operators

assign, remove, split, reverse_split.

8.2.4 Available strategies

For integer variables
custom, sequencer.
lexico_LB, lexico_Neq_LB, lexico_Split, lexico_UB, minDom_LB, minDom_MidValue, maxDom_Split, minDom_UB, maxReg_LB, random_bound, random_value.
domOverWDeg, activity, impact.
lastConflict.
generateAndTest.
For set variables
custom, sequencer.
force_first, force_maxDelta_first, force_minDelta_first, remove_first.
lastConflict.

Important: Black-box search strategies

There are many ways of choosing a variable and computing a decision on it. Designing specific search strategies can be a very tough task to do. The concept of Black-box search heuristic (or adaptive search strategy) has naturally emerged from this statement. Most common black-box search strategies observe aspects of the CSP resolution in order to drive the variable selection, and eventually the decision computation (presumably, a value assignment). Three main families of heuristic, stemming from the concepts of variable impact, conflict and variable activity, can be found in Chocolreleasel. Black-box strategies can be augmented with restarts.

8.3 Default search strategies

If no search strategy is specified in the model, Choco 3 will rely on the default one (defined by a DefaultSearchBinder in Settings). In many cases, this strategy will not be sufficient to produce satisfying performances and it will be necessary to specify a dedicated strategy, using solver. set (...). The default search strategy distinguishes variables per types and defines a specific search strategy per each type, sequentially applied:

1. integer variables and boolean variables: IntStrategyFactory. domOverWDeg (ivars, 0)
2. set variables: SetStrategyFactory.force_minDelta_first(svars)
3. real variables RealStrategyFactory.cyclic_middle(rvars)
4. objective variable, if any: lower bound or upper bound, depending on the ResolutionPolicy

Note that ISF.lastConflict(solver) is also plugged-in. Constants are excluded from search strategies' variable scope and the creation order is maintained per types.
IntStrategyFactory, SetStrategyFactory and RealStrategyFactory offer several built-in search strategies and a simple framework to build custom searches.

8.3.1 Search binder

It is possible to override the default search strategy by implementing an ISearchBinder. By default, a Solver is created with a DefaultSearchBinder declared in its settings.
An ISearchBinder has the following API:
void configureSearch (Solver solver) Configure the search strategy, and even more, of the given solver. The method is called from the search loop, after the initial propagation, if no search strategy is defined. Otherwise, it should be called before running the resolution.

The search binder to use must be declared in the Setting attached to a Solver (see Settings).

8.4 Composition of strategies

Most of the time, it is necessary to combine various strategies. A StrategiesSequencer enables to compose various AbstractStrategy. It is created on the basis of a list of AbstractStrategy. The current active strategy is called to compute a decision through its getDecision() method. When no more decision can be computed for the current strategy, the following one becomes active. The intersection of variables from each strategy does not have to be empty. When a variable appears in various strategy, it is ignored as soon as it is instantiated.
When no environment is given in parameter, the last active strategy is not stored, and strategies are evaluated in lexicographical order to find the first active one, based on its capacity to return a decision.

When an environment is given in parameter, the last active strategy is stored.
API
IntStrategyFactory.sequencer(AbstractStrategy... strategies)
Note that a strategy sequencer is automatically generated when setting multiple strategies at the same time:
solver.set (strategy1, strategy2) ; is equivalent to
solver.set (ISF.sequencer(strategy1, strategy2));
Finally, one can create its own strategy, see Defining its own search for more details.

8.5 Restarts

Restart means stopping the current tree search, then starting a new tree search from the root node. Restarting makes sense only when coupled with randomized dynamic branching strategies ensuring that the same enumeration tree is not constructed twice. The branching strategies based on the past experience of the search, such as adaptive search strategies, are more accurate in combination with a restart approach.

Unless the number of allowed restarts is limited, a tree search with restarts is not complete anymore. It is a good strategy, though, when optimizing an NP-hard problem in a limited time.

Some adaptive search strategies resolutions are improved by sometimes restarting the search exploration from the root node. Thus, the statistics computed on the bottom of the tree search can be applied on the top of it.
There a two restart strategies available in SearchMonitorFactory:

```
geometrical(Solver solver, int base, double grow, ICounter counter, int limit)
```

It performs a search with restarts controlled by the resolution event ${ }^{1}$ counter which counts events occurring during the search. Parameter base indicates the maximal number of events allowed in the first search tree. Once this limit is reached, a restart occurs and the search continues until base ' ' * 'grow events are done, and so on. After each restart, the limit number of events is increased by the geometric factor grow. limit states the maximum number of restarts.
and:

```
luby(Solver solver, int base, int grow, ICounter counter, int limit)
```

The Luby 's restart policy is an alternative to the geometric restart policy. It performs a search with restarts controlled by the number of resolution events ${ }^{1}$ counted by counter. The maximum number of events allowed at a given restart iteration is given by base multiplied by the Las Vegas coefficient at this iteration. The sequence of these coefficients is defined recursively on its prefix subsequences: starting from the first prefix 1 , the $(k+1)^{t} h$ prefix is the $k^{t} h$ prefix repeated grow times and immediately followed by coefficient grow ${ }^{k}$.

- the first coefficients for grow $=2$: $[1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1, \ldots]$
- the first coefficients for grow $=3:[1,1,1,3,1,1,1,3,1,1,1,3,9, \ldots]$

8.6 Limiting the resolution

8.6.1 Built-in search limits

The exploration of the search tree can be limited in various ways. Some usual limits are provided in SearchMonitorFactory, or SMF for short:

- limitTime stops the search when the given time limit has been reached. This is the most common limit, as many applications have a limited available runtime.

Note: The potential search interruption occurs at the end of a propagation, i.e. it will not interrupt a propagation algorithm, so the overall runtime of the solver might exceed the time limit.

- limitSolution stops the search when the given solution limit has been reached.
- limitNode stops the search when the given search node limit has been reached.
- limitFail stops the search when the given fail limit has been reached.
- limitBacktrack stops the search when the given backtrack limit has been reached.

8.6.2 Custom search limits

You can decide to interrupt the search process whenever you want with one of the following instructions:

[^1]```
solver.getSearchLoop().reachLimit();
solver.getSearchLoop().interrupt(String message);
```

Both options will interrupt the search process but only the first one will inform the solver that the search stops because of a limit. In other words, calling

```
solver.hasReachedLimit()
```

will return false if the second option is used.

## Going further

Large Neighborhood Search, Explanations.

## Resolution statistics

Choco 3 distinguishes developer trace and user trace. Developer trace is only dedicated to developers for debugging purpose (Choco depends on SLF4J, as described in Note about logging). User trace is dedicated to users (and developers) to print information related to the resolution of a problem, such as statistics (execution time, nodes, etc.) or solutions.

Resolution data are available thanks to the Chatterbox class, which outputs to system. out. It centralises widely used methods to have comprehensive feedbacks about the resolution process. There two main types of methods: those who need to be called before the resolution, with a prefix show, and those who need to called after the resolution, with a prefix print.

For instance, one can indicate to print the solutions all resolution long:

```
Chatterbox.showSolutions(solver);
solver.findAllSolutions();
```

Or to print the search statistics once the search ends:

```
solver.findSolution();
Chatterbox.printStatistics(solver);
```

On a call to Chatterbox. printVersion(), the following message will be printed:

```
** Choco 3.3.1 (2015-05) : Constraint Programming Solver, Copyleft (c) 2010-2015
```

On a call to Chatterbox.printVersion(), the following message will be printed:

```
- [Search complete - [No solution | {0} solution(s) found]
 | Incomplete search - [Limit reached | Unexpected interruption]].
 Solutions: {0}
[Maximize = {1}]
[Minimize = {2}]
 Building time : {3}s
 Initialisation : {4}s
 Initial propagation : {5}s
 Resolution : {6}s
 Nodes: {7}
 Backtracks: {8}
 Fails: {9}
 Restarts: {10}
 Max depth: {11}
 Memory: {12}mb
```

Variables: \{13\}
Constraints: \{14\}

Curly brackets \{instruction I \} indicate alternative instructions
Brackets [instruction] indicate an optional instruction.
If the search terminates, the message "Search complete" appears on the first line, followed with either the the number of solutions found or the message "No solution". Maximize -resp. Minimize- indicates the best known value before exiting of the objective value using a ResolutionPolicy.MAXIMIZE -resp. ResolutionPolicy.MINIMIZE- policy.

Curly braces \{value\} indicate search statistics:
0 . number of solutions found

1. objective value in maximization
2. objective value in minimization
3. building time in second (from new Solver() to findSolution() or equivalent)
4. initialisation time in second (before initial propagation)
5. initial propagation time in second
6. resolution time in second (from new Solver () till now)
7. number of decision created, that is, nodes in the binary tree search
8. number of backtracks achieved
9. number of failures that occurred
10. number of restarts operated
11. maximum depth reached in the binary tree search
12. estimation of the memory used
13. number of variables in the model
14. number of constraints in the model

If the resolution process reached a limit before ending naturally, the title of the message is set to :

```
- Incomplete search - Limit reached.
```

The body of the message remains the same. The message is formatted thanks to the IMeasureRecorder which is a search monitor.

On a call to Chatterbox. showSolutions (solver), on each solution the following message will be printed:

```
{0} Solutions, [Maximize = {1}][Minimize = {2}], Resolution {6}s, {7} Nodes, \\
 {8} Backtracks, {9} Fails, {10} Restarts
```

followed by one line exposing the value of each decision variables (those involved in the search strategy).
On a call to Chatterbox. showDecisions (solver), on each node of the search tree a message will be printed indicating which decision is applied. The message is prefixed by as many "." as nodes in the current branch of the search tree. A decision is prefixed with [R] and a refutation is prefixed by [L].

```
..[L]x == 1 (0) //X = [0,5] Y = [0,6] ...
```

Warning: Chatterbox.printDecisions(Solver solver) prints the tree search during the resolution. Printing the decisions slows down the search process.

## Part IV

## Advanced usage

## Settings

A Settings object is attached to each Solver. It declares default behavior for various purposes: from general purpose (such as the welcome message), modelling purpose (such as enabling views) or solving purpose (such as the search binder).

The API is:
public String getWelcomeMessage() Return the welcome message.
public Idem getIdempotencyStrategy () Define how to react when a propagator is not ensured to be idempotent.
public boolean enableViews () Set to 'true' to allow the creation of views in the VariableFactory. Creates new variables with channeling constraints otherwise.
public int getMaxDomSizeForEnumerated() Define the maximum domain size threshold to force integer variable to be enumerated instead of bounded while calling VariableFactory\#integer (String, int, int, Solver).
public boolean enableTableSubstitution() Set to true to replace intension constraints by extension constraints.
public int getMaxTupleSizeForSubstitution() Define the maximum domain size threshold to replace intension constraints by extension constraints. Only checked when enableTableSubstitution() is set to true.
public boolean plugExplanationIn() Set to true to plug explanation engine in.
public boolean enablePropagatorInExplanation() Set to true to add propagators in explanations
public double getMCRPrecision() Define the rounding precision for multicost_regular. MUST BE < 13 as java messes up the precisions starting from 10E-12 $(34.0 * 0.05=1.70000000000005)$.
public double getMCRDecimalPrecision() Defines the smallest used double for multicost_regular.
public short[] getFineEventPriority () Defines, for fine events, for each priority, the queue in which a propagator of such a priority should be scheduled in.
public short[] getCoarseEventPriority() Defines, for coarse events, for each priority, the queue in which a propagator of such a priority should be scheduled in
public ISearchBinder getSearchBinder() Return the default Search binder.

## Large Neighborhood Search (LNS)

Local search techniques are very effective to solve hard optimization problems. Most of them are, by nature, incomplete. In the context of constraint programming ( CP ) for optimization problems, one of the most well-known and widely used local search techniques is the Large Neighborhood Search (LNS) algorithm ${ }^{1}$. The basic idea is to iteratively relax a part of the problem, then to use constraint programming to evaluate and bound the new solution.

### 11.1 Principle

LNS is a two-phase algorithm which partially relaxes a given solution and repairs it. Given a solution as input, the relaxation phase builds a partial solution (or neighborhood) by choosing a set of variables to reset to their initial domain; The remaining ones are assigned to their value in the solution. This phase is directly inspired from the classical Local Search techniques. Even though there are various ways to repair the partial solution, we focus on the technique in which Constraint Programming is used to bound the objective variable and to assign a value to variables not yet instantiated. These two phases are repeated until the search stops (optimality proven or limit reached).

The LNSFactory provides pre-defined configurations. Here is the way to declare LNS to solve a problem:

```
LNSFactory.rlns(solver, ivars, 30, 20140909L, new FailCounter(100));
solver.findOptimalSolution(ResolutionPolicy.MINIMIZE, objective);
```

It declares a random LNS which, on a solution, computes a partial solution based on ivars. If no solution are found within 100 fails (FailCounter $(100)$ ), a restart is forced. Then, every 30 calls to this neighborhood, the number of fixed is randomly picked. 20140909 L is the seed for the java.util. Random.
The instruction LNSFactory.rlns(solver, vars, level, seed, frcounter) runs:

```
LargeNeighborhoodSearch lns = new LargeNeighborhoodSearch(solver, neighbor, true);
solver.getSearchLoop().plugSearchMonitor(lns);
return lns;
```

The factory provides other LNS configurations together with built-in neighbors.

[^2]
### 11.2 Neighbors

While the implementation of LNS is straightforward, the main difficulty lies in the design of neighborhoods able to move the search further. Indeed, the balance between diversification (i.e., evaluating unexplored sub-tree) and intensification (i.e., exploring them exhaustively) should be well-distributed.

### 11.2.1 Generic neighbors

One drawback of LNS is that the relaxation process is quite often problem dependent. Some works have been dedicated to the selection of variables to relax through general concept not related to the class of the problem treated [5,24]. However, in conjunction with CP, only one generic approach, namely Propagation-Guided LNS [24], has been shown to be very competitive with dedicated ones on a variation of the Car Sequencing Problem. Nevertheless, such generic approaches have been evaluated on a single class of problem and need to be thoroughly parametrized at the instance level, which may be a tedious task to do. It must, in a way, automatically detect the problem structure in order to be efficient.

### 11.2.2 Combining neighborhoods

There are two ways to combine neighbors.

## Sequential

Declare an instance of SequenceNeighborhood (n1, n2, ..., nm). Each neighbor ni is applied in a sequence until one of them leads to a solution. At step k , the $(k \bmod m)^{t h}$ neighbor is selected. The sequence stops if at least one of the neighbor is complete.

## Adaptive

Declare an instance of AdaptiveNeighborhood (1L, n1, n2, ..., nm). At the beginning a weight of 1 at assigned to each neighbor ni. Then, if a neighbor leads to solution, its weight $w_{i}$ is increased by 1 . Any time a partial solution has to be computed, a value $W$ between 1 and $w_{1}+w_{2}+\ldots+w_{n}$ is randomly picked ( 1 L is the seed). Then the weight of each neighbor is subtracted from $W$, as soon as $W \leq 0$, the corresponding neighbor is selected. For instance, let's consider three neighbors $n 1, n 2$ and $n 3$, their respective weights $w 1=2, w 2=4, w 3=1 . W=3$ is randomly picked between 1 and 7. Then, the weight of $n 1$ is subtracted, $W^{\prime}{ }^{\prime} 2-=1$; the weight of $n 2$ is subtracted, $\cdots ~ ' W-4=-3, W$ is less than 0 and $n 2$ is selected.

### 11.2.3 Defining its own neighborhoods

One can define its own neighbor by extending the abstract class ANeighbor. It forces to implements the following methods:

| Method | Definition |
| :--- | :--- |
| void recordSolution () | Action to perform on a solution (typicallu, storing the current <br> variables' value). |
|  | Fix some variables to their value in the last solution, <br> computing a partial solution. |
| void fixSomeVariables (ICause <br> cause) throws <br> ContradictionException | Relax the number of variables fixed. Called when no solution <br> was found during a LNS run (trapped into a local optimum). |
| void restrictLess () | Indicates whether the neighbor is complete, that is, can end. |

### 11.3 Restarts

A generic and common way to reinforce diversification of LNS is to introduce restart during the search process. This technique has proven to be very flexible and to be easily integrated within standard backtracking procedures ${ }^{2}$.

### 11.4 Walking

A complementary technique that appear to be efficient in practice is named Walking and consists in accepting equivalent intermediate solutions in a search iteration instead of requiring a strictly better one. This can be achieved by defining an ObjectiveManager like this:

```
solver.set(new ObjectiveManager(objective, ResolutionPolicy.MAXIMIZE, false));
```

Where the last parameter, named strict must be set to false to accept equivalent intermediate solutions.
Other optimization policies may be encoded by using either search monitors or a custom ObjectiveManager.

[^3]
## Multi-thread resolution

Choco 3 provides a simple way to use several thread to treat a problem. This is achieved by declaring a MasterSolver to drive the search. The main idea of that driver is to solve the same problem with various search strategies, and to share few possible information.
The first step is to declare a model, as usual, by creating a solver, adding variables and constraints. One can declare a (naive) search strategy to point out the decision variables. It is optional but highly recommended. Then, the problem declared in the solver is duplicated into $n$ additional solvers. The search strategies are then configured, and each solver is run into a single thread.

On satisfaction problem:
the first solver who finds a solution advises the others.
On optimisation problem:
the best value found so far is shared among all the solvers.
The expected ways to solve a problem using MasterSolver is:

```
Solver solver = new Solver();
// declare the variables and constraints
// and an optional search strategy
// . . .
// Then create the master-solver
MasterSolver ms = new MasterSolver();
// duplicate the solver into 4 solvers (I+3)
ms.populate(solver, 3);
// configure the search strategies (optional, but recommended)
//ms.declareSettings(settings1, settings2, settings3);
// Finally, solve the problem
ms.findSolution();
```

The API of MasterSolver is deliberately kept reduced. If a specific configuration of a solver needs to be done, one has to do it by himself.
void populate (Solver model, int $n$ ) Duplicate a given solver into $n$ copies. It populates the internal array Solver[] with $\mathrm{n}+1$ solvers.
void declare (Solver... solvers) An alternative to populate (Solver model, int n) where the array of solvers is given. The first solver in the array needs to be the original one (required for optimization problem).
Solver[] getSolvers () Return the array of solvers to drive.
void declareSettings (Settings... settings) Declare a specific Settings to each solver (Settings). Calling this method is highly recommended to, at least, configure the search strategies for each solver.
ESat isFeasible () Indicate if one solver, at least, has found a solution for the given problem.
boolean hasReachedLimit () Indicate if all solvers have reached a limit.
boolean findSolution() Deal with satisfaction problem: the solvers are distributed, the first one which finds a solution stops the process. It returns true if one solver has found a solution, false otherwise.
void findOptimalSolution(ResolutionPolicy policy, IntVar objective) Deal with optimisation problem: the solvers are distributed and anytime a solver found a solution, it shares the value with the others. It one proofs the optimality, it stops the process.

```
void wishGranted() For internal uses only
```


## Explanations

Choco 3 natively support explanations ${ }^{1}$. However, no explanation engine is plugged-in by default.

### 13.1 Principle

Nogoods and explanations have long been used in various paradigms for improving search. An explanation records some sufficient information to justify an inference made by the solver (domain reduction, contradiction, etc.). It is made of a subset of the original propagators of the problem and a subset of decisions applied during search. Explanations represent the logical chain of inferences made by the solver during propagation in an efficient and usable manner. In a way, they provide some kind of a trace of the behavior of the solver as any operation needs to be explained.

Explanations have been successfully used for improving constraint programming search process. Both complete (as the mac-dbt algorithm) and incomplete (as the decision-repair algorithm) techniques have been proposed. Those techniques follow a similar pattern: learning from failures by recording each domain modification with its associated explanation (provided by the solver) and taking advantage of the information gathered to be able to react upon failure by directly pointing to relevant decisions to be undone. Complete techniques follow a most-recent based pattern while incomplete technique design heuristics to be used to focus on decisions more prone to allow a fast recovery upon failure.

The current explanation engine is coded to be Asynchronous, Reverse, Low-intrusive and Lazy:
Asynchronous: Explanations are not computed during the propagation.
Reverse: Explanations are computed in a bottom-up way, from the conflict to the first event generated, keeping only relevant events to compute the explanation of the conflict.

Low-intrusive: Basically, propagators need to implement only one method to furnish a convenient explanation schema.

Lazy: Explanations are computed on request.
To do so, all events are stored during the descent to a conflict/solution, and are then evaluated and kept if relevant, to get the explanation.

### 13.2 In practice

Consider the following example:

[^4]```
Solver solver = new Solver();
BoolVar[] bvars = VF.boolArray("B", 4, solver);
solver.post(ICF.arithm(bvars[2], "=", bvars[3]));
solver.post(ICF.arithm(bvars[2], "!=", bvars[3]));
solver.set(ISF.lexico_LB(bvars));
solver.findAllSolutions();
```

The problem has no solution since the two constraints cannot be satisfied together. A naive strategy such as ISF.lexico_LB (bvars) (which selects the variables in lexicographical order) will detect lately and many times the failure. By plugging-in an explanation engine, on each failure, the reasons of the conflict will be explained.

```
ExplanationFactory.CBJ.plugin(solver, false, false);
```

The explanation engine records deductions and causes in order to compute explanations. In that small example, when an explanation engine is plugged-in, the two first failures will enable to conclude that the problem has no solution. Only three nodes are created to close the search, seven are required without explanations.

[^5]
13.2.1 Cause

A cause implements ICause and must defined the boolean why (RuleStore ruleStore, IntVar var, IEventType evt, int value) method. Such a method add new event filtering rules to the ruleStore in parameter in order to filter relevant events among all generated during the search. Every time a variable is modified, the cause is specified in order to compute explanations afterwards. For instance, when a propagator updates the bound of an integer variable, the cause is the propagator itself. So do decisions, objective manager, etc.

13.2.2 Computing explanations

When a contradiction occurs during propagation, it can only be thrown by:

- a propagator which detects unsatisfiability, based on the current domain of its variables;
- or a variable whom domain became empty.

Consequently, in addition to causes, variables can also explain the current state of their domain. Computing the explanation of a failure consists in going up in the stack of all events generated in the current branch of the search tree and filtering the one relative to the conflict. The entry point is either a the unsatisfiabable propagator or the empty variable.

Note: Explanations can be computed without failure. The entry point is a variable, and only removed values can be explained.

Each propagator embeds its own explanation algorithm which relies on the relation it defines over variables.
Warning: Even if a naive (and weak) explanation algorithm could be provided by all constraints, we made the choice to throw an SolverException whenever a propagator does not defined its own explanation algorithm. This is restrictive, but almost all non-global constraints support explanation, which enables reformulation. The missing explanation schemas will be integrated all needs long.

For instance, here is the algorithm of PropGreaterOrEqualX_YC $(x \geq y+c, \mathrm{x}$ and y are integer variables, C is a constant):

```
public boolean why(RuleStore ruleStore, IntVar var, IEventType evt, int value) {
    boolean newrules = ruleStore.addPropagatorActivationRule(this);
    if (var.equals(x)) {
        newrules |= ruleStore.addLowerBoundRule(y);
    } else if (var.equals(y)) {
            newrules |= ruleStore.addUpperBoundRule(x);
    } else {
            newrules |= super.why(ruleStore, var, evt, value);
    }
    return newrules;
}
```

The first lines indicates that the deduction is due to the application of the propagator (1.2), maybe through reification. Then, depending on the variable touched by the deduction, either the lower bound of $y(1.4)$ or the upper bound of x (1.6) explains the deduction. Indeed, such a propagator only updates lower bound of y based on the upper bound of x and vice versa.

Let consider that the deduction involves x and is explained by the lower bound of y. The lower bound y needs to be explained. A new rule is added to the ruleStore to specify that events on the lower bound of y needs to be kept during the event stack analyse (only events generated before the current are relevant). When such events are found, the ruleStore can be updated, until the first event is analyzed.
The results is a set of branching decisions, and a set a propagators, which applied altogether leads the conflict and thus, explained it.

13.3 Explanations for the system

Explanations for the system, which try to reduce the search space, differ from the ones giving feedback to a user about the unsatisfiability of its model. Both rely on the capacity of the explanation engine to motivate a failure, during the search form system explanations and once the search is complete for user ones.

Important: Most of the time, explanations are raw and need to be processed to be easily interpreted by users.

13.3.1 Conflict-based backjumping

When Conflict-based Backjumping (CBJ) is plugged-in, the search is hacked in the following way. On a failure, explanations are retrieved. From all left branch decisions explaining the failure, the last taken, return decision, is stored to jump back to it. Decisions from the current one to the return decision (excluded) are erased. Then, the return decision is refuted and the search goes on. If the explanation is made of no left branch decision, the problem is proven to have no solution and search stops.

Factory: solver. explanations.ExplanationFactory

API:

```
CBJ.plugin(Solver solver, boolean nogoodsOn, boolean userFeedbackOn)
```

- solver: the solver to explain.
- nogoodsOn: set to true to extract nogood from each conflict,. Extracting nogoods slows down the overall resolution but can reduce the search space.
- userFeedbackOn: set to true to store the very last explanation of the search (recommended value: false).

13.3.2 Dynamic backtracking

This strategy, Dynamic backtracking (DBT) corrects a lack of deduction of Conflict-based backjumping. On a failure, explanations are retrieved. From all left branch decisions explaining the failure, the last taken, return decision, is stored to jump back to it. Decisions from the current one to the return decision (excluded) are maintained, only the return decision is refuted and the search goes on. If the explanation is made of no left branch decision, the problem is proven to have no solution and search stops.
Factory: solver.explanations.ExplanationFactory
API:

```
DBT.plugin(Solver solver, boolean nogoodsOn, boolean userFeedbackOn)
```

- solver: the solver to explain.
- nogoodsOn: set to true to extract nogood from each conflict,. Extracting nogoods slows down the overall resolution but can reduce the search space.
- userFeedbackOn: set to true to store the very last explanation of the search (recommended value: false).

13.4 Explanations for the end-user

Explaining the last failure of a complete search without solution provides information about the reasons why a problem has no solution. For the moment, there is no simplified way to get such explanations. CBJ and DBT enable retrieving an explanation of the last conflict.

```
// .. problem definition ..
// First manually plug CBJ, or DBT
ExplanationEngine ee = new ExplanationEngine(solver, userFeedbackOn);
ConflictBackJumping cbj = new ConflictBackJumping(ee, solver, nogoodsOn);
solver.plugMonitor(cbj);
if(!solver.findSolution()) {
    // If the problem has no solution, the end-user explanation can be retrieved
    System.out.println(cbj.getLastExplanation());
}
```

Incomplete search leads to incomplete explanations: as far as at least one decision is part of the explanation, there is no guarantee the failure does not come from that decision. On the other hand, when there is no decision, the explanation is complete.

Search monitor

14.1 Principle

A search monitor is an observer of the search loop. It gives user access before and after executing each main step of the search loop:

- initialize: when the search loop starts,
- initial propagator: when the initial propagation is run,
- open node: when a decision is computed,
- down left branch: on going down in the tree search applying a decision,
- down right branch: on going down in the tree search refuting a decision,
- up branch: on going up in the tree search to reconsider a decision,
- solution: when a solution is got,
- restart search: when the search is restarted to a previous node, commonly the root node,
- close: when the search loop ends,
- contradiction: on a failure,
- interruption: on the interruption of the search loop.

With the accurate search monitor, one can easily interact with the search loop, from pretty printing of a solution to forcing a restart, or many other actions.
The interfaces to implement are:

- IMonitorInitialize,
- IMonitorInitPropagation,
- IMonitorOpenNode,
- IMonitorDownBranch,
- IMonitorUpBranch,
- IMonitorSolution,
- IMonitorRestart,
- IMonitorContradiction,
- IMonitorInterruption,

Choco3 Documentation, Release 3.3.1

- IMonitorClose.

Most of them gives the opportunity to do something before and after a step. The other ones are called after a step.
For instance, NogoodStoreFromRestarts monitors restarts. Before a restart is done, the nogoods are extracted from the current decision path; after the restart has been done, the newly created nogoods are added and the nogoods are propagated. Thus, the framework is almost not intrusive.

```
public class NogoodFromRestarts implements IMonitorRestart {
    public void beforeRestart() {
        extractNogoodFromPath();
    }
    public void afterRestart() {
    }
```

Available search monitors: Search Monitors.

Defining its own search strategy

One key component of the resolution is the exploration of the search space induced by the domains and constraints. It happens that built-in search strategies are not enough to tackle the problem. Or one may want to define its own strategy. This can be done in three steps: selecting the variable, selecting the value, then making a decision.
The following instructions are based on IntVar, but can be easily adapted to other types of variables.

15.1 Selecting the variable

An implementation of the VariableSelector $<\mathrm{V}$ extends Variable> interface is needed. A variable selector specifies which variable should be selected at a fix point. It is based specifications (ex: smallest domain, most constrained, etc.). Although it is not required, the selected variable should not be already instantiated to a singleton. This interface forces to define only one method:

```
V getVariable(V[] variables)
```

One variable has to be selected from variables to create a decision on. If no valid variable exists, the method is expected to return null.
An implementation of the VariableEvaluator $<V$ extends Variable> is strongly recommended. It enables breaking ties. It forces to define only one method:

```
double evaluate(V variable)
```

An evaluation of the given variable is done wrt the evaluator. The variable with the smallest value will then be selected.

Here is the code of the FirstFail variable selector which selects first the variable with the smallest domain.

```
public class FirstFail implements VariableSelector<IntVar>, VariableEvaluator<Intyar> {
    @Override
    public IntVar getVariable(IntVar[] variables) {
        int small_idx = -1;
        int small_dsize = Integer.MAX_VALUE;
        for (int idx = 0; idx < variables.length; idx++) {
            int dsize = variables[idx].getDomainSize();
            if (dsize > 1 && dsize < small_dsize) {
                small_dsize = dsize;
                small_idx = idx;
            }
    }
```

```
15 return small_idx > -1 ? variables[small_idx] : null;
} }
    @Override
    public double evaluate(IntVar variable) {
        return variable.getDomainSize();
    }
}
```

There is a distinction between VariableSelector and VariableEvaluator. On the one hand, a VariableSelector breaks ties lexicographically, that is, the first variable in the input array which respects the specification is returned.

```
new IntStrategy(variables,
    new FirstFail(),
    new IntDomainMin(),
    DecisionOperator.int_eq) ;
```

On the other hand, a VariableEvaluator selects all variables which respect the specifications and let another VariableEvaluator breaks ties, if any, or acts like a VariableSelector.

```
new IntStrategy(variables,
    new VariableSelectorWithTies(new FirstFail(), new Largest()),
    new IntDomainMin(),
    DecisionOperator.int_eq);
```

Let's consider the following array of variables as input $\{X, Y, Z\}$ where $X=[0,3], Y=[0,4]$ and $Z=[1,4]$. Applying the first strategy declared will return X. Applying the second one will return Z : X and Z are batter than Y but equivalent compared to FirstFail but Z is better than X compared to Largest.

15.2 Selecting the value

The value to be selected must belong to the variable domain.
For IntVar the interface IntValueSelector is required. It imposes one method:

```
int selectValue(IntVar var)
```

Return the value to constrain var with.

Important: A value selector must consider the type of domain of the selected variable. Indeed, a value selector does not store the previous tries (unkike an iterator) and it may happen that, for bounded variable, the refutation of a decision has no effect and a value is selected twice or more. For example, consider IntDomainMiddle and a bounded variable.

15.3 Making a decision

A decision is made of a variable, an decision operator and a value. The decision operator should be selected in DecisionOperator among:
int_eq

For IntVar, represents an instantiation, $X=3$. The refutation of the decision will be a value removal.
int_neq
For IntVar, represents a value removal, $X \neq 3$. The refutation of the decision will be an instantiation.
int_split
For IntVar, represents an upper bound modification, $X \leq 3$. The refutation of the decision will be a lower bound modification.

```
int_reverse_split
```

For IntVar, represents a lower bound modification, $X \geq 3$. The refutation of the decision will be an upper bound modification.
set_force
For SetVar, represents a kernel addition, $3 \in S$. The refutation of the decision will be an envelop removal.

```
set_remove
```

For SetVar, represents an envelop removal, $3 \notin S$. The refutation of the decision will be a kernel addition.

Attention: A particular attention should be made while using IntVar s and their type of domain. Indeed, bounded variables does not support making holes in their domain. Thus, removing a value which is not a current bound will be missed, and can lead to an infinite loop.

One can define its own operator by extending DecisionOperator.
void apply(V var, int value, ICause cause)
Operations to execute when the decision is applied (left branch). It can throw an ContradictionException if the application is not possible.
void unapply(V var, int value, ICause cause)
Operations to execute when the decision is refuted (right branch). It can throw an ContradictionException if the application is not possible.

DecisionOperator opposite()
Opposite of the decision operator. Currently useless.
String toString()
A pretty print of the decision, for logging.
Most of the time, extending AbstractStrategy is not necessary. Using specific strategy dedicated to a type of variable, such as Int Strategy is enough. The one above has an alternate constructor:

```
public IntStrategy(IntVar[] scope,
    VariableSelector<IntVar> varSelector,
    IntValueSelector valSelector,
    DecisionOperator<IntVar> decOperator) {...}
```

And defining your own strategy is really crucial, start by copying/pasting an existing one. Indeed, decisions are stored in pool managers to avoid creating too many decision objects, and thus garbage collecting too often.

Defining its own constraint

In Choco-3, constraints is basically a list of filtering algorithms, called propagators. A propagator is a function from domains to domains which removes impossible values from variable domains.

16.1 Structure of a Propagator

A propagator needs to extends the Propagator abstract class. Then, a constructor and some methods have to be implemented:

```
super(...)
```

a call to super () is mandatory. The list of variables (which determines the index of the variable in the propagator) and the priority (for the propagation engine) are required. An optional boolean (true is the default value) can be set to false to avoid reacting on fine events (see item void propagate (int vIdx, int mask)). More precisely, if set to false, the propagator will only be informed of a modification of, at least, one of its variables, without knowing specifically which one(s) and what modifications occurred.

Important: The array of variables given in parameter of a Propagator constructor is not cloned but referenced. That is, if a permutation occurs in the array of variables, all propagators referencing the array will be incorrect.

```
ESat isEntailed()
```

This method is mandatory for reification. It checks whether the propagator will be always satisfied (ESat . TRUE), never satisfied (ESat . FALSE) or undefined (ESat . UNDEFINED) according to the current state of its domain variables and/or its internal structure. By default, it should consider the case where all variables are instantiated. For instance, $A \neq B$ will always be satisfied when $\$ A=\{0,1,2\} \$$ and $B=\{4,5\}$. For instance, $A=B$ will never be satisfied when $A=\{0,1,2\}$ and $B=\{4,5\}$. For instance, entailment of $A \neq B$ cannot be defined when $A=\{0,1,2\}$ and $B=\{1,2,3\}$.

This method is also called to check solutions when assertions are enabled, i.e. when the -ea JVM option is used.
void propagate(int evtmask)
This method applies the global filtering algorithm of the propagator, that is, from scratch. It is called once during initial propagation and then on a call to forcePropagate (EventType). There are two available types of event this method can receive: EventType.FULL_PROPAGATION and EventType.CUSTOM \backslash _PROPAGATION. The latter is propagator-dependent and should be managed by the developer when incrementality is enabled. Note that the forcePropagate () method will call propagate (int) when the propagator does not have any pending events. In other words, it is called once and for all, after many domain modifications.

```
void propagate(int vIdx, int mask)
```

This method is the main entry point to the propagator during propagation. When the $v I d x^{t h}$ variable of the propagator is modified, data relative to the modification is stored for a future execution of the propagator. Then, when the propagation engine has to execute the propagator, a call to this method is done with the data relative to the variable and its modifications. One can delegate filtering algorithm to propagate (int) with a call to forcePropagate() (see item void propagate (int evtmask)). However, developers have to be aware that a propagator will not be informed of a modification it has generated itself. That's why a propagator has to be idempotent (see Section~nameref\{properties \}) or being aware not to be.

Note that, when conditions enable it, a call to setPassive () will deactivate the propagator temporary, during the exploration of the sub search space. When the conditions are not met anymore, the propagator is activated again (i.e. on backtrack).

```
int getPropagationConditions(int vIdx)
```

This method returns the specific mask indicating the variable events on which the propagator reacts for the $v I d x^{t h}$ variable. This method is related to propagate (int, int): a wrong mask prevents the propagator from being informed of an event occurring on a variable. Event masks are not nested and all event masks have to be defined.

16.2 Properties

We distinguish two kinds of propagators:
Basis propagators, that ensure constraints to be satisfied.
Redundant (or Implied) propagators that come in addition to some basis propagators, in order to get a stronger filtering.
A basis propagator should be idempotent ${ }^{1}$. A redundant propagator does not have to be idempotent:
Some propagators cannot be idempotent because they are not even monotonic ${ }^{2}$ (Lagrangian relaxation, use of randomness, etc.),
Forcing to reach the fix point may decrease performances.

Important: A redundant propagator can directly return ESat. TRUE in the body of the isEntailed () method. Indeed, it comes in addition to basis propagators that will already ensure constraint satisfaction.

16.3 How to make a propagator idempotent?

Trying to make a propagator idempotent directly may not be straightforward. We provide three implementation possibilities.

The coarse option:
the propagator will perform its fix point by itself. The propagator does not react to fine events. The coarse filtering algorithm should be surrounded like this:

[^6]```
long size;
do {
 size = 0;
 for(IntVar v:vars) {
 size+=v.getDomSize();
 }
 // really update domain variables here
 for(IntVar v:vars) {
 size-=v.getDomSize();
 }
}while(size>0);
```

Important: Domain variable modifier returns a boolean valued to $t r u e$ if the domain variable has been modified.
Important: In the case of SetVar or GraphVar, replace getDomSize() by
getEnvSize()-getKerSize().

The decomposed option:
Split the original propagator into many propagators so that the fix point is performed through the propagation engine. For instance, a channeling propagator $A \Leftrightarrow B$ can be decomposed into two propagators $A \Rightarrow B$ and $B \Rightarrow A$. The propagators can (but does not have to) react on fine events.
The lazy option:
(To be avoided has much as possible) simply post the propagator twice. Thus, the fix point is performed through the propagation engine.

## Ibex

"IBEX is a C++ library for constraint processing over real numbers.
It provides reliable algorithms for handling non-linear constraints. In particular, round off errors are also taken into account. It is based on interval arithmetic and affine arithmetic." - http://www.ibex-lib.org/
To manage continuous constraints with Choco, an interface with Ibex has been done. It needs Ibex to be installed on your system. Then, simply declare the following VM options:
-Djava.library.path=/path/to/Ibex/lib

The path /path/to/Ibex/lib points to the lib directory of the Ibex installation directory.

### 17.1 Installing Ibex

See the installation instructions of Ibex to complied Ibex on your system. More specially, take a look at Installation as a dynamic library and do not forget to add the --with-java-package=org.chocosolver.solver.constraints.real configuration option.

Once the installation is completed, the JVM needs to know where Ibex is installed to fully benefit from the Choco-Ibex bridge and declare real variables and constraints.

## Part V

## Elements of Choco

## Constraints over integer variables

## 18.1 absolute

The absolute constraint involves two variables VAR1 and VAR2. It ensures that VAR1=|VAR2|.
API:

```
Constraint absolute(IntVar VAR1, IntVar VAR2)
```


## Example

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 0, 2, solver);
IntVar Y = VF.enumerated("X", -6, 1, solver);
solver.post(ICF.absolute(X, Y));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=0, Y=0$
- $X=1, Y=-1$
- $X=1, Y=1$
- $X=2, Y=-2$


## 18.2 alldifferent

The alldifferent constraints involves two or more integer variables VARS and holds that all variables from VARS take a different value. A signature offers the possibility to specify the filtering algorithm to use:

- "BC": filters on bounds only, based on [LopezOrtizQTvB03].
- "AC": filters on the entire domain of the variables, based on [Regin94]. It runs in $O(m . n)$
worst case time for the initial propagation. The average runtime of further propagations is $O(n+m)$. "DEFAULT": uses "BC" plus a probabilistic "AC" propagator to get a compromise between "BC" and "AC".
See also: alldifferent in the Global Constraint Catalog.

Implementation based on: [Regin94], [LopezOrtizQTvB03].
API:

```
Constraint alldifferent(IntVar[] VARS)
Constraint alldifferent(IntVar[] VARS, String CONSISTENCY)
```


## Example

```
Solver solver = new Solver();
IntVar W = VF.enumerated("W", 0, 1, solver);
IntVar X = VF.enumerated("X", -1, 2, solver);
IntVar Y = VF.enumerated("Y", 2, 4, solver);
IntVar Z = VF.enumerated("Z", 5, 7, solver);
solver.post(ICF.alldifferent(new IntVar[]{W, X, Y, Z}));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $X=-1, Y=2, Z=5, W=1$
- $X=1, Y=2, Z=7, W=0$
- $X=2, Y=3, Z=5, W=0$
- $X=2, Y=4, Z=7, W=1$


## 18.3 alldifferent_conditionnal

The alldifferent_conditionnal constraint is a variation of the alldifferent constraint. It holds the alldifferent constraint on the subset of variables VARS which satisfies the given condition CONDITION.

A simple example is the alldifferent_except_0 variation of the alldifferent constraint.
API:

```
Constraint alldifferent_conditionnal(IntVar[] VARS, Condition CONDITION)
Constraint alldifferent_conditionnal(IntVar[] VARS, Condition CONDITION, boolean AC)
```

One can force the $A C$ algorithm to be used by calling the second signature.

## Example

```
Solver solver = new Solver();
IntVar[] XS = VF.enumeratedArray("XS", 5, 0, 3, solver);
solver.post(ICF.alldifferent_conditionnal(XS,
 x -> !x.contains(1) && !x.contains(3)));
Chatterbox.showSolutions(solver);
solver.findAllSolutions();
solver.findAllSolutions();
```

The condition in the example states that the values 1 and 3 can appear more than once, unlike other values.
Some solutions of the problem are :

- $X S[0]=0, X S[1]=1, X S[2]=1, X S[3]=1, X S[4]=1$
- $X S[0]=0, X S[1]=1, X S[2]=2, X S[3]=1, X S[4]=1$
- $X S[0]=1, X S[1]=2, X S[2]=1, X S[3]=1, X S[4]=1$
- $X S[0]=0, X S[1]=1, X S[2]=2, X S[3]=3, X S[4]=3$


## 18.4 alldifferent_except_0

The alldifferent_except_0 involves an array of variables VARS. It ensures that all variables from VAR take a distinct value or 0 , that is, all values but 0 can't appear more than once.

See also: alldifferent_except_0 in the Global Constraint Catalog.
API:

```
Constraint alldifferent_except_0(IntVar[] VARS)
```


## Example

```
Solver solver = new Solver();
IntVar[] XS = VF.enumeratedArray("XS", 4, 0, 2, solver);
solver.post(ICF.alldifferent_except_0(XS));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $X S[0]=0, X S[1]=0, X S[2]=0, X S[3]=0$
- $X S[0]=0, X S[1]=1, X S[2]=2, X S[3]=0$
- $X S[0]=0, X S[1]=2, X S[2]=0, X S[3]=0$
- $X S[0]=2, X S[1]=1, X S[2]=0, X S[3]=0$


## 18.5 among

The among constraint involves:

- an integer variable $N V A R$,
- an array of integer variables VARIABLES and
- an array of integers.

It holds that $N V A R$ is the number of variables of the collection VARIABLES that take their value in VALUES.
See also: among in the Global Constraint Catalog.
Implementation based on: [BessiereHH+05].
API:

```
Constraint among(IntVar NVAR, IntVar[] VARS, int[] VALUES)
```


## Example

```
Solver solver = new Solver();
IntVar N = VF.enumerated("N", 2, 3, solver);
IntVar[] XS = VF.enumeratedArray("XS", 4, 0, 6, solver);
solver.post(ICF.among(N, XS, new int[]{1, 2, 3}));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $N=2, X S[0]=0, X S[1]=0, X S[2]=1, X S[3]=1$
- $N=2, X S[0]=0, X S[1]=1, X S[2]=3, X S[3]=6$
- $N=3, X S[0]=1, X S[1]=1, X S[2]=2, X S[3]=4$
- $N=3, X S[0]=3, X S[1]=2, X S[2]=1, X S[3]=0$


## 18.6 arithm

The constraint arithm involves either:

- a integer variable VAR, an operator $O P$ and a constant CST. It holds VAR OP CSTE, where CSTE must be chosen in $\{"=", ~ "!=", ~ ">", "<", ">=", "<="\}$.
- or two variables VAR1 and VAR2 and an operator $O P$. It ensures that VAR1 OP VAR2, where $O P$ must be chosen in \{"=", "!=", ">","<",">=","<="\}.
- or two variables VAR1 and VAR2, two operators $O P 1$ and $O P 2$ and an constant CSTE. The operators must be different, taken from $\{"=", \quad "!=", \quad ">", "<", ">=", "<="\}$ or $\{"+", \quad "-"\}$, the constarint ensures that VAR1 OP1 VAR2 OP2 CSTE.


## API:

```
Constraint arithm(IntVar VAR, String OP, int CSTE)
Constraint arithm(IntVar VAR1, String OP, IntVar VAR2)
Constraint arithm(IntVar VAR1, String OP1, IntVar VAR2, String OP2, int CSTE)
```


## Example 1

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 1, 4, solver);
solver.post(ICF.arithm(X, ">", 2));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=3$
- $X=4$


## Example 2

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 0, 2, solver);
IntVar Y = VF.enumerated("X", -6, 1, solver);
```

```
solver.post(ICF.arithm(X, "<=", Y, "+", 1));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=0, Y=-1$
- $X=0, Y=0$
- $X=0, Y=1$
- $X=1, Y=0$
- $X=1, Y=1$
- $X=2, Y=1$


## 18.7 atleast_nvalues

The atleast_nvalues constraint involves:

- an array of integer variables VARS,
- an integer variable $N V A L U E S$ and
- a boolean $A C$.

Let $N$ be the number of distinct values assigned to the variables of the VARS collection. The constraint enforces the condition $N \geq N V A L U E S$ to hold. The boolean $A C$ set to true enforces arc-consistency.

See also: atleast_nvalues in the Global Constraint Catalog.
Implementation based on: [Regin95].
API:

```
Constraint atleast_nvalues(IntVar[] VARS, IntVar NVALUES, boolean AC)
```


## Example

```
Solver solver = new Solver();
IntVar[] XS = VF.enumeratedArray("XS", 4, 0, 2, solver);
IntVar N = VF.enumerated("N", 2, 3, solver);
solver.post(ICF.atleast_nvalues(XS, N, true));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $X S[0]=0 X S[1]=0 X S[2]=0 X S[3]=1 N=2$
- $X S[0]=0 X S[1]=1 X S[2]=0 X S[3]=1 N=2$
- $X S[0]=0 X S[1]=1 X S[2]=2 X S[3]=1 N=2$
- $X S[0]=2 X S[1]=0 X S[2]=2 X S[3]=1 N=3$
- $X S[0]=2 X S[1]=2 X S[2]=1 X S[3]=0 N=3$


## 18.8 atmost_nvalues

The atmost_nvalues constraint involves:

- an array of integer variables VARS,
- an integer variable NVALUES and
- a boolean STRONG.

Let $N$ be the number of distinct values assigned to the variables of the VARS collection. The constraint enforces the condition $N \leq N V A L U E S$ to hold.

If the boolean STRONG is set to true, then the filtering algorithm of [FLapegue14] is added. It automatically detects disequalities and alldifferent constraints. This propagator is more powerful but more time consuming as well. this is presumably worthwhile when NVALUES must be minimized
See also: atmost_nvalues in the Global Constraint Catalog.
Implementation based on: [FLapegue 14].
API:

```
Constraint atmost_nvalues(IntVar[] VARS, IntVar NVALUES, boolean GREEDY)
```


## Example

```
Solver solver = new Solver();
IntVar[] XS = VF.enumeratedArray("XS", 4, 0, 2, solver);
IntVar N = VF.enumerated("N", 1, 3, solver);
solver.post(ICF.atmost_nvalues(XS, N, false));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $X S[0]=0, X S[1]=0, X S[2]=0, X S[3]=0, N=1$
- $X S[0]=0, X S[1]=0, X S[2]=0, X S[3]=0, N=2$
- $X S[0]=0, X S[1]=0, X S[2]=0, X S[3]=0, N=3$
- $X S[0]=0, X S[1]=0, X S[2]=0, X S[3]=1, N=2$
- $X S[0]=0, X S[1]=1, X S[2]=1, X S[3]=0, N=2$
- $X S[0]=2, X S[1]=2, X S[2]=1, X S[3]=0, N=3$


## 18.9 bin_packing

The bin_packing constraint involves:

- an array of integer variables ITEM_BIN,
- an array of integers ITEM_SIZE,
- an array of integer variables BIN_LOAD and
- an integer OFFSET.

It holds the Bin Packing Problem rules: a set of items with various SIZES to pack into bins with respect to the capacity of each bin.

- ITEM_BIN represents the bin of each item, that is, ITEM_BIN[i] = $j$ states that the $\mathrm{i}^{\text {th }}$ ITEM is put in the $\mathrm{j}^{\text {th }}$ bin.
- ITEM_SIZE represents the size of each item.
- BIN_LOAD represents the load of each bin, that is, the sum of size of the items in it.

This constraint is not a built-in constraint and is based on various propagators.
See also: bin_packing in the Global Constraint Catalog.
API:

```
Constraint[] bin_packing(IntVar[] ITEM_BIN, int[] ITEM_SIZE, IntVar[] BIN_LOAD, int OFFSET)
```


## Example

```
Solver solver = new Solver();
IntVar[] IBIN = VF.enumeratedArray("IBIN", 5, 1, 3, solver);
int[] sizes = new int[]{2, 3, 1, 4, 2};
IntVar[] BLOADS = VF.enumeratedArray("BLOADS", 3, 0, 5, solver);
solver.post(ICF.bin_packing(IBIN, sizes, BLOADS, 1));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $\operatorname{IBIN}[0]=1, \operatorname{IBIN}[1]=1, \operatorname{IBIN}[2]=2, \operatorname{IBIN[3]}=2, \operatorname{IBIN}[4]=3, B L O A D S[0]=5, B L O A D S[1]=5$, $B L O A D S[2]=2$
- $\operatorname{IBIN}[0]=1, \operatorname{IBIN}[1]=3, \operatorname{IBIN[2]}=1, \operatorname{IBIN[3]}=2, \operatorname{IBIN}[4]=1, B L O A D S[0]=5, B L O A D S[1]=4$, BLOADS[2] = 3
- $\operatorname{IBIN}[0]=2, \operatorname{IBIN}[1]=3, \operatorname{IBIN}[2]=1, \operatorname{IBIN}[3]=1, \operatorname{IBIN}[4]=3, B L O A D S[0]=5, B L O A D S[1]=2$, BLOADS[2] = 5


### 18.10 bit_channeling

The bit_channeling constraint involves:

- an array of boolean variables BVARS and
- an integer variable VAR.

It ensures that: VAR $=2^{0} \times$ BITS[0] $2^{1} \times$ BITS[1] $+\ldots+: m a t h: 2^{\wedge}\{n\}$ times BITS[n]. BIT[0] is related to the first bit of ' $\operatorname{VAR}\left(2^{0}\right)$, BIT[1] is related to the second bit of ' $\operatorname{VAR}\left(2^{1}\right)$, etc. The upper bound of $V A R$ is given by $2^{|B I T S|+1}$.

API:

```
Constraint bit_channeling(BoolVar[] BITS, IntVar VAR)
```


## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BVARS", 4, solver);
IntVar VAR = VF.enumerated("VAR", 0, 15, solver);
solver.post(ICF.bit_channeling(BVARS, VAR));
solver.findAllSolutions();
```

The solutions of the problem are :

- $\operatorname{VAR}=0, B V A R S[0]=0, B V A R S[1]=0, B V A R S[2]=0, B V A R S[3]=0$
- $\operatorname{VAR}=1, B V A R S[0]=1, B V A R S[1]=0, B V A R S[2]=0, B V A R S[3]=0$
- $\operatorname{VAR}=2, B V A R S[0]=0, B V A R S[1]=1, B V A R S[2]=0, B V A R S[3]=0$
- $\operatorname{VAR}=11, B V A R S[0]=1, B V A R S[1]=1, B V A R S[2]=0, B V A R S[3]=1$
- $\operatorname{VAR}=15, B \operatorname{VARS}[0]=1, B V A R S[1]=1, B V A R S[2]=1, B V A R S[3]=1$


### 18.11 boolean_channeling

The boolean_channeling constraint involves:

- an array of boolean variables $B V A R S$,
- an integer variable VAR and
- an integer OFFSET.

It ensures that: $V A R=i \Leftrightarrow B V A R S[i-O F F S E T]=1$. The $O F F S E T$ is typically set to 0 .
API:

```
Constraint boolean_channeling(BoolVar[] BVARS, IntVar VAR, int OFFSET)
```


## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BVARS", 5, solver);
IntVar VAR = VF.enumerated("VAR", 1, 5, solver);
solver.post(ICF.boolean_channeling(BVARS, VAR, 1));
solver.findAllSolutions();
```

The solutions of the problem are :

- $\operatorname{VAR}=1, B V A R S[0]=1, B V A R S[1]=0, B V A R S[2]=0, B V A R S[3]=0, B V A R S[4]=0$
- $V A R=2, B V A R S[0]=0, B V A R S[1]=1, B V A R S[2]=0, B V A R S[3]=0, B V A R S[4]=0$
- $\operatorname{VAR}=3, B V A R S[0]=0, B V A R S[1]=0, B V A R S[2]=1, B V A R S[3]=0, B V A R S[4]=0$
- $\operatorname{VAR}=4, B V A R S[0]=0, B V A R S[1]=0, B V A R S[2]=0, B V A R S[3]=1, B V A R S[4]=0$
- $V A R=5, B V A R S[0]=0, B V A R S[1]=0, B V A R S[2]=0, B V A R S[3]=0, B V A R S[4]=1$


### 18.12 clause_channeling

The clause_channeling constraint involves:

- an integer variable VAR and
- two arrays of boolean variables EVARS and LVARS.

It ensures that: $\operatorname{VAR}=\boldsymbol{i} \Leftrightarrow \boldsymbol{E V A R S}$ [ $\boldsymbol{i}$ - OFFSET ] = $\mathbf{1}$ and $V A R \leq i \Leftrightarrow L V A R S[i$-OFFSET ] = 1 where OFFSET is the initial lower bound of VAR.

## API:

```
Constraint clause_channeling(IntVar VAR, BoolVar[] EVARS, BoolVar[] LVARS)
```


## Example

```
Solver solver = new Solver();
IntVar iv = VF.enumerated("iv", 1, 3, solver);
BoolVar[] eqs = VF.boolArray("eq", 3, solver);
BoolVar[] lqs = VF.boolArray("lq", 3, solver);
solver.post(ICF.clause_channeling(iv, eqs, lqs));
solver.findAllSolutions();
```

The solutions of the problem are :

- $\operatorname{VAR}=1, E V A R S[0]=1, \operatorname{EVARS}[1]=0, E V A R S[2]=0, L V A R S[0]=1, \operatorname{LVARS}[1]=1, L V A R S[2]=1$
- $V A R=2, E V A R S[0]=0, E V A R S[1]=1, E V A R S[2]=0, L V A R S[0]=0, L V A R S[1]=1, L V A R S[2]=1$
- $V A R=3, E V A R S[0]=0, E V A R S[1]=0, E V A R S[2]=1, L V A R S[0]=0, L V A R S[1]=0, L V A R S[2]=1$


### 18.13 circuit

The circuit constraint involves:

- an array of integer variables VARS,
- an integer OFFSET and
- a configuration CONF.

It ensures that the elements of VARS define a covering circuit where VARS [i] $=O F F S E T+j$ means that $j$ is the successor of $i$.

The filtering algorithms are the subtour elimination of [CL97] (constant-time per propagation) and the alldifferent GAC filtering of [Regin94]. In addition, depending on CONF, the dominator filtering of the tree (GAC) constraint [FL11] and the strongly connected components filtering of the path constraint [CB04][FL12] may be added through a dynamical circuit/path transformation.

The CONF is a defined by an enum:

- CircuitConf.LIGHT: no circuit/path transformation
- CircuitConf.FIRST: circuit/path transformation by duplicating the first node
- CircuitConf.RD: circuit/path transformation by duplicating a random node
- CircuitConf.ALL: circuit/path transformation by duplicating every node

This implementation is detailed in [Fag14]
See also: circuit in the Global Constraint Catalog.
Implementation based on: [Regin94][CL97][CB04][FL12][FL11][Fag14].

## API:

```
Constraint circuit(IntVar[] VARS, int OFFSET, CircuitConf CONF)
Constraint circuit(IntVar[] VARS, int OFFSET) // with CircuitConf.RD
```


## Example

```
Solver solver = new Solver();
IntVar[] NODES = VF.enumeratedArray("NODES", 5, 0, 4, solver);
solver.post(ICF.circuit(NODES, 0, CircuitConf.LIGHT));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $\operatorname{NODES[0]}=1, \operatorname{NODES[1]}=2, \operatorname{NODES[2]}=3, \operatorname{NODES[3]}=4, N O D E S[4]=0$
- $N O D E S[0]=3, N O D E S[1]=4, N O D E S[2]=0, N O D E S[3]=1, N O D E S[4]=2$
- $\operatorname{NODES[0]~=~4,~NODES[1]~=~2,~NODES[2]~=~3,~} \operatorname{NODES[3]~=~0,~NODES[4]~=~} 1$
- $N O D E S[0]=4, N O D E S[1]=3, N O D E S[2]=1, N O D E S[3]=0, N O D E S[4]=2$


### 18.14 cost_regular

The cost_regular constraint involves:

- an array of integer variables VARS,
- an integer variable COST and
- a cost automaton CAUTOMATON.

It ensures that the assignment of a sequence of variables VARS is recognized by CAUTOMATON, a deterministic finite automaton, and that the sum of the costs associated to each assignment is bounded by the cost variable. This version allows to specify different costs according to the automaton state at which the assignment occurs (i.e. the transition starts).
The CAUOTMATON can be defined using the org.chocosolver.solver.constraints.nary.automata.FA.CostAutomaton either:

- by creating a CostAut omaton: once created, states should be added, then initial and final states are defined and finally, transitions are declared.
- or by first creating a FiniteAutomaton and then creating a matrix of costs and finally calling one of the following API from CostAutomaton:

```
- ICostAutomaton makeSingleResource(IAutomaton pi, int[][][] costs, int
 inf, int sup)
- ICostAutomaton makeSingleResource(IAutomaton pi, int[][] costs, int
 inf, int sup)
```

The other API of CostAutomaton (makeMultiResources (...)) are dedicated to the multicost_regular constraint.

## Implementation based on: [DPR06].

## API:

```
Constraint cost_regular(IntVar[] VARS, IntVar COST, ICostAutomaton CAUTOMATON)
```


## Example

```
Solver solver = new Solver();
IntVar[] VARS = VF.enumeratedArray("VARS", 5, 0, 2, solver);
IntVar COST = VF.enumerated("COST", 0, 10, solver);
FiniteAutomaton fauto = new FiniteAutomaton();
int start = fauto.addState();
int end = fauto.addState();
fauto.setInitialState(start);
fauto.setFinal(start, end);
fauto.addTransition(start, start, 0, 1);
fauto.addTransition(start, end, 2);
fauto.addTransition(end, end, 1);
fauto.addTransition(end, start, 0, 2);
int[][] costs = new int[5][3];
costs[0] = new int[]{1, 2, 3};
costs[1] = new int[]{2, 3, 1};
costs[2] = new int[]{3, 1, 2};
costs[3] = new int[]{3, 2, 1};
costs[4] = new int[]{2, 1, 3};
solver.post(ICF.cost_regular(VARS, COST, CostAutomaton.makeSingleResource Eauto, costs,
solver.findAllSolutions();
```

Some solutions of the problem are :

- $\operatorname{VARS}[0]=0, \operatorname{VARS}[1]=0, \operatorname{VARS[2]}=0, \operatorname{VARS}[3]=0, \operatorname{VARS[4]}=1, \operatorname{COST}=10$
- $\operatorname{VARS[0]}=0, \operatorname{VARS}[1]=0, \operatorname{VARS}[2]=0, \operatorname{VARS}[3]=1, \operatorname{VARS}[4]=1, \operatorname{COST}=9$
- $\operatorname{VARS[0]}=0, \operatorname{VARS}[1]=0, \operatorname{VARS}[2]=1, \operatorname{VARS}[3]=2, \operatorname{VARS}[4]=1, \operatorname{COST}=6$
- $\operatorname{VARS}[0]=1, \operatorname{VARS}[1]=2, \operatorname{VARS}[2]=1, \operatorname{VARS}[3]=0, \operatorname{VARS}[4]=1, \operatorname{COST}=8$


### 18.15 count

The count constraint involves:

- an integer VALUE,
- an array of integer variables VARS and
- an integer variable LIMIT.

The constraint holds that LIMIT is equal to the number of variables from VARS assigned to the value VALUE. An alternate signature enables $V A L U E$ to be an integer variable.

See also: count in the Global Constraint Catalog.

## API:

```
Constraint count(int VALUE, IntVar[] VARS, IntVar LIMIT)
Constraint count(IntVar VALUE, IntVar[] VARS, IntVar LIMIT)
```


## Example

```
Solver solver = new Solver();
IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 3, solver);
IntVar VA = VF.enumerated("VA", new int[]{1, 3}, solver);
IntVar CO = VF.enumerated("CO", new int[]{0, 2, 4}, solver);
solver.post(ICF.count(VA, VS, CO));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $V S[0]=0, V S[1]=0, V S[2]=0, V S[3]=0, V A=1, C O=0$
- $V S[0]=0, V S[1]=1, V S[2]=1, V S[3]=0, V A=1, C O=2$
- $V S[0]=0, V S[1]=2, V S[2]=2, V S[3]=1, V A=3, C O=0$
- $V S[0]=3, V S[1]=3, V S[2]=3, V S[3]=3, V A=3, C O=4$


### 18.16 cumulative

The cumulative constraints involves:

- an array of task object TASKS,
- an array of integer variable HEIGHTS,
- an integer variable CAPACITY and
- a boolean INCREMENTAL (graph-based self-decomposition of [FLP14]).

It ensures that at each point of the time the cumulative height of the set of tasks that overlap that point does not exceed the given capacity.

See also: cumulative in the Global Constraint Catalog.
Implementation based on: [FLP14].

## API:

```
Constraint cumulative(Task[] TASKS, IntVar[] HEIGHTS, IntVar CAPACITY)
Constraint cumulative(Task[] TASKS, IntVar[] HEIGHTS, IntVar CAPACITY, boolean INCREMENTAL)
```

The first API relies on the second, and set INCREMENTAL to TASKS. length > 500.

## Example 1

```
Solver solver = new Solver();
Task[] TS = new Task[5];
IntVar[] HE = new IntVar[5];
for (int i = 0; i < TS.length; i++) {
```

```
 IntVar S = VF.bounded("S_" + i, 0, 4, solver);
 TS[i] = VF.task(
 S,
 VF.fixed("D_" + i, i + 1, solver),
 VF.offset(S, i + 1)
);
 HE[i] = VF.bounded("HE_" + i, i - 1, i + 1, solver);
}
IntVar CA = VF.enumerated("CA", 1, 3, solver);
solver.post(ICF.cumulative(TS, HE, CA, true));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $S \_0=0, H E \_0=0, S \_1=0, H E \_1=0, S \_2=0, H E \_2=1, S \_3=0, H E \_3=2 S \_4=4, H E \_4=3, C A=3$
- $S \_0=4, H E \_0=0, S \_1=4, H E \_1=0, S \_2=1, H E \_2=1, S \_3=0, H E \_3=2 S \_4=4, H E \_4=3, C A=3$
- $S \_0=0, H E \_0=1, S \_1=0, H E \_1=0, S \_2=1, H E \_2=1, S \_3=0, H E \_3=2 S \_4=4, H E \_4=3, C A=3$


### 18.17 diffn

The diffn constraint involves:

- four arrays of integer variables $X, Y$, WIDTH and HEIGHT and
- a boolean USE_CUMUL.

It ensures that each rectangle $i$ defined by its coordinates (X[i],Y[i]) and its dimensions (WIDTH[i], HEIGHT[i]) does not overlap each other. The option $U S E \_C U M U L$, recommended, indicates whether or not redundant cumulative constraints should be added on each dimension.

See also: diffn in the Global Constraint Catalog.

## Implementation based on: [FLP14].

API:

```
Constraint[] diffn(IntVar[] X, IntVar[] Y, IntVar[] WIDTH, IntVar[] HEIGHT, boolean USE_CUMUL)
```


## Example 1

```
Solver solver = new Solver();
IntVar[] X = VF.boundedArray("X", 4, 0, 1, solver);
IntVar[] Y = VF.boundedArray("Y", 4, 0, 2, solver);
IntVar[] D = new IntVar[4];
IntVar[] W = new IntVar[4];
for (int i = 0; i < 4; i++) {
 D[i] = VF.fixed("D_" + i, 1, solver);
 W[i] = VF.fixed("W_" + i, i + 1, solver);
}
solver.post(ICF.diffn(X, Y, D, W, true));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $X[0]=0 X[1]=1, X[2]=0, X[3]=1, Y[0]=0, Y[1]=0, Y[2]=1, Y[3]$
- $X[0]=1 X[1]=0, X[2]=1, X[3]=0, Y[0]=0, Y[1]=0, Y[2]=2, Y[3]$
- $X[0]=0 X[1]=1, X[2]=0, X[3]=1, Y[0]=1, Y[1]=0, Y[2]=2, Y[3]$


### 18.18 distance

The distance constraint involves either:

- two variables VAR1 and VAR2, an operator $O P$ and a constant CSTE. It ensures that IVAR1-VAR2 I OP CSTE, where $O P$ must be chosen in $\{"=", ~ "!=", ~ ">", "<"\}$.
- or three variables VAR1, VAR2 and VAR3 and an operator $O P$. It ensures that I VAR1-VAR2 I OP VAR3, where OP must be chosen in $\{$ "=", ">", "<" \} .
See also: distance in the Global Constraint Catalog.
API:

```
Constraint distance(IntVar VAR1, IntVar VAR2, String OP, int CSTE)
Constraint distance(IntVar VAR1, IntVar VAR2, String OP, IntVar VAR3)
```


## Example 1

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 0, 2, solver);
IntVar Y = VF.enumerated("X", -3, 1, solver);
solver.post(ICF.distance(X, Y, "=", 1));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=0, Y=-1$
- $X=0, Y=1$
- $X=1, Y=0$
- $X=2, Y=1$


## Example 2

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 1, 3, solver);
IntVar Y = VF.enumerated("Y", -1, 1, solver);
IntVar Z = VF.enumerated("Z", 2, 3, solver);
solver.post(ICF.distance(X, Y, "<", Z));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=1, Y=0, Z=2$
- $X=1, Y=1, Z=2$
- $X=2, Y=1, Z=2$
- $X=1, Y=-1, Z=3$
- $X=1, Y=0, Z=3$
- $X=1, Y=1, Z=3$
- $X=2, Y=0, Z=3$
- $X=2, Y=1, Z=3$
- $X=3, Y=1, Z=3$


### 18.19 element

The element constraint involves either:

- two variables VALUE and INDEX, an array of values TABLE, an offset OFFSET and an ordering property SORT. SORT must be chosen among:
- "none": if values in TABLE are not sorted,
- "asc": if values in TABLE are sorted in increasing order,
- "desc": if values in TABLE are sorted in decreasing order,
- "detect": let the constraint detects the ordering of values in TABLE, if any (default value).
- or an integer variable VALUE, an array of integer variables TABLE, an integer variable INDEX and an integer OFFSET.

The element constraint ensures that VALUE $=$ TABLE [INDEX - OFFSET]. OFFSET matches INDEX.LB and TA$B L E[0]$ (0 by default).

See also: element in the Global Constraint Catalog.
API:

```
Constraint element(IntVar VALUE, int[] TABLE, IntVar INDEX)
Constraint element(IntVar VALUE, int[] TABLE, IntVar INDEX, int OFFSET, String SORT)
Constraint element(IntVar VALUE, IntVar[] TABLE, IntVar INDEX, int OFFSET)
```


## Example

```
Solver solver = new Solver();
IntVar V = VF.enumerated("V", -2, 2, solver);
IntVar I = VF.enumerated("I", 0, 5, solver);
solver.post(ICF.element(V, new int[]{2, -2, 1, -1, 0}, I, 0, "none"));
solver.findAllSolutions();
```

The solutions of the problem are :

- $V=-2, I=1$
- $V=-1, I=3$
- $V=0, I=4$
- $V=1, I=2$
- $V=2, I=0$


### 18.20 eucl_div

The eucl_div constraints involves three variables DIVIDEND, DIVISOR and RESULT. It ensures that DIVIDEND / DIVISOR $=$ RESULT, rounding towards 0 .

The API is :

```
Constraint eucl_div(IntVar DIVIDEND, IntVar DIVISOR, IntVar RESULT)
```


## Example

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 1, 3, solver);
IntVar Y = VF.enumerated("Y", -1, 1, solver);
IntVar Z = VF.enumerated("Z", 2, 3, solver);
solver.post(ICF.eucl_div(X, Y, Z));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=2, Y=1, Z=2$
- $X=3, Y=1, Z=3$


### 18.21 FALSE

The FALSE constraint is always unsatisfied. It should only be used with LogicalFactory.

### 18.22 global_cardinality

The global_cardinality constraint involves:

- an array of integer variables VARS,
- an array of integer VALUES,
- an array of integer variables OCCURRENCES and
- a boolean CLOSED.

It ensures that each value VALUES[i] is taken by exactly OCCURRENCES[i] variables in VARS. The boolean CLOSED set to true restricts the domain of VARS to the values defined in VALUES.

The underlying propagator does not ensure any well-defined level of consistency.
See also: global_cardinality in the Global Constraint Catalog.

## API:

```
Constraint global_cardinality(IntVar[] VARS, int[] VALUES, IntVar[] OCCURRENCES, boolean CLOSED)
```


## Example

```
Solver solver = new Solver();
IntVar[] VS = VF.boundedArray("VS", 4, 0, 4, solver);
int[] values = new int[]{-1, 1, 2};
IntVar[] OCC = VF.boundedArray("OCC", 3, 0, 2, solver);
solver.post(ICF.global_cardinality(VS, values, OCC, true));
solver.findAllSolutions();
```

The solutions of the problem are :

- $V S[0]=1, V S[1]=1, V S[2]=2, V S[3]=2, O C C[0]=0, O C C[1]=2, O C C[2]=2$
- $V S[0]=1, V S[1]=2, V S[2]=1, V S[3]=2, O C C[0]=0, O C C[1]=2, O C C[2]=2$
- $V S[0]=1, V S[1]=2, V S[2]=2, V S[3]=1, O C C[0]=0, O C C[1]=2, O C C[2]=2$
- $V S[0]=2, V S[1]=1, V S[2]=1, V S[3]=2, O C C[0]=0, O C C[1]=2, O C C[2]=2$
- $V S[0]=2, V S[1]=1, V S[2]=2, V S[3]=1, O C C[0]=0, O C C[1]=2, O C C[2]=2$
- $V S[0]=2, V S[1]=2, V S[2]=1, V S[3]=1, O C C[0]=0, O C C[1]=2, O C C[2]=2$


### 18.23 inverse_channeling

The inverse_channeling constraint involves:

- two arrays of integer variables VARS1 and VARS2 and
- two integers OFFSET1 and OFFSET2.

It ensures that VARS1[i-OFFSET2] $=j \Leftrightarrow V A R S 2[j-O F F S E T 1]=i$. It performs AC if the domains are enumerated. Otherwise, BC is not guaranteed. It also automatically imposes one alldifferent constraints on each array of variables.

API:

```
Constraint inverse_channeling(IntVar[] VARS1, IntVar[] VARS2, int OFFSET1, int OFFSET2)
```


## Example

```
Solver solver = new Solver();
IntVar[] X = VF.enumeratedArray("X", 3, 0, 3, solver);
IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 4, solver);
solver.post(ICF.inverse_channeling(X, Y, 0, 1));
solver.findAllSolutions();
```

The solutions of the problems are:

- $X[0]=0, X[1]=1, X[2]=2, Y[0]=1, Y[1]=2, Y[2]=3$
- $X[0]=0, X[1]=2, X[2]=1, Y[0]=1, Y[1]=3, Y[2]=2$
- $X[0]=1, X[1]=0, X[2]=2, Y[0]=2, Y[1]=1, Y[2]=3$
- $X[0]=1, X[1]=2, X[2]=0, Y[0]=3, Y[1]=1, Y[2]=2$
- $X[0]=2, X[1]=0, X[2]=1, Y[0]=2, Y[1]=3, Y[2]=1$
- $X[0]=2, X[1]=1, X[2]=0, Y[0]=3, Y[1]=2, Y[2]=1$


### 18.24 knapsack

The knapsack constraint involves: - an array of integer variables OCCURRENCES, - an integer variable TOTAL_WEIGHT, - an integer variable TOTAL_ENERGY, - an array of integers WEIGHT and - an an array of integers ENERGY.

It formulates the Knapsack Problem: to determine the count of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.

- $\sum$ OCCURRENCES[i] $\times$ WEIGHT[i] $\leq$ TOTAL_WEIGHT and
- $\sum$ OCCURRENCES[i] $\times$ ENERGY[i] = TOTAL_ENERGY.


## API:

```
Constraint knapsack(IntVar[] OCCURRENCES, IntVar TOTAL_WEIGHT, IntVar TOTAL_ENERGY,
 int[] WEIGHT, int[] ENERGY)
```


## Example

```
Solver solver = new Solver();
IntVar[] IT = new IntVar[3]; // 3 items
IT[0] = VF.bounded("IT_0", 0, 3, solver);
IT[1] = VF.bounded("IT_1", 0, 2, solver);
IT[2] = VF.bounded("IT_2", 0, 1, solver);
IntVar WE = VF.bounded("WE", 0, 8, solver);
IntVar EN = VF.bounded("EN", 0, 6, solver);
int[] weights = new int[]{1, 3, 4};
int[] energies = new int[]{1, 4, 6};
solver.post(ICF.knapsack(IT, WE, EN, weights, energies));
solver.findAllSolutions();
```

Some solutions of the problems are:

- $I T \_0=0, I T \_1=0, I T \_2=0, W E=0, E N=0$
- $I T_{-} 0=3, I T_{-} 1=0, I T_{-} 2=0, W E=3, E N=3$
- $I T_{-} 0=1, I T_{-} 1=1, I T \_2=0, W E=4, E N=5$
- $I T \_0=2, I T \_1=1, I T \_2=0, W E=5, E N=6$


### 18.25 lex_chain_less

The lex_chain_less constraint involves a matrix of integer variables VARS. It ensures that, for each pair of consecutive arrays VARS[i] and VARS[i+1], VARS[i] is lexicographically strictly less than VARS[i+1].

See also: lex_chain_less in the Global Constraint Catalog.
Implementation based on: [CB02].
API:

```
Constraint lex_chain_less(IntVar[]... VARS)
```


## Example

```
Solver solver = new Solver();
IntVar[] X = VF.enumeratedArray("X", 3, -1, 1, solver);
IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 2, solver);
IntVar[] Z = VF.enumeratedArray("Z", 3, 0, 2, solver);
solver.post(ICF.lex_chain_less(X, Y, Z));
solver.findAllSolutions();
```

Some solutions of the problems are:

- $X[0]=-1, X[1]=-1, X[2]=-1, Y[0]=1, Y[1]=1, Y[2]=1, Z[0]=1, Z[1]=1, Z[2]=2$
- $X[0]=0, X[1]=1, X[2]=-1, Y[0]=1, Y[1]=1, Y[2]=1, Z[0]=1, Z[1]=2, Z[2]=0$
- $X[0]=1, X[1]=0, X[2]=1, Y[0]=1, Y[1]=1, Y[2]=1, Z[0]=1, Z[1]=2, Z[2]=0$
- $X[0]=-1, X[1]=1, X[2]=1, Y[0]=1, Y[1]=1, Y[2]=1, Z[0]=2, Z[1]=2, Z[2]=1$


### 18.26 lex_chain_less_eq

The lex_chain_less_eq constraint involves a matrix of integer variables VARS. It ensures that, for each pair of consecutive arrays VARS[i] and VARS[i+1], VARS[i] is lexicographically strictly less or equal than VARS[i+1].

See also: lex_chain_less_eq in the Global Constraint Catalog.
Implementation based on: [CB02].
API:

```
Constraint lex_chain_less_eq(IntVar[]... VARS)
```


## Example

```
Solver solver = new Solver();
IntVar[] X = VF.enumeratedArray("X", 3, -1, 1, solver);
IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 2, solver);
IntVar[] Z = VF.enumeratedArray("Z", 3, 0, 2, solver);
solver.post(ICF.lex_chain_less_eq(X, Y, Z));
solver.findAllSolutions();
```

Some solutions of the problems are:

- $X[0]=-1, X[1]=-1, X[2]=-1, Y[0]=1, Y[1]=1, Y[2]=1, Z[0]=1, Z[1]=1, Z[2]=1$
- $X[0]=-1, X[1]=1, X[2]=1, Y[0]=1, Y[1]=1, Y[2]=1, Z[0]=1, Z[1]=1, Z[2]=1$
- $X[0]=0, X[1]=1, X[2]=-1, Y[0]=1, Y[1]=1, Y[2]=1, Z[0]=2, Z[1]=1, Z[2]=2$
- $X[0]=-1, X[1]=-1, X[2]=0, Y[0]=1, Y[1]=1, Y[2]=2, Z[0]=2, Z[1]=2, Z[2]=2$


### 18.27 lex_less

The lex_less constraint involves two arrays of integer variables VARS1 and VARS2. It ensures that VARS1 is lexicographically strictly less than VARS2.

See also: lex_less in the Global Constraint Catalog.
Implementation based on: [ $\mathrm{FHK}+02$ ].

## API:

```
Constraint lex_less(IntVar[] VARS1, IntVar[] VARS2)
```


## Example

```
Solver solver = new Solver();
IntVar[] X = VF.enumeratedArray("X", 3, -1, 1, solver);
IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 2, solver);
solver.post(ICF.lex_less(X, Y));
solver.findAllSolutions();
```

Some solutions of the problems are:

- $X[0]=-1, X[1]=-1, X[2]=-1, Y[0]=1, Y[1]=1, Y[2]=1$
- $X[0]=-1, X[1]=0, X[2]=0, Y[0]=1, Y[1]=2, Y[2]=1$
- $X[0]=-1, X[1]=0, X[2]=-1, Y[0]=2, Y[1]=1, Y[2]=1$
- $X[0]=-1, X[1]=-1, X[2]=0, Y[0]=2, Y[1]=2, Y[2]=2$


### 18.28 lex_less_eq

The lex_less_eq constraint involves two arrays of integer variables VARS1 and VARS2. It ensures that VARS1 is lexicographically strictly less or equal than VARS2.

See also: lex_less_eq in the Global Constraint Catalog.
Implementation based on: $[\mathrm{FHK}+02]$.
API:

```
Constraint lex_less_eq(IntVar[] VARS1, IntVar[] VARS2)
```


## Example

```
Solver solver = new Solver();
IntVar[] X = VF.enumeratedArray("X", 3, -1, 1, solver);
IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 2, solver);
solver.post(ICF.lex_less_eq(X, Y));
solver.findAllSolutions();
```

Some solutions of the problems are:

- $X[0]=-1, X[1]=-1, X[2]=-1, Y[0]=1, Y[1]=1, Y[2]=1$
- $X[0]=1, X[1]=-1, X[2]=-1, Y[0]=1, Y[1]=1, Y[2]=1$
- $X[0]=0, X[1]=0, X[2]=0, Y[0]=2, Y[1]=1, Y[2]=2$
- $X[0]=1, X[1]=1, X[2]=1, Y[0]=2, Y[1]=2, Y[2]=2$


### 18.29 maximum

The maximum constraints involves a set of integer variables and a third party integer variable, either:

- two integer variables VAR1 and VAR2 and an integer variable MAX, it ensures that MAX'= maximum ('VAR1, VAR2).
- or an array of integer variables VARS and an integer variable $M A X$, it ensures that $M A X$ is the maximum value of the collection of domain variables VARS.
- or an array of boolean variables $B V A R S$ and a booean variable $M A X$, it ensures that $M A X$ is the maximum value of the collection of boolean variables $B V A R S$.

See also: maximum in the Global Constraint Catalog.

## API:

```
Constraint maximum(IntVar MAX, IntVar VAR1, IntVar VAR2)
Constraint maximum(IntVar MAX, IntVar[] VARS)
Constraint maximum(BoolVar MAX, BoolVar[] VARS)
```


## Example

```
Solver solver = new Solver();
IntVar MAX = VF.enumerated("MAX", 1, 3, solver);
IntVar Y = VF.enumerated("Y", -1, 1, solver);
IntVar Z = VF.enumerated("Z", 2, 3, solver);
solver.post(ICF.maximum(MAX, Y, Z));
solver.findAllSolutions();
```

The solutions of the problem are :

- $M A X=2, Y=-1, Z=2$
- $M A X=2, Y=0, Z=2$
- $M A X=2, Y=1, Z=2$
- $M A X=3, Y=-1, Z=3$
- $M A X=3, Y=0, Z=3$
- $M A X=3, Y=1, Z=3$


### 18.30 mddc

A constraint which restricts the values a variable can be assigned to the solutions encoded with a multi-valued decision diagram.

Implementation based on: [CY08].
API:

```
Constraint mddc(IntVar[] VARS, MultivaluedDecisionDiagram MDD)
```


## Example

```
Solver solver = new Solver();
IntVar[] vars = VF.enumeratedArray("X", 2, -2, 2, solver);
Tuples tuples = new Tuples();
tuples.add(0, -1);
tuples.add(1, -1);
tuples.add(0, 1);
solver.post(ICF.mddc(vars, new MultivaluedDecisionDiagram(vars, tuples)));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X[0]=0, X[1]=-1$
- $X[0]=0, X[1]=1$,
- $X[0]=1, X[1]=-1$


### 18.31 member

A constraint which restricts the values a variable can be assigned to with respect to either:

- a given list of values, it involves a integer variable $V A R$ and an array of distinct values $T A B L E$. It ensures that VAR takes its values in TABLE.
- or two bounds (included), it involves a integer variable $V A R$ and two integer $L B$ and $U B$. It ensures that $V A R$ takes its values in $[L B, U B]$.

API:

```
Constraint member(IntVar VAR, int[] TABLE)
Constraint member(IntVar VAR, int LB, int UB)
```


## Example 1

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 1, 4, solver);
solver.post(ICF.member(X, new int[]{-2, -1, 0, 1, 2}));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=1$
- $X=2$


## Example 2

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 1, 4, solver);
solver.post(ICF.member(X, 2, 5));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=2$
- $X=3$
- $X=4$


### 18.32 minimum

The minimum constraints involves a set of integer variables and a third party integer variable, either:

- two integer variables VAR1 and VAR2 and an integer variable MIN, it ensures that MIN‘= minimum( 'VAR1, VAR2).
- or an array of integer variables VARS and an integer variable MIN, it ensures that MIN is the minimum value of the collection of domain variables VARS.
- or an array of boolean variables $B V A R S$ and a booean variable $M I N$, it ensures that $M I N$ is the minimum value of the collection of boolean variables $B V A R S$.

See also: minimum in the Global Constraint Catalog.
API: :: Constraint minimum(IntVar MIN, IntVar VAR1, IntVar VAR2) Constraint minimum(IntVar MIN, IntVar[] VARS) Constraint minimum(BoolVar MIN, BoolVar[] VARS)

## Example

```
Solver solver = new Solver();
IntVar MIN = VF.enumerated("MIN", 1, 3, solver);
IntVar Y = VF.enumerated("Y", -1, 1, solver);
IntVar Z = VF.enumerated("Z", 2, 3, solver);
solver.post(ICF.minimum(MIN, Y, Z));
solver.findAllSolutions();
```

The solutions of the problem are :

- $M I N=2, Y=-1, Z=2$
- $M I N=2, Y=0, Z=2$
- $M I N=2, Y=1, Z=2$
- $M I N=3, Y=-1, Z=3$
- $M I N=3, Y=0, Z=3$
- $M I N=3, Y=1, Z=3$


### 18.33 mod

The $\bmod$ constraints involves three variables $X, Y$ and $Z$. It ensures that $X \bmod Y=Z$. There is no native constraint for mod, so this is reformulated with the help of additional variables.

The API is :

```
Constraint mod(IntVar X, IntVar Y, IntVar Z)
```


## Example

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 2, 4, solver);
IntVar Y = VF.enumerated("Y", -1, 4, solver);
IntVar Z = VF.enumerated("Z", 1, 3, solver);
solver.post(ICF.mod(X, Y, Z));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=2, Y=3, Z=2$
- $X=2, Y=4, Z=2$
- $X=3, Y=2, Z=1$
- $X=3, Y=4, Z=3$
- $X=4, Y=3, Z=1$


### 18.34 multicost_regular

The multicost_regular constraint involves:

- an array of integer variables VARS,
- an array of integer variables CVARS and
- a cost automaton CAUTOMATON.

It ensures that the assignment of a sequence of variables VARS is recognized by CAUTOMATON, a deterministic finite automaton, and that the sum of the cost array associated to each assignment is bounded by the CVARS. This version allows to specify different costs according to the automaton state at which the assignment occurs (i.e. the transition starts).
The CAUOTMATON can be defined using the org.chocosolver.solver.constraints.nary.automata.FA.CostAutomaton either:

- by creating a CostAutomaton: once created, states should be added, then initial and final states are defined and finally, transitions are declared.
- or by first creating a FiniteAutomaton and then creating a matrix of costs and finally calling one of the following API from CostAutomaton:

```
- ICostAutomaton makeMultiResources(IAutomaton pi, int[][][]
 layer_value_resource, int[] infs, int[] sups)
- ICostAutomaton makeMultiResources(IAutomaton pi, int[][][][]
 layer_value_resource_state, int[] infs, int[] sups)
- ICostAutomaton makeMultiResources(IAutomaton auto, int[][][][] c,
 IntVar[] z)
- ICostAutomaton makeMultiResources(IAutomaton auto, int[][][] c,
 IntVar[] z)
```

The other API of CostAutomaton (makeSingleResource(...)) are dedicated to the cost_regular constraint.

Implementation based on: [MD09].
API:

```
Constraint multicost_regular(IntVar[] VARS, IntVar[] CVARS, ICostAutomaton CAUTOMATON)
```


## Example

TBD

### 18.35 not_member

A constraint which prevents a variable to be assigned to some values defined by either:

- a list of values, it involves a integer variable $V A R$ and an array of distinct values TABLE. It ensures that VAR does not take its values in TABLE.
- two bounds (included), it involves a integer variable $V A R$ and two integer $L B$ and $U B$. It ensures that $V A R$ does not take its values in $[L B, U B]$.

The constraint
API:

```
Constraint not_member(IntVar VAR, int[] TABLE)
Constraint not_member(IntVar VAR, int LB, int UB)
```


## Example 1

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 1, 4, solver);
solver.post(ICF.not_member(X, new int[]{-2, -1, 0, 1, 2}));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=3$
- $X=4$


## Example

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 1, 4, solver);
solver.post(ICF.not_member(X, 2, 5));
solver.findAllSolutions();
```

The solution of the problem is :

- $X=1$


### 18.36 nvalues

The nvalues constraint involves:

- an array of integer variables VARS and
- an integer variable NVALUES.

The constraint ensures that NVALUES is the number of distinct values assigned to the variables of the VARS array. This constraint is a combination of the atleast_nvalues and atmost_nvalues constraints.

This constraint is not a built-in constraint and is based on various propagators.
See also: nvalues in the Global Constraint Catalog.
Implementation based on: atleast_nvalues and atmost_nvalues.
API:

```
Constraint[] nvalues(IntVar[] VARS, IntVar NVALUES)
```


## Example

```
Solver solver = new Solver();
IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 2, solver);
IntVar N = VF.enumerated("N", 0, 3, solver);
solver.post(ICF.nvalues(VS, N));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $\operatorname{VS[0]}=0 V S[1]=0 V S[2]=0 V S[3]=0 N=1$
- $V S[0]=0 V S[1]=0 V S[2]=0 V S[3]=1 N=2$
- $V S[0]=0 V S[1]=1 V S[2]=2 V S[3]=2 N=3$


### 18.37 path

The path constraint involves:

- an array of integer variables VARS,
- an integer variable START,
- an integer variable $E N D$ and
- an integer OFFSET.

It ensures that the elements of VARS define a covering path from START to END, where VARS[i] =OFFSET + j means that $j$ is the successor of $i$. Moreover, VARS[END-OFFSET] = ।'VARS‘ $\mid+O F F S E T$.

The constraint relies on the circuit propagators.
See also: path in the Global Constraint Catalog.
Implementation based on: circuit.
API:

```
Constraint[] path(IntVar[] VARS, IntVar START, IntVar END, int OFFSET)
```


## Example

```
Solver solver = new Solver();
IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
IntVar S = VF.enumerated("S", 0, 3, solver);
IntVar E = VF.enumerated("E", 0, 3, solver);
solver.post(ICE.path(VS, S, E, O));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $V S[0]=1, V S[1]=2, V S[2]=3, V S[3]=4, S=0, E=3$
- $V S[0]=1, V S[1]=3, V S[2]=0, V S[3]=4, S=2, E=3$
- $V S[0]=3, V S[1]=4, V S[2]=0, V S[3]=1, S=2, E=1$
- $V S[0]=4, V S[1]=3, V S[2]=1, V S[3]=0, S=2, E=0$


### 18.38 regular

The regular constraint involves:

- an array of integer variables VARS and
- a deterministic finite automaton AUTOMATON.

It enforces the sequences of VARS to be a word recognized by AUTOMATON.
There are various ways to declare the automaton:

- create a FiniteAutomaton and add states, initial and final ones and transitions (see FiniteAutomaton API for more details),
- create a FiniteAutomaton with a regexp as argument.

Beware: FiniteAutomaton only handles values between 0 and 65535, because it relies on java. Character.
Implementation based on: [Pes04].
API:

```
Constraint regular(IntVar[] VARS, IAutomaton AUTOMATON)
```


## Example

```
Solver solver = new Solver();
IntVar[] CS = VF.enumeratedArray("CS", 4, 1, 5, solver);
solver.post(ICF.regular(CS,
 new FiniteAutomaton("(1|2)(3*)(4|5)")));
solver.findAllSolutions();
```

The solutions of the problem are :

- $\operatorname{CS[0]}=1, C S[1]=3, \operatorname{CS}[2]=3, \operatorname{CS}[3]=4$
- $\operatorname{CS}[0]=1, C S[1]=3, C S[2]=3, C S[3]=5$
- $\operatorname{CS}[0]=2, C S[1]=3, C S[2]=3, C S[3]=4$
- $\operatorname{CS}[0]=2, C S[1]=3, C S[2]=3, C S[3]=5$


### 18.39 scalar

The scalar constraint involves:

- an array of integer variables VARS,
- an array of integer COEFFS,
- an optional operator OPERATOR and
- an integer variable SCALAR.

It ensures that $\operatorname{sum}(V A R S[i] * C O E F F S[i])$ OPERATOR SCALAR; where OPERATOR must be chosen from $\{$ "=", "!=", ">", "<", ">=", "<="\}. The scalar constraint filters on bounds only. The constraint suppress variables with coefficients set to 0 , recognizes sum (when all coefficients are equal to -1 , or all equal to -1 ), and enables, under certain conditions, to reformulate the constraint with a table constraint providint AC filtering algorithm.

See also: scalar_product in the Global Constraint Catalog.
Implementation based on: [HSO2].
API:

```
Constraint scalar(IntVar[] VARS, int[] COEFFS, IntVar SCALAR)
Constraint scalar(IntVar[] VARS, int[] COEFFS, String OPERATOR, IntVar SCALAR)
```


## Example

```
Solver solver = new Solver();
IntVar[] CS = VF.enumeratedArray("CS", 4, 1, 4, solver);
int[] coeffs = new int[]{1, 2, 3, 4};
IntVar R = VF.bounded("R", 0, 20, solver);
solver.post(ICF.scalar(CS, coeffs, R));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $\operatorname{CS[0]}=1, \operatorname{CS}[1]=1, \operatorname{CS}[2]=1, \operatorname{CS}[3]=1, R=10$
- $\operatorname{CS[0]}=1, \operatorname{CS}[1]=2, \operatorname{CS}[2]=3, \operatorname{CS}[3]=1, R=18$
- $\operatorname{CS}[0]=1, C S[1]=4, C S[2]=2, C S[3]=1, R=19$
- $\operatorname{CS[0]}=1, C S[1]=2, C S[2]=1, C S[3]=3, R=20$


### 18.40 sort

The sort constraint involves two arrays of integer variables VARS and SORTEDVARS. It ensures that the variables of SORTEDVARS correspond to the variables of VARS according to a permutation. Moreover, the variable of SORTED$V A R S$ are sorted in increasing order.

See also: sort in the Global Constraint Catalog.
Implementation based on: [MT00].
API:

```
Constraint sort(IntVar[] VARS, IntVar[] SORTEDVARS)
```


## Example

```
Solver solver = new Solver();
IntVar[] X = VF.enumeratedArray("X", 3, 0, 2, solver);
IntVar[] Y = VF.enumeratedArray("Y", 3, 0, 2, solver);
solver.post(ICF.sort(X, Y));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $X[0]=0, X[1]=0, X[2]=0, Y[0]=0, Y[1]=0, Y[2]=0$
- $X[0]=1, X[1]=0, X[2]=2, Y[0]=0, Y[1]=1, Y[2]=2$
- $X[0]=2, X[1]=1, X[2]=0, Y[0]=0, Y[1]=1, Y[2]=2$
- $X[0]=2, X[1]=1, X[2]=2, Y[0]=1, Y[1]=2, Y[2]=2$


### 18.41 square

The square constraint involves two variables VAR1 and VAR2. It ensures that VAR1=VAR2 ${ }^{2}$.
API:

```
Constraint square(IntVar VAR1, IntVar VAR2)
```


## Example

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 0, 5, solver);
IntVar Y = VF.enumerated("Y", -1, 3, solver);
solver.post(ICF.square(X, Y));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=1, Y=-1$
- $X=0, Y=0$
- $X=1, Y=1$
- $X=4, Y=2$


### 18.42 subcircuit

The subcircuit constraint involves:

- an array of integer variables VARS,
- an integer OFFSET and
- an integer variable SUBCIRCUIT_SIZE.

It ensures that the elements of VARS define a single circuit of SUBCIRCUIT_SIZE nodes where:

- $\operatorname{VARS}[i]=O F F S E T+j$ means that $j$ is the successor of $i$,
- VARS[i] = OFFSET $+i$ means that $i$ is not part of the circuit.

It also ensures that $|\{V A R S[i] \neq O F F S E T+i\}|=S U B C I R C U I T \_S I Z E$.
Implementation based on: circuit.
API:

```
Constraint subcircuit(IntVar[] VARS, int OFFSET, IntVar SUBCIRCUIT_SIZE)
```


## Example

```
Solver solver = new Solver();
IntVar[] NODES = VF.enumeratedArray("NS", 5, 0, 4, solver);
IntVar SI = VF.enumerated("SI", 2, 3, solver);
solver.post(ICF.subcircuit(NODES, 0, SI));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $N S[0]=0, N S[1]=1, N S[2]=2, N S[3]=4, N S[4]=3, S I=2$
- $N S[0]=4, N S[1]=1, N S[2]=2, N S[3]=3, N S[4]=0, S I=2$
- $N S[0]=1, N S[1]=2, N S[2]=0, N S[3]=3, N S[4]=4, S I=3$
- $N S[0]=3, N S[1]=1, N S[2]=2, N S[3]=4, N S[4]=0, S I=3$


### 18.43 subpath

The subpath constraint involves:

- an array of integer variables VARS,
- an integer variable START,
- an integer variable $E N D$,
- an integer OFFSET and
- an integer variable SIZE.

It ensures that the elements of VARS define a path of SIZE vertices, leading from START to END where:

- $V A R S[i]=O F F S E T+j$ means that $j$ is the successor of $i$,
- VARS[i] = OFFSET $+i$ means that vertex $i$ is excluded from the path.

Moreover, VARS[END-OFFSET] = | VARS $\mid+$ 'OFFSET'.
See also: subpath in the Global Constraint Catalog.
Implementation based on: path, circuit.

## API:

```
Constraint[] subpath(IntVar[] VARS, IntVar START, IntVar END, int OFFSET, IntVar SIZE)
```


## Example

```
Solver solver = new Solver();
IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
IntVar S = VF.enumerated("S", 0, 3, solver);
IntVar E = VF.enumerated("E", 0, 3, solver);
IntVar SI = VF.enumerated("SI", 2, 3, solver);
solver.post(ICF.subpath(VS, S, E, 0, SI));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $V S[0]=1, V S[1]=4, V S[2]=2, V S[3]=3, S=0, E=1, S I=2$
- $V S[0]=4, V S[1]=1, V S[2]=2, V S[3]=0, S=3, E=0, S I=2$
- $V S[0]=3, V S[1]=1, V S[2]=4, V S[3]=2, S=0, E=2, S I=3$
- $V S[0]=0, V S[1]=2, V S[2]=4, V S[3]=1, S=3, E=2, S I=3$


### 18.44 sum

The sum constraint involves:

- an array of integer (or boolean) variables VARS,
- an optional operator OPERATOR and
- an integer variable $S U M$.

It ensures that sum(VARS[i]) OPERATOR SUM; where operator must be chosen among \{"=", "!=", $">", "<", ">=", "<==\}$. If no operator is defined, $"==$ is set by default. Note that when the operator differs from " $=$ ", an intermediate variable is declared and an arithm constraint is returned. For performance reasons, a specialization for boolean variables is provided.

See also: scalar_product in the Global Constraint Catalog.
Implementation based on: [HSO2].
API:

```
Constraint sum(IntVar[] VARS, IntVar SUM)
Constraint sum(IntVar[] VARS, String OPERATOR, IntVar SUM)
Constraint sum(BoolVar[] VARS, IntVar SUM)
Constraint sum(BoolVar[] VARS, String OPERATOR, IntVar SUM)
```


## Example

```
Solver solver = new Solver();
IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
IntVar SU = VF.enumerated("SU", 2, 3, solver);
solver.post(ICF.sum(VS, "<=", SU));
solver.findAllSolutions();
```

Some solutions of the problem are :

- $V S[0]=0 V S[1]=0 V S[2]=0 V S[3]=0 S U=2$
- $V S[0]=0 V S[1]=0 V S[2]=0 V S[3]=2 S U=2$
- $V S[0]=0 V S[1]=0 V S[2]=0 V S[3]=3 S U=3$
- $V S[0]=1 V S[1]=1 V S[2]=0 V S[3]=0 S U=3$


### 18.45 table

The table constraint involves either:

- two variables VAR1 and VAR2, a list of pair of values, named TUPLES and an algorithm ALGORITHM.
- or an array of variables VARS, a list of tuples of values, named TUPLES and an algorithm ALGORITHM.

It is an extensional constraint enforcing, most of the time, arc-consistency.
When only two variables are involved, the available algorithms are:

- "AC2001": applies the AC2001 algorithm,
- "AC3": applies the AC3 algorithm,
- "AC3rm": applies the AC3rm algorithm,
- "AC3bit+rm": (default) applies the AC3bit+rm algorithm,
- "FC": applies the forward checking algorithm.

When more than two variables are involved, the available algorithms are:

- "GAC2001": applies the GAC2001 algorithm,
- "GAC2001+": applies the GAC2001 algorithm for allowed tuples only,
- "GAC3rm": applies the GAC3 algorithm,
- "GAC3rm+": (default) applies the GAC3rm algorithm for allowed tuples only,
- "GACSTR+": applies the GAC version STR for allowed tuples only,
- "STR2+": applies the GAC STR2 algorithm for allowed tuples only,
- "FC": applies the forward checking algorithm.

Implementation based on: [tbd].
API:

```
Constraint table(IntVar VAR1, IntVar VAR2, Tuples TUPLES, String ALGORITHM)
Constraint table(IntVar[] VARS, Tuples TUPLES, String ALGORITHM)
```


## Example

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", 0, 5, solver);
IntVar Y = VF.enumerated("Y", -1, 3, solver);
Tuples tuples = new Tuples(true);
tuples.add(1, -2);
tuples.add(1, 1);
tuples.add(4, 2);
tuples.add(1, 4);
solver.post(ICF.table(X, Y, tuples, "AC2001"));
solver.findAllSolutions();
```

The solutions of the problem are :

- $X=1, Y=1$
- $X=4, Y=2$


### 18.46 times

The times constraints involves either:

- three variables $X, Y$ and $Z$. It ensures that $X \times Y=Z$.
- or two variables $X$ and $Z$ and a constant $y$. It ensures that $X \times y=Z$.

The propagator of the times constraint filters on bounds only. If the option is enabled and under certain condition, the times constraint may be redefined with a table constraint, providing a better filtering algorithm.

The API are :

```
Constraint times(IntVar X, IntVar Y, IntVar Z)
Constraint times(IntVar X, int Y, IntVar Z)
```


## Example

```
Solver solver = new Solver();
IntVar X = VF.enumerated("X", -1, 2, solver);
IntVar Y = VF.enumerated("Y", 2, 4, solver);
IntVar Z = VF.enumerated("Z", 5, 7, solver);
solver.post(ICF.times(X, Y, Z));
solver.findAllSolutions();
```

The solution of the problem is :

- $X=2 Y=3 Z=6$


### 18.47 tree

The tree constraint involves:

- an array of integer variables $S U C C S$,
- an integer variable NBTREES and
- an integer OFFSET.

It partitions the SUCCS variables into NBTREES (anti) arborescences:

- $\operatorname{SUCCS}[i]=O F F S E T+j$ means that $j$ is the successor of $i$,
- $\operatorname{SUCCS}[i]=O F F S E T+i$ means that $i$ is a root.

See also: tree in the Global Constraint Catalog.
Implementation based on: [FL11].
API:

```
Constraint tree(IntVar[] SUCCS, IntVar NBTREES, int OFFSET)
```


## Example

```
Solver solver = new Solver();
IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
IntVar NT = VF.enumerated("NT", 2, 3, solver);
solver.post(ICF.tree(VS, NT, 0));
```

Some solutions of the problem are :

- $V S[0]=0, V S[1]=1, V S[2]=1, V S[3]=1, N T=2$
- $\operatorname{VS}[0]=1, V S[1]=1, V S[2]=2, V S[3]=1, N T=2$
- $V S[0]=2, V S[1]=0, V S[2]=2, V S[3]=3, N T=2$
- $V S[0]=0, V S[1]=3, V S[2]=2, V S[3]=3, N T=3$
- $V S[0]=3, V S[1]=1, V S[2]=2, V S[3]=3, N T=3$


### 18.48 TRUE

The TRUE constraint is always satisfied. It should only be used with LogicalFactory.

### 18.49 tsp

The $t s p$ constraint involves:

- an array of integer variables SUCCS,
- an integer variable COST and
- a matrix of integers COST_MATRIX.

It formulates the Travelling Salesman Problem: the variables SUCCS form a hamiltonian circuit of value COST. Going from $i$ to $j, S U C C S[i]=j$, costs COST_MATRIX[i][j] $^{2}$.
This constraint is not a built-in constraint and is based on various propagators.
The filtering power of this constraint remains limited. For stronger filtering, use the choco-graph extension (https://github.com/chocoteam/choco-graph/releases/tag/choco-graph-3.2.1) which includes powerful cost-based filtering.

API:

```
Constraint[] tsp(IntVar[] SUCCS, IntVar COST, int[][] COST_MATRIX)
```


## Example

```
Solver solver = new Solver();
IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
IntVar CO = VF.enumerated("CO", 0, 15, solver);
int[][] costs = new int[][]{{0, 1, 3, 7}, {1, 0, 1, 3}, {3, 1, 0, 1}, {7, 3, 1, 0}};
solver.post(ICF.tsp(VS, CO, costs));
solver.findAllSolutions();
```

The solutions of the problem are :

- $V S[0]=2, V S[1]=0, V S[2]=3, V S[3]=1, C O=8$
- $\operatorname{VS}[0]=3, V S[1]=0, V S[2]=1, V S[3]=2, C O=10$
- $V S[0]=1, V S[1]=2, V S[2]=3, V S[3]=0, C O=10$
- $V S[0]=3, V S[1]=2, V S[2]=0, V S[3]=1, C O=14$
- $V S[0]=1, V S[1]=3, V S[2]=0, V S[3]=2, C O=8$
- $V S[0]=2, V S[1]=3, V S[2]=1, V S[3]=0, C O=14$


## Constraints over set variables

## 19.1 all_different

The all_different constraint involves an array of set variables SETS. It ensures that sets in SETS are all different (not necessarily disjoint). Note that there cannot be more than two empty sets.

API:

```
Constraint all_different(SetVar[] SETS)
```


## 19.2 all_disjoint

The all_disjoint constraint involves an array of set variables SETS. It ensures that all sets from SETS are disjoint. Note that there can be multiple empty sets.

API:

```
Constraint all_disjoint(SetVar[] SETS)
```


## 19.3 all_equal

The all_equal constraint involves an array of set variables SETS. It ensures that sets in SETS are all equal.
API:

```
Constraint all_equal(SetVar[] SETS)
```


## 19.4 bool_channel

The bool_channel constraint involves:

- an array of boolean variables BOOLEANS,
- a set variable SET and
- an integer OFFSET.

It channels BOOLEANS and SET such that : $i \in \mathrm{SET} \Leftrightarrow$ BOOLEANS[i-OFFSET] $=1$.
API:

```
Constraint bool_channel(BoolVar[] BOOLEANS, SetVar SET, int OFFSET)
```


## 19.5 cardinality

The cardinality constraint involves:

- a set variable $S E T$ and
- an integer variable CARD.

It ensures that $\left|S E T_{-} V A R\right|=C A R D$.
The API is :

```
Constraint cardinality(SetVar SET, IntVar CARD)
```


## 19.6 disjoint

The disjoint constraint involves two set variables $S E T_{\_} 1$ and $S E T_{-} 2$. It ensures that $S E T_{-} 1$ and $S E T \_2$ are disjoint, that is, they cannot contain the same element. Note that they can be both empty.

API:

```
Constraint disjoint(SetVar SET_1, SetVar SET_2)
```


## 19.7 element

The element constraint involves:

- an integer variable INDEX,
- and array of set variables SETS,
- an integer OFFSET and
- a set variable SET.

It ensures that SETS[INDEX-OFFSET] $=$ SET.
API:

```
Constraint element(IntVar INDEX, SetVar[] SETS, int OFFSET, SetVar SET)
```


## 19.8 int_channel

The int_channel constraint involves:

- an array of set variables SETS,
- an array of integer variables INTEGERS,
- two integers OFFSET_1 and OFFSET_2.

It ensures that: $x \in$ SETS[y-OFFSET_1] $\Leftrightarrow$ INTEGERS[x-OFFSET_2] $=y$.
The API is :

```
Constraint int_channel(SetVar[] SETS, IntVar[] INTEGERS, int OFFSET_1, int OFFSET_2)
```


## 19.9 int_values_union

The int_values_union constraint involves:

- an array of integer variables VARS and
- a set variable VALUES

It ensures that: VALUES $=$ VARS $_{1} \cup$ VARS $_{2} \cup \ldots \cup$ VARS $_{n}$.
The API is :

```
Constraint int_values_union(IntVar[] VARS, SetVar VALUES)
```


### 19.10 intersection

The intersection constraint involves:

- an array of set variables SETS and
- a set variable INTERSECTION.

It ensures that INTERSECTION is the intersection of the sets SETS.
The API is :

```
Constraint intersection(SetVar[] SETS, SetVar INTERSECTION)
```


### 19.11 inverse_set

The inverse_set constraint involves:

- an array of set variables SETS,
- an array of set variable INVERSE_SETS and
- two integers OFFSET_1 and OFFSET_2.


## Choco3 Documentation, Release 3.3.1

It ensures that $x$ :math:in` ${ }^{\text {SETS }}\left[y-O F F S E T \_1\right] \Leftrightarrow \mathrm{y} \in$ INVERSE_SETS[x-OFFSET_2].
API:

```
Constraint inverse_set(SetVar[] SETS, SetVar[] INVERSE_SETS, int OFFSET_1, int OFFSET_2)
```


### 19.12 max

The max constraint involves:

- either:
- a set variable $S E T$,
- an integer variable $M A X_{-} E L E M E N T_{-} V A L U E$ and
- a boolean NOT_EMPTY.

It ensures that MIN_ELEMENT_VALUE is equal to the maximum element of $S E T$.

- or:
- a set variable $S E T$,
- an array of integer WEIGHTS,
- an integer OFFSET,
- an integer variable $M A X_{-} E L E M E N T_{-} V A L U E$ and
- a boolean NOT_EMPTY.

It ensures that $\max (W E I G H T S[i-O F F S E T] \mid i \operatorname{in} I N D E X E S)=M A X \_E L E M E N T \_V A L U E$.
The boolean NOT_EMPTY set to true states that INDEXES cannot be empty.
API:

```
Constraint max(SetVar SET, IntVar MAX_ELEMENT_VALUE, boolean NOT_EMPTY)
Constraint max(SetVar INDEXES, int[] WEIGHTS, int OFFSET, IntVar MAX_ELEMENT_VALUE, boolean NOT_EMPI
```


### 19.13 member

The member constraint involves:

- either:
- an array of set variables SETS and
- a set variable SET.

It ensures that $S E T$ belongs to $S E T S$.

- or:
- an integer variable INTEGER and
- a set variable SET.

It ensures that INTEGER is included in SET.

API:

```
Constraint member(SetVar[] SETS, SetVar SET)
Constraint member(IntVar INTEGER, SetVar SET)
```


### 19.14 not_member

The not_member constraint involves:

- an integer variable INTEGER and
- a set variable $S E T$.

It ensures that INTEGER is not included in SET.
API:

Constraint not_member(IntVar INTEGER, SetVar SET)

### 19.15 min

The min constraint involves:

- either:
- a set variable $S E T$,
- an integer variable $M I N_{-} E L E M E N T \_V A L U E$ and
- a boolean NOT_EMPTY.

It ensures that MIN_ELEMENT_VALUE is equal to the minimum element of SET.

- or:
- a set variable $S E T$,
- an array of integer WEIGHTS,
- an integer OFFSET,
- an integer variable $M A X_{-} E L E M E N T \_V A L U E$ and
- a boolean NOT_EMPTY.

It ensures that $\min (W E I G H T S[i-O F F S E T] \mid i$ in INDEXES $)=$ MIN_ELEMENT_VALUE.
The boolean NOT_EMPTY set to true states that INDEXES cannot be empty.
API:

```
Constraint min(SetVar SET, IntVar MIN_ELEMENT_VALUE, boolean NOT_EMPTY)
Constraint min(SetVar INDEXES, int[] WEIGHTS, int OFFSET, IntVar MIN_ELEMENT_VALUE, boolean NOT_EMPT
```


### 19.16 nbEmpty

The nbEmpty constraint involves:

- an array of set variables SETS and
- an integer variable $N B_{-} E M P T Y$ _SETS.

It restricts the number of empty sets in SETS to be equal $N B_{-} E M P T Y \_S E T$.
API:

Constraint nbEmpty(SetVar[] SETS, IntVar NB_EMPTY_SETS)

### 19.17 notEmpty

The notEmpty constraint involves a set variable SET.
It prevents SET to be empty.
API:

Constraint notEmpty(SetVar SET)

### 19.18 offSet

The offset constraint involves:

- two set variables $S E T_{-} 1$ and $S E T \_2$ and
- an integer OFFSET.

It ensures that to any value $x$ in $S E T_{-} 1$, the value $x+O F F S E T$ is in $S E T_{-} 2$ (and reciprocally).
API:

```
Constraint offSet(SetVar SET_1, SetVar SET_2, int OFFSET)
```


### 19.19 partition

The partition constraint involves:

- an array of set variables SETS and
- a set variable UNIVERSE.

It ensures that UNVIVERSE is partitioned in disjoint sets SETS.
API:

```
Constraint partition(SetVar[] SETS, SetVar UNIVERSE)
```


### 19.20 subsetEq

The subsetEq constraint involves an array of set variables $S E T S$. It ensures that $i<j \Leftrightarrow S E T_{-} V A R S[i] \subseteq S E T_{-} V A R S[j]$. The API is :

```
Constraint subsetEq(SetVar[] SETS)
```


### 19.21 sum

The sum constraint involves:

- a set variables INDEXES,
- an array of integer WEIGHTS,
- an integer OFFSET,
- an integer variable $S U M$ and
- a boolean NOT_EMPTY.

The constraint ensures that $\operatorname{sum}(W E I G H T S[i-O F F S E T] । i$ in INDEXES $)=S U M$. The boolean NOT_EMPTY set to true states that INDEXES cannot be empty.

API:

```
Constraint sum(SetVar INDEXES, int[] WEIGHTS, int OFFSET, IntVar SUM, boolean NOT_EMPTY)
```


### 19.22 symmetric

The symmetric constraint involves:

- an array of set variables SETS and
- an integer OFFSET.

It ensures that: $x \in S E T S[y-O F F S E T] \Leftrightarrow y \in S E T S[x-O F F S E T]$.
API:

```
Constraint symmetric(SetVar[] SETS, int OFFSET)
```


### 19.23 union

The union constraint involves:

- an array of set variables SETS and
- a set variable UNION.

It ensures that $S E T_{-} U N I O N$ is equal to the union if the sets in $S E T_{-} V A R S$.
The API is :

## Constraints over real variables

Real constraints are managed externally with Ibex. Due to the limited number of declaration possibilities, there is no factory for real constraints. Indeed, posting a RealConstraint is enough.
The available constructors are:

```
RealConstraint(String name, String functions, int option, RealVar... rvars)
RealConstraint(String name, String functions, RealVar... rvars)
RealConstraint(String functions, RealVar... rvars)
```

- name enables to set a name to the constraint.
- functions is a String which defines the list of functions to hold, separated with semi-colon ";".


## A function is a declared using the following format:

- the ' $\{\mathrm{i}\}$ ' tag defines a variable, where ' i ' is an explicit index the array of variables rvars,
- one or more operators :' $+,-, *, /,=,<,>,<=,>=, \exp (), \ln (), \max (), \min (), \operatorname{abs}(), \cos (), \sin (), \ldots$,

A complete list is available in the documentation of IBEX. - rvars is the list of involved real variables. - opt ion is enable to state the propagation option (default is Ibex. COMPO).

## Example

```
Solver solver = new Solver();
double PREC = 0.01d; // precision
RealVar x = VariableFactory.real("x", -1.0d, 1.0d, PREC, solver);
RealVar y = VariableFactory.real("y", -1.0d, 1.0d, PREC, solver);
RealConstraint rc = new RealConstraint(
 "my fct",
 "({0}*{1})+\operatorname{sin}({0})=1.0; ln ({0}+[-0.1,0.1])>=2.6",
 Ibex.HC4,
 x, y);
solver.post(rc);
solver.findSolution();
```


## Logical constraints

The LogicalConstraintFactory (or LCF) provides various interesting constraints to manipulate other constraints. These constraints are based on the concept of reification. We say a constraint $C$ is reified with a boolean variable b when we maintain the equivalence betwen b being equal to true and C being satisfied. This means the C constraint may be not satisfied, hence it should not be posted to the solver.

## 21.1 not

Creates the opposite constraint of the input constraint.
While this works for any kind of constraint (including globals), it might be a bit naive and slow.

## 21.2 ifThen

Creates and automatically post a constraint ensuring that if the IF statement is true then the THEN statement must be true as well.

A statement is either a binary variable ( $0 / 1$ ) or a reified constraint (satisfied/violated)
Note that the method returns void (you cannot reify that constraint which is automatically posted). If you wish to reify it, use ifThen_reifiable (whose implementation differ)

## 21.3 ifThenElse

Creates and automatically post a constraint ensuring that if the IF statement is true then the THEN statement must be true as well. Otherwise, the ELSE statement must be true.

A statement is either a binary variable ( $0 / 1$ ) or a reified constraint (satisfied/violated)
Note that the method returns void (you cannot reify that constraint which is automatically posted). If you wish to reify it, use ifThenElse_reifiable (whose implementation differ)

## 21.4 reification

Creates and automatically post a constraint maintaining the equivalent between a binary variable being equal to 1 and a constraint being satisfied.

Note that the method returns void (you cannot reify that constraint which is automatically posted). If you wish to reify it, use reification_reifiable (whose implementation differ)

## Sat solver

## 22.1 addAtMostNMinusOne

Add a clause to the SAT constraint whic states that: BOOLVARS $_{1}+$ BOOLVARS $_{2}+\ldots+$ BOOLVARS $_{n}<$ IBOOLVARSI.

## API:

boolean addAtMostNMinusOne (BoolVar[] BOOLVARS)

## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
SatFactory.addAtMostNMinusOne (BVARS);
solver.findAllSolutions();
```

Some solutions of the problem are :

- $B S[0]=1, B S[1]=1, B S[2]=1, B S[3]=0$
- $B S[0]=1, B S[1]=0, B S[2]=1, B S[3]=0$
- $B S[0]=0, B S[1]=1, B S[2]=1, B S[3]=1$
- $B S[0]=0, B S[1]=0, B S[2]=0, B S[3]=1$
- $B S[0]=0, B S[1]=0, B S[2]=0, B S[3]=0$


## 22.2 addAtMostOne

Add a clause to the SAT constraint whic states that: $B O O L V A R S_{1}+B O O L V A R S_{2}+\ldots+$ BOOLVARS $_{n} \leq 1$.
API:

```
boolean addAtMostOne(BoolVar[] BOOLVARS)
```


## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
SatFactory.addAtMostOne(BVARS);
solver.findAllSolutions();
```

The solutions of the problem are :

- $B S[0]=1, B S[1]=0, B S[2]=0, B S[3]=0$
- $B S[0]=0, B S[1]=1, B S[2]=0, B S[3]=0$
- $B S[0]=0, B S[1]=0, B S[2]=1, B S[3]=0$
- $B S[0]=0, B S[1]=0, B S[2]=0, B S[3]=1$
- $B S[0]=0, B S[1]=0, B S[2]=0, B S[3]=0$


## 22.3 addBoolAndArrayEqualFalse

Add a clause to the SAT constraint whic states that: $\mid \operatorname{not}^{\prime}\left({ }^{\prime} B O O L V A R S_{1} \wedge B O O L V A R S_{2} \wedge \ldots \wedge\right.$ BOOLVARS $\left._{n}\right)$.
API:
boolean addBoolAndArrayEqualFalse(BoolVar[] BOOLVARS)

## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
SatFactory.addBoolAndArrayEqualFalse(BVARS);
solver.findAllSolutions();
```

Some solutions of the problem are :

- $B S[0]=1, B S[1]=1, B S[2]=1, B S[3]=0$
- $B S[0]=1, B S[1]=0, B S[2]=1, B S[3]=1$
- $B S[0]=1, B S[1]=0, B S[2]=0, B S[3]=0$
- $B S[0]=0, B S[1]=1, B S[2]=0, B S[3]=1$
- $B S[0]=0, B S[1]=0, B S[2]=0, B S[3]=0$


## 22.4 addBoolAndArrayEqVar

Add a clause to the SAT constraint which states that: $\left(B_{O O L V A R S}^{1} \wedge \mathcal{B O O L V A R S}_{2} \wedge \ldots \wedge\right.$ BOOLVARS $\left._{n}\right) \Leftrightarrow T A R G E T$.
API:

```
boolean addBoolAndArrayEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addBoolAndArrayEqVar(BVARS, T);
solver.findAllSolutions();
```

Some solutions of the problem are :

- $B S[0]=1, B S[1]=1, B S[2]=1, B S[3]=1 T=1$
- $B S[0]=1, B S[1]=1, B S[2]=0, B S[3]=1, T=0$
- $B S[0]=0, B S[1]=1, B S[2]=0, B S[3]=0, T=0$
- $B S[0]=0, B S[1]=0, B S[2]=0, B S[3]=0, T=0$


## 22.5 addBoolAndEqVar

Add a clause to the SAT constraint which states that: $(L E F T \wedge R I G T H) \Leftrightarrow T A R G E T$.
API:

```
boolean addBoolAndEqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addBoolAndEqVar(L, R, T);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=1, T=1$
- $L=1, R=0, T=0$
- $L=0, R=1, T=0$
- $L=0, R=0, T=0$


## 22.6 addBoolEq

Add a clause to the SAT constraint which states that the two boolean variables LEFT and RIGHT are equal.
API:

```
boolean addBoolEq(BoolVar LEFT, BoolVar RIGHT)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
SatFactory.addBoolEq(L, R);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=1$
- $L=0, R=0$


## 22.7 addBoollsEqVar

Add a clause to the SAT constraint which states that: $(L E F T=R I G T H) \Leftrightarrow T A R G E T$.
API:

```
boolean addBoolIsEqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addBoolIsEqVar(L, R, T);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=1, T=1$
- $L=1, R=0, T=0$
- $L=0, R=1, T=0$
- $L=0, R=0, T=1$


## 22.8 addBoollsLeVar

Add a clause to the SAT constraint which states that: $(L E F T \leq R I G T H) \Leftrightarrow T A R G E T$.
API:

```
boolean addBoolIsLeVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addBoolIsLeVar(L, R, T);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=1, T=1$
- $L=1, R=0, T=0$
- $L=0, R=1, T=1$
- $L=0, R=0, T=1$


## 22.9 addBoollsLtVar

Add a clause to the SAT constraint which states that: $(L E F T<R I G T H) \Leftrightarrow T A R G E T$.
API:

```
boolean addBoolIsLtVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addBoolIsLtVar(L, R, T);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=1, T=0$
- $L=1, R=0, T=0$
- $L=0, R=1, T=1$
- $L=0, R=0, T=0$


### 22.10 addBoollsNeqVar

Add a clause to the SAT constraint which states that: $(L E F T \neq R I G T H) \Leftrightarrow T A R G E T$.
API:

```
boolean addBoolIsNeqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addBoolIsNeqVar(L, R, T);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=1, T=0$
- $L=1, R=0, T=1$
- $L=0, R=1, T=1$
- $L=0, R=0, T=0$


### 22.11 addBoolLe

Add a clause to the SAT constraint which states that the boolean variable LEFT is less or equal than the boolean variable RIGHT.

API:

```
boolean addBoolLe(BoolVar LEFT, BoolVar RIGHT)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
SatFactory.addBoolLe(L, R);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=1$
- $L=0, R=1$
- $L=0, R=0$


### 22.12 addBoolLt

Add a clause to the SAT constraint which states that the boolean variable LEFT is less than boolean variable RIGHT.

API:

```
boolean addBoolLt(BoolVar LEFT, BoolVar RIGHT)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=0, R=1$


### 22.13 addBoolNot

Add a clause to the SAT constraint which states that the two boolean variables LEFT and RIGHT are not equal.
API:

```
boolean addBoolNot(BoolVar LEFT, BoolVar RIGHT)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=0$
- $L=0, R=1$


### 22.14 addBoolOrArrayEqualTrue

Add a clause to the SAT constraint which states that: BOOLVARS $S_{1} \vee B O O L V A R S_{2} \vee \ldots \vee B O O L V A R S_{n}$.
API:

```
boolean addBoolOrArrayEqualTrue(BoolVar[] BOOLVARS)
```


## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
SatFactory.addBoolOrArrayEqualTrue(BVARS);
solver.findAllSolutions();
```

Some solutions of the problem are :

- $B S[0]=1, B S[1]=1, B S[2]=1, B S[3]=1$
- $B S[0]=1, B S[1]=1, B S[2]=0, B S[3]=0$
- $B S[0]=1, B S[1]=0, B S[2]=0, B S[3]=0$
- $B S[0]=0, B S[1]=1, B S[2]=0, B S[3]=0$
- $B S[0]=0, B S[1]=0, B S[2]=0, B S[3]=1$


### 22.15 addBoolOrArrayEqVar

Add a clause to the SAT constraint which states that: $\left(\right.$ BOOLVARS $_{1} \vee$ BOOLVARS $_{2} \vee \ldots \vee$ BOOLVARS $\left._{n}\right) \Leftrightarrow$ TARGET.
API:

```
boolean addBoolOrArrayEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addBoolOrArrayEqVar(BVARS, T);
solver.findAllSolutions();
```

Some solutions of the problem are :

- $B S[0]=1, B S[1]=1, B S[2]=1, B S[3]=1, T=1$
- $B S[0]=1, B S[1]=1, B S[2]=0, B S[3]=1, T=1$
- $B S[0]=0, B S[1]=1, B S[2]=0, B S[3]=0, T=1$
- $B S[0]=0, B S[1]=0, B S[2]=0, B S[3]=0, T=0$


### 22.16 addBoolOrEqVar

Add a clause to the SAT constraint which states that: $(L E F T \vee R I G T H) \Leftrightarrow T A R G E T$.
API:

```
boolean addBoolOrEqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
BoolVar T = VF.bool("T", solver);
```

```
SatFactory.addBoolOrEqVar(L, R, T);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=1, T=1$
- $L=1, R=0, T=1$
- $L=0, R=1, T=1$
- $L=0, R=0, T=0$


### 22.17 addBoolXorEqVar

Add a clause to the SAT constraint which states that: $(L E F T \oplus R I G T H) \Leftrightarrow T A R G E T$.
API:

```
boolean addBoolXorEqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar L = VF.bool("L", solver);
BoolVar R = VF.bool("R", solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addBoolXorEqVar(L, R, T);
solver.findAllSolutions();
```

The solutions of the problem are :

- $L=1, R=1, T=0$
- $L=1, R=0, T=1$
- $L=0, R=1, T=1$
- $L=0, R=0, T=0$


### 22.18 addClauses

Adding a clause involved either:

- a logical operator TREE and an instance of the solver,
- or, two arrays of boolean variables.

The two methods add a clause to the SAT constraint.

- The first method adds one or more clauses defined by a LogOp. LopOp aims at simplifying the declaration of clauses by providing some static methods. However, it should be considered as a last resort, due to the verbosity it comes with.
- The second API add one or more clauses defined by two arrays POSLITS and NEGLITS. The first array declares positive boolean variables, those who should be satisfied; the second array declares negative boolean variables, those who should not be satisfied.


## API:

```
boolean addClauses(LogOp TREE, Solver SOLVER)
```

boolean addClauses (BoolVar[] POSLITS, BoolVar[] NEGLITS)

## Example 1

```
Solver solver = new Solver();
BoolVar C1 = VF.bool("C1", solver);
BoolVar C2 = VF.bool("C2", solver);
BoolVar R = VF.bool("R", solver);
BoolVar AR = VF.bool("AR", solver);
SatFactory.addClauses(
 LogOp.ifThenElse(LogOp.nand(C1, C2), R, AR),
 solver);
solver.findAllSolutions();
```

Some solutions of the problem are :

- $C 1=1, C 2=0, R=1, A R=1$
- $C 1=1, C 2=0, R=0, A R=1$
- $C 1=0, C 2=1, R=1, A R=0$
- $C 1=0, C 2=0, R=0, A R=1$


## Example 2

```
Solver solver = new Solver();
BoolVar P1 = VF.bool("P1", solver);
BoolVar P2 = VF.bool("P2", solver);
BoolVar P3 = VF.bool("P3", solver);
BoolVar N = VF.bool("N", solver);
SatFactory.addClauses(new BoolVar[]{P1, P2, P3}, new BoolVar[]{N});
solver.findAllSolutions();
```

Some solutions of the problem are :

- $P 1=1, P 2=1, P 3=1, N=1$
- $P 1=1, P 2=1, P 3=1, N=0$
- $P 1=1, P 2=0, P 3=1, N=0$
- $P 1=0, P 2=0, P 3=1, N=1$


### 22.19 addFalse

Add a unit clause to the SAT constraint which states that the boolean variable BOOLVAR must be false (equal to 0 ).
API:

```
boolean addFalse(BoolVar BOOLVAR)
```


## Example

```
Solver solver = new Solver();
BoolVar B = VF.bool("B", solver);
SatFactory.addFalse(B);
solver.findAllSolutions();
```

The solution of the problem is :

- $B=0$


### 22.20 addMaxBoolArrayLessEqVar

Add a clause to the SAT constraint which states that: maximum $\left(B_{O O L V A R S}^{i}\right) \leq T A R G E T$.
API:

```
boolean addMaxBoolArrayLessEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BS", 3, solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addMaxBoolArrayLessEqVar(BVARS, T);
solver.findAllSolutions();
```

Some solutions of the problem are :

- $B S[0]=1, B S[1]=1, B S[2]=1, T=1$
- $B S[0]=1, B S[1]=0, B S[2]=1, T=1$
- $B S[0]=0, B S[1]=1, B S[2]=1, T=1$
- $B S[0]=0, B S[1]=0, B S[2]=0, T=0$


### 22.21 addSumBoolArrayGreaterEqVar

Add a clause to the SAT constraint which states that: $\operatorname{sum}\left(\right.$ BOOLVARS $\left._{i}\right) \geq$ TARGET.
API:

```
boolean addSumBoolArrayGreaterEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BS", 3, solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addSumBoolArrayGreaterEqVar(BVARS, T);
solver.findAllSolutions();
```

Some solutions of the problem are :

- $B S[0]=1, B S[1]=1, B S[2]=1, T=1$
- $B S[0]=1, B S[1]=0, B S[2]=1, T=1$
- $B S[0]=0, B S[1]=1, B S[2]=1, T=1$
- $B S[0]=0, B S[1]=0, B S[2]=0, T=0$


### 22.22 addSumBoolArrayLessEqVar

Add a clause to the SAT constraint which states that: $\operatorname{sum}\left(\right.$ BOOLVARS $\left._{i}\right) \leq T A R G E T$.
API:

```
boolean addSumBoolArrayLessEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)
```


## Example

```
Solver solver = new Solver();
BoolVar[] BVARS = VF.boolArray("BS", 3, solver);
BoolVar T = VF.bool("T", solver);
SatFactory.addSumBoolArrayLessEqVar(BVARS, T);
solver.findAllSolutions();
```

Some solutions of the problem are :

- $B S[0]=1 B S[1]=1 B S[2]=1 T=1$
- $B S[0]=1 B S[1]=0 B S[2]=1 T=1$
- $B S[0]=0 B S[1]=1 B S[2]=1 T=1$
- $B S[0]=0 B S[1]=0 B S[2]=0 T=1$


### 22.23 addTrue

Add a unit clause to the SAT constraint which states that the boolean variable BOOLVAR must be true (equal to 1).
API:

```
boolean addTrue(BoolVar BOOLVAR)
```


## Example

```
Solver solver = new Solver();
BoolVar B = VF.bool("B", solver);
SatFactory.addTrue(B);
solver.findAllSolutions();
```

The solution of the problem is :

- $B=1$


## Variable selectors

Important: By default, in case of equalities, the variable with the smallest index in the input array is returned. Otherwise, consider using a VariableSelectorWithTies (See Zoom on IntStrategy).

## 23.1 lexico_var_selector

A built-in variable selector which chooses the first non-instantiated integer variable to branch on, regarding the lexicographic order.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
VariableSelector<IntVar> lexico_var_selector()
```


## 23.2 random_var_selector

A built-in variable selector which randomly chooses an integer variable, among non-instantiated ones, to branch on.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
VariableSelector<IntVar> random_var_selector(long SEED)
```


## 23.3 minDomainSize_var_selector

A built-in variable selector which chooses the non-instantiated integer variable with the smallest domain to branch on.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

```
VariableSelector<IntVar> minDomainSize_var_selector()
```


## 23.4 maxDomainSize_var_selector

A built-in variable selector which chooses the non-instantiated integer variable with the largest domain to branch on.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
VariableSelector<IntVar> maxDomainSize_var_selector()
```


## 23.5 maxRegret_var_selector

A built-in variable selector which chooses the non-instantiated integer variable with the largest difference between the two smallest values in its domain to branch on .

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy. IntStrategyFactory
API:

```
VariableSelector<IntVar> maxRegret_var_selector()
```


## Value selectors

## 24.1 min_value_selector

A built-in value selector which selects the variable lower bound.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

IntValueSelector min_value_selector()

## 24.2 mid_value_selector

A built-in value selector which selects the value in the variable domain closest to the mean of its current bounds. It computes the middle value of the domain. Then checks if the mean is contained in the domain. If not, the closest value to the middle is chosen. Rounding policy is floor. It could be override by creating a new instance of IntDomainMiddle with false as parameter.

Important: mid_value_selector should not be used with assignment decisions over bounded variables (because the decision negation would result in no inference).

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntValueSelector mid_value_selector()
```


## 24.3 max_value_selector

A built-in value selector which selects the variable upper bound.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy. IntStrategyFactory

API:

```
IntValueSelector max_value_selector()
```


## 24.4 randomBound_value_selector

A built-in value selector which randomly selects either the lower bound or the upper bound of the variable.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntValueSelector randomBound_value_selector(long SEED)
```


## 24.5 random_value_selector

Selects randomly a value in the variable domain.
Important: random_value_selector should not be used with assignment decisions over bounded variables (because the decision negation could result in no inference).

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

IntValueSelector random_value_selector(long SEED)

## Decision operators

## 25.1 assign

A built-in decision operator which assigns the selected variable to the selected value. Its negation is remove.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
DecisionOperator<IntVar> assign()
```


## 25.2 remove

A built-in decision operator which removes the selected value from the selected variable domain. Its negation is assign.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
DecisionOperator<IntVar> remove()
```


## 25.3 split

A built-in decision operator which splits the selected variable domain at the selected value, that is, it updates the upper bound of the variable to the selected value. Its negation is reverse_split on value +1 .

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

DecisionOperator<IntVar> split()

## 25.4 reverse_split

A built-in decision operator which splits the selected variable domain at the selected value, that is, it updates the lower bound of the variable to the selected value. Its negation is split on value - 1 .

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

DecisionOperator<IntVar> reverse_split()

## Built-in strategies

## 26.1 custom

To build a specific strategy based on IntVar or SetVar. A strategy is based on a variable selector, a value selector and an optional decision operator.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy custom(VariableSelector<IntVar> VAR_SELECTOR,
 IntValueSelector VAL_SELECTOR,
 DecisionOperator<IntVar> DEC_OPERATOR,
 IntVar... VARS)
IntStrategy custom(VariableSelector<IntVar> VAR_SELECTOR,
 IntValueSelector VAL_SELECTOR,
 IntVar... VARS)
SetStrategy custom(VariableSelector<SetVar> varS, SetValueSelector valS, boolean enforceFirst,
 SetVar... sets)
```


## 26.2 force_first

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and forces its first smallest unfixed value to be part of the kernel.
Scope: SetVar
Factory: org.chocosolver.solver.search.strategy. SetStrategyFactory
API:

```
SetStrategy force_first(SetVar... sets)
```


## 26.3 force_maxDelta_first

A built-in strategy which chooses the first non-instantiated variable of maximum delta (envelope's cardinality minus kernel's cardinality) and forces its smallest unfixed value to be part of the kernel.

Scope: SetVar
Factory: org.chocosolver.solver.search.strategy. SetStrategyFactory
API:

SetStrategy force_maxDelta_first(SetVar... sets)

## 26.4 force_minDelta_first

A built-in strategy which chooses the first non-instantiated variable of minimum delta (envelope's cardinality minus kernel's cardinality) and forces its smallest first unfixed value to be part of the kernel.
Scope: SetVar
Factory: org.chocosolver.solver.search.strategy. SetStrategyFactory

## API:

```
SetStrategy force_minDelta_first(SetVar... sets)
```


## 26.5 lexico_LB

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and assigns it to its lower bound.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy lexico_LB(IntVar... VARS)
```


## 26.6 lexico_Neq_LB

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and removes its lower bound from its domain.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy lexico_Neq_LB(IntVar... VARS)
```


## 26.7 lexico_Split

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and removes the second half of its domain.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy lexico_Split(IntVar... VARS)
```


## 26.8 lexico_UB

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and assigns it to its upper bound.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy lexico_UB(IntVar... VARS)
```


## 26.9 minDom_LB

A built-in strategy which chooses the first non-instantiated variable with the smallest domain size, and assigns it to its lower bound.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy minDom_LB(IntVar... VARS)
```


### 26.10 minDom_MidValue

A built-in strategy which chooses the first non-instantiated variable with the smallest domain size, and assigns it to the value closest to its middle of its domain.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy minDom_MidValue(IntVar... VARS)
```


### 26.11 maxDom_Split

A built-in strategy which chooses the first non-instantiated variable with largest domain size, and removes the second half of its domain.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy maxDom_Split(IntVar... VARS)
```


### 26.12 minDom_UB

A built-in strategy which chooses the first non-instantiated variable with the smallest domain size, and assigns it to its upper bound.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy minDom_UB(IntVar... VARS)
```


### 26.13 maxReg_LB

A built-in strategy which chooses the first non-instantiated variable with the largest difference between the two smallest values of its domain, and assigns it to its lower bound.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

IntStrategy maxReg_LB(IntVar... VARS)

### 26.14 random_bound

A built-in strategy which randomly chooses a non-instantiated variable, and assigns it to one of its bounds, randomly selected.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
IntStrategy random_bound(IntVar[] VARS)
IntStrategy random_bound(IntVar[] VARS, long SEED)
```


### 26.15 random_value

A built-in strategy which randomly chooses a non-instantiated variable, and assigns it to a randomly selected value from its domain.

Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

## API:

```
IntStrategy random_value(IntVar[] VARS)
```

IntStrategy random_value(IntVar[] VARS, long SEED)

### 26.16 remove_first

A built-in strategy which chooses the first unfixed variable and removes its smallest unfixed value from the envelope.
Scope: SetVar
Factory: org.chocosolver.solver.search.strategy.SetStrategyFactory
API:

```
SetStrategy remove_first(SetVar... sets)
```


### 26.17 sequencer

A meta strategy which applies sequentially the strategies in its scope.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
AbstractStrategy sequencer(AbstractStrategy... strategies)
```


### 26.18 domOverWDeg

A black-box strategy for IntVar which selects the non-instantiated variable with the smallest ratio $\frac{|d(x)|}{w(x)}$, where $|d(x)|$ denotes the domain size of a variable $x$ and $w(x)$ its weighted degree. The weighted degree of a variable sums the weight of each of the constraint it is involved in where at least 2 variables remains uninstantiated. The weight of a constraint is initialized to $l$ and increased by one each time a constraint propagation fails during the search.
Implementation based on: [BHLS04].
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
AbstractStrategy<IntVar> domOverWDeg(IntVar[] VARS, long SEED, IntValueSelector VAL_SE&ECTOR)
```

AbstractStrategy<IntVar> domOverWDeg(IntVar[] VARS, long SEED) // default: min_value_selector

### 26.19 activity


#### Abstract

A black-box strategy for IntVar which selects the non-instantiated variable with the largest ratio $\frac{a(x)}{|d(x)|}$, where $|d(x)|$ denotes the domain size of a variable $x$ and $a(x)$ its activity. The activity of a variable measures how often the domain of the variable is reducing during the search. Then, the value with the least activity is selected from the domain of the variable.


Implementation based on: [MH12].
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

## API:

```
AbstractStrategy<IntVar> activity(IntVar[] VARS, double GAMMA, double DELTA, int ALPHA,
 int FORCE_SAMPLING, long SEED)
AbstractStrategy<IntVar> activity(IntVar[] VARS, long SEED) // default: 0.999d, 0.2d,
```


### 26.20 impact

A black-box strategy for IntVar which selects the non-instantiated variable with the largest impact $\sum_{\text {aind }(x)} 1-I(x=a), I(x=a)$ denotes the impact of assigning the variable $x$ to a value $a$ from its domain $d(x)$. The impact of an assignment measures the search space reduction induced by a decision, by evaluating the size of the search before and after the application of a decision. The higher the impact, the greater the search space reduction. Then, the value with the least impact is selected from the domain of the variable. An approximation of the impacts is preprocessed.
Implementation based on: [Ref04].
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
AbstractStrategy<IntVar> impact(IntVar[] VARS, int ALPHA, int SPLIT, int NODEIMPACT,
 long SEED, boolean INITONLY)
AbstractStrategy<IntVar> impact(IntVar[] VARS, long SEED) // default: 2, 3, 10, true
```


### 26.21 lastConflict

A composite heuristic which override the defined strategy by forcing some decisions to branch on variables involved in recent conflicts. After each conflict, the last assigned variable is selected in priority, so long as a failure occurs.

Implementation based on: [LSTV09].
Scope: Variable

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
AbstractStrategy lastConflict(Solver SOLVER)
AbstractStrategy lastConflict(Solver SOLVER, AbstractStrategy STRAT)
AbstractStrategy lastKConflicts(Solver SOLVER, int K, AbstractStrategy STRAT)
```


### 26.22 generateAndTest

A strategy that simulate a Generate and Test behavior through a specific internal decision. The main idea is, from all the variables of a problem, to generate and test the satisfiability of a complete instantiation. The process does not rely on propagation anymore, but on satisfaction only.

Such strategy can be triggered when the search space reached a given limit.
Scope: IntVar
Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
API:

```
AbstractStrategy<IntVar> generateAndTest(Solver SOLVER)
AbstractStrategy<IntVar> generateAndTest(Solver SOLVER, AbstractStrategy<IntVar> mainStrategy,
 int searchSpaceLimit)
```


## Search Monitors

## 27.1 geometrical

Plug a geometrical restart strategy to the solver. It performs a search with restarts controlled by the resolution event counter which counts events occurring during the search. Parameter base indicates the maximal number of events allowed in the first search tree. Once this limit is reached, a restart occurs and the search continues until base ' '* ' grow events are done, and so on. After each restart, the limit number of events is increased by the geometric factor grow. limit states the maximum number of restarts.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory
API:

```
void geometrical(Solver solver, int base, double grow, ICounter counter, int limit)
```


## 27.2 luby

Branch a luby restart strategy to the solver. It is an alternative to the geometric restart policy. It performs a search with restarts controlled by the number of resolution events counted by counter. The maximum number of events allowed at a given restart iteration is given by base multiplied by the Las Vegas coefficient at this iteration. The sequence of these coefficients is defined recursively on its prefix subsequences: starting from the first prefix 1 , the $(k+1)^{t} h$ prefix is the $k^{t} h$ prefix repeated grow times and immediately followed by coefficient grow ${ }^{k}$.

- the first coefficients for grow $=2:[1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1, \ldots]$
- the first coefficients for grow $=3:[1,1,1,3,1,1,1,3,1,1,1,3,9, \ldots]$

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

## API:

```
luby(Solver solver, int base, int grow, ICounter counter, int limit)
```


## 27.3 limitNode

Defines a limit over the number of nodes allowed during the resolution. When the limit is reached, the resolution is stopped.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory
API:

```
void limitNode(Solver solver, long limit)
```


## 27.4 limitSolution

Defines a limit over the number of solutions allowed during the resolution. When the limit is reached, the resolution is stopped.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory
API:

```
void limitSolution(Solver solver, long limit)
```


## 27.5 limitTime

Defines a limit over the run time. When the limit is reached, the resolution is stopped. The limit can be either defined in millisecond or using a String which states the duration like "WWd XXh YYm ZZs" for example: - "1d2h3m4.5s": one day, two hours, three minutes, four seconds and 500 milliseconds<p/> - " 2 h 30 m ": two hours and 30 minutes<p/> - " 30.5 s ": 30 seconds and $500 \mathrm{~ms}<\mathrm{p} />-$ " 180 s ": three minutes

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory
API:

```
void limitTime(Solver solver, long limit)
void limitTime(Solver solver, String duration)
```


## 27.6 limitThreadTime

Defines a limit over the run time, defined in a separated thread. When the limit is reached, the resolution is stopped. The limit can be either defined in millisecond or using a String which states the duration like "WWd XXh YYm ZZs" for example: - " 1 d 2 h 3 m 4.5 s ": one day, two hours, three minutes, four seconds and 500 milliseconds<p/> - " 2 h 30 m ": two hours and 30 minutes<p/>-" $30.5 \mathrm{~s} ": 30$ seconds and $500 \mathrm{~ms}<\mathrm{p} />-$ " $180 \mathrm{~s} ":$ three minutes
Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory
API:

```
void limitThreadTime(Solver solver, long limit)
void limitThreadTime(Solver solver, String duration)
```

convertInMilliseconds

## 27.7 limitFail

Defines a limit over the number of fails allowed during the resolution. When the limit is reached, the resolution is stopped.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory
API:

```
void limitFail(Solver solver, long limit)
```


## 27.8 limitBacktrack

Defines a limit over the number of backtracks allowed during the resolution. When the limit is reached, the resolution is stopped.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory
API:
void limitBacktrack (Solver solver, long limit)

## 27.9 restartAfterEachSolution

Force the resolution to restart at root node after each solution.
Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory
API:

```
void restartAfterEachSolution(Solver solver)
```


### 27.10 nogoodRecordingOnSolution

Record nogoods from solution, that is, anytime a solution is found, a nogood is produced to prevent from finding the same solution later during the search. An array of variables, presumably decision ones, is given as input to reduce the size of the generated nogoods.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory
API:

```
void nogoodRecordingOnSolution(IntVar[] vars)
```


### 27.11 nogoodRecordingFromRestarts

Record nogoods from restarts, that is, anytime the search restarts, one or more nogoods are produced, based on the decision path, to prevent from scanning the same sub-search tree.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory API:
void nogoodRecordingFromRestarts (Solver solver)

## Part VI

## Extensions of Choco

## 10 extensions

## 28.1 choco-parsers

choco-parsers is an extension of Choco 3. It provides a parser for the FlatZinc language, a low-level solver input language that is the target language for MiniZinc. This module follows the flatzinc standards that are used for the annual MiniZinc challenge. It only supports integer variables. You will find it at https://github.com/chocoteam/chocoparsers

## 28.2 choco-gui

choco-gui is an extension of Choco 3. It provides a Graphical User Interface with various views which can be simply plugged on any Choco Solver object. You will find it at https://github.com/chocoteam/choco-gui

## 28.3 choco-cpviz

choco-cpviz is an extension of Choco 3 to deal with cpviz library. You will find it at https://github.com/chocoteam/choco-cpviz

## Modeling extensions

## 29.1 choco-graph

choco-graph is a Choco 3 module which allows to search for a graph, which may be subject to graph constraints. The domain of a graph variable $G$ is a graph interval in the form [G_lb,G_ub]. $G \_l b$ is the graph representing vertices and edges which must belong to any single solution whereas G_ub is the graph representing vertices and edges which may belong to one solution. Therefore, any value G_v must satisfy the graph inclusion "G_lb subgraph of G_v subgraph of G_ub". One may see a strong connection with set variables. A graph variable can be subject to graph constraints to ensure global graph properties (e.g. connectedness, acyclicity) and channeling constraints to link the graph variable with some other binary, integer or set variables. The solving process consists of removing nodes and edges from G_ub and adding some others to G_lb until having G_lb = G_ub, i.e. until G gets instantiated. These operations stem from both constraint propagation and search. The benefits of graph variables stem from modeling convenience and performance.
This extension has documentation. You will find it at https://github.com/chocoteam/choco-graph

## 29.2 choco-geost

choco-geost is a Choco 3 module which provides the GEOST global constraint. This constraint is designed for geometrical and packing applications (see http://www.emn.fr/z-info/sdemasse/gccat/Cgeost.html). You will find it at https://github.com/chocoteam/choco-geost

## 29.3 choco-exppar

choco-exppar is a Choco 3 module which provides an expression parser. This enables to simplify the modeling step. You will find it at https://github.com/chocoteam/choco-exppar

## Part VII

## References

[BessiereHH+05] Christian Bessière, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Among, common and disjoint constraints. In Recent Advances in Constraints, Joint ERCIM/CoLogNET International Workshop on Constraint Solving and Constraint Logic Programming, CSCLP 2005, Uppsala, Sweden, June 20-22, 2005, Revised Selected and Invited Papers, 29-43. 2005. URL: http://dx.doi.org/10.1007/11754602_3, doi:10.1007/11754602_3.
[BHLS04] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting systematic search by weighting constraints. In Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, 146-150. 2004.
[CB04] Hadrien Cambazard and Eric Bourreau. Conception d'une contrainte globale de chemin. In Actes des 10e Journées nationales sur la résolution pratique de problèmes NP-complets - JNPC‘04, 107-121. Angers, France, France, 2004. URL: http://hal.archives-ouvertes.fr/hal-00448531.
[CB02] Mats Carlsson and Nicolas Beldiceanu. Arc-consistency for a chain of lexicographic ordering constraints. Technical Report, 2002.
[CL97] Yves Caseau and François Laburthe. Solving Small TSPs with Constraints. In Lee Naish, editor, Proceedings of the 14th International Conference on Logic Programming - ICLP 1997, 316-330. MIT Press, 1997.
[CY08] Kenil C. K. Cheng and Roland H. C. Yap. Maintaining generalized arc consistency on ad hoc r-ary constraints. In Principles and Practice of Constraint Programming, 14th International Conference, CP 2008, Sydney, Australia, September 14-18, 2008. Proceedings, 509-523. 2008. URL: http://dx.doi.org/10.1007/978-3-540-859581_34, doi:10.1007/978-3-540-85958-1_34.
[DPR06] Sophie Demassey, Gilles Pesant, and Louis-Martin Rousseau. A cost-regular based hybrid column generation approach. Constraints, 11(4):315-333, 2006. URL: http://dx.doi.org/10.1007/s10601-006-9003-7, doi:10.1007/s10601-006-9003-7.
[EenSorensson03] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, 502-518. 2003. URL: http://dx.doi.org/10.1007/978-3-540-24605-3_37, doi:10.1007/978-3-540-24605-3_37.
[Fag14] Jean-Guillaume Fages. On the use of graphs within constraint-programming. PhD thesis, Ecole des Mines de Nantes, 2014. URL: http://www.a4cp.org/sites/default/files/jean-guillaume_fages_-_on_the_use_of_graphs_within_constraint-programming.pdf.
[FLapegue14] Jean-Guillaume Fages and Tanguy Lapègue. Filtering atmostnvalue with difference constraints: application to the shift minimisation personnel task scheduling problem. Artificial Intelli-
gence, 212(0):116 - 133, 2014. URL: http://www.sciencedirect.com/science/article/pii/S0004370214000423, doi:http://dx.doi.org/10.1016/j.artint.2014.04.001.
[FL12] Jean-Guillaume Fages and Xavier Lorca. Improving the asymmetric tsp by considering graph structure. CoRR, 2012. URL: http://arxiv.org/abs/1206.3437.
[FLP14] Jean-Guillaume Fages, Xavier Lorca, and Thierry Petit. Self-decomposable global constraints. In Proceedings of the 2014 Conference on ECAI 2014: 21st European Conference on Artificial Intelligence. IOS Press, 2014.
[FL11] Jean-Guillaume Fages and Xavier Lorca. Revisiting the tree constraint. In Principles and Practice of Constraint Programming - CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, 271-285. 2011. URL: http://dx.doi.org/10.1007/978-3-642-23786-7_22, doi:10.1007/978-3-642-23786-7_22.
[FHK+02] Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh. Global constraints for lexicographic orderings. In Principles and Practice of Constraint Programming - CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, 93-108. 2002. URL: http://link.springer.de/link/service/series/0558/bibs/2470/24700093.htm.
[HS02] Warwick Harvey and Joachim Schimpf. Bounds consistency techniques for long linear constraints. In In Proceedings of TRICS: Techniques foR Implementing Constraint programming Systems, 39-46. 2002.
[LSTV09] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Reasoning from last conflict(s) in constraint programming. Artif. Intell., 173(18):1592-1614, 2009. URL: http://dx.doi.org/10.1016/j.artint.2009.09.002, doi:10.1016/j.artint.2009.09.002.
[LopezOrtizQTvB03] Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp, and Peter van Beek. A fast and simple algorithm for bounds consistency of the alldifferent constraint. In IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, 245-250. 2003.
[MT00] Kurt Mehlhorn and Sven Thiel. Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint. In Principles and Practice of Constraint Programming - CP 2000, 6th International Conference, Singapore, September 18-21, 2000, Proceedings, 306-319. 2000. URL: http://dx.doi.org/10.1007/3-540-45349-0_23, doi:10.1007/3-540-45349-0_23.
[MD09] Julien Menana and Sophie Demassey. Sequencing and counting with the multicost-regular constraint. In Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009, Pittsburgh, PA, USA, May 27-31, 2009, Proceedings, 178-192. 2009. URL: http://dx.doi.org/10.1007/978-3-642-01929-6_14, doi:10.1007/978-3-642-01929-6_14.
[MH12] Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box constraint programming solvers. In Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems - 9th International Conference, CPAIOR 2012, Nantes, France, May 28 - June1, 2012. Proceedings, 228-243. 2012. URL: http://dx.doi.org/10.1007/978-3-642-29828-8_15, doi:10.1007/978-3-642-29828-8_15.
[Pes04] Gilles Pesant. A regular language membership constraint for finite sequences of variables. In Principles and Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings, 482-495. 2004. URL: http://dx.doi.org/10.1007/978-3-540-302018_36, doi:10.1007/978-3-540-30201-8_36.
[Ref04] Philippe Refalo. Impact-based search strategies for constraint programming. In Principles and Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings, 557-571. 2004. URL: http://dx.doi.org/10.1007/978-3-540-30201-8_41, doi:10.1007/978-3-540-30201-8_41.
[Regin94] Jean-Charles Régin. A filtering algorithm for constraints of difference in csps. In Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1., 362-367. 1994. URL: http://www.aaai.org/Library/AAAI/1994/aaai94-055.php.
[Regin95] Jean-Charles Régin. Développement d'outils algorithmiques pour l'intelligence artificielle. In Ph. D. Thesis. 1995.


[^0]:    ${ }^{1}$ Indeed, Choco 3 is not a stand-alone application but a library likely to be embedded in an application.

[^1]:    ${ }^{1}$ Resolution events are: backtracks, fails, nodes, solutions, time or user-defined ones.

[^2]:    ${ }^{1}$ Paul Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In Michael Maher and Jean-Francois Puget, editors, Principles and Practice of Constraint Programming, CP98, volume 1520 of Lecture Notes in Computer Science, pages 417-431. Springer Berlin Heidelberg, 1998.

[^3]:    ${ }^{2}$ Laurent Perron. Fast restart policies and large neighborhood search. In Francesca Rossi, editor, Principles and Practice of Constraint Programming at CP 2003, volume 2833 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003.

[^4]:    ${ }^{1}$ Narendra Jussien. The versatility of using explanations within constraint programming. Technical Report 03-04-INFO, 2003.

[^5]:    Note: Only unary, binary, ternary and sum propagators over integer variables have a dedicated explanation algorithm. Although global constraints over integer variables are compatible with explanations, they should be either accurately explained or reformulated to fully benefit from explanations.

[^6]:    ${ }^{1}$ idempotent: calling a propagator twice has no effect, i.e. calling it with its output domains returns its output domains. In that case, it has reached a fix point.
    ${ }^{2}$ monotonic: calling a propagator with two input domains $A$ and $B$ for which $A \subseteq B$ returns two output domains $A^{\prime}$ and $B^{\prime}$ for which $A^{\prime} \subseteq B^{\prime}$.

