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CHAPTER 1

Main concepts

1.1 What is Constraint Programming?

Such a paradigm takes its features from various domains (Operational Research, Artificial Intelligence, etc). Constraint
programming is now part of the portfolio of global solutions for processing real combinatorial problems. Actually,
this technique provides tools to deal with a wide range of combinatorial problems. These tools are designed to allow
non-specialists to address strategic as well as operational problems, which include problems in planning, scheduling,
logistics, financial analysis or bio-informatics. Constraint programming differs from other methods of Operational
Research by how it is implemented. Usually, the algorithms must be adapted to the specifications of the problem
addressed. This is not the case in Constraint Programming where the problem addressed is described using the tools
available in the library. The exercise consists in choosing carefully what constraints combine to properly express the
problem, while taking advantage of the benefits they offer in terms of efficiency.

[wikipedia]

1.2 What is Choco ?

Choco is a Free and Open-Source Software dedicated to Constraint Programming. It is written in Java, under BSD
license. It aims at describing real combinatorial problems in the form of Constraint Satisfaction Problems and solving
them with Constraint Programming techniques.

Choco is used for:

• teaching : easy to use

• research : easy to extend

• real-life applications : easy to integrate

Choco is among the fastest CP solvers on the market. In 2013 and 2014, Choco has been awarded two silver medals
and three bronze medals at the MiniZinc challenge that is the world-wide competition of constraint-programming
solvers.

In addition to these performance results, Choco benefits from academic contributors, who provide support and long
term improvements, and the consulting company COSLING, which provides services ranging from training to the
development and the integration of CP models into larger applications.

Choco official website is: http://www.choco-solver.org
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1.3 Technical overview

Choco 3 includes:

• various type of variables (integer, boolean, set and real),

• various state-of-the-art constraints (alldifferent, count, nvalues, etc.),

• various search strategies, from basic ones to most complex (impact-based and activity-based search),

• explanation-based engine, that enables conflict-based back jumping, dynamic backtracking and path repair,

But also facilities to interact with the search loop, factories to help modeling, many samples, an interface to Ibex, etc.
The source code of choco-solver-3 is hosted on GitHub.

Choco also has many extensions, including a FlatZinc parser to solve minizinc instances and a graph variable module
to better solve graph problems such as the TSP.

An overview of the features of Choco 3 may also be found in the presentation made in the “CP Solvers: Modeling,
Applications, Integration, and Standardization” workshop of CP2013.

1.4 History

The first version of Choco dates from the early 2000s. A few years later, Choco 2 has encountered a great success
in both the academic and the industrial world. For maintenance issue, Choco has been completely rewritten in 2011,
leading to Choco 3. The first beta version of Choco 3 has been released in 2012. The latest version is Choco 3.3.1.

1.5 How to get support ?

A forum is available on the website of Choco. It is dedicated to technical questions about the Choco solver and basic
modeling helps. If you encounter any bug or would like some features to be added, please feel free to open a discussion
on the forum. You can also use the following support mailing list: choco3-support@mines-nantes.fr. As can be seen
on the Choco website, most support requests are answered very fast. However, this free service is provided with no
guarantee.

If you want an expert to build a CP model for your application or if you need professional support, please contact
COSLING.

1.6 How to cite Choco ?

A reference to this manual, or more generally to Choco 3, is made like this:

@manual{choco3,
author = {Charles Prud'homme and Jean-Guillaume Fages and Xavier Lorca},
title = {Choco3 Documentation},
year = {2014},
organization = {TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.},
timestamp = {Thu, 11 May 2015},
url = {http://www.choco-solver.org },

}
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1.7 Who contributes to Choco ?

Core developers Charles Prud’homme (TASC, INRIA Rennes, LINA CNRS UMR 6241) and Jean-Guillaume
Fages (COSLING S.A.S.).

Main
contributors

Xavier Lorca, Narendra Jussien, Fabien Hermenier, Jimmy Liang.

Previous
versions
contributors

François Laburthe, Hadrien Cambazard, Guillaume Rochart, Arnaud Malapert, Sophie
Demassey, Nicolas Beldiceanu, Julien Menana, Guillaume Richaud, Thierry Petit, Julien
Vion, Stéphane Zampelli.

If you want to contribute, let us know.

Choco is developed with Intellij IDEA and JProfiler, that are kindly provided for free.

1.7. Who contributes to Choco ? 7
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CHAPTER 2

Getting started

2.1 Installing Choco 3

Choco 3 is a java library based on Java 8. The main library is named choco-solver and can be seen as the core
library. Some extensions are also provided, such as choco-parsers or choco-cpviz, and rely on but do not
include choco-solver.

2.1.1 Which jar to select ?

We provide a zip file which contains the following files:

choco-solver-3.3.1-with-dependencies.jar An ready-to-use jar file including dependencies; it provides tools to de-
clare a Solver, the variables, the constraints, the search strategies, etc. In a few words, it enables modeling and
solving CP problems.

choco-solver-3.3.1.jar A jar file excluding all dependencies and configuration file; Enable using choco-solver as a
dependency of an application. Otherwise, it provides the same code as the jar with dependencies.

choco-solver-3.3.1-sources.jar The source of the core library.

choco-samples-3.3.1-sources.jar The source of the artifact choco-samples made of problems modeled with Choco.
It is a good start point to see what it is possible to do with Choco.

apidocs-3.3.1.zip Javadoc of Choco-3.3.1

logback.xml The logback configuration file; may be needed when choco-solver is used as a library.

Please, refer to README.md for more details.

Note: Java 7 compliant jars are also available, post-fixed with ‘jk7’.

Extensions

There are also official extensions, thus maintained by the Choco team. They are provided apart from the zip
file. The available extensions are: choco-parsers, choco-gui, choco-cpviz, choco-graph, choco-geost, choco-exppar,
61_ext_eps.

Note: Each of those extensions include all dependencies but choco-solver classes, which ease their usage.
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To start using Choco 3, you need to be make sure that the right version of java is installed. Then you can simply add the
choco-solver jar file (and extension libraries) to your classpath or declare them as dependency of a Maven-based
project.

2.1.2 Update the classpath

Simply add the jar file to the classpath of your project (in a terminal or in your favorite IDE).

2.1.3 As a Maven Dependency

Choco is build and managed using Maven3. Choco is available on Maven Central Repository, to declare Choco as a
dependency of your project, simply update the pom.xml of your project by adding the following instruction:

<dependency>
<groupId>org.choco-solver</groupId>
<artifactId>choco-solver</artifactId>
<version>X.Y.Z</version>

</dependency>

where X.Y.Z is replaced by 3.3.1. Note that the artifact does not include any dependencies or logback.xml. Please,
refer to README.md for the list of required dependencies.

2.1.4 Compiling sources

As a Maven-based project, Choco can be installed in a few instructions. Once you have downloaded the source (from
the zip file or GitHub, simply run the following command:

mvn clean install -DskipTests

This instruction downloads the dependencies required for Choco3 (such as the trove4j and logback) then compiles the
sources. The instruction -DskipTests avoids running the tests after compilation (and saves you a couple of hours).
Regression tests are run on a private continuous integration server.

Maven provides commands to generate files needed for an IDE project setup. For example, to create the project files
for your favorite IDE:

IntelliJ Idea

mvn idea:idea

Eclipse

mvn eclipse:eclipse

2.1.5 Note about logging

In Choco, we distinguish user trace and developer trace. User trace is mainly dedicated to printing resolution statistics
and solutions (and other useful services). The Chatterbox class is devoted to such aim, it centralises (almost) all
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messaging services. Developer trace is for debugging purpose. In order to avoid imposing a logging framework on
end-user 1, Choco 3 relies on SLF4J for the logging system.

“SLF4J is a simple facade for logging systems allowing the end-user to plug-in the desired logging system
at deployment time.” – http://www.slf4j.org/faq.html

SLF4J is only a facade, meaning that it does not provide a complete logging solution, and a logging framework must
be bound. Otherwise, you’ll get the following error:

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

Choco is developed using Logback, but other framework are available such as log4j (a exhaustive list is given on
SL4J). Declaring a logging framework is as simple as adding jar files to the classpath of your application:

Command-line

For logback:

java \
-cp .:choco-solver-3.3.1.jar\
:logback-core-1.0.13.jar\
:logback-classic-1.0.13.jar \
my.project.Main

Note: Logback relies on property file, namely logback.xml, provided in the zip file. Where should the configuration
files such as logback.groovy, logback-test.xml or logback.xml be located on the classpath?

For log4j:

java -cp .:choco-solver-3.3.1.jar\
:slf4j-log4j12-1.7.7.jar \
my.project.Main

Maven

For logback:

<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.0.13</version>

</dependency>

For log4j:

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.7</version>

</dependency>

1 Indeed, Choco 3 is not a stand-alone application but a library likely to be embedded in an application.
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More details can be found on http://www.slf4j.org/manual.html.

2.2 Overview of Choco 3

The following steps should be enough to start using Choco 3. The minimal problem should at least contains a solver,
some variables and constraints to linked them together.

To facilitate the modeling, Choco 3 provides factories for almost every required component of CSP and its resolution:

Factory Shortcut Enables to create
VariableFactory VF Variables and views (integer, boolean, set and real)

IntConstraintFactory ICF Constraints over integer variables
SetConstraintFactory SCF Constraints over set variables
LogicalConstraintFactory LCF (Manages constraint reification)

IntStrategyFactory ISF Custom or black-box search strategies
SetStrategyFactory SSF

Chatterbox Output messages and statistics.

SearchMonitorFactory SMF resolution limits, restarts etc.

Note that, in order to have a concise and readable model, factories have shortcut names. Furthermore, they can be
imported in a static way:

import static org.chocosolver.solver.search.strategy.ISF.*;

Let say we want to model and solve the following equation: 𝑥+ 𝑦 < 5, where the 𝑥 ∈ [[0, 5]] and 𝑦 ∈ [[0, 5]]. Here is a
short example which illustrates the main steps of a CSP modeling and resolution with Choco 3 to treat this equation.

1 // 1. Create a Solver
2 Solver solver = new Solver("my first problem");
3 // 2. Create variables through the variable factory
4 IntVar x = VariableFactory.bounded("X", 0, 5, solver);
5 IntVar y = VariableFactory.bounded("Y", 0, 5, solver);
6 // 3. Create and post constraints by using constraint factories
7 solver.post(IntConstraintFactory.arithm(x, "+", y, "<", 5));
8 // 4. Define the search strategy
9 solver.set(IntStrategyFactory.lexico_LB(x, y));

10 // 5. Launch the resolution process
11 solver.findSolution();
12 //6. Print search statistics
13 Chatterbox.printStatistics(solver);

One may notice that there is no distinction between model objects and solver objects. This makes easier for beginners
to model and solve problems (reduction of concepts and terms to know) and for developers to implement their own
constraints and strategies (short cutting process).

Don’t be afraid to take a look at the sources, we think it is a good start point.
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2.3 Choco 3 quick documentation

2.3.1 Solver

The Solver is a central object and must be created first: Solver solver = new Solver();.

[Solver]

2.3.2 Variables

The VariableFactory (VF for short) eases the creation of variables. Available variables are: BoolVar, IntVar,
SetVar, GraphVar and RealVar. Note, that an IntVar domain can be bounded (only bounds are stored) or
enumerated (all values are stored); a boolean variable is a 0-1 IntVar.

[Variables]

2.3.3 Views

A view is a variable whose domain is defined by a function over another variable domain. Available views are: not,
offset, eq, minus, scale and real.

[Views]

2.3.4 Constants

Fixed-value integer variables should be created with the specific VF.fixed(int, Solver) function.

[Constants]

2.3.5 Constraints

Several constraint factories ease the creation of constraints: LogicalConstraintFactory (LCF),
IntConstraintFactory (ICF) and SetConstraintsFactory (SCF).

RealConstraint is created with a call to new and to addFunction method. It requires the Ibex solver.

Constraints hold once posted: solver.post(c);

Reified constraints should not be posted.

[Constraints]

2.3.6 Search

Defining a specific way to traverse the search space is made thanks to: solver.set(AbstractStrategy).
Predefined strategies are available in IntStrategyFactory (ISF), SetStrategyFactory and
RealStrategyFactory.

2.3.7 Large Neighborhood Search (LNS)

Various LNS (random, propagation-guided, etc.) can be created from the LNSFactory to improve performance on
optimization problems.

2.3. Choco 3 quick documentation 13
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2.3.8 Monitors

An ISearchMonitor is a callback which enables to react on some resolution events (failure, branching, restarts,
solutions, etc.). SearchMonitorFactory (SMF) lists most useful monitors. User-defined monitors can be added
with solver.plugMonitor(...).

2.3.9 Limits

A limit may be imposed on the search. The search stops once a limit is reached. Available limits are
SMF.limitTime(solver, 5000), SMF.limitFail(solver, 100), etc.

2.3.10 Restarts

Restart policies may also be applied SMF.geometrical(...) and SMF.luby(...) are available.

2.3.11 Logging

Logging the search is possible. There are variants but the main way to do it is made through the
Chatterbox.printStatistics(solver). It prints the main statistics of the search (time, nodes, fails, etc.)

2.3.12 Solving

Finding if a problem has a solution is made through a call to: solver.findSolution(). Looking for the next
solution is made thanks to nextSolution(). findAllSolutions() enables to enumerate all solutions of a
problem. To optimize an objective function, call findOptimalSolution(...). Resolutions perform a Depth
First Search.

2.3.13 Solutions

By default, the last solution is restored at the end of the search. Solutions can be accessed as they are discovered by
using an IMonitorSolution.

2.3.14 Explanations

Choco natively supports explained constraints to reduce the search space and to give feedback to the user. Explanations
are disabled by default.

2.4 Choco 3 : changes

2.4.1 3.3.1

• Addition:

– Search Monitors

– Defining its own constraint

• Major modification:
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– Explanations

– Search monitor

2.4.2 3.3.0

• Addition:

– Things to know about constraints

– Automaton-based Constraints

– Declaring complex clauses

– Settings

– Search binder

– Resolution statistics

• New constraints:

– mddc

– not_member

• Major modification:

– Multi-thread resolution

– Defining its own search strategy

2.4. Choco 3 : changes 15
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CHAPTER 3

The solver

The object Solver is the key component. It is built as following:

Solver solver = new Solver();

or:

Solver solver = new Solver("my problem");

This should be the first instruction, prior to any other modelling instructions. Indeed, a solver is needed to declare
variables, and thus constraints.

Here is a list of the commonly used Solver API.

Note: The API related to resolution are not described here but detailed in Solving. Similarly, API provided to add a
constraint to the solver are detailed in Constraints. The other missing methods are only useful for internal behavior.
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3.1 Getters

3.1.1 Variables

Method Definition
Variable[]
getVars()

Return the array of variables declared in the solver. It includes all type of variables
declared, integer, boolean, etc. but also fixed variables such as Solver.ONE.

int getNbVars() Return the number of variables involved in the solver.

Variable
getVar(int i)

Return the 𝑖𝑡ℎ variable declared in the solver.

IntVar[]
retrieveIntVars()

Extract from the solver variables those which are integer (ie whose KIND is set to INT,
that is, including fixed integer variables).

retrieveBoolVars()Extract from the solver variables those which are boolean (ie whose KIND is set to
BOOL, that is, including Solver.ZERO and Solver.ONE).

SetVar[]
retrieveSetVars()

Extract from the solver variables those which are set (ie whose KIND is set to SET)

RealVar[]
retrieveRealVars()

Extract from the solver variables those which are set (ie whose KIND is set to REAL)

3.1.2 Constraints

Method Definition
Constraint[] getCstrs() Return the array of constraints posted in the solver.

getNbCstrs() Return the number of constraints posted in the solver.
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3.1.3 Other

Method Definition
String getName() Return the name of the solver.

IMeasures getMeasures() Return a reference to the measure recorder which stores resolution
statistics.

AbstractStrategy
getStrategy()

Return a reference to the declared search strategy.

Settings getSettings() Return the current Settings used in the solver.

ISolutionRecorder
getSolutionRecorder()

Return the solution recorder.

IEnvironment
getEnvironment()

Return the internal environment of the solver, essential to manage
backtracking.

ObjectiveManager
getObjectiveManager()

Return the objective manager of the solver, needed when an
objective has to be optimized.

ExplanationEngine
getExplainer()

Return the explanation engine declared, (default is NONE).

IPropagationEngine
getEngine()

Return the propagation engine of the solver, which orchestrate the
propagation of constraints.

ISearchLoop getSearchLoop() Return the search loop of the solver, which guide the search process.
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3.2 Setters

Method Definition
set(Settings
settings)

Set the settings to use while modelling and solving.

set(AbstractStrategy...
strategies)

Set a strategy to explore the search space. In case many strategies are given,
they will be called in sequence.

set(ISolutionRecorder
sr)

Set a solution recorder, and erase the previous declared one (by default,
LastSolutionRecorder is declared, it only stores the last solution found.

set(ISearchLoop
searchLoop)

Set the search loop to use during resolution. The default one is a binary search
loop.

set(IPropagationEngine
propagationEngine)

Set the propagation engine to use during resolution. The default one is
SevenQueuesPropagatorEngine.

set(ExplanationEngine
explainer)

Set the explanation engine to use during resolution. The default one is
ExplanationEngine which does nothing.

set(ObjectiveManager
om)

Set the objective manager to use during the resolution. For advanced usage
only.

3.3 Others

Method Definition
Solver duplicateModel() Duplicate the model associates with a solver, ie only variables and

constraints, and return a new solver.
void
makeCompleteSearch(boolean
isComplete)

Add a strategy to the declared one in order to ensure that all variables
are covered by (at least) one strategy.

void
plugMonitor(ISearchMonitor
sm)

Put a search monitor to react on search events (solutions, decisions,
fails, ...).

void
plugMonitor(FilteringMonitor
fm)

Add an filtering monitor, that is an object that is kept informed of all
(propagation) events generated during the resolution.
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CHAPTER 4

Declaring variables

4.1 Principle

A variable is an unknown, mathematically speaking. The goal of a resolution is to assign a value to each declared
variable. In Constraint Programming, the domain –set of values that a variable can initially take– must be defined.

Choco 3 includes five types of variables: IntVar, BoolVar, SetVar and RealVar. A factory is available to ease
the declaration of variables: VariableFactory (or VF for short). At least, a variable requires a name and a solver
to be declared in. The name is only helpful for the user, to read the results computed.

4.2 Integer variable

An integer variable is based on domain made with integer values. There exists under three different forms: bounded,
enumerated or boolean. An alternative is to declare variable-based views.

Important: It is highly advisable not to define domain like [Integer.MIN_VALUE, Integer.MAX_VALUE].
Indeed, such domain definition may lead to :

• incorrect domain size (Integer.MAX_VALUE - Integer.MIN_VALUE +1 = 0)

• and to numeric overflow/underflow operations during propagation.

If undefined domain is really required, the following range should be considered:
[VariableFactory.MIN_INT_BOUND, VariableFactory.MAX_INT_BOUND]. Such an interval
defines 42949673 values, from -21474836 to 21474836.

4.2.1 Bounded variable

Bounded (integer) variables take their value in [[𝑎, 𝑏]] where 𝑎 and 𝑏 are integers such that 𝑎 < 𝑏 (the case where 𝑎 = 𝑏
is handled through views). Those variables are pretty light in memory (the domain requires two integers) but cannot
represent holes in the domain.

To create a bounded variable, the VariableFactory should be used:

IntVar v = VariableFactory.bounded("v", 1, 12, solver);

To create an array of 5 bounded variables of initial domain [[−2, 8]]:
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IntVar[] vs = VariableFactory.boundedArray("vs", 5, -2, 8, solver);

To create a matrix of 5x6 bounded variables of initial domain [[0, 5]] :

IntVar[][] vs = VariableFactory.boundedMatrix("vs", 5, 6, 0, 5, solver);

Note: When using bounded variables, branching decisions must either be domain splits or bound assign-
ments/removals. Indeed, assigning a bounded variable to a value strictly comprised between its bounds may results in
disastrous performances, because such branching decisions will not be refutable.

4.2.2 Enumerated variable

Integer variables with enumerated domains, or shortly, enumerated variables, take their value in [[𝑎, 𝑏]] where 𝑎 and
𝑏 are integers such that 𝑎 < 𝑏 (the case where 𝑎 = 𝑏 is handled through views) or in an array of ordered values
𝑎, 𝑏, 𝑐, .., 𝑧, where 𝑎 < 𝑏 < 𝑐... < 𝑧. Enumerated variables provide more information than bounded variables but are
heavier in memory (usually the domain requires a bitset).

To create an enumerated variable, the VariableFactory should be used:

IntVar v = VariableFactory.enumerated("v", 1, 12, solver);

which is equivalent to :

IntVar v = VariableFactory.enumerated("v", new int[]{1,2,3,4,5,6,7,8,9,10,11,12}, solver);

To create a variable with holes in its initial domain:

IntVar v = VariableFactory.enumerated("v", new int[]{1,7,8}, solver);

To create an array of 5 enumerated variables with same domains:

IntVar[] vs = VariableFactory.enumeratedArray("vs", 5, -2, 8, solver);

IntVar[] vs = VariableFactory.enumeratedArray("vs", 5, new int[]{-10, 0, 10}, solver);

To create a matrix of 5x6 enumerated variables with same domains:

IntVar[][] vs = VariableFactory.enumeratedMatrix("vs", 5, 6, 0, 5, solver);

IntVar[][] vs = VariableFactory.enumeratedMatrix("vs", 5, 6, new int[]{1,2,3,5,6,99}, solver);

Modelling: Bounded or Enumerated?
The choice of representation of the domain variables should not be done lightly. Not only the memory consumption
should be considered but also the used constraints. Indeed, some constraints only update bounds of integer variables,
using them with bounded variables is enough. Others make holes in variables’ domain, using them with enumerated
variables takes advantage of the power of the filtering algorithm. Most of the time, variables are associated with
propagators of various power. The choice of domain representation must then be done on a case by case basis.
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4.2.3 Boolean variable

Boolean variables, BoolVar, are specific IntVar which take their value in [[0, 1]].

To create a new boolean variable:

BoolVar b = VariableFactory.bool("b", solver);

To create an array of 5 boolean variables:

BoolVar[] bs = VariableFactory.boolArray("bs", 5, solver);

To create a matrix of 5x6 boolean variables:

BoolVar[] bs = VariableFactory.boolMatrix("bs", 5, 6, solver);

4.3 Constants

Fixed-value integer variables should be created with a call to the following functions:

VariableFactory.fixed("seven", 7, solver);

Or:

VariableFactory.fixed(8, Solver)

where 7 and 8 are the constant values. Not specifying a name to a constant enables the solver to use cache and avoid
multiple occurrence of the same object in memory.

4.4 Variable views

Views are particular integer variables, they can be used inside constraints. Their domains are implicitly defined by a
function and implied variables.

x is a constant :

IntVar x = VariableFactory.fixed(1, solver);

x = y + 2 :

IntVar x = VariableFactory.offset(y, 2);

x = -y :

IntVar x = VariableFactory.minus(y);

x = 3*y :
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IntVar x = VariableFactory.scale(y, 3);

Views can be combined together:

IntVar x = VariableFactory.offset(VariableFactory.scale(y,2),5);

4.5 Set variable

A set variable SV represents a set of integers. Its domain is defined by a set interval: [S_E,S_K]

• the envelope S_E is an ISet object which contains integers that potentially figure in at least one solution,

• the kernel S_K is an ISet object which contains integers that figure in every solutions.

Initial values for both S_K and S_E can be specified. If no initial value is given for S_K, it is empty by default.
Then, decisions and filtering algorithms will remove integers from S_E and add some others to S_K. A set variable is
instantiated if and only if S_E = S_K.

A set variable can be created as follows:

// z initial domain
int[] z_envelope = new int[]{2,1,3,5,7,12};
int[] z_kernel = new int[]{2};
z = VariableFactory.set("z", z_envelope, z_kernel, solver);

4.6 Real variable

Real variables have a specific status in Choco 3. Indeed, continuous variables and constraints are managed with Ibex
solver.

A real variable is declared with two doubles which defined its bound:

RealVar x = VariableFactory.real("y", 0.2d, 1.0e8d, 0.001d, solver);

Or a real variable can be declared on the basis of on integer variable:

IntVar ivar = VariableFactory.bounded("i", 0, 4, solver);
RealVar x = VariableFactory.real(ivar, 0.01d);
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CHAPTER 5

Constraints and propagators

5.1 Principle

A constraint is a logic formula that defines allowed combinations of values for its variables, that is, restrictions over
variables that must be respected in order to get a feasible solution. A constraint is equipped with a (set of) filtering
algorithm(s), named propagator(s). A propagator removes, from the domains of the targeted variables, values that
cannot correspond to a valid combination of values. A solution of a problem is an assignment of all its variables
simultaneously verifying all the constraints.

Constraint can be declared in extension, by defining the valid/invalid tuples, or in intension, by defining a relation
between the variables. Choco 3 provides various factories to declare constraints (see Overview to have a list of
available factories). A list of constraints available through factories is given in List of available constraints.

Modelling: Selecting the right constraints
Constraints, through propagators, suppress forbidden values of the domain of the variables. For a given paradigm,
there can be several propagators available. A widely used example is the AllDifferent constraints which holds that all
its variables should take a distinct value in a solution. Such a rule can be formulated :

• using a clique of inequality constraints,

• using a global constraint: either analysing bounds of variable (Bound consistency) or analysing all values of the
variables (Arc consistency),

• or using a table constraint –an extension constraint which list the valid tuples.

The choice must be made by not only considering the gain in expressiveness of stress compared to others. Indeed, the
effective yield of each option can be radically different as the efficiency in terms of computation time.

Many global constraints are used to model problems that are inherently NP-complete. And only a partial domain
filtering variables can be done through a polynomial algorithm. This is for example the case of NValue constraint that
one aspect relates to the problem of “minimum hitting set.” Finally, the global nature of this type of constraint also
simplifies the work of the solver in that it provides all or part of the structure of the problem.

If we want an integer variable sum to be equal to the sum of values of variables in the set atLeast, we can use the
IntConstraintFactory.sum constraint:

// all others configurations may be chosen

A constraint may define its specific checker through the method isSatisfied(), but most of the time the checker
is given by checking the entailment of each of its propagators. The satisfaction of the constraints’ solver is done on
each solution if assertions are enabled.
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Note: One can enable assertions by adding the -ea instruction in the JVM arguments.

It can thus be slower if the checker is often called (which is not the case in general). The advantage of this framework
is the economy of code (less constraints need to be implemented), the avoidance of useless redundancy when several
constraints use the same propagators (for instance IntegerChanneling constraint involves AllDifferent
constraint), which leads to better performances and an easier maintenance.

Note: To ease modelling, it is not required to manipulate propagators, but only constraints. However, one can define
specific constraints by defining combinations of propagators and/or its own propagators. More detailed are given in
Defining its own constraint.

Choco 3 provides various types of constraints.

5.1.1 Available constraints

FALSE, TRUE

On one integer variable

arithm, member, not_member.

On two integer variables

absolute, arithm, distance, square, table, times.

On three integer variables

arithm, distance, eucl_div, maximum, minimum, mod, times.

On an undefined number of integer variables

element, sort, table, mddc.

alldifferent, alldifferent_conditionnal, alldifferent_except_0, global_cardinality,

among, atleast_nvalues, atmost_nvalues, count, nvalues,

boolean_channeling, clause_channeling, inverse_channeling.

cumulative, diffn.

lex_chain_less, lex_chain_less_eq, lex_less, lex_less_eq.

maximum, minimum,

scalar, sum.

cost_regular, multicost_regular, regular.

circuit, path, subcircuit, subpath, tree.

bin_packing, knapsack, tsp.

On one set variable

notEmpty.

On two set variables

disjoint, offSet.

On an undefined number of set variables
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all_different, all_disjoint, all_equal, bool_channel, intersection, inverse_set, member, nbEmpty, partition, subsetEq,
symmetric, union.

On integer and set variables

cardinality, element, int_channel, max, member, not_member, min, sum.

On real variables

Constraints over real variables.

5.1.2 Things to know about constraints

Automaton-based Constraints

cost_regular, multicost_regular and regular rely on an automaton, declared implicitly or explicitly. There are two
kinds of IAutomaton : FiniteAutomaton, needed for cost_regular, and CostAutomaton, required for multi-
cost_regular and regular. A CostAutomaton is an extension of FiniteAutomaton where costs can be declared
per transition.

FiniteAutomaton embeds an Automaton object provided by the dk.brics.automaton library. Such an
automaton accepts fixed-size words made of multiple char s, but the regular constraints rely on IntVar s. So,
mapping between char (needed by the underlying library) and int (declared in IntVar) is made. The mapping
enables declaring regular expressions where a symbol is not only a digit between 0 and 9 but any positive number.
Then to distinct, in the word 101, the symbols 0, 1, 10 and 101, two additional char are allowed in a regexp: < and
> which delimits numbers.

In summary, a valid regexp for the cost_regular, multicost_regular and regular constraints is a combination of digits
and Java Regexp special characters.

Examples of allowed RegExp
"0*11111110+10+10+11111110*", "11(0|1|2)*00", "(0|<10> |<20>)*(0|<10>)".

Example of forbidden RegExp
"abc(a|b|c)*".

5.2 Posting constraints

To be effective, a constraint must be posted to the solver. This is achieved using the method:

solver.post(Constraint cstr);

Otherwise, if the solver.post(Constraint cstr) method is not called, the constraint will not be taken into
account during the resolution process : it may not be satisfied in all solutions.
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Method Definition
void
post(Constraint
c)

Post permanently a constraint in the constraint network defined by the solver. The
constraint is not propagated on posting, but is added to the propagation engine.

void
post(Constraint...
cs)

Post permanently the constraints in the constraint network defined by the solver.

void
postTemp(Constraint
c)

Post a constraint temporary in the constraint network. The constraint will active on the
current sub-tree and be removed upon backtrack.

void
unpost(Constraint
c)

Remove permanently the constraint from the constraint network

5.3 Reifying constraints

In Choco 3, it is possible to reify any constraint. Reifying a constraint means associating it with a BoolVar to
represent whether the constraint holds or not:

BoolVar b = constraint.reify();

Or:

BoolVar b = VF.bool("b", solver);
constraint.reifyWith(b);

The first API constraint.reify() creates the variable, if it does not already exists, and reify the constraint. The
second API constraint.reifyWith(b) reify the constraint with the given variable.

Note: A constraint is reified with only one boolean variable. If multiple reification are required, equality constraints
will be created.

The LogicalConstraintFactory enables to manipulate constraints through their reification.

Reifying a constraint means that we allow the constraint not to be satisfied. Therefore, the reified constraint should
not be posted. Only the reifying constraint should be posted. Note also that, for performance reasons, some reifying
constraints available in the LogicalConstraintFactory are automatically posted (the factory method returns
void).

For instance, we can represent the constraint “either x<0 or y>42” as the following:

Constraint a = IntConstraintFactory.arithm(x,"<",0);
Constraint b = IntConstraintFactory.arithm(y,">",42);
Constraint c = LogicalConstraintFactory.or(a,b);
solver.post(c);

This will actually reify both constraints a and b and say that at least one of the corresponding boolean variables must
be true. Note that only the constraint c is posted.

As a second reification example, let us consider “if x<0 then y>42”:

30 Chapter 5. Constraints and propagators



Choco3 Documentation, Release 3.3.1

Constraint a = IntConstraintFactory.arithm(x,"<",0);
Constraint b = IntConstraintFactory.arithm(y,">",42);
LogicalConstraintFactory.ifThen(a,b);

This time the LogicalConstraintFactory.ifThen returns void, meaning that the constraint is
automatically posted. If one really needs to access an ifThen Constraint object, then the
LogicalConstraintFactory.ifThen_reifiable method should be used instead.

5.4 SAT constraints

A SAT solver is embedded in Choco. It is not designed to be accessed directly. The SAT solver is internally managed
as a constraint (and a propagator), that’s why it is referred as SAT constraint in the following.

Important: The SAT solver is directly inspired by MiniSat[EenSorensson03]. However, it only propagates clauses,
no learning or search is implemented.

On a call to any methods of solver.constraints.SatFactory, the SAT constraint (and propagator) is created
and automatically posted to the solver.

5.4.1 How to add clauses

Clauses can be added with calls to the solver.constraints.SatFactory.

On one boolean variable

addTrue, addFalse.

On two boolean variables

addBoolEq, addBoolLe, addBoolLt, addBoolNot.

Reification on two boolean variables

addBoolIsEqVar, addBoolIsLeVar, addBoolIsLtVar, addBoolIsNeqVar, addBoolOrEqVar, addBoolXorEqVar, ad-
dBoolAndEqVar.

On undefined number of boolean variables

addBoolOrArrayEqualTrue, addAtMostNMinusOne, addAtMostOne, addBoolAndArrayEqualFalse, addBoolAn-
dArrayEqVar, addBoolOrArrayEqVar, addClauses, addMaxBoolArrayLessEqVar, addSumBoolArrayGreaterEqVar,
addSumBoolArrayLessEqVar.

5.4.2 Declaring complex clauses

There is a convenient way to declare complex clauses by calling addClauses. The method takes a LogOp and an
instance of Solver as input, extracts the underlying clauses and add them to the SatFactory.

A LogOp is an implementation of ILogical, just like BoolVar, and provides the following API:

LogOp and(ILogical... operands) : create a conjunction, results in true if all of its operands
are true.

LogOp ifOnlyIf(ILogical a, ILogical b): create a biconditional, results in true if and
only if both operands are false or both operands are true.
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LogOp ifThenElse(ILogical a, ILogical b, ILogical c) : create an implication, re-
sults in true if a is true and b is true or a is false‘ and ‘‘c is true.

LogOp implies(ILogical a, ILogical b) : create an implication, results in true if a is false
or b is true.

LogOp reified(BoolVar b, ILogical tree) : create a logical connection between b and
tree.

LogOp or(ILogical... operands) : create a disjunction, results in true whenever one or more
of its operands are true.

LogOp nand(ILogical... operands) : create an alternative denial, results in if at least one of
its operands is false.

LogOp nor(ILogical... operands) : create a joint denial, results in true if all of its operands
are false.

LogOp xor(ILogical a, ILogical b) : create an exclusive disjunction, results in true when-
ever both operands differ.

ILogical negate(ILogical l) : return the logical complement of l.

The resulting logical operation can be very verbose, but certainly more easy to declare:

SatFactory.addClauses(LogOp.and(LogOp.nand(LogOp.nor(a, b), LogOp.or(c, d)), e));
SatFactory.addClauses(LogOp.nor(LogOp.or(LogOp.nand(a, b), c), d));
SatFactory.addClauses(LogOp.and(LogOp.nand(LogOp.nor(a, b), LogOp.or(c, d)), e));
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Solving problems
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CHAPTER 6

Finding solutions

Choco 3 provides different API, offered by Solver, to launch the problem resolution. Before everything, there are
two methods which help interpreting the results.

Feasibility: Once the resolution ends, a call to the solver.isFeasible() method will return a boolean which
indicates whether or not the problem is feasible.

• true: at least one solution has been found, the problem is proven to be feasible,

• false: in principle, the problem has no solution. More precisely, if the search space is guaranteed to be
explored entirely, it is proven that the problem has no solution.

Limitation: When the resolution is limited (See Limiting the resolution for details and examples), one may guess if
a limit has been reached. The solver.hasReachedLimit() method returns true if a limit has bypassed
the search process, false if it has ended naturally.

Warning: In some cases, the search may not be complete. For instance, if one enables restart on each failure with
a static search strategy, there is a possibility that the same sub-tree is explored permanently. In those cases, the
search may never stop or the two above methods may not be sufficient to confirm the lack of solution.

6.1 Satisfaction problems

6.1.1 Finding a solution

A call to solver.findSolution() launches a resolution which stops on the first solution found, if any.

1 // 1. Create a Solver
2 Solver solver = new Solver("my first problem");
3 // 2. Create variables through the variable factory
4 IntVar x = VariableFactory.bounded("X", 0, 5, solver);
5 IntVar y = VariableFactory.bounded("Y", 0, 5, solver);
6 // 3. Create and post constraints by using constraint factories
7 solver.post(IntConstraintFactory.arithm(x, "+", y, "<", 5));
8 // 4. Define the search strategy
9 solver.set(IntStrategyFactory.lexico_LB(x, y));

10 // 5. Launch the resolution process
11 solver.findSolution();
12 //6. Print search statistics
13 Chatterbox.printStatistics(solver);
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If a solution has been found, the resolution process stops on that solution, thus each variable is instantiated to a value,
and the method returns true.

If the method returns false, two cases must be considered:

• A limit has been reached. There may be a solution, but the solver has not been able to find it in the given limit
or there is no solution but the solver has not been able to prove it (i.e., to close to search tree) in the given limit.
The resolution process stops in no particular place in the search tree and the resolution can be run again.

• No limit has been declared. The problem has no solution, the complete exploration of the search tree proved it.

To ensure the problem has no solution, one may call solver.hasReachedLimit(). It returns true if a limit
has been reached, false otherwise.

6.1.2 Enumerating solutions

Once the resolution has been started by a call to solver.findSolution() and if the problem is feasible, the
resolution can be resumed using solver.nextSolution() from the last solution found. The method returns
true if a new solution is found, false otherwise (a call to solver.hasReachedLimit() must confirm the
lack of new solution). If a solution has been found, alike solver.findSolution(), the resolution stops on this
solution, each variable is instantiated, and the resolution can be resumed again until there is no more new solution.

One may enumerate all solution like this:

if(solver.findSolution()){
do{

// do something, e.g. print out variables' value
}while(solver.nextSolution());

}

solver.findSolution() and solver.nextSolution() are the only ways to resume a resolution process
which has already began.

Tip: On a solution, one can get the value assigned to each variable by calling

ivar.getValue(); // instantiation value of an IntVar, return a int
svar.getValues(); // instantiation values of a SerVar, return a int[]
rvar.getLB(); // lower bound of a RealVar, return a double
rvar.getUB(); // upper bound of a RealVar, return a double

An alternative is to call solver.findAllSolutions(). It attempts to find all solutions of the problem. It returns
the number of solutions found (in the given limit if any).

6.2 Optimization problems

Choco 3 enables to solve optimization problems, that is, in which a variable must be optimized.

Tip: For functions, one should declare an objective variable and declare it as the result of the function:

// Function to maximize: 3X + 4Y
IntVar OBJ = VF.bounded("objective", 0, 999, solver);
solver.post(ICF.scalar(new IntVar[]{X,Y}, new int[]{3,4}, OBJ));
solver.findOptimalSolution(ResolutionPolicy.MAXIMIZE, OBJ);
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6.2.1 Finding one optimal solution

Finding one optimal solution is made through a call to the solver.findOptimalSolution(ResolutionPolicy,
IntVar) method. The first argument defines the kind of optimization required: minimization
(ResolutionPolicy.MINIMIZE) or maximization (ResolutionPolicy.MAXIMIZE). The second
argument indicates the variable to optimize.

For instance:

solver.findOptimalSolution(ResolutionPolicy.MAXIMIZE, OBJ);

states that the variable OBJ must be maximized.

The method does not return any value. However, the best solution found so far is restored.

Important: Because the best solution is restored, all variables are instantiated after a call to
solver.findOptimalSolution(...).

The best solution found is the optimal one if the entire search space has been explored.

The process is the following: anytime a solution is found, the value of the objective variable is stored and a cut is
posted. The cut is an additional constraint which states that the next solution must be strictly better than the current
one, ie in minimization, strictly smaller.

6.2.2 Finding all optimal solutions

There could be more than one optimal solutions. To find them all, one can call
findAllOptimalSolutions(ResolutionPolicy, IntVar, boolean). The two first arguments
defines the optimisation policy and the variable to optimize. The last argument states the way the solutions are
computed. Set to true the resolution will be achieved in two steps: first finding and proving an optimal solution,
then enumerating all solutions of optimal cost. Set to false, the posted cuts are soft. When an equivalent solution is
found, it is stored and the resolution goes on. When a strictly better solution is found, previous solutions are removed.
Setting the boolean to false allow finding non-optimal intermediary solutions, which may be time consuming.

6.3 Multi-objective optimization problems

6.3.1 Finding the pareto front

It is possible to solve a multi-objective optimization problems with Choco 3, using
solver.findParetoFront(ResolutionPolicy policy, IntVar... objectives).
The first argument define the resolution policy, which can be Resolution.MINIMIZE or
ResolutionPolicy.MAXIMIZE. Then, the second argument defines the list of variables to optimize.

Note: All variables should respect the same resolution policy.

The underlying approach is naive, but it simplifies the process. Anytime a solution is found, a cut is posted which
states that at least one of the objective variables must be better. Such as (𝑋0 < 𝑏0 ∨𝑋1 < 𝑏1 ∨ . . . ∨𝑋𝑛 < 𝑏𝑛 where
𝑋𝑖 is the ith objective variable and 𝑏𝑖 its best known value.

The method ends by restoring the last solution found so far, if any.
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Here is a simple illustration:

6.4 Propagation

One may want to propagate each constraint manually. This can be achieved by calling solver.propagate().
This method runs, in turn, the domain reduction algorithms of the constraints until it reaches a fix point. It may throw
a ContradictionException if a contradiction occurs. In that case, the propagation engine must be flushed
calling solver.getEngine().flush() to ensure there is no pending events.

Warning: If there are still pending events in the propagation engine, the propagation may results in unexpected
results.
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Recording solutions

Choco 3 requires that each decision variable (that is, which is declared in the search strategy) is instantiated in a
solution. Otherwise, an exception will be thrown. Non decision variables can be uninstantiated in a solution, however,
if WARN logging is enable, a trace is shown to inform the user. Choco 3 includes several ways to record solutions, the
recommended way is to plug a ISolutionMonitor in. See Search monitor for more details.

7.1 Solution storage

A solution is usually stored through a Solution object which maps every variable with its current value. Such an
object can be erased to store new solutions.

7.2 Solution recording

7.2.1 Built-in solution recorders

A solution recorder (ISolutionRecorder) is an object in charge of recording variable values in solutions. There
exists many built-in solution recorders:

LastSolutionRecorder only keeps variable values of the last solution found. It is the default solution recorder.
Furthermore, it is possible to restore that solution after the search process ends. This is used by default when seeking
an optimal solution.

AllSolutionsRecorder records all solutions that are found. As this may result in a memory explosion, it is not
used by default.

BestSolutionsRecorder records all solutions but removes from the solution set each solution that is worse than
the best solution value found so far. This may be used to enumerate all optimal (or at least, best) solutions of a problem.

ParetoSolutionsRecorder records all solutions of the pareto front of the multi-objective problem.

7.2.2 Custom recorder

You can build you own way of manipulating and recording solutions by either implementing your own
ISolutionRecorder object or by simply using an ISolutionMonitor, as follows:
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7.3 Solution restoration

A Solution object can be restored, i.e. variables are fixed back to their values in that solution. For this purpose, we
recommend to restore initial domains and then restore the solution, with the following code:

try{
solver.getSearchLoop().restoreRootNode();
solver.getEnvironment().worldPush();
solution.restore();

}catch (ContradictionException e){
throw new UnsupportedOperationException("restoring the solution ended in a failure");

}
solver.getEngine().flush();

Note that if initial domains are not restored, then the solution restoration may lead to a failure. This would happen
when trying to restore out of the current domain.
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CHAPTER 8

Search Strategies

8.1 Principle

The search space induces by variables’ domain is equal to 𝑆 = |𝑑1| * |𝑑2| * ... * |𝑑𝑛| where 𝑑𝑖 is the domain of the
𝑖𝑡ℎ variable. Most of the time (not to say always), constraint propagation is not sufficient to build a solution, that is,
to remove all values but one from (integer) variables’ domain. Thus, the search space needs to be explored using one
or more search strategies. A search strategy performs a performs a Depth First Search and reduces the search space
by making decisions. A decision involves a variables, a value and an operator, for instance 𝑥 = 5. Decisions are
computed and applied until all the variables are instantiated, that is, a solution is found, or a failure has been detected.

Choco 3.3.1 build a binary search tree: each decision can be refuted. When a decision has to be computed,
the search strategy is called to provide one, for instance 𝑥 = 5. The decision is then applied, the variable,
the domain of x is reduced to 5, and the decision is validated thanks to the propagation. If the application
of the decision leads to a failure, the search backtracks and the decision is refuted (𝑥 ̸= 5) and validated
through propagation. Otherwise, if there is no more free variables then a solution has been found, else a
new decision is computed.

Note: There are many ways to explore the search space and this steps should not be overlooked. Search strategies
or heuristics have a strong impact on resolution performances. Thus, it is strongly recommended to adapt the search
space exploration to the problem treated.

8.2 Zoom on IntStrategy

A search strategy IntStrategy is dedicated to IntVar only. It is based on a list of variables scope, a selector of
variable varSelector, a value selector valSelector and an optional decOperator.

1. scope: array of variables to branch on.

2. varSelector: a variable selector, defines how to select the next variable to branch on.

3. valSelector: a value selector, defines how to select a value in the domain of the selected variable.

4. decOperator: a decision operator, defines how to modify the domain of the selected variable with the selected
value.

On a call to IntStrategy.getDecision(), varSelector try to find, among scope, a variable not yet
instantiated. If such a variable does not exist, the method returns null, saying that it can not compute decision
anymore. Otherwise, valSelector selects a value, within the domain of the selected variable. A decision can then
be computed with the selected variable and the selected value, and is returned to the caller.
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By default, the decision built is an assignment: its application leads to an instantiation, its refutation, to a value
removal. It is possible create other types of decision by defining a decision operator DecisionOperator.

API

IntStrategyFactory.custom(VariableSelector<IntVar> VAR_SELECTOR, IntValueSelector VAL_SELECTOR,
DecisionOperator<IntVar> DEC_OPERATOR, IntVar... VARS)

IntStrategyFactory.custom(VariableSelector<IntVar> VAR_SELECTOR, IntValueSelector VAL_SELECTOR,
IntVar... VARS)

new IntStrategy(IntVar[] scope, VariableSelector<IntVar> varSelector, IntValueSelector valSelector) new
IntStrategy(IntVar[] scope, VariableSelector<IntVar> varSelector, IntValueSelector valSelector,

DecisionOperator<IntVar> decOperator)

Sometimes, on a call to the variable selector, several variables could be selected. In that case, the order in-
duced by VARS is used to break tie: the variable with the smallest index is selected. However, it is pos-
sible to break tie with other VAR_SELECTOR‘‘s. They should be declared as parameters of
‘‘VariablesSelectorWithTies.

solver.set(ISF.custom(
new VariableSelectorWithTies(new FirstFail(), new Random(123L)),
new IntDomainMin(), vars);

The variable with the smallest domain is selected first. If there are more than one variable whose domain size is the
smallest, ties are randomly broken.

Note: Only variable selectors which implement VariableEvaluator can be used to break ties.

Very similar operations are achieved in SetStrategy and RealStrategy.

See solver.search.strategy.IntStrategyFactory and solver.search.strategy.SetStrategyFactory
for built-in strategies and selectors.

8.2.1 Available variable selectors

For integer variables

lexico_var_selector, random_var_selector, minDomainSize_var_selector, maxDomainSize_var_selector, maxRe-
gret_var_selector.

For set variables

See solver.search.strategy.selectors.variables.MaxDelta, solver.search.strategy.selectors.variables.MinDelta.

For real variables

See solver.search.strategy.selectors.variables.Cyclic.

8.2.2 Available value selectors

For integer variables

min_value_selector, mid_value_selector, max_value_selector, randomBound_value_selector, ran-
dom_value_selector.

For set variables
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See solver.search.strategy.selectors.values.SetDomainMin.

For real variables

See solver.search.strategy.selectors.values.RealDomainMiddle,
solver.search.strategy.selectors.values.RealDomainMin
solver.search.strategy.selectors.values.RealDomainMax.

8.2.3 Available decision operators

assign, remove, split, reverse_split.

8.2.4 Available strategies

For integer variables

custom, sequencer.

lexico_LB, lexico_Neq_LB, lexico_Split, lexico_UB, minDom_LB, minDom_MidValue, maxDom_Split, minDom_UB,
maxReg_LB, random_bound, random_value.

domOverWDeg, activity, impact.

lastConflict.

generateAndTest.

For set variables

custom, sequencer.

force_first, force_maxDelta_first, force_minDelta_first, remove_first.

lastConflict.

Important: Black-box search strategies

There are many ways of choosing a variable and computing a decision on it. Designing specific search strategies
can be a very tough task to do. The concept of Black-box search heuristic (or adaptive search strategy) has naturally
emerged from this statement. Most common black-box search strategies observe aspects of the CSP resolution in order
to drive the variable selection, and eventually the decision computation (presumably, a value assignment). Three main
families of heuristic, stemming from the concepts of variable impact, conflict and variable activity, can be found in
Choco|release|. Black-box strategies can be augmented with restarts.

8.3 Default search strategies

If no search strategy is specified in the model, Choco 3 will rely on the default one (defined by a
DefaultSearchBinder in Settings). In many cases, this strategy will not be sufficient to produce satisfy-
ing performances and it will be necessary to specify a dedicated strategy, using solver.set(...). The default
search strategy distinguishes variables per types and defines a specific search strategy per each type, sequentially
applied:

1. integer variables and boolean variables : IntStrategyFactory.domOverWDeg(ivars, 0)

2. set variables: SetStrategyFactory.force_minDelta_first(svars)

3. real variables RealStrategyFactory.cyclic_middle(rvars)
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4. objective variable, if any: lower bound or upper bound, depending on the ResolutionPolicy

Note that ISF.lastConflict(solver) is also plugged-in. Constants are excluded from search strategies’ variable scope and
the creation order is maintained per types.

IntStrategyFactory, SetStrategyFactory and RealStrategyFactory offer several built-in search
strategies and a simple framework to build custom searches.

8.3.1 Search binder

It is possible to override the default search strategy by implementing an ISearchBinder. By default, a Solver is
created with a DefaultSearchBinder declared in its settings.

An ISearchBinder has the following API:

void configureSearch(Solver solver) Configure the search strategy, and even more, of the given
solver. The method is called from the search loop, after the initial propagation, if no search strategy is de-
fined. Otherwise, it should be called before running the resolution.

The search binder to use must be declared in the Setting attached to a Solver (see Settings).

8.4 Composition of strategies

Most of the time, it is necessary to combine various strategies. A StrategiesSequencer enables to compose
various AbstractStrategy. It is created on the basis of a list of AbstractStrategy. The current active
strategy is called to compute a decision through its getDecision() method. When no more decision can be
computed for the current strategy, the following one becomes active. The intersection of variables from each strategy
does not have to be empty. When a variable appears in various strategy, it is ignored as soon as it is instantiated.

When no environment is given in parameter, the last active strategy is not stored, and strategies are evaluated in
lexicographical order to find the first active one, based on its capacity to return a decision.

When an environment is given in parameter, the last active strategy is stored.

API

IntStrategyFactory.sequencer(AbstractStrategy... strategies)

Note that a strategy sequencer is automatically generated when setting multiple strategies at the same time:

solver.set(strategy1,strategy2); is equivalent to

solver.set(ISF.sequencer(strategy1,strategy2));

Finally, one can create its own strategy, see Defining its own search for more details.

8.5 Restarts

Restart means stopping the current tree search, then starting a new tree search from the root node. Restarting makes
sense only when coupled with randomized dynamic branching strategies ensuring that the same enumeration tree is
not constructed twice. The branching strategies based on the past experience of the search, such as adaptive search
strategies, are more accurate in combination with a restart approach.

Unless the number of allowed restarts is limited, a tree search with restarts is not complete anymore. It is a good
strategy, though, when optimizing an NP-hard problem in a limited time.
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Some adaptive search strategies resolutions are improved by sometimes restarting the search exploration from the root
node. Thus, the statistics computed on the bottom of the tree search can be applied on the top of it.

There a two restart strategies available in SearchMonitorFactory:

geometrical(Solver solver, int base, double grow, ICounter counter, int limit)

It performs a search with restarts controlled by the resolution event 1 counter which counts events occurring during
the search. Parameter base indicates the maximal number of events allowed in the first search tree. Once this limit
is reached, a restart occurs and the search continues until base‘‘*‘‘grow events are done, and so on. After each
restart, the limit number of events is increased by the geometric factor grow. limit states the maximum number of
restarts.

and:

luby(Solver solver, int base, int grow, ICounter counter, int limit)

The Luby ’s restart policy is an alternative to the geometric restart policy. It performs a search with restarts controlled
by the number of resolution events 1 counted by counter. The maximum number of events allowed at a given restart
iteration is given by base multiplied by the Las Vegas coefficient at this iteration. The sequence of these coefficients
is defined recursively on its prefix subsequences: starting from the first prefix 1, the (𝑘 + 1)𝑡ℎ prefix is the 𝑘𝑡ℎ prefix
repeated grow times and immediately followed by coefficient grow𝑘.

• the first coefficients for grow =2: [1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,...]

• the first coefficients for grow =3 : [1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 9,...]

8.6 Limiting the resolution

8.6.1 Built-in search limits

The exploration of the search tree can be limited in various ways. Some usual limits are provided in
SearchMonitorFactory, or SMF for short:

• limitTime stops the search when the given time limit has been reached. This is the most common limit, as
many applications have a limited available runtime.

Note: The potential search interruption occurs at the end of a propagation, i.e. it will not interrupt a propagation
algorithm, so the overall runtime of the solver might exceed the time limit.

• limitSolution stops the search when the given solution limit has been reached.

• limitNode stops the search when the given search node limit has been reached.

• limitFail stops the search when the given fail limit has been reached.

• limitBacktrack stops the search when the given backtrack limit has been reached.

8.6.2 Custom search limits

You can decide to interrupt the search process whenever you want with one of the following instructions:

1 Resolution events are: backtracks, fails, nodes, solutions, time or user-defined ones.
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solver.getSearchLoop().reachLimit();
solver.getSearchLoop().interrupt(String message);

Both options will interrupt the search process but only the first one will inform the solver that the search stops because
of a limit. In other words, calling

solver.hasReachedLimit()

will return false if the second option is used.

Going further
Large Neighborhood Search, Explanations.
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Resolution statistics

Choco 3 distinguishes developer trace and user trace. Developer trace is only dedicated to developers for debugging
purpose (Choco depends on SLF4J, as described in Note about logging). User trace is dedicated to users (and devel-
opers) to print information related to the resolution of a problem, such as statistics (execution time, nodes, etc.) or
solutions.

Resolution data are available thanks to the Chatterbox class, which outputs to System.out. It centralises widely
used methods to have comprehensive feedbacks about the resolution process. There two main types of methods: those
who need to be called before the resolution, with a prefix show, and those who need to called after the resolution,
with a prefix print.

For instance, one can indicate to print the solutions all resolution long:

Chatterbox.showSolutions(solver);
solver.findAllSolutions();

Or to print the search statistics once the search ends:

solver.findSolution();
Chatterbox.printStatistics(solver);

On a call to Chatterbox.printVersion(), the following message will be printed:

** Choco 3.3.1 (2015-05) : Constraint Programming Solver, Copyleft (c) 2010-2015

On a call to Chatterbox.printVersion(), the following message will be printed:

- [ Search complete - [ No solution | {0} solution(s) found ]
| Incomplete search - [ Limit reached | Unexpected interruption ] ].
Solutions: {0}

[ Maximize = {1} ]
[ Minimize = {2} ]

Building time : {3}s
Initialisation : {4}s
Initial propagation : {5}s
Resolution : {6}s
Nodes: {7}
Backtracks: {8}
Fails: {9}
Restarts: {10}
Max depth: {11}
Memory: {12}mb
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Variables: {13}
Constraints: {14}

Curly brackets {instruction | } indicate alternative instructions

Brackets [instruction] indicate an optional instruction.

If the search terminates, the message “Search complete” appears on the first line, followed with either the
the number of solutions found or the message “No solution”. Maximize –resp. Minimize– indicates
the best known value before exiting of the objective value using a ResolutionPolicy.MAXIMIZE –resp.
ResolutionPolicy.MINIMIZE- policy.

Curly braces {value} indicate search statistics:

0. number of solutions found

1. objective value in maximization

2. objective value in minimization

3. building time in second (from new Solver() to findSolution() or equivalent)

4. initialisation time in second (before initial propagation)

5. initial propagation time in second

6. resolution time in second (from new Solver() till now)

7. number of decision created, that is, nodes in the binary tree search

8. number of backtracks achieved

9. number of failures that occurred

10. number of restarts operated

11. maximum depth reached in the binary tree search

12. estimation of the memory used

13. number of variables in the model

14. number of constraints in the model

If the resolution process reached a limit before ending naturally, the title of the message is set to :

- Incomplete search - Limit reached.

The body of the message remains the same. The message is formatted thanks to the IMeasureRecorder which is
a search monitor.

On a call to Chatterbox.showSolutions(solver), on each solution the following message will be printed:

{0} Solutions, [Maximize = {1}][Minimize = {2}], Resolution {6}s, {7} Nodes, \\
{8} Backtracks, {9} Fails, {10} Restarts

followed by one line exposing the value of each decision variables (those involved in the search strategy).

On a call to Chatterbox.showDecisions(solver), on each node of the search tree a message will be printed
indicating which decision is applied. The message is prefixed by as many ”.” as nodes in the current branch of the
search tree. A decision is prefixed with [R] and a refutation is prefixed by [L].
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..[L]x == 1 (0) //X = [0,5] Y = [0,6] ...

Warning: Chatterbox.printDecisions(Solver solver) prints the tree search during the resolu-
tion. Printing the decisions slows down the search process.

49



Choco3 Documentation, Release 3.3.1

50 Chapter 9. Resolution statistics



Part IV

Advanced usage
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CHAPTER 10

Settings

A Settings object is attached to each Solver. It declares default behavior for various purposes: from general
purpose (such as the welcome message), modelling purpose (such as enabling views) or solving purpose (such as the
search binder).

The API is:

public String getWelcomeMessage() Return the welcome message.

public Idem getIdempotencyStrategy() Define how to react when a propagator is not ensured to be
idempotent.

public boolean enableViews() Set to ‘true’ to allow the creation of views in the VariableFactory.
Creates new variables with channeling constraints otherwise.

public int getMaxDomSizeForEnumerated() Define the maximum domain size threshold to force inte-
ger variable to be enumerated instead of bounded while calling VariableFactory#integer(String,
int, int, Solver).

public boolean enableTableSubstitution() Set to true to replace intension constraints by extension
constraints.

public int getMaxTupleSizeForSubstitution() Define the maximum domain size threshold to re-
place intension constraints by extension constraints. Only checked when enableTableSubstitution()
is set to true.

public boolean plugExplanationIn() Set to true to plug explanation engine in.

public boolean enablePropagatorInExplanation() Set to true to add propagators in explanations

public double getMCRPrecision() Define the rounding precision for multicost_regular. MUST BE < 13
as java messes up the precisions starting from 10E-12 (34.0*0.05 == 1.70000000000005).

public double getMCRDecimalPrecision() Defines the smallest used double for multicost_regular.

public short[] getFineEventPriority() Defines, for fine events, for each priority, the queue in which
a propagator of such a priority should be scheduled in.

public short[] getCoarseEventPriority() Defines, for coarse events, for each priority, the queue in
which a propagator of such a priority should be scheduled in

public ISearchBinder getSearchBinder() Return the default Search binder.
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CHAPTER 11

Large Neighborhood Search (LNS)

Local search techniques are very effective to solve hard optimization problems. Most of them are, by nature, in-
complete. In the context of constraint programming (CP) for optimization problems, one of the most well-known
and widely used local search techniques is the Large Neighborhood Search (LNS) algorithm 1. The basic idea is to
iteratively relax a part of the problem, then to use constraint programming to evaluate and bound the new solution.

11.1 Principle

LNS is a two-phase algorithm which partially relaxes a given solution and repairs it. Given a solution as input, the
relaxation phase builds a partial solution (or neighborhood) by choosing a set of variables to reset to their initial
domain; The remaining ones are assigned to their value in the solution. This phase is directly inspired from the
classical Local Search techniques. Even though there are various ways to repair the partial solution, we focus on the
technique in which Constraint Programming is used to bound the objective variable and to assign a value to variables
not yet instantiated. These two phases are repeated until the search stops (optimality proven or limit reached).

The LNSFactory provides pre-defined configurations. Here is the way to declare LNS to solve a problem:

LNSFactory.rlns(solver, ivars, 30, 20140909L, new FailCounter(100));
solver.findOptimalSolution(ResolutionPolicy.MINIMIZE, objective);

It declares a random LNS which, on a solution, computes a partial solution based on ivars. If no solution are found
within 100 fails (FailCounter(100)), a restart is forced. Then, every 30 calls to this neighborhood, the number
of fixed is randomly picked. 20140909L is the seed for the java.util.Random.

The instruction LNSFactory.rlns(solver, vars, level, seed, frcounter) runs:

1 LargeNeighborhoodSearch lns = new LargeNeighborhoodSearch(solver, neighbor, true);
2 solver.getSearchLoop().plugSearchMonitor(lns);
3 return lns;

The factory provides other LNS configurations together with built-in neighbors.

1 Paul Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In Michael Maher and Jean-Francois
Puget, editors, Principles and Practice of Constraint Programming, CP98, volume 1520 of Lecture Notes in Computer Science, pages 417–431.
Springer Berlin Heidelberg, 1998.
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11.2 Neighbors

While the implementation of LNS is straightforward, the main difficulty lies in the design of neighborhoods able
to move the search further. Indeed, the balance between diversification (i.e., evaluating unexplored sub-tree) and
intensification (i.e., exploring them exhaustively) should be well-distributed.

11.2.1 Generic neighbors

One drawback of LNS is that the relaxation process is quite often problem dependent. Some works have been dedicated
to the selection of variables to relax through general concept not related to the class of the problem treated [5,24].
However, in conjunction with CP, only one generic approach, namely Propagation-Guided LNS [24], has been shown
to be very competitive with dedicated ones on a variation of the Car Sequencing Problem. Nevertheless, such generic
approaches have been evaluated on a single class of problem and need to be thoroughly parametrized at the instance
level, which may be a tedious task to do. It must, in a way, automatically detect the problem structure in order to be
efficient.

11.2.2 Combining neighborhoods

There are two ways to combine neighbors.

Sequential

Declare an instance of SequenceNeighborhood(n1, n2, ..., nm). Each neighbor ni is applied in a se-
quence until one of them leads to a solution. At step k, the (𝑘 mod 𝑚)𝑡ℎ neighbor is selected. The sequence stops if
at least one of the neighbor is complete.

Adaptive

Declare an instance of AdaptiveNeighborhood(1L, n1, n2, ..., nm). At the beginning a weight of 1
at assigned to each neighbor ni. Then, if a neighbor leads to solution, its weight 𝑤𝑖 is increased by 1. Any time a partial
solution has to be computed, a value W between 1 and 𝑤1+𝑤2+ ...+𝑤𝑛 is randomly picked (1L is the seed). Then the
weight of each neighbor is subtracted from W, as soon as W≤ 0, the corresponding neighbor is selected. For instance,
let’s consider three neighbors n1, n2 and n3, their respective weights w1=2, w2=4, w3=1. W = 3 is randomly picked
between 1 and 7. Then, the weight of n1 is subtracted, W‘‘2-=1; the weight of n2 is subtracted,
‘‘W-4 = -3, W is less than 0 and n2 is selected.

11.2.3 Defining its own neighborhoods

One can define its own neighbor by extending the abstract class ANeighbor. It forces to implements the following
methods:
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Method Definition

void recordSolution() Action to perform on a solution (typicallu, storing the current
variables’ value).

void fixSomeVariables(ICause
cause) throws
ContradictionException

Fix some variables to their value in the last solution,
computing a partial solution.

void restrictLess() Relax the number of variables fixed. Called when no solution
was found during a LNS run (trapped into a local optimum).

boolean isSearchComplete() Indicates whether the neighbor is complete, that is, can end.

11.3 Restarts

A generic and common way to reinforce diversification of LNS is to introduce restart during the search process. This
technique has proven to be very flexible and to be easily integrated within standard backtracking procedures 2.

11.4 Walking

A complementary technique that appear to be efficient in practice is named Walking and consists in accepting equiv-
alent intermediate solutions in a search iteration instead of requiring a strictly better one. This can be achieved by
defining an ObjectiveManager like this:

solver.set(new ObjectiveManager(objective, ResolutionPolicy.MAXIMIZE, false));

Where the last parameter, named strict must be set to false to accept equivalent intermediate solutions.

Other optimization policies may be encoded by using either search monitors or a custom ObjectiveManager.

2 Laurent Perron. Fast restart policies and large neighborhood search. In Francesca Rossi, editor, Principles and Practice of Constraint
Programming at CP 2003, volume 2833 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003.
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CHAPTER 12

Multi-thread resolution

Choco 3 provides a simple way to use several thread to treat a problem. This is achieved by declaring a
MasterSolver to drive the search. The main idea of that driver is to solve the same problem with various search
strategies, and to share few possible information.

The first step is to declare a model, as usual, by creating a solver, adding variables and constraints. One can declare a
(naive) search strategy to point out the decision variables. It is optional but highly recommended. Then, the problem
declared in the solver is duplicated into n additional solvers. The search strategies are then configured, and each solver
is run into a single thread.

On satisfaction problem:

the first solver who finds a solution advises the others.

On optimisation problem:

the best value found so far is shared among all the solvers.

The expected ways to solve a problem using MasterSolver is:

Solver solver = new Solver();
// declare the variables and constraints
// and an optional search strategy
//...
// Then create the master-solver
MasterSolver ms = new MasterSolver();
// duplicate the solver into 4 solvers (1+3)
ms.populate(solver, 3);
// configure the search strategies (optional, but recommended)
//ms.declareSettings(settings1, settings2, settings3);
// Finally, solve the problem
ms.findSolution();

The API of MasterSolver is deliberately kept reduced. If a specific configuration of a solver needs to be done, one
has to do it by himself.

void populate(Solver model, int n) Duplicate a given solver into n copies. It populates the internal
array Solver[] with n+1 solvers.

void declare(Solver... solvers) An alternative to populate(Solver model, int n) where
the array of solvers is given. The first solver in the array needs to be the original one (required for optimization
problem).

Solver[] getSolvers() Return the array of solvers to drive.

59



Choco3 Documentation, Release 3.3.1

void declareSettings(Settings... settings) Declare a specific Settings to each solver (Set-
tings). Calling this method is highly recommended to, at least, configure the search strategies for each solver.

ESat isFeasible() Indicate if one solver, at least, has found a solution for the given problem.

boolean hasReachedLimit() Indicate if all solvers have reached a limit.

boolean findSolution() Deal with satisfaction problem: the solvers are distributed, the first one which finds
a solution stops the process. It returns true if one solver has found a solution, false otherwise.

void findOptimalSolution(ResolutionPolicy policy, IntVar objective) Deal with opti-
misation problem: the solvers are distributed and anytime a solver found a solution, it shares the value with the
others. It one proofs the optimality, it stops the process.

void wishGranted() For internal uses only
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CHAPTER 13

Explanations

Choco 3 natively support explanations 1. However, no explanation engine is plugged-in by default.

13.1 Principle

Nogoods and explanations have long been used in various paradigms for improving search. An explanation records
some sufficient information to justify an inference made by the solver (domain reduction, contradiction, etc.). It is
made of a subset of the original propagators of the problem and a subset of decisions applied during search. Explana-
tions represent the logical chain of inferences made by the solver during propagation in an efficient and usable manner.
In a way, they provide some kind of a trace of the behavior of the solver as any operation needs to be explained.

Explanations have been successfully used for improving constraint programming search process. Both complete (as
the mac-dbt algorithm) and incomplete (as the decision-repair algorithm) techniques have been proposed. Those
techniques follow a similar pattern: learning from failures by recording each domain modification with its associated
explanation (provided by the solver) and taking advantage of the information gathered to be able to react upon failure
by directly pointing to relevant decisions to be undone. Complete techniques follow a most-recent based pattern while
incomplete technique design heuristics to be used to focus on decisions more prone to allow a fast recovery upon
failure.

The current explanation engine is coded to be Asynchronous, Reverse, Low-intrusive and Lazy:

Asynchronous: Explanations are not computed during the propagation.

Reverse: Explanations are computed in a bottom-up way, from the conflict to the first event generated, keeping only
relevant events to compute the explanation of the conflict.

Low-intrusive: Basically, propagators need to implement only one method to furnish a convenient explanation
schema.

Lazy: Explanations are computed on request.

To do so, all events are stored during the descent to a conflict/solution, and are then evaluated and kept if relevant, to
get the explanation.

13.2 In practice

Consider the following example:

1 Narendra Jussien. The versatility of using explanations within constraint programming. Technical Report 03-04-INFO, 2003.
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1 Solver solver = new Solver();
2 BoolVar[] bvars = VF.boolArray("B", 4, solver);
3 solver.post(ICF.arithm(bvars[2], "=", bvars[3]));
4 solver.post(ICF.arithm(bvars[2], "!=", bvars[3]));
5 solver.set(ISF.lexico_LB(bvars));
6 solver.findAllSolutions();

The problem has no solution since the two constraints cannot be satisfied together. A naive strategy such as
ISF.lexico_LB(bvars) (which selects the variables in lexicographical order) will detect lately and many times
the failure. By plugging-in an explanation engine, on each failure, the reasons of the conflict will be explained.

1 ExplanationFactory.CBJ.plugin(solver, false, false);

The explanation engine records deductions and causes in order to compute explanations. In that small example, when
an explanation engine is plugged-in, the two first failures will enable to conclude that the problem has no solution.
Only three nodes are created to close the search, seven are required without explanations.

Note: Only unary, binary, ternary and sum propagators over integer variables have a dedicated explanation algorithm.
Although global constraints over integer variables are compatible with explanations, they should be either accurately
explained or reformulated to fully benefit from explanations.

13.2.1 Cause

A cause implements ICause and must defined the boolean why(RuleStore ruleStore, IntVar var,
IEventType evt, int value) method. Such a method add new event filtering rules to the ruleStore in pa-
rameter in order to filter relevant events among all generated during the search. Every time a variable is modified, the
cause is specified in order to compute explanations afterwards. For instance, when a propagator updates the bound of
an integer variable, the cause is the propagator itself. So do decisions, objective manager, etc.

13.2.2 Computing explanations

When a contradiction occurs during propagation, it can only be thrown by:

• a propagator which detects unsatisfiability, based on the current domain of its variables;

• or a variable whom domain became empty.

Consequently, in addition to causes, variables can also explain the current state of their domain. Computing the
explanation of a failure consists in going up in the stack of all events generated in the current branch of the search
tree and filtering the one relative to the conflict. The entry point is either a the unsatisfiabable propagator or the empty
variable.

Note: Explanations can be computed without failure. The entry point is a variable, and only removed values can be
explained.

Each propagator embeds its own explanation algorithm which relies on the relation it defines over variables.

Warning: Even if a naive (and weak) explanation algorithm could be provided by all constraints, we made the
choice to throw an SolverException whenever a propagator does not defined its own explanation algorithm. This
is restrictive, but almost all non-global constraints support explanation, which enables reformulation. The missing
explanation schemas will be integrated all needs long.
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For instance, here is the algorithm of PropGreaterOrEqualX_YC (𝑥 ≥ 𝑦 + 𝑐, x and y are integer variables, c is
a constant):

1 public boolean why(RuleStore ruleStore, IntVar var, IEventType evt, int value) {
2 boolean newrules = ruleStore.addPropagatorActivationRule(this);
3 if (var.equals(x)) {
4 newrules |= ruleStore.addLowerBoundRule(y);
5 } else if (var.equals(y)) {
6 newrules |= ruleStore.addUpperBoundRule(x);
7 } else {
8 newrules |= super.why(ruleStore, var, evt, value);
9 }

10 return newrules;
11 }

The first lines indicates that the deduction is due to the application of the propagator (l.2), maybe through reification.
Then, depending on the variable touched by the deduction, either the lower bound of y (l.4) or the upper bound of x
(l.6) explains the deduction. Indeed, such a propagator only updates lower bound of y based on the upper bound of x
and vice versa.

Let consider that the deduction involves x and is explained by the lower bound of y. The lower bound y needs to
be explained. A new rule is added to the ruleStore to specify that events on the lower bound of y needs to be kept
during the event stack analyse (only events generated before the current are relevant). When such events are found,
the ruleStore can be updated, until the first event is analyzed.

The results is a set of branching decisions, and a set a propagators, which applied altogether leads the conflict and
thus, explained it.

13.3 Explanations for the system

Explanations for the system, which try to reduce the search space, differ from the ones giving feedback to a user about
the unsatisfiability of its model. Both rely on the capacity of the explanation engine to motivate a failure, during the
search form system explanations and once the search is complete for user ones.

Important: Most of the time, explanations are raw and need to be processed to be easily interpreted by users.

13.3.1 Conflict-based backjumping

When Conflict-based Backjumping (CBJ) is plugged-in, the search is hacked in the following way. On a failure,
explanations are retrieved. From all left branch decisions explaining the failure, the last taken, return decision, is
stored to jump back to it. Decisions from the current one to the return decision (excluded) are erased. Then, the return
decision is refuted and the search goes on. If the explanation is made of no left branch decision, the problem is proven
to have no solution and search stops.

Factory: solver.explanations.ExplanationFactory

API:

CBJ.plugin(Solver solver, boolean nogoodsOn, boolean userFeedbackOn)

• solver: the solver to explain.

• nogoodsOn: set to true to extract nogood from each conflict,. Extracting nogoods slows down the overall
resolution but can reduce the search space.
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• userFeedbackOn: set to true to store the very last explanation of the search (recommended value: false).

13.3.2 Dynamic backtracking

This strategy, Dynamic backtracking (DBT) corrects a lack of deduction of Conflict-based backjumping. On a failure,
explanations are retrieved. From all left branch decisions explaining the failure, the last taken, return decision, is
stored to jump back to it. Decisions from the current one to the return decision (excluded) are maintained, only the
return decision is refuted and the search goes on. If the explanation is made of no left branch decision, the problem is
proven to have no solution and search stops.

Factory: solver.explanations.ExplanationFactory

API:

DBT.plugin(Solver solver, boolean nogoodsOn, boolean userFeedbackOn)

• solver: the solver to explain.

• nogoodsOn: set to true to extract nogood from each conflict,. Extracting nogoods slows down the overall
resolution but can reduce the search space.

• userFeedbackOn: set to true to store the very last explanation of the search (recommended value: false).

13.4 Explanations for the end-user

Explaining the last failure of a complete search without solution provides information about the reasons why a problem
has no solution. For the moment, there is no simplified way to get such explanations. CBJ and DBT enable retrieving
an explanation of the last conflict.

// .. problem definition ..
// First manually plug CBJ, or DBT
ExplanationEngine ee = new ExplanationEngine(solver, userFeedbackOn);
ConflictBackJumping cbj = new ConflictBackJumping(ee, solver, nogoodsOn);
solver.plugMonitor(cbj);
if(!solver.findSolution()){

// If the problem has no solution, the end-user explanation can be retrieved
System.out.println(cbj.getLastExplanation());

}

Incomplete search leads to incomplete explanations: as far as at least one decision is part of the explanation, there is no
guarantee the failure does not come from that decision. On the other hand, when there is no decision, the explanation
is complete.
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CHAPTER 14

Search monitor

14.1 Principle

A search monitor is an observer of the search loop. It gives user access before and after executing each main step of
the search loop:

• initialize: when the search loop starts,

• initial propagator: when the initial propagation is run,

• open node: when a decision is computed,

• down left branch: on going down in the tree search applying a decision,

• down right branch: on going down in the tree search refuting a decision,

• up branch: on going up in the tree search to reconsider a decision,

• solution: when a solution is got,

• restart search: when the search is restarted to a previous node, commonly the root node,

• close: when the search loop ends,

• contradiction: on a failure,

• interruption: on the interruption of the search loop.

With the accurate search monitor, one can easily interact with the search loop, from pretty printing of a solution to
forcing a restart, or many other actions.

The interfaces to implement are:

• IMonitorInitialize,

• IMonitorInitPropagation,

• IMonitorOpenNode,

• IMonitorDownBranch,

• IMonitorUpBranch,

• IMonitorSolution,

• IMonitorRestart,

• IMonitorContradiction,

• IMonitorInterruption,
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• IMonitorClose.

Most of them gives the opportunity to do something before and after a step. The other ones are called after a step.

For instance, NogoodStoreFromRestarts monitors restarts. Before a restart is done, the nogoods are extracted
from the current decision path; after the restart has been done, the newly created nogoods are added and the nogoods
are propagated. Thus, the framework is almost not intrusive.

1 public class NogoodFromRestarts implements IMonitorRestart {
2 public void beforeRestart() {
3 extractNogoodFromPath();
4 }
5 public void afterRestart() {
6 }

Available search monitors: Search Monitors.
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CHAPTER 15

Defining its own search strategy

One key component of the resolution is the exploration of the search space induced by the domains and constraints.
It happens that built-in search strategies are not enough to tackle the problem. Or one may want to define its own
strategy. This can be done in three steps: selecting the variable, selecting the value, then making a decision.

The following instructions are based on IntVar, but can be easily adapted to other types of variables.

15.1 Selecting the variable

An implementation of the VariableSelector<V extends Variable> interface is needed. A variable se-
lector specifies which variable should be selected at a fix point. It is based specifications (ex: smallest domain, most
constrained, etc.). Although it is not required, the selected variable should not be already instantiated to a singleton.
This interface forces to define only one method:

V getVariable(V[] variables)

One variable has to be selected from variables to create a decision on. If no valid variable exists, the
method is expected to return null.

An implementation of the VariableEvaluator<V extends Variable> is strongly recommended. It en-
ables breaking ties. It forces to define only one method:

double evaluate(V variable)

An evaluation of the given variable is done wrt the evaluator. The variable with the smallest value will
then be selected.

Here is the code of the FirstFail variable selector which selects first the variable with the smallest domain.

1 public class FirstFail implements VariableSelector<IntVar>, VariableEvaluator<IntVar> {
2

3

4 @Override
5 public IntVar getVariable(IntVar[] variables) {
6 int small_idx = -1;
7 int small_dsize = Integer.MAX_VALUE;
8 for (int idx = 0; idx < variables.length; idx++) {
9 int dsize = variables[idx].getDomainSize();

10 if (dsize > 1 && dsize < small_dsize) {
11 small_dsize = dsize;
12 small_idx = idx;
13 }
14 }
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15 return small_idx > -1 ? variables[small_idx] : null;
16 }
17

18 @Override
19 public double evaluate(IntVar variable) {
20 return variable.getDomainSize();
21 }
22 }

There is a distinction between VariableSelector and VariableEvaluator. On the one hand, a VariableSelector breaks
ties lexicographically, that is, the first variable in the input array which respects the specification is returned.

new IntStrategy(variables,
new FirstFail(),
new IntDomainMin(),
DecisionOperator.int_eq);

On the other hand, a VariableEvaluator selects all variables which respect the specifications and let another VariableE-
valuator breaks ties, if any, or acts like a VariableSelector.

new IntStrategy(variables,
new VariableSelectorWithTies(new FirstFail(), new Largest()),
new IntDomainMin(),
DecisionOperator.int_eq);

Let’s consider the following array of variables as input {X,Y,Z} where X=[0,3], Y= [0,4] and Z=[1,4]. Applying the
first strategy declared will return X. Applying the second one will return Z: X and Z are batter than Y but equivalent
compared to FirstFail but Z is better than X compared to Largest.

15.2 Selecting the value

The value to be selected must belong to the variable domain.

For IntVar the interface IntValueSelector is required. It imposes one method:

int selectValue(IntVar var)

Return the value to constrain var with.

Important: A value selector must consider the type of domain of the selected variable. Indeed, a value selector
does not store the previous tries (unkike an iterator) and it may happen that, for bounded variable, the refutation of a
decision has no effect and a value is selected twice or more. For example, consider IntDomainMiddle and a bounded
variable.

15.3 Making a decision

A decision is made of a variable, an decision operator and a value. The decision operator should be selected in
DecisionOperator among:

int_eq

For IntVar, represents an instantiation, 𝑋 = 3. The refutation of the decision will be a value removal.
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int_neq

For IntVar, represents a value removal, 𝑋 ̸= 3. The refutation of the decision will be an instantiation.

int_split

For IntVar, represents an upper bound modification, 𝑋 ≤ 3. The refutation of the decision will be a
lower bound modification.

int_reverse_split

For IntVar, represents a lower bound modification, 𝑋 ≥ 3. The refutation of the decision will be an
upper bound modification.

set_force

For SetVar, represents a kernel addition, 3 ∈ 𝑆. The refutation of the decision will be an envelop
removal.

set_remove

For SetVar, represents an envelop removal, 3 /∈ 𝑆. The refutation of the decision will be a kernel
addition.

Attention: A particular attention should be made while using IntVar s and their type of domain. Indeed,
bounded variables does not support making holes in their domain. Thus, removing a value which is not a current
bound will be missed, and can lead to an infinite loop.

One can define its own operator by extending DecisionOperator.

void apply(V var, int value, ICause cause)

Operations to execute when the decision is applied (left branch). It can throw an
ContradictionException if the application is not possible.

void unapply(V var, int value, ICause cause)

Operations to execute when the decision is refuted (right branch). It can throw an
ContradictionException if the application is not possible.

DecisionOperator opposite()

Opposite of the decision operator. Currently useless.

String toString()

A pretty print of the decision, for logging.

Most of the time, extending AbstractStrategy is not necessary. Using specific strategy dedicated to a type of
variable, such as IntStrategy is enough. The one above has an alternate constructor:

public IntStrategy(IntVar[] scope,
VariableSelector<IntVar> varSelector,
IntValueSelector valSelector,
DecisionOperator<IntVar> decOperator) {...}

And defining your own strategy is really crucial, start by copying/pasting an existing one. Indeed, decisions are stored
in pool managers to avoid creating too many decision objects, and thus garbage collecting too often.
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CHAPTER 16

Defining its own constraint

In Choco-3, constraints is basically a list of filtering algorithms, called propagators. A propagator is a function from
domains to domains which removes impossible values from variable domains.

16.1 Structure of a Propagator

A propagator needs to extends the Propagator abstract class. Then, a constructor and some methods have to be
implemented:

super(...)

a call to super() is mandatory. The list of variables (which determines the index of the variable in the
propagator) and the priority (for the propagation engine) are required. An optional boolean (true is the
default value) can be set to false to avoid reacting on fine events (see item void propagate(int
vIdx, int mask)). More precisely, if set to false, the propagator will only be informed of a modi-
fication of, at least, one of its variables, without knowing specifically which one(s) and what modifications
occurred.

Important: The array of variables given in parameter of a Propagator constructor is not cloned but referenced.
That is, if a permutation occurs in the array of variables, all propagators referencing the array will be incorrect.

ESat isEntailed()

This method is mandatory for reification. It checks whether the propagator will be always satisfied
(ESat.TRUE), never satisfied (ESat.FALSE) or undefined (ESat.UNDEFINED) according to the cur-
rent state of its domain variables and/or its internal structure. By default, it should consider the case
where all variables are instantiated. For instance, 𝐴 ̸= 𝐵 will always be satisfied when $A={0,1,2}$ and
𝐵 = {4, 5}. For instance, 𝐴 = 𝐵 will never be satisfied when 𝐴 = {0, 1, 2} and 𝐵 = {4, 5}. For
instance, entailment of 𝐴 ̸= 𝐵 cannot be defined when 𝐴 = {0, 1, 2} and 𝐵 = {1, 2, 3}.

This method is also called to check solutions when assertions are enabled, i.e. when the -ea JVM option is used.

void propagate(int evtmask)

This method applies the global filtering algorithm of the propagator, that is, from scratch. It is called
once during initial propagation and then on a call to forcePropagate(EventType). There
are two available types of event this method can receive: EventType.FULL\_PROPAGATION and
EventType.CUSTOM\_PROPAGATION. The latter is propagator-dependent and should be managed
by the developer when incrementality is enabled. Note that the forcePropagate() method will call
propagate(int) when the propagator does not have any pending events. In other words, it is called
once and for all, after many domain modifications.
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void propagate(int vIdx, int mask)

This method is the main entry point to the propagator during propagation. When the 𝑣𝐼𝑑𝑥𝑡ℎ vari-
able of the propagator is modified, data relative to the modification is stored for a future execu-
tion of the propagator. Then, when the propagation engine has to execute the propagator, a call
to this method is done with the data relative to the variable and its modifications. One can dele-
gate filtering algorithm to propagate(int) with a call to forcePropagate() (see item void
propagate(int evtmask)). However, developers have to be aware that a propagator will not be
informed of a modification it has generated itself. That’s why a propagator has to be idempotent (see
Section~nameref{properties}) or being aware not to be.

Note that, when conditions enable it, a call to setPassive() will deactivate the propagator temporary, during the
exploration of the sub search space. When the conditions are not met anymore, the propagator is activated again (i.e.
on backtrack).

int getPropagationConditions(int vIdx)

This method returns the specific mask indicating the variable events on which the propagator reacts for
the 𝑣𝐼𝑑𝑥𝑡ℎ variable. This method is related to propagate(int, int): a wrong mask prevents the
propagator from being informed of an event occurring on a variable. Event masks are not nested and all
event masks have to be defined.

16.2 Properties

We distinguish two kinds of propagators:

Basis propagators, that ensure constraints to be satisfied.

Redundant (or Implied) propagators that come in addition to some basis propagators, in order to get a
stronger filtering.

A basis propagator should be idempotent 1 . A redundant propagator does not have to be idempotent:

Some propagators cannot be idempotent because they are not even monotonic 2 (Lagrangian relaxation,
use of randomness, etc.),

Forcing to reach the fix point may decrease performances.

Important: A redundant propagator can directly return ESat.TRUE in the body of the isEntailed() method.
Indeed, it comes in addition to basis propagators that will already ensure constraint satisfaction.

16.3 How to make a propagator idempotent?

Trying to make a propagator idempotent directly may not be straightforward. We provide three implementation possi-
bilities.

The coarse option:

the propagator will perform its fix point by itself. The propagator does not react to fine events. The coarse
filtering algorithm should be surrounded like this:

1 idempotent: calling a propagator twice has no effect, i.e. calling it with its output domains returns its output domains. In that case, it has
reached a fix point.

2 monotonic: calling a propagator with two input domains 𝐴 and 𝐵 for which 𝐴 ⊆ 𝐵 returns two output domains 𝐴′ and 𝐵′ for which
𝐴′ ⊆ 𝐵′.
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long size;
do{

size = 0;
for(IntVar v:vars){
size+=v.getDomSize();

}
// really update domain variables here
for(IntVar v:vars){
size-=v.getDomSize();

}
}while(size>0);

Important: Domain variable modifier returns a boolean valued to true if the domain variable has been modified.

Important: In the case of SetVar or GraphVar, replace getDomSize() by
getEnvSize()-getKerSize().

The decomposed option:

Split the original propagator into many propagators so that the fix point is performed through the propa-
gation engine. For instance, a channeling propagator 𝐴 ⇔ 𝐵 can be decomposed into two propagators
𝐴 ⇒ 𝐵 and 𝐵 ⇒ 𝐴. The propagators can (but does not have to) react on fine events.

The lazy option:

(To be avoided has much as possible) simply post the propagator twice. Thus, the fix point is performed
through the propagation engine.
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CHAPTER 17

Ibex

“IBEX is a C++ library for constraint processing over real numbers.

It provides reliable algorithms for handling non-linear constraints. In particular, round off errors are also
taken into account. It is based on interval arithmetic and affine arithmetic.” – http://www.ibex-lib.org/

To manage continuous constraints with Choco, an interface with Ibex has been done. It needs Ibex to be installed on
your system. Then, simply declare the following VM options:

-Djava.library.path=/path/to/Ibex/lib

The path /path/to/Ibex/lib points to the lib directory of the Ibex installation directory.

17.1 Installing Ibex

See the installation instructions of Ibex to complied Ibex on your system. More spe-
cially, take a look at Installation as a dynamic library and do not forget to add the
--with-java-package=org.chocosolver.solver.constraints.real configuration option.

Once the installation is completed, the JVM needs to know where Ibex is installed to fully benefit from the Choco-Ibex
bridge and declare real variables and constraints.
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Part V

Elements of Choco
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CHAPTER 18

Constraints over integer variables

18.1 absolute

The absolute constraint involves two variables VAR1 and VAR2. It ensures that VAR1 = | VAR2 | .

API:

Constraint absolute(IntVar VAR1, IntVar VAR2)

Example

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 0, 2, solver);
3 IntVar Y = VF.enumerated("X", -6, 1, solver);
4 solver.post(ICF.absolute(X, Y));
5 solver.findAllSolutions();

The solutions of the problem are :

• X = 0, Y = 0

• X = 1, Y = -1

• X = 1, Y = 1

• X = 2, Y = -2

18.2 alldifferent

The alldifferent constraints involves two or more integer variables VARS and holds that all variables from VARS take a
different value. A signature offers the possibility to specify the filtering algorithm to use:

• "BC": filters on bounds only, based on [LopezOrtizQTvB03].

• "AC": filters on the entire domain of the variables, based on [Regin94]. It runs in O(m.n)

worst case time for the initial propagation. The average runtime of further propagations is O(n+m). - "DEFAULT":
uses "BC" plus a probabilistic "AC" propagator to get a compromise between "BC" and "AC".

See also: alldifferent in the Global Constraint Catalog.
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Implementation based on: [Regin94], [LopezOrtizQTvB03].

API:

Constraint alldifferent(IntVar[] VARS)
Constraint alldifferent(IntVar[] VARS, String CONSISTENCY)

Example

1 Solver solver = new Solver();
2 IntVar W = VF.enumerated("W", 0, 1, solver);
3 IntVar X = VF.enumerated("X", -1, 2, solver);
4 IntVar Y = VF.enumerated("Y", 2, 4, solver);
5 IntVar Z = VF.enumerated("Z", 5, 7, solver);
6 solver.post(ICF.alldifferent(new IntVar[]{W, X, Y, Z}));
7 solver.findAllSolutions();

Some solutions of the problem are :

• X = -1, Y = 2, Z = 5, W = 1

• X = 1, Y = 2, Z = 7, W = 0

• X = 2, Y = 3, Z = 5, W = 0

• X = 2, Y = 4, Z = 7, W = 1

18.3 alldifferent_conditionnal

The alldifferent_conditionnal constraint is a variation of the alldifferent constraint. It holds the alldifferent constraint
on the subset of variables VARS which satisfies the given condition CONDITION.

A simple example is the alldifferent_except_0 variation of the alldifferent constraint.

API:

Constraint alldifferent_conditionnal(IntVar[] VARS, Condition CONDITION)
Constraint alldifferent_conditionnal(IntVar[] VARS, Condition CONDITION, boolean AC)

One can force the AC algorithm to be used by calling the second signature.

Example

1 Solver solver = new Solver();
2 IntVar[] XS = VF.enumeratedArray("XS", 5, 0, 3, solver);
3 solver.post(ICF.alldifferent_conditionnal(XS,
4 x -> !x.contains(1) && !x.contains(3)));
5 Chatterbox.showSolutions(solver);
6 solver.findAllSolutions();
7 solver.findAllSolutions();

The condition in the example states that the values 1 and 3 can appear more than once, unlike other values.

Some solutions of the problem are :

• XS[0] = 0, XS[1] = 1, XS[2] = 1, XS[3] = 1, XS[4] = 1
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• XS[0] = 0, XS[1] = 1, XS[2] = 2, XS[3] = 1, XS[4] = 1

• XS[0] = 1, XS[1] = 2, XS[2] = 1, XS[3] = 1, XS[4] = 1

• XS[0] = 0, XS[1] = 1, XS[2] = 2, XS[3] = 3, XS[4] = 3

18.4 alldifferent_except_0

The alldifferent_except_0 involves an array of variables VARS. It ensures that all variables from VAR take a distinct
value or 0, that is, all values but 0 can’t appear more than once.

See also: alldifferent_except_0 in the Global Constraint Catalog.

API:

Constraint alldifferent_except_0(IntVar[] VARS)

Example

1 Solver solver = new Solver();
2 IntVar[] XS = VF.enumeratedArray("XS", 4, 0, 2, solver);
3 solver.post(ICF.alldifferent_except_0(XS));
4 solver.findAllSolutions();

Some solutions of the problem are :

• XS[0] = 0, XS[1] = 0, XS[2] = 0, XS[3] = 0

• XS[0] = 0, XS[1] = 1, XS[2] = 2, XS[3] = 0

• XS[0] = 0, XS[1] = 2, XS[2] = 0, XS[3] = 0

• XS[0] = 2, XS[1] = 1, XS[2] = 0, XS[3] = 0

18.5 among

The among constraint involves:

• an integer variable NVAR,

• an array of integer variables VARIABLES and

• an array of integers.

It holds that NVAR is the number of variables of the collection VARIABLES that take their value in VALUES.

See also: among in the Global Constraint Catalog.

Implementation based on: [BessiereHH+05].

API:

Constraint among(IntVar NVAR, IntVar[] VARS, int[] VALUES)

Example
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1 Solver solver = new Solver();
2 IntVar N = VF.enumerated("N", 2, 3, solver);
3 IntVar[] XS = VF.enumeratedArray("XS", 4, 0, 6, solver);
4 solver.post(ICF.among(N, XS, new int[]{1, 2, 3}));
5 solver.findAllSolutions();

Some solutions of the problem are :

• N = 2, XS[0] = 0, XS[1] = 0, XS[2] = 1, XS[3] = 1

• N = 2, XS[0] = 0, XS[1] = 1, XS[2] = 3, XS[3] = 6

• N = 3, XS[0] = 1, XS[1] = 1, XS[2] = 2, XS[3] = 4

• N = 3, XS[0] = 3, XS[1] = 2, XS[2] = 1, XS[3] = 0

18.6 arithm

The constraint arithm involves either:

• a integer variable VAR, an operator OP and a constant CST. It holds VAR OP CSTE, where CSTE must be chosen
in {"=", "!=", ">","<",">=","<="}.

• or two variables VAR1 and VAR2 and an operator OP. It ensures that VAR1 OP VAR2, where OP must be chosen
in {"=", "!=", ">","<",">=","<="} .

• or two variables VAR1 and VAR2, two operators OP1 and OP2 and an constant CSTE. The operators must be
different, taken from {"=", "!=", ">","<",">=","<="} or {"+", "-"}, the constarint ensures that
VAR1 OP1 VAR2 OP2 CSTE.

API:

Constraint arithm(IntVar VAR, String OP, int CSTE)
Constraint arithm(IntVar VAR1, String OP, IntVar VAR2)
Constraint arithm(IntVar VAR1, String OP1, IntVar VAR2, String OP2, int CSTE)

Example 1

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 1, 4, solver);
3 solver.post(ICF.arithm(X, ">", 2));
4 solver.findAllSolutions();

The solutions of the problem are :

• X = 3

• X = 4

Example 2

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 0, 2, solver);
3 IntVar Y = VF.enumerated("X", -6, 1, solver);
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4 solver.post(ICF.arithm(X, "<=", Y, "+", 1));
5 solver.findAllSolutions();

The solutions of the problem are :

• X = 0, Y = -1

• X = 0, Y = 0

• X = 0, Y = 1

• X = 1, Y = 0

• X = 1, Y = 1

• X = 2, Y = 1

18.7 atleast_nvalues

The atleast_nvalues constraint involves:

• an array of integer variables VARS,

• an integer variable NVALUES and

• a boolean AC.

Let N be the number of distinct values assigned to the variables of the VARS collection. The constraint enforces the
condition N ≥ NVALUES to hold. The boolean AC set to true enforces arc-consistency.

See also: atleast_nvalues in the Global Constraint Catalog.

Implementation based on: [Regin95].

API:

Constraint atleast_nvalues(IntVar[] VARS, IntVar NVALUES, boolean AC)

Example

1 Solver solver = new Solver();
2 IntVar[] XS = VF.enumeratedArray("XS", 4, 0, 2, solver);
3 IntVar N = VF.enumerated("N", 2, 3, solver);
4 solver.post(ICF.atleast_nvalues(XS, N, true));
5 solver.findAllSolutions();

Some solutions of the problem are :

• XS[0] = 0 XS[1] = 0 XS[2] = 0 XS[3] = 1 N = 2

• XS[0] = 0 XS[1] = 1 XS[2] = 0 XS[3] = 1 N = 2

• XS[0] = 0 XS[1] = 1 XS[2] = 2 XS[3] = 1 N = 2

• XS[0] = 2 XS[1] = 0 XS[2] = 2 XS[3] = 1 N = 3

• XS[0] = 2 XS[1] = 2 XS[2] = 1 XS[3] = 0 N = 3
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18.8 atmost_nvalues

The atmost_nvalues constraint involves:

• an array of integer variables VARS,

• an integer variable NVALUES and

• a boolean STRONG.

Let N be the number of distinct values assigned to the variables of the VARS collection. The constraint enforces the
condition N ≤ NVALUES to hold.

If the boolean STRONG is set to true, then the filtering algorithm of [FLapegue14] is added. It automatically detects
disequalities and alldifferent constraints. This propagator is more powerful but more time consuming as well. this is
presumably worthwhile when NVALUES must be minimized

See also: atmost_nvalues in the Global Constraint Catalog.

Implementation based on: [FLapegue14].

API:

Constraint atmost_nvalues(IntVar[] VARS, IntVar NVALUES, boolean GREEDY)

Example

1 Solver solver = new Solver();
2 IntVar[] XS = VF.enumeratedArray("XS", 4, 0, 2, solver);
3 IntVar N = VF.enumerated("N", 1, 3, solver);
4 solver.post(ICF.atmost_nvalues(XS, N, false));
5 solver.findAllSolutions();

Some solutions of the problem are :

• XS[0] = 0, XS[1] = 0, XS[2] = 0, XS[3] = 0, N = 1

• XS[0] = 0, XS[1] = 0, XS[2] = 0, XS[3] = 0, N = 2

• XS[0] = 0, XS[1] = 0, XS[2] = 0, XS[3] = 0, N = 3

• XS[0] = 0, XS[1] = 0, XS[2] = 0, XS[3] = 1, N = 2

• XS[0] = 0, XS[1] = 1, XS[2] = 1, XS[3] = 0, N = 2

• XS[0] = 2, XS[1] = 2, XS[2] = 1, XS[3] = 0, N = 3

18.9 bin_packing

The bin_packing constraint involves:

• an array of integer variables ITEM_BIN,

• an array of integers ITEM_SIZE,

• an array of integer variables BIN_LOAD and

• an integer OFFSET.
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It holds the Bin Packing Problem rules: a set of items with various SIZES to pack into bins with respect to the capacity
of each bin.

• ITEM_BIN represents the bin of each item, that is, ITEM_BIN[i] = j states that the i 𝑡ℎ ITEM is put in the j 𝑡ℎ

bin.

• ITEM_SIZE represents the size of each item.

• BIN_LOAD represents the load of each bin, that is, the sum of size of the items in it.

This constraint is not a built-in constraint and is based on various propagators.

See also: bin_packing in the Global Constraint Catalog.

API:

Constraint[] bin_packing(IntVar[] ITEM_BIN, int[] ITEM_SIZE, IntVar[] BIN_LOAD, int OFFSET)

Example

1 Solver solver = new Solver();
2 IntVar[] IBIN = VF.enumeratedArray("IBIN", 5, 1, 3, solver);
3 int[] sizes = new int[]{2, 3, 1, 4, 2};
4 IntVar[] BLOADS = VF.enumeratedArray("BLOADS", 3, 0, 5, solver);
5 solver.post(ICF.bin_packing(IBIN, sizes, BLOADS, 1));
6 solver.findAllSolutions();

Some solutions of the problem are :

• IBIN[0] = 1, IBIN[1] = 1, IBIN[2] = 2, IBIN[3] = 2, IBIN[4] = 3, BLOADS[0] = 5, BLOADS[1] = 5,
BLOADS[2] = 2

• IBIN[0] = 1, IBIN[1] = 3, IBIN[2] = 1, IBIN[3] = 2, IBIN[4] = 1, BLOADS[0] = 5, BLOADS[1] = 4,
BLOADS[2] = 3

• IBIN[0] = 2, IBIN[1] = 3, IBIN[2] = 1, IBIN[3] = 1, IBIN[4] = 3, BLOADS[0] = 5, BLOADS[1] = 2,
BLOADS[2] = 5

18.10 bit_channeling

The bit_channeling constraint involves:

• an array of boolean variables BVARS and

• an integer variable VAR.

It ensures that: VAR = 20× BITS[0] 21× BITS[1] + ... +:math:2^{n} times BITS[n]. BIT[0] is related to the first bit of
‘VAR (20), BIT[1] is related to the second bit of ‘VAR (21), etc. The upper bound of VAR is given by 2|𝐵𝐼𝑇𝑆|+1.

API:

Constraint bit_channeling(BoolVar[] BITS, IntVar VAR)

Example
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1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BVARS", 4, solver);
3 IntVar VAR = VF.enumerated("VAR", 0, 15, solver);
4 solver.post(ICF.bit_channeling(BVARS, VAR));
5 solver.findAllSolutions();

The solutions of the problem are :

• VAR = 0, BVARS[0] = 0, BVARS[1] = 0, BVARS[2] = 0, BVARS[3] = 0

• VAR = 1, BVARS[0] = 1, BVARS[1] = 0, BVARS[2] = 0, BVARS[3] = 0

• VAR = 2, BVARS[0] = 0, BVARS[1] = 1, BVARS[2] = 0, BVARS[3] = 0

• VAR = 11, BVARS[0] = 1, BVARS[1] = 1, BVARS[2] = 0, BVARS[3] = 1

• VAR = 15, BVARS[0] = 1, BVARS[1] = 1, BVARS[2] = 1, BVARS[3] = 1

18.11 boolean_channeling

The boolean_channeling constraint involves:

• an array of boolean variables BVARS,

• an integer variable VAR and

• an integer OFFSET.

It ensures that: VAR = i ⇔ BVARS [ i-OFFSET ] = 1. The OFFSET is typically set to 0.

API:

Constraint boolean_channeling(BoolVar[] BVARS, IntVar VAR, int OFFSET)

Example

1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BVARS", 5, solver);
3 IntVar VAR = VF.enumerated("VAR", 1, 5, solver);
4 solver.post(ICF.boolean_channeling(BVARS, VAR, 1));
5 solver.findAllSolutions();

The solutions of the problem are :

• VAR = 1, BVARS[0] = 1, BVARS[1] = 0, BVARS[2] = 0, BVARS[3] = 0, BVARS[4] = 0

• VAR = 2, BVARS[0] = 0, BVARS[1] = 1, BVARS[2] = 0, BVARS[3] = 0, BVARS[4] = 0

• VAR = 3, BVARS[0] = 0, BVARS[1] = 0, BVARS[2] = 1, BVARS[3] = 0, BVARS[4] = 0

• VAR = 4, BVARS[0] = 0, BVARS[1] = 0, BVARS[2] = 0, BVARS[3] = 1, BVARS[4] = 0

• VAR = 5, BVARS[0] = 0, BVARS[1] = 0, BVARS[2] = 0, BVARS[3] = 0, BVARS[4] = 1
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18.12 clause_channeling

The clause_channeling constraint involves:

• an integer variable VAR and

• two arrays of boolean variables EVARS and LVARS.

It ensures that: VAR = i ⇔ EVARS [ i - OFFSET ] = 1 and VAR ≤ i ⇔ LVARS [ i - OFFSET ] = 1 where OFFSET
is the initial lower bound of VAR.

API:

Constraint clause_channeling(IntVar VAR, BoolVar[] EVARS, BoolVar[] LVARS)

Example

1 Solver solver = new Solver();
2 IntVar iv = VF.enumerated("iv", 1, 3, solver);
3 BoolVar[] eqs = VF.boolArray("eq", 3, solver);
4 BoolVar[] lqs = VF.boolArray("lq", 3, solver);
5 solver.post(ICF.clause_channeling(iv, eqs, lqs));
6 solver.findAllSolutions();

The solutions of the problem are :

• VAR = 1, EVARS[0] = 1, EVARS[1] = 0, EVARS[2] = 0, LVARS[0] = 1, LVARS[1] = 1, LVARS[2] = 1

• VAR = 2, EVARS[0] = 0, EVARS[1] = 1, EVARS[2] = 0, LVARS[0] = 0, LVARS[1] = 1, LVARS[2] = 1

• VAR = 3, EVARS[0] = 0, EVARS[1] = 0, EVARS[2] = 1, LVARS[0] = 0, LVARS[1] = 0, LVARS[2] = 1

18.13 circuit

The circuit constraint involves:

• an array of integer variables VARS,

• an integer OFFSET and

• a configuration CONF.

It ensures that the elements of VARS define a covering circuit where VARS [i] = OFFSET + j means that j is the
successor of i.

The filtering algorithms are the subtour elimination of [CL97] (constant-time per propagation) and the alldifferent
GAC filtering of [Regin94]. In addition, depending on CONF, the dominator filtering of the tree (GAC) constraint
[FL11] and the strongly connected components filtering of the path constraint [CB04][FL12] may be added through a
dynamical circuit/path transformation.

The CONF is a defined by an enum:

• CircuitConf.LIGHT: no circuit/path transformation

• CircuitConf.FIRST: circuit/path transformation by duplicating the first node

• CircuitConf.RD: circuit/path transformation by duplicating a random node

• CircuitConf.ALL: circuit/path transformation by duplicating every node
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This implementation is detailed in [Fag14]

See also: circuit in the Global Constraint Catalog.

Implementation based on: [Regin94][CL97][CB04][FL12][FL11][Fag14].

API:

Constraint circuit(IntVar[] VARS, int OFFSET, CircuitConf CONF)
Constraint circuit(IntVar[] VARS, int OFFSET) // with CircuitConf.RD

Example

1 Solver solver = new Solver();
2 IntVar[] NODES = VF.enumeratedArray("NODES", 5, 0, 4, solver);
3 solver.post(ICF.circuit(NODES, 0, CircuitConf.LIGHT));
4 solver.findAllSolutions();

Some solutions of the problem are :

• NODES[0] = 1, NODES[1] = 2, NODES[2] = 3, NODES[3] = 4, NODES[4] = 0

• NODES[0] = 3, NODES[1] = 4, NODES[2] = 0, NODES[3] = 1, NODES[4] = 2

• NODES[0] = 4, NODES[1] = 2, NODES[2] = 3, NODES[3] = 0, NODES[4] = 1

• NODES[0] = 4, NODES[1] = 3, NODES[2] = 1, NODES[3] = 0, NODES[4] = 2

18.14 cost_regular

The cost_regular constraint involves:

• an array of integer variables VARS,

• an integer variable COST and

• a cost automaton CAUTOMATON.

It ensures that the assignment of a sequence of variables VARS is recognized by CAUTOMATON, a deterministic finite
automaton, and that the sum of the costs associated to each assignment is bounded by the cost variable. This version
allows to specify different costs according to the automaton state at which the assignment occurs (i.e. the transition
starts).

The CAUOTMATON can be defined using the org.chocosolver.solver.constraints.nary.automata.FA.CostAutomaton
either:

• by creating a CostAutomaton: once created, states should be added, then initial and final states are defined
and finally, transitions are declared.

• or by first creating a FiniteAutomaton and then creating a matrix of costs and finally calling one of the
following API from CostAutomaton:

– ICostAutomaton makeSingleResource(IAutomaton pi, int[][][] costs, int
inf, int sup)

– ICostAutomaton makeSingleResource(IAutomaton pi, int[][] costs, int
inf, int sup)
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The other API of CostAutomaton (makeMultiResources(...)) are dedicated to the multi-
cost_regular constraint.

Implementation based on: [DPR06].

API:

Constraint cost_regular(IntVar[] VARS, IntVar COST, ICostAutomaton CAUTOMATON)

Example

1 Solver solver = new Solver();
2 IntVar[] VARS = VF.enumeratedArray("VARS", 5, 0, 2, solver);
3 IntVar COST = VF.enumerated("COST", 0, 10, solver);
4 FiniteAutomaton fauto = new FiniteAutomaton();
5 int start = fauto.addState();
6 int end = fauto.addState();
7 fauto.setInitialState(start);
8 fauto.setFinal(start, end);
9

10 fauto.addTransition(start, start, 0, 1);
11 fauto.addTransition(start, end, 2);
12

13 fauto.addTransition(end, end, 1);
14 fauto.addTransition(end, start, 0, 2);
15

16 int[][] costs = new int[5][3];
17 costs[0] = new int[]{1, 2, 3};
18 costs[1] = new int[]{2, 3, 1};
19 costs[2] = new int[]{3, 1, 2};
20 costs[3] = new int[]{3, 2, 1};
21 costs[4] = new int[]{2, 1, 3};
22

23 solver.post(ICF.cost_regular(VARS, COST, CostAutomaton.makeSingleResource(fauto, costs, COST.getLB(), COST.getUB())));
24 solver.findAllSolutions();

Some solutions of the problem are :

• VARS[0] = 0, VARS[1] = 0, VARS[2] = 0, VARS[3] = 0, VARS[4] = 1, COST = 10

• VARS[0] = 0, VARS[1] = 0, VARS[2] = 0, VARS[3] = 1, VARS[4] = 1, COST = 9

• VARS[0] = 0, VARS[1] = 0, VARS[2] = 1, VARS[3] = 2, VARS[4] = 1, COST = 6

• VARS[0] = 1, VARS[1] = 2, VARS[2] = 1, VARS[3] = 0, VARS[4] = 1, COST = 8

18.15 count

The count constraint involves:

• an integer VALUE,

• an array of integer variables VARS and

• an integer variable LIMIT.

The constraint holds that LIMIT is equal to the number of variables from VARS assigned to the value VALUE. An
alternate signature enables VALUE to be an integer variable.
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See also: count in the Global Constraint Catalog.

API:

Constraint count(int VALUE, IntVar[] VARS, IntVar LIMIT)
Constraint count(IntVar VALUE, IntVar[] VARS, IntVar LIMIT)

Example

1 Solver solver = new Solver();
2 IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 3, solver);
3 IntVar VA = VF.enumerated("VA", new int[]{1, 3}, solver);
4 IntVar CO = VF.enumerated("CO", new int[]{0, 2, 4}, solver);
5 solver.post(ICF.count(VA, VS, CO));
6 solver.findAllSolutions();

Some solutions of the problem are :

• VS[0] = 0, VS[1] = 0, VS[2] = 0, VS[3] = 0, VA = 1, CO = 0

• VS[0] = 0, VS[1] = 1, VS[2] = 1, VS[3] = 0, VA = 1, CO = 2

• VS[0] = 0, VS[1] = 2, VS[2] = 2, VS[3] = 1, VA = 3, CO = 0

• VS[0] = 3, VS[1] = 3, VS[2] = 3, VS[3] = 3, VA = 3, CO = 4

18.16 cumulative

The cumulative constraints involves:

• an array of task object TASKS,

• an array of integer variable HEIGHTS,

• an integer variable CAPACITY and

• a boolean INCREMENTAL (graph-based self-decomposition of [FLP14]).

It ensures that at each point of the time the cumulative height of the set of tasks that overlap that point does not exceed
the given capacity.

See also: cumulative in the Global Constraint Catalog.

Implementation based on: [FLP14].

API:

Constraint cumulative(Task[] TASKS, IntVar[] HEIGHTS, IntVar CAPACITY)
Constraint cumulative(Task[] TASKS, IntVar[] HEIGHTS, IntVar CAPACITY, boolean INCREMENTAL)

The first API relies on the second, and set INCREMENTAL to TASKS.length > 500.

Example 1

1 Solver solver = new Solver();
2 Task[] TS = new Task[5];
3 IntVar[] HE = new IntVar[5];
4 for (int i = 0; i < TS.length; i++) {
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5 IntVar S = VF.bounded("S_" + i, 0, 4, solver);
6 TS[i] = VF.task(
7 S,
8 VF.fixed("D_" + i, i + 1, solver),
9 VF.offset(S, i + 1)

10 );
11 HE[i] = VF.bounded("HE_" + i, i - 1, i + 1, solver);
12 }
13 IntVar CA = VF.enumerated("CA", 1, 3, solver);
14 solver.post(ICF.cumulative(TS, HE, CA, true));
15 solver.findAllSolutions();

Some solutions of the problem are :

• S_0 = 0, HE_0 = 0, S_1 = 0, HE_1 = 0, S_2 = 0, HE_2 = 1, S_3 = 0, HE_3 = 2 S_4 = 4, HE_4 = 3, CA = 3

• S_0 = 4, HE_0 = 0, S_1 = 4, HE_1 = 0, S_2 = 1, HE_2 = 1, S_3 = 0, HE_3 = 2 S_4 = 4, HE_4 = 3, CA = 3

• S_0 = 0, HE_0 = 1, S_1 = 0, HE_1 = 0, S_2 = 1, HE_2 = 1, S_3 = 0, HE_3 = 2 S_4 = 4, HE_4 = 3, CA = 3

18.17 diffn

The diffn constraint involves:

• four arrays of integer variables X, Y, WIDTH and HEIGHT and

• a boolean USE_CUMUL.

It ensures that each rectangle i defined by its coordinates (X[i], Y[i]) and its dimensions (WIDTH[i], HEIGHT[i])
does not overlap each other. The option USE_CUMUL, recommended, indicates whether or not redundant cumulative
constraints should be added on each dimension.

See also: diffn in the Global Constraint Catalog.

Implementation based on: [FLP14].

API:

Constraint[] diffn(IntVar[] X, IntVar[] Y, IntVar[] WIDTH, IntVar[] HEIGHT, boolean USE_CUMUL)

Example 1

1 Solver solver = new Solver();
2 IntVar[] X = VF.boundedArray("X", 4, 0, 1, solver);
3 IntVar[] Y = VF.boundedArray("Y", 4, 0, 2, solver);
4 IntVar[] D = new IntVar[4];
5 IntVar[] W = new IntVar[4];
6 for (int i = 0; i < 4; i++) {
7 D[i] = VF.fixed("D_" + i, 1, solver);
8 W[i] = VF.fixed("W_" + i, i + 1, solver);
9 }

10 solver.post(ICF.diffn(X, Y, D, W, true));
11 solver.findAllSolutions();

Some solutions of the problem are :
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• X[0] = 0 X[1] = 1, X[2] = 0, X[3] = 1, Y[0] = 0, Y[1] = 0, Y[2] = 1, Y[3]

• X[0] = 1 X[1] = 0, X[2] = 1, X[3] = 0, Y[0] = 0, Y[1] = 0, Y[2] = 2, Y[3]

• X[0] = 0 X[1] = 1, X[2] = 0, X[3] = 1, Y[0] = 1, Y[1] = 0, Y[2] = 2, Y[3]

18.18 distance

The distance constraint involves either:

• two variables VAR1 and VAR2, an operator OP and a constant CSTE. It ensures that | VAR1 - VAR2 | OP CSTE,
where OP must be chosen in {"=", "!=", ">","<"} .

• or three variables VAR1, VAR2 and VAR3 and an operator OP. It ensures that | VAR1 - VAR2 | OP VAR3, where
OP must be chosen in {"=",">","<"} .

See also: distance in the Global Constraint Catalog.

API:

Constraint distance(IntVar VAR1, IntVar VAR2, String OP, int CSTE)
Constraint distance(IntVar VAR1, IntVar VAR2, String OP, IntVar VAR3)

Example 1

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 0, 2, solver);
3 IntVar Y = VF.enumerated("X", -3, 1, solver);
4 solver.post(ICF.distance(X, Y, "=", 1));
5 solver.findAllSolutions();

The solutions of the problem are :

• X = 0, Y = -1

• X = 0, Y = 1

• X = 1, Y = 0

• X = 2, Y = 1

Example 2

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 1, 3, solver);
3 IntVar Y = VF.enumerated("Y", -1, 1, solver);
4 IntVar Z = VF.enumerated("Z", 2, 3, solver);
5 solver.post(ICF.distance(X, Y, "<", Z));
6 solver.findAllSolutions();

The solutions of the problem are :

• X = 1, Y = 0, Z = 2

• X = 1, Y = 1, Z = 2

• X = 2, Y = 1, Z = 2
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• X = 1, Y = -1, Z = 3

• X = 1, Y = 0, Z = 3

• X = 1, Y = 1, Z = 3

• X = 2, Y = 0, Z = 3

• X = 2, Y = 1, Z = 3

• X = 3, Y = 1, Z = 3

18.19 element

The element constraint involves either:

• two variables VALUE and INDEX, an array of values TABLE, an offset OFFSET and an ordering property SORT.
SORT must be chosen among:

– "none": if values in TABLE are not sorted,

– "asc": if values in TABLE are sorted in increasing order,

– "desc": if values in TABLE are sorted in decreasing order,

– "detect": let the constraint detects the ordering of values in TABLE, if any (default value).

• or an integer variable VALUE, an array of integer variables TABLE, an integer variable INDEX and an integer
OFFSET.

The element constraint ensures that VALUE = TABLE [INDEX - OFFSET]. OFFSET matches INDEX.LB and TA-
BLE[0] (0 by default).

See also: element in the Global Constraint Catalog.

API:

Constraint element(IntVar VALUE, int[] TABLE, IntVar INDEX)
Constraint element(IntVar VALUE, int[] TABLE, IntVar INDEX, int OFFSET, String SORT)
Constraint element(IntVar VALUE, IntVar[] TABLE, IntVar INDEX, int OFFSET)

Example

1 Solver solver = new Solver();
2 IntVar V = VF.enumerated("V", -2, 2, solver);
3 IntVar I = VF.enumerated("I", 0, 5, solver);
4 solver.post(ICF.element(V, new int[]{2, -2, 1, -1, 0}, I, 0, "none"));
5 solver.findAllSolutions();

The solutions of the problem are :

• V = -2, I = 1

• V = -1, I = 3

• V = 0, I = 4

• V = 1, I = 2

• V = 2, I = 0
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18.20 eucl_div

The eucl_div constraints involves three variables DIVIDEND, DIVISOR and RESULT. It ensures that DIVIDEND /
DIVISOR = RESULT, rounding towards 0.

The API is :

Constraint eucl_div(IntVar DIVIDEND, IntVar DIVISOR, IntVar RESULT)

Example

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 1, 3, solver);
3 IntVar Y = VF.enumerated("Y", -1, 1, solver);
4 IntVar Z = VF.enumerated("Z", 2, 3, solver);
5 solver.post(ICF.eucl_div(X, Y, Z));
6 solver.findAllSolutions();

The solutions of the problem are :

• X = 2, Y = 1, Z = 2

• X = 3, Y = 1, Z = 3

18.21 FALSE

The FALSE constraint is always unsatisfied. It should only be used with LogicalFactory.

18.22 global_cardinality

The global_cardinality constraint involves:

• an array of integer variables VARS,

• an array of integer VALUES,

• an array of integer variables OCCURRENCES and

• a boolean CLOSED.

It ensures that each value VALUES[i] is taken by exactly OCCURRENCES[i] variables in VARS. The boolean CLOSED
set to true restricts the domain of VARS to the values defined in VALUES.

The underlying propagator does not ensure any well-defined level of consistency.

See also: global_cardinality in the Global Constraint Catalog.

API:

Constraint global_cardinality(IntVar[] VARS, int[] VALUES, IntVar[] OCCURRENCES, boolean CLOSED)

Example
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1 Solver solver = new Solver();
2 IntVar[] VS = VF.boundedArray("VS", 4, 0, 4, solver);
3 int[] values = new int[]{-1, 1, 2};
4 IntVar[] OCC = VF.boundedArray("OCC", 3, 0, 2, solver);
5 solver.post(ICF.global_cardinality(VS, values, OCC, true));
6 solver.findAllSolutions();

The solutions of the problem are :

• VS[0] = 1, VS[1] = 1, VS[2] = 2, VS[3] = 2, OCC[0] = 0, OCC[1] = 2, OCC[2] = 2

• VS[0] = 1, VS[1] = 2, VS[2] = 1, VS[3] = 2, OCC[0] = 0, OCC[1] = 2, OCC[2] = 2

• VS[0] = 1, VS[1] = 2, VS[2] = 2, VS[3] = 1, OCC[0] = 0, OCC[1] = 2, OCC[2] = 2

• VS[0] = 2, VS[1] = 1, VS[2] = 1, VS[3] = 2, OCC[0] = 0, OCC[1] = 2, OCC[2] = 2

• VS[0] = 2, VS[1] = 1, VS[2] = 2, VS[3] = 1, OCC[0] = 0, OCC[1] = 2, OCC[2] = 2

• VS[0] = 2, VS[1] = 2, VS[2] = 1, VS[3] = 1, OCC[0] = 0, OCC[1] = 2, OCC[2] = 2

18.23 inverse_channeling

The inverse_channeling constraint involves:

• two arrays of integer variables VARS1 and VARS2 and

• two integers OFFSET1 and OFFSET2.

It ensures that VARS1[i - OFFSET2] = j ⇔ VARS2[j - OFFSET1] = i. It performs AC if the domains are enumerated.
Otherwise, BC is not guaranteed. It also automatically imposes one alldifferent constraints on each array of variables.

API:

Constraint inverse_channeling(IntVar[] VARS1, IntVar[] VARS2, int OFFSET1, int OFFSET2)

Example

1 Solver solver = new Solver();
2 IntVar[] X = VF.enumeratedArray("X", 3, 0, 3, solver);
3 IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 4, solver);
4 solver.post(ICF.inverse_channeling(X, Y, 0, 1));
5 solver.findAllSolutions();

The solutions of the problems are:

• X[0] = 0, X[1] = 1, X[2] = 2, Y[0] = 1, Y[1] = 2, Y[2] = 3

• X[0] = 0, X[1] = 2, X[2] = 1, Y[0] = 1, Y[1] = 3, Y[2] = 2

• X[0] = 1, X[1] = 0, X[2] = 2, Y[0] = 2, Y[1] = 1, Y[2] = 3

• X[0] = 1, X[1] = 2, X[2] = 0, Y[0] = 3, Y[1] = 1, Y[2] = 2

• X[0] = 2, X[1] = 0, X[2] = 1, Y[0] = 2, Y[1] = 3, Y[2] = 1

• X[0] = 2, X[1] = 1, X[2] = 0, Y[0] = 3, Y[1] = 2, Y[2] = 1
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18.24 knapsack

The knapsack constraint involves: - an array of integer variables OCCURRENCES, - an integer variable TO-
TAL_WEIGHT, - an integer variable TOTAL_ENERGY, - an array of integers WEIGHT and - an an array of integers
ENERGY.

It formulates the Knapsack Problem: to determine the count of each item to include in a collection so that the total
weight is less than or equal to a given limit and the total value is as large as possible.

•
∑︀

OCCURRENCES[i] × WEIGHT[i] ≤ TOTAL_WEIGHT and

•
∑︀

OCCURRENCES[i] × ENERGY[i] = TOTAL_ENERGY.

API:

Constraint knapsack(IntVar[] OCCURRENCES, IntVar TOTAL_WEIGHT, IntVar TOTAL_ENERGY,
int[] WEIGHT, int[] ENERGY)

Example

1 Solver solver = new Solver();
2 IntVar[] IT = new IntVar[3]; // 3 items
3 IT[0] = VF.bounded("IT_0", 0, 3, solver);
4 IT[1] = VF.bounded("IT_1", 0, 2, solver);
5 IT[2] = VF.bounded("IT_2", 0, 1, solver);
6 IntVar WE = VF.bounded("WE", 0, 8, solver);
7 IntVar EN = VF.bounded("EN", 0, 6, solver);
8 int[] weights = new int[]{1, 3, 4};
9 int[] energies = new int[]{1, 4, 6};

10 solver.post(ICF.knapsack(IT, WE, EN, weights, energies));
11 solver.findAllSolutions();

Some solutions of the problems are:

• IT_0 = 0, IT_1 = 0, IT_2 = 0, WE = 0, EN = 0

• IT_0 = 3, IT_1 = 0, IT_2 = 0, WE = 3, EN = 3

• IT_0 = 1, IT_1 = 1, IT_2 = 0, WE = 4, EN = 5

• IT_0 = 2, IT_1 = 1, IT_2 = 0, WE = 5, EN = 6

18.25 lex_chain_less

The lex_chain_less constraint involves a matrix of integer variables VARS. It ensures that, for each pair of consecutive
arrays VARS[i] and VARS[i+1], VARS[i] is lexicographically strictly less than VARS[i+1].

See also: lex_chain_less in the Global Constraint Catalog.

Implementation based on: [CB02].

API:

Constraint lex_chain_less(IntVar[]... VARS)

Example
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1 Solver solver = new Solver();
2 IntVar[] X = VF.enumeratedArray("X", 3, -1, 1, solver);
3 IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 2, solver);
4 IntVar[] Z = VF.enumeratedArray("Z", 3, 0, 2, solver);
5 solver.post(ICF.lex_chain_less(X, Y, Z));
6 solver.findAllSolutions();

Some solutions of the problems are:

• X[0] = -1, X[1] = -1, X[2] = -1, Y[0] = 1, Y[1] = 1, Y[2] = 1, Z[0] = 1, Z[1] = 1, Z[2] = 2

• X[0] = 0, X[1] = 1, X[2] = -1, Y[0] = 1, Y[1] = 1, Y[2] = 1, Z[0] = 1, Z[1] = 2, Z[2] = 0

• X[0] = 1, X[1] = 0, X[2] = 1, Y[0] = 1, Y[1] = 1, Y[2] = 1, Z[0] = 1, Z[1] = 2, Z[2] = 0

• X[0] = -1, X[1] = 1, X[2] = 1, Y[0] = 1, Y[1] = 1, Y[2] = 1, Z[0] = 2, Z[1] = 2, Z[2] = 1

18.26 lex_chain_less_eq

The lex_chain_less_eq constraint involves a matrix of integer variables VARS. It ensures that, for each pair of consec-
utive arrays VARS[i] and VARS[i+1], VARS[i] is lexicographically strictly less or equal than VARS[i+1].

See also: lex_chain_less_eq in the Global Constraint Catalog.

Implementation based on: [CB02].

API:

Constraint lex_chain_less_eq(IntVar[]... VARS)

Example

1 Solver solver = new Solver();
2 IntVar[] X = VF.enumeratedArray("X", 3, -1, 1, solver);
3 IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 2, solver);
4 IntVar[] Z = VF.enumeratedArray("Z", 3, 0, 2, solver);
5 solver.post(ICF.lex_chain_less_eq(X, Y, Z));
6 solver.findAllSolutions();

Some solutions of the problems are:

• X[0] = -1, X[1] = -1, X[2] = -1, Y[0] = 1, Y[1] = 1, Y[2] = 1, Z[0] = 1, Z[1] = 1, Z[2] = 1

• X[0] = -1, X[1] = 1, X[2] = 1, Y[0] = 1, Y[1] = 1, Y[2] = 1, Z[0] = 1, Z[1] = 1, Z[2] = 1

• X[0] = 0, X[1] = 1, X[2] = -1, Y[0] = 1, Y[1] = 1, Y[2] = 1, Z[0] = 2, Z[1] = 1, Z[2] = 2

• X[0] = -1, X[1] = -1, X[2] = 0, Y[0] = 1, Y[1] = 1, Y[2] = 2, Z[0] = 2, Z[1] = 2, Z[2] = 2

18.27 lex_less

The lex_less constraint involves two arrays of integer variables VARS1 and VARS2. It ensures that VARS1 is lexico-
graphically strictly less than VARS2.
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See also: lex_less in the Global Constraint Catalog.

Implementation based on: [FHK+02].

API:

Constraint lex_less(IntVar[] VARS1, IntVar[] VARS2)

Example

1 Solver solver = new Solver();
2 IntVar[] X = VF.enumeratedArray("X", 3, -1, 1, solver);
3 IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 2, solver);
4 solver.post(ICF.lex_less(X, Y));
5 solver.findAllSolutions();

Some solutions of the problems are:

• X[0] = -1, X[1] = -1, X[2] = -1, Y[0] = 1, Y[1] = 1, Y[2] = 1

• X[0] = -1, X[1] = 0, X[2] = 0, Y[0] = 1, Y[1] = 2, Y[2] = 1

• X[0] = -1, X[1] = 0, X[2] = -1, Y[0] = 2, Y[1] = 1, Y[2] = 1

• X[0] = -1, X[1] = -1, X[2] = 0, Y[0] = 2, Y[1] = 2, Y[2] = 2

18.28 lex_less_eq

The lex_less_eq constraint involves two arrays of integer variables VARS1 and VARS2. It ensures that VARS1 is
lexicographically strictly less or equal than VARS2.

See also: lex_less_eq in the Global Constraint Catalog.

Implementation based on: [FHK+02].

API:

Constraint lex_less_eq(IntVar[] VARS1, IntVar[] VARS2)

Example

1 Solver solver = new Solver();
2 IntVar[] X = VF.enumeratedArray("X", 3, -1, 1, solver);
3 IntVar[] Y = VF.enumeratedArray("Y", 3, 1, 2, solver);
4 solver.post(ICF.lex_less_eq(X, Y));
5 solver.findAllSolutions();

Some solutions of the problems are:

• X[0] = -1, X[1] = -1, X[2] = -1, Y[0] = 1, Y[1] = 1, Y[2] = 1

• X[0] = 1, X[1] = -1, X[2] = -1, Y[0] = 1, Y[1] = 1, Y[2] = 1

• X[0] = 0, X[1] = 0, X[2] = 0, Y[0] = 2, Y[1] = 1, Y[2] = 2

• X[0] = 1, X[1] = 1, X[2] = 1, Y[0] = 2, Y[1] = 2, Y[2] = 2
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18.29 maximum

The maximum constraints involves a set of integer variables and a third party integer variable, either:

• two integer variables VAR1 and VAR2 and an integer variable MAX, it ensures that MAX‘= maximum(‘VAR1,
VAR2).

• or an array of integer variables VARS and an integer variable MAX, it ensures that MAX is the maximum value
of the collection of domain variables VARS.

• or an array of boolean variables BVARS and a booean variable MAX, it ensures that MAX is the maximum value
of the collection of boolean variables BVARS.

See also: maximum in the Global Constraint Catalog.

API:

Constraint maximum(IntVar MAX, IntVar VAR1, IntVar VAR2)
Constraint maximum(IntVar MAX, IntVar[] VARS)
Constraint maximum(BoolVar MAX, BoolVar[] VARS)

Example

1 Solver solver = new Solver();
2 IntVar MAX = VF.enumerated("MAX", 1, 3, solver);
3 IntVar Y = VF.enumerated("Y", -1, 1, solver);
4 IntVar Z = VF.enumerated("Z", 2, 3, solver);
5 solver.post(ICF.maximum(MAX, Y, Z));
6 solver.findAllSolutions();

The solutions of the problem are :

• MAX = 2, Y = -1, Z = 2

• MAX = 2, Y = 0, Z = 2

• MAX = 2, Y = 1, Z = 2

• MAX = 3, Y = -1, Z = 3

• MAX = 3, Y = 0, Z = 3

• MAX = 3, Y = 1, Z = 3

18.30 mddc

A constraint which restricts the values a variable can be assigned to the solutions encoded with a multi-valued decision
diagram.

Implementation based on: [CY08].

API:

Constraint mddc(IntVar[] VARS, MultivaluedDecisionDiagram MDD)

Example
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1 Solver solver = new Solver();
2 IntVar[] vars = VF.enumeratedArray("X", 2, -2, 2, solver);
3 Tuples tuples = new Tuples();
4 tuples.add(0, -1);
5 tuples.add(1, -1);
6 tuples.add(0, 1);
7 solver.post(ICF.mddc(vars, new MultivaluedDecisionDiagram(vars, tuples)));
8 solver.findAllSolutions();

The solutions of the problem are :

• X[0] = 0, X[1] = -1

• X[0] = 0, X[1] = 1,

• X[0] = 1, X[1] = -1

18.31 member

A constraint which restricts the values a variable can be assigned to with respect to either:

• a given list of values, it involves a integer variable VAR and an array of distinct values TABLE. It ensures that
VAR takes its values in TABLE.

• or two bounds (included), it involves a integer variable VAR and two integer LB and UB. It ensures that VAR
takes its values in [LB, UB].

API:

Constraint member(IntVar VAR, int[] TABLE)
Constraint member(IntVar VAR, int LB, int UB)

Example 1

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 1, 4, solver);
3 solver.post(ICF.member(X, new int[]{-2, -1, 0, 1, 2}));
4 solver.findAllSolutions();

The solutions of the problem are :

• X = 1

• X = 2

Example 2

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 1, 4, solver);
3 solver.post(ICF.member(X, 2, 5));
4 solver.findAllSolutions();

The solutions of the problem are :
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• X = 2

• X = 3

• X = 4

18.32 minimum

The minimum constraints involves a set of integer variables and a third party integer variable, either:

• two integer variables VAR1 and VAR2 and an integer variable MIN, it ensures that MIN‘= minimum(‘VAR1,
VAR2).

• or an array of integer variables VARS and an integer variable MIN, it ensures that MIN is the minimum value of
the collection of domain variables VARS.

• or an array of boolean variables BVARS and a booean variable MIN, it ensures that MIN is the minimum value
of the collection of boolean variables BVARS.

See also: minimum in the Global Constraint Catalog.

API: :: Constraint minimum(IntVar MIN, IntVar VAR1, IntVar VAR2) Constraint minimum(IntVar MIN, IntVar[]
VARS) Constraint minimum(BoolVar MIN, BoolVar[] VARS)

Example

1 Solver solver = new Solver();
2 IntVar MIN = VF.enumerated("MIN", 1, 3, solver);
3 IntVar Y = VF.enumerated("Y", -1, 1, solver);
4 IntVar Z = VF.enumerated("Z", 2, 3, solver);
5 solver.post(ICF.minimum(MIN, Y, Z));
6 solver.findAllSolutions();

The solutions of the problem are :

• MIN = 2, Y = -1, Z = 2

• MIN = 2, Y = 0, Z = 2

• MIN = 2, Y = 1, Z = 2

• MIN = 3, Y = -1, Z = 3

• MIN = 3, Y = 0, Z = 3

• MIN = 3, Y = 1, Z = 3

18.33 mod

The mod constraints involves three variables X, Y and Z. It ensures that X mod Y = Z. There is no native constraint
for mod, so this is reformulated with the help of additional variables.

The API is :

Constraint mod(IntVar X, IntVar Y, IntVar Z)
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Example

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 2, 4, solver);
3 IntVar Y = VF.enumerated("Y", -1, 4, solver);
4 IntVar Z = VF.enumerated("Z", 1, 3, solver);
5 solver.post(ICF.mod(X, Y, Z));
6 solver.findAllSolutions();

The solutions of the problem are :

• X = 2, Y = 3, Z = 2

• X = 2, Y = 4, Z = 2

• X = 3, Y = 2, Z = 1

• X = 3, Y = 4, Z = 3

• X = 4, Y = 3, Z = 1

18.34 multicost_regular

The multicost_regular constraint involves:

• an array of integer variables VARS,

• an array of integer variables CVARS and

• a cost automaton CAUTOMATON.

It ensures that the assignment of a sequence of variables VARS is recognized by CAUTOMATON, a deterministic finite
automaton, and that the sum of the cost array associated to each assignment is bounded by the CVARS. This version
allows to specify different costs according to the automaton state at which the assignment occurs (i.e. the transition
starts).

The CAUOTMATON can be defined using the org.chocosolver.solver.constraints.nary.automata.FA.CostAutomaton
either:

• by creating a CostAutomaton: once created, states should be added, then initial and final states are defined
and finally, transitions are declared.

• or by first creating a FiniteAutomaton and then creating a matrix of costs and finally calling one of the
following API from CostAutomaton:

– ICostAutomaton makeMultiResources(IAutomaton pi, int[][][]
layer_value_resource, int[] infs, int[] sups)

– ICostAutomaton makeMultiResources(IAutomaton pi, int[][][][]
layer_value_resource_state, int[] infs, int[] sups)

– ICostAutomaton makeMultiResources(IAutomaton auto, int[][][][] c,
IntVar[] z)

– ICostAutomaton makeMultiResources(IAutomaton auto, int[][][] c,
IntVar[] z)

The other API of CostAutomaton (makeSingleResource(...)) are dedicated to the
cost_regular constraint.
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Implementation based on: [MD09].

API:

Constraint multicost_regular(IntVar[] VARS, IntVar[] CVARS, ICostAutomaton CAUTOMATON)

Example
TBD

18.35 not_member

A constraint which prevents a variable to be assigned to some values defined by either:

• a list of values, it involves a integer variable VAR and an array of distinct values TABLE. It ensures that VAR
does not take its values in TABLE.

• two bounds (included), it involves a integer variable VAR and two integer LB and UB. It ensures that VAR does
not take its values in [LB, UB].

The constraint

API:

Constraint not_member(IntVar VAR, int[] TABLE)
Constraint not_member(IntVar VAR, int LB, int UB)

Example 1

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 1, 4, solver);
3 solver.post(ICF.not_member(X, new int[]{-2, -1, 0, 1, 2}));
4 solver.findAllSolutions();

The solutions of the problem are :

• X = 3

• X = 4

Example

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 1, 4, solver);
3 solver.post(ICF.not_member(X, 2, 5));
4 solver.findAllSolutions();

The solution of the problem is :

• X = 1
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18.36 nvalues

The nvalues constraint involves:

• an array of integer variables VARS and

• an integer variable NVALUES.

The constraint ensures that NVALUES is the number of distinct values assigned to the variables of the VARS array.
This constraint is a combination of the atleast_nvalues and atmost_nvalues constraints.

This constraint is not a built-in constraint and is based on various propagators.

See also: nvalues in the Global Constraint Catalog.

Implementation based on: atleast_nvalues and atmost_nvalues.

API:

Constraint[] nvalues(IntVar[] VARS, IntVar NVALUES)

Example

1 Solver solver = new Solver();
2 IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 2, solver);
3 IntVar N = VF.enumerated("N", 0, 3, solver);
4 solver.post(ICF.nvalues(VS, N));
5 solver.findAllSolutions();

Some solutions of the problem are :

• VS[0] = 0 VS[1] = 0 VS[2] = 0 VS[3] = 0 N = 1

• VS[0] = 0 VS[1] = 0 VS[2] = 0 VS[3] = 1 N = 2

• VS[0] = 0 VS[1] = 1 VS[2] = 2 VS[3] = 2 N = 3

18.37 path

The path constraint involves:

• an array of integer variables VARS,

• an integer variable START,

• an integer variable END and

• an integer OFFSET.

It ensures that the elements of VARS define a covering path from START to END, where VARS[i] = OFFSET + j means
that j is the successor of i. Moreover, VARS[END-OFFSET] = |‘VARS‘ |+ OFFSET.

The constraint relies on the circuit propagators.

See also: path in the Global Constraint Catalog.

Implementation based on: circuit.

API:

104 Chapter 18. Constraints over integer variables

http://sofdem.github.io/gccat/gccat/Cnvalues.html
http://sofdem.github.io/gccat/gccat/Cpath.html


Choco3 Documentation, Release 3.3.1

Constraint[] path(IntVar[] VARS, IntVar START, IntVar END, int OFFSET)

Example

1 Solver solver = new Solver();
2 IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
3 IntVar S = VF.enumerated("S", 0, 3, solver);
4 IntVar E = VF.enumerated("E", 0, 3, solver);
5 solver.post(ICF.path(VS, S, E, 0));
6 solver.findAllSolutions();

Some solutions of the problem are :

• VS[0] = 1, VS[1] = 2, VS[2] = 3, VS[3] = 4, S = 0, E = 3

• VS[0] = 1, VS[1] = 3, VS[2] = 0, VS[3] = 4, S = 2, E = 3

• VS[0] = 3, VS[1] = 4, VS[2] = 0, VS[3] = 1, S = 2, E = 1

• VS[0] = 4, VS[1] = 3, VS[2] = 1, VS[3] = 0, S = 2, E = 0

18.38 regular

The regular constraint involves:

• an array of integer variables VARS and

• a deterministic finite automaton AUTOMATON.

It enforces the sequences of VARS to be a word recognized by AUTOMATON.

There are various ways to declare the automaton:

• create a FiniteAutomaton and add states, initial and final ones and transitions (see FiniteAutomaton
API for more details),

• create a FiniteAutomaton with a regexp as argument.

Beware: FiniteAutomaton only handles values between 0 and 65535, because it relies on java.Character.

Implementation based on: [Pes04].

API:

Constraint regular(IntVar[] VARS, IAutomaton AUTOMATON)

Example

1 Solver solver = new Solver();
2 IntVar[] CS = VF.enumeratedArray("CS", 4, 1, 5, solver);
3 solver.post(ICF.regular(CS,
4 new FiniteAutomaton("(1|2)(3*)(4|5)")));
5 solver.findAllSolutions();

The solutions of the problem are :

• CS[0] = 1, CS[1] = 3, CS[2] = 3, CS[3] = 4
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• CS[0] = 1, CS[1] = 3, CS[2] = 3, CS[3] = 5

• CS[0] = 2, CS[1] = 3, CS[2] = 3, CS[3] = 4

• CS[0] = 2, CS[1] = 3, CS[2] = 3, CS[3] = 5

18.39 scalar

The scalar constraint involves:

• an array of integer variables VARS,

• an array of integer COEFFS,

• an optional operator OPERATOR and

• an integer variable SCALAR.

It ensures that sum(VARS[i]*COEFFS[i]) OPERATOR SCALAR; where OPERATOR must be chosen from {"=",
"!=", ">","<",">=","<="}. The scalar constraint filters on bounds only. The constraint suppress variables
with coefficients set to 0, recognizes sum (when all coefficients are equal to -1, or all equal to -1), and enables, under
certain conditions, to reformulate the constraint with a table constraint providint AC filtering algorithm.

See also: scalar_product in the Global Constraint Catalog.

Implementation based on: [HS02].

API:

Constraint scalar(IntVar[] VARS, int[] COEFFS, IntVar SCALAR)
Constraint scalar(IntVar[] VARS, int[] COEFFS, String OPERATOR, IntVar SCALAR)

Example

1 Solver solver = new Solver();
2 IntVar[] CS = VF.enumeratedArray("CS", 4, 1, 4, solver);
3 int[] coeffs = new int[]{1, 2, 3, 4};
4 IntVar R = VF.bounded("R", 0, 20, solver);
5 solver.post(ICF.scalar(CS, coeffs, R));
6 solver.findAllSolutions();

Some solutions of the problem are :

• CS[0] = 1, CS[1] = 1, CS[2] = 1, CS[3] = 1, R = 10

• CS[0] = 1, CS[1] = 2, CS[2] = 3, CS[3] = 1, R = 18

• CS[0] = 1, CS[1] = 4, CS[2] = 2, CS[3] = 1, R = 19

• CS[0] = 1, CS[1] = 2, CS[2] = 1, CS[3] = 3, R = 20

18.40 sort

The sort constraint involves two arrays of integer variables VARS and SORTEDVARS. It ensures that the variables of
SORTEDVARS correspond to the variables of VARS according to a permutation. Moreover, the variable of SORTED-
VARS are sorted in increasing order.
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See also: sort in the Global Constraint Catalog.

Implementation based on: [MT00].

API:

Constraint sort(IntVar[] VARS, IntVar[] SORTEDVARS)

Example

1 Solver solver = new Solver();
2 IntVar[] X = VF.enumeratedArray("X", 3, 0, 2, solver);
3 IntVar[] Y = VF.enumeratedArray("Y", 3, 0, 2, solver);
4 solver.post(ICF.sort(X, Y));
5 solver.findAllSolutions();

Some solutions of the problem are :

• X[0] = 0, X[1] = 0, X[2] = 0, Y[0] = 0, Y[1] = 0, Y[2] = 0

• X[0] = 1, X[1] = 0, X[2] = 2, Y[0] = 0, Y[1] = 1, Y[2] = 2

• X[0] = 2, X[1] = 1, X[2] = 0, Y[0] = 0, Y[1] = 1, Y[2] = 2

• X[0] = 2, X[1] = 1, X[2] = 2, Y[0] = 1, Y[1] = 2, Y[2] = 2

18.41 square

The square constraint involves two variables VAR1 and VAR2. It ensures that VAR1 = VAR22.

API:

Constraint square(IntVar VAR1, IntVar VAR2)

Example

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 0, 5, solver);
3 IntVar Y = VF.enumerated("Y", -1, 3, solver);
4 solver.post(ICF.square(X, Y));
5 solver.findAllSolutions();

The solutions of the problem are :

• X = 1, Y = -1

• X = 0, Y = 0

• X = 1, Y = 1

• X = 4, Y = 2
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18.42 subcircuit

The subcircuit constraint involves:

• an array of integer variables VARS,

• an integer OFFSET and

• an integer variable SUBCIRCUIT_SIZE.

It ensures that the elements of VARS define a single circuit of SUBCIRCUIT_SIZE nodes where:

• VARS[i] = OFFSET+j means that j is the successor of i,

• VARS[i] = OFFSET+i means that i is not part of the circuit.

It also ensures that | {VARS[i] ̸= OFFSET+i} | = SUBCIRCUIT_SIZE.

Implementation based on: circuit.

API:

Constraint subcircuit(IntVar[] VARS, int OFFSET, IntVar SUBCIRCUIT_SIZE)

Example

1 Solver solver = new Solver();
2 IntVar[] NODES = VF.enumeratedArray("NS", 5, 0, 4, solver);
3 IntVar SI = VF.enumerated("SI", 2, 3, solver);
4 solver.post(ICF.subcircuit(NODES, 0, SI));
5 solver.findAllSolutions();

Some solutions of the problem are :

• NS[0] = 0, NS[1] = 1, NS[2] = 2, NS[3] = 4, NS[4] = 3, SI = 2

• NS[0] = 4, NS[1] = 1, NS[2] = 2, NS[3] = 3, NS[4] = 0, SI = 2

• NS[0] = 1, NS[1] = 2, NS[2] = 0, NS[3] = 3, NS[4] = 4, SI = 3

• NS[0] = 3, NS[1] = 1, NS[2] = 2, NS[3] = 4, NS[4] = 0, SI = 3

18.43 subpath

The subpath constraint involves:

• an array of integer variables VARS,

• an integer variable START,

• an integer variable END,

• an integer OFFSET and

• an integer variable SIZE.

It ensures that the elements of VARS define a path of SIZE vertices, leading from START to END where:

• VARS[i] = OFFSET+j means that j is the successor of i,

• VARS[i] = OFFSET+i means that vertex i is excluded from the path.
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Moreover, VARS[END-OFFSET] = | VARS | +‘OFFSET‘.

See also: subpath in the Global Constraint Catalog.

Implementation based on: path, circuit.

API:

Constraint[] subpath(IntVar[] VARS, IntVar START, IntVar END, int OFFSET, IntVar SIZE)

Example

1 Solver solver = new Solver();
2 IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
3 IntVar S = VF.enumerated("S", 0, 3, solver);
4 IntVar E = VF.enumerated("E", 0, 3, solver);
5 IntVar SI = VF.enumerated("SI", 2, 3, solver);
6 solver.post(ICF.subpath(VS, S, E, 0, SI));
7 solver.findAllSolutions();

Some solutions of the problem are :

• VS[0] = 1, VS[1] = 4, VS[2] = 2, VS[3] = 3, S = 0, E = 1, SI = 2

• VS[0] = 4, VS[1] = 1, VS[2] = 2, VS[3] = 0, S = 3, E = 0, SI = 2

• VS[0] = 3, VS[1] = 1, VS[2] = 4, VS[3] = 2, S = 0, E = 2, SI = 3

• VS[0] = 0, VS[1] = 2, VS[2] = 4, VS[3] = 1, S = 3, E = 2, SI = 3

18.44 sum

The sum constraint involves:

• an array of integer (or boolean) variables VARS,

• an optional operator OPERATOR and

• an integer variable SUM.

It ensures that sum(VARS[i]) OPERATOR SUM; where operator must be chosen among {"=", "!=",
">","<",">=","<="}. If no operator is defined, "=" is set by default. Note that when the operator differs
from "=", an intermediate variable is declared and an arithm constraint is returned. For performance reasons, a
specialization for boolean variables is provided.

See also: scalar_product in the Global Constraint Catalog.

Implementation based on: [HS02].

API:

Constraint sum(IntVar[] VARS, IntVar SUM)
Constraint sum(IntVar[] VARS, String OPERATOR, IntVar SUM)
Constraint sum(BoolVar[] VARS, IntVar SUM)
Constraint sum(BoolVar[] VARS, String OPERATOR, IntVar SUM)

Example
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1 Solver solver = new Solver();
2 IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
3 IntVar SU = VF.enumerated("SU", 2, 3, solver);
4 solver.post(ICF.sum(VS, "<=", SU));
5 solver.findAllSolutions();

Some solutions of the problem are :

• VS[0] = 0 VS[1] = 0 VS[2] = 0 VS[3] = 0 SU = 2

• VS[0] = 0 VS[1] = 0 VS[2] = 0 VS[3] = 2 SU = 2

• VS[0] = 0 VS[1] = 0 VS[2] = 0 VS[3] = 3 SU = 3

• VS[0] = 1 VS[1] = 1 VS[2] = 0 VS[3] = 0 SU = 3

18.45 table

The table constraint involves either:

• two variables VAR1 and VAR2, a list of pair of values, named TUPLES and an algorithm ALGORITHM.

• or an array of variables VARS, a list of tuples of values, named TUPLES and an algorithm ALGORITHM.

It is an extensional constraint enforcing, most of the time, arc-consistency.

When only two variables are involved, the available algorithms are:

• "AC2001": applies the AC2001 algorithm,

• "AC3": applies the AC3 algorithm,

• "AC3rm": applies the AC3rm algorithm,

• "AC3bit+rm": (default) applies the AC3bit+rm algorithm,

• "FC": applies the forward checking algorithm.

When more than two variables are involved, the available algorithms are:

• "GAC2001": applies the GAC2001 algorithm,

• "GAC2001+": applies the GAC2001 algorithm for allowed tuples only,

• "GAC3rm": applies the GAC3 algorithm,

• "GAC3rm+": (default) applies the GAC3rm algorithm for allowed tuples only,

• "GACSTR+": applies the GAC version STR for allowed tuples only,

• "STR2+": applies the GAC STR2 algorithm for allowed tuples only,

• "FC": applies the forward checking algorithm.

Implementation based on: [tbd].

API:

Constraint table(IntVar VAR1, IntVar VAR2, Tuples TUPLES, String ALGORITHM)
Constraint table(IntVar[] VARS, Tuples TUPLES, String ALGORITHM)

Example
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1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", 0, 5, solver);
3 IntVar Y = VF.enumerated("Y", -1, 3, solver);
4 Tuples tuples = new Tuples(true);
5 tuples.add(1, -2);
6 tuples.add(1, 1);
7 tuples.add(4, 2);
8 tuples.add(1, 4);
9 solver.post(ICF.table(X, Y, tuples, "AC2001"));

10 solver.findAllSolutions();

The solutions of the problem are :

• X = 1, Y = 1

• X = 4, Y = 2

18.46 times

The times constraints involves either:

• three variables X, Y and Z. It ensures that X × Y = Z.

• or two variables X and Z and a constant y. It ensures that X × y = Z.

The propagator of the times constraint filters on bounds only. If the option is enabled and under certain condition, the
times constraint may be redefined with a table constraint, providing a better filtering algorithm.

The API are :

Constraint times(IntVar X, IntVar Y, IntVar Z)
Constraint times(IntVar X, int Y, IntVar Z)

Example

1 Solver solver = new Solver();
2 IntVar X = VF.enumerated("X", -1, 2, solver);
3 IntVar Y = VF.enumerated("Y", 2, 4, solver);
4 IntVar Z = VF.enumerated("Z", 5, 7, solver);
5 solver.post(ICF.times(X, Y, Z));
6 solver.findAllSolutions();

The solution of the problem is :

• X = 2 Y = 3 Z = 6

18.47 tree

The tree constraint involves:

• an array of integer variables SUCCS,

• an integer variable NBTREES and
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• an integer OFFSET.

It partitions the SUCCS variables into NBTREES (anti) arborescences:

• SUCCS[i] = OFFSET+j means that j is the successor of i,

• SUCCS[i] = OFFSET+i means that i is a root.

See also: tree in the Global Constraint Catalog.

Implementation based on: [FL11].

API:

Constraint tree(IntVar[] SUCCS, IntVar NBTREES, int OFFSET)

Example

1 Solver solver = new Solver();
2 IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
3 IntVar NT = VF.enumerated("NT", 2, 3, solver);
4 solver.post(ICF.tree(VS, NT, 0));

Some solutions of the problem are :

• VS[0] = 0, VS[1] = 1, VS[2] = 1, VS[3] = 1, NT = 2

• VS[0] = 1, VS[1] = 1, VS[2] = 2, VS[3] = 1, NT = 2

• VS[0] = 2, VS[1] = 0, VS[2] = 2, VS[3] = 3, NT = 2

• VS[0] = 0, VS[1] = 3, VS[2] = 2, VS[3] = 3, NT = 3

• VS[0] = 3, VS[1] = 1, VS[2] = 2, VS[3] = 3, NT = 3

18.48 TRUE

The TRUE constraint is always satisfied. It should only be used with LogicalFactory.

18.49 tsp

The tsp constraint involves:

• an array of integer variables SUCCS,

• an integer variable COST and

• a matrix of integers COST_MATRIX.

It formulates the Travelling Salesman Problem: the variables SUCCS form a hamiltonian circuit of value COST. Going
from i to j, SUCCS[i] = j, costs COST_MATRIX[i][j].

This constraint is not a built-in constraint and is based on various propagators.

The filtering power of this constraint remains limited. For stronger filtering, use the choco-graph extension
(https://github.com/chocoteam/choco-graph/releases/tag/choco-graph-3.2.1) which includes powerful cost-based fil-
tering.
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API:

Constraint[] tsp(IntVar[] SUCCS, IntVar COST, int[][] COST_MATRIX)

Example

1 Solver solver = new Solver();
2 IntVar[] VS = VF.enumeratedArray("VS", 4, 0, 4, solver);
3 IntVar CO = VF.enumerated("CO", 0, 15, solver);
4 int[][] costs = new int[][]{{0, 1, 3, 7}, {1, 0, 1, 3}, {3, 1, 0, 1}, {7, 3, 1, 0}};
5 solver.post(ICF.tsp(VS, CO, costs));
6 solver.findAllSolutions();

The solutions of the problem are :

• VS[0] = 2, VS[1] = 0, VS[2] = 3, VS[3] = 1, CO = 8

• VS[0] = 3, VS[1] = 0, VS[2] = 1, VS[3] = 2, CO = 10

• VS[0] = 1, VS[1] = 2, VS[2] = 3, VS[3] = 0, CO = 10

• VS[0] = 3, VS[1] = 2, VS[2] = 0, VS[3] = 1, CO = 14

• VS[0] = 1, VS[1] = 3, VS[2] = 0, VS[3] = 2, CO = 8

• VS[0] = 2, VS[1] = 3, VS[2] = 1, VS[3] = 0, CO = 14
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CHAPTER 19

Constraints over set variables

19.1 all_different

The all_different constraint involves an array of set variables SETS. It ensures that sets in SETS are all different (not
necessarily disjoint). Note that there cannot be more than two empty sets.

API:

Constraint all_different(SetVar[] SETS)

19.2 all_disjoint

The all_disjoint constraint involves an array of set variables SETS. It ensures that all sets from SETS are disjoint. Note
that there can be multiple empty sets.

API:

Constraint all_disjoint(SetVar[] SETS)

19.3 all_equal

The all_equal constraint involves an array of set variables SETS. It ensures that sets in SETS are all equal.

API:

Constraint all_equal(SetVar[] SETS)

19.4 bool_channel

The bool_channel constraint involves:

• an array of boolean variables BOOLEANS,

• a set variable SET and
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• an integer OFFSET.

It channels BOOLEANS and SET such that : i ∈ SET ⇔ BOOLEANS[i-OFFSET] = 1.

API:

Constraint bool_channel(BoolVar[] BOOLEANS, SetVar SET, int OFFSET)

19.5 cardinality

The cardinality constraint involves:

• a set variable SET and

• an integer variable CARD.

It ensures that | SET_VAR | = CARD.

The API is :

Constraint cardinality(SetVar SET, IntVar CARD)

19.6 disjoint

The disjoint constraint involves two set variables SET_1 and SET_2. It ensures that SET_1 and SET_2 are disjoint,
that is, they cannot contain the same element. Note that they can be both empty.

API:

Constraint disjoint(SetVar SET_1, SetVar SET_2)

19.7 element

The element constraint involves:

• an integer variable INDEX,

• and array of set variables SETS,

• an integer OFFSET and

• a set variable SET.

It ensures that SETS[INDEX-OFFSET] = SET.

API:

Constraint element(IntVar INDEX, SetVar[] SETS, int OFFSET, SetVar SET)
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19.8 int_channel

The int_channel constraint involves:

• an array of set variables SETS,

• an array of integer variables INTEGERS,

• two integers OFFSET_1 and OFFSET_2.

It ensures that: x ∈ SETS[y-OFFSET_1] ⇔ INTEGERS[x-OFFSET_2] = y.

The API is :

Constraint int_channel(SetVar[] SETS, IntVar[] INTEGERS, int OFFSET_1, int OFFSET_2)

19.9 int_values_union

The int_values_union constraint involves:

• an array of integer variables VARS and

• a set variable VALUES

It ensures that: VALUES = VARS1 ∪ VARS2 ∪ . . . ∪ VARS𝑛.

The API is :

Constraint int_values_union(IntVar[] VARS, SetVar VALUES)

19.10 intersection

The intersection constraint involves:

• an array of set variables SETS and

• a set variable INTERSECTION.

It ensures that INTERSECTION is the intersection of the sets SETS.

The API is :

Constraint intersection(SetVar[] SETS, SetVar INTERSECTION)

19.11 inverse_set

The inverse_set constraint involves:

• an array of set variables SETS,

• an array of set variable INVERSE_SETS and

• two integers OFFSET_1 and OFFSET_2.
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It ensures that x :math:in‘ SETS[y-OFFSET_1] ⇔ y ∈ INVERSE_SETS[x-OFFSET_2].

API:

Constraint inverse_set(SetVar[] SETS, SetVar[] INVERSE_SETS, int OFFSET_1, int OFFSET_2)

19.12 max

The max constraint involves:

• either:

– a set variable SET,

– an integer variable MAX_ELEMENT_VALUE and

– a boolean NOT_EMPTY.

It ensures that MIN_ELEMENT_VALUE is equal to the maximum element of SET.

• or:

– a set variable SET,

– an array of integer WEIGHTS,

– an integer OFFSET,

– an integer variable MAX_ELEMENT_VALUE and

– a boolean NOT_EMPTY.

It ensures that max(WEIGHTS[i-OFFSET] | i in INDEXES) = MAX_ELEMENT_VALUE.

The boolean NOT_EMPTY set to true states that INDEXES cannot be empty.

API:

Constraint max(SetVar SET, IntVar MAX_ELEMENT_VALUE, boolean NOT_EMPTY)
Constraint max(SetVar INDEXES, int[] WEIGHTS, int OFFSET, IntVar MAX_ELEMENT_VALUE, boolean NOT_EMPTY)

19.13 member

The member constraint involves:

• either:

– an array of set variables SETS and

– a set variable SET.

It ensures that SET belongs to SETS.

• or:

– an integer variable INTEGER and

– a set variable SET.

It ensures that INTEGER is included in SET.
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API:

Constraint member(SetVar[] SETS, SetVar SET)
Constraint member(IntVar INTEGER, SetVar SET)

19.14 not_member

The not_member constraint involves:

• an integer variable INTEGER and

• a set variable SET.

It ensures that INTEGER is not included in SET.

API:

Constraint not_member(IntVar INTEGER, SetVar SET)

19.15 min

The min constraint involves:

• either:

– a set variable SET,

– an integer variable MIN_ELEMENT_VALUE and

– a boolean NOT_EMPTY.

It ensures that MIN_ELEMENT_VALUE is equal to the minimum element of SET.

• or:

– a set variable SET,

– an array of integer WEIGHTS,

– an integer OFFSET,

– an integer variable MAX_ELEMENT_VALUE and

– a boolean NOT_EMPTY.

It ensures that min(WEIGHTS[i-OFFSET] | i in INDEXES) = MIN_ELEMENT_VALUE.

The boolean NOT_EMPTY set to true states that INDEXES cannot be empty.

API:

Constraint min(SetVar SET, IntVar MIN_ELEMENT_VALUE, boolean NOT_EMPTY)
Constraint min(SetVar INDEXES, int[] WEIGHTS, int OFFSET, IntVar MIN_ELEMENT_VALUE, boolean NOT_EMPTY)
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19.16 nbEmpty

The nbEmpty constraint involves:

• an array of set variables SETS and

• an integer variable NB_EMPTY_SETS.

It restricts the number of empty sets in SETS to be equal NB_EMPTY_SET.

API:

Constraint nbEmpty(SetVar[] SETS, IntVar NB_EMPTY_SETS)

19.17 notEmpty

The notEmpty constraint involves a set variable SET.

It prevents SET to be empty.

API:

Constraint notEmpty(SetVar SET)

19.18 offSet

The offset constraint involves:

• two set variables SET_1 and SET_2 and

• an integer OFFSET.

It ensures that to any value x in SET_1, the value x+OFFSET is in SET_2 (and reciprocally).

API:

Constraint offSet(SetVar SET_1, SetVar SET_2, int OFFSET)

19.19 partition

The partition constraint involves:

• an array of set variables SETS and

• a set variable UNIVERSE.

It ensures that UNVIVERSE is partitioned in disjoint sets SETS.

API:

Constraint partition(SetVar[] SETS, SetVar UNIVERSE)
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19.20 subsetEq

The subsetEq constraint involves an array of set variables SETS. It ensures that i<j ⇔ SET_VARS[i] ⊆ SET_VARS[j].

The API is :

Constraint subsetEq(SetVar[] SETS)

19.21 sum

The sum constraint involves:

• a set variables INDEXES,

• an array of integer WEIGHTS,

• an integer OFFSET,

• an integer variable SUM and

• a boolean NOT_EMPTY.

The constraint ensures that sum(WEIGHTS[i-OFFSET] | i in INDEXES) = SUM. The boolean NOT_EMPTY set to
true states that INDEXES cannot be empty.

API:

Constraint sum(SetVar INDEXES, int[] WEIGHTS, int OFFSET, IntVar SUM, boolean NOT_EMPTY)

19.22 symmetric

The symmetric constraint involves:

• an array of set variables SETS and

• an integer OFFSET.

It ensures that: x ∈ SETS[y-OFFSET] ⇔ y ∈ SETS[x-OFFSET].

API:

Constraint symmetric(SetVar[] SETS, int OFFSET)

19.23 union

The union constraint involves:

• an array of set variables SETS and

• a set variable UNION.

It ensures that SET_UNION is equal to the union if the sets in SET_VARS.

The API is :
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Constraint union(SetVar[] SETS, SetVar UNION)
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CHAPTER 20

Constraints over real variables

Real constraints are managed externally with Ibex. Due to the limited number of declaration possibilities, there is no
factory for real constraints. Indeed, posting a RealConstraint is enough.

The available constructors are:

RealConstraint(String name, String functions, int option, RealVar... rvars)
RealConstraint(String name, String functions, RealVar... rvars)
RealConstraint(String functions, RealVar... rvars)

• name enables to set a name to the constraint.

• functions is a String which defines the list of functions to hold, separated with semi-colon ”;”.

A function is a declared using the following format:

• the ‘{i}’ tag defines a variable, where ‘i’ is an explicit index the array of variables rvars,

• one or more operators :’+,-,*,/,=,<,>,<=,>=,exp( ),ln( ),max( ),min( ),abs( ),cos( ), sin( ),...’

A complete list is available in the documentation of IBEX. - rvars is the list of involved real variables. - option is
enable to state the propagation option (default is Ibex.COMPO).

Example

1 Solver solver = new Solver();
2 double PREC = 0.01d; // precision
3 RealVar x = VariableFactory.real("x", -1.0d, 1.0d, PREC, solver);
4 RealVar y = VariableFactory.real("y", -1.0d, 1.0d, PREC, solver);
5 RealConstraint rc = new RealConstraint(
6 "my fct",
7 "({0}*{1})+sin({0})=1.0;ln({0}+[-0.1,0.1])>=2.6",
8 Ibex.HC4,
9 x, y);

10 solver.post(rc);
11 solver.findSolution();
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CHAPTER 21

Logical constraints

The LogicalConstraintFactory (or LCF) provides various interesting constraints to manipulate other con-
straints. These constraints are based on the concept of reification. We say a constraint C is reified with a boolean
variable b when we maintain the equivalence betwen b being equal to true and C being satisfied. This means the C
constraint may be not satisfied, hence it should not be posted to the solver.

21.1 not

Creates the opposite constraint of the input constraint.

While this works for any kind of constraint (including globals), it might be a bit naive and slow.

21.2 ifThen

Creates and automatically post a constraint ensuring that if the IF statement is true then the THEN statement must be
true as well.

A statement is either a binary variable (0/1) or a reified constraint (satisfied/violated)

Note that the method returns void (you cannot reify that constraint which is automatically posted). If you wish to reify
it, use ifThen_reifiable (whose implementation differ)

21.3 ifThenElse

Creates and automatically post a constraint ensuring that if the IF statement is true then the THEN statement must be
true as well. Otherwise, the ELSE statement must be true.

A statement is either a binary variable (0/1) or a reified constraint (satisfied/violated)

Note that the method returns void (you cannot reify that constraint which is automatically posted). If you wish to reify
it, use ifThenElse_reifiable (whose implementation differ)

21.4 reification

Creates and automatically post a constraint maintaining the equivalent between a binary variable being equal to 1 and
a constraint being satisfied.

125



Choco3 Documentation, Release 3.3.1

Note that the method returns void (you cannot reify that constraint which is automatically posted). If you wish to reify
it, use reification_reifiable (whose implementation differ)
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CHAPTER 22

Sat solver

22.1 addAtMostNMinusOne

Add a clause to the SAT constraint whic states that: BOOLVARS1 + BOOLVARS2 + ... + BOOLVARS𝑛 <
|BOOLVARS|.

API:

boolean addAtMostNMinusOne(BoolVar[] BOOLVARS)

Example

1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
3 SatFactory.addAtMostNMinusOne(BVARS);
4 solver.findAllSolutions();

Some solutions of the problem are :

• BS[0] = 1, BS[1] = 1, BS[2] = 1, BS[3] = 0

• BS[0] = 1, BS[1] = 0, BS[2] = 1, BS[3] = 0

• BS[0] = 0, BS[1] = 1, BS[2] = 1, BS[3] = 1

• BS[0] = 0, BS[1] = 0, BS[2] = 0, BS[3] = 1

• BS[0] = 0, BS[1] = 0, BS[2] = 0, BS[3] = 0

22.2 addAtMostOne

Add a clause to the SAT constraint whic states that: BOOLVARS1 + BOOLVARS2 + ... + BOOLVARS𝑛 ≤ 1.

API:

boolean addAtMostOne(BoolVar[] BOOLVARS)

Example
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1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
3 SatFactory.addAtMostOne(BVARS);
4 solver.findAllSolutions();

The solutions of the problem are :

• BS[0] = 1, BS[1] = 0, BS[2] = 0, BS[3] = 0

• BS[0] = 0, BS[1] = 1, BS[2] = 0, BS[3] = 0

• BS[0] = 0, BS[1] = 0, BS[2] = 1, BS[3] = 0

• BS[0] = 0, BS[1] = 0, BS[2] = 0, BS[3] = 1

• BS[0] = 0, BS[1] = 0, BS[2] = 0, BS[3] = 0

22.3 addBoolAndArrayEqualFalse

Add a clause to the SAT constraint whic states that: |𝑛𝑜𝑡‘(‘𝐵𝑂𝑂𝐿𝑉 𝐴𝑅𝑆1 ∧ BOOLVARS2 ∧ ... ∧ BOOLVARS𝑛).

API:

boolean addBoolAndArrayEqualFalse(BoolVar[] BOOLVARS)

Example

1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
3 SatFactory.addBoolAndArrayEqualFalse(BVARS);
4 solver.findAllSolutions();

Some solutions of the problem are :

• BS[0] = 1, BS[1] = 1, BS[2] = 1, BS[3] = 0

• BS[0] = 1, BS[1] = 0, BS[2] = 1, BS[3] = 1

• BS[0] = 1, BS[1] = 0, BS[2] = 0, BS[3] = 0

• BS[0] = 0, BS[1] = 1, BS[2] = 0, BS[3] = 1

• BS[0] = 0, BS[1] = 0, BS[2] = 0, BS[3] = 0

22.4 addBoolAndArrayEqVar

Add a clause to the SAT constraint which states that: (BOOLVARS1 ∧ BOOLVARS2 ∧ ... ∧ BOOLVARS𝑛) ⇔ TARGET.

API:

boolean addBoolAndArrayEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)

Example
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1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
3 BoolVar T = VF.bool("T", solver);
4 SatFactory.addBoolAndArrayEqVar(BVARS, T);
5 solver.findAllSolutions();

Some solutions of the problem are :

• BS[0] = 1, BS[1] = 1, BS[2] = 1, BS[3] = 1 T = 1

• BS[0] = 1, BS[1] = 1, BS[2] = 0, BS[3] = 1, T = 0

• BS[0] = 0, BS[1] = 1, BS[2] = 0, BS[3] = 0, T = 0

• BS[0] = 0, BS[1] = 0, BS[2] = 0, BS[3] = 0, T = 0

22.5 addBoolAndEqVar

Add a clause to the SAT constraint which states that: (LEFT ∧ RIGTH) ⇔ TARGET.

API:

boolean addBoolAndEqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)

Example

1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 BoolVar T = VF.bool("T", solver);
5 SatFactory.addBoolAndEqVar(L, R, T);
6 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 1, T = 1

• L = 1, R = 0, T = 0

• L = 0, R = 1, T = 0

• L = 0, R = 0, T = 0

22.6 addBoolEq

Add a clause to the SAT constraint which states that the two boolean variables LEFT and RIGHT are equal.

API:

boolean addBoolEq(BoolVar LEFT, BoolVar RIGHT)

Example
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1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 SatFactory.addBoolEq(L, R);
5 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 1

• L = 0, R = 0

22.7 addBoolIsEqVar

Add a clause to the SAT constraint which states that: (LEFT = RIGTH) ⇔ TARGET.

API:

boolean addBoolIsEqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)

Example

1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 BoolVar T = VF.bool("T", solver);
5 SatFactory.addBoolIsEqVar(L, R, T);
6 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 1, T = 1

• L = 1, R = 0, T = 0

• L = 0, R = 1, T = 0

• L = 0, R = 0, T = 1

22.8 addBoolIsLeVar

Add a clause to the SAT constraint which states that: (LEFT ≤ RIGTH) ⇔ TARGET.

API:

boolean addBoolIsLeVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)

Example
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1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 BoolVar T = VF.bool("T", solver);
5 SatFactory.addBoolIsLeVar(L, R, T);
6 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 1, T = 1

• L = 1, R = 0, T = 0

• L = 0, R = 1, T = 1

• L = 0, R = 0, T = 1

22.9 addBoolIsLtVar

Add a clause to the SAT constraint which states that: (LEFT < RIGTH) ⇔ TARGET.

API:

boolean addBoolIsLtVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)

Example

1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 BoolVar T = VF.bool("T", solver);
5 SatFactory.addBoolIsLtVar(L, R, T);
6 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 1, T = 0

• L = 1, R = 0, T = 0

• L = 0, R = 1, T = 1

• L = 0, R = 0, T = 0

22.10 addBoolIsNeqVar

Add a clause to the SAT constraint which states that: (LEFT ̸= RIGTH) ⇔ TARGET.

API:

boolean addBoolIsNeqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)
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Example

1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 BoolVar T = VF.bool("T", solver);
5 SatFactory.addBoolIsNeqVar(L, R, T);
6 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 1, T = 0

• L = 1, R = 0, T = 1

• L = 0, R = 1, T = 1

• L = 0, R = 0, T = 0

22.11 addBoolLe

Add a clause to the SAT constraint which states that the boolean variable LEFT is less or equal than the boolean
variable RIGHT.

API:

boolean addBoolLe(BoolVar LEFT, BoolVar RIGHT)

Example

1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 SatFactory.addBoolLe(L, R);
5 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 1

• L = 0, R = 1

• L = 0, R = 0

22.12 addBoolLt

Add a clause to the SAT constraint which states that the boolean variable LEFT is less than the boolean variable
RIGHT.

API:
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boolean addBoolLt(BoolVar LEFT, BoolVar RIGHT)

Example

1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 solver.findAllSolutions();

The solutions of the problem are :

• L = 0, R = 1

22.13 addBoolNot

Add a clause to the SAT constraint which states that the two boolean variables LEFT and RIGHT are not equal.

API:

boolean addBoolNot(BoolVar LEFT, BoolVar RIGHT)

Example

1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 0

• L = 0, R = 1

22.14 addBoolOrArrayEqualTrue

Add a clause to the SAT constraint which states that: BOOLVARS1 ∨ BOOLVARS2 ∨ ... ∨ BOOLVARS𝑛.

API:

boolean addBoolOrArrayEqualTrue(BoolVar[] BOOLVARS)

Example

1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
3 SatFactory.addBoolOrArrayEqualTrue(BVARS);
4 solver.findAllSolutions();
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Some solutions of the problem are :

• BS[0] = 1, BS[1] = 1, BS[2] = 1, BS[3] = 1

• BS[0] = 1, BS[1] = 1, BS[2] = 0, BS[3] = 0

• BS[0] = 1, BS[1] = 0, BS[2] = 0, BS[3] = 0

• BS[0] = 0, BS[1] = 1, BS[2] = 0, BS[3] = 0

• BS[0] = 0, BS[1] = 0, BS[2] = 0, BS[3] = 1

22.15 addBoolOrArrayEqVar

Add a clause to the SAT constraint which states that: (BOOLVARS1 ∨ BOOLVARS2 ∨ ... ∨ BOOLVARS𝑛) ⇔ TARGET.

API:

boolean addBoolOrArrayEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)

Example

1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BS", 4, solver);
3 BoolVar T = VF.bool("T", solver);
4 SatFactory.addBoolOrArrayEqVar(BVARS, T);
5 solver.findAllSolutions();

Some solutions of the problem are :

• BS[0] = 1, BS[1] = 1, BS[2] = 1, BS[3] = 1, T = 1

• BS[0] = 1, BS[1] = 1, BS[2] = 0, BS[3] = 1, T = 1

• BS[0] = 0, BS[1] = 1, BS[2] = 0, BS[3] = 0, T = 1

• BS[0] = 0, BS[1] = 0, BS[2] = 0, BS[3] = 0, T = 0

22.16 addBoolOrEqVar

Add a clause to the SAT constraint which states that: (LEFT ∨ RIGTH) ⇔ TARGET.

API:

boolean addBoolOrEqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)

Example

1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 BoolVar T = VF.bool("T", solver);
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5 SatFactory.addBoolOrEqVar(L, R, T);
6 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 1, T = 1

• L = 1, R = 0, T = 1

• L = 0, R = 1, T = 1

• L = 0, R = 0, T = 0

22.17 addBoolXorEqVar

Add a clause to the SAT constraint which states that: (LEFT ⊕ RIGTH) ⇔ TARGET.

API:

boolean addBoolXorEqVar(BoolVar LEFT, BoolVar RIGHT, BoolVar TARGET)

Example

1 Solver solver = new Solver();
2 BoolVar L = VF.bool("L", solver);
3 BoolVar R = VF.bool("R", solver);
4 BoolVar T = VF.bool("T", solver);
5 SatFactory.addBoolXorEqVar(L, R, T);
6 solver.findAllSolutions();

The solutions of the problem are :

• L = 1, R = 1, T = 0

• L = 1, R = 0, T = 1

• L = 0, R = 1, T = 1

• L = 0, R = 0, T = 0

22.18 addClauses

Adding a clause involved either:

• a logical operator TREE and an instance of the solver,

• or, two arrays of boolean variables.

The two methods add a clause to the SAT constraint.

• The first method adds one or more clauses defined by a LogOp. LopOp aims at simplifying the declaration of
clauses by providing some static methods. However, it should be considered as a last resort, due to the verbosity
it comes with.
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• The second API add one or more clauses defined by two arrays POSLITS and NEGLITS. The first array declares
positive boolean variables, those who should be satisfied; the second array declares negative boolean variables,
those who should not be satisfied.

API:

boolean addClauses(LogOp TREE, Solver SOLVER)
boolean addClauses(BoolVar[] POSLITS, BoolVar[] NEGLITS)

Example 1

1 Solver solver = new Solver();
2 BoolVar C1 = VF.bool("C1", solver);
3 BoolVar C2 = VF.bool("C2", solver);
4 BoolVar R = VF.bool("R", solver);
5 BoolVar AR = VF.bool("AR", solver);
6 SatFactory.addClauses(
7 LogOp.ifThenElse(LogOp.nand(C1, C2), R, AR),
8 solver);
9 solver.findAllSolutions();

Some solutions of the problem are :

• C1 = 1, C2 = 0, R = 1, AR = 1

• C1 = 1, C2 = 0, R = 0, AR = 1

• C1 = 0, C2 = 1, R = 1, AR = 0

• C1 = 0, C2 = 0, R = 0, AR = 1

Example 2

1 Solver solver = new Solver();
2 BoolVar P1 = VF.bool("P1", solver);
3 BoolVar P2 = VF.bool("P2", solver);
4 BoolVar P3 = VF.bool("P3", solver);
5 BoolVar N = VF.bool("N", solver);
6 SatFactory.addClauses(new BoolVar[]{P1, P2, P3}, new BoolVar[]{N});
7 solver.findAllSolutions();

Some solutions of the problem are :

• P1 = 1, P2 = 1, P3 = 1, N = 1

• P1 = 1, P2 = 1, P3 = 1, N = 0

• P1 = 1, P2 = 0, P3 = 1, N = 0

• P1 = 0, P2 = 0, P3 = 1, N = 1

22.19 addFalse

Add a unit clause to the SAT constraint which states that the boolean variable BOOLVAR must be false (equal to 0).

API:
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boolean addFalse(BoolVar BOOLVAR)

Example

1 Solver solver = new Solver();
2 BoolVar B = VF.bool("B", solver);
3 SatFactory.addFalse(B);
4 solver.findAllSolutions();

The solution of the problem is :

• B = 0

22.20 addMaxBoolArrayLessEqVar

Add a clause to the SAT constraint which states that: maximum(BOOLVARS𝑖) ≤ TARGET.

API:

boolean addMaxBoolArrayLessEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)

Example

1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BS", 3, solver);
3 BoolVar T = VF.bool("T", solver);
4 SatFactory.addMaxBoolArrayLessEqVar(BVARS, T);
5 solver.findAllSolutions();

Some solutions of the problem are :

• BS[0] = 1, BS[1] = 1, BS[2] = 1, T = 1

• BS[0] = 1, BS[1] = 0, BS[2] = 1, T = 1

• BS[0] = 0, BS[1] = 1, BS[2] = 1, T = 1

• BS[0] = 0, BS[1] = 0, BS[2] = 0, T = 0

22.21 addSumBoolArrayGreaterEqVar

Add a clause to the SAT constraint which states that: sum(BOOLVARS𝑖) ≥ TARGET.

API:

boolean addSumBoolArrayGreaterEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)

Example
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1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BS", 3, solver);
3 BoolVar T = VF.bool("T", solver);
4 SatFactory.addSumBoolArrayGreaterEqVar(BVARS, T);
5 solver.findAllSolutions();

Some solutions of the problem are :

• BS[0] = 1, BS[1] = 1, BS[2] = 1, T = 1

• BS[0] = 1, BS[1] = 0, BS[2] = 1, T = 1

• BS[0] = 0, BS[1] = 1, BS[2] = 1, T = 1

• BS[0] = 0, BS[1] = 0, BS[2] = 0, T = 0

22.22 addSumBoolArrayLessEqVar

Add a clause to the SAT constraint which states that: sum(BOOLVARS𝑖) ≤ TARGET.

API:

boolean addSumBoolArrayLessEqVar(BoolVar[] BOOLVARS, BoolVar TARGET)

Example

1 Solver solver = new Solver();
2 BoolVar[] BVARS = VF.boolArray("BS", 3, solver);
3 BoolVar T = VF.bool("T", solver);
4 SatFactory.addSumBoolArrayLessEqVar(BVARS, T);
5 solver.findAllSolutions();

Some solutions of the problem are :

• BS[0] = 1 BS[1] = 1 BS[2] = 1 T = 1

• BS[0] = 1 BS[1] = 0 BS[2] = 1 T = 1

• BS[0] = 0 BS[1] = 1 BS[2] = 1 T = 1

• BS[0] = 0 BS[1] = 0 BS[2] = 0 T = 1

22.23 addTrue

Add a unit clause to the SAT constraint which states that the boolean variable BOOLVAR must be true (equal to 1).

API:

boolean addTrue(BoolVar BOOLVAR)

Example
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1 Solver solver = new Solver();
2 BoolVar B = VF.bool("B", solver);
3 SatFactory.addTrue(B);
4 solver.findAllSolutions();

The solution of the problem is :

• B = 1

22.23. addTrue 139



Choco3 Documentation, Release 3.3.1

140 Chapter 22. Sat solver



CHAPTER 23

Variable selectors

Important: By default, in case of equalities, the variable with the smallest index in the input array is returned.
Otherwise, consider using a VariableSelectorWithTies (See Zoom on IntStrategy).

23.1 lexico_var_selector

A built-in variable selector which chooses the first non-instantiated integer variable to branch on, regarding the lexi-
cographic order.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

VariableSelector<IntVar> lexico_var_selector()

23.2 random_var_selector

A built-in variable selector which randomly chooses an integer variable, among non-instantiated ones, to branch on.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

VariableSelector<IntVar> random_var_selector(long SEED)

23.3 minDomainSize_var_selector

A built-in variable selector which chooses the non-instantiated integer variable with the smallest domain to branch on.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
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API:

VariableSelector<IntVar> minDomainSize_var_selector()

23.4 maxDomainSize_var_selector

A built-in variable selector which chooses the non-instantiated integer variable with the largest domain to branch on.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

VariableSelector<IntVar> maxDomainSize_var_selector()

23.5 maxRegret_var_selector

A built-in variable selector which chooses the non-instantiated integer variable with the largest difference between the
two smallest values in its domain to branch on .

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

VariableSelector<IntVar> maxRegret_var_selector()
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CHAPTER 24

Value selectors

24.1 min_value_selector

A built-in value selector which selects the variable lower bound.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntValueSelector min_value_selector()

24.2 mid_value_selector

A built-in value selector which selects the value in the variable domain closest to the mean of its current bounds.
It computes the middle value of the domain. Then checks if the mean is contained in the domain. If not, the clos-
est value to the middle is chosen. Rounding policy is floor. It could be override by creating a new instance of
IntDomainMiddle with false as parameter.

Important: mid_value_selector should not be used with assignment decisions over bounded variables (because the
decision negation would result in no inference).

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntValueSelector mid_value_selector()

24.3 max_value_selector

A built-in value selector which selects the variable upper bound.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory
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API:

IntValueSelector max_value_selector()

24.4 randomBound_value_selector

A built-in value selector which randomly selects either the lower bound or the upper bound of the variable.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntValueSelector randomBound_value_selector(long SEED)

24.5 random_value_selector

Selects randomly a value in the variable domain.

Important: random_value_selector should not be used with assignment decisions over bounded variables (because
the decision negation could result in no inference).

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntValueSelector random_value_selector(long SEED)
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CHAPTER 25

Decision operators

25.1 assign

A built-in decision operator which assigns the selected variable to the selected value. Its negation is remove.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

DecisionOperator<IntVar> assign()

25.2 remove

A built-in decision operator which removes the selected value from the selected variable domain. Its negation is assign.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

DecisionOperator<IntVar> remove()

25.3 split

A built-in decision operator which splits the selected variable domain at the selected value, that is, it updates the upper
bound of the variable to the selected value. Its negation is reverse_split on value + 1.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

DecisionOperator<IntVar> split()
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25.4 reverse_split

A built-in decision operator which splits the selected variable domain at the selected value, that is, it updates the lower
bound of the variable to the selected value. Its negation is split on value - 1.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

DecisionOperator<IntVar> reverse_split()
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CHAPTER 26

Built-in strategies

26.1 custom

To build a specific strategy based on IntVar or SetVar. A strategy is based on a variable selector, a value selector
and an optional decision operator.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy custom(VariableSelector<IntVar> VAR_SELECTOR,
IntValueSelector VAL_SELECTOR,
DecisionOperator<IntVar> DEC_OPERATOR,
IntVar... VARS)

IntStrategy custom(VariableSelector<IntVar> VAR_SELECTOR,
IntValueSelector VAL_SELECTOR,
IntVar... VARS)

SetStrategy custom(VariableSelector<SetVar> varS, SetValueSelector valS, boolean enforceFirst,
SetVar... sets)

26.2 force_first

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and forces its
first smallest unfixed value to be part of the kernel.

Scope: SetVar

Factory: org.chocosolver.solver.search.strategy.SetStrategyFactory

API:

SetStrategy force_first(SetVar... sets)
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26.3 force_maxDelta_first

A built-in strategy which chooses the first non-instantiated variable of maximum delta (envelope’s cardinality minus
kernel’s cardinality) and forces its smallest unfixed value to be part of the kernel.

Scope: SetVar

Factory: org.chocosolver.solver.search.strategy.SetStrategyFactory

API:

SetStrategy force_maxDelta_first(SetVar... sets)

26.4 force_minDelta_first

A built-in strategy which chooses the first non-instantiated variable of minimum delta (envelope’s cardinality minus
kernel’s cardinality) and forces its smallest first unfixed value to be part of the kernel.

Scope: SetVar

Factory: org.chocosolver.solver.search.strategy.SetStrategyFactory

API:

SetStrategy force_minDelta_first(SetVar... sets)

26.5 lexico_LB

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and assigns it
to its lower bound.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy lexico_LB(IntVar... VARS)

26.6 lexico_Neq_LB

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and removes
its lower bound from its domain.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy lexico_Neq_LB(IntVar... VARS)
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26.7 lexico_Split

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and removes
the second half of its domain.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy lexico_Split(IntVar... VARS)

26.8 lexico_UB

A built-in strategy which chooses the first non-instantiated variable, regarding the lexicographic order, and assigns it
to its upper bound.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy lexico_UB(IntVar... VARS)

26.9 minDom_LB

A built-in strategy which chooses the first non-instantiated variable with the smallest domain size, and assigns it to its
lower bound.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy minDom_LB(IntVar... VARS)

26.10 minDom_MidValue

A built-in strategy which chooses the first non-instantiated variable with the smallest domain size, and assigns it to the
value closest to its middle of its domain.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy minDom_MidValue(IntVar... VARS)
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26.11 maxDom_Split

A built-in strategy which chooses the first non-instantiated variable with largest domain size, and removes the second
half of its domain.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy maxDom_Split(IntVar... VARS)

26.12 minDom_UB

A built-in strategy which chooses the first non-instantiated variable with the smallest domain size, and assigns it to its
upper bound.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy minDom_UB(IntVar... VARS)

26.13 maxReg_LB

A built-in strategy which chooses the first non-instantiated variable with the largest difference between the two smallest
values of its domain, and assigns it to its lower bound.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy maxReg_LB(IntVar... VARS)

26.14 random_bound

A built-in strategy which randomly chooses a non-instantiated variable, and assigns it to one of its bounds, randomly
selected.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy random_bound(IntVar[] VARS)
IntStrategy random_bound(IntVar[] VARS, long SEED)
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26.15 random_value

A built-in strategy which randomly chooses a non-instantiated variable, and assigns it to a randomly selected value
from its domain.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

IntStrategy random_value(IntVar[] VARS)
IntStrategy random_value(IntVar[] VARS, long SEED)

26.16 remove_first

A built-in strategy which chooses the first unfixed variable and removes its smallest unfixed value from the envelope.

Scope: SetVar

Factory: org.chocosolver.solver.search.strategy.SetStrategyFactory

API:

SetStrategy remove_first(SetVar... sets)

26.17 sequencer

A meta strategy which applies sequentially the strategies in its scope.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

AbstractStrategy sequencer(AbstractStrategy... strategies)

26.18 domOverWDeg

A black-box strategy for IntVar which selects the non-instantiated variable with the smallest ratio |𝑑(𝑥)|
𝑤(𝑥) , where

|𝑑(𝑥)| denotes the domain size of a variable x and 𝑤(𝑥) its weighted degree. The weighted degree of a variable sums
the weight of each of the constraint it is involved in where at least 2 variables remains uninstantiated. The weight of a
constraint is initialized to 1 and increased by one each time a constraint propagation fails during the search.

Implementation based on: [BHLS04].

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:
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AbstractStrategy<IntVar> domOverWDeg(IntVar[] VARS, long SEED, IntValueSelector VAL_SELECTOR)
AbstractStrategy<IntVar> domOverWDeg(IntVar[] VARS, long SEED) // default: min_value_selector

26.19 activity

A black-box strategy for IntVar which selects the non-instantiated variable with the largest ratio 𝑎(𝑥)
|𝑑(𝑥)| , where |𝑑(𝑥)|

denotes the domain size of a variable x and 𝑎(𝑥) its activity. The activity of a variable measures how often the domain
of the variable is reducing during the search. Then, the value with the least activity is selected from the domain of the
variable.

Implementation based on: [MH12].

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

AbstractStrategy<IntVar> activity(IntVar[] VARS, double GAMMA, double DELTA, int ALPHA,
int FORCE_SAMPLING, long SEED)

AbstractStrategy<IntVar> activity(IntVar[] VARS, long SEED) // default: 0.999d, 0.2d, 8, 1

26.20 impact

A black-box strategy for IntVar which selects the non-instantiated variable with the largest impact∑︀
𝑎𝑖𝑛𝑑(𝑥) 1− 𝐼(𝑥 = 𝑎), 𝐼(𝑥 = 𝑎) denotes the impact of assigning the variable x to a value a from its domain 𝑑(𝑥).

The impact of an assignment measures the search space reduction induced by a decision, by evaluating the size of the
search before and after the application of a decision. The higher the impact, the greater the search space reduction.
Then, the value with the least impact is selected from the domain of the variable. An approximation of the impacts is
preprocessed.

Implementation based on: [Ref04].

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

AbstractStrategy<IntVar> impact(IntVar[] VARS, int ALPHA, int SPLIT, int NODEIMPACT,
long SEED, boolean INITONLY)

AbstractStrategy<IntVar> impact(IntVar[] VARS, long SEED) // default: 2, 3, 10, true

26.21 lastConflict

A composite heuristic which override the defined strategy by forcing some decisions to branch on variables involved
in recent conflicts. After each conflict, the last assigned variable is selected in priority, so long as a failure occurs.

Implementation based on: [LSTV09].

Scope: Variable
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Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

AbstractStrategy lastConflict(Solver SOLVER)
AbstractStrategy lastConflict(Solver SOLVER, AbstractStrategy STRAT)
AbstractStrategy lastKConflicts(Solver SOLVER, int K, AbstractStrategy STRAT)

26.22 generateAndTest

A strategy that simulate a Generate and Test behavior through a specific internal decision. The main idea is, from all
the variables of a problem, to generate and test the satisfiability of a complete instantiation. The process does not rely
on propagation anymore, but on satisfaction only.

Such strategy can be triggered when the search space reached a given limit.

Scope: IntVar

Factory: org.chocosolver.solver.search.strategy.IntStrategyFactory

API:

AbstractStrategy<IntVar> generateAndTest(Solver SOLVER)
AbstractStrategy<IntVar> generateAndTest(Solver SOLVER, AbstractStrategy<IntVar> mainStrategy,

int searchSpaceLimit)
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CHAPTER 27

Search Monitors

27.1 geometrical

Plug a geometrical restart strategy to the solver. It performs a search with restarts controlled by the resolution event
counter which counts events occurring during the search. Parameter base indicates the maximal number of
events allowed in the first search tree. Once this limit is reached, a restart occurs and the search continues until
base‘‘*‘‘grow events are done, and so on. After each restart, the limit number of events is increased by the
geometric factor grow. limit states the maximum number of restarts.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void geometrical(Solver solver, int base, double grow, ICounter counter, int limit)

27.2 luby

Branch a luby restart strategy to the solver. It is an alternative to the geometric restart policy. It performs a search with
restarts controlled by the number of resolution events counted by counter. The maximum number of events allowed
at a given restart iteration is given by base multiplied by the Las Vegas coefficient at this iteration. The sequence of
these coefficients is defined recursively on its prefix subsequences: starting from the first prefix 1, the (𝑘+1)𝑡ℎ prefix
is the 𝑘𝑡ℎ prefix repeated grow times and immediately followed by coefficient grow𝑘.

• the first coefficients for grow =2: [1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,...]

• the first coefficients for grow =3 : [1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 9,...]

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

luby(Solver solver, int base, int grow, ICounter counter, int limit)

27.3 limitNode

Defines a limit over the number of nodes allowed during the resolution. When the limit is reached, the resolution is
stopped.
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Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void limitNode(Solver solver, long limit)

27.4 limitSolution

Defines a limit over the number of solutions allowed during the resolution. When the limit is reached, the resolution
is stopped.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void limitSolution(Solver solver, long limit)

27.5 limitTime

Defines a limit over the run time. When the limit is reached, the resolution is stopped. The limit can be either defined
in millisecond or using a String which states the duration like “WWd XXh YYm ZZs” for example: - “1d2h3m4.5s”:
one day, two hours, three minutes, four seconds and 500 milliseconds<p/> - “2h30m”: two hours and 30 minutes<p/>
- “30.5s”: 30 seconds and 500 ms<p/> - “180s”: three minutes

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void limitTime(Solver solver, long limit)

void limitTime(Solver solver, String duration)

27.6 limitThreadTime

Defines a limit over the run time, defined in a separated thread. When the limit is reached, the resolution is stopped.
The limit can be either defined in millisecond or using a String which states the duration like “WWd XXh YYm ZZs”
for example: - “1d2h3m4.5s”: one day, two hours, three minutes, four seconds and 500 milliseconds<p/> - “2h30m”:
two hours and 30 minutes<p/> - “30.5s”: 30 seconds and 500 ms<p/> - “180s”: three minutes

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void limitThreadTime(Solver solver, long limit)

void limitThreadTime(Solver solver, String duration)

convertInMilliseconds
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27.7 limitFail

Defines a limit over the number of fails allowed during the resolution. When the limit is reached, the resolution is
stopped.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void limitFail(Solver solver, long limit)

27.8 limitBacktrack

Defines a limit over the number of backtracks allowed during the resolution. When the limit is reached, the resolution
is stopped.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void limitBacktrack(Solver solver, long limit)

27.9 restartAfterEachSolution

Force the resolution to restart at root node after each solution.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void restartAfterEachSolution(Solver solver)

27.10 nogoodRecordingOnSolution

Record nogoods from solution, that is, anytime a solution is found, a nogood is produced to prevent from finding the
same solution later during the search. An array of variables, presumably decision ones, is given as input to reduce the
size of the generated nogoods.

Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void nogoodRecordingOnSolution(IntVar[] vars)

27.11 nogoodRecordingFromRestarts

Record nogoods from restarts, that is, anytime the search restarts, one or more nogoods are produced, based on the
decision path, to prevent from scanning the same sub-search tree.
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Factory: org.chocosolver.solver.search.loop.monitors.SearchMonitorFactory

API:

void nogoodRecordingFromRestarts(Solver solver)
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Extensions of Choco
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CHAPTER 28

IO extensions

28.1 choco-parsers

choco-parsers is an extension of Choco 3. It provides a parser for the FlatZinc language, a low-level solver input
language that is the target language for MiniZinc. This module follows the flatzinc standards that are used for the
annual MiniZinc challenge. It only supports integer variables. You will find it at https://github.com/chocoteam/choco-
parsers

28.2 choco-gui

choco-gui is an extension of Choco 3. It provides a Graphical User Interface with various views which can be simply
plugged on any Choco Solver object. You will find it at https://github.com/chocoteam/choco-gui

28.3 choco-cpviz

choco-cpviz is an extension of Choco 3 to deal with cpviz library. You will find it at
https://github.com/chocoteam/choco-cpviz
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CHAPTER 29

Modeling extensions

29.1 choco-graph

choco-graph is a Choco 3 module which allows to search for a graph, which may be subject to graph constraints. The
domain of a graph variable G is a graph interval in the form [G_lb,G_ub]. G_lb is the graph representing vertices and
edges which must belong to any single solution whereas G_ub is the graph representing vertices and edges which may
belong to one solution. Therefore, any value G_v must satisfy the graph inclusion “G_lb subgraph of G_v subgraph
of G_ub”. One may see a strong connection with set variables. A graph variable can be subject to graph constraints
to ensure global graph properties (e.g. connectedness, acyclicity) and channeling constraints to link the graph variable
with some other binary, integer or set variables. The solving process consists of removing nodes and edges from
G_ub and adding some others to G_lb until having G_lb = G_ub, i.e. until G gets instantiated. These operations stem
from both constraint propagation and search. The benefits of graph variables stem from modeling convenience and
performance.

This extension has documentation. You will find it at https://github.com/chocoteam/choco-graph

29.2 choco-geost

choco-geost is a Choco 3 module which provides the GEOST global constraint. This constraint is designed for ge-
ometrical and packing applications (see http://www.emn.fr/z-info/sdemasse/gccat/Cgeost.html). You will find it at
https://github.com/chocoteam/choco-geost

29.3 choco-exppar

choco-exppar is a Choco 3 module which provides an expression parser. This enables to simplify the modeling step.
You will find it at https://github.com/chocoteam/choco-exppar
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