
MONROE
Measuring Mobile Broadband Networks in Europe

H2020-ICT-11-2014
Project number: 644399

Deliverable User manual
MONROE Platform User Manual

Editor(s): Miguel Peón-Quirós, Özgü Alay, Vincenzo Mancuso
Contributor(s): Miguel Peón-Quirós, Thomas Hirsch, Ali Safari Khatouni

Work Package: 5.2 / User Support
Revision: 1.0
Date: March 14, 2019
Deliverable type: R (Report)
Dissemination level: Public

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Abstract

This document describes the processes that MONROE experimenters need to follow to create,

run, monitor and collect results from their experiments.

Participant organisation name Short name

SIMULA RESEARCH LABORATORY AS (Coordinator) SRL

CELERWAY COMMUNICATION AS Celerway

TELENOR ASA Telenor

NETTET SVERIGE AB NET1

NEXTWORKS NXW

FUNDACION IMDEA NETWORKS IMDEA

KARLSTADS UNIVERSITET KaU

POLITECNICO DI TORINO POLITO

2 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Contents

1 Introduction 6

1.1 MONROE nodes hardware . 6

1.1.1 System design . 6

1.2 Overview of the node configuration . 7

1.3 Overview of the experimental workflow . 8

2 Experiment preparation 9

2.1 General experiment notes . 9

2.2 Container preparation . 9

2.2.1 Package and tool installation . 13

2.2.2 Band Locking . 14

2.2.3 Virtual Machine support . 14

2.2.4 NEAT support . 15

2.3 Optional interactive debugging . 15

2.4 Mandatory certification process . 15

2.5 Deployment . 16

2.6 Life cycle of monroe/base . 16

3 Resource allocation, and experiment scheduling and monitoring 16

3.1 User login and certificates . 16

3.1.1 Installation of user certificates in Chrome . 18

3.2 Resource allocation . 22

3.2.1 Eduroam . 24

3.3 Experiment scheduling . 26

3.3.1 Recurrence . 26

3.3.2 Checking availability . 26

3.3.3 First availability scheduling . 27

3.4 Experiment monitoring . 27

3.5 Command Line Interface . 31

3.5.1 Installation . 31

3.5.2 Usage . 31

4 Retrieval of metadata and experiment results 32

4.1 User experiment results . 32

4.2 MONROE metadata . 33

5 Run-time considerations for experimenters 33

5.1 Node identification . 33

5.2 Communication during the experiment . 33

5.3 Interface naming and default route . 34

5.4 Interface binding . 34

5.5 Metadata at run-time . 35

5.5.1 Example: Correlate experiment results with metadata at run-time 35

5.5.2 Metadata information . 36

3 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

5.5.3 Metadata format . 37

5.6 Tstat at run-time . 37

5.6.1 Tstat Round Robin Database . 38

5.6.2 Tstat logs . 38

5.7 Access to user-owned development nodes . 39

5.7.1 Accessing user-owned development nodes . 39

6 Monitoring node status 42

7 MONROE templates, examples and default experiments 42

7.1 Example template . 42

7.1.1 Usage . 42

7.1.2 Requirements . 44

7.1.3 Output . 44

7.1.4 Overview of the code structure . 45

7.2 Docker miscellaneous usage notes . 45

7.3 Experiment: ping . 46

7.3.1 Usage . 46

7.3.2 Requirements . 46

7.3.3 Output . 46

7.4 Experiment: http_download . 47

7.5 Experiment: Tstat & mPlane . 47

7.5.1 Requirements . 47

7.5.2 Usage . 47

7.6 MONROE example: helloworld . 48

7.6.1 Usage . 48

7.6.2 Requirements . 48

7.6.3 Output . 48

7.7 MONROE example: paris-traceroute . 49

7.7.1 Usage (inside a MONROE container) . 49

7.7.2 Output . 49

7.7.3 Additional remarks . 50

7.8 MONROE example: headlessbrowsing . 50

7.8.1 Output . 50

7.9 MONROE example: pReplay . 51

7.9.1 Usage . 52

7.10 MONROE example: astream . 52

7.10.1 Usage . 52

7.10.2 Output . 52

7.11 MONROE example: udpbwestimator . 52

7.11.1 Usage . 52

7.11.2 Output . 53

7.12 MONROE example: traceroute_background_experiment . 53

7.12.1 Usage . 53

7.13 Other containers in the repositories . 54

4 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

7.13.1 Container: metadata-subscriber . 54

7.13.2 Container: tunnelbox-server . 54

7.13.3 Container: monroe_base . 54

8 List of known bugs and issues 54

A List of packages installed in monroe/base 55

B Description of metadata fields 62

C How to map container folders to Windows paths 64

5 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 1: System design. Left: Tail node with one LTE Cat6 modem and one WiFi adaptor. Right: Head node
with two LTE Cat6 modems.

1 Introduction

The purpose of this document is to guide MONROE experimenters through the process of creating, running

and monitoring their experiments, and the subsequent collection of results. It first explains how the exper-

iments must be prepared inside Docker containers, the testing process they must undergo before they can

be deployed into MONROE’s nodes, and how they must be uploaded to a repository for deployment into the

nodes. Then, it explains the basics of the web interface that allows provision of resources and the scheduling

of experiment executions. Finally, it shows how the experiment results can be retrieved either directly from

the experiment itself or from the repository provided by MONROE.

1.1 MONROE nodes hardware

The MONROE platform has gone through a complete process of analysis and redesign to adapt to the new

hardware available in the market and overcome some of the issues encountered in the first design. The

following paragraphs explain the main characteristics of the current design.

1.1.1 System design

The current MONROE design presents a heterogeneous set of nodes grouped in pairs:

• “Head,” with two Sierra Wireless LTE Cat6 modems.

• “Tail,” with one Sierra Wireless LTE Cat6 modem and one WiFi adaptor.

Figure 1 shows the current node design. Both types of nodes are based on a PC Engines APU2D4 mother-

board with the following characteristics:

• 1 GHz 64-bit quad core AMD Geode APU.

• 4 GiB RAM.

• 16 GiB SDD.

• Three miniPCIe slots, two of which support a 3G/4G modem.

6 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

The current node design does not support a dedicated management MBB interface. Thus, additional

measures have been taken to minimize the interference of background traffic with user experiments. In

particular, most maintenance operations (except optionally the transfer of user results) are paused during

experiment execution. Also, a fix hour is reserved for maintenance in all nodes every day.

1.2 Overview of the node configuration

MONROE nodes have been designed to have minimal impact on the experiments that run on them. There-

fore, only one experiment can run at a given time in a node. Although the experiments are executed inside a

Docker container, they have no quotas on CPU or memory usage, subject only to available node resources.

Container image size and temporary storage in the node may be restricted, though.

Every MONROE node runs, in addition to user experiments, the following background processes:

• The experiment scheduler, which arbitrates the execution of user experiments in the node. The sched-

uler runs permanently in the background and contacts periodically the scheduling server, sending

“heartbeats” and checking for new schedules for the node. When an experiment is not running, the

scheduler may start the deployment of the containers for one or several experiments scheduled to be

run in the immediate future, so that they are prepared on advance. The scheduler checks the dura-

tion of the slot assigned to an experiment; if the experiment does not finish on time, it stops the whole

container.

• Synchronization (rsync) services to copy data files to the MONROE repository. This service copies user

experiment results, the data collected by passive experiments and assorted metadata measurements.

It runs continuously, transferring files to the server as they appear in the corresponding folders. This

service uses the management interface, which is different from the interfaces available for the exper-

iments. However, the management interface may share in some cases the same subscriber contract

with one of the experiment interfaces; operators might restrict the total bandwidth available for all the

SIMs linked to the same contract. Additionally, two modems (management plus experiment) using the

same operator antenna may somehow affect the bandwidth available for the experiment. Therefore,

experimenters should be aware of the small amount of data that can be transferred by this service in

parallel to their experiments.

• Several systems run continuously in the background gathering information on the status of diverse

components. Examples include a service to read the signal strength and network configuration of each

of the experiment modems, the GPS data and various node parameters such as CPU load, memory

usage or CPU temperature. These services run continuously in the background with a frequency that

varies from one second up to several minutes. Although their impact on user experiments should be

minimal, their existence must be known by the experimenters.

• In addition to the services that gather metadata, MONROE nodes keep several containers active all the

time. These containers run experiments that are deemed basic for the MONROE platform and include:

– A ping experiment. Container number 1 executes continuously an ICMP ping operation to a fixed

external server (currently, Google’s DNS at 8.8.8.8). The RTT values are collected and transferred

to the servers. The ping experiment runs continuously with a frequency of one second, for every

interface.

7 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Design experiment

Configure container

for experiment

Store container in

repository

Schedule container

in testing mode

Deployment + test

MONROE

certification

Schedule

experiment

Deployment /

execution

Retrieval of results

(per node / per

schedule)

Experiment design

phase

Testing phase Experimentation

phase

Figure 2: Experimental workflow.

– A container that runs Tstat, the passive mPlane monitoring probe that collects, for each interface,

detailed flow level statistics. The Tstat container generates no traffic; flow level data is synchro-

nized to the MONROE repository using the standard synchronization process described above.

• Finally, some built-in MONROE experiments run as scheduled containers. These experiments will not

run at the same time than user experiments:

– A bandwidth measurement test, which periodically downloads an object using the HTTP protocol

to measure the achievable bandwidth. The test runs on each interface. The periodicity of this

experiment and whether it can be run while user experiments are being executed are yet to be

decided.

– A container that periodically executes a paris-traceroute to several popular websites recording

information about all the intermediate hops. This container will in principle be run several times

per day, but the interactions with user experiments are yet to be determined.

1.3 Overview of the experimental workflow

Experiments conducted in the MONROE platform follow the workflow shown in Figure 2, which consists of

three phases: Experiment design, testing and experimentation. During the experiment design phase, the

experiment goals and properties are defined and the container required to deploy it in MONROE nodes is

configured. During the testing phase, the container is executed on nodes specifically devoted to testing new

experiments. If the experiment passes all the safety and behavior tests, a MONROE manager will digitally

sign the container image. Signed containers cannot be further modified without running again through the

testing phase. Finaly, the experimenter is free to schedule the experiment container on any nodes, subject

to the specific quotas assigned to their project.

8 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

2 Experiment preparation

2.1 General experiment notes

MONROE experiments run under the root user of a Docker container. Therefore, experimenters can design

any kind of experiment within the security restrictions of the platform, including the configuration of routing

tables, stopping or starting interfaces and executing any kind of applications. We assume the reader is famil-

iar with the Docker technology. Otherwise, we suggest getting used to it by accessing the documentation at

https://docs.docker.com/engine/understanding-docker/ .

Creating and using containers is a two-step process. At design time, the experimenters create the image

for the container in their local machine using a container-creation script. If necessary, they can install new

packages (e.g., via apt-get) or copy libraries. The docker tools read the script and create the final image for

the experiment, which will then have to be uploaded to a repository. At run-time, the nodes retrieve the

container image from the repository and start it as scheduled.

During execution, the experiment should not install additional applications or download any data that

is not part of the experiment itself (e.g., if the experiment uploads a file to a server to test upstream speed,

either include the file to be uploaded in the container at design time or create it locally).

⇒ Experiments will under no circumstances allow direct ssh access to the node or any other form of run-

ning interactive commands from outside the container that can pose a security risk for the platform.⇐

2.2 Container preparation

MONROE experiments are deployed in Docker containers (https://www.docker.com/). Preparing a new

container from MONROE’s base image is an easy process:

1. Install Docker in your machine. Do it preferably downloading the installation script from the web page,
rather than through a package manager such as apt-get:

$ wget https://get.docker.com -O install.sh

$ chmod u+x install.sh

$./install.sh

You will have to run docker as root unless you add yourself to the docker group.

Mac users: Download and install “Docker for MAC”

(https://www.docker.com/products/docker#/mac)

or the “Docker Toolbox”

(https://docs.docker.com/toolbox/overview/), according to your OS version.

2. Test the Docker installation with the ‘Hello world!’ example:

$ sudo docker run hello-world

Unable to find image ’hello-world:latest’ locally

latest: Pulling from library/hello-world

03f4658f8b78: Pull complete

a3ed95caeb02: Pull complete

Digest: sha256:xxxxxxxxxxxxxxxxxxxxxxxx

Status: Downloaded newer image for hello-world:latest

If everything has worked correctly up to here, you will see a welcome message similar to the following:

9 of 67 Project no. 644399

https://docs.docker.com/engine/understanding-docker/
https://www.docker.com/
https://www.docker.com/products/docker#/mac
https://docs.docker.com/toolbox/overview/

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Hello from Docker.

This message shows that your installation appears to be working correctly.

...

You can check which images are locally installed with:

$sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest 690ed74de00f 4 months ago 960 B

3. Now you are ready to download the MONROE base image:

git clone https://github.com/MONROE-PROJECT/Experiments.git

This will fetch the repository with MONROE’s example containers.

4. Head to Experiments/experiments/template/. Here, you will find the required files to prepare your
image based on MONROE’s base. You should care about four things: a) The contents of the files/

folder, b) the build.sh file, c) the push.sh file and d) the template.docker script file that describes
how to create your container. In the directory files/ you can put all the files that are part of your
experiment. As a simple example, we can use the following script:

$vi files/myscript.sh

#!/bin/bash

ls -lah > /monroe/results/listing.txt

Any files that your experiment creates in /monroe/results are delivered to the repository, where you

will be able to retrieve them. Writes to any other part of the filesystem will be lost once the experiment is

finished. In periodic schedules, no data will survive from one execution to the next (i.e., the container

is loaded fresh before each execution). If result persistence is needed, the experimenter will have to

supply it by downloading the needed files from the network during the experiment itself.

5. You should not need to modify the build.sh file. The name of the container is the name of the current

directory, and it must match the name of the .docker file (e.g., template.docker as we are in a folder

named template/).

6. The file template.docker is the script used to build your container. You can modify it to:

• Define the entry point of your experiment (“ENTRYPOINT”).

• Change the base image of the container, e.g., monroe/base.

• Install additional packages or libraries.

For example:

FROM monroe/base

MAINTAINER your-email-address

COPY files/* /opt/monroe/

#Default cmd to run.

ENTRYPOINT ["dumb-init", "--", "/bin/bash", "/opt/monroe/myscript.sh"]

10 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

This example will copy the files in the files/ directory to the one you specify inside the docker con-

tainer (e.g., /opt/monroe).

TIP: If you need to install additional packages in the container, be sure to clean any temporary files
from the image. Also, notice that the Docker creation script analyses the contents of the container
filesystem after every line in the .docker script is executed. That means that, even if you delete files at
the end, Docker will create intermediate “layers” that will be downloaded and applied sequentially to
build the final image of your container. Consider instead using one-liners such as the following:

RUN apt-get update && apt-get install -y vim && apt-get clean

This will ensure that the files are deleted before Docker analyses the filesystem.

7. Modify the file push.sh to reflect the name of your repository:

#!/bin/bash

DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

CONTAINER=${DIR##*/}

CONTAINERTAG=myuser/myrepo # --> Modify to your own dockerhub user/repo

docker login && docker tag ${CONTAINER} ${CONTAINERTAG} && docker push ${CONTAINERTAG} && \

echo "Finished uploading ${CONTAINERTAG}"

During the development phase of your experiment, follow these steps to make your container accessi-

ble for the testing nodes:

• Create an account at Docker Hub.

• Create your own repository (you can create one container as private; no limits for public ones).

Containers for deployment on MONROE nodes must be public.

• In your development machine, run: docker login. It will ask you for your credentials. •

8. After populating the files/ directory, modifying the .docker file and updating the push.sh file, you are
ready to create the image:

$sudo ./build.sh

Using default tag: latest

latest: Pulling from monroe/base

Digest: sha256:6df1195a3cc3da2bfe70663157fddc42e174ec88761ead7c9a3af591e80ebbd5

Status: Image is up to date for monroe/base:latest

Sending build context to Docker daemon 11.26 kB

Step 1 : FROM monroe/base

---> d1b4f4baa60d

Step 2 : MAINTAINER mikepeon@imdea.org

---> Using cache

---> 0b05b5c453c7

Step 3 : COPY files/* /opt/monroe/

---> acc2df443070

Removing intermediate container 66a666516a27

Step 4 : ENTRYPOINT dumb-init -- /bin/bash /opt/monroe/myscript.sh

---> Running in f4b7a1ee804a

---> 096c7a56ff1c

Removing intermediate container f4b7a1ee804a

Successfully built 096c7a56ff1c

Finished building template

11 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

9. Test that your new docker container is available:

$sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest 690ed74de00f 4 months ago 960 B

your_docker_account/your_experiment latest xxxxxxxxxxxx 32 seconds ago 626.6 MB

monroe/base latest xxxxxxxxxxxx 12 days ago 626.6 MB

Exact image ids and sizes will vary.

10. Push the container image to the repository:

$ sudo ./push.sh

Username (your-Docker-user-name):

Password: (type your DockerHub password)

WARNING: login credentials saved in /home/your-username/.docker/config.json

Login Succeeded

The push refers to a repository [docker.io/mikepeon/template]

5f339bfdaae2: Pushed

486ab26686cc: Layer already exists

034f70c0d9cd: Layer already exists

86b5acd8772a: Layer already exists

f03317610243: Layer already exists

50f6c1bd7ce6: Layer already exists

aec5953bffa2: Layer already exists

507169b05eea: Layer already exists

5d799297d10c: Layer already exists

759d76df9ac7: Layer already exists

5f70bf18a086: Layer already exists

12e469267d21: Layer already exists

latest: digest: sha256:c855de65307191b4832b2ec60a4401c1b63424827c29149703c5d7ef07b519f7

size: 3001

Finished uploading your-username/template

11. You can now test that your image runs correctly, even on your own PC (if the experiment logic and
resource demands allow for it).

$mkdir /run/shm/myresults

$sudo docker run -v /run/shm/myresults:/monroe/results your_docker_account/your_experiment

--> The output of your experiment will be in /run/shm/myresults/listing.txt

The docker command line allows you to specify a mapping between a directory inside the docker im-

age and one in the host system. In this case, we have mapped /monroe/results from the container to

/run/shm/myresults. This is useful if you are running the container locally in a normal PC for debug-

ging purposes.

IMPORTANT: This process shows how to build and run a container locally in your workstation. How-

ever, experimenters do not have direct access to the MONROE nodes. Therefore, to execute your ex-

periment in a MONROE node, you will follow the process just up to the sudo ./push.sh step and then

use the web interface to upload and schedule the container into the nodes.

You may check the contents of experiments/* for more useful examples.

The following is a list of useful common Docker commands:

• To list installed/built images (and get their ids):

12 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

docker images

• To list running containers and get their tags:

docker ps

• To stop running containers:

docker kill container-tag

• To delete images:

docker rm -f image_id

• To retrieve the latest version of an image (e.g., monroe/base):

docker pull monroe/base

• To attach to a running container and get an interactive shell:

docker exec -i -t container-tag bash

2.2.1 Package and tool installation

If you have to install extra packages, libraries or tools, do it from the my_experiment.docker file. You should
never pull repositories or download libraries from inside your experiment as this will count against your data
quota (and execution slot) for every instance of your experiment. Instead, modify the container configura-
tion file as in the following example:

FROM monroe/base

MAINTAINER your-email-address

RUN apt-get update && apt-get install -y \

python \

python-pip \

traceroute \

&& apt-get clean

RUN pip install pygame

RUN mkdir -p /opt/yourname

COPY files/* /opt/yourname/

#Default cmd to run

ENTRYPOINT ["dumb-init", "--", "/bin/bash", "/opt/yourname/myscript.sh"]

You may also download any files using wget, but you may simply put them in the files/ folder as well.

Remember, this happens during container creation on your PC, not during experiment execution on the

nodes.

If you find the need for big libraries that you think should go into the base image, please contact MON-

ROE’s administrators.
TIP: The easiest way to find out which packages and versions are available in the MONROE base image is

to create a simple container and run an interactive batch session inside it in your workstation. For example,
assuming that you have a basic container that simply waits when run, you may follow the following steps:

mkdir /run/shm/myresults

docker run -v /run/shm/myresults:/monroe/results repository/your_container &

13 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

LockType DESCRIPTION
4 Lock in MODE_GSM
8 Lock in MODE_UMTS
16 Lock in MODE_LTE

Table 1: LockTypes

docker ps --> Look for the tag of your running container

docker exec -i -t container_tag bash

--> Here you are inside the container

dpkg -l > /monroe/results/package-listing.txt

exit

--> You’ll find the output at /run/shm/myresults/package-listing.txt

For easier reference, Table 10 in Appendix A gives a detailed listing of packages available in monroe/base

at the time of writing this text.

2.2.2 Band Locking

This option allows experimenters to lock the monroe node modems in LTE, 3G etc... by sending a PUT
request from within a container using different lock types see Table 1 using curl similar to:

curl -X POST -d ’{"lockType": 16}’ http://172.17.0.1:80/modems/1/lock

HTTP/1.0 200 OK

Where "lockType": 16 indicates that it has been locked on 4G LTE and modems/#/lock indicates the
modems ip4table to check ip4table first, or that the modem is locked run:

curl -s http://172.17.0.1:80/modems/ | jq

[

{

"ispName": "YOIGO",

"apnId": 77,

"apn": "internet",

"mode": "LTE",

"deviceType": 0,

"disconnects": 0,

"ip4table": 1,

"modemState": 7,

"deviceKind": 1,

"ifname": "wwan0",

"deviceMode": 5,

"deviceSubMode": 10,

"signalStrength": -56,

"modemName": "MC7455",

"locking": 16,

"imei": "359072060710833",

"iccid": "8934041514050773954",

"usb_vid": 4505

}

]

2.2.3 Virtual Machine support

This option allows experimenters to use a different kernel or kernel options than installed on the MONROE

node. To develop and deploy the experiments to the nodes we utyilize the docker container system. The

14 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

container will on the node be converted to a virtual machine (kvm) and executed in a environment similar to

a regular experiment.

A example on how to configure and run a virtual machine experiment can be found here: https://

github.com/MONROE-PROJECT/Experiments/tree/master/experiments/nodetest .

There are a couple of things to consider when deploying a experiment as a virtual machine;

• Base your docker image on monroe/base:virt

– monroe/base:virt is a stripped down version of monroe/base: https://github.com/MONROE-PROJECT/

Experiments/blob/master/monroe_base/10_virt_docker .

• Include a kernel

• Set the parameter "vm":1 when scheduling the experiment.

• Be very conservative on diskspace, eg installed packages etc.

• Define as the last line of /opt/monroe/user-experiment.sh how to start your experiment.

• Issue poweroff as last command of the experiment script.

2.2.4 NEAT support

This option allows experimenters to route all TCP traffic through a NEAT proxy https://github.com/

NEAT-project/neat . To enable this feature set the parameter "neat":1 when scheduling the experiment.

The NEAT rest api can be reached from inside a experiment container on url 172.17.0.1:45888, eg 172.

17.0.1:45888/pib and 172.17.0.1:45888/cib.

2.3 Optional interactive debugging

To speed up the process of debugging experiments in the nodes, three debugging paths are provided.

First, experimenters can order (buy) a number of “development” nodes to be hosted locally in their

premises. These nodes, which will not be accessible through the standard scheduler and user interface,

can be accessed through local interfaces (eth, serial console) and provide root access.

Second, and only for “testing” nodes, the user interface includes an option to provide an SSH public key

to the container. Once the container starts, experimenters can connect to monitor experiment progress. The

SSH session can extend until the container finishes or is stopped.

Finally, a virtual machine containing a “virtual MONROE node” has been designed to ease development

and debugging on a local PC. This virtual node replays metadata previously recorded from a real one.

CAUTION: Enabling ssh changes the entry point to the container, for this matter it is best not to use ssh

when you have designed your container just to make sure that the container starts automatically in the UI.

2.4 Mandatory certification process

MONROE experiments have to be certified before they can be executed by deployed nodes. A small number

of nodes are available through the user interface so that experimenters can test their experiments before

starting the certification process.

The certification process consists of the following steps:

1. The experimenter contacts their patron to inform them that a new version of their experiment is ready

for certification.

15 of 67 Project no. 644399

https://github.com/MONROE-PROJECT/Experiments/tree/master/experiments/nodetest
https://github.com/MONROE-PROJECT/Experiments/tree/master/experiments/nodetest
https://github.com/MONROE-PROJECT/Experiments/blob/master/monroe_base/10_virt_docker
https://github.com/MONROE-PROJECT/Experiments/blob/master/monroe_base/10_virt_docker
https://github.com/NEAT-project/neat
https://github.com/NEAT-project/neat
172.17.0.1:45888
172.17.0.1:45888/pib
172.17.0.1:45888/pib
172.17.0.1:45888/cib

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

2. The experimenter has to provide a summary of the experiment, i.e., overall purpose, design and imple-

mentation (reasonable length around 0.5 to 1 A4 pages).

3. The container should be submitted as source (i.e., build scripts for Docker, not tools source code) for

easy inspection by the patron. Additionally, this will allow the MONROE administrators to update the

containers when a new version of monroe/base is available.

4. The patron, or the maintenance team, will then build (or pull) the container, tag it as partnername/

experimentname, and push it to the deployed docker repository.

Every experiment submitted to the MONROE testbed must first pass through a testing process to receive

manual approval by a MONROE administrator. To submit your experiment for testing, you have to use the

web interface specifying “testing” as the required node type.

2.5 Deployment

MONROE’s scheduling system will automatically deploy experiments to the nodes before their execution

time. The nodes will fetch the container image from the Docker repository, and the size of the download will

be accounted in your data quota. Notice that in the case of periodic experiments, each time an experiment

is run, the Docker container may have to be re-downloaded and its costs will be accounted in your quota.

2.6 Life cycle of monroe/base

The current version of monroe/base deployed on nodes is tagged as “latest.” New versions will be tagged as

“staging;” their existence will be announced on the experimenters mail list. Experimenters must check their

experiments against the new stagging version to verify that no incompatibilities appear. Any relevant issues

can be discussed with the MONROE administrators. After a reasonable period of time, the new version will

be retagged as “latest,” and deployed into the nodes. All the containers should have been built against the

new version at this time to avoid wasting quota resources when they are deployed in the nodes.

3 Resource allocation, and experiment scheduling and monitoring

Once a experiment is configured as a Docker container, it can be scheduled multiple times under different

conditions using the user client web located at https://www.monroe-system.eu .

3.1 User login and certificates

User identification in MONROE is achieved through client certificates. Every experimenter has their own

certificate compatible with the FED4FIRE1 federation. User certificates are issued by iMinds through the

following URL: https://authority.ilabt.iminds.be/. New users must create a new account (“sign

up”). Be sure to select the option “Join Existing Project” and type the name “Monroe” in the project name

field (Figure 3). The authorization process involves a manual verification step by one of the MONROE ad-

ministrators, so it will probably take one or two days.

Please, notice that the current policy for MONROE is to use one user certificate per project, shared be-

tween all the experimenters belonging to that project.

1http://www.fed4fire.eu/

16 of 67 Project no. 644399

https://www.monroe-system.eu
https://authority.ilabt.iminds.be/
http://www.fed4fire.eu/

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 3: iMinds registration page to obtain FED4FIRE-compatible certificates for use with the MONROE
platform.

Once the identity of the experimenter is approved, they will receive an informative email. They should

then log into the iMinds webpage to download the certificate files (PKCS12). These files must be installed in

the experimenter browser. After that, the user should be able to access the user web directly. Upon request

of the main (index.html) file, the browser will contact MONROE servers to verify that the user credentials

are correct. In the case of any problems, the user will be presented with instructions on how to obtain a

certificate. If the client certificate is verified successfully, they will be automatically redirected to the listing

of their experiments.
NOTE: User certificates are manually activated in the scheduling software. To use your certificate, please

send its SSL ID (“fingerprint”) to one of the MONROE administrators (e.g., mailto:mikepeon@imdea.org,
mailto:mohamed.moulay@imdea.org). You may find it in the screen after pressing the “Try me” button,
once the certificate is correctly installed in your browser:

{

"fingerprint": "c79f1967aea17811a1ebed39b7d718430904338a",

"user": {

"id": 3,

"name": "MONROE Test admin",

"quota_data": 50000000000,

"quota_storage": 500000000,

"quota_time": 500000000,

"role": "admin",

"ssl_id":"c79f1967aea17811a1ebed39b7d718430904338a",

},

"verified": "SUCCESS"

}

⇒We have identified some common issues that are not yet solved. Below are some workarounds:

• For the first login, you may be asked for your user certificate and then your browser may show a security

warning. This is due to the use of a self-signed server certificate. Please ask your browser to proceed.

17 of 67 Project no. 644399

mailto:mikepeon@imdea.org
mailto:mohamed.moulay@imdea.org

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Then, you will probably see an error page from MONROE. Please, click the red button labeled “Try me”

and check that you get a successful data output. Finally, please proceed again to the main page of the

project. From that point, you should be able to access the system without further problems in future

sessions. (Pointers on how to simplify this issue are welcome!)

• Firefox on OSX has an issue with CORS headers. Although the web and scheduling servers are running

now on the same machine, you may still encounter this problem.

⇒ Reminder: All user certificates will end on the 31st of July 2018.

3.1.1 Installation of user certificates in Chrome

This section explains how to install the FED4FIRE-compatible user certificates used by the MONROE plat-

form in Google Chrome for Windows. The procedure for other browsers and platforms should be similar.

1. Go to your browser settings page:

2. Display the advanced configuration settings:

18 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

3. Go to the section labeled “HTTPS/SSL” and click the button “Manage certificates...”:

4. The dialog box for managing your certificates will be displayed. Press the button “Import...” to import

19 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

your certificate:

5. In the new dialog, click “Next”:

6. In the file-selection dialog that appears next, change the file type from “X.509 Certificate (*,cer;*.crt)”

to “Personal Information Exchange”:

20 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

7. And select the file containing your certificate:

8. In the next dialog box, enter your certificate password:

21 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

9. If the import is successful, your certificate will be imported to your “Personal Store” and you will be

able to access the MONROE user interface by selecting it when prompted by your browser. Notice that

you may still get a warning about the validity of the server certificate.

3.2 Resource allocation

The “New” tab allows assigning resources and scheduling new experiments. Here, the user will be presented

with a page similar to Figure 4.

To create a new experiment, at least the following parameters must be specified:

Name: A representative experiment description.

Script: A Docker hub path for the experiment container. In the previous example, it would be your_docker_

account/my_experiment. Experiments on deployed nodes must be lodged in MONROE’s repository:

docker.monroe-system.eu/... (the final URL is communicated when the container is certified).

Number of nodes: The number of nodes that must execute the experiment.

Duration: Length of the experiment execution, in seconds (excluding the time required to deploy the con-

tainer). The node will kill the experiment after this time. The minimum slot that can be reserved is 5min
and the maximum, 24h. However, because of the scheduling of MONROE experiments, the maximum

possible duration is in practice slightly less than three hours.

If the starting date is fixed, the user can introduce it in the field “Start.” All dates are introduced as UTC

times; the interface presents alongside the corresponding local time for the user’s browser. The scheduler

will then try to satisfy the requirements.

Alternatively, if the starting date is not relevant, the user may leave this field empty and press the button

“Check availability” to check the earliest available slot (add at least ten minutes to the proposed time to

allow for container deployment into the nodes). If the user just wants to submit the experiment as soon as

possible, they can just mark the option “As soon as possible” and leave the other fields empty when pressing

the “Submit” button.

Additionally, the user may specify the following restrictions (Figure 5):

22 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 4: Example for the creation of a new experiment.

23 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Country filter: The user may select nodes located in one or several countries, or they may choose to use

nodes from any country indistinctly.

Node type: Currently available node types are deployed or testing. The testing nodes are reserved for exper-

iments that must still be verified by a MONROE administrator. Experiments on deployed nodes must

be lodged in MONROE’s repository: docker.monroe-system.eu/.

Node model: Until complete retirement of the old MONROE nodes, experiments can run on old or new

nodes. Eventually, all experiments will be run on new nodes.

Number of interfaces: New MONROE nodes come in pairs of co-located nodes, where one node (“head”)

has two 4G interfaces, and the other (“tail”) has one 4G interface and one WiFi interface. Specifying the

number of required interfaces for the experiment restricts the type of nodes that can be selected by the

scheduler:

• One interface: The scheduler chooses only nodes with one 4G interface and WiFi (tails).

• Two interfaces: The scheduler chooses only nodes with two 4G interfaces (heads).

• Three interfaces: The scheduler chooses pairs of co-located nodes. In that case, the number of

requested nodes must be even, as each pair is counted as two nodes. The assignment is atomic,

i.e., either the complete pairs will be secured or the complete assignment will fail.

The numbering of nodes follows the convention that the head in a pair receives number n and the

co-located tail receives number n+1, where n is even.

Node IDs: If the experimenter wants to use a set of specific nodes, for example, to repeat one experiment

under the very same conditions, it is possible to introduce a comma-separated list of required nodes,

instead of accepting any available ones.

Active-data quota: The experimenter must specify the active-data quota for each interface, that is, the max-

imum amount of data that each interface can use. The scheduler checks this value against the quota

available for the user.

Log files quota: The user may want to place an estimate on the maximum amount of data that may be gener-

ated as result files in /monroe/results. This is important because the size of the results is also counted

against the user quota.

Deployment-storage quota: This is the size allocated for the container file system in the node. Bigger sizes

require more time to deploy. The maximum limit is 1 GB.

Additional options: The user may provide a set of comma separated key-value pairs. These options will be

appended to the JSON-formatted configuration file that can be read at run-time by the container at

/monroe/config. This mechanism enables experiment parameterization.

3.2.1 Eduroam

In the additional option tab experimenters can use eduroam, which is a roaming service for researchers or
students in universities across Europe, to use eduoroam see Figure 6 the key values are similar to:

"_eduroam": { "identity": "100368007@****", "hash": "YourpasswdHash" }

When the experiments starts the docker container will initialize wpa_supplicant to bring up the Wlan0 interface up, as it will be available

in the network namespace alongside op0, op1. The start log and the container network namespace will be similar to:

24 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 5: Filters for node selection.

Figure 6: Eduroam configuration.

25 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

$Start Log$

Starting container... Successfully initialized wpa_supplicant

Killed old client process

Loading iptables rules

ok.

Starting accounting.

Loading iptables rules

Started docker process xx.

Startup finished Tue Month x xx:xx:xx UTC 20xx.

Started allocator client

JSON request: {"address":"xxx.xxx.xx.xx","ifname":"wlan0","addr_family":x,"cmd":0,"version":1}

Sent 80 bytes

Server: tas_socket Table: xxxxx Lease: xxxxxx Ifname: wlan0 Address: xxx.xxx.xx.xx Family: x

Table: xxxxx

root@xxxxxxx:/# ifconfig

eth0: flags=xx<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet xxx.xx.x.x netmask xxx.xxx.xxx.x broadcast x.x.x.x

lo: flags=xx<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

op0: flags=xx<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet xxx.xx.x.x netmask xxx.xxx.xxx.xxx broadcast x.x.x.x

wlan0: flags=4xxx<UP,BROADCAST,MULTICAST> mtu 1500

inet xxx.xx.xx.xx netmask xxx.xxx.xxx.xxx broadcast x.x.x.x

Noting that the eduroam parameters are hidden parameters, but not encrypted and they are still stored in the scheduler database.

3.3 Experiment scheduling

When all the requirements are specified, the user needs to click the “Submit experiment” button to submit to the scheduler. The

experiments must respect several restrictions to be successfully scheduled:

• The starting time must be at least 10 min in the future, to allow time for container deployment.

• No experiment can be scheduled more than one month in advance.

• Periodic experiments must have a period greater than 3600 s. The finishing time must also obey the previous rule, that is, the last

experiment instance in the recurrence must be scheduled in less than a month from the current time.

• No experiment (or instance in a series) can last more than one day. In practice, the longest period that an experiment will be

awarded is less than 3 h.

• If a list of specific nodes and a starting date are given, the scheduler may be unable to grant the required resources.

3.3.1 Recurrence

MONROE’s scheduler allows to specify experiments that need to be repeated periodically. In that case, the user has to specify the

repetition period (≥ 3600s) and the final stopping date. The scheduler will treat each repetition as a different experiment and will try to

satisfy the requirements for each of them consecutively. However, the operation is atomic: Either all the repetitions are scheduled, or

none are.

3.3.2 Checking availability

If the exact starting time is not relevant, the user can press the “Check availability” button. If the requirements can be satisfied, a

message explaining when the experiment might be started will be displayed. Additionally, it will also inform of the maximum number

of nodes that can be used during this period, and the maximum ending time. With these data, the experimenter may decide to increase

26 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

the number of nodes that run the experiment, or increase its duration until the time that the scheduler is likely being able to grant.

Figure 7 shows the answer of the scheduler for an availability query.

3.3.3 First availability scheduling

The MONROE scheduler allows users to define experiments with an execution window instead of a fixed starting time. This option is

particularly useful with mobile nodes whose active times are difficult to foresee. With first availability scheduling, the user specifies

requirements as usual, except the starting date; instead, a temporal window within which the experiment can be scheduled is defined.

The scheduler will assign a node or set of nodes to the experiment, without committing a specific time slot. When the node contacts

the scheduler (e.g., when a mobile bus becomes online), if it has no pending tasks, the scheduler will assign one of the tasks in the first-

availability queue. Figure 8 shows the definition of an experiment for first availability scheduling. In the time between the experiment

definition and the assignment of an execution window to each of its tasks, the status of the experiment tasks shows no start and stop

times, as shown in Figure 9. The start and stop times of the experiment show the boundaries of the execution window for all the tasks.

First availability scheduling presents some particularities that users should consider:

• If several nodes are requested, execution on each node is asynchronous and thus not guaranteed to be simultaneous.

• Experiments may not be executed if the end of the scheduling window is reached without a chance to execute them.

• Tasks in the first-availability queue are not deployed on advance to the nodes. The user should take this into consideration,

increasing the “duration” of the experiment to include long deployment times.

• The scheduler checks if the first-availability request has a chance to be fulfilled at all, under the current circumstances.

• By default, the execution window ends 24 h after the current time.

3.4 Experiment monitoring

Once an experiment is successfully submitted, the user can check its progress under the “Status” tab. Figure 10 shows an example of a

list of experiments.

All the active (i.e., not completed) experiments for the user are shown. Experiments that have not yet been started can be canceled

and deleted. However, the scheduler will try to stop experiments that have already started, but they will not be deleted from the list.

Clicking on any experiment displays the details for its individual schedules. There, the number of schedules that are defined but

not yet deployed, the ones that are deployed and ready to be started, the ones that are currently running, etc., is summarized. One line

is presented for each individual schedule on each MONROE node. Table 2 explains the states in which an individual task may be.

Some experiments may be designed to finish after completion. For those ones, the correct finishing state is “Finished.” If they are

stopped by the scheduler, they probably exceeded the execution time foreseen by the experimenter. However, other experiments may

be designed to run continuously for a period of time. In those cases, the “Stopped” state could actually be the correct ending state

as intended by the experimenter. Moreover delayed, and failed states can have different meanings From insufficient disk space to the

docker container not being found as explained in Table 3.

27 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

NewExperimentCheckAvailability.png

Figure 7: The scheduler may supply hints on the scheduling availability, including the earliest starting date
that is possible, the end of the availability period for the required resources and the maximum number of
nodes, with the specified requirements, that the experiment could reserve. In this example, the experiment
can start on “2017-02-28 16:04:08 UTC” and can last until “2017-02-28 16:45:02 UTC.” The experiment can
be scheduled with up to 36 nodes during this period.

28 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 8: Example of a first availability scheduling.

Figure 9: Status of an experiment in the fist availability queue without defined starting and stopped times.

29 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 10: List of user experiments.

30 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 2: Experiment states

STATE DESCRIPTION

(Ongoing states)

Defined The experiment is created in the scheduler. If a task remains in this state past its start-
ing time, the node was probably shut down and the task will not be executed anymore.

Requested The node has requested the container and is deploying it.
Deployed The node has already deployed the container and is waiting for its starting time.
Delayed The scheduling process failed temporarily.
Started The container is being executed in the designated node. The “download” link for the

task results is already available.
Restarted The node has restarted the experiment after a node failure.

(Final states)

Finished The task was correctly executed and it finished on its own before consuming the com-
plete time slot.

Stopped The task was correctly executed, but it was stopped by the scheduler at the end of the
execution slot (correct for tasks designed to remain in execution until the end of their
time slot).

Failed The task stopped abnormally.
Canceled The task was canceled by the user before being started (but other tasks in the experi-

ment were already started).
Aborted The task was aborted by the user after being started.

Table 3: Experiment problems

STATE DESCRIPTION

Deployed

• Container does not exist, or i/o timeout.
• Insufficient disk space.
• Cannot deploy while node is in maintenance mode.
• Container downloading in background.

Failed

• Storage quota exceeded during deployment.
• Container exited immediately.
• Network namespace does not exist.
• Container image not found.
• Started into maintenance mode.
• Docker run command failed.
• Docker run exit code 127: entry point not found?
• Deployment time exceeded stop time, skipped start hook.
• Deployment time exceeded stop time.

31 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

3.5 Command Line Interface

The MONROE scheduler REST API is normally used through the provided WEB interface. However, experimenters can use it directly

to improve task automation. A complete command-line tool is available at https://github.com/ana-cc/monroe-cli.2 The fol-

lowing paragraphs describe how to install and use the tool. Note that due to a certificate issue the tool will only run on Debian based

systems.

3.5.1 Installation

Installation prerequisites:

sudo apt install git python3-dev python3-setuptools build-essential libffi-dev libssl-dev python3-straight.plugin python3-cryptography

From the directory that contains the tool sources:

python3 setup.py develop

The user certificate can be imported with:

$ monroe setup MyCert.p12

Enter passphrase:

Your certificate files were stored in ~/.monroe

Alternatively, the cert/key files can be extracted manually and placed under ∼/.monroe/ with the names mnrCrt.pem and

mnrKey.pem.

3.5.2 Usage

The tool has integrated help:

$ monroe -h

usage: monroe [-h] Command ...

Monroe Cli

optional arguments:

-h, --help show this help message and exit

Experiment:

The following commands can be used to create and submit experiments

Command Description

create Creates an experiment

whoami Displays MONROE user details

quota Displays MONROE quota details

experiments

Display recent experiments

setup Specifies MONROE user certificate to use for accessing the

scheduler

delete Deletes an experiment

results Downloads the results for an experiment

Correct installation of the tool can be tested trying to retrieve the user identification:

$ monroe whoami

Authentication ID: 2, Name: MONROE Test user, Storage Quota remaining: 49597346816 bytes

User quotas can be easily retrieved:

2The command-line interface tool has been provided by Ana Custura, from the University of Aberdeen Court, in the context of the
MONROE-PREC project.

32 of 67 Project no. 644399

https://github.com/ana-cc/monroe-cli

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 11: Folder containing the results of an individual schedule, transferred to MONROE’s servers.

$ monroe quota

2017-05-05 : Remaining time is 138888.00 hours.

2017-05-05 : Remaining storage quota is 46.00 GB.

2017-05-05 : Remaining data quota is 46.00 GB.

Experiments can be easily submitted, and customized with various options:

$ monroe create monroe/base --nodecount 5 --duration 600

Allocated task 1289.

The tool allows retrieving the list of recent experiments:

$ monroe experiments

Experiment ID: 6798 Name: mike test on new nodes Script: steven76/headless Summary: {u’aborted’: 1}

Experiment ID: 6799 Name: mike test on new nodes Script: steven76/headless Summary: {u’aborted’: 1}

Experiment ID: 6800 Name: mike test on new nodes Script: steven76/headless Summary: {u’aborted’: 1}

The results of an experiment can also be automatically retrieved:

$ monroe results 6479

This command downloads the experiment results into 6479/sched_id, for all the task IDs associated to that experiment.

For experiment creation, the tool supports defining SSH access to the container (in testing nodes), additional options and recur-

rence. Finally, the tool can be used as a library:

from monroe.core import *

4 Retrieval of metadata and experiment results
MONROE repositories contain two types of data: MONROE metadata itself and the results of user experiments.

4.1 User experiment results

Any files written during the experiment to the /monroe/results directory will be synchronized to the experiment repository. This

operation happens continuously during experiment execution and then upon its finalization. Therefore, it is advisable that only final

files ready to be transferred are copied (indeed, mv’ed) to that location to avoid the system to sync temporary files and consume your

quota or produce invalid results. This recommendation means that files in the results folder should not be updated; experimenters are

encouraged to copy intermediate result files as soon as they are ready so they can retrieve partial results if the experiment fails in the

middle of its execution.

The result files can be accessed through the user interface: For experiments that have already been started, the interface presents a

link under the column “Results” that redirects the user to the HTTP folder (Figure 11) that contains the files already synchronized from

the node where the experiment runs to the repository. In this way, the experimenter can retrieve result files even for partial experiments

that fail or are canceled.

In addition, the experiment may use any network functionalities to communicate with outside servers as needed (e.g., scp some

files to an external server). In order to improve safety, private keys should be restricted to the experiments and discarded after a rea-

sonable time. Additionally, instead of saving your keys in the container itself, you may want to pass them as additional options during

experiment scheduling. The values will be available during container execution as a JSON file at /monroe/config. Notice that this

file is created by the node scheduler. The same effect is achievable when the containers are run manually in user development nodes

33 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

adding the -v option to the command line. To map both a locally created config file and the results folder of the container to a node

folder, in development nodes without a scheduler, the following command line fragment may be used:3

-v /monroe/results:/monroe/results -v /monroe/config:/monroe/config:ro

4.2 MONROE metadata

MONROE metadata can be freely accessed by two means. First, a CSV dump of all database tables is generated daily. The files can

be accessed at the following URL (a valid user certificate is needed): https://www.monroe-system.eu/user/dailyDumps/. The

dump files should be available every day after 12:00 CET (24-hour format). Each file covers the period [00:00, 00:00) GMT.

Our servers run on CET time, but metadata timestamps use GMT. Therefore, to cover “a day” of metadata using, e.g., the local time

in Norway, two CSV files need to be combined. During Winter time, the needed metadata is in the period [day0:01:00, day1:01:00).

During Summer time, the needed metadata is in the period [day0:02:00, day1:02:00).

Alternatively, metadata can be accessed directly in a replica of MONROE’s Cassandra database, which is updated daily approxi-

mately at noon with the data from the previous (GMT) day. Access credentials for this server will be provided as requested. MONROE

repositories include several examples on how to access the database.

5 Run-time considerations for experimenters
This section discusses several considerations that experimenters must take into account when designing and running their experiments

on the MONROE platform.

5.1 Node identification

An experiment can identify the node it is running on by reading the contents of the /nodeid file:

cat /nodeid

54

5.2 Communication during the experiment

During execution, the experiment is free to establish any network communications through the available interfaces. The user can

choose to bind explicitly from each command or application to a specific interface, or they may define default routes during the exper-

iment:

route add default gw 172.16.0.1 eth0

5.3 Interface naming and default route

To offer a consistent view of the platform resources, whereas allowing flexibility for future changes in the platform configuration, the

following naming scheme is used for each of the interfaces available for the experiments:

op0: First mobile interface.

op1: Second mobile interface.

op2: Only for old nodes, third mobile interface.

eth0: Ethernet (wired) network connection, when available.

The platform guarantees that a given opi corresponds to the same operator during experiment execution. However, the assignment

may change between nodes in the same country or even between successive executions in the same node. Therefore, experiments must

check the metadata stream to select the correct interface associated to the desired operator.

Under some circumstances, the mobile devices used in the MONROE nodes may loose connectivity, reset themselves or undergo

any other process that makes them temporarily unavailable for the experiments. To identify and tackle with these situations, experi-

menters are encouraged to build “robust” experiments subscribing to the corresponding metadata streams.

If the experimenter writes their own code:

1. Subscribe to the metadata broadcast.

2. Wait for a MODEM.*.UPDATEmessage for the modem(s)/operators of interest.

3Thanks to Eneko Atxutegi Narbona and Jonas Karlsson for pointing this out.

34 of 67 Project no. 644399

https://www.monroe-system.eu/user/dailyDumps/

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

3. Once this information is obtained, use the desired interface and store the results with the corresponding ICCID or operator

name.

4. Should the interface disappear (ENODEV error, “no such device”), start over at 2.

When using an external tool that does not handle ENODEV (e.g., “fping”), replace step 4 by:

• Monitor the metadata for aMODEM.*.CONNECTIVITYmessage indicating that connectivity was lost, or monitor the interface

list to check if the device disappears. Upon either event, start over at 2.

Experimenters should take notice that an interface may not only go down, but it may actually disappear from the list of available

interfaces (e.g., if the modem has to be restarted). Even if it reappears soon after, any existing network connections on the old interface

will fail with ENODEV.

It is also possible to skip steps 1 and 2 when reconnecting to an interface after a failure, as the interface name corresponding to the

desired operator is already known. It is still necessary to keep retrying to connect to the interface, until it comes up.

5.4 Interface binding

Experiments running in MONROE nodes have access to several network interfaces. By default, that is, if the experiment does not

take any special configuration actions, the default route will be configured to one of the mobile broadband interfaces, if available.

However, experimenters have the possibility of explicitly binding external tools or their programs to specific interfaces. Several options

are available to bind an experiment to an interface.

1. Most standard tools can be instructed to use an specific interface:

ping -I op0 host_name

tcpdump --I op0 target

wget --bind-address ...

curl --interface ...

2. Explicit binding in the source code.

• In C:

snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "op0");

setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE, (void *)&ifr, sizeof(ifr))

localaddr.sin_addr.s_addr = inet_addr("192.168.1.100");

bind(sockfd, (struct sockaddr *)&localaddr, sizeof(localaddr));

• In Python:

s = socket.socket()

s.bind(’192.168.1.152’, 0))

3. Library overloading the bind() and connect() functions through LD_PRELOAD:

http://www.ryde.net/code/bind.c.txt

4. Changing the default route:

route del default gw ...; route add ...

5.5 Metadata at run-time

MONROE nodes retrieve constantly some metadata information concerning their own state and the network conditions. This informa-

tion is continuously uploaded to the MONROE servers and stored in a database. One of the main goals of the MONROE project is to

make all that information freely accessible. Therefore, experimenters may perform an off-line correlations of events in their experiment

with the information in the MONROE database.

MONROE experimenters can also access all the metadata information at run-time from their experiments to achieve easy correla-

tion of events or modify the behavior of the experiment during its execution. For example:

• Experiments that depend on external factors (location):

– Round trip time vs. location.

– Proactive HTTP caching according to location.

– Round trip time vs. base station.

– Round trip time vs. signal strength.

– Route selection according to current conditions.

• Experiment validation:

35 of 67 Project no. 644399

http://www.ryde.net/code/bind.c.txt

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

– Verify that node temperature is/was within limits.

– Verify that system load is/was below threshold.

The metadata is broadcast locally using ZeroMQ. The following excerpt in Python shows how an application can subscribe to the

metadata stream:

import zmq

context = zmq.Context()

socket = context.socket(zmq.SUB)

socket.connect ("tcp://172.17.0.1:5556")

An empty string subscribes to everything:

topicfilter = ’’ # E.g., use ’MONROE.META.DEVICE.GPS’ for GPS-only metadata

socket.setsockopt(zmq.SUBSCRIBE, topicfilter)

while True:

string = socket.recv()

print string

5.5.1 Example: Correlate experiment results with metadata at run-time

The following example shows how to create an application that executes a ping to an external machine and saves the results alongside

the node location:

• Pipe the ping command through a “ping formatter.”

• The “ping” formatter subscribes to a zmq socket and topic:

– Socket : ’tcp://172.17.0.1:5556’

– Topic : ’MONROE.META.DEVICE.GPS’

• Cache the GPS position received.

• Wait for output from the ping command (stdin).

• Store experiment information including the GPS position:

– Use the “library” monroe_exporter (python only).

– Call the monroe_exporter script via the command line.

Below is the corresponding source code:

socket.connect(’tcp://localhost:5557’)

socket.setsockopt(zmq.SUBSCRIBE, ’MONROE.META.DEVICE.GPS’)

LAST_GPS_FIX = None

monroe_exporter.initalize(’MONROE.EXP.PING’, 1, 5.0)

’’’fork and wait for for gps messages’’’

while True:

(topic, msgdata) = socket.recv_multipart()

LAST_GPS_FIX = json.loads(msgdata)

’’’main process waits for ping experiment output ’’’

while line:

exp_result = r.match(line).groupdict()

msg = {

’InterfaceName’: interface,

’Bytes’: int(exp_result[’bytes’]),

’Host’: exp_result[’host’],

’Rtt’: float(exp_result[’rtt’]),

’SequenceNumber’: int(exp_result[’seq’]),

’TimeStamp’: float(exp_result[’ts’])

36 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

}

if LAST_GPS_FIX != None:

msg.update(

{

’GPSTimeStamp’: LAST_GPS_FIX[’TimeStamp’],

’Latitude’: LAST_GPS_FIX[’Latitude’],

’Longitude’: LAST_GPS_FIX[’Longitude’],

’Altitude’: LAST_GPS_FIX[’Altitude’],

’NumberofSatellites’: LAST_GPS_FIX[’NumberofSatellites’]

})

monroe_exporter.save_output(msg)

line = sys.stdin.readline()

5.5.2 Metadata information

Currently, the collected metadata includes:

• Node GPS.

• Node sensors (CPU temp) and probes (load, memory usage).

• Modem status and events.

• Continuous and scheduled internal experiments:

– RTT (through ping).

– Bandwidth (through HTTP download).

The following and some examples of the information received in the metadata stream:

• RTT experiment:

{"DataId": "MONROE.EXP.PING", "Bytes": 84, "NodeId": "54",

"SequenceNumber": 301, "DataVersion": 1, "Timestamp": 1465805479.747943,

"Rtt": 71.2, "Host": "8.8.8.8", "Operator": "Orange",

"Iccid": "8934014251541036013", "Guid":

"sha256:a9f9fb2c04bba3782ef2624e118faa18f16b08c826155cae5e1ea7e1d88832b5.0.54.3791"}

• Sensors, where each message may contain information about a different set of measurements:

{"DataId": "MONROE.META.NODE.SENSOR", "softirq": "205270", "SequenceNumber": 48581,

"DataVersion": 1, "b": "1059270", "b": "4885494", "guest": "0", "NodeId": "54",

"idle": "42657942", "user": "10480984", "irq": "0", "steal": "0",

"Timestamp": 1465786966.123456, "nice": "3063"}

{"DataId": "MONROE.META.NODE.SENSOR", "SequenceNumber": 48567, "DataVersion": 1,

"Timestamp": 1465786961.123456, "percent": "65.98", "NodeId": "54", "current": "302234",

"start": "1465484726", "total": "5246545.72", "id": "39"}

{"DataId": "MONROE.META.NODE.SENSOR", "SequenceNumber": 48460, "DataVersion": 1,

"Timestamp": 1465786926.123456, "apps": "3632746496", "NodeId": "54", "free": "483119104",

"swap": "0"}

• Modem events:

{"DataId": "MONROE.META.DEVICE.MODEM", "InterfaceName": "usb2", "CID": 72209509,

"DeviceState": 3, "SequenceNumber": 33548, "DataVersion": 1,

"Timestamp": 1465803136.123456,

"NWMCCMNC": 21404, "Band": 3, "RSSI": -80, "IPAddress": "10.33.101.173",

"IMSIMCCMNC": 21404, "DeviceMode": 5, "NodeId": "54", "IMEI": "864154023645179",

"RSRQ": -8, "RSRP": -85, "LAC": 28014, "Frequency": 1800,

"InternalIPAddress": "192.168.0.153", "Operator": "YOIGO",

"ICCID": "8934041514050774002", "IMSI": "214040113950108"}

• GPS:

{"DataId": "MONROE.META.DEVICE.GPS", "SequenceNumber": 34164, "DataVersion": 1,

"Timestamp": 1465805718.123456, "Altitude": -1455.900024, "NodeId": "63",

37 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 4: Metadata topics.

TOPIC DESCRIPTION

*.DEVICE.MODEM.iccid.UPDATE
*.DEVICE.MODEM.iccid.MODE
*.DEVICE.MODEM.iccid.SIGNAL
*.DEVICE.MODEM.iccid.LTEBAND
*.DEVICE.MODEM.iccid.ISPNAME
*.DEVICE.MODEM.iccid.IPADDR
*.DEVICE.MODEM.iccid.LOCCHANGE
*.DEVICE.MODEM.iccid.NWMCCMNCCHANGE
*.DEVICE.GPS
*.NODE.SENSOR.sensor_name Temp sensor, running experiments, quotas, . . .
*.NODE.EVENT Power up events, etc, . . .

"Longitude": -3.777019, "NMEA":

"$GPGGA,081518.0,4020.002011,N,00346.621107,W,1,02,500.0,-1455.9,M,53.0,M„*5D\r\n",

"SatelliteCount": 2, "Latitude": 40.333366}

5.5.3 Metadata format

Metadata and internal experiment results follow a JSON structure, as detailed inhttps://github.com/MONROE-PROJECT/Experiments/

wiki :

• All Metadata messages have a topic according to Table 4. Appendix B gives the complete description of the meaning of all the

metadata fields.

• All metadata topics are prefixed with “MONROE.META.”

• All internal experiments are prefixed with “MONROE.EXP.”

• Experiments receive metadata messages only for topics to which they subscribe.

• An empty string ("") subscribes to all topics.

5.6 Tstat at run-time

The Tstat (http://www.tstat.polito.it/) runs on all nodes in the mPlane container as one of the basic MONROE containers.

The Tstat is a passive probe able to provide several insight on the traffic patterns at both the network and the transport levels. The Tstat

generates two different types of logs.

5.6.1 Tstat Round Robin Database

The RRD (Round Robin Database) logs is an average of samples of each packet in 5 minutes, it imposes at least 5 minutes delay to visu-

alize RRDs. The detail description of the RRD logs is available on Tstat documentation(http://tstat.polito.it/HOWTO.shtml#

RRD). RRD are available via the (http://monroe-repository.polito.it:8080/) and the Graphite GUI provides some tool to

present RRD logs and save the interested plots. Fig. 12 shows the bit rate of the ICMP packet for the node #38 on interface op0 over the

last 24 hours. There is possibility to create a dashboard to monitor the experiments and interfaces’ status. Fig. 13 illustrates an example

of saved dashboard to monitor the volume of traffic on one node.

5.6.2 Tstat logs

Tstat generates detailed flow level logs for TCP, UDP, and HTTP flows. These are text file with more than 100 metrics, containing infor-

mation about the client and server addresses, network and application level metrics, and DNS queries. The description of the metrics

presents (http://tstat.polito.it/measure.shtml#LOG). In MONROE, the Tstat configure to generate 4 different logs as follow-

ing:

Logs are available in two ways,

38 of 67 Project no. 644399

https://github.com/MONROE-PROJECT/Experiments/wiki
https://github.com/MONROE-PROJECT/Experiments/wiki
http://www.tstat.polito.it/
http://tstat.polito.it/HOWTO.shtml#RRD
http://tstat.polito.it/HOWTO.shtml#RRD
http://monroe-repository.polito.it:8080/
http://tstat.polito.it/measure.shtml#LOG

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 12: Graphite GUI of the Tstat RRD logs.

Table 5: Tstat log types.

TYPE DESCRIPTION

log_tcp_complete Every TCP connection that has been tracked
log_tcp_nocomplete All the connections for which the three way handshake is not properly seen
log_udp_complete Every tracked UDP flow pair
log_http_complete Information from every HTTP request and response

1. Real time access on the node, logs for the last three generated are shared with MONROE experimenters on the "/monroe/tstat",

it helps the MONROE users to use passive traces collected by Tstat during their experiment. The three logs can cover at most the

last three hours.

2. On demand, all logs are imported into MONROE database for all node. The schema of the tables are available on github (https:

//github.com/MONROE-PROJECT/Database/blob/master/db_schema.cql). Three columns, (NodeId,Iccid,DataId) added

to each table bring the possibility to join with metadata and collected data.

It is recommended to check the description of the logs on (http://tstat.polito.it/measure.shtml#LOG). Tables 6, 7 and 8

present the table describing of some interesting metrics in tcp and http logs.

5.7 Access to user-owned development nodes

This section refers to development nodes owned by external users under the dispositions of their specific MONROE agreement. Two

options are possible for the management of those nodes:

1. The nodes join the pool of MONROE nodes. Experiments are scheduled through the MONROE scheduler and users, including

the node owners, do not have direct SSH access to them. The metadata produced by these nodes will join the rest of the MONROE

databases.

2. The nodes are considered “development nodes” for private use of their owners. In that case, they will not join the MONROE

platform and will not be accessible through the MONROE scheduler, neither for their owners nor for other users. The nodes will

be marked as “storage” or “development.” Thus, users (again, only their owners) must log locally into the nodes to manually

39 of 67 Project no. 644399

https://github.com/MONROE-PROJECT/Database/blob/master/db_schema.cql
https://github.com/MONROE-PROJECT/Database/blob/master/db_schema.cql
http://tstat.polito.it/measure.shtml#LOG

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 6: Core TCP Set.

C2S S2C Short description Unit Long description

1 15 Client/Server IP addr – IP addresses of the client/server
2 16 Client/Server TCP port – TCP port addresses for the client/server
3 17 packets – total number of packets observed from the client/server
4 18 RST sent 0/1 0 = no RST segment has been sent by the client/server
5 19 ACK sent – number of segments with the ACK field set to 1
6 20 PURE ACK sent – number of segments with ACK field set to 1 and no data
7 21 unique bytes B number of bytes sent in the payload
8 22 data pkts – number of segments with payload
9 23 data bytes B number of bytes transmitted in the payload, including retransmissions
10 24 rexmit pkts – number of retransmitted segments
11 25 rexmit bytes B number of retransmitted bytes
12 26 out seq pkts – number of segments observed out of sequence
13 27 SYN count – number of SYN segments observed (including rtx)
14 28 FIN count – number of FIN segments observed (including rtx)
29 First time abs ms Flow first packet absolute time (epoch)
30 Last time abs ms Flow last segment absolute time (epoch)
31 Completion time ms Flow duration since first packet to last packet
32 C first payload ms Client first segment with payload since the first flow segment
33 S first payload ms Server first segment with payload since the first flow segment
34 C last payload ms Client last segment with payload since the first flow segment
35 S last payload ms Server last segment with payload since the first flow segment
36 C first ack ms Client first ACK segment (without SYN) since the first flow segment
37 S first ack ms Server first ACK segment (without SYN) since the first flow segment
38 C internal 0/1 1 = client has internal IP, 0 = client has external IP
39 S internal 0/1 1 = server has internal IP, 0 = server has external IP
40 C anonymized 0/1 1 = client IP is CryptoPAn anonymized
41 S anonymized 0/1 1 = server IP is CryptoPAn anonymized
42 Connection type – Bitmap stating the connection type as identified by TCPL7 inspection engine (see

protocol.h)
43 P2P type – Type of P2P protocol, as identified by the IPP2P engine (see ipp2p_tstat.h)
44 HTTP type – For HTTP flows, the identified Web2.0 content (see the http_content enum in

struct.h)

Table 7: TCP End to End Set.

C2S S2C Short description Unit Long description

45 52 Average rtt ms Average RTT computed measuring the time elapsed between the data segment and the
corresponding ACK

46 53 rtt min ms Minimum RTT observed during connection lifetime
47 54 rtt max ms Maximum RTT observed during connection lifetime
48 55 Stdev rtt ms Standard deviation of the RTT
49 56 rtt count – Number of valid RTT observation
50 57 ttl_min – Minimum Time To Live
51 58 ttl_max – Maximum Time To Live

40 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 13: An example of dashboard on Tstat RRD GUI.

schedule their containers using Docker commands. The nodes will not run the base experiments; no metadata, or any other

information produced by them will join the MONROE databases.

In essence, “managed” nodes are part of the testbed and work as any other ones, whereas “development” nodes are for private use

of their owners. The following paragraphs provide relevant information for the use of development nodes.

5.7.1 Accessing user-owned development nodes

Development nodes can be accessed either through the management interface (the black wire connected to eth2) via SSH, or directly

via the serial console (DB9 connector, using a null-modem cable). The necessary passwords will be provided on request through a

secure channel. Table 9 explains the uses of each available user.

Do not distribute passwords or keys to unauthorized personnel. Do not send passwords or keys over insecure channels. Use of

the administrator user ’monroeSA’ is allowed only for development on local nodes, unless granted permission to perform a specific

task requiring this user. Creation of user accounts on nodes is forbidden. Modifying user accounts on nodes is forbidden. Modifying

authorized_keys on nodes is forbidden. Be VERY careful if you change any firewall settings, and only do this on development

nodes. Be smart.

Local access, which allows password authentication, can be achieved through the serial port and the management interface.

The APU’s third ethernet port (eth2), nearest the USB ports, has a default IP address, 172.16.254.1/24 for the Head and 172.16.254.2/24

for the Tail. The nodes can be accessed by setting up a static IP address in the 172.16.254.0/24 network span (e.g., 172.16.254.20) on the

developer side of the link and establishing an SSH connection.

The DB-9 serial port (console) allows direct terminal access. The boot process and grub menu are visible and interactive through

this connection; some kernel messages will be printed as well while connected. Connecting to the console port requires a null modem

cable. In the following examples, /dev/ttyS0 has to be substituted with the device path for the developer’s cable. A typical case for

USB-to-serial adapters is /dev/ttyUSB0:

minicom -D /dev/ttyS0 ---or--- screen /dev/ttyS0 115200

6 Monitoring node status
The state of the nodes can be checked under the tab “Resources.” Figure 14 shows an example of the supplied information. Experi-

menters can use the operator codes and names to manually pick nodes with concrete operators.

41 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 8: Core HTTP Set.

C2S S2C Short description Unit Long description

1 1 Client IP addr – IP addresses of the client (sending the request/receiving the response)
2 2 Client TCP port – TCP port addresses for the client
3 3 Server IP addr – IP addresses of the server (receiving the request/sending the response)
4 4 Server TCP port – TCP port addresses for the server
5 5 Segment time abs s Absolute time [s] (epoch) of the request/response
6 Request method – Request method (GET/POST/HEAD) [*]
7 Hostname – Value fo the “Host:” HTTP request field
8 FQDN – DN-Hunter cached DNS name [ˆ]
9 URL Path – URL request path
10 Referer – Value of the “Referer:” HTTP request field
11 User agent – Value of the “User-Agent:” HTTP request field
12 Cookie – Value of the “Cookie:” HTTP request field
13 Do Not Track – Value of the “DNT:” HTTP request field

6 Response string – Response identifier (always “HTTP”) [*]
7 Response code – HTTP response code (2xx/3xx/4xx/5xx)
8 Content len B Value of the “Content-Length:” HTTP response field
9 Content type – Value of the “Content-Type:” HTTP response field
10 Server – Value of the “Server:” HTTP response field
11 Range – Value of the “Content-Range:” HTTP response field for partial content (Code 206)
12 Location – Value of the “Location:” HTTP response field for redirected content (Code 302)
13 Set Cookie – Value of the “Set-Cookie:” HTTP response field

Table 9: Node users

USER PASSWORD SUDO USES

monroe [redacted] reboot maintenance, troubleshooting
monroeSA [redacted] yes administration, development

42 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Figure 14: Status of the MONROE nodes. The screen capture shows all types of nodes in Spain. The green ap-
proval sign (“thumbs-up”) close to the node IDs indicates that this node is capable of executing experiments.
Clicking on the “Location” link for a node opens a Google Maps page showing the location of the node. Fi-
nally, the bottom part of the screen shows a “map” of nodes that allows users and MONROE administrators
to quickly identify available (and problematic) nodes in the platform.

Column “Location” opens a Google Maps window with the last known position of the node, when available. Similarly, column

“Graphs” opens the visualization page for the selected node. There, experimenters can see the last known RTT and RSSI measures for

the node, its current location and state.

7 MONROE templates, examples and default experiments
This section details the template for building MONROE experiments, the experiments that run as part of the default MONROE platform

and several additional examples that can be directly used or that can serve as the basis for new ones. The source code for the examples

is publicly available at https://github.com/MONROE-PROJECT/Experiments.

7.1 Example template

This experiment template provides an extensive example to show the capabilities of the MONROE platform. The experiment will down-

load a url (file) over http using curl from a configurable operator while at the same time recording the GPS positions of the node. If

the operator is not available at the time of execution, the experiment will fail.

43 of 67 Project no. 644399

https://github.com/MONROE-PROJECT/Experiments

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

7.1.1 Usage

The configuration values can be supplied as a JSON string in the “Additional options” field of the web user interface. This allows to

specify a different set of parameters for each execution of the experiment.

The values of the configuration parameters can be read by the experiment from the /monroe/config file. The following text

shows a configuration file with per-execution (“additional options” field) options:4

{

"stop": 1486653420,

"start": 1486653120,

"traffic": 1048576,

"script": "mikepeon/mike-depurar",

"shared": 0,

"storage": 134217728,

"resultsQuota": 0,

"guid": "sha256:3796f833f55c8dbca7e9845ea06120ccebec85c2770c0de2deb57509300efa44.165695.48.1",

"option1": "value1",

"option2": "value2",

"nodeid": "48"

}

The default configuration values are as follows:

{

The following values are specific to the monroe platform

"guid": "no.guid.in.config.file", # Created by the scheduler

"nodeid": "no.nodeid.in.config.file", # Created by the scheduler

"storage": 104857600, # Created by the scheduler

"traffic": 104857600, # Created by the scheduler

"script": "jonakarl/experiment-template", # Created by the scheduler

"zmqport": "tcp://172.17.0.1:5556",

"modem_metadata_topic": "MONROE.META.DEVICE.MODEM",

"gps_metadata_topic": "MONROE.META.DEVICE.GPS",

"dataversion": 1, # Version of the experiment

"dataid": "MONROE.EXP.JONAKARL.TEMPLATE", # Name of the experiement

"meta_grace": 120, # Grace period to wait for interface metadata

"exp_grace": 120, # Grace period before killing experiment

"meta_interval_check": 5, # Interval to check if interface is up

"verbosity": 2, # 0="Mute", 1=error, 2=information, 3=verbose

"resultdir": "/monroe/results/",

These values are specic for this experiment

"operator": "Telenor SE",

"url": "http://193.10.227.25/test/1000M.zip",

"size": 3*1024 - 1, # The maximum size in Kbytes to download

"time": 3600 # The maximum time in seconds for a download

}

The download will abort when either size OR time OR actual size of the “url” is downloaded. All debug/error information will be

printed on stdout, depending on the “verbosity” variable.

7.1.2 Requirements

The following directories and files must exist and have read and write permissions for the user/process running the container:

• /monroe/config, supplyed by the scheduler in the nodes.

• “resultdir,” according to the values supplied in the configuration string or the default ones (Section 7.1.1).

4Entries in the /monroe/config file may appear in different order.

44 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

7.1.3 Output

The experiment will execute a statement similar to running curl with the following command line:

curl -o /dev/null --raw --silent --write-out "{ remote: %{remote_ip}:%{remote_port},

size: %{size_download}, speed: %{speed_download}, time: %{time_total},

time_download: %{time_starttransfer} }" --interface eth0 --max-time 100 --range 0-100

http://193.10.227.25/test/1000M.zip

The experiment will produce a single-line JSON object similar to this (pretty printed to improve readability):

{

"Bytes": 30720000,

"DataId": "313.123213.123123.123123",

"DataVersion": 1,

"DownloadTime": 2.716,

"GPSPositions": [

{

"Altitude": 225.0,

"DataId": "MONROE.META.DEVICE.GPS",

"DataVersion": 1,

"Latitude": 59.404697,

"Longitude": 13.581558,

"NMEA": "$GPGGA,094832.0,5924.281896,N,01334.893500,E,1,05,1.6,225.0,M,35.0,M,,*5D\r\n",

"SatelliteCount": 5,

"SequenceNumber": 14,

"Timestamp": 1465551728

},

{

"DataId": "MONROE.META.DEVICE.GPS",

"DataVersion": 1,

"Latitude": 59.404697,

"Longitude": 13.581558,

"NMEA": "$GPRMC,094832.0,A,5924.281896,N,01334.893500,E,0.0,,100616,0.0,E,A*2B\r\n",

"SequenceNumber": 15,

"Timestamp": 1465551728

}

],

"Guid": "sha256:15979bc2e2449b0011826c2bb8668df980da88221af3fc7916cb2eba4f2296c1.0.45.15",

"Host": "193.10.227.25",

"Iccid": "89460850007006922138",

"InterfaceName": "usb0",

"NodeId": "45",

"Operator": "Telenor SE",

"Port": "80",

"SequenceNumber": 1,

"SetupTime": 0.004,

"Speed": 11295189.0,

"TimeStamp": 1465551458.099917,

"TotalTime": 2.72

}

7.1.4 Overview of the code structure

The experiment consists of one main process and two sub processes, where one process listens to modem and gps information, and

the other executes the experiment. The main process supervises the execution of its two children.

45 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Information sharing between processes. Information is shared between processes via two thread-safe data structures (i.e.,

a Python “Manager” object). Regarding modem information, the latest metadata update (for the specified operator) is stored in a

dictionary. The GPS information is continuously appended to a list as it is received.

The metadata sub-process. This process listens to GPS and modem messages sent on the ZeroMQ bus and updates the shared

data structures.

The experiment sub-process. This process reads entries from the shared data structures, runs the experiment and saves its

result when finished.

7.2 Docker miscellaneous usage notes

• List running containers:

docker ps

• Debug shell:

docker run -i -t --entrypoint bash --net=host template

• Normal execution with output to stdout:

docker run -i -t --net=host template

• Attach to a running container (with shell):

docker exec -i -t [container runtime name] bash

• Get container logs (stderr and stdout):

docker logs [container runtime name]

7.3 Experiment: ping

This background experiment runs continuously an RTT estimate on each MBB operator on the node (one independent experiment

is run per interface). The experiments measure IP RTT by continuously sending ping packets to a configurable server (by default

8.8.8.8, Google’s public DNS server). The experiment will send one “Echo Request” (ICMP type 8) packet per second over the

specified interface until aborted. RTT is measured as the time between the echo request is sent and the echo reply (ICMP type 0) is

received from the server. The experiment runs on all interfaces in parallel.

7.3.1 Usage

The experiment is designed to run as a Docker container and will not attempt to do any active network configuration. If the specified

interface does not exist (i.e., is not up) when the experiment starts, it will immediately exit.

The default parameter values are:

{

"guid": "no.guid.in.config.file", # Created by the scheduler

"zmqport": "tcp://172.17.0.1:5556",

"nodeid": "fake.nodeid",

"modem_metadata_topic": "MONROE.META.DEVICE.MODEM",

"server": "8.8.8.8", # ping target

"interval": 1000, # time in ms between successive packets

"dataversion": 2,

"dataid": "MONROE.EXP.PING",

"meta_grace": 120, # Grace period to wait for interface metadata

"ifup_interval_check": 5, # Interval to check if interface is up

"export_interval": 5.0,

"verbosity": 2, # 0="Mute", 1=error, 2=Information, 3=verbose

"resultdir": "/monroe/results/",

"modeminterfacename": "InternalInterface",

"interfacename": "eth0", # Interface to run the experiment on

"interfaces_without_metadata": ["eth0", "wlan0"] # Manual metadata on these interfaces

}

46 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

All debug/error information will be printed on stdout depending on the value of the “verbosity” parameter.

7.3.2 Requirements

The following directories and files must exist and have read and write permissions for the user/process running the container:

• /monroe/config, supplyed by the scheduler in the nodes.

• “resultdir,” according to the values supplied in the configuration string or the default ones (Section 7.1.1).

7.3.3 Output

The experiment will execute a statement similar to running fpingwith the following command line:

fping -I eth0 -D -c 1 -p 1000 -l 8.8.8.8

The experiment will produce one of the two following single-line JSON objects, depending on whether it got a reply form the server

or not. If a reply was received:

{

"Guid": "313.123213.123123.123123", # exp_config[’guid’]

"Timestamp": 23123.1212, # time.time()

"Iccid": 2332323, # meta_info["ICCID"]

"Operator": "Telia", # meta_info["Operator"]

"NodeId" : "9", # exp_config[’nodeid’]

"DataId": "MONROE.EXP.PING",

"DataVersion": 2,

"SequenceNumber": 70,

"Rtt": 6.47,

"Bytes": 84,

"Host": "8.8.8.8",

}

If the reply was not received (Bytes and RRR values are not present):

{

"Guid": "313.123213.123123.123123", # exp_config[’guid’]

"Timestamp": 23123.1212, # time.time()

"Iccid": 2332323, # meta_info["ICCID"]

"Operator": "Telia", # meta_info["Operator"]

"NodeId" : "9", # exp_config[’nodeid’]

"DataId": "MONROE.EXP.PING",

"DataVersion": 2,

"SequenceNumber": 71,

"Host": "8.8.8.8",

}

7.4 Experiment: http_download

This is a periodically scheduled experiment that monitors the download speed of each MBB operator on the node. The experiment

will, over each MBB operator in sequence, download the specified url (file) with curl (http), presenting one result per interface. The

MONROE experiment template described in Section 7.1 corresponds to this experiment, therefore, it is not further detailed here.

7.5 Experiment: Tstat & mPlane

The mPlane protocol provides control and data interchange for passive and active network measurement tasks. It is built around a

simple workflow that can interact with different frameworks to provide the results of the measurements. This package includes an

mPlane proxy and generic configuration files for Tstat.

mPlane captures traffic flow on all interfaces with the Tstat (http://tstat.polito.it/) probe. The mPlane container is al-

ways running as one of the default experiments on all MONROE nodes. The Tstat passive traces are stored locally on the node and

47 of 67 Project no. 644399

http://tstat.polito.it/

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

are accessible by the experimenters. A detailed description and the source code are available on github (https://github.com/

MONROE-PROJECT/mPlane).

Tstat RRD logs and the compressed log are stored in the node at /experiments/monroe/mplane. Tstat logs are transfered

to the MONROE server and imported into MONROE’s (Cassandra) database. The structure of the database tables is available on github

(https://github.com/MONROE-PROJECT/Database/blob/master/db_schema.cql).

During experiment execution, the last three Tstat logs are shared with the experiment at /monroe/tstat. Therefore, MONROE

users can access the passive traces collected by Tstat during their experiments.

The data collected for a subset of the most relevant metrics for the HTTP experiments are visualized by the MONROE visualization

tool. And example of the metrics contained in the Tstat logs can be seen here: http://213.182.68.136:8080/#/experiment/

tstat.

7.5.1 Requirements

The script must have access to /nodeid and run get_nodeid.

7.5.2 Usage

Create your docker image normally and execute the container with the following command line:

docker run -i -t --net=host -d -v /mplane:/monroe/results -v /tstat:/monroe/tstat

-v /etc/nodeid:/nodeid:ro monroe/mplane

7.6 MONROE example: helloworld

This experiment provides an easy example for using the configuration options from the scheduler, listen to and record the metadata

stream (e.g., GPS and operator information), and show the experiment log functionality on a MONROE node. The experiment listens

to the metadata stream and records the nr_of_messages first messages. The metadata messages are saved in JSON format with

a custom field (“Hello”) in the output directory. Additionally, the experiment prints out some debugging messages to show how these

messages are logged and later retrieved via the web user interface.

7.6.1 Usage

The experiment is configured with a JSON string introduced via the “Additional options” field in the web user interface. The configurable

parameters and their default values are:

{

"zmqport": "tcp://172.17.0.1:5556",

"nodeid": "fake.nodeid", # Needs to be overriden

"metadata_topic": "MONROE.META",

"verbosity": 2, # 0 = "Mute", 1=error, 2=Information, 3=verbose

"resultdir": "/monroe/results/",

"nr_of_messages": 3

}

7.6.2 Requirements

The following directories and files must exist and have read and write permissions for the user/process running the container:

• /monroe/config, supplyed by the scheduler in the nodes.

• “resultdir,” according to the values supplied in the configuration string or the default ones (Section 7.6.1).

7.6.3 Output

The experiment will produce a single-line JSON object similar to the following ones, depending on the metadata received (“pretty

printed” here to improve readability):

48 of 67 Project no. 644399

https://github.com/MONROE-PROJECT/mPlane
https://github.com/MONROE-PROJECT/mPlane
https://github.com/MONROE-PROJECT/Database/blob/master/db_schema.cql
http://213.182.68.136:8080/#/experiment/tstat
http://213.182.68.136:8080/#/experiment/tstat

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

{

"DataId": "MONROE.META.NODE.SENSOR",

"DataVersion": 1,

"SequenceNumber": 58602,

"Timestamp": 1465888420,

"NodeId": "9",

"Hello": "World"

}

The log file will contain records similar to these ones:

[2017-02-07 09:53:27.190338] Hello: Default config {

"metadata_topic": "MONROE.META",

"nodeid": "fake.nodeid",

"nr_of_messages": 3,

"resultdir": "/monroe/results/",

"verbosity": 2,

"zmqport": "tcp://172.17.0.1:5556"

}

[2017-02-07 09:53:27.20000] Hello: Start recording messages with configuration {

"metadata_topic": "MONROE.META",

"nodeid": "fake.nodeid",

"nr_of_messages": 3,

"resultdir": "/monroe/results/",

"verbosity": 2,

"zmqport": "tcp://172.17.0.1:5556"

}

[[2017-02-07 09:53:27.30000] Received message 1 with topic : MONROE.META.NODE.SENSOR

{

"DataId": "MONROE.META.NODE.SENSOR",

"DataVersion": 1,

"SequenceNumber": 58602,

"Timestamp": 1465888420,

"NodeId": "9",

"Hello": "World"

}

. # And so on for each metadata message received until the configured value of metadata messages

.

.

[2017-02-07 09:53:27.40000] Hello : Finished the experiment

7.7 MONROE example: paris-traceroute

This example showcases how to use the MONROE-modified version of paris-traceroute inside a container. The binary of this tool is

included in the base image of MONROE.

The original version of paris-traceroute has no option to choose which interface should be used. In this version, flags to set the

interface and source IP of the transmitted packets have been added. Setting the interface is obligatory; if it is not set, the program will

crash (by design), since if the interface were chosen automatically, it would probably not be what the experimenter intended to use.

The source IP flag is optional. Just setting the IP flag to the IP of an interface without setting the interface flag will not work either. This

is done on purpose as well, as it might be possible for multiple interfaces to have the same IP within the MONROE network namespace.

If the IP flag is not set, the source IP is set to the IP of the chosen interface.

7.7.1 Usage (inside a MONROE container)

The parameters of this experiment are provided as “Additional options” in the scheduling web interface. The following JSON string is

an example of the additional options that can be passed to this container:

49 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

"interfaces": ["op1", "op2"], "targets": ["8.8.8.8", "www.uc3m.es"],

"traceAlgos": ["exh"], "protocol": "udp"

Flags:

-C --nodeIPArgument Source IP

-O --nodeInterfaceArgument Source interface (mandatory)

The paris-traceroute binary can be executed (as any normal Linux command) either without specifying a traceroute algorithm to

perform a “simple” traceroute (similar to the output of the ordinary traceroute command), or with the flags -n -a exh, to perform

an exhaustive traceroute. Exhaustive traceroutes provide more detailed and accurate paths between the host (MONROE node) and the

target server that are able to detect, among others, the presence of load balancers, which create multiple paths between host and target.

7.7.2 Output

The experiment output is a text file:

root@b59e69a56297:/# paris-traceroute -O op2 -C 192.168.1.127 8.8.8.8

traceroute [(192.168.1.127:33456) -> (8.8.8.8:33457)], protocol udp, algo hopbyhop, duration 18 s

1 192.168.1.1 (192.168.1.1) 2.946 ms 0.553 ms 0.559 ms

2 * * *
3 10.133.17.29 (10.133.17.29) 83.259 ms 136.577 ms 82.050 ms

4 10.133.17.14 (10.133.17.14) 78.783 ms 131.510 ms 79.231 ms

5 10.133.17.236 (10.133.17.236) 84.243 ms 133.024 ms 79.785 ms

6 10.133.17.3 (10.133.17.3) 81.543 ms 139.381 ms 100.263 ms

7 83.224.40.186 (83.224.40.186) 89.319 ms 188.926 ms 179.963 ms

MPLS Label 24703 TTL=254

8 83.224.40.185 (83.224.40.185) 82.710 ms 172.438 ms 147.020 ms

9 85.205.14.105 (85.205.14.105) 85.179 ms 137.514 ms 125.869 ms

10 72.14.223.169 (72.14.223.169) 85.609 ms 137.363 ms 118.063 ms

11 216.239.47.128 (216.239.47.128) 79.567 ms 146.356 ms 145.285 ms

12 209.85.243.33 (209.85.243.33) 129.615 ms 198.938 ms 269.407 ms

MPLS Label 568892 TTL=1

13 64.233.174.143 (64.233.174.143) 108.599 ms 185.810 ms 246.661 ms

MPLS Label 692130 TTL=1

14 108.170.234.47 (108.170.234.47) 111.645 ms 825.615 ms 1424.942 ms

15 * * *
16 google-public-dns-a.google.com (8.8.8.8) 103.087 ms !T2 166.279 ms !T2 224.649 ms !T2

7.7.3 Additional remarks

Paris-traceroute instances should be run sequentially and preferably when the node is generating little traffic in general because it uses

raw packet capture to detect the replies from intermediate nodes and background traffic might interfere with this process.

7.8 MONROE example: headlessbrowsing

This experiment evaluates the performance of different HTTP protocols (HTTP1.1, HTTP1.1/TLS, HTTP2) using the headless Firefox

browser. It uses the Selenium browser-automation framework, which enables execution of web-browsing automation tests in different

browsers such as Firefox and Chrome. The Selenium web-driver is used for Firefox. For a given url, HTTP protocol and source network

interface, Selenium launches the native Firefox browser to visit that url.

7.8.1 Output

This experiment generates an HTTP ARchive (HAR) file during the download of a target url that helps to find afterwards the impact of

different web-page features on its overall Page Load Time (PLT).

The experiment generates a single JSON file such as:

50 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

{

"DataId":"MONROE.EXP.FIREFOX.HEADLESS.BROWSING",

"ping_min":" 55.6",

"ping_max":"56.8",

"NumObjects":6,

"InterfaceName":"usb2",

"Web load time":196,

"PageSize":35641,

"DataVersion":1,

"Timestamp":1481536829.0814,

"NWMCCMNC":22210,

"Objects":[

{

"objectSize":1951,

"mimeType":"image/png",

"startedDateTime":"2016-12-12T10:00:21.293+00:00",

"url":"https://www.wikipedia.org/portal/wikipedia.org/assets/img/Wikipedia_wordmark.png",

"timings":{"receive":1, "send":0, "connect":1, "dns":0, "blocked":0, "wait":60},

"time":62

},

{

"objectSize":13196,

"mimeType":"image/png",

"startedDateTime":"2016-12-12T10:00:21.294+00:00",

"url":"https://www.wikipedia.org/portal/wikipedia.org/assets/img/Wikipedia-logo-v2.png",

"timings":{"receive":52, "send":3, "connect":59, "dns":2, "blocked":0, "wait":53 },

"time":169

},

{

"objectSize":9425,

"mimeType":"application/javascript",

"startedDateTime":"2016-12-12T10:00:21.295+00:00",

"url":"https://www.wikipedia.org/portal/wikipedia.org/assets/js/index-abc278face.js",

"timings":{"receive":3, "send":0, "connect":120, "dns":0, "blocked":0, "wait":65},

"time":188

},

{

"objectSize":1164,

"mimeType":"application/javascript",

"startedDateTime":"2016-12-12T10:00:21.296+00:00",

"url":"https://www.wikipedia.org/portal/wikipedia.org/assets/js/gt-ie9-c84bf66d33.js",

"timings":{"receive":0, "send":1, "connect":64, "dns":2, "blocked":0, "wait":70 },

"time":137

},

{

"objectSize":1590,

"mimeType":"image/png",

"startedDateTime":"2016-12-12T10:00:21.381+00:00",

"url":"https://www.wikipedia.org/portal/wikipedia.org/assets/img/sprite-icons.png?

27378e2bb51199321b32dd1ac3f5cd755adc21a5",

"timings":{"receive":1, "send":0, "connect":1, "dns":0, "blocked":0, "wait":49 },

"time":51

},

{

"objectSize":8315,

"mimeType":"image/png",

51 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

"startedDateTime":"2016-12-12T10:00:21.425+00:00",

"url":"https://www.wikipedia.org/portal/wikipedia.org/assets/img/sprite-project-logos.png?

dea6426c061216dfcba1d2d57d33f4ee315df1c2",

"timings":{"receive":2, "send":0, "connect":8, "dns":0, "blocked":0, "wait":54 },

"time":64

}],

"IPAddress":"2.43.181.254",

"IMSIMCCMNC":22210,

"tracedRoutes":["192.168.96.1", "193.10.227.25", "xx.xx.xx.xx" "192.168.96.1"],

"InternalInterface":"op0",

"NodeId":"41",

"ping_exp":1,

"Protocol":"HTTP1.1",

"SequenceNumber":1,

"url":"www.wikipedia.org",

"ping_avg":"56.2",

"InternalIPAddress":"192.168.96.123",

"Operator":"voda IT",

"Iccid":"8939104160000392116"

}

7.9 MONROE example: pReplay

The pReplay experiment replays the dependency graph of a web site.

The traversal begins with the first activity: Loading the root HTML. After building the dependency graph, it acts for each task whose

dependencies have already been met. For network tasks, it makes a request for the corresponding url; correspondingly, for computation

activities, it waits for the amount of time mentioned in the graph. Once a particular activity is finished, pReplay checks if any activities

depending on that one have already met all of their dependencies and must thus be triggered. pReplay walks through the dependency

graph until all activities in the graph have been visited.

7.9.1 Usage

Execute pReplay on a command line inside a container as with any other Linux command:

./pReplay interface_name server testfile [http|https|http2] [max-connections] [cookie-size]

Parameters:

• interface_name: Source interface for outgoing traffic.

• server: DNS name or IP address.

• testfile: Relative path to test file in JSON format.

• protocol:

– http: http 1.1

– https: http 1.1 with SSL

– http2: http 2

• max-connections: Maximum amount of concurrent connections.

• cookie-size: Size of cookie — works with http1 only.

7.10 MONROE example: astream

AStream is a Python based emulated video player to evaluate the performance of the DASH bitrate adaptation algorithms. The sup-

ported rate adaptation algorithms are:

• Basic adaptation.

• Segment Aware Rate Adaptation (SARA) [2].

• Buffer-Based Rate Adaptation (Netflix) [1].

52 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

7.10.1 Usage

The experimenter can choose the rate adaptation algorithm passing a JSON string to the scheduler through the user interface (e.g.,

"playback":"NETFLIX"). The default is the basic adaptation scheme. Additionally, the user can specify the target MPD file to play

(e.g., "mpd_file":"http://128.39.37.161:8080/BigBuckBunny_4s.mpd") and the number of segments to retrieve

(e.g., "segment_limit":10).

7.10.2 Output

The astream container outputs two log files:

1. Buffer logs: Epoch time, current playback time, current buffer size (in segments), current playback state.

2. Playback logs: Epoch time, playback time, segment number, segment size, playback bitrate, segment duration, weighted har-

monic mean average download rate.

7.11 MONROE example: udpbwestimator

Udpbwestimator is an experiment setup to estimate available bandwidth for a particular network interface. It consists of two appli-

cations, a receiver and a traffic generator (server). The receiver initiates connections and requests the server for traffic. Then, every

second, the server sends a burst of UDP packets back to back to the receiver, which follows the packet arrival times and estimates the

available bandwidth.

7.11.1 Usage

The receiver accepts the following command line parameters:

-c : Number of back-to-back packets to be sent in each second.

-b : Number of bursts to be sent.

-l : Payload length in bytes.

-s : Source IP to bind to.

-o : Source port.

-d : Destination IP.

-p : Destination port.

-w : Optional, filename for writing the packet arrival times.

7.11.2 Output

The experiment will produce a single-line JSON object similar to the following:

{

"CID" : 33346602,

"DataId" : "MONROE.EXP.UDPBWESTIMATOR",

"DataVersion" : 1,

"DeviceMode" : 5,

"DeviceState" : 3,

"Guid" : "sha256:872af8c8b8f1635be6936a111b5fa838071e6f42cb317e9db1d9bb0c7db31425.93321.204.1",

"IMEI" : "864154023639966",

"IMSI" : "240016025247086",

"IMSIMCCMNC" : 24001,

"IPAddress" : "78.79.63.124",

"Iccid" : "89460120151010468086",

"InterfaceName" : "usb0",

"InternalIPAddress" : "192.168.68.118",

"InternalInterface" : "op1",

"LAC" : 2806,

"NWMCCMNC" : 24202,

"NodeId" : "204",

"Operator" : "NetCom",

"RSRP" : -72,

53 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

"RSRQ" : -7,

"RSSI" : -49,

"SequenceNumber" : 1,

"Timestamp" : 1479312368.633218,

"bw" : "48.41 38.98 36.44 50.00 30.20 45.21 47.02 37.89 44.37 28.90 25.91 38.57 48.74

39.94 43.37 37.94 43.81 39.60 52.00 47.55 48.20 34.85 41.44 47.60 57.26 46.11

45.66 52.04 37.43 49.67 33.56 50.35 41.11 51.63 45.33 104.01 45.73 49.95 50.37

38.57 29.45 50.95 54.95 45.42 47.13 34.30 46.10 103.68 79.75 45.72 52.03 30.38

50.21 36.96 71.51 54.66 39.26 44.12 45.18 39.93"

}

7.12 MONROE example: traceroute_background_experiment

Performs traceroute periodically to various targets. This experiment is meant to be run in the background and can be run in parallel

with experiments of other users. It uses the default traceroute binary distributed by the Debian repositories.

Each traceroute produces a text file that is parsed by outputParser.py to generate the JSON output of this experiment. The

JSON file is then imported into the MONROE database.

7.12.1 Usage

To reduce experiment duration, the traceroutes can be run in parallel. The number of parallel traceroute instances is dictated by the

maxNumberOfTotalTracerouteInstancesparameter. It is possible to parallelize on a per-interface basis (i.e.,maxNumberOfTotalTracerouteInstances

per interface) or per the whole experiment (i.e., maxNumberOfTotalTracerouteInstances total in the experiment instance

spread among all the interfaces). This behavior is controlled by the executionMode parameter. The available options are: serially,

serialPerInterface and parallel.

Additionally, a flag can be provided to choose the protocol of the probes: default, udp, tcp and icmp.

The parameters of this experiment are provided as “Additional options” in the web user interface. An example JSON string that can

be used with this container as additional options is:

"interfaces": ["op0", "op1", "op2"], "targets": ["www.ntua.gr", "www.uc3m.es", "Google.com",

"Facebook.com", "Youtube.com", "Baidu.com", "Yahoo.com", "Amazon.com", "Wikipedia.org",

"audio-ec.spotify.com", "mme.whatsapp.net", "sync.liverail.com", "ds.serving-sys.com",

"instagramstatic-a.akamaihd.net"], "maxNumberOfTotalTracerouteInstances": 5,

"executionMode": "parallel"

7.13 Other containers in the repositories

Our public repositories contain the source code for other Docker containers that perform varied tasks in the nodes. Although they are

not intended as examples, users can take a look into them to gain a deeper understanding of the platform configuration.

7.13.1 Container: metadata-subscriber

The subscriber is designed to listen to ZMQ messages send out by the metadata-multicaster. The subscriber attaches to a config-

urable ZeroMQ socket and listens to all messages that begin with the topic “MONROE.META,” except the ones whose topic ends with

“.UPDATE” (rebroadcasts) and/or begins with “MONROE.META.DEVICE.CONNECTIVITY.” as these are redundant. All messages are

updated with NodeId, but are otherwise saved verbatim as a JSON formatted file suitable for later import in the MONROE databases.

7.13.2 Container: tunnelbox-server

This container acts as an SSH reverese tunnel endpoint that clients can use to directly connect to their experiment containers (on any

MONROE node). The purpose is to provide experimenters an interactive way of accessing an experiment running on a real MONROE

node during development or debugging. The client has to supply its own public SSH key to the experiment container using the web

user interface. The web user interface provides further instructions (SSH command line) to connect to the experiment container using

the provided key.

54 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

7.13.3 Container: monroe_base

This is the container upon which all user experiments must be built. The container is based on Debian “jessie” with (MONROE) com-

mon experiment tools added. For a list of the tools currently installed see the folder monroe_base.docker in our repositories.

This base image has been extended to support layer depending on the kind of experiments the experimenter wants to run. The new

monroe_base tags are as follow:

• monroe/base This is for all experiments except the one defined below.

• monroe/base:web This tag was specifically designed for experiments that use headless browsing such as Chrome or Firefox.

• monroe/base:virt This tag is needed for experiments that need to run in a virtual machine.

Some of the packages moved from monroe_base to monroe_base:web such as:

• moved Firefox and support packages (xvfb, xauth, libgtk-3-0, libasound2, dbus, libdbus-glib-1-2, libgtk2.0-0, libgtk2.0-common,

pyvirtualdisplay, selenium, python-dateutil, geckodriver)

• Added support for Firefox (56.0.1) and support packages Google chrome(64.*)

8 List of known bugs and issues
• In general, Firefox does not render the date-time picker correctly. You will have to either enter the dates and times manually or

use Chrome.

• Container deployment can take several minutes, particularly for nodes without an Ethernet management connection (e.g., mo-

bile nodes in trains or buses). When scheduling an experiment, the user has to take into account the time needed for the deploy-

ment. The system will not automatically take care of this at this moment.

• Similarly, the button “Check availability” returns the earliest available slot. However, it does not account for the time needed to

deploy the container. The user must manually account for that.

• Checking the option “ASAP” to schedule an experiment as soon as possible may fail due to lack of time to deploy the container.

The system does add some slack in this case, but its length may need some adjustment according to the type of nodes and MBB

characteristics.

A List of packages installed in monroe/base

Table 10: List of packages installed in monroe/base as of 2017-02-27.

Name Version Architecture Description

acl 2.2.52-2 amd64 Access control list utilities

adduser 3.113+nmu3 all add and remove users and groups

adwaita-icon-theme 3.14.0-2 all default icon theme of GNOME

apt 1.0.9.8.4 amd64 commandline package manager

base-files 8+deb8u6 amd64 Debian base system miscellaneous files

base-passwd 3.5.37 amd64 Debian base system master password and group files

bash 4.3-11+b1 amd64 GNU Bourne Again SHell

bsdutils 1:2.25.2-6 amd64 basic utilities from 4.4BSD-Lite

bzip2 1.0.6-7+b3 amd64 high-quality block-sorting file compressor - utilities

ca-certificates 20141019+deb8u1 all Common CA certificates

ca-certificates-java 20140324 all Common CA certificates (JKS keystore)

coreutils 8.23-4 amd64 GNU core utilities

curl 7.38.0-4+deb8u5 amd64 command line tool for transferring data with URL syntax

d-itg 2.8.1-r1023-3 amd64 Distributed Internet Traffic Generator

dash 0.5.7-4+b1 amd64 POSIX-compliant shell

dbus 1.8.20-0+deb8u1 amd64 simple interprocess messaging system (daemon and utilities)

dconf-gsettings-

backend:amd64

0.22.0-1 amd64 simple configuration storage system - GSettings back-end

dconf-service 0.22.0-1 amd64 simple configuration storage system - D-Bus service

debconf 1.5.56 all Debian configuration management system

debconf-i18n 1.5.56 all full internationalization support for debconf

debian-archive-keyring 2014.3 all GnuPG archive keys of the Debian archive

debianutils 4.4+b1 amd64 Miscellaneous utilities specific to Debian

default-jre-headless 2:1.7-52 amd64 Standard Java or Java compatible Runtime (headless)

55 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 10: List of packages installed in monroe/base. (Continued)

Name Version Architecture Description

dh-python 1.20141111-2 all Debian helper tools for packaging Python libraries and applica-

tions

diffutils 1:3.3-1+b1 amd64 File comparison utilities

dmsetup 2:1.02.90-2.2+deb8u1 amd64 Linux Kernel Device Mapper userspace library

dpkg 1.17.27 amd64 Debian package management system

dumb-init 1.2.0 amd64 wrapper script which proxies signals to a child

e2fslibs:amd64 1.42.12-2 amd64 ext2/ext3/ext4 file system libraries

e2fsprogs 1.42.12-2 amd64 ext2/ext3/ext4 file system utilities

findutils 4.4.2-9+b1 amd64 utilities for finding files–find, xargs

flent 0.15.0-1 all The FLExible Network Tester

fontconfig 2.11.0-6.3+deb8u1 amd64 generic font configuration library - support binaries

fontconfig-config 2.11.0-6.3+deb8u1 all generic font configuration library - configuration

fonts-dejavu-core 2.34-1 all Vera font family derivate with additional characters

fping 3.10-2 amd64 sends ICMP ECHO_REQUEST packets to network hosts

gcc-4.8-base:amd64 4.8.4-1 amd64 GCC, the GNU Compiler Collection (base package)

gcc-4.9-base:amd64 4.9.2-10 amd64 GCC, the GNU Compiler Collection (base package)

glib-networking:amd64 2.42.0-2 amd64 network-related giomodules for GLib

glib-networking-common 2.42.0-2 all network-related giomodules for GLib - data files

glib-networking-services 2.42.0-2 amd64 network-related giomodules for GLib - D-Bus services

gnupg 1.4.18-7+deb8u3 amd64 GNU privacy guard - a free PGP replacement

gpgv 1.4.18-7+deb8u3 amd64 GNU privacy guard - signature verification tool

gpsd 3.11-3 amd64 Global Positioning System - daemon

gpslogger-oml2 2.11.0-mytestbed2 amd64 Record and store GPS measurements using OML

grep 2.20-4.1 amd64 GNU grep, egrep and fgrep

gsettings-desktop-schemas 3.14.1-1 all GSettings desktop-wide schemas

gzip 1.6-4 amd64 GNU compression utilities

hicolor-icon-theme 0.13-1 all default fallback theme for FreeDesktop.org icon themes

hostname 3.15 amd64 utility to set/show the host name or domain name

httperf-oml2 2.11.0-mytestbed2 amd64 HTTP server performance tester, with OML support

httping 1.5.8-1 amd64 ping-like program for http-requests

inetutils-ping 2:1.9.2.39.3a460-3 amd64 ICMP echo tool

init 1.22 amd64 System-V-like init utilities - metapackage

init-system-helpers 1.22 all helper tools for all init systems

initscripts 2.88dsf-59 amd64 scripts for initializing and shutting down the system

insserv 1.14.0-5 amd64 boot sequence organizer using LSB init.d script dependency in-

formation

iperf 2.0.5+dfsg1-2 amd64 Internet Protocol bandwidth measuring tool

iperf-oml2 2.11.0-mytestbed2 amd64 Internet Protocol bandwidth measuring tool, with OML support

iperf3 3.0.7-1 amd64 Internet Protocol bandwidth measuring tool

iproute2 3.16.0-2 amd64 networking and traffic control tools

iptables 1.4.21-2+b1 amd64 administration tools for packet filtering and NAT

java-common 0.52 all Base of all Java packages

jq 1.4-2.1 amd64 lightweight and flexible command-line JSON processor

libacl1:amd64 2.2.52-2 amd64 Access control list shared library

libapt-pkg4.12:amd64 1.0.9.8.4 amd64 package management runtime library

libasound2:amd64 1.0.28-1 amd64 shared library for ALSA applications

libasound2-data 1.0.28-1 all Configuration files and profiles for ALSA drivers

libasyncns0:amd64 0.8-5 amd64 Asynchronous name service query library

libatk-bridge2.0-0:amd64 2.14.0-2 amd64 AT-SPI 2 toolkit bridge - shared library

libatk1.0-0:amd64 2.14.0-1 amd64 ATK accessibility toolkit

libatk1.0-data 2.14.0-1 all Common files for the ATK accessibility toolkit

libatspi2.0-0:amd64 2.14.0-1 amd64 Assistive Technology Service Provider Interface - shared library

libattr1:amd64 1:2.4.47-2 amd64 Extended attribute shared library

libaudit-common 1:2.4-1 all Dynamic library for security auditing - common files

libaudit1:amd64 1:2.4-1+b1 amd64 Dynamic library for security auditing

libavahi-client3:amd64 0.6.31-5 amd64 Avahi client library

libavahi-common-

data:amd64

0.6.31-5 amd64 Avahi common data files

libavahi-common3:amd64 0.6.31-5 amd64 Avahi common library

libblas-common 1.2.20110419-10 amd64 Dependency package for all BLAS implementations

libblas3 1.2.20110419-10 amd64 Basic Linear Algebra Reference implementations, shared library

libblkid1:amd64 2.25.2-6 amd64 block device id library

libbluetooth3:amd64 5.23-2+b1 amd64 Library to use the BlueZ Linux Bluetooth stack

56 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 10: List of packages installed in monroe/base. (Continued)

Name Version Architecture Description

libbsd0:amd64 0.7.0-2 amd64 utility functions from BSD systems - shared library

libbz2-1.0:amd64 1.0.6-7+b3 amd64 high-quality block-sorting file compressor library - runtime

libc-bin 2.19-18+deb8u6 amd64 GNU C Library: Binaries

libc6:amd64 2.19-18+deb8u6 amd64 GNU C Library: Shared libraries

libcairo-gobject2:amd64 1.14.0-2.1+deb8u1 amd64 Cairo 2D vector graphics library (GObject library)

libcairo2:amd64 1.14.0-2.1+deb8u1 amd64 Cairo 2D vector graphics library

libcap-ng0:amd64 0.7.4-2 amd64 An alternate POSIX capabilities library

libcap2:amd64 1:2.24-8 amd64 POSIX 1003.1e capabilities (library)

libcap2-bin 1:2.24-8 amd64 POSIX 1003.1e capabilities (utilities)

libcgi-fast-perl 1:2.04-1 all CGI subclass for work with FCGI

libcgi-pm-perl 4.09-1 all module for Common Gateway Interface applications

libcolord2:amd64 1.2.1-1+b2 amd64 system service to manage device colour profiles – runtime

libcomerr2:amd64 1.42.12-2 amd64 common error description library

libconfig-grammar-perl 1.10-2 all grammar-based user-friendly config parser

libcroco3:amd64 0.6.8-3+b1 amd64 Cascading Style Sheet (CSS) parsing and manipulation toolkit

libcryptsetup4:amd64 2:1.6.6-5 amd64 disk encryption support - shared library

libcups2:amd64 1.7.5-11+deb8u1 amd64 Common UNIX Printing System(tm) - Core library

libcurl3:amd64 7.38.0-4+deb8u5 amd64 easy-to-use client-side URL transfer library (OpenSSL flavour)

libdatrie1:amd64 0.2.8-1 amd64 Double-array trie library

libdb5.3:amd64 5.3.28-9 amd64 Berkeley v5.3 Database Libraries [runtime]

libdbi1:amd64 0.9.0-4 amd64 DB Independent Abstraction Layer for C – shared library

libdbus-1-3:amd64 1.8.20-0+deb8u1 amd64 simple interprocess messaging system (library)

libdbus-glib-1-2:amd64 0.102-1 amd64 simple interprocess messaging system (GLib-based shared li-

brary)

libdconf1:amd64 0.22.0-1 amd64 simple configuration storage system - runtime library

libdebconfclient0:amd64 0.192 amd64 Debian Configuration Management System (C-implementation

library)

libdevmapper1.02.1:amd64 2:1.02.90-2.2+deb8u1 amd64 Linux Kernel Device Mapper userspace library

libdigest-hmac-perl 1.03+dfsg-1 all module for creating standard message integrity checks

libdrm2:amd64 2.4.58-2 amd64 Userspace interface to kernel DRM services – runtime

libedit2:amd64 3.1-20140620-2 amd64 BSD editline and history libraries

libencode-locale-perl 1.03-1 all utility to determine the locale encoding

libexpat1:amd64 2.1.0-6+deb8u3 amd64 XML parsing C library - runtime library

libfcgi-perl 0.77-1+b1 amd64 helper module for FastCGI

libffi6:amd64 3.1-2+b2 amd64 Foreign Function Interface library runtime

libfile-listing-perl 6.04-1 all module to parse directory listings

libflac8:amd64 1.3.0-3 amd64 Free Lossless Audio Codec - runtime C library

libfontconfig1:amd64 2.11.0-6.3+deb8u1 amd64 generic font configuration library - runtime

libfontenc1:amd64 1:1.1.2-1+b2 amd64 X11 font encoding library

libfreetype6:amd64 2.5.2-3+deb8u1 amd64 FreeType 2 font engine, shared library files

libgcc1:amd64 1:4.9.2-10 amd64 GCC support library

libgcrypt20:amd64 1.6.3-2+deb8u2 amd64 LGPL Crypto library - runtime library

libgdbm3:amd64 1.8.3-13.1 amd64 GNU dbm database routines (runtime version)

libgdk-pixbuf2.0-0:amd64 2.31.1-2+deb8u5 amd64 GDK Pixbuf library

libgdk-pixbuf2.0-common 2.31.1-2+deb8u5 all GDK Pixbuf library - data files

libgfortran3:amd64 4.9.2-10 amd64 Runtime library for GNU Fortran applications

libgl1-mesa-glx:amd64 10.3.2-1+deb8u1 amd64 free implementation of the OpenGL API – GLX runtime

libglapi-mesa:amd64 10.3.2-1+deb8u1 amd64 free implementation of the GL API – shared library

libglib2.0-0:amd64 2.42.1-1+b1 amd64 GLib library of C routines

libgmp10:amd64 2:6.0.0+dfsg-6 amd64 Multiprecision arithmetic library

libgnutls-deb0-28:amd64 3.3.8-6+deb8u3 amd64 GNU TLS library - main runtime library

libgpg-error0:amd64 1.17-3 amd64 library for common error values and messages in GnuPG com-

ponents

libgps21:amd64 3.11-3 amd64 Global Positioning System - library

libgraphite2-3:amd64 1.3.6-1 deb8u1 amd64 Font rendering engine for Complex Scripts – library

libgssapi-krb5-2:amd64 1.12.1+dfsg-19+deb8u2 amd64 MIT Kerberos runtime libraries - krb5 GSS-API Mechanism

libgtk-3-0:amd64 3.14.5-1+deb8u1 amd64 GTK+ graphical user interface library

libgtk-3-bin 3.14.5-1+deb8u1 amd64 programs for the GTK+ graphical user interface library

libgtk-3-common 3.14.5-1+deb8u1 all common files for the GTK+ graphical user interface library

libgtk2.0-0:amd64 2.24.25-3+deb8u1 amd64 GTK+ graphical user interface library

libgtk2.0-common 2.24.25-3+deb8u1 all common files for the GTK+ graphical user interface library

libharfbuzz0b:amd64 0.9.35-2 amd64 OpenType text shaping engine (shared library)

libhogweed2:amd64 2.7.1-5+deb8u1 amd64 low level cryptographic library (public-key cryptos)

57 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 10: List of packages installed in monroe/base. (Continued)

Name Version Architecture Description

libhtml-parser-perl 3.71-1+b3 amd64 collection of modules that parse HTML text documents

libhtml-tagset-perl 3.20-2 all Data tables pertaining to HTML

libhtml-tree-perl 5.03-1 all Perl module to represent and create HTML syntax trees

libhttp-cookies-perl 6.01-1 all HTTP cookie jars

libhttp-date-perl 6.02-1 all module of date conversion routines

libhttp-message-perl 6.06-1 all perl interface to HTTP style messages

libhttp-negotiate-perl 6.00-2 all implementation of content negotiation

libice6:amd64 2:1.0.9-1+b1 amd64 X11 Inter-Client Exchange library

libicu52:amd64 52.1-8+deb8u4 amd64 International Components for Unicode

libidn11:amd64 1.29-1+deb8u2 amd64 GNU Libidn library, implementation of IETF IDN specifications

libio-html-perl 1.001-1 all open an HTML file with automatic charset detection

libio-socket-ssl-perl 2.002-2+deb8u1 all Perl module implementing object oriented interface to SSL

sockets

libiperf0 3.0.7-1 amd64 Internet Protocol bandwidth measuring tool (runtime files)

libjasper1:amd64 1.900.1-debian1-2.4+deb8u1 amd64 JasPer JPEG-2000 runtime library

libjbig0:amd64 2.1-3.1 amd64 JBIGkit libraries

libjpeg62-turbo:amd64 1:1.3.1-12 amd64 libjpeg-turbo JPEG runtime library

libjs-cropper 1.2.2-1 all JavaScript image cropper UI

libjs-prototype 1.7.1-3 all JavaScript Framework for dynamic web applications

libjs-scriptaculous 1.9.0-2 all JavaScript library for dynamic web applications

libjson-c2:amd64 0.11-4 amd64 JSON manipulation library - shared library

libjson-glib-1.0-0:amd64 1.0.2-1 amd64 GLib JSON manipulation library

libjson-glib-1.0-common 1.0.2-1 all GLib JSON manipulation library (common files)

libk5crypto3:amd64 1.12.1+dfsg-19+deb8u2 amd64 MIT Kerberos runtime libraries - Crypto Library

libkeyutils1:amd64 1.5.9-5+b1 amd64 Linux Key Management Utilities (library)

libkmod2:amd64 18-3 amd64 libkmod shared library

libkrb5-3:amd64 1.12.1+dfsg-19+deb8u2 amd64 MIT Kerberos runtime libraries

libkrb5support0:amd64 1.12.1+dfsg-19+deb8u2 amd64 MIT Kerberos runtime libraries - Support library

liblcms2-2:amd64 2.6-3+b3 amd64 Little CMS 2 color management library

libldap-2.4-2:amd64 2.4.40+dfsg-1+deb8u2 amd64 OpenLDAP libraries

liblinear1:amd64 1.8+dfsg-4 amd64 Library for Large Linear Classification

liblocale-gettext-perl 1.05-8+b1 amd64 module using libc functions for internationalization in Perl

liblua5.2-0:amd64 5.2.3-1.1 amd64 Shared library for the Lua interpreter version 5.2

liblwp-mediatypes-perl 6.02-1 all module to guess media type for a file or a URL

liblwp-protocol-https-perl 6.06-2 all HTTPS driver for LWP::UserAgent

liblzma5:amd64 5.1.1alpha+20120614-2+b3 amd64 XZ-format compression library

libmount1:amd64 2.25.2-6 amd64 device mounting library

libmpdec2:amd64 2.4.1-1 amd64 library for decimal floating point arithmetic (runtime library)

libncurses5:amd64 5.9+20140913-1+b1 amd64 shared libraries for terminal handling

libncursesw5:amd64 5.9+20140913-1+b1 amd64 shared libraries for terminal handling (wide character support)

libnet-http-perl 6.07-1 all module providing low-level HTTP connection client

libnet-ssleay-perl 1.65-1+deb8u1 amd64 Perl module for Secure Sockets Layer (SSL)

libnettle4:amd64 2.7.1-5+deb8u1 amd64 low level cryptographic library (symmetric and one-way cryp-

tos)

libnfnetlink0:amd64 1.0.1-3 amd64 Netfilter netlink library

libnspr4:amd64 2:4.12-1+debu8u1 amd64 NetScape Portable Runtime Library

libnss3:amd64 2:3.26-1+debu8u1 amd64 Network Security Service libraries

libocomm 2.11.1 rc-mytestbed1 amd64 OComm: O? Communications Library (metapackage)

libocomm-dev 2.11.1 rc-mytestbed1 amd64 OML measurement library headers

libocomm1 2.11.1 rc-mytestbed1 amd64 OComm: O? Communications Library

libogg0:amd64 1.3.2-1 amd64 Ogg bitstream library

liboml2 2.11.1 rc-mytestbed1 amd64 OML: The O? Measurement Library (metapackage)

liboml2-9 2.11.1 rc-mytestbed1 amd64 OML: The O? Measurement Library

liboml2-dev 2.11.1 rc-mytestbed1 amd64 OML measurement library headers

libp11-kit0:amd64 0.20.7-1 amd64 Library for loading and coordinating access to PKCS#11 mod-

ules - runtime

libpam-modules:amd64 1.1.8-3.1+deb8u1+b1 amd64 Pluggable Authentication Modules for PAM

libpam-modules-bin 1.1.8-3.1+deb8u1+b1 amd64 Pluggable Authentication Modules for PAM - helper binaries

libpam-runtime 1.1.8-3.1+deb8u1 all Runtime support for the PAM library

libpam0g:amd64 1.1.8-3.1+deb8u1+b1 amd64 Pluggable Authentication Modules library

libpango-1.0-0:amd64 1.36.8-3 amd64 Layout and rendering of internationalized text

libpangocairo-1.0-0:amd64 1.36.8-3 amd64 Layout and rendering of internationalized text

libpangoft2-1.0-0:amd64 1.36.8-3 amd64 Layout and rendering of internationalized text

58 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 10: List of packages installed in monroe/base. (Continued)

Name Version Architecture Description

libpcap0.8:amd64 1.6.2-2 amd64 system interface for user-level packet capture

libpcre3:amd64 2:8.35-3.3+deb8u4 amd64 Perl 5 Compatible Regular Expression Library - runtime files

libpcsclite1:amd64 1.8.13-1 amd64 Middleware to access a smart card using PC/SC (library)

libpgm-5.1-0 5.1.118-1 dfsg-1 amd64 OpenPGM shared library

libpixman-1-0:amd64 0.32.6-3 amd64 pixel-manipulation library for X and cairo

libpng12-0:amd64 1.2.50-2+deb8u2 amd64 PNG library - runtime

libpopt0:amd64 1.16-10 amd64 lib for parsing cmdline parameters

libpq5:amd64 9.4.9-0+deb8u1 amd64 PostgreSQL C client library

libprocps3:amd64 2:3.3.9-9 amd64 library for accessing process information from /proc

libproxy1:amd64 0.4.11-4+b2 amd64 automatic proxy configuration management library (shared)

libpsl0:amd64 0.5.1-1 amd64 Library for Public Suffix List (shared libraries)

libpulse0:amd64 5.0-13 amd64 PulseAudio client libraries

libpython-stdlib:amd64 2.7.9-1 amd64 interactive high-level object-oriented language (default python

version)

libpython2.7-

minimal:amd64

2.7.9-2+deb8u1 amd64 Minimal subset of the Python language (version 2.7)

libpython2.7-stdlib:amd64 2.7.9-2+deb8u1 amd64 Interactive high-level object-oriented language (standard li-

brary, version 2.7)

libpython3-stdlib:amd64 3.4.2-2 amd64 interactive high-level object-oriented language (default

python3 version)

libpython3.4-

minimal:amd64

3.4.2-1 amd64 Minimal subset of the Python language (version 3.4)

libpython3.4-stdlib:amd64 3.4.2-1 amd64 Interactive high-level object-oriented language (standard li-

brary, version 3.4)

libquadmath0:amd64 4.9.2-10 amd64 GCC Quad-Precision Math Library

libreadline6:amd64 6.3-8+b3 amd64 GNU readline and history libraries, run-time libraries

librest-0.7-0:amd64 0.7.92-3 amd64 REST service access library

librrd4 1.4.8-1.2 amd64 time-series data storage and display system (runtime library)

librrds-perl 1.4.8-1.2 amd64 time-series data storage and display system (Perl interface,

shared)

librsvg2-2:amd64 2.40.5-1+deb8u2 amd64 SAX-based renderer library for SVG files (runtime)

librsvg2-common:amd64 2.40.5-1+deb8u2 amd64 SAX-based renderer library for SVG files (extra runtime)

librtmp1:amd64 2.4+20150115.gita107cef-1 amd64 toolkit for RTMP streams (shared library)

libruby2.1:amd64 2.1.5-2+deb8u3 amd64 Libraries necessary to run Ruby 2.1

libsasl2-2:amd64 2.1.26.dfsg1-13+deb8u1 amd64 Cyrus SASL - authentication abstraction library

libsasl2-modules-db:amd64 2.1.26.dfsg1-13+deb8u1 amd64 Cyrus SASL - pluggable authentication modules (DB)

libsctp1:amd64 1.0.16+dfsg-2 amd64 user-space access to Linux Kernel SCTP - shared library

libselinux1:amd64 2.3-2 amd64 SELinux runtime shared libraries

libsemanage-common 2.3-1 all Common files for SELinux policy management libraries

libsemanage1:amd64 2.3-1+b1 amd64 SELinux policy management library

libsepol1:amd64 2.3-2 amd64 SELinux library for manipulating binary security policies

libsigar 1.6.5-1ppa1o amd64 System Information Gatherer And Reporter

libslang2:amd64 2.3.0-2 amd64 S-Lang programming library - runtime version

libsm6:amd64 2:1.2.2-1+b1 amd64 X11 Session Management library

libsmartcols1:amd64 2.25.2-6 amd64 smart column output alignment library

libsndfile1:amd64 1.0.25-9.1+deb8u1 amd64 Library for reading/writing audio files

libsnmp-session-perl 1.13-1.1 all Perl support for accessing SNMP-aware devices

libsodium13:amd64 1.0.0-1 amd64 Network communication, cryptography and signaturing library

libsoup-gnome2.4-1:amd64 2.48.0-1 amd64 HTTP library implementation in C – GNOME support library

libsoup2.4-1:amd64 2.48.0-1 amd64 HTTP library implementation in C – Shared library

libsqlite3-0:amd64 3.8.7.1-1+deb8u2 amd64 SQLite 3 shared library

libss2:amd64 1.42.12-2 amd64 command-line interface parsing library

libssh2-1:amd64 1.4.3-4.1+deb8u1 amd64 SSH2 client-side library

libssl1.0.0:amd64 1.0.1t-1+deb8u5 amd64 Secure Sockets Layer toolkit - shared libraries

libstdc++6:amd64 4.9.2-10 amd64 GNU Standard C++ Library v3

libsystemd0:amd64 215-17+deb8u5 amd64 systemd utility library

libtasn1-6:amd64 4.2-3+deb8u2 amd64 Manage ASN.1 structures (runtime)

libtext-charwidth-perl 0.04-7+b3 amd64 get display widths of characters on the terminal

libtext-iconv-perl 1.7-5+b2 amd64 converts between character sets in Perl

libtext-wrapi18n-perl 0.06-7 all internationalized substitute of Text::Wrap

libthai-data 0.1.21-1 all Data files for Thai language support library

libthai0:amd64 0.1.21-1 amd64 Thai language support library

libtiff5:amd64 4.0.3-12.3+deb8u1 amd64 Tag Image File Format (TIFF) library

59 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 10: List of packages installed in monroe/base. (Continued)

Name Version Architecture Description

libtimedate-perl 2.3000-2 all collection of modules to manipulate date/time information

libtinfo5:amd64 5.9+20140913-1+b1 amd64 shared low-level terminfo library for terminal handling

libtrace3 3.0.21-1 amd64 network trace processing library supporting many input for-

mats

libudev1:amd64 215-17+deb8u5 amd64 libudev shared library

liburi-perl 1.64-1 all module to manipulate and access URI strings

libusb-0.1-4:amd64 2:0.1.12-25 amd64 userspace USB programming library

libusb-1.0-0:amd64 2:1.0.19-1 amd64 userspace USB programming library

libustr-1.0-1:amd64 1.0.4-3+b2 amd64 Micro string library: shared library

libuuid1:amd64 2.25.2-6 amd64 Universally Unique ID library

libvorbis0a:amd64 1.3.4-2 amd64 decoder library for Vorbis General Audio Compression Codec

libvorbisenc2:amd64 1.3.4-2 amd64 encoder library for Vorbis General Audio Compression Codec

libwandio1 3.0.21-1 amd64 multi-threaded file compression and decompression library

libwayland-client0:amd64 1.6.0-2 amd64 wayland compositor infrastructure - client library

libwayland-cursor0:amd64 1.6.0-2 amd64 wayland compositor infrastructure - cursor library

libwrap0:amd64 7.6.q-25 amd64 Wietse Venema’s TCP wrappers library

libwww-perl 6.08-1 all simple and consistent interface to the world-wide web

libwww-robotrules-perl 6.01-1 all database of robots.txt-derived permissions

libx11-6:amd64 2:1.6.2-3 amd64 X11 client-side library

libx11-data 2:1.6.2-3 all X11 client-side library

libx11-xcb1:amd64 2:1.6.2-3 amd64 Xlib/XCB interface library

libxau6:amd64 1:1.0.8-1 amd64 X11 authorisation library

libxaw7:amd64 2:1.0.12-2+b1 amd64 X11 Athena Widget library

libxcb-dri2-0:amd64 1.10-3+b1 amd64 X C Binding, dri2 extension

libxcb-dri3-0:amd64 1.10-3+b1 amd64 X C Binding, dri3 extension

libxcb-glx0:amd64 1.10-3+b1 amd64 X C Binding, glx extension

libxcb-present0:amd64 1.10-3+b1 amd64 X C Binding, present extension

libxcb-render0:amd64 1.10-3+b1 amd64 X C Binding, render extension

libxcb-shm0:amd64 1.10-3+b1 amd64 X C Binding, shm extension

libxcb-sync1:amd64 1.10-3+b1 amd64 X C Binding, sync extension

libxcb1:amd64 1.10-3+b1 amd64 X C Binding

libxcomposite1:amd64 1:0.4.4-1 amd64 X11 Composite extension library

libxcursor1:amd64 1:1.1.14-1+b1 amd64 X cursor management library

libxdamage1:amd64 1:1.1.4-2+b1 amd64 X11 damaged region extension library

libxdmcp6:amd64 1:1.1.1-1+b1 amd64 X11 Display Manager Control Protocol library

libxext6:amd64 2:1.3.3-1 amd64 X11 miscellaneous extension library

libxfixes3:amd64 1:5.0.1-2+b2 amd64 X11 miscellaneous ’fixes’ extension library

libxfont1:amd64 1:1.5.1-1 amd64 X11 font rasterisation library

libxi6:amd64 2:1.7.4-1+b2 amd64 X11 Input extension library

libxinerama1:amd64 2:1.1.3-1+b1 amd64 X11 Xinerama extension library

libxkbcommon0:amd64 0.4.3-2 amd64 library interface to the XKB compiler - shared library

libxkbfile1:amd64 1:1.0.8-1 amd64 X11 keyboard file manipulation library

libxml2:amd64 2.9.1+dfsg1-5+deb8u3 amd64 GNOME XML library

libxmu6:amd64 2:1.1.2-1 amd64 X11 miscellaneous utility library

libxmuu1:amd64 2:1.1.2-1 amd64 X11 miscellaneous micro-utility library

libxpm4:amd64 1:3.5.11-1+b1 amd64 X11 pixmap library

libxrandr2:amd64 2:1.4.2-1+b1 amd64 X11 RandR extension library

libxrender1:amd64 1:0.9.8-1+b1 amd64 X Rendering Extension client library

libxshmfence1:amd64 1.1-4 amd64 X shared memory fences - shared library

libxt6:amd64 1:1.1.4-1+b1 amd64 X11 toolkit intrinsics library

libxtables10 1.4.21-2+b1 amd64 netfilter xtables library

libxtst6:amd64 2:1.2.2-1+b1 amd64 X11 Testing – Record extension library

libxxf86vm1:amd64 1:1.1.3-1+b1 amd64 X11 XFree86 video mode extension library

libyaml-0-2:amd64 0.1.6-3 amd64 Fast YAML 1.1 parser and emitter library

libzmq3:amd64 4.0.5+dfsg-2+deb8u1 amd64 lightweight messaging kernel (shared library)

login 1:4.2-3+deb8u1 amd64 system login tools

lsb-base 4.1+Debian13+nmu1 all Linux Standard Base 4.1 init script functionality

mawk 1.3.3-17 amd64 a pattern scanning and text processing language

mgen 5.02+dfsg2-3 amd64 packet generator for IP network performance tests

mime-support 3.58 all MIME files ’mime.types’ & ’mailcap’, and support programs

mount 2.25.2-6 amd64 Tools for mounting and manipulating filesystems

multiarch-support 2.19-18+deb8u6 amd64 Transitional package to ensure multiarch compatibility

nano 2.2.6-3 amd64 small, friendly text editor inspired by Pico

60 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 10: List of packages installed in monroe/base. (Continued)

Name Version Architecture Description

ncurses-base 5.9+20140913-1 all basic terminal type definitions

ncurses-bin 5.9+20140913-1+b1 amd64 terminal-related programs and man pages

net-tools 1.60-26+b1 amd64 NET-3 networking toolkit

netbase 5.3 all Basic TCP/IP networking system

netperf 2.7.0-1 amd64 Network performance benchmark

nmap 6.47-3+deb8u2 amd64 The Network Mapper

nmetrics-oml2 2.11.0-mytestbed2 amd64 Measure and record system information from libsigar using

OML

oml2 2.11.1 rc-mytestbed1 amd64 OML: The O? Measurement Library Suite (Metapackage)

oml2-apps 2.11.0-mytestbed2 amd64 Standalone OML2 applications (metapackage)

oml2-proxy-server 2.11.1 rc-mytestbed1 amd64 OML proxy server

oml2-proxycon 2.11.1 rc-mytestbed1 amd64 OML proxy server control script

oml2-server 2.11.1 rc-mytestbed1 amd64 OML measurement server

openjdk-7-jre-

headless:amd64

7u111-2.6.7-2 deb8u1 amd64 OpenJDK Java runtime, using Hotspot JIT (headless)

openssh-client 1:6.7p1-5+deb8u3 amd64 secure shell (SSH) client, for secure access to remote machines

openssh-server 1:6.7p1-5+deb8u3 amd64 secure shell (SSH) server, for secure access from remote ma-

chines

openssh-sftp-server 1:6.7p1-5+deb8u3 amd64 secure shell (SSH) sftp server module, for SFTP access from re-

mote machines

openssl 1.0.1t-1+deb8u5 amd64 Secure Sockets Layer toolkit - cryptographic utility

otg2-oml2 2.11.0-mytestbed2 amd64 Orbit Traffic Generator

passwd 1:4.2-3+deb8u1 amd64 change and administer password and group data

perl 5.20.2-3+deb8u6 amd64 Larry Wall’s Practical Extraction and Report Language

perl-base 5.20.2-3+deb8u6 amd64 minimal Perl system

perl-modules 5.20.2-3+deb8u6 all Core Perl modules

procps 2:3.3.9-9 amd64 /proc file system utilities

python 2.7.9-1 amd64 interactive high-level object-oriented language (default ver-

sion)

python-chardet 2.3.0-1 all universal character encoding detector for Python2

python-colorama 0.3.2-1 all Cross-platform colored terminal text in Python - Python 2.x

python-distlib 0.1.9-1 all low-level components of python distutils2/packaging

python-html5lib 0.999-3 all HTML parser/tokenizer based on the WHATWG HTML5 speci-

fication (Python 2)

python-meld3 1.0.0-1 amd64 HTML/XML templating system for Python

python-minimal 2.7.9-1 amd64 minimal subset of the Python language (default version)

python-netifaces 0.10.4-0.1 amd64 portable network interface information - Python 2.x

python-pip 1.5.6-5 all alternative Python package installer

python-pkg-resources 5.5.1-1 all Package Discovery and Resource Access using pkg_resources

python-requests 2.4.3-6 all elegant and simple HTTP library for Python2, built for human

beings

python-rrdtool 1.4.8-1.2 amd64 time-series data storage and display system (Python interface)

python-scapy 2.2.0-1 all Packet generator/sniffer and network scanner/discovery

python-setuptools 5.5.1-1 all Python Distutils Enhancements

python-six 1.8.0-1 all Python 2 and 3 compatibility library (Python 2 interface)

python-urllib3 1.9.1-3 all HTTP library with thread-safe connection pooling for Python

python-zmq 14.4.0-1 amd64 Python bindings for 0MQ library

python2.7 2.7.9-2+deb8u1 amd64 Interactive high-level object-oriented language (version 2.7)

python2.7-minimal 2.7.9-2+deb8u1 amd64 Minimal subset of the Python language (version 2.7)

python3 3.4.2-2 amd64 interactive high-level object-oriented language (default

python3 version)

python3-minimal 3.4.2-2 amd64 minimal subset of the Python language (default python3 ver-

sion)

python3-netifaces 0.10.4-0.1 amd64 portable network interface information - Python 3.x

python3-six 1.8.0-1 all Python 2 and 3 compatibility library (Python 3 interface)

python3-zmq 14.4.0-1 amd64 Python3 bindings for 0MQ library

python3.4 3.4.2-1 amd64 Interactive high-level object-oriented language (version 3.4)

python3.4-minimal 3.4.2-1 amd64 Minimal subset of the Python language (version 3.4)

readline-common 6.3-8 all GNU readline and history libraries, common files

ripwavemon-oml2 2.11.0-mytestbed2 amd64 Report statistics from a Navini RipWave modem

rsync 3.1.1-3 amd64 fast, versatile, remote (and local) file-copying tool

ruby 1:2.1.5+deb8u2 all Interpreter of object-oriented scripting language Ruby (default

version)

61 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 10: List of packages installed in monroe/base. (Continued)

Name Version Architecture Description

ruby2.1 2.1.5-2+deb8u3 amd64 Interpreter of object-oriented scripting language Ruby

rubygems-integration 1.8 all integration of Debian Ruby packages with Rubygems

sed 4.2.2-4+b1 amd64 The GNU sed stream editor

sensible-utils 0.0.9 all Utilities for sensible alternative selection

shared-mime-info 1.3-1 amd64 FreeDesktop.org shared MIME database and spec

smokeping 2.6.9-1+deb8u1 all latency logging and graphing system

speedtest-cli 1.0.0 all Command line interface for testing internet bandwidth using

speedtest.net

startpar 0.59-3 amd64 run processes in parallel and multiplex their output

supervisor 3.0r1-1 all A system for controlling process state

systemd 215-17+deb8u5 amd64 system and service manager

systemd-sysv 215-17+deb8u5 amd64 system and service manager - SysV links

sysv-rc 2.88dsf-59 all System-V-like runlevel change mechanism

sysvinit-utils 2.88dsf-59 amd64 System-V-like utilities

tar 1.27.1-2+deb8u1 amd64 GNU version of the tar archiving utility

tcpdump 4.6.2-5+deb8u1 amd64 command-line network traffic analyzer

trace-oml2 2.11.0-mytestbed2 amd64 Measure and record libtrace data using OML

traceroute 1:2.0.20-2+b1 amd64 Traces the route taken by packets over an IPv4/IPv6 network

tzdata 2016j-0+deb8u1 all time zone and daylight-saving time data

tzdata-java 2016j-0+deb8u1 all time zone and daylight-saving time data for use by java run-

times

ucf 3.0030 all Update Configuration File(s): preserve user changes to config

files

udev 215-17+deb8u5 amd64 /dev/ and hotplug management daemon

util-linux 2.25.2-6 amd64 Miscellaneous system utilities

wget 1.16-1+deb8u1 amd64 retrieves files from the web

x11-common 1:7.7+7 all X Window System (X.Org) infrastructure

x11-xkb-utils 7.7+1 amd64 X11 XKB utilities

xauth 1:1.0.9-1 amd64 X authentication utility

xkb-data 2.12-1 all X Keyboard Extension (XKB) configuration data

xserver-common 2:1.16.4-1 all common files used by various X servers

xvfb 2:1.16.4-1 amd64 Virtual Framebuffer ’fake’ X server

xz-utils 5.1.1alpha+20120614-2+b3 amd64 XZ-format compression utilities

zlib1g:amd64 1:1.2.8.dfsg-2+b1 amd64 compression library - runtime

B Description of metadata fields
The following description of metadata topics and fields is included here for convenience only. The updated version is kept at: https:

//github.com/MONROE-PROJECT/Experiments/wiki/Metadata

DataVersion was set to 1 until beginning of March, 2017. It was then set to 2 to signal the transition in timestamps that most tables

underwent, when their precision was changed from an integer number of seconds (e.g., 1400475869) to the number of seconds and

microseconds since the (UNIX) Epoch (e.g., 1400475869.123456).

Table 11: Field description for metadata topic “MONROE.META.DEVICE.MODEM”.

Name Description

NodeId Node numerical ID.

Timestamp Entry timestamp (in seconds since UNIX epoch with microsecond precision).

DataId Metadata topic.

DataVersion Last version is 2.

SequenceNumber Monotonically increasing message counter.

InterfaceName Name of the interface in the MONROE node, e.g., “usb0”, “usb1”, “usb2”, “eth0”, . . .

InternalInterface Name of the interface inside the containers, e.g., “op0”, “op1”, “op2”, “eth0”, “wlan0”, . . . Experiments in con-

tainers have to bind to these interface names.

Cid Cell ID.

DeviceMode Connection mode of the modem (e.g., 2G, 3G, LTE) indicating the radio access technology the modem uses.

DeviceSubmode Connection submode for 3G connections (e.g., CDMA, WCDMA, UMTS).

62 of 67 Project no. 644399

https://github.com/MONROE-PROJECT/Experiments/wiki/Metadata
https://github.com/MONROE-PROJECT/Experiments/wiki/Metadata

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 11: Field description for metadata topic “MONROE.META.DEVICE.MODEM”. (Continued)

Name Description

DeviceState State of the device reported to the network: UNKNOWN (0) - Device state is unknwon; REGISTERED (1) -

Device is registered to the network; UNREGISTERED (2) - Device is unregistered from the network; CON-

NECTED (3) - Device is connected to the network; DISCONNECTED (4) - Device is disconnected from the

network.

Ecio EC/IO, quality/cleanliness of signal from the tower to the modem (dB).

ENodebId Evolved base station ID.

Iccid Internationally defined integrated circuit card identifier of the SIM card.

Imsi Internation Mobile Subscriber Identity.

ImsiMccMnc Mobile Country Code (MCC) and Mobile Network Code (MNC).

Imei International Mobile Station Equipment Identity.

IpAddress IP address assigned to the modem by the operator.

InternalIpAddress Internal IP address of the modem in the MONROE node.

MccMnc Mobile Country Code (MCC) and Mobile Network Code (MNC).

Operator Operator name as reported by the network for the interface in which the experiment was run.

Lac Local Area Code for the current cell (hex).

Rsrp Reference Signal Received Power (LTE).

Frequency Frequency in MHz (e.g., 700, 800, 900, 1800 or 2600 in Europe).

Rsrq Reference Signal Received Quality (valid only for LTE networks). The RSRQ measurement provides additional

information when Reference Signal Received Power (RSRP) is not sufficient to make a reliable handover or

cell reselection decision. RSRQ considers both the Received Signal Strength Indicator (RSSI) and the number

of used Resource Blocks (N) RSRQ = (N ∗RSRP)/RSSI measured over the same bandwidth.

Band Band corresponding to the frequency used (e.g., 3, 7 or 20 in Europe).

Pci Physical Cell ID.

NwMccMnc Mobile Country Code (MCC) and Mobile Network Code (MNC) from network (read from the network). The

tuple uniquely identifies a mobile network operator (carrier) that is using the GSM (including GSM-R), UMTS,

and LTE public land mobile networks.

Rscp Received Signal Code Power (UMTS).

Rssi Received Signal Strength Indicator.

Table 12: Field description for metadata topic “MONROE.META.DEVICE.GPS”.

Name Description

NodeId Node numerical ID.

Timestamp Entry timestamp (in seconds since UNIX epoch with microsecond precision).

DataId Metadata topic.

DataVersion Last version is 2.

SequenceNumber Monotonically increasing message counter.

Longitude Decimal degrees (WGS84).

Latitude Decimal degrees (WGS84).

Altitude Meters AMSL.

Speed Speed over ground (knots; multiply by 1.852 to get kmh−1).

SatelliteCount Number of satellites being tracked.

Nmea Raw NMEA string from the GPS receiver.

Table 13: Field description for metadata topic “MONROE.META.NODE.SENSOR”.

Name Description

NodeId Node numerical ID.

Timestamp Entry timestamp (in seconds since UNIX epoch with microsecond precision).

DataId Metadata topic.

DataVersion Last version is 2.

SequenceNumber Monotonically increasing message counter.

Running Comma separated list of experiment GUIDs.

Cpu CPU temperature (◦C).

Id Session number (boot counter).

Start Start time (Unix timestamp).

Current Uptime (seconds since start of the session).

Total Uptime (cumulative uptime of the node over all sessions).

Percent Uptime (percent of uptime vs. total lifetime of the node).

63 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 13: Field description for metadata topic “MONROE.META.NODE.SENSOR”. (Continued)

Name Description

System CPU time spent by the kernel in system activities.

Steal The time that a virtual CPU had runnable tasks, but the virtual CPU itself was not running.

Guest The time spent running a virtual CPU for guest operating systems under the control of the Linux kernel.

IoWait CPU time spent waiting for I/O operations to finish when there is nothing else to do.

Irq CPU time spent handling interrupts.

Nice CPU time spent by nice(1)d programs.

Idle Idle CPU time.

User CPU time spent by normal programs and daemons.

SoftIrq CPU time spent handling “batched” interrupts.

Apps Memory used by user-space applications.

Free Unused memory.

Swap Swap space used.

usb0 Battery level for MiFi at USB0 (0-100, -1 for inactive).

usb0charging 1 if USB0 battery is charging, 0 otherwise.

usb1 Battery level for MiFi at USB1 (0-100, -1 for inactive).

usb1charging 1 if USB1 battery is charging, 0 otherwise.

usb2 Battery level for MiFi at USB2 (0-100, -1 for inactive).

usb2charging 1 if USB2 battery is charging, 0 otherwise.

Table 14: Field description for metadata topic “MONROE.META.NODE.EVENT”.

Name Description

NodeId Node numerical ID.

Timestamp Entry timestamp (in seconds since UNIX epoch with microsecond precision).

DataId Metadata topic.

DataVersion Last version is 2.

SequenceNumber Monotonically increasing message counter.

EventType Watchdog.Failed: The system watchdog detected an error symptom.

Watchdog.Repaired: The system watchdog resolved the issue.

Watchdog.Status: Periodic status messages from the watchdog.

Maintenance.Start: An interactive login on the node is registered.

Maintenance.Stop: The interactive login session is closed.

System.Halt: System halt is requested.

Scheduling.Started: The node starts to query the scheduling server.

Scheduling.Task.Deploying: A scheduling task passed checks and is being deployed.

Scheduling.Task.Deployed: A scheduling task has been deployed.

Scheduling.Task.Started: A scheduling task has started.

Scheduling.Task.Stopped: A scheduling task has stopped and is being cleaned up.

Message Extra key for some event types.

User Extra key for some event types.

id Extra key for Scheduling.Task.* events.

Table 15: Field description for metadata topic “MONROE.EXP.PING”.

Name Description

NodeId Node numerical ID.

Guid Unique experiment identifier.

Timestamp Entry timestamp (in seconds since UNIX epoch with microsecond precision).

SequenceNumber Monotonically increasing message counter.

DataId Metadata topic.

DataVersion Last version is 2.

Operator Operator name as reported by the network for the interface in which the experiment was run.

Iccid Internationally defined integrated circuit card identifier of the SIM card.

Bytes Size of the ping message payload.

Host IP of the destination host of the ping probe.

Rtt Round-Trip-Time of the ping probe.

64 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Table 16: Field description for metadata topic “MONROE.EXP.HTTP.DOWNLOAD”.

Name Description

NodeId Node numerical ID.

Guid Unique experiment identifier.

Timestamp Entry timestamp (in seconds since UNIX epoch with microsecond precision).

SequenceNumber Monotonically increasing message counter.

DataId Metadata topic.

DataVersion Last version is 2.

Operator Operator name as reported by the network for the interface in which the experiment was run.

Iccid Internationally defined integrated circuit card identifier of the SIM card.

TotalTime Total experiment execution time (in fractional seconds).

Bytes Total number of bytes downloaded.

SetupTime Time required to set up the HTTP connection.

DownloadTime Time spent doing the actual download.

Host IP address of the remote host from which data was downloaded.

Speed Download speed in bytes/s as measured by the experiment.

Port TCP port of the remote host from which data was downloaded.

C How to map container folders to Windows paths
Before being able to access Windows (host) folders from a container, the drive has to be made available to the containers following these

steps:5,6

1. Access the Docker settings dialog from its taskbar icon:

2. From the tab “Shared Drives”, select the drive you want to make available to the containers, e.g., “C”:

3. You will be prompted for login credentials to access the files:

5https://rominirani.com/docker-on-windows-mounting-host-directories-d96f3f056a2c#.pdeuy0c4o
6Thanks to Lena for pointing to the solution.

65 of 67 Project no. 644399

https://rominirani.com/docker-on-windows-mounting-host-directories-d96f3f056a2c#.pdeuy0c4o

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

4. Start the container mounting the desired folder:

$ docker run -v c:/Users/Dell/myresults:/data container_name ls /data

This command executesls /data inside an instance of the container “container_name,” after mounting “C:/Users/Dell/myresults/”

into that path.

5. The folder can be accessed normally from Windows and will reflect changes to any files automatically.

References
[1] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. A buffer-based approach to rate adaptation:

Evidence from a large video streaming service. In Proceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM’14), pages

187–198, New York, NY, USA, 2014. ACM Press.

[2] Juluri P., Tamarapalli V., and D. Medhi. SARA: Segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP.

In ICC QoE-FI Workshop, June 2015.

66 of 67 Project no. 644399

User manual
MONROE Platform User manual

Public
Rev. 1.0/ March 14, 2019

Disclaimer

The views expressed in this document are solely those of the author(s). The European Commis-

sion is not responsible for any use that may be made of the information it contains.

All information in this document is provided “as is”, and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

67 of 67 Project no. 644399

	Introduction
	MONROE nodes hardware
	System design

	Overview of the node configuration
	Overview of the experimental workflow

	Experiment preparation
	General experiment notes
	Container preparation
	Package and tool installation
	Band Locking
	Virtual Machine support
	NEAT support

	Optional interactive debugging
	Mandatory certification process
	Deployment
	Life cycle of monroe/base

	Resource allocation, and experiment scheduling and monitoring
	User login and certificates
	Installation of user certificates in Chrome

	Resource allocation
	Eduroam

	Experiment scheduling
	Recurrence
	Checking availability
	First availability scheduling

	Experiment monitoring
	Command Line Interface
	Installation
	Usage

	Retrieval of metadata and experiment results
	User experiment results
	MONROE metadata

	Run-time considerations for experimenters
	Node identification
	Communication during the experiment
	Interface naming and default route
	Interface binding
	Metadata at run-time
	Example: Correlate experiment results with metadata at run-time
	Metadata information
	Metadata format

	Tstat at run-time
	Tstat Round Robin Database
	Tstat logs

	Access to user-owned development nodes
	Accessing user-owned development nodes

	Monitoring node status
	MONROE templates, examples and default experiments
	Example template
	Usage
	Requirements
	Output
	Overview of the code structure

	Docker miscellaneous usage notes
	Experiment: ping
	Usage
	Requirements
	Output

	Experiment: http_download
	Experiment: Tstat & mPlane
	Requirements
	Usage

	MONROE example: helloworld
	Usage
	Requirements
	Output

	MONROE example: paris-traceroute
	Usage (inside a MONROE container)
	Output
	Additional remarks

	MONROE example: headlessbrowsing
	Output

	MONROE example: pReplay
	Usage

	MONROE example: astream
	Usage
	Output

	MONROE example: udpbwestimator
	Usage
	Output

	MONROE example: traceroute_background_experiment
	Usage

	Other containers in the repositories
	Container: metadata-subscriber
	Container: tunnelbox-server
	Container: monroe_base

	List of known bugs and issues
	List of packages installed in monroe/base
	Description of metadata fields
	How to map container folders to Windows paths

