
INET Framework User’s Guide

OpenSim Ltd.

Sep 13, 2018





CONTENTS

1 Introduction 3
1.1 What is INET Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Designed for Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Scope of this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Using the INET Framework 5
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Installing INET Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Getting Familiar with INET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Networks 7
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Built-in Network Nodes and Other Top-Level Modules . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Typical Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Frequent Tasks (How To. . . ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Network Nodes 13
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Node Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Customizing Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Custom Network Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Network Interfaces 17
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Built-in Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Anatomy of Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 The Interface Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Wired Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 Wireless Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7 Special-Purpose Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.8 Custom Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Applications 23
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 TCP applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 UDP applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 IPv4/IPv6 traffic generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5 The PingApp application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.6 Ethernet applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Transport Protocols 29
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3 UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



7.4 SCTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 RTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 The IPv4 Protocol Family 33
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Ipv4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3 Ipv4RoutingTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4 Icmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.5 Arp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.6 Igmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9 IPv6 and Mobile IPv6 37
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10 Other Network Protocols 39
10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.3 Address Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.4 Address Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11 Internet Routing 43
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.2 RIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.3 OSPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.4 BGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Ad Hoc Routing 47
12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.2 AODV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.3 DSDV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.4 DYMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.5 GPSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 Differentiated Services 49
13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
13.2 Architecture of NICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13.3 Simple modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13.4 Compound modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

14 The MPLS Models 59
14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.2 Core Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.3 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
14.4 MPLS-Enabled Router Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

15 Point-to-Point Links 63
15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
15.2 The PPP module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
15.3 PppInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

16 The Ethernet Model 65
16.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
16.2 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
16.3 The Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
16.4 Ethernet Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
16.5 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
16.6 Implemented Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

17 The 802.11 Model 69
17.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ii



17.2 MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
17.3 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
17.4 Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
17.5 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

18 The 802.15.4 Model 73
18.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
18.2 Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
18.3 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
18.4 MAC Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

19 MAC Protocols for Wireless Sensor Networks 75
19.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
19.2 B-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
19.3 L-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
19.4 X-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

20 The Physical Layer 77
20.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
20.2 Generic Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
20.3 Components of a Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
20.4 Layered Radio Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
20.5 Notable Radio Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

21 The Transmission Medium 83
21.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
21.2 RadioMedium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
21.3 Propagation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
21.4 Path Loss Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
21.5 Obstacle Loss Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
21.6 Background Noise Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
21.7 Analog Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
21.8 Neighbor Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
21.9 Medium Limit Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
21.10 Communication Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
21.11 Improving Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

22 The Physical Environment 89
22.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
22.2 PhysicalEnvironment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
22.3 Physical Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
22.4 Ground Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
22.5 Geographic Coordinate System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
22.6 Object Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

23 Node Mobility 93
23.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
23.2 Built-In Mobility Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

24 Modeling Power Consumption 99
24.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
24.2 Energy Consumer Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
24.3 Energy Generator Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
24.4 Energy Storage Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
24.5 Energy Management Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

25 Network Emulation 103
25.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
25.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

iii



25.3 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
25.4 Configuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

26 Network Autoconfiguration 107
26.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
26.2 Configuring IPv4 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
26.3 Configuring Layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

27 Scenario Scripting 117
27.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
27.2 ScenarioManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

28 Modeling Node Failures 119
28.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
28.2 NodeStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
28.3 Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

29 Collecting Results 121
29.1 Recording Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
29.2 Recording PCAP Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
29.3 Recording Routing Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
29.4 Packet Recorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
29.5 Eventlog Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

30 Visualization 123
30.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
30.2 Visualizing Network Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
30.3 Visualizing The Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

31 Appendix: Author’s Guide 129
31.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
31.2 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

32 History 131
32.1 IPSuite to INET Framework (2000-2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

iv



INET Framework User’s Guide

This manual is written for users who are interested in assembling simulations using the components provided by
the INET Framework. (In contrast, if you are interested in modifing INET’s components or plan to extend INET
with new protocols or other components using C++, we recommend the INET Developer’s Guide.)

CONTENTS 1



INET Framework User’s Guide

2 CONTENTS



CHAPTER

ONE

INTRODUCTION

1.1 What is INET Framework

INET Framework is an open-source model library for the OMNeT++ simulation environment. It provides pro-
tocols, agents and other models for researchers and students working with communication networks. INET is
especially useful when designing and validating new protocols, or exploring new or exotic scenarios.

INET supports a wide class of communication networks, including wired, wireless, mobile, ad hoc and sensor
networks. It contains models for the Internet stack (TCP, UDP, IPv4, IPv6, OSPF, BGP, etc.), link layer protocols
(Ethernet, PPP, IEEE 802.11, various sensor MAC protocols, etc), refined support for the wireless physical layer,
MANET routing protocols, DiffServ, MPLS with LDP and RSVP-TE signalling, several application models, and
many other protocols and components. It also provides support for node mobility, advanced visualization, network
emulation and more.

Several other simulation frameworks take INET as a base, and extend it into specific directions, such as vehicular
networks, overlay/peer-to-peer networks, or LTE.

1.2 Designed for Experimentation

INET is built around the concept of modules that communicate by message passing. Agents and network pro-
tocols are represented by components, which can be freely combined to form hosts, routers, switches, and other
networking devices. New components can be programmed by the user, and existing components have been written
so that they are easy to understand and modify.

INET benefits from the infrastructure provided by OMNeT++. Beyond making use of the services provided by
the OMNeT++ simulation kernel and library (component model, parameterization, result recording, etc.), this also
means that models may be developed, assembled, parameterized, run, and their results evaluted from the comfort
of the OMNeT++ Simulation IDE, or from the command line.

INET Framework is maintained by the OMNeT++ team for the community, utilizing patches and new models
contributed by members of the community.

1.3 Scope of this Manual

This manual is written for users who are interested in assembling simulations using the components provided by
the INET Framework. (In contrast, if you are interested in modifing INET’s components or plan to extend INET
with new protocols or other components using C++, we recommend the INET Developers Guide.)

This manual does not attempt to be a reference for INET. It concentrates on conveying the big picture, and does
not attempt to cover all components, or try to document the parameters, gates, statistics or precise operation
of individual components. For such information, users should refer to the INET Reference, a web-based cross-
referenced documentation generated from NED and MSG files.

A working knowledge of OMNeT++ is assumed.

3



INET Framework User’s Guide

4 Chapter 1. Introduction



CHAPTER

TWO

USING THE INET FRAMEWORK

2.1 Installation

There are several ways to install the INET Framework:

• Let the OMNeT++ IDE download and install it for you. This is the easiest way. Just accept the offer to
install INET in the dialog that comes up when you first start the IDE, or choose Help → Install Simulation
Models any time later.

• From INET Framework web site, http://inet.omnetpp.org. The IDE always installs the last stable version
compatible with your version of OMNeT++. If you need some other version, they are available for download
from the web site. Installation instructions are also provided there.

• From GitHub. If you have experience with git, clone the INET Framework project (inet-framework/
inet), check out the revision of your choice, and follow the INSTALL file in the project root.

2.2 Installing INET Extensions

If you plan to make use of INET extensions (e.g. Veins or SimuLTE), follow the installation instructions provided
with them.

In the absence of specific instructions, the following procedure usually works:

• First, check if the project root contains a file named .project.

• If it does, then the project can be imported into the IDE (use File → Import → General → Existing Project
into workspace). Make sure that the project is recognized as an OMNeT++ project (the Project Properties
dialog contains a page titled OMNeT++), and it lists the INET project as dependency (check the Project
References page in the Project Properties dialog).

• If there is no .project file, you can create an empty OMNeT++ project using the New OMNeT++ Project
wizard in File → New, add the INET project as dependency using the Project References page in the Project
Properties dialog, and copy the source files into the project.

2.3 Getting Familiar with INET

The INET Framework builds upon OMNeT++, and uses the same concept: modules that communicate by message
passing. Hosts, routers, switches and other network devices are represented by OMNeT++ compound modules.
These compound modules are assembled from simple modules that represent protocols, applications, and other
functional units. A network is again an OMNeT++ compound module that contains host, router and other modules.

Modules are organized into a directory structure that roughly follows OSI layers:

• src/inet/applications/ – traffic generators and application models

• src/inet/transportlayer/ – transport layer protocols

5



INET Framework User’s Guide

• src/inet/networklayer/ – network layer protocols and accessories

• src/inet/linklayer/ – link layer protocols and accessories

• src/inet/physicallayer/ – physical layer models

• src/inet/routing/ – routing protocols (internet and ad hoc)

• src/inet/mobility/ – mobility models

• src/inet/power/ – energy consumption modeling

• src/inet/environment/ – model of the physical environment

• src/inet/node/ – preassembled network node models

• src/inet/visualizer/ – visualization components (2D and 3D)

• src/inet/common/ – miscellaneous utility components

The OMNeT++ NED language uses hierarchical packages names. Packages correspond to directories under src/
, so e.g. the src/inet/transportlayer/tcp directory corresponds to the inet.transportlayer.
tcp NED package.

For modularity, the INET Framework has about 80 project features (parts of the codebase that can be disabled as
a unit) defined. Not all project features are enabled in the default setup after installation. You can review the list
of available project features in the Project → Project Features. . . dialog in the IDE. If you want to know more
about project features, refer to the OMNeT++ User Guide.

6 Chapter 2. Using the INET Framework



CHAPTER

THREE

NETWORKS

3.1 Overview

INET heavily builds upon the modular architecture of OMNeT++. It provides numerous domain specific and
highly parameterizable components which can be combined in many ways. The primary means of building large
custom network simulations in INET is the composition of existing models with custom models, starting from
small components and gradually forming ever larger ones up until the composition of the network. Users are
not required to have programming experience to create simulations unless they also want to implement their own
protocols, for example.

Assembling an INET simulation starts with defining a module representing the network. Networks are compound
modules which contain network nodes, automatic network configurators, and sometimes additionally transmission
medium, physical environment, various visualizer, and other infrastructure related modules. Networks also contain
connections between network nodes representing cables. Large hierarchical networks may be further organized
into compound modules to directly express the hierarchy.

There are no predefined networks in INET, because it is very easy to create one, and because of the vast possibili-
ties. However, the OMNeT++ IDE provides several topology generator wizards for advanced scenarios.

As INET is an OMNeT++-based framework, users mainly use NED to describe the model topology, and ini files
to provide configuration.1

3.2 Built-in Network Nodes and Other Top-Level Modules

INET provides several pre-assembled network nodes with carefully selected components. They support cus-
tomization via parameters and parametric submodule types, but they are not meant to be universal. Sometimes
it may be necessary to create special network node models for particular simulation scenarios. In any case, the
following list gives a taste of the built-in network nodes.

• StandardHost contains the most common Internet protocols: UDP, TCP, IPv4, IPv6, Ethernet, IEEE 802.11.
It also supports an optional mobility model, optional energy models, and any number of applications which
are entirely configurable from INI files.

• EtherSwitch models an Ethernet switch containing a relay unit and one MAC unit per port.

• Router provides the most common routing protocols: OSPF, BGP, RIP, PIM.

• AccessPoint models a Wifi access point with multiple IEEE 802.11 network interfaces and multiple Ethernet
ports.

• WirelessHost provides a network node with one (default) IEEE 802.11 network interface in infrastructure
mode, suitable for using with an AccessPoint.

• AdhocHost is a WirelessHost with the network interface configured in ad-hoc mode and forwarding enabled.

• AodvRouter is similar to an AdhocHost with an additional AODV protocol.

1 Some components require additional configuration to be provided as separate files, e.g. in XML.

7

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.EtherSwitch.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.wireless.AccessPoint.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.wireless.AccessPoint.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.AdhocHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.aodv.AodvRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.AdhocHost.html


INET Framework User’s Guide

Network nodes communicate at the network level by exchanging OMNeT++ messages which are the abstract
representations of physical signals on the transmission medium. Signals are either sent through OMNeT++ con-
nections in the wired case, or sent directly to the gate of the receiving network node in the wireless case. Signals
encapsulate INET-specific packets that represent the transmitted digital data. Packets are further divided into
chunks that provide alternative representations for smaller pieces of data (e.g. protocol headers, application data).

Additionally, there are components that occur on network level, but they are not models of physical network nodes.
They are necessary to model other aspects. Some of them are:

• A radio medium module such as Ieee80211RadioMedium, ApskScalarRadioMedium and UnitDiskRa-
dioMedium (there are a few of them) are a required component of wireless networks.

• PhysicalEnvironment models the effect of the physical environment (i.e. obstacles) on radio signal propa-
gation. It is an optional component.

• Configurators such as Ipv4NetworkConfigurator, L2NetworkConfigurator and NextHopNetworkConfigura-
tor configure various aspects of the network. For example, Ipv4NetworkConfigurator assigns IP addresses
to hosts and routers, and sets up static routing. It is used when modeling dynamic IP address assignment
(e.g. via DHCP) or dynamic routing is not of importance. L2NetworkConfigurator allows one to configure
802.1 LANs and provide STP/RSTP-related parameters such as link cost, port priority and the “is-edge”
flag.

• ScenarioManager allows scripted scenarios, such as timed failure and recovery of network nodes.

• Group coordinators are needed for the operation of some group mobility mdels. For example, MoBanCo-
ordinator is the coordinator module for the MoBAN mobility model.

• Visualizers like PacketDropOsgVisualizer provide graphical rendering of some aspect of the simulation
either in 2D (canvas) or 3D (using OSG or osgEarth). The usual choice is IntegratedVisualizer which
bundles together an instance of each specific visualizer type in a compound module.

3.3 Typical Networks

3.3.1 Wired Networks

Wired network connections, for example Ethernet cables, are represented with standard OMNeT++ connections
using the DatarateChannel NED type. The channel’s datarate and delay parameters must be provided for all
wired connections.

The following example shows how straightforward it is to create a model for a simple wired network. This
network contains a server connected to a router using PPP, which in turn is connected to a switch using Ethernet.
The network also contains a parameterizable number of clients, all connected to the switch forming a star topology.
The utilized network nodes are all predefined modules in INET. To avoid the manual configuration of IP addresses
and routing tables, an automatic network configurator is also included.

network WiredNetworkExample
{

parameters:
int numClients; // number of clients in the network

submodules:
configurator: Ipv4NetworkConfigurator; // network autoconfiguration
server: StandardHost; // predefined standard host
router: Router; // predefined router
switch: EtherSwitch; // predefined ethernet switch
client[numClients]: StandardHost;

connections: // network level connections
router.pppg++ <--> { datarate = 1GBps; } <--> server.pppg++; // PPP
switch.ethg++ <--> Eth1G <--> router.ethg++; // bidirectional ethernet
for i=0..numClients-1 {

client[i].ethg++ <--> Eth1G <--> switch.ethg++; // ethernet

(continues on next page)

8 Chapter 3. Networks

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211RadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.environment.common.PhysicalEnvironment.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.configurator.L2NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.nexthop.NextHopNetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.nexthop.NextHopNetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.configurator.L2NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.group.MoBanCoordinator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.group.MoBanCoordinator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.common.PacketDropOsgVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/ned.DatarateChannel.html


INET Framework User’s Guide

(continued from previous page)

}
}

In order to run a simulation using the above network, an OMNeT++ INI file must be created. The INI file selects
the network, sets its number of clients parameter, and configures a simple TCP application for each client. The
server is configured to have a TCP application which echos back all data received from the clients individually.

network = WiredNetworkExample

*.numClients = 10 # number of clients in network

*.client[*].numApps = 1 # number of applications on clients

*.client[*].app[0].typename = "TcpSessionApp" # client application type

*.client[*].app[0].connectAddress = "server" # destination address

*.client[*].app[0].connectPort = 1000 # destination port

*.client[*].app[0].sendBytes = 1MB # amount of data to send

*.server.numApps = 1 # number of applications on server

*.server.app[0].typename = "TcpEchoApp" # server application type

*.server.app[0].localPort = 1000 # TCP server listen port

When the above simulation is run, each client application connects to the server using a TCP socket. Then each
one of them sends 1MB of data, which in turn is echoed back by the server, and the simulation concludes. The
default statistics are written to the results folder of the simulation for later analysis.

3.3.2 Wireless Networks

Wireless network connections are not modeled with OMNeT++ connections due the dynamically changing nature
of connectivity. For wireless networks, an additional module, one that represents the transmission medium, is
required to maintain connectivity information.

network WirelessNetworkExample
submodules:

configurator: Ipv4NetworkConfigurator;
radioMedium: Ieee80211ScalarRadioMedium;
host1: WirelessHost { @display("p=200,100"); }
host2: WirelessHost { @display("p=500,100"); }
accessPoint: AccessPoint { @display("p=374,200"); }

}

In the above network, positions in the display strings provide positions for the transmission medium during the
computation of signal propagation and path loss.

In addition, host1 is configured to periodically send UDP packets to host2 over the AP.

network = WirelessNetworkExample

*.host1.numApps = 1

*.host1.app[0].typename = "UdpBasicApp"

*.host1.app[0].destAddresses = "host2"

*.host1.app[0].destPort = 1000

*.host1.app[0].messageLength = 100Byte

*.host1.app[0].sendInterval = 100ms

*.host2.numApps = 1

*.host2.app[0].typename = "UdpSink"

*.host2.app[0].localPort = 1000

**.arp.typename = "GlobalArp"

**.netmaskRoutes = ""

3.3.3 Mobile Ad hoc Networks

3.3. Typical Networks 9



INET Framework User’s Guide

network MobileAdhocNetworkExample
{

parameters:
int numHosts; // number of nodes in the network

submodules:
configurator: Ipv4NetworkConfigurator; // network autoconfiguration
radioMedium: Ieee80211ScalarRadioMedium; // 802.11 physical medium
host[numHosts]: AdhocHost; // ad-hoc wifi nodes

}

network = MobileAdhocNetworkExample

*.numHosts = 10 # number of hosts in the MANET

*.host[*].mobility.typename = "MassMobility" # stochastic mobility model

*.host[*].mobility.initFromDisplayString = false # ignore display string

*.host[*].mobility.changeInterval = truncnormal(2s, 0.5s) # between turns

*.host[*].mobility.changeAngleBy = normal(0deg, 30deg) # random turn

*.host[*].mobility.speed = truncnormal(20mps, 8mps) # random speed

*.host[*].numApps = 1 # number of applications on hosts

*.host[*].app[0].typename = "PingApp" # application type for all hosts

*.host[*].app[0].destAddr = "host[0]" # ping destination

*.host[*].app[0].startTime = uniform(1s,5s) # to avoid synchronization

*.host[*].app[0].printPing = true # print usual ping results to stdout

3.4 Frequent Tasks (How To. . . )

Quick and somewhat superficial advice to many practical tasks.

3.4.1 Automatic Wired Interfaces

In many wired network simulations, the number of wired interfaces need not be manually configured, because it
can be automatically inferred from the actual number of connections between network nodes.

router1.ethg++ <--> Eth1G <--> router2.ethg++; // automatic interfaces

3.4.2 Multiple Wireless Interfaces

All built-in wireless network nodes support multiple wireless interfaces, but only one is enabled by default.

*.host[*].numWlanInterfaces = 2 # number of wireless network interfaces

*.host[*].wlan[0].agent.default_ssid = "alpha" # connects to alpha network

*.host[*].wlan[1].agent.default_ssid = "bravo" # connects to bravo network

3.4.3 Specifying Addresses

Nearly all application layer modules, but several other components as well, have parameters that specify network
addresses. They typically accept addresses given with any of the following syntax variations:

• literal IPv4 address: "186.54.66.2"

• literal IPv6 address: "3011:7cd6:750b:5fd6:aba3:c231:e9f9:6a43"

• module name: "server", "subnet.server[3]"

• interface of a host or router: "server/eth0", "subnet.server[3]/eth0"

• IPv4 or IPv6 address of a host or router: "server(ipv4)", "subnet.server[3](ipv6)"

10 Chapter 3. Networks



INET Framework User’s Guide

• IPv4 or IPv6 address of an interface of a host or router: "server/eth0(ipv4)", "subnet.
server[3]/eth0(ipv6)"

3.4.4 Node Failure and Recovery

3.4.5 Enabling Dual IP Stack

All built-in network nodes support dual Internet protocol stacks, that is both IPv4 and IPv6 are available. They are
also supported by transport layer protocols, link layer protocols, and most applications. Only IPv4 is enabled by
default, so in order to use IPv6, it must be enabled first, and an application supporting IPv6 (e.g., PingApp must be
used). The following example shows how to configure two ping applications in a single node where one is using
an IPv4 and the other is using an IPv6 destination address.

*.host[*].hasIpv4 = true # enable IPv4 protocol

*.host[*].hasIpv6 = true # enable IPv6 protocol

*.host[*].numApps = 2 # number of applications on hosts

*.host[*].app[*].typename = "PingApp" # type for both applications

*.host[*].app[0].destAddr = "host[0](ipv4)" # uses IPv4 detination address

*.host[*].app[1].destAddr = "host[0](ipv6)" # uses IPv6 detination address

3.4.6 Enabling Packet Forwarding

In general, network nodes don’t forward packets by default, only Router and the like do. Nevertheless, it’s possible
to enable packet forwarding as simply as flipping a switch.

*.host[*].forwarding = true

3.4. Frequent Tasks (How To. . . ) 11

https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.pingapp.PingApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html


INET Framework User’s Guide

12 Chapter 3. Networks



CHAPTER

FOUR

NETWORK NODES

4.1 Overview

Hosts, routers, switches, access points, mobile phones, and other network nodes are represented in INET with
compound modules. The previous chapter has introduced a few node types like StandardHost, Router, and showed
how to put together networks from them. In this chapter, we look at the internals of such node models, in order
to provide a deeper understanding of their customization possibilities and to give some guidance on how custom
nodes models can be assembled.

4.2 Ingredients

Node models are assembled from other modules which represent applications, communication protocols, network
interfaces, routing tables, mobility models, energy models, and other functionality. These modules fall into the
following broad categories:

• Applications often model the user behavior as well as the application program (e.g., browser), and the
application layer protocol (e.g., HTTP). Applications typically use transport layer protocols (e.g., TCP
and/or UDP), but they may also directly use lower layer protocols (e.g., IP or Ethernet) via sockets.

• Routing protocols are provided as separate modules: OSPF, BGP, or AODV for MANET routing. These
modules use TCP, UDP, and IPv4, and manipulate routes in the Ipv4RoutingTable module.

• Transport layer protocols are connected to applications and network layer protocols. They are most often
represented by simple modules, currently TCP, UDP, and SCTP are supported. TCP has several implemen-
tations: Tcp is the OMNeT++ native implementation; TcpLwip module wraps the lwIP TCP stack; and
TcpNsc module wraps the Network Simulation Cradle library.

• Network layer protocols are connected to transport layer protocols and network interfaces. They are usu-
ally modeled as compound modules: Ipv4NetworkLayer for IPv4, and Ipv6NetworkLayer for IPv6. The
Ipv4NetworkLayer module contains several protocol modules: Ipv4, Arp, Icmp and Icmpv6.

• Network interfaces are represented by compound modules which are connected to the network layer pro-
tocols and other network interfaces in the wired case. They are often modeled as compound modules
containing separate modules for queues, classifiers, MAC, and PHY protocols.

• Link layer protocols are usually simple modules sitting in network interface modules. Some protocols, for
example IEEE 802.11 MAC, are modeled as a compound module themselves due to the complexity of the
protocol.

• Physical layer protocols are compound modules also being part of network interface modules.

• Interface table maintains the set of network interfaces (e.g. eth0, wlan0) in the network node. Interfaces
are registered dynamically during initialization of network interfaces.

• Routing tables maintain the list of routes for the corresponding network protocol (e.g., Ipv4RoutingTable
for Ipv4). Routes are added by automatic network configurators or routing protocols. Network protocols
use the routing tables to find out the best matching route for datagrams.

13

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp.Tcp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp_lwip.TcpLwip.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp_nsc.TcpNsc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4NetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv6.Ipv6NetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4NetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.arp.ipv4.Arp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Icmp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.icmpv6.Icmpv6.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4.html


INET Framework User’s Guide

• Mobility modules are responsible for moving around the network node in the simulated playground. The
mobility model is mandatory for wireless simulations even if the network node is stationary. The mobility
module stores the location of the network node which is needed to compute wireless propagation and path
loss. Different mobility models are provided as different modules. Network nodes define their mobility
submodule with a parametric type, so the mobility model can be changed in the configuration.

• Energy modules model energy storage mechanisms, energy consumption of devices and software processes,
energy generation of devices, and energy management processes which shutdown and startup network
nodes.

• Status (NodeStatus) keeps track of the status of the network node (up, down, etc.)

• Other modules with particular functionality such as PcapRecorder are also available.

4.3 Node Architecture

Within network nodes, OMNeT++ connections are used to represent communication opportunities between pro-
tocols. Packets and messages sent on these connections represent software or hardware activity.

Although protocols may also be connected to each other directly, in most cases they are connected via dispatcher
modules. Dispatchers (MessageDispatcher) are small, low-overhead modules that allow protocol components to
be connected in one-to-many and many-to-many fashion, and ensure that messages and packets sent from one
component end up being delivered to the correct component. Dispatchers need no manual configuration, as they
use discovery and peek into packets.

In there pre-assembled node models, dispatchers allow arbitrary protocol components to talk directly to each other,
i.e. not only to ones in neighboring layers.

4.4 Customizing Nodes

The built-in network nodes are written to be as versatile and customizable as possible. This is achieved in several
ways:

4.4.1 Submodule and Gate Vectors

One way is the use of gate vectors and submodule vectors. The sizes of vectors may come from parameters or
derived by the number of external connections to the network node. For example, a host may have an arbitrary
number of wireless interfaces, and it will automatically have as many Ethernet interfaces as the number of Ethernet
devices connected to it.

For example, wireless interfaces for hosts are defined like this:

wlan[numWlanInterfaces]: <snip> // wlan interfaces in StandardHost etc al.

Where :ini:numWlanInterfaces is a module parameter that defaults to either 0 or 1 (this is different for e.g.
StandardHost and WirelessHost.) To configure a host to have two interfaces, add the following line to the ini file:

**.hostA.numWlanInterfaces = 2

4.4.2 Conditional Submodules

Submodules that are not vectors are often conditional. For example, the TCP protocol module in hosts is con-
ditional on the hasTcp parameter. Thus, to disable TCP support in a host (it is enabled by default), use the
following ini file line:

14 Chapter 4. Network Nodes

https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.lifecycle.NodeStatus.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.packet.recorder.PcapRecorder.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.MessageDispatcher.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html


INET Framework User’s Guide

**.hostA.hasTcp = false

4.4.3 Parametric Types

Another often used way of customization is parametric types, that is, the type of a submodule (or a channel) may
be specified as a string parameter. Almost all submodules in the built-in node types have parametric types. For
example, the TCP protocol module is defined like this:

tcp: <tcpType> like ITcp if hasTcp;

The tcpType parameter defaults to the default implementation, Tcp. To use another implementation instead,
add the following line to the ini file:

**.host*.tcpType = "TcpLwip" # use lwIP's TCP implementation

Submodule vectors with parametric types are defined without the use of a module parameter to allow elements
have different types. An example is how applications are defined in hosts:

app[numApps]: <> like IApp; // applications in StandardHost et al.

And applications can be added in the following way:

**.hostA.numApps = 2

**.hostA.apps[0].typename = "UdpBasicApp"

**.hostA.apps[1].typename = "PingApp"

4.4.4 Inheritance

Inheritance can be use to derive new, specialized node types from existing ones. A derived NED type may add new
parameters, gates, submodules or connections, and may set inherited unassigned parameters to specific values.

For example, WirelessHost is derived from StandardHost in the following way:

module WirelessHost extends StandardHost
{

@display("i=device/wifilaptop");
numWlanInterfaces = default(1);

}

4.5 Custom Network Nodes

Despite the many pre-assembled network nodes and the several available customization options, sometimes it is
just easier to build a network node from scratch. The following example shows how easy it is to build a simple
network node.

This network node already contains a configurable application and several standard protocols. It also demonstrates
how to use the packet dispatching mechanism which is required to connect multiple protocols in a many-to-many
relationship.

module NetworkNodeExample
{

parameters:
gates:

inout ethg; // ethernet interface connector
input radioIn; // incoming radio frames from physical medium

submodules:
(continues on next page)

4.5. Custom Network Nodes 15

https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp.Tcp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html


INET Framework User’s Guide

(continued from previous page)

app: <> like IApp; // configurable application
tcp: Tcp; // standard TCP protocol
ip: Ipv4; // standard IP protocol
md: MessageDispatcher; // connects multiple interfaces to IP
wlan: Ieee80211Interface; // standard wifi interface
eth: EthernetInterface; // standard ethernet interface
interfaceTable: InterfaceTable;

connections: // network node internal connections
app.socketOut --> tcp.appIn; // application sends data stream
app.socketIn <-- tcp.appOut; // application receives data stream
tcp.ipOut --> ip.transportIn; // TCP sends segments
tcp.ipIn <-- ip.transportOut; // TCP receives segments
ip.queueOut --> md.in++; // IP sends datagrams
ip.queueIn <-- md.out++; // IP receives datagrams
md.out++ --> wlan.upperLayerIn;
md.in++ <-- wlan.upperLayerOut;
md.out++ --> eth.upperLayerIn;
md.in++ <-- eth.upperLayerOut;
eth.phys <--> ethg; // Ethernet sends frames to cable
radioIn --> wlan.radioIn; // IEEE 802.11 sends frames to medium

}

16 Chapter 4. Network Nodes



CHAPTER

FIVE

NETWORK INTERFACES

5.1 Overview

In INET simulations, network interface modules are the primary means of communication between network nodes.
They represent the required combination of software and hardware elements from an operating system point-of-
view.

Network interfaces are implemented with OMNeT++ compound modules that conform to the INetworkInterface
module interface. Network interfaces can be further categorized as wired and wireless; they conform to the
IWiredInterface and IWirelessInterface NED types, respectively, which are subtypes of INetworkInterface.

5.2 Built-in Network Interfaces

INET provides pre-assembled network interfaces for several standard protocols, protocol tunneling, hardware
emulation, etc. The following list gives the most commonly used network interfaces.

• EthernetInterface represents an Ethernet interface

• PppInterface is for wired links using PPP

• Ieee80211Interface represents a Wifi (IEEE 802.11) interface

• Ieee802154NarrowbandInterface and Ieee802154UwbIrInterface represent a IEEE 802.15.4 interface

• BMacInterface, LMacInterface, XMacInterface provide low-power wireless sensor MAC protocols along
with a simple hypothetical PHY protocol

• TunInterface is a tunneling interface that can be directly used by applications

• LoopbackInterface provides local loopback within the network node

• ExtInterface represents a real-world interface, suitable for hardware-in-the-loop simulations

5.3 Anatomy of Network Interfaces

Network interfaces in the INET Framework are OMNeT++ compound modules that contain many more compo-
nents than just the corresponding layer 2 protocol implementation. Most of these components are optional, i.e.
absent by default, and can be added via configuration.

Typical ingredients are:

• Layer 2 protocol implementation. For some interfaces such as PppInterface this is a single module; for others
like Ethernet and Wifi it consists of separate modules for MAC, LLC, and possibly other subcomponents.

• PHY model. Some interfaces also contain separate module(s) that implement the physical layer. For exam-
ple, Ieee80211Interface contains a radio module.

17

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.INetworkInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.IWiredInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.IWirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.INetworkInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EthernetInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.PppInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.Ieee80211Interface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee802154.Ieee802154NarrowbandInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee802154.Ieee802154UwbIrInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.bmac.BMacInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.lmac.LMacInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.xmac.XMacInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.tun.TunInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.loopback.LoopbackInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.PppInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.Ieee80211Interface.html


INET Framework User’s Guide

• Output queue. This module is optional and absent by default, because most MAC protocol implementations
already contain an internal queue which is more efficient to work with. The possibility to plug in an external
queue module allows one to experiment with different queueing policies and implement QoS, RED, etc.

• Traffic conditioners allow traffic shaping and policing elements to be added to the interface, for example to
implement a Diffserv router.

• Hooks allow extra modules to be inserted in the incoming and outgoing paths of packets.

5.3.1 Internal vs External Output Queue

Network interfaces usually have the external queue module defined with a parametric type like this:

queue: <queueType> like IOutputQueue if queueType != "";

When queueType is empty (this is the default), the external queue module is absent, and the MAC (or equivalent
L2) protocol will use its internal queue object. Conceptually, the internal queue is of inifinite size, but for better
diagnostics one can often specify a hard limit for the queue length in a module parameter – if this is exceeded, the
simulation stops with an error.

When queueType is not empty, it must name a NED type that implements the IOutputQueue interface. The
external queue module model allows modeling a finite buffer, or implement various queueing policies for QoS
and/or RED.

The most frequently used module type for external queue is DropTailQueue, a finite-size FIFO that drops over-
flowing packets). Other queue types that implement queueing policies can be created by assembling compound
modules from DiffServ components (see chapter Differentiated Services). An example of such compound modules
is DiffservQueue.

An example ini file fragment that installs drop-tail queues of size 10 on PPP interfaces:

**.ppp[*].queueType = "DropTailQueue"

**.ppp[*].queue.frameCapacity = 10

5.3.2 Traffic Conditioners

Many network interfaces contain optional traffic conditioner submodules defined with parametric types, like this:

ingressTC: <ingressTCType> like ITrafficConditioner if ingressTCType != "";
egressTC: <egressTCType> like ITrafficConditioner if egressTCType != "";

Traffic conditioners allow one to implement the policing and shaping actions of a Diffserv router. They are added
to the input or output packets paths in the network interface. (On the output path they are added before the queue
module.)

Traffic conditioners must implement the ITrafficConditioner module interface. Traffic conditioners can be assem-
bled from DiffServ components (see chapter Differentiated Services). There is no preassembled traffic conditioner
in INET, but you can find some in the example simulations.

An example configuration with fictituous types:

**.ppp[*].ingressTCType = "CustomIngressTC"

**.ppp[*].egressTCType = "CustomEgressTC"

5.3.3 Hooks

Several network interfaces allow extra modules to be inserted in the incoming and outgoing paths of packets at the
top of the netwok interface. Hooks are added as a submodule vector with parametric type, like this:

18 Chapter 5. Network Interfaces

https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.IOutputQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.DropTailQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.DiffservQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.ITrafficConditioner.html


INET Framework User’s Guide

outputHook[numOutputHooks]: <default("Nop")> like IHook if numOutputHooks>0;
inputHook[numInputHooks]: <default("Nop")> like IHook if numInputHooks>0;

This allows any number of hook modules to be added. The hook modules are chained in their numeric order.

Modules inserted as hooks may act as probes (for measuring or recording traffic) or as means of modifying or
perturbing the packet flow for experimentation. Module types implementing the IHook NED interface include
ThruputMeter, Delayer, OrdinalBasedDropper, and OrdinalBasedDuplicator.

The following ini file fragment inserts two hook modules into the output paths of PPP interfaces, a delayer and a
throughput meter:

**.ppp[*].numOutputHooks = 2

**.ppp[*].outputHook[0].typename = "Delayer"

**.ppp[*].outputHook[1].typename = "ThruputMeter"

**.ppp[*].outputHook[0].delay = 3ms

5.4 The Interface Table

Network nodes normally contain an InterfaceTable module. The interface table is a sort of registry of all the
network interfaces in the host. It does not send or receive messages, other modules access it via C++ function
calls. Contents of the interface table can also be inspected e.g. in Qtenv.

Network interfaces register themselves in the interface table at the beginning of the simulation. Registration is
usually the task of the MAC (or equivalent) module.

5.5 Wired Network Interfaces

Wired interfaces have a pair of special purpose OMNeT++ gates which represent the capability of having an
external physical connection to another network node (e.g. Ethernet port). In order to make wired communication
work, these gates must be connected with special connections which represent the physical cable between the
physical ports. The connections must use special OMNeT++ channels (e.g. DatarateChannel) which determine
datarate and delay parameters.

Wired network interfaces are compound modules that implement the IWiredInterface interface. INET has the
following wired network interfaces.

5.5.1 PPP

Network interfaces for point-to-point links (PppInterface) are described in chapter Point-to-Point Links. They are
typically used in routers.

5.5.2 Ethernet

Ethernet interfaces (EthernetInterface), alongside with models of Ethernet devices such as switches and hubs, are
described in chapter The Ethernet Model.

5.6 Wireless Network Interfaces

Wireless interfaces use direct sending1 for communication instead of links, so their compound modules do not have
output gates at the physical layer, only an input gate dedicated to receiving. Another difference from the wired

1 OMNeT++ sendDirect() calls

5.4. The Interface Table 19

https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.IHook.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.misc.ThruputMeter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.Delayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.OrdinalBasedDropper.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.OrdinalBasedDuplicator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.common.InterfaceTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/ned.DatarateChannel.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.IWiredInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.PppInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EthernetInterface.html


INET Framework User’s Guide

case is that wireless interfaces require (and collaborate with) a transmission medium module at the network level.
The medium module represents the shared transmission medium (electromagnetic field or acoustic medium), is
responsible for modeling physical effects like signal attenuation, and maintains connectivity information. Also,
while wired interfaces can do without explicit modeling of the physical layer, a PHY module is an indispensable
part of a wireless interface.

Wireless network interfaces are compound modules that implement the IWirelessInterface interface. In the fol-
lowing sections we give an overview of the wireless interfaces available in INET.

5.6.1 Generic Wireless Interface

The WirelessInterface compound module is a generic implementation of IWirelessInterface. In this network inter-
face, the types of the MAC protocol and the PHY layer (the radio) are parameters:

mac: <macType> like IMacProtocol;
radio: <radioType> like IRadio if radioType != "";

There are specialized versions of WirelessInterface where the MAC and the radio modules are fixed to a particular
value. One example is BMacInterface, which contains a BMac and an ApskRadio.

5.6.2 IEEE 802.11

IEEE 802.11 or Wifi network interfaces (Ieee80211Interface), alongside with models of devices acting as access
points (AP), are covered in chapter The 802.11 Model.

5.6.3 IEEE 802.15.4

Ieee802154NarrowbandInterface is covered in a separate chapter, see The 802.15.4 Model.

5.6.4 Wireless Sensor Networks

MAC protocols for wireless sensor networks (WSNs) and the corresponding network interfaces are covered in
chapter MAC Protocols for Wireless Sensor Networks.

5.6.5 CSMA/CA

CsmaCaMac implements an imaginary CSMA/CA-based MAC protocol with optional acknowledgements and a
retry mechanism. With the appropriate settings, it can approximate basic 802.11b ad-hoc mode operation.

CsmaCaMac provides a lot of room for experimentation: acknowledgements can be turned on/off, and operation
parameters like inter-frame gap sizes, backoff behaviour (slot time, minimum and maximum number of slots),
maximum retry count, header and ACK frame sizes, bit rate, etc. can be configured via NED parameters.

CsmaCaInterface interface is a WirelessInterface with the MAC type set to CsmaCaMac.

5.6.6 Acking MAC

Not every simulation requires a detailed simulation of the lower layers. AckingWirelessInterface is a highly
abstracted wireless interface that offers simplicity for scenarios where Layer 1 and 2 effects can be completely
ignored, for example testing the basic functionality of a wireless ad-hoc routing protocol.

AckingWirelessInterface is a WirelessInterface parameterized to contain a unit disk radio (UnitDiskRadio) and a
trivial MAC protocol (AckingMac).

The most important parameter UnitDiskRadio accepts is the transmission range. When a radio transmits a frame,
all other radios within transmission range are able to receive the frame correctly, and radios that are out of range

20 Chapter 5. Network Interfaces

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.IWirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.common.WirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.IWirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.common.WirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.bmac.BMacInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.bmac.BMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.Ieee80211Interface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee802154.Ieee802154NarrowbandInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.csmaca.CsmaCaMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.csmaca.CsmaCaMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.csmaca.CsmaCaInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.common.WirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.csmaca.CsmaCaMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.acking.AckingWirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.acking.AckingWirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.common.WirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.acking.AckingMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadio.html


INET Framework User’s Guide

will not be affected at all. Interference modeling (collisions) is optional, and it is recommended to turn it off with
AckingMac.

AckingMac implements a trivial MAC protocol that has packet encapsulation and decapsulation, but no real
medium access procedure. Frames are simply transmitted on the wireless channel as soon as the transmitter
becomes idle. There is no carrier sense, collision avoidance, or collison detection. AckingMac also provides an
optional out-of-band acknowledgement mechanism (using C++ function calls, not actual wirelessly sent frames),
which is turned on by default. There is no retransmission: if the acknowledgement does not arrive after the first
transmission, the MAC gives up and counts the packet as failed transmission.

5.6.7 Shortcut

ShortcutMac implements error-free “teleportation” of packets to the peer MAC entity, with some delay computed
from a transmission duration and a propagation delay. The physical layer is completely bypassed. The corre-
sponding network interface type, ShortcutInterface, does not even have a radio model.

ShortcutInterface is useful for modeling wireless networks where full connectivity is assumed, and Layer 1 and
Layer 2 effects can be completely ignored.

5.7 Special-Purpose Network Interfaces

5.7.1 Tunnelling

TunInterface is a virtual network interface that can be used for creating tunnels, but it is more powerful than that.
It lets an application-layer module capture packets sent to the TUN interface and do whatever it pleases with it
(including sending it to a peer entity in an UDP or plain IPv4 packet.)

To set up a tunnel, add an instance of TunnelApp to the node, and specify the protocol (IPv4 or UDP) and the
remote endpoint of the tunnel (address and port) in parameters.

5.7.2 Local Loopback

LoopbackInterface provides local loopback within the network node.

5.7.3 External Interface

ExtInterface represents a real-world interface, suitable for hardware-in-the-loop simulations. External interfaces
are explained in chapter Network Emulation.

5.8 Custom Network Interfaces

It’s also possible to build custom network interfaces, the following example shows how to build a custom wireless
interface.

module WirelessInterfaceExample
{

gates:
input upperLayerIn; // packets from network layer in the same host
output upperLayerOut; // packets to network layer in the same host
input radioIn; // incoming packets from other hosts in the network

submodules:
mac: AckingMac; // simple MAC supporting ACKs
radio: ApskScalarRadio; // simple radio supporting many modulations

connections: // network interface internal connections

(continues on next page)

5.7. Special-Purpose Network Interfaces 21

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.acking.AckingMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.acking.AckingMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.acking.AckingMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.shortcut.ShortcutMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.shortcut.ShortcutInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.shortcut.ShortcutInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.tun.TunInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.tunapp.TunnelApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.loopback.LoopbackInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html


INET Framework User’s Guide

(continued from previous page)

mac.upperLayerOut --> upperLayerOut;
mac.upperLayerIn <-- upperLayerIn;
radio.upperLayerOut --> mac.lowerLayerIn;
radio.upperLayerIn <-- mac.lowerLayerOut;
radioIn --> radio.radioIn;

}

The above network interface contains very simple hypothetical MAC and PHY protocols. The MAC protocol only
provides acknowledgment without other services (e.g., carrier sense, collision avoidance, collision detection), the
PHY protocol uses one of the predefined APSK modulations for the whole signal (preamble, header, and data)
without other services (e.g., scrambling, interleaving, forward error correction).

22 Chapter 5. Network Interfaces



CHAPTER

SIX

APPLICATIONS

6.1 Overview

This chapter describes application models and traffic generators. All applications implement the IApp module
interface to ease configuring the StandardHost module.

6.2 TCP applications

This sections describes the applications using the TCP protocol. These applications use GenericAppMsg objects
to represent the data sent between the client and server. The client message contains the expected reply length,
the processing delay, and a flag indicating that the connection should be closed after sending the reply. This way
intelligence (behaviour specific to the modelled application, e.g. HTTP, SMB, database protocol) needs only to be
present in the client, and the server model can be kept simple and dumb.

6.2.1 TcpBasicClientApp

Client for a generic request-response style protocol over TCP. May be used as a rough model of HTTP or FTP
users.

The model communicates with the server in sessions. During a session, the client opens a single TCP connection
to the server, sends several requests (always waiting for the complete reply to arrive before sending a new request),
and closes the connection.

The server app should be TcpGenericServerApp; the model sends GenericAppMsg messages.

Example settings:

FTP:

numRequestsPerSession = exponential(3)
requestLength = truncnormal(20,5)
replyLength = exponential(1000000)

HTTP:

numRequestsPerSession = 1 # HTTP 1.0
numRequestsPerSession = exponential(5) # HTTP 1.1, with keepalive
requestLength = truncnormal(350,20)
replyLength = exponential(2000)

Note that since most web pages contain images and may contain frames, applets etc, possibly from various servers,
and browsers usually download these items in parallel to the main HTML document, this module cannot serve as
a realistic web client.

Also, with HTTP 1.0 it is the server that closes the connection after sending the response, while in this model it is
the client.

23

https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.contract.IApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/src-inet-applications-tcpapp-GenericAppMsg.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.tcpapp.TcpGenericServerApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/src-inet-applications-tcpapp-GenericAppMsg.html


INET Framework User’s Guide

6.2.2 TcpSinkApp

Accepts any number of incoming TCP connections, and discards whatever arrives on them.

6.2.3 TcpGenericServerApp

Generic server application for modelling TCP-based request-reply style protocols or applications.

The module accepts any number of incoming TCP connections, and expects to receive messages of class Gener-
icAppMsg on them. A message should contain how large the reply should be (number of bytes). TcpGener-
icServerApp will just change the length of the received message accordingly, and send back the same message
object. The reply can be delayed by a constant time (replyDelay parameter).

6.2.4 TcpEchoApp

The TcpEchoApp application accepts any number of incoming TCP connections, and sends back the data that
arrives on them, The byte counts are multiplied by echoFactor before echoing. The reply can also be delayed
by a constant time (echoDelay parameter).

6.2.5 TcpSessionApp

Single-connection TCP application: it opens a connection, sends the given number of bytes, and closes. Sending
may be one-off, or may be controlled by a “script” which is a series of (time, number of bytes) pairs. May act
either as client or as server. Compatible with both IPv4 and IPv6.

Opening the connection

Depending on the type of opening the connection (active/passive), the application may be either a client or a server.
In passive mode, the application will listen on the given local local port, and wait for an incoming connection. In
active mode, the application will bind to given local local address and local port, and connect to the given address
and port. It is possible to use an ephemeral port as local port.

Even when in server mode (passive open), the application will only serve one incoming connection. Further
connect attempts will be refused by TCP (it will send RST) for lack of LISTENing connections.

The time of opening the connection is in the tOpen parameter.

Sending data

Regardless of the type of OPEN, the application can be made to send data. One way of specifying sending is via
the tSend, sendBytes parameters, the other way is sendScript. With the former, sendBytes bytes will
be sent at tSend. When using sendScript, the format of the script is:

<time> <numBytes>; <time> <numBytes>;...

Closing the connection

The application will issue a TCP CLOSE at time tClose. If tClose=-1, no CLOSE will be issued.

24 Chapter 6. Applications

https://omnetpp.org/doc/inet/api-current/neddoc/src-inet-applications-tcpapp-GenericAppMsg.html
https://omnetpp.org/doc/inet/api-current/neddoc/src-inet-applications-tcpapp-GenericAppMsg.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.tcpapp.TcpGenericServerApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.tcpapp.TcpGenericServerApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.tcpapp.TcpEchoApp.html


INET Framework User’s Guide

6.2.6 TelnetApp

Models Telnet sessions with a specific user behaviour. The server app should be TcpGenericServerApp.

In this model the client repeats the following activity between startTime and stopTime:

1. Opens a telnet connection

2. Sends numCommands commands. The command is commandLength bytes long. The command is
transmitted as entered by the user character by character, there is keyPressDelay time between the
characters. The server echoes each character. When the last character of the command is sent (new line),
the server responds with a commandOutputLength bytes long message. The user waits thinkTime
interval between the commands.

3. Closes the connection and waits idleInterval seconds

4. If the connection is broken, it is noticed after reconnectInterval and the connection is reopened

Each parameter in the above description is “volatile”, so you can use distributions to emulate random behaviour.

Note: This module emulates a very specific user behaviour, and as such, it should be viewed as an example rather
than a generic Telnet model. If you want to model realistic Telnet traffic, you are encouraged to gather statistics
from packet traces on a real network, and write your model accordingly.

6.2.7 TcpServerHostApp

This module hosts TCP-based server applications. It dynamically creates and launches a new “thread” object for
each incoming connection.

Server threads can be implemented in C++. An example server thread class is TcpGenericServerThread.

6.3 UDP applications

The following UDP-based applications are implemented in INET:

• UdpBasicApp sends UDP packets to a given IP address at a given interval

• UdpBasicBurst sends UDP packets to the given IP address(es) in bursts, or acts as a packet sink.

• UdpEchoApp is similar to UdpBasicApp, but it sends back the packet after reception

• UdpSink consumes and prints packets received from the Udp module

• UdpVideoStreamClient,:ned:UdpVideoStreamServer simulates video streaming over UDP

The next sections describe these applications in details.

6.3.1 UdpBasicApp

The UdpBasicApp sends UDP packets to a the IP addresses given in the destAddresses parameter. The
application sends a message to one of the targets in each sendInterval interval. The interval between message
and the message length can be given as a random variable. Before the packet is sent, it is emitted in the signal.

The application simply prints the received UDP datagrams. The signal can be used to detect the received packets.

6.3.2 UdpSink

This module binds an UDP socket to a given local port, and prints the source and destination and the length of
each received packet.

6.3. UDP applications 25

https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.tcpapp.TcpGenericServerApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpBasicApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpBasicBurst.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpEchoApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpBasicApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpSink.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.udp.Udp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpVideoStreamClient.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpBasicApp.html


INET Framework User’s Guide

6.3.3 UdpEchoApp

Similar to UdpBasicApp, but it sends back the packet after reception. It accepts only packets with UdpHeader, i.e.
packets that are generated by another UdpEchoApp.

When an echo response received, it emits an signal.

6.3.4 UdpVideoStreamClient

This module is a video streaming client. It send one “video streaming request” to the server at time startTime
and receives stream from UdpVideoStreamServer.

The received packets are emitted by the signal.

6.3.5 UdpVideoStreamServer

This is the video stream server to be used with UdpVideoStreamClient.

The server will wait for incoming “video streaming requests”. When a request arrives, it draws a random video
stream size using the videoSize parameter, and starts streaming to the client. During streaming, it will send
UDP packets of size packetLen at every sendInterval, until videoSize is reached. The parameters
packetLen and sendInterval can be set to constant values to create CBR traffic, or to random values (e.g.
sendInterval=uniform(1e-6, 1.01e-6)) to accomodate jitter.

The server can serve several clients, and several streams per client.

6.3.6 UdpBasicBurst

Sends UDP packets to the given IP address(es) in bursts, or acts as a packet sink. Compatible with both IPv4 and
IPv6.

Addressing

The destAddresses parameter can contain zero, one or more destination addresses, separated by spaces. If
there is no destination address given, the module will act as packet sink. If there are more than one addresses, one
of them is randomly chosen, either for the whole simulation run, or for each burst, or for each packet, depending
on the value of the chooseDestAddrMode parameter. The destAddrRNG parameter controls which (local)
RNG is used for randomized address selection. The own addresses will be ignored.

An address may be given in the dotted decimal notation, or with the module name. (The L3AddressResolver
class is used to resolve the address.) You can use the “Broadcast” string as address for sending broadcast messages.

INET also defines several NED functions that can be useful:

• moduleListByPath("pattern",...):
Returns a space-separated list of the modulenames. All modules whose full path matches one of the pattern
parameters will be included. The patterns may contain wilcards in the same syntax as in ini files. Example:

• moduleListByNedType("fully.qualified.ned.type",...):
Returns a space-separated list of the modulenames with the given NED type(s). All modules whose NED
type name occurs in the parameter list will be included. The NED type name is fully qualified. Example:

Examples:

**.app[0].destAddresses = moduleListByPath("**.host[*]", "**.fixhost[*]")

**.app[1].destAddresses = moduleListByNedType("inet.nodes.inet.StandardHost")

The peer can be UDPSink or another UDPBasicBurst.

26 Chapter 6. Applications

https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpBasicApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/src-inet-transportlayer-udp-UdpHeader.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpEchoApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpVideoStreamServer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpVideoStreamClient.html


INET Framework User’s Guide

Bursts

The first burst starts at startTime. Bursts start by immediately sending a packet; subsequent pack-
ets are sent at sendInterval intervals. The sendInterval parameter can be a random value, e.g.
exponential(10ms). A constant interval with jitter can be specified as 1s+uniform(-0.01s,0.01s)
or uniform(0.99s,1.01s). The length of the burst is controlled by the burstDuration parameter. (Note
that if sendInterval is greater than burstDuration, the burst will consist of one packet only.) The time
between burst is the sleepDuration parameter; this can be zero (zero is not allowed for sendInterval.)
The zero burstDuration is interpreted as infinity.

Operation as sink

When destAddresses parameter is empty, the module receives packets and makes statistics only.

6.4 IPv4/IPv6 traffic generators

The applications described in this section use the services of the network layer only, they do not need transport
layer protocols. They can be used with both IPv4 and IPv6.

IIpvxTrafficGenerator (prototype) sends IP or IPv6 datagrams to the given address at the given sendInterval.
The sendInterval parameter can be a constant or a random value (e.g. exponential(1)). If the
destAddresses parameter contains more than one address, one of them is randomly for each packet. An
address may be given in the dotted decimal notation (or, for IPv6, in the usual notation with colons), or with
the module name. (The L3AddressResolver class is used to resolve the address.) To disable the model, set
destAddresses to “”.

The IpvxTrafGen sends messages with length packetLength. The sent packet is emitted in the signal. The
length of the sent packets can be recorded as scalars and vectors.

The IpvxTrafSink can be used as a receiver of the packets generated by the traffic generator. This module emits
the packet in the signal and drops it. The rcvdPkBytes and endToEndDelay statistics are generated from
this signal.

The IpvxTrafGen can also be the peer of the traffic generators; it handles the received packets exactly like Ipvx-
TrafSink.

6.5 The PingApp application

The PingApp application generates ping requests and calculates the packet loss and round trip parameters of the
replies.

Start/stop time, sendInterval etc. can be specified via parameters. An address may be given in the dotted decimal
notation (or, for IPv6, in the usual notation with colons), or with the module name. (The L3AddressResolver
class is used to resolve the address.) To disable send, specify empty destAddr.

Every ping request is sent out with a sequence number, and replies are expected to arrive in the same order.
Whenever there’s a jump in the in the received ping responses’ sequence number (e.g. 1, 2, 3, 5), then the missing
pings (number 4 in this example) is counted as lost. Then if it still arrives later (that is, a reply with a sequence
number smaller than the largest one received so far) it will be counted as out-of-sequence arrival, and at the same
time the number of losses is decremented. (It is assumed that the packet arrived was counted earlier as a loss,
which is true if there are no duplicate packets.)

6.6 Ethernet applications

The inet.applications.ethernet package contains modules for a simple client-server application. The
EtherAppClient is a simple traffic generator that peridically sends EtherAppReq messages whose length can be

6.4. IPv4/IPv6 traffic generators 27

https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.generic.IIpvxTrafficGenerator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.generic.IpvxTrafGen.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.generic.IpvxTrafSink.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.generic.IpvxTrafGen.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.generic.IpvxTrafSink.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.generic.IpvxTrafSink.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.pingapp.PingApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.ethernet.EtherAppClient.html
https://omnetpp.org/doc/inet/api-current/neddoc/src-inet-applications-ethernet-EtherAppReq.html


INET Framework User’s Guide

configured. destAddress, startTime,waitType, reqLength, respLength

The server component of the model (EtherAppServer) responds with a EtherAppResp message of the requested
length. If the response does not fit into one ethernet frame, the client receives the data in multiple chunks.

Both applications have a registerSAP boolean parameter. This parameter should be set to true if the appli-
cation is connected to the EtherLlc module which requires registration of the SAP before sending frames.

Both applications collects the following statistics: sentPkBytes, rcvdPkBytes, endToEndDelay.

The client and server application works with any model that accepts Ieee802Ctrl control info on the packets (e.g.
the 802.11 model). The applications should be connected directly to the EtherLlc or an EthernetInterface NIC
module.

The model also contains a host component that groups the applications and the LLC and MAC components
together (EtherHost). This node does not contain higher layer protocols, it generates Ethernet traffic directly. By
default it is configured to use half duplex MAC (CSMA/CD).

28 Chapter 6. Applications

https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.ethernet.EtherAppServer.html
https://omnetpp.org/doc/inet/api-current/neddoc/src-inet-applications-ethernet-EtherAppResp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherLlc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherLlc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.EtherHost.html


CHAPTER

SEVEN

TRANSPORT PROTOCOLS

7.1 Overview

In the OSI reference model, the protocols of the transport layer provide host-to-host communication services for
applications. They provide services such as connection-oriented communication, reliability, flow control, and
multiplexing.

INET currently provides support for the TCP, UDP, SCTP and RTP transport layer protocols. INET nodes like
StandardHost contain optional and replaceable instances of these protocols, like this:

tcp: <tcpType> like ITcp if hasTcp;
udp: <udpType> like IUdp if hasUdp;
sctp: <sctpType> like ISctp if hasSctp;

As RTP is more specialized that the other ones (multimedia streaming), INET provides a separate node type,
RtpHost, for modeling RTP traffic.

7.2 TCP

7.2.1 Overview

TCP protocol is the most widely used protocol of the Internet. It provides reliable, ordered delivery of stream
of bytes from one application on one computer to another application on another computer. The baseline TCP
protocol is described in RFC793, but other tens of RFCs contains modifications and extensions to the TCP. As
a result, TCP is a complex protocol and sometimes it is hard to see how the different requirements interact with
each other.

INET contains three implementations of the TCP protocol:

• Tcp is the primary implementation, designed for readability, extensibility, and experimentation.

• TcpLwip is a wrapper around the lwIP (Lightweight IP) library, a widely used open source TCP/IP stack
designed for embedded systems.

• TcpNsc wraps Network Simulation Cradle (NSC), a library that allows real world TCP/IP network stacks
to be used inside a network simulator.

All three module types implement the ITcp interface and communicate with other layers through the same inter-
face, so they can be interchanged and also mixed in the same network.

7.2.2 Tcp

The Tcp simple module is the main implementation of the TCP protocol in the INET framework.

Tcp implements the following:

• TCP state machine

29

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.rtp.RtpHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp.Tcp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp_lwip.TcpLwip.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp_nsc.TcpNsc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.contract.ITcp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp.Tcp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp.Tcp.html


INET Framework User’s Guide

• initial sequence number selection according to the system clock.

• window-based flow control

• Window Scale option

• Persistence timer

• Keepalive timer

• Transmission policies

• RTT measurement for retransmission timeout (RTO) computation

• Delayed ACK algorithm

• Nagle’s algorithm

• Silly window avoidance

• Timestamp option

• Congestion control schemes: Tahoe, Reno, New Reno, Westwood, Vegas, etc.

• Slow Start and Congestion Avoidance

• Fast Retransmit and Fast Recovery

• Loss Recovery Using Limited Transmit

• Selective Acknowledgments (SACK)

• SACK based loss recovery

Several protocol features can be turned on/off with parameters like delayedAcksEnabled, nagleEnabled,
limitedTransmitEnabled, increasedIWEnabled, sackSupport, windowScalingSupport, or
timestampSupport.

The congestion control algorithm can be selected with the tcpAlgorithmClass parameter. For example, the
following ini file fragment selects TCP Vegas:

**.tcp.tcpAlgorithmClass = "TcpVegas"

Values like "TcpVegas" name C++ classes. Indeed, Tcp can be extended with new congestion control schemes
by implementing and registering them in C++.

7.2.3 TcpLwip

lwIP is a light-weight implementation of the TCP/IP protocol suite that was originally written by Adam Dunkels
of the Swedish Institute of Computer Science. The current development homepage is http://savannah.nongnu.org/
projects/lwip/.

The implementation targets embedded devices: it has very limited resource usage (it works “with tens of kilobytes
of RAM and around 40 kilobytes of ROM”), and does not require an underlying OS.

The TcpLwip simple module is based on the 1.3.2 version of the lwIP sources.

Features:

• delayed ACK

• Nagle’s algorithm

• round trip time estimation

• adaptive retransmission timeout

• SWS avoidance

• slow start threshold

30 Chapter 7. Transport Protocols

https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp.Tcp.html
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp_lwip.TcpLwip.html


INET Framework User’s Guide

• fast retransmit

• fast recovery

• persist timer

• keep-alive timer

Limitations

• only MSS and TS TCP options are supported. The TS option is turned off by default, but can be enabled by
defining LWIP_TCP_TIMESTAMPS to 1 in lwipopts.h.

• fork must be true in the passive open command

• The status request command (TCP_C_STATUS) only reports the local and remote addresses/ports of the
connection and the MSS, SND.NXT, SND.WND, SND.WL1, SND.WL2, RCV.NXT, RCV.WND variables.

7.2.4 TcpNsc

Network Simulation Cradle (NSC) is a tool that allow real-world TCP/IP network stacks to be used in simulated
networks. The NSC project is created by Sam Jansen and available on http://research.wand.net.nz/software/nsc.
php. NSC currently contains Linux, FreeBSD, OpenBSD and lwIP network stacks, although on 64-bit systems
only Linux implementations can be built.

To use the TcpNsc module you should download the nsc-0.5.2.tar.bz2 package and follow the instructions
in the <inet_root>/3rdparty/README file to build it.

Warning: Before generating the INET module, check that the opp_makemake call in the make file
(<inet_root>/Makefile) includes the -DWITH_TCP_NSC argument. Without this option the TcpNsc
module is not built. If you build the INET library from the IDE, it is enough to enable the TCP (NSC) project
feature.

Parameters

The module has the following parameters:

• stackName: the name of the TCP implementation to be used. Possible values are: liblinux2.6.10.
so, liblinux2.6.18.so, liblinux2.6.26.so, libopenbsd3.5.so, libfreebsd5.3.so
and liblwip.so. (On the 64 bit systems, the liblinux2.6.26.so and liblinux2.6.16.so are
available only).

• stackBufferSize: the size of the receive and send buffer of one connection for selected TCP imple-
mentation. The NSC sets the wmem_max, rmem_max, tcp_rmem, tcp_wmem parameters to this value
on linux TCP implementations. For details, you can see the NSC documentation.

Limitations

• Because the kernel code is not reentrant, NSC creates a record containing the global variables of the stack
implementation. By default there is room for 50 instance in this table, so you can not create more then 50
instance of TcpNsc. You can increase the NUM_STACKS constant in num_stacks.h and recompile NSC
to overcome this limitation.

• The TcpNsc module does not supprt TCP_TRANSFER_OBJECT data transfer mode.

• The MTU of the network stack fixed to 1500, therefore MSS is 1460.

• TCP_C_STATUS command reports only local/remote addresses/ports and current window of the connec-
tion.

7.2. TCP 31

http://research.wand.net.nz/software/nsc.php
http://research.wand.net.nz/software/nsc.php
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp_nsc.TcpNsc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp_nsc.TcpNsc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp_nsc.TcpNsc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp_nsc.TcpNsc.html


INET Framework User’s Guide

7.3 UDP

The UDP protocol is a very simple datagram transport protocol, which basically makes the services of the network
layer available to the applications. It performs packet multiplexing and demultiplexing to ports and some basic
error detection only.

The Udp simple module implements the UDP protocol. There is a module interface (IUdp) that defines the gates
of the Udp component. In the StandardHost node, the UDP component can be any module implementing that
interface.

7.4 SCTP

The Sctp module implements the Stream Control Transmission Protocol (SCTP). Like TCP, SCTP provides re-
liable ordered data delivery over an ureliable network. The most prominent feature of SCTP is the capability of
transmitting multiple streams of data at the same time between two end points that have established a connection.

7.5 RTP

The Real-time Transport Protocol (RTP) is a transport layer protocol for delivering audio and video over IP net-
works. RTP is used extensively in communication and entertainment systems that involve streaming media, such
as telephony, video teleconference applications including WebRTC, television services and web-based push-to-
talk features.

The RTP Control Protocol (RTCP) is a sister protocol of the Real-time Transport Protocol (RTP). RTCP provides
out-of-band statistics and control information for an RTP session.

INET provides the following modules:

• Rtp implements the RTP protocol

• Rtcp implements the RTCP protocol

32 Chapter 7. Transport Protocols

https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.udp.Udp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.contract.IUdp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.udp.Udp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.sctp.Sctp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.rtp.Rtp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.rtp.Rtcp.html


CHAPTER

EIGHT

THE IPV4 PROTOCOL FAMILY

8.1 Overview

The IP protocol is the workhorse protocol of the TCP/IP protocol suite. All UDP, TCP, ICMP packets are encap-
sulated into IP datagrams and transported by the IP layer. While higher layer protocols transfer data among two
communication end-point, the IP layer provides an hop-by-hop, unreliable and connectionless delivery service. IP
does not maintain any state information about the individual datagrams, each datagram handled independently.

The nodes that are connected to the Internet can be either a host or a router. The hosts can send and recieve
IP datagrams, and their operating system implements the full TCP/IP stack including the transport layer. On
the other hand, routers have more than one interface cards and perform packet routing between the connected
networks. Routers does not need the transport layer, they work on the IP level only. The division between routers
and hosts is not strict, because if a host have several interfaces, they can usually be configured to operate as a
router too.

Each node on the Internet has a unique IP address. IP datagrams contain the IP address of the destination. The
task of the routers is to find out the IP address of the next hop on the local network, and forward the packet to
it. Sometimes the datagram is larger, than the maximum datagram that can be sent on the link (e.g. Ethernet
has an 1500 bytes limit.). In this case the datagram is split into fragments and each fragment is transmitted
independently. The destination host must collect all fragments, and assemble the datagram, before sending up the
data to the transport layer.

The INET framework contains several modules to build the IPv4 network layer of hosts and routers:

• Ipv4 is the main module that implements RFC791. This module performs IP encapsulation/decapsulation,
fragmentation and assembly, and routing of IP datagrams.

• The Ipv4RoutingTable is a helper module that manages the routing table of the node. It is queried by the
Ipv4 module for best routes, and updated by the routing daemons implementing RIP, OSPF, Manet, etc.
protocols.

• The Icmp module can be used to generate ICMP error packets. It also supports ICMP echo applications.

• The Arp module performs the dynamic translation of IP addresses to MAC addresses.

• The Igmpv2 module to generate and process multicast group membership reports.

These modules are assembled into a complete network layer module called Ipv4NetworkLayer. The
Ipv4NetworkLayer module is present e.g. in StandardHost and Router.

The subsequent sections describe the IPv4 modules in detail.

8.2 Ipv4

The Ipv4 module implements the IPv4 protocol.

Its parameters include:

• crcMode TODO: @enum(“declared”, “computed”) = default(“declared”);

33

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Icmp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.arp.ipv4.Arp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Igmpv2.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4NetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4NetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4.html


INET Framework User’s Guide

• procDelay processing time of each incoming datagram.

• timeToLive default TTL of unicast datagrams.

• multicastTimeToLive default TTL of multicast datagrams.

• fragmentTimeout the maximum duration until fragments are kept in the fragment buffer.

• forceBroadcast if true, then link-local broadcast datagrams are sent out through each interface, if
the higher layer did not specify the outgoing interface.

• useProxyARP TODO: default(true);

8.3 Ipv4RoutingTable

The Ipv4RoutingTable module represents the IPv4 route table. Hosts and routers normally contain one instance
of this module. The Ipv4RoutingTable module does not send or receive messages. Instead, C++ methods are for
querying and updating the table, as well as for unicast and multicast routing.

The Ipv4RoutingTable module has the following parameters:

• routerId: for routers, the router id using IPv4 address dotted notation; specify “auto” to select the highest
interface address; should be left empty for hosts.

• forwarding: turns IP forwarding on/off. It is always true in a Router and is false by default in a
StandardHost.

• multicastForwarding: turns multicast IP forwarding on/off. Default is false, should be set to
true in multicast routers.

The preferred method for static initialization of routing tables is to use Ipv4NetworkConfigurator. While
Ipv4RoutingTable can read the routes from a routing file, that is considered obsolete. Old routing files should
be replaced with the XML configuration of Ipv4NetworkConfigurator. The Network Autoconfiguration chapter
describes the format of the new configuration files.

8.4 Icmp

The Icmp module implements the Internet Control Message Protocol (ICMP). ICMP is the error reporting and
diagnostic mechanism of the Internet. It uses the services of IP, so it is a transport layer protocol, but unlike TCP
or UDP it is not used to transfer user data. It cannot be separated from IP, because the routing errors are reported
by ICMP.

The Icmp module can be used to send error messages and ping request. It can also respond to incoming ICMP
messages.

Each ICMP message is encapsulated within an IP datagram, so its delivery is unreliable.

8.5 Arp

The Arp module implements the Address Resolution Protocol (ARP). The ARP protocol is designed to translate
a local protocol address to a hardware address. Although the ARP protocol can be used with several network
protocol and hardware addressing schemes, in practice they are almost always IPv4 and 802.3 addresses. The Arp
module only supports IPv4-to-MAC address translation, but not the opposite direction, Reverse ARP (RARP).

The address to be resolved can be either an IPv4 broadcast/multicast or a unicast address. The corresponding
MAC addresses can be computed for broadcast and multicast addresses (RFC 1122, 6.4); unicast addresses are
resolved using the ARP procotol.

If the MAC address is found in the ARP cache, then the packet is transmitted to the addressed interface immedi-
ately. Otherwise the packet is queued and an address resolution takes place.

34 Chapter 8. The IPv4 Protocol Family

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Icmp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Icmp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.arp.ipv4.Arp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.arp.ipv4.Arp.html


INET Framework User’s Guide

For address resolution, ARP broadcasts a request frame on the network. In the request it publishes its own IP
and MAC addresses, so each node in the local subnet can update their mapping. The node whose MAC address
was requested will respond with an ARP frame containing its own MAC address directly to the node that sent the
request. When the original node receives the ARP response, it updates its ARP cache and sends the delayed IP
packet using the learned MAC address.

ARP resolution is initiated with a C++ call.

The module parameters of Arp are:

• retryTimeout: number of seconds ARP waits between retries to resolve an IPv4 address (default is 1s)

• retryCount: number of times ARP will attempt to resolve an IPv4 address (default is 3)

• cacheTimeout: number of seconds unused entries in the cache will time out (default is 120s)

• proxyARP: enables proxy ARP mode (default is true)

• globalARP: use global ARP cache (default is false)

8.6 Igmp

The Igmpv3 module implements the Internet Group Management Protocol (IGMP). IGMP is a communications
protocol used by hosts and adjacent routers on IPv4 networks to establish multicast group memberships. IGMP is
an integral part of IP multicast.

IGMP is responsible for distributing the information of multicast group memberships from hosts to routers. When
an interface of a host joins to a multicast group, it will send an IGMP report on that interface to routers. It can
also send reports when the interface leaves the multicast group, so it does not want to receive those multicast
datagrams. The IGMP module of multicast routers processes these IGMP reports: it updates the list of groups,
that has members on the link of the incoming message.

The IIgmp module interface defines the connections of IGMP modules. IGMP reports are transmitted by IP, so
the module contains gates to be connected to the IP module (ipIn/ipOut). The IP module delivers packets
with protocol number 2 to the IGMP module. However some multicast routing protocols (like DVMRP) also
exchange routing information by sending IGMP messages, so they should be connected to the routerIn/
routerOut gates of the IGMP module. The IGMP module delivers the IGMP messages not processed by itself
to the connected routing module.

The Igmpv2 module implements version 2 of the IGMP protocol (RFC 2236). Next we describe its behaviour in
host and routers in details. Note that multicast routers behaves as hosts too, i.e. they are sending reports to other
routers when joining or leaving a multicast group.

8.6.1 Host behaviour

When an interface joins to a multicast group, the host will send a Membership Report immediately to the group
address. This report is repeated after unsolicitedReportInterval to cover the possibility of the first
report being lost.

When a host’s interface leaves a multicast group, and it was the last host that sent a Membership Report for that
group, it will send a Leave Group message to the all-routers multicast group (224.0.0.2).

This module also responds to IGMP Queries. When the host receives a Group-Specific Query on an interface
that belongs to that group, then it will set a timer to a random value between 0 and Max Response Time of the
Query. If the timer expires before the host observe a Membership Report sent by other hosts, then the host sends
an IGMPv2 Membership Report. When the host receives a General Query on an interface, a timer is initialized
and a report is sent for each group membership of the interface.

8.6. Igmp 35

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.arp.ipv4.Arp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Igmpv3.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.IIgmp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Igmpv2.html


INET Framework User’s Guide

8.6.2 Router behaviour

Multicast routers maintains a list for each interface containing the multicast groups that have listeners on that
interface. This list is updated when IGMP Membership Reports and Leave Group messages arrive, or when a
timer expires since the last Query.

When multiple routers are connected to the same link, the one with the smallest IP address will be the Querier.
When other routers observe that they are Non-Queriers (by receiving an IGMP Query with a lower source address),
they stop sending IGMP Queries until otherQuerierPresentInterval elapsed since the last received
query.

Routers periodically (queryInterval) send a General Query on each attached network for which
this router is a Querier. On startup the router sends startupQueryCount queries separated by
startupQueryInterval. A General Query has unspecified Group Address field, a Max Response Time
field set to queryResponseInterval, and is sent to the all-systems multicast address (224.0.0.1).

When a router receives a Membership Report, it will add the reported group to the list of multicast group mem-
berships. At the same time it will set a timer for the membership to groupMembershipInterval. Repeated
reports restart the timer. If the timer expires, the router assumes that the group has no local members, and multicast
traffic is no more forwarded to that interface.

When a Querier receives a Leave Group message for a group, it sends a Group-Specific Query to the group being
left. It repeats the Query lastMemberQueryCount times in separated by lastMemberQueryInterval
until a Membership Report is received. If no Report received, then the router assumes that the group has no local
members.

8.6.3 Parameters

The following parameters have effects in both hosts and routers:

• enabled if false then the IGMP module never sends any message and discards incoming messages.
Default is true.

The following parameters are only used in hosts:

• unsolicitedReportInterval the time between repetitions of a host’s initial report of membership
in a group. Default is 10s.

Router timeouts are configured by these parameters:

• robustnessVariable the IGMP is robust to robustnessVariable-1 packet losses. Default is 2.

• queryInterval the interval between General Queries sent by a Querier. Default is 125s.

• queryResponseInterval the Max Response Time inserted into General Queries

• groupMembershipInterval the amount of time that must pass before a multicast router decides there
are no more members of a group on a network. Fixed to robustnessVariable * queryInterval
+ queryResponseInterval.

• otherQuerierPresentInterval the length of time that must pass before a multicast router
decides that there is no longer another multicast router which should be the querier. Fixed to
robustnessVariable * queryInterval + queryResponseInterval / 2.

• startupQueryInterval the interval between General Queries sent by a Querier on startup. Default is
queryInterval / 4.

• startupQueryCount the number of Queries sent out on startup, separated by the
startupQueryInterval. Default is robustnessVariable.

• lastMemberQueryInterval the Max Response Time inserted into Group-Specific Queries sent in
response to Leave Group messages, and is also the amount of time between Group-Specific Query messages.
Default is 1s.

• lastMemberQueryCount the number of Group-Specific Queries sent before the router assumes there
are no local members. Default is robustnessVariable.

36 Chapter 8. The IPv4 Protocol Family



CHAPTER

NINE

IPV6 AND MOBILE IPV6

9.1 Overview

Similarly to IPv4, IPv6 support is implemented by several cooperating modules. The base protocol is in the Ipv6
module, which relies on the Ipv6RoutingTable to get access to the routes. Interface configuration (address, state,
timeouts, etc.) is held in the node’s InterfaceTable.

The Ipv6NeighbourDiscovery module implements all tasks associated with neighbour discovery and stateless
address autoconfiguration. The data structures themselves (destination cache, neighbour cache, prefix list) are
kept in Ipv6RoutingTable. The rest of ICMPv6’s functionality, such as error messages, echo request/reply, etc.) is
implemented in Icmpv6.

Mobile IPv6 support has been contributed to INET by the xMIPv6 project. The main module is xMIPv6, which
implements Fast MIPv6, Hierarchical MIPv6 and Fast Hierarchical MIPv6 (thus, 𝑥 ∈ 𝐹,𝐻, 𝐹𝐻). The binding
cache and related data structures are kept in the BindingCache module.

37

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv6.Ipv6.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv6.Ipv6RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.common.InterfaceTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.icmpv6.Ipv6NeighbourDiscovery.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv6.Ipv6RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.icmpv6.Icmpv6.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.xmipv6.xMIPv6.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.xmipv6.BindingCache.html


INET Framework User’s Guide

38 Chapter 9. IPv6 and Mobile IPv6



CHAPTER

TEN

OTHER NETWORK PROTOCOLS

10.1 Overview

Network layer protocols in INET are not restricted to IPv4 and IPv6. INET nodes such as Router and StandardHost
can be configured to use an alternative network layer protocols instead of, or in addition to, IPv4 and IPv6.

Node models contain three optional network layers that can be individually turned on or off:

ipv4: <ipv4NetworkLayerType> like INetworkLayer if hasIpv4;
ipv6: <ipv6NetworkLayerType> like INetworkLayer if hasIpv6;
generic: <networkLayerType> like INetworkLayer if hasGn;

In the default configuration, only IPv4 is turned on. If you want to use an alternative network layer protocol
instead of IPv4/IPv6, your configuration will look something like this:

**.hasIpv4 = false

**.hasIpv6 = false

**.hasGn = true

**.networkLayerType = "WiseRouteNetworkLayer"

The list of alternative network layers includes:

• SimpleNetworkLayer is a generic network layer where the concrete protocol type is a parameter

• NextHopNetworkLayer is a network layer specialized for the “Next-Hop Forwarding Protocol”, an abstract
implementation of the next-hop routing concept

• WiseRouteNetworkLayer is specialized for the Wise Route protocol

The list of network layer protocols that can be plugged into SimpleNetworkLayer includes:

• Flooding implements controlled flooding

• WiseRoute implements Wise Route, a convergecasting protocol for wireless sensor networks

• ProbabilisticBroadcast implements a multi-hop ad-hoc data dissemination protocol

• AdaptiveProbabilisticBroadcast is a variant of the previous one

In addition to the network layer protocol, SimpleNetworkLayer includes an instance of GlobalArp for address
resolution, and an instance of EchoProtocol, a module type that implements a simple ping-like protocol.

All the above network protocols can work with IPv4 addresses, IPv6 addresses, use MAC address as network
address (this is sometimes useful in WSNs), or use sythetic addresses that only make sense within the simulation.1

In apps, you need to specify which network layer protocol you want to use. For example:

**.app[*].networkProtocol = "flood"

1 This is possible because the implementation of these modules simply use the L3Address C++ class, which is a variant type capable of
holding several types of L3 addresses.

39

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.common.SimpleNetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.nexthop.NextHopNetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.wiseroute.WiseRouteNetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.common.SimpleNetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.flooding.Flooding.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.wiseroute.WiseRoute.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.probabilistic.ProbabilisticBroadcast.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.probabilistic.AdaptiveProbabilisticBroadcast.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.common.SimpleNetworkLayer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.arp.ipv4.GlobalArp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.common.EchoProtocol.html


INET Framework User’s Guide

10.2 Protocols

10.2.1 Flooding

Flooding is a simple flooding protocol for network-level broadcast. It remembers already broadcast messages, and
does not rebroadcast them if it gets another copy of that message.

10.2.2 ProbabilisticBroadcast

ProbabilisticBroadcast is a multi-hop ad-hoc data dissemination protocol based on probabilistic broadcast.

This method reduces the number of packets sent on the channel (reducing the broadcast storm problem) at the risk
of some nodes not receiving the data. It is particularly interesting for mobile networks.

The transmission probability for each attempt, the time between two transmission attempts, the maximum number
of broadcast transmissions of a packet, and some other settings are parameters.

10.2.3 AdaptiveProbabilisticBroadcast

AdaptiveProbabilisticBroadcast is a variant of ProbabilisticBroadcast that automatically adjusts transmission prob-
abilities depending on the estimated number of neighbours.

10.2.4 WiseRoute

WiseRoute implements Wise Route, a simple loop-free routing algorithm that builds a routing tree from a central
network point, designed for sensor networks and convergecast traffic (WIreless SEnsor routing).

The sink (the device at the center of the network) broadcasts a route building message. Each network node
that receives it selects the sink as parent in the routing tree, and rebroadcasts the route building message. This
procedure maximizes the probability that all network nodes can join the network, and avoids loops.

The sinkAddress parameter specifies the sink network address, rssiThreshold is a threshold to avoid
using bad links (with too low RSSI values) for routing, and routeFloodsInterval should be set to zero for
all nodes except the sink. Each routeFloodsInterval, the sink restarts the tree building procedure. Set it to
a large value if you do not want the tree to be rebuilt.

10.2.5 NextHopForwarding

The NextHopForwarding module is an implementation of the next-hop forwarding concept. (It can be thought of
as an abstracted version of IP.)

The protocol needs an additional module, a NextHopRoutingTable for its operation. The routing table module is
included in the NextHopNetworkLayer compound module.

10.3 Address Types

The following address types are available:

• IPv4 address

• IPv6 address

• MAC address

• module ID

• module path

40 Chapter 10. Other Network Protocols

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.flooding.Flooding.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.probabilistic.ProbabilisticBroadcast.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.probabilistic.AdaptiveProbabilisticBroadcast.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.probabilistic.ProbabilisticBroadcast.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.wiseroute.WiseRoute.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.nexthop.NextHopForwarding.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.nexthop.NextHopRoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.nexthop.NextHopNetworkLayer.html


INET Framework User’s Guide

Protocols described in this chapter work with “generic” L3 addresses, they can use any address type.

When choosing IPv4 addresses, an Ipv4NetworkConfigurator global instance can be used to assign addresses to
network interfaces. (Note that Ipv4NetworkConfigurator also needs a per-node instance of Ipv4NodeConfigurator
for it to work.)

10.4 Address Resolution

Address resolution is done by GlobalArp. If the address type is IPv4, Arp can be used instead of GlobalArp.

10.4. Address Resolution 41

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NodeConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.arp.ipv4.GlobalArp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.arp.ipv4.Arp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.arp.ipv4.GlobalArp.html


INET Framework User’s Guide

42 Chapter 10. Other Network Protocols



CHAPTER

ELEVEN

INTERNET ROUTING

11.1 Overview

INET Framework has models for several internet routing protocols, including RIP, OSPF and BGP.

The easiest way to add routing to a network is to use the Router NED type for routers. Router contains a conditional
instance for each of the above protocols. These submodules can be enabled by setting the hasRip, hasOspf
and/or hasBgp parameters to true.

Example:

**.hasRip = true

There are also NED types called RipRouter, OspfRouter, BgpRouter, which are all Router’s with appropriate
routing protocol enabled.

11.2 RIP

RIP (Routing Information Protocol) is a distance-vector routing protocol which employs the hop count as a routing
metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source
to destination. RIP uses the split horizon with poison reverse technique to work around the “count-to-infinity”
problem.

The Rip module implements distance vector routing as specified in RFC 2453 (RIPv2) and RFC 2080 (RIPng). The
behavior can be selected by setting the mode parameter to either "RIPv2" or "RIPng". Protocol configuration
such as link metrics and per-interface operation mode (such as whether RIP is enabled on the interface, and
whether to use split horizon) can be specified in XML using the ripConfig parameter.

The following example configures a Router module to use RIPv2:

**.hasRip = true

**.mode = "RIPv2"

**.ripConfig = xmldoc("RIPConfig.xml")

The configuration file specifies the per interface parameters. Each <interface> element configures one or
more interfaces; the hosts, names, towards, among attributes select the configured interfaces (in a similar
way as with Ipv4NetworkConfigurator). See the Network Autoconfiguration chapter for further information.

Additional attributes:

• metric: metric assigned to the link, default value is 1. This value is added to the metric of a learned route,
received on this interface. It must be an integer in the [1,15] interval.

• mode: mode of the interface.

The mode attribute can be one of the following:

• NoRIP: no RIP messages are sent or received on this interface.

43

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.rip.RipRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ospfv2.OspfRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.bgp.BgpRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.rip.Rip.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html


INET Framework User’s Guide

• NoSplitHorizon: no split horizon filtering; send all routes to neighbors.

• SplitHorizon: do not sent routes whose next hop is the neighbor.

• SplitHorizonPoisenedReverse (default): if the next hop is the neighbor, then set the metric of the
route to infinity.

The following example sets the link metric between router R1 and RB to 2, while all other links will have a metric
of 1.

<RIPConfig>
<interface among="R1 RB" metric="2"/>
<interface among="R? R?" metric="1"/>

</RIPConfig>

11.3 OSPF

OSPF (Open Shortest Path First) is a routing protocol for IP networks. It uses a link state routing (LSR) algorithm
and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).

OspfRouter is a Router with the OSPF protocol enabled.

The Ospf module implements OSPF protocol version 2. Areas and routers can be configured using an XML file
specified by the ospfConfig parameter. Various parameters for the network interfaces can be specified also in
the XML file or as a parameter of the Ospf module.

**.ospf.ospfConfig = xmldoc("ASConfig.xml")

**.ospf.helloInterval = 12s

**.ospf.retransmissionInterval = 6s

The <OSPFASConfig> root element may contain <Area> and <Router> elements with various attributes
specifying the parameters for the network interfaces. Most importantly <Area> contains <AddressRange>
elements enumerating the network addresses that should be advertized by the protocol. Also <Router> elements
may contain data for configuring various pont-to-point or broadcast interfaces.

<?xml version="1.0"?>
<OSPFASConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
→˓xsi:schemaLocation="OSPF.xsd">
<!-- Areas -->
<Area id="0.0.0.0">
<AddressRange address="H1" mask="H1" status="Advertise" />
<AddressRange address="H2" mask="H2" status="Advertise" />
<AddressRange address="R1>R2" mask="R1>R2" status="Advertise" />
<AddressRange address="R2>R1" mask="R2>R1" status="Advertise" />

</Area>
<!-- Routers -->
<Router name="R1" RFC1583Compatible="true">
<BroadcastInterface ifName="eth0" areaID="0.0.0.0" interfaceOutputCost="1"

→˓routerPriority="1" />
<PointToPointInterface ifName="eth1" areaID="0.0.0.0" interfaceOutputCost="2" /

→˓>
</Router>
<Router name="R2" RFC1583Compatible="true">
<PointToPointInterface ifName="eth0" areaID="0.0.0.0" interfaceOutputCost="2" /

→˓>
<BroadcastInterface ifName="eth1" areaID="0.0.0.0" interfaceOutputCost="1"

→˓routerPriority="2" />
</Router>

</OSPFASConfig>

44 Chapter 11. Internet Routing

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ospfv2.OspfRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.ospfv2.Ospf.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.ospfv2.Ospf.html


INET Framework User’s Guide

11.4 BGP

BGP (Border Gateway Protocol) is a standardized exterior gateway protocol designed to exchange routing and
reachability information among autonomous systems (AS) on the Internet.

BgpRouter is a Router with the BGP protocol enabled.

The Bgp module implements BGP Version 4. The model implements RFC 4271, with some limitations. Au-
tonomous Systems and rules can be configured in an XML file that can be specified in the bgpConfig parameter.

**.bgpConfig = xmldoc("BGPConfig.xml")

The configuration file may contain <TimerParams>, <AS> and Session elements at the top level.

• <TimerParams>: allows specifying various timing parameters for the routers.

• <AS>: defines Autonomous Systems, routers and rules to be applied.

• <Session>: specifies open sessions between edge routers. It must contain exactly two <Router
exterAddr="x.x.x.x"/> elements.

<BGPConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="BGP.xsd">

<TimerParams>
<connectRetryTime> 120 </connectRetryTime>
<holdTime> 180 </holdTime>
<keepAliveTime> 60 </keepAliveTime>
<startDelay> 15 </startDelay>

</TimerParams>

<AS id="60111">
<Router interAddr="172.1.10.255"/> <!--Router A1-->
<Router interAddr="172.1.20.255"/> <!--Router A2-->

</AS>

<AS id="60222">
<Router interAddr="172.10.4.255"/> <!--Router B-->

</AS>

<AS id="60333">
<Router interAddr="172.13.1.255"/> <!--Router C1-->
<Router interAddr="172.13.2.255"/> <!--Router C2-->
<Router interAddr="172.13.3.255"/> <!--Router C3-->
<Router interAddr="172.13.4.255"/> <!--Router C4-->
<DenyRouteOUT Address="172.10.8.0" Netmask="255.255.255.0"/>
<DenyASOUT> 60111 </DenyASOUT>

</AS>

<Session id="1">
<Router exterAddr="10.10.10.1" > </Router> <!--Router A1-->
<Router exterAddr="10.10.10.2" > </Router> <!--Router C1-->

</Session>

<Session id="2">
<Router exterAddr="10.10.20.1" > </Router> <!--Router A2-->
<Router exterAddr="10.10.20.2" > </Router> <!--Router B-->

</Session>

<Session id="3">
<Router exterAddr="10.10.30.1" > </Router> <!--Router B-->
<Router exterAddr="10.10.30.2" > </Router> <!--Router C2-->

</Session>
</BGPConfig>

11.4. BGP 45

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.bgp.BgpRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.bgpv4.Bgp.html


INET Framework User’s Guide

Inside <AS> elements various rules can be sepecified:

• DenyRoute: deny route in IN and OUT traffic (Address and Netmask attributes must be specified.)

• DenyRouteIN : deny route in IN traffic (Address and Netmask attributes must be specified.)

• DenyRouteOUT: deny route in OUT traffic (Address and Netmask attributes must be specified.)

• DenyAS: deny routes learned by AS in IN and OUT traffic (AS id must be specified as the body of the
element.)

• DenyASIN : deny routes learned by AS in IN traffic (AS id must be specified as the body of the element.)

• DenyASOUT: deny routes learned by AS in OUT traffic (AS id must be specified as the body of the ele-
ment.)

46 Chapter 11. Internet Routing



CHAPTER

TWELVE

AD HOC ROUTING

12.1 Overview

In ad hoc networks, nodes are not familiar with the topology of their networks. Instead, they have to discover it:
typically, a new node announces its presence and listens for announcements broadcast by its neighbors. Each node
learns about others nearby and how to reach them, and may announce that it too can reach them. The difficulty of
routing may be compounded by the fact that nodes may be mobile, which results in a changing topology.

Ad hoc routing protocols fall in two broad categories: proactive and reactive. Proactive or table-driven proto-
cols maintain fresh lists of destinations and their routes by periodically distributing routing tables throughout the
network. Reactive or on-demand protocols find a route on demand by flooding the network with Route Request
packets.

The INET Framework contains the implementation of several ad hoc routing protocols including AODV, DSDV,
DYMO and GPSR.

The easiest way to add routing to an ad hoc network is to use the ManetRouter NED type for nodes. ManetRouter
contains a submodule named routing whose type is a parameter, so it can be configured to be an AODV router,
a DYMO router, or a router of any other supported routing protocol. For example, you can configure ManetRouter
nodes in the network to use AODV with the following ini file line:

**.routingProtocolType = "Aodv"

There are also NED types called AodvRouter, DymoRouter, DsdvRouter, GpsrRouter, which are all
ManetRouter’s with the routing protocol submodule type set appropriately.

12.2 AODV

AODV (Ad hoc On-Demand Distance Vector Routing) is a routing protocol for mobile ad hoc networks and other
wireless ad hoc networks. It offers quick adaptation to dynamic link conditions, low processing and memory
overhead, low network utilization, and determines unicast routes to destinations within the ad hoc network.

The Aodv module type implements AODV, based on RFC 3561.

AodvRouter is a ManetRouter with the routing module type set to Aodv.

12.3 DSDV

DSDV (Destination-Sequenced Distance-Vector Routing) is a table-driven routing scheme for ad hoc mobile net-
works based on the Bellman-Ford algorithm.

The Dsdv module type implements DSDV. It is currently a partial implementation.

DsdvRouter is a ManetRouter with the routing module type set to Dsdv.

47

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.ManetRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.ManetRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.ManetRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.aodv.AodvRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.dymo.DymoRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.dsdv.DsdvRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.gpsr.GpsrRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.ManetRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.aodv.Aodv.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.aodv.AodvRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.ManetRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.aodv.Aodv.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.dsdv.Dsdv.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.dsdv.DsdvRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.ManetRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.dsdv.Dsdv.html


INET Framework User’s Guide

12.4 DYMO

The DYMO (Dynamic MANET On-demand) routing protocol is successor to the AODV routing protocol. DYMO
can work as both a pro-active and as a reactive routing protocol, i.e. routes can be discovered just when they are
needed.

The Dymo module type implements DYMO, based on the IETF draft draft-ietf-manet-dymo-24.

DymoRouter is a ManetRouter with the routing module type set to Dymo.

12.5 GPSR

GPSR (Greedy Perimeter Stateless Routing) is a routing protocol for mobile wireless networks that uses the
geographic positions of nodes to make packet forwarding decisions.

The Gpsr module type implements GPSR, based on the paper “GPSR: Greedy Perimeter Stateless Routing for
Wireless Networks” by Brad Karp and H. T. Kung, 2000. The implementation supports both GG and RNG
planarization algorithms.

GpsrRouter is a ManetRouter with the routing module type set to Gpsr.

48 Chapter 12. Ad Hoc Routing

https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.dymo.Dymo.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.dymo.DymoRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.ManetRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.dymo.Dymo.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.gpsr.Gpsr.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.gpsr.GpsrRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.ManetRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.gpsr.Gpsr.html


CHAPTER

THIRTEEN

DIFFERENTIATED SERVICES

13.1 Overview

In the early days of the Internet, only best effort service was defined. The Internet delivers individually each
packet, and delivery time is not guaranteed, moreover packets may even be dropped due to congestion at the
routers of the network. It was assumed that transport protocols, and applications can overcome these deficiencies.
This worked until FTP and email was the main applications of the Internet, but the newer applications such as
Internet telephony and video conferencing cannot tolerate delay jitter and loss of data.

The first attempt to add QoS capabilities to the IP routing was Integrated Services. Integrated services provide
resource assurance through resource reservation for individual application flows. An application flow is identified
by the source and destination addresses and ports and the protocol id. Before data packets are sent the necessary
resources must be allocated along the path from the source to the destination. At the hops from the source to the
destination each router must examine the packets, and decide if it belongs to a reserved application flow. This
could cause a memory and processing demand in the routers. Other drawback is that the reservation must be
periodically refreshed, so there is an overhead during the data transmission too.

Differentiated Services is a more scalable approach to offer a better than best-effort service. Differentiated Ser-
vices do not require resource reservation setup. Instead of making per-flow reservations, Differentiated Services
divides the traffic into a small number of forwarding classes. The forwarding class is directly encoded into the
packet header. After packets are marked with their forwarding classes at the edge of the network, the interior
nodes of the network can use this information to differentiate the treatment of packets. The forwarding classes
may indicate drop priority and resource priority. For example, when a link is congested, the network will drop
packets with the highest drop priority first.

In the Differentiated Service architecture, the network is partitioned into DiffServ domains. Within each domain
the resources of the domain are allocated to forwarding classes, taking into account the available resources and
the traffic flows. There are service level agreements (SLA) between the users and service providers, and between
the domains that describe the mapping of packets to forwarding classes and the allowed traffic profile for each
class. The routers at the edge of the network are responsible for marking the packets and protect the domain
from misbehaving traffic sources. Nonconforming traffic may be dropped, delayed, or marked with a different
forwarding class.

13.1.1 Implemented Standards

The implementation follows these RFCs below:

• RFC 2474: Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers

• RFC 2475: An Architecture for Differentiated Services

• RFC 2597: Assured Forwarding PHB Group

• RFC 2697: A Single Rate Three Color Marker

• RFC 2698: A Two Rate Three Color Marker

• RFC 3246: An Expedited Forwarding PHB (Per-Hop Behavior)

49



INET Framework User’s Guide

• RFC 3290: An Informal Management Model for Diffserv Routers

13.2 Architecture of NICs

Network interface modules, such as PppInterface and EthernetInterface, may contain traffic conditioners in their
input and output data path.

Network interfaces may also contain an optional external queue component. In the absence of an external queue
module, Ppp and EtherMac use an internal drop-tail queue to buffer the packets while the line is busy.

13.2.1 Traffic Conditioners

Traffic conditioners have one input and one output gate as defined in the ITrafficConditioner interface. They can
transform the incoming traffic by dropping or delaying packets. They can also set the DSCP field of the packet, or
mark them other way, for differentiated handling in the queues.

Traffic conditioners perform the following actions:

• classify the incoming packets

• meter the traffic in each class

• marks/drops packets depending on the result of metering

• shape the traffic by delaying packets to conform to the desired traffic profile

INET provides classifier, meter, and marker modules, that can be composed to build a traffic conditioner as a
compound module.

13.2.2 Output Queues

Queue components must implement the IOutputQueue module interface. In addition to having one input and
one output gate, these components must implement a passive queue behaviour: they only deliver a packet when
the module connected to their output explicitly requests it. (In C++ terms, the module must implement the
IPassiveQueue interface. The next module requests a packet by calling the requestPacket() method
of that interface.)

13.3 Simple modules

This section describes the primitive elements from which traffic conditioners and output queues can be built. The
next sections shows some examples, how these queues, schedulers, droppers, classifiers, meters, markers can be
combined.

The type of the components are:

• queue: container of packets, accessed as FIFO

• dropper: attached to one or more queue, it can limit the queue length below some threshold by selectively
dropping packets

• scheduler: decide which packet is transmitted first, when more packets are available on their inputs

• classifier: classify the received packets according to their content (e.g. source/destination, address
and port, protocol, dscp field of IP datagrams) and forward them to the corresponding output gate.

• meter: classify the received packets according to the temporal characteristic of their traffic stream

• marker: marks packets by setting their fields to control their further processing

50 Chapter 13. Differentiated Services

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.PppInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EthernetInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.Ppp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.ITrafficConditioner.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.IOutputQueue.html


INET Framework User’s Guide

13.3.1 Queues

When packets arrive at higher rate, than the interface can trasmit, they are getting queued.

Queue elements store packets until they can be transmitted. They have one input and one output gate. Queues
may have one or more thresholds associated with them.

Received packets are enqueued and stored until the module connected to their output asks a packet by calling the
requestPacket() method.

They should be able to notify the module connected to its output about the arrival of new packets.

FIFO Queue

The FifoQueue module implements a passive FIFO queue with unlimited buffer space. It can be combined with
algorithmic droppers and schedulers to form an IOutputQueue compound module.

The C++ class implements the IQueueAccess and IPassiveQueue interfaces.

DropTailQueue

The other primitive queue module is DropTailQueue. Its capacity can be specified by the frameCapacity
parameter. When the number of stored packet reached the capacity of the queue, further packets are dropped.
Because this module contains a built-in dropping strategy, it cannot be combined with algorithmic droppers as
FifoQueue can be. However its output can be connected to schedulers.

This module implements the IOutputQueue interface, so it can be used as the queue component of interface card
per se.

13.3.2 Droppers

Algorithmic droppers selectively drop received packets based on some condition. The condition can be either
deterministic (e.g. to bound the queue length), or probabilistic (e.g. RED queues).

Other kind of droppers are absolute droppers; they drop each received packet. They can be used to discard excess
traffic, i.e. packets whose arrival rate exceeds the allowed maximum. In INET the Sink module can be used as an
absolute dropper.

The algorithmic droppers in INET are ThresholdDropper and RedDropper. These modules has multiple input and
multiple output gates. Packets that arrive on gate in[i] are forwarded to gate out[i] (unless they are dropped).
However the queues attached to the output gates are viewed as a whole, i.e. the queue length parameter of the
dropping algorithm is the sum of the individual queue lengths. This way we can emulate shared buffers of the
queues. Note, that it is also possible to connect each output to the same queue module.

Threshold Dropper

The ThresholdDropper module selectively drops packets, based on the available buffer space of the queues at-
tached to its output. The buffer space can be specified as the count of packets, or as the size in bytes.

The module sums the buffer lengths of its outputs and if enqueuing a packet would exceed the configured capaci-
ties, then the packet will be dropped instead.

By attaching a ThresholdDropper to the input of a FIFO queue, you can compose a drop tail queue. Shared buffer
space can be modeled by attaching more FIFO queues to the output.

13.3. Simple modules 51

https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.FifoQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.DropTailQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.FifoQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.IOutputQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.Sink.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.ThresholdDropper.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.RedDropper.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.ThresholdDropper.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.ThresholdDropper.html


INET Framework User’s Guide

RED Dropper

The RedDropper module implements Random Early Detection ([?]).

It has 𝑛 input and 𝑛 output gates (specified by the numGates parameter). Packets that arrive at the 𝑖𝑡ℎ input
gate are forwarded to the 𝑖𝑡ℎ output gate, or dropped. The output gates must be connected to simple modules
implementing the IQueueAccess C++ interface (e.g. FifoQueue).

The module sums the used buffer space of the queues attached to the output gates. If it is below a minimum
threshold, the packet won’t be dropped, if above a maximum threshold, it will be dropped, if it is between the
minimum and maximum threshold, it will be dropped by a given probability. This probability determined by a
linear function which is 0 at the minth and maxp at maxth.

The queue length can be smoothed by specifying the wq parameter. The average queue length used in the tests are
computed by the formula:

𝑎𝑣𝑔 = (1 − 𝑤𝑞) * 𝑎𝑣𝑔 + 𝑤𝑞 * 𝑞𝑙𝑒𝑛

The minth, maxth, and maxp parameters can be specified separately for each input gate, so this module can be
used to implement different packet drop priorities.

13.3.3 Schedulers

Scheduler modules decide which queue can send a packet, when the interface is ready to transmit one. They have
several input gates and one output gate.

Modules that are connected to the inputs of a scheduler must implement the IPassiveQueue C++ interface.
Schedulers also implement IPassiveQueue, so they can be cascaded to other schedulers, and can be used as
the output module of IOutputQueue’s.

There are several possible scheduling discipline (first come/first served, priority, weighted fair, weighted round-
robin, deadline-based, rate-based). INET contains implementation of priority and weighted round-robin sched-
ulers.

Priority Scheduler

The PriorityScheduler module implements a strict priority scheduler. Packets that arrived on in[0] has the
highest priority, then packets arrived on in[1], and so on. If more packets available when one is requested, then
the one with highest priority is chosen. Packets with lower priority are transmitted only when there are no packets
on the inputs with higher priorities.

PriorityScheduler must be used with care, because a large volume of higher packets can starve lower priority
packets. Therefore it is necessary to limit the rate of higher priority packets to a fraction of the output datarate.

PriorityScheduler can be used to implement the EF PHB.

52 Chapter 13. Differentiated Services

https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.RedDropper.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.FifoQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.IOutputQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.PriorityScheduler.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.PriorityScheduler.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.PriorityScheduler.html


INET Framework User’s Guide

Weighted Round Robin Scheduler

The WrrScheduler module implements a weighted round-robin scheduler. The scheduler visits the input gates in
turn and selects the number of packets for transmission based on their weight.

For example if the module has three input gates, and the weights are 3, 2, and 1, then packets are transmitted in
this order:

A, A, A, B, B, C, A, A, A, B, B, C, ...

where A packets arrived on in[0], B packets on in[1], and C packets on in[2]. If there are no packets in the
current one when a packet is requested, then the next one is chosen that has enough tokens.

If the size of the packets are equal, then WrrScheduler divides the available bandwith according to the weights. In
each case, it allocates the bandwith fairly. Each flow receives a guaranteed minimum bandwith, which is ensured
even if other flows exceed their share (flow isolation). It is also efficiently uses the channel, because if some traffic
is smaller than its share of bandwidth, then the rest is allocated to the other flows.

WrrScheduler can be used to implement the AFxy PHBs.

13.3.4 Classifiers

Classifier modules have one input and many output gates. They examine the received packets, and forward them
to the appropriate output gate based on the content of some portion of the packet header. You can read more about
classifiers in RFC 2475 and RFC 3290.

The inet.networklayer.diffserv package contains two classifiers: MultiFieldClassifier to classify the
packets at the edge routers of the DiffServ domain, and BehaviorAggregateClassifier to classify the packets at the
core routers.

Multi-field Classifier

The MultiFieldClassifier module can be used to identify micro-flows in the incoming traffic. The flow is identified
by the source and destination addresses, the protocol id, and the source and destination ports of the IP packet.

The classifier can be configured by specifying a list of filters. Each filter can specify a source/destination ad-
dress mask, protocol, source/destination port range, and bits of TypeOfService/TrafficClass field to be matched.
They also specify the index of the output gate matching packet should be forwarded to. The first matching filter
determines the output gate, if there are no matching filters, then defaultOut is chosen.

The configuration of the module is given as an XML document. The document element must contain a list of
<filter> elements. The filter element has a mandatory @gate attribute that gives the index of the gate for
packets matching the filter. Other attributes are optional and specify the condition of matching:

• @srcAddress, @srcPrefixLength: to match the source address of the IP

• @destAddress, @destPrefixLength:

• @protocol: matches the protocol field of the IP packet. Its value can be a name (e.g. “udp”, “tcp”), or
the numeric code of the protocol.

• @tos,@tosMask: matches bits of the TypeOfService/TrafficClass field of the IP packet.

• @srcPort: matches the source port of the TCP or UDP packet.

• @srcPortMin, @srcPortMax: matches a range of source ports.

• @destPort: matches the destination port of the TCP or UDP packet.

• @destPortMin, @destPortMax: matches a range of destination ports.

The following example configuration specifies

• to transmit packets received from the 192.168.1.x subnet on gate 0,

13.3. Simple modules 53

https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.WrrScheduler.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.WrrScheduler.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.WrrScheduler.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.MultiFieldClassifier.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.BehaviorAggregateClassifier.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.MultiFieldClassifier.html


INET Framework User’s Guide

• to transmit packets addressed to port 5060 on gate 1,

• to transmit packets having CS7 in their DSCP field on gate 2,

• to transmit other packets on defaultGate.

<filters>
<filter srcAddress="192.168.1.0" srcPrefixLength="24" gate="0"/>
<filter protocol="udp" destPort="5060" gate="1"/>
<filter tos="0b00111000" tosMask="0x3f" gate="2"/>

</filters>

Behavior Aggregate Classifier

The BehaviorAggregateClassifier module can be used to read the DSCP field from the IP datagram, and direct the
packet to the corresponding output gate. The DSCP value is the lower six bits of the TypeOfService/TrafficClass
field. Core routers usually use this classifier to guide the packet to the appropriate queue.

DSCP values are enumerated in the dscps parameter. The first value is for gate out[0], the second for out[1],
so on. If the received packet has a DSCP value not enumerated in the dscps parameter, it will be forwarded to
the defaultOut gate.

13.3.5 Meters

Meters classify the packets based on the temporal characteristics of their arrival. The arrival rate of packets is
compared to an allowed traffic profile, and packets are decided to be green (in-profile) or red (out-of-profile).
Some meters apply more than two conformance level, e.g. in three color meters the partially conforming packets
are classified as yellow.

The allowed traffic profile is usually specified by a token bucket. In this model, a bucket is filled in with tokens
with a specified rate, until it reaches its maximum capacity. When a packet arrives, the bucket is examined. If it
contains at least as many tokens as the length of the packet, then that tokens are removed, and the packet marked
as conforming to the traffic profile. If the bucket contains less tokens than needed, it left unchanged, but the packet
marked as non-conforming.

Meters has two modes: color-blind and color-aware. In color-blind mode, the color assigned by a previous meter
does not affect the classification of the packet in subsequent meters. In color-aware mode, the color of the packet
can not be changed to a less conforming color: if a packet is classified as non-conforming by a meter, it also
handled as non-conforming in later meters in the data path.

Important: Meters take into account the length of the IP packet only, L2 headers are omitted from the length
calculation. If they receive a packet which is not an IP datagram and does not encapsulate an IP datagram, an error
occurs.

TokenBucketMeter

The TokenBucketMeter module implements a simple token bucket meter. The module has two output, one for
green packets, and one for red packets. When a packet arrives, the gained tokens are added to the bucket, and the
number of tokens equal to the size of the packet are subtracted.

Packets are classified according to two parameters, Committed Information Rate (𝑐𝑖𝑟), Committed Burst Size
(𝑐𝑏𝑠), to be either green, or red.

Green traffic is guaranteed to be under 𝑐𝑖𝑟 * (𝑡1 − 𝑡0) + 8 * 𝑐𝑏𝑠 in every [𝑡0, 𝑡1] interval.

54 Chapter 13. Differentiated Services

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.BehaviorAggregateClassifier.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.TokenBucketMeter.html


INET Framework User’s Guide

SingleRateThreeColorMeter

The SingleRateThreeColorMeter module implements a Single Rate Three Color Meter (RFC 2697). The module
has three output for green, yellow, and red packets.

Packets are classified according to three parameters, Committed Information Rate (𝑐𝑖𝑟), Committed Burst Size
(𝑐𝑏𝑠), and Excess Burst Size (𝑒𝑏𝑠), to be either green, yellow or red. The green traffic is guaranteed to be under
𝑐𝑖𝑟 * (𝑡1− 𝑡0) + 8* 𝑐𝑏𝑠, while the green+yellow traffic to be under 𝑐𝑖𝑟 * (𝑡1− 𝑡0) + 8* (𝑐𝑏𝑠+ 𝑒𝑏𝑠) in every [𝑡0, 𝑡1]
interval.

TwoRateThreeColorMeter

The TwoRateThreeColorMeter module implements a Two Rate Three Color Meter (RFC 2698). The module has
three output gates for the green, yellow, and red packets.

It classifies the packets based on two rates, Peak Information Rate (𝑝𝑖𝑟) and Committed Information Rate (𝑐𝑖𝑟),
and their associated burst sizes (𝑝𝑏𝑠 and 𝑐𝑏𝑠) to be either green, yellow or red. The green traffic is under 𝑝𝑖𝑟 *
(𝑡1 − 𝑡0) + 8 * 𝑝𝑏𝑠 and 𝑐𝑖𝑟 * (𝑡1 − 𝑡0) + 8 * 𝑐𝑏𝑠, the yellow traffic is under 𝑝𝑖𝑟 * (𝑡1 − 𝑡0) + 8 * 𝑝𝑏𝑠 in every [𝑡0, 𝑡1]
interval.

13.3.6 Markers

DSCP markers sets the codepoint of the crossing packets. The codepoint determines the further processing of the
packet in the router or in the core of the DiffServ domain.

The DscpMarker module sets the DSCP field (lower six bit of TypeOfService/TrafficClass) of IP datagrams to the
value specified by the dscps parameter. The dscps parameter is a space separated list of codepoints. You can
specify a different value for each input gate; packets arrived at the 𝑖𝑡ℎ input gate are marked with the 𝑖𝑡ℎ value. If
there are fewer values, than gates, then the last one is used for extra gates.

The DSCP values are enumerated in the DSCP.msg file. You can use both names and integer values in the dscps
parameter.

For example the following lines are equivalent:

**.dscps = "EF 0x0a 0b00001000"

**.dscps = "46 AF11 8"

13.4 Compound modules

13.4.1 AFxyQueue

The AFxyQueue module is an example queue, that implements one class of the Assured Forwarding PHB group
(RFC 2597).

Packets with the same AFx class, but different drop priorities arrive at the afx1In, afx2In, and afx3In gates.
The received packets are stored in the same queue. Before the packet is enqueued, a RED dropping algorithm may
decide to selectively drop them, based on the average length of the queue and the RED parameters of the drop
priority of the packet.

The afxyMinth, afxyMaxth, and afxyMaxp parameters must have values that ensure that packets with lower drop
priorities are dropped with lower or equal probability than packets with higher drop priorities.

13.4.2 DiffservQeueue

The DiffservQueue is an example queue, that can be used in interfaces of DS core and edge nodes to support the
AFxy (RFC 2597) and EF (RFC 3246) PHB’s.

13.4. Compound modules 55

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.SingleRateThreeColorMeter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.TwoRateThreeColorMeter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.DscpMarker.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.AFxyQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.diffserv.DiffservQueue.html


INET Framework User’s Guide

56 Chapter 13. Differentiated Services



INET Framework User’s Guide

The incoming packets are first classified according to their DSCP field. DSCP’s other than AFxy and EF are
handled as BE (best effort).

EF packets are stored in a dedicated queue, and served first when a packet is requested. Because they can preempt
the other queues, the rate of the EF packets should be limited to a fraction of the bandwith of the link. This is
achieved by metering the EF traffic with a token bucket meter and dropping packets that does not conform to the
traffic profile.

There are other queues for AFx classes and BE. The AFx queues use RED to implement 3 different drop priorities
within the class. BE packets are stored in a drop tail queue. Packets from AFxy and BE queues are sheduled
by a WRR scheduler, which ensures that the remaining bandwith is allocated among the classes according to the
specified weights.

13.4. Compound modules 57



INET Framework User’s Guide

58 Chapter 13. Differentiated Services



CHAPTER

FOURTEEN

THE MPLS MODELS

14.1 Overview

Multi-Protocol Label Switching (MPLS) is a “layer 2.5” protocol for high-performance telecommunications net-
works. MPLS directs data from one network node to the next based on numeric labels instead of network ad-
dresses, avoiding complex lookups in a routing table and allowing traffic engineering. The labels identify virtual
links (label-switched paths or LSPs, also called MPLS tunnels) between distant nodes rather than endpoints. The
routers that make up a label-switched network are called label-switching routers (LSRs) inside the network (“tran-
sit nodes”), and label edge routers (LER) on the edges of the network (“ingress” or “egress” nodes).

A fundamental MPLS concept is that two LSRs must agree on the meaning of the labels used to forward traffic
between and through them. This common understanding is achieved by using signaling protocols by which one
LSR informs another of label bindings it has made. Such signaling protocols are also called label distribution
protocols. The two main label distribution protocols used with MPLS are LDP and RSVP-TE.

INET provides basic support for building MPLS simulations. It provides models for the MPLS, LDP and RSVP-
TE protocols and their associated data structures, and preassembled MPLS-capable router models.

14.2 Core Modules

The core modules are:

• Mpls implements the MPLS protocol

• LibTable holds the LIB (Label Information Base)

• Ldp implements the LDP signaling protocol for MPLS

• RsvpTe implements the RSVP-TE signaling protocol for MPLS

• Ted contains the Traffic Engineering Database

• LinkStateRouting is a simple link-state routing protocol

• RsvpClassifier is a configurable ingress classifier for MPLS

14.2.1 Mpls

The Mpls module implements the MPLS protocol. MPLS is situated between layer 2 and 3, and its main function
is to switch packets based on their labels. For that, it relies on the data structure called LIB (Label Information
Base). LIB is fundamentally a table with the following columns: input-interface, input-label, output-interface,
label-operation(s).

Upon receiving a labelled packet from another LSR, MPLS first extracts the incoming interface and incoming
label pair, and then looks it up in local LIB. If a matching entry is found, it applies the prescribed label operations,
and forwards the packet to the output interface.

Label operations can be the following:

59

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.Mpls.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.LibTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ldp.Ldp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.rsvpte.RsvpTe.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.Ted.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.LinkStateRouting.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.rsvpte.RsvpClassifier.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.Mpls.html


INET Framework User’s Guide

• Push adds a new MPLS label to a packet. (A packet may contain multiple labels, acting as a stack.) When
a normal IP packet enters an LSP, the new label will be the first label on the packet.

• Pop removes the topmost MPLS label from a packet. This is typically done at either the penultimate or the
egress router.

• Swap: Replaces the topmost label with a new label.

In INET, the local LIB is stored in a LibTable module in the router.

Upon receiving an unlabelled (e.g. plain IPv4) packet, MPLS first determines the forwarding equivalence class
(FEC) for the packet using an ingress classifier, and then inserts one or more labels in the packet’s newly created
MPLS header. The packet is then passed on to the next hop router for the LSP.

The ingress classifier is also a separate module; it is selected depending on the choice of the signaling protocol.

14.2.2 LibTable

LibTable stores the LIB (Label Information Base), as described in the previous section. LibTable is expected to
have one instance in the router.

LIB is normally filled and maintained by label distribution protocols (RSVP-TE, LDP), but in INET it is possible
to preload it with initial contents.

The LibTable module accepts an XML config file whose structure follows the contents of the LIB table. An
example configuration:

<libtable>
<libentry>

<inLabel>203</inLabel>
<inInterface>ppp1</inInterface>
<outInterface>ppp2</outInterface>
<outLabel>

<op code="pop"/>
<op code="swap" value="200"/>
<op code="push" value="300"/>

</outLabel>
<color>200</color>

</libentry>
</libtable>

There can be multiple <libentry> elements, each describing a row in the table. Colums are given as child
elements: <inLabel>, <inInterface>, etc. The <color> element is optional, and it only exists to be able
to color LSPs on the GUI. It is not used by the protocols.

14.2.3 Ldp

The Ldp module implements the Label Distribution Protocol (LDP). LDP is used to establish LSPs in an MPLS
network when traffic engineering is not required. It establishes LSPs that follow the existing IP routing table, and
is particularly well suited for establishing a full mesh of LSPs between all of the routers on the network.

LDP relies on the underlying routing information provided by a routing protocol in order to forward label packets.
The router’s forwarding information base, or FIB, is responsible for determining the hop-by-hop path through the
network.

In INET, the Ldp module takes routing information from Ted module. The Ted instance in the network is filled
and maintained by a LinkStateRouting module. Unfortunately, it is currently not possible to use other routing
protocol implementations such as Ospf in conjunction with Ldp.

When Ldp is used as signaling protocol, it also serves as ingress classifier for Mpls.

60 Chapter 14. The MPLS Models

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.LibTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.LibTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.LibTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.LibTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ldp.Ldp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ldp.Ldp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.Ted.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.Ted.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.LinkStateRouting.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.ospfv2.Ospf.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ldp.Ldp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ldp.Ldp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.Mpls.html


INET Framework User’s Guide

14.2.4 Ted

The Ted module contains the Traffic Engineering Database (TED). In INET, Ted contains a link state database,
including reservations for each link by RSVP-TE.

14.2.5 LinkStateRouting

The LinkStateRouting module provides a simple link state routing protocol. It uses Ted as its link state database.
Unfortunately, the LinkStateRouting module cannot operate independently, it can only be used inside an MPLS
router.

14.2.6 RsvpTe

The RsvpTe module implements RSVP-TE (Resource Reservation Protocol – Traffic Engineering), as signaling
protocol for MPLS. RSVP-TE handles bandwidth allocation and allows traffic engineering across an MPLS net-
work. Like LDP, RSVP uses discovery messages and advertisements to exchange LSP path information between
all hosts. However, whereas LDP is restricted to using the configured IGP’s shortest path as the transit path through
the network, RSVP can take taking into consideration network constraint parameters such as available bandwidth
and explicit hops. RSVP uses a combination of the Constrained Shortest Path First (CSPF) algorithm and Explicit
Route Objects (EROs) to determine how traffic is routed through the network.

When RsvpTe is used as signaling protocol, Mpls needs a separate ingress classifier module, which is usually a
RsvpClassifier.

The RsvpTe module allows LSPs to be specified statically in an XML config file. An example traffic.xml
file:

<sessions>
<session>

<endpoint>host3</endpoint>
<tunnel_id>1</tunnel_id>
<paths>

<path>
<lspid>100</lspid>
<bandwidth>100000</bandwidth>
<route>

<node>10.1.1.1</node>
<lnode>10.1.2.1</lnode>
<node>10.1.4.1</node>
<node>10.1.5.1</node>

</route>
<permanent>true</permanent>
<color>100</color>

</path>
</paths>

</session>
</sessions>

In the route, <node> stands for strict hop, and <lnode> for loose hop.

Paths can also be set up and torn down dynamically with ScenarioManager commands (see chapter Scenario
Scripting). RsvpTe understands the <add-session> and <del-session> ScenarioManager commands.
The contents of the <add-session> element can be the same as the <session> element for the traffic.
xml above. The <del-command> element syntax is also similar, but only <endpoint>, <tunnel_id> and
<lspid> need to be specified.

The following is an example scenario.xml file:

14.2. Core Modules 61

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.Ted.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.Ted.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.LinkStateRouting.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.Ted.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ted.LinkStateRouting.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.rsvpte.RsvpTe.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.rsvpte.RsvpTe.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.Mpls.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.rsvpte.RsvpClassifier.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.rsvpte.RsvpTe.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.rsvpte.RsvpTe.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html


INET Framework User’s Guide

<scenario>
<at t="2">

<add-session module="LSR1.rsvp">
<endpoint>10.2.1.1</endpoint>
<tunnel_id>1</tunnel_id>
<paths>

...
</paths>

</add-session>
</at>
<at t="2.4">

<del-session module="LSR1.rsvp">
<endpoint>10.2.1.1</endpoint>
<tunnel_id>1</tunnel_id>
<paths>

<path>
<lspid>100</lspid>

</path>
</paths>

</del-session>
</at>

</scenario>

14.3 Classifier

The RsvpClassifier module implements an ingress classifier for Mpls when using RsvpTe for signaling. The
classifier can be configured with an XML config file.

**.classifier.config = xmldoc("fectable.xml");

An example fectable.xml file:

<fectable>
<fecentry>

<id>1</id>
<destination>host5</destination>
<source>host1</source>
<tunnel_id>1</tunnel_id>
<lspid>100</lspid>

</fecentry>
</fectable>

14.4 MPLS-Enabled Router Models

INET provides the following pre-assembled MPLS routers:

• LdpMplsRouter is an MPLS router with the LDP signaling protocol

• RsvpMplsRouter is an MPLS router with the RSVP-TE signaling protocol

62 Chapter 14. The MPLS Models

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.rsvpte.RsvpClassifier.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.mpls.Mpls.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.rsvpte.RsvpTe.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.mpls.LdpMplsRouter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.mpls.RsvpMplsRouter.html


CHAPTER

FIFTEEN

POINT-TO-POINT LINKS

15.1 Overview

For simulating wired point-to-point links, the INET Framework contains a minimal implementation of the PPP
protocol and a corresponding network interface module.

• Ppp is a simple module that performs encapsulation of network datagrams into PPP frames and decapsula-
tion of the incoming PPP frames. It can be connected to the network layer directly or can be configured to
get the outgoing messages from an output queue. The module collects statistics about the transmitted and
dropped packages.

• PppInterface is a compound module that complements the Ppp module with an output queue. It imple-
ments the IWiredInterface interface. Input and output hooks can be configured for further processing of the
network messages.

PPP (RFC 1661) is a complex protocol which, in addition to providing a method for encapsulating multi-protocol
datagrams, also contains control protocols for establishing, configuring, and testing the data-link connection (LCP)
and for configuring different network-layer protocols (NCP).

The INET implementation only covers encapsulation and decapsulation of data into PPP frames. Control proto-
cols, which do not have a significant effect on the links’ capacity and latency during normal link operation, are
not simulated. In addition, header field compressions (PFC and ACFC) are also bot supported, so a simulated PPP
frame always contains 1-byte Address and Control fields and a 2-byte Protocol field.

15.2 The PPP module

The PPP module receives packets from the upper layer in the netwIn gate, adds a PppHeader, and send it to
the physical layer through the phys gate. The packet with PppHeader is received from the phys and sent to the
upper layer immediately through the netwOut gate.

Incoming datagrams are waiting in a queue if the line is currently busy. In routers, PPP relies on an external queue
module (implementing IOutputQueue) to model finite buffer, implement QoS and/or RED, and requests packets
from this external queue one-by-one. The name of this queue is given as the queueModule parameter.

In hosts, no such queue is used, so Ppp contains an internal queue named txQueue to queue up packets wainting
for transmission. Conceptually txQueue is of inifinite size, but for better diagnostics one can specify a hard limit
in the txQueueLimit parameter – if this is exceeded, the simulation stops with an error.

The module can be used in simulations where the nodes are connected and disconnected dinamically. If the
channel between the PPP modules is down, the messages received from the upper layer are dropped (including the
messages waiting in the queue). When the connection is restored it will poll the queue and transmits the messages
again.

The PPP module registers itself in the interface table of the node. The mtu of the entry can be specified by the
mtu module parameter. The module checks the state of the physical link and updates the entry in the interface
table.

63

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.Ppp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.PppInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.Ppp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.IWiredInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/src-inet-linklayer-ppp-PppHeader.html
https://omnetpp.org/doc/inet/api-current/neddoc/src-inet-linklayer-ppp-PppHeader.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.IOutputQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.Ppp.html


INET Framework User’s Guide

15.3 PppInterface

PppInterface is a compound module that implements the IWiredInterface interface. It contains a Ppp module and
a passive queue for the messages received from the network layer.

The queue type is specified by the queueType parameter. It can be set to NoQueue or to a module type
implementing the IOutputQueue interface. There are implementations with QoS and RED support.

In typical use of the Ppp module it is augmented with other nodes that monitor the traffic or simulate package loss
and duplication. The PppInterface module abstract that usage by adding IHook components to the network input
and output of the Ppp component. Any number of hook can be added by specifying the numOutputHooks and
numInputHooks parameters and the types of the outputHook and inputHook components. The hooks are
chained in their numeric order.

64 Chapter 15. Point-to-Point Links

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.PppInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.IWiredInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.Ppp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.queue.IOutputQueue.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.Ppp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.PppInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.IHook.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.Ppp.html


CHAPTER

SIXTEEN

THE ETHERNET MODEL

16.1 Overview

Ethernet is the most popular wired LAN technology nowadays, and its use is also growing in metropolitan area and
wide area networks. Since its introduction in 1980, Ethernet data transfer rates have increased from the original
10Mb/s to the latest 400Gb/s. Originally, The technology has changed from using coaxial cables and repeaters
to using unshielded twisted-pair cables with hubs and switches. Today, switched Ethernet is prevalent, and most
links operate in full duplex mode. The INET Framework contains support for all major Ethernet technologies and
device types.

In Ethernet networks containing multiple switches, broadcast storms are prevented by use of a spanning tree
protocol (STP, RSTP) that disables selected links to eliminate cycles from the topology. Ethernet switch models
in INET contain support for STP and RSTP.

16.2 Nodes

There are several node models that can be used in an Ethernet network:

• Node models such as StandardHost and Router are Ethernet-capable

• EtherSwitch models an Ethernet switch, i.e. a multiport bridging device

• EtherHub models an Ethernet hub or multiport repeater

• EtherBus models the coaxial cable (10BASE2 or 10BASE5 network segments) on legacy Ethernet networks

• EtherHost is a sample node which can be used to generate “raw” Ethernet traffic

16.2.1 EtherSwitch

EtherSwitch models an Ethernet switch. Ethernet switches play an important role in modern Ethernet LANs.
Unlike passive hubs and repeaters that work in the physical layer, the switches operate in the data link layer and
relay frames between the connected subnets.

In modern Ethernet LANs, each node is connected to the switch directly by full duplex lines, so no collisions are
possible. In this case, the CSMA/CD is not needed and the channel utilization can be high.

The duplexMode parameters of the MACs must be set according to the medium connected to the port; if col-
lisions are possible (it’s a bus or hub) it must be set to false, otherwise it can be set to true. By default it uses
half-duplex MAC with CSMA/CD.

16.2.2 EtherHub

EtherHub models an Ethernet hub. Ethernet hubs are a simple broadcast devices. Messages arriving on a port are
regenerated and broadcast to every other port.

65

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.EtherSwitch.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherHub.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherBus.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.EtherHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.EtherSwitch.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherHub.html


INET Framework User’s Guide

The connections connected to the hub must have the same data rate. Cable lengths should be reflected in the delays
of the connections.

16.2.3 EtherBus

The EtherBus component can model a common coaxial cable found in early Ethernet LANs. The nodes are
attached via taps at specific positions on the cable. When a node sends a signal, it will propagate along the cable
in both directions at the given propagation speed.

The gates of the EtherBus represent taps. The positions of the taps are given by the positions parameter
as a space separated list of distances in metres. If there are more gates then positions given, the last distance
is repeated. The bus component send the incoming message in one direction and a copy of the message to the
other direction (except at the ends). The propagation delays are computed from the distances of the taps and the
propagationSpeed parameter.

16.3 The Physical Layer

Stations on an Ethernet networks are connected by coaxial, twisted pair or fibre cables. (Coaxial only has historical
importance, but is supported by INET anyway.) There are several cable types specified in the standard.

In the INET framework, the cables are represented by connections. The connections used in Ethernet LANs must
be derived from ned::DatarateChannel and should have their delay and datarate parameters set. The
delay parameter can be used to model the distance between the nodes. The datarate parameter can have four
values:

• 10Mbps (classic Ethernet)

• 100Mbps (Fast Ethernet)

• 1Gbps (Gigabit Ethernet, GbE)

• 10Gbps (10 Gigabit Ethernet, 10GbE)

• 40Gbps (40 Gigabit Ethernet, 40GbE)

• 100Gbps (100 Gigabit Ethernet, 100GbE)

There is currently no support for 200Gbps and 400Gbps Ethernet.

Eth10M, Eth100M, Eth1G, Eth10G, Eth40G, Eth100G

16.4 Ethernet Interface

The EthernetInterface compound module implements the IWiredInterface interface. Complements EtherMac and
EtherEncap with an output queue for QoS and RED support. It also has configurable input/output filters as IHook
components similarly to the PppInterface module.

The Ethernet MAC (Media Access Control) layer transmits the Ethernet frames on the physical media. This is a
sublayer within the data link layer. Because encapsulation/decapsulation is not always needed (e.g. switches does
not do encapsulation/decapsulation), it is implemented in a separate modules (EtherEncap and EtherLlc) that are
part of the LLC layer.

Nowadays almost all Ethernet networks operate using full-duplex point-to-point connections between hosts and
switches. This means that there are no collisions, and the behaviour of the MAC component is much simpler
than in classic Ethernet that used coaxial cables and hubs. The INET framework contains two MAC modules for
Ethernet: the EtherMacFullDuplex is simpler to understand and easier to extend, because it supports only full-
duplex connections. The EtherMac module implements the full MAC functionality including CSMA/CD, it can
operate both half-duplex and full-duplex mode.

66 Chapter 16. The Ethernet Model

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherBus.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherBus.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.Eth10M.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.Eth100M.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.Eth1G.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.Eth10G.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.Eth40G.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.Eth100G.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EthernetInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.IWiredInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherEncap.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.IHook.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ppp.PppInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherEncap.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherLlc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherMacFullDuplex.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherMac.html


INET Framework User’s Guide

16.5 Components

The following components are present in the model:

• EtherMacFullDuplex

• EtherMac

• EtherLlc

• EtherEncap

• MacRelayUnit

• MacAddressTable

• Ieee8021dRelay

16.5.1 EtherMacFullDuplex

From the two MAC implementation EtherMacFullDuplex is the simpler one, it operates only in full-duplex mode
(its duplexEnabled parameter fixed to true in its NED definition). This module does not need to implement
CSMA/CD, so there is no collision detection, retransmission with exponential backoff, carrier extension and frame
bursting.

16.5.2 EtherMac

Ethernet MAC layer implementing CSMA/CD. It supports both half-duplex and full-duplex operations; in full-
duplex mode it behaves as EtherMacFullDuplex. In half-duplex mode it detects collisions, sends jam mes-
sages and retransmit frames upon collisions using the exponential backoff algorithm. In Gigabit Ethernet net-
works it supports carrier extension and frame bursting. Carrier extension can be turned off by setting the
carrierExtension parameter to false.

16.5.3 EtherEncap

The EtherEncap module performs Ethernet II or Ethernet with SNAP encapsulation/decapsulation.

16.5.4 EtherLlc

The EtherLlc module provides Ethernet 802.3 encapsulation/decapsulation.

16.5.5 MacRelayUnit

INET framework ethernet switches are built from IMacRelayUnit components. Each relay unit has N input and
output gates for sending/receiving Ethernet frames. They should be connected to EthernetInterface modules.

The relay unit holds a table for the destination address -> output port mapping in a MacAddressTable module.
When the relay unit receives a data frame, it updates the table with the source address->input port.

If the destination address is not found in the table, the frame is broadcast. The frame is not sent to the same port
it was received from, because then the target should already have received the original frame.

A simple scheme for sending PAUSE frames is built in (although users will probably change it). When the buffer
level goes above a high watermark, PAUSE frames are sent on all ports. The watermark and the pause time is
configurable; use zero values to disable the PAUSE feature.

16.5. Components 67

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherMacFullDuplex.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherLlc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherEncap.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.switch.MacRelayUnit.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.switch.MacAddressTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee8021d.relay.Ieee8021dRelay.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherMacFullDuplex.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherMacFullDuplex.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherEncap.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherLlc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.contract.IMacRelayUnit.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EthernetInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.switch.MacAddressTable.html


INET Framework User’s Guide

16.5.6 MacAddressTable

The MacAddressTable module stores the mapping between ports and MAC addresses. Entries are deleted if their
age exceeds a certain limit.

If needed, address tables can be pre-loaded from text files at the beginning of the simulation; this controlled by
the addressTableFile module parameter. In the file, each line contains a literal 0 (reserved for VLAN id), a
hexadecimal MAC address and a decimal port number, separated by tabs. Comment lines beginning with ’#’ are
also allowed:

0 01 ff ff ff ff 0
0 00-ff-ff-ee-d1 1
0 0A:AA:BC:DE:FF 2

Entries are deleted if their age exceeds the duration given as the agingTime parameter.

16.5.7 Ieee8021dRelay

Ieee8021dRelay is a MAC relay unit that should be used instead of MacRelayUnit that when STP or RSTP is
needed.

16.5.8 Stp

The Stp module type implements Spanning Tree Protocol (STP). STP is a network protocol that builds a loop-free
logical topology for Ethernet networks. The basic function of STP is to prevent bridge loops and the broadcast
radiation that results from them.

STP creates a spanning tree within a network of connected layer-2 bridges, and disables those links that are not
part of the spanning tree, leaving a single active path between any two network nodes.

16.5.9 Rstp

Rstp implements Rapid Spanning Tree Protocol (RSTP), an improved version of STP. RSTP provides significantly
faster recovery in response to network changes or failures.

16.6 Implemented Standards

The Ethernet model operates according to the following standards:

• Ethernet: IEEE 802.3-1998

• Fast Ethernet: IEEE 802.3u-1995

• Full-Duplex Ethernet with Flow Control: IEEE 802.3x-1997

• Gigabit Ethernet: IEEE 802.3z-1998

68 Chapter 16. The Ethernet Model

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.switch.MacAddressTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee8021d.relay.Ieee8021dRelay.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.switch.MacRelayUnit.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee8021d.stp.Stp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee8021d.rstp.Rstp.html


CHAPTER

SEVENTEEN

THE 802.11 MODEL

17.1 Overview

IEEE 802.11 a.k.a. WiFi is the most widely used and universal wireless networking standard. Specifications are
updated every few years, adding more features and ever increasing bit rates.

In INET, nodes become WiFi-enabled by adding a Ieee80211Interface to them. (As mentioned earlier, Wire-
lessHost and AdhocHost already contain one in their default configuration.) APs are represented with the Access-
Point node type. WiFi networks require a matching transmission medium module to be present in the network,
which is usually a Ieee80211ScalarRadioMedium.

Operation mode (infrastructure vs ad hoc) is determined by the ingredients of the wireless interface.
Ieee80211Interface has the following submodules (incomplete list):

1. management: performs association/disassociation with access points, channel scanning, beaconing

2. agent: initiates actions such as channel scanning and connecting to and disconnecting from access points

3. MAC: transmits and receives frames according to the IEEE 802.11 medium access procedure

4. PHY: represents the radio

The management component has several implementations which differ in their role and level of detail:

• Ieee80211MgmtAdhoc: for ad hoc mode stations

• Ieee80211MgmtSta, Ieee80211MgmtStaSimplified: for infrastructure mode stations

• Ieee80211MgmtAp, Ieee80211MgmtApSimplified: for access points

The “simplified” ones assume that stations are statically associated to an access point for the entire duration of the
simulation (the scan-authenticate-associate process is not simulated), so they cannot be used e.g. in experiments
involving handover.

Ieee80211MgmtSta is does not take any action by itself, it requires an agent (Ieee80211AgentSta or a custom one)
to initiate actions.

The following sections examine the above components.

17.2 MAC

The Ieee80211Mac module type represents the IEEE 802.11 MAC. The implementation is entirely based on the
standard IEEE 802.11-2012 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

Ieee80211Mac performs transmission of frames according to the CSMA/CA protocol. It receives data and man-
agement frames from the upper layers, and transmits them.

The Ieee80211Mac was designed to be modular to facilitate experimenting with new policies, features and algo-
rithms within the MAC layer. Users can easily replace individual components with their own implementations.
Policies, which most likely to be experimented with, are extracted into their own modules.

69

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.Ieee80211Interface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.AdhocHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.wireless.AccessPoint.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.wireless.AccessPoint.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.Ieee80211Interface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtAdhoc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtSta.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtStaSimplified.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtAp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtApSimplified.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtSta.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211AgentSta.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mac.Ieee80211Mac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mac.Ieee80211Mac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mac.Ieee80211Mac.html


INET Framework User’s Guide

The model has the following replaceable built-in policies:

• ACK policy

• RTS/CTS policy

• Originator and recipient block ACK agreement policies

• MSDU aggregation policy

• Fragmentation policy

The new model also separates the following components:

• Coordination functions

• Channel access methods

• MAC data services

• Aggregation and deaggregation

• Fragmentation and defragmentation

• Block ACK agreements and reordering

• Frame exchange sequences

• Duplicate removal

• Rate selection

• Rate control

• Protection mechanisms

• Recovery procedure

• Contention

• Frame queues

• TX/RX

17.3 Physical Layer

The physical layer modules (Ieee80211Radio) deal with modelling transmission and reception of frames. They
model the characteristics of the radio channel, and determine if a frame was received correctly (that is, it did not
suffer bit errors due to low signal power or interference in the radio channel). Frames received correctly are passed
up to the MAC.

On the physical layer, one can choose from several radios with different levels of detail. The various radio types
(with the matching transmission medium types in parentheses) are:

• Ieee80211ScalarRadio (Ieee80211ScalarRadioMedium)

• Ieee80211DimensionalRadio (Ieee80211DimensionalRadioMedium)

• Ieee80211UnitDiskRadio (UnitDiskRadioMedium)

17.4 Management

The management layer exchanges management frames via the MAC with its peer management entities in other
STAs and APs. Beacon, Probe Request/Response, Authentication, Association Request/Response etc frames are
generated and interpreted by management entities, and transmitted/received via the MAC layer. During scanning,
it is the management entity that periodically switches channels, and collects information from received beacons
and probe responses.

70 Chapter 17. The 802.11 Model

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211Radio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211DimensionalRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211DimensionalRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211UnitDiskRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadioMedium.html


INET Framework User’s Guide

The management layer has several implementations which differ in their role (STA/AP/ad-hoc) and level
of detail: Ieee80211MgmtAdhoc, Ieee80211MgmtAp, Ieee80211MgmtApSimplified, Ieee80211MgmtSta,
Ieee80211MgmtStaSimplified. The ..Simplified ones differ from the others in that they do not model the scan-
authenticate-associate process, so they cannot be used in experiments involving handover.

17.5 Agent

The agent is what instructs the management layer to perform scanning, authentication and association. The man-
agement layer itself just carries out these commands by performing the scanning, authentication and association
procedures, and reports back the results to the agent.

The agent component is currently only needed with the Ieee80211MgmtSta module. The managament entities in
other NIC variants do not have as much freedom as to need an agent to control them.

Ieee80211MgmtSta requires a Ieee80211AgentSta or a custom agent. By modifying or replacing the agent, one
can alter the dynamic behaviour of STAs in the network, for example implement different handover strategies.

17.5. Agent 71

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtAdhoc.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtAp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtApSimplified.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtSta.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtStaSimplified.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtSta.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211MgmtSta.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee80211.mgmt.Ieee80211AgentSta.html


INET Framework User’s Guide

72 Chapter 17. The 802.11 Model



CHAPTER

EIGHTEEN

THE 802.15.4 MODEL

18.1 Overview

IEEE 802.15.4 is a technical standard which defines the operation of low-rate wireless personal area networks
(LR-WPANs). IEEE 802.15.4 was designed for data rates of 250 kbit/s or lower, in order to achieve long battery
life (months or even years) and very low complexity. The standard specifies the physical layer and media access
control.

IEEE 802.15.4 is the basis for the ZigBee, ISA100.11a, WirelessHART, MiWi, SNAP,and the Thread specifica-
tions, each of which further extends the standard by developing the upper layers which are not defined in IEEE
802.15.4. Alternatively, it can be used with 6LoWPAN, the technology used to deliver IPv6 over WPANs, to
define the upper layers. (Thread is also 6LoWPAN-based.)

The INET Framework contains a basic implementation of IEEE 802.15.4 protocol.

18.2 Network Interfaces

There are two network interfaces that differ in the type of radio:

• Ieee802154NarrowbandInterface is for use with narrowband radios

• Ieee802154UwbIrInterface is for use with the UWB-IR radio

To create a wireless node with a 802.15.4 interface, use a node type that has a wireless interface, and set the
interface type to the appropriate type. For example, WirelessHost is a node type which is preconfigured to have
one wireless interface, wlan[0]. wlan[0] is of parametric type, so if you build the network from WirelessHost
nodes, you can configure all of them to use 802.15.4 with the following line in the ini file:

**.wlan[0].typename = "Ieee802154NarrowbandInterface"

18.3 Physical Layer

The IEEE 802.15.4 standard defines several alternative PHYs. There are several narrowband radios at various fre-
quency bands using various modulation schemes (DSSS, O-QPSK, MPSK, GFSK BPSK, etc.), a Direct Sequence
ultra-wideband (UWB), and one using chirp spread spectrum (CSS).

INET provides the following radios:

• Ieee802154NarrowbandScalarRadio is currently a partially parameterized version of the APSK radio. Be-
fore using this radio, one must check its parameters and make sure that they correspond to the specification
of the 802.15.4 narrowband PHY to be simulated.

• Ieee802154UwbIrRadio models the 802.14.5 UWB radio.

73

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee802154.Ieee802154NarrowbandInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee802154.Ieee802154UwbIrInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee802154.packetlevel.Ieee802154NarrowbandScalarRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee802154.bitlevel.Ieee802154UwbIrRadio.html


INET Framework User’s Guide

One must choose a matching medium model, for example Ieee802154UwbIrRadioMedium
for Ieee802154UwbIrRadio, and Ieee802154NarrowbandScalarRadioMedium for
Ieee802154NarrowbandScalarRadio.

18.4 MAC Protocol

The 802.15.4 MAC is based on collision avoidance via CSMA/CA. Important other features include real-time
suitability by reservation of guaranteed time slots, and integrated support for secure communications. Devices
also include power management functions such as link quality and energy detection.

The Ieee802154Mac type in INET is currently a parameterized version of a generic CSMA/CA protocol model
with ACK support.

There is also a Ieee802154NarrowbandMac.

74 Chapter 18. The 802.15.4 Model

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee802154.bitlevel.Ieee802154UwbIrRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee802154.bitlevel.Ieee802154UwbIrRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee802154.packetlevel.Ieee802154NarrowbandScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee802154.packetlevel.Ieee802154NarrowbandScalarRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee802154.Ieee802154Mac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ieee802154.Ieee802154NarrowbandMac.html


CHAPTER

NINETEEN

MAC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

19.1 Overview

The INET Framework contains the implementation of several MAC protocols for wireless sensor networks
(WSNs), including B-MAC, L-MAC and X-MAC.

To create a wireless node with a specific MAC protocol, use a node type that has a wireless interface, and set the
interface type to the appropriate type. For example, WirelessHost is a node type which is preconfigured to have
one wireless interface, wlan[0]. wlan[0] is of parametric type, so if you build the network from WirelessHost
nodes, you can configure all of them to use e.g. B-MAC with the following line in the ini file:

**.wlan[0].typename = "BMacInterface"

19.2 B-MAC

B-MAC (Berkeley MAC) is a carrier sense media access protocol for wireless sensor networks that provides a
flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization.
To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme to reduce duty cycle
and minimize idle listening. B-MAC is designed for low traffic, low power communication, and is one of the most
widely used protocols (e.g. it is part of TinyOS).

The BMac module type implements the B-MAC protocol.

BMacInterface is a WirelessInterface with the MAC type set to BMac.

19.3 L-MAC

L-MAC (Lightweight MAC) is an energy-efficient medium acces protocol designed for wireless sensor networks.
Although the protocol uses TDMA to give nodes in the WSN the opportunity to communicate collision-free, the
network is self-organizing in terms of time slot assignment and synchronization. The protocol reduces the number
of transceiver state switches and hence the energy wasted in preamble transmissions.

The LMac module type implements the L-MAC protocol, based on the paper “A lightweight medium access
protocol (LMAC) for wireless sensor networks” by van Hoesel and P. Havinga.

LMacInterface is a WirelessInterface with the MAC type set to LMac.

19.4 X-MAC

X-MAC is a low-power MAC protocol for wireless sensor networks (WSNs). In contrast to B-MAC which em-
ploys an extended preamble and preamble sampling, X-MAC uses a shortened preamble that reduces latency at
each hop and improves energy consumption while retaining the advantages of low power listening, namely low
power communication, simplicity and a decoupling of transmitter and receiver sleep schedules.

75

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.WirelessHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.bmac.BMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.bmac.BMacInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.common.WirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.bmac.BMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.lmac.LMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.lmac.LMacInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.common.WirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.lmac.LMac.html


INET Framework User’s Guide

The XMac module type implements the X-MAC protocol, based on the paper “X-MAC: A Short Preamble MAC
Protocol for Duty-Cycled Wireless Sensor Networks” by Michael Buettner, Gary V. Yee, Eric Anderson and
Richard Han.

XMacInterface is a WirelessInterface with the MAC type set to XMac.

76 Chapter 19. MAC Protocols for Wireless Sensor Networks

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.xmac.XMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.xmac.XMacInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.common.WirelessInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.xmac.XMac.html


CHAPTER

TWENTY

THE PHYSICAL LAYER

20.1 Overview

Wireless network interfaces contain a radio model component, which is responsible for modeling the physical
layer (PHY).1 The radio model describes the physical device that is capable of transmitting and receiving signals
on the medium.

Conceptually, a radio model relies on several sub-models:

• antenna model

• transmitter model

• receiver model

• error model (as part of the receiver model)

• energy consumption model

The antenna model is shared between the transmitter model and the receiver model. The separation of the trans-
mitter model and the receiver model allows asymmetric configurations. The energy consumer model is optional,
and it is only used when the simulation of energy consumption is necessary.

20.2 Generic Radio

In INET, radio models implement the IRadio module interface. A generic, often used implementation of IRadio is
the Radio NED type. Radio is an active compound module, that is, it has an associated C++ class that encapsulates
the computations.

Radio contains its antenna, transmitter, receiver and energy consumer models as submodules with parametric
types:

antenna: <antennaType> like IAntenna;
transmitter: <transmitterType> like ITransmitter;
receiver: <receiverType> like IReceiver;
energyConsumer: <energyConsumerType> like IEnergyConsumer

if energyConsumerType != "";

The following sections describe the parts of the radio model.

1 Wired network interfaces could similarly contain an explicit PHY model. The reason they do not is that wired links normally have very
low error rates and simple observable behavior, and there is usually not much to be gained from modeling the physical layer in detail.

77

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.contract.packetlevel.IRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.contract.packetlevel.IRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.Radio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.Radio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.Radio.html


INET Framework User’s Guide

20.3 Components of a Radio

20.3.1 Antenna Models

The antenna model describes the effects of the physical device which converts electric signals into radio waves,
and vice versa. This model captures the antenna characteristics that heavily affect the quality of the communication
channel. For example, various antenna shapes, antenna size and geometry, antenna arrays, and antenna orientation
causes different directional or frequency selectivity.

The antenna model provides a position and an orientation using a mobility model that defaults to the mobility
of the node. The main purpose of this model is to compute the antenna gain based on the specific antenna
characteristics and the direction of the signal. The signal direction is computed by the medium from the position
and the orientation of the transmitter and the receiver. The following list provides some examples:

• IsotropicAntenna: antenna gain is exactly 1 in any direction

• ConstantGainAntenna: antenna gain is a constant determined by a parameter

• DipoleAntenna: antenna gain depends on the direction according to the dipole antenna characteristics

• InterpolatingAntenna: antenna gain is computed by linear interpolation according to a table indexed by the
direction angles

20.3.2 Transmitter Models

The transmitter model describes the physical process which converts packets into electric signals. In other words,
this model converts an L2 frame into a signal that is transmitted on the medium. The conversion process and
the representation of the signal depends on the level of detail and the physical characteristics of the implemented
protocol.

There are two main levels of detail (or modeling depths):

• In the flat model, the transmitter model skips the symbol domain and the sample domain representations,
and it directly creates the analog domain representation. The bit domain representation is reduced to the bit
length of the packet, and the actual bits are ignored.

• In the layered model, the conversion process involves various processing steps such as packet serialization,
forward error correction encoding, scrambling, interleaving, and modulation. This transmitter model re-
quires significantly more computation, but it produces accurate bit domain, symbol domain, and sample
domain representations.

Some of the transmitter types available in INET:

• UnitDiskTransmitter

• ApskScalarTransmitter

• ApskDimensionalTransmitter

• ApskLayeredTransmitter

• Ieee80211ScalarTransmitter

• Ieee80211DimensionalTransmitter

20.3.3 Receiver Models

The receiver model describes the physical process which converts electric signals into packets. In other words,
this model converts a reception, along with an interference computed by the medium model, into a MAC packet
and a reception indication.

For a packet to be received successfully, reception must be possible (based on reception power, bandwidth, mod-
ulation scheme and other characteristics), it must be attempted (i.e. the receiver must synchronize itself on the

78 Chapter 20. The Physical Layer

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.antenna.IsotropicAntenna.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.antenna.ConstantGainAntenna.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.antenna.DipoleAntenna.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.antenna.InterpolatingAntenna.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskTransmitter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskScalarTransmitter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskDimensionalTransmitter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredTransmitter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarTransmitter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211DimensionalTransmitter.html


INET Framework User’s Guide

preamble and start receiving), and it must be successful (as determined by the error model and the simulated part
of the signal decoding).

In the flat model, the receiver model skips the sample domain, the symbol domain, and the bit domain represen-
tations, and it directly creates the packet domain representation by copying the packet from the transmission. It
uses the error model to decide whether the reception is successful.

In the layered model, the conversion process involves various processing steps such as demodulation, descram-
bling, deinterleaving, forward error correction decoding, and deserialization. This reception model requires much
more computation than the flat model, but it produces accurate sample domain, symbol domain, and bit domain
representations.

Some of the receiver types available in INET:

• UnitDiskReceiver

• ApskScalarReceiver

• ApskDimensionalReceiver

• ApskLayeredReceiver

• Ieee80211ScalarReceiver

• Ieee80211DimensionalReceiver

20.3.4 Error Models

Determining reception errors is a crucial part of the reception process. There are often several different statistical
error models in the literature even for a particular physical layer. In order to support this diversity, the error model
is a separate replaceable component of the receiver.

The error model describes how the signal to noise ratio affects the amount of errors at the receiver. The main
purpose of this model is to determine whether the received packet has errors or not. It also computes various
physical layer indications for higher layers such as packet error rate, bit error rate, and symbol error rate. For
the layered reception model it needs to compute the erroneous bits, symbols, or samples depending on the lowest
simulated physical domain where the real decoding starts. The error model is optional (if omitted, all receptions
are considered successful.)

The following list provides some examples:

• StochasticErrorModel: simplistic error model with constant symbol/bit/packet error rates as parameters;
suitable for testing.

• ApskErrorModel

• Ieee80211NistErrorModel, Ieee80211YansErrorModel, Ieee80211BerTableErrorModel: various error mod-
els for IEEE 802.11 network interfaces.

20.3.5 Power Consumption Models

A substantial part of the energy consumption of communication devices comes from transmitting and receiving
signals. The energy consumer model describes how the radio consumes energy depending on its activity. This
model is optional (if omitted, energy consumption is ignored.)

The following list provides some examples:

• StateBasedEpEnergyConsumer: power consumption is determined by the radio state (a combi-
nation of radio mode, transmitter state and receiver state), and specified in parameters like
receiverIdlePowerConsumption and receiverReceivingDataPowerConsumption, in
watts.

• StateBasedCcEnergyConsumer: similar to the previous one, but consumption is given in ampères.

20.3. Components of a Radio 79

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskReceiver.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskScalarReceiver.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskDimensionalReceiver.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredReceiver.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarReceiver.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211DimensionalReceiver.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.errormodel.packetlevel.StochasticErrorModel.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.errormodel.ApskErrorModel.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.errormodel.Ieee80211NistErrorModel.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.errormodel.Ieee80211YansErrorModel.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.errormodel.Ieee80211BerTableErrorModel.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.energyconsumer.StateBasedEpEnergyConsumer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.energyconsumer.StateBasedCcEnergyConsumer.html


INET Framework User’s Guide

20.4 Layered Radio Models

In layered radio models, the transmitter and receiver models are split to several stages to allow more fine-grained
modeling.

For transmission, processing steps such as packet serialization, forward error correction (FEC) encoding, scram-
bling, interleaving, and modulation are explicitly modeled. Reception involves the inverse operations: demodula-
tion, descrambling, deinterleaving, FEC decoding, and deserialization.

In layered radio models, these processing steps are encapsulated in four stages, represented as four submodules in
both the transmitter and receiver model:

1. Encoding and Decoding describe how the packet domain signal representation is converted into the bit
domain, and vice versa.

2. Modulation and Demodulation describe how the bit domain signal representation is converted into the sym-
bol domain, and vice versa.

3. Pulse Shaping and Pulse Filtering describe how the symbol domain signal representation is converted into
the sample domain, and vice versa.

4. Digital Analog and Analog Digital Conversion describe how the sample domain signal representation is
converted into the analog domain, and vice versa.

In layered radio transmitters and receivers such as ApskLayeredTransmitter and ApskLayeredReceiver, these sub-
modules have parametric types to make them replaceable. This provides immense freedom for experimentation.

20.5 Notable Radio Models

The Radio module has several specialized versions derived from it, where certain submodule types and parameters
are set to fixed values. This section describes some of the frequently used ones.

The radio can be replaced in wireless network interfaces by setting the radioType parameter, like in the follow-
ing ini file fragment.

**.wlan[*].radioType = "UnitDiskRadio"

However, be aware that not all MAC protocols can be used with all radio models, and that some radio models
require a matching transmission medium module.

20.5.1 UnitDiskRadio

UnitDiskRadio provides a very simple but fast and predictable physical layer model. It is the implementation (with
some extensions) of the Unit Disk Graph model, which is widely used for the study of wireless ad-hoc networks.
UnitDiskRadio is applicable if network nodes need to have a finite communication range, but physical effects of
signal propagation are to be ignored.

UnitDiskRadio allows three radii to be given as parameters, instead of the usual one: communication range, inter-
ference range, and detection range. One can also turn off interference modeling (meaning that signals colliding at
a receiver will all be received correctly), which is sometimes a useful abstraction.

UnitDiskRadio needs to be used together with a special physical medium model, UnitDiskRadioMedium.

The following ini file fragment shows an example configuration.

*.radioMediumType = "UnitDiskRadioMedium"

*.host[*].wlan[*].radioType = "UnitDiskRadio"

*.host[*].wlan[*].radio.transmitter.bitrate = 2Mbps

*.host[*].wlan[*].radio.transmitter.preambleDuration = 0s

*.host[*].wlan[*].radio.transmitter.headerLength = 100b

*.host[*].wlan[*].radio.transmitter.communicationRange = 100m
(continues on next page)

80 Chapter 20. The Physical Layer

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredTransmitter.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredReceiver.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.Radio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadioMedium.html


INET Framework User’s Guide

(continued from previous page)

*.host[*].wlan[*].radio.transmitter.interferenceRange = 0m

*.host[*].wlan[*].radio.transmitter.detectionRange = 0m

*.host[*].wlan[*].radio.receiver.ignoreInterference = true

As a side note, if modeling full connectivity and ignoring interference is required, then ShortcutInterface provides
an even simpler and faster alternative.

20.5.2 APSK Radio

APSK radio models provide a hypothetical radio that simulates one of the well-known ASP, PSK and QAM
modulations. (APSK stands for Amplitude and Phase-Shift Keying.)

APSK radio has scalar/dimensional, and flat/layered variants. The flat variants, ApskScalarRadio and ApskDimen-
sionalRadio model frame transmissons in the selected modulation scheme but without utilizing other techniques
such as forward error correction (FEC), interleaving, spreading, etc. These radios require matching medium mod-
els, ApskScalarRadioMedium and ApskDimensionalRadioMedium.

The layered versions, ApskLayeredScalarRadio and ApskLayeredDimensionalRadio can not only model the pro-
cessing steps missing from their simpler counterparts, they also feature configurable level of detail: the transmitter
and receiver modules have levelOfDetail parameters that control which domains are actually simulated.
These radio models must be used in conjuction with ApskLayeredScalarRadioMedium and ApskLayeredDimen-
sionalRadioMedium, respectively.

20.5. Notable Radio Models 81

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.shortcut.ShortcutInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskScalarRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskDimensionalRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskDimensionalRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskDimensionalRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredScalarRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredDimensionalRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredDimensionalRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredDimensionalRadioMedium.html


INET Framework User’s Guide

82 Chapter 20. The Physical Layer



CHAPTER

TWENTYONE

THE TRANSMISSION MEDIUM

21.1 Overview

For wireless communication, an additional module is required to model the shared physical medium where the
communication takes place. This module keeps track of transceivers, noise sources, ongoing transmissions, back-
ground noise, and other ongoing noises.

It relies on several models:

1. signal propagation model

2. path loss model

3. obstacle loss model

4. background noise model

5. signal analog model

With the help of the above models, the medium module computes when, where, and how signals arrive at re-
ceivers, including the set of interfering signals and noises. In addition, the medium module also contains various
mechanisms and ways to improve the scalability of wireless network simulations.

21.2 RadioMedium

The standard transmission medium model in INET is RadioMedium. RadioMedium is as an OMNeT++ com-
pound module with several replaceable submodules. It contains submodules for each of the above models (signal
propagation, path loss, etc.), and various caches for efficiency.

Note that RadioMedium is an active compound module, that is, it has an associated C++ class that encapsulates
the computations.

RadioMedium contains its components as submodules with parametric types:

propagation: <propagationType> like IPropagation;
analogModel: <analogModelType> like IAnalogModel;
backgroundNoise: <backgroundNoiseType> like IRadioBackgroundNoise

if backgroundNoiseType != "";
pathLoss: <pathLossType> like IPathLoss;
obstacleLoss: <obstacleLossType> like IObstacleLoss

if obstacleLossType != "";
mediumLimitCache: <mediumLimitCacheType> like IMediumLimitCache;
communicationCache: <communicationCacheType> like ICommunicationCache;
neighborCache: <neighborCacheType> like INeighborCache

if neighborCacheType != "";

There are many preconfigured versions of RadioMedium:

• For use with UnitDiskRadio: UnitDiskRadioMedium

83

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.RadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.RadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.RadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.RadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.RadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadio.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.unitdisk.UnitDiskRadioMedium.html


INET Framework User’s Guide

• For APSK radios: ApskScalarRadioMedium, ApskDimensionalRadioMedium, ApskLayeredScalarRa-
dioMedium, ApskLayeredDimensionalRadioMedium,

• For IEEE 802.11: Ieee80211ScalarRadioMedium, Ieee80211DimensionalRadioMedium,
Ieee80211LayeredScalarRadioMedium, Ieee80211LayeredDimensionalRadioMedium,

• For IEEE 802.15.4: Ieee802154UwbIrRadioMedium, Ieee802154NarrowbandScalarRadioMedium

The following sections describe the parts of the medium model.

21.3 Propagation Models

When a transmitter starts to transmit a signal, the beginning of the signal propagates through the transmission
medium. When the transmitter ends the transmission, the signal’s end propagates similarly. The propagation
model describes how a signal moves through space over time. Its main purpose is to compute the arrival space-
time coordinates at receivers. There are two built-in models in INET, implemented as simple modules:

• ConstantTimePropagation is a simplistic model where the propagation time is independent of the traveled
distance. The propagation time is simply determined by a module parameter.

• ConstantSpeedPropagation is a more realistic model where the propagation time is proportional to the trav-
eled distance. The propagation time is independent of the transmitter and receiver movement during both
signal transmission and propagation. The propagation speed is determined by a module parameter.

The default propagation model is configured as follows:

*.radioMedium.propagation.typename = "ConstantSpeedPropagation" # module type

*.radioMedium.propagation.propagationSpeed = 299792458 mps # speed of light

A more accurate model could take into consideration the transmitter and receiver movement. This effect becomes
especially important for acoustic communication, because the propagation speed of the signal is much more com-
parable to the speed of the transceivers.

21.4 Path Loss Models

As a signal propagates through space its power density decreases. This is called path loss and it is the combina-
tion of many effects such as free-space loss, refraction, diffraction, reflection, and absorption. There are several
different path loss models in the literature, which differ in their parameterization and application area.

In INET, a path loss model is an OMNeT++ simple module implementing a specific path loss algorithm. Its main
purpose is to compute the power loss for a given signal, but it is also capable of estimating the range for a given
loss. The latter is useful, for example, to allow visualizing communication range. INET contains a number of
built-in path loss algorithms, each comes with its own set of parameters:

• FreeSpacePathLoss models line of sight path loss for air or vacuum.

• BreakpointPathLoss refines it using dual slope model with two separate path loss exponents.

• LogNormalShadowing models path loss for a wide range of environments (e.g. urban areas, and buildings)

• TwoRayGroundReflection models interference between line of sight and single ground reflection.

• TwoRayInterference refines the above for inter-vechicle communication.

• RicianFading is a stochastical model for the anomaly caused by partial cancellation of a signal by itself.

• RayleighFading is a stochastical model for heavily built-up urban environments when there is no dominant
propagation along the line of sight.

• NakagamiFading further refines the above two models for cellular systems.

The following example replaces the default free-space path loss model with log normal shadowing:

84 Chapter 21. The Transmission Medium

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.packetlevel.ApskDimensionalRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.apskradio.bitlevel.ApskLayeredDimensionalRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.packetlevel.Ieee80211DimensionalRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.bitlevel.Ieee80211LayeredScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee80211.bitlevel.Ieee80211LayeredDimensionalRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee802154.bitlevel.Ieee802154UwbIrRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.ieee802154.packetlevel.Ieee802154NarrowbandScalarRadioMedium.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.propagation.ConstantTimePropagation.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.propagation.ConstantSpeedPropagation.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.pathloss.FreeSpacePathLoss.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.pathloss.BreakpointPathLoss.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.pathloss.LogNormalShadowing.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.pathloss.TwoRayGroundReflection.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.pathloss.TwoRayInterference.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.pathloss.RicianFading.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.pathloss.RayleighFading.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.pathloss.NakagamiFading.html


INET Framework User’s Guide

*.radioMedium.pathLoss.typename = "LogNormalShadowing" # module type

*.radioMedium.pathLoss.sigma = 1.1 # override default value of 1

21.5 Obstacle Loss Models

When the signal propagates through space it also passes through physical objects present in that space. As the
signal penetrates physical objects, its power decreases when it reflects from surfaces, and also when it is absorbed
by their material. There are various ways to model this effect, which differ in the trade-off between accuracy and
performance.

In INET, an obstacle loss model is an OMNeT++ simple module. Its main purpose is to compute the power
loss based on the traveled path and the signal frequency. The obstacle loss models most often use the physical
environment model to determine the set of penetrated physical objects. INET contains a few built-in obstacle loss
models:

• IdealObstacleLoss model determines total or no power loss at all by checking if there is any obstructing
physical object along the straight propagation path.

• DielectricObstacleLoss computes the power loss based on the accurate dielectric and reflection loss along
the straight path considering the shape, position, orientation, and material of obstructing physical objects.

By default, the medium module doesn’t contain any obstacle loss model, but configuring one is very simple:

*.radioMedium.obstacleLoss.typename = "DielectricObstacleLoss" # module type

Statistical obstacle loss models are also possible but currently not provided.

21.6 Background Noise Models

Thermal noise, cosmic background noise, and other random fluctuations of the electromagnetic field affect the
quality of the communication channel. This kind of noise doesn’t come from a particular source, so it doesn’t
make sense to model its propagation through space. The background noise model describes instead how it changes
over space and time.

In INET, a background noise model is an OMNeT++ simple module. Its main purpose is to compute the ana-
log representation of the background noise for a given space-time interval. For example, IsotropicScalarBack-
groundNoise computes a background noise that is independent of space-time coordinates, and its scalar power is
determined by a module parameter.

The simplest background noise model can be configured as follows:

*.radioMedium.backgroundNoise.typename = "IsotropicScalarBackgroundNoise" # type

*.radioMedium.backgroundNoise.power = -110 dBm # isotropic scalar noise power

21.7 Analog Models

The analog signal is a complex physical phenomenon which can be modeled in many different ways. Choosing
the right analog domain signal representation is the most important factor in the trade-off between accuracy and
performance. The analog model of the transmission medium determines how signals are represented while being
transmitted, propagated, and received.

In INET, an analog model is an OMNeT++ simple module. Its main purpose is to compute the received signal
from the transmitted signal. The analog model combines the effect of the antenna, path loss, and obstacle loss
models. Transceivers must be configured transmit and receive signals according to the representation used by the
analog model.

21.5. Obstacle Loss Models 85

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.obstacleloss.IdealObstacleLoss.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.obstacleloss.DielectricObstacleLoss.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.backgroundnoise.IsotropicScalarBackgroundNoise.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.backgroundnoise.IsotropicScalarBackgroundNoise.html


INET Framework User’s Guide

The most commonly used analog model, which uses a scalar signal power representation over a frequency and
time interval, can be configured as follows:

*.radioMedium.analogModel.typename = "ScalarAnalogModel" # module type

21.8 Neighbor Cache

Transceivers are considered neighbors if successful communication is possible between them. For wired commu-
nication it is easy to determine which transceivers are neighbors, because they are connected by wires. In contrast,
in wireless communication determining which transceivers are neighbors isn’t obvious at all.

In INET, a neighbor cache is an OMNeT++ simple module which provides an efficient way of keeping track of
the neighbor relationship between transceivers. Its main purpose is to compute the set of affected receivers for a
given transmission. All built-in models in INET provide a conservative approximation only, because they update
their state periodically:

• NeighborListNeighborCache takes a range as parameter, and for each transceiver it maintains the list of
receivers within range (neighbor list).

• GridNeighborCache organizes transceivers in a 3D grid with constant cell size.

• QuadTreeNeighborCache organizes transceivers in a 2D quad tree (ignoring the Z axis) with constant node
size.

The following example sets QuadTreeNeighborCache as neighbor cache:

**.radioMedium.neighborCache.typename = "QuadTreeNeighborCache" # module type

**.radioMedium.neighborCache.maxNumOfPointsPerQuadrant = 4 # affects tree depth

How should one decide which neighbor cache to choose for a given simulation? As the sole purpose of the
neighbor cache is to speed up the simulation, one should choose the one that leads to the best performance for that
particular network. Which one performs best is best determined by experimentation, as it depends on many factors:
number of nodes, their spatial distribution, their speed and movement pattern, their communication pattern, and
so on. Note that not only the choice of neighbor cache but also its parameterization can affect performance.

21.9 Medium Limit Cache

The medium limit cache (and its default implementation MediumLimitCache) keeps track of certain thresholds
and minimum/maximum values of quantities related to layer 1 modeling. Some of these limits can be gathered
from other modules in the network, but still, all of them can be explicitly specified by the user. The quantities
include:

• maximum speed (can be gathered from mobility models)

• maximum transmission power

• minimum interference power and reception power

• maximum antenna gain (can be computed from antenna models)

• minimum time interval to consider two overlapping signals interfering

• maximum duration of a transmission

• maximum communication range and interference range (can be computed from transmitter and receiver
models)

These limits allow the transmission medium model to make assumptions about the locations of nodes (i.e. the
maximum distance they can move during some interval), about the possibility of interference, and about the
possibility of a signal being receivable.

86 Chapter 21. The Transmission Medium

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.neighborcache.NeighborListNeighborCache.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.neighborcache.GridNeighborCache.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.neighborcache.QuadTreeNeighborCache.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.neighborcache.QuadTreeNeighborCache.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.common.packetlevel.MediumLimitCache.html


INET Framework User’s Guide

21.10 Communication Cache

The communication cache is used to cache various intermediate computation results related to the communication
on the medium. The main motivation to have multiple implementations is that different implementations may be
the most efficient in different simulations. Also, a conservative (simple but robust) implementation may be used
for validating new (more efficient but also more complex) implementations.

Implementations include:

• ReferenceCommunicationCache

• MapCommunicationCache

• VectorCommunicationCache

21.11 Improving Scalability

The simulation of wireless networks is inherently less scalable than that of wired networks. In wired networks,
a transmission only affects the host’s neighbors on the link, which is usually 1 in modern networks that are
dominated by point-to-point links. The wireless medium, however, is a broadcast medium. Any transmission is
“heard” by all nodes within interference range, not only the intended recipients. The signal may be receivable by
them (and must be indeeded received before the destination address field in it can be examined), or may interfere
with the reception of other transmissions. Whichever the case, the transmission must be evaluated or processed by
a much larger number of nodes than in the wired case. This makes the computational complexity at least 𝑂(𝑛2)
(𝑛 being the number of nodes.) Other effects may further increase the exponent.

The medium module provides a set of parameters that can be used to alleviate the scalability issue. These filter
parameters that can be used to reduce the amount of processing at nodes that are not the indended recipients of the
frame, increasing simulation performance.

There are several filters that can be enabled/disabled individually:

• Range filter. When this filter is active, the medium module does not send signals to a radio if it is outside
interference range (or communication range, this option can also be selected.)

• Radio mode filter. When this filter is active, the medium module does not send signals to a radio if it is
neither in receiver nor in transceiver mode.

• Listening filter. When this filter is active, the medium module does not send signals to a radio if it listens on
the channel in incompatible mode (e.g. different carrier frequency and bandwidth, or different modulation)

• MAC address filter. When this filter is active, the radio medium does not send signals to a radio if it the
destination MAC address does not match

The corresponding module parameters are called rangeFilter, radioModeFilter, listeningFilter
and macAddressFilter. By default, all filters are turned off.

21.10. Communication Cache 87

https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.communicationcache.ReferenceCommunicationCache.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.communicationcache.MapCommunicationCache.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.communicationcache.VectorCommunicationCache.html


INET Framework User’s Guide

88 Chapter 21. The Transmission Medium



CHAPTER

TWENTYTWO

THE PHYSICAL ENVIRONMENT

22.1 Overview

Wireless networks are heavily affected by the physical environment, and the requirements for today’s ubiquitous
wireless communication devices are increasingly demanding. Cellular networks serve densely populated urban
areas, wireless LANs need to be able to cover large buildings with several offices, low-power wireless sensors must
tolerate noisy industrial environments, batteries need to remain operational under various external conditions, and
so on.

The propagation of radio signals, the movement of communicating agents, battery exhaustion, etc., depend on the
surrounding physical environment. For example, signals can be absorbed by objects, can pass through objects, can
be refracted by surfaces, can be reflected from surfaces, or battery capacity might depend on external temperature.
These effects cannot be ignored in high-fidelity simulations.

In order to help the modeling process, the model of the physical environment in the INET Framework is separated
from the rest of the simulation model. The main goal of the physical environment model is to describe buildings,
walls, vegetation, terrain, weather, and other physical objects and conditions that might have effects on radio signal
propagation, movement, batteries, etc. This separation makes the model reusable by all other simulation models
that depend on these circumstances.

The following sections provide a brief overview of the physical environment model.

22.2 PhysicalEnvironment

In INET, the physical environment is modeled by the PhysicalEnvironment compound module. This module
normally has one instance in the network, and acts as a database that other parts of the simulation can query at
runtime. It contains the following information:

• geometry and properties of physical objects (usually referrred to as “obstacles” in wireless simulations)

• a ground model

• other physical properties of the environment, like its bounds in space

PhysicalEnvironment is an active compound module, that is, it has an associated C++ class that contains the data
structures and implements an API that allows other modules to query the data.

Part of PhysicalEnvironment’s functionality is implemented in submodules for easy replacement. They are cur-
rently the ground model, and an object cache (for efficient queries):

ground: <groundType> like IGround if groundType != "";
objectCache: <objectCacheType> like IObjectCache if objectCacheType != "";

89

https://omnetpp.org/doc/inet/api-current/neddoc/inet.environment.common.PhysicalEnvironment.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.environment.common.PhysicalEnvironment.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.environment.common.PhysicalEnvironment.html


INET Framework User’s Guide

22.3 Physical Objects

The most important aspect of the physical environment is the objects which are present in it. For example,
simulating an indoor Wifi scenario may need to model walls, floors, ceilings, doors, windows, furniture, and
similar objects, because they all affect signal propagation (obstacle modeling).

Objects are located in space, and have shapes and materials. The physical environment model supports basic
shapes and homogeneous materials, which is a simplified description but still allows for a reasonable approxima-
tion of reality. Physical objects in INET have the following properties:

• shape describes the object in 3D independent of its position and orientation.

• position determines where the object is located in the 3D space.

• orientation determines how the object is rotated relative to its default orientation.

• material describes material specific physical properties.

• graphical properties provide parameters for better visualization.

Graphical properties include:

• line width: affects surface outline

• line color: affects surface outline

• fill color: affects surface fill

• opacity: affects surface outline and fill

• tags: allows filtering objects on the graphical user interface

Physical objects in INET are stationary, they cannot change their position or orientation over time. Since the
shape of the physical objects might be quite diverse, the model is designed to be extensible with new shapes.
INET provides the following shapes:

• sphere shapes are specified by a radius

• cuboid shapes are specified by a length, a width, and a height

• prism shapes are specified by a 2D polygon base and a height

• polyhedron shapes are specified by the convex hull of a set of 3D vertices

The following example shows how to define various physical objects using the XML syntax supported by the
physical environment:

<environment>
<!-- shapes and materials -->
<shape id="1" type="sphere" radius="10"/>
<shape id="2" type="cuboid" size="20 30 40"/>
<shape id="3" type="prism" height="10" points="0 0 10 0 10 10 0 10"/>
<shape id="4" type="polyhedron" points="0 0 0 10 0 0 10 10 0 0 10 0 ..."/>
<material id="1" resistivity="10" relativePermittivity="4.5"/>
<!-- an object that uses a previously defined shape and material -->
<object position="min 10 20 0" orientation="45 0 0" shape="1" material="1"/>
<!-- an object defined with an in-line shape -->
<object position="min 10 20 0" orientation="45 -30 0" shape="cuboid 20 30 40"

material="concrete" line-color="0 0 0" fill-color="112 128 144"/>
</environment>

In order to load the above XML file, the following configuration could be used:

*.physicalEnvironment.config = xmldoc("objects.xml") # load physical objects

90 Chapter 22. The Physical Environment



INET Framework User’s Guide

22.4 Ground Models

In inter-vehicle simulations the terrain has profound effects on signal propagation. For example, vehicles on the
opposite sides of a mountain cannot directly communicate with each other.

A ground model describes the 3D surface of the terrain. Its main purpose is to compute a position on the surface
underneath an particular position.

INET contains the following built-in ground models implemented as OMNeT++ simple modules:

• FlatGround is a trivial model which provides a flat surface parallel to the XY plane at a certain height.

• OsgEarthGround is a more realistic model (based on ) which provides a terrain surface.

22.5 Geographic Coordinate System Models

In order to run high fidelity simulations, it is often required to embed the communication network into a real world
map. With the new OMNeT++ 5 version, INET already provides support for 3D maps using for visualization and
as the map provider.

However, INET carries out all geometric computation internally (including signal propagation and path loss) in
a 3D Euclidean coordinate system. The discrepancy between the internal playground coordinate system and the
usual geographic coordinate systems must be resolved.

A geographic coordinate system model maps playground coordinates to geographic coordinates, and vice versa.
Such a model allows positioning physical objects and describing network node mobility using geographical coor-
dinates (e.g longitude, latitude, altitude).

In INET, a geographic coordinate system model is implemented as an OMNeT++ simple module:

• SimpleGeographicCoordinateSystem provides a trivial linear approximation without any external depen-
dency.

• OsgGeographicCoordinateSystem provides an accurate mapping using the external library.

In order to use geographic coordinates in a simulation, a geographic coordinate system module must be included in
the network. The desired physical environment module and mobility modules must be configured (using module
path parameters) to use the geographic coordinate system module. The following example also shows how the
geographic coordinate system module can be configured to place the playground at a particular geographic location
and orientation.

*.physicalEnvironment.coordinateSystemModule = "coordinateSystem" # reference

*.*.mobility.coordinateSystemModule = "coordinateSystem" # reference

*.coordinateSystem.playgroundLongitude = -71.070421deg # playground origin

*.coordinateSystem.playgroundLatitude = 42.357824deg # playground origin

*.coordinateSystem.playgroundHeading = 68.3deg # playground orientation

22.6 Object Cache

If a simulation contains a large number of physical objects, then signal propagation may become computationally
very expensive. The reason is that the transmission medium model must check each line of sight path between all
transmitter and receiver pairs against all physical objects.

An object cache organizes physical objects into a data structure which provides efficient geometric queries. Its
main purpose is to iterate all physical objects penetrated by a 3D line segment.

In INET, an object cache model is implemented as an OMNeT++ simple module:

• GridObjectCache organizes objects into a fixed cell size 3D spatial grid.

• BvhObjectCache organizes objects into a tree data structure based on recursive 3D volume division.

22.4. Ground Models 91

https://omnetpp.org/doc/inet/api-current/neddoc/inet.environment.ground.FlatGround.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.environment.ground.OsgEarthGround.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.geometry.common.SimpleGeographicCoordinateSystem.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.geometry.common.OsgGeographicCoordinateSystem.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.environment.objectcache.GridObjectCache.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.environment.objectcache.BvhObjectCache.html


INET Framework User’s Guide

92 Chapter 22. The Physical Environment



CHAPTER

TWENTYTHREE

NODE MOBILITY

23.1 Overview

In order to simulate ad-hoc wireless networks, it is important to model the motion of mobile network nodes.
Received signal strength, signal interference, and channel occupancy depend on the distances between nodes. The
selected mobility models can significantly influence the results of the simulation (e.g. via packet loss rates).

A mobility model describes position and orientation over time in a 3D Euclidean coordinate system. Its main
purpose is to provide position, velocity and acceleration, and also angular position, angular velocity, and angular
acceleration data as three-dimensional quantities at the current simulation time.

In INET, a mobility model is most often an OMNeT++ simple module implementing the motion as a C++ algo-
rithm. Although most models have a few common parameters (e.g. for initial positioning), they always come with
their own set of parameters. Some models support geographic positioning to ease the configuration of map based
scenarios.

Mobility models be single or group mobility models. Single mobility models describe the motion of entities
independent of each other. Group mobility models provide such a motion where group members are dependent on
each other.

Mobility models can also be categorized as trace-based, deterministic, stochastic, and combining models.

23.1.1 Using Mobility Models

In order for a mobility model to actually have an effect on the motion of a network node, the mobility model
needs to be included as a submodule in the compound module of the network node. By default, a transceiver
antenna within a network node uses the same mobility model as the node itself, but that is completely optional.
For example, it is possible to model a vehicle facing forward while moving on a road that contains multiple
transceiver antennas at different relative locations with different orientations.

23.1.2 The Playground

Many mobility models allow the user to define a cubic volume that the node can not leave. The
volume is configured by setting the constraintAreaX, constraintAreaY, constraintAreaZ,
constraintAreaWidth, constraintAreaHeight and constraintAreaDepth parameters.

If the initFromDisplayString parameter, the initial position is taken from the display string. Otherwise, the
position can be given in the initialX, initialY and initialZ parameters. If neither of these parameters
are given, a random initial position is choosen within the contraint area.

When the node reaches the boundary of the constraint area, the mobility component has to prevent the node to
exit. Many mobility models offer the following policies:

• reflect of the wall

• reappear at the opposite edge (torus area)

• placed at a randomly chosen position of the area

93



INET Framework User’s Guide

• stop the simulation with an error

23.2 Built-In Mobility Models

23.2.1 List of Mobility Models

The following, potentially list contains the mobility models available in INET. Nearly all of these models als single
mobility models; group mobility can be implemented e.g. with combining other mobility models.

Stationary

Stationary models only define position (and orientation), but no motion.

• StationaryMobility provides deterministic and random positioning.

• StaticGridMobility places several mobility models in a rectangular grid.

• StaticConcentricMobility places several models in a set of concentric circles.

Deterministic

Deterministic mobility models use non-random mathematical models for describing motion.

• LinearMobility moves linearly with a constant speed or constant acceleration.

• CircleMobility moves around a circle parallel to the XY plane with constant speed.

• RectangleMobility moves around a rectangular area parallel to the XY plane with constant speed.

• TractorMobility moves similarly to a tractor on a field with a number of rows.

• VehicleMobility moves similarly to a vehicle along a path especially turning around corners.

• TurtleMobility moves according to an XML script written in a simple yet expressive LOGO-like program-
ming language.

• FacingMobility orients towards the position of another mobility model.

Trace-Based

Trace-based mobility models replay recorded motion as observed in real life.

• BonnMotionMobility replays trace files of the BonnMotion scenario generator.

• Ns2MotionMobility replays files of the CMU’s scenario generator used in ns2.

• AnsimMobility replays XML trace files of the ANSim (Ad-Hoc Network Simulation) tool.

Stochastic

Stochastic or random mobility models use mathematical models involving random numbers.

• RandomWaypointMobility moves to random destination with random speed.

• GaussMarkovMobility uses one parameter to vary the degree of randomness from linear to Brown motion.

• MassMobility moves similarly to a mass with inertia and momentum.

• ChiangMobility uses a probabilistic transition matrix to change the motion state.

94 Chapter 23. Node Mobility

https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.static.StationaryMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.static.StaticGridMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.static.StaticConcentricMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.LinearMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.CircleMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.RectangleMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.TractorMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.VehicleMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.TurtleMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.FacingMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.BonnMotionMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.Ns2MotionMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.AnsimMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.RandomWaypointMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.GaussMarkovMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.MassMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.ChiangMobility.html


INET Framework User’s Guide

Combining

Combining mobility models are not mobility models per se, but instead, they allow more complex motions to be
formed from simpler ones via superposition and other ways.

• SuperpositioningMobility model combines several other mobility models by summing them up. It allows
creating group mobility by sharing a mobility model in each group member, separating initial positioning
from positioning during the simulation, and separating positioning from orientation.

• AttachedMobility models a mobility that is attached to another one at a given offset. Position, velocity and
acceleration are all affected by the respective quantites and also the orientation of the referenced mobility.

23.2.2 More Information on Some Mobility Models

TractorMobility

Moves a tractor through a field with a certain amount of rows. The following figure illustrates the movement of
the tractor when the rowCount parameter is 2. The trajectory follows the segments in 1,2,3,4,5,6,7,8,
1,2,3... order. The area is configured by the x1, y1, x2, y2 parameters.

RandomWaypointMobility

In the Random Waypoint mobility model the nodes move in line segments. For each line segment, a random
destination position (distributed uniformly over the playground) and a random speed is chosen. You can define
a speed as a variate from which a new value will be drawn for each line segment; it is customary to specify
it as uniform(minSpeed, maxSpeed). When the node reaches the target position, it waits for the time
waitTime which can also be defined as a variate. After this time the the algorithm calculates a new random
position, etc.

GaussMarkovMobility

The Gauss-Markov model contains a tuning parameter that control the randomness in the movement of the node.
Let the magnitude and direction of speed of the node at the 𝑛th time step be 𝑠𝑛 and 𝑑𝑛. The next speed and
direction are computed as

𝑠𝑛+1 = 𝛼𝑠𝑛 + (1 − 𝛼)𝑠 +
√︀

(1 − 𝛼2)𝑠𝑥𝑛

𝑑𝑛+1 = 𝛼𝑠𝑛 + (1 − 𝛼)𝑑 +
√︀

(1 − 𝛼2)𝑑𝑥𝑛

where 𝑠 and 𝑑 are constants representing the mean value of speed and direction as 𝑛 → ∞; and 𝑠𝑥𝑛
and 𝑑𝑥𝑛

are
random variables with Gaussian distribution.

Totally random walk (Brownian motion) is obtained by setting 𝛼 = 0, while 𝛼 = 1 results a linear motion.

23.2. Built-In Mobility Models 95

https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.SuperpositioningMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.AttachedMobility.html


INET Framework User’s Guide

To ensure that the node does not remain at the boundary of the constraint area for a long time, the mean value of
the direction (𝑑) modified as the node enters the margin area. For example at the right edge of the area it is set to
180 degrees, so the new direction is away from the edge.

MassMobility

This is a random mobility model for a mobile host with a mass. It is the one used in [?].

“An MH moves within the room according to the following pattern. It moves along a straight line for
a certain period of time before it makes a turn. This moving period is a random number, normally
distributed with average of 5 seconds and standard deviation of 0.1 second. When it makes a turn, the
new direction (angle) in which it will move is a normally distributed random number with average
equal to the previous direction and standard deviation of 30 degrees. Its speed is also a normally
distributed random number, with a controlled average, ranging from 0.1 to 0.45 (unit/sec), and stan-
dard deviation of 0.01 (unit/sec). A new such random number is picked as its speed when it makes
a turn. This pattern of mobility is intended to model node movement during which the nodes have
momentum, and thus do not start, stop, or turn abruptly. When it hits a wall, it reflects off the wall at
the same angle; in our simulated world, there is little other choice.”

This implementation can be parameterized a bit more, via the changeInterval, changeAngleBy and
changeSpeedBy parameters. The parameters described above correspond to the following settings:

• changeInterval = normal(5, 0.1)

• changeAngleBy = normal(0, 30)

• speed = normal(avgSpeed, 0.01)

ChiangMobility

Implements Chiang’s random walk movement model ([?]). In this model, the state of the mobile node in each
direction (x and y) can be:

• 0: the node stays in its current position

• 1: the node moves forward

• 2: the node moves backward

The (𝑖, 𝑗) element of the state transition matrix determines the probability that the state changes from 𝑖 to 𝑗:⎛⎝ 0 0.5 0.5
0.3 0.7 0
0.3 0 0.7

⎞⎠

23.2.3 Replaying trace files

BonnMotionMobility

Uses the native file format of BonnMotion.

The file is a plain text file, where every line describes the motion of one host. A line consists of one or more (t, x,
y) triplets of real numbers, like:

t1 x1 y1 t2 x2 y2 t3 x3 y3 t4 x4 y4 ...

The meaning is that the given node gets to (𝑥𝑘, 𝑦𝑘) at 𝑡𝑘. There’s no separate notation for wait, so x and y
coordinates will be repeated there.

96 Chapter 23. Node Mobility

http://bonnmotion.net


INET Framework User’s Guide

Ns2MotionMobility

Nodes are moving according to the trace files used in NS2. The trace file has this format:

# '#' starts a comment, ends at the end of line
$node_(<id>) set X_ <x> # sets x coordinate of the node identified by <id>
$node_(<id>) set Y_ <y> # sets y coordinate of the node identified by <id>
$node_(<id>) set Z_ <z> # sets z coordinate (ignored)
$ns at $time "$node_(<id>) setdest <x> <y> <speed>" # at $time start moving
towards <x>,<y> with <speed>

The Ns2MotionMobility module has the following parameters:

• traceFile the Ns2 trace file

• nodeId node identifier in the trace file; -1 gets substituted by parent module’s index

• scrollX, scrollY user specified translation of the coordinates

ANSimMobility

It reads trace files of the ANSim Tool. The nodes are moving along linear segments described by an XML trace
file conforming to this DTD:

<!ELEMENT mobility (position_change*)>
<!ELEMENT position_change (node_id, start_time, end_time, destination)>
<!ELEMENT node_id (#PCDATA)>
<!ELEMENT start_time (#PCDATA)>
<!ELEMENT end_time (#PCDATA)>
<!ELEMENT destination (xpos, ypos)>
<!ELEMENT xpos (#PCDATA)>
<!ELEMENT ypos (#PCDATA)>

Parameters of the module:

• ansimTrace the trace file

• nodeId the node_id of this node, -1 gets substituted to parent module’s index

Note: The AnsimMobility module processes only the position_change elements and it ignores the
start_time attribute. It starts the move on the next segment immediately.

23.2.4 TurtleMobility

The TurtleMobility module can be parametrized by a script file containing LOGO-style movement commands in
XML format. The content of the XML file should conform to the DTD in the TurtleMobility.dtd file in
the source tree.

The file contains movement elements, each describing a trajectory. The id attribute of the movement element
can be used to refer the movement from the ini file using the syntax:

**.mobility.turtleScript = xmldoc("turtle.xml", "movements//movement[@id='1']")

The motion of the node is composed of uniform linear segments. The movement elements may contain the the
following commands as elements (names in parens are recognized attribute names):

• repeat(n) repeats its content n times, or indefinitely if the n attribute is omitted.

• set(x,y,speed,angle,borderPolicy) modifies the state of the node. borderPolicy can be
reflect, wrap, placerandomly or error.

23.2. Built-In Mobility Models 97

https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.Ns2MotionMobility.html
http://www.ansim.info
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.AnsimMobility.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.mobility.single.TurtleMobility.html


INET Framework User’s Guide

• forward(d,t) moves the node for t time or to the d distance with the current speed. If both d and t is
given, then the current speed is ignored.

• turn(angle) increase the angle of the node by angle degrees.

• moveto(x,y,t) moves to point (x,y) in the given time. If 𝑡 is not specified, it is computed from the
current speed.

• moveby(x,y,t) moves by offset (x,y) in the given time. If 𝑡 is not specified, it is computed from the
current speed.

• wait(t) waits for the specified amount of time.

Attribute values must be given without physical units, distances are assumed to be given as meters, time intervals
in seconds and speeds in meter per seconds. Attibutes can contain expressions that are evaluated each time the
command is executed. The limits of the constraint area can be referenced as $MINX, $MAXX, $MINY, and $MAXY.
Random number distibutions generate a new random number when evaluated, so the script can describe random
as well as deterministic scenarios.

To illustrate the usage of the module, we show how some mobility models can be implemented as scripts.

RectangleMobility:

<movement>
<set x="$MINX" y="$MINY" angle="0" speed="10"/>
<repeat>

<repeat n="2">
<forward d="$MAXX-$MINX"/>
<turn angle="90"/>
<forward d="$MAXY-$MINY"/>
<turn angle="90"/>

</repeat>
</repeat>

</movement>

Random Waypoint:

<movement>
<repeat>

<set speed="uniform(20,60)"/>
<moveto x="uniform($MINX,$MAXX)" y="uniform($MINY,$MAXY)"/>
<wait t="uniform(5,10)">

</repeat>
</movement>

MassMobility:

<movement>
<repeat>

<set speed="uniform(10,20)"/>
<turn angle="uniform(-30,30)"/>
<forward t="uniform(0.1,1)"/>

</repeat>
</movement>

98 Chapter 23. Node Mobility



CHAPTER

TWENTYFOUR

MODELING POWER CONSUMPTION

24.1 Overview

Modeling power consumption becomes more and more important with the increasing number of embedded de-
vices and the upcoming Internet of Things. Mobile personal medical devices, large scale wireless environment
monitoring devices, electric vehicles, solar panels, low-power wireless sensors, etc. require paying special atten-
tion to power consumption. The high fidelity simulation of power consumption allows designing power sensitive
routing protocols, MAC protocols, physical layers, etc. which in turn results in more energy efficient devices.

In order to help the modeling process the power model is separated from other simulation models. This separation
makes the model extensible and it also allows easy experimentation with alternative implementations. In a nutshell
the power model consists of the following components:

• energy consumption models

• energy generation models

• temporary energy storage models

The power model elements fall into two categories, abbreviated with Ep and Cc as part of their names:

• Ep models are simpler, and deal with energy and power quantities.

• Cc models are more realistic, and deal with charge, current, and voltage quantities.

The following sections provide a brief overview of the power model.

24.2 Energy Consumer Models

Energy consumer models describe the energy consumption of devices over time. For example, a transceiver
consumes energy when it transmits or receives signals, a CPU consumes energy when the network protocol routes
packets, and a display consumes energy when it’s turned on.

In INET, an energy consumer model is an OMNeT++ simple module that implements the energy consumption of
software processes or hardware devices over time. Its main purpose is to provide the power or current consumption
for the current simulation time. Most often energy consumers are included as submodules in the compound module
of the hardware devices or software components.

INET provides only a few built-in energy consumer models:

• AlternatingEpEnergyGenerator is a trivial energy/power based statistical energy consumer model example.

• StateBasedEpEnergyConsumer is a transceiver energy consumer model based on the radio mode and trans-
mission/reception states.

In order to simulate power consumption in a wireless network, the energy consumer model type must be configured
for the transceivers. The following example demonstrates how to configure the power consumption parameters for
a transceiver energy consumer model:

99

https://omnetpp.org/doc/inet/api-current/neddoc/inet.power.generator.AlternatingEpEnergyGenerator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.physicallayer.energyconsumer.StateBasedEpEnergyConsumer.html


INET Framework User’s Guide

*.host[*].wlan[*].radio.energyConsumer.typename = "StateBasedEpEnergyConsumer"

*.host[*].wlan[*].radio.energyConsumer.sleepPowerConsumption = 0.1mW

*.host[*].wlan[*].radio.energyConsumer.receiverIdlePowerConsumption = 2mW

*.host[*].wlan[*].radio.energyConsumer.receiverBusyPowerConsumption = 5mW

*.host[*].wlan[*].radio.energyConsumer.receiverReceivingPowerConsumption = 10mW

*.host[*].wlan[*].radio.energyConsumer.transmitterIdlePowerConsumption = 2mW

*.host[*].wlan[*].radio.energyConsumer. \
transmitterTransmittingPowerConsumption = 100mW # continue previous line

24.3 Energy Generator Models

Energy generator models describe the energy generation of devices over time. A solar panel, for example, produces
energy based on time, the panel’s position on the globe, its orientation towards the sun and the actual weather
conditions. Energy generators connect to an energy storage that absorbs the generated energy.

In INET, an energy generator model is an OMNeT++ simple module implementing the energy generation of a
hardware device using a physical phenomena over time. Its main purpose is to provide the power or current
generation for the current simulation time. Most often energy generation models are included as submodules in
network nodes.

INET provides only one trivial energy/power based statistical energy generator model called AlternatingEpEner-
gyGenerator. The following example shows how to configure its power generation parameters:

*.host[*].energyGenerator.typename = "AlternatingEpEnergyGenerator"

*.host[*].energyGenerator.energySinkModule = "^.energyStorage" # module ref.

*.host[*].energyGenerator.powerGeneration = 1mW

*.host[*].energyGenerator.sleepInterval = exponential(10s) # random intervals

*.host[*].energyGenerator.generationInterval = exponential(10s)

24.4 Energy Storage Models

Electronic devices which are not connected to external power source must contain some component to store
energy. For example, an electrochemical battery in a mobile phone provides energy for its display, its CPU, and its
communication devices. It might also absorb energy produced by a solar installed on its display, or by a portable
charger plugged into the wall socket.

In INET, an energy storage model is an OMNeT++ simple module which models the physical phenomena that is
used to store energy produced by generators and provide energy for consumers. Its main purpose is to compute
the amount of available energy or charge at the current simulation time. It maintains a set of connected energy
consumers and energy generators, their respective total power consumption and total power generation.

INET contains a few built-in energy storage models:

• IdealEpEnergyStorage is an idealistic model with infinite energy capacity and infinite power flow.

• SimpleEpEnergyStorage is a non-trivial model integrating the difference between the total consumed power
and the total generated power over time.

• SimpleCcBattery is a more realistic charge/current based battery model using a charge independent ideal
voltage source and internal resistance.

The following example shows how to configure a simple energy storage model:

*.host[*].energyStorage.typename = "SimpleEpEnergyStorage"

*.host[*].energyStorage.nominalCapacity = 0.05J # maximum capacity

*.host[*].energyStorage.initialCapacity = uniform(0J, this.nominalCapacity)

100 Chapter 24. Modeling Power Consumption

https://omnetpp.org/doc/inet/api-current/neddoc/inet.power.generator.AlternatingEpEnergyGenerator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.power.generator.AlternatingEpEnergyGenerator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.power.storage.IdealEpEnergyStorage.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.power.storage.SimpleEpEnergyStorage.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.power.storage.SimpleCcBattery.html


INET Framework User’s Guide

24.5 Energy Management Models

SimpleEpEnergyManagement

*.host[*].energyManagement.typename = "SimpleEpEnergyManagement"

*.host[*].energyManagement.nodeStartCapacity = 0.025J # start threshold

*.host[*].energyManagement.nodeShutdownCapacity = 0J # shutdown threshold

24.5. Energy Management Models 101

https://omnetpp.org/doc/inet/api-current/neddoc/inet.power.management.SimpleEpEnergyManagement.html


INET Framework User’s Guide

102 Chapter 24. Modeling Power Consumption



CHAPTER

TWENTYFIVE

NETWORK EMULATION

25.1 Motivation

There are several projects that may benefit from the network emulation capabilities of INET, that is, from the
ability to mix simulated components with real networks.

Some example scenarios:

• Run a simulated component, such as an app or a routing protocol, on nodes of an actual ad-hoc network.
This setup would allow testing the component’s behavior under real-life conditions.

• Test the interoperability of a simulated protocol with its real-world counterparts. Several setups are possible:
simulated node in a real network; a simulated subnet in real network; real-world node in simulated network;
etc.

• As a means of implementing hybrid simulation. The real network (or a single host OS) may contain several
network emulator devices or simulations running in emulation mode. Such a setup provides a relatively
easy way for connecting heterogenous simulators/emulators with each other, sparing the need for HLA or a
custom interoperability solution.

25.2 Overview

To act as a network emulator, the simulation must run in real time, and must be able to communicate with the real
world.

This is achieved with two components in INET:

• ExtInterface is an INET network interface that represents a real interface (an interface of the host OS) in the
simulation. Packets sent to an ExtInterface will be sent out on the host OS interface, and packets received by
the host OS interface (or rather, the appropriate subset of them) will appear in the simulation as if received
on an ExtInterface. The code uses the pcap library for capturing packets, and raw sockets for sending.

• RealTimeScheduler, a socket-aware real-time scheduler class.

Note: It is probably needless to say, but the simulation must be fast enough to be able to keep up with real time.
That is, its relative speed compared to real time (the simsec/sec value) must be >>1. (Under Qtenv, this can usually
only be achieved in Express mode.)

The simulation is run under Qtenv,

25.3 Preparation

There are a few things that need to be arranged before you can successfully run simulations in network emulation
mode.

103

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html


INET Framework User’s Guide

First, network emulation is a separate project feature that needs to be enabled before it can be used. (Project
features can be reviewed and changed in the Project | Project Features. . . dialog in the IDE.)

The network emulation code makes use of the pcap library, and therefore it must be available on your system. On
Ubuntu, for example, pcap can be installed with the following command:

$ sudo apt install libpcap-dev

Also, when running a simulation, make sure you have the necessary permissions. Sending uses raw sockets (type
SOCK_RAW), which, on many systems, is only allowed for processes that have root (administrator) privileges.

25.4 Configuring

INET nodes such as StandardHost and Router can be configured to have ExtInterface’s. The simulation may
contain several nodes with external interfaces, and one node may also have several external interfaces.

A network node can be configured to have an external interface in the following way:

**.host1.numExtInterfaces = 1

Also, the simulation must be configured to run under control the of the appropriate real-time scheduler class:

scheduler-class = "inet::RealTimeScheduler"

ExtInterface has two important parameters which need to be configured. The device parameter should be set to
the name of the real interface on the host OS, and filterString should contain a packet filter expression that
selects which packets captured on the real interface should be relayed into the simulation via this ExtInterface.
(filterString is simply passed to the pcap library, so it should follow the tcpdump filter expressions syntax
that pcap understands.)

An example configuration:

**.numExtInterfaces = 1

**.ext[0].ext.filterString = "(sctp or icmp) and ip dst host 10.1.1.1"

**.ext[0].ext.device = "eth0" # or "en0" on macOS, or something

**.ext[0].ext.mtu = 1500B

The filter string "(sctp or icmp) and ip dst host 10.1.1.1" means that the protocol must be
SCTP or ICMP, and the destination host must be 10.1.1.1.

Note: Why is filtering of incoming packets done at packet capture (in pcap), and not in ExtInterface? The reason
is performance: it costs much fewer CPU cycles to discard unnecessary packets right where they come in, and not
send them up into the simulation for the same decision. And, given that the simulation needs to keep up with real
time, saving CPU cycles is important.

Let us examine the paths outgoing and incoming packets take, and the necessary configuration requirements to
make them work. We assume IPv4 as network layer protocol, but the picture does not change much with other
protocols. We assume the external interface is named ext[0].

25.4.1 Outgoing path

The network layer of the simulated node routes datagrams to its ext[0] external interface.

For that to happen, the routing table needs to contain an entry where the interface is set to ext[0]. Such
entries are not created automatically, one needs to add them to the routing table explicitly, e.g. by using an
Ipv4NetworkConfigurator and an appropriate XML file.

Another point is that if the packet comes from a local app (and from another simulated node), it needs to have a
source IP address assigned. There are two ways for that to happen. If the sending app specified a source IP address,

104 Chapter 25. Network Emulation

https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.StandardHost.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.inet.Router.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html


INET Framework User’s Guide

that will be used. Otherwise, the IP address of the ext[0] interface will be used, but for that, the interface needs
to have an IP address at all.

Once in ext[0], the datagram is serialized. Serialization is a built-in feature of INET packets. (Packets, or
rather, packet chunks have multiple alternative representations, i.e. C++ object and serialized form, and conversion
between them is transparent.)

The result of serialization is a byte string, which is written into a raw socket with a sendto system call.

The packet will then travel normally in the real network to the destination address.

25.4.2 Incoming path

First of all, packets intended to be received by the simulation need to find their way to the correct interface of
the host that runs the simulation. For that, IP addresses of simulated hosts must be routable in the real network,
and routed to the captured interface of the host OS. (On Linux, for example, this can be achieved by adding static
routes with the command.)

As packets are received by the interface of the host OS, they are examined by the pcap library to find out whether
they match the filter expression. If the filter matches, pcap hands the packet over to the simulation, and after
deserialization it pops out of ext[0] and sent up to the network layer. After that, it is routed to the simulated
destination host in the normal way.

The pcap filter expression must be crafted so that it matches the packets destined to simulated hosts, and does not
match any other packet.

Moreover, if the simulation contains several external interfaces that map to the same real interface, care must be
taken so that filter expressions are disjunct. Otherwise, a packet may be matched by more than one filter, and then
it will be inserted into the simulation in multiple copies (once for each matching ExtInterface.) This is usually not
what is wanted.

25.4. Configuring 105

https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ext.ExtInterface.html


INET Framework User’s Guide

106 Chapter 25. Network Emulation



CHAPTER

TWENTYSIX

NETWORK AUTOCONFIGURATION

26.1 Overview

This chapter describes static autoconfiguration of networks.

26.2 Configuring IPv4 Networks

An IPv4 network is composed of several nodes like hosts, routers, switches, hubs, Ethernet buses, or wireless
access points. The nodes having a IPv4 network layer (hosts and routers) should be configured at the beginning
of the simulation. The configuration assigns IP addresses to the nodes, and fills their routing tables. If multicast
forwarding is simulated, then the multicast routing tables also must be filled in.

The configuration can be manual (each address and route is fully specified by the user), or automatic (addresses
and routes are generated by a configurator module at startup).

Before version 1.99.4 INET offered Ipv4FlatNetworkConfigurator for automatic and routing files for man-
ual configuration. Both had serious limitations, so a new configurator has been added in version 1.99.4:
Ipv4NetworkConfigurator. This configurator supports both fully manual and fully automatic configuration. It
can also be used with partially specified manual configurations, the configurator fills in the gaps automatically.

The next section describes the usage of Ipv4NetworkConfigurator. The legacy solutions
Ipv4FlatNetworkConfigurator and routing files are described in subsequent sections.

26.2.1 Ipv4NetworkConfigurator

The Ipv4NetworkConfigurator assigns IP addresses and sets up static routing for an IPv4 network.

It assigns per-interface IP addresses, strives to take subnets into account, and can also optimize the generated
routing tables by merging routing entries.

Hierarchical routing can be set up by using only a fraction of configuration entries compared to the number of
nodes. The configurator also does routing table optimization that significantly decreases the size of routing tables
in large networks.

The configuration is performed in stage 2 of the initialization. At this point interface modules (e.g. PPP) has
already registered their interface in the interface table. If an interface is named ppp[0], then the corresponding
interface entry is named ppp0. This name can be used in the config file to refer to the interface.

The configurator goes through the following steps:

1. Builds a graph representing the network topology. The graph will have a vertex for every module that has
a @node property (this includes hosts, routers, and L2 devices like switches, access points, Ethernet hubs,
etc.) It also assigns weights to vertices and edges that will be used by the shortest path algorithm when
setting up routes. Weights will be infinite for IP nodes that have IP forwarding disabled (to prevent routes
from transiting them), and zero for all other nodes (routers and and L2 devices). Edge weights are chosen to
be inversely proportional to the bitrate of the link, so that the configurator prefers connections with higher

107

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4FlatNetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4FlatNetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html


INET Framework User’s Guide

bandwidth. For internal purposes, the configurator also builds a table of all “links” (the link data structure
consists of the set of network interfaces that are on the same point-to-point link or LAN)

2. Assigns IP addresses to all interfaces of all nodes. The assignment process takes into consideration the
addresses and netmasks already present on the interfaces (possibly set in earlier initialize stages), and the
configuration provided in the XML format (described below). The configuration can specify “templates”
for the address and netmask, with parts that are fixed and parts that can be chosen by the configurator (e.g.
“10.0.x.x”). In the most general case, the configurator is allowed to choose any address and netmask for
all interfaces (which results in automatic address assignment). In the most constrained case, the configu-
rator is forced to use the requested addresses and netmasks for all interfaces (which translates to manual
address assignment). There are many possible configuration options between these two extremums. The
configurator assigns addresses in a way that maximizes the number of nodes per subnet. Once it figures out
the nodes that belong to a single subnet it, will optimize for allocating the longest possible netmask. The
configurator might fail to assign netmasks and addresses according to the given configuration parameters; if
that happens, the assignment process stops and an error is signalled.

3. Adds the manual routes that are specified in the configuration.

4. Adds static routes to all routing tables in the network. The configurator uses Dijkstra’s weighted shortest
path algorithm to find the desired routes between all possible node pairs. The resulting routing tables will
have one entry for all destination interfaces in the network. The configurator can be safely instructed to add
default routes where applicable, significantly reducing the size of the host routing tables. It can also add
subnet routes instead of interface routes further reducing the size of routing tables. Turning on this option
requires careful design to avoid having IP addresses from the same subnet on different links. CAVEAT:
Using manual routes and static route generation together may have unwanted side effects, because route
generation ignores manual routes.

5. Then it optimizes the routing tables for size. This optimization allows configuring larger networks with
smaller memory footprint and makes the routing table lookup faster. The resulting routing table might be
different in that it will route packets that the original routing table did not. Nevertheless the following
invariant holds: any packet routed by the original routing table (has matching route) will still be routed the
same way by the optimized routing table.

6. Finally it dumps the requested results of the configuration. It can dump network topology, assigned IP
addresses, routing tables and its own configuration format.

The module can dump the result of the configuration in the XML format which it can read. This is useful to save
the result of a time consuming configuration (large network with optimized routes), and use it as the config file of
subsequent runs.

Network topology graph

The network topology graph is constructed from the nodes of the network. The node is a module having a
@node property (this includes hosts, routers, and L2 devices like switches, access points, Ethernet hubs, etc.).
An IP node is a node that contains an InterfaceTable and a Ipv4RoutingTable. A router is an IP node that has
multiple network interfaces, and IP forwarding is enabled in its routing table module. In multicast routers the
forwardMulticast parameter is also set to true.

A link is a set of interfaces that can send datagrams to each other without intervening routers. Each interface
belongs to exactly one link. For example two interface connected by a point-to-point connection forms a link.
Ethernet interfaces connected via buses, hubs or switches. The configurator identifies links by discovering the
connections between the IP nodes, buses, hubs, and switches.

Wireless links are identified by the ssid or accessPointAddress parameter of the 802.11 management
module. Wireless interfaces whose node does not contain a management module are supposed to be on the same
wireless link. Wireless links can also be configured in the configuration file of Ipv4NetworkConfigurator:

<config>
<wireless hosts="area1.*" interfaces="wlan*">

</config>

puts wlan interfaces of the specified hosts into the same wireless link.

108 Chapter 26. Network Autoconfiguration

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.common.InterfaceTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html


INET Framework User’s Guide

If a link contains only one router, it is marked as the gateway of the link. Each datagram whose destination is
outside the link must go through the gateway.

Address assignment

Addresses can be set up manually by giving the address and netmask for each IP node. If some part of the address
or netmask is unspecified, then the configurator can fill them automatically. Unspecified fields are given as an
“x” character in the dotted notation of the address. For example, if the address is specified as 192.168.1.1 and
the netmask is 255.255.255.0, then the node address will be 192.168.1.1 and its subnet is 192.168.1.0. If it is
given as 192.168.x.x and 255.255.x.x, then the configurator chooses a subnet address in the range of 192.168.0.0
- 192.168.255.252, and an IP address within the chosen subnet. (The maximum subnet mask is 255.255.255.252
allows 2 nodes in the subnet.)

The following configuration generates network addresses below the 10.0.0.0 address for each link, and assign
unique IP addresses to each host:

<config>
<interface hosts="*" address="10.x.x.x" netmask="255.x.x.x"/>

</config>

The configurator tries to put nodes on the same link into the same subnet, so its enough to configure the address
of only one node on each link.

The following example configures a hierarchical network in a way that keeps routing tables small.

<config>
<interface hosts="area11.lan1.*" address="10.11.1.x" netmask="255.255.255.x"/>
<interface hosts="area11.lan2.*" address="10.11.2.x" netmask="255.255.255.x"/>
<interface hosts="area12.lan1.*" address="10.12.1.x" netmask="255.255.255.x"/>
<interface hosts="area12.lan2.*" address="10.12.2.x" netmask="255.255.255.x"/>
<interface hosts="area*.router*" address="10.x.x.x" netmask="x.x.x.x"/>
<interface hosts="*" address="10.x.x.x" netmask="255.x.x.0"/>

</config>

The XML configuration must contain exactly one <config> element. Under the root element there can be
multiple of the following elements:

The interface element provides configuration parameters for one or more interfaces in the network. The selector
attributes limit the scope where the interface element has effects. The parameter attributes limit the range of
assignable addresses and netmasks. The <interface> element may contain the following attributes:

• @hostsOptional selector attribute that specifies a list of host name patterns. Only interfaces in the specified
hosts are affected. The pattern might be a full path starting from the network, or a module name anywhere
in the hierarchy, and other patterns similar to ini file keys. The default value is “*” that matches all hosts.
e.g. “subnet.client*” or “host* router[0..3]” or “area*.*.host[0]”

• @names Optional selector attribute that specifies a list of interface name patterns. Only interfaces with the
specified names are affected. The default value is “*” that matches all interfaces. e.g. “eth* ppp0” or “*”

• @towards Optional selector attribute that specifies a list of host name patterns. Only interfaces connected
towards the specified hosts are affected. The specified name will be matched against the names of hosts that
are on the same LAN with the one that is being configured. This works even if there’s a switch between the
configured host and the one specified here. For wired networks it might be easier to specify this parameter
instead of specifying the interface names. The default value is “*”. e.g. “ap” or “server” or “client*”

• @amongOptional selector attribute that specifies a list of host name patterns. Only interfaces in the specified
hosts connected towards the specified hosts are affected. The ’among=”X Y Z”’ is same as ’hosts=”X Y Z”
towards=”X Y Z”’.

• @address Optional parameter attribute that limits the range of assignable addresses. Wildcards are al-
lowed with using ’x’ as part of the address in place of a byte. Unspecified parts will be filled automatically

26.2. Configuring IPv4 Networks 109



INET Framework User’s Guide

by the configurator. The default value “” means that the address will not be configured. Unconfigured in-
terfaces still have allocated addresses in their subnets allowing them to become configured later very easily.
e.g. “192.168.1.1” or “10.0.x.x”

• @netmask Optional parameter attribute that limits the range of assignable netmasks. Wildcards are al-
lowed with using ’x’ as part of the netmask in place of a byte. Unspecified parts will be filled automatically
be the configurator. The default value “” means that any netmask can be configured. e.g. “255.255.255.0”
or “255.255.x.x” or “255.255.x.0”

• @mtu number Optional parameter attribute to set the MTU parameter in the interface. When unspecified
the interface parameter is left unchanged.

• @metric number Optional parameter attribute to set the Metric parameter in the interface. When unspeci-
fied the interface parameter is left unchanged.

Wireless interfaces can similarly be configured by adding <wireless> elements to the configuration. Each
<wireless> element with a different id defines a separate subnet.

• @id (optional) identifies wireless network, unique value used if missed

• @hostsOptional selector attribute that specifies a list of host name patterns. Only interfaces in the specified
hosts are affected. The default value is “*” that matches all hosts.

• @interfaces Optional selector attribute that specifies a list of interface name patterns. Only interfaces
with the specified names are affected. The default value is “*” that matches all interfaces.

Multicast groups

Multicast groups can be configured by adding <multicast-group> elements to the configuration file. Inter-
faces belongs to a multicast group will join to the group automatically.

For example,

<config>
<multicast-group hosts="router*" interfaces="eth*" address="224.0.0.5"/>

</config>

adds all Ethernet interfaces of nodes whose name starts with “router” to the 224.0.0.5 multicast group.

The <multicast-group> element has the following attributes:

• @hostsOptional selector attribute that specifies a list of host name patterns. Only interfaces in the specified
hosts are affected. The default value is “*” that matches all hosts.

• @interfaces Optional selector attribute that specifies a list of interface name patterns. Only interfaces
with the specified names are affected. The default value is “*” that matches all interfaces.

• @towards Optional selector attribute that specifies a list of host name patterns. Only interfaces connected
towards the specified hosts are affected. The default value is “*”.

• @amongOptional selector attribute that specifies a list of host name patterns. Only interfaces in the specified
hosts connected towards the specified hosts are affected. The ’among=”X Y Z”’ is same as ’hosts=”X Y Z”
towards=”X Y Z”’.

• @address Mandatory parameter attribute that specifies a list of multicast group addresses to be assigned.
Values must be selected from the valid range of multicast addresses. e.g. “224.0.0.1 224.0.1.33”

Manual route configuration

The Ipv4NetworkConfigurator module allows the user to fully specify the routing tables of IP nodes at the begin-
ning of the simulation.

The <route> elements of the configuration add a route to the routing tables of selected nodes. The element has
the following attributes:

110 Chapter 26. Network Autoconfiguration

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html


INET Framework User’s Guide

• @hosts Optional selector attribute that specifies a list of host name patterns. Only routing tables in the
specified hosts are affected. The default value “” means all hosts will be affected. e.g. “host* router[0..3]”

• @destination Optional parameter attribute that specifies the destination address in the route
(L3AddressResolver syntax). The default value is “*”. e.g. “192.168.1.1” or “subnet.client[3]” or “sub-
net.server(ipv4)” or “*”

• @netmask Optional parameter attribute that specifies the netmask in the route. The default value is “*”.
e.g. “255.255.255.0” or “/29” or “*”

• @gateway Optional parameter attribute that specifies the gateway (next-hop) address in the route
(L3AddressResolver syntax). When unspecified the interface parameter must be specified. The default
value is “*”. e.g. “192.168.1.254” or “subnet.router” or “*”

• @interface Optional parameter attribute that specifies the output interface name in the route. When
unspecified the gateway parameter must be specified. This parameter has no default value. e.g. “eth0”

• @metric Optional parameter attribute that specifies the metric in the route. The default value is 0.

Multicast routing tables can similarly be configured by adding <multicast-route> elements to the configu-
ration.

• @hosts Optional selector attribute that specifies a list of host name patterns. Only routing tables in the
specified hosts are affected. e.g. “host* router[0..3]”

• @source Optional parameter attribute that specifies the address of the source network. The default value
is “*” that matches all sources.

• @netmaskOptional parameter attribute that specifies the netmask of the source network. The default value
is “*” that matches all sources.

• @groups Optional List of IPv4 multicast addresses specifying the groups this entry applies to. The default
value is “*” that matches all multicast groups. e.g. “225.0.0.1 225.0.1.2”.

• @metric Optional parameter attribute that specifies the metric in the route.

• @parent Optional parameter attribute that specifies the name of the interface the multicast datagrams are
expected to arrive. When a datagram arrives on the parent interface, it will be forwarded towards the child
interfaces; otherwise it will be dropped. The default value is the interface on the shortest path towards the
source of the datagram.

• @children Mandatory parameter attribute that specifies a list of interface name patterns:

– a name pattern (e.g. “ppp*”) matches the name of the interface

– a ’towards’ pattern (starting with “>”, e.g. “>router*”) matches the interface by naming one of the
neighbour nodes on its link.

Incoming multicast datagrams are forwarded to each child interface except the one they arrived in.

The following example adds an entry to the multicast routing table of router1, that intsructs the routing algo-
rithm to forward multicast datagrams whose source is in the 10.0.1.0 network and whose destinatation address is
225.0.0.1 to send on the eth1 and eth2 interfaces assuming it arrived on the eth0 interface:

<multicast-route hosts="router1" source="10.0.1.0" netmask="255.255.255.0"
groups="225.0.0.1" metric="10"
parent="eth0" children="eth1 eth2"/>

Automatic route configuration

If the addStaticRoutes parameter is true, then the configurator add static routes to all routing tables.

The configurator uses Dijkstra’s weighted shortest path algorithm to find the desired routes between all possible
node pairs. The resulting routing tables will have one entry for all destination interfaces in the network.

The configurator can be safely instructed to add default routes where applicable, significantly reducing the size
of the host routing tables. It can also add subnet routes instead of interface routes further reducing the size of

26.2. Configuring IPv4 Networks 111



INET Framework User’s Guide

routing tables. Turning on this option requires careful design to avoid having IP addresses from the same subnet
on different links.

Caution: Using manual routes and static route generation together may have unwanted side effects, because
route generation ignores manual routes. Therefore if the configuration file contains manual routes, then the
addStaticRoutes parameter should be set to false.

Route optimization

If the optimizeRoutes parameter is true then the configurator tries to optimize the routing table for size.
This optimization allows configuring larger networks with smaller memory footprint and makes the routing table
lookup faster.

The optimization is performed by merging routes whose gateway and outgoing interface is the same by finding a
common prefix that matches only those routes. The resulting routing table might be different in that it will route
packets that the original routing table did not. Nevertheless the following invariant holds: any packet routed by
the original routing table (has matching route) will still be routed the same way by the optimized routing table.

Parameters

This list summarize the parameters of the Ipv4NetworkConfigurator:

• config: XML configuration parameters for IP address assignment and adding manual routes.

• assignAddresses: assign IP addresses to all interfaces in the network

• assignDisjunctSubnetAddresses: avoid using the same address prefix and netmask on different
links when assigning IP addresses to interfaces

• addStaticRoutes: add static routes to the routing tables of all nodes to route to all destination interfaces
(only where applicable; turn off when config file contains manual routes)

• addDefaultRoutes: add default routes if all routes from a source node go through the same gateway
(used only if addStaticRoutes is true)

• addSubnetRoutes: add subnet routes instead of destination interface routes (only where applicable;
used only if addStaticRoutes is true)

• optimizeRoutes: optimize routing tables by merging routes, the resulting routing table might route
more packets than the original (used only if addStaticRoutes is true)

• dumpTopology: if true, then the module prints extracted network topology

• dumpAddresses: if true, then the module prints assigned IP addresses for all interfaces

• dumpRoutes: if true, then the module prints configured and optimized routing tables for all nodes to the
module output

• dumpConfig: name of the file, write configuration into the given config file that can be fed back to speed
up subsequent runs (network configurations)

26.2.2 Ipv4FlatNetworkConfigurator (Legacy)

The Ipv4FlatNetworkConfigurator module configures IP addresses and routes of IP nodes of a network. All
assigned addresses share a common subnet prefix, the network topology will be ignored. Shortest path routes are
also generated from any node to any other node of the network. The Gateway (next hop) field of the routes is not
filled in by these configurator, so it relies on proxy ARP if the network spans several LANs. It does not perform
routing table optimization (i.e. merging similar routes into a single, more general route.)

112 Chapter 26. Network Autoconfiguration

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4FlatNetworkConfigurator.html


INET Framework User’s Guide

Warning: Ipv4FlatNetworkConfigurator is considered legacy, do not use it for new projects.

The Ipv4FlatNetworkConfigurator module configures the network when it is initialized. The configuration is
performed in stage 2, after interface tables are filled in. Do not use a Ipv4FlatNetworkConfigurator module
together with static routing files, because they can iterfere with the configurator.

The Ipv4FlatNetworkConfigurator searches each IP nodes of the network. (IP nodes are those modules that have
the @node NED property and has a Ipv4RoutingTable submodule named “routingTable”). The configurator then
assigns IP addresses to the IP nodes, controlled by the following module parameters:

• netmask common netmask of the addresses (default is 255.255.0.0)

• networkAddress higher bits are the network part of the addresses, lower bits should be 0. (default is
192.168.0.0)

With the default parameters the assigned addresses are in the range 192.168.0.1 - 192.168.255.254, so there can
be maximum 65534 nodes in the network. The same IP address will be assigned to each interface of the node,
except the loopback interface which always has address 127.0.0.1 (with 255.0.0.0 mask).

After assigning the IP addresses, the configurator fills in the routing tables. There are two kind of routes:

• default routes: for nodes that has only one non-loopback interface a route is added that matches with any
destination address (the entry has 0.0.0.0 host and netmask fields). These are remote routes, but the
gateway address is left unspecified. The delivery of the datagrams rely on the proxy ARP feature of the
routers.

• direct routes following the shortest paths: for nodes that has more than one non-loopback interface a separate
route is added to each IP node of the network. The outgoing interface is chosen by the shortest path to the
target node. These routes are added as direct routes, even if there is no direct link with the destination. In
this case proxy ARP is needed to deliver the datagrams.

Note: This configurator does not try to optimize the routing tables. If the network contains $n$ nodes, the size
of all routing tables will be proportional to $n^2$, and the time of the lookup of the best matching route will be
proportional to $n$.

26.2.3 Routing Files (Legacy)

Routing files are files with .irt or .mrt extension, and their names are passed in the routingFile parameter
to Ipv4RoutingTable modules.

Routing files may contain network interface configuration and static routes. Both are optional. Network interface
entries in the file configure existing interfaces; static routes are added to the route table.

Warning: Routing files are considered legacy, use do not use them for new projects. Their contents can be
expressed in Ipv4NetworkConfigurator config files.

Interfaces themselves are represented in the simulation by modules (such as the PPP module). Modules automat-
ically register themselves with appropriate defaults in the IPv4RoutingTable, and entries in the routing file refine
(overwrite) these settings. Interfaces are identified by names (e.g. ppp0, ppp1, eth0) which are normally derived
from the module’s name: a module called "ppp[2]" in the NED file registers itself as interface ppp2.

An example routing file (copied here from one of the example simulations):

ifconfig:

# ethernet card 0 to router
name: eth0 inet_addr: 172.0.0.3 MTU: 1500 Metric: 1 BROADCAST MULTICAST

(continues on next page)

26.2. Configuring IPv4 Networks 113

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4FlatNetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4FlatNetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4FlatNetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4FlatNetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html


INET Framework User’s Guide

(continued from previous page)

Groups: 225.0.0.1:225.0.1.2:225.0.2.1

# Point to Point link 1 to Host 1
name: ppp0 inet_addr: 172.0.0.4 MTU: 576 Metric: 1

ifconfigend.

route:
172.0.0.2 * 255.255.255.255 H 0 ppp0
172.0.0.4 * 255.255.255.255 H 0 ppp0
default: 10.0.0.13 0.0.0.0 G 0 eth0

225.0.0.1 * 255.255.255.255 H 0 ppp0
225.0.1.2 * 255.255.255.255 H 0 ppp0
225.0.2.1 * 255.255.255.255 H 0 ppp0

225.0.0.0 10.0.0.13 255.0.0.0 G 0 eth0

routeend.

The ifconfig...ifconfigend. part configures interfaces, and route..routeend. part contains static
routes. The format of these sections roughly corresponds to the output of the ifconfig and netstat -rn
Unix commands.

An interface entry begins with a name: field, and lasts until the next name: (or until ifconfigend.). It may
be broken into several lines.

Accepted interface fields are:

• name: - arbitrary interface name (e.g. eth0, ppp0)

• inet_addr: - IP address

• Mask: - netmask

• Groups: Multicast groups. 224.0.0.1 is added automatically, and 224.0.0.2 also if the node is a router
(IPForward==true).

• MTU: - MTU on the link (e.g. Ethernet: 1500)

• Metric: - integer route metric

• flags: BROADCAST, MULTICAST, POINTTOPOINT

The following fields are parsed but ignored: Bcast, encap, HWaddr.

Interface modules set a good default for MTU, Metric (as 2 * 109/bitrate) and flags, but leave inet_addr
and Mask empty. inet_addr and mask should be set either from the routing file or by a dynamic network
configuration module.

The route fields are:

Destination Gateway Netmask Flags Metric Interface

Destination, Gateway and Netmask have the usual meaning. The Destination field should either be
an IP address or “default” (to designate the default route). For Gateway, * is also accepted with the meaning
0.0.0.0.

Flags denotes route type:

• H “host”: direct route (directly attached to the router), and

• G “gateway”: remote route (reached through another router)

Interface is the interface name, e.g. eth0.

114 Chapter 26. Network Autoconfiguration



INET Framework User’s Guide

Important: The meaning of the routes where the destination is a multicast address has been changed in version
1.99.4. Earlier these entries was used both to select the outgoing interfaces of multicast datagrams sent by the
higher layer (if multicast interface was otherwise unspecified) and to select the outgoing interfaces of datagrams
that are received from the network and forwarded by the node.

From version 1.99.4 multicast routing applies reverse path forwarding. This requires a separate routing table, that
can not be populated from the old routing table entries. Therefore simulations that use multicast forwarding can
not use the old configuration files, they should be migrated to use an Ipv4NetworkConfigurator instead.

Some change is needed in models that use link-local multicast too. Earlier if the IP module received a datagram
from the higher layer and multiple routes was given for the multicast group, then IP sent a copy of the datagram
on each interface of that routes. From version 1.99.4, only the first matching interface is used (considering longest
match). If the application wants to send the multicast datagram on each interface, then it must explicitly loop and
specify the multicast interface.

26.3 Configuring Layer 2

The L2NetworkConfigurator module allows configuring network scenarios at layer 2. The STP/RTP-related pa-
rameters such as link cost, port priority and the “is-edge” flag can be configured with XML files.

This module is similar to Ipv4NetworkConfigurator. It supports the selector attributes @hosts, @names,
@towards, @among, and they behave similarly to its Ipv4NetworkConfigurator equivalent. The @ports selec-
tor is also supported, for configuring per-port parameters.

The following example configures port 5 (if it exists) on all switches, and sets cost=19 and priority=32768:

<config>
<interface hosts='**' ports='5' cost='19' priority='32768'/>

</config>

For more information about the usage of the selector attributes see Ipv4NetworkConfigurator.

26.3. Configuring Layer 2 115

https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.configurator.L2NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html


INET Framework User’s Guide

116 Chapter 26. Network Autoconfiguration



CHAPTER

TWENTYSEVEN

SCENARIO SCRIPTING

27.1 Overview

The INET Framework contains scripting support to help the user express scenarios that cannot be adequately
described using static configuration. You can schedule actions to be carried out at specified simulation times, for
example changing a parameter value, changing the bit error rate of a connection, removing or adding connections,
removing or adding routes in a routing table, shutting down or crashing routers, etc. The aim is usually to observe
transient behaviour caused by the changes.

INET supports the following built-in actions:

• Create or delete module

• Create or delete connection

• Set module or channel parameter

• Initiate lifecycle operation (startup, shutdown, crash) on a network node or part of it

27.2 ScenarioManager

The ScenarioManager module type is for setting up and controlling simulation experiments. In typical usage, it
has only one instance in the network:

network Test {
submodules:

scenarioManager: ScenarioManager;
...

}

ScenarioManager executes a script specified in XML. It has a few built-in commands, while other commands are
dispatched (in C++) to be carried out by other simple modules.

An example script:

<scenario>
<set-param t="10" module="host[1].mobility" par="speed" value="5"/>
<set-param t="20" module="host[1].mobility" par="speed" value="30"/>
<at t="50">

<set-param module="host[2].mobility" par="speed" value="10"/>
<set-param module="host[3].mobility" par="speed" value="10"/>
<connect src-module="host[2]" src-gate="ppp[0]"

dest-module="host[1]" dest-gate="ppp[0]"
channel-type="ned.DatarateChannel">

<param name="datarate" value="10Mbps" />
<param name="delay" value="0.1us" />

</connect>
</at>

(continues on next page)

117

https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html


INET Framework User’s Guide

(continued from previous page)

<at t="60">
<disconnect src-module="host[2]" src-gate="ppp[0]" />
<disconnect src-module="host[1]" src-gate="ppp[0]" />

</at>
</scenario>

The above script probably does not need much explanation.

The built-in commands of ScenarioManager are: <connect>, <disconnect>, <create-module>,
<delete-module>, <initiate>, <shutdown>,‘‘<startup>‘‘,‘‘<crash>‘‘, <set-param>,
<set-channel-attr>, <at>.

All commands have a t attribute which carries the simulation time at which the command has to be carried out.
You can group several commands to be carried out at the same simulation time using <at>, and then only the
<at> command needs to have a t attribute.

More information can be found in the ScenarioManager documentation.

The script is usually placed in a separate file, and specified like this:

*.scenarioManager.script = xmldoc("scenario.xml")

Short scripts can also be written inline:

*.scenarioManager.script = xml("<x><shutdown t='2s' module='Router2'/></x>")

118 Chapter 27. Scenario Scripting

https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html


CHAPTER

TWENTYEIGHT

MODELING NODE FAILURES

28.1 Overview

Simulation is often used to study the effects of unexpected events like a router crash on the network. In order to
accommodate such scenarios, INET supports lifecycle modeling of network nodes. The up/down status of a node
is changed via lifecycle operations.

INET supports the following lifecycle operations:

• Startup represents the process of booting up or starting a network node after a shutdown or crash operation.

• Shutdown represents the process of orderly shutting down a network node.

• Crash represents the process of crashing a network node. The difference between crash and shutdown is
that for a crash, the network node will not do a graceful shutdown (e.g. routing protocols will not have a
chance of notifying peers about broken routes).

In a real-life router or other network node, a crash or shutdown and subsequent restart affects all parts of the
system. All non-persistent information is lost. Protocol states are reset, various tables are cleared, connections are
broken or torn down, applications restart, and so on.

Mimicking this behavior in simulation does not come for free, it needs to be explicitly programmed into each
affected component. Here are some examples how INET components react to a crash lifecycle event:

• Tcp forgets all open connections and sockets

• Ipv4 clears the fragmentation reassembly buffers and pending packets

• Ipv4RoutingTable clears the route table

• EtherMac and other MAC protocols clear their queues and reset their state associated with the current
transmission(s)

• Ospf clears its full state

• UdpBasicApp, TcpSessionApp and other applications reset their state and stop/restart their timers

• EtherSwitch, AccessPoint, and other L2 bridging devices clear their MAC address tables

While down, network interfaces, and components in general, ignore (discard) messages sent to them.

Lifecycle operations are currently instanteneous, i.e. they complete in zero simulation time. The underlying
framework would allow for modeling them as processes that take place in some finite (nonzero) simulation time,
but this possibility is currently not in use.

It also is possible to simulate a crash or shutdown of part of a node (certain protocols or interfaces only). Such
scenarios would correspond to e.g. the crash of an OSPF daemon on a real OS.

Some energy-related INET components trigger node shutdown or crash under certain conditions. For example,
a node will crash when it runs out of power (e.g. its battery depletes); see the chapter on power consumption
modeling Modeling Power Consumption for details.

In the following sections we outline the INET components that participate in lifecycle modeling, and show a usage
example.

119

https://omnetpp.org/doc/inet/api-current/neddoc/inet.transportlayer.tcp.Tcp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.ipv4.Ipv4RoutingTable.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.linklayer.ethernet.EtherMac.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.routing.ospfv2.Ospf.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.udpapp.UdpBasicApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.applications.tcpapp.TcpSessionApp.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.ethernet.EtherSwitch.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.node.wireless.AccessPoint.html


INET Framework User’s Guide

28.2 NodeStatus

Node models contain a NodeStatus module that keeps track of the status of the node (up, down, etc.) for other
modules, and also displays it in the GUI as a small overlay icon.

The NodeStatus module is declared conditionally (so that it is only created in simulations that need it), like this:

status: NodeStatus if hasStatus;

If lifecycle modeling is required, the following line must be added to the ini file to ensure that nodes have status
modules:

**.hasStatus = true

28.3 Scripting

Lifecycle operations can be triggered from C++ code, or from scripts. INET supports scripting via the Scenari-
oManager NED type, described in chapter Scenario Scripting. Here is an example script that shuts down a router
at simulation time 2s, and starts it up a again at time 8s:

<scenario>
<initiate t="2s" module="Router2" operation="shutdown"/>
<initiate t="8s" module="Router2" operation="startup"/>

</scenario>

The module attribute should point to the module (host, router, network interface, protocol, etc.) to be operated on.
The operation attribute should contain the operation to perform: "shutdown", "crash", or "startup".
t is the simulation time the operation should be initiated at.

An alternative, shorter form is to use <shutdown> / <crash> / <startup> elements instead of the
operation attribute:

<scenario>
<shutdown t="2s" module="Router2"/>
<startup t="8s" module="Router2"/>

</scenario>

120 Chapter 28. Modeling Node Failures

https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.lifecycle.NodeStatus.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.lifecycle.NodeStatus.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.common.scenario.ScenarioManager.html


CHAPTER

TWENTYNINE

COLLECTING RESULTS

TODO

29.1 Recording Statistics

@statistic

29.2 Recording PCAP Traces

PcapRecorder

29.3 Recording Routing Tables

RoutingTableRecorder

29.4 Packet Recorder

29.5 Eventlog Recording

mention

121



INET Framework User’s Guide

122 Chapter 29. Collecting Results



CHAPTER

THIRTY

VISUALIZATION

30.1 Overview

The INET Framework is able to visualize a wide range of events and conditions in the network: packet drops,
data link connectivity, wireless signal path loss, transport connections, routing table routes, and many more.
Visualization is implemented as a collection of configurable INET modules that can be added to simulations at
will.

30.2 Visualizing Network Communication

30.2.1 Visualizing Packet Drops

Several network problems manifest themselves as excessive packet drops, for example poor connectivity, con-
gestion, or misconfiguration. Visualizing packet drops helps identifying such problems in simulations, thereby
reducing time spent on debugging and analysis. Poor connectivity in a wireless network can cause senders to drop
unacknowledged packets after the retry limit is exceeded. Congestion can cause queues to overflow in a bottleneck
router, again resulting in packet drops.

Packet drops can be visualized by including a PacketDropVisualizer module in the simulation. The PacketDropVi-
sualizer module indicates packet drops by displaying an animation effect at the node where the packet drop occurs.
In the animation, a packet icon gets thrown out from the node icon, and fades away.

The visualization of packet drops can be enabled with the visualizer’s displayPacketDrops parameter.
By default, packet drops at all nodes are visualized. This selection can be narrowed with the nodeFilter,
interfaceFilter and packetFilter parameters.

One can click on the packet drop icon to display information about the packet drop in the inspector panel.

Packets are dropped for the following reasons:

• queue overflow

• retry limit exceeded

• unroutable packet

• network address resolution failed

• interface down

30.2.2 Visualizing Transport Path Activity

With INET simulations, it is often useful to be able to visualize network traffic. INET provides several visualizers
for this task, operating at various levels of the network stack. One of such visualizers is TransportRouteVisualizer
that provides graphical feedback about transport layer traffic.

123

https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.common.PacketDropVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.common.PacketDropVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.common.PacketDropVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.transportlayer.TransportRouteVisualizer.html


INET Framework User’s Guide

TransportRouteVisualizer visualizes traffic that passes through the transport layers of two endpoints. Adding an
IntegratedVisualizer is also an option, because it also contains a TransportRouteVisualizer. Transport path activity
visualization is disabled by default, it can be enabled by setting the visualizer’s displayRoutes parameter to
true.

TransportRouteVisualizer observes packets that pass through the transport layer, i.e. carry data from/to higher
layers.

The activity between two nodes is represented visually by a polyline arrow which points from the source node
to the destination node. TransportRouteVisualizer follows packets throughout their path so that the polyline goes
through all nodes which are the part of the path of packets. The arrow appears after the first packet has been
received, then gradually fades out unless it is reinforced by further packets. Color, fading time and other graphical
properties can be changed with parameters of the visualizer.

By default, all packets and nodes are considered for the visualization. This selection can be narrowed with the
visualizer’s packetFilter and nodeFilter parameters.

30.2.3 Visualizing Network Path Activity

Network layer traffic can be visualized by including a NetworkRouteVisualizer module in the simulation. Adding
an IntegratedVisualizer module is also an option, because it also contains a NetworkRouteVisualizer mod-
ule. Network path activity visualization is disabled by default, it can be enabled by setting the visualizer’s
displayRoutes parameter to true.

NetworkRouteVisualizer currently observes packets that pass through the network layer (i.e. carry data from/to
higher layers), but not those that are internal to the operation of the network layer protocol. That is, packets such
as ARP, although potentially useful, will not trigger the visualization.

The activity between two nodes is represented visually by a polyline arrow which points from the source node to
the destination node. NetworkRouteVisualizer follows packet throughout its path so the polyline goes through all
nodes that are part of the packet’s path. The arrow appears after the first packet has been received, then gradually
fades out unless it is reinforced by further packets. Color, fading time and other graphical properties can be
changed with parameters of the visualizer.

By default, all packets and nodes are considered for the visualization. This selection can be narrowed with the
visualizer’s packetFilter and nodeFilter parameters.

30.2.4 Visualizing Data Link Activity

Data link activity (layer 2 traffic) can be visualized by adding a DataLinkVisualizer module to the simulation.
Adding an IntegratedVisualizer module is also an option, because it includes a DataLinkVisualizer module. Data
link visualization is disabled by default, it can be enabled by setting the visualizer’s displayLinks parameter to
true.

DataLinkVisualizer currently observes packets that pass through the data link layer (i.e. carry data from/to higher
layers), but not those that are internal to the operation of the data link layer protocol. That is, frames such as
ACK, RTS/CTS, Beacon or Authentication/Association frames of IEEE 802.11, although potentially useful, will
not trigger the visualization. Visualizing such frames may be implemented in future INET revisions.

The activity between two nodes is represented visually by an arrow that points from the sender node to the receiver
node. The arrow appears after the first packet has been received, then gradually fades out unless it is refreshed by
further packets. The style, color, fading time and other graphical properties can be changed with parameters of the
visualizer.

By default, all packets, interfaces and nodes are considered for the visualization. This selection can be narrowed to
certain packets and/or nodes with the visualizer’s packetFilter, interfaceFilter, and nodeFilter
parameters.

124 Chapter 30. Visualization

https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.transportlayer.TransportRouteVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.transportlayer.TransportRouteVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.transportlayer.TransportRouteVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.transportlayer.TransportRouteVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.networklayer.NetworkRouteVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.networklayer.NetworkRouteVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.networklayer.NetworkRouteVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.networklayer.NetworkRouteVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.linklayer.DataLinkVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.linklayer.DataLinkVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.linklayer.DataLinkVisualizer.html


INET Framework User’s Guide

30.2.5 Visualizing Physical Link Activity

Physical link activity can be visualized by including a PhysicalLinkVisualizer module in the simulation. Adding an
IntegratedVisualizer module is also an option, because it also contains a PhysicalLinkVisualizer module. Physical
link activity visualization is disabled by default, it can be enabled by setting the visualizer’s displayLinks
parameter to true.

PhysicalLinkVisualizer observes frames that pass through the physical layer, i.e. are received correctly.

The activity between two nodes is represented visually by a dotted arrow which points from the sender node to
the receiver node. The arrow appears after the first frame has been received, then gradually fades out unless it is
refreshed by further frames. Color, fading time and other graphical properties can be changed with parameters of
the visualizer.

By default, all packets, interfaces and nodes are considered for the visualization. This selection can be narrowed
with the visualizer’s packetFilter, interfaceFilter, and nodeFilter parameters.

30.2.6 Visualizing Routing Tables

In a complex network topology, it is difficult to see how a packet would be routed because the relevant data is
scattered among network nodes and hidden in their routing tables. INET contains support for visualization of
routing tables, and can display routing information graphically in a concise way. Using visualization, it is often
possible to understand routing in a simulation without looking into individual routing tables. The visualization
currently supports IPv4.

The RoutingTableVisualizer module (included in the network as part of IntegratedVisualizer) is responsible for
visualizing routing table entries.

The visualizer basically annotates network links with labeled arrows that connect source nodes to next hop nodes.
The module visualizes those routing table entries that participate in the routing of a given set of destination
addresses, by default the addresses of all interfaces of all nodes in the network. That is, it selects the best (longest
prefix) matching routes for all destination addresses from each routing table, and shows them as arrows that point
to the next hop. Note that one arrow might need to represent several routing entries, for example when distinct
prefixes are routed towards the same next hop.

Routing table entries are represented visually by solid arrows. An arrow going from a source node represents
a routing table entry in the source node’s routing table. The endpoint node of the arrow is the next hop in the
visualized routing table entry. By default, the routing entry is displayed on the arrows in following format:

destination/mask -> gateway (interface)

The format can be changed by setting the visualizer’s labelFormat parameter.

Filtering is also possible. The nodeFilter parameter controls which nodes’ routing tables should be visualized
(by default, all nodes), and the destinationFilter parameter selects the set of destination nodes to consider
(again, by default all nodes.)

The visualizer reacts to changes. For example, when a routing protocol changes a routing entry, or an IP address
gets assigned to an interface by DHCP, the visualizer automatically updates the visualizations according to the
specified filters. This is very useful e.g. for the simulation of mobile ad-hoc networks.

30.2.7 Displaying IP Addresses and Other Interface Information

In the simulation of complex networks, it is often useful to be able to display node IP addresses, interface names,
etc. above the node icons or on the links. For example, when automatic address assignment is used in a hierarchical
network (e.g. using Ipv4NetworkConfigurator), visual inspection can help to verify that the result matches the
expectations. While it is true that addresses and other interface data can also be accessed in the GUI by diving
into the interface tables of each node, that is tedious, and unsuitable for getting an overview.

30.2. Visualizing Network Communication 125

https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.physicallayer.PhysicalLinkVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.physicallayer.PhysicalLinkVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.physicallayer.PhysicalLinkVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.networklayer.RoutingTableVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator.html


INET Framework User’s Guide

The InterfaceTableVisualizer module (included in the network as part of IntegratedVisualizer) displays data about
network nodes’ interfaces. (Interfaces are contained in interface tables, hence the name.) By default, the visual-
ization is turned off. When it is enabled using the displayInterfaceTables parameter, the default is that
interface names, IP addresses and netmask length are displayed, above the nodes (for wireless interfaces) and on
the links (for wired interfaces). By clicking on an interface label, details are displayed in the inspector panel.

The visualizer has several configuration parameters. The format parameter specifies what information is dis-
played about interfaces. It takes a format string, which can contain the following directives:

• %N: interface name

• %4: IPv4 address

• %6: IPv6 address

• %n: network address. This is either the IPv4 or the IPv6 address

• %l: netmask length

• %M: MAC address

• %: conditional newline for wired interfaces. The ” needs to be escaped with another ”, i.e. ’%\’

• %i and %s: the info() and str() functions for the interfaceEntry class, respectively

The default format string is "%N %\\%n/%l", i.e. interface name, IP address and netmask length.

The set of visualized interfaces can be selected with the configurator’s nodeFilter and interfaceFilter
parameters. By default, all interfaces of all nodes are visualized, except for loopback addresses (the default for the
interfaceFilter parameter is "not lo\".)

It is possible to display the labels for wired interfaces above the node icons, instead of on the links. This can be
done by setting the displayWiredInterfacesAtConnections parameter to false.

There are also several parameters for styling, such as color and font selection.

30.2.8 Visualizing IEEE 802.11 Network Membership

When simulating wifi networks that overlap in space, it is difficult to see which node is a member of which
network. The membership may even change over time. It would be useful to be able to display e.g. the SSID
above node icons.

IEEE 802.11 network membership can be visualized by including a Ieee80211Visualizer module in the simulation.
Adding an IntegratedVisualizer is also an option, because it also contains a Ieee80211Visualizer. Displaying net-
work membership is disabled by default, it can be enabled by setting the visualizer’s displayAssociations
parameter to true.

The Ieee80211Visualizer displays an icon and the SSID above network nodes which are part of a wifi network.
The icons are color-coded according to the SSID. The icon, colors, and other visual properties can be configured
via parameters of the visualizer.

The visualizer’s nodeFilter parameter selects which nodes’ memberships are visualized. The
interfaceFilter parameter selects which interfaces are considered in the visualization. By default, all inter-
faces of all nodes are considered.

30.2.9 Visualizing Transport Connections

In a large network with a complex topology, there might be many transport layer applications and many nodes
communicating. In such a case, it might be difficult to see which nodes communicate with which, or if there is
any communication at all. Transport connection visualization makes it easy to get information about the active
transport connections in the network at a glance. Visualization makes it easy to identify connections by their two
endpoints, and to tell different connections apart. It also gives a quick overview about the number of connections
in individual nodes and the whole network.

126 Chapter 30. Visualization

https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.linklayer.InterfaceTableVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.linklayer.Ieee80211Visualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.linklayer.Ieee80211Visualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.linklayer.Ieee80211Visualizer.html


INET Framework User’s Guide

The TransportConnectionVisualizer module (also part of IntegratedVisualizer) displays color-coded icons above
the two endpoints of an active, established transport layer level connection. The icons will appear when the con-
nection is established, and disappear when it is closed. Naturally, there can be multiple connections open at a node,
thus there can be multiple icons. Icons have the same color at both ends of the connection. In addition to colors,
letter codes (A, B, AA, . . . ) may also be displayed to help in identifying connections. Note that this visualizer
does not display the paths the packets take. If you are interested in that, take a look at TransportRouteVisualizer,
covered in section Visualizing Transport Path Activity.

The visualization is turned off by default, it can be turned on by setting the
displayTransportConnections parameter of the visualizer to true.

It is possible to filter the connections being visualized. By default, all connections are included. Filtering by
hosts and port numbers can be achieved by setting the sourcePortFilter, destinationPortFilter,
sourceNodeFilter and destinationNodeFilter parameters.

The icon, colors and other visual properties can be configured by setting the visualizer’s parameters.

30.3 Visualizing The Infrastructure

30.3.1 Visualizing the Physical Environment

The physical environment has a profound effect on the communication of wireless devices. For example, physical
objects like walls inside buildings constraint mobility. They also obstruct radio signals often resulting in packet
loss. It’s difficult to make sense of the simulation without actually seeing where physical objects are.

The visualization of physical objects present in the physical environment is essential.

The PhysicalEnvironmentVisualizer (also part of IntegratedVisualizer) is responsible for displaying the physical
objects. The objects themselves are provided by the PhysicalEnvironment module; their geometry, physical and
visual properties are defined in the XML configuration of the PhysicalEnvironment module.

The two-dimensional projection of physical objects is determined by the SceneCanvasVisualizer module. (This is
because the projection is also needed by other visualizers, for example MobilityVisualizer.) The default view is
top view (z axis), but you can also configure side view (x and y axes), or isometric or ortographic projection.

The visualizer also supports OpenGL-based 3D rendering using the OpenSceneGraph (OSG) library. If the OM-
NeT++ installation has been compiled with OSG support, you can switch to 3D view using the Qtenv toolbar.

30.3.2 Visualizing Node Mobility

In INET simulations, the movement of mobile nodes is often as important as the communication among them.
However, as mobile nodes roam, it is often difficult to visually follow their movement. INET provides a visualizer
that not only makes visually tracking mobile nodes easier, but also indicates other properties like speed and
direction.

Node mobility of nodes can be visualized by MobilityVisualizer module (included in the network as
part of IntegratedVisualizer). By default, mobility visualization is enabled, it can be disabled by setting
displayMovements parameter to false.

By default, all mobilities are considered for the visualization. This selection can be narrowed with the visualizer’s
moduleFilter parameter.

The visualizer has several important features:

• Movement Trail: It displays a line along the recent path of movements. The trail gradually fades out as time
passes. Color, trail length and other graphical properties can be changed with parameters of the visualizer.

• Velocity Vector: Velocity is represented visually by an arrow. Its starting point is the node, and its direction
coincides with the movement’s direction. The arrow’s length is proportional to the node’s speed.

30.3. Visualizing The Infrastructure 127

https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.transportlayer.TransportConnectionVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.transportlayer.TransportRouteVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.environment.PhysicalEnvironmentVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.scene.SceneCanvasVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.mobility.MobilityVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.mobility.MobilityVisualizer.html
https://omnetpp.org/doc/inet/api-current/neddoc/inet.visualizer.integrated.IntegratedVisualizer.html


INET Framework User’s Guide

• Orientation Arc: Node orientation is represented by an arc whose size is specified by the
orientationArcSize parameter. This value is the relative size of the arc compared to a full circle.
The arc’s default value is 0.25, i.e. a quarter of a circle.

These features are disabled by default; they can be enabled by setting the visualizer’s
displayMovementTrails, displayVelocities and displayOrientations parameters to
true.

128 Chapter 30. Visualization



CHAPTER

THIRTYONE

APPENDIX: AUTHOR’S GUIDE

31.1 Overview

This chapter is intended for authors and contributors of this INET User’s Guide, and covers the guidelines for
deciding what type of content is appropriate for this Guide and what is not.

The main guiding principle is to avoid redundancy and duplication of information with other pieces of documen-
tation, namely:

• Standards documents (RFCs, IEEE specifications, etc.) that describe protocols that INET modules imple-
ment;

• INET Developer’s Guide, which is intended as a guide for anyone wishing to understand or modify the
operation of INET’s components at C++ level;

• INET Framework Reference, directly generated from NED and MSG comments by OMNeT++ documenta-
tion generator;

• Showcases, tutorials and simulation examples (showcases/, tutorials/ and examples/ folders in
the INET project)

Why is duplication to be avoided? Multiple reasons:

• It is a waste of our reader’s time they have to skip information they have already seen elsewhere

• The text can easily get out of date as the INET Framework evolves

• It is extra effort for maintainers to keep all copies up to date

31.2 Guidelines

31.2.1 Do Not Repeat the Standard

When describing a module that implements protocol X, do not go into lengths explaining what protocol X does
and how it works, because that is appropriately (and usually, much better) explained in the specification or books
on protocol X. It is OK to summarize the protocol’s goal and principles in short paragraph though.

In particular, do not describe the format of the protocol messages. It surely looks nice and takes up a lot of space,
but the same information can probably be found in a myriad places all over the internet.

31.2.2 Do Not Repeat NED

Things like module parameters, gate names, emitted signals and collected statistics are appropriately and formally
part of the NED definitions, and there is no need to duplicate that information in this Guide.

Detailed information on the module, such as usage details and the list of implemented standards should be covered
in the module’s NED documentation, not in this Guide.

129



INET Framework User’s Guide

31.2.3 No C++

Any content which only makes sense on C++ level should go to the Developer’s Guide, and has no place in this
Guide.

31.2.4 Keep Examples Short

When giving examples about usage, keep them concise and to the point. Giving ini or NED file fragments of a
few lines length is preferable to complete working examples.

Complete examples should be written up as showcases. A working simulation without much commentary should
go under examples. A practical, potentially multi-step guide to using a nontrivial feature should be written up
as a tutorial.

31.2.5 No Reference to Simulation Examples

Do not refer to concrete example simulations, showcases or tutorials in the text, because they might get renamed,
moved, merged or deleted, and when they do, no one will think about updating the reference in the Users Guide.

31.2.6 What then?

Concentrate on giving a “big picture” of the models: what it is generally capable of, how the parts fit together,
etc. Give just enough information that after a quick read, users can “bootstrap” into putting together their own
simulations with the model. If they have questions afterwards, they will/should refer to the NED documentation
(INET Reference), or if that’s not enough, delve into the C++ code to find the answers.

130 Chapter 31. Appendix: Author’s Guide



CHAPTER

THIRTYTWO

HISTORY

32.1 IPSuite to INET Framework (2000-2006)

The predecessor of the INET framework was written by Klaus Wehrle, Jochen Reber, Dirk Holzhausen, Volker
Boehm, Verena Kahmann, Ulrich Kaage and others at the University of Karlsruhe during 2000-2001, under the
name IPSuite.

The MPLS, LDP and RSVP-TE models were built as an add-on to IPSuite during 2003 by Xuan Thang Nguyen
(Xuan.T.Nguyen@uts.edu.au) and other students at the University of Technology, Sydney under supervision of
Dr Robin Brown. The package consisted of around 10,000 LOCs, and was published at http://charlie.it.uts.edu.
au/ tkaphan/xtn/capstone (now unavailable).

After a period of IPSuite being unmaintained, Andras Varga took over the development in July 2003. Through
a series of snapshot releases in 2003-2004, modules got completely reorganized, documented, and many of them
rewritten from scratch. The MPLS models (including RSVP-TE, LDP, etc) also got refactored and merged into
the codebase.

During 2004, Andras added a new, modular and extensible TCP implementation, application models, Ethernet
implementation and an all-in-one IP model to replace the earlier, modularized one.

The package was renamed INET Framework in October 2004.

Support for wireless and mobile networks got added during summer 2005 by using code from the Mobility Frame-
work.

The MPLS models (including LDP and RSVP-TE) got revised and mostly rewritten from scratch by Vojta Janota
in the first half of 2005 for his diploma thesis. After further refinements by Vojta, the new code got merged into
the INET CVS in fall 2005, and got eventually released in the March 2006 INET snapshot.

The OSPFv2 model was created by Andras Babos during 2004 for his diploma thesis which was submitted early
2005. This work was sponsored by Andras Varga, using revenues from commercial OMNEST licenses. After
several refinements and fixes, the code got merged into the INET Framework in 2005, and became part of the
March 2006 INET snapshot.

The Quagga routing daemon was ported into the INET Framework also by Vojta Janota. This work was also spon-
sored by Andras Varga. During fall 2005 and the months after, ripd and ospfd were ported, and the methodology
of porting was refined. Further Quagga daemons still remain to be ported.

Based on experience from the IPv6Suite (from Ahmet Sekercioglu’s group at CTIE, Monash University, Mel-
bourne) and IPv6SuiteWithINET (Andras’s effort to refactor IPv6Suite and merge it with INET early 2005), Wei
Yang Ng (Monash Uni) implemented a new IPv6 model from scratch for the INET Framework in 2005 for his
diploma thesis, under guidance from Andras who was visiting Monash between February and June 2005. This
IPv6 model got first included in the July 2005 INET snapshot, and gradually refined afterwards.

The SCTP implementation was contributed by Michael Tuexen, Irene Ruengeler and Thomas Dreibholz

Support for Sam Jensen’s Network Simulation Cradle, which makes real-world TCP stacks available in simulations
was added by Zoltan Bojthe in 2010.

TCP SACK and New Reno implementation was contributed by Thomas Reschka.

131

mailto:Xuan.T.Nguyen@uts.edu.au
http://charlie.it.uts.edu.au/
http://charlie.it.uts.edu.au/


INET Framework User’s Guide

Several other people have contributed to the INET Framework by providing feedback, reporting bugs, suggesting
features and contributing patches; I’d like to acknowledge their help here as well.

132 Chapter 32. History


	Introduction
	What is INET Framework
	Designed for Experimentation
	Scope of this Manual

	Using the INET Framework
	Installation
	Installing INET Extensions
	Getting Familiar with INET

	Networks
	Overview
	Built-in Network Nodes and Other Top-Level Modules
	Typical Networks
	Frequent Tasks (How To…)

	Network Nodes
	Overview
	Ingredients
	Node Architecture
	Customizing Nodes
	Custom Network Nodes

	Network Interfaces
	Overview
	Built-in Network Interfaces
	Anatomy of Network Interfaces
	The Interface Table
	Wired Network Interfaces
	Wireless Network Interfaces
	Special-Purpose Network Interfaces
	Custom Network Interfaces

	Applications
	Overview
	TCP applications
	UDP applications
	IPv4/IPv6 traffic generators
	The PingApp application
	Ethernet applications

	Transport Protocols
	Overview
	TCP
	UDP
	SCTP
	RTP

	The IPv4 Protocol Family
	Overview
	Ipv4
	Ipv4RoutingTable
	Icmp
	Arp
	Igmp

	IPv6 and Mobile IPv6
	Overview

	Other Network Protocols
	Overview
	Protocols
	Address Types
	Address Resolution

	Internet Routing
	Overview
	RIP
	OSPF
	BGP

	Ad Hoc Routing
	Overview
	AODV
	DSDV
	DYMO
	GPSR

	Differentiated Services
	Overview
	Architecture of NICs
	Simple modules
	Compound modules

	The MPLS Models
	Overview
	Core Modules
	Classifier
	MPLS-Enabled Router Models

	Point-to-Point Links
	Overview
	The PPP module
	PppInterface

	The Ethernet Model
	Overview
	Nodes
	The Physical Layer
	Ethernet Interface
	Components
	Implemented Standards

	The 802.11 Model
	Overview
	MAC
	Physical Layer
	Management
	Agent

	The 802.15.4 Model
	Overview
	Network Interfaces
	Physical Layer
	MAC Protocol

	MAC Protocols for Wireless Sensor Networks
	Overview
	B-MAC
	L-MAC
	X-MAC

	The Physical Layer
	Overview
	Generic Radio
	Components of a Radio
	Layered Radio Models
	Notable Radio Models

	The Transmission Medium
	Overview
	RadioMedium
	Propagation Models
	Path Loss Models
	Obstacle Loss Models
	Background Noise Models
	Analog Models
	Neighbor Cache
	Medium Limit Cache
	Communication Cache
	Improving Scalability

	The Physical Environment
	Overview
	PhysicalEnvironment
	Physical Objects
	Ground Models
	Geographic Coordinate System Models
	Object Cache

	Node Mobility
	Overview
	Built-In Mobility Models

	Modeling Power Consumption
	Overview
	Energy Consumer Models
	Energy Generator Models
	Energy Storage Models
	Energy Management Models

	Network Emulation
	Motivation
	Overview
	Preparation
	Configuring

	Network Autoconfiguration
	Overview
	Configuring IPv4 Networks
	Configuring Layer 2

	Scenario Scripting
	Overview
	ScenarioManager

	Modeling Node Failures
	Overview
	NodeStatus
	Scripting

	Collecting Results
	Recording Statistics
	Recording PCAP Traces
	Recording Routing Tables
	Packet Recorder
	Eventlog Recording

	Visualization
	Overview
	Visualizing Network Communication
	Visualizing The Infrastructure

	Appendix: Author’s Guide
	Overview
	Guidelines

	History
	IPSuite to INET Framework (2000-2006)


