
VxWorks

DRIVERS AP I REFERENCE

®

6.2

VxWorks Drivers API Reference

Copyright © 2005 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Drivers API Reference, 6.2

19 Dec 05
Part #: DOC-15602-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

This book provides reference entries that describe VxWorks drivers. For reference
entries that describe the facilities available for VxWorks process-based application
development, see the VxWorks Application API Reference. For reference entries that
describe facilities available in the VxWorks kernel, see the VxWorks Kernel API
Reference.

1. Libraries

This section provides reference entries for each of the VxWorks driver libraries,
arranged alphabetically. Each entry lists the routines found in the library, including
a one-line synopsis of each and a general description of their use.

Individual reference entries for each of the available functions in these libraries is
provided in section 2.

2. Routines

This section provides reference entries for each of the routines found in the
VxWorks driver libraries documented in section 1.

Keyword Index

This section is a “permuted index” of keywords found in the NAME line of each
reference entry. The keyword for each index item is left-aligned in column 2. The
remaining words in column 1 and 2 show the context for the keyword.

VxWorks Drivers API Reference, 6.2

iv

1

 1
Libraries

ambaSio – ARM AMBA UART tty driver ... 3
amd8111LanEnd – END style AMD8111 LAN Ethernet driver... 6
ataDrv – ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) disk device driver... 8
ataShow – ATA/IDE (LOCAL and PCMCIA) disk device driver show routine................ 13
auEnd – END style Au MAC Ethernet driver... 14
bcm1250MacEnd – END style BCM1250 MAC Ethernet driver ... 17
bio – buffer I/O Implementation.. 18
cisLib – PCMCIA CIS library ... 19
cisShow – PCMCIA CIS show library... 19
ctB69000Vga – a CHIPS B69000 initialization source module... 20
dec21x40End – END-style DEC 21x40 PCI Ethernet network interface driver 22
device – Device Infrastructure Library .. 28
el3c90xEnd – END network interface driver for 3COM 3C90xB XL.. 29
elt3c509End – END network interface driver for 3COM 3C509 .. 33
endLib – support library for END-based drivers.. 35
erfLib – Event Reporting Framework Library ... 36
erfShow – Event Reporting Framework Library Show routines... 36
evbNs16550Sio – NS16550 serial driver for the IBM PPC403GA evaluation 37
fei82557End – END-style Intel 82557 Ethernet network interface driver 37
gei82543End – Intel 82540/82541/82543/82544/82545/82546/ MAC driver............................ 42
i8250Sio – I8250 serial driver .. 46
iOlicomEnd – END style Intel Olicom PCMCIA network interface driver 47
iPIIX4 – low-level initialization code for PCI ISA/IDE Xcelerator 50
ln97xEnd – END-style AMD Am79C97X PCnet-PCI Ethernet driver.................................... 53
lptDrv – parallel chip device driver for the IBM-PC LPT ... 59
m8260SccEnd – END style Motorola MPC8260 network interface driver 60
miiLib – Media Independent Interface library.. 63
motFcc2End – Second Generation Motorola FCC Ethernet network interface. 65
motFecEnd – END style Motorola FEC Ethernet network interface driver.............................. 74
ncr810Lib – NCR 53C8xx PCI SCSI I/O Processor (SIOP) library (SCSI-2) 80

VxWorks Drivers API Reference, 6.2

2

ne2000End – NE2000 END network interface driver... 81
nec765Fd – NEC 765 floppy disk device driver ... 83
ns16550Sio – NS 16550 UART tty driver .. 84
ns83902End – National Semiconductor DP83902A ST-NIC ... 84
pccardLib – PC CARD enabler library.. 86
pciAutoConfigLib – PCI bus scan and resource allocation facility... 87
pciConfigLib – PCI Configuration space access support for PCI drivers 95
pciConfigShow – Show routines of PCI bus(I/O mapped) library ... 106
pciIntLib – PCI Shared Interrupt support .. 107
pcic – Intel 82365SL PCMCIA host bus adaptor chip library ... 108
pcicShow – Intel 82365SL PCMCIA host bus adaptor chip show library............................... 108
pcmciaLib – generic PCMCIA event-handling facilities... 108
pcmciaShow – PCMCIA show library... 110
ppc403Sio – ppc403GA serial driver ... 110
ppc860Sio – Motorola MPC800 SMC UART serial driver.. 111
rm9000x2glSio – RM9000 tty driver... 111
shSciSio – Hitachi SH SCI (Serial Communications Interface) driver 112
shScifSio – Renesas SH SCIF (Serial Communications Interface) driver 113
smEnd – END shared memory (SM) network interface driver ... 113
smEndShow – shared memory network END driver show routines... 118
smcFdc37b78x – a superIO (fdc37b78x) initialization source module ... 118
sramDrv – PCMCIA SRAM device driver ... 121
sym895Lib – SCSI-2 driver for Symbios SYM895 SCSI Controller... 122
tcic – Databook TCIC/2 PCMCIA host bus adaptor chip driver.................................. 124
tcicShow – Databook TCIC/2 PCMCIA host bus adaptor chip show library 124
tffsConfig – TrueFFS configuration file for VxWorks .. 125
vgaInit – a VGA 3+ mode initialization source module ... 126
wancomEnd – END style Marvell/Galileo GT642xx Ethernet network interface driver.......... 126
wdbEndPktDrv – END based packet driver for lightweight UDP/IP... 129
wdbNetromPktDrv – NETROM packet driver for the WDB agent .. 129
wdbPipePktDrv – pipe packet driver for lightweight UDP/IP... 130
wdbSlipPktDrv – a serial line packetizer for the WDB agent ... 131
wdbTsfsDrv – virtual generic file I/O driver for the WDB agent .. 132
wdbVioDrv – virtual tty I/O driver for the WDB agent ... 136
xbd – Extended Block Device Library.. 137
z8530Sio – Z8530 SCC Serial Communications Controller driver.. 137

1 Libraries
ambaSio

3

1ambaSio

NAME ambaSio – ARM AMBA UART tty driver

ROUTINES ambaDevInit() – initialize an AMBA channel
ambaIntTx() – handle a transmitter interrupt
ambaIntRx() – handle a receiver interrupt

DESCRIPTION This is the device driver for the Advanced RISC Machines (ARM) AMBA UART. This is a
generic design of UART used within a number of chips containing (or for use with) ARM
CPUs such as in the Digital Semiconductor 21285 chip as used in the EBSA-285 BSP.

This design contains a universal asynchronous receiver/transmitter, a baud-rate generator,
and an InfraRed Data Association (IrDa) Serial InfraRed (SiR) protocol encoder. The Sir
encoder is not supported by this driver. The UART contains two 16-entry deep FIFOs for
receive and transmit: if a framing, overrun or parity error occurs during reception, the
appropriate error bits are stored in the receive FIFO along with the received data. The FIFOs
can be programmed to be one byte deep only, like a conventional UART with double
buffering, but the only mode of operation supported is with the FIFOs enabled.

The UART design does not support the modem control output signals: DTR, RI and RTS.
Moreover, the implementation in the 21285 chip does not support the modem control
inputs: DCD, CTS and DSR.

The UART design can generate four interrupts: Rx, Tx, modem status change and a UART
disabled interrupt (which is asserted when a start bit is detected on the receive line when
the UART is disabled). The implementation in the 21285 chip has only two interrupts: Rx
and Tx, but the Rx interrupt is a combination of the normal Rx interrupt status and the
UART disabled interrupt status.

Only asynchronous serial operation is supported by the UART which supports 5 to 8 bit bit
word lengths with or without parity and with one or two stop bits. The only serial word
format supported by the driver is 8 data bits, 1 stop bit, no parity. The default baud rate is
determined by the BSP by filling in the AMBA_CHAN structure before calling
ambaDevInit().

The exact baud rates supported by this driver will depend on the crystal fitted (and
consequently the input clock to the baud-rate generator), but in general, baud rates from
about 300 to about 115200 are possible.

In theory, any number of UART channels could be implemented within a chip. This driver
has been designed to cope with an arbitrary number of channels, but at the time of writing,
has only ever been tested with one channel.

DATA STRUCTURES

An AMBA_CHAN data structure is used to describe each channel, this structure is described
in h/drv/sio/ambaSio.h.

VxWorks Drivers API Reference, 6.2
ambaSio

4

CALLBACKS Servicing a "transmitter ready" interrupt involves making a callback to a higher-level library
in order to get a character to transmit. By default, this driver installs dummy callback
routines which do nothing. A higher-layer library that wants to use this driver (such as
ttyDrv) will install its own callback routine using the SIO_INSTALL_CALLBACK ioctl
command. Likewise, a receiver interrupt handluer makes a callback to pass the character to
the higher-layer library.

MODES This driver supports both polled and interrupt modes.

USAGE The driver is typically only called by the BSP. The directly callable routines in this modules
are ambaDevInit(), ambaIntTx() and ambaIntRx().

The BSP's sysHwInit() routine typically calls sysSerialHwInit(), which initializes the
hardware-specific fields in the AMBA_CHAN structure (e.g. register I/O addresses, etc)
before calling ambaDevInit() which resets the device and installs the driver function
pointers. After this the UART will be enabled and ready to generate interrupts, but those
interrupts will be disabled in the interrupt controller.

The following example shows the first parts of the initialization:

#include "drv/sio/ambaSio.h"

LOCAL AMBA_CHAN ambaChan[N_AMBA_UART_CHANS];

void sysSerialHwInit (void)
 {
 int i;

 for (i = 0; i < N_AMBA_UART_CHANS; i++)
 {
 ambaChan[i].regs = devParas[i].baseAdrs;
 ambaChan[i].baudRate = CONSOLE_BAUD_RATE;
 ambaChan[i].xtal = UART_XTAL_FREQ;

 ambaChan[i].levelRx = devParas[i].intLevelRx;
 ambaChan[i].levelTx = devParas[i].intLevelTx;

 /*
 * Initialize driver functions, getTxChar, putRcvChar and
 * channelMode, then initialize UART
 */

 ambaDevInit(&ambaChan[i]);
 }
 }

1 Libraries
ambaSio

5

1
The BSP's sysHwInit2() routine typically calls sysSerialHwInit2(), which connects the
chips interrupts via intConnect() (the two interrupts ambaIntTx and ambaIntRx) and
enables those interrupts, as shown in the following example:

void sysSerialHwInit2 (void)
 {
 /* connect and enable Rx interrupt */

 (void) intConnect (INUM_TO_IVEC(devParas[0].vectorRx),
 ambaIntRx, (int) &ambaChan[0]);
 intEnable (devParas[0].intLevelRx);

 /* connect Tx interrupt */

 (void) intConnect (INUM_TO_IVEC(devParas[0].vectorTx),
 ambaIntTx, (int) &ambaChan[0]);
 /*
 * There is no point in enabling the Tx interrupt, as it will
 * interrupt immediately and then be disabled.
 */

 }

BSP By convention, all the BSP-specific serial initialization is performed in a file called
sysSerial.c, which is #included by sysLib.c. sysSerial.c implements at least four functions,
sysSerialHwInit() sysSerialHwInit2(), sysSerialChanGet(), and sysSerialReset(). The
first two have been described above, the others work as follows:

sysSerialChanGet is called by usrRoot to get the serial channel descriptor associated
with a serial channel number. The routine takes a single parameter which is a channel
number ranging between zero and NUM_TTY. It returns a pointer to the corresponding
channel descriptor, SIO_CHAN *, which is just the address of the AMBA_CHAN
structure.

sysSerialReset is called from sysToMonitor() and should reset the serial devices to an
inactive state (prevent them from generating any interrupts).

INCLUDE FILES drv/sio/ambaSio.h sioLib.h

SEE ALSO Advanced RISC Machines AMBA UART (AP13) Data Sheet, Digital Semiconductor EBSA-285
Evaluation Board Reference Manual.

INCLUDE FILES none

VxWorks Drivers API Reference, 6.2
amd8111LanEnd

6

amd8111LanEnd

NAME amd8111LanEnd – END style AMD8111 LAN Ethernet driver

ROUTINES amd8111LanEndLoad() – initialize the driver and device
amd8111LanDumpPrint() – Display statistical counters
amd8111LanErrCounterDump() – dump statistical counters

DESCRIPTION This module implements the Advanced Micro Devices 8111 LAN END PCI Ethernet 32-bit
network interface driver.

This driver is designed to be moderately generic, operating unmodified across the range of
architectures and targets supported by VxWorks. To achieve this, the driver must be given
several target-specific parameters, and some external support routines must be provided.
These target-specific values and the external support routines are described below.

This driver supports multiple units per CPU. The driver can be configured to support
big-endian or little-endian architectures. It contains error recovery code to handle known
device errata related to DMA activity.

Some big-endian processors may be connected to a PCI bus through a host/PCI bridge
which performs byte swapping during data phases. On such platforms, the controller need
not perform byte swapping during a DMA access to memory shared with the host
processor.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides one standard external interface, amd8111LanEndLoad(). As input, this
routine takes a string of colon-separated parameters. The parameters should be specified in
hexadecimal (optionally preceded by 0x or a minus sign -). The parameter string is parsed
using strtok_r().

TARGET-SPECIFIC PARAMETERS

The format of the parameter string is:

unit:memAdrs:memSize:memWidth:offset:tdnum:rdnum:flags

unit
The unit number of the device. Unit numbers start at zero and increase for each device
controlled by the same driver. The driver does not use this value directly. The unit
number is passed through the MUX API where it is used to differentiate between
multiple instances of a particular driver.

memAdrs
This parameter gives the driver the memory address to carve out its buffers and data
structures. If this parameter is specified to be NONE, the driver allocates cache-coherent

1 Libraries
amd8111LanEnd

7

1
memory for buffers and descriptors from the system memory pool. The PCnet device
is a DMA type of device and typically shares access to some region of memory with the
CPU. This driver is designed for systems that directly share memory between the CPU
and the PCnet. It assumes that this shared memory is directly available to it without any
arbitration or timing concerns.

memSize
This parameter can be used to explicitly limit the amount of shared memory (bytes) this
driver will use. The constant NONE can be used to indicate no specific size limitation.
This parameter is used only if a specific memory region is provided to the driver.

memWidth
Some target hardware that restricts the shared memory region to a specific location also
restricts the access width to this region by the CPU. On these targets, performing an
access of an invalid width will cause a bus error.

This parameter can be used to specify the number of bytes of access width to be used
by the driver during access to the shared memory. The constant NONE can be used to
indicate no restrictions.

Current internal support for this mechanism is not robust; implementation may not
work on all targets requiring these restrictions.

offset
This parameter specifies a memory alignment offset. Normally this parameter is zero
except for architectures which can only access 32-bit words on 4-byte aligned address
boundaries. For these architectures the value of this offset should be 2.

tdnum
This parameter specifies the number of Transmit Descriptors to allocate. Must be a
power of 2.

rdnum
This parameter specifies the number of Receive Descriptors to allocate. Must be a
power of 2.

flags
This is parameter is used for future use. Currently its value should be zero.

PERFORMANCE This driver has been empirically shown to give better performance when passed a cacheable
region of memory for use by the driver provided the BSP supports caching.

EXTERNAL SUPPORT REQUIREMENTS

The BSP must provide the following function to perform BSP-specific initialization:

IMPORT STATUS sysAmd8111LanInit (int unit, AMD8111_LAN_BOARD_INFO *pBoard) ;

VxWorks Drivers API Reference, 6.2
ataDrv

8

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

- one mutual exclusion semaphore
- one interrupt vector
- 14240 bytes in text for a PENTIUM3 target
- 120 bytes in the initialized data section (data)
- 0 bytes in the uninitialized data section (BSS)

The driver allocates clusters of size 1520 bytes for receive frames and
transmit frames.

INCLUDE FILES none

SEE ALSO muxLib, endLib, netBufLib, "Network Protocol Toolkit User's Guide", "AMD-8111
HyperTransport I/O Hub Data Sheet"

ataDrv

NAME ataDrv – ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) disk device driver

ROUTINES ataDrv() – Initialize the ATA driver
ataXbdDevCreate() – create an XBD device for a ATA/IDE disk
ataDevCreate() – create a device for a ATA/IDE disk
atapiPktCmdSend() – Issue a Packet command.
atapiIoctl() – Control the drive.
atapiParamsPrint() – Print the drive parameters.
atapiCtrlMediumRemoval() – Issues PREVENT/ALLOW MEDIUM REMOVAL packet
command
atapiRead10() – read one or more blocks from an ATAPI Device.
atapiReadCapacity() – issue a READ CD-ROM CAPACITY command to a ATAPI device
atapiReadTocPmaAtip() – issue a READ TOC command to a ATAPI device
atapiScan() – issue SCAN packet command to ATAPI drive.
atapiSeek() – issues a SEEK packet command to drive.
atapiSetCDSpeed() – issue SET CD SPEED packet command to ATAPI drive.
atapiStopPlayScan() – issue STOP PLAY/SCAN packet command to ATAPI drive.
atapiStartStopUnit() – Issues START STOP UNIT packet command
atapiTestUnitRdy() – issue a TEST UNIT READY command to a ATAPI drive
ataCmd() – issue a RegisterFile command to ATA/ATAPI device.
ataInit() – initialize ATA device.
ataRW() – read/write a data from/to required sector.
ataDmaRW() – read/write a number of sectors on the current track in DMA mode
ataPiInit() – init a ATAPI CD-ROM disk controller

1 Libraries
ataDrv

9

1
ataDevIdentify() – identify device
ataParamRead() – Read drive parameters
ataCtrlReset() – reset the specified ATA/IDE disk controller
ataStatusChk() – Check status of drive and compare to requested status.
atapiPktCmd() – execute an ATAPI command with error processing
atapiInit() – init ATAPI CD-ROM disk controller

DESCRIPTION

BLOCK DEVICE DRIVER

This is a Block Device Driver for ATA/ATAPI devices on IDE host controller. It also provides
neccessary functions to user for device and its features control which are not used or utilized
by file system.

This driver provides standard Block Device Driver functions (blkRd, blkWrt, ioctl,
statusChk, and reset) for ATA and ATAPI devices separately as the scheme of
implementation differs. These functions are implemented as ataBlkRd(), ataBlkWrt(),
ataBlkIoctl(), ataStatus() and ataReset() for ATA devices and atapiBlkRd(),
atapiBlkWrt(), atapiBlkIoctl(), atapiStatusChk() and atapiReset() for ATAPI devices.
The Block Device Structure BLK_DEV is updated with these function pointers ata
initialization of the driver depending on the type of the device in function ataDevCreate().

ataDrv(), a user callable function, initializes ATA/ATAPI devices present on the specified
IDE controller(either primary or secondary), which must be called once for each controller,
before usage of this driver, usally called from usrRoot()in usrConfig.c.

The routine ataDevCreate(), which is user callable function, is used to mount a logical drive
on an ATAPI drive.This routine returns a pointer to BLK_DEV structure, which is used to
mount the file system on the logical drive.

OTHER NECESSARY FUNCTIONS FOR USER

There are various functions provided to user, which can be classified to different catagories
as device contol function, device information functions and functions meant for packet
devices.

Device Control Function:

atapiIoctl() function is used to control a device. Block Device Driver functions
ataBlkIoctl() and atapiBlkIcotl()functions are also routed to this function. This function
implements various control command functions which are not used by the I/O system (like
power managment feature set commands, host protected feature set commands, security
feature set commands, media control functions etc).

Device Information Function:

In this catagory various functions are implmented depending on the information required.
These functions return information required (like cylinder count, Head count, device serial
number, device Type, etc)from the internal device structures.

VxWorks Drivers API Reference, 6.2
ataDrv

10

Packet Command Functions:

Although Block Device Driver functions deliver packet commands using functions
provided by atapiLib.c for required functionality. There are group of functions provided in
this driver to user for ATAPI device, which implements packet commands for CD_ROM
that comply to ATAPI-SFF8020i specification which are essentially required for CD ROM
operation for file system. These functions are named after their command name (like for
REQUEST SENSE packet command atapiReqSense() function). To issue other packet
commands atapiPktCmdSend() can be used.

This driver also provides a generic function atapiPktCmdSend() to issue a packet
command to ATAPI devices, which can be utilized by user to issue packet command directly
instead using the implmented functions also may be used to send new commands (may
come in later specs) to device. User can issue any packet command using
atapiPktCmdSend() function to the required device by passing its BLK_DEV structure
pointer and pointer for ATAPI_CMD command packet.

The typedef of ATAPI_CMD

 typedef struct atapi_cmd
 {
 UINT8 cmdPkt [ATAPI_MAX_CMD_LENGTH];
 char **ppBuf;
 UINT32 bufLength;
 ATA_DATA_DIR direction;
 UINT32 desiredTransferSize;
 BOOL dma;
 BOOL overlap;
 } ATAPI_CMD;

and the ATA_DATA_DIR typedef is

typedef enum /* with respect to host/memory */
 {
 NON_DATA, /* non data command */
 OUT_DATA, /* to drive from memory */
 IN_DATA /* from drive to memory */
 } ATA_DATA_DIR;

The user is expected to fill the ATAPI_CMD structure with the required parameters of the
packet and pass the ATAPI_CMD structure pointer to atapiPktCmdSend() function for
command execution.

All the packet command functions require ATA_DEV structure to be passed, which
alternatively a BLK_DEV Device Structure of the device. One should type convert the
structure and the same BLK_DEV structrue pointer to these functions.

The routine ataPiRawio() supports physical I/O access. The first argument is the controller
number, 0 or 1; the second argument is drive number, 0 or 1; the third argument is a pointer
to an ATA_RAW structure.

1 Libraries
ataDrv

11

1
PARAMETERS

The ataPiDrv() function requires a configuration flag as a parameter. The configuration flag
is one of the following or Bitwise OR of any of the following combination:

configuration flag =
Transfer mode | Transfer bits | Transfer unit | Geometry parameters

ISA SingleWord DMA mode is obsolete in ata-3.

The Transfer rates shown above are the Burst transfer rates. If ATA_PIO_AUTO is specified,
the driver automatically chooses the maximum PIO mode supported by the device. If

Transfer mode Description Transfer Rate
ATA_PIO_DEF_0 PIO default mode
ATA_PIO_DEF_1 PIO default mode, no IORDY
ATA_PIO_0 PIO mode 0 3.3 MBps
ATA_PIO_1 PIO mode 1 5.2 MBps
ATA_PIO_2 PIO mode 2 8.3 MBps
ATA_PIO_3 PIO mode 3 11.1 MBps
ATA_PIO_4 PIO mode 4 16.6 MBps
ATA_PIO_AUTO PIO max supported mode
ATA_DMA_SINGLE_0 Single DMA mode 0 2.1 MBps
ATA_DMA_SINGLE_1 Single DMA mode 1 4.2 MBps
ATA_DMA_SINGLE_2 Single DMA mode 2 8.3 MBps
ATA_DMA_MULTI_0 Multi word DMA mode 0 4.2 MBps
ATA_DMA_MULTI_1 Multi word DMA mode 1 13.3 MBps
ATA_DMA_MULTI_2 Multi word DMA mode 2 16.6 MBps
ATA_DMA_ULTRA_0 Ultra DMA mode 0 16.6 MBps
ATA_DMA_ULTRA_1 Ultra DMA mode 1 25.0 MBps
ATA_DMA_ULTRA_2 Ultra DMA mode 2 33.3 MBps
ATA_DMA_ULTRA_3 Ultra DMA mode 3 44.4 MBps
ATA_DMA_ULTRA_4 Ultra DMA mode 4 66.6 MBps
ATA_DMA_ULTRA_5 Ultra DMA mode 5 100.0 MBps
ATA_DMA_AUTO DMA max supported mode

Transfer bits
ATA_BITS_16 RW bits size, 16-bits
ATA_BITS_32 RW bits size, 32-bits

Transfer unit
ATA_PIO_SINGLE RW PIO single sector
ATA_PIO_MULTI RW PIO multi sector

Geometry parameters
ATA_GEO_FORCE set geometry in the table
ATA_GEO_PHYSICAL set physical geometry
ATA_GEO_CURRENT set current geometry

VxWorks Drivers API Reference, 6.2
ataDrv

12

ATA_DMA_AUTO is specified, the driver automatically chooses the maximum Ultra DMA
mode supported by the device and if the device doesn't support the Ultra DMA mode of
data transfer, the driver chooses the best Multi Word DMA mode. If the device doesn't
support the multiword DMA mode, driver chooses the best single word DMA mode. If the
device doesn't support DMA mode, driver automatically chooses the best PIO mode. So it
is recommended to specify the ATA_DMA_AUTO.

If ATA_PIO_MULTI is specified, and the device does not support it, the driver automatically
chooses single sector or word mode. If ATA_BITS_32 is specified, the driver uses 32-bit
transfer mode regardless of the capability of the drive. The Single word DMA mode will not
be supported by the devices compliant to ATA/ATAPI-5 or higher.

This driver supports UDMA mode data transfer from device to host, provided 80 conductor
cable is used for required controller device. This check is done at the initialization of the
device from the device parameters and if 80 conductor cable is connected, UDMA mode
transfer is selected for operation subject to condition that required UDMA mode is
supported by device as well as host. This driver follows ref-3 Chapter 4 "Determining a
Drive's Transfer Rate Capability" to determine drives best transfer rate for all modes (that is,
for UDMA, MDMA, SDMA and PIO modes).

The host IDE Bus master functions are to be mapped to follwing macro defined for various
functionality in header file which are used in this driver.

ATA_HOST_CTRL_INIT - initialize the controller

ATA_HOST_DMA_ENGINE_INIT - initialize bus master DMA engine

ATA_HOST_DMA_ENGINE_START - Start bus master operation

ATA_HOST_DMA_ENGINE_STOP - Stop bus master operation

ATA_HOST_DMA_TRANSFER_CHK - check bus master data transfer complete

ATA_HOST_DMA_MODE_NEGOTIATE - get mode supported by controller

ATA_HOST_SET_DMA_RWMODE - set controller to required mode

ATA_HOST_CTRL_RESET - reset the controller

If ATA_GEO_PHYSICAL is specified, the driver uses the physical geometry parameters
stored in the drive. If ATA_GEO_CURRENT is specified, the driver uses current geometry
parameters initialized by BIOS. If ATA_GEO_FORCE is specified, the driver uses geometry
parameters stored in sysLib.c.

The geometry parameters are stored in the structure table ataTypes[] in sysLib.c. That table
has two entries, the first for drive 0, the second for drive 1. The members of the structure are:

 int cylinders; /* number of cylinders */
 int heads; /* number of heads */
 int sectors; /* number of sectors per track */
 int bytes; /* number of bytes per sector */
 int precomp; /* precompensation cylinder */

1 Libraries
ataShow

13

1
The driver supports two controllers and two drives on each. This is dependent on the
configuration parameters supplied to ataPiDrv().

References:
1) ATAPI-5 specification "T13-1321D Revision 1b, 7 July 1999"
2) ATAPI for CD-ROMs "SFF-8020i Revision 2.6, Jan 22,1996"
3) Intel 82801BA (ICH2), 82801AA (ICH), and 82801AB (ICH0) IDE Controller

Programmer's Reference Manual, Revision 1.0 July 2000

Source of Reference Documents:
1) ftp://ftp.t13.org/project/d1321r1b.pdf
2) http://www.bswd.com/sff8020i.pdf

INCLUDE FILES none

SEE ALSO VxWorks Programmer's Guide: I/O System

ataShow

NAME ataShow – ATA/IDE (LOCAL and PCMCIA) disk device driver show routine

ROUTINES ataShowInit() – initialize the ATA/IDE disk driver show routine
ataShow() – show the ATA/IDE disk parameters
ataDmaToggle() – turn on or off an individual controllers dma support
atapiCylinderCountGet() – get the number of cylinders in the drive.
atapiHeadCountGet() – get the number heads in the drive.
atapiDriveSerialNumberGet() – get the drive serial number.
atapiFirmwareRevisionGet() – get the firm ware revision of the drive.
atapiModelNumberGet() – get the model number of the drive.
atapiFeatureSupportedGet() – get the features supported by the drive.
atapiFeatureEnabledGet() – get the enabled features.
atapiMaxUDmaModeGet() – get the Maximum Ultra DMA mode the drive can support.
atapiCurrentUDmaModeGet() – get the enabled Ultra DMA mode.
atapiMaxMDmaModeGet() – get the Maximum Multi word DMA mode the drive
supports.
atapiCurrentMDmaModeGet() – get the enabled Multi word DMA mode.
atapiMaxSDmaModeGet() – get the Maximum Single word DMA mode the drive supports
atapiCurrentSDmaModeGet() – get the enabled Single word DMA mode.
atapiMaxPioModeGet() – get the Maximum PIO mode that drive can support.
atapiCurrentPioModeGet() – get the enabled PIO mode.
atapiCurrentRwModeGet() – get the current Data transfer mode.
atapiDriveTypeGet() – get the drive type.
atapiVersionNumberGet() – get the ATA/ATAPI version number of the drive.

VxWorks Drivers API Reference, 6.2
auEnd

14

atapiRemovMediaStatusNotifyVerGet() – get the Media Stat Notification Version.
atapiCurrentCylinderCountGet() – get logical number of cylinders in the drive.
atapiCurrentHeadCountGet() – get the number of read/write heads in the drive.
atapiBytesPerTrackGet() – get the number of bytes per track.
atapiBytesPerSectorGet() – get the number of bytes per sector.

DESCRIPTION This library contains a driver show routine for the ATA/IDE (PCMCIA and LOCAL)
devices supported on the IBM PC.

INCLUDE FILES none

auEnd

NAME auEnd – END style Au MAC Ethernet driver

ROUTINES auEndLoad() – initialize the driver and device
auInitParse() – parse the initialization string
auDump() – display device status

DESCRIPTION This module implements the Alchemey Semiconductor au on-chip ethernet MACs.

The software interface to the driver is divided into three parts. The first part is the interrupt
registers and their setup. This part is done at the BSP level in the various BSPs which use
this driver. The second and third part are addressed in the driver. The second part of the
interface comprises of the I/O control registers and their programming. The third part of the
interface comprises of the descriptors and the buffers.

This driver is designed to be moderately generic. Though it currently is implemented on one
processor, in the future it may be added to other Alchemey product offerings. Thus, it would
be desirable to use the same driver with no source-level changes. To achieve this, the driver
must be given several target-specific parameters, and some external support routines must
be provided. These target-specific values and the external support routines are described
below.

This driver supports multiple units per CPU. The driver can be configured to support
big-endian or little-endian architectures.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The only external interface is the auEndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the following
format:

1 Libraries
auEnd

15

1
unit:devMemAddr:devIoAddr:enableAddr:vecNum:intLvl:offset :qtyCluster:flags

The auEndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the string
name for the driver.

devAddr
This parameter is the memory base address of the device registers in the memory map
of the CPU. It indicates to the driver where to find the base MAC register.

devIoAddr
This parameter in the base address of the device registers for the dedicated DMA
channel for the MAC device. It indicates to the driver where to find the DMA registers.

enableAddr
This parameter is the address MAC enable register. It is necessary to specify selection
between MAC 0 and MAC 1.

vecNum
This parameter is the vector associated with the device interrupt. This driver configures
the MAC device to generate hardware interrupts for various events within the device;
thus it contains an interrupt handler routine. The driver calls intConnect() via the
macro SYS_INT_CONNECT() to connect its interrupt handler to the interrupt vector
generated as a result of the MAC interrupt.

intLvl
Some targets use additional interrupt controller devices to help organize and service
the various interrupt sources. This driver avoids all board-specific knowledge of such
devices. During the driver's initialization, the external routine sysLanAuIntEnable() is
called to perform any board-specific operations required to allow the servicing of an
interrupt. For a description of sysLanAuIntEnable(), see "External Support
Requirements" below.

offset
This parameter specifies the offset from which the packet has to be loaded from the
beginning of the device buffer. Normally this parameter is zero except for architectures
which access long words only on aligned addresses. For these architectures the value of
this offset should be 2.

qtyCluster
This parameter is used to explicitly allocate the number of clusters that will be
allocated. This allows the user to suit the stack to the amount of physical memory on
the board.

flags
This is parameter is reserved for future use. Its value should be zero.

VxWorks Drivers API Reference, 6.2
auEnd

16

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

 SYS_INT_CONNECT(pDrvCtrl, routine, arg)
 SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)
 SYS_INT_ENABLE(pDrvCtrl)
 SYS_INT_DISABLE(pDrvCtrl)
 SYS_OUT_BYTE(pDrvCtrl, reg, data)
 SYS_IN_BYTE(pDrvCtrl, reg, data)
 SYS_OUT_WORD(pDrvCtrl, reg, data)
 SYS_IN_WORD(pDrvCtrl, reg, data)
 SYS_OUT_LONG(pDrvCtrl, reg, data)
 SYS_IN_LONG(pDrvCtrl, reg, data)
 SYS_ENET_ADDR_GET(pDrvCtrl, pAddress)
 sysLanAuIntEnable(pDrvCtrl->intLevel)
 sysLanAuIntDisable(pDrvCtrl->intLevel)
 sysLanAuEnetAddrGet(pDrvCtrl, enetAdrs)

There are default values in the source code for these macros. They presume memory
mapped accesses to the device registers and the intConnect(), and intEnable() BSP
functions. The first argument to each is the device controller structure. Thus, each has access
back to all the device-specific information. Having the pointer in the macro facilitates the
addition of new features to this driver.

The macros SYS_INT_CONNECT, SYS_INT_DISCONNECT, SYS_INT_ENABLE and
SYS_INT_DISABLE allow the driver to be customized for BSPs that use special versions of
these routines.

The macro SYS_INT_CONNECT is used to connect the interrupt handler to the appropriate
vector. By default it is the routine intConnect().

The macro SYS_INT_DISCONNECT is used to disconnect the interrupt handler prior to
unloading the module. By default this routine is not implemented.

The macro SYS_INT_ENABLE is used to enable the interrupt level for the end device. It is
called once during initialization. It calls an external board-level routine
sysLanAuIntEnable().

The macro SYS_INT_DISABLE is used to disable the interrupt level for the end device. It is
called during stop. It calls an external board-level routine sysLanAuIntDisable().

The macro SYS_ENET_ADDR_GET is used get the ethernet hardware of the chip. This macro
calls an external board-level routine namely sysLanAuEnetAddrGet() to get the ethernet
address.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

- one mutual exclusion semaphore
- one interrupt vector
- 64 bytes in the initialized data section (data)
- 0 bytes in the uninitialized data section (BSS)

1 Libraries
bcm1250MacEnd

17

1
The driver allocates clusters of size 1520 bytes for receive frames and transmit frames.

INCLUDE FILES end.h endLib.h etherMultiLib.h auEnd.h

SEE ALSO muxLib, endLib, netBufLib, Writing and Enhanced Network Driver

bcm1250MacEnd

NAME bcm1250MacEnd – END style BCM1250 MAC Ethernet driver

ROUTINES bcm1250MacEndLoad() – initialize the driver and device
bcm1250MacRxDmaShow() – display RX DMA register values
bcm1250MacTxDmaShow() – display TX DMA register values
bcm1250MacShow() – display the MAC register values
bcm1250MacPhyShow() – display the physical register values

DESCRIPTION This module implements the Broadcom BCM1250 on-chip ethernet MACs. The BCM1250
ethernet DMA has two channels, but this module only supports channel 0. The dual DMA
channel feature is intended for packet classification and quality of service applications.

EXTERNAL INTERFACE

The only external interface is the bcm1250MacEndLoad() routine, which has the initString
as its only parameter. The initString parameter must be a colon-delimited string in the
following format:

unit:hwunit:vecnum:flags:numRds0:numTds0

TARGET-SPECIFIC PARAMETERS

unit
This parameter defines which ethernet interface is being loaded.

hwunit
This parameter is no longer used, but must be present so the string can be parsed
properly. Its value should be zero.

vecnum
This parameter specifies the interrupt vector number. This driver configures the MAC
device to generate hardware interrupts for various events within the device; thus it
contains an interrupt handler routine. The driver calls bcm1250IntConnect() to
connect its interrupt handler to this interrupt vector.

flags
Device-specific flags, for future use. Its value should be zero.

VxWorks Drivers API Reference, 6.2
bio

18

numRds0
This parameter specifies the number of receive DMA buffer descriptors for DMA
channel 0.

numTds0
This parameter specifies the number of transmit DMA buffer descriptors for DMA
channel 0.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

- one mutual exclusion semaphore
- one interrupt vector
- 68 bytes in the initialized data section (data)
- 0 bytes in the uninitialized data section (BSS)

The driver allocates clusters of size 1520 bytes for receive frames and transmit frames.

INCLUDE FILES endLib.h etherMultiLib.h bcm1250MacEnd.h

SEE ALSO muxLib, endLib, netBufLib, "Writing and Enhanced Network Driver"

bio

NAME bio – buffer I/O Implementation

ROUTINES bioInit() – initialize the bio library
bio_done() – terminates a bio operation
bio_alloc() – allocate memory blocks
bio_free() – free the bio memory

DESCRIPTION This library implements the buffer I/O (BIO) library.

INCLUDE FILES drv/xbd/bio.h, drv/xbd/xbd.h

cisLib

NAME cisLib – PCMCIA CIS library

ROUTINES cisGet() – get information from a PC card's CIS

1 Libraries
ctB69000Vga

19

1
cisFree() – free tuples from the linked list
cisConfigregGet() – get the PCMCIA configuration register
cisConfigregSet() – set the PCMCIA configuration register

DESCRIPTION This library contains routines to manipulate the CIS (Configuration Information Structure)
tuples and the card configuration registers. The library uses a memory window which is
defined in pcmciaMemwin to access the CIS of a PC card. All CIS tuples in a PC card are
read and stored in a linked list, cisTupleList. If there are configuration tuples, they are
interpreted and stored in another link list, cisConifigList. After the CIS is read, the PC card's
enabler routine allocates resources and initializes a device driver for the PC card.

If a PC card is inserted, the CSC (Card Status Change) interrupt handler gets a CSC event
from the PCMCIA chip and adds a cisGet() job to the PCMCIA daemon. The PCMCIA
daemon initiates the cisGet() work. The CIS library reads the CIS from the PC card and
makes a linked list of CIS tuples. It then enables the card.

If the PC card is removed, the CSC interrupt handler gets a CSC event from the PCMCIA
chip and adds a cisFree() job to the PCMCIA daemon. The PCMCIA daemon initiates the
cisFree() work. The CIS library frees allocated memory for the linked list of CIS tuples.

INCLUDE FILES none

cisShow

NAME cisShow – PCMCIA CIS show library

ROUTINES cisShow() – show CIS information

DESCRIPTION This library provides a show routine for CIS tuples. This is provided for engineering debug
use.

This module uses floating point calculations. Any task calling cisShow() needs to have the
VX_FP_TASK bit set in the task flags.

INCLUDE FILES none

ctB69000Vga

NAME ctB69000Vga – a CHIPS B69000 initialization source module

VxWorks Drivers API Reference, 6.2
ctB69000Vga

20

ROUTINES ctB69000VgaInit() – initializes the B69000 chip and loads font in memory.

DESCRIPTION The 69000 is the first product in the CHIPS family of portable graphics accelerator product
line that integrates high performance memory technology for the graphics frame buffer.
Based on the proven HiQVideo graphics accelerator core, the 69000 combines
state-of-the-art flat panel controller capabilities with low power, high performance
integrated memory. The result is the start of a high performance, low power, highly
integrated solution for the premier family of portable graphics products.

High Performance Integrated Memory
The 69000 is the first member of the HiQVideo family to provide integrated high
performance synchronous DRAM (SDRAM) memory technology. Targeted at the
mainstream notebook market, the 69000 incorporates 2MB of proprietary integrated
SDRAM for the graphics/video frame buffer. The integrated SDRAM memory can
support up to 83MHz operation, thus increasing the available memory bandwidth for
the graphics subsystem. The result is support for additional high color / high
resolution graphics modes combined with real-time video acceleration. This additional
bandwidth also allows more flexibility in the other graphics functions intensely used in
Graphical User Interfaces (GUIs) such as Microsoft Windows.

Frame-Based AGP Compatibility
The 69000 graphics is designed to be used with either 33MHz PCI, or with AGP as a
frame-based AGP device, allowing it to be used with the AGP interface provided by the
latest core logic chipsets.

HiQColor TM Technology
The 69000 integrates CHIPS breakthrough HiQColor technology. Based on the CHIPS
proprietary TMED (Temporal Modulated Energy Distribution) algorithm, HiQColor
technology is a unique process that allows the display of 16.7 million true colors on STN
panels without using Frame Rate Control (FRC) or dithering. In addition, TMED also
reduces the need for the panel tuning associated with current FRC-based algorithms.
Independent of panel response, the TMED algorithm eliminates all of the flaws (such
as shimmer, Mach banding, and other motion artifacts) normally associated with
dithering and FRC. Combined with the new fast response, high-contrast, and
low-crosstalk technology found in new STN panels, HiQColor technology enables the
best display quality and color fidelity previously only available with TFT technology.

Versatile Panel Support
The HiQVideo family supports a wide variety of monochrome and color Single- Panel,
Single-Drive (SS) and Dual-Panel, Dual Drive (DD), standard and high- resolution,
passive STN and active matrix TFT/MIM LCD, and EL panels. With HiQColor
technology, up to 256 gray scales are supported on passive STN LCDs. Up to 16.7M
different colors can be displayed on passive STN LCDs and up to 16.7M colors on 24-
bit active matrix LCDs.

The 69000 offers a variety of programmable features to optimize display quality.
Vertical centering and stretching are provided for handling modes with less than 480
lines on 480-line panels. Horizontal and vertical stretching capabilities are also

1 Libraries
ctB69000Vga

21

1
available for both text and graphics modes for optimal display of VGA text and
graphics modes on 800x600, 1024x768 and 1280x1024 panels.

Television NTSC/PAL Flicker Free Output
The 69000 uses a flicker reduction process which makes text of all fonts and sizes
readable by reducing the flicker and jumping lines on the display.

HiQVideo T Multimedia Support
The 69000 uses independent multimedia capture and display systems on-chip. The
capture system places data in display memory (usually off screen) and the display
system places the data in a window on the screen.

Low Power Consumption
The 69000 uses a variety of advanced power management features to reduce power
consumption of the display sub-system and to extend battery life. Optimized for 3.3V
operation, the 69000 internal logic, bus and panel interfaces operate at 3.3V but can
tolerate 5V operation.

Software Compatibility / Flexibility
The HiQVideo controllers are fully compatible with the VGA standard at both the
register and BIOS levels. CHIPS and third-party vendors supply a fully
VGA-compatible BIOS, end-user utilities and drivers for common application
programs.

Acceleration for All Panels and All Modes
The 69000 graphics engine is designed to support high performance graphics and video
acceleration for all supported display resolutions, display types, and color modes.
There is no compromise in performance operating in 8, 16, or 24 bpp color modes
allowing true acceleration while displaying up to 16.7M colors.

USAGE This library provides initialization routines to configure CHIPS B69000 (VGA) in
alphanumeric mode.

The functions addressed here include:

- Initialization of CHIPS B69000 IC.

USER INTERFACE
STATUS ctB69000VgaInit
 (
 VOID
)

This routine will initialize the VGA card if present in PCI connector, sets up register set in
VGA 3+ mode and loads the font in plane 2.

VxWorks Drivers API Reference, 6.2
dec21x40End

22

INCLUDE FILES None.

dec21x40End

NAME dec21x40End – END-style DEC 21x40 PCI Ethernet network interface driver

ROUTINES endTok_r() – get a token string (modified version)
dec21x40EndLoad() – initialize the driver and device
dec21140SromWordRead() – read two bytes from the serial ROM
dec21x40PhyFind() – Find the first PHY connected to DEC MII port.
dec21145SPIReadBack() – Read all PHY registers out

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides one standard external interface, dec21x40EndLoad(). As input, this
function expects a string of colon-separated parameters. The parameters should be specified
as hexadecimal strings (optionally preceded by "0x" or a minus sign "-"). Although the
parameter string is parsed using endTok_r(), each parameter is converted from string to
binary by a call to:

 strtoul(parameter, NULL, 16).

The format of the parameter string is:

"<deviceAddr>:<pciAddr>:<iVec>:<iLevel>:<numRds>:<numTds>:\
<memBase>:<memSize>:<userFlags>:<phyAddr>:<pPhyTbl>:<phyFlags>:<offset>:\
<loanBufs>:<drvFlags>"

TARGET-SPECIFIC PARAMETERS

deviceAddr
This is the base address at which the hardware device registers are located.

pciAddr
This parameter defines the main memory address over the PCI bus. It is used to
translate a physical memory address into a PCI-accessible address.

iVec
This is the interrupt vector number of the hardware interrupt generated by this
Ethernet device. The driver uses intConnect() to attach an interrupt handler for this
interrupt. The BSP can change this by modifying the global pointer
dec21x40IntConnectRtn with the desired routines (usually pciIntConnect).

iLevel
This parameter defines the level of the hardware interrupt.

1 Libraries
dec21x40End

23

1
numRds

The number of receive descriptors to use. This controls how much data the device can
absorb under load. If this is specified as NONE (-1), the default of 32 is used.

numTds
The number of transmit descriptors to use. This controls how much data the device can
absorb under load. If this is specified as NONE (-1), the default of 64 is used.

memBase
This parameter specifies the base address of a DMA-able cache-free pre-allocated
memory region for use as a memory pool for transmit/receive descriptors and buffers
including loaner buffers. If there is no pre-allocated memory available for the driver,
this parameter should be -1 (NONE). In which case, the driver allocates cache safe
memory for its use using cacheDmaAlloc().

memSize
The memory size parameter specifies the size of the pre-allocated memory region. If
memory base is specified as NONE (-1), the driver ignores this parameter. When
specified, this value must account for transmit/receive descriptors and buffers and
loaner buffers.

userFlags
User flags control the run-time characteristics of the Ethernet chip. Most flags specify
non default CSR0 and CSR6 bit values. See dec21x40End.h for the bit values of the flags
and to the device hardware reference manual for details about device capabilities, CSR6
and CSR0.

phyAddr
This optional parameter specifies the address on the MII (Media Independent Interface)
bus of a MII-compliant PHY (Physical Layer Entity). The module that is responsible for
optimally configuring the media layer will start scanning the MII bus from the address
in phyAddr. It will retrieve the PHY's address regardless of that, but, since the MII
management interface, through which the PHY is configured, is a very slow one,
providing an incorrect or invalid address may result in a particularly long boot process.
If the flag DEC_USR_MII is not set, this parameter is ignored.

pPhyTbl
This optional parameter specifies the address of a auto-negotiation table for the PHY
being used. The user only needs to provide a valid value for this parameter if he wants
to affect the order how different technology abilities are negotiated. If the flag
DEC_USR_MII is not set, this parameter is ignored.

phyFlags
This optional parameter allows the user to affect the PHY's configuration and
behaviour. See below, for an explanation of each MII flag. If the flag DEC_USR_MII is
not set, this parameter is ignored.

offset
This parameter defines the offset which is used to solve alignment problem.

VxWorks Drivers API Reference, 6.2
dec21x40End

24

loanBufs
This optional parameter allows the user to select the amount of loaner buffers allocated
for the driver's net pool to be loaned to the stack in receive operations. The default
number of loaner buffers is 16. The number of loaner buffers must be accounted for
when calculating the memory size specified by memSize.

drvFlags
This optional parameter allows the user to enable driver-specific features.

Device Type:
although the default device type is DEC 21040, specifying the DEC_USR_21140 flag
bit turns on DEC 21140 functionality.

Ethernet Address:
the Ethernet address is retrieved from standard serial ROM on both DEC 21040,
and DEC 21140 devices. If the retrieve from ROM fails, the driver calls the
sysDec21x40EnetAddrGet() BSP routine. Specifying DEC_USR_XEA flag bit tells
the driver should, by default, retrieve the Ethernet address using the
sysDec21x40EnetAddrGet() BSP routine.

Priority RX processing:
the driver programs the chip to process the transmit and receive queues at the
same priority. By specifying DEC_USR_BAR_RX, the device is programmed to
process receives at a higher priority.

TX poll rate:
by default, the driver sets the Ethernet chip into a non-polling mode. In this mode,
if the transmit engine is idle, it is kick-started every time a packet needs to be
transmitted. Alternatively, the chip can be programmed to poll for the next
available transmit descriptor if the transmit engine is in idle state. The poll rate is
specified by one of DEC_USR_TAP_xxx flags.

Cache Alignment:
the DEC_USR_CAL_xxx flags specify the address boundaries for data burst
transfers.

DMA burst length:
the DEC_USR_PBL_xxx flags specify the maximum number of long words in a
DMA burst.

PCI multiple read:
the DEC_USR_RML flag specifies that a device supports PCI
memory-read-multiple.

Full Duplex Mode:
when set, the DEC_USR_FD flag allows the device to work in full duplex mode, as
long as the PHY used has this capability. It is worth noting here that in this
operation mode, the dec21x40 chip ignores the Collision and the Carrier Sense
signals.

1 Libraries
dec21x40End

25

1
MII interface:

some boards feature an MII-compliant Physical Layer Entity (PHY). In this case,
and if the flag DEC_USR_MII is set, the optional fields phyAddr, pPhyTbl, and
phyFlags may be used to affect the PHY's configuration on the network.

10Base-T Mode:
when the flag DEC_USR_MII_10MB is set, the PHY will negotiate this technology
ability, if present.

100Base-T Mode:
when the flag DEC_USR_MII_100MB is set, the PHY will negotiate this technology
ability, if present.

Half duplex Mode:
when the flag DEC_USR_MII_HD is set, the PHY will negotiate this technology
ability, if present.

Full duplex Mode:
when the flag DEC_USR_MII_FD is set, the PHY will negotiate this technology
ability, if present.

Auto-negotiation:
the driver's default behaviour is to enable auto-negotiation, as defined in "IEEE
802.3u Standard". However, the user may disable this feature by setting the flag
DEC_USR_MII_NO_AN in the phyFlags field of the load string.

Auto-negotiation table:
the driver's default behaviour is to enable the standard auto-negotiation process,
as defined in "IEEE 802.3u Standard". However, the user may wish to force the
PHY to negotiate its technology abilities a subset at a time, and according to a
particular order. The flag DEC_USR_MII_AN_TBL in the phyFlags field may be used
to tell the driver that the PHY should negotiate its abilities as dictated by the entries
in the pPhyTbl of the load string. If the flag DEC_USR_MII_NO_AN is set, this
parameter is ignored.

Link monitoring:
this feature enables the netTask to periodically monitor the PHY's link status for
link down events. If any such event occurs, and if the flag
DEC_USR_MII_BUS_MON is set, a driver's optionally provided routine is executed,
and the link is renegotiated.

Transmit threshold value:
the DEC_USR_THR_XXX flags enable the user to choose among different threshold
values for the transmit FIFO. Transmission starts when the frame size within the
transmit FIFO is larger than the threshold value. This should be selected taking
into account the actual operating speed of the PHY. Again, see the device hardware
reference manual for details.

VxWorks Drivers API Reference, 6.2
dec21x40End

26

EXTERNAL SUPPORT REQUIREMENTS

This driver requires three external support functions and provides a hook function:

sysLanIntEnable()
 void sysLanIntEnable (int level)

This routine provides a target-specific interface for enabling Ethernet device interrupts
at a specified interrupt level.

sysLanIntDisable()
 void sysLanIntDisable (void)

This routine provides a target-specific interface for disabling Ethernet device
interrupts.

sysDec21x40EnetAddrGet()
 STATUS sysDec21x40EnetAddrGet (int unit, char *enetAdrs)

This routine provides a target-specific interface for accessing a device Ethernet address.

_func_dec21x40MediaSelect
 FUNCPTR _func_dec21x40MediaSelect

If _func_dec21x40MediaSelect is NULL, this driver provides a default media-select
routine that reads and sets up physical media using the configuration information from
a Version 3 DEC Serial ROM. Any other media configuration can be supported by
initializing _func_dec21x40MediaSelect, typically in sysHwInit(), to a target-specific
media select routine.

A media select routine is typically defined as:

 STATUS decMediaSelect
 (
 DEC21X40_DRV_CTRL * pDrvCtrl, /* driver control */
 UINT * pCsr6Val /* CSR6 return value */
)
 {
 ...
 }

The pDrvCtrl parameter is a pointer to the driver control structure that this routine can
use to access the Ethernet device. The driver control structure member mediaCount, is
initialized to 0xff at startup, while the other media control members (mediaDefault,
mediaCurrent, and gprModeVal) are initialized to zero. This routine can use these
fields in any manner. However, all other driver control structure members should be
considered read-only and should not be modified.

This routine should reset, initialize, and select an appropriate media. It should also
write necessary the CSR6 bits (port select, PCS, SCR, and full duplex) to the memory
location pointed to by pCsr6Val. The driver uses this value to program register CSR6.
This routine should return OK or ERROR.

_func_dec21x40NanoDelay
 VOIDFUNCPTR _func_dec21x40NanoDelay

1 Libraries
dec21x40End

27

1
This driver uses a delay function that is dependent on the speed of the microprocessor.
The delays generated by the generic driver delay function should be sufficient for most
processors but are likely to cause some excessively slow functionality especially on the
slower processors. On the other hand, insufficient delays generated on extremely fast
processors may cause networking failures.

The variable _func_dec21x40NanoDelay may be used by the BSP to point to a function
which will force a delay of a specified number of nanoseconds. The delay does not need
to be very accurate but it must be equal to or greater than the requested amount.
Typically _func_dec21x40NanoDelay will be initialized in sysHwInit() to a
target-specific delay routine.

A 1nS delay routine is typically defined as:

void sysNanoDelay
 (
 UINT32 nsec /* number of nanoseconds to delay */
)
 {
 volatile int delay;
 volatile int i;

 if (nsec < 100)
 return; /* slow processor */

 delay = FUDGE * nsec;
 for (i=0; i<delay; i++)
 ;
 }

_func_dec21x40NanoDelay = sysNanoDelay;

The nsec parameter specifies the number of nanoseconds of delay to generate.

"_func_dec2114xIntAck" "" 9 -1
 VOIDFUNCPTR _func_dec2114xIntAck

This driver does acknowledge the LAN interrupts. However if the board hardware
requires specific interrupt acknowledgement, not provided by this driver, the BSP
should define such a routine and attach it to the driver via _func_dec2114xIntAck.

PCI ID VALUES The dec21xxx series chips are now owned and manufactured by Intel. Chips may be
identified by either PCI Vendor ID. ID value 0x1011 for Digital, or ID value 0x8086 for Intel.
Check the Intel web site for latest information. The information listed below may be out of
date.

Chip Vendor ID Device ID
dec 21040 0x1011 0x0002
dec 21041 0x1011 0x0014

VxWorks Drivers API Reference, 6.2
device

28

INCLUDE FILES none

SEE ALSO ifLib, "DECchip 21040 Ethernet LAN Controller for PCI, ", "Digital Semiconductor 21140A PCI
Fast Ethernet LAN Controller, ", "Using the Digital Semiconductor 21140A with Boot ROM, Serial
ROM, and External Register: An Application Note", "Intel 21145 Phoneline/Ethernet LAN
Controller Hardware Ref. Manual", "Intel 21145 Phoneline/Ethernet LAN Controller Specification
Update"

device

NAME device – Device Infrastructure Library

ROUTINES devInit() – initialize the device manager
devAttach() – attach a device
devDetach() – detach a device
devMap() – map a device
devUnmap() – unmap a device
devName() – name a device

DESCRIPTION This library provides the interface for the device infrastructure.

INCLUDE FILES drv/manager/device.h

el3c90xEnd

NAME el3c90xEnd – END network interface driver for 3COM 3C90xB XL

ROUTINES el3c90xEndLoad() – initialize the driver and device
el3c90xInitParse() – parse the initialization string

dec 21140 0x1011 0x0009
dec 21143 0x1011 0x0019
dec 21145 0x8086 0x0039

Chip Vendor ID Device ID

1 Libraries
el3c90xEnd

29

1
DESCRIPTION This module implements the device driver for the 3COM EtherLink Xl and Fast EtherLink

XL PCI network interface cards.

The 3c90x PCI ethernet controller is inherently little endian because the chip is designed to
operate on a PCI bus which is a little endian bus. The software interface to the driver is
divided into three parts. The first part is the PCI configuration registers and their set up.
This part is done at the BSP level in the various BSPs which use this driver. The second and
third part are dealt in the driver. The second part of the interface comprises of the I/O
control registers and their programming. The third part of the interface comprises of the
descriptors and the buffers.

This driver is designed to be moderately generic, operating unmodified across the range of
architectures and targets supported by VxWorks. To achieve this, the driver must be given
several target-specific parameters, and some external support routines must be provided.
These target-specific values and the external support routines are described below.

This driver supports multiple units per CPU. The driver can be configured to support
big-endian or little-endian architectures. It contains error recovery code to handle known
device errata related to DMA activity.

Big endian processors can be connected to the PCI bus through some controllers which take
care of hardware byte swapping. In such cases all the registers which the chip DMAs to,
have to be swapped and written to, so that when the hardware swaps the accesses, the chip
would see them correctly. The chip still has to be programmed to operated in little endian
mode as it is on the PCI bus. If the cpu board hardware automatically swaps all the accesses
to and from the PCI bus, input and output byte stream need not be swapped.

The 3c90x series chips use a bus-master DMA interface for transferring packets to and from
the controller chip. Some of the old 3c59x cards also supported a bus master mode, however
for those chips you could only DMA packets to and from a contiguous memory buffer. For
transmission this would mean copying the contents of the queued M_BLK chain into a an
M_BLK cluster and then DMAing the cluster. This extra copy would sort of defeat the
purpose of the bus master support for any packet that doesn't fit into a single M_BLK. By
contrast, the 3c90x cards support a fragment-based bus master mode where M_BLK chains
can be encapsulated using TX descriptors. This is also called the gather technique, where the
fragments in an mBlk chain are directly incorporated into the download transmit descriptor.
This avoids any copying of data from the mBlk chain.

NETWORK CARDS SUPPORTED

- 3Com 3c900-TPO 10Mbps/RJ-45
- 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC
- 3Com 3c905-TX 10/100Mbps/RJ-45
- 3Com 3c905-T4 10/100Mbps/RJ-45
- 3Com 3c900B-TPO 10Mbps/RJ-45
- 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC
- 3Com 3c905B-TX 10/100Mbps/RJ-45
- 3Com 3c905B-FL/FX 10/100Mbps/Fiber-optic

VxWorks Drivers API Reference, 6.2
el3c90xEnd

30

- 3Com 3c980-TX 10/100Mbps server adapter
- Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The only external interface is the el3c90xEndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

unit:devMemAddr:devIoAddr:pciMemBase:vecNum:intLvl:memAdrs:
memSize:memWidth:flags:buffMultiplier

The el3c90xEndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the string
name for the driver.

devMemAddr
This parameter in the memory base address of the device registers in the memory map
of the CPU. It indicates to the driver where to find the register set. This parameter
should be equal to NONE if the device does not support memory mapped registers.

devIoAddr
This parameter in the I/O base address of the device registers in the I/O map of some
CPUs. It indicates to the driver where to find the RDP register. If both devIoAddr and
devMemAddr are given, the device chooses devMemAddr which is a memory mapped
register base address. This parameter should be equal to NONE if the device does not
support I/O mapped registers.

pciMemBase
This parameter is the base address of the CPU memory as seen from the PCI bus. This
parameter is zero for most intel architectures.

vecNum
This parameter is the vector associated with the device interrupt. This driver configures
the LANCE device to generate hardware interrupts for various events within the
device; thus it contains an interrupt handler routine. The driver calls intConnect() to
connect its interrupt handler to the interrupt vector generated as a result of the LANCE
interrupt. The BSP can use a different routine for interrupt connection by changing the
point el3c90xIntConnectRtn to point to a different routine.

intLvl
Some targets use additional interrupt controller devices to help organize and service
the various interrupt sources. This driver avoids all board-specific knowledge of such
devices. During the driver's initialization, the external routine sysEl3c90xIntEnable()
is called to perform any board-specific operations required to allow the servicing of a

1 Libraries
el3c90xEnd

31

1
NIC interrupt. For a description of sysEl3c90xIntEnable(), see "External Support
Requirements" below.

memAdrs
This parameter gives the driver the memory address to carve out its buffers and data
structures. If this parameter is specified to be NONE, the driver allocates cache coherent
memory for buffers and descriptors from the system pool. The 3C90x NIC is a DMA
type of device and typically shares access to some region of memory with the CPU. This
driver is designed for systems that directly share memory between the CPU and the
NIC. It assumes that this shared memory is directly available to it without any
arbitration or timing concerns.

memSize
This parameter can be used to explicitly limit the amount of shared memory (bytes) this
driver will use. The constant NONE can be used to indicate no specific size limitation.
This parameter is used only if a specific memory region is provided to the driver.

memWidth
Some target hardware that restricts the shared memory region to a specific location also
restricts the access width to this region by the CPU. On these targets, performing an
access of an invalid width will cause a bus error.

This parameter can be used to specify the number of bytes of access width to be used
by the driver during access to the shared memory. The constant NONE can be used to
indicate no restrictions.

Current internal support for this mechanism is not robust; implementation may not
work on all targets requiring these restrictions.

flags
This is parameter is used for future use, currently its value should be zero.

buffMultiplier
This parameter is used increase the number of buffers allocated in the driver pool. If
this parameter is -1, a default multiplier of 2 is chosen. With a multiplier of 2 the total
number of clusters allocated is 64 which is twice the cumulative number of upload and
download descriptors. The device has 16 upload and 16 download descriptors. For
example on choosing the buffer multiplier of 3, the total number of clusters allocated
will be 96 ((16 + 16)*3). There are as many clBlks as the number of clusters. The number
of mBlks allocated are twice the number of clBlks. By default there are 64 clusters, 64
clBlks and 128 mBlks allocated in the pool for the device. Depending on the load of the
system increase the number of clusters allocated by incrementing the buffer multiplier.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

 SYS_INT_CONNECT(pDrvCtrl, routine, arg)
 SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)
 SYS_INT_ENABLE(pDrvCtrl)
 SYS_INT_DISABLE(pDrvCtrl)

VxWorks Drivers API Reference, 6.2
el3c90xEnd

32

 SYS_OUT_BYTE(pDrvCtrl, reg, data)
 SYS_IN_BYTE(pDrvCtrl, reg, data)
 SYS_OUT_WORD(pDrvCtrl, reg, data)
 SYS_IN_WORD(pDrvCtrl, reg, data)
 SYS_OUT_LONG(pDrvCtrl, reg, data)
 SYS_IN_LONG(pDrvCtrl, reg, data)
 SYS_DELAY (delay)
 sysEl3c90xIntEnable(pDrvCtrl->intLevel)
 sysEl3c90xIntDisable(pDrvCtrl->intLevel)
 sysDelay (delay)

There are default values in the source code for these macros. They presume memory
mapped accesses to the device registers and the normal intConnect(), and intEnable() BSP
functions. The first argument to each is the device controller structure. Thus, each has access
back to all the device-specific information. Having the pointer in the macro facilitates the
addition of new features to this driver.

The macros SYS_INT_CONNECT, SYS_INT_DISCONNECT, SYS_INT_ENABLE and
SYS_INT_DISABLE allow the driver to be customized for BSPs that use special versions of
these routines.

The macro SYS_INT_CONNECT is used to connect the interrupt handler to the appropriate
vector. By default it is the routine intConnect().

The macro SYS_INT_DISCONNECT is used to disconnect the interrupt handler prior to
unloading the module. By default this is a dummy routine that returns OK.

The macro SYS_INT_ENABLE is used to enable the interrupt level for the end device. It is
called once during initialization. It calls an external board-level routine
sysEl3c90xIntEnable().

The macro SYS_INT_DISABLE is used to disable the interrupt level for the end device. It is
called during stop. It calls an external board-level routine sysEl3c90xIntDisable().

The macro SYS_DELAY is used for a delay loop. It calls an external board-level routine
sysDelay(delay). The granularity of delay is one microsecond.

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

- one mutual exclusion semaphore
- one interrupt vector
- 24072 bytes in text for a I80486 target
- 112 bytes in the initialized data section (data)
- 0 bytes in the uninitialized data section (BSS)

The driver allocates clusters of size 1536 bytes for receive frames and transmit frames. There
are 16 descriptors in the upload ring and 16 descriptors in the download ring. The buffer
multiplier by default is 2, which means that the total number of clusters allocated by default
are 64 ((upload descriptors + download descriptors)*2). There are as many clBlks as the
number of clusters. The number of mBlks allocated are twice the number of clBlks. By
default there are 64 clusters, 64 clBlks and 128 mBlks allocated in the pool for the device.

1 Libraries
elt3c509End

33

1
Depending on the load of the system increase the number of clusters allocated by
incrementing the buffer multiplier.

BIBLIOGRAPHY 3COM 3c90x and 3c90xB NICs Technical reference.

INCLUDE FILES end.h endLib.h etherMultiLib.h el3c90xEnd.h

SEE ALSO muxLib, endLib, netBufLib, VxWorks Programmer's Guide: Writing and Enhanced Network
Driver

elt3c509End

NAME elt3c509End – END network interface driver for 3COM 3C509

ROUTINES elt3c509Load() – initialize the driver and device
elt3c509Parse() – parse the init string

DESCRIPTION This module implements the 3COM 3C509 EtherLink III Ethernet network interface driver.
This driver is designed to be moderately generic. Thus, it operates unmodified across the
range of architectures and targets supported by VxWorks. To achieve this, the driver load
routine requires an input string consisting of several target-specific values. The driver also
requires some external support routines. These target-specific values and the external
support routines are described below.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The only external interface is the elt3c509Load() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

unit:port:intVector:intLevel:attachementType:nRxFrames

The elt3c509Load() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the string
name for the driver.

intVector
Configures the ELT device to generate hardware interrupts for various events within
the device. Thus, it contains an interrupt handler routine. The driver calls intConnect()

VxWorks Drivers API Reference, 6.2
elt3c509End

34

to connect its interrupt handler to the interrupt vector generated as a result of the ELT
interrupt.

intLevel
This parameter is passed to an external support routine, sysEltIntEnable(), which is
described below in "External Support Requirements." This routine is called during as
part of driver's initialization. It handles any board-specific operations required to allow
the servicing of a ELT interrupt on targets that use additional interrupt controller
devices to help organize and service the various interrupt sources. This parameter
makes it possible for this driver to avoid all board-specific knowledge of such devices.

attachmentType
This parameter is used to select the transceiver hardware attachment. This is then used
by the elt3c509BoardInit() routine to activate the selected attachment.
elt3c509BoardInit() is called as a part of the driver's initialization.

nRxFrames
This parameter is used as number of receive frames by the driver.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

 SYS_INT_CONNECT(pDrvCtrl, routine, arg)
 SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)
 SYS_INT_ENABLE(pDrvCtrl)
 SYS_INT_DISABLE(pDrvCtrl)
 SYS_OUT_BYTE(pDrvCtrl, reg, data)
 SYS_IN_BYTE(pDrvCtrl, reg, data)
 SYS_OUT_WORD(pDrvCtrl, reg, data)
 SYS_IN_WORD(pDrvCtrl, reg, data)
 SYS_OUT_WORD_STRING(pDrvCtrl, reg, pData, len)
 SYS_IN_WORD_STRING(pDrvCtrl, reg, pData, len)

 sysEltIntEnable(pDrvCtrl->intLevel)
 sysEltIntDisable(pDrvCtrl->intLevel)

There are default values in the source code for these macros. They presume I/O-mapped
accesses to the device registers and the normal intConnect(), and intEnable() BSP
functions. The first argument to each is the device controller structure. Thus, each has access
back to all the device-specific information. Having the pointer in the macro facilitates the
addition of new features to this driver.

The macros SYS_INT_CONNECT, SYS_INT_DISCONNECT, and SYS_INT_ENABLE allow the
driver to be customized for BSPs that use special versions of these routines.

The macro SYS_INT_CONNECT is used to connect the interrupt handler to the appropriate
vector. By default it is the routine intConnect().

The macro SYS_INT_DISCONNECT is used to disconnect the interrupt handler prior to
unloading the module. By default this is a dummy routine that returns OK.

1 Libraries
endLib

35

1
The macro SYS_INT_ENABLE is used to enable the interrupt level for the end device. It is
called once during initialization. It calls an external board-level routine sysEltIntEnable().

The macro SYS_INT_DISABLE is used to disable the interrupt level for the end device. It is
called during stop. It calls an external board-level routine sysEltIntDisable().

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

- one interrupt vector
- 9720 bytes of text
- 88 bytes in the initialized data section (data)
- 0 bytes of bss

The driver requires 1520 bytes of preallocation for Transmit Buffer and 1520*nRxFrames of
receive buffers. The default value of nRxFrames is 64 therefore total pre-allocation is (64 +
1)*1520.

TUNING HINTS nRxFrames parameter can be used for tuning no of receive frames to be used for handling
packet receive. More no. of these could help receiving more loaning in case of massive
reception.

INCLUDE FILES end.h endLib.h etherMultiLib.h elt3c509End.h

SEE ALSO muxLib, endLib, Writing an Enhanced Network Driver

endLib

NAME endLib – support library for END-based drivers

ROUTINES mib2Init() – initialize a MIB-II structure
mib2ErrorAdd() – change a MIB-II error count
endObjInit() – initialize an END_OBJ structure
endObjFlagSet() – set the flags member of an END_OBJ structure
endEtherAddressForm() – form an Ethernet address into a packet
endEtherPacketDataGet() – return the beginning of the packet data
endEtherPacketAddrGet() – locate the addresses in a packet
endPollStatsInit() – initialize polling statistics updates

DESCRIPTION This library contains support routines for Enhanced Network Drivers. These routines are
common to ALL ENDs. Specialized routines should only appear in the drivers themselves.

To use this feature, include the following component: INCLUDE_END

VxWorks Drivers API Reference, 6.2
erfLib

36

erfLib

NAME erfLib – Event Reporting Framework Library

ROUTINES erfLibInit() – Initialize the Event Reporting Framework library
erfHandlerRegister() – Registers an event handler for a particular event.
erfHandlerUnregister() – Registers an event handler for a particular event.
erfCategoryAllocate() – Allocates a User Defined Event Category.
erfTypeAllocate() – Allocates a User Defined Type for this Category.
erfCategoryQueueCreate() – Creates a Category Event Processing Queue.
erfCategoriesAvailable() – Get the number of unallocated User Categories.
erfTypesAvailable() – Get the number of unallocated User Types for a category.
erfEventRaise() – Raises an event.

DESCRIPTION This module provides an Event Reporting Framework for use by other libraries.

INCLUDE FILES erfLib.h erfLibP.h vxWorks.h errnoLib.h intLib.h semLib.h , stdio.h stdlib.h string.h
taskLib.h

erfShow

NAME erfShow – Event Reporting Framework Library Show routines

ROUTINES erfShow() – Shows debug info for this library.
erfCategoriesAvailable() – Get the maximum number of Categories.
erfCategoriesAvailable() – Get the maximum number of Types.
erfDefaultQueueSizeGet() – Get the size of the default queue.

DESCRIPTION This module provides a Show routine for the an Event Reporting Framework.

INCLUDE FILES erfLib.h erfLibP.h vxWorks.h stdio.h stdlib.h errnoLib.h

evbNs16550Sio

NAME evbNs16550Sio – NS16550 serial driver for the IBM PPC403GA evaluation

ROUTINES evbNs16550HrdInit() – initialize the NS 16550 chip

1 Libraries
fei82557End

37

1
evbNs16550Int() – handle a receiver/transmitter interrupt for the NS 16550 chip

DESCRIPTION This is the driver for the National NS 16550 UART Chip used on the IBM PPC403GA
evaluation board. It uses the SCCs in asynchronous mode only.

USAGE An EVBNS16550_CHAN structure is used to describe the chip. The BSP's sysHwInit()
routine typically calls sysSerialHwInit() which initializes all the register values in the
EVBNS16550_CHAN structure (except the SIO_DRV_FUNCS) before calling
evbNs16550HrdInit(). The BSP's sysHwInit2() routine typically calls sysSerialHwInit2()
which connects the chip interrupt handler evbNs16550Int() via intConnect().

IOCTL FUNCTIONS

This driver responds to the same ioctl() codes as other serial drivers; for more information,
see sioLib.h.

INCLUDE FILES drv/sio/evbNs16550Sio.h

fei82557End

NAME fei82557End – END-style Intel 82557 Ethernet network interface driver

ROUTINES fei82557EndLoad() – initialize the driver and device
fei82557GetRUStatus() – Return the current RU status and int mask
fei82557ShowRxRing() – Show the Receive ring
fei82557DumpPrint() – Display statistical counters
fei82557ErrCounterDump() – dump statistical counters

DESCRIPTION This module implements an Intel 82557 and 82559 Ethernet network interface driver. (For
the sake of brevity this document will only refer to the 82557.) This is a fast Ethernet PCI bus
controller, IEEE 802.3 10Base-T and 100Base-T compatible. It also features a glueless 32-bit
PCI bus master interface, fully compliant with PCI Spec version 2.1. An interface to
MII-compliant physical layer devices is built-in to the card. The 82557 Ethernet PCI bus
controller also includes Flash support up to 1 MB and EEPROM support, although these
features are not dealt with in this driver.

The 82557 establishes a shared memory communication system with the CPU, which is
divided into three parts: the Control/Status Registers (CSR), the Command Block List (CBL)
and the Receive Frame Area (RFA). The CSR is on chip and is either accessible with I/O or
memory cycles, whereas the other structures reside on the host.

The CSR is the main means of communication between the device and the host, meaning
that the host issues commands through these registers while the chip posts status changes

VxWorks Drivers API Reference, 6.2
fei82557End

38

in it, occurred as a result of those commands. Pointers to both the CBL and RFA are also
stored in the CSR.

The CBL consists of a linked list of frame descriptors through which individual action
commands can be performed. These may be transmit commands as well as non-transmit
commands, e.g. Configure or Multicast setup commands. While the CBL list may function
in two different modes, only the simplified memory mode is implemented in the driver.

The RFA consists of a pair of linked list rings: the Receive Frame Descriptor (RFD) ring and
the Receive Buffer Descriptor (RBD) ring. The RFDs hold the status of completed DMAs.
The RBDs hold the pointers to the DMA buffers, referred to as clusters.

When the device is initialized or restarted it is passed a pointer to an RFD. This RFD is
considered to be the "first" RFD. This RFD holds a pointer to one of the RBDs. This RBD is
then considered the "first" RBD. All other RFDs only have a NULL RBD pointer, actually
0xffffffff. Once the device is started the rings are traversed by the device independently.

Either descriptor type RFD or RBD can have a bit set in it to indicate that it is the End of the
List (EL). This is initially set in the RBD descriptor immediately before the first RBD. This
acts as a stop which prevents the DMA engine from wrapping around the ring and
encountering a used descriptor. This is an unallowable condition and results in the device
stopping operation without an interrupt or and indication of failure. When the EL RBD is
encountered the device goes into the receive stall state. The driver must then restart the
device. To reduce, if not eliminate, the occurrence of this costly, time consuming operation,
the driver continually advances the EL to the last cleared RBD. Then when the driver
services an incoming frame it clears the RFD RBD pair and advances the EL. If the driver is
not able to service an incoming frame, because of a shortage of resources such as clusters,
the driver will throw that frame away and clear the RFD RBD pair and advance EL.

Because the rings are independently traversed by the device it is imperative that they be
kept in sync. Unfortunately, there is no indication from one or the other as to which
descriptor it is pared with. It is left to the driver to keep track of which descriptor goes with
its counter part. If this synchronization is lost, the performance of the driver will be greatly
impaired or worse. To keep this synchronization this driver embeds the RBD descriptors in
tags. To do this it utilizes memory that would otherwise have been wasted. The DMA engine
purportedly works most efficiently when the descriptors are on a 32-byte boundary. The
descriptors are only 16 bytes so there are 16 bytes to work with. The RBD_TAGs have as their
first 16 bytes the RBD itself, then it holds the RFD pointer to its counter part, a pointer to
itself, a 16-bit index, a 16-bit next index, and 4 bytes of spare. This arrangement allows the
driver to traverse only the RBD ring and discover the corresponding RFD through the
RBD_TAG and guaranteeing synchronization.

The driver is designed to be moderately generic, operating unmodified across the range of
architectures and targets supported by VxWorks. To achieve this, this driver must be given
several target-specific parameters, and some external support routines must be provided.
These parameters, and the mechanisms used to communicate them to the driver, are
detailed below.

1 Libraries
fei82557End

39

1
BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides the standard external interface, fei82557EndLoad(), which takes a
string of colon separated parameters. The parameters should be specified in hexadecimal,
optionally preceded by "0x" or a minus sign "-".

The parameter string is parsed using strtok_r() and each parameter is converted from a
string representation to binary by a call to strtoul(parameter, NULL, 16).

The format of the parameter string is:

"memBase:memSize:nTfds:nRfds:flags:offset:maxRxFrames: clToRfdRatio:nClusters"

In addition, the two global variables feiEndIntConnect and feiEndIntDisconnect specify
respectively the interrupt connect routine and the interrupt disconnect routine to be used
depending on the BSP. The former defaults to intConnect() and the user can override this
to use any other interrupt connect routine (say pciIntConnect()) in sysHwInit() or any
device-specific initialization routine called in sysHwInit(). Likewise, the latter is set by
default to NULL, but it may be overridden in the BSP in the same way.

TARGET-SPECIFIC PARAMETERS

memBase
This parameter is passed to the driver via fei82557EndLoad().

The Intel 82557 device is a DMA-type device and typically shares access to some region
of memory with the CPU. This driver is designed for systems that directly share
memory between the CPU and the 82557.

This parameter can be used to specify an explicit memory region for use by the 82557.
This should be done on targets that restrict the 82557 to a particular memory region.
Since use of this parameter indicates that the device has limited access to this specific
memory region all buffers and descriptors directly accessed by the device (RFDs, RBDs,
CFDs, and clusters) must be carved from this region. Since the transmit buffers must
reside in this region the driver will revert to using simple mode buffering for transmit
meaning that zero copy transmit is not supported. This then requires that there be
enough space for clusters to be attached to the CFDs. The minimum memory
requirement is for 32 bytes for all descriptors plus at least two 1536-byte clusters for
each RFD and one 1536-byte cluster for each CFD. Also, it should be noted that this
memory must be non-cached.

The constant NONE can be used to indicate that there are no memory limitations, in
which case the driver will allocate cache aligned memory for its use using memalign().

memSize
The memory size parameter specifies the size of the pre-allocated memory region. If
memory base is specified as NONE (-1), the driver ignores this parameter. Otherwise,
the driver checks the size of the provided memory region is adequate with respect to
the given number of descriptors and clusters specified. The amount of memory

VxWorks Drivers API Reference, 6.2
fei82557End

40

allocated must be enough to hold the RFDs, RBDs, CFDs and clusters. The minimum
memory requirement is for 32 bytes each for all descriptors, 32 bytes each for alignment
of the descriptor types (RFDs, RBDs, and CFDs), plus at least two 1536-byte clusters for
each RFD and one 1536-byte cluster for each CFD. Otherwise the End Load routine will
return ERROR. The number of clusters can be specified by either passing a value in the
nCluster parameter, in which case the nCluster value must be at least nRfds * 2, or by
setting the cluster to RFD ratio (clToRfdRatio) to a number equal or greater than 2.

nTfds
This parameter specifies the number of transmit descriptor/buffers to be allocated. If
this parameter is less than two, a default of 64 is used.

nRfds
This parameter specifies the number of receive descriptors to be allocated. If this
parameter is less than two, a default of 128 is used.

flags
User flags may control the run-time characteristics of the Ethernet chip. Not
implemented.

offset
Offset used to align IP header on word boundary for CPUs that need long word aligned
access to the IP packet (this will normally be zero or two). This parameter is optional,
the default value is zero.

deviceId
This parameter is used to indicate the specific type of device being used, the 82557 or
subsequent. This is used to determine if features which were introduced after the 82557
can be used. The default is the 82557. If this is set to any value other than ZERO (0),
NONE (-1), or FEI82557_DEVICE_ID (0x1229) it is assumed that the device will support
features not in the 82557.

maxRxFrames
This parameter limits the number of frames the receive handler will service in one pass.
It is intended to prevent the tNetTask from hogging the CPU and starving applications.
This parameter is optional, the default value is nRfds * 2.

clToRfdRatio
Cluster To RFD Ratio sets the number of clusters as a ratio of nRfds. The minimum
setting for this parameter is 2. This parameter is optional, the default value is 5.

nClusters
Number of clusters to allocate. This value must be at least nRfds * 2. If this value is set,
the clToRfdRatio is ignored. This parameter is optional, the default is nRfds *
clToRfdRatio.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one external support function:

STATUS sys557Init (int unit, FEI_BOARD_INFO *pBoard)

1 Libraries
fei82557End

41

1
This routine performs any target-specific initialization required before the 82557 device is
initialized by the driver. The driver calls this routine every time it wants to [re]initialize the
device. This routine returns OK, or ERROR if it fails.

SYSTEM RESOURCE USAGE

The driver uses cacheDmaMalloc() to allocate memory to share with the 82557. The size of
this area is affected by the configuration parameters specified in the fei82557EndLoad()
call.

Either the shared memory region must be non-cacheable, or else the hardware must
implement bus snooping. The driver cannot maintain cache coherency for the device
because fields within the command structures are asynchronously modified by both the
driver and the device, and these fields may share the same cache line.

TUNING HINTS The adjustable parameters are:

The number of TFDs and RFDs that will be created at run-time. These parameters are given
to the driver when fei82557EndLoad() is called. There is one TFD and one RFD associated
with each transmitted frame and each received frame respectively. For memory-limited
applications, decreasing the number of TFDs and RFDs may be desirable. Increasing the
number of TFDs will provide no performance benefit after a certain point. Increasing the
number of RFDs will provide more buffering before packets are dropped. This can be useful
if there are tasks running at a higher priority than tNetTask.

The maximum receive frames maxRxFrames. This parameter will allow the driver to service
fixed amount of incoming traffic before forcing the receive handler to relinquish the CPU.
This prevents the possible scenario of the receive handler starving the application.

The parameters clToRfdRatio and nClusters control the number of clusters created which is
the major portion of the memory allocated by the driver. For memory-limited applications,
decreasing the number clusters may be desirable. However, this also will probably result in
performance degradation.

ALIGNMENT Some architectures do not support unaligned access to 32-bit data items. On these
architectures (eg ARM and MIPs), it will be necessary to adjust the offset parameter in the
load string to realign the packet. Failure to do so will result in received packets being
absorbed by the network stack, although transmit functions should work OK. Also, some
architectures do not support SNOOPING. For these architectures, the utilities FLUSH and
INVALIDATE are used for cache coherency of DMA buffers (clusters). These utilities depend
on the buffers being cache line aligned and being cache line multiple. Therefore, if memory
for these buffers is pre-allocated, it is imperative that this memory be cache line aligned and
being cache line multiple.

INCLUDE FILES none

SEE ALSO ifLib, Intel 82557 User's Manual, Intel 32-bit Local Area Network (LAN) Component User's
Manual

VxWorks Drivers API Reference, 6.2
gei82543End

42

gei82543End

NAME gei82543End – Intel 82540/82541/82543/82544/82545/82546/ MAC driver

ROUTINES gei82543EndLoad() – initialize the driver and device
gei82543RegGet() – get the specified register value in 82543 chip
gei82543RegSet() – set the specified register value
gei82543LedOn() – turn on LED
gei82543LedOff() – turn off LED
gei82543PhyRegGet() – get the register value in PHY
gei82543PhyRegSet() – set the register value in PHY
gei82543TbiCompWr() – enable/disable the TBI compatibility workaround
gei82543Unit() – return a pointer to the END_DEVICE for a gei unit

DESCRIPTION The gei82543End driver supports Intel PRO1000 T/F/XF/XT/MT/MF adaptors These
adaptors use Intel 82543GC/82544GC/EI/82540/82541/82545/82546EB/ Gigabit Ethernet
controllers.The 8254x are highly integrated, high-performance LAN controllers for
1000/100/10Mb/s transfer rates. They provide 32-/64-bit 33/66Mhz interfaces to the PCI
bus with 32-/64-bit addressing and are fully compliant with PCI bus specification version
2.2. The 82544, 82545 and 82546 also provide PCI-X interface.

The 8254x controllers implement all IEEE 802.3 receive and transmit MAC functions. They
provide a Ten-Bit Interface (TBI) as specified in the IEEE 802.3z standard for 1000Mb/s
full-duplex operation with 1.25 GHz Ethernet transceivers (SERDES), as well as a GMII
interface as specified in IEEE 802.3ab for 10/100/1000 BASE-T transceivers, and also an MII
interface as specified in IEEE 802.3u for 10/100 BASE-T transceivers.

The 8254x controllers offer auto-negotiation capability for TBI and GMII/MII modes and
also support IEEE 802.3x compliant flow control. This driver supports the checksum offload
features of the 8254x family as follows:

For the 82540/82541/82545/82546, the driver supports the transport checksum over IPv6
on receive via the packet checksum feature. (The RX IPv6 checksum offload apparently does
not function on these chips as documented.) To avoid doing additional work massaging the
packet checksum value when the received packets might not be destined for this target,
receive checksum offload of TCP or UDP over IPv6 is attempted only when the IPv6 header

Chip TX offload capabilities RX offload capabilities
82543 TCP/IPv4, UDP/IPv4, IPv4 TCP/IPv4, UDP/IPv4
82544 TCP/IPv4, UDP/IPv4, IPv4 TCP/IPv4, UDP/IPv4, IPv4
8254[5601] TCP/IPv4, UDP/IPv4, IPv4 TCP/IPv4, UDP/IPv4, IPv4

TCP/IPv6, UDP/IPv6 TCP/IPv6, UDP/IPv6

1 Libraries
gei82543End

43

1
follows immediately after a 14-byte ethernet header, there are no IPv6 extension headers,
and there is no excess padding after the end of the IPv6 payload.

Although these devices also support other features such as jumbo frames, and provide flash
support up to 512KB and EEPROM support, this driver does NOT support these features.

The 8254x establishes a shared memory communication system with the CPU, which is
divided into two parts: the control/status registers and the receive/transmit
descriptors/buffers. The control/status registers are on the 8254x chips and are only
accessible with PCI or PCI-X memory cycles, whereas the other structures reside on the host.
The buffer size can be programmed between 256 bytes to 16 KB. This driver uses the receive
buffer size of 2048 bytes for an MTU of 1500.

The Intel PRO/1000 F/XF/MF adapters only implement the TBI mode of the 8254x
controller with built-in SERDESs in the adaptors.

The Intel PRO/1000 T adapters based on 82543GC implement the GMII mode with a Gigabit
Ethernet Transceiver (PHY) of MARVELL's Alaska 88E1000/88E1000S. However, the
PRO/1000 XT/MT adapters based on 82540/82544/82545/82546 use the built-in PHY in
controllers.

The driver on the current release supports both GMII mode for Intel PRO1000T/XT/MT
adapters and TBI mode for Intel PRO1000 F/XF/MF adapters. However, it requires the
target-specific initialization code -- sys543BoardInit () -- to distinguish these kinds of
adapters by PCI device IDs.

EXTERNAL INTERFACE

The driver provides the standard external interface, gei82543EndLoad(), which takes a
string of colon separated parameters. The parameter string is parsed using strtok_r() and
each parameter in converted from a string representation to a binary.

The format of the parameter string is:

"memBase:memSize:nRxDes:nTxDes:flags:offset:mtu"

TARGET-SPECIFIC PARAMETERS

memBase
This parameter is passed to the driver via gei82543EndLoad().

The 8254x is a DMA-type device and typically shares access to some region of memory
with the CPU. This driver is designed for systems that directly share memory between
the CPU and the 8254x.

This parameter can be used to specify an explicit memory region for use by the 8254x
chip. This should be done on targets that restrict the 8254x to a particular memory
region. The constant NONE can be used to indicate that there are such memory, in which
case the driver will allocate cache safe memory for its use using cacheDmaAlloc().

VxWorks Drivers API Reference, 6.2
gei82543End

44

memSize
The memory size parameter specifies the size of the pre-allocated memory region. The
driver checks the size of the provided memory region is adequate with respect to the
given number of transmit Descriptor and Receive Descriptor.

nRxDes
This parameter specifies the number of transmit descriptors to be allocated. If this
number is 0, a default value of 24 will be used.

nTxDes
This parameter specifies the number of receive descriptors to be allocated. If this
parameter is 0, a default of 24 is used.

flags
This parameter is provided for user to customize this device driver for their application.

GEI_END_SET_TIMER (0x01): a timer will be started to constantly free back the loaned
transmit mBlks.

GEI_END_SET_RX_PRIORITY (0x02): packet transfer (receive) from device to host
memory will have higher priority than the packet transfer (transmit) from host memory
to device in the PCI bus. For end-station application, it is suggested to set this priority
in favor of receive operation to avoid receive overrun. However, for routing
applications, it is not necessary to use this priority. This option is only for 82543-based
adapters.

GEI_END_FREE_RESOURCE_DELAY (0x04): when transmitting larger packets, the
driver will hold mblk(s) from the network stack and return them after the driver has
completed transmitting the packet, and either the timer has expired or there are no
more available descriptors. If this option is not used, the driver will free mblk(s) when
ever the packet transmission is done. This option will place greater demands on the
network pool and should only be used in systems which have sufficient memory to
allocate a large network pool. It is not advised for the memory-limited target systems.

GEI_END_TBI_COMPATIBILITY (0x200): if this driver enables the workaround for TBI
compatibility HW bugs (#define INCLUDE_TBI_COMPATIBLE), user can set this bit to
enable a software workaround for the well-known TBI compatibility HW bug in the
Intel PRO1000 T adapter. This bug is only occurred in the copper-and-82543-based
adapter, and the link partner has advertised only 1000Base-T capability.

GEI_END_USER_MEM_FOR_DESC_ONLY (0x400): User can provide memory for this
driver through the shMemBase and shMemSize in the load string. By default, this
memory is used for TX/RX descriptors and RX buffer. However, if this flag is set, that
memory will be only used for TX/RX descriptors, and the driver will malloc other
memory for RX buffers and maintain cache coherency for RX buffers. It is the user's
responsibility to maintain the cache coherence for memory they provided.

GEI_END_FORCE_FLUSH_CACHE: Set this flag to force flushing the data cache for
transmit data buffers even when bus snooping is enabled on the target.

1 Libraries
gei82543End

45

1
GEI_END_FORCE_INVALIDATE_CACHE: Set this flag to force invalidating the data
cache for receive data buffers even when bus snooping is enabled on the target.

offset
This parameter is provided for the architectures which need DWORD (4-byte)
alignment of the IP header. In that case, the value of OFFSET should be two, otherwise,
the default value is zero.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one external support function:

STATUS sys82543BoardInit (int unit, ADAPTOR_INFO *pBoard)

This routine performs some target-specific initialization such as EEPROM validation and
obtaining ETHERNET address and initialization control words (ICWs) from EEPROM. The
routine also initializes the adaptor-specific data structure. Some target-specific functions
used later in driver operation are hooked up to that structure. It's strongly recommended
that users provide a delay function with higher timing resolution. This delay function will
be used in the PHY's read/write operations if GMII is used. The driver will use taskDelay()
by default if user can NOT provide any delay function, and this will probably result in very
slow PHY initialization process. The user should also specify the PHY's type of MII or GMII.
This routine returns OK, or ERROR if it fails.

SYSTEM RESOURCE USAGE

The driver uses cacheDmaMalloc() to allocate memory to share with the 8254xGC. The size
of this area is affected by the configuration parameters specified in the gei82543EndLoad()
call.

Either the shared memory region must be non-cacheable, or else the hardware must
implement bus snooping. The driver cannot maintain cache coherency for the device
because fields within the command structures are asynchronously modified by both the
driver and the device, and these fields may share the same cache line.

SYSTEM TUNING HINTS

Significant performance gains may be had by tuning the system and network stack. This
may be especially necessary for achieving gigabit transfer rates.

Increasing the network stack's pools are strongly recommended. This driver borrows mblks
from the network stack to accelerate packet transmitting. Theoretically, the number
borrowed clusters could be the same as the number of the device's transmit descriptors.
However, if the network stack has fewer available clusters than available transmit
descriptors, this will result in reduced throughput. Therefore, increasing the network stack's
number of clusters relative to the number of transmit descriptors will increase bandwidth.
Of course this technique will eventually reach a point of diminishing return. There are
actually several sizes of clusters available in the network pool. Increasing any or all of these
cluster sizes will result in some increase in performance. However, increasing the 2048-byte
cluster size will likely have the greatest impact since this size will hold an entire MTU and
header.

VxWorks Drivers API Reference, 6.2
i8250Sio

46

Increasing the number of receive descriptors and clusters may also have positive impact.

Increasing the buffer size of sockets can also be beneficial. This can significantly improve
performance for a target system under higher transfer rates. However, it should be noted
that large amounts of unread buffers idling in sockets reduces the resources available to the
rest of the stack. This can, in fact, have a negative impact on bandwidth. One method to
reduce this effect is to carefully adjust application tasks' priorities and possibly increase
number of receive clusters.

Callback functions defined in the sysGei82543End.c can be used to dynamically and/or
statically change the internal timer registers such as ITR, RADV, and RDTR to reduce RX
interrupt rate.

INCLUDE FILES none

SEE ALSO muxLib, endLib, RS-82543GC Gigabit Ethernet Controller Networking Developer’s Manual

i8250Sio

NAME i8250Sio – I8250 serial driver

ROUTINES i8250HrdInit() – initialize the chip
i8250Int() – handle a receiver/transmitter interrupt

DESCRIPTION This is the driver for the Intel 8250 UART Chip used on the PC 386. It uses the SCCs in
asynchronous mode only.

USAGE An I8250_CHAN structure is used to describe the chip. The BSP's sysHwInit() routine
typically calls sysSerialHwInit() which initializes all the register values in the
I8250_CHAN structure (except the SIO_DRV_FUNCS) before calling i8250HrdInit(). The
BSP's sysHwInit2() routine typically calls sysSerialHwInit2() which connects the chips
interrupt handler (i8250Int) via intConnect().

IOCTL FUNCTIONS

This driver responds to all the same ioctl() codes as a normal serial driver; for more
information, see the comments in sioLib.h. As initialized, the available baud rates are 110,
300, 600, 1200, 2400, 4800, 9600, 19200, and 38400.

This driver handles setting of hardware options such as parity(odd, even) and number of
data bits(5, 6, 7, 8). Hardware flow control is provided with the handshakes RTS/CTS. The
function HUPCL(hang up on last close) is available.

INCLUDE FILES drv/sio/i8250Sio.h

1 Libraries
iOlicomEnd

47

1iOlicomEnd

NAME iOlicomEnd – END style Intel Olicom PCMCIA network interface driver

ROUTINES iOlicomEndLoad() – initialize the driver and device
iOlicomIntHandle() – interrupt service for card interrupts

BOARD LAYOUT The device resides on a PCMCIA card and is soft configured. No jumpering diagram is
necessary.

EXTERNAL INTERFACE

This driver provides the END external interface with the following exceptions. The only
external interface is the iOlicomEndLoad() routine. All of the parameters are passed as
strings in a colon (:) separated list to the load function as an initString. The
iOlicomEndLoad() function uses strtok() to parse the string.

The string contains the target-specific parameters like this:

"io_baseA:attr_baseA:mem_baseA:io_baseB:attr_baseB:mem_baseB: \
ctrl_base:intVectA:intLevelA:intVectB:intLevelB: \
txBdNum:rxBdNum:pShMem:shMemSize"

TARGET-SPECIFIC PARAMETERS

I/O base address A
This is the first parameter passed to the driver init string. This parameter indicates the
base address of the PCMCIA I/O space for socket A.

Attribute base address A
This is the second parameter passed to the driver init string. This parameter indicates
the base address of the PCMCIA attribute space for socket A. On the PID board, this
should be the offset of the beginning of the attribute space from the beginning of the
memory space.

Memory base address A
This is the third parameter passed to the driver init string. This parameter indicates the
base address of the PCMCIA memory space for socket A.

I/O base address B
This is the fourth parameter passed to the driver init string. This parameter indicates
the base address of the PCMCIA I/O space for socket B.

Attribute base address B
This is the fifth parameter passed to the driver init string. This parameter indicates the
base address of the PCMCIA attribute space for socket B. On the PID board, this should
be the offset of the beginning of the attribute space from the beginning of the memory
space.

VxWorks Drivers API Reference, 6.2
iOlicomEnd

48

Memory base address B
This is the sixth parameter passed to the driver init string. This parameter indicates the
base address of the PCMCIA memory space for socket B.

PCMCIA controller base address
This is the seventh parameter passed to the driver init string. This parameter indicates
the base address of the Vadem PCMCIA controller.

interrupt vectors and levels
These are the eighth, ninth, tenth and eleventh parameters passed to the driver init
string.

The mapping of IRQs generated at the Card/PCMCIA level to interrupt levels and
vectors is system-dependent. Furthermore the slot holding the PCMCIA card is not
initially known. The interrupt levels and vectors for both socket A and socket B must
be passed to iOlicomEndLoad(), allowing the driver to select the required parameters
later.

number of transmit and receive buffer descriptors
These are the twelfth and thirteenth parameters passed to the driver init string.

The number of transmit and receive buffer descriptors (BDs) used is configurable by the
user upon attaching the driver. There must be a minimum of two transmit and two
receive BDs, and there is a maximum of twenty transmit and twenty receive BDs. If this
parameter is "NULL" a default value of 16 BDs will be used.

offset
This is the fourteenth parameter passed to the driver in the init string.

This parameter defines the offset which is used to solve alignment problems.

base address of buffer pool
This is the fifteenth parameter passed to the driver in the init string.

This parameter is used to notify the driver that space for the transmit and receive
buffers need not be allocated, but should be taken from a private memory space
provided by the user at the given address. The user should be aware that memory used
for buffers must be 4-byte aligned but need not be non-cacheable. If this parameter is
NONE, space for buffers will be obtained by calling malloc() in iOlicomEndLoad().

mem size of buffer pool
This is the sixteenth parameter passed to the driver in the init string.

The memory size parameter specifies the size of the pre-allocated memory region. If
memory base is specified as NONE (-1), the driver ignores this parameter.

Ethernet address
This parameter is obtained from the Card Information Structure on the Olicom
PCMCIA card.

1 Libraries
iPIIX4

49

1
EXTERNAL SUPPORT REQUIREMENTS

This driver requires three external support function:

void sysLanIntEnable (int level)
This routine provides a target-specific interface for enabling Ethernet device interrupts
at a specified interrupt level. This routine is called each time that the iOlicomStart()
routine is called.

void sysLanIntDisable (int level)
This routine provides a target-specific interface for disabling Ethernet device
interrupts. The driver calls this routine from the iOlicomStop() routine each time a unit
is disabled.

void sysBusIntAck(void)
This routine acknowledge the interrupt if it's necessary.

INCLUDE FILES none

SEE ALSO muxLib, endLib, Intel 82595TX ISA/PCMCIA High Integration Ethernet Controller User
Manual, Vadem VG-468 PC Card Socket Controller Data Manual.

iPIIX4

NAME iPIIX4 – low-level initialization code for PCI ISA/IDE Xcelerator

ROUTINES iPIIX4Init() – initialize PIIX4
iPIIX4KbdInit() – initializes the PCI-ISA/IDE bridge
iPIIX4FdInit() – initializes the floppy disk device
iPIIX4AtaInit() – low-level initialization of ATA device
iPIIX4IntrRoute() – Route PIRQ[A:D]
iPIIX4GetIntr() – give device an interrupt level to use

DESCRIPTION The 82371AB PCI ISA IDE Xcelerator (PIIX4) is a multi-function PCI device implementing a
PCI-to-ISA bridge function, a PCI IDE function, a Universal Serial Bus host/hub function,
and an Enhanced Power Management function. As a PCI-to-ISA bridge, PIIX4 integrates
many common I/O functions found in ISA-based PC systems-two 82C37 DMA Controllers,
two 82C59 Interrupt Controllers, an 82C54 Timer/Counter, and a Real Time Clock. In
addition to compatible transfers, each DMA channel supports Type F transfers. PIIX4 also
contains full support for both PC/PCI and Distributed DMA protocols implementing
PCI-based DMA. The Interrupt Controller has edge- or level-sensitive programmable inputs
and fully supports the use of an external I/O Advanced Programmable Interrupt Controller

VxWorks Drivers API Reference, 6.2
iPIIX4

50

(APIC) and Serial Interrupts. Chip select decoding is provided for BIOS, Real Time Clock,
Keyboard Controller, second external microcontroller, as well as two Programmable Chip
Selects.

PIIX4 is a multi-function PCI device that integrates many system-level functions. PIIX4 is
compatible with the PCI Rev 2.1 specification, as well as the IEEE 996 specification for the
ISA (AT) bus.

PCI to ISA/EIO Bridge
PIIX4 can be configured for a full ISA bus or a subset of the ISA bus called the Extended
I/O (EIO) bus. The use of the EIO bus allows unused signals to be configured as general
purpose inputs and outputs. PIIX4 can directly drive up to five ISA slots without
external data or address buffering. It also provides byte-swap logic, I/O recovery
support, wait-state generation, and SYSCLK generation. X-Bus chip selects are
provided for Keyboard Controller, BIOS, Real Time Clock, a second microcontroller, as
well as two programmable chip selects. PIIX4 can be configured as either a subtractive
decode PCI to ISA bridge or as a positive decode bridge. This gives a system designer
the option of placing another subtractive decode bridge in the system (e.g., an Intel
380FB Dock Set).

IDE Interface (Bus Master capability and synchronous DMA Mode)
The fast IDE interface supports up to four IDE devices providing an interface for IDE
hard disks and CD ROMs. Each IDE device can have independent timings. The IDE
interface supports PIO IDE transfers up to 14 Mbytes/sec and Bus Master IDE transfers
up to 33 Mbytes/sec. It does not consume any ISA DMA resources. The IDE interface
integrates 16x32-bit buffers for optimal transfers.

PIIX4's IDE system contains two independent IDE signal channels. They can be
configured to the standard primary and secondary channels (four devices) or primary
drive 0 and primary drive 1 channels (two devices).This allows flexibility in system
design and device power management.

Compatibility Modules
The DMA controller incorporates the logic of two 82C37 DMA controllers, with seven
independently programmable channels. Channels [0:3] are hardwired to 8-bit,
count-by-byte transfers, and channels [5:7] are hardwired to 16-bit, count-by-word
transfers. Any two of the seven DMA channels can be programmed to support fast
Type-F transfers. The DMA controller also generates the ISA refresh cycles.

The DMA controller supports two separate methods for handling legacy DMA via the
PCI bus. The PC/PCI protocol allows PCI-based peripherals to initiate DMA cycles by
encoding requests and grants via three PC/PCI REQ#/GNT# pairs. The second
method, Distributed DMA, allows reads and writes to 82C37 registers to be distributed
to other PCI devices. The two methods can be enabled concurrently. The serial interrupt
scheme typically associated with Distributed DMA is also supported.

The timer/counter block contains three counters that are equivalent in function to those
found in one 82C54 programmable interval timer. These three counters are combined

1 Libraries
iPIIX4

51

1
to provide the system timer function, refresh request, and speaker tone. The
14.31818-MHz oscillator input provides the clock source for these three counters.

PIIX4 provides an ISA-Compatible interrupt controller that incorporates the
functionality of two 82C59 interrupt controllers. The two interrupt controllers are
cascaded so that 14 external and two internal interrupts are possible. In addition, PIIX4
supports a serial interrupt scheme. PIIX4 provides full support for the use of an external
I/O APIC.

Enhanced Universal Serial Bus (USB) Controller
The PIIX4 USB controller provides enhanced support for the Universal Host Controller
Interface (UHCI). This includes support that allows legacy software to use a USB-based
keyboard and mouse.

RTC
PIIX4 contains a Motorola MC146818A-compatible real-time clock with 256 bytes of
battery-backed RAM. The real-time clock performs two key functions: keeping track of
the time of day and storing system data, even when the system is powered down. The
RTC operates on a 32.768-kHz crystal and a separate 3V lithium battery that provides
up to 7 years of protection.

The RTC also supports two lockable memory ranges. By setting bits in the configuration
space, two 8-byte ranges can be locked to read and write accesses. This prevents
unauthorized reading of passwords or other system security information. The RTC also
supports a date alarm, that allows for scheduling a wake up event up to 30 days in
advance, rather than just 24 hours in advance.

GPIO and Chip Selects
Various general purpose inputs and outputs are provided for custom system design.
The number of inputs and outputs varies depending on PIIX4 configuration. Two
programmable chip selects are provided which allows the designer to place devices on
the X-Bus without the need for external decode logic.

Pentium and Pentium II Processor Interface
The PIIX4 CPU interface allows connection to all Pentium and Pentium II processors.
The Sleep mode for the Pentium II processors is also supported.

Enhanced Power Management
PIIX4's power management functions include enhanced clock control, local and global
monitoring support for 14 individual devices, and various low-power (suspend) states,
such as Power-On Suspend, Suspend-to-DRAM, and Suspend-to-Disk. A
hardware-based thermal management circuit permits software-independent entrance
to low-power states. PIIX4 has dedicated pins to monitor various external events (e.g.,
interfaces to a notebook lid, suspend/resume button, battery low indicators, etc.). PIIX4
contains full support for the Advanced Configuration and Power Interface (ACPI)
Specification.

VxWorks Drivers API Reference, 6.2
iPIIX4

52

System Management Bus (SMBus)
PIIX4 contains an SMBus Host interface that allows the CPU to communicate with
SMBus slaves and an SMBus Slave interface that allows external masters to activate
power management events.

Configurability
PIIX4 provides a wide range of system configuration options. This includes full 16-bit
I/O decode on internal modules, dynamic disable on all the internal modules, various
peripheral decode options, and many options on system configuration.

USAGE This library provides low-level routines for PCI - ISA bridge initialization, and PCI
interrupts routing. There are many functions provided here for enabling different logical
devices existing on ISA bus.

The functions addressed here include:

- Creating a logical device using an instance of physical device on PCI bus and
initializing internal database accordingly.

- Initializing keyboard (logical device number 11) on PIIX4.

- Initializing floppy disk drive (logical device number 5) on PIIX4.

- Initializing ATA device (IDE interface) on PIIX4.

- Route PIRQ[A:D] from PCI expansion slots on given PIIX4.

- Get interrupt level for a given device on PCI expansion slot.

USER INTERFACE STATUS iPIIX4Init
 (
)

The routine above locates and initializes the PIIX4.

STATUS iPIIX4KbdInit
 (
)

The routine above does keyboard-specific initialization on PIIX4.

STATUS iPIIX4FdInit
 (
)

The routine above does floppy disk-specific initialization on PIIX4.

STATUS iPIIX4AtaInit
 (
)

The routine above does ATA device-specific initialization on PIIX4.

STATUS iPIIX4IntrRoute

1 Libraries
ln97xEnd

53

1
 (
 int pintx, char irq
)

The routine above routes PIRQ[A:D] to interrupt routing state machine embedded in PIIX4
and makes them level-triggered. This routine should be called early in boot process.

int iPIIX4GetIntr
 (
 int pintx
)

This routine above returns the interrupt level of a PCI interrupt previously set by
iPIIX4IntrRoute.

INCLUDE FILES iPIIX4.h

ln97xEnd

NAME ln97xEnd – END-style AMD Am79C97X PCnet-PCI Ethernet driver

ROUTINES ln97xEndLoad() – initialize the driver and device
ln97xInitParse() – parse the initialization string

DESCRIPTION This module implements the Advanced Micro Devices Am79C970A, Am79C971,
Am79C972, and Am79C973 PCnet-PCI Ethernet 32-bit network interface driver.

The PCnet-PCI ethernet controller is inherently little-endian because the chip is designed to
operate on a PCI bus which is a little-endian bus. The software interface to the driver is
divided into three parts. The first part is the PCI configuration registers and their setup. This
part is done at the BSP level in the various BSPs which use this driver. The second and third
part are dealt with in the driver. The second part of the interface is comprised of the I/O
control registers and their programming. The third part of the interface is comprised of the
descriptors and the buffers.

This driver is designed to be moderately generic, operating unmodified across the range of
architectures and targets supported by VxWorks. To achieve this, the driver must be given
several target-specific parameters, and some external support routines must be provided.
These target-specific values and the external support routines are described below.

This driver supports multiple units per CPU. The driver can be configured to support
big-endian or little-endian architectures. It contains error recovery code to handle known
device errata related to DMA activity.

Some big-endian processors may be connected to a PCI bus through a host/PCI bridge
which performs byte swapping during data phases. On such platforms, the PCnet-PCI

VxWorks Drivers API Reference, 6.2
ln97xEnd

54

controller need not perform byte swapping during a DMA access to memory shared with
the host processor.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides one standard external interface, ln97xEndLoad(). As input, this routine
takes a string of colon-separated parameters. The parameters should be specified in
hexadecimal (optionally preceded by 0x or a minus sign -). The parameter string is parsed
using strtok_r().

TARGET-SPECIFIC PARAMETERS

The format of the parameter string is:

<unit:devMemAddr:devIoAddr:pciMemBase:vecNum:intLvl:
memAdrs:memSize:memWidth:csr3b:offset:flags>

unit
The unit number of the device. Unit numbers start at zero and increase for each device
controlled by the same driver. The driver does not use this value directly. The unit
number is passed through the MUX API where it is used to differentiate between
multiple instances of a particular driver.

devMemAddr
This parameter is the memory mapped I/O base address of the device registers in the
memory map of the CPU. The driver will locate device registers as offsets from this base
address.

The PCnet presents two registers to the external interface, the RDP (Register Data Port)
and RAP (Register Address Port) registers. This driver assumes that these two registers
occupy two unique addresses in a memory space that is directly accessible by the CPU
executing this driver. The driver assumes that the RDP register is mapped at a lower
address than the RAP register; the RDP register is therefore derived from the "base
address." This is a required parameter.

devIoAddr
This parameter specifies the I/O base address of the device registers in the I/O map of
some CPUs. It indicates to the driver where to find the RDP register. This parameter is
no longer used, but is retained so that the load string format will be compatible with
legacy initialization routines. The driver will always use memory mapped I/O registers
specified via the devMemAddr parameter.

pciMemBase
This parameter is the base address of the host processor memory as seen from the PCI
bus. This parameter is zero for most Intel architectures.

vecNum
This parameter is the vector associated with the device interrupt. This driver configures
the PCnet device to generate hardware interrupts for various events within the device;

1 Libraries
ln97xEnd

55

1
thus it contains an interrupt handler routine. The driver calls pciIntConnect() to
connect its interrupt handler to the interrupt vector generated as a result of the PCnet
interrupt.

intLvl
Some targets use additional interrupt controller devices to help organize and service
the various interrupt sources. This driver avoids all board-specific knowledge of such
devices. During the driver's initialization, the external routine sysLan97xIntEnable()
is called to perform any board-specific operations required to allow the servicing of a
PCnet interrupt. For a description of sysLan97xIntEnable(), see "External Support
Requirements" below.

memAdrs
This parameter gives the driver the memory address to carve out its buffers and data
structures. If this parameter is specified to be NONE, the driver allocates cache coherent
memory for buffers and descriptors from the system memory pool. The PCnet device
is a DMA type of device and typically shares access to some region of memory with the
CPU. This driver is designed for systems that directly share memory between the CPU
and the PCnet. It assumes that this shared memory is directly available to it without any
arbitration or timing concerns.

memSize
This parameter can be used to explicitly limit the amount of shared memory (bytes) this
driver will use. The constant NONE can be used to indicate no specific size limitation.
This parameter is used only if a specific memory region is provided to the driver.

memWidth
Some target hardware that restricts the shared memory region to a specific location also
restricts the access width to this region by the CPU. On these targets, performing an
access of an invalid width will cause a bus error.

This parameter can be used to specify the number of bytes of access width to be used
by the driver during access to the shared memory. The constant NONE can be used to
indicate no restrictions.

Current internal support for this mechanism is not robust; implementation may not
work on all targets requiring these restrictions.

csr3b
The PCnet-PCI Control and Status Register 3 (CSR3) controls, among other things,
big-endian and little-endian modes of operation. When big-endian mode is selected,
the PCnet-PCI controller will swap the order of bytes on the AD bus during a data
phase on access to the FIFOs only: AD[31:24] is byte 0, AD[23:16] is byte 1, AD[15:8] is
byte 2 and AD[7:0] is byte 3. In order to select the big-endian mode, set this parameter
to (0x0004). Most implementations, including natively big-endian host architectures,
should set this parameter to (0x0000) in order to select little-endian access to the FIFOs,
as the driver is currently designed to perform byte swapping as appropriate to the host
architecture.

VxWorks Drivers API Reference, 6.2
ln97xEnd

56

offset
This parameter specifies a memory alignment offset. Normally this parameter is zero
except for architectures which can only access 32-bit words on 4-byte aligned address
boundaries. For these architectures the value of this offset should be 2.

flags
This is parameter is used for future use. Currently its value should be zero.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires five externally defined support functions that can be customized by
modifying global pointers. The function pointer types and default "bindings" are specified
below. To change the defaults, the BSP should create an appropriate routine and set the
function pointer before first use. This would normally be done within sysHwInit2().

Note that all of the pointers to externally defined functions must be set to a valid executable
code address. Also, note that sysLan97xIntEnable(), sysLan97xIntDisable(), and
sysLan97xEnetAddrGet() must be defined in the BSP. This was done so that the driver
would be compatible with initialization code and support routines in existing BSPs.

The function pointer convention has been introduced to facilitate future driver versions that
do not explicitly reference a named BSP-defined function. Among other things, this would
allow a BSP designer to define, for example, one endIntEnable() routine to support multple
END drivers.

ln97xIntConnect
 IMPORT STATUS (* ln97xIntConnect)
 (
 VOIDFUNCPTR * vector, /* interrupt vector to attach to */
 VOIDFUNCPTR routine, /* routine to be called */
 int parameter /* parameter to be passed to routine */
);

 /* default setting */

 ln97xIntConnect = pciIntConnect;

The ln97xIntConnect pointer specifies a function used to connect the driver interrupt
handler to the appropriate vector. By default it is the pciIntLib routine pciIntConnect().

ln97xIntDisconnect
 IMPORT STATUS (* ln97xIntDisconnect)
 (
 VOIDFUNCPTR * vector, /* interrupt vector to attach to */
 VOIDFUNCPTR routine, /* routine to be called */
 int parameter /* routine parameter */

1 Libraries
ln97xEnd

57

1
);

 /* default setting */

 ln97xIntDisconnect = pciIntDisconnect2;

The ln97xIntDisconnect pointer specifies a function used to disconnect the interrupt
handler prior to unloading the driver. By default it is the pciIntLib routine
pciIntDisconnect2().

ln97xIntEnable
 IMPORT STATUS (* ln97xIntEnable)
 (
 int level /* interrupt level to be enabled */
);

 /* default setting */

 ln97xIntEnable = sysLan97xIntEnable;

The ln97xIntEnable pointer specifies a function used to enable the interrupt level for the
END device. It is called once during initialization. By default it is a BSP routine named
sysLan97xIntEnable(). The implementation of this routine can vary between
architectures, and even between BSPs for a given architecture family. Generally, the
parameter to this routine will specify an interrupt level defined for an interrupt
controller on the host platform. For example, MIPS and PowerPC BSPs may implement
this routine by invoking the WRS intEnable() library routine. WRS Intel Pentium BSPs
may implement this routine via sysIntEnablePIC().

ln97xIntDisable
 IMPORT STATUS (* ln97xIntDisable)
 (
 int level /* interrupt level to be disabled */
);

 /* default setting */

 ln97xIntDisable = sysLan97xIntDisable;

The ln97xIntDisable pointer specifies a function used to disable the interrupt level for
the END device. It is called during stop. By default it is a BSP routine named
sysLan97xIntDisable(). The implementation of this routine can vary between
architectures, and even between BSPs for a given architecture family. Generally, the
parameter to this routine will specify an interrupt level defined for an interrupt
controller on the host platform. For example, MIPS and PowerPC BSPs may implement
this routine by invoking the WRS intDisable() library routine. Wind River Intel
Pentium BSPs may implement this routine via sysIntDisablePIC().

VxWorks Drivers API Reference, 6.2
lptDrv

58

ln97xEnetAddrGet
 IMPORT STATUS (* ln97xEnetAddrGet)
 (LN_97X_DRV_CTRL * pDrvCtrl, char * pStationAddr);

 /* default setting */

 ln97xEnetAddrGet = sysLan97xEnetAddrGet;

The ln97xEnetAddrGet pointer specifies a function used to get the Ethernet (IEEE
station) address of the device. By default it is a BSP routine named
sysLan97xEnetAddrGet().

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

- one mutual exclusion semaphore
- one interrupt vector
- 14240 bytes in text for a PENTIUM3 target
- 120 bytes in the initialized data section (data)
- 0 bytes in the uninitialized data section (BSS)

The driver allocates clusters of size 1520 bytes for receive frames and transmit frames.

INCLUDE FILES none

SEE ALSO muxLib, endLib, netBufLib, "Network Protocol Toolkit User's Guide", "PCnet-PCI II
Single-Chip Full-Duplex Ethernet Controller, for PCI Local Bus Product", "PCnet-FAST
Single-Chip Full-Duplex 10/100 Mbps Ethernet Controller, for PCI Local Bus Product"

lptDrv

NAME lptDrv – parallel chip device driver for the IBM-PC LPT

ROUTINES lptDrv() – initialize the LPT driver
lptDevCreate() – create a device for an LPT port
lptShow() – show LPT statistics

DESCRIPTION This is the basic driver for the LPT used on the IBM-PC. If the component INCLUDE_LPT is
enabled, the driver initializes the LPT port on the PC.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However, two
routines must be called directly: lptDrv() to initialize the driver, and lptDevCreate() to
create devices.

1 Libraries
m8260SccEnd

59

1
There are one other callable routines: lptShow() to show statistics. The argument to
lptShow() is a channel number, 0 to 2.

Before the driver can be used, it must be initialized by calling lptDrv(). This routine should
be called exactly once, before any reads, writes, or calls to lptDevCreate(). Normally, it is
called from usrRoot() in usrConfig.c. The first argument to lptDrv() is a number of
channels, 0 to 2. The second argument is a pointer to the resource table. Definitions of
members of the resource table structure are:

 int ioBase; /* I/O base address */
 int intVector; /* interrupt vector */
 int intLevel; /* interrupt level */
 BOOL autofeed; /* TRUE if enable autofeed */
 int busyWait; /* loop count for BUSY wait */
 int strobeWait; /* loop count for STROBE wait */
 int retryCnt; /* retry count */
 int timeout; /* timeout second for syncSem */

IOCTL FUNCTIONS

This driver responds to two functions: LPT_SETCONTROL and LPT_GETSTATUS. The
argument for LPT_SETCONTROL is a value of the control register. The argument for
LPT_GETSTATUS is a integer pointer where a value of the status register is stored.

INCLUDE FILES none

SEE ALSO VxWorks Programmer's Guide: I/O System

m8260SccEnd

NAME m8260SccEnd – END style Motorola MPC8260 network interface driver

ROUTINES m8260SccEndLoad() – initialize the driver and device

BOARD LAYOUT This device is on-chip. No jumpering diagram is necessary.

EXTERNAL INTERFACE

This driver provides the standard END external interface. The only external interface is the
motSccEndLoad() routine. The parameters are passed into the motSccEndLoad() function
as a single colon-delimited string. The motSccEndLoad() function uses strtok() to parse the
string, which it expects to be of the following format:

unit:motCpmAddr:ivec:sccNum:txBdNum:rxBdNum: txBdBase: rxBdBase:bufBase

VxWorks Drivers API Reference, 6.2
m8260SccEnd

60

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the string
name for the driver.

motCpmAddr
Indicates the address at which the host processor presents its internal memory (also
known as the dual ported RAM base address). With this address, and the SCC number
(see below), the driver is able to compute the location of the SCC parameter RAM and
the SCC register map, and, ultimately, to program the SCC for proper operations. This
parameter should point to the internal memory of the processor where the SCC
physically resides. This location might not necessarily be the Dual-Port RAM of the
microprocessor configured as master on the target board.

ivec
This driver configures the host processor to generate hardware interrupts for various
events within the device. The interrupt-vector offset parameter is used to connect the
driver's ISR to the interrupt through a call to the VxWorks system function
intConnect().

sccNum
This driver is written to support multiple individual device units. Thus, the multiple
units supported by this driver can reside on different chips or on different SCCs within
a single host processor. This parameter is used to explicitly state which SCC is being
used (SCC1 is most commonly used, thus this parameter most often equals "1").

txBdNum and rxBdNum
Specify the number of transmit and receive buffer descriptors (BDs). Each buffer
descriptor resides in 8 bytes of the processor's dual-ported RAM space, and each one
points to a 1520 byte buffer in regular RAM. There must be a minimum of two transmit
and two receive BDs. There is no maximum, although more than a certain amount does
not speed up the driver and wastes valuable dual-ported RAM space. If any of these
parameters is "NULL", a default value of "32" BDs is used.

txBdBase and rxBdBase
Indicate the base location of the transmit and receive buffer descriptors (BDs). They are
offsets, in bytes, from the base address of the host processor's internal memory (see
above). Each BD takes up 8 bytes of dual-ported RAM, and it is the user's responsibility
to ensure that all specified BDs fit within dual-ported RAM. This includes any other
BDs the target board might be using, including other SCCs, SMCs, and the SPI device.
There is no default for these parameters. They must be provided by the user.

bufBase
Tells the driver that space for the transmit and receive buffers need not be allocated but
should be taken from a cache-coherent private memory space provided by the user at
the given address. The user should be aware that memory used for buffers must be
4-byte aligned and non-cacheable. All the buffers must fit in the given memory space.
No checking is performed. This includes all transmit and receive buffers (see above).

1 Libraries
m8260SccEnd

61

1
Each buffer is 1520 bytes. If this parameter is NONE, space for buffers is obtained by
calling cacheDmaMalloc() in motSccEndLoad().

EXTERNAL SUPPORT REQUIREMENTS

This driver requires three external support functions:

sysXxxEnetEnable()

This is either sys360EnetEnable() or sysSccEnetEnable(), based on the actual host
processor being used. See below for the actual prototypes. This routine is expected to handle
any target-specific functions needed to enable the Ethernet controller. These functions
typically include enabling the Transmit Enable signal (TENA) and connecting the transmit
and receive clocks to the SCC. This routine is expected to return OK on success, or ERROR.
The driver calls this routine, once per unit, from the motCpmEndLoad() routine.

sysXxxEnetDisable()

This is either sys360EnetDisable() or sysSccEnetDisable(), based on the actual host
processor being used. See below for the actual prototypes. This routine is expected to handle
any target-specific functions required to disable the Ethernet controller. This usually
involves disabling the Transmit Enable (TENA) signal. This routine is expected to return OK
on success, or ERROR. The driver calls this routine from the motCpmEndStop() routine
each time a unit is disabled.

sysXxxEnetAddrGet()

This is either sys360EnetAddrGet() or sysSccEnetAddrGet(), based on the actual host
processor being used. See below for the actual prototypes. The driver expects this routine to
provide the six-byte Ethernet hardware address that is used by this unit. This routine must
copy the six-byte address to the space provided by addr. This routine is expected to return
OK on success, or ERROR. The driver calls this routine, once per unit, from the
motSccEndLoad() routine.

In the case of the CPU32, the prototypes of the above-mentioned support routines are as
follows:

 STATUS sys360EnetEnable (int unit, UINT32 regBase)
 void sys360EnetDisable (int unit, UINT32 regBase)
 STATUS sys360EnetAddrGet (int unit, u_char * addr)

In the case of the PPC860, the prototypes of the above-mentioned support routines are as
follows:

 STATUS sysSccEnetEnable (int unit)
 void sysSccEnetDisable (int unit)
 STATUS sysSccEnetAddrGet (int unit, UINT8 * addr)

SYSTEM RESOURCE USAGE

When implemented, this driver requires the following system resources:

- one mutual exclusion semaphore
- one interrupt vector

VxWorks Drivers API Reference, 6.2
miiLib

62

- 0 bytes in the initialized data section (data)
- 1272 bytes in the uninitialized data section (BSS)

The data and BSS sections are quoted for the CPU32 architecture and could vary for other
architectures. The code size (text) varies greatly between architectures, and is therefore not
quoted here.

If the driver allocates the memory to share with the Ethernet device unit, it does so by calling
the cacheDmaMalloc() routine. For the default case of 32 transmit buffers, 32 receive
buffers, and 16 loaner buffers (this is not configurable), the total size requested is 121,600
bytes. If a non-cacheable memory region is provided by the user, the size of this region
should be this amount, unless the user has specified a different number of transmit or
receive BDs.

This driver can operate only if this memory region is non-cacheable or if the hardware
implements bus snooping. The driver cannot maintain cache coherency for the device
because the buffers are asynchronously modified by both the driver and the device, and
these fields might share the same cache line. Additionally, the chip's dual-ported RAM must
be declared as non-cacheable memory where applicable (for example, when attached to a
68040 processor). For more information, see the Motorola MC68EN360 User's Manual ,
Motorola MPC860 User's Manual , Motorola MPC821 User's Manual Motorola MPC8260 User's
Manual

INCLUDE FILES none

miiLib

NAME miiLib – Media Independent Interface library

ROUTINES miiPhyInit() – initialize and configure the PHY devices
miiPhyUnInit() – uninitialize a PHY
miiAnCheck() – check the auto-negotiation process result
miiPhyOptFuncMultiSet() – set pointers to MII optional registers handlers
miiPhyOptFuncSet() – set the pointer to the MII optional registers handler
miiLibInit() – initialize the MII library
miiLibUnInit() – uninitialize the MII library
miiShow() – show routine for MII library
miiRegsGet() – get the contents of MII registers

DESCRIPTION This module implements a Media Independent Interface (MII) library.

The MII is an inexpensive and easy-to-implement interconnection between the Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) media access controllers and
the Physical Layer Entities (PHYs).

1 Libraries
miiLib

63

1
The purpose of this library is to provide Ethernet drivers in VxWorks with a standardized,
MII-compliant, easy-to-use interface to various PHYs. In other words, using the services of
this library, network drivers will be able to scan the existing PHYs, run diagnostics,
electrically isolate a subset of them, negotiate their technology abilities with other
link-partners on the network, and ultimately initialize and configure a specific PHY in a
proper, MII-compliant fashion.

In order to initialize and configure a PHY, its MII management interface has to be used. This
is made up of two lines: management data clock (MDC) and management data
input/output (MDIO). The former provides the timing reference for transfer of information
on the MDIO signal. The latter is used to transfer control and status information between
the PHY and the MAC controller. For this transfer to be successful, the information itself has
to be encoded into a frame format, and both the MDIO and MDC signals have to comply
with certain requirements as described in the 802.3u IEEE Standard.

Since no assumption can be made as to the specific MAC-to-MII interface, this library
expects the driver's writer to provide it with specialized read and write routines to access
that interface. See “EXTERNAL SUPPORT REQUIREMENTS” below.

miiPhyUnInit (), miiLibInit (), miiLibUnInit (), miiPhyOptFuncSet ().
STATUS miiLibInit (void);
STATUS miiLibUnInit (void);

EXTERNAL SUPPORT REQUIREMENTS

phyReadRtn
 STATUS phyReadRtn (DRV_CTRL * pDrvCtrl, UINT8 phyAddr,
 UINT8 phyReg, UINT16 * value);

This routine is expected to perform any driver-specific functions required to read a
16-bit word from the phyReg register of the MII-compliant PHY whose address is
specified by phyAddr. Reading is performed through the MII management interface.

phyWriteRtn
 STATUS phyWriteRtn (DRV_CTRL * pDrvCtrl, UINT8 phyAddr,
 UINT8 phyReg, UINT16 value);

This routine is expected to perform any driver-specific functions required to write a
16-bit word to the phyReg register of the MII-compliant PHY whose address is specified
by phyAddr. Writing is performed through the MII management interface.

phyDelayRtn
 STATUS phyDelayRtn (UINT32 phyDelayParm);

This routine is expected to cause a limited delay to the calling task, no matter whether
this is an active delay, or an inactive one. miiPhyInit () calls this routine on several
occasions throughout the code with phyDelayParm as parameter. This represents the
granularity of the delay itself, whereas the field phyMaxDelay in PHY_INFO is the

VxWorks Drivers API Reference, 6.2
motFcc2End

64

maximum allowed delay, in phyDelayParm units. The minimum elapsed time
(phyMaxDelay * phyDelayParm) must be 5 seconds.

The user should be aware that some of these events may take as long as 2-3 seconds to
be completed, and he should therefore tune this routine and the parameter
phyMaxDelay accordingly.

If the related field phyDelayRtn in the PHY_INFO structure is initialized to NULL, no
delay is performed.

phyLinkDownRtn
 STATUS phyLinkDownRtn (DRV_CTRL *);

This routine is expected to take any action necessary to re-initialize the media interface,
including possibly stopping and restarting the driver itself. It is called when a link
down event is detected for any active PHY, with the pointer to the relevant driver
control structure as only parameter.

To use this feature, include the following component: INCLUDE_MIILIB

INCLUDE FILES none

SEE ALSO IEEE 802.3.2000 Standard

motFcc2End

NAME motFcc2End – Second Generation Motorola FCC Ethernet network interface.

ROUTINES motFccEndLoad() – initialize the driver and device
motFccDumpRxRing() – Show the Receive Ring details
motFccDumpTxRing() – Show the Transmit Ring details
motFccMiiShow() – Debug Function to show the Mii settings in the Phy Info
motFccMibShow() – Debug Function to show MIB statistics.
motFccShow() – Debug Function to show driver-specific control data.
motFccIramShow() – Debug Function to show FCC CP internal ram parameters.
motFccPramShow() – Debug Function to show FCC CP parameter ram.
motFccEramShow() – Debug Function to show FCC CP ethernet parameter ram.
motFccDrvShow() – Debug Function to show FCC parameter ram addresses,

DESCRIPTION This module implements a Motorola Fast Communication Controller (FCC) Ethernet
network interface driver. This is a second generation driver that is based on the original
motFccEnd.c. It differs from the original in initialization, performance, features and SPR
fixes.

1 Libraries
motFcc2End

65

1
The driver "load string" interface differs from its predecessor. A parameter that contains a
pointer to a predefined array of function pointers was added to the end of the load string.
This array replaces multiple individual function pointers for dual ported RAM allocation,
MII access, duplex control, and heartbeat and disconnect functionality; it is described more
fully below. The array simplifies updating the driver and BSP code independently.

Performance of the driver has been greatly enhanced. A layer of unnecessary queuing was
removed. Time-critical functions were re-written to be more fluid and efficient. The driver's
work load is distributed between the interrupt and the net job queue. Only one
netJobAdd() call is made per interrupt. Multiple events pending are sent as a single net job.

A new Generic MIB interface has been implemented.

Several SPRs, written against the original motFccEnd driver and previous motFcc2End
versions, are fixed.

The FCC supports several communication protocols. This driver supports the FCC
operating in Ethernet mode, which is fully compliant with the IEEE 802.3u 10Base-T and
100Base-T specifications.

The FCC establishes a shared memory communication system with the CPU, which may be
divided into three parts: a set of Control/Status Registers (CSR) and FCC-specific
parameters, the buffer descriptors (BD), and the data buffers.

Both the CSRs and the internal parameters reside in the MPC8260's internal RAM. They are
used for mode control, and to extract status information of a global nature. For instance, by
programming these registers, the driver can specify which FCC events should generate an
interrupt, whether features like the promiscuous mode or the heartbeat are enabled, and so
on. Pointers to both the Transmit Buffer Descriptors ring (TBD) and the Receive Buffer
Descriptors ring (RBD) are stored in the internal parameter RAM. The latter also includes
protocol-specific parameters, such as the individual physical address of the station and the
maximum receive frame length.

The BDs are used to pass data buffers and related buffer information between the hardware
and the software. They may reside either on the 60x bus, or on the CPM local bus. They
include local status information, and a pointer to the receive or transmit data buffers. These
buffers are located in external memory, and may reside on the 60x bus, or the CPM local bus
(see below).

This driver is designed to be moderately generic. Without modification, it can operate across
all the FCCs in the MPC8260, regardless of where the internal memory base address is
located. To achieve this goal, this driver must be given several target-specific parameters
and some external support routines. These parameters, and the mechanisms used to
communicate them to the driver, are detailed below.

BOARD LAYOUT This device is on-board. No jumper diagram is necessary.

VxWorks Drivers API Reference, 6.2
motFcc2End

66

EXTERNAL INTERFACE

The driver provides the standard external interface, motFccEnd2Load(), which takes a
string of parameters delineated by colons. The parameters should be specified in
hexadecimal, optionally preceded by "0x" or a minus sign "-".

The parameter string is parsed using strtok_r() and each parameter is converted from a
string representation to binary by a call to strtoul(parameter, NULL, 16).

The format of the parameter string is:

"unit:immrVal:fccNum:bdBase:bdSize:bufBase:bufSize:fifoTxBase: fifoRxBase
:tbdNum:rbdNum:phyAddr:phyDefMode:phyAnOrderTbl: userFlags:function
table(:maxRxFrames)"

TARGET-SPECIFIC PARAMETERS

unit
This driver is written to support multiple individual device units. This parameter is
used to explicitly state which unit is being used. Default is unit 0.

immrVal
Indicates the address at which the host processor presents its internal memory (also
known as the internal RAM base address). With this address, and the fccNum value (see
below), the driver is able to compute the location of the FCC parameter RAM, and,
ultimately, to program the FCC for proper operation.

fccNum
This driver is written to support multiple individual device units. This parameter is
used to explicitly state which FCC is being used.

bdBase
The Motorola Fast Communication Controller is a DMA-type device and typically
shares access to some region of memory with the CPU. This driver is designed for
systems that directly share memory between the CPU and the FCC.

This parameter tells the driver that space for both the TBDs and the RBDs need not be
allocated, but should be taken from a cache-coherent private memory space provided
by the user at the given address. TBDs and RBDs are both 8 bytes each, and individual
descriptors must be 8-byte aligned. The driver requires that an additional 8 bytes be
provided for alignment, even if bdBase is aligned to begin with.

If this parameter is NONE, space for buffer descriptors is obtained by calling
cacheDmaMalloc() in motFccInitMem().

bdSize
The bdSize parameter specifies the size of the pre-allocated memory region for the BDs.
If bdBase is specified as NONE (-1), the driver ignores this parameter. Otherwise, the
driver checks that the size of the provided memory region is adequate with respect to
the given number of Transmit Buffer Descriptors and Receive Buffer Descriptors (plus
an additional 8 bytes for alignment).

1 Libraries
motFcc2End

67

1
bufBase

This parameter tells the driver that space for data buffers need not be allocated but
should be taken from a cache-coherent private memory space provided at the given
address. The memory used for buffers must be 32-byte aligned and non-cacheable. The
FCC poses one more constraint, in that DMA cycles may occur even when all the
incoming data have already been transferred to memory. This means at most 32 bytes
of memory at the end of each receive data buffer may be overwritten during reception.
The driver pads that area out, thus consuming some additional memory.

If this parameter is NONE, space for buffer descriptors is obtained by calling
memalign() in motFccInitMem().

bufSize
The bufSize parameter specifies the size of the pre-allocated memory region for data
buffers. If bufBase is specified as NONE (-1), the driver ignores this parameter.
Otherwise, the driver checks that the size of the provided memory region is adequate
with respect to the given number of Receive Buffer Descriptors and a non-configurable
number of transmit buffers(MOT_FCC_TX_CL_NUM). All the above should fit in the
given memory space. This area should also include room for buffer management
structures.

fifoTxBase
Indicate the base location of the transmit FIFO, in internal memory. The user does not
need to initialize this parameter. The default value (see MOT_FCC_FIFO_TX_BASE) is
highly optimized for best performance. However, if the user wishes to reserve that very
area in internal RAM for other purposes, this parameter may be set to a different value.

If fifoTxBase is specified as NONE (-1), the driver uses the default value.

fifoRxBase
Indicate the base location of the receive FIFO, in internal memory. The user does not
need to initialize this parameter. The default value (see MOT_FCC_FIFO_RX_BASE) is
highly optimized for best performance. However, if the user wishes to reserve that very
area in internal RAM for other purposes, this parameter may be set to a different value.

If fifoRxBase is specified as NONE (-1), the driver uses the default value.

tbdNum
This parameter specifies the number of transmit buffer descriptors (TBDs). Each buffer
descriptor resides in 8 bytes of the processor's external RAM space. If this parameter is
less than a minimum number specified in MOT_FCC_TBD_MIN, or if it is "NULL", a
default value of MOT_FCC_TBD_DEF_NUM is used. This parameter should always be
an even number since each packet the driver sends may consume more than a single
TBD.

rbdNum
This parameter specifies the number of receive buffer descriptors (RBDs). Each buffer
descriptor resides in 8 bytes of the processor's external RAM space, and each one points
to a buffer in external RAM. If this parameter is less than a minimum number specified

VxWorks Drivers API Reference, 6.2
motFcc2End

68

in MOT_FCC_RBD_MIN, or if it is "NULL", a default value of MOT_FCC_RBD_DEF_NUM
is used. This parameter should always be an even number.

phyAddr
This parameter specifies the logical address of a MII-compliant physical device (PHY)
that is to be used as a physical media on the network. Valid addresses are in the range
0-31. There may be more than one device under the control of the same management
interface. The default physical layer initialization routine scans the whole range of PHY
devices starting from the one in phyAddr. If this parameter is "MII_PHY_NULL", the
default physical layer initialization routine finds out the PHY actual address by
scanning the whole range. The one with the lowest address is chosen.

phyDefMode
This parameter specifies the operating mode that is set up by the default physical layer
initialization routine in case all the attempts made to establish a valid link failed. If that
happens, the first PHY that matches the specified abilities is chosen to work in that
mode, and the physical link is not tested.

phyAnOrderTbl
This parameter may be set to the address of a table that specifies the order how different
subsets of technology abilities, if enabled, should be advertised by the auto-negotiation
process. Unless the flag MOT_FCC_USR_PHY_TBL is set in the userFlags field of the load
string, the driver ignores this parameter.

The user does not normally need to specify this parameter, since the default behaviour
enables auto-negotiation process as described in IEEE 802.3u.

userFlags
This field enables the user to give some degree of customization to the driver.

MOT_FCC_USR_PHY_NO_AN: The default physical layer initialization routine exploits
the auto-negotiation mechanism as described in the IEEE Std 802.3u, to bring a valid
link up. According to it, all the link partners on the media take part in the negotiation
process, and the highest priority common denominator technology ability is chosen. To
prevent auto-negotiation from occurring, set this bit in the user flags.

MOT_FCC_USR_PHY_TBL: In the auto-negotiation process, PHYs advertise all their
technology abilities at the same time, and the result is that the maximum common
denominator is used. However, this behaviour may be changed, and the user may affect
the order how each subset of PHY's abilities is negotiated. Hence, when the
MOT_FCC_USR_PHY_TBL bit is set, the default physical layer initialization routine
looks at the motFccAnOrderTbl[] table and auto-negotiate a subset of abilities at a time,
as suggested by the table itself. It is worth noticing here, however, that if the
MOT_FCC_USR_PHY_NO_AN bit is on, the above table is ignored.

MOT_FCC_USR_PHY_NO_FD: The PHY may be set to operate in full duplex mode,
provided it has this ability, as a result of the negotiation with other link partners.
However, in this operating mode, the FCC ignores the collision detect and carrier sense

1 Libraries
motFcc2End

69

1
signals. To prevent negotiating full duplex mode, set the MOT_FCC_USR_PHY_NO_FD
bit in the user flags.

MOT_FCC_USR_PHY_NO_HD: The PHY may be set to operate in half duplex mode,
provided it has this ability, as a result of the negotiation with other link partners. To
prevent negotiating half duplex mode, set the MOT_FCC_USR_PHY_NO_HD bit in the
user flags.

MOT_FCC_USR_PHY_NO_100: The PHY may be set to operate at 100Mbit/s speed,
provided it has this ability, as a result of the negotiation with other link partners. To
prevent negotiating 100Mbit/s speed, set the MOT_FCC_USR_PHY_NO_100 bit in the
user flags.

MOT_FCC_USR_PHY_NO_10: The PHY may be set to operate at 10Mbit/s speed,
provided it has this ability, as a result of the negotiation with other link partners. To
prevent negotiating 10Mbit/s speed, set the MOT_FCC_USR_PHY_NO_10 bit in the user
flags.

MOT_FCC_USR_PHY_ISO: Some boards may have different PHYs controlled by the
same management interface. In some cases, it may be necessary to electrically isolate
some of them from the interface itself, in order to guarantee a proper behaviour on the
medium layer. If the user wishes to electrically isolate all PHYs from the MII interface,
the MOT_FCC_USR_PHY_ISO bit should be set. The default behaviour is to not isolate
any PHY on the board.

MOT_FCC_USR_LOOP: When the MOT_FCC_USR_LOOP bit is set, the driver configures
the FCC to work in internal loopback mode, with the TX signal directly connected to
the RX. This mode should only be used for testing.

MOT_FCC_USR_RMON: When the MOT_FCC_USR_RMON bit is set, the driver
configures the FCC to work in RMON mode, thus collecting network statistics required
for RMON support without the need to receive all packets as in promiscuous mode.

MOT_FCC_USR_BUF_LBUS: When the MOT_FCC_USR_BUF_LBUS bit is set, the driver
configures the FCC to work as though the data buffers were located in the CPM local
bus.

MOT_FCC_USR_BD_LBUS: When the MOT_FCC_USR_BD_LBUS bit is set, the driver
configures the FCC to work as though the buffer descriptors were located in the CPM
local bus.

MOT_FCC_USR_HBC: If the MOT_FCC_USR_HBC bit is set, the driver configures the
FCC to perform heartbeat check following end of transmission and the HB bit in the
status field of the TBD is set if the collision input does not assert within the heartbeat
window. The user does not normally need to set this bit.

Function
This is a pointer to the structure FCC_END_FUNCS. The structure contains mostly
FUNCPTRs that are used as a communication mechanism between the driver and the
BSP. If the pointer contains a NULL value, the driver uses system default functions for

VxWorks Drivers API Reference, 6.2
motFcc2End

70

the m82xxDpram DPRAM allocation and, obviously, the driver does not support BSP
function calls for heartbeat errors, disconnect errors, and PHY status changes that are
hardware-specific.

 FUNCPTR miiPhyInit; BSP Mii/Phy Init Function

This function pointer is initialized by the BSP and called by the driver to initialize the
MII driver. The driver sets up its PHY settings and then calls this routine. The BSP is
responsible for setting BSP-specific PHY parameters and then calling the miiPhyInit.
The BSP is responsible to set up any call to an interrupt. See miiPhyInt below.

 FUNCPTR miiPhyInt; Driver Function for BSP to Call on a Phy Status Change

This function pointer is initialized by the driver and called by the BSP. The BSP calls this
function when it handles a hardware MII-specific interrupt. The driver initializes this
to the function motFccPhyLSCInt. The BSP may or may not choose to call this function.
It will depend if the BSP supports an interrupt driven PHY. The BSP can also set up the
miiLib driver to poll. In this case, the miiPhy driver calls this function. See miiLib for
details.

Note: Not calling this function when the PHY duplex mode changes results in a duplex
mis-match. This causes TX errors in the driver and a reduction in throughput.

 FUNCPTR miiPhyBitRead; MII Bit Read Function

This function pointer is initialized by the BSP and called by the driver. The driver calls
this function when it needs to read a bit from the MII interface. The MII interface is
hardware-specific.

 FUNCPTR miiPhyBitWrite; MII Bit Write Function

This function pointer is initialized by the BSP and called by the driver. The driver calls
this function when it needs to write a bit to the MII interface. This MII interface is
hardware-specific.

 FUNCPTR miiPhyDuplex; Duplex Status Call Back

This function pointer is initialized by the BSP and called by the driver. The driver calls
this function to obtain the status of the duplex setting in the PHY.

 FUNCPTR miiPhySpeed; Speed Status Call Back

This function pointer is initialized by the BSP and called by the driver. The driver calls
this function to obtain the status of the speed setting in the PHY. This interface is
hardware-specific.

 FUNCPTR hbFail; HeartBeat Fail Indicator

This function pointer is initialized by the BSP and called by the driver. The driver calls
this function to indicate an FCC heartbeat error.

1 Libraries
motFcc2End

71

1
 FUNCPTR intDisc; Disconnect Function

This function pointer is initialized by the BSP and called by the driver. The driver calls
this function to indicate an FCC disconnect error.

 FUNCPTR dpramFree; DPRAM Free routine

This function pointer is initialized by the BSP and called by the driver. The BSP allocates
memory for the BDs from this pool. The driver must free the BD area using this
function.

 FUNCPTR dpramFccMalloc; DPRAM FCC Malloc routine

This function pointer is initialized by the BSP and called by the driver. The driver
allocates memory from the FCC specific POOL using this function.

 FUNCPTR dpramFccFree; DPRAM FCC Free routine

This function pointer is initialized by the BSP and called by the driver. The driver frees
memory from the FCC specific POOL using this function.

maxRxFrames
The maxRxFrames parameter is optional. It limits the number of frames the receive
handler services in one pass. It is intended to prevent the tNetTask from monopolizing
the CPU and starving applications. The default value is nRfds * 2.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions.

sysFccEnetEnable()
 STATUS sysFccEnetEnable (UINT32 immrVal, UINT8 fccNum);

This routine is expected to handle any target-specific functions needed to enable the
FCC. These functions typically include setting the Port B and C on the MPC8260 so that
the MII interface may be used. This routine is expected to return OK on success, or
ERROR. The driver calls this routine, once per device, from the motFccStart() routine.

sysFccEnetDisable()
 STATUS sysFccEnetDisable (UINT32 immrVal, UINT8 fccNum);

This routine is expected to perform any target-specific functions required to disable the
MII interface to the FCC. This involves restoring the default values for all the Port B and
C signals. This routine is expected to return OK on success, or ERROR. The driver calls
this routine from the motFccStop() routine each time a device is disabled.

sysFccEnetAddrGet()
 STATUS sysFccEnetAddrGet (int unit,UCHAR *address);

VxWorks Drivers API Reference, 6.2
motFcc2End

72

The driver expects this routine to provide the six-byte Ethernet hardware address that
is used by this device. This routine must copy the six-byte address to the space
provided by enetAddr. This routine is expected to return OK on success, or ERROR. The
driver calls this routine, once per device, from the motFccEndLoad() routine.

 STATUS sysFccMiiBitWr (UINT32 immrVal, UINT8 fccNum, INT32 bitVal);

This routine is expected to perform any target-specific functions required to write a
single bit value to the MII management interface of a MII-compliant PHY device. The
MII management interface is made up of two lines: management data clock (MDC) and
management data input/output (MDIO). The former provides the timing reference for
transfer of information on the MDIO signal. The latter is used to transfer control and
status information between the PHY and the FCC. For this transfer to be successful, the
information itself has to be encoded into a frame format, and both the MDIO and MDC
signals have to comply with certain requirements as described in the 802.3u IEEE
Standard. There is not built-in support in the FCC for the MII management interface.
This means that the clocking on the MDC line and the framing of the information on
the MDIO signal have to be done in software. Hence, this routine is expected to write
the value in bitVal to the MDIO line while properly sourcing the MDC clock to a PHY,
for one bit time.

 STATUS sysFccMiiBitRd (UINT32 immrVal, UINT8 fccNum, INT8 * bitVal);

This routine is expected to perform any target-specific functions required to read a
single bit value from the MII management interface of a MII-compliant PHY device.
The MII management interface is made up of two lines: management data clock (MDC)
and management data input/output (MDIO). The former provides the timing reference
for transfer of information on the MDIO signal. The latter is used to transfer control and
status information between the PHY and the FCC. For this transfer to be successful, the
information itself has to be encoded into a frame format, and both the MDIO and MDC
signals have to comply with certain requirements as described in the 802.3u IEEE
Standard. There is not built-in support in the FCC for the MII management interface.
This means that the clocking on the MDC line and the framing of the information on
the MDIO signal have to be done in software. Hence, this routine is expected to read the
value from the MDIO line in bitVal, while properly sourcing the MDC clock to a PHY,
for one bit time.

SYSTEM RESOURCE USAGE

If the driver allocates the memory for the BDs to share with the FCC, it does so by calling
the cacheDmaMalloc() routine. If this region is provided by the user, it must be from
non-cacheable memory.

This driver can operate only if this memory region is non-cacheable or if the hardware
implements bus snooping. The driver cannot maintain cache coherency for the device
because the BDs are asynchronously modified by both the driver and the device, and these
fields share the same cache line.

If the driver allocates the memory for the data buffers to share with the FCC, it does so by
calling the memalign() routine. The driver does not need to use cache-safe memory for data

1 Libraries
motFecEnd

73

1
buffers, since the host CPU and the device are not allowed to modify buffers
asynchronously. The related cache lines are flushed or invalidated as appropriate.

TUNING HINTS The only adjustable parameters are the number of TBDs and RBDs that are created at
run-time. These parameters are given to the driver when motFccEndLoad() is called. There
is one RBD associated with each received frame, whereas a single transmit packet frequently
uses more than one TBD. For memory-limited applications, decreasing the number of RBDs
may be desirable. Decreasing the number of TBDs below a certain point results in
substantial performance degradation, and is not recommended. Increasing the number of
buffer descriptors can boost performance.

INCLUDE FILES none

SEE ALSO ifLib, MPC8260 Fast Ethernet Controller (Supplement to the MPC860 User's Manual) , Motorola
MPC860 User's Manual

motFecEnd

NAME motFecEnd – END style Motorola FEC Ethernet network interface driver

ROUTINES motFecEndLoad() – initialize the driver and device

DESCRIPTION This module implements a Motorola Fast Ethernet Controller (FEC) network interface
driver. The FEC is fully compliant with the IEEE 802.3 10Base-T and 100Base-T
specifications. Hardware support of the Media Independent Interface (MII) is built in the
chip.

The FEC establishes a shared memory communication system with the CPU, which is
divided into two parts: the Control/Status Registers (CSR), and the buffer descriptors (BD).

The CSRs reside in the MPC860T Communication Controller's internal RAM. They are used
for mode control and to extract status information of a global nature. For instance, the types
of events that should generate an interrupt, or features like the promiscuous mode or the
max receive frame length may be set programming some of the CSRs properly. Pointers to
both the Transmit Buffer Descriptors ring (TBD) and the Receive Buffer Descriptors ring
(RBD) are also stored in the CSRs. The CSRs are located in on-chip RAM and must be
accessed using the big-endian mode.

VxWorks Drivers API Reference, 6.2
motFecEnd

74

The BDs are used to pass data buffers and related buffer information between the hardware
and the software. They reside in the host main memory and basically include local status
information and a pointer to the actual buffer, again in external memory.

This driver must be given several target-specific parameters, and some external support
routines must be provided. These parameters, and the mechanisms used to communicate
them to the driver, are detailed below.

For versions of the MPC860T starting with revision D.4 and beyond the functioning of the
FEC changes slightly. An additional bit has been added to the Ethernet Control Register
(ECNTRL), the FEC PIN MUX bit. This bit must be set prior to issuing commands involving
the other two bits in the register (ETHER_EN, RESET). The bit must also be set when either
of the other two bits are being utilized. For versions of the 860T prior to revision D.4, this bit
should not be set.

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides the standard external interface, motFecEndLoad(), which takes a string
of colon-separated parameters. The parameters should be specified in hexadecimal,
optionally preceded by "0x" or a minus sign "-".

The parameter string is parsed using strtok_r() and each parameter is converted from a
string representation to binary by a call to strtoul(parameter, NULL, 16).

The format of the parameter string is as follows:

"motCpmAddr:ivec:bufBase:bufSize:fifoTxBase:fifoRxBase
:tbdNum:rbdNum:phyAddr:isoPhyAddr:phyDefMode:userFlags :clockSpeed"

TARGET-SPECIFIC PARAMETERS

motCpmAddr
Indicates the address at which the host processor presents its internal memory (also
known as the dual ported RAM base address). With this address, the driver is able to
compute the location of the FEC parameter RAM, and, ultimately, to program the FEC
for proper operations.

ivec
This driver configures the host processor to generate hardware interrupts for various
events within the device. The interrupt-vector offset parameter is used to connect the
driver's ISR to the interrupt through a call to the VxWorks system function
intConnect(). It is also used to compute the interrupt level (0-7) associated with the
FEC interrupt (one of the MPC860T SIU internal interrupt sources). The latter is given
as a parameter to intEnable(), in order to enable this level interrupt to the PPC core.

1 Libraries
motFecEnd

75

1
bufBase

The Motorola Fast Ethernet Controller is a DMA-type device and typically shares
access to some region of memory with the CPU. This driver is designed for systems that
directly share memory between the CPU and the FEC.

This parameter tells the driver that space for the both the TBDs and the RBDs needs not
be allocated but should be taken from a cache-coherent private memory space provided
by the user at the given address. The user should be aware that memory used for
buffers descriptors must be 8-byte aligned and non-cacheable. All the buffer descriptors
should fit in the given memory space.

If this parameter is NONE, space for buffer descriptors is obtained by calling
cacheDmaMalloc() in motFecEndLoad().

bufSize
The memory size parameter specifies the size of the pre-allocated memory region. If
bufBase is specified as NONE (-1), the driver ignores this parameter. Otherwise, the
driver checks the size of the provided memory region is adequate with respect to the
given number of Transmit Buffer Descriptors and Receive Buffer Descriptors.

fifoTxBase
Indicate the base location of the transmit FIFO, in internal memory. The user does not
need to initialize this parameter, as the related FEC register defaults to a proper value
after reset. The specific reset value is microcode-dependent. However, if the user wishes
to reserve some RAM for other purposes, he may set this parameter to a different value.
This should not be less than the default.

If fifoTxBase is specified as NONE (-1), the driver ignores it.

fifoRxBase
Indicate the base location of the receive FIFO, in internal memory. The user does not
need to initialize this parameter, as the related FEC register defaults to a proper value
after reset. The specific reset value is microcode-dependent. However, if the user wishes
to reserve some RAM for other purposes, he may set this parameter to a different value.
This should not be less than the default.

If fifoRxBase is specified as NONE (-1), the driver ignores it.

tbdNum
This parameter specifies the number of transmit buffer descriptors (TBDs). Each buffer
descriptor resides in 8 bytes of the processor's external RAM space, and each one points
to a 1536-byte buffer again in external RAM. If this parameter is less than a minimum
number specified in the macro MOT_FEC_TBD_MIN, or if it is "NULL", a default value
of 64 is used. This default number is kept deliberately high, since each packet the driver
sends may consume more than a single TBD. This parameter should always equal a
even number.

rbdNum
This parameter specifies the number of receive buffer descriptors (RBDs). Each buffer
descriptor resides in 8 bytes of the processor's external RAM space, and each one points

VxWorks Drivers API Reference, 6.2
motFecEnd

76

to a 1536-byte buffer again in external RAM. If this parameter is less than a minimum
number specified in the macro MOT_FEC_RBD_MIN, or if it is "NULL", a default value
of 48 is used. This parameter should always equal a even number.

phyAddr
This parameter specifies the logical address of a MII-compliant physical device (PHY)
that is to be used as a physical media on the network. Valid addresses are in the range
0-31. There may be more than one device under the control of the same management
interface. If this parameter is "NULL", the default physical layer initialization routine
will find out the PHY actual address by scanning the whole range. The one with the
lowest address will be chosen.

isoPhyAddr
This parameter specifies the logical address of a MII-compliant physical device (PHY)
that is to be electrically isolated by the management interface. Valid addresses are in the
range 0-31. If this parameter equals 0xff, the default physical layer initialization routine
will assume there is no need to isolate any device. However, this parameter will be
ignored unless the MOT_FEC_USR_PHY_ISO bit in the userFlags is set to one.

phyDefMode
This parameter specifies the operating mode that will be set up by the default physical
layer initialization routine in case all the attempts made to establish a valid link failed.
If that happens, the first PHY that matches the specified abilities will be chosen to work
in that mode, and the physical link will not be tested.

userFlags
This field enables the user to give some degree of customization to the driver, especially
as regards the physical layer interface.

clockSpeed
This field enables the user to define the speed of the clock being used to drive the
interface. The clock speed is used to derive the MII management interface clock, which
cannot exceed 2.5 MHz. clockSpeed is optional in BSPs using clocks that are 50 MHz or
less, but it is required in faster designs to ensure proper MII interface operation.

MOT_FEC_USR_PHY_NO_AN: the default physical layer initialization routine will
exploit the auto-negotiation mechanism as described in the IEEE Std 802.3, to bring a
valid link up. According to it, all the link partners on the media will take part to the
negotiation process, and the highest priority common denominator technology ability
will be chosen. It the user wishes to prevent auto-negotiation from occurring, he may
set this bit in the user flags.

MOT_FEC_USR_PHY_TBL: in the auto-negotiation process, PHYs advertise all their
technology abilities at the same time, and the result is that the maximum common
denominator is used. However, this behaviour may be changed, and the user may affect
the order how each subset of PHY's abilities is negotiated. Hence, when the
MOT_FEC_USR_PHY_TBL bit is set, the default physical layer initialization routine will
look at the motFecPhyAnOrderTbl[] table and auto-negotiate a subset of abilities at a

1 Libraries
motFecEnd

77

1
time, as suggested by the table itself. It is worth noticing here, however, that if the
MOT_FEC_USR_PHY_NO_AN bit is on, the above table will be ignored.

MOT_FEC_USR_PHY_NO_FD: the PHY may be set to operate in full duplex mode,
provided it has this ability, as a result of the negotiation with other link partners.
However, in this operating mode, the FEC will ignore the collision detect and carrier
sense signals. If the user wishes not to negotiate full duplex mode, he should set the
MOT_FEC_USR_PHY_NO_FD bit in the user flags.

MOT_FEC_USR_PHY_NO_HD: the PHY may be set to operate in half duplex mode,
provided it has this ability, as a result of the negotiation with other link partners. If the
user wishes not to negotiate half duplex mode, he should set the
MOT_FEC_USR_PHY_NO_HD bit in the user flags.

MOT_FEC_USR_PHY_NO_100: the PHY may be set to operate at 100Mbit/s speed,
provided it has this ability, as a result of the negotiation with other link partners. If the
user wishes not to negotiate 100Mbit/s speed, he should set the
MOT_FEC_USR_PHY_NO_100 bit in the user flags.

MOT_FEC_USR_PHY_NO_10: the PHY may be set to operate at 10Mbit/s speed,
provided it has this ability, as a result of the negotiation with other link partners. If the
user wishes not to negotiate 10Mbit/s speed, he should set the
MOT_FEC_USR_PHY_NO_10 bit in the user flags.

MOT_FEC_USR_PHY_ISO: some boards may have different PHYs controlled by the
same management interface. In some cases, there may be the need of electrically
isolating some of them from the interface itself, in order to guarantee a proper
behaviour on the medium layer. If the user wishes to electrically isolate one PHY from
the MII interface, he should set the MOT_FEC_USR_PHY_ISO bit and provide its logical
address in the isoPhyAddr field of the load string. The default behaviour is to not isolate
any PHY on the board.

MOT_FEC_USR_SER: the user may set the MOT_FEC_USR_SER bit to enable the 7-wire
interface instead of the MII which is the default.

MOT_FEC_USR_LOOP: when the MOT_FEC_USR_LOOP bit is set, the driver will
configure the FEC to work in loopback mode, with the TX signal directly connected to
the RX. This mode should only be used for testing.

MOT_FEC_USR_HBC: if the MOT_FEC_USR_HBC bit is set, the driver will configure the
FEC to perform heartbeat check following end of transmission and the HB bit in the
status field of the TBD will be set if the collision input does not assert within the
heartbeat window (also see _func_motFecHbFail, below). The user does not normally
need to set this bit.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires three external support functions:

sysFecEnetEnable()
 STATUS sysFecEnetEnable (UINT32 motCpmAddr);

VxWorks Drivers API Reference, 6.2
motFecEnd

78

This routine is expected to handle any target-specific functions needed to enable the
FEC. These functions typically include setting the Port D on the 860T-based board so
that the MII interface may be used, and also disabling the IRQ7 signal. This routine is
expected to return OK on success, or ERROR. The driver calls this routine, once per
device, from the motFecEndLoad() routine.

sysFecEnetDisable()
 STATUS sysFecEnetDisable (UINT32 motCpmAddr);

This routine is expected to perform any target-specific functions required to disable the
MII interface to the FEC. This involves restoring the default values for all the Port D
signals. This routine is expected to return OK on success, or ERROR. The driver calls this
routine from the motFecEndStop() routine each time a device is disabled.

sysFecEnetAddrGet()
STATUS sysFecEnetAddrGet (UINT32 motCpmAddr, UCHAR * enetAddr);

The driver expects this routine to provide the six-byte Ethernet hardware address that
is used by this device. This routine must copy the six-byte address to the space
provided by enetAddr. This routine is expected to return OK on success, or ERROR. The
driver calls this routine, once per device, from the motFecEndLoad() routine.

_func_motFecPhyInit
 FUNCPTR _func_motFecPhyInit

This driver sets the global variable _func_motFecPhyInit to the MII-compliant media
initialization routine motFecPhyInit(). If the user wishes to exploit a different way to
configure the PHY, he may set this variable to his own media initialization routine,
typically in sysHwInit().

_func_motFecHbFail
 FUNCPTR _func_motFecPhyInit

The FEC may be configured to perform heartbeat check following end of transmission,
and to generate an interrupt, when this event occurs. If this is the case, and if the global
variable _func_motFecHbFail is not NULL, the routine referenced to by
_func_motFecHbFail is called, with a pointer to the driver control structure as
parameter. Hence, the user may set this variable to his own heart beat check fail routine,
where he can take any action he sees appropriate. The default value for the global
variable _func_motFecHbFail is NULL.

SYSTEM RESOURCE USAGE

If the driver allocates the memory to share with the Ethernet device, it does so by calling the
cacheDmaMalloc() routine. For the default case of 64 transmit buffers and 48 receive
buffers, the total size requested is 912 bytes, and this includes the 16-byte alignment
requirement of the device. If a non-cacheable memory region is provided by the user, the
size of this region should be this amount, unless the user has specified a different number
of transmit or receive BDs.

This driver can operate only if this memory region is non-cacheable or if the hardware
implements bus snooping. The driver cannot maintain cache coherency for the device

1 Libraries
ncr810Lib

79

1
because the BDs are asynchronously modified by both the driver and the device, and these
fields might share the same cache line.

Data buffers are instead allocated in the external memory through the regular memory
allocation routine (memalign), and the related cache lines are then flushed or invalidated as
appropriate. The user should not allocate memory for them.

TUNING HINTS The only adjustable parameters are the number of TBDs and RBDs that will be created at
run-time. These parameters are given to the driver when motFecEndLoad() is called. There
is one RBD associated with each received frame whereas a single transmit packet normally
uses more than one TBD. For memory-limited applications, decreasing the number of RBDs
may be desirable. Decreasing the number of TBDs below a certain point will provide
substantial performance degradation, and is not recommended. An adequate number of
loaning buffers are also pre-allocated to provide more buffering before packets are dropped,
but this is not configurable.

The relative priority of the netTask and of the other tasks in the system may heavily affect
performance of this driver. Usually the best performance is achieved when the netTask
priority equals that of the other applications using the driver.

SPECIAL CONSIDERATIONS

Due to the FEC8 errata in the document: "MPC860 Family Device Errata Reference"
available at the Motorola web site, the number of receive buffer descriptors (RBD) for the
FEC (see configNet.h) is kept deliberately high. According to Motorola, this problem was
fixed in Rev. B3 of the silicon. In memory-bound applications, when using the
above-mentioned revision of the MPC860T processor, the user may decrease the number of
RBDs to fit his needs.

INCLUDE FILES none

SEE ALSO ifLib, MPC860T Fast Ethernet Controller (Supplement to the MPC860 User's Manual) , Motorola
MPC860 User's Manual

ncr810Lib

NAME ncr810Lib – NCR 53C8xx PCI SCSI I/O Processor (SIOP) library (SCSI-2)

ROUTINES ncr810CtrlCreate() – create a control structure for the NCR 53C8xx SIOP
ncr810CtrlInit() – initialize a control structure for the NCR 53C8xx SIOP
ncr810SetHwRegister() – set hardware-dependent registers for the NCR 53C8xx SIOP
ncr810Show() – display values of all readable NCR 53C8xx SIOP registers

VxWorks Drivers API Reference, 6.2
ne2000End

80

DESCRIPTION This is the I/O driver for the NCR 53C8xx PCI SCSI I/O Processors (SIOP), supporting the
NCR 53C810 and the NCR 53C825 SCSI controllers. It is designed to work with scsiLib and
scsi2Lib. This driver runs in conjunction with a script program for the NCR 53C8xx
controllers. These scripts use DMA transfers for all data, messages, and status. This driver
supports cache functions through cacheLib.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Three
routines, however, must be called directly. ncr810CtrlCreate() creates a controller structure
and ncr810CtrlInit() initializes it. The NCR 53C8xx hardware registers need to be
configured according to the hardware implementation. If the default configuration is not
correct, the routine ncr810SetHwRegister() must be used to properly configure the
registers.

PCI MEMORY ADDRESSING

The global variable ncr810PciMemOffset was created to provide the BSP with a means of
changing the VIRT_TO_PHYS mapping without changing the functions in the cacheFuncs
structures. In generating physical addresses for DMA on the PCI bus, local addresses are
passed through the function CACHE_DMA_VIRT_TO_PHYS and then the value of
ncr810PciMemOffset is added. For backward compatibility, the initial value of
ncr810PciMemOffset comes from the macro PCI_TO_MEM_OFFSET defined in ncr810.h.

I/O MACROS All device access for input and output is done via macros which can be customized for each
BSP. These routines are NCR810_IN_BYTE, NCR810_OUT_BYTE, NCR810_IN_16,
NCR810_OUT_16, NCR810_IN_32 and NCR810_OUT_32. By default, these are defined as
generic memory references.

INCLUDE FILES ncr810.h, ncr810Script.h and scsiLib.h

SEE ALSO scsiLib, scsi2Lib, cacheLib, SYM53C825 PCI-SCSI I/O Processor Data Manual, SYM53C810
PCI-SCSI I/O Processor Data Manual, NCR 53C8XX Family PCI-SCSI I/O Processors
Programming Guide, VxWorks Programmer's Guide: I/O System

ne2000End

NAME ne2000End – NE2000 END network interface driver

ROUTINES ne2000EndLoad() – initialize the driver and device

DESCRIPTION This module implements the NE2000 Ethernet network interface driver.

1 Libraries
ne2000End

81

1
EXTERNAL INTERFACE

The only external interface is the ne2000EndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

unit:adrs:vecNum:intLvl:byteAccess:usePromEnetAddr:offset

The ne2000EndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the string
name for the driver.

adrs
Tells the driver where to find the ne2000.

vecNum
Configures the ne2000 device to generate hardware interrupts for various events within
the device. Thus, it contains an interrupt handler routine. The driver calls
sysIntConnect() to connect its interrupt handler to the interrupt vector generated as a
result of the ne2000 interrupt.

intLvl
This parameter is passed to an external support routine, sysLanIntEnable(), which is
described below in "External Support Requirements." This routine is called during as
part of driver's initialization. It handles any board-specific operations required to allow
the servicing of a ne2000 interrupt on targets that use additional interrupt controller
devices to help organize and service the various interrupt sources. This parameter
makes it possible for this driver to avoid all board-specific knowledge of such devices.

byteAccess
Tells the driver the NE2000 is jumpered to operate in 8-bit mode. Requires that
SYS_IN_WORD_STRING() and SYS_OUT_WORD_STRING() be written to
properly access the device in this mode.

usePromEnetAddr
Attempt to get the ethernet address for the device from the on-chip (board) PROM
attached to the NE2000. Will fall back to using the BSP-supplied ethernet address if this
parameter is 0 or if unable to read the ethernet address.

offset
Specifies the memory alignment offset.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires several external support functions, defined as macros:

 SYS_INT_CONNECT(pDrvCtrl, routine, arg)
 SYS_INT_DISCONNECT (pDrvCtrl, routine, arg)
 SYS_INT_ENABLE(pDrvCtrl)
 SYS_IN_CHAR(pDrvCtrl, reg, pData)
 SYS_OUT_CHAR(pDrvCtrl, reg, pData)

VxWorks Drivers API Reference, 6.2
nec765Fd

82

 SYS_IN_WORD_STRING(pDrvCtrl, reg, pData)
 SYS_OUT_WORD_STRING(pDrvCtrl, reg, pData)

These macros allow the driver to be customized for BSPs that use special versions of these
routines.

The macro SYS_INT_CONNECT is used to connect the interrupt handler to the appropriate
vector. By default it is the routine intConnect().

The macro SYS_INT_DISCONNECT is used to disconnect the interrupt handler prior to
unloading the module. By default this is a dummy routine that returns OK.

The macro SYS_INT_ENABLE is used to enable the interrupt level for the end device. It is
called once during initialization. By default this is the routine sysLanIntEnable(), defined
in the module sysLib.o.

The macro SYS_ENET_ADDR_GET is used to get the ethernet address (MAC) for the device.
The single argument to this routine is the END_DEVICE pointer. By default this routine
copies the ethernet address stored in the global variable ne2000EndEnetAddr into the
END_DEVICE structure.

The macros SYS_IN_CHAR, SYS_OUT_CHAR, SYS_IN_WORD_STRING and
SYS_OUT_WORD_STRING are used for accessing the ne2000 device. The default macros
map these operations onto sysInByte(), sysOutByte(), sysInWordString() and
sysOutWordString().

INCLUDE FILES end.h endLib.h etherMultiLib.h

SEE ALSO muxLib, endLib, Writing and Enhanced Network Driver

nec765Fd

NAME nec765Fd – NEC 765 floppy disk device driver

ROUTINES fdDrv() – initialize the floppy disk driver
fdDevCreate() – create a device for a floppy disk
fdRawio() – provide raw I/O access

DESCRIPTION This is the driver for the NEC 765 Floppy Chip used on the PC 386/486.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However, two
routines must be called directly: fdDrv() to initialize the driver, and fdDevCreate() to
create devices. Before the driver can be used, it must be initialized by calling fdDrv(). This

1 Libraries
ns16550Sio

83

1
routine should be called exactly once, before any reads, writes, or calls to fdDevCreate().
Normally, it is called from usrRoot() in usrConfig.c.

The routine fdRawio() allows physical I/O access. Its first argument is a drive number, 0 to
3; the second argument is a type of diskette; the third argument is a pointer to the FD_RAW
structure, which is defined in nec765Fd.h.

Interleaving is not supported when the driver formats.

Two types of diskettes are currently supported: 3.5" 2HD 1.44MB and 5.25" 2HD 1.2MB. You
can add additional diskette types to the fdTypes[] table in sysLib.c.

The BLK_DEV bd_mode field will reflect the disk's write protect tab.

INCLUDE FILES none

SEE ALSO VxWorks Programmer's Guide: I/O System

ns16550Sio

NAME ns16550Sio – NS 16550 UART tty driver

ROUTINES ns16550DevInit() – intialize an NS16550 channel
ns16550IntWr() – handle a transmitter interrupt
ns16550IntRd() – handle a receiver interrupt
ns16550IntEx() – miscellaneous interrupt processing
ns16550Int() – interrupt level processing

DESCRIPTION This is the driver for the NS16552 DUART. This device includes two universal asynchronous
receiver/transmitters, a baud rate generator, and a complete modem control capability.

A NS16550_CHAN structure is used to describe the serial channel. This data structure is
defined in ns16550Sio.h.

Only asynchronous serial operation is supported by this driver. The default serial settings
are 8 data bits, 1 stop bit, no parity, 9600 baud, and software flow control.

USAGE The BSP's sysHwInit() routine typically calls sysSerialHwInit(), which creates the
NS16550_CHAN structure and initializes all the values in the structure (except the
SIO_DRV_FUNCS) before calling ns16550DevInit(). The BSP's sysHwInit2() routine
typically calls sysSerialHwInit2(), which connects the chips interrupts via intConnect()

VxWorks Drivers API Reference, 6.2
ns83902End

84

(either the single interrupt ns16550Int or the three interrupts ns16550IntWr, ns16550IntRd,
and ns16550IntEx).

This driver handles setting of hardware options such as parity(odd, even) and number of
data bits(5, 6, 7, 8). Hardware flow control is provided with the handshakes RTS/CTS. The
function HUPCL(hang up on last close) is available. When hardware flow control is enabled,
the signals RTS and DTR are set TRUE and remain set until a HUPCL is performed.

INCLUDE FILES drv/sio/ns16552Sio.h

ns83902End

NAME ns83902End – National Semiconductor DP83902A ST-NIC

ROUTINES ns83902EndLoad() – initialize the driver and device
ns83902RegShow() – prints the current value of the NIC registers

EXTERNAL INTERFACE

The only external interface is the ns83902EndLoad() routine, which expects the initString
parameter as input. This parameter passes in a colon-delimited string of the format:

"baseAdrs:intVec:intLvl:dmaPort:bufSize:options"

The ns83902EndLoad() function uses strtok() to parse the string.

TARGET-SPECIFIC PARAMETERS

unit
A convenient holdover from the former model. This parameter is used only in the string
name for the driver.

baseAdrs
Base address at which the NIC hardware device registers are located.

vecNum
This is the interrupt vector number of the hardware interrupt generated by this
Ethernet device.

intLvl
This parameter defines the level of the hardware interrupt.

dmaPort
Address of the DMA port used to transfer data to the host CPU.

bufSize
Size of the NIC buffer memory in bytes.

1 Libraries
pccardLib

85

1
options

Target-specific options:
bit0 - wide (0: byte, 1: word)
bit1 - register interval (0: 1byte, 1: 2 bytes)

EXTERNAL SUPPORT REQUIREMENTS

This driver requires four external support functions, and provides a hook function:

void sysLanIntEnable (int level)
This routine provides a target-specific interface for enabling Ethernet device interrupts
at a specified interrupt level.

void sysLanIntDisable (void)
This routine provides a target-specific interface for disabling Ethernet device
interrupts.

STATUS sysEnetAddrGet (int unit, char *enetAdrs)
This routine provides a target-specific interface for accessing a device Ethernet address.

sysNs83902DelayCount
This variable is used to introduce at least a 4 bus cycle (BSCK) delay between successive
NIC chip selects.

SYSTEM RESOURCE USAGE

This driver requires the following system resources:

- one mutual exclusion semaphore
- one interrupt vector

INCLUDE FILES none

SEE ALSO muxLib, DP83902A ST-NIC Serial Interface Controller for Twisted Pair

pccardLib

NAME pccardLib – PC CARD enabler library

ROUTINES pccardMount() – mount a DOS file system
pccardMkfs() – initialize a device and mount a DOS file system
pccardAtaEnabler() – enable the PCMCIA-ATA device
pccardSramEnabler() – enable the PCMCIA-SRAM driver
pccardEltEnabler() – enable the PCMCIA Etherlink III card
pccardTffsEnabler() – enable the PCMCIA-TFFS driver

VxWorks Drivers API Reference, 6.2
pciAutoConfigLib

86

DESCRIPTION This library provides generic facilities for enabling PC CARD. Each PC card device driver
needs to provide an enabler routine and a CSC interrupt handler. The enabler routine must
be in the pccardEnabler structure. Each PC card driver has its own resource structure,
xxResources. The ATA PC card driver resource structure is ataResources in sysLib, which
also supports a local IDE disk. The resource structure has a PC card common resource
structure in the first member. Other members are device-driver dependent resources.

The PCMCIA chip initialization routines tcicInit() and pcicInit() are included in the
PCMCIA chip table pcmciaAdapter. This table is scanned when the PCMCIA library is
initialized. If the initialization routine finds the PCMCIA chip, it registers all function
pointers of the PCMCIA_CHIP structure.

A memory window defined in pcmciaMemwin is used to access the CIS of a PC card
through the routines in cisLib.

INCLUDE FILES none

SEE ALSO pcmciaLib, cisLib, tcic, pcic

pciAutoConfigLib

NAME pciAutoConfigLib – PCI bus scan and resource allocation facility

ROUTINES pciAutoConfigLibInit() – initialize PCI autoconfig library
pciAutoCfg() – Automatically configure all nonexcluded PCI headers
pciAutoCfgCtl() – set or get pciAutoConfigLib options
pciAutoDevReset() – quiesce a PCI device and reset all writeable status bits
pciAutoBusNumberSet() – set the primary, secondary, and subordinate bus number
pciAutoFuncDisable() – disable a specific PCI function
pciAutoFuncEnable() – perform final configuration and enable a function
pciAutoGetNextClass() – find the next device of specific type from probe list
pciAutoRegConfig() – assign PCI space to a single PCI base address register
pciAutoCardBusConfig() – set mem and I/O registers for a single PCI-Cardbus bridge
pciAutoAddrAlign() – align a PCI address and check boundary conditions
pciAutoConfig() – automatically configure all nonexcluded PCI headers (obsolete)

DESCRIPTION This library provides a facility for automated PCI device scanning and configuration on
PCI-based systems.

Modern PCI based systems incorporate many peripherals and may span multiple physical
bus segments, and these bus segments may be connected via PCI-to-PCI Bridges. Bridges
are identified and properly numbered before a recursive scan identifies all resources on the
bus implemented by the bridge. Post-scan configuration of the subordinate bus number is
performed.

1 Libraries
pciAutoConfigLib

87

1
Resource requirements of each device are identified and allocated according to system
resource pools that are specified by the BSP Developer. Devices may be conditionally
excluded, and interrupt routing information obtained via optional routines provided by the
BSP Developer.

GENERAL ALGORITHM

The library must first be initialized by a call to pciAutoConfigLibInit(). The return value,
pCookie, must be passed to each subsequent call from the library. Options can be set using
the function pciAutoCfgCtl(). The available options are described in the documentation for
pciAutoCfgCtl().

After initialization of the library and configuration of any options, autoconfiguration takes
place in two phases. In the first phase, all devices and subordinate busses in a given system
are scanned and each device that is found causes an entry to be created in the Probelist or
list of devices found during the probe/configuration process.

In the second phase each device that is on the Probelist is checked to see if it has been
excluded from automatic configuration by the BSP developer. If a particular function has
not been excluded, it is first disabled. The Base Address Registers of the particular function
are read to ascertain the resource requirements of the function. Each resource requirement
is checked against available resources in the applicable pool based on size and alignment
constraints.

After all functions on the Probelist have been processed, each function and it's appropriate
Memory or I/O decoder(s) are enabled for operation.

HOST BRIDGE DETECTION/CONFIGURATION

Note that the PCI Host Bridge is automatically excluded from configuration by the
autoconfig routines, as it is often already configured as part of the system bootstrap device
configuration.

PCI-PCI BRIDGE DETECTION/CONFIGURATION

Busses are scanned by first writing the primary, secondary, and subordinate bus information
into the bridge that implements the bus. Specifically, the primary and secondary bus
numbers are set to their corresponding value, and the subordinate bus number is set to 0xFF,
because the final number of sub-busses is not known. The subordinate bus number is later
updated to indicate the highest numbered sub-bus that was scanned once the scan is
complete.

GENERIC DEVICE DETECTION/CONFIGURATION

The autoconfiguration library creates a list of devices during the process of scanning all of
the busses in a system. Devices with vendor IDs of 0xFFFF and 0x0000 are skipped. Once all
busses have been scanned, all non-excluded devices are then disabled prior to
configuration.

Devices that are not excluded will have Resources allocated according to Base Address
Registers that are implemented by the device and available space in the applicable resource

VxWorks Drivers API Reference, 6.2
pciAutoConfigLib

88

pool. PCI Natural alignment constraints are adhered to when allocating resources from
pools.

Also initialized are the cache line size register and the latency timer. Bus mastering is
unconditionally enabled.

If an interrupt assignment routine is registered, the interrupt pin register of the PCI
Configuration space is passed to this routine along with the bus, device, and function
number of the device under consideration.

There are two different schemes to determine when the BSP interrupt assignment routine is
called by autoconfig. The call is done either only for bus-0 devices or for all devices
depending upon how the autoIntRouting is set by the BSP developer (see the section
"INTERRUPT ROUTING ACROSS PCI-TO-PCI BRIDGES" below for more details).

The interrupt level number returned by this routine is then written into the interrupt line
register of the PCI Configuration Space for subsequent use by device drivers. If no interrupt
assignment routine is registered, 0xFF is written into the interrupt line register, specifying
an unknown interrupt binding.

Lastly, the functions are enabled with what resources were able to be provided from the
applicable resource pools.

RESOURCE ALLOCATION

Resource pools include the 32-bit Prefetchable Memory pool, the 32-bit Non-prefetchable
Memory ("MemIO") pool, the 32-bit I/O pool, and the 16-bit I/O allocation pool. The
allocation in each pool begins at the specified base address and progresses to higher
numbered addresses. Each allocated address adheres to the PCI natural alignment
constraints of the given resource requirement specified in the Base Address Register.

DATA STRUCTURES

Data structures are either allocated statically or allocated dynamically, depending on the
value of the build macro PCI_AUTO_STATIC_LIST, discussed below. In either case, the
structures are initialized by the call to pciAutoConfigLibInit().

For ease of upgrading from the older method which used the PCI_SYSTEM structure, the
option PCI_SYSTEM_STRUCT_COPY has been implemented. See the in the documentation
for pciAutoCfgCtl() for more information.

PCI RESOURCE POOLS

Resources used by pciAutoConfigLib can be divided into two groups.

The first group of information is the Memory and I/O resources, that are available in the
system and that autoconfig can use to allocate to functions. These resource pools consist of
a base address and size. The base address specified here should be the address relative to
the PCI bus. Each of these values in the PCI_SYSTEM data structure is described below:

1 Libraries
pciAutoConfigLib

89

1
pciMem32

Specifies the 32-bit prefetchable memory pool base address. Normally, this is given by
the BSP constant PCI_MEM_ADRS. It can be set with the pciAutoCfgCtl() command
PCI_MEM32_LOC_SET.

pciMem32Size
Specifies the 32-bit prefetchable memory pool size. Normally, this is given by the BSP
constant PCI_MEM_SIZE. It can be set with the pciAutoCfgCtl() command
PCI_MEM32_SIZE_SET.

pciMemIo32
Specifies the 32-bit non-prefetchable memory pool base address. Normally, this is given
by the BSP constant PCI_MEMIO_ADRS. It can be set with the pciAutoCfgCtl()
command PCI_MEMIO32_LOC_SET.

pciMemIo32Size
Specifies the 32-bit non-prefetchable memory pool size Normally, this is given by the
BSP constant PCI_MEMIO_SIZE. It can be set with the pciAutoCfgCtl() command
PCI_MEMIO32_SIZE_SET.

pciIo32
Specifies the 32-bit I/O pool base address. Normally, this is given by the BSP constant
PCI_IO_ADRS. It can be set with the pciAutoCfgCtl() command PCI_IO32_LOC_SET.

pciIo32Size
Specifies the 32-bit I/O pool size. Normally, this is given by the BSP constant
PCI_IO_SIZE. It can be set with the pciAutoCfgCtl() command PCI_IO32_SIZE_SET.

pciIo16
Specifies the 16-bit I/O pool base address. Normally, this is given by the BSP constant
PCI_ISA_IO_ADDR. It can be set with the pciAutoCfgCtl() command
PCI_IO16_LOC_SET.

pciIo16Size
Specifies the 16-bit I/O pool size. Normally, this is given by the BSP constant
PCI_ISA_IO_SIZE. It can be set with the pciAutoCfgCtl() command
PCI_IO16_SIZE_SET.

PREFETCH MEMORY ALLOCATION

The pciMem32 pointer is assumed to point to a pool of prefetchable PCI memory. If the size
of this pool is non-zero, prefetch memory will be allocated to devices that request it given
that there is enough memory in the pool to satisfy the request, and the host bridge or
PCI-to-PCI bridge that implements the bus that the device resides on is capable of handling
prefetchable memory. If a device requests it, and no prefetchable memory is available or the
bridge implementing the bus does not handle prefetchable memory, then the request will be
attempted from the non-prefetchable memory pool.

PCI-to-PCI bridges are queried as to whether they support prefetchable memory by writing
a non-zero value to the prefetchable memory base address register and reading back a

VxWorks Drivers API Reference, 6.2
pciAutoConfigLib

90

non-zero value. A zero value would indicate the bridge does not support prefetchable
memory.

BSP-SPECIFIC ROUTINES

Several routines can be provided by the BSP Developer to customize the degree to which the
system can be automatically configured. These routines are normally put into a file called
sysBusPci.c in the BSP directory. The trivial cases of each of these routines are shown in the
USAGE section below to illustrate the API to the BSP Developer.

DEVICE INCLUSION

Specific devices other than bridges can be excluded from auto configuration and either not
used or manually configured later. For more information, see the PCI_INCLUDE_FUNC_SET
section in the documentation for pciAutoCfgCtl().

INTERRUPT ASSIGNMENT

Interrupt assignment can be specified by the BSP developer by specifying a routine for
pciAutoConfigLib to call at the time each device or bridge is configured. See the
PCI_INT_ASSIGN_FUNC_SET section in the documentation for pciAutoCfgCtl() for more
information.

INTERRUPT ROUTING ACROSS PCI-TO-PCI BRIDGES

PCI autoconfig allows use of two interrupt routing strategies for handling devices that
reside across a PCI-to-PCI Bridge. The BSP-specific interrupt assignment routine described
in the above section is called for all devices that reside on bus 0. For devices residing across
a PCI-to-PCI bridge, one of two supported interrupt routing strategies may be selected by
setting the PCI_AUTO_INT_ROUTE_SET command using pciAutoCfgCtl() to the boolean
value TRUE or FALSE:

TRUE
If automatic interrupt routing is set to TRUE, autoconfig only calls the BSP interrupt
routing routine for devices on bus number 0. If a device resides on a higher numbered
bus, a cyclic algorithm is applied to the IRQs that are routed through the bridge. The
algorithm is based on computing a route offset that is the device number modulo 4 for
every bridge device that is traversed. This offset is used with the device number and
interrupt pin register of the device of interest to compute the contents of the interrupt
line register.

FALSE
If automatic interrupt routing is set to FALSE, autoconfig calls the BSP interrupt
assignment routine to do all interrupt routing regardless of the bus on which the device
resides. The return value represents the contents of the interrupt line register in all
cases.

1 Libraries
pciAutoConfigLib

91

1
BRIDGE CONFIGURATION

The BSP developer may wish to perform configuration of bridges before and/or after the
normal configuration of the bus they reside on. Two routines can be specified for this
purpose.

The bridge pre-configuration pass initialization routine is provided so that the BSP
Developer can initialize a bridge device prior to the configuration pass on the bus that the
bridge implements.

The bridge post-configuration pass initialization routine is provided so that the BSP
Developer can initialize the bridge device after the bus that the bridge implements has been
enumerated.

These routines are configured by calling pciAutoCfgCtl() with the command
PCI_BRIDGE_PRE_CONFIG_FUNC_SET and the command
PCI_BRIDGE_POST_CONFIG_FUNC_SET, respectively.

HOST BRIDGE CONFIGURATION

The PCI Local Bus Specification, rev 2.1 does not specify the content or initialization
requirements of the configuration space of PCI Host Bridges. Due to this fact, no host
bridge-specific assumptions are made by autoconfig and any PCI Host Bridge initialization
that must be done before either scan or configuration of the bus must be done in the BSP.
Comments illustrating where this initialization could be called in relation to invoking the
pciAutoConfig() routine are in the “USAGE” section below.

LIBRARY CONFIGURATION MACROS

The following four macros can be defined by the BSP Developer in config.h to govern the
operation of the autoconfig library.

PCI_AUTO_MAX_FUNCTIONS
Defines the maximum number of functions that can be stored in the probe list during
the autoconfiguration pass. The default value for this define is 32, but this may be
overridden by defining PCI_AUTO_MAX_FUNCTIONS in config.h.

PCI_AUTO_STATIC_LIST
If defined, a statically allocated array of size PCI_AUTO_MAX_FUNCTION instances of
the PCI_LOC structure will be instantiated.

PCI_AUTO_RECLAIM_LIST
This define may only be used if PCI_AUTO_STATIC_LIST is not defined. If defined, this
allows the autoconfig routine to perform a free() operation on a dynamically allocated
probe list. Note that if PCI_AUTO_RECLAIM_LIST is defined and
PCI_AUTO_STATIC_LIST is also, a compiler error will be generated.

USAGE The following code sample illustrates the usage of the PCI_SYSTEM structure and invocation
of the autoconfig library. Note that the example BSP-specific routines are merely stubs. The
code in each routine varies by BSP and application.

#include "pciAutoConfigLib.h"

VxWorks Drivers API Reference, 6.2
pciAutoConfigLib

92

LOCAL PCI_SYSTEM sysParams;

void sysPciAutoConfig (void)
 {
 void * pCookie;

 /* initialize the library */
 pCookie = pciAutoConfigLibInit(NULL);

 /* 32-bit Prefetchable Memory Space */

 pciAutoCfgCtl(pCookie, PCI_MEM32_LOC_SET, PCI_MEM_ADRS);
 pciAutoCfgCtl(pCookie, PCI_MEM32_SIZE_SET, PCI_MEM_SIZE);

 /* 32-bit Non-prefetchable Memory Space */

 pciAutoCfgCtl(pCookie, PCI_MEMIO32_LOC_SET, PCI_MEMIO_ADRS);
 pciAutoCfgCtl(pCookie, PCI_MEMIO32_SIZE_SET, PCI_MEMIO_SIZE);

 /* 16-bit ISA I/O Space */

 pciAutoCfgCtl(pCookie, PCI_IO16_LOC_SET, PCI_ISA_IO_ADRS);
 pciAutoCfgCtl(pCookie, PCI_IO16_SIZE_SET, PCI_ISA_IO_SIZE);

 /* 32-bit PCI I/O Space */

 pciAutoCfgCtl(pCookie, PCI_IO32_LOC_SET, PCI_IO_ADRS);
 pciAutoCfgCtl(pCookie, PCI_IO32_SIZE_SET, PCI_IO_SIZE);

 /* Configuration space parameters */

 pciAutoCfgCtl(pCookie, PCI_MAX_BUS_SET, 0);
 pciAutoCfgCtl(pCookie, PCI_MAX_LAT_ALL_SET, PCI_LAT_TIMER);
 pciAutoCfgCtl(pCookie, PCI_CACHE_SIZE_SET,
 (_CACHE_ALIGN_SIZE / 4));

 /*
 * Interrupt routing strategy
 * across PCI-to-PCI Bridges
 */

 pciAutoCfgCtl(pCookie, PCI_AUTO_INT_ROUTE_SET, TRUE);

 /* Device inclusion and interrupt routing routines */

 pciAutoCfgCtl(pCookie, PCI_INCLUDE_FUNC_SET,
 sysPciAutoconfigInclude);
 pciAutoCfgCtl(pCookie, PCI_INT_ASSIGN_FUNC_SET,
 sysPciAutoconfigIntrAssign);

 /*
 * PCI-to-PCI Bridge Pre-
 * and Post-enumeration init
 * routines
 */

1 Libraries
pciAutoConfigLib

93

1 pciAutoCfgCtl(pCookie, PCI_BRIDGE_PRE_CONFIG_FUNC_SET,
 sysPciAutoconfigPreEnumBridgeInit);
 pciAutoCfgCtl(pCookie, PCI_BRIDGE_POST_CONFIG_FUNC_SET,
 sysPciAutoconfigPostEnumBridgeInit);

 /*
 * Perform any needed PCI Host Bridge
 * Initialization that needs to be done
 * before pciAutoConfig is invoked here
 * utilizing the information in the
 * newly-populated sysParams structure.
 */

 pciAutoCfg (&sysParams);

 /*
 * Perform any needed post-enumeration
 * PCI Host Bridge Initialization here.
 * Information about the actual configuration
 * from the scan and configuration passes
 * can be obtained using the assorted
 * PCI_*_GET commands to pciAutoCfgCtl().
 */

 }

 /*
 * Local BSP-Specific routines
 * supplied by BSP Developer
 */

STATUS sysPciAutoconfigInclude
 (
 PCI_SYSTEM * pSys, /* PCI_SYSTEM structure pointer */
 PCI_LOC * pLoc, /* pointer to function in question */
 UINT devVend /* deviceID/vendorID of device */
)
 {
 return OK; /* Autoconfigure all devices */
 }

UCHAR sysPciAutoconfigIntrAssign
 (
 PCI_SYSTEM * pSys, /* PCI_SYSTEM structure pointer */
 PCI_LOC * pLoc, /* pointer to function in question */
 UCHAR pin /* contents of PCI int pin register */
)
 {
 return (UCHAR)0xff;
 }

void sysPciAutoconfigPreEnumBridgeInit

VxWorks Drivers API Reference, 6.2
pciAutoConfigLib

94

 (
 PCI_SYSTEM * pSys, /* PCI_SYSTEM structure pointer */
 PCI_LOC * pLoc, /* pointer to function in question */
 UINT devVend /* deviceID/vendorID of device */
)
 {
 return;
 }

void sysPciAutoconfigPostEnumBridgeInit
 (
 PCI_SYSTEM * pSys, /* PCI_SYSTEM structure pointer */
 PCI_LOC * pLoc, /* pointer to function in question */
 UINT devVend /* deviceID/vendorID of device */
)
 {
 return;
 }

1 Libraries
pciConfigLib

95

1
CONFIGURATION SPACE PARAMETERS

The cache line size register specifies the cacheline size in longwords. This register is required
when a device can generate a memory write and Invalidate bus cycle, or when a device
provides cacheable memory to the system.

Note that in the above example, the macro _CACHE_ALIGN_SIZE is utilized. This macro is
implemented for all supported architectures and is located in the architecture.h file in
.../target/h/arch/architecture. The value of the macro indicates the cache line size in bytes
for the particular architecture. For example, the PowerPC architecture defines this macro to
be 32, while the ARM 810 defines it to be 16. The PCI cache line size field and the cacheSize
element of the PCI_SYSTEM structure expect to see this quantity in longwords, so the byte
value must be divided by 4.

LIMITATIONS The current version of the autoconfig facility does not support 64-bit prefetchable memory
behind PCI-to-PCI bridges, but it does support 32-bit prefetchable memory.

The autoconfig code also depends upon the BSP Developer specifying resource pools that
do not conflict with any resources that are being used by statically configured devices.

INCLUDE FILES pciAutoConfigLib.h

SEE ALSO "PCI Local Bus Specification, Revision 2.1, June 1, 1996", "PCI Local Bus PCI to PCI Bridge
Architecture Specification, Revision 1.0, April 5, 1994"

pciConfigLib

NAME pciConfigLib – PCI Configuration space access support for PCI drivers

ROUTINES pciConfigLibInit() – initialize the configuration access-method and addresses
pciFindDevice() – find the nth device with the given device & vendor ID
pciFindClass() – find the nth occurrence of a device by PCI class code.
pciDevConfig() – configure a device on a PCI bus
pciConfigBdfPack() – pack parameters for the Configuration Address Register
pciConfigExtCapFind() – find extended capability in ECP linked list
pciConfigInByte() – read one byte from the PCI configuration space
pciConfigInWord() – read one word from the PCI configuration space
pciConfigInLong() – read one longword from the PCI configuration space
pciConfigOutByte() – write one byte to the PCI configuration space

VxWorks Drivers API Reference, 6.2
pciConfigLib

96

pciConfigOutWord() – write one 16-bit word to the PCI configuration space
pciConfigOutLong() – write one longword to the PCI configuration space
pciConfigModifyLong() – Perform a masked longword register update
pciConfigModifyWord() – Perform a masked longword register update
pciConfigModifyByte() – Perform a masked longword register update
pciSpecialCycle() – generate a special cycle with a message
pciConfigForeachFunc() – check condition on specified bus
pciConfigReset() – disable cards for warm boot

DESCRIPTION This module contains routines to support accessing the PCI bus Configuration Space. The
library is PCI Revision 2.1 compliant.

In general, functions in this library should not be called from the interrupt level, (except
pciInt()) because Configuration Space access, which is slow, should be limited to
initialization only.

The functions addressed here include the following:

- Initialization of the library.

- Locating a device by Device ID and Vendor ID.

- Locating a device by Class Code.

- Generation of Special Cycles.

- Accessing Configuration Space structures.

PCI BUS CONCEPTS

The PCI bus is an unterminated, high-impedance CMOS bus using reflected wave signalling
as opposed to incident wave. Because of this, the PCI bus is physically limited in length and
the number of electrical loads that can be supported. Each device on the bus represents one
load, including adapters and bridges.

To accomodate additional devices, the PCI standard allows multiple PCI buses to be
interconnected via PCI-to-PCI bridge (PPB) devices to form one large bus. Each constituent
bus is referred to as a bus segment and is subject to the above limitations.

The bus segment accessible from the host bus adapter is designated the primary bus
segment (see figure). Progressing outward from the primary bus (designated segment
number zero from the PCI architecture point of view) are the secondary and tertiary buses,
numbered as segments one and two, respectively. Due to clock skew concerns and
propagation delays, practical PCI bus architectures do not implement bus segments beyond
the tertiary level.

1 Libraries
pciConfigLib

97

1

 | |
 | CPU |
 | |

 |
 Host bus |
 ----------------------+-------------------------- ...
 |

 | Bridge 0 |
 | (host |
 | adapter) |

 |
 PCI bus segment 0 | (primary bus segment)
 ----------------------+-------------------------- ...
 | | | |
 dev 0 | dev 1 dev 2
 |

 | |
 | Bridge 1 |
 | (P2P) |

 |
 PCI bus segment 1 | (secondary bus segment)
 ----------------------+-------------------------- ...
 | | | |
 dev 0 | dev 1 dev 2
 |

 | |
 | Bridge 2 |
 | (P2P) |

 |
 PCI bus segment 2 | (tertiary bus segment)
 ----------------------+-------------------------- ...
 | | |
 dev 0 dev 1 dev 2

For further details, see the PCI-to-PCI Bridge Architecture Specification.

I/O MACROS AND CPU ENDIAN-NESS

PCI bus I/O operations must adhere to little endian byte ordering. Thus if an I/O operation
larger than one byte is performed, the lower I/O addresses contain the least signifiant bytes
of the multi-byte quantity of interest.

VxWorks Drivers API Reference, 6.2
pciConfigLib

98

For architectures that adhere to big-endian byte ordering, byte-swapping must be
performed. The architecture-specific byte-order translation is done as part of the I/O
operation in the following routines: sysPciInByte, sysPciInWord, sysPciInLong,
sysOutPciByte, sysPciOutWord, sysPciOutLong. The interface to these routines is
mediated by the following macros:

PCI_IN_BYTE
read a byte from PCI I/O Space

PCI_IN_WORD
read a word from PCI I/O Space

PCI_IN_LONG
read a longword from PCI I/O Space

PCI_OUT_BYTE
write a byte from PCI I/O Space

PCI_OUT_WORD
write a word from PCI I/O Space

PCI_OUT_LONG
write a longword from PCI I/O Space

By default, these macros call the appropriate PCI I/O routine, such as sysPciInWord. For
architectures that do not require byte swapping, these macros simply call the appropriate
default I/O routine, such as sysInWord. These macros may be redefined by the BSP if special
processing is required.

INITIALIZATION pciConfigLibInit() should be called before any other pciConfigLib functions. Generally,
this is performed by sysHwInit().

After the library has been initialized, it may be utilized to find devices, and access PCI
configuration space.

Any PCI device can be uniquely addressed within Configuration Space by the geographic
specification of a Bus segment number, Device number, and a Function number (BDF). The
configuration registers of a PCI device are arranged by the PCI standard according to a
Configuration Header structure. The BDF triplet specifies the location of the header
structure of one device. To access a configuration register, its location in the header must be
given. The location of a configuration register of interest is simply the structure member
offset defined for the register. For further details, see the PCI Local Bus Specification,
Revision 2.1. See the header file pciConfigLib.h for the defined standard configuration
register offsets.

The maximum number of Type-1 Configuration Space buses supported in the 2.1
Specifications is 256 (0x00 - 0xFF), far greater than most systems currently support. Most
buses are numbered sequentially from 0. An optional define called PCI_MAX_BUS may be
declared in config.h to override the default definition of 256. Similarly, the default number
of devices and functions may be overridden by defining PCI_MAX_DEV and/or

1 Libraries
pciConfigLib

99

1
PCI_MAX_FUNC. Note that the number of devices applies only to bus zero, all others being
restricted to 16 by the 2.1 spec.

ACCESS MECHANISM 1

This is the preferred access mechanism for a PC-AT class machines. It uses two standard PCI
I/O registers to initiate a configuration cycle. The type of cycle is determined by the
Host-bridge device based on the devices primary bus number. If the configuration bus
number matches the primary bus number, a type 0 configuration cycle occurs. Otherwise a
type 1 cycle is generated. This is all transparent to the user.

The two arguments used for mechanism 1 are the CAR register address which by default is
PCI_CONFIG_ADDR (0xCF8), and the CDR register address which is normally
PCI_CONFIG_DATA (0xCFC).

For example:

pciConfigLibInit (PCI_MECHANISM_1, PCI_CONFIG_ADDR,
 PCI_CONFIG_DATA, NULL);

ACCESS MECHANISM 2

This is the non-preferred legacy mechanism for PC-AT class machines. The three arguments
used for mechanism 2 are the CSE register address which by default is PCI_CONFIG_CSE
(0xCF8), and the Forward register address which is normally PCI_CONFIG_FORWARD
(0xCFA), and the configuration base address which is normally PCI_CONFIG_BASE
(0xC000).

For example:

pciConfigLibInit (PCI_MECHANISM_2, PCI_CONFIG_CSE,
 PCI_CONFIG_FORWARD, PCI_CONFIG_BASE);

ACCESS MECHANISM 0

We have added a non-standard access method that we call method 0. Selecting method 0
installs user supplied read and write routines to actually handle configuration read and
writes (32-bit accesses only). The BSP will supply pointers to these routines as arguments 2
and 3 (read routine is argument 2, write routine is argument 3). A user provided special
cycle routine is argument 4. The special cycle routine is optional and a NULL pointer should
be used if the special cycle routine is not provided by the BSP.

All accesses are expected to be 32-bit accesses with these routines. The code in this library
will perform bit manipulation to emulate byte and word operations. All routines return OK
to indicate successful operation and ERROR to indicate failure.

Initialization examples using special access method 0:

 pciConfigLibInit (PCI_MECHANISM_0, myReadRtn,
 myWriteRtn, mySpecialRtn);
 -or-

 pciConfigLibInit (PCI_MECHANISM_0, myReadRtn,
 myWriteRtn, NULL);

VxWorks Drivers API Reference, 6.2
pciConfigLib

100

The calling convention for the user read routine is:

 STATUS myReadRtn (int bus, int dev, int func,
 int reg, int size, void * pResult);

The calling convention for the user write routine is:

 STATUS myWriteRtn (int bus, int dev, int func,
 int reg, int size, UINT32 data);

The calling convention for the optional special cycle routine is:

 STATUS mySpecialRtn (int bus, UINT32 data);

In the Type-1 method, PCI Configuration Space accesses are made by the sequential access
of two 32-bit hardware registers: the Configuration Address Register (CAR) and the
Configuration Data Register (CDR). The CAR is written to first with the 32-bit value
designating the PCI bus number, the device on that bus, and the offset to the configuration
register being accessed in the device. The CDR is then read or written, depending on
whether the register of interest is to be read or written. The CDR access may be 8-bits,
16-bits, or 32-bits in size. Both the CAR and CDR are mapped by the standard to predefined
addresses in the PCI I/O Space: CAR = 0xCF8 and CDR = 0xCFC.

The Type-2 access method maps any one configuration header into a fixed 4K byte window
of PCI I/O Space. In this method, any PCI I/O Space access within the range of 0xC000 to
0xCFFF will be translated to a Configuration Space access. This access method utilizes two
8-bit hardware registers: the Configuration Space Enable register (CSE) and the Forward
register (CFR). Like the CAR and CDR, these registers occupy preassigned PCI I/O Space
addresses: CSE = 0xCF8, CFR = 0xCFA. The CSE specifies the device to be accessed and the
function within the device. The CFR specifies the bus number on which the device of interest
resides. The access sequence is 1) write the bus number to CFR, 2) write the device location
information to CSE, and 3) perform an 8-bit, 16-bit, or 32-bit read or write at an offset into
the PCI I/O Space starting at 0xC000. The offset specifies the configuration register within
the configuration header which now appears in the 4K byte Configuration Space window.

SPECIAL STATUS BITS

Be careful to not use pciConfigOutWord, pciConfigOutByte, pciConfigModifyWord, or
pciConfigModifyByte for modifying the Command and status register
(PCI_CFG_COMMAND). The bits in the status register are reset by writing a 1 to them. For
each of the listed functions, it is possible that they will emulate the operation by reading a
32-bit quantity, shifting the new data into the proper byte lane and writing back a 32-bit
value.

Improper use may inadvertently clear all error conditions indications if the user tries to
update the command bits. The user should insure that only full 32-bit operations are
performed on the command/status register. Use pciConfigInLong to read the
Command/Status reg, mask off the status bits, mask or insert the command bit changes and
then use pciConfigOutLong to rewrite the Command/Status register. Use of
pciConfigModifyLong is okay if the status bits are rewritten as zeroes.

 /*

1 Libraries
pciConfigLib

101

1
 * This example turns on the write invalidate enable bit in the Command
 * register without clearing the status bits or disturbing other
 * command bits.
 */

 pciConfigInLong (bus, dev, func, PCI_CFG_COMMAND, &temp);
 temp &= 0x0000ffff;
 temp |= PCI_CMD_WI_ENABLE;
 pciConfigOutLong (bus, dev, func, PCI_CFG_COMMAND, temp);

 /* -or- include 0xffff0000 in the bit mask for ModifyLong */

 pciConfigModifyLong (bus, dev, func, PCI_CFG_COMMAND,
 (0xffff0000 | PCI_CMD_WI_ENABLE), PCI_CMD_WI_ENABLE);

The above warning applies to any configuration register containing write 1 to clear bits.

PCI DEVICE LOCATION

After the library has been initialized, the Configuration Space of any PCI device may be
accessed after first locating the device.

Locating a device is accomplished using either pciFindDevice() or pciFindClass(). Both
routines require an index parameter indicating which instance of the device should be
returned, since multiple instances of the same device may be present in a system. The
instance number is zero-based.

pciFindDevice() accepts the following parameters:

vendorId
The vendor ID of the device.

deviceId
The device ID of the device.

index
The instance number.

pciFindClass() simply requires a class code and the index:

classCode
The 24-bit class of the device.

index
The instance number.

In addition, both functions return the following parameters by reference:

pBusNo
Where to return bus segment number containing the device.

pDeviceNo
Where to return the device ID of the device.

VxWorks Drivers API Reference, 6.2
pciConfigLib

102

pFuncNo
Where to return the function number of the device.

These three parameters, Bus segment number, Device number, and Function number (BDF),
provide a means to access the Configuration Space of any PCI device.

PCI BUS SPECIAL CYCLE GENERATION

The PCIbus Special Cycle is a cycle used to broadcast data to one or many devices on a target
PCI bus. It is common, for example, for Intel x86-based systems to broadcast to PCI devices
that the system is about to go into a halt or shutdown condition.

The special cycle is initiated by software. Utilizing CSAM-1, a 32-bit write to the
configuration address port specifying the following

Bus Number
The PCI bus of interest.

Device Number
Set to all 1's (01Fh).

Function Number
Set to all 1's (07d).

Configuration Register Number
Zeroed.

The pciSpecialCycle() function facilitates generation of a Special Cycle by generating the
correct address data noted above. The data passed to the function is driven onto the bus
during the Special Cycle's data phase. The parameters to the pciSpecialCycle() function
are:

busNo
Bus on which Special Cycle is to be initiated.

message
Data driven onto AD[31:0] during the Special Cycle.

PCI DEVICE CONFIGURATION SPACE ACCESS

The routines pciConfigInByte(), pciConfigInWord(), pciConfigInLong(),
pciConfigOutByte(), pciConfigOutWord(), and pciConfigOutLong() may be used to
access the Configuration Space of any PCI device, once the library has been properly
initialized. It should be noted that, if no device exists at the given BDF address, the resultant
behavior of the Configuration Space access routines is to return a value with all bits set, as
set forth in the PCI bus standard.

In addition to the BDF numbers obtained from the pciFindXxx functions, an additional
parameter specifying an offset into the PCI Configuration Space must be specified when
using the access routines. VxWorks includes defined offsets for all of the standard PCI
Configuration Space structure members as set forth in the PCI Local Bus Specification 2.1
and the PCI Local Bus PCI to PCI Bridge Architecture Specification 1.0. The defined offsets

1 Libraries
pciConfigLib

103

1
are all prefixed by "PCI_CFG_". For example, if Vendor ID information is required,
PCI_CFG_VENDOR_ID would be passed as the offset argument to the access routines.

In summary, the pci configuration space access functions described above accept the
following parameters.

Input routines:

busNo
Bus segment number on which the device resides.

deviceNo
Device ID of the device.

funcNo
Function number of the device.

offset
Offset into the device configuration space.

pData
Where to return the data.

Output routines:

busNo
Bus segment number on which the device resides.

deviceNo
Device ID of the device.

funcNo
Function number of the device.

offset
Offset into the device configuration space.

Data
Data to be written.

PCI CONFIG SPACE OFFSET CHECKING

PciConfigWordIn(), pciConfigWordOut(), pciConfigLongIn(), and
pciConfigLongOut() check the offset parameter for proper offset alignment. Offsets should
be multiples of 4 for longword accesses and multiples of 2 for word accesses. Misaligned
accesses will not be performed and ERROR will be returned.

The previous default behaviour for this library was to not check for valid offset values. This
has been changed and checks are now done by default. These checks exist to insure that the
user gets the correct data using the correct configuration address offsets. The user should
define PCI_CONFIG_OFFSET_NOCHECK to achieve the older behaviour. If user code
behaviour changes, the user should investigate why and fix the code that is calling into this
library with invalid offset values.

VxWorks Drivers API Reference, 6.2
pciConfigLib

104

PCI DEVICE CONFIGURATION

The function pciDevConfig() is used to configure PCI devices that require no more than
one Memory Space and one I/O Space. According to the PCI standard, a device may have
up to six 32-bit Base Address Registers (BARs) each of which can have either a Memory
Space or I/O Space base address. In 64-bit PCI devices, the registers double up to give a
maximum of three 64-bit BARs. The 64-bit BARs are not supported by this function nor are
more than one 32-bit BAR of each type, Memory or I/O.

The pciDevConfig() function sets up one PCI Memory Space and/or one I/O Space BAR
and issues a specified command to the device to enable it. It takes the following parameters:

pciBusNo
PCI bus segment number.

pciDevNo
PCI device number.

pciFuncNo
PCI function number.

devIoBaseAdrs
Base address of one I/O-mapped resource.

devMemBaseAdrs
Base address of one memory-mapped resource.

command
Command to issue to device after configuration.

UNIFORM DEVICE ACCESS

The function pciConfigForeachFunc() is used to perform some action on every device on
the bus. This does a depth-first recursive search of the bus and calls a specified routine for
each function it finds. It takes the following parameters:

bus
The bus segment to start with. This allows configuration on and below a specific place
in the bus hierarchy.

recurse
A boolean argument specifying whether to do a recursive search or to do just the
specified bus.

funcCheckRtn
A user supplied function which will be called for each PCI function found. It must
return STATUS. It takes four arguments: bus, device, function, and a user-supplied
argument pArg. The typedef PCI_FOREACH_FUNC is defined in pciConfigLib.h for
these routines. Note that it is possible to apply funcCheckRtn only to devices of a specific
type by querying the device type for the class code. Similarly, it is possible to exclude
bridges or any other device type using the same mechanism.

1 Libraries
pciConfigLib

105

1
pArg

The fourth argument to funcCheckRtn.

SYSTEM RESET The function pciConfigReset() is useful at the time of a system reset. When doing a system
reset, the devices on the system should be disabled so that they do not write to RAM while
the system is trying to reboot. The function pciConfigReset() can be installed using
rebootHookAdd(), or it can be called directly from sysToMonitor() or elsewhere in the
BSP. It accepts one argument for compatibility with rebootHookAdd():

startType
Ignored.

Note that this function disables all access to the PCI bus except for the use of PCI config
space. If there are devices on the PCI bus which are required to reboot, those devices
must be re-enabled after the call to pciConfigReset() or the system will not be able to
reboot.

USAGE The following code sample illustrates the usage of this library. Initialization of the library is
performed first, then a sample device is found and initialized.

 #include "drv/pci/pciConfigLib.h"

 #define PCI_ID_LN_DEC21140 0x00091011

 IMPORT pciInt();
 LOCAL VOID deviceIsr(int);

 int param;
 STATUS result;
 int pciBusNo; /* PCI bus number */
 int pciDevNo; /* PCI device number */
 int pciFuncNo; /* PCI function number */

/*
 * Initialize module to use CSAM-1
 * (if not performed in sysHwInit())
 *
 */

 if (pciConfigLibInit (PCI_MECHANISM_1,
 PCI_PRIMARY_CAR,
 PCI_PRIMARY_CDR,
 0)
 != OK)
 {
 sysToMonitor (BOOT_NO_AUTOBOOT);
 }

VxWorks Drivers API Reference, 6.2
pciConfigShow

106

/*
 * Find a device by its device ID, and use the
 * Bus, Device, and Function number of the found
 * device to configure it, using pciDevConfig(). In
 * this case, the first instance of a DEC 21040
 * Ethernet NIC is searched for. If the device
 * is found, the Bus, Device Number, and Function
 * Number are fed to pciDevConfig, along with the
 * constant PCI_IO_LN2_ADRS, which defines the start
 * of the I/O space utilized by the device. The
 * device and its I/O space is then enabled.
 *
 */

 if (pciFindDevice (PCI_ID_LN_DEC21040 & 0xFFFF,
 (PCI_ID_LN_DEC21040 >> 16) & 0xFFFF,
 0,
 &pciBusNo,
 &pciDevNo,
 &pciFuncNo)
 != ERROR)
 {
 (void)pciDevConfig (pciBusNo, pciDevNo, pciFuncNo,
 PCI_IO_LN2_ADRS,
 NULL,
 (PCI_CMD_MASTER_ENABLE |
 PCI_CMD_IO_ENABLE));
 }

INCLUDE FILES pciConfigLib.h

SEE ALSO PCI Local Bus Specification, Revision 2.1, June 1, 1996 , PCI Local Bus PCI to PCI Bridge
Architecture Specification, Revision 1.0, April 5, 1994"

pciConfigShow

NAME pciConfigShow – Show routines of PCI bus(I/O mapped) library

ROUTINES pciDeviceShow() – print information about PCI devices
pciHeaderShow() – print a header of the specified PCI device
pciFindDeviceShow() – find a PCI device and display the information
pciFindClassShow() – find a device by 24-bit class code
pciConfigStatusWordShow() – show the decoded value of the status word
pciConfigCmdWordShow() – show the decoded value of the command word
pciConfigFuncShow() – show configuration details about a function
pciConfigTopoShow() – show PCI topology

1 Libraries
pciIntLib

107

1
DESCRIPTION This module contains show routines to see all devices and bridges on the PCI bus. This

module works in conjunction with pciConfigLib.o. There are two ways to find out an empty
device.

- check Master Abort bit after the access.

- check whether the read value is 0xffff.

It uses the second method, since I didn't see the Master Abort bit of the host/PCI bridge
changing.

pciIntLib

NAME pciIntLib – PCI Shared Interrupt support

ROUTINES pciIntLibInit() – initialize the pciIntLib module
pciInt() – interrupt handler for shared PCI interrupt.
pciIntConnect() – connect the interrupt handler to the PCI interrupt.
pciIntDisconnect() – disconnect the interrupt handler (OBSOLETE)
pciIntDisconnect2() – disconnect an interrupt handler from the PCI interrupt.

DESCRIPTION This component is PCI Revision 2.1 compliant.

The functions addressed here include:

- Initialize the library.

- Connect a shared interrupt handler.

- Disconnect a shared interrupt handler.

- Master shared interrupt handler.

Shared PCI interrupts are supported by three functions: pciInt(), pciIntConnect(), and
pciIntDisconnect2(). pciIntConnect() adds the specified interrupt handler to the link list
and pciIntDisconnect2() removes it from the link list. The master interrupt handler
pciInt() executes these interrupt handlers in the link list for a PCI interrupt. Each interrupt
handler must check the device-dependent interrupt status bit to determine the source of the
interrupt, since it simply execute all interrupt handlers in the link list. pciInt() should be
attached by intConnect() function in the BSP initialization with its parameter. The
parameter is an vector number associated to the PCI interrupt.

VxWorks Drivers API Reference, 6.2
pcic

108

pcic

NAME pcic – Intel 82365SL PCMCIA host bus adaptor chip library

ROUTINES pcicInit() – initialize the PCIC chip

DESCRIPTION This library contains routines to manipulate the PCMCIA functions on the Intel 82365 series
PCMCIA chip. The following compatible chips are also supported:

- Cirrus Logic PD6712/20/22
- Vadem VG468
- VLSI 82c146
- Ricoh RF5C series

The initialization routine pcicInit() is the only global function and is included in the
PCMCIA chip table pcmciaAdapter. If pcicInit() finds the PCIC chip, it registers all
function pointers of the PCMCIA_CHIP structure.

INCLUDE FILES none

pcicShow

NAME pcicShow – Intel 82365SL PCMCIA host bus adaptor chip show library

ROUTINES pcicShow() – show all configurations of the PCIC chip

DESCRIPTION This is a driver show routine for the Intel 82365 series PCMCIA chip. pcicShow() is the only
global function and is installed in the PCMCIA chip table pcmciaAdapter in
pcmciaShowInit().

INCLUDE FILES none

pcmciaLib

NAME pcmciaLib – generic PCMCIA event-handling facilities

ROUTINES pcmciaInit() – initialize the PCMCIA event-handling package
pcmciad() – handle task-level PCMCIA events

1 Libraries
pcmciaLib

109

1
DESCRIPTION This library provides generic facilities for handling PCMCIA events.

USER-CALLABLE ROUTINES

Before the driver can be used, it must be initialized by calling pcmciaInit(). This routine
should be called exactly once, before any PC card device driver is used. Normally, it is called
from usrRoot() in usrConfig.c.

The pcmciaInit() routine performs the following actions:

- Creates a message queue.

- Spawns a PCMCIA daemon, which handles jobs in the message queue.

- Finds out which PCMCIA chip is installed and fills out the PCMCIA_CHIP structure.

- Connects the CSC (Card Status Change) interrupt handler.

- Searches all sockets for a PC card. If a card is found, it:

– gets CIS (Card Information Structure) information from a card

– determines what type of PC card is in the socket

– allocates a resource for the card if the card is supported

– enables the card

- Enables the CSC interrupt.

The CSC interrupt handler performs the following actions:

- Searches all sockets for CSC events.

- Calls the PC card's CSC interrupt handler, if there is a PC card in the socket.

- If the CSC event is a hot insertion, it asks the PCMCIA daemon to call cisGet() at task
level. This call reads the CIS, determines the type of PC card, and initializes a device
driver for the card.

- If the CSC event is a hot removal, it asks the PCMCIA daemon to call cisFree() at task
level. This call de-allocates resources.

INCLUDE FILES none

VxWorks Drivers API Reference, 6.2
pcmciaShow

110

pcmciaShow

NAME pcmciaShow – PCMCIA show library

ROUTINES pcmciaShowInit() – initialize all show routines for PCMCIA drivers
pcmciaShow() – show all configurations of the PCMCIA chip

DESCRIPTION This library provides a show routine that shows the status of the PCMCIA chip and the PC
card.

INCLUDE FILES none

ppc403Sio

NAME ppc403Sio – ppc403GA serial driver

ROUTINES ppc403DummyCallback() – dummy callback routine
ppc403DevInit() – initialize the serial port unit
ppc403IntWr() – handle a transmitter interrupt
ppc403IntRd() – handle a receiver interrupt
ppc403IntEx() – handle error interrupts

DESCRIPTION This is the driver for PPC403GA serial port on the on-chip peripheral bus. The SPU (serial
port unit) consists of three main elements: receiver, transmitter, and baud-rate generator. For
details, see the PPC403GA Embedded Controller User's Manual.

USAGE A PPC403_CHAN structure is used to describe the chip. This data structure contains the
single serial channel. The BSP's sysHwInit() routine typically calls sysSerialHwInit()
which initializes all the values in the PPC403_CHAN structure (except the
SIO_DRV_FUNCS) before calling ppc403DevInit(). The BSP's sysHwInit2() routine
typically calls sysSerialHwInit2() which connects the chip interrupt routines
ppc403IntWr() and ppc403IntRd() via intConnect().

IOCTL FUNCTIONS

This driver responds to the same ioctl() codes as other SIO drivers; for more information,
see sioLib.h.

INCLUDE FILES drv/sio/ppc403Sio.h

1 Libraries
rm9000x2glSio

111

1ppc860Sio

NAME ppc860Sio – Motorola MPC800 SMC UART serial driver

ROUTINES ppc860DevInit() – initialize the SMC
ppc860Int() – handle an SMC interrupt

DESCRIPTION This is the driver for the SMCs in the internal Communications Processor (CP) of the
Motorola MPC68860/68821. This driver only supports the SMCs in asynchronous UART
mode.

USAGE A PPC800SMC_CHAN structure is used to describe the chip. The BSP's sysHwInit()
routine typically calls sysSerialHwInit(), which initializes all the values in the
PPC860SMC_CHAN structure (except the SIO_DRV_FUNCS) before calling
ppc860DevInit().

The BSP's sysHwInit2() routine typically calls sysSerialHwInit2() which connects the
chip's interrupts via intConnect().

INCLUDE FILES drv/sio/ppc860Sio.h

rm9000x2glSio

NAME rm9000x2glSio – RM9000 tty driver

ROUTINES rm9000x2glDevInit() – intialize an NS16550 channel
rm9000x2glIntWr() – handle a transmitter interrupt
rm9000x2glIntRd() – handle a receiver interrupt
rm9000x2glIntEx() – miscellaneous interrupt processing
rm9000x2glInt() – interrupt-level processing
rm9000x2glIntMod() – interrupt-level processing

DESCRIPTION This is the driver for the RM9000x2gl DUART. This device includes two universal
asynchronous receiver/transmitters, a baud rate generator, and a complete modem control
capability.

A RM9000x2gl_CHAN structure is used to describe the serial channel. This data structure is
defined in rm9000x2glSio.h.

Only asynchronous serial operation is supported by this driver. The default serial settings
are 8 data bits, 1 stop bit, no parity, 9600 baud, and software flow control.

VxWorks Drivers API Reference, 6.2
shSciSio

112

This driver is a modification of the WindRiver ns16550Sio.c driver any changes to this
driver should also be reflected in the ns16550Sio.c driver.

USAGE The BSP's sysHwInit() routine typically calls sysSerialHwInit(), which creates the
RM9000x2gl_CHAN structure and initializes all the values in the structure (except the
SIO_DRV_FUNCS) before calling rm9000x2glDevInit(). The BSP's sysHwInit2() routine
typically calls sysSerialHwInit2(), which connects the chips interrupts via intConnect()
(either the single interrupt rm9000x2glInt or the three interrupts rm9000x2glIntWr,
rm9000x2glIntRd, and rm9000x2glIntEx).

This driver handles setting of hardware options such as parity(odd, even) and number of
data bits(5, 6, 7, 8). Hardware flow control is provided with the handshakes RTS/CTS. The
function HUPCL(hang up on last close) is available. When hardware flow control is enabled,
the signals RTS and DTR are set TRUE and remain set until a HUPCL is performed.

INCLUDE FILES drv/sio/rm9000x2glSio.h

shSciSio

NAME shSciSio – Hitachi SH SCI (Serial Communications Interface) driver

ROUTINES shSciDevInit() – initialize a on-chip serial communication interface
shSciIntRcv() – handle a channel's receive-character interrupt.
shSciIntTx() – handle a channels transmitter-ready interrupt.
shSciIntErr() – handle a channel's error interrupt.

DESCRIPTION This is the driver for the Hitachi SH series on-chip SCI (Serial Communication Interface). It
uses the SCI in asynchronous mode only.

USAGE A SCI_CHAN structure is used to describe the chip.

The BSP's sysHwInit() routine typically calls sysSerialHwInit() which initializes all the
values in the SCI_CHAN structure (except the SIO_DRV_FUNCS) before calling
shSciDevInit(). The BSP's sysHwInit2() routine typically calls sysSerialHwInit2(), which
connects the chips interrupts via intConnect().

INCLUDE FILES drv/sio/shSciSio.h sioLib.h

1 Libraries
smEnd

113

1shScifSio

NAME shScifSio – Renesas SH SCIF (Serial Communications Interface) driver

ROUTINES shScifDevInit() – initialize a on-chip serial communication interface
shScifIntRcv() – handle a channel's receive-character interrupt.
shScifIntTx() – handle a channels transmitter-ready interrupt.
shScifIntErr() – handle a channel's error interrupt.

DESCRIPTION This is the driver for the Renesas SH series on-chip SCIF (Serial Communication Interface
with FIFO). It uses the SCIF in asynchronous mode only.

USAGE A SCIF_CHAN structure is used to describe the chip.

The BSP's sysHwInit() routine typically calls sysSerialHwInit() which initializes all the
values in the SCIF_CHAN structure (except the SIO_DRV_FUNCS) before calling
shSciDevInit(). The BSP's sysHwInit2() routine typically calls sysSerialHwInit2(), which
connects the chips interrupts via intConnect().

INCLUDE FILES drv/sio/shSciSio.h drv/sio/shScifSio.h sioLib.h

smEnd

NAME smEnd – END shared memory (SM) network interface driver

ROUTINES smEndLoad() – attach the SM interface to the MUX, initialize driver and device

DESCRIPTION This module implements the VxWorks shared memory (SM) Enhanced Network Driver
(END).

This driver is designed to be moderately generic, operating unmodified across most targets
supported by VxWorks. To achieve this, the driver must be given several target-specific
parameters, and some external support routines must be provided. These parameters are
detailed below.

There are no user-callable routines.

This driver is layered between the shared memory packet library and the MUX modules.
The SM END gives CPUs sharing common memory the ability to communicate using
Internet Protocol (IP).

Sending of multiple frames (mBlk chains) is supported but only single frames can be
received as there is not yet a netBufLib support routine to do so.

VxWorks Drivers API Reference, 6.2
smEnd

114

I/O CONTROL CODES

The standard END commands implemented are:

The driver-specific commands implemented are:

MUX INTERFACE The interfaces into this module from the MUX module follow.

smEndLoad
Called by the MUX, the routine initializes and attaches this shared memory network
interface driver to the MUX. It is the only globally accessible entry into this driver. This
routine typically gets called twice per SM interface and accepts a pointer to a string of
initialization parameters. The first call to this routine will be made with an empty
string. This action signals the routine to return a device name, not to load and initialize
the driver. The second call will be with a valid parameter string, signalling that the
driver is to be loaded and initialized with the parameter values in the string. The shared
memory region must have been setup and initialized (via smPktSetup) prior to calling
smEndLoad(). Although initialized, no devices will become active until smEndStart()
is called.

The following routines are all local to this driver but are listed in the driver entry function
table:

smEndUnload
Called by the MUX, this routine stops all associated devices, frees driver resources, and
prepares this driver to be unloaded. If required, calls to smEndStop() will be made to
all active devices.

Command Data Function
EIOCSADDR char * set SM device address
EIOCGADDR char * get SM device address
EIOCSFLAGS int set SM device flags
EIOCGFLAGS int get SM device flags
EIOCGMWIDTH int * get memory width (always 0)
EIOCMULTIADD -- [not supported]
EIOCMULTIDEL -- [not supported]
EIOCMULTIGET -- [not supported]
EIOCPOLLSTART N/A start polled operation
EIOCPOLLSTOP N/A stop polled operation
EIOCGMIB2 M2_INTERFACETBL * return MIB2 information
EIOCGFBUF int return minimum First Buffer for chaining
EIOCGHDRLEN int * get ether header length

Command Data Function
SMIOCGMCPYRTN FUNCPTR * get mblk copy routine pointer
SMIOCSMCPYRTN FUNCPTR set mblk copy routine pointer
SMIOCGCCPYRTN FUNCPTR * get chained mblk copy routine pointer
SMIOCSCCPYRTN FUNCPTR set chained mblk copy routine pointer

1 Libraries
smEnd

115

1
smEndStart

Called by the MUX, the routine starts this driver and device(s). The routine activates
this driver and its device(s). The activities performed are dependent upon the selected
mode of operation, interrupt or polled.

smEndStop
Called by the MUX, the routine stops this driver by inactivating the driver and its
associated device(s). Upon completion of this routine, this driver is left in the same state
it was just after smEndLoad() execution.

smEndRecv
This routine is not called from the MUX. It gets called from this drivers interrupt service
routine (ISR) to process input shared memory packets. It then passes them on to the
MUX.

smEndSend
Called by the MUX, this routine sends a packet via shared memory.

smEndPollRec
Called by the MUX, this routine polls the shared memory region designated for this
CPU to determine if any new packet buffers are available to be read. If so, it reads the
packet into the supplied mBlk and returns OK to the MUX. If the packet is too big for
the mBlk or if no packets are available, EAGAIN is returned. If the device is not in polled
mode, EIO is returned.

smEndPollSend
Called by the MUX, this routine does a polled send of one packet to shared memory.
Because shared memory buffers act as a message queue, this routine will attempt to put
the polled mode packet at the head of the list of buffers. If no free buffers are available,
the buffer currently appearing first in the list is overwritten with the packet. This
routine returns OK or an error code directly, not through errno. It does not free the Mblk
it is passed under any circumstances, that being the responsibility of the caller.

smEndIoctl
Called by the MUX, the routine accesses the control routines for this driver.

smEndMCastAddrAdd
Called by the MUX, this routine adds an address to a device's multicast address list.

smEndMCastAddrDel
Called by the MUX, this routine deletes an address from a device's multicast address
list.

smEndMCastAddrGet
Called by the MUX, this routine gets the multicast address list maintained for a
specified device.

The following routines do not require shared memory specific logic so the default END
library routines are referenced in the function table:

VxWorks Drivers API Reference, 6.2
smEnd

116

endEtherAddressForm
Called by the MUX, this routine forms an address by adding appropriate link-level
(shared memory) information to a specified mBlk in preparation for transmission.

endEtherPacketDataGet
Called by the MUX, this routine derives the protocol-specific data within a specified
mBlk by stripping the link-level (shared memory) information from it. The resulting
data are copied to another mBlk.

endEtherPacketAddrGet
Called by the MUX, this routine extracts address information from one mBlk, ignoring
all other data. Each source and destination address is written to its own mBlk. For
ethernet packets, this routine produces two output mBlks (an address pair). However,
for non-ethernet packets, up to four mBlks (two address pairs) may be produced; two
for an intermediate address pair and two more for the terminal address pair.

OPTIONAL EXTERNAL SUPPORT

The following routine(s) may be optionally provided for this module at run time via the
associated IOCTL codes:

smEndCopyRtn()
 int smEndCopyRtn (void* source, void* destination, UINT numBytes);

A function hook to allow the BSP to specify how data are copied between mBlks and
SM packets. The default is bcopy(). Any function specified must have the same type,
number, and order of input and output arguments. The following IOCTL codes apply:

 SMIOCGMCPYRTN - get mblk copy routine pointer
 SMIOCSMCPYRTN - set mblk copy routine pointer

For example:

void myDmaCopyFunc (u_char *, u_char *, unsigned);
int smFd; /* SM file descriptor */
STATUS result;

 ...
 result = ioctl (smFd, SMIOCSMCPYRTN, (int)myDmaCopyFunc);
 ...

smEndMblkCopyRtn()
 int smEndMblkCopyRtn (M_BLK_ID, char *, FUNCPTR);

A function hook to allow the BSP to specify how frames (mblk chains) are copied to and
from SM packets. The default is netMblkToBufCopy(), a unidirectional copy. Any
function specified must have the same type, number, and order of input and output
arguments. The following ioctl codes apply:

 SMIOCGCCPYRTN - get chained mblk copy routine pointer
 SMIOCSCCPYRTN - set chained mblk copy routine pointer

1 Libraries
smEnd

117

1
For example:

int myDmaMblkCopyFunc (M_BLK_ID pFrame, char * pBuf, UINT
copyDirection);
int smFd; /* SM file descriptor */
STATUS result;

 ...
 result = ioctl (smFd, SMIOCSCCPYRTN, (int)myDmaMblkCopyFunc);
 ...

TARGET-SPECIFIC PARAMETERS

These parameters are input to this driver in an ASCII string format, using colon delimited
values, via the smEndLoad() routine. Each parameter has a preselected radix in which it is
expected to be read as shown below.

ISR LIMITATIONS

Because this driver may be used in systems without chaining of interrupts, and there can be
two or more SM subnets using the same type of SM interrupt, all shared memory subnets
are serviced each time there is an interrupt by the SM interrupt service routine (ISR)
smEndIsr(). This is NOT optimal and does waste some time but is required due to the lack
of guaranteed SM interrupt chaining.

Parameter Radix Use
SM_UNIT 10 Unit number assigned to shared memory device
SM_NET_DEV_NAME -- String literal name of shared memory device
SM_ANCHOR_ADRS 16 SM anchor region address within SM address space
SM_MEM_ADRS 16 Shared memory address
SM_MEM_MEM_SIZE 16 Shared memory network size in bytes.

Used by the master CPU when building SM.
SM_TAS_TYPE 10 Test-and-set type (SM_TAS_HARD or SM_TAS_SOFT)
SM_CPUS_MAX 10 Maximum number of CPUs supported in SM

(0 = default number)
SM_MASTER_CPU 10 Master CPU#
SM_LOCAL_CPU 10 This board's CPU number (NONE = use

sysProcNumGet)
SM_PKTS_SIZE 10 Max number of data bytes per shared memory packet

(0 = default)
SM_MAX_INPUT_PKTS 10 Max number of queued receive packets for this CPU

(0 = default)
SM_INT_TYPE 10 Interrupt method (SM_INT_MAILBOX/_BUS/_NONE)
SM_INT_ARG1 16 1st interrupt argument
SM_INT_ARG2 16 2nd interrupt argument
SM_INT_ARG3 16 3rd interrupt argument
SM_NUM_MBLKS 16 Number of mBlks in driver memory pool (if < 16,

a default value is used)
SM_NUM_CBLKS 16 Number of clBlks in driver memory pool (if < 16,

a default value is used)

VxWorks Drivers API Reference, 6.2
smEndShow

118

If interrupt chaining becomes a guaranteed feature for all SM interrupt types, the ISR can be
optimized.

MESSAGE LIMITATIONS

This driver does not support multicast messages or multicast operations.

INCLUDE FILES smEnd.h

SEE ALSO muxLib, endLib

smEndShow

NAME smEndShow – shared memory network END driver show routines

ROUTINES smNetShow() – show information about a shared memory network

DESCRIPTION This library provides show routines for the shared memory network interface END driver.

The smNetShow() routine is provided as a diagnostic aid to show current shared memory
network status.

INCLUDE FILES smPktLib.h

SEE ALSO VxWorks AE Network Programmer's Guide

smcFdc37b78x

NAME smcFdc37b78x – a superIO (fdc37b78x) initialization source module

ROUTINES smcFdc37b78xDevCreate() – set correct I/O port addresses for Super I/O chip
smcFdc37b78xInit() – initializes Super I/O chip Library
smcFdc37b78xKbdInit() – initializes the keyboard controller

DESCRIPTION The FDC37B78x with advanced Consumer IR and IrDA v1.0 support incorporates a
keyboard interface, real-time clock, SMSC's true CMOS 765B floppy disk controller,
advanced digital data separator, 16 byte data FIFO, two 16C550-compatible UARTs, one
Multi-Mode parallel port which includes ChiProtect circuitry plus EPP and ECP support,
on-chip 12 mA AT bus drivers, and two floppy direct drive support, soft power
management and SMI support and Intelligent Power Management including PME and

1 Libraries
smcFdc37b78x

119

1
SCI/ACPI support. The true CMOS 765B core provides 100% compatibility with IBM
PC/XT and PC/AT architectures in addition to providing data overflow and underflow
protection. The SMSC advanced digital data separator incorporates SMSC's patented data
separator technology, allowing for ease of testing and use. Both on-chip UARTs are
compatible with the NS16C550. The parallel port, the IDE interface, and the game port select
logic are compatible with IBM PC/AT architecture, as well as EPP and ECP.

The FDC37B78x incorporates sophisticated power control circuitry (PCC) which includes
support for keyboard, mouse, modem ring, power button support and consumer infrared
wake-up events. The PCC supports multiple low power down modes.

The FDC37B78x provides features for compliance with the "Advanced Configuration and
Power Interface Specification" (ACPI). These features include support of both legacy and
ACPI power management models through the selection of SMI or SCI. It implements a
power button override event (4 second button hold to turn off the system) and either edge
triggered interrupts.

The FDC37B78x provides support for the ISA Plug-and-Play Standard (Version 1.0a) and
provides for the recommended functionality to support Windows95, PC97 and PC98.
Through internal configuration registers, each of the FDC37B78x's logical device's I/O
address, DMA channel and IRQ channel may be programmed. There are 480 I/O address
location options, 12 IRQ options or Serial IRQ option, and four DMA channel options for
each logical device.

USAGE This library provides routines to intialize various logical devices on superIO chip
(fdc37b78x).

The functions addressed here include:

- Creating a logical device and initializing internal database accordingly.

- Enabling as many device as permitted by this facility by single call. The user of thie
facility can selectively intialize a set of devices on superIO chip.

- Intializing keyboard by sending commands to its controller embedded in superIO chip.

INTERNAL DATABASES

This library provides its user to changes superIO's config, index, and data I/O port
addresses. The default I/O port addresses are defined in target/h/drv/smcFdc37b78x.h file.
These mnemonics can be overridden by defining in architecture related BSP header file.
These default setting can also be changed on-the-fly by passing in a pointer of type
SMCFDC37B78X_IOPORTS with different I/O port addresses. If not redefined, they take their
default values as defined in smcFdc37b78x.h file.

SMCFDC37B78X_CONFIG_PORT
Defines the config I/O port for SMC-FDC37B78X superIO chip.

VxWorks Drivers API Reference, 6.2
smcFdc37b78x

120

SMCFDC37B78X_INDEX_PORT
Defines the index I/O port for SMC-FDC37B78X superIO chip.

SMCFDC37B78X_DATA_PORT
Defines the data I/O port for SMC-FDC37B78X superIO chip.

USER INTERFACE
VOID smcFdc37b78xDevCreate
 (
 SMCFDC37B78X_IOPORTS *smcFdc37b78x_iop
)

This is the very first routine that should be called by the user of this library. This routine sets
up I/O port address that will subsequentally be used later on. The I/O PORT setting could
either be overridden by redefining SMCFDC37B78X_CONFIG_PORT,
SMCFDC37B78X_INDEX_PORT and SMCFDC37B78X_DATA_PORT or on-the-fly by passing in
a pointer of type SMCFDC37B78X_IOPORTS.

VOID smcFdc37b78xInit
 (
 int devInitMask
)

This is routine intakes device intialization mask and intializes only those devices that are
requested by user. Device initialization mask holds bitwise ORed values of all devices that
are requested by user to enable on superIO device.

The mnemonics that are supported in current version of this facility are:

SMCFDC37B78X_COM1_EN
Use this mnemonic to enable COM1 only.

SMCFDC37B78X_COM2_EN
Use this mnemonic to enable COM2 only.

SMCFDC37B78X_LPT1_EN
Use this mnemonic to enable LPT1 only.

SMCFDC37B78X_KBD_EN
Use this mnemonic to enable KBD only.

SMCFDC37B78X_FDD_EN
Use this mnemonic to enable FDD only.

The above can be bitwise ORed to enable more than one device at a time. For example, if you
want COM1 and COM2 to be enabled on superIO chip, call the following:

smcFdc37b78xInit (SMCFDC37B78X_COM1_EN | SMCFDC37B78X_COM2_EN);

As prerequisites for the above call, the superIO chip library should be intialized using
smcFdc37b78xDevCreate() with parameter as per user's need.

1 Libraries
sramDrv

121

1
STATUS smcFdc37b78xKbdInit
 (
 VOID
)

This routine sends some keyboard commands to keyboard controller embedded in superIO
chip. Call to this function is required for proper functioning of keyboard driver.

INCLUDE FILES smcFdc37b78x.h

sramDrv

NAME sramDrv – PCMCIA SRAM device driver

ROUTINES sramDrv() – install a PCMCIA SRAM memory driver
sramMap() – map PCMCIA memory onto a specified ISA address space
sramDevCreate() – create a PCMCIA memory disk device

DESCRIPTION This is a device driver for the SRAM PC card. The memory location and size are specified
when the "disk" is created.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However, two
routines must be called directly: sramDrv() to initialize the driver, and sramDevCreate() to
create block devices. Additionally, the sramMap() routine is called directly to map the
PCMCIA memory onto the ISA address space. Note that this routine does not use any
mutual exclusion or synchronization mechanism; thus, special care must be taken in the
multitasking environment.

Before using this driver, it must be initialized by calling sramDrv(). This routine should be
called only once, before any reads, writes, or calls to sramDevCreate() or sramMap(). It can
be called from usrRoot() in usrConfig.c or at some later point.

INCLUDE FILES none

SEE ALSO VxWorks Programmer's Guide: I/O System

VxWorks Drivers API Reference, 6.2
sym895Lib

122

sym895Lib

NAME sym895Lib – SCSI-2 driver for Symbios SYM895 SCSI Controller.

ROUTINES sym895CtrlCreate() – create a structure for a SYM895 device.
sym895CtrlInit() – initialize a SCSI Controller Structure.
sym895SetHwOptions() – sets the Sym895 chip Options.
sym895Intr() – interrupt service routine for the SCSI Controller.
sym895Show() – display values of all readable SYM 53C8xx SIOP registers.
sym895GPIOConfig() – configures general purpose pins GPIO 0-4.
sym895GPIOCtrl() – controls general purpose pins GPIO 0-4.
sym895Loopback() – This routine performs loopback diagnotics on 895 chip.

DESCRIPTION The SYM53C895 PCI-SCSI I/O Processor (SIOP) brings Ultra2 SCSI performance to Host
adapter, making it easy to add a high performance SCSI Bus to any PCI System. It supports
Ultra-2 SCSI rates and allows increased SCSI connectivity and cable length Low Voltage
Differential (LVD) signaling for SCSI. This driver runs in conjunction with SCRIPTS
Assembly program for the Symbios SCSI controllers. These scripts use DMA transfers for all
data, messages, and status transfers.

For each controller device a manager task is created to manage SCSI threads on each bus. A
SCSI thread represents each unit of SCSI work.

This driver supports multiple initiators, disconnect/reconnect, tagged command queuing
and synchronous data transfer protocol. In general, the SCSI system and this driver will
automatically choose the best combination of these features to suit the target devices used.
However, the default choices may be over-ridden by using the function
"scsiTargetOptionsSet()" (see scsiLib).

Scatter/ Gather memory support: Scatter-Gather transfers are used when data scattered
across memory must be transferred across the SCSI bus together with out CPU intervention.
This is achieved by a chain of block move script instructions together with the support from
the driver. The driver is expected to provide a set of addresses and byte counts for the
SCRIPTS code. However there is no support as such from vxworks SCSI Manager for this
kind of data transfers. So the implementation, as of today, is not completely integrated with
vxworks, and assumes support from SCSI manager in the form of array of pointers. The
macro SCATTER_GATHER in sym895.h is thus not defined to avoid compilation errors.

Loopback mode allows 895 chip to control all SCSI signals, regardless of whether it is in
initiator or target role. This mode insures proper SCRIPTS instructions fetches and data
paths. SYM895 executes initiator instructions through the SCRIPTS, and the target role is
implemented in sym895Loopback by asserting and polling the appropriate SCSI signals in
the SOCL, SODL, SBCL, and SBDL registers.

1 Libraries
sym895Lib

123

1
USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Three
routines, however, must be called directly sym895CtrlCreate() to create a controller
structure, and sym895CtrlInit() to initialize it. If the default configuration is not correct, the
routine sym895SetHwRegister() must be used to properly configure the registers.

Critical events, which are to be logged anyway irrespective of whether debugging is being
done or not, can be logged by using the SCSI_MSG macro.

PCI MEMORY ADDRESSING

The global variable sym895PciMemOffset was created to provide the BSP with a means of
changing the VIRT_TO_PHYS mapping without changing the functions in the cacheFuncs
structures. In generating physical addresses for DMA on the PCI bus, local addresses are
passed through the function CACHE_DMA_VIRT_TO_PHYS and then the value of
sym895PciMemOffset is added. For backward compatibility, the initial value of
sym895PciMemOffset comes from the macro PCI_TO_MEM_OFFSET.

INTERFACE The BSP must connect the interrupt service routine for the controller device to the
appropriate interrupt system. The routine to be called is sym895Intr(), and the argument is
the pointer to the controller device pSiop. i.e.

 pSiop = sym895CtrlCreate (...);
 intConnect (XXXX, sym895Intr, pSiop);
 sym895CtrlInit (pSiop, ...);

HARDWARE ACCESS

All hardware access is to be done through macros. The default definition of the
SYM895_REGx_READ() and SYM895_REGx_WRITE() macros (where x stands for the width
of the register being accessed) assumes an I/O mapped model. Register access mode can be
set to either I/O or memory using SYM895_IO_MAPPED macro in sym895.h. The macros can
be redefined as necessary to accommodate other models, and situations where timing and
write pipe considerations need to be addressed. In I/O mapped mode, BSP routines
sysInByte(), sysOutByte() are used for accessing SYM895 registers. If these standard calls
are not supported, the calls supported by respective BSP are to be mapped to these standard
calls. Memory mapped mode makes use of pointers to register offsets.

The macro SYM895_REGx_READ(pDev, reg) is used to read a register of width x bits. The two
arguments are the device structure pointer and the register offset.

The macro SYM895_REGx_WRITE(pDev, reg, data) is used to write data to the specified
register address. These macros presume memory mapped I/O by default. Both macros can
be redefined to tailor the driver to some other I/O model.

The global variable sym895Delaycount provides the control count for the sym895's delay
loop. This variable is global in order to allow BSPs to adjust its value if necessary. The default
value is 10 but it may be set to a higher value as system clock speeds dictate.

VxWorks Drivers API Reference, 6.2
tcic

124

INCLUDE FILES scsiLib.h, sym895.h, and sym895Script.c

SEE ALSO scsiLib, scsi2Lib, cacheLib, SYM53C895 PCI-SCSI I/O Processor Data Manual Version 3.0,
Symbios Logic PCI-SCSI I/O Processors Programming Guide Version 2.1

tcic

NAME tcic – Databook TCIC/2 PCMCIA host bus adaptor chip driver

ROUTINES tcicInit() – initialize the TCIC chip

DESCRIPTION This library contains routines to manipulate the PCMCIA functions on the Databook
DB86082 PCMCIA chip.

The initialization routine tcicInit() is the only global function and is included in the
PCMCIA chip table pcmciaAdapter. If tcicInit() finds the TCIC chip, it registers all function
pointers of the PCMCIA_CHIP structure.

INCLUDE FILES none

tcicShow

NAME tcicShow – Databook TCIC/2 PCMCIA host bus adaptor chip show library

ROUTINES tcicShow() – show all configurations of the TCIC chip

DESCRIPTION This is a driver show routine for the Databook DB86082 PCMCIA chip. tcicShow() is the
only global function and is installed in the PCMCIA chip table pcmciaAdapter in
pcmciaShowInit().

INCLUDE FILES none

1 Libraries
tffsConfig

125

1tffsConfig

NAME tffsConfig – TrueFFS configuration file for VxWorks

ROUTINES tffsShowAll() – show device information on all socket interfaces
tffsShow() – show device information on a specific socket interface
tffsBootImagePut() – write to the boot-image region of the flash device

DESCRIPTION This source file, with the help of sysTffs.c, configures TrueFFS for VxWorks. The functions
defined here are generic to all BSPs. To include these functions in the BSP-specific module,
the BSP's sysTffs.c file includes this file. Within the sysTffs.c file, define statements
determine which functions from the tffsConfig.c file are ultimately included in TrueFFS.

The only externally callable routines defined in this file are tffsShow(), tffsShowAll(), and
tffsBootImagePut(). You can exclude the show utilities if you edit config.h and undefine
INCLUDE_SHOW_ROUTINES. You can exclude tffsBootImagePut() if you edit sysTffs.c
and undefine INCLUDE_TFFS_BOOT_IMAGE. (If you find these utilities are missing and you
want them included, edit config.h and define INCLUDE_SHOW_ROUTINES and
INCLUDE_TFFS_BOOT_IMAGE.)

If you wish to include only the TrueFFS-specific show routines you could define
INCLUDE_TFFS_SHOW instead of INCLUDE_SHOW_ROUTINES in config.h.

However, for the most part, these externally callable routines are only a small part of the
TrueFFS configuration needs handled by this file. The routines internal to this file make calls
into the MTDs and translation layer modules of TrueFFS. At link time, resolving the symbols
associated with these calls pulls MTD and translation layer modules into VxWorks.

However, each of these calls to the MTDs and the translation layer modules is only
conditionally included. The constants that control the includes are defined in sysTffs.c. To
exclude an MTD or translation layer module, you edit sysTffs.c, undefine the appropriate
constant, and rebuild sysTffs.o. These constants are described in the reference entry for
sysTffs.

INCLUDE FILES stdcomp.h

VxWorks Drivers API Reference, 6.2
vgaInit

126

vgaInit

NAME vgaInit – a VGA 3+ mode initialization source module

ROUTINES vgaInit() – initializes the VGA chip and loads font in memory.

DESCRIPTION

USAGE This library provides initialization routines to configure VGA in 3+ alphanumeric mode.

The functions addressed here include:

- Initialization of the VGA-specific register set.

USER INTERFACE

STATUS vgaInit
 (
 VOID
)

This routine will initialize the VGA-specific register set to bring a VGA card in VGA 3+
mode and loads the font in plane 2.

REFERENCES Programmer's Guide to the EGA, VGA, and Super VGA Cards - Ferraro. Programmer's Guide to
PC & PS/2 Video Systems - Richard Wilton.

INCLUDE FILES None.

wancomEnd

NAME wancomEnd – END style Marvell/Galileo GT642xx Ethernet network interface driver

ROUTINES wancomEndLoad() – initialize the driver and device
wancomEndDbg() – Print pDrvCtrl information regarding Tx ring and Rx queue desc.

DESCRIPTION This module implements an Galileo Ethernet network interface driver. This is a fast Ethernet
IEEE 802.3 10Base-T and 100Base-T compatible.

The Galileo establishes a shared memory communication system with the CPU, which is
divided into two parts: the Transmit Frame Area (TFA) and the Receive Frame Area (RFA).

The TFA consists of a linked list of frame descriptors through which packet are transmitted.
The linked list is in a form of a ring.

1 Libraries
wancomEnd

127

1
The RFA is a linked list of receive frame descriptors through which packet receive is
performed. The linked list is in a form of queue. The RFA also contains two Receive Buffers
Area. One area is used for clusters (See netBufLib) and the other one is used for Galileo
device receive buffers. This is done as we must keep receive buffers at 64bit alignment !

BOARD LAYOUT This device is on-board. No jumpering diagram is necessary.

EXTERNAL INTERFACE

The driver provides the standard external interface, wancomEndLoad(), which takes a
string of colon separated parameters. The parameters should be specified in hexadecimal,
optionally preceded by "0x" or a minus sign "-".

The parameter string is parsed using strtok_r() and each parameter is converted from a
string representation to binary by a call to strtoul(parameter, NULL, 16).

The format of the parameter string is as follows:
"memBase:memSize:nCfds:nRfds:flags"

TARGET-SPECIFIC PARAMETERS

memBase
This parameter is passed to the driver via wancomEndLoad().

This parameter can be used to specify an explicit memory region for use by the Galileo
device. This should be done on targets that restrict the Galileo device memory to a
particular memory region. The constant NONE can be used to indicate that there are no
memory limitations, in which case the driver will allocate cache safe memory for its
use using cacheDmaMalloc().

memSize
The memory size parameter specifies the size of the pre-allocated memory region. If
memory base is specified as NONE (-1), the driver ignores this parameter. Otherwise,
the driver checks the size of the provided memory region is adequate with respect to
the given number of Command Frame Descriptor, Receive Frame Descriptor and
reception buffers.

nTfds
This parameter specifies the number of transmit descriptor/buffers to be allocated. If
this parameter is less than 32, a default of 32 is used.

nRfds
This parameter specifies the number of receive descriptor/buffers to be allocated. If this
parameter is less than 32, a default of 32 is used.

flags
User flags control the run-time characteristics of the Ethernet chip. The bit 0 specifies
the copy send capability which is used when CFDs are short of multiple fragmented
data sent through multiple CFDs and at least one CFD is available which can be used
to transfer the packet with copying the fragmented data to one buffer. Setting the bit 1

VxWorks Drivers API Reference, 6.2
wancomEnd

128

enables this capability and requires 1536 bytes (depends on WANCOM_BUF_DEF_SIZE
and _CACHE_ALIGN_SIZE) per CFD. Otherwise it disables the copy send.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one external support function:

sysWancomInit
 STATUS sysWancomInit (int unit, WANCOM_PORT_INFO *pPort)

This routine performs any target-specific initialization required before the GT642xx
ethernet ports are initialized by the driver. The driver calls this routine every time it
wants to [re]initialize the device. This routine returns OK, or ERROR if it fails.

sysWancomMdioWrite
 STATUS sysWancomMdioWrite (int unit, int reg, UINT16 data)

Write the data parameter to the specified Phy selected by the unit parameter.

SYSTEM RESOURCE USAGE

The driver uses cacheDmaMalloc() to allocate memory to share with the Galileo Ethernet
port if NONE is passed to memBase parameter through wancomLoad. This driver requires
the allocated memory in cache safe area, thus the board-specific memory allocation feature
is required through _func_wancomEndMallocMemBase function binding. (For the hash
table memory, it is also required through _func_wancomEndMallocHash function binding
in cache snoop mode.) The size of this area is affected by the configuration parameters
specified in the wancomEndLoad() call.

TUNING HINTS The only adjustable parameters are the number of TFDs and RFDs that will be created at
run-time. These parameters are given to the driver when wancomEndLoad() is called.
There is one TFD and one RFD associated with each transmitted frame and each received
frame respectively. For memory-limited applications, decreasing the number of TFDs and
RFDs may be desirable. Increasing the number of TFDs will provide no performance
benefit after a certain point. Increasing the number of RFDs will provide more buffering
before packets are dropped. This can be useful if there are tasks running at a higher priority
than the net task.

ALIGNMENT Some architectures do not support unaligned access to 32-bit data items. On these
architectures (eg MIPS), it will be necessary to adjust the offset parameter in the port
information to realign the packet. Failure to do so will result in received packets being
absorbed by the network stack, although transmit functions should work OK.

INCLUDE FILES none

SEE ALSO ifLib, Marvell GT64240 Data Sheet, Marvell GT64260 Data Sheet, Marvell GT64260 Errata

1 Libraries
wdbNetromPktDrv

129

1wdbEndPktDrv

NAME wdbEndPktDrv – END based packet driver for lightweight UDP/IP

ROUTINES wdbEndPktDevInit() – initialize an END packet device

DESCRIPTION This is an END based driver for the WDB system. It uses the MUX and END based drivers
to allow for interaction between the target and target server.

USAGE The driver is typically only called only from the configlette wdbEnd.c. The only directly
callable routine in this module is wdbEndPktDevInit(). To use this driver, just select the
component INCLUDE_WDB_COMM_END in the folder SELECT_WDB_COMM_TYPE. This is
the default selection. To modify the MTU, change the value of parameter WDB_END_MTU
in component INCLUDE_WDB_COMM_END.

DATA BUFFERING The drivers only need to handle one input packet at a time because the WDB protocol only
supports one outstanding host-request at a time. If multiple input packets arrive, the driver
can simply drop them. The driver then loans the input buffer to the WDB agent, and the
agent invokes a driver callback when it is done with the buffer.

For output, the agent will pass the driver a chain of mbufs, which the driver must send as a
packet. When it is done with the mbufs, it calls wdbMbufChainFree() to free them. The
header file wdbMbufLib.h provides the calls for allocating, freeing, and initializing mbufs
for use with the lightweight UDP/IP interpreter. It ultimately makes calls to the routines
wdbMbufAlloc and wdbMbufFree, which are provided in source code in the configlette
usrWdbCore.c.

INCLUDE FILES drv/wdb/wdbEndPktDrv.h

wdbNetromPktDrv

NAME wdbNetromPktDrv – NETROM packet driver for the WDB agent

ROUTINES wdbNetromPktDevInit() – initialize a NETROM packet device for the WDB agent

DESCRIPTION This is a lightweight NETROM driver that interfaces with the WDB agent's UDP/IP
interpreter. It allows the WDB agent to communicate with the host using the NETROM
ROM emulator. It uses the emulator's read-only protocol for bi-directional communication.
It requires that NetROM's udpsrcmode option is on.

INCLUDE FILES none

VxWorks Drivers API Reference, 6.2
wdbPipePktDrv

130

wdbPipePktDrv

NAME wdbPipePktDrv – pipe packet driver for lightweight UDP/IP

ROUTINES wdbPipePktDevInit() – initialize a pipe packet device

DESCRIPTION

OVERVIEW This module is a pipe for drivers interfacing with the WDB agent's lightweight UDP/IP
interpreter. It can be used as a starting point when writing new drivers. Such drivers are the
lightweight equivalent of a network interface driver.

These drivers, along with the lightweight UDP-IP interpreter, have two benefits over the
stand combination of a netif driver + the full VxWorks networking stack; First, they can run
in a much smaller amout of target memory because the lightweight UDP-IP interpreter is
much smaller than the VxWorks network stack (about 800 bytes total). Second, they provide
a communication path which is independant of the OS, and thus can be used to support an
external mode (e.g., monitor style) debug agent.

Throughout this file the word "pipe" is used in place of a real driver name. For example, if
you were writing a lightweight driver for the lance ethernet chip, you would want to
substitute "pipe" with "ln" throughout this file.

PACKET READY CALLBACK

When the driver detects that a packet has arrived (either in its receiver ISR or in its poll input
routine), it invokes a callback to pass the data to the debug agent. Right now the callback
routine is called "udpRcv", however other callbacks may be added in the future. The driver's
wdbPipeDevInit() routine should be passed the callback as a parameter and place it in the
device data structure. That way the driver will continue to work if new callbacks are added
later.

MODES Ideally the driver should support both polled and interrupt mode, and be capable of
switching modes dynamically. However this is not required. When the agent is not running,
the driver will be placed in "interrupt mode" so that the agent can be activated as soon as a
packet arrives. If your driver does not support an interrupt mode, you can simulate this
mode by spawning a VxWorks task to poll the device at periodic intervals and simulate a
receiver ISR when a packet arrives.

For dynamically mode switchable drivers, be aware that the driver may be asked to switch
modes in the middle of its input ISR. A driver's input ISR will look something like this:

 doSomeStuff();
 pPktDev->wdbDrvIf.stackRcv (pMbuf); /* invoke the callback */
 doMoreStuff();

If this channel is used as a communication path to an external mode debug agent, then the
agent's callback will lock interrupts, switch the device to polled mode, and use the device in

1 Libraries
wdbSlipPktDrv

131

1
polled mode for awhile. Later on the agent will unlock interrupts, switch the device back to
interrupt mode, and return to the ISR. In particular, the callback can cause two mode
switches, first to polled mode and then back to interrupt mode, before it returns. This may
require careful ordering of the callback within the interrupt handler. For example, you may
need to acknowledge the interrupt within the doSomeStuff() processing rather than the
doMoreStuff() processing.

USAGE The driver is typically only called only from usrWdb.c. The only directly callable routine in
this module is wdbPipePktDevInit(). You will need to modify usrWdb.c to allow your
driver to be initialized by the debug agent. You will want to modify usrWdb.c to include
your driver's header file, which should contain a definition of WDB_PIPE_PKT_MTU. There
is a default user-selectable macro called WDB_MTU, which must be no larger than
WDB_PIPE_PKT_MTU. Modify the begining of usrWdb.c to insure that this is the case by
copying the way it is done for the other drivers. The routine wdbCommIfInit() also needs
to be modified so that if your driver is selected as the WDB_COMM_TYPE, your driver’s init
routine will be called. Search usrWdb.c for the macro "WDB_COMM_CUSTOM" and mimic
that style of initialization for your driver.

DATA BUFFERING The drivers only need to handle one input packet at a time because the WDB protocol only
supports one outstanding host-request at a time. If multiple input packets arrive, the driver
can simply drop them. The driver then loans the input buffer to the WDB agent, and the
agent invokes a driver callback when it is done with the buffer.

For output, the agent will pass the driver a chain of mbufs, which the driver must send as a
packet. When it is done with the mbufs, it calls wdbMbufChainFree() to free them. The
header file wdbMbuflib.h provides the calls for allocating, freeing, and initializing mbufs
for use with the lightweight UDP/IP interpreter. It ultimatly makes calls to the routines
wdbMbufAlloc and wdbMbufFree, which are provided in source code in usrWdb.c. This
module is a pipe for drivers interfacing with the WDB agent's lightweight UDP/IP
interpreter. Such a driver are the lightweight equivalent of a network interface driver.

INCLUDE FILES drv/wdb/wdbPipePktDrv.h

wdbSlipPktDrv

NAME wdbSlipPktDrv – a serial line packetizer for the WDB agent

ROUTINES wdbSlipPktDevInit() – initialize a SLIP packet device for a WDB agent

DESCRIPTION This is a lightweight SLIP driver that interfaces with the WDB agents UDP/IP interpreter. It
is the lightweight equivalent of the VxWorks SLIP netif driver, and uses the same protocol

VxWorks Drivers API Reference, 6.2
wdbTsfsDrv

132

to assemble serial characters into IP datagrams (namely the SLIP protocol). SLIP is a simple
protocol that uses four token characters to delimit each packet:

- FRAME_END (0300)
- FRAME_ESC (0333)
- FRAME_TRANS_END (0334)
- FRAME_TRANS_ESC (0335)

The END character denotes the end of an IP packet. The ESC character is used with
TRANS_END and TRANS_ESC to circumvent potential occurrences of END or ESC within a
packet. If the END character is to be embedded, SLIP sends "ESC TRANS_END" to avoid
confusion between a SLIP-specific END and actual data whose value is END. If the ESC
character is to be embedded, SLIP sends "ESC TRANS_ESC" to avoid confusion. (Note that
the SLIP ESC is not the same as the ASCII ESC.)

On the receiving side of the connection, SLIP uses the opposite actions to decode the SLIP
packets. Whenever an END character is received, SLIP assumes a full packet has been
received and sends on.

This driver has an MTU of 1006 bytes. If the host is using a real SLIP driver with a smaller
MTU, you will need to lower the definition of WDB_MTU in configAll.h so that the host and
target MTU match. If you are not using a SLIP driver on the host, but instead are using the
target server's wdbserial backend to connect to the agent, then you do not need to worry
about incompatabilities between the host and target MTUs.

INCLUDE FILES none

wdbTsfsDrv

NAME wdbTsfsDrv – virtual generic file I/O driver for the WDB agent

ROUTINES wdbTsfsDrv() – initialize the TSFS device driver for a WDB agent

DESCRIPTION This library provides a virtual file I/O driver for use with the WDB agent. I/O is performed
on this virtual I/O device exactly as it would be on any device referencing a VxWorks file
system. File operations, such as read() and write(), move data over a virtual I/O channel
created between the WDB agent and the Tornado target server. The operations are then
executed on the host file system. Because file operations are actually performed on the host
file system by the target server, the file system presented by this virtual I/O device is known
as the target-server file system, or TSFS.

The driver is installed with wdbTsfsDrv(), creating a device typically called /tgtsvr. See the
manual page for wdbTsfsDrv() for more information about using this function. To use this
driver, just select the component INCLUDE_WDB_TSFS in the folder
FOLDER_WDB_OPTIONS. The initialization is done automatically, enabling access to TSFS,

1 Libraries
wdbTsfsDrv

133

1
when INCLUDE_WDB_TSFS is defined. The target server also must have TSFS enabled in
order to use TSFS. See the WindView User's Guide: Data Upload and the target server
documentation.

TSFS SOCKETS TSFS provides all of the functionality of other VxWorks file systems. For details, see the
VxWorks Programmer's Guide: I/O System and Local File Systems. In addition to normal files,
however, TSFS also provides basic access to TCP sockets. This includes opening the client
side of a TCP socket, reading, writing, and closing the socket. Basic setsockopt() commands
are also supported.

To open a TCP socket using TSFS, use a filename of the form:

 TCP:server_name | server_ip:port_number

To open and connect a TCP socket to a server socket located on a server named mongoose,
listening on port 2010, use the following:

 fd = open ("/tgtsvr/TCP:mongoose:2010", 0, 0)

The open flags and permission arguments to the open call are ignored when opening a
socket through TSFS. If the server mongoose has an IP number of 144.12.44.12, you can use
the following equivalent form of the command:

 fd = open ("/tgtsvr/TCP:144.12.44.12:2010", 0, 0)

DIRECTORIES All directory functions, such as mkdir(), rmdir(), opendir(), readdir(), closedir(), and
rewinddir() are supported by TSFS, regardless of whether the target server providing TSFS
is being run on a UNIX or Windows host.

While it is possible to open and close directories using open() and close(), it is not possible
to read from a directory using read(). Instead, readdir() must be used. It is also not possible
to write to an open directory, and opening a directory for anything other than read-only
results in an error, with errno set to EISDIR. Calling read() on a directory returns ERROR
with errno set to EISDIR.

OPEN FLAGS When the target server that is providing the TSFS is running on a Windows host, the default
file-translation mode is binary translation. If text translation is required,
WDB_TSFS_O_TEXT can be included in the mode argument to open(). For example:

 fd = open ("/tgtsvr/foo", O_CREAT | O_RDWR | WDB_TSFS_O_TEXT, 0777)

If the target server providing TSFS services is running on a UNIX host, WDB_TSFS_O_TEXT
is ignored.

VxWorks Drivers API Reference, 6.2
wdbTsfsDrv

134

TGTSVR For general information on the target server, see the reference entry for tgtsvr. In order to
use this library, the target server must support and be configured with the following
options:

-R root
Specify the root of the host's file system that is visible to target processes using TSFS.
This flag is required to use TSFS. Files under this root are by default read only. To allow
read/write access, specify -RW.

-RW
Allow read and write access to host files by target processes using TSFS. When this
option is specified, access to the target server is restricted as if -L were also specified.

IOCTL SUPPORT TSFS supports the following ioctl() functions for controlling files and sockets. Details about
each function can be found in the documentation listed below.

FIOSEEK

FIOWHERE

FIOMKDIR
Create a directory. The path, in this case /tgtsvr/tmp, must be an absolute path prefixed
with the device name. To create the directory /tmp on the root of the TSFS file system
use the following:

 status = ioctl (fd, FIOMKDIR, "/tgtsvr/tmp")

FIORMDIR
Remove a directory. The path, in this case /tgtsvr/foo, must be an absolute path
prefixed with the device name. To remove the directory /foo from the root of the TSFS
file system, use the following:

 status = ioctl (fd, FIORMDIR, "/tgtsvr/foo")

FIORENAME
Rename the file or directory represented by fd to the name in the string pointed to by
arg. The path indicated by arg may be prefixed with the device name or not. Using this
ioctl() function with the path /foo/goo produces the same outcome as the path
/tgtsvr/foo/goo. The path is not modified to account for the current working directory,
and therefore must be an absolute path.

 char *arg = "/tgtsvr/foo/goo";
 status = ioctl (fd, FIORENAME, arg);

FIOREADDIR

FIONREAD
Return the number of bytes ready to read on a TSFS socket file descriptor.

FIOFSTATGET

FIOGETFL

The following ioctl() functions can be used only on socket file descriptors. Using these
functions with ioctl() provides similar behavior to the setsockopt() and getsockopt()

1 Libraries
wdbTsfsDrv

135

1
functions usually used with socket descriptors. Each command's name is derived from a
getsockopt()/setsockopt() command and works in exactly the same way as the respective
getsockopt()/setsockopt() command. The functions setsockopt() and getsockopt() can
not be used with TSFS socket file descriptors.

For example, to enable recording of debugging information on the TSFS socket file
descriptor, call:

 int arg = 1;
 status = ioctl (fd, SO_SETDEBUG, arg);

To determine whether recording of debugging information for the TSFS-socket file
descritptor is enabled or disabled, call:

 int arg;
 status = ioctl (fd, SO_GETDEBUG, & arg);

After the call to ioctl(), arg contains the state of the debugging attribute.

The ioctl() functions supported for TSFS sockets are:

SO_SETDEBUG
Equivalent to setsockopt() with the SO_DEBUG command.

SO_GETDEBUG
Equivalent to getsockopt() with the SO_DEBUG command.

SO_SETSNDBUF
This command changes the size of the send buffer of the host socket. The configuration
of the WDB channel between the host and target also affects the number of bytes that
can be written to the TSFS file descriptor in a single attempt.

SO_SETRCVBUF
This command changes the size of the receive buffer of the host socket. The
configuration of the WDB channel between the host and target also affects the number
of bytes that can be read from the TSFS file descriptor in a single attempt.

SO_SETDONTROUTE
Equivalent to setsockopt() with the SO_DONTROUTE command.

SO_GETDONTROUTE
Equivalent to getsockopt() with the SO_DONTROUTE command.

SO_SETOOBINLINE
Equivalent to setsockopt() with the SO_OOBINLINE command.

SO_GETOOBINLINE
Equivalent to getsockopt() with the SO_OOBINLINE command.

SO_SNDURGB
The SO_SNDURGB command sends one out-of-band byte (pointed to by arg) through
the socket.

VxWorks Drivers API Reference, 6.2
wdbVioDrv

136

The routines in this library return the VxWorks error codes that most closely match the
errnos generated by the corresponding host function. If an error is encountered that is due
to a WDB failure, a WDB error is returned instead of the standard VxWorks errno. If an
errno generated on the host has no reasonable VxWorks counterpart, the host errno is
passed to the target calling routine unchanged.

INCLUDE FILES wdb/wdbVioLib.h

SEE ALSO Tornado User's Guide, VxWorks Programmer's Guide: I/O System, Local File Systems

wdbVioDrv

NAME wdbVioDrv – virtual tty I/O driver for the WDB agent

ROUTINES wdbVioDrv() – initialize the tty driver for a WDB agent

DESCRIPTION This library provides a pseudo-tty driver for use with the WDB debug agent. I/O is
performed on a virtual I/O device just like it is on a VxWorks serial device. The difference
is that the data is not moved over a physical serial channel, but rather over a virtual channel
created between the WDB debug agent and the Tornado host tools.

The driver is installed with wdbVioDrv(). Individual virtual I/O channels are created by
opening the device (see wdbVioDrv() for details). The virtual I/O channels are defined as
follows:

Once data is written to a virtual I/O channel on the target, it is sent to the host-based target
server. The target server allows this data to be sent to another host tool, redirected to the
"virtual console," or redirected to a file. For details see the Tornado User's Guide.

USAGE To use this driver, just select the component INCLUDE_WDB_VIO_DRV at configuration
time.

INCLUDE FILES drv/wdb/wdbVioDrv.h

Channel Usage
0 Virtual console
1-0xffffff Dynamically created on the host
>= 0x1000000 User defined

1 Libraries
z8530Sio

137

1xbd

NAME xbd – Extended Block Device Library

ROUTINES xbdInit() – initialize the XBD library
xbdAttach() – attach an XBD device
xbdDetach() – detach an XBD device
xbdIoctl() – XBD device ioctl routine
xbdStrategy() – XBD strategy routine
xbdDump() – XBD dump routine
xbdSize() – retrieve the total number of bytes
xbdNBlocks() – retrieve the total number of blocks
xbdBlockSize() – retrieve the block size

DESCRIPTION This module implements the extended block device.

INCLUDE FILES drv/xbd/xbd.h

z8530Sio

NAME z8530Sio – Z8530 SCC Serial Communications Controller driver

ROUTINES z8530DevInit() – intialize a Z8530_DUSART
z8530IntWr() – handle a transmitter interrupt
z8530IntRd() – handle a reciever interrupt
z8530IntEx() – handle error interrupts
z8530Int() – handle all interrupts in one vector

DESCRIPTION This is the driver for the Z8530 SCC (Serial Communications Controller). It uses the SCCs in
asynchronous mode only.

USAGE A Z8530_DUSART structure is used to describe the chip. This data structure contains two
Z8530_CHAN structures which describe the chip's two serial channels. Supported baud rates
range from 50 to 38400. The default baud rate is Z8530_DEFAULT_BAUD (9600). The BSP may
redefine this.

The BSP's sysHwInit() routine typically calls sysSerialHwInit() which initializes all the
values in the Z8530_DUSART structure (except the SIO_DRV_FUNCS) before calling
z8530DevInit().

VxWorks Drivers API Reference, 6.2
z8530Sio

138

The BSP's sysHwInit2() routine typically calls sysSerialHwInit2() which connects the
chips interrupts via intConnect() (either the single interrupt z8530Int or the three interrupts
z8530IntWr, z8530IntRd, and z8530IntEx).

This driver handles setting of hardware options such as parity(odd, even) and number of
data bits(5, 6, 7, 8). Hardware flow control is provided with the signals CTS on transmit and
DSR on read. See the target documentation for the RS232 port configuration. The function
HUPCL (hang up on last close) is supported. Default hardware options are defined by
Z8530_DEFAULT_OPTIONS. The BSP may redefine them.

All device registers are accessed via BSP-defined macros so that memory- mapped as well
as I/O space accesses can be supported. The BSP may re-define the REG_8530_READ and
REG_8530_WRITE macros as needed. By default, they are defined as simple
memory-mapped accesses.

The BSP may define DATA_REG_8530_DIRECT to cause direct access to the Z8530 data
register, where hardware permits it. By default, it is not defined.

The BSP may redefine the macro for the channel reset delay Z8530_RESET_DELAY as well as
the channel reset delay counter value Z8530_RESET_DELAY_COUNT as required. The delay
is defined as the minimum time between successive chip accesses (6 PCLKs + 200 nSec for
a Z8530, 4 PCLKs for a Z85C30 or Z85230) plus an additional 4 PCLKs. At a typical PCLK
frequency of 10 MHz, each PCLK is 100 nSec, giving a minimum reset delay of:

Z8530 10 PCLKs + 200 nSec = 1200 nSec = 1.2 uSec

Z85x30: 8 PCLKs = 800 nSec = 0.8 uSec

INCLUDE FILES drv/sio/z8530Sio.h

139

 2
Routines

ambaDevInit() – initialize an AMBA channel.. 147
ambaIntRx() – handle a receiver interrupt ... 147
ambaIntTx() – handle a transmitter interrupt.. 148
amd8111LanDumpPrint() – Display statistical counters ... 148
amd8111LanEndLoad() – initialize the driver and device... 149
amd8111LanErrCounterDump() – dump statistical counters .. 149
ataCmd() – issue a RegisterFile command to ATA/ATAPI device..................... 150
ataCtrlReset() – reset the specified ATA/IDE disk controller 154
ataDevCreate() – create a device for a ATA/IDE disk .. 154
ataDevIdentify() – identify device .. 155
ataDmaRW() – read/write a number of sectors on the current track in DMA mode 156
ataDmaToggle() – turn on or off an individual controllers dma support 156
ataDrv() – Initialize the ATA driver ... 157
ataInit() – initialize ATA device. .. 157
ataParamRead() – Read drive parameters .. 158
ataPiInit() – init a ATAPI CD-ROM disk controller.. 158
ataRW() – read/write a data from/to required sector. 159
ataShow() – show the ATA/IDE disk parameters .. 159
ataShowInit() – initialize the ATA/IDE disk driver show routine 160
ataStatusChk() – Check status of drive and compare to requested status. 160
ataXbdDevCreate() – create an XBD device for a ATA/IDE disk... 161
atapiBytesPerSectorGet() – get the number of Bytes per sector. ... 161
atapiBytesPerTrackGet() – get the number of Bytes per track. ... 162
atapiCtrlMediumRemoval() – Issues PREVENT/ALLOW MEDIUM REMOVAL packet command 162
atapiCurrentCylinderCountGet() – get logical number of cylinders in the drive. 163
atapiCurrentHeadCountGet() – get the number of read/write heads in the drive.............................. 163
atapiCurrentMDmaModeGet() – get the enabled Multi word DMA mode. ... 164
atapiCurrentPioModeGet() – get the enabled PIO mode... 164
atapiCurrentRwModeGet() – get the current Data transfer mode.. 165
atapiCurrentSDmaModeGet() – get the enabled Single word DMA mode. .. 165

VxWorks Drivers API Reference, 6.2

140

atapiCurrentUDmaModeGet() – get the enabled Ultra DMA mode. .. 166
atapiCylinderCountGet() – get the number of cylinders in the drive. ... 166
atapiDriveSerialNumberGet() – get the drive serial number. ... 167
atapiDriveTypeGet() – get the drive type. .. 167
atapiFeatureEnabledGet() – get the enabled features. ... 168
atapiFeatureSupportedGet() – get the features supported by the drive. .. 169
atapiFirmwareRevisionGet() – get the firmware revision of the drive. ... 170
atapiHeadCountGet() – get the number heads in the drive. ... 171
atapiInit() – init ATAPI CD-ROM disk controller .. 171
atapiIoctl() – Control the drive.. 172
atapiMaxMDmaModeGet() – get the Maximum Multi word DMA mode the drive supports.... 176
atapiMaxPioModeGet() – get the Maximum PIO mode that drive can support. 177
atapiMaxSDmaModeGet() – get the Maximum Single word DMA mode the drive supports... 177
atapiMaxUDmaModeGet() – get the Maximum Ultra DMA mode the drive can support. 178
atapiModelNumberGet() – get the model number of the drive.. 178
atapiParamsPrint() – Print the drive parameters.. 179
atapiPktCmd() – execute an ATAPI command with error processing 179
atapiPktCmdSend() – Issue a Packet command... 180
atapiRead10() – read one or more blocks from an ATAPI Device. 180
atapiReadCapacity() – issue a READ CD-ROM CAPACITY command to a ATAPI device 181
atapiReadTocPmaAtip() – issue a READ TOC command to a ATAPI device 181
atapiRemovMediaStatusNotifyVerGet() – get the Media Stat Notification Version.................................. 182
atapiScan() – issue SCAN packet command to ATAPI drive. 182
atapiSeek() – issues a SEEK packet command to drive. .. 183
atapiSetCDSpeed() – issue SET CD SPEED packet command to ATAPI drive. 183
atapiStartStopUnit() – Issues START STOP UNIT packet command.................................. 184
atapiStopPlayScan() – issue a STOP PLAY/SCAN packet command to the ATAPI drive. 185
atapiTestUnitRdy() – issue a TEST UNIT READY command to a ATAPI drive.............. 185
atapiVersionNumberGet() – get the ATA/ATAPI version number of the drive. 186
auDump() – display device status ... 187
auEndLoad() – initialize the driver and device .. 188
auInitParse() – parse the initialization string ... 188
bcm1250MacEndLoad() – initialize the driver and device .. 189
bcm1250MacPhyShow() – display the physical register values .. 190
bcm1250MacRxDmaShow() – display RX DMA register values ... 190
bcm1250MacShow() – display the MAC register values ... 191
bcm1250MacTxDmaShow() – display TX DMA register values ... 191
bioInit() – initialize the bio library... 192
bio_alloc() – allocate memory blocks .. 192
bio_done() – terminates a bio operation.. 193
bio_free() – free the bio memory .. 193
cisConfigregGet() – get the PCMCIA configuration register ... 194
cisConfigregSet() – set the PCMCIA configuration register .. 194
cisFree() – free tuples from the linked list... 195
cisGet() – get information from a PC card's CIS ... 195

2 Routines

141

2

cisShow() – show CIS information ... 196
ctB69000VgaInit() – initializes the B69000 chip and loads font in memory................................ 196
dec21140SromWordRead() – read two bytes from the serial ROM... 197
dec21145SPIReadBack() – Read all PHY registers out.. 197
dec21x40EndLoad() – initialize the driver and device .. 198
dec21x40PhyFind() – Find the first PHY connected to DEC MII port. .. 198
devAttach() – attach a device .. 199
devDetach() – detach a device ... 199
devInit() – initialize the device manager ... 200
devMap() – map a device ... 200
devName() – name a device ... 201
devUnmap() – unmap a device .. 201
el3c90xEndLoad() – initialize the driver and device .. 201
el3c90xInitParse() – parse the initialization string.. 202
elt3c509Load() – initialize the driver and device .. 203
elt3c509Parse() – parse the init string .. 204
emacEndLoad() – initialize the driver and device .. 205
emacTimerDebugDump() – Enable debugging output in timer handler ... 205
endEtherAddressForm() – form an Ethernet address into a packet .. 206
endEtherPacketAddrGet() – locate the addresses in a packet ... 207
endEtherPacketDataGet() – return the beginning of the packet data ... 207
endObjFlagSet() – set the flags member of an END_OBJ structure... 208
endObjInit() – initialize an END_OBJ structure ... 208
endPollStatsInit() – initialize polling statistics updates .. 209
endTok_r() – get a token string (modified version).. 209
erfCategoriesAvailable() – Get the number of unallocated User Categories. .. 210
erfCategoriesAvailable() – Get the maximum number of Categories. .. 210
erfCategoriesAvailable() – Get the maximum number of Types. .. 211
erfCategoryAllocate() – allocates a user-defined Event Category .. 211
erfCategoryQueueCreate() – Creates a Category Event Processing Queue... 212
erfDefaultQueueSizeGet() – Get the size of the default queue. .. 212
erfEventRaise() – Raises an event. .. 213
erfHandlerRegister() – Registers an event handler for a particular event. 213
erfHandlerUnregister() – Registers an event handler for a particular event. 214
erfLibInit() – Initialize the Event Reporting Framework library...................................... 215
erfShow() – Shows debug info for this library. ... 215
erfTypeAllocate() – allocates a user-defined Type for this Category.. 216
erfTypesAvailable() – Get the number of unallocated User Types for a category. 216
evbNs16550HrdInit() – initialize the NS 16550 chip .. 217
evbNs16550Int() – handle a receiver/transmitter interrupt for the NS 16550 chip 217
fdDevCreate() – create a device for a floppy disk .. 218
fdDrv() – initialize the floppy disk driver ... 219
fdRawio() – provide raw I/O access... 219
fei82557DumpPrint() – Display statistical counters... 220
fei82557EndLoad() – initialize the driver and device .. 220

VxWorks Drivers API Reference, 6.2

142

fei82557ErrCounterDump() – dump statistical counters .. 222
fei82557GetRUStatus() – Return the current RU status and int mask .. 223
fei82557ShowRxRing() – Show the Receive ring.. 223
gei82543EndLoad() – initialize the driver and device... 224
gei82543LedOff() – turn off LED... 224
gei82543LedOn() – turn on LED... 225
gei82543PhyRegGet() – get the register value in PHY.. 225
gei82543PhyRegSet() – set the register value in PHY... 226
gei82543RegGet() – get the specified register value in 82543 chip ... 226
gei82543RegSet() – set the specified register value.. 227
gei82543TbiCompWr() – enable/disable the TBI compatibility workaround..................................... 227
gei82543Unit() – return a pointer to the END_DEVICE for a gei unit 228
i8250HrdInit() – initialize the chip .. 228
i8250Int() – handle a receiver/transmitter interrupt.. 229
iOlicomEndLoad() – initialize the driver and device... 229
iOlicomIntHandle() – interrupt service for card interrupts .. 230
iPIIX4AtaInit() – low-level initialization of ATA device .. 230
iPIIX4FdInit() – initializes the floppy disk device.. 230
iPIIX4GetIntr() – give device an interrupt level to use.. 231
iPIIX4Init() – initialize PIIX4... 231
iPIIX4IntrRoute() – Route PIRQ[A:D] .. 232
iPIIX4KbdInit() – initializes the PCI-ISA/IDE bridge .. 232
ln97xEndLoad() – initialize the driver and device... 232
ln97xInitParse() – parse the initialization string .. 233
lptDevCreate() – create a device for an LPT port... 234
lptDrv() – initialize the LPT driver... 235
lptShow() – show LPT statistics ... 236
m8260SccEndLoad() – initialize the driver and device... 236
mib2ErrorAdd() – change a MIB-II error count .. 237
mib2Init() – initialize a MIB-II structure ... 238
miiAnCheck() – check the auto-negotiation process result... 238
miiLibInit() – initialize the MII library... 239
miiLibUnInit() – uninitialize the MII library.. 239
miiPhyInit() – initialize and configure the PHY devices.. 240
miiPhyOptFuncMultiSet() – set pointers to MII optional registers handlers .. 242
miiPhyOptFuncSet() – set the pointer to the MII optional registers handler................................... 243
miiPhyUnInit() – uninitialize a PHY .. 243
miiRegsGet() – get the contents of MII registers ... 244
miiShow() – show routine for MII library ... 244
motFccDrvShow() – Debug Function to show FCC parameter RAM addresses, initial BD and

cluster settings ... 245
motFccDumpRxRing() – Show the Receive Ring details.. 245
motFccDumpTxRing() – Show the Transmit Ring details ... 246
motFccEndLoad() – initialize the driver and device... 246
motFccEramShow() – Debug Function to show FCC CP ethernet parameter ram. 247

2 Routines

143

2

motFccIramShow() – Debug Function to show FCC CP internal ram parameters...................... 248
motFccMibShow() – Debug Function to show MIB statistics. ... 248
motFccMiiShow() – Debug Function to show the Mii settings in the Phy Info structure. 249
motFccPramShow() – Debug Function to show FCC CP parameter ram. 249
motFccShow() – Debug Function to show driver-specific control data. 250
motFecEndLoad() – initialize the driver and device .. 250
ncr810CtrlCreate() – create a control structure for the NCR 53C8xx SIOP.................................. 251
ncr810CtrlInit() – initialize a control structure for the NCR 53C8xx SIOP 252
ncr810SetHwRegister() – set hardware-dependent registers for the NCR 53C8xx SIOP 253
ncr810Show() – display values of all readable NCR 53C8xx SIOP registers....................... 254
ne2000EndLoad() – initialize the driver and device .. 255
ns16550DevInit() – intialize an NS16550 channel.. 256
ns16550Int() – interrupt-level processing... 256
ns16550IntEx() – miscellaneous interrupt processing .. 257
ns16550IntRd() – handle a receiver interrupt ... 257
ns16550IntWr() – handle a transmitter interrupt.. 258
ns83902EndLoad() – initialize the driver and device .. 258
ns83902RegShow() – prints the current value of the NIC registers ... 259
pccardAtaEnabler() – enable the PCMCIA-ATA device .. 259
pccardEltEnabler() – enable the PCMCIA Etherlink III card.. 260
pccardMkfs() – initialize a device and mount a DOS file system... 260
pccardMount() – mount a DOS file system .. 261
pccardSramEnabler() – enable the PCMCIA-SRAM driver .. 261
pccardTffsEnabler() – enable the PCMCIA-TFFS driver... 262
pciAutoAddrAlign() – align a PCI address and check boundary conditions 262
pciAutoBusNumberSet() – set the primary, secondary, and subordinate bus number 263
pciAutoCardBusConfig() – set mem and I/O registers for a single PCI-Cardbus bridge 263
pciAutoCfg() – Automatically configure all nonexcluded PCI headers 264
pciAutoCfgCtl() – set or get pciAutoConfigLib options ... 265
pciAutoConfig() – automatically configure all nonexcluded PCI headers (obsolete) 272
pciAutoConfigLibInit() – initialize PCI autoconfig library... 273
pciAutoDevReset() – quiesce a PCI device and reset all writeable status bits 273
pciAutoFuncDisable() – disable a specific PCI function ... 274
pciAutoFuncEnable() – perform final configuration and enable a function..................................... 274
pciAutoGetNextClass() – find the next device of specific type from probe list................................... 275
pciAutoRegConfig() – assign PCI space to a single PCI base address register 275
pciConfigBdfPack() – pack parameters for the Configuration Address Register 276
pciConfigCmdWordShow() – show the decoded value of the command word ... 276
pciConfigExtCapFind() – find extended capability in ECP linked list.. 277
pciConfigForeachFunc() – check condition on specified bus... 277
pciConfigFuncShow() – show configuration details about a function ... 278
pciConfigInByte() – read one byte from the PCI configuration space... 278
pciConfigInLong() – read one longword from the PCI configuration space 279
pciConfigInWord() – read one word from the PCI configuration space....................................... 279
pciConfigLibInit() – initialize the configuration access-method and addresses 280

VxWorks Drivers API Reference, 6.2

144

pciConfigModifyByte() – Perform a masked longword register update ... 281
pciConfigModifyLong() – Perform a masked longword register update ... 282
pciConfigModifyWord() – Perform a masked longword register update ... 283
pciConfigOutByte() – write one byte to the PCI configuration space .. 283
pciConfigOutLong() – write one longword to the PCI configuration space 284
pciConfigOutWord() – write one 16-bit word to the PCI configuration space 284
pciConfigReset() – disable cards for warm boot .. 285
pciConfigStatusWordShow() – show the decoded value of the status word.. 285
pciConfigTopoShow() – show PCI topology.. 286
pciDevConfig() – configure a device on a PCI bus .. 286
pciDeviceShow() – print information about PCI devices .. 287
pciFindClass() – find the nth occurrence of a device by PCI class code. 287
pciFindClassShow() – find a device by 24-bit class code .. 288
pciFindDevice() – find the nth device with the given device & vendor ID 288
pciFindDeviceShow() – find a PCI device and display the information... 289
pciHeaderShow() – print a header of the specified PCI device... 289
pciInt() – interrupt handler for shared PCI interrupt. .. 290
pciIntConnect() – connect the interrupt handler to the PCI interrupt. 290
pciIntDisconnect() – disconnect the interrupt handler (OBSOLETE) .. 291
pciIntDisconnect2() – disconnect an interrupt handler from the PCI interrupt. 291
pciIntLibInit() – initialize the pciIntLib module ... 292
pciSpecialCycle() – generate a special cycle with a message... 292
pcicInit() – initialize the PCIC chip... 293
pcicShow() – show all configurations of the PCIC chip .. 293
pcmciaInit() – initialize the PCMCIA event-handling package 294
pcmciaShow() – show all configurations of the PCMCIA chip ... 294
pcmciaShowInit() – initialize all show routines for PCMCIA drivers 295
pcmciad() – handle task-level PCMCIA events.. 295
ppc403DevInit() – initialize the serial port unit... 295
ppc403DummyCallback() – dummy callback routine .. 296
ppc403IntEx() – handle error interrupts ... 296
ppc403IntRd() – handle a receiver interrupt... 297
ppc403IntWr() – handle a transmitter interrupt ... 297
ppc860DevInit() – initialize the SMC .. 298
ppc860Int() – handle an SMC interrupt.. 298
rm9000x2glDevInit() – intialize an NS16550 channel ... 299
rm9000x2glInt() – interrupt-level processing .. 299
rm9000x2glIntEx() – miscellaneous interrupt processing.. 300
rm9000x2glIntMod() – interrupt-level processing .. 300
rm9000x2glIntRd() – handle a receiver interrupt... 301
rm9000x2glIntWr() – handle a transmitter interrupt ... 301
shSciDevInit() – initialize a on-chip serial communication interface 302
shSciIntErr() – handle a channel's error interrupt. ... 302
shSciIntRcv() – handle a channel's receive-character interrupt. .. 303
shSciIntTx() – handle a channels transmitter-ready interrupt. .. 303

2 Routines

145

2

shScifDevInit() – initialize a on-chip serial communication interface 304
shScifIntErr() – handle a channel's error interrupt. .. 304
shScifIntRcv() – handle a channel's receive-character interrupt.. 305
shScifIntTx() – handle a channels transmitter-ready interrupt. .. 305
smEndLoad() – attach the SM interface to the MUX, initialize driver and device............. 306
smNetShow() – show information about a shared memory network.................................. 308
smcFdc37b78xDevCreate() – set correct I/O port addresses for Super I/O chip 309
smcFdc37b78xInit() – initializes Super I/O chip Library ... 309
smcFdc37b78xKbdInit() – initializes the keyboard controller... 310
sramDevCreate() – create a PCMCIA memory disk device... 310
sramDrv() – install a PCMCIA SRAM memory driver... 311
sramMap() – map PCMCIA memory onto a specified ISA address space 311
sym895CtrlCreate() – create a structure for a SYM895 device... 312
sym895CtrlInit() – initialize a SCSI Controller Structure. ... 313
sym895GPIOConfig() – configures general purpose pins GPIO 0-4. ... 314
sym895GPIOCtrl() – controls general purpose pins GPIO 0-4... 315
sym895Intr() – interrupt service routine for the SCSI Controller. 315
sym895Loopback() – This routine performs loopback diagnotics on 895 chip. 316
sym895SetHwOptions() – sets the Sym895 chip Options. ... 317
sym895Show() – display values of all readable SYM 53C8xx SIOP registers. 318
tcicInit() – initialize the TCIC chip ... 319
tcicShow() – show all configurations of the TCIC chip... 319
tffsBootImagePut() – write to the boot-image region of the flash device...................................... 320
tffsShow() – show device information on a specific socket interface 321
tffsShowAll() – show device information on all socket interfaces 321
vgaInit() – initializes the VGA chip and loads font in memory. 322
wancomEndDbg() – Print pDrvCtrl information regarding Tx ring and Rx queue desc. 322
wancomEndLoad() – initialize the driver and device .. 323
wdbEndPktDevInit() – initialize an END packet device... 324
wdbNetromPktDevInit() – initialize a NETROM packet device for the WDB agent 325
wdbPipePktDevInit() – initialize a pipe packet device .. 325
wdbSlipPktDevInit() – initialize a SLIP packet device for a WDB agent ... 326
wdbTsfsDrv() – initialize the TSFS device driver for a WDB agent...................................... 326
wdbVioDrv() – initialize the tty driver for a WDB agent .. 327
xbdAttach() – attach an XBD device... 328
xbdBlockSize() – retrieve the block size.. 328
xbdDetach() – detach an XBD device.. 329
xbdDump() – XBD dump routine... 329
xbdInit() – initialize the XBD library .. 330
xbdIoctl() – XBD device ioctl routine ... 330
xbdNBlocks() – retrieve the total number of blocks ... 331
xbdSize() – retrieve the total number of bytes ... 331
xbdStrategy() – XBD strategy routine ... 332
z8530DevInit() – intialize a Z8530_DUSART... 332
z8530Int() – handle all interrupts in one vector .. 333

VxWorks Drivers API Reference, 6.2

146

z8530IntEx() – handle error interrupts .. 333
z8530IntRd() – handle a reciever interrupt.. 334
z8530IntWr() – handle a transmitter interrupt .. 334

2 Routines
ambaIntRx()

147

2

ambaDevInit()

NAME ambaDevInit() – initialize an AMBA channel

SYNOPSIS void ambaDevInit
 (
 AMBA_CHAN * pChan /* ptr to AMBA_CHAN describing this channel */
)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip to a
quiescent state. Before this routine is called, the BSP must already have initialized all the
device addresses, etc. in the AMBA_CHAN structure.

RETURNS N/A

ERRNO Not Available

SEE ALSO ambaSio

ambaIntRx()

NAME ambaIntRx() – handle a receiver interrupt

SYNOPSIS void ambaIntRx
 (
 AMBA_CHAN * pChan /* ptr to AMBA_CHAN describing this channel */
)

DESCRIPTION This routine handles read interrupts from the UART.

RETURNS N/A

ERRNO Not Available

SEE ALSO ambaSio

VxWorks Drivers API Reference, 6.2
ambaIntTx()

148

ambaIntTx()

NAME ambaIntTx() – handle a transmitter interrupt

SYNOPSIS void ambaIntTx
 (
 AMBA_CHAN * pChan /* ptr to AMBA_CHAN describing this channel */
)

DESCRIPTION This routine handles write interrupts from the UART.

RETURNS N/A

ERRNO Not Available

SEE ALSO ambaSio

amd8111LanDumpPrint()

NAME amd8111LanDumpPrint() – Display statistical counters

SYNOPSIS STATUS amd8111LanDumpPrint
 (
 int unit /* pointer to DRV_CTRL structure */
)

DESCRIPTION This routine displays i82557 statistical counters

RETURNS OK, or ERROR if the DUMP command failed.

ERRNO Not Available

SEE ALSO amd8111LanEnd

2 Routines
amd8111LanErrCounterDump()

149

2

amd8111LanEndLoad()

NAME amd8111LanEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * amd8111LanEndLoad
 (
 char * initString /* string to be parse by the driver */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

<unit:devMemAddr:devIoAddr:pciMemBase:vecnum:intLvl:memAdrs
:memSize:memWidth:csr3b:offset:flags>

This routine can be called in two modes. If it is called with an empty but allocated string, it
places the name of this device (that is, "lnPci") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

ERRNO Not Available

SEE ALSO amd8111LanEnd

amd8111LanErrCounterDump()

NAME amd8111LanErrCounterDump() – dump statistical counters

SYNOPSIS STATUS amd8111LanErrCounterDump
 (
 AMD8111_LAN_DRV_CTRL * pDrvCtrl, /* pointer to DRV_CTRL structure */
 UINT32 * memAddr /* pointer to receive stat data */
)

DESCRIPTION This routine dumps statistical counters for the purpose of debugging and tuning the 82557.

The memAddr parameter is the pointer to an array of 68 bytes in the local memory. This
memory region must be allocated before this routine is called. The memory space must also
be DWORD (4 bytes) aligned. When the last DWORD (4 bytes) is written to a value, 0xa007,

VxWorks Drivers API Reference, 6.2
ataCmd()

150

it indicates the dump command has completed. To determine the meaning of each statistical
counter, see the Intel 82557 manual.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO amd8111LanEnd

ataCmd()

NAME ataCmd() – issue a RegisterFile command to ATA/ATAPI device.

SYNOPSIS STATUS ataCmd
 (
 int ctrl, /* Controller number. 0 or 1 */
 int drive, /* Drive number. 0 or 1 */
 int cmd, /* Command Register */
 int arg0, /* argument0 */
 int arg1, /* argument1 */
 int arg2, /* argument2 */
 int arg3, /* argument3 */
 int arg4, /* argument4 */
 int arg5 /* argument5 */
)

DESCRIPTION This function executes ATA command to ATA/ATAPI devices specified by arguments ctrl
and drive. cmd is command to be executed and other arguments arg0 to arg5 are interpreted
for differently in each case depending on the cmd command. Some commands (like
ATA_CMD_SET_FEATURE) have sub commands the case in which arg0 is interpreted as
subcommand and arg1 is subcommand-specific.

In general these arguments arg0 to arg5 are interpreted as command registers of the device
as mentioned below.

arg0 - Feature Register

arg1 - Sector count

arg2 - Sector number

arg3 - CylLo

arg4 - CylHi

arg5 - sdh Register

2 Routines
ataCmd()

151

2

As these registers are interpreted for different purpose for each command, arguments are
not named after registers.

The following commands are valid in this function and the validity of each argument for
different commands. Each command is tabulated in the form

COMMAND
 ARG0 | ARG1 | ARG2 | ARG3 | ARG4 | ARG5

ATA_CMD_INITP
 0 0 0 0 0 0

ATA_CMD_RECALIB
 0 0 0 0 0 0

ATA_PI_CMD_SRST
 0 0 0 0 0 0

ATA_CMD_EXECUTE_DEVICE_DIAGNOSTIC
 0 0 0 0 0 0

ATA_CMD_SEEK
 cylinder head 0 0 0 0
or LBA high LBA low

ATA_CMD_SET_FEATURE
 FR SC 0 0 0 0
 (SUBCOMMAND) (SubCommand
 Specific Value)

ATA_CMD_SET_MULTI
 sectors per block 0 0 0 0 0

ATA_CMD_IDLE
 SC 0 0 0 0 0
 (Timer Period)

ATA_CMD_STANDBY
 SC 0 0 0 0 0
 (Timer Period)

ATA_CMD_STANDBY_IMMEDIATE
 0 0 0 0 0 0

ATA_CMD_SLEEP
 0 0 0 0 0 0

ATA_CMD_CHECK_POWER_MODE
 0 0 0 0 0 0

ATA_CMD_IDLE_IMMEDIATE
 0 0 0 0 0 0

ATA_CMD_SECURITY_DISABLE_PASSWORD
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_CMD_SECURITY_ERASE_PREPARE
 0 0 0 0 0 0

ATA_CMD_SECURITY_ERASE_UNIT
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_CMD_SECURITY_FREEZE_LOCK
 0 0 0 0 0 0

ATA_CMD_SECURITY_SET_PASSWORD
 0 0 0 0 0 0

VxWorks Drivers API Reference, 6.2
ataCmd()

152

ATA_CMD_SECURITY_UNLOCK
 0 0 0 0 0 0

ATA_CMD_SMART (not implemented)
 FR SC SN ATA_ZERO ATA_ZERO ATA_ZERO
 (SUBCOMMAND) (SubCommand (SubCommand
 Specific Value) Specific Value)

ATA_CMD_GET_MEDIA_STATUS
 0 0 0 0 0 0

ATA_CMD_MEDIA_EJECT
 0 0 0 0 0 0

ATA_CMD_MEDIA_LOCK
 0 0 0 0 0 0

ATA_CMD_MEDIA_UNLOCK
 0 0 0 0 0 0

ATA_CMD_CFA_ERASE_SECTORS
 0 0 0 0 0 0

ATA_CMD_CFA_WRITE_SECTORS_WITHOUT_ERASE
 ATA_ZERO SC ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_CMD_CFA_WRITE_SECTORS_WITHOUT_ERASE
 ATA_ZERO SC ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_CMD_CFA_TRANSLATE_SECTOR
 ATA_ZERO ATA_ZERO SN cylLo cylHi DH

ATA_CMD_CFA_REQUEST_EXTENDED_ERROR_CODE
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_CMD_SET_MAX
 FR ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO
 (SUBCOMMAND)

The following are the subcommands valid for ATA_CMD_SET_MAX and are tabulated as
below:

SUBCOMMAND(in ARG0)
 ARG1 | ARG2 | ARG3 | ARG4 | ARG5

ATA_SUB_SET_MAX_ADDRESS
 SC sector no cylLo cylHi head + modebit
(SET_MAX_VOLATILE
 or
SET_MAX_NON_VOLATILE)

ATA_SUB_SET_MAX_SET_PASS
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_SUB_SET_MAX_LOCK
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_SUB_SET_MAX_UNLOCK
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_SUB_SET_MAX_FREEZE_LOCK
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

2 Routines
ataCmd()

153

2

In the ATA_CMD_SET_FEATURE subcommand, only arg0 and arg1 are valid; all others are
ATA_ZERO.

--
SUBCOMMAND(ARG0) ARG1
--

ATA_SUB_ENABLE_8BIT ATA_ZERO

ATA_SUB_ENABLE_WCACHE ATA_ZERO

ATA_SUB_SET_RWMODE mode
 (see page no 168 table 28 in atapi Spec5)
ATA_SUB_ENB_ADV_POW_MNGMNT 0x90

ATA_SUB_ENB_POW_UP_STDBY ATA_ZERO

ATA_SUB_POW_UP_STDBY_SPIN ATA_ZERO

ATA_SUB_BOOTMETHOD ATA_ZERO

ATA_SUB_ENA_CFA_POW_MOD1 ATA_ZERO

ATA_SUB_DISABLE_NOTIFY ATA_ZERO

ATA_SUB_DISABLE_RETRY ATA_ZERO

ATA_SUB_SET_LENGTH ATA_ZERO

ATA_SUB_SET_CACHE ATA_ZERO

ATA_SUB_DISABLE_LOOK ATA_ZERO

ATA_SUB_ENA_INTR_RELEASE ATA_ZERO

ATA_SUB_ENA_SERV_INTR ATA_ZERO

ATA_SUB_DISABLE_REVE ATA_ZERO

ATA_SUB_DISABLE_ECC ATA_ZERO

ATA_SUB_DISABLE_8BIT ATA_ZERO

ATA_SUB_DISABLE_WCACHE ATA_ZERO

ATA_SUB_DIS_ADV_POW_MNGMT ATA_ZERO

ATA_SUB_DISB_POW_UP_STDBY ATA_ZERO

ATA_SUB_ENABLE_ECC ATA_ZERO

ATA_SUB_BOOTMETHOD_REPORT ATA_ZERO

ATA_SUB_DIS_CFA_POW_MOD1 ATA_ZERO

ATA_SUB_ENABLE_NOTIFY ATA_ZERO

ATA_SUB_ENABLE_RETRY ATA_ZERO

ATA_SUB_ENABLE_LOOK ATA_ZERO

ATA_SUB_SET_PREFETCH ATA_ZERO

ATA_SUB_SET_4BYTES ATA_ZERO

ATA_SUB_ENABLE_REVE ATA_ZERO

ATA_SUB_DIS_INTR_RELEASE ATA_ZERO

ATA_SUB_DIS_SERV_INTR ATA_ZERO

VxWorks Drivers API Reference, 6.2
ataCtrlReset()

154

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO ataDrv

ataCtrlReset()

NAME ataCtrlReset() – reset the specified ATA/IDE disk controller

SYNOPSIS STATUS ataCtrlReset
 (
 int ctrl
)

DESCRIPTION This routine resets the ATA controller specified by ctrl. The device control register is written
with SRST=1

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO ataDrv

ataDevCreate()

NAME ataDevCreate() – create a device for a ATA/IDE disk

SYNOPSIS BLK_DEV * ataDevCreate
 (
 int ctrl, /* ATA controller number, 0 is the primary controller */
 int drive, /* ATA drive number, 0 is the master drive */
 UINT32 nBlocks, /* number of blocks on device, 0 = use entire disc */
 UINT32 blkOffset /* offset BLK_DEV nBlocks from the start of the drive */
)

DESCRIPTION This routine creates a device for a specified ATA/IDE or ATAPI CDROM disk.

ctrl is a controller number for the ATA controller; the primary controller is 0. The maximum
is specified via ATA_MAX_CTRLS.

2 Routines
ataDevIdentify()

155

2

drive is the drive number for the ATA hard drive; the master drive is 0. The maximum is
specified via ATA_MAX_DRIVES.

The nBlocks parameter specifies the size of the device in blocks. If nBlocks is zero, the whole
disk is used.

The blkOffset parameter specifies an offset, in blocks, from the start of the device to be used
when writing or reading the hard disk. This offset is added to the block numbers passed by
the file system during disk accesses. (VxWorks file systems always use block numbers
beginning at zero for the start of a device.)

RETURNS A pointer to a block device structure (BLK_DEV) or NULL if memory cannot be allocated for
the device structure.

ERRNO Not Available

SEE ALSO ataDrv, dosFsMkfs(), dosFsDevInit(), rawFsDevInit()

ataDevIdentify()

NAME ataDevIdentify() – identify device

SYNOPSIS STATUS ataDevIdentify
 (
 int ctrl,
 int dev
)

DESCRIPTION This routine checks whether the device is connected to the controller, if it is, this routine
determines drive type. The routine set type field in the corresponding ATA_DRIVE structure.
If device identification failed, the routine set state field in the corresponding ATA_DRIVE
structure to ATA_DEV_NONE.

RETURNS TRUE if a device present, FALSE otherwise

ERRNO Not Available

SEE ALSO ataDrv

VxWorks Drivers API Reference, 6.2
ataDmaRW()

156

ataDmaRW()

NAME ataDmaRW() – read/write a number of sectors on the current track in DMA mode

SYNOPSIS STATUS ataDmaRW
 (
 int ctrl,
 int drive,
 UINT32 cylinder,
 UINT32 head,
 UINT32 sector,
 void * buffer,
 UINT32 nSecs,
 int direction
)

DESCRIPTION Read/write a number of sectors on the current track in DMA mode

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO ataDrv

ataDmaToggle()

NAME ataDmaToggle() – turn on or off an individual controllers dma support

SYNOPSIS void ataDmaToggle
 (
 int ctrl
)

DESCRIPTION This routine lets you toggle the DMA setting for an individual controller. The controller
number is passed in as a parameter, and the current value is toggled.

RETURNS OK, or ERROR if the parameters are invalid.

ERRNO Not Available

SEE ALSO ataShow

2 Routines
ataInit()

157

2

ataDrv()

NAME ataDrv() – Initialize the ATA driver

SYNOPSIS STATUS ataDrv
 (
 int ctrl, /* controller no. 0,1 */
 int drives, /* number of drives 1,2 */
 int vector, /* interrupt vector */
 int level, /* interrupt level */
 int configType, /* configuration type */
 int semTimeout, /* timeout seconds for sync semaphore */
 int wdgTimeout /* timeout seconds for watch dog */
)

DESCRIPTION This routine initializes the ATA/ATAPI device driver, initializes IDE host controller and sets
up interrupt vectors for requested controller. This function must be called once for each
controller, before any access to drive on the controller, usually which is called by usrRoot()
in usrConfig.c.

If it is called more than once for the same controller, it returns OK with a message display
Host controller already initialized , and does nothing as already required initialization is
done.

Additionally it identifies devices available on the controller and initializes depending on
the type of the device (ATA or ATAPI). Initialization of device includes reading parameters
of the device and configuring to the defaults.

RETURNS OK, or ERROR if initialization fails.

ERRNO Not Available

SEE ALSO ataDrv, ataDevCreate()

ataInit()

NAME ataInit() – initialize ATA device.

SYNOPSIS STATUS ataInit
 (
 int ctrl,
 int drive
)

VxWorks Drivers API Reference, 6.2
ataParamRead()

158

DESCRIPTION This routine issues a soft reset command to ATA device for initialization.

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO ataDrv

ataParamRead()

NAME ataParamRead() – Read drive parameters

SYNOPSIS STATUS ataParamRead
 (
 int ctrl,
 int drive,
 void *buffer,
 int command
)

DESCRIPTION Read drive parameters.

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO ataDrv

ataPiInit()

NAME ataPiInit() – init a ATAPI CD-ROM disk controller

SYNOPSIS STATUS ataPiInit
 (
 int ctrl,
 int drive
)

DESCRIPTION This routine resets a ATAPI CD-ROM disk controller.

RETURNS OK, ERROR if the command didn't succeed.

2 Routines
ataShow()

159

2

ERRNO Not Available

SEE ALSO ataDrv

ataRW()

NAME ataRW() – read/write a data from/to required sector.

SYNOPSIS STATUS ataRW
 (
 int ctrl,
 int drive,
 UINT32 cylinder,
 UINT32 head,
 UINT32 sector,
 void * buffer,
 UINT32 nSecs,
 int direction
)

DESCRIPTION Read/write a number of sectors on the current track

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO ataDrv

ataShow()

NAME ataShow() – show the ATA/IDE disk parameters

SYNOPSIS STATUS ataShow
 (
 int ctrl,
 int drive
)

DESCRIPTION This routine shows the ATA/IDE disk parameters. Its first argument is a controller number,
0 or 1; the second argument is a drive number, 0 or 1.

VxWorks Drivers API Reference, 6.2
ataShowInit()

160

RETURNS OK, or ERROR if the parameters are invalid.

ERRNO Not Available

SEE ALSO ataShow

ataShowInit()

NAME ataShowInit() – initialize the ATA/IDE disk driver show routine

SYNOPSIS STATUS ataShowInit (void)

DESCRIPTION This routine links the ATA/IDE disk driver show routine into the VxWorks system. It is
called automatically when this show facility is configured into VxWorks using either of the
following methods:

- If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

- If you use the Tornado project facility, select INCLUDE_ATA_SHOW.

RETURNS N/A

ERRNO Not Available

SEE ALSO ataShow

ataStatusChk()

NAME ataStatusChk() – Check status of drive and compare to requested status.

SYNOPSIS STATUS ataStatusChk
 (
 ATA_CTRL * pCtrl,
 UINT8 mask,
 UINT8 status
)

DESCRIPTION Wait until the drive is ready.

RETURNS OK, ERROR if the drive status check times out.

2 Routines
atapiBytesPerSectorGet()

161

2

ERRNO Not Available

SEE ALSO ataDrv

ataXbdDevCreate()

NAME ataXbdDevCreate() – create an XBD device for a ATA/IDE disk

SYNOPSIS device_t ataXbdDevCreate
 (
 int ctrl, /* ATA controller number, 0 is the primary controller*/
 int drive, /* ATA drive number, 0 is the master drive */
 UINT32 nBlocks, /* number of blocks on device, 0 = use entire disc */
 UINT32 blkOffset,/* offset BLK_DEV nBlocks from the start of the drive*/
 const char * name /* name of xbd device to create */
)

DESCRIPTION Use the existing code to create a standard block dev device, then create an XBD device
associated with the BLKDEV.

RETURNS a device identifier upon success, or NULLDEV otherwise

SEE ALSO ataDrv

atapiBytesPerSectorGet()

NAME atapiBytesPerSectorGet() – get the number of Bytes per sector.

SYNOPSIS UINT16 atapiBytesPerSectorGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the number of Bytes per sector. This function will return correct
values for drives of ATA/ATAPI-4 or less as this field is retired for the drives compliant to
ATA/ATAPI-5 or higher.

RETURNS Bytes per sector.

VxWorks Drivers API Reference, 6.2
atapiBytesPerTrackGet()

162

ERRNO Not Available

SEE ALSO ataShow

atapiBytesPerTrackGet()

NAME atapiBytesPerTrackGet() – get the number of Bytes per track.

SYNOPSIS UINT16 atapiBytesPerTrackGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the number of Bytes per track. This function will return correct
values for drives of ATA/ATAPI-4 or less as this feild is retired for the drives compliant to
ATA/ATAPI-5 or higher.

RETURNS Bytes per track.

ERRNO Not Available

SEE ALSO ataShow

atapiCtrlMediumRemoval()

NAME atapiCtrlMediumRemoval() – Issues PREVENT/ALLOW MEDIUM REMOVAL packet
command

SYNOPSIS STATUS atapiCtrlMediumRemoval
 (
 ATA_DEV * pAtapiDev,
 int arg0
)

DESCRIPTION This function issues a command to drive to PREVENT or ALLOW MEDIA removal.
Argument arg0 selects to LOCK_EJECT or UNLOCK_EJECT.

To lock media eject arg0 should be LOCK_EJECT To unload media eject arg0 should be
UNLOCK_EJECT

2 Routines
atapiCurrentHeadCountGet()

163

2

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

SEE ALSO ataDrv

atapiCurrentCylinderCountGet()

NAME atapiCurrentCylinderCountGet() – get logical number of cylinders in the drive.

SYNOPSIS UINT16 atapiCurrentCylinderCountGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the number of logical cylinders in the drive. This value represents
the no of cylinders that can be addressed.

RETURNS Cylinder count.

ERRNO Not Available

SEE ALSO ataShow

atapiCurrentHeadCountGet()

NAME atapiCurrentHeadCountGet() – get the number of read/write heads in the drive.

SYNOPSIS UINT8 atapiCurrentHeadCountGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the number of heads in the drive from device structure.

RETURNS Number of heads.

VxWorks Drivers API Reference, 6.2
atapiCurrentMDmaModeGet()

164

ERRNO Not Available

SEE ALSO ataShow

atapiCurrentMDmaModeGet()

NAME atapiCurrentMDmaModeGet() – get the enabled Multi word DMA mode.

SYNOPSIS UINT8 atapiCurrentMDmaModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive MDMA mode enabled in the ATA/ATAPI drive that is
specified by ctrl and drive from the drive structure. The following bit is set for corresponding
mode selected:

Bit2 Multi DMA mode 2 is Selected

Bit1 Multi DMA mode 1 is Selected

Bit0 Multi DMA mode 0 is Selected

RETURNS Enabled Multi word DMA mode.

ERRNO Not Available

SEE ALSO ataShow

atapiCurrentPioModeGet()

NAME atapiCurrentPioModeGet() – get the enabled PIO mode.

SYNOPSIS UINT8 atapiCurrentPioModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive current PIO mode enabled in the ATA/ATAPI drive
specified by ctrl and drive from drive structure.

2 Routines
atapiCurrentSDmaModeGet()

165

2

RETURNS Enabled PIO mode.

ERRNO Not Available

SEE ALSO ataShow

atapiCurrentRwModeGet()

NAME atapiCurrentRwModeGet() – get the current Data transfer mode.

SYNOPSIS UINT8 atapiCurrentRwModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the current Data transfer mode if it is PIO 0,1,2,3,4 mode, SDMA
0,1,2 mode, MDMA 0,1,2 mode or UDMA 0,1,2,3,4,5 mode.

RETURNS current PIO mode.

ERRNO Not Available

SEE ALSO ataShow

atapiCurrentSDmaModeGet()

NAME atapiCurrentSDmaModeGet() – get the enabled Single word DMA mode.

SYNOPSIS UINT8 atapiCurrentSDmaModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive SDMA mode enable in the ATA/ATAPI drive specified
by ctrl and drive from drive structure

RETURNS Enabled Single word DMA mode.

VxWorks Drivers API Reference, 6.2
atapiCurrentUDmaModeGet()

166

ERRNO Not Available

SEE ALSO ataShow

atapiCurrentUDmaModeGet()

NAME atapiCurrentUDmaModeGet() – get the enabled Ultra DMA mode.

SYNOPSIS UINT8 atapiCurrentUDmaModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive UDMA mode enable in the ATA/ATAPI drive specified
by ctrl and drive from drive structure The following bit is set for corresponding mode
selected.

Bit4 Ultra DMA mode 4 is Selected

Bit3 Ultra DMA mode 3 is Selected

Bit2 Ultra DMA mode 2 is Selected

Bit1 Ultra DMA mode 1 is Selected

Bit0 Ultra DMA mode 0 is Selected

RETURNS Enabled Ultra DMA mode.

ERRNO Not Available

SEE ALSO ataShow

atapiCylinderCountGet()

NAME atapiCylinderCountGet() – get the number of cylinders in the drive.

SYNOPSIS UINT16 atapiCylinderCountGet
 (
 int ctrl,
 int drive
)

2 Routines
atapiDriveTypeGet()

167

2

DESCRIPTION This function is used to get cyclinder count of the ATA/ATAPI drive specified by ctrl and
drive from drive structure.

RETURNS Cylinder count.

ERRNO Not Available

SEE ALSO ataShow

atapiDriveSerialNumberGet()

NAME atapiDriveSerialNumberGet() – get the drive serial number.

SYNOPSIS char * atapiDriveSerialNumberGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive serial number of the ATA/ATAPI drive specified by ctrl
and drive from drive structure. It returns a pointer to character array of 20 bytes length
which contains serial number in ascii.

RETURNS Drive serial number.

ERRNO Not Available

SEE ALSO ataShow

atapiDriveTypeGet()

NAME atapiDriveTypeGet() – get the drive type.

SYNOPSIS UINT8 atapiDriveTypeGet
 (
 int ctrl,
 int drive
)

VxWorks Drivers API Reference, 6.2
atapiFeatureEnabledGet()

168

DESCRIPTION This function routine will return the type of the drive if it is CD-ROM or Printer etc. The
following table indicates the type depending on the return value.

0x00h Direct-access device

0x01h Sequential-access device

0x02h Printer Device

0x03h Processor device

0x04h Write-once device

0x05h CD-ROM device

0x06h Scanner device

0x07h Optical memory device

0x08h Medium Change Device

0x09h Communications device

0x0Ch Array Controller Device

0x0Dh Encloser Services Device

0x0Eh Reduced Block Command Devices

0x0Fh Optical Card Reader/Writer Device

0x1Fh Unknown or no device type

RETURNS drive type.

ERRNO Not Available

SEE ALSO ataShow

atapiFeatureEnabledGet()

NAME atapiFeatureEnabledGet() – get the enabled features.

SYNOPSIS UINT32 atapiFeatureEnabledGet
 (
 int ctrl,
 int drive
)

2 Routines
atapiFeatureSupportedGet()

169

2

DESCRIPTION This function is used to get drive Features Enabled by the ATA/ATAPI drive specified by
ctrl and drive from drive structure. It returns a 32-bit value whose bits represents the
features Enabled. The following table gives the cross reference for the bits.

Bit 21 Power-up in Standby Feature

Bit 20 Removable Media Status Notification Feature

Bit 19 Adavanced Power Management Feature

Bit 18 CFA Feature

Bit 10 Host protected Area Feature

Bit 4 Packet Command Feature

Bit 3 Power Management Feature

Bit 2 Removable Media Feature

Bit 1 Security Mode Feature

Bit 0 SMART Feature

RETURNS enabled features.

ERRNO Not Available

SEE ALSO ataShow

atapiFeatureSupportedGet()

NAME atapiFeatureSupportedGet() – get the features supported by the drive.

SYNOPSIS UINT32 atapiFeatureSupportedGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive Feature supported by the ATA/ATAPI drive specified by
ctrl and drive from drive structure. It returns a 32-bit value whose bits represents the
features supported. The following table gives the cross reference for the bits.

Bit 21 Power-up in Standby Feature

Bit 20 Removable Media Status Notification Feature

Bit 19 Adavanced Power Management Feature

VxWorks Drivers API Reference, 6.2
atapiFirmwareRevisionGet()

170

Bit 18 CFA Feature

Bit 10 Host protected Area Feature

Bit 4 Packet Command Feature

Bit 3 Power Management Feature

Bit 2 Removable Media Feature

Bit 1 Security Mode Feature

Bit 0 SMART Feature

RETURNS Supported features.

ERRNO Not Available

SEE ALSO ataShow

atapiFirmwareRevisionGet()

NAME atapiFirmwareRevisionGet() – get the firmware revision of the drive.

SYNOPSIS char * atapiFirmwareRevisionGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive Firmware revision of the ATA/ATAPI drive specified by
ctrl and drive from drive structure. It returns a pointer to character array of 8 bytes length
which contains serial number in ascii.

RETURNS firmware revision.

ERRNO Not Available

SEE ALSO ataShow

2 Routines
atapiInit()

171

2

atapiHeadCountGet()

NAME atapiHeadCountGet() – get the number heads in the drive.

SYNOPSIS UINT8 atapiHeadCountGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get head count of the ATA/ATAPI drive specified by ctrl and drive
from drive structure.

RETURNS Number of heads in the drive.

ERRNO Not Available

SEE ALSO ataShow

atapiInit()

NAME atapiInit() – init ATAPI CD-ROM disk controller

SYNOPSIS STATUS atapiInit
 (
 int ctrl,
 int drive
)

DESCRIPTION This routine resets the ATAPI CD-ROM disk controller.

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO ataDrv

VxWorks Drivers API Reference, 6.2
atapiIoctl()

172

atapiIoctl()

NAME atapiIoctl() – Control the drive.

SYNOPSIS STATUS atapiIoctl
 (
 int function, /* The I/O operation to do */
 int ctrl, /* Controller number of the drive */
 int drive, /* Drive number */
 int password [16], /* Password to set. NULL if not applicable*/
 int arg0, /* 1st arg to pass. NULL if not applicable*/
 UINT32 * arg1, /* Ptr to 2nd arg. NULL if not applicable*/
 UINT8 ** ppBuf /* The data buffer */
)

DESCRIPTION This routine is used to control the drive like setting the password, putting in power save
mode, locking/unlocking the drive, ejecting the medium etc. The argument function defines
the ioctl command, password, and integer array is the password required or set password
value for some commands. Arguments arg0, pointer arg1, pointer to pointer buffer ppBuf are
command-specific.

The following commands are supported for various functionality.

IOCTL_DIS_MASTER_PWD
Disable the master password. where 4th parameter is the master password.

IOCTL_DIS_USER_PWD
Disable the user password.

IOCTL_ERASE_PREPARE
Prepare the drive for erase incase the user password lost, and it is in max security
mode.

IOCTL_ENH_ERASE_UNIT_USR
Erase in enhanced mode supplying the user password.

IOCTL_ENH_ERASE_UNIT_MSTR
Erase in enhanced mode supplying the master password.

IOCTL_NORMAL_ERASE_UNIT_MSTR
Erase the drive in normal mode supplying the master password.

IOCTL_NORMAL_ERASE_UNIT_USR
Erase the drive in normal mode supplying the user password.

IOCTL_FREEZE_LOCK
Freeze lock the drive.

IOCTL_SET_PASS_MSTR
Set the master password.

2 Routines
atapiIoctl()

173

2

IOCTL_SET_PASS_USR_MAX
Set the user password in Maximum security mode.

IOCTL_SET_PASS_USR_HIGH
Set the user password in High security mode.

IOCTL_UNLOCK_MSTR
Unlock the master password.

IOCTL_UNLOCK_USR
Unlock the user password.

IOCTL_CHECK_POWER_MODE
Find the drive power saving mode.

IOCTL_IDLE_IMMEDIATE
Idle the drive immediatly. this will get the drive from the standby or active mode to idle
mode immediatly.

IOCTL_SLEEP
Set the drive in sleep mode. this is the highest power saving mode. to return to the
normal active or IDLE mode, drive need an hardware reset or power on reset or device
reset command.

IOCTL_STANDBY_IMMEDIATE
Standby the drive immediatly.

IOCTL_EJECT_DISK
Eject the media of an ATA drive. Use IOsystem ioctl function for ATAPI drive.

IOCTL_GET_MEDIA_STATUS
Find the media status.

IOCTL_ENA_REMOVE_NOTIFY
Enable the drive's removable media notification feature set.

The following table describes these arguments validity. These are tabulated in the following
form:

--
FUNCTION
password [16] arg0 *arg1 **ppBuf
--

IOCTL_DIS_MASTER_PWD
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_DIS_USER_PWD
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ERASE_PREPARE
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ENH_ERASE_UNIT_USR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ENH_ERASE_UNIT_MSTR
password ATA_ZERO ATA_ZERO ATA_ZERO

VxWorks Drivers API Reference, 6.2
atapiIoctl()

174

IOCTL_NORMAL_ERASE_UNIT_MSTR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_NORMAL_ERASE_UNIT_USR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_FREEZE_LOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_PASS_MSTR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_PASS_USR_MAX
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_PASS_USR_HIGH
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_UNLOCK_MSTR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_UNLOCK_USR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_READ_NATIVE_MAX_ADDRESS - it returns address in <arg1>
ATA_ZERO (ATA_SDH_IBM or LBA/CHS add ATA_ZERO
 ATA_SDH_LBA) (LBA 27:24 / Head
 LBA 23:16 / cylHi
 LBA 15:8 / cylLow
 LBA 7:0 / sector no)

IOCTL_SET_MAX_ADDRESS - <arg1> is pointer to LBA address
ATA_ZERO SET_MAX_VOLATILE or LBA address ATA_ZERO
 SET_MAX_NON_VOLATILE

IOCTL_SET_MAX_SET_PASS
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_MAX_LOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_MAX_UNLOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_MAX_FREEZE_LOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_CHECK_POWER_MODE - returns power mode in <arg1>
ATA_ZERO ATA_ZERO returns power ATA_ZERO
 mode
 power modes :-1) 0x00 Device in standby mode
 2) 0x80 Device in Idle mode
 3) 0xff Device in Active or Idle mode

IOCTL_IDLE_IMMEDIATE
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SLEEP
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_STANDBY_IMMEDIATE
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ENB_POW_UP_STDBY
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ENB_SET_ADV_POW_MNGMNT
ATA_ZERO arg0 ATA_ZERO ATA_ZERO

2 Routines
atapiIoctl()

175

2

 NOTE:- arg0 value - 1). for minimum power consumption with standby 0x01h
 2). for minimum power consumption without standby 0x01h
 3). for maximum performance 0xFEh

IOCTL_DISABLE_ADV_POW_MNGMNT
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_EJECT_DISK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_LOAD_DISK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_MEDIA_LOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_MEDIA_UNLOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_GET_MEDIA_STATUS - returns status in <arg1>
ATA_ZERO ATA_ZERO status ATA_ZERO

 NOTE: value in <arg1> is
 0x04 -Command aborted
 0x02 -No media in drive
 0x08 -Media change is requested
 0x20 -Media changed
 0x40 -Write Protected

IOCTL_ENA_REMOVE_NOTIFY
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_DISABLE_REMOVE_NOTIFY
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_DISABLE_OPER
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_ENABLE_ATTRIB_AUTO
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_DISABLE_ATTRIB_AUTO
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_ENABLE_OPER
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_OFFLINE_IMMED
ATA_ZERO SubCommand ATA_ZERO ATA_ZERO
 (refer to ref1 page no 190)

IOCTL_SMART_READ_DATA - returns pointer to pointer <ppBuf> of read data
ATA_ZERO ATA_ZERO ATA_ZERO read data

IOCTL_SMART_READ_LOG_SECTOR - returns pointer to pointer <ppBuf>of read data
ATA_ZERO no of sector to log Address read data
 be read

IOCTL_SMART_RETURN_STATUS
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_SAVE_ATTRIB
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_WRITE_LOG_SECTOR
ATA_ZERO no of to be written Log Sector address write data

 NOTE: - <ppBuf> contains pointer to pointer data buffer to be written

IOCTL_CFA_ERASE_SECTORS
ATA_ZERO sector count PackedCHS/LBA ATA_ZERO

VxWorks Drivers API Reference, 6.2
atapiMaxMDmaModeGet()

176

IOCTL_CFA_REQUEST_EXTENDED_ERROR_CODE
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_CFA_TRANSLATE_SECTOR - <ppbuf> returns pointer to data pointer.
ATA_ZERO ATA_ZERO PackedLBA/CHS read data

IOCTL_CFA_WRITE_MULTIPLE_WITHOUT_ERASE
ATA_ZERO sector count PackedCHS/LBA write data

 NOTE: -<pbuf> contains pointer to data pointer.

IOCTL_CFA_WRITE_SECTORS_WITHOUT_ERASE
ATA_ZERO sector count PackedCHS/LBA write data

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO ataDrv

atapiMaxMDmaModeGet()

NAME atapiMaxMDmaModeGet() – get the Maximum Multi word DMA mode the drive
supports.

SYNOPSIS UINT8 atapiMaxMDmaModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive maximum MDMA mode supported by the ATA/ATAPI
drive specified by ctrl and drive from drive structure The following bits are set for
corresponding modes supported.

Bit2 Multi DMA mode 2 and below are supported

Bit1 Multi DMA mode 1 and below are supported

Bit0 Multi DMA mode 0 is supported

RETURNS Maximum Multi word DMA mode.

ERRNO Not Available

SEE ALSO ataShow

2 Routines
atapiMaxSDmaModeGet()

177

2

atapiMaxPioModeGet()

NAME atapiMaxPioModeGet() – get the Maximum PIO mode that drive can support.

SYNOPSIS UINT8 atapiMaxPioModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive maximum PIO mode supported by the ATA/ATAPI drive
specified by ctrl and drive from drive structure

RETURNS maximum PIO mode.

ERRNO Not Available

SEE ALSO ataShow

atapiMaxSDmaModeGet()

NAME atapiMaxSDmaModeGet() – get the Maximum Single word DMA mode the drive supports

SYNOPSIS UINT8 atapiMaxSDmaModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive maximum SDMA mode supported by the ATA/ATAPI
drive specified by ctrl and drive from drive structure

RETURNS Maximum Single word DMA mode.

ERRNO Not Available

SEE ALSO ataShow

VxWorks Drivers API Reference, 6.2
atapiMaxUDmaModeGet()

178

atapiMaxUDmaModeGet()

NAME atapiMaxUDmaModeGet() – get the Maximum Ultra DMA mode the drive can support.

SYNOPSIS UINT8 atapiMaxUDmaModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive maximum UDMA mode supported by the ATA/ATAPI
drive specified by ctrl and drive from drive structure. The following bits are set for
corresponding modes supported.

Bit4 Ultra DMA mode 4 and below are supported

Bit3 Ultra DMA mode 3 and below are supported

Bit2 Ultra DMA mode 2 and below are supported

Bit1 Ultra DMA mode 1 and below are supported

Bit0 Ultra DMA mode 0 is supported

RETURNS Maximum Ultra DMA mode.

ERRNO Not Available

SEE ALSO ataShow

atapiModelNumberGet()

NAME atapiModelNumberGet() – get the model number of the drive.

SYNOPSIS char * atapiModelNumberGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive Model Number of the ATA/ATAPI drive specified by ctrl
and drive from drive structure. It returns a pointer to character array of 40 bytes length
which contains serial number in ascii.

RETURNS pointer to the model number.

2 Routines
atapiPktCmd()

179

2

ERRNO Not Available

SEE ALSO ataShow

atapiParamsPrint()

NAME atapiParamsPrint() – Print the drive parameters.

SYNOPSIS void atapiParamsPrint
 (
 int ctrl,
 int drive
)

DESCRIPTION This user callable routine will read the current parameters from the corresponding drive and
will print the specified range of parameters on the console.

RETURNS N/A.

ERRNO Not Available

SEE ALSO ataDrv

atapiPktCmd()

NAME atapiPktCmd() – execute an ATAPI command with error processing

SYNOPSIS UINT8 atapiPktCmd
 (
 ATA_DEV * pAtapiDev,
 ATAPI_CMD * pComPack
)

DESCRIPTION This routine executes a single ATAPI command, checks the command completion status and
tries to recover if an error encountered during command execution at any stage.

RETURN SENSE_NO_SENSE if success, or ERROR if not successful for any reason.

RETURNS Not Available

VxWorks Drivers API Reference, 6.2
atapiPktCmdSend()

180

ERRNO S_ioLib_DEVICE_ERROR

SEE ALSO ataDrv

atapiPktCmdSend()

NAME atapiPktCmdSend() – Issue a Packet command.

SYNOPSIS UINT8 atapiPktCmdSend
 (
 ATA_DEV * pAtapiDev,
 ATAPI_CMD * pComPack
)

DESCRIPTION This function issues a packet command to specified drive.

See library file description for more details.

RETURN SENSE_NO_SENSE if success, or ERROR if not successful for any reason

RETURNS Not Available

ERRNO S_ioLib_DEVICE_ERROR

SEE ALSO ataDrv

atapiRead10()

NAME atapiRead10() – read one or more blocks from an ATAPI Device.

SYNOPSIS STATUS atapiRead10
 (
 ATA_DEV * pAtapiDev,
 UINT32 startBlk,
 UINT32 nBlks,
 UINT32 transferLength,
 char * pBuf
)

DESCRIPTION This routine reads one or more blocks from the specified device, starting with the specified
block number.

2 Routines
atapiReadTocPmaAtip()

181

2

The name of this routine relates to the SFF-8090i (Mt. Fuji), used for DVD-ROM, and
indicates that the entire packet command uses 10 bytes, rather than the normal 12.

RETURNS OK, ERROR if the read command didn't succeed.

ERRNO Not Available

SEE ALSO ataDrv

atapiReadCapacity()

NAME atapiReadCapacity() – issue a READ CD-ROM CAPACITY command to a ATAPI device

SYNOPSIS STATUS atapiReadCapacity
 (
 ATA_DEV * pAtapiDev
)

DESCRIPTION This routine issues a READ CD-ROM CAPACITY command to a specified ATAPI device.

RETURN OK, or ERROR if the command fails.

RETURNS Not Available

ERRNO Not Available

SEE ALSO ataDrv

atapiReadTocPmaAtip()

NAME atapiReadTocPmaAtip() – issue a READ TOC command to a ATAPI device

SYNOPSIS STATUS atapiReadTocPmaAtip
 (
 ATA_DEV * pAtapiDev,
 UINT32 transferLength,
 char * resultBuf
)

DESCRIPTION This routine issues a READ TOC command to a specified ATAPI device.

VxWorks Drivers API Reference, 6.2
atapiRemovMediaStatusNotifyVerGet()

182

RETURN OK, or ERROR if the command fails.

RETURNS Not Available

ERRNO Not Available

SEE ALSO ataDrv

atapiRemovMediaStatusNotifyVerGet()

NAME atapiRemovMediaStatusNotifyVerGet() – get the Media Stat Notification Version.

SYNOPSIS UINT16 atapiRemovMediaStatusNotifyVerGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the removable media status notification version of the drive.

RETURNS Version Number.

ERRNO Not Available

SEE ALSO ataShow

atapiScan()

NAME atapiScan() – issue SCAN packet command to ATAPI drive.

SYNOPSIS STATUS atapiScan
 (
 ATA_DEV * pAtapiDev,
 UINT32 startAddressField,
 int function
)

DESCRIPTION This function issues SCAN packet command to ATAPI drive. The function argument should
be 0x00 for fast forward and 0x10 for fast reversed operation.

2 Routines
atapiSetCDSpeed()

183

2

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

SEE ALSO ataDrv

atapiSeek()

NAME atapiSeek() – issues a SEEK packet command to drive.

SYNOPSIS STATUS atapiSeek
 (
 ATA_DEV * pAtapiDev,
 UINT32 addressLBA
)

DESCRIPTION This function issues a SEEK packet command (not ATA SEEK command) to the specified
drive.

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

SEE ALSO ataDrv

atapiSetCDSpeed()

NAME atapiSetCDSpeed() – issue SET CD SPEED packet command to ATAPI drive.

SYNOPSIS STATUS atapiSetCDSpeed
 (
 ATA_DEV * pAtapiDev,
 int readDriveSpeed,
 int writeDriveSpeed
)

VxWorks Drivers API Reference, 6.2
atapiStartStopUnit()

184

DESCRIPTION This function issues SET CD SPEED packet command to ATAPI drive while reading and
writing of ATAPI drive(CD-ROM) data. The arguments readDriveSpeed and writeDriveSpeed
are in Kbytes/Second.

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

SEE ALSO ataDrv

atapiStartStopUnit()

NAME atapiStartStopUnit() – Issues START STOP UNIT packet command

SYNOPSIS STATUS atapiStartStopUnit
 (
 ATA_DEV * pAtapiDev,
 int arg0
)

DESCRIPTION This function issues a command to drive to MEDIA EJECT and MEDIA LOAD. Argument
arg0 selects to EJECT or LOAD.

To eject media arg0 should be EJECT_DISK To load media arg0 should be LOAD_DISK

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

SEE ALSO ataDrv

2 Routines
atapiTestUnitRdy()

185

2

atapiStopPlayScan()

NAME atapiStopPlayScan() – issue STOP PLAY/SCAN packet command to ATAPI drive.

SYNOPSIS STATUS atapiStopPlayScan
 (
 ATA_DEV * pAtapiDev
)

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

SEE ALSO ataDrv

atapiTestUnitRdy()

NAME atapiTestUnitRdy() – issue a TEST UNIT READY command to a ATAPI drive

SYNOPSIS STATUS atapiTestUnitRdy
 (
 ATA_DEV * pAtapiDev
)

DESCRIPTION This routine issues a TEST UNIT READY command to a specified ATAPI drive.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO ataDrv

VxWorks Drivers API Reference, 6.2
atapiVersionNumberGet()

186

atapiVersionNumberGet()

NAME atapiVersionNumberGet() – get the ATA/ATAPI version number of the drive.

SYNOPSIS UINT32 atapiVersionNumberGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the ATA/ATAPI version number of the drive. Most significant 16
bits represent the Major Version Number and the Lease significant 16 bits represents the
minor Version Number.

Major Version Number

Bit 22 ATA/ATAPI-6

Bit 21 ATA/ATAPI-5

Bit 20 ATA/ATAPI-4

Bit 19 ATA-3

Bit 18 ATA-2

Minor Version Number (bit 15 through bit 0)

0001h Obsolete

0002h Obsolete

0003h Obsolete

0004h ATA-2 published, ANSI X3.279-1996

0005h ATA-2 X3T10 948D prior to revision 2k

0006h ATA-3 X3T10 2008D revision 1

0007h ATA-2 X3T10 948D revision 2k

0008h ATA-3 X3T10 2008D revision 0

0009h ATA-2 X3T10 948D revision 3

000Ah ATA-3 published, ANSI X3.298-199x

000Bh ATA-3 X3T10 2008D revision 6

000Ch ATA-3 X3T13 2008D revision 7 and 7a

000Dh ATA/ATAPI-4 X3T13 1153D revision 6

000Eh ATA/ATAPI-4 T13 1153D revision 13

2 Routines
auDump()

187

2

000Fh ATA/ATAPI-4 X3T13 1153D revision 7

0010h ATA/ATAPI-4 T13 1153D revision 18

0011h ATA/ATAPI-4 T13 1153D revision 15

0012h ATA/ATAPI-4 published, ANSI NCITS 317-1998

0013h Reserved

0014h ATA/ATAPI-4 T13 1153D revision 14

0015h ATA/ATAPI-5 T13 1321D revision 1

0016h Reserved

0017h ATA/ATAPI-4 T13 1153D revision 17

0018h-FFFFh Reserved

RETURNS ATA/ATAPI version number

ERRNO Not Available

SEE ALSO ataShow

auDump()

NAME auDump() – display device status

SYNOPSIS void auDump
 (
 int unit
)

DESCRIPTION none

RETURNS Not Available

ERRNO Not Available

SEE ALSO auEnd

VxWorks Drivers API Reference, 6.2
auEndLoad()

188

auEndLoad()

NAME auEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * auEndLoad
 (
 char * initString /* string to be parsed by the driver */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

unit:devMemAddr:devIoAddr:enableAddr:vecNum:intLvl:offset :qtyCluster:flags

This routine can be called in two modes. If it is called with an empty but allocated string, it
places the name of this device (that is, "au") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

ERRNO Not Available

SEE ALSO auEnd

auInitParse()

NAME auInitParse() – parse the initialization string

SYNOPSIS STATUS auInitParse
 (
 AU_DRV_CTRL * pDrvCtrl, /* pointer to the control structure */
 char * initString /* initialization string */
)

DESCRIPTION Parse the input string. This routine is called from auEndLoad() which initializes some
values in the driver control structure with the values passed in the initialization string.

The initialization string format is: unit:devMemAddr:devIoAddr:vecNum:intLvl:offset:flags

unit
Device unit number, a small integer.

2 Routines
bcm1250MacEndLoad()

189

2

devMemAddr
Device register base memory address

devIoAddr
I/O register base memory address

enableAddr
Address of MAC enable register

vecNum
Interrupt vector number.

intLvl
Interrupt level.

offset
Offset of starting of data in the device buffers.

qtyCluster
Number of clusters to allocate

flags
Device-specific flags, for future use.

RETURNS OK, or ERROR if any arguments are invalid.

ERRNO Not Available

SEE ALSO auEnd

bcm1250MacEndLoad()

NAME bcm1250MacEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * bcm1250MacEndLoad
 (
 char * initString /* String to be parsed by the driver. */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

The initialization string format is:
"unit:hwunit:vecnum:flags:numRds0:numTds0:numRds1:numTds1"

The hwunit field is not used, but must be present to parse properly.

VxWorks Drivers API Reference, 6.2
bcm1250MacPhyShow()

190

This routine can be called in two modes. If it is called with an empty but allocated string, it
places the name of this device (that is, "sbe0", "sbe1", or "sbe2") into the initString and returns
NULL.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer or NULL on error.

ERRNO Not Available

SEE ALSO bcm1250MacEnd

bcm1250MacPhyShow()

NAME bcm1250MacPhyShow() – display the physical register values

SYNOPSIS void bcm1250MacPhyShow
 (
 int inst /* driver instance */
)

DESCRIPTION This routine prints the enet PHY registers to stdout.

RETURNS N/A

ERRNO Not Available

SEE ALSO bcm1250MacEnd

bcm1250MacRxDmaShow()

NAME bcm1250MacRxDmaShow() – display RX DMA register values

SYNOPSIS void bcm1250MacRxDmaShow
 (
 int inst /* driver instance */
)

DESCRIPTION This routine prints the enet RX DMA registers to stdout.

2 Routines
bcm1250MacTxDmaShow()

191

2

RETURNS N/A

ERRNO Not Available

SEE ALSO bcm1250MacEnd

bcm1250MacShow()

NAME bcm1250MacShow() – display the MAC register values

SYNOPSIS void bcm1250MacShow
 (
 int inst /* driver instance */
)

DESCRIPTION This routine prints the enet MAC registers to stdout.

RETURNS N/A

ERRNO Not Available

SEE ALSO bcm1250MacEnd

bcm1250MacTxDmaShow()

NAME bcm1250MacTxDmaShow() – display TX DMA register values

SYNOPSIS void bcm1250MacTxDmaShow
 (
 int inst /* driver instance */
)

DESCRIPTION This routine prints the enet TX DMA registers to stdout.

RETURNS N/A

ERRNO Not Available

SEE ALSO bcm1250MacEnd

VxWorks Drivers API Reference, 6.2
bioInit()

192

bioInit()

NAME bioInit() – initialize the bio library

SYNOPSIS STATUS bioInit (void)

DESCRIPTION none

RETURNS OK

ERRNO Not Available

SEE ALSO bio

bio_alloc()

NAME bio_alloc() – allocate memory blocks

SYNOPSIS void * bio_alloc
 (
 device_t xbd, /* XBD for which to allocate */
 int numBlocks /* number of blocks to allocate */
)

DESCRIPTION This routine allocates numBlocks of memory. The size of the block is extracted from the xbd.

RETURNS pointer to the allocated memory, NULL on error

ERRNO Not Available

SEE ALSO bio

2 Routines
bio_free()

193

2

bio_done()

NAME bio_done() – terminates a bio operation

SYNOPSIS void bio_done
 (
 struct bio * pBio, /* pointer to bio structure */
 int error /* error code */
)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO bio

bio_free()

NAME bio_free() – free the bio memory

SYNOPSIS void bio_free
 (
 void * pBioData /* pointer to data to free */
)

DESCRIPTION This routine frees the memory in a bio structure. Note that bio_data is NOT a pointer to the
the bio structure, but rather the pointer to the memory to free.

RETURNS N/A

ERRNO Not Available

SEE ALSO bio

VxWorks Drivers API Reference, 6.2
cisConfigregGet()

194

cisConfigregGet()

NAME cisConfigregGet() – get the PCMCIA configuration register

SYNOPSIS STATUS cisConfigregGet
 (
 int sock, /* socket no. */
 int reg, /* configuration register no. */
 int *pValue /* content of the register */
)

DESCRIPTION This routine gets that PCMCIA configuration register.

RETURNS OK, or ERROR if it cannot set a value on the PCMCIA chip.

ERRNO Not Available

SEE ALSO cisLib

cisConfigregSet()

NAME cisConfigregSet() – set the PCMCIA configuration register

SYNOPSIS STATUS cisConfigregSet
 (
 int sock, /* socket no. */
 int reg, /* register no. */
 int value /* content of the register */
)

DESCRIPTION This routine sets the PCMCIA configuration register.

RETURNS OK, or ERROR if it cannot set a value on the PCMCIA chip.

ERRNO Not Available

SEE ALSO cisLib

2 Routines
cisGet()

195

2

cisFree()

NAME cisFree() – free tuples from the linked list

SYNOPSIS void cisFree
 (
 int sock /* socket no. */
)

DESCRIPTION This routine free tuples from the linked list.

RETURNS N/A

ERRNO Not Available

SEE ALSO cisLib

cisGet()

NAME cisGet() – get information from a PC card's CIS

SYNOPSIS STATUS cisGet
 (
 int sock /* socket no. */
)

DESCRIPTION This routine gets information from a PC card's CIS, configures the PC card, and allocates
resources for the PC card.

RETURNS OK, or ERROR if it cannot get the CIS information, configure the PC card, or allocate
resources.

ERRNO Not Available

SEE ALSO cisLib

VxWorks Drivers API Reference, 6.2
cisShow()

196

cisShow()

NAME cisShow() – show CIS information

SYNOPSIS void cisShow
 (
 int sock /* socket no. */
)

DESCRIPTION This routine shows CIS information.

NOTE This routine uses floating point calculations. The calling task needs to be spawned with the
VX_FP_TASK flag. If this is not done, the data printed by cisShow may be corrupted and
unreliable.

RETURNS N/A

ERRNO Not Available

SEE ALSO cisShow

ctB69000VgaInit()

NAME ctB69000VgaInit() – initializes the B69000 chip and loads font in memory.

SYNOPSIS STATUS ctB69000VgaInit
 (
 void
)

DESCRIPTION This routine will initialize the VGA card if present in PCI connector, sets up register set in
VGA 3+ mode and loads the font in plane 2.

RETURNS OK/ERROR

ERRNO Not Available

SEE ALSO ctB69000Vga

2 Routines
dec21145SPIReadBack()

197

2

dec21140SromWordRead()

NAME dec21140SromWordRead() – read two bytes from the serial ROM

SYNOPSIS USHORT dec21140SromWordRead
 (
 DRV_CTRL * pDrvCtrl,
 UCHAR lineCnt /* Serial ROM line Number */
)

DESCRIPTION This routine returns the two bytes of information that is associated with it the specified
ROM line number. This will later be used by the dec21140GetEthernetAdr function. It can
also be used to review the ROM contents itself. The function must first send some initial bit
patterns to the CSR9 that contains the Serial ROM Control bits. Then the line index into the
ROM is evaluated bit-by-bit to program the ROM. The 2 bytes of data are extracted and
processed into a normal pair of bytes.

RETURNS Value from ROM or ERROR.

ERRNO Not Available

SEE ALSO dec21x40End

dec21145SPIReadBack()

NAME dec21145SPIReadBack() – Read all PHY registers out

SYNOPSIS void dec21145SPIReadBack
 (
 DRV_CTRL * pDrvCtrl /* pointer to DRV_CTRL structure */
)

DESCRIPTION none

RETURNS nothing

ERRNO Not Available

SEE ALSO dec21x40End

VxWorks Drivers API Reference, 6.2
dec21x40EndLoad()

198

dec21x40EndLoad()

NAME dec21x40EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* dec21x40EndLoad
 (
 char* initStr /* String to be parse by the driver. */
)

DESCRIPTION This routine initializes the driver and the device to an operational state. All of the
device-specific parameters are passed in the initStr. If this routine is called with an empty
but allocated string, it puts the name of this device (that is, "dc") into the initStr and returns
0. If the string is allocated but not empty, this routine tries to load the device.

RETURNS An END object pointer or NULL on error.

ERRNO Not Available

SEE ALSO dec21x40End

dec21x40PhyFind()

NAME dec21x40PhyFind() – Find the first PHY connected to DEC MII port.

SYNOPSIS UINT8 dec21x40PhyFind
 (
 DRV_CTRL *pDrvCtrl
)

DESCRIPTION none

RETURNS Address of PHY or 0xFF if not found.

ERRNO Not Available

SEE ALSO dec21x40End

2 Routines
devDetach()

199

2

devAttach()

NAME devAttach() – attach a device

SYNOPSIS int devAttach
 (
 struct device * dev,
 const char * name,
 int type,
 device_t * result
)

DESCRIPTION none

RETURNS 0 upon success, non-zero otherwise

ERRNO Not Available

SEE ALSO device

devDetach()

NAME devDetach() – detach a device

SYNOPSIS STATUS devDetach
 (
 struct device * dev /* pointer to device to detach */
)

DESCRIPTION none

RETURNS 0 upon success, non-zero otherwise

ERRNO Not Available

SEE ALSO device

VxWorks Drivers API Reference, 6.2
devInit()

200

devInit()

NAME devInit() – initialize the device manager

SYNOPSIS STATUS devInit
 (
 uint16_t ndevs /* number of devices */
)

DESCRIPTION This routine initializes the device manager for ndevs devices.

RETURNS OK upon success, ERROR otherwise

ERRNO EINVAL

SEE ALSO device

devMap()

NAME devMap() – map a device

SYNOPSIS struct device *devMap
 (
 device_t dev /* device to map */
)

DESCRIPTION none

RETURNS pointer to device upon success, NULL otherwise

ERRNO Not Available

SEE ALSO device

2 Routines
el3c90xEndLoad()

201

2

devName()

NAME devName() – name a device

SYNOPSIS STATUS devName
 (
 device_t dev, /* device to name */
 devname_t name /* name to assign */
)

DESCRIPTION none

RETURNS OK upon success, ERROR otherwise

ERRNO Not Available

SEE ALSO device

devUnmap()

NAME devUnmap() – unmap a device

SYNOPSIS int devUnmap
 (
 struct device * dev /* pointer to device to unmap */
)

ERRNO Not Available

SEE ALSO device

el3c90xEndLoad()

NAME el3c90xEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * el3c90xEndLoad
 (
 char * initString /* String to be parsed by the driver. */
)

VxWorks Drivers API Reference, 6.2
el3c90xInitParse()

202

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

unit:devMemAddr:devIoAddr:pciMemBase:<vecnum:intLvl:memAdrs
:memSize:memWidth:flags:buffMultiplier

This routine can be called in two modes. If it is called with an empty but allocated string, it
places the name of this device (that is, "elPci") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

ERRNO Not Available

SEE ALSO el3c90xEnd

el3c90xInitParse()

NAME el3c90xInitParse() – parse the initialization string

SYNOPSIS STATUS el3c90xInitParse
 (
 EL3C90X_DEVICE * pDrvCtrl, /* pointer to the control structure */
 char * initString /* initialization string */
)

DESCRIPTION Parse the input string. This routine is called from el3c90xEndLoad() which initializes some
values in the driver control structure with the values passed in the initialization string.

The initialization string format is:
unit:devMemAddr:devIoAddr:pciMemBase:<vecNum:intLvl:memAdrs
:memSize:memWidth:flags:buffMultiplier

unit
Device unit number, a small integer.

devMemAddr
Device register base memory address

devIoAddr
Device register base I/O address

2 Routines
elt3c509Load()

203

2

pciMemBase
Base address of PCI memory space

vecNum
Interrupt vector number.

intLvl
Interrupt level.

memAdrs
Memory pool address or NONE.

memSize
Memory pool size or zero.

memWidth
Memory system size, 1, 2, or 4 bytes (optional).

flags
Device-specific flags, for future use.

buffMultiplier
Buffer Multiplier or NONE. If NONE is specified, it defaults to 2

RETURNS OK, or ERROR if any arguments are invalid.

ERRNO Not Available

SEE ALSO el3c90xEnd

elt3c509Load()

NAME elt3c509Load() – initialize the driver and device

SYNOPSIS END_OBJ * elt3c509Load
 (
 char * initString /* String to be parsed by the driver. */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

unit:port:intVector:intLevel:attachementType:noRxFrames

This routine can be called in two modes. If it is called with an empty but allocated string, it
places the name of this device (that is, "elt") into the initString and returns 0.

VxWorks Drivers API Reference, 6.2
elt3c509Parse()

204

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

ERRNO Not Available

SEE ALSO elt3c509End

elt3c509Parse()

NAME elt3c509Parse() – parse the init string

SYNOPSIS STATUS elt3c509Parse
 (
 ELT3C509_DEVICE * pDrvCtrl, /* device pointer */
 char * initString /* initialization info string */
)

DESCRIPTION Parse the input string. Fill in values in the driver control structure.

The initialization string format is:

 <unit>:<port>:<intVector>:<intLevel>:<attachementType>:<noRxFrames>

unit
Device unit number, a small integer.

port
base I/O address

intVector
Interrupt vector number (used with sysIntConnect)

intLevel
Interrupt level

attachmentType
type of Ethernet connector

nRxFrames
no. of Rx Frames in integer format

RETURNS OK or ERROR for invalid arguments.

2 Routines
emacTimerDebugDump()

205

2

ERRNO Not Available

SEE ALSO elt3c509End

emacEndLoad()

NAME emacEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * emacEndLoad
 (
 char * initString /* String to be parsed by the driver */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in the initString.

See ibmEmacInitParse() for the specific format of the string.

This function is meant to be called two different times during the driver load process. If this
routine is called with the first character of the initialization string equal to NULL, this routine
will return with the name of the device "emac" copied into initString. If this routine is called
with the actual driver parameters in initString, it will use the params to initialize the device
and prepare the rest of the driver for operation.

RETURNS An END object pointer, NULL if there is an error, or 0 and the name of the device if the first
character of initString is NULL.

SEE ALSO emacEnd

emacTimerDebugDump()

NAME emacTimerDebugDump() – Enable debugging output in timer handler

SYNOPSIS void emacTimerDebugDump
 (
 int unit,
 BOOL enable /* 0 for disable */
)

DESCRIPTION This function will enable/diable statistic data output in timer handler

VxWorks Drivers API Reference, 6.2
endEtherAddressForm()

206

RETURN N/A

RETURNS Not Available

ERRNO Not Available

SEE ALSO emacEnd

endEtherAddressForm()

NAME endEtherAddressForm() – form an Ethernet address into a packet

SYNOPSIS M_BLK_ID endEtherAddressForm
 (
 M_BLK_ID pMblk, /* pointer to packet mBlk */
 M_BLK_ID pSrcAddr, /* pointer to source address */
 M_BLK_ID pDstAddr, /* pointer to destination address */
 BOOL bcastFlag /* use link-level broadcast? */
)

DESCRIPTION This routine accepts the source and destination addressing information through pSrcAddr
and pDstAddr and returns an M_BLK_ID that points to the assembled link-level header. To
do this, this routine prepends the link-level header into the cluster associated with pMblk if
there is enough space available in the cluster. It then returns a pointer to the pointer
referenced in pMblk. However, if there is not enough space in the cluster associated with
pMblk, this routine reserves a new mBlk-'clBlk'-cluster construct for the header information.
It then prepends the new mBlk to the mBlk passed in pMblk. As the function value, this
routine then returns a pointer to the new mBlk, which the head of a chain of mBlk
structures. The second element of this chain is the mBlk referenced in pMblk.

RETURNS M_BLK_ID or NULL.

SEE ALSO endLib

2 Routines
endEtherPacketDataGet()

207

2

endEtherPacketAddrGet()

NAME endEtherPacketAddrGet() – locate the addresses in a packet

SYNOPSIS STATUS endEtherPacketAddrGet
 (
 M_BLK_ID pMblk, /* pointer to packet */
 M_BLK_ID pSrc, /* pointer to local source address */
 M_BLK_ID pDst, /* pointer to local destination address */
 M_BLK_ID pESrc, /* pointer to remote source address (if any) */
 M_BLK_ID pEDst /* pointer to remote destination address (if any) */
)

DESCRIPTION This routine takes a M_BLK_ID, locates the address information, and adjusts the
M_BLK_ID structures referenced in pSrc, pDst, pESrc, and pEDst so that their pData
members point to the addressing information in the packet. The addressing information is
not copied. All mBlk structures share the same cluster.

RETURNS OK

SEE ALSO endLib

endEtherPacketDataGet()

NAME endEtherPacketDataGet() – return the beginning of the packet data

SYNOPSIS STATUS endEtherPacketDataGet
 (
 M_BLK_ID pMblk,
 LL_HDR_INFO * pLinkHdrInfo
)

DESCRIPTION This routine fills the given pLinkHdrInfo with the appropriate offsets.

RETURNS OK or ERROR.

SEE ALSO endLib

VxWorks Drivers API Reference, 6.2
endObjFlagSet()

208

endObjFlagSet()

NAME endObjFlagSet() – set the flags member of an END_OBJ structure

SYNOPSIS STATUS endObjFlagSet
 (
 END_OBJ * pEnd,
 UINT flags
)

DESCRIPTION As input, this routine expects a pointer to an END_OBJ structure (the pEnd parameter) and
a flags value (the flags parameter). This routine sets the flags member of the END_OBJ
structure to the value of the flags parameter.

Because this routine assumes that the driver interface is now up, this routine also sets the
attached member of the referenced END_OBJ structure to TRUE.

RETURNS OK

SEE ALSO endLib

endObjInit()

NAME endObjInit() – initialize an END_OBJ structure

SYNOPSIS STATUS endObjInit
 (
 END_OBJ * pEndObj, /* object to be initialized */
 DEV_OBJ* pDevice, /* ptr to device struct */
 char * pBaseName, /* device base name, for example, "ln" */
 int unit, /* unit number */
 NET_FUNCS * pFuncTable, /* END device functions */
 char* pDescription
)

DESCRIPTION This routine initializes an END_OBJ structure and fills it with data from the argument list.
It also creates and initializes semaphores and protocol list.

RETURNS OK or ERROR.

SEE ALSO endLib

2 Routines
endTok_r()

209

2

endPollStatsInit()

NAME endPollStatsInit() – initialize polling statistics updates

SYNOPSIS STATUS endPollStatsInit
 (
 void * pCookie,
 FUNCPTR pIfPollRtn
)

DESCRIPTION This routine is used to begin polling of the interface specified by pCookie and will
periodically call out to the pIfPollRtn function, which will collect the interface statistics. If
the driver supports polling updates, this routine will start a watchdog that will invoke the
pIfPollRtn routine periodically. The watchdog will automatically re-arm itself. The
pIfPollRtn will be passed a pointer to the driver's END_IFDRVCONF structure as an
argument.

RETURNS ERROR if the driver doesn't support polling, otherwise OK.

SEE ALSO endLib

endTok_r()

NAME endTok_r() – get a token string (modified version)

SYNOPSIS char * endTok_r
 (
 char * string, /* string to break into tokens */
 const char * separators, /* the separators */
 char ** ppLast /* pointer to serve as string index */
)

DESCRIPTION This modified version can be used with optional parameters. If the parameter is not
specified, this version returns NULL. It does not signify the end of the original string, but
that the parameter is null.

 /* required parameters */

 string = endTok_r (initString, ":", &pLast);
 if (string == NULL)
 return ERROR;
 reqParam1 = strtoul (string);

VxWorks Drivers API Reference, 6.2
erfCategoriesAvailable()

210

 string = endTok_r (NULL, ":", &pLast);
 if (string == NULL)
 return ERROR;
 reqParam2 = strtoul (string);

 /* optional parameters */

 string = endTok_r (NULL, ":", &pLast);
 if (string != NULL)
 optParam1 = strtoul (string);

 string = endTok_r (NULL, ":", &pLast);
 if (string != NULL)
 optParam2 = strtoul (string);

RETURNS Not Available

ERRNO Not Available

SEE ALSO dec21x40End

erfCategoriesAvailable()

NAME erfCategoriesAvailable() – Get the number of unallocated User Categories.

SYNOPSIS UINT16 erfCategoriesAvailable(void)

DESCRIPTION none

RETURNS Number of categories

SEE ALSO erfLib

erfCategoriesAvailable()

NAME erfCategoriesAvailable() – Get the maximum number of Categories.

SYNOPSIS UINT16 erfMaxCategoriesGet(void)

DESCRIPTION none

2 Routines
erfCategoryAllocate()

211

2

RETURNS Number of categories

SEE ALSO erfShow

erfCategoriesAvailable()

NAME erfCategoriesAvailable() – Get the maximum number of Types.

SYNOPSIS UINT16 erfMaxTypesGet(void)

DESCRIPTION none

RETURNS Number of types

SEE ALSO erfShow

erfCategoryAllocate()

NAME erfCategoryAllocate() – allocates a user-defined Event Category

SYNOPSIS STATUS erfCategoryAllocate
 (
 UINT16 * pEventCat /* variable to return Event Category */
)

DESCRIPTION This routine allocates an Event Category for a new user-defined Event Category.

Once defined, user-defined Categories cannot be deleted.

RETURNS OK, or ERROR if unable to define this Event Category

ERRNO S_erfLib_INVALID_PARAMETER
A parameter was out of range.

S_erfLib_TOO_MANY_USER_CATS
The number of user-defined Event Categories exceeds the maximum number allowed.

SEE ALSO erfLib

VxWorks Drivers API Reference, 6.2
erfCategoryQueueCreate()

212

erfCategoryQueueCreate()

NAME erfCategoryQueueCreate() – Creates a Category Event Processing Queue.

SYNOPSIS STATUS erfCategoryQueueCreate
 (
 UINT16 eventCat, /* variable to return Event Category */
 int queueSize, /* max number of events for queue */
 int priority /* priority of event processing task */
)

DESCRIPTION This routine creates an Event Processing Queue for a Category. A new task will be created
to process events from this queue.

Once defined, all events for this category will be stored on this queue.

RETURNS OK, or ERROR if unable to create the queue.

ERRNO S_erfLib_INVALID_PARAMETER
A parameter was out of range.

S_erfLib_QUEUE_ALREADY_CREATED
The event processing queue has already been setup for this Event Category.

S_erfLib_MEMORY_ERROR
A memory allocation failed.

SEE ALSO erfLib

erfDefaultQueueSizeGet()

NAME erfDefaultQueueSizeGet() – Get the size of the default queue.

SYNOPSIS UINT16 erfDefaultQueueSizeGet(void)

DESCRIPTION none

RETURNS Number of elements that can be stored on the default queue.

SEE ALSO erfShow

2 Routines
erfHandlerRegister()

213

2

erfEventRaise()

NAME erfEventRaise() – Raises an event.

SYNOPSIS STATUS erfEventRaise
 (
 UINT16 eventCat, /* Event Category */
 UINT16 eventType, /* Event Type */
 int procType, /* Processing Type */
 void * pEventData,/* Pointer to Event Data */
 erfFreePrototype * pFreeFunc /* Function to free Event Data when done */
)

DESCRIPTION This function will directly call all the handlers that are registed for this Event Category and
either this Event Type or T_erfLib_ALL_TYPES.

This routine should not be called from an Exception or Interrupt handler.

If the Event Processing routine flag has the ERF_FLAG_AUTO_UNREG option set, the event
processing routine will be unregistered after the routine is called.

RETURNS OK, or ERROR if an error occurs

ERRNO S_erfLib_INVALID_PARAMETER
A parameter was out of range.

S_erfLib_AUTO_UNREG_ERROR
An error occurred during Auto Unregistration.

SEE ALSO erfLib

erfHandlerRegister()

NAME erfHandlerRegister() – Registers an event handler for a particular event.

SYNOPSIS STATUS erfHandlerRegister
 (
 UINT16 eventCat, /* Event Category */
 UINT16 eventType, /* Event Type */
 erfHandlerPrototype * pEventHandler, /* Pointer to Event Handler */
 void * pUserData, /* User data to be sent to Handler*/
 UINT16 flags /* Event Processing flags */
)

VxWorks Drivers API Reference, 6.2
erfHandlerUnregister()

214

DESCRIPTION This routine registers an event handler for an event. The handler pointer will be saved and
called when the event is raised. The userData will be sent to handler.

The handler must be ready to handle the event prior to calling this function.

Do NOT call this routine from an interrupt or exception handler.

RETURNS OK, or ERROR if unable to register this handler

ERRNO S_erfLib_INVALID_PARAMETER
A parameter was out of range.

S_erfLib_MEMORY_ERROR
A memory allocation failed.

SEE ALSO erfLib

erfHandlerUnregister()

NAME erfHandlerUnregister() – Registers an event handler for a particular event.

SYNOPSIS STATUS erfHandlerUnregister
 (
 UINT16 eventCat, /* Event Category */
 UINT16 eventType, /* Event Type */
 erfHandlerPrototype * pEventHandler, /* Pointer to Event Handler */
 void * pUserData /* pointer to User data structure */
)

DESCRIPTION This routine unregisters an event handler that was previously registered for an event. The
handler pointer will be deleted. The userData will be returned to caller for destruction.

The handler must be able to handle the event until this routine returns successfully.

If multiple instances of this handler are registered for the same event, only the first instance
matched in the database will be deleted.

RETURNS OK, or ERROR if unable to unregister this handler

ERRNO S_erfLib_INVALID_PARAMETER
A parameter was out of range.

S_erfLib_HANDLER_NOT_FOUND
An event handler was not found.

SEE ALSO erfLib

2 Routines
erfShow()

215

2

erfLibInit()

NAME erfLibInit() – Initialize the Event Reporting Framework library

SYNOPSIS STATUS erfLibInit
 (
 UINT16 maxUserCat, /* Maximum number of User Categories */
 UINT16 maxUserType /* Maximum number of User Types */
)

DESCRIPTION This routine initializes the library to handle registrations of event handlers. The number of
user-defined categories and types is passed in by the caller.

RETURNS OK or ERROR if an error occured during initialization

ERRNO S_erfLib_INIT_ERROR
A general Initialization Error.

S_erfLib_MEMORY_ERROR
A memory allocation failed.

SEE ALSO erfLib

erfShow()

NAME erfShow() – Shows debug info for this library.

SYNOPSIS void erfShow
 (
)

DESCRIPTION none

RETURNS Nothing

SEE ALSO erfShow

VxWorks Drivers API Reference, 6.2
erfTypeAllocate()

216

erfTypeAllocate()

NAME erfTypeAllocate() – allocates a user-defined Type for this Category

SYNOPSIS STATUS erfTypeAllocate
 (
 UINT16 eventCat, /* Event Category */
 UINT16 * pEventType /* pointer to returned Event Type */
)

DESCRIPTION This routine allocates a user-defined Event Type for a Category. Once defined, the
user-defined Type cannot be deleted.

RETURNS OK, or ERROR if unable to define this Event Type

ERRNO S_erfLib_INVALID_PARAMETER
A parameter was out of range.

S_erfLib_TOO_MANY_USER_TYPES
The number of user-defined Event Categories exceeds the maximum number allowed
for this category.

SEE ALSO erfLib

erfTypesAvailable()

NAME erfTypesAvailable() – Get the number of unallocated User Types for a category.

SYNOPSIS UINT16 erfTypesAvailable
 (
 UINT16 eventCat /* Event Category */
)

DESCRIPTION none

RETURNS Number of types or 0 for a bad category

SEE ALSO erfLib

2 Routines
evbNs16550Int()

217

2

evbNs16550HrdInit()

NAME evbNs16550HrdInit() – initialize the NS 16550 chip

SYNOPSIS void evbNs16550HrdInit
 (
 EVBNS16550_CHAN *pChan
)

DESCRIPTION This routine is called to reset the NS 16550 chip to a quiescent state.

RETURNS Not Available

ERRNO Not Available

SEE ALSO evbNs16550Sio

evbNs16550Int()

NAME evbNs16550Int() – handle a receiver/transmitter interrupt for the NS 16550 chip

SYNOPSIS void evbNs16550Int
 (
 EVBNS16550_CHAN *pChan
)

DESCRIPTION This routine is called to handle interrupts. If there is another character to be transmitted, it
sends it. If the interrupt handler is called erroneously (for example, if a device has never
been created for the channel), it disables the interrupt.

RETURNS Not Available

ERRNO Not Available

SEE ALSO evbNs16550Sio

VxWorks Drivers API Reference, 6.2
fdDevCreate()

218

fdDevCreate()

NAME fdDevCreate() – create a device for a floppy disk

SYNOPSIS BLK_DEV *fdDevCreate
 (
 int drive, /* driver number of floppy disk (0 - 3) */
 int fdType, /* type of floppy disk */
 int nBlocks, /* device size in blocks (0 = whole disk) */
 int blkOffset /* offset from start of device */
)

DESCRIPTION This routine creates a device for a specified floppy disk.

The drive parameter is the drive number of the floppy disk; valid values are 0 to 3.

The fdType parameter specifies the type of diskette, which is described in the structure table
fdTypes[] in sysLib.c. fdType is an index to the table. Currently the table contains two
diskette types:

- An fdType of 0 indicates the first entry in the table (3.5" 2HD, 1.44MB);

- An fdType of 1 indicates the second entry in the table (5.25" 2HD, 1.2MB).

Members of the fdTypes[] structure are:

 int sectors; /* no of sectors */
 int sectorsTrack; /* sectors per track */
 int heads; /* no of heads */
 int cylinders; /* no of cylinders */
 int secSize; /* bytes per sector, 128 << secSize */
 char gap1; /* gap1 size for read, write */
 char gap2; /* gap2 size for format */
 char dataRate; /* data transfer rate */
 char stepRate; /* stepping rate */
 char headUnload; /* head unload time */
 char headLoad; /* head load time */
 char mfm; /* MFM bit for read, write, format */
 char sk; /* SK bit for read */
 char *name; /* name */

The nBlocks parameter specifies the size of the device, in blocks. If nBlocks is zero, the whole
disk is used.

The blkOffset parameter specifies an offset, in blocks, from the start of the device to be used
when writing or reading the floppy disk. This offset is added to the block numbers passed
by the file system during disk accesses. (VxWorks file systems always use block numbers
beginning at zero for the start of a device.) Normally, blkOffset is 0.

RETURNS A pointer to a block device structure (BLK_DEV) or NULL if memory cannot be allocated for
the device structure.

2 Routines
fdRawio()

219

2

ERRNO Not Available

SEE ALSO nec765Fd, fdDrv(), fdRawio(), dosFsMkfs(), dosFsDevInit(), rawFsDevInit()

fdDrv()

NAME fdDrv() – initialize the floppy disk driver

SYNOPSIS STATUS fdDrv
 (
 int vector, /* interrupt vector */
 int level /* interrupt level */
)

DESCRIPTION This routine initializes the floppy driver, sets up interrupt vectors, and performs hardware
initialization of the floppy chip.

This routine should be called exactly once, before any reads, writes, or calls to
fdDevCreate(). Normally, it is called by usrRoot() in usrConfig.c.

RETURNS OK.

ERRNO Not Available

SEE ALSO nec765Fd, fdDevCreate(), fdRawio()

fdRawio()

NAME fdRawio() – provide raw I/O access

SYNOPSIS STATUS fdRawio
 (
 int drive, /* drive number of floppy disk (0 - 3) */
 int fdType, /* type of floppy disk */
 FD_RAW *pFdRaw /* pointer to FD_RAW structure */
)

DESCRIPTION This routine is called when the raw I/O access is necessary.

The drive parameter is the drive number of the floppy disk; valid values are 0 to 3.

VxWorks Drivers API Reference, 6.2
fei82557DumpPrint()

220

The fdType parameter specifies the type of diskette, which is described in the structure table
fdTypes[] in sysLib.c. fdType is an index to the table. Currently the table contains two
diskette types:

- An fdType of 0 indicates the first entry in the table (3.5" 2HD, 1.44MB);

- An fdType of 1 indicates the second entry in the table (5.25" 2HD, 1.2MB).

The pFdRaw is a pointer to the structure FD_RAW, defined in nec765Fd.h

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO nec765Fd, fdDrv(), fdDevCreate()

fei82557DumpPrint()

NAME fei82557DumpPrint() – Display statistical counters

SYNOPSIS STATUS fei82557DumpPrint
 (
 int unit /* pointer to DRV_CTRL structure */
)

DESCRIPTION This routine displays i82557 statistical counters

RETURNS OK, or ERROR if the DUMP command failed.

ERRNO Not Available

SEE ALSO fei82557End

fei82557EndLoad()

NAME fei82557EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* fei82557EndLoad
 (
 char *initString /* parameter string */
)

2 Routines
fei82557EndLoad()

221

2

DESCRIPTION This routine initializes both driver and device to an operational state using device-specific
parameters specified by initString.

The parameter string initString is an ordered list of parameters each separated by a colon.
The format of initString is as follows:

"unit:memBase:memSize:nCfds:nRfds:flags:offset:deviceId:
maxRxFrames:clToRfdRatio:nClusters"

The 82557 shares a region of memory with the driver. The caller of this routine can specify
the address of this memory region, or can specify that the driver must obtain this memory
region from the system resources.

A default number of transmit/receive frames of 32 and 128 respectively and can be selected
by passing zero in the parameters nTfds and nRfds. In other cases, the number of frames
selected should be greater than two.

All optional parameters can be set to their default value by specifying NONE (-1) as their
value.

The memBase parameter is used to inform the driver about the shared memory region. If this
parameter is set to the constant NONE, this routine attempts to allocate the shared memory
from the system. Any other value for this parameter is interpreted by this routine as the
address of the shared memory region to be used. The memSize parameter is used to check
that this region is large enough with respect to the provided values of both transmit/receive
frames.

If the caller provides the shared memory region, the driver assumes that this region is
non-cached.

If the caller indicates that this routine must allocate the shared memory region, this routine
will use memalign() to allocate some cache aligned memory.

The memSize parameter specifies the size of the pre-allocated memory region. If memory
base is specified as NONE (-1), the driver ignores this parameter. Otherwise, the driver
checks the size of the provided memory region is adequate with respect to the given number
of RFDs, RBDs, CFDs, and clusters specified. The number of clusters required will be at least
equal to (nRfds * 2) + nCfds. Otherwise the End Load routine will return ERROR. The number
of clusters can be specified by either passing a value in the nCluster parameter, in which case
the nCluster value must be at least nRfds * 2, or by setting the cluster to RFD ratio
(clToRfdRatio) to a number equal or greater than 2.

The nTfds parameter specifies the number of transmit descriptor/buffers to be allocated. If
this parameter is less than two, a default of 64 is used.

The nRfds parameter specifies the number of receive descriptors to be allocated. If this
parameter is less than two or NONE (-1) a default of 128 is used.

The flags parameter specifies the user flags may control the run-time characteristics of the
Ethernet chip. Not implemented.

VxWorks Drivers API Reference, 6.2
fei82557ErrCounterDump()

222

The offset parameter is used to align IP header on word boundary for CPUs that need long
word aligned access to the IP packet (this will normally be zero or two). This parameter is
optional, the default value is zero.

The deviceId parameter is used to indicate the specific type of device being used, the 82557
or subsequent. This is used to determine if features which were introduced after the 82557
can be used. The default is the 82557. If this is set to any value other than ZERO (0), NONE
(-1), or FEI82557_DEVICE_ID (0x1229) it is assumed that the device will support features not
in the 82557.

The maxRxFrames parameter limits the number of frames the receive handler will service in
one pass. It is intended to prevent the tNetTask from monopolizing the CPU and starving
applications. This parameter is optional, the default value is nRfds * 2.

The clToRfdRatio parameter sets the number of clusters as a ratio of nRfds. The minimum
setting for this parameter is 2. This parameter is optional, the default value is 5.

The nClusters parameter sets the number of clusters to allocate. This value must be at least
nRfds * 2. If this value is set, the clToRfdRatio is ignored. This parameter is optional. The
default is nRfds * clToRfdRatio.

RETURNS an END object pointer, or NULL on error.

ERRNO Not Available

SEE ALSO fei82557End, ifLib, Intel 82557 User's Manual

fei82557ErrCounterDump()

NAME fei82557ErrCounterDump() – dump statistical counters

SYNOPSIS STATUS fei82557ErrCounterDump
 (
 DRV_CTRL * pDrvCtrl, /* pointer to DRV_CTRL structure */
 UINT32 * memAddr
)

DESCRIPTION This routine dumps statistical counters for the purpose of debugging and tuning the 82557.

The memAddr parameter is the pointer to an array of 68 bytes in the local memory. This
memory region must be allocated before this routine is called. The memory space must also
be DWORD (4 bytes) aligned. When the last DWORD (4 bytes) is written to a value, 0xa007,
it indicates the dump command has completed. To determine the meaning of each statistical
counter, see the Intel 82557 manual.

2 Routines
fei82557ShowRxRing()

223

2

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO fei82557End

fei82557GetRUStatus()

NAME fei82557GetRUStatus() – Return the current RU status and int mask

SYNOPSIS void fei82557GetRUStatus
 (
 int unit
)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO fei82557End

fei82557ShowRxRing()

NAME fei82557ShowRxRing() – Show the Receive ring

SYNOPSIS void fei82557ShowRxRing
 (
 int unit
)

DESCRIPTION This routine dumps the contents of the RFDs and RBDs in the Rx ring.

RETURNS N/A

ERRNO Not Available

SEE ALSO fei82557End

VxWorks Drivers API Reference, 6.2
gei82543EndLoad()

224

gei82543EndLoad()

NAME gei82543EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* gei82543EndLoad
 (
 char *initString /* String to be parsed by the driver. */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in the initString.

The string contains the target-specific parameters like this:
"unitnum:shmem_addr:shmem_size:rxDescNum:txDescNum:usrFlags:offset:mtu"

RETURNS an END object pointer, NULL if error, or zero

ERRNO Not Available

SEE ALSO gei82543End

gei82543LedOff()

NAME gei82543LedOff() – turn off LED

SYNOPSIS void gei82543LedOff
 (
 int unit /* device unit */
)

DESCRIPTION This routine turns LED off

RETURNS N/A

ERRNO Not Available

SEE ALSO gei82543End

2 Routines
gei82543PhyRegGet()

225

2

gei82543LedOn()

NAME gei82543LedOn() – turn on LED

SYNOPSIS void gei82543LedOn
 (
 int unit /* device unit */
)

DESCRIPTION This routine turns LED on

RETURNS N/A

ERRNO Not Available

SEE ALSO gei82543End

gei82543PhyRegGet()

NAME gei82543PhyRegGet() – get the register value in PHY

SYNOPSIS int gei82543PhyRegGet
 (
 int unit, /* device unit */
 int reg /* PHY's register */
)

DESCRIPTION This routine returns the PHY's register value, or -1 if an error occurs.

RETURNS PHY's register value

ERRNO Not Available

SEE ALSO gei82543End

VxWorks Drivers API Reference, 6.2
gei82543PhyRegSet()

226

gei82543PhyRegSet()

NAME gei82543PhyRegSet() – set the register value in PHY

SYNOPSIS int gei82543PhyRegSet
 (
 int unit, /* device unit */
 int reg, /* PHY's register */
 UINT16 tmp
)

DESCRIPTION This routine returns the PHY's register value, or -1 if an error occurs.

RETURNS PHY's register value

ERRNO Not Available

SEE ALSO gei82543End

gei82543RegGet()

NAME gei82543RegGet() – get the specified register value in 82543 chip

SYNOPSIS UINT32 gei82543RegGet
 (
 int unit, /* device unit */
 UINT32 offset /* register offset */
)

DESCRIPTION This routine gets and shows the specified register value in 82543 chip

RETURNS Register value

ERRNO Not Available

SEE ALSO gei82543End

2 Routines
gei82543TbiCompWr()

227

2

gei82543RegSet()

NAME gei82543RegSet() – set the specified register value

SYNOPSIS void gei82543RegSet
 (
 int unit, /* device unit */
 UINT32 offset, /* register offset */
 UINT32 regVal /* value to write */
)

DESCRIPTION This routine sets the specified register value

RETURNS N/A

ERRNO Not Available

SEE ALSO gei82543End

gei82543TbiCompWr()

NAME gei82543TbiCompWr() – enable/disable the TBI compatibility workaround

SYNOPSIS void gei82543TbiCompWr
 (
 int unit, /* device unit */
 int flag /* 0 - off, and others on */
)

DESCRIPTION This routine enables/disables TBI compatibility workaround if needed

Input: unit - unit number of the gei device
flag - 0 to turn off TBI compatibility, others to turn on

RETURNS N/A

ERRNO Not Available

SEE ALSO gei82543End

VxWorks Drivers API Reference, 6.2
gei82543Unit()

228

gei82543Unit()

NAME gei82543Unit() – return a pointer to the END_DEVICE for a gei unit

SYNOPSIS END_DEVICE * gei82543Unit
 (
 int unit
)

DESCRIPTION none

RETURNS A pointer the END_DEVICE for the unit, or NULL.

ERRNO Not Available

SEE ALSO gei82543End

i8250HrdInit()

NAME i8250HrdInit() – initialize the chip

SYNOPSIS void i8250HrdInit
 (
 I8250_CHAN * pChan /* pointer to device */
)

DESCRIPTION This routine is called to reset the chip in a quiescent state.

RETURNS N/A

ERRNO Not Available

SEE ALSO i8250Sio

2 Routines
iOlicomEndLoad()

229

2

i8250Int()

NAME i8250Int() – handle a receiver/transmitter interrupt

SYNOPSIS void i8250Int
 (
 I8250_CHAN * pChan
)

DESCRIPTION This routine handles four sources of interrupts from the UART. If there is another character
to be transmitted, the character is sent. When a modem status interrupt occurs, the transmit
interrupt is enabled if the CTS signal is TRUE.

RETURNS N/A

ERRNO Not Available

SEE ALSO i8250Sio

iOlicomEndLoad()

NAME iOlicomEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * iOlicomEndLoad
 (
 char * initString /* String to be parsed by the driver. */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in the initString.

This routine can be called in two modes. If it is called with an empty but allocated string, it
places the name of this device (i.e. oli) into the initString and returns 0.

If the string is allocated, the routine attempts to perform its load functionality.

RETURNS An END object pointer or NULL on error or 0 and the name of the device if the initString was
NULL.

ERRNO Not Available

SEE ALSO iOlicomEnd

VxWorks Drivers API Reference, 6.2
iOlicomIntHandle()

230

iOlicomIntHandle()

NAME iOlicomIntHandle() – interrupt service for card interrupts

SYNOPSIS void iOlicomIntHandle
 (
 END_DEVICE * pDrvCtrl /* pointer to END_DEVICE structure */
)

DESCRIPTION This routine is called when an interrupt has been detected from the Olicom card.

RETURNS N/A.

ERRNO Not Available

SEE ALSO iOlicomEnd

iPIIX4AtaInit()

NAME iPIIX4AtaInit() – low-level initialization of ATA device

SYNOPSIS STATUS iPIIX4AtaInit
 (
)

DESCRIPTION This routine will initialize PIIX4 - PCI-ISA/IDE bridge for proper working of ATA device.

RETURNS OK or ERROR.

SEE ALSO iPIIX4

iPIIX4FdInit()

NAME iPIIX4FdInit() – initializes the floppy disk device

SYNOPSIS STATUS iPIIX4FdInit
 (
)

2 Routines
iPIIX4Init()

231

2

DESCRIPTION This routine will initialize PIIX4 - PCI-ISA/IDE bridge and DMA for proper working of
floppy disk device

RETURNS OK or ERROR.

SEE ALSO iPIIX4

iPIIX4GetIntr()

NAME iPIIX4GetIntr() – give device an interrupt level to use

SYNOPSIS char iPIIX4GetIntr
 (
 int pintx
)

DESCRIPTION This routine will give device an interrupt level to use based on PCI INT A through D, valid
values for pintx are 0, 1, 2 and 3. An autoroute in disguise.

RETURNS char - interrupt level

SEE ALSO iPIIX4

iPIIX4Init()

NAME iPIIX4Init() – initialize PIIX4

SYNOPSIS STATUS iPIIX4Init
 (
)

DESCRIPTION initialize PIIX4

RETURNS OK or ERROR.

SEE ALSO iPIIX4

VxWorks Drivers API Reference, 6.2
iPIIX4IntrRoute()

232

iPIIX4IntrRoute()

NAME iPIIX4IntrRoute() – Route PIRQ[A:D]

SYNOPSIS STATUS iPIIX4IntrRoute
 (
 int pintx,
 char irq
)

DESCRIPTION This routine will connect an irq to a pci interrupt.

RETURNS OK or ERROR.

SEE ALSO iPIIX4

iPIIX4KbdInit()

NAME iPIIX4KbdInit() – initializes the PCI-ISA/IDE bridge

SYNOPSIS STATUS iPIIX4KbdInit
 (
)

DESCRIPTION This routine will initialize PIIX4 - PCI-ISA/IDE bridge to enable keyboard device and IRQ
routing

RETURNS OK or ERROR.

SEE ALSO iPIIX4

ln97xEndLoad()

NAME ln97xEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * ln97xEndLoad
 (
 char * initString /* string to be parsed by the driver */
)

2 Routines
ln97xInitParse()

233

2

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString, which expects a string of the following
format:

<unit:devMemAddr:devIoAddr:pciMemBase:vecnum:intLvl:memAdrs
:memSize:memWidth:csr3b:offset:flags>

This routine can be called in two modes. If it is called with an empty but allocated string, it
places the name of this device (that is, "lnPci") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

ERRNO Not Available

SEE ALSO ln97xEnd

ln97xInitParse()

NAME ln97xInitParse() – parse the initialization string

SYNOPSIS STATUS ln97xInitParse
 (
 LN_97X_DRV_CTRL * pDrvCtrl, /* pointer to the control structure */
 char * initString /* initialization string */
)

DESCRIPTION Parse the input string. This routine is called from ln97xEndLoad() which initializes some
values in the driver control structure with the values passed in the initialization string.

The initialization string format is:

<unit:devMemAddr:devIoAddr:pciMemBase:vecNum:intLvl:memAdrs
:memSize:memWidth:csr3b:offset:flags>

unit
The device unit number. Unit numbers are integers starting at zero and increasing for
each device controlled by the driver.

devMemAddr
The device memory mapped I/O register base address. Device registers must be
mapped into the host processor address space in order for the driver to be functional.
Thus, this is a required parameter.

VxWorks Drivers API Reference, 6.2
lptDevCreate()

234

devIoAddr
Device register base I/O address (obsolete).

pciMemBase
Base address of PCI memory space.

vecNum
Interrupt vector number.

intLvl
Interrupt level. Generally, this value specifies an interrupt level defined for an external
interrupt controller.

memAdrs
Memory pool address or NONE.

memSize
Memory pool size or zero.

memWidth
Memory system size, 1, 2, or 4 bytes (optional).

CSR3
Control and Status Register 3 (CSR3) options.

offset
Memory alignment offset.

flags
Device-specific flags reserved for future use.

RETURNS OK, or ERROR if any arguments are invalid.

ERRNO Not Available

SEE ALSO ln97xEnd

lptDevCreate()

NAME lptDevCreate() – create a device for an LPT port

SYNOPSIS STATUS lptDevCreate
 (
 char *name, /* name to use for this device */
 int channel /* physical channel for this device (0 - 2) */
)

2 Routines
lptDrv()

235

2

DESCRIPTION This routine creates a device for a specified LPT port. Each port to be used should have
exactly one device associated with it by calling this routine.

For instance, to create the device /lpt/0, the proper call would be:

 lptDevCreate ("/lpt/0", 0);

RETURNS OK, or ERROR if the driver is not installed, the channel is invalid, or the device already
exists.

ERRNO Not Available

SEE ALSO lptDrv, lptDrv()

lptDrv()

NAME lptDrv() – initialize the LPT driver

SYNOPSIS STATUS lptDrv
 (
 int channels, /* LPT channels */
 LPT_RESOURCE *pResource /* LPT resources */
)

DESCRIPTION This routine initializes the LPT driver, sets up interrupt vectors, and performs hardware
initialization of the LPT ports.

This routine should be called exactly once, before any reads, writes, or calls to
lptDevCreate(). Normally, it is called by usrRoot() in usrConfig.c.

RETURNS OK, or ERROR if the driver cannot be installed.

ERRNO Not Available

SEE ALSO lptDrv, lptDevCreate()

VxWorks Drivers API Reference, 6.2
lptShow()

236

lptShow()

NAME lptShow() – show LPT statistics

SYNOPSIS void lptShow
 (
 UINT channel /* channel (0 - 2) */
)

DESCRIPTION This routine shows statistics for a specified LPT port.

RETURNS N/A

ERRNO Not Available

SEE ALSO lptDrv

m8260SccEndLoad()

NAME m8260SccEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * m8260SccEndLoad
 (
 char * initString
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in the initString, which is of the following format:

unit:motCpmAddr:ivec:sccNum:txBdNum:rxBdNum:txBdBase:rxBdBase:bufBase

The parameters of this string are individually described in the motCpmEnd man page.

The SCC shares a region of memory with the driver. The caller of this routine can specify
the address of a non-cacheable memory region with bufBase. Or, if this parameter is NONE,
the driver obtains this memory region by making calls to cacheDmaMalloc().
Non-cacheable memory space is important whenever the host processor uses cache
memory. This is also the case when the MC68EN360 is operating in companion mode and is
attached to a processor with cache memory.

After non-cacheable memory is obtained, this routine divides up the memory between the
various buffer descriptors (BDs). The number of BDs can be specified by txBdNum and
rxBdNum, or if "NULL", a default value of 32 BDs will be used. An additional number of

2 Routines
mib2ErrorAdd()

237

2

buffers are reserved as receive loaner buffers. The number of loaner buffers is a default
number of 16.

The user must specify the location of the transmit and receive BDs in the processor's dual
ported RAM. txBdBase and rxBdBase give the offsets from motCpmAddr for the base of the BD
rings. Each BD uses 8 bytes. Care must be taken so that the specified locations for Ethernet
BDs do not conflict with other dual ported RAM structures.

Multiple individual device units are supported by this driver. Device units can reside on
different chips, or could be on different SCCs within a single processor. The sccNum
parameter is used to explicitly state which SCC is being used. SCC1 is most commonly used,
thus this parameter most often equals "1".

Before this routine returns, it connects up the interrupt vector ivec.

RETURNS An END object pointer or NULL on error.

ERRNO Not Available

SEE ALSO m8260SccEnd, Motorola MPC8260 User's Manual

mib2ErrorAdd()

NAME mib2ErrorAdd() – change a MIB-II error count

SYNOPSIS STATUS mib2ErrorAdd
 (
 M2_INTERFACETBL * pMib,
 int errCode,
 int value
)

DESCRIPTION This function adds a specified value to one of the MIB-II error counters in a MIB-II interface
table. The counter to be altered is specified by the errCode argument. errCode can be
MIB2_IN_ERRS, MIB2_IN_UCAST, MIB2_OUT_ERRS or MIB2_OUT_UCAST. Specifying a
negative value reduces the error count, a positive value increases the error count.

RETURNS OK

SEE ALSO endLib

VxWorks Drivers API Reference, 6.2
mib2Init()

238

mib2Init()

NAME mib2Init() – initialize a MIB-II structure

SYNOPSIS STATUS mib2Init
 (
 M2_INTERFACETBL *pMib, /* struct to be initialized */
 long ifType, /* ifType from m2Lib.h */
 UCHAR * phyAddr, /* MAC/PHY address */
 int addrLength, /* MAC/PHY address length */
 int mtuSize, /* MTU size */
 int speed /* interface speed */
)

DESCRIPTION Initialize a MIB-II structure. Set all error counts to zero. Assume a 10Mbps Ethernet device.

RETURNS OK or ERROR.

SEE ALSO endLib

miiAnCheck()

NAME miiAnCheck() – check the auto-negotiation process result

SYNOPSIS STATUS miiAnCheck
 (
 PHY_INFO * pPhyInfo, /* pointer to PHY_INFO structure */
 UINT8 phyAddr /* address of a PHY */
)

DESCRIPTION This routine checks the auto-negotiation process has completed successfully and no faults
have been detected by any of the PHYs engaged in the process.

NOTE In case the cable is pulled out and reconnect to the same/different hub/switch again. PHY
probably starts a new auto-negotiation process and get different negotiation results. Users
should call this routine to check link status and update phyFlags. pPhyInfo should include a
valid PHY bus number (phyAddr), and include the phyFlags that was used last time to
configure auto-negotiation process.

RETURNS OK or ERROR.

2 Routines
miiLibUnInit()

239

2

ERRNO Not Available

SEE ALSO miiLib

miiLibInit()

NAME miiLibInit() – initialize the MII library

SYNOPSIS STATUS miiLibInit (void)

DESCRIPTION This routine initializes the MII library.

PROTECTION DOMAINS

(VxAE) This function can only be called from within the kernel protection domain.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO miiLib

miiLibUnInit()

NAME miiLibUnInit() – uninitialize the MII library

SYNOPSIS STATUS miiLibUnInit
 (
)

DESCRIPTION This routine uninitializes the MII library. Previously allocated resources are reclaimed back
to the system.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO miiLib

VxWorks Drivers API Reference, 6.2
miiPhyInit()

240

miiPhyInit()

NAME miiPhyInit() – initialize and configure the PHY devices

SYNOPSIS STATUS miiPhyInit
 (
 PHY_INFO * pPhyInfo /* pointer to PHY_INFO structure */
)

DESCRIPTION This routine scans, initializes and configures the PHY device described in phyInfo. Space for
phyInfo is to be provided by the calling task.

This routine is called from the driver's Start routine to perform media initialization and
configuration. To access the PHY device through the MII-management interface, it uses the
read and write routines which are provided by the driver itself in the fields phyReadRtn(),
phyWriteRtn() of the phyInfo structure. Before it attempts to use this routine, the driver has
to properly initialize some of the fields in the phyInfo structure, and optionally fill in others,
as below:

 /* fill in mandatory fields in phyInfo */

 pDrvCtrl->phyInfo->pDrvCtrl = (void *) pDrvCtrl;
 pDrvCtrl->phyInfo->phyWriteRtn = (FUNCPTR) xxxMiiWrite;
 pDrvCtrl->phyInfo->phyReadRtn = (FUNCPTR) xxxMiiRead;

 /* fill in some optional fields in phyInfo */

 pDrvCtrl->phyInfo->phyFlags = 0;
 pDrvCtrl->phyInfo->phyAddr = (UINT8) MII_PHY_DEF_ADDR;
 pDrvCtrl->phyInfo->phyDefMode = (UINT8) PHY_10BASE_T;
 pDrvCtrl->phyInfo->phyAnOrderTbl = (MII_AN_ORDER_TBL *)
 &xxxPhyAnOrderTbl;

 /*
 @ fill in some more optional fields in phyInfo: the delay stuff
 @ we want this routine to use our xxxDelay () routine, with
 @ the constant one as an argument, and the max delay we may
 @ tolerate is the constant MII_PHY_DEF_DELAY, in xxxDelay units
 */

 pDrvCtrl->phyInfo->phyDelayRtn = (FUNCPTR) xxxDelay;
 pDrvCtrl->phyInfo->phyMaxDelay = MII_PHY_DEF_DELAY;
 pDrvCtrl->phyInfo->phyDelayParm = 1;

 /*
 @ fill in some more optional fields in phyInfo: the PHY's callback
 @ to handle "link down" events. This routine is invoked whenever
 @ the link status in the PHY being used is detected to be low.
 */

 pDrvCtrl->phyInfo->phyStatChngRtn = (FUNCPTR) xxxRestart;

2 Routines
miiPhyInit()

241

2

Some of the above fields may be overwritten by this routine, since for instance, the logical
address of the PHY actually used may differ from the user's initial setting. Likewise, the
specific PHY being initialized, may not support all the technology abilities the user has
allowed for its operations.

This routine first scans for all possible PHY addresses in the range 0-31, checking for an
MII-compliant PHY, and attempts at running some diagnostics on it. If none is found,
ERROR is returned.

Typically PHYs are scanned from address 0, but if the user specifies an alternative start PHY
address via the parameter phyAddr in the phyInfo structure, PHYs are scanned in order
starting with the specified PHY address. In addition, if the flag MII_ALL_BUS_SCAN is set,
this routine will scan the whole bus even if a valid PHY has already been found, and stores
bus topology information. If the flags MII_PHY_ISO and MII_PHY_PWR_DOWN are set, all
of the PHYs found but the first will be respectively electrically isolated from the MII
interface and/or put in low-power mode. These two flags are meaningless in a
configuration where only one PHY is present.

The phyAddr parameter is very important from a performance point of view. Since the MII
management interface, through which the PHY is configured, is a very slow one, providing
an incorrect or invalid address in this field may result in a particularly long boot process.

If the flag MII_ALL_BUS_SCAN is not set, this routine will assume that the first PHY found
is the only one.

This routine then attempts to bring the link up. This routine offers two strategies to select a
PHY and establish a valid link. The default strategy is to use the standard 802.3 style
auto-negotiation, where both link partners negotiate all their technology abilities at the
same time, and the highest common denominator ability is chosen. Before the
auto-negotiation is started, the next-page exchange mechanism is disabled.

If GMII interface is used, users can specify it through userFlags -- MII_PHY_GMII_TYPE.

The user can prevent the PHY from negotiating certain abilities via userFlags --
MII_PHY_FD, MII_PHY_100, MII_PHY_HD, and MII_PHY_10, as well as MII_PHY_1000T_HD
and MII_PHY_1000T_FD if GMII is used. When MII_PHY_FD is not specified, full duplex will
not be negotiated; when MII_PHY_HD is not specified half duplex will not be negotiated,
when MII_PHY_100 is not specified, 100Mbps ability will not be negotiated; when
MII_PHY_10 is not specified, 10Mbps ability will not be negotiated. Also, if GMII is used,
when MII_PHY_1000T_HD is not specified, 1000T with half duplex mode will not be
negotiated. Same thing applied to 1000T with full duplex mode via MII_PHY_1000T_FD.

Flow control ability can also be negotiated via user flags -- MII_PHY_TX_FLOW_CTRL and
MII_PHY_RX_FLOW_CTRL. For symmetric PAUSE ability (MII), user can set/clean both
flags together. For asymmetric PAUSE ability (GMII), user can separate transmit and receive
flow control ability. However, user should be aware that flow control ability is meaningful
only if full duplex mode is used.

When MII_PHY_TBL is set in the user flags, the BSP-specific table whose address may be
provided in the phyAnOrderTbl field of the phyInfo structure, is used to obtain the list, and

VxWorks Drivers API Reference, 6.2
miiPhyOptFuncMultiSet()

242

the order of technology abilities to be negotiated. The entries in this table are ordered such
that entry 0 is the highest priority, entry 1 in next and so on. Entries in this table may be
repeated, and multiple technology abilities can be ORed to create a single entry. If a PHY
cannot support a ability in an entry, that entry is ignored.

If no PHY provides a valid link, and if MII_PHY_DEF_SET is set in the phyFlags field of the
PHY_INFO structure, the first PHY that supports the default abilities defined in the
phyDefMode of the phyInfo structure will be selected, regardless of the link status.

In addition, this routine adds an entry in a linked list of PHY devices for each active PHY it
found. If the flag MII_PHY_MONITOR is set, the link status for the relevant PHY is
continually monitored for a link down event. If such event is detected, and if the
phyLinkDownRtn in the PHY_INFO * structure is a valid function pointer, the routine it points
at is executed in the context of the netTask(). The parameter MII_MONITOR_DELAY may
be used to define the period in seconds with which the link status is checked. Its default
value is 5.

RETURNS OK or ERROR if the PHY could not be initialized,

ERRNO Not Available

SEE ALSO miiLib

miiPhyOptFuncMultiSet()

NAME miiPhyOptFuncMultiSet() – set pointers to MII optional registers handlers

SYNOPSIS void miiPhyOptFuncMultiSet
 (
 PHY_INFO * pPhyInfo, /* device-specific pPhyInfo pointer */
 FUNCPTR optRegsFunc /* function pointer */
)

DESCRIPTION This routine sets the function pointers in pPhyInfo-optRegsFunc> to the MII optional,
PHY-specific registers handler. The handler will be executed before the PHY's technology
abilities are negotiated. If a system employees more than on type of network device
requiring a PHY-specific registers handler use this routine instead of miiPhyOptFuncSet()
to ensure device-specific handlers and to avoid overwritting one's with the other's.

PROTECTION DOMAINS

(VxAE) This function can only be called from within the kernel protection domain. The
argument optRegsFunc MUST be a pointer to function in the kernel protection domain.

RETURNS N/A.

2 Routines
miiPhyUnInit()

243

2

ERRNO Not Available

SEE ALSO miiLib

miiPhyOptFuncSet()

NAME miiPhyOptFuncSet() – set the pointer to the MII optional registers handler

SYNOPSIS void miiPhyOptFuncSet
 (
 FUNCPTR optRegsFunc /* function pointer */
)

DESCRIPTION This routine sets the function pointer in optRegsFunc to the MII optional, PHY-specific
registers handler. The handler will be executed before the PHY's technology abilities are
negotiated.

PROTECTION DOMAINS

(VxAE) This function can only be called from within the kernel protection domain. The
argument optRegsFunc MUST be a pointer to function in the kernel protection domain.

RETURNS N/A.

ERRNO Not Available

SEE ALSO miiLib

miiPhyUnInit()

NAME miiPhyUnInit() – uninitialize a PHY

SYNOPSIS STATUS miiPhyUnInit
 (
 PHY_INFO * pPhyInfo /* pointer to PHY_INFO structure */
)

DESCRIPTION This routine uninitializes the PHY specified in pPhyInfo. It brings it in low-power mode, and
electrically isolate it from the MII management interface to which it is attached. In addition,
it frees resources previously allocated.

VxWorks Drivers API Reference, 6.2
miiRegsGet()

244

RETURNS OK, ERROR in case of fatal errors.

ERRNO Not Available

SEE ALSO miiLib

miiRegsGet()

NAME miiRegsGet() – get the contents of MII registers

SYNOPSIS STATUS miiRegsGet
 (
 PHY_INFO * pPhyInfo, /* pointer to PHY_INFO structure */
 UINT regNum, /* number of registers to display */
 UCHAR * buff /* where to read registers to */
)

DESCRIPTION This routine gets the contents of the first regNum MII registers, and, if buff is not NULL,
copies them to the space pointed to by buff.

RETURNS OK, or ERROR if could not perform the read.

ERRNO Not Available

SEE ALSO miiLib

miiShow()

NAME miiShow() – show routine for MII library

SYNOPSIS void miiShow
 (
 PHY_INFO * pPhyInfo /* pointer to PHY_INFO structure */
)

DESCRIPTION This is a show routine for the MII library

RETURNS OK, always.

2 Routines
motFccDumpRxRing()

245

2

ERRNO Not Available

SEE ALSO miiLib

motFccDrvShow()

NAME motFccDrvShow() – Debug Function to show FCC parameter ram addresses, initial BD and
cluster settings

SYNOPSIS void motFccDrvShow
 (
 DRV_CTRL * pDrvCtrl
)

DESCRIPTION .This function is only available when MOT_FCC_DBG is defined. It should be used for
debugging purposes only.

RETURNS N/A

ERRNO Not Available

SEE ALSO motFcc2End

motFccDumpRxRing()

NAME motFccDumpRxRing() – Show the Receive Ring details

SYNOPSIS void motFccDumpRxRing
 (
 int fccNum
)

DESCRIPTION This routine displays the receive ring descriptors.

RETURNS N/A

ERRNO Not Available

SEE ALSO motFcc2End, motFccDumpTxRing()

VxWorks Drivers API Reference, 6.2
motFccDumpTxRing()

246

motFccDumpTxRing()

NAME motFccDumpTxRing() – Show the Transmit Ring details

SYNOPSIS void motFccDumpTxRing
 (
 int fccNum
)

DESCRIPTION This routine displays the transmit ring descriptors.

RETURNS N/A

ERRNO Not Available

SEE ALSO motFcc2End, motFccDumpRxRing()

motFccEndLoad()

NAME motFccEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* motFcc2EndLoad
 (
 char *initString
)

DESCRIPTION This routine initializes both driver and device to an operational state using device-specific
parameters specified by initString.

The parameter string, initString, is an ordered list of parameters each separated by a colon.
The format of initString is:

"unitimmrVal:fccNum:bdBase:bdSize:bufBase:bufSize:fifoTxBase:
fifoRxBase:tbdNum:rbdNum:phyAddr:phyDefMode:phyAnOrderTbl: userFlags:function
table(:maxRxFrames)"

The FCC shares a region of memory with the driver. The caller of this routine can specify the
address of this memory region, or can specify that the driver must obtain this memory
region from the system resources.

A default number of transmit/receive buffer descriptors of 32 can be selected by passing
zero in the parameters tbdNum and rbdNum. In other cases, the number of buffers selected
should be greater than two.

2 Routines
motFccEramShow()

247

2

The bufBase parameter is used to inform the driver about the shared memory region. If this
parameter is set to the constant NONE, this routine attempts to allocate the shared memory
from the system. Any other value for this parameter is interpreted by this routine as the
address of the shared memory region to be used. The bufSize parameter is used to check that
this region is large enough with respect to the provided values of both transmit/receive
buffer descriptors.

If the caller provides the shared memory region, the driver assumes that this region does not
require cache coherency operations, nor does it require conversions between virtual and
physical addresses.

If the caller indicates that this routine must allocate the shared memory region, this routine
uses cacheDmaMalloc() to obtain some cache-safe memory. The attributes of this memory
is checked, and if the memory is not write coherent, this routine aborts and returns NULL.

RETURNS an END object pointer, or NULL on error.

ERRNO Not Available

SEE ALSO motFcc2End, ifLib, MPC8260 PowerQUICC II User's Manual

motFccEramShow()

NAME motFccEramShow() – Debug Function to show FCC CP ethernet parameter ram.

SYNOPSIS void motFccEramShow
 (
 DRV_CTRL * pDrvCtrl
)

DESCRIPTION This function is only available when MOT_FCC_DBG is defined. It should be used for
debugging purposes only.

RETURNS N/A

ERRNO Not Available

SEE ALSO motFcc2End

VxWorks Drivers API Reference, 6.2
motFccIramShow()

248

motFccIramShow()

NAME motFccIramShow() – Debug Function to show FCC CP internal ram parameters.

SYNOPSIS void motFccIramShow
 (
 DRV_CTRL * pDrvCtrl
)

DESCRIPTION This function is only available when MOT_FCC_DBG is defined. It should be used for
debugging purposes only.

RETURNS N/A

ERRNO Not Available

SEE ALSO motFcc2End

motFccMibShow()

NAME motFccMibShow() – Debug Function to show MIB statistics.

SYNOPSIS void motFccMibShow
 (
 DRV_CTRL * pDrvCtrl
)

DESCRIPTION This function is only available when MOT_FCC_DBG is defined. It should be used for
debugging purposes only.

RETURNS N/A

ERRNO Not Available

SEE ALSO motFcc2End

2 Routines
motFccPramShow()

249

2

motFccMiiShow()

NAME motFccMiiShow() – Debug Function to show the Mii settings in the Phy Info structure.

SYNOPSIS void motFccMiiShow
 (
 DRV_CTRL * pDrvCtrl
)

DESCRIPTION This function is only available when MOT_FCC_DBG is defined. It should be used for
debugging purposes only.

RETURNS N/A

ERRNO Not Available

SEE ALSO motFcc2End

motFccPramShow()

NAME motFccPramShow() – Debug Function to show FCC CP parameter ram.

SYNOPSIS void motFccPramShow
 (
 DRV_CTRL * pDrvCtrl
)

DESCRIPTION This function is only available when MOT_FCC_DBG is defined. It should be used for
debugging purposes only.

RETURNS N/A

ERRNO Not Available

SEE ALSO motFcc2End

VxWorks Drivers API Reference, 6.2
motFccShow()

250

motFccShow()

NAME motFccShow() – Debug Function to show driver-specific control data.

SYNOPSIS void motFccShow
 (
 DRV_CTRL * pDrvCtrl
)

DESCRIPTION This function is only available when MOT_FCC_DBG is defined. It should be used for
debugging purposes only.

RETURNS N/A

ERRNO Not Available

SEE ALSO motFcc2End

motFecEndLoad()

NAME motFecEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* motFecEndLoad
 (
 char *initString /* parameter string */
)

DESCRIPTION This routine initializes both driver and device to an operational state using device-specific
parameters specified by initString.

The parameter string, initString, is an ordered list of parameters each separated by a colon.
The format of initString is:

"motCpmAddr:ivec:bufBase:bufSize:fifoTxBase:fifoRxBase
:tbdNum:rbdNum:phyAddr:isoPhyAddr:phyDefMode:userFlags :clockSpeed"

The FEC shares a region of memory with the driver. The caller of this routine can specify the
address of this memory region, or can specify that the driver must obtain this memory
region from the system resources.

A default number of transmit/receive buffer descriptors of 32 can be selected by passing
zero in the parameters tbdNum and rbdNum. In other cases, the number of buffers selected
should be greater than two.

2 Routines
ncr810CtrlCreate()

251

2

The bufBase parameter is used to inform the driver about the shared memory region. If this
parameter is set to the constant NONE, this routine will attempt to allocate the shared
memory from the system. Any other value for this parameter is interpreted by this routine
as the address of the shared memory region to be used. The bufSize parameter is used to
check that this region is large enough with respect to the provided values of both
transmit/receive buffer descriptors.

If the caller provides the shared memory region, the driver assumes that this region does not
require cache coherency operations, nor does it require conversions between virtual and
physical addresses.

If the caller indicates that this routine must allocate the shared memory region, this routine
will use cacheDmaMalloc() to obtain some cache-safe memory. The attributes of this
memory will be checked, and if the memory is not write coherent, this routine will abort and
return NULL.

RETURNS an END object pointer, or NULL on error.

ERRNO Not Available

SEE ALSO motFecEnd, ifLib, MPC860T Fast Ethernet Controller (Supplement to MPC860 User's Manual)

ncr810CtrlCreate()

NAME ncr810CtrlCreate() – create a control structure for the NCR 53C8xx SIOP

SYNOPSIS NCR_810_SCSI_CTRL *ncr810CtrlCreate
 (
 UINT8 *baseAdrs, /* base address of the SIOP */
 UINT clkPeriod, /* clock controller period (nsec*100) */
 UINT16 devType /* NCR8XX SCSI device type */
)

DESCRIPTION This routine creates an SIOP data structure and must be called before using an SIOP chip. It
must be called exactly once for a specified SIOP controller. Since it allocates memory for a
structure needed by all routines in ncr810Lib, it must be called before any other routines
in the library. After calling this routine, ncr810CtrlInit() must be called at least once before
any SCSI transactions are initiated using the SIOP.

A detailed description of the input parameters follows:

baseAdrs
the address at which the CPU accesses the lowest (SCNTL0/SIEN) register of the SIOP.

VxWorks Drivers API Reference, 6.2
ncr810CtrlInit()

252

clkPeriod
the period of the SIOP SCSI clock input, in nanoseconds, multiplied by 100. This is used
to determine the clock period for the SCSI core of the chip and affects the timing of both
asynchronous and synchronous transfers. Several commonly-used values are defined
in ncr810.h as follows:

 NCR810_1667MHZ 6000 /* 16.67Mhz chip */
 NCR810_20MHZ 5000 /* 20Mhz chip */
 NCR810_25MHZ 4000 /* 25Mhz chip */
 NCR810_3750MHZ 2667 /* 37.50Mhz chip */
 NCR810_40MHZ 2500 /* 40Mhz chip */
 NCR810_50MHZ 2000 /* 50Mhz chip */
 NCR810_66MHZ 1515 /* 66Mhz chip */
 NCR810_6666MHZ 1500 /* 66.66Mhz chip */

devType
the specific NCR 8xx device type. Current device types are defined in the header file
ncr810.h.

RETURNS A pointer to the NCR_810_SCSI_CTRL structure, or NULL if memory is unavailable or there
are invalid parameters.

ERRNO Not Available

SEE ALSO ncr810Lib

ncr810CtrlInit()

NAME ncr810CtrlInit() – initialize a control structure for the NCR 53C8xx SIOP

SYNOPSIS STATUS ncr810CtrlInit
 (
 FAST NCR_810_SCSI_CTRL *pSiop, /* ptr to SIOP struct */
 int scsiCtrlBusId /* SCSI bus ID of this SIOP */
)

DESCRIPTION This routine initializes an SIOP structure, after the structure is created with
ncr810CtrlCreate(). This structure must be initialized before the SIOP can be used. It may
be called more than once if needed; however, it must only be called while there is no activity
on the SCSI interface.

A detailed description of the input parameters follows:

pSiop
a pointer to the NCR_810_SCSI_CTRL structure created with ncr810CtrlCreate().

2 Routines
ncr810SetHwRegister()

253

2

scsiCtrlBusId
the SCSI bus ID of the SIOP. Its value is somewhat arbitrary: seven (7), or highest
priority, is conventional. The value must be in the range 0 - 7.

RETURNS OK, or ERROR if parameters are out of range.

ERRNO Not Available

SEE ALSO ncr810Lib

ncr810SetHwRegister()

NAME ncr810SetHwRegister() – set hardware-dependent registers for the NCR 53C8xx SIOP

SYNOPSIS STATUS ncr810SetHwRegister
 (
 FAST SIOP *pSiop, /* pointer to SIOP info */
 NCR810_HW_REGS *pHwRegs /* pointer to a NCR810_HW_REGS info */
)

DESCRIPTION This routine sets up the registers used in the hardware implementation of the chip.
Typically, this routine is called by the sysScsiInit() routine from the BSP.

The input parameters are as follows:

pSiop
a pointer to the NCR_810_SCSI_CTRL structure created with ncr810CtrlCreate().

pHwRegs
a pointer to a NCR810_HW_REGS structure that is filled with the logical values 0 or 1
for each bit of each register described below.

This routine includes only the bit registers that can be used to modify the behavior of
the chip. The default configuration used during ncr810CtlrCreate() and
ncr810CrtlInit() is {0,0,0,0,0,1,0,0,0,0,0}.

typedef struct
 {
 int stest1Bit7; /* Disable external SCSI clock */
 int stest2Bit7; /* SCSI control enable */
 int stest2Bit5; /* Enable differential SCSI bus */
 int stest2Bit2; /* Always WIDE SCSI */
 int stest2Bit1; /* Extend SREQ/SACK filtering */
 int stest3Bit7; /* TolerANT enable */
 int dmodeBit7; /* Burst Length transfer bit 1 */
 int dmodeBit6; /* Burst Length transfer bit 0 */
 int dmodeBit5; /* Source I/O memory enable */

VxWorks Drivers API Reference, 6.2
ncr810Show()

254

 int dmodeBit4; /* Destination I/O memory enable*/
 int scntl1Bit7; /* Slow cable mode */
 } NCR810_HW_REGS;

For a more detailed explanation of the register bits, see the appropriate NCR 53C8xx
data manuals.

NOTE Because this routine writes to the NCR 53C8xx chip registers, it cannot be used when there
is any SCSI bus activity.

RETURNS OK, or ERROR if any input parameter is NULL

ERRNO Not Available

SEE ALSO ncr810Lib, ncr810.h, ncr810CtlrCreate()

ncr810Show()

NAME ncr810Show() – display values of all readable NCR 53C8xx SIOP registers

SYNOPSIS STATUS ncr810Show
 (
 FAST SCSI_CTRL *pScsiCtrl /* ptr to SCSI controller info */
)

DESCRIPTION This routine displays the state of the SIOP registers in a user-friendly way. It is useful
primarily for debugging. The input parameter is the pointer to the SIOP information
structure returned by the ncr810CtrlCreate() call.

NOTE The only readable register during a script execution is the Istat register. If you use this
routine during the execution of a SCSI command, the result could be unpredictable.

EXAMPLE -> ncr810Show
NCR810 Registers

0xfff47000: Sien = 0xa5 Sdid = 0x00 Scntl1 = 0x00 Scntl0 = 0x04
0xfff47004: Socl = 0x00 Sodl = 0x00 Sxfer = 0x80 Scid = 0x80
0xfff47008: Sbcl = 0x00 Sbdl = 0x00 Sidl = 0x00 Sfbr = 0x00
0xfff4700c: Sstat2 = 0x00 Sstat1 = 0x00 Sstat0 = 0x00 Dstat = 0x80
0xfff47010: Dsa = 0x00000000
0xfff47014: Ctest3 = ???? Ctest2 = 0x21 Ctest1 = 0xf0 Ctest0 = 0x00
0xfff47018: Ctest7 = 0x32 Ctest6 = ???? Ctest5 = 0x00 Ctest4 = 0x00
0xfff4701c: Temp = 0x00000000
0xfff47020: Lcrc = 0x00 Ctest8 = 0x00 Istat = 0x00 Dfifo = 0x00
0xfff47024: Dcmd/Ddc= 0x50000000
0xfff47028: Dnad = 0x00066144

2 Routines
ne2000EndLoad()

255

2

0xfff4702c: Dsp = 0x00066144
0xfff47030: Dsps = 0x00066174
0xfff47037: Scratch3= 0x00 Scratch2= 0x00 Scratch1= 0x00 Scratch0= 0x0a
0xfff47038: Dcntl = 0x21 Dwt = 0x00 Dien = 0x37 Dmode = 0x01
0xfff4703c: Adder = 0x000cc2b8
value = 0 = 0x0

RETURNS OK, or ERROR if pScsiCtrl and pSysScsiCtrl are both NULL.

ERRNO Not Available

SEE ALSO ncr810Lib, ncr810CtrlCreate()

ne2000EndLoad()

NAME ne2000EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* ne2000EndLoad
 (
 char* initString, /* String to be parsed by the driver. */
 void* pBSP /* for BSP group */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in the initString.

The string contains the target-specific parameters like this:

"unit:register addr:int vector:int level:shmem addr:shmem size:shmem width"

RETURNS An END object pointer or NULL on error.

ERRNO Not Available

SEE ALSO ne2000End

VxWorks Drivers API Reference, 6.2
ns16550DevInit()

256

ns16550DevInit()

NAME ns16550DevInit() – intialize an NS16550 channel

SYNOPSIS void ns16550DevInit
 (
 NS16550_CHAN * pChan /* pointer to channel */
)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip in a
quiescent state. Before this routine is called, the BSP must already have initialized all the
device addresses, etc. in the NS16550_CHAN structure.

RETURNS N/A

ERRNO Not Available

SEE ALSO ns16550Sio

ns16550Int()

NAME ns16550Int() – interrupt-level processing

SYNOPSIS void ns16550Int
 (
 NS16550_CHAN * pChan /* pointer to channel */
)

DESCRIPTION This routine handles four sources of interrupts from the UART. They are prioritized in the
following order by the Interrupt Identification Register: Receiver Line Status, Received Data
Ready, Transmit Holding Register Empty and Modem Status.

When a modem status interrupt occurs, the transmit interrupt is enabled if the CTS signal is
TRUE.

RETURNS N/A

ERRNO Not Available

SEE ALSO ns16550Sio

2 Routines
ns16550IntRd()

257

2

ns16550IntEx()

NAME ns16550IntEx() – miscellaneous interrupt processing

SYNOPSIS void ns16550IntEx
 (
 NS16550_CHAN *pChan /* pointer to channel */
)

DESCRIPTION This routine handles miscellaneous interrupts on the UART. Not implemented yet.

RETURNS N/A

ERRNO Not Available

SEE ALSO ns16550Sio

ns16550IntRd()

NAME ns16550IntRd() – handle a receiver interrupt

SYNOPSIS void ns16550IntRd
 (
 NS16550_CHAN * pChan /* pointer to channel */
)

DESCRIPTION This routine handles read interrupts from the UART.

RETURNS N/A

ERRNO Not Available

SEE ALSO ns16550Sio

VxWorks Drivers API Reference, 6.2
ns16550IntWr()

258

ns16550IntWr()

NAME ns16550IntWr() – handle a transmitter interrupt

SYNOPSIS void ns16550IntWr
 (
 NS16550_CHAN * pChan /* pointer to channel */
)

DESCRIPTION This routine handles write interrupts from the UART. It reads a character and puts it in the
transmit holding register of the device for transfer.

If there are no more characters to transmit, transmission is disabled by clearing the transmit
interrupt enable bit in the IER(int enable register).

RETURNS N/A

ERRNO Not Available

SEE ALSO ns16550Sio

ns83902EndLoad()

NAME ns83902EndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* ns83902EndLoad
 (
 char* initString /* string to be parsed */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the
device-specific parameters are passed in initString. This routine can be called in two modes.
If it is called with an empty but allocated string, it places the name of this device (that is,
"ln") into the initString and returns 0.

If the string is allocated and not empty, the routine attempts to load the driver using the
values specified in the string.

RETURNS An END object pointer, or NULL on error, or 0 and the name of the device if the initString
was NULL.

2 Routines
pccardAtaEnabler()

259

2

ERRNO Not Available

SEE ALSO ns83902End

ns83902RegShow()

NAME ns83902RegShow() – prints the current value of the NIC registers

SYNOPSIS void ns83902RegShow
 (
 NS83902_END_DEVICE* pDrvCtrl
)

DESCRIPTION This routine reads and displays the register values of the NIC registers

RETURNS N/A.

ERRNO Not Available

SEE ALSO ns83902End

pccardAtaEnabler()

NAME pccardAtaEnabler() – enable the PCMCIA-ATA device

SYNOPSIS STATUS pccardAtaEnabler
 (
 int sock, /* socket no. */
 ATA_RESOURCE *pAtaResource, /* pointer to ATA resources */
 int numEnt, /* number of ATA resource entries */
 FUNCPTR showRtn /* ATA show routine */
)

DESCRIPTION This routine enables the PCMCIA-ATA device.

RETURNS OK, ERROR_FIND if there is no ATA card, or ERROR if another error occurs.

ERRNO Not Available

SEE ALSO pccardLib

VxWorks Drivers API Reference, 6.2
pccardEltEnabler()

260

pccardEltEnabler()

NAME pccardEltEnabler() – enable the PCMCIA Etherlink III card

SYNOPSIS STATUS pccardEltEnabler
 (
 int sock, /* socket no. */
 ELT_RESOURCE *pEltResource, /* pointer to ELT resources */
 int numEnt, /* number of ELT resource entries */
 FUNCPTR showRtn /* show routine */
)

DESCRIPTION This routine enables the PCMCIA Etherlink III (ELT) card.

RETURNS OK, ERROR_FIND if there is no ELT card, or ERROR if another error occurs.

ERRNO Not Available

SEE ALSO pccardLib

pccardMkfs()

NAME pccardMkfs() – initialize a device and mount a DOS file system

SYNOPSIS STATUS pccardMkfs
 (
 int sock, /* socket number */
 char *pName /* name of a device */
)

DESCRIPTION This routine initializes a device and mounts a DOS file system.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO pccardLib

2 Routines
pccardSramEnabler()

261

2

pccardMount()

NAME pccardMount() – mount a DOS file system

SYNOPSIS STATUS pccardMount
 (
 int sock, /* socket number */
 char *pName /* name of a device */
)

DESCRIPTION This routine mounts a DOS file system.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO pccardLib

pccardSramEnabler()

NAME pccardSramEnabler() – enable the PCMCIA-SRAM driver

SYNOPSIS STATUS pccardSramEnabler
 (
 int sock, /* socket no. */
 SRAM_RESOURCE *pSramResource, /* pointer to SRAM resources */
 int numEnt, /* number of SRAM resource entries */
 FUNCPTR showRtn /* SRAM show routine */
)

DESCRIPTION This routine enables the PCMCIA-SRAM driver.

RETURNS OK, ERROR_FIND if there is no SRAM card, or ERROR if another error occurs.

ERRNO Not Available

SEE ALSO pccardLib

VxWorks Drivers API Reference, 6.2
pccardTffsEnabler()

262

pccardTffsEnabler()

NAME pccardTffsEnabler() – enable the PCMCIA-TFFS driver

SYNOPSIS STATUS pccardTffsEnabler
 (
 int sock, /* socket no. */
 TFFS_RESOURCE *pTffsResource, /* pointer to TFFS resources */
 int numEnt, /* number of SRAM resource entries */
 FUNCPTR showRtn /* TFFS show routine */
)

DESCRIPTION This routine enables the PCMCIA-TFFS driver.

RETURNS OK, ERROR_FIND if there is no TFFS(Flash) card, or ERROR if another error occurs.

ERRNO Not Available

SEE ALSO pccardLib

pciAutoAddrAlign()

NAME pciAutoAddrAlign() – align a PCI address and check boundary conditions

SYNOPSIS STATUS pciAutoAddrAlign
 (
 UINT32 base, /* base of available memory */
 UINT32 limit, /* last addr of available memory */
 UINT32 reqSize, /* required size */
 UINT32 *pAlignedBase /* output: aligned address put here */
)

DESCRIPTION This routine handles address alignment/checking.

RETURNS OK, or ERROR if available memory has been exceeded.

SEE ALSO pciAutoConfigLib

2 Routines
pciAutoCardBusConfig()

263

2

pciAutoBusNumberSet()

NAME pciAutoBusNumberSet() – set the primary, secondary, and subordinate bus number

SYNOPSIS STATUS pciAutoBusNumberSet
 (
 PCI_LOC * pPciLoc, /* device affected */
 UINT primary, /* primary bus specification */
 UINT secondary, /* secondary bus specification */
 UINT subordinate /* subordinate bus specification */
)

DESCRIPTION This routine sets the primary, secondary, and subordinate bus numbers for a device that
implements the Type 1 PCI Configuration Space Header.

This routine has external visibility to enable it to be used by BSP Developers for initialization
of PCI Host Bridges that may implement registers similar to those found in the Type 1
Header.

RETURNS OK, always.

SEE ALSO pciAutoConfigLib

pciAutoCardBusConfig()

NAME pciAutoCardBusConfig() – set mem and I/O registers for a single PCI-Cardbus bridge

SYNOPSIS LOCAL void pciAutoCardBusConfig
 (
 PCI_AUTO_CONFIG_OPTS * pSystem, /* PCI system info */
 PCI_LOC * pPciLoc, /* PCI address of this bridge */
 PCI_LOC ** ppPciList, /* Pointer to function list pointer */
 UINT * nSize /* Number of remaining functions */
)

DESCRIPTION This routine sets up memory and I/O base/limit registers for an individual PCI-Cardbus
bridge.

Cardbus bridges have four windows - 2 memory windows and 2 I/O windows. The 2
memory windows can be setup individually for either prefetchable or non-prefetchable
memory accesses.

VxWorks Drivers API Reference, 6.2
pciAutoCfg()

264

Since PC Cards can be inserted at any time, and are not necessarily present when this code
is run, the code does not probe any further after encountering a Cardbus bridge. Instead, the
code allocates default window sizes for the Cardbus bridge. Three windows are used:

Memory #0: Prefetch memory
Memory #1: Non-prefetch memory
IO #0: IO
IO #1: Unused

Warning: do not sort the include function list before this routine is called. This routine
requires each function in the list to be in the same order as the probe occurred.

RETURNS N/A

SEE ALSO pciAutoConfigLib

pciAutoCfg()

NAME pciAutoCfg() – Automatically configure all nonexcluded PCI headers

SYNOPSIS STATUS pciAutoCfg
 (
 void *pCookie /* cookie returned by pciAutoConfigLibInit() */
)

DESCRIPTION Top-level function in the PCI configuration process.

CALLING SEQUENCE

pCookie = pciAutoConfigLibInit(NULL);
pciAutoCfgCtl(pCookie, COMMAND, VALUE);
 ...
pciAutoCfgCtl(pCookie, COMMAND, VALUE);
pciAutoCfg(pCookie);

For ease in converting from the old interface to the new one, a pciAutoCfgCtl() command
PCI_PSYSTEM_STRUCT_COPY has been implemented. This can be used just like any other
pciAutoCfgCtl() command, and it will initialize all the values in pSystem. If used, it should
be the first call to pciAutoCfgCtl().

For a description of the COMMANDs and VALUEs to pciAutoCfgCtl(), see the
pciAutoCfgCtl() documentation.

2 Routines
pciAutoCfgCtl()

265

2

For all nonexcluded PCI functions on all PCI bridges, this routine will automatically
configure the PCI configuration headers for PCI devices and subbridges. The fields that are
programmed are as follows:

1. Status register.

2. Command Register.

3. Latency timer.

4. Cache Line size.

5. Memory and/or I/O base address and limit registers.

6. Primary, secondary, subordinate bus number (for PCI-PCI bridges).

7. Expansion ROM disable.

8. Interrupt Line.

ALGORITHM Probe PCI config space and create a list of available PCI functions. Call device exclusion
function, if registered, to exclude/include device. Disable all devices before we initialize
any. Allocate and assign PCI space to each device. Calculate and set interrupt line value.
Initialize and enable each device.

RETURNS N/A.

SEE ALSO pciAutoConfigLib

pciAutoCfgCtl()

NAME pciAutoCfgCtl() – set or get pciAutoConfigLib options

SYNOPSIS STATUS pciAutoCfgCtl
 (
 void * pCookie, /* system configuration information */
 int cmd, /* command word */
 void * pArg /* argument for the cmd */
)

DESCRIPTION pciAutoCfgCtl() can be considered analogous to ioctl() calls: the call takes arguments of
(1) a pCookie, returned by pciAutoConfigLibInit(). (2) A command, macros for which are
defined in pciAutoConfigLib.h. And, (3) an argument, the type of which depends on the
specific command, but will always fit in a pointer variable. Currently, only globally effective
commands are implemented.

VxWorks Drivers API Reference, 6.2
pciAutoCfgCtl()

266

The commands available are as follows:

PCI_FBB_ENABLE - BOOL * pArg

PCI_FBB_DISABLE - void

PCI_FBB_UPDATE - BOOL * pArg

PCI_FBB_STATUS_GET - BOOL * pArg
Enable and disable the functions which check Fast Back To Back functionality.
PCI_FBB_UPDATE is for use with dynamic/HA applications. It will first disable FBB on
all functions, then enable FBB on all functions, if appropriate. In HA applications, it
should be called any time a card is added or removed. The BOOL pointed to by pArg for
PCI_FBB_ENABLE and PCI_FBB_UPDATE will be set to TRUE if all cards allow FBB
functionality and FALSE if either any card does not allow FBB functionality or if FBB is
disabled. The BOOL pointed to by pArg for PCI_FBB_STATUS_GET will be set to TRUE if
PCI_FBB_ENABLE has been called and FBB is enabled, even if FBB is not activated on
any card. It will be set to FALSE otherwise.

Note that in the current implementation, FBB will be enabled or disabled on the entire
bus. If any device anywhere on the bus cannot support FBB, it is not enabled, even if
specific sub-busses could support it.

PCI_MAX_LATENCY_FUNC_SET - FUNCPTR * pArg
This routine will be called for each function present on the bus when discovery takes
place. The routine must accept four arguments, specifying bus, device, function, and a
user-supplied argument of type void *. See PCI_MAX_LATENCY_ARG_SET. The routine
should return a UINT8 value, which will be put into the MAX_LAT field of the header
structure. The user supplied routine must return a valid value each time it is called.
There is no mechanism for any ERROR condition, but a default value can be returned
in such a case. Default = NULL.

PCI_MAX_LATENCY_ARG_SET - void * pArg
When the routine specified in PCI_MAX_LATENCY_FUNC_SET is called, this will be
passed to it as the fourth argument.

PCI_MAX_LAT_ALL_SET - int pArg
Specifies a constant max latency value for all cards, if no function has been specified
with PCI_MAX_LATENCY_FUNC_SET.

PCI_MAX_LAT_ALL_GET - UINT * pArg
Retrieves the value of max latency for all cards, if no function has been specified with
PCI_MAX_LATENCY_FUNC_SET. Otherwise, the integer pointed to by pArg is set to the
value 0xffffffff.

PCI_MSG_LOG_SET - FUNCPTR * pArg
The argument specifies a routine will be called to print warning or error messages from
pciAutoConfigLib if logMsg() has not been initialized at the time pciAutoConfigLib
is used. The specified routine must accept arguments in the same format as logMsg(),
but it does not necessarily need to print the actual message. An example of this routine

2 Routines
pciAutoCfgCtl()

267

2

is presented below, which saves the message into a safe memory space and turns on an
LED. This command is useful for BSPs which call pciAutoCfg() before message
logging is enabled. Note that after logMsg() is configured, output will go to logMsg()
even if this command has been called. Default = NULL.

/* sample PCI_MSG_LOG_SET function */
int pciLogMsg(char *fmt,int a1,int a2,int a3,int a4,int a5,int a6)
 {
 sysLedOn(4);
 return(sprintf(sysExcMsg,fmt,a1,a2,a3,a4,a5,a6));
 }

PCI_MAX_BUS_GET - int * pArg
During autoconfiguration, the library will maintain a counter with the highest
numbered bus. This can be retrieved by

pciAutoCfgCtl(pCookie, PCI_MAX_BUS_GET, &maxBus)

PCI_CACHE_SIZE_SET - int pArg
Sets the pci cache line size to the specified value. See “CONFIGURATION SPACE
PARAMETERS” in the pciAutoConfigLib documentation for more details.

PCI_CACHE_SIZE_GET - int * pArg
Retrieves the value of the pci cache line size.

PCI_AUTO_INT_ROUTE_SET - BOOL pArg
Enables or disables automatic interrupt routing across bridges during the autoconfig
process. See "INTERRUPT ROUTING ACROSS PCI-TO-PCI BRIDGES" in the
pciAutoConfigLib documentation for more details.

PCI_AUTO_INT_ROUTE_GET - BOOL * pArg
Retrieves the status of automatic interrupt routing.

PCI_MEM32_LOC_SET - UINT32 pArg
Sets the base address of the PCI 32-bit memory space. Normally, this is given by the BSP
constant PCI_MEM_ADRS.

PCI_MEM32_SIZE_SET - UINT32 pArg
Sets the maximum size to use for the PCI 32-bit memory space. Normally, this is given
by the BSP constant PCI_MEM_SIZE.

PCI_MEM32_SIZE_GET - UINT32 * pArg
After autoconfiguration has been completed, this retrieves the actual amount of space
which has been used for the PCI 32-bit memory space.

PCI_MEMIO32_LOC_SET - UINT32 pArg
Sets the base address of the PCI 32-bit non-prefetch memory space. Normally, this is
given by the BSP constant PCI_MEMIO_ADRS.

PCI_MEMIO32_SIZE_SET - UINT32 pArg
Sets the maximum size to use for the PCI 32-bit non-prefetch memory space. Normally,
this is given by the BSP constant PCI_MEMIO_SIZE.

VxWorks Drivers API Reference, 6.2
pciAutoCfgCtl()

268

PCI_MEMIO32_SIZE_GET - UINT32 * pArg
After autoconfiguration has been completed, this retrieves the actual amount of space
which has been used for the PCI 32-bit non-prefetch memory space.

PCI_IO32_LOC_SET - UINT32 pArg
Sets the base address of the PCI 32-bit I/O space. Normally, this is given by the BSP
constant PCI_IO_ADRS.

PCI_IO32_SIZE_SET - UINT32 pArg
Sets the maximum size to use for the PCI 32-bit I/O space. Normally, this is given by
the BSP constant PCI_IO_SIZE.

PCI_IO32_SIZE_GET - UINT32 * pArg
After autoconfiguration has been completed, this retrieves the actual amount of space
which has been used for the PCI 32-bit I/O space.

PCI_IO16_LOC_SET - UINT32 pArg
Sets the base address of the PCI 16-bit I/O space. Normally, this is given by the BSP
constant PCI_ISA_IO_ADRS

PCI_IO16_SIZE_SET - UINT32 pArg
Sets the maximum size to use for the PCI 16-bit I/O space. Normally, this is given by
the BSP constant PCI_ISA_IO_SIZE

PCI_IO16_SIZE_GET - UINT32 * pArg
After autoconfiguration has been completed, this retrieves the actual amount of space
which has been used for the PCI 16-bit I/O space.

PCI_INCLUDE_FUNC_SET - FUNCPTR * pArg
The device inclusion routine is specified by assigning a function pointer with the
PCI_INCLUDE_FUNC_SET pciAutoCfgCtl() command:

pciAutoCfgCtl(pSystem, PCI_INCLUDE_FUNC_SET,sysPciAutoconfigInclude);

This optional user-supplied routine takes as input both the bus-device-function tuple,
and a 32-bit quantity containing both the PCI vendorID and deviceID of the function.
The function prototype for this function is shown below:

STATUS sysPciAutoconfigInclude
 (
 PCI_SYSTEM *pSys,
 PCI_LOC *pLoc,
 UINT devVend
);

This optional user-specified routine is called by PCI AutoConfig for each and every
function encountered in the scan phase. The BSP developer may use any combination
of the input data to ascertain whether a device is to be excluded from the autoconfig
process. The exclusion routine then returns ERROR if a device is to be excluded, and OK
if a device is to be included in the autoconfiguration process.

Note that PCI-to-PCI Bridges may not be excluded, regardless of the value returned by
the BSP device inclusion routine. The return value is ignored for PCI-to-PCI bridges.

2 Routines
pciAutoCfgCtl()

269

2

The Bridge device will be always be configured with proper primary, secondary, and
subordinate bus numbers in the device scanning phase and proper I/O and Memory
aperture settings in the configuration phase of autoconfig regardless of the value
returned by the BSP device inclusion routine.

PCI_INT_ASSIGN_FUNC_SET - FUNCPTR * pArg
The interrupt assignment routine is specified by assigning a function pointer with the
PCI_INCLUDE_FUNC_SET pciAutoCfgCtl() command:

pciAutoCfgCtl(pCookie, PCI_INT_ASSIGN_FUNC_SET,
sysPciAutoconfigIntrAssign);

This optional user-specified routine takes as input both the bus-device-function tuple,
and an 8-bit quantity containing the contents of the interrupt Pin register from the PCI
configuration header of the device under consideration. The interrupt pin register
specifies which of the four PCI Interrupt request lines available are connected. The
function prototype for this function is shown below:

UCHAR sysPciAutoconfigIntrAssign
 (
 PCI_SYSTEM *pSys,
 PCI_LOC *pLoc,
 UCHAR pin
);

This routine may use any combination of these data to ascertain the interrupt level. This
value is returned from the function, and will be programmed into the interrupt line
register of the function's PCI configuration header. In this manner, device drivers may
subsequently read this register in order to calculate the appropriate interrupt vector
which to attach an interrupt service routine.

PCI_BRIDGE_PRE_CONFIG_FUNC_SET - FUNCPTR * pArg
The bridge pre-configuration pass initialization routine is provided so that the BSP
Developer can initialize a bridge device prior to the configuration pass on the bus that
the bridge implements. This routine is specified by calling pciAutoCfgCtl() with the
PCI_BRIDGE_PRE_CONFIG_FUNC_SET command:

pciAutoCfgCtl(pCookie, PCI_BRIDGE_PRE_CONFIG_FUNC_SET,
 sysPciAutoconfigPreEnumBridgeInit);

This optional user-specified routine takes as input both the bus-device-function tuple,
and a 32-bit quantity containing both the PCI deviceID and vendorID of the device. The
function prototype for this function is shown below:

STATUS sysPciAutoconfigPreEnumBridgeInit
 (
 PCI_SYSTEM *pSys,
 PCI_LOC *pLoc,
 UINT devVend
);

VxWorks Drivers API Reference, 6.2
pciAutoCfgCtl()

270

This routine may use any combination of these input data to ascertain any special
initialization requirements of a particular type of bridge at a specified geographic
location.

PCI_BRIDGE_POST_CONFIG_FUNC_SET - FUNCPTR * pArg
The bridge post-configuration pass initialization routine is provided so that the BSP
Developer can initialize the bridge device after the bus that the bridge implements has
been enumerated. This routine is specified by calling pciAutoCfgCtl() with the
PCI_BRIDGE_POST_CONFIG_FUNC_SET command

pciAutoCfgCtl(pCookie, PCI_BRIDGE_POST_CONFIG_FUNC_SET,
 sysPciAutoconfigPostEnumBridgeInit);

This optional user-specified routine takes as input both the bus-device-function tuple,
and a 32-bit quantity containing both the PCI deviceID and vendorID of the device. The
function prototype for this function is shown below:

STATUS sysPciAutoconfigPostEnumBridgeInit
 (
 PCI_SYSTEM *pSys,
 PCI_LOC *pLoc,
 UINT devVend
);

This routine may use any combination of these input data to ascertain any special
initialization requirements of a particular type of bridge at a specified geographic
location.

PCI_ROLLCALL_FUNC_SET - FUNCPTR * pArg
The specified routine will be configured as a roll call routine.

If a roll call routine has been configured, before any configuration is actually done, the
roll call routine is called repeatedly until it returns TRUE. A return value of TRUE
indicates that either (1) the specified number and type of devices named in the roll call
list have been found during PCI bus enumeration or (2) the timeout has expired
without finding all of the specified number and type of devices. In either case, it is
assumed that all of the PCI devices which are going to appear on the busses have
appeared and we can proceed with PCI bus configuration.

PCI_TEMP_SPACE_SET - char * pArg
This command is not currently implemented. It allows the user to set aside memory for
use during pciAutoConfigLib execution, e.g. memory set aside using
USER_RESERVED_MEM. After PCI configuration has been completed, the memory can
be added to the system memory pool using memAddToPool().

PCI_MINIMIZE_RESOURCES
This command is not currently implemented. It specifies that pciAutoConfigLib
minimize requirements for memory and I/O space.

2 Routines
pciAutoCfgCtl()

271

2

PCI_PSYSTEM_STRUCT_COPY - PCI_SYSTEM * pArg
This command has been added for ease of converting from the old interface to the new
one. This will set each value as specified in the pSystem structure. If the PCI_SYSTEM
structure has already been filled, the pciAutoConfig(pSystem) call can be changed to:

void *pCookie;
pCookie = pciAutoConfigLibInit(NULL);
pciAutoCfgCtl(pCookie, PCI_PSYSTEM_STRUCT_COPY, (void *)pSystem);
pciAutoCfgFunc(pCookie);

The fields of the PCI_SYSTEM structure are defined below. For more information about
each one, see the paragraphs above and the documentation for pciAutoConfigLib.

pciMem32
Specifies the 32-bit prefetchable memory pool base address.

pciMem32Size
Specifies the 32-bit prefetchable memory pool size.

pciMemIo32
Specifies the 32-bit non-prefetchable memory pool base address.

pciMemIo32Size
Specifies the 32-bit non-prefetchable memory pool size

pciIo32
Specifies the 32-bit I/O pool base address.

pciIo32Size
Specifies the 32-bit I/O pool size.

pciIo16
Specifies the 16-bit I/O pool base address.

pciIo16Size
Specifies the 16-bit I/O pool size.

includeRtn
Specifies the device inclusion routine.

intAssignRtn
Specifies the interrupt assignment routine.

autoIntRouting
Can be set to TRUE to configure pciAutoConfig() only to call the BSP interrupt
routing routine for devices on bus number 0. Setting autoIntRoutine to FALSE will
configure pciAutoConfig() to call the BSP interrupt routing routine for every
device regardless of the bus on which the device resides.

bridgePreInit
Specifies the bridge initialization routine to call before initializing devices on the
bus that the bridge implements.

VxWorks Drivers API Reference, 6.2
pciAutoConfig()

272

bridgePostInit
Specifies the bridge initialization routine to call after initializing devices on the bus
that the bridge implements.

RETURNS OK, or ERROR if the command or argument is invalid.

ERRNO EINVAL
if pCookie is not NULL or if cmd is not recognized

SEE ALSO pciAutoConfigLib

pciAutoConfig()

NAME pciAutoConfig() – automatically configure all nonexcluded PCI headers (obsolete)

SYNOPSIS void pciAutoConfig
 (
 PCI_SYSTEM * pSystem /* PCI system to configure */
)

DESCRIPTION This routine is obsolete. It is included for backward compatibility only. It is recommended
that you use the pciAutoCfg() interface instead of this one.

Top-level function in the PCI configuration process.

For all nonexcluded PCI functions on all PCI bridges, this routine will automatically
configure the PCI configuration headers for PCI devices and subbridges. The fields that are
programmed are as follows:

1. Status register.

2. Command Register.

3. Latency timer.

4. Cache Line size.

5. Memory and/or I/O base address and limit registers.

6. Primary, secondary, subordinate bus number (for PCI-PCI bridges).

7. Expansion ROM disable.

8. Interrupt Line.

ALGORITHM Probe PCI config space and create a list of available PCI functions. Call device exclusion
function, if registered, to exclude/include device. Disable all devices before we initialize

2 Routines
pciAutoDevReset()

273

2

any. Allocate and assign PCI space to each device. Calculate and set interrupt line value.
Initialize and enable each device.

RETURNS N/A.

SEE ALSO pciAutoConfigLib

pciAutoConfigLibInit()

NAME pciAutoConfigLibInit() – initialize PCI autoconfig library

SYNOPSIS void * pciAutoConfigLibInit
 (
 void * pArg /* reserved for future use */
)

DESCRIPTION pciAutoConfigLib initialization function.

RETURNS A cookie for use by subsequent pciAutoConfigLib function calls.

SEE ALSO pciAutoConfigLib

pciAutoDevReset()

NAME pciAutoDevReset() – quiesce a PCI device and reset all writeable status bits

SYNOPSIS STATUS pciAutoDevReset
 (
 PCI_LOC * pPciLoc /* device to be reset */
)

DESCRIPTION This routine turns off a PCI device by disabling the Memory decoders, I/O decoders, and
Bus Master capability. The routine also resets all writeable status bits in the status word that
follows the command word sequentially in PCI config space by performing a longword
access.

RETURNS OK, always.

SEE ALSO pciAutoConfigLib

VxWorks Drivers API Reference, 6.2
pciAutoFuncDisable()

274

pciAutoFuncDisable()

NAME pciAutoFuncDisable() – disable a specific PCI function

SYNOPSIS void pciAutoFuncDisable
 (
 PCI_LOC *pPciFunc /* input: Pointer to PCI function struct */
)

DESCRIPTION This routine clears the I/O, mem, master, & ROM space enable bits for a single PCI function.

The PCI spec says that devices should normally clear these by default after reset but in
actual practice, some PCI devices do not fully comply. This routine ensures that the devices
have all been disabled before configuration is started.

RETURNS N/A.

SEE ALSO pciAutoConfigLib

pciAutoFuncEnable()

NAME pciAutoFuncEnable() – perform final configuration and enable a function

SYNOPSIS void pciAutoFuncEnable
 (
 PCI_SYSTEM * pSys, /* for backwards compatibility */
 PCI_LOC * pFunc /* input: Pointer to PCI function structure */
)

DESCRIPTION Depending upon whether the device is included, this routine initializes a single PCI
function as follows:

Initialize the cache line size register Initialize the PCI-PCI bridge latency timers Enable the
master PCI bit for non-display devices Set the interrupt line value with the value from the
BSP.

RETURNS N/A.

SEE ALSO pciAutoConfigLib

2 Routines
pciAutoRegConfig()

275

2

pciAutoGetNextClass()

NAME pciAutoGetNextClass() – find the next device of specific type from probe list

SYNOPSIS STATUS pciAutoGetNextClass
 (
 PCI_SYSTEM *pSys, /* for backwards compatibility */
 PCI_LOC *pPciFunc, /* output: Contains the BDF of the device found */
 UINT *index, /* Zero-based device instance number */
 UINT pciClass, /* class code field from the PCI header */
 UINT mask /* mask is ANDed with the class field */
)

DESCRIPTION The function uses the probe list which was built during the probing process. Using
configuration accesses, it searches for the occurrence of the device subject to the class and
mask restrictions outlined below. Setting class to zero and mask to zero allows searching
the entire set of devices found regardless of class.

RETURNS TRUE if a device was found, else FALSE.

SEE ALSO pciAutoConfigLib

pciAutoRegConfig()

NAME pciAutoRegConfig() – assign PCI space to a single PCI base address register

SYNOPSIS UINT pciAutoRegConfig
 (
 PCI_SYSTEM *pSys, /* backwards compatibility */
 PCI_LOC *pPciFunc, /* Pointer to function in device list */
 UINT baseAddr, /* Offset of base PCI address */
 UINT nSize, /* Size and alignment requirements */
 UINT addrInfo /* PCI address type information */
)

DESCRIPTION This routine allocates and assigns PCI space (either memory or I/O) to a single PCI base
address register.

RETURNS Returns (1) if BAR supports mapping anywhere in 64-bit address space. Returns (0)
otherwise.

SEE ALSO pciAutoConfigLib

VxWorks Drivers API Reference, 6.2
pciConfigBdfPack()

276

pciConfigBdfPack()

NAME pciConfigBdfPack() – pack parameters for the Configuration Address Register

SYNOPSIS int pciConfigBdfPack
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo /* function number */
)

DESCRIPTION This routine packs three parameters into one integer for accessing the Configuration
Address Register

RETURNS packed integer encoded version of bus, device, and function numbers.

SEE ALSO pciConfigLib

pciConfigCmdWordShow()

NAME pciConfigCmdWordShow() – show the decoded value of the command word

SYNOPSIS STATUS pciConfigCmdWordShow
 (
 int bus, /* bus */
 int device, /* device */
 int function, /* function */
 void *pArg /* ignored */
)

DESCRIPTION This routine reads the value of the command word for the specified bus, device, function
and displays the information.

RETURNS OK, always.

SEE ALSO pciConfigShow

2 Routines
pciConfigForeachFunc()

277

2

pciConfigExtCapFind()

NAME pciConfigExtCapFind() – find extended capability in ECP linked list

SYNOPSIS STATUS pciConfigExtCapFind
 (
 UINT8 extCapFindId, /* Extended capabilities ID to search for */
 int bus, /* PCI bus number */
 int device, /* PCI device number */
 int function, /* PCI function number */
 UINT8 * pOffset /* returned config space offset */
)

DESCRIPTION This routine searches for an extended capability in the linked list of capabilities in config
space. If found, the offset of the first byte of the capability of interest in config space is
returned via pOffset.

RETURNS OK if Extended Capability found, ERROR otherwise

SEE ALSO pciConfigLib

pciConfigForeachFunc()

NAME pciConfigForeachFunc() – check condition on specified bus

SYNOPSIS STATUS pciConfigForeachFunc
 (
 UINT8 bus, /* bus to start on */
 BOOL recurse, /* if TRUE, do subordinate busses */
 PCI_FOREACH_FUNC funcCheckRtn, /* routine to call for each PCI func */
 void *pArg /* argument to funcCheckRtn */
)

DESCRIPTION pciConfigForeachFunc() discovers the PCI functions present on the bus and calls a
specified C-function for each one. If the function returns ERROR, further processing stops.

pciConfigForeachFunc() does not affect any HOST-PCI bridge on the system.

RETURNS OK normally, or ERROR if funcCheckRtn() doesn't return OK.

ERRNO not set

SEE ALSO pciConfigLib

VxWorks Drivers API Reference, 6.2
pciConfigFuncShow()

278

pciConfigFuncShow()

NAME pciConfigFuncShow() – show configuration details about a function

SYNOPSIS STATUS pciConfigFuncShow
 (
 int bus, /* bus */
 int device, /* device */
 int function, /* function */
 void *pArg /* ignored */
)

DESCRIPTION This routine reads various information from the specified bus, device, function, and
displays the information.

RETURNS OK, always.

SEE ALSO pciConfigShow

pciConfigInByte()

NAME pciConfigInByte() – read one byte from the PCI configuration space

SYNOPSIS STATUS pciConfigInByte
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo, /* function number */
 int offset, /* offset into the configuration space */
 UINT8 * pData /* data read from the offset */
)

DESCRIPTION This routine reads one byte from the PCI configuration space

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib

2 Routines
pciConfigInWord()

279

2

pciConfigInLong()

NAME pciConfigInLong() – read one longword from the PCI configuration space

SYNOPSIS STATUS pciConfigInLong
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo, /* function number */
 int offset, /* offset into the configuration space */
 UINT32 * pData /* data read from the offset */
)

DESCRIPTION This routine reads one longword from the PCI configuration space

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib

pciConfigInWord()

NAME pciConfigInWord() – read one word from the PCI configuration space

SYNOPSIS STATUS pciConfigInWord
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo, /* function number */
 int offset, /* offset into the configuration space */
 UINT16 * pData /* data read from the offset */
)

DESCRIPTION This routine reads one word from the PCI configuration space

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib

VxWorks Drivers API Reference, 6.2
pciConfigLibInit()

280

pciConfigLibInit()

NAME pciConfigLibInit() – initialize the configuration access-method and addresses

SYNOPSIS STATUS pciConfigLibInit
 (
 int mechanism, /* configuration mechanism: 0, 1, 2 */
 ULONG addr0, /* config-addr-reg / CSE-reg */
 ULONG addr1, /* config-data-reg / Forward-reg */
 ULONG addr2 /* none / Base-address */
)

DESCRIPTION This routine initializes the configuration access-method and addresses.

Configuration mechanism one utilizes two 32-bit I/O ports located at addresses 0x0cf8 and
0x0cfc. These two ports are:

Port 1
32-bit configuration address port, at 0x0cf8

Port 2
32-bit configuration data port, at 0x0cfc

Accessing a PCI function's configuration port is two step process.

Step 1
Write the bus number, physical device number, function number and register number
to the configuration address port.

Step 2
Perform an I/O read from or an write to the configuration data port.

Configuration mechanism two uses following two single-byte I/O ports.

Port 1
Configuration space enable, or CSE, register, at 0x0cf8

Port 2
Forward register, at 0x0cfa

To generate a PCI configuration transaction, the following actions are performed.

- Write the target bus number into the forward register.

- Write a one byte value to the CSE register at 0x0cf8. The bit pattern written to this
register has three effects: disables the generation of special cycles; enables the
generation of configuration transactions; specifies the target PCI functional device.

- Perform a one, two or four byte I/O read or write transaction within the I/O range
0xc000 through 0xcfff.

2 Routines
pciConfigModifyByte()

281

2

Configuration mechanism zero is for non-PC/PowerPC environments where an area of
address space produces PCI configuration transactions. No support for special cycles is
included.

RETURNS OK, or ERROR if a mechanism is not 0, 1, or 2.

SEE ALSO pciConfigLib

pciConfigModifyByte()

NAME pciConfigModifyByte() – Perform a masked longword register update

SYNOPSIS STATUS pciConfigModifyByte
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo, /* function number */
 int offset, /* offset into the configuration space */
 UINT8 bitMask, /* Mask which defines field to alter */
 UINT8 data /* data written to the offset */
)

DESCRIPTION This function writes a field into a PCI configuration header without altering any bits not
present in the field. It does this by first doing a PCI configuration read (into a temporary
location) of the PCI configuration header word which contains the field to be altered. It then
alters the bits in the temporary location to match the desired value of the field. It then writes
back the temporary location with a configuration write. All configuration accesses are long
and the field to alter is specified by the "1" bits in the bitMask parameter.

Do not use this routine to modify any register that contains 'write 1 to clear' type of status
bits in the same longword. This specifically applies to the command register. Modify byte
operations could potentially be implemented as longword operations with bit shifting and
masking. This could have the effect of clearing status bits in registers that aren't being
updated. Use pciConfigInLong and pciConfigOutLong, or pciModifyLong, to read and
update the entire longword.

RETURNS OK if operation succeeds, ERROR if operation fails.

SEE ALSO pciConfigLib

VxWorks Drivers API Reference, 6.2
pciConfigModifyLong()

282

pciConfigModifyLong()

NAME pciConfigModifyLong() – Perform a masked longword register update

SYNOPSIS STATUS pciConfigModifyLong
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo, /* function number */
 int offset, /* offset into the configuration space */
 UINT32 bitMask, /* Mask which defines field to alter */
 UINT32 data /* data written to the offset */
)

DESCRIPTION This function writes a field into a PCI configuration header without altering any bits not
present in the field. It does this by first doing a PCI configuration read (into a temporary
location) of the PCI configuration header word which contains the field to be altered. It then
alters the bits in the temporary location to match the desired value of the field. It then writes
back the temporary location with a configuration write. All configuration accesses are long
and the field to alter is specified by the "1" bits in the bitMask parameter.

Be careful to using pciConfigModifyLong for updating the Command and status register.
The status bits must be written back as zeroes, else they will be cleared. Proper use involves
including the status bits in the mask value, but setting their value to zero in the data value.

The following example will set the PCI_CMD_IO_ENABLE bit without clearing any status
bits. The macro PCI_CMD_MASK includes all the status bits as part of the mask. The fact that
PCI_CMD_MASTER doesn't include these bits, causes them to be written back as zeroes,
therefore they aren't cleared.

 pciConfigModifyLong (b,d,f,PCI_CFG_COMMAND,
 (PCI_CMD_MASK | PCI_CMD_IO_ENABLE), PCI_CMD_IO_ENABLE);

Use of explicit longword read and write operations for dealing with any register containing
"write 1 to clear" bits is sound policy.

RETURNS OK if operation succeeds, ERROR if operation fails.

SEE ALSO pciConfigLib

2 Routines
pciConfigOutByte()

283

2

pciConfigModifyWord()

NAME pciConfigModifyWord() – Perform a masked longword register update

SYNOPSIS STATUS pciConfigModifyWord
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo, /* function number */
 int offset, /* offset into the configuration space */
 UINT16 bitMask, /* Mask which defines field to alter */
 UINT16 data /* data written to the offset */
)

DESCRIPTION This function writes a field into a PCI configuration header without altering any bits not
present in the field. It does this by first doing a PCI configuration read (into a temporary
location) of the PCI configuration header word which contains the field to be altered. It then
alters the bits in the temporary location to match the desired value of the field. It then writes
back the temporary location with a configuration write. All configuration accesses are long
and the field to alter is specified by the "1" bits in the bitMask parameter.

Do not use this routine to modify any register that contains 'write 1 to clear' type of status
bits in the same longword. This specifically applies to the command register. Modify byte
operations could potentially be implemented as longword operations with bit shifting and
masking. This could have the effect of clearing status bits in registers that aren't being
updated. Use pciConfigInLong and pciConfigOutLong, or pciModifyLong, to read and
update the entire longword.

RETURNS OK if operation succeeds. ERROR if operation fails.

SEE ALSO pciConfigLib

pciConfigOutByte()

NAME pciConfigOutByte() – write one byte to the PCI configuration space

SYNOPSIS STATUS pciConfigOutByte
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo, /* function number */
 int offset, /* offset into the configuration space */
 UINT8 data /* data written to the offset */
)

VxWorks Drivers API Reference, 6.2
pciConfigOutLong()

284

DESCRIPTION This routine writes one byte to the PCI configuration space.

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib

pciConfigOutLong()

NAME pciConfigOutLong() – write one longword to the PCI configuration space

SYNOPSIS STATUS pciConfigOutLong
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo, /* function number */
 int offset, /* offset into the configuration space */
 UINT32 data /* data written to the offset */
)

DESCRIPTION This routine writes one longword to the PCI configuration space.

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib

pciConfigOutWord()

NAME pciConfigOutWord() – write one 16-bit word to the PCI configuration space

SYNOPSIS STATUS pciConfigOutWord
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo, /* function number */
 int offset, /* offset into the configuration space */
 UINT16 data /* data written to the offset */
)

DESCRIPTION This routine writes one 16-bit word to the PCI configuration space.

2 Routines
pciConfigStatusWordShow()

285

2

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib

pciConfigReset()

NAME pciConfigReset() – disable cards for warm boot

SYNOPSIS STATUS pciConfigReset
 (
 int startType /* for reboot hook, ignored */
)

DESCRIPTION pciConfigReset() goes through the list of PCI functions at the top-level bus and disables
them, preventing them from writing to memory while the system is trying to reboot.

RETURNS OK, always

ERRNO Not set

SEE ALSO pciConfigLib

pciConfigStatusWordShow()

NAME pciConfigStatusWordShow() – show the decoded value of the status word

SYNOPSIS STATUS pciConfigStatusWordShow
 (
 int bus, /* bus */
 int device, /* device */
 int function, /* function */
 void *pArg /* ignored */
)

DESCRIPTION This routine reads the value of the status word for the specified bus, device, function and
displays the information.

RETURNS OK, always.

SEE ALSO pciConfigShow

VxWorks Drivers API Reference, 6.2
pciConfigTopoShow()

286

pciConfigTopoShow()

NAME pciConfigTopoShow() – show PCI topology

SYNOPSIS void pciConfigTopoShow(void)

DESCRIPTION This routine traverses the PCI bus and prints assorted information about every device
found. The information is intended to present the topology of the PCI bus. In includes: (1)
the device type, (2) the command and status words, (3) for PCI to PCI bridges the memory
and I/O space configuration, and (4) the values of all implemented BARs.

RETURNS N/A

SEE ALSO pciConfigShow

pciDevConfig()

NAME pciDevConfig() – configure a device on a PCI bus

SYNOPSIS STATUS pciDevConfig
 (
 int pciBusNo, /* PCI bus number */
 int pciDevNo, /* PCI device number */
 int pciFuncNo, /* PCI function number */
 UINT32 devIoBaseAdrs, /* device I/O base address */
 UINT32 devMemBaseAdrs, /* device memory base address */
 UINT32 command /* command to issue */
)

DESCRIPTION This routine configures a device that is on a Peripheral Component Interconnect (PCI) bus
by writing to the configuration header of the selected device.

It first disables the device by clearing the command register in the configuration header. It
then sets the I/O and/or memory space base address registers, the latency timer value and
the cache line size. Finally, it re-enables the device by loading the command register with the
specified command.

NOTE This routine is designed for Type 0 PCI Configuration Headers ONLY. It is NOT usable for
configuring, for example, a PCI-to-PCI bridge.

RETURNS OK always.

SEE ALSO pciConfigLib

2 Routines
pciFindClass()

287

2

pciDeviceShow()

NAME pciDeviceShow() – print information about PCI devices

SYNOPSIS STATUS pciDeviceShow
 (
 int busNo /* bus number */
)

DESCRIPTION This routine prints information about the PCI devices on a given PCI bus segment (specified
by busNo).

RETURNS OK, or ERROR if the library is not initialized.

SEE ALSO pciConfigShow

pciFindClass()

NAME pciFindClass() – find the nth occurrence of a device by PCI class code.

SYNOPSIS STATUS pciFindClass
 (
 int classCode, /* 24-bit class code */
 int index, /* desired instance of device */
 int * pBusNo, /* bus number */
 int * pDeviceNo, /* device number */
 int * pFuncNo /* function number */
)

DESCRIPTION This routine finds the nth device with the given 24-bit PCI class code (class subclass
prog_if).

The classcode arg of must be carefully constructed from class and sub-class macros.

Example : To find an ethernet class device, construct the classcode arg as follows:

 ((PCI_CLASS_NETWORK_CTLR << 16 | PCI_SUBCLASS_NET_ETHERNET << 8))

RETURNS OK, or ERROR if the class didn't match.

SEE ALSO pciConfigLib

VxWorks Drivers API Reference, 6.2
pciFindClassShow()

288

pciFindClassShow()

NAME pciFindClassShow() – find a device by 24-bit class code

SYNOPSIS STATUS pciFindClassShow
 (
 int classCode, /* 24-bit class code */
 int index /* desired instance of device */
)

DESCRIPTION This routine finds a device by its 24-bit PCI class code, then prints its information.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigShow

pciFindDevice()

NAME pciFindDevice() – find the nth device with the given device & vendor ID

SYNOPSIS STATUS pciFindDevice
 (
 int vendorId, /* vendor ID */
 int deviceId, /* device ID */
 int index, /* desired instance of device */
 int * pBusNo, /* bus number */
 int * pDeviceNo, /* device number */
 int * pFuncNo /* function number */
)

DESCRIPTION This routine finds the nth device with the given device and vendor ID.

RETURNS OK, or ERROR if the deviceId and vendorId didn't match.

SEE ALSO pciConfigLib

2 Routines
pciHeaderShow()

289

2

pciFindDeviceShow()

NAME pciFindDeviceShow() – find a PCI device and display the information

SYNOPSIS STATUS pciFindDeviceShow
 (
 int vendorId, /* vendor ID */
 int deviceId, /* device ID */
 int index /* desired instance of device */
)

DESCRIPTION This routine finds a device by deviceId, then displays the information.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigShow

pciHeaderShow()

NAME pciHeaderShow() – print a header of the specified PCI device

SYNOPSIS STATUS pciHeaderShow
 (
 int busNo, /* bus number */
 int deviceNo, /* device number */
 int funcNo /* function number */
)

DESCRIPTION This routine prints a header of the PCI device specified by busNo, deviceNo, and funcNo.

RETURNS OK, or ERROR if this library is not initialized.

SEE ALSO pciConfigShow

VxWorks Drivers API Reference, 6.2
pciInt()

290

pciInt()

NAME pciInt() – interrupt handler for shared PCI interrupt.

SYNOPSIS VOID pciInt
 (
 int irq /* IRQ associated to the PCI interrupt */
)

DESCRIPTION This routine executes multiple interrupt handlers for a PCI interrupt. Each interrupt handler
must check the device-dependent interrupt status bit to determine the source of the
interrupt, since it simply execute all interrupt handlers in the link list.

This is not a user callable routine

RETURNS N/A

SEE ALSO pciIntLib

pciIntConnect()

NAME pciIntConnect() – connect the interrupt handler to the PCI interrupt.

SYNOPSIS STATUS pciIntConnect
 (
 VOIDFUNCPTR *vector, /* interrupt vector to attach to */
 VOIDFUNCPTR routine, /* routine to be called */
 int parameter /* parameter to be passed to routine */
)

DESCRIPTION This routine connects an interrupt handler to a shared PCI interrupt vector. A link list is
created for each shared interrupt used in the system. It is created when the first interrupt
handler is attached to the vector. Subsequent calls to pciIntConnect just add their routines
to the linked list for that vector.

RETURNS OK, or ERROR if the interrupt handler cannot be built.

SEE ALSO pciIntLib

2 Routines
pciIntDisconnect2()

291

2

pciIntDisconnect()

NAME pciIntDisconnect() – disconnect the interrupt handler (OBSOLETE)

SYNOPSIS STATUS pciIntDisconnect
 (
 VOIDFUNCPTR *vector, /* interrupt vector to attach to */
 VOIDFUNCPTR routine /* routine to be called */
)

DESCRIPTION This routine disconnects the interrupt handler from the PCI interrupt line.

In a system where one driver and one ISR services multiple devices, this routine removes all
instances of the ISR because it completely ignores the parameter argument used to install
the handler.

NOTE Use of this routine is discouraged and will be obsoleted in the future. New code should use
the pciIntDisconnect2() routine instead.

RETURNS OK, or ERROR if the interrupt handler cannot be removed.

SEE ALSO pciIntLib

pciIntDisconnect2()

NAME pciIntDisconnect2() – disconnect an interrupt handler from the PCI interrupt.

SYNOPSIS STATUS pciIntDisconnect2
 (
 VOIDFUNCPTR *vector, /* interrupt vector to attach to */
 VOIDFUNCPTR routine, /* routine to be called */
 int parameter /* routine parameter */
)

DESCRIPTION This routine disconnects a single instance of an interrupt handler from the PCI interrupt
line.

NOTE This routine should be used in preference to the original pciIntDisconnect() routine. This
routine is compatible with drivers that are managing multiple device instances, using the
same basic ISR, but with different parameters.

VxWorks Drivers API Reference, 6.2
pciIntLibInit()

292

RETURNS OK, or ERROR if the interrupt handler cannot be removed.

SEE ALSO pciIntLib

pciIntLibInit()

NAME pciIntLibInit() – initialize the pciIntLib module

SYNOPSIS STATUS pciIntLibInit (void)

DESCRIPTION This routine initializes the linked lists used to chain together the PCI interrupt service
routines.

RETURNS OK, or ERROR upon link list failures.

SEE ALSO pciIntLib

pciSpecialCycle()

NAME pciSpecialCycle() – generate a special cycle with a message

SYNOPSIS STATUS pciSpecialCycle
 (
 int busNo, /* bus number */
 UINT32 message /* data driven onto AD[31:0] */
)

DESCRIPTION This routine generates a special cycle with a message.

RETURNS OK, or ERROR if this library is not initialized

SEE ALSO pciConfigLib

2 Routines
pcicShow()

293

2

pcicInit()

NAME pcicInit() – initialize the PCIC chip

SYNOPSIS STATUS pcicInit
 (
 int ioBase, /* I/O base address */
 int intVec, /* interrupt vector */
 int intLevel, /* interrupt level */
 FUNCPTR showRtn /* show routine */
)

DESCRIPTION This routine initializes the PCIC chip.

RETURNS OK, or ERROR if the PCIC chip cannot be found.

ERRNO Not Available

SEE ALSO pcic

pcicShow()

NAME pcicShow() – show all configurations of the PCIC chip

SYNOPSIS void pcicShow
 (
 int sock /* socket no. */
)

DESCRIPTION This routine shows all configurations of the PCIC chip.

RETURNS N/A

ERRNO Not Available

SEE ALSO pcicShow

VxWorks Drivers API Reference, 6.2
pcmciaInit()

294

pcmciaInit()

NAME pcmciaInit() – initialize the PCMCIA event-handling package

SYNOPSIS STATUS pcmciaInit (void)

DESCRIPTION This routine installs the PCMCIA event-handling facilities and spawns pcmciad(), which
performs special PCMCIA event-handling functions that need to be done at task level. It
also creates the message queue used to communicate with pcmciad().

RETURNS OK, or ERROR if a message queue cannot be created or pcmciad() cannot be spawned.

ERRNO Not Available

SEE ALSO pcmciaLib, pcmciad()

pcmciaShow()

NAME pcmciaShow() – show all configurations of the PCMCIA chip

SYNOPSIS void pcmciaShow
 (
 int sock /* socket no. */
)

DESCRIPTION This routine shows all configurations of the PCMCIA chip.

RETURNS N/A

ERRNO Not Available

SEE ALSO pcmciaShow

2 Routines
ppc403DevInit()

295

2

pcmciaShowInit()

NAME pcmciaShowInit() – initialize all show routines for PCMCIA drivers

SYNOPSIS void pcmciaShowInit (void)

DESCRIPTION This routine initializes all show routines related to PCMCIA drivers.

RETURNS N/A

ERRNO Not Available

SEE ALSO pcmciaShow

pcmciad()

NAME pcmciad() – handle task-level PCMCIA events

SYNOPSIS void pcmciad (void)

DESCRIPTION This routine is spawned as a task by pcmciaInit() to perform functions that cannot be
performed at interrupt or trap level. It has a priority of 0. Do not suspend, delete, or change
the priority of this task.

RETURNS N/A

ERRNO Not Available

SEE ALSO pcmciaLib, pcmciaInit()

ppc403DevInit()

NAME ppc403DevInit() – initialize the serial port unit

SYNOPSIS void ppc403DevInit
 (
 PPC403_CHAN * pChan
)

VxWorks Drivers API Reference, 6.2
ppc403DummyCallback()

296

DESCRIPTION The BSP must already have initialized all the device addresses in the PPC403_CHAN
structure. This routine initializes some SIO_CHAN function pointers and then resets the chip
in a quiescent state.

RETURNS N/A.

ERRNO Not Available

SEE ALSO ppc403Sio

ppc403DummyCallback()

NAME ppc403DummyCallback() – dummy callback routine

SYNOPSIS STATUS ppc403DummyCallback (void)

DESCRIPTION none

RETURNS ERROR (always).

ERRNO Not Available

SEE ALSO ppc403Sio

ppc403IntEx()

NAME ppc403IntEx() – handle error interrupts

SYNOPSIS void ppc403IntEx
 (
 PPC403_CHAN * pChan
)

DESCRIPTION This routine handles miscellaneous interrupts on the seial communication controller.

RETURNS N/A

2 Routines
ppc403IntWr()

297

2

ERRNO Not Available

SEE ALSO ppc403Sio

ppc403IntRd()

NAME ppc403IntRd() – handle a receiver interrupt

SYNOPSIS void ppc403IntRd
 (
 PPC403_CHAN * pChan
)

DESCRIPTION This routine handles read interrupts from the serial commonication controller.

RETURNS N/A

ERRNO Not Available

SEE ALSO ppc403Sio

ppc403IntWr()

NAME ppc403IntWr() – handle a transmitter interrupt

SYNOPSIS void ppc403IntWr
 (
 PPC403_CHAN * pChan
)

DESCRIPTION This routine handles write interrupts from the serial communication controller.

RETURNS N/A

ERRNO Not Available

SEE ALSO ppc403Sio

VxWorks Drivers API Reference, 6.2
ppc860DevInit()

298

ppc860DevInit()

NAME ppc860DevInit() – initialize the SMC

SYNOPSIS void ppc860DevInit
 (
 PPC860SMC_CHAN *pChan
)

DESCRIPTION This routine is called to initialize the chip to a quiescent state. Note that the smcNum field
of PPC860SMC_CHAN must be either 1 or 2.

RETURNS Not Available

ERRNO Not Available

SEE ALSO ppc860Sio

ppc860Int()

NAME ppc860Int() – handle an SMC interrupt

SYNOPSIS void ppc860Int
 (
 PPC860SMC_CHAN *pChan
)

DESCRIPTION This routine is called to handle SMC interrupts.

RETURNS Not Available

ERRNO Not Available

SEE ALSO ppc860Sio

2 Routines
rm9000x2glInt()

299

2

rm9000x2glDevInit()

NAME rm9000x2glDevInit() – intialize an NS16550 channel

SYNOPSIS void rm9000x2glDevInit
 (
 RM9000x2gl_CHAN * pChan /* pointer to channel */
)

DESCRIPTION This routine initializes some SIO_CHAN function pointers and then resets the chip in a
quiescent state. Before this routine is called, the BSP must already have initialized all the
device addresses, etc. in the RM9000x2gl_CHAN structure.

RETURNS N/A

ERRNO Not Available

SEE ALSO rm9000x2glSio

rm9000x2glInt()

NAME rm9000x2glInt() – interrupt-level processing

SYNOPSIS void rm9000x2glInt
 (
 RM9000x2gl_CHAN * pChan /* pointer to channel */
)

DESCRIPTION This routine handles four sources of interrupts from the UART. They are prioritized in the
following order by the Interrupt Identification Register: Receiver Line Status, Received Data
Ready, Transmit Holding Register Empty and Modem Status.

When a modem status interrupt occurs, the transmit interrupt is enabled if the CTS signal is
TRUE.

RETURNS N/A

ERRNO Not Available

SEE ALSO rm9000x2glSio

VxWorks Drivers API Reference, 6.2
rm9000x2glIntEx()

300

rm9000x2glIntEx()

NAME rm9000x2glIntEx() – miscellaneous interrupt processing

SYNOPSIS void rm9000x2glIntEx
 (
 RM9000x2gl_CHAN *pChan /* pointer to channel */
)

DESCRIPTION This routine handles miscellaneous interrupts on the UART. Not implemented yet.

RETURNS N/A

ERRNO Not Available

SEE ALSO rm9000x2glSio

rm9000x2glIntMod()

NAME rm9000x2glIntMod() – interrupt-level processing

SYNOPSIS void rm9000x2glIntMod
 (
 RM9000x2gl_CHAN * pChan, /* pointer to channel */
 char intStatus
)

DESCRIPTION This routine handles four sources of interrupts from the UART. They are prioritized in the
following order by the Interrupt Identification Register: Receiver Line Status, Received Data
Ready, Transmit Holding Register Empty and Modem Status.

When a modem status interrupt occurs, the transmit interrupt is enabled if the CTS signal is
TRUE.

RETURNS N/A

ERRNO Not Available

SEE ALSO rm9000x2glSio

2 Routines
rm9000x2glIntWr()

301

2

rm9000x2glIntRd()

NAME rm9000x2glIntRd() – handle a receiver interrupt

SYNOPSIS void rm9000x2glIntRd
 (
 RM9000x2gl_CHAN * pChan /* pointer to channel */
)

DESCRIPTION This routine handles read interrupts from the UART.

RETURNS N/A

ERRNO Not Available

SEE ALSO rm9000x2glSio

rm9000x2glIntWr()

NAME rm9000x2glIntWr() – handle a transmitter interrupt

SYNOPSIS void rm9000x2glIntWr
 (
 RM9000x2gl_CHAN * pChan /* pointer to channel */
)

DESCRIPTION This routine handles write interrupts from the UART. It reads a character and puts it in the
transmit holding register of the device for transfer.

If there are no more characters to transmit, transmission is disabled by clearing the transmit
interrupt enable bit in the IER (int enable register).

RETURNS N/A

ERRNO Not Available

SEE ALSO rm9000x2glSio

VxWorks Drivers API Reference, 6.2
shSciDevInit()

302

shSciDevInit()

NAME shSciDevInit() – initialize a on-chip serial communication interface

SYNOPSIS void shSciDevInit
 (
 SCI_CHAN * pChan
)

DESCRIPTION This routine initializes the driver function pointers and then resets the chip in a quiescent
state. The BSP must have already initialized all the device addresses and the baudFreq fields
in the SCI_CHAN structure before passing it to this routine.

RETURNS N/A

ERRNO Not Available

SEE ALSO shSciSio

shSciIntErr()

NAME shSciIntErr() – handle a channel's error interrupt.

SYNOPSIS void shSciIntErr
 (
 SCI_CHAN * pChan /* channel generating the interrupt */
)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO shSciSio

2 Routines
shSciIntTx()

303

2

shSciIntRcv()

NAME shSciIntRcv() – handle a channel's receive-character interrupt.

SYNOPSIS void shSciIntRcv
 (
 SCI_CHAN * pChan /* channel generating the interrupt */
)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO shSciSio

shSciIntTx()

NAME shSciIntTx() – handle a channels transmitter-ready interrupt.

SYNOPSIS void shSciIntTx
 (
 SCI_CHAN * pChan /* channel generating the interrupt */
)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO shSciSio

VxWorks Drivers API Reference, 6.2
shScifDevInit()

304

shScifDevInit()

NAME shScifDevInit() – initialize a on-chip serial communication interface

SYNOPSIS void shScifDevInit
 (
 SCIF_CHAN * pChan
)

DESCRIPTION This routine initializes the driver function pointers and then resets the chip in a quiescent
state. The BSP must have already initialized all the device addresses and the baudFreq fields
in the SCIF_CHAN structure before passing it to this routine.

RETURNS N/A

ERRNO Not Available

SEE ALSO shScifSio

shScifIntErr()

NAME shScifIntErr() – handle a channel's error interrupt.

SYNOPSIS void shScifIntErr
 (
 SCIF_CHAN * pChan /* channel generating the interrupt */
)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO shScifSio

2 Routines
shScifIntTx()

305

2

shScifIntRcv()

NAME shScifIntRcv() – handle a channel's receive-character interrupt.

SYNOPSIS void shScifIntRcv
 (
 SCIF_CHAN * pChan /* channel generating the interrupt */
)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO shScifSio

shScifIntTx()

NAME shScifIntTx() – handle a channels transmitter-ready interrupt.

SYNOPSIS void shScifIntTx
 (
 SCIF_CHAN * pChan /* channel generating the interrupt */
)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO shScifSio

VxWorks Drivers API Reference, 6.2
smEndLoad()

306

smEndLoad()

NAME smEndLoad() – attach the SM interface to the MUX, initialize driver and device

SYNOPSIS END_OBJ * smEndLoad
 (
 char * pParamStr /* ptr to initialization parameter string */
)

DESCRIPTION This routine attaches an SM Ethernet interface to the network MUX. This routine makes the
interface available by allocating and filling in an END_OBJ structure, a driver entry table,
and a MIB2 interface table.

Calls to this routine evoke different results depending upon the parameter string it receives.
If the string is empty, the MUX is requesting that the device name be returned, not an
initialized END_OBJ pointer. If the string is not empty, a load operation is being requested
with initialization being done with the parameters parsed from the string.

Upon successful completion of a load operation by this routine, the driver will be ready to
be started, not active. The system will start the driver when it is ready to accept packets.

The shared memory region will be initialized, via smPktSetup(), during the call to this
routine if it is executing on the designated master CPU. The smEndLoad() routine can be
called to load only one device unit at a time.

Input parameters are specified in the form of an ASCII string of colon(:)-delimited values of
the following form:

"unit:pAnchor:smAddr:memSize:tasType:
maxCpus:masterCpu:localCpu:maxPktBytes:maxInputPkts:
intType:intArg1:intArg2:intArg3:mbNum:cbNum:
configFlg:pBootParams"

The unit parameter denotes the logical device unit number assigned by the operating
system. Specified using radix 10.

The pAnchor parameter is the address of the SM anchor in the given adrsSpace. If adrsSpace is
SM_M_LOCAL, this is the local virtual address on the SM master node by which the local
CPU may access the shared memory anchor. Specified using radix 16.

The smAddr parameter specify the shared memory address; It could be in the master node,
or in the off-board memory. The address is the local address of the master CPU. If smAddr
is NONE, the driver may allocate a cache-safe memory region from the system memory in
the master node as the shared memory region; and Currently, it is users' responsibility to
make sure slave nodes can access this memory, and maintain atomic operations on this
region.

The memSize parameter is the size, in bytes, of the shared memory region. Specified using
radix 16.

2 Routines
smEndLoad()

307

2

The tasType parameter specifies the test-and-set operation to be used to obtain exclusive
access to the shared data structures. It is preferable to use a genuine test-and-set instruction,
if the hardware permits it. In this case, tasType should be SM_TAS_HARD. If any of the CPUs
on the SM network do not support the test-and-set instruction, tasType should be
SM_TAS_SOFT. Specified using radix 10.

The maxCpus parameter specifies the maximum number of CPUs that may use the shared
memory region. Specified using radix 10.

The masterCpu parameter indicates the shared memory master CPU number. Specified in
radix 10.

The localCpu parameter specifies this CPU's number in the SM subnet.

The maxPktBytes parameter specifies the size, in bytes, of the data buffer in shared memory
packets. This is the largest amount of data that may be sent in a single packet. If this value
is not an exact multiple of 4 bytes, it will be rounded up to the next multiple of 4. If zero, the
default size specified in DEFAULT_PKT_SIZE is used. Specified using radix 10.

The maxInputPkts parameter specifies the maximum number of incoming shared memory
packets which may be queued to this CPU at one time. If zero, the default value is used.
Specified using radix 10.

The intType parameter allows a CPU to announce the method by which it is to be notified of
input packets which have been queued to it. Specified using radix 10.

The intArg1, intArg2, and intArg3 parameters are arguments chosen based on, and required
by, the interrupt method specified. They are used to generate an interrupt of type intType.
Specified using radix 16.

If mbNum is non-zero, it specifies the number of mBlks to allocate in the driver memory
pool. If mbNum is less than 0x10, a default value is used. Specified using radix 16.

If cbNum is non-zero, it specifies the number of clBlks and, therefore, the number of clusters,
to allocate in the driver memory pool. If cbNum is less than 0x10, a default value is used.
Specified using radix 16.

The number of clBlks is also the number of clusters which will be allocated. The clusters
allocated in the driver memory pool all have a size of maxPktBytes bytes.

The configFlg parameter indicate some configuration flags for smEnd. The flag includes, but
not limited to, SMEND_PROXY_SERVER, SMEND_PROXY_CLIENT,
SMEND_PROXY_DEFAULT_ADDR, and SMEND_INCLUDE_SEQ_ADDR.

The pBootParams parameter is the address of a BOOT_PARAMS. The smEnd will use this
structure to get the backplane IP address, and/or anchor address.

VxWorks Drivers API Reference, 6.2
smNetShow()

308

RETURNS return values are dependent upon the context implied by the input parameter string length
as shown below.

ERRNO Not Available

SEE ALSO smEnd

smNetShow()

NAME smNetShow() – show information about a shared memory network

SYNOPSIS STATUS smNetShow
 (
 char * endName, /* shared memory device name (NULL = current)*/
 BOOL zero /* TRUE = zero the totals */
)

DESCRIPTION This routine displays information about the different CPUs configured in a shared memory
network specified by endName. It prints error statistics and zeros these fields if zero is set to
TRUE.

EXAMPLE -> smNetShow
 Anchor Local Addr: 0x10000800, Hard TAS
 Sequential addressing enabled.
 Master IP address: 192.168.207.1 Local IP address: 192.168.207.2

 heartbeat = 56, header at 0x1071d5b4, free pkts = 29.

 cpu int type arg1 arg2 arg3 queued pkts
 --- -------- ---------- ---------- ---------- -----------
 0 mbox-4 0xd 0x807ffffc 0 0
 1 poll 0xd 0xfb001000 0x80 0

 PACKETS ERRORS
 Unicast Brdcast
 Input Output Input Output Input Output
 ======= ======= ======= ======= + ======= =======
 3 2 0 2 | 0 0
 value = 0 = 0x0

RETURNS OK, or ERROR if there is a hardware setup problem or the routine cannot be initialized.

Length Return Value
0 OK and device name copied to input string pointer or ERROR if

NULL string pointer.
non-0 END_OBJ * to initialized object or NULL if bogus string or an

internal error occurs.

2 Routines
smcFdc37b78xInit()

309

2

ERRNO Not Available

SEE ALSO smEndShow

smcFdc37b78xDevCreate()

NAME smcFdc37b78xDevCreate() – set correct I/O port addresses for Super I/O chip

SYNOPSIS VOID smcFdc37b78xDevCreate
 (
 SMCFDC37B78X_IOPORTS *smcFdc37b78x_iop
)

DESCRIPTION This routine will initialize the smcFdc37b78xIoPorts data structure. These I/O ports can
either be changed on-the-fly or overriding SMCFDC37B78X_CONFIG_PORT,
SMCFDC37B78X_INDEX_PORT and SMCFDC37B78X_DATA_PORT. This is a necessary step in
initialization of superIO chip and logical devices embedded in it.

RETURNS NONE

ERRNO Not Available

SEE ALSO smcFdc37b78x

smcFdc37b78xInit()

NAME smcFdc37b78xInit() – initializes Super I/O chip Library

SYNOPSIS VOID smcFdc37b78xInit
 (
 int devInitMask
)

DESCRIPTION This routine will initialize serial, keyboard, floppy disk, parallel port and gpio pins as a part
super i/o intialization

RETURNS NONE

VxWorks Drivers API Reference, 6.2
smcFdc37b78xKbdInit()

310

ERRNO Not Available

SEE ALSO smcFdc37b78x

smcFdc37b78xKbdInit()

NAME smcFdc37b78xKbdInit() – initializes the keyboard controller

SYNOPSIS STATUS smcFdc37b78xKbdInit
 (
 VOID
)

DESCRIPTION This routine will initialize keyboard controller

RETURNS OK/ERROR

ERRNO Not Available

SEE ALSO smcFdc37b78x

sramDevCreate()

NAME sramDevCreate() – create a PCMCIA memory disk device

SYNOPSIS BLK_DEV *sramDevCreate
 (
 int sock, /* socket no. */
 int bytesPerBlk, /* number of bytes per block */
 int blksPerTrack, /* number of blocks per track */
 int nBlocks, /* number of blocks on this device */
 int blkOffset /* no. of blks to skip at start of device */
)

DESCRIPTION This routine creates a PCMCIA memory disk device.

RETURNS A pointer to a block device structure (BLK_DEV), or NULL if memory cannot be allocated for
the device structure.

2 Routines
sramMap()

311

2

ERRNO Not Available

SEE ALSO sramDrv, ramDevCreate()

sramDrv()

NAME sramDrv() – install a PCMCIA SRAM memory driver

SYNOPSIS STATUS sramDrv
 (
 int sock /* socket no. */
)

DESCRIPTION This routine initializes a PCMCIA SRAM memory driver. It must be called once, before any
other routines in the driver.

RETURNS OK, or ERROR if the I/O system cannot install the driver.

ERRNO Not Available

SEE ALSO sramDrv

sramMap()

NAME sramMap() – map PCMCIA memory onto a specified ISA address space

SYNOPSIS STATUS sramMap
 (
 int sock, /* socket no. */
 int type, /* 0: common 1: attribute */
 int start, /* ISA start address */
 int stop, /* ISA stop address */
 int offset, /* card offset address */
 int extraws /* extra wait state */
)

DESCRIPTION This routine maps PCMCIA memory onto a specified ISA address space.

RETURNS OK, or ERROR if the memory cannot be mapped.

VxWorks Drivers API Reference, 6.2
sym895CtrlCreate()

312

ERRNO Not Available

SEE ALSO sramDrv

sym895CtrlCreate()

NAME sym895CtrlCreate() – create a structure for a SYM895 device.

SYNOPSIS SYM895_SCSI_CTRL * sym895CtrlCreate
 (
 UINT8 * siopBaseAdrs, /* base address of the SCSI Controller */
 UINT clkPeriod, /* clock controller period (nsec*100) */
 UINT16 devType, /* SCSI device type */
 UINT8 * siopRamBaseAdrs, /* on Chip Ram Address */
 UINT16 flags /* options */
)

DESCRIPTION This routine creates a SCSI Controller data structure and must be called before using a SCSI
Controller chip. It should be called once and only once for a specified SCSI Controller. Since
it allocates memory for a structure needed by all routines in sym895Lib, it must be called
before any other routines in the library. After calling this routine, sym895CtrlInit() should
be called at least once before any SCSI transactions are initiated using the SCSI Controller.

A detailed description of parameters follows.

siopBaseAdrs
base address of the SCSI controller.

clkPeriod
clock controller period (nsec*100).This is used to determine the clock period for the
SCSI core and affects the timing of both asynchronous and synchronous transfers.
Several Commonly used values are

SYM895_1667MHZ 6000 16.67Mhz chip
SYM895_20MHZ 5000 20Mhz chip
SYM895_25MHZ 4000 25Mhz chip
SYM895_3750MHZ 2667 37.50Mhz chip
SYM895_40MHZ 2500 40Mhz chip
SYM895_50MHZ 2000 50Mhz chip
SYM895_66MHZ 1515 66Mhz chip
SYM895_6666MHZ 1500 66Mhz chip
SYM895_75MHZ 1333 75Mhz chip
SYM895_80MHZ 1250 80Mhz chip
SYM895_160MHZ 625 40Mhz chip with Quadrupler

devType
SCSI sym8xx device type

2 Routines
sym895CtrlInit()

313

2

siopRamBaseAdrs
base address of the internal scripts RAM

flags
various device/debug options for the driver. Commonly used values are

SYM895_ENABLE_PARITY_CHECK 0x01
SYM895_ENABLE_SINGLE_STEP 0x02
SYM895_COPY_SCRIPTS 0x04

RETURNS A pointer to SYM895_SCSI_CTRL structure, or NULL if memory is unavailable or there are
invalid parameters.

ERRORS N/A

SEE ALSO sym895Lib

sym895CtrlInit()

NAME sym895CtrlInit() – initialize a SCSI Controller Structure.

SYNOPSIS STATUS sym895CtrlInit
 (
 FAST SIOP * pSiop, /* pointer to SCSI Controller structure */
 UINT scsiCtrlBusId /* SCSI bus ID of this SCSI Controller */
)

DESCRIPTION This routine initializes an SCSI Controller structure, after the structure is created with
sym895CtrlCreate(). This structure must be initialized before the SCSI Controller can be
used. It may be called more than once if needed; however, it should only be called while
there is no activity on the SCSI interface.

A Detailed description of parameters follows.

pSiop
pointer to the SCSI controller structure created with sym895CtrlCreate()

scsiCtrlBusId
SCSI Bus Id of the SIOP.

RETURNS OK, or ERROR if parameters are out of range.

RETURNS Not Available

VxWorks Drivers API Reference, 6.2
sym895GPIOConfig()

314

ERRORS N/A

SEE ALSO sym895Lib

sym895GPIOConfig()

NAME sym895GPIOConfig() – configures general purpose pins GPIO 0-4.

SYNOPSIS STATUS sym895GPIOConfig
 (
 SIOP * pSiop, /* pointer to SIOP structure */
 UINT8 ioEnable, /* bits indicate input/output */
 UINT8 mask /* mask for ioEnable parameter */
)

DESCRIPTION This routine uses the GPCNTL register to configure the general purpose pins available on
Sym895 chip. Bits 0-4 of GPCNTL register map to GPIO 0-4 pins. A bit set in GPCNTL
configures corresponding pin as input and a bit reset configures the pins as output.

pSiop
pointer to the SIOP structure.

ioEnable
bits 0-4 of this parameter configure GPIO 0-4 pins. 1 => input, 0 => output.

mask
bits 0-4 of this parameter identify valid bits in ioEnable parameter. Only
those pins are configured, which have a corresonding bit set in this parameter.

RETURNS Not Available

ERRNO Not Available

SEE ALSO sym895Lib

2 Routines
sym895Intr()

315

2

sym895GPIOCtrl()

NAME sym895GPIOCtrl() – controls general purpose pins GPIO 0-4.

SYNOPSIS STATUS sym895GPIOCtrl
 (
 SIOP * pSiop, /* pointer to SIOP structure */
 UINT8 ioState, /* bits indicate set/reset */
 UINT8 mask /* mask for ioState parameter */
)

DESCRIPTION This routine uses the GPREG register to set/reset of the general purpose pins available on
Sym895 chip.

pSiop
pointer to the SIOP structure.

ioState
bits 0-4 of this parameter controls GPIO 0-4 pins. 1 => set, 0 => reset.

mask
bits 0-4 of this parameter identify valid bits in ioState parameter. Only
those pins are activated, which have a corresonding bit set in this parameter.

RETURNS Not Available

ERRNO Not Available

SEE ALSO sym895Lib

sym895Intr()

NAME sym895Intr() – interrupt service routine for the SCSI Controller.

SYNOPSIS void sym895Intr
 (
 SIOP * pSiop /* pointer to the SIOP structure */
)

DESCRIPTION The first thing to determine is whether the device is generating an interrupt If not, this
routine must exit as quickly as possible.

Find the event type corresponding to this interrupt, and carry out any actions which must
be done before the SCSI Controller is re-started. Determine whether or not the SCSI
Controller is connected to the bus (depending on the event type - see note below). If not,

VxWorks Drivers API Reference, 6.2
sym895Loopback()

316

start a client script if possible or else just make the SCSI Controller wait for something else
to happen.

The "connected" variable, at the end of switch statement, reflects the status of the currently
executing thread. If it is TRUE it means that the thread is suspended and must be processed
at the task level. Set the state of SIOP to IDLE and leave the control to the SCSI Manager.
The SCSI Manager, in turn invokes the driver through a "resume" call.

Notify the SCSI manager of a controller event.

RETURNS Not Available

ERRNO Not Available

SEE ALSO sym895Lib

sym895Loopback()

NAME sym895Loopback() – This routine performs loopback diagnotics on 895 chip.

SYNOPSIS STATUS sym895Loopback
 (
 SIOP * pSiop /* pointer to SIOP controller structure */
)

DESCRIPTION Loopback mode allows 895 chip to control all signals, regardless of whether it is in initiator
or target role. This mode insures proper SCRIPTS instruction fetches and data paths.
SYM895 executes initiator instructions through the SCRIPTS, and this routine implements
the target role by asserting and polling the appropriate SCSI signals in the SOCL, SODL,
SBCL, and SBDL registers.

To configure 895 in loopback mode,

(1) Bits 3 and 4 of STEST2 should be set to put SCSI pins in High-Impedance
mode, so that signals are not asserted on to the SCSI bus.

(2) Bit 4 of DCNTL should be set to turn on single step mode. This allows the
target program (this routine) to monitor when an initiator SCRIPTS
instruction has completed.

In this routine, the SELECTION, MSG_OUT and DATA_OUT phases are checked. This will
ensure that data and control paths are proper.

RETURNS Not Available

2 Routines
sym895SetHwOptions()

317

2

ERRNO Not Available

SEE ALSO sym895Lib

sym895SetHwOptions()

NAME sym895SetHwOptions() – sets the Sym895 chip Options.

SYNOPSIS STATUS sym895SetHwOptions
 (
 FAST SIOP * pSiop, /* pointer to the SIOP structure */
 SYM895_HW_OPTIONS * pHwOptions /* pointer to the Options Structure */
)

DESCRIPTION This function sets optional bits required for tweaking the performance of 895 to the Ultra2
SCSI. The routine should be called with SYM895_HW_OPTIONS structure as defined in
sym895.h file.

The input parameters are

pSiop
pointer to the SIOP structure

pHwOptions
pointer to the a SYM895_HW_OPTIONS structure.

 struct sym895HWOptions
 {
 int SCLK : 1; /* STEST1:b7,if false, uses PCI Clock for SCSI */
 int SCE : 1; /* STEST2:b7, enable assertion of SCSI thro SOCL*/

/* and SODL registers */
 int DIF : 1; /* STEST2:b5, enable differential SCSI */
 int AWS : 1; /* STEST2:b2, Always Wide SCSI */
 int EWS : 1; /* SCNTL3:b3, Enable Wide SCSI */
 int EXT : 1; /* STEST2:b1, Extend SREQ/SACK filtering */
 int TE : 1; /* STEST3:b7, TolerANT Enable */
 int BL : 3; /* DMODE:b7,b6, CTEST5:b2 : Burst length */

/* when set to any of 32/64/128 burst length */
/* transfers, requires the DMA Fifo size to be */
/* 816 bytes (ctest5:b5 = 1). */

 int SIOM : 1; /* DMODE:b5, Source I/O Memory Enable */
 int DIOM : 1; /* DMODE:b4, Destination I/O Memory Enable */
 int EXC : 1; /* SCNTL1:b7, Slow Cable Mode */
 int ULTRA : 1; /* SCNTL3:b7, Ultra Enable */
 int DFS : 1; /* CTEST5:b5, DMA Fifo size 112/816 bytes */
 } SYM895_HW_OPTIONS;

This routine should not be called when there is SCSI Bus Activity as this modifies the
SIOP Registers.

VxWorks Drivers API Reference, 6.2
sym895Show()

318

RETURNS OK or ERROR if any of the input parameters is not valid.

ERRNO N/A

SEE ALSO sym895Lib, sym895.h, sym895CtrlCreate()

sym895Show()

NAME sym895Show() – display values of all readable SYM 53C8xx SIOP registers.

SYNOPSIS STATUS sym895Show
 (
 SIOP * pSiop /* pointer to SCSI controller */
)

DESCRIPTION This routine displays the state of the SIOP registers in a user-friendly way. It is useful
primarily for debugging. The input parameter is the pointer to the SIOP information
structure returned by the sym895CtrlCreate() call.

NOTE The only readable register during a script execution is the Istat register. If you use this
routine during the execution of a SCSI command, the result could be unpredictable.

EXAMPLE -> sym895Show
SYM895 Registers

Scntl0 = 0xd0 Scntl1 = 0x00 Scntl2 = 0x00 Scntl3 = 0x00
Scid = 0x67 Sxfer = 0x00 Sdid = 0x00 Gpreg = 0x0f
Sfbr = 0x0f Socl = 0x00 Ssid = 0x00 Sbcl = 0x00
Dstat = 0x80 Sstat0 = 0x00 Sstat1 = 0x0f Sstat2 = 0x02
Dsa = 0x07ea9538
Istat = 0x00
Ctest0 = 0x00 Ctest1 = 0xf0 Ctest2 = 0x35 Ctest3 = 0x10
Temp = 0x001d0c54
Dfifo = 0x00
Dbc0:23-Dcmd24:31 = 0x54000000
Dnad = 0x001d0c5c
Dsp = 0x001d0c5c
Dsps = 0x000000a0
Scratch0 = 0x01 Scratch1 = 0x00 Scratch2 = 0x00 Scratch3 = 0x00
Dmode = 0x81 Dien = 0x35 Dwt = 0x00 Dcntl = 0x01
Sien0 = 0x0f Sien1 = 0x17 Sist0 = 0x00 Sist1 = 0x00
Slpar = 0x4c Swide = 0x00 Macntl = 0xd0 Gpcntl = 0x0f
Stime0 = 0x00 Stime1 = 0x00 Respid0 = 0x80 Respid1 = 0x00
Stest0 = 0x07 Stest1 = 0x00 Stest2 = 0x00 Stest3 = 0x80
Sidl = 0x0000 Sodl = 0x0000 Sbdl = 0x0000
Scratchb = 0x00000200
value = 0 = 0x0

2 Routines
tcicShow()

319

2

RETURNS OK, or ERROR if pScsiCtrl and pSysScsiCtrl are both NULL.

ERRNO Not Available

SEE ALSO sym895Lib, sym895CtrlCreate()

tcicInit()

NAME tcicInit() – initialize the TCIC chip

SYNOPSIS STATUS tcicInit
 (
 int ioBase, /* I/O base address */
 int intVec, /* interrupt vector */
 int intLevel, /* interrupt level */
 FUNCPTR showRtn /* show routine */
)

DESCRIPTION This routine initializes the TCIC chip.

RETURNS OK, or ERROR if the TCIC chip cannot be found.

ERRNO Not Available

SEE ALSO tcic

tcicShow()

NAME tcicShow() – show all configurations of the TCIC chip

SYNOPSIS void tcicShow
 (
 int sock /* socket no. */
)

DESCRIPTION This routine shows all configurations of the TCIC chip.

RETURNS N/A

VxWorks Drivers API Reference, 6.2
tffsBootImagePut()

320

ERRNO Not Available

SEE ALSO tcicShow

tffsBootImagePut()

NAME tffsBootImagePut() – write to the boot-image region of the flash device

SYNOPSIS STATUS tffsBootImagePut
 (
 int driveNo, /* TFFS drive number */
 int offset, /* offset in the flash chip/card */
 char * filename /* binary format of the bootimage */
)

DESCRIPTION This routine writes an input stream to the boot-image region (if any) of a flash memory
device. Typically, the input stream contains a boot image, such as the VxWorks boot image,
but you are free to use this function to write any data needed. The size of the boot-image
region is set by the tffsDevFormat() call (or the sysTffsFormat() call, a BSP-specific helper
function that calls tffsDevFormat() internally) that formats the flash device for use with
TrueFFS.

If tffsBootImagePut() is used to put a VxWorks boot image in flash, you should not use the
s-record version of the boot image typically produced by make. Instead, you should take
the pre s-record version (usually called bootrom instead of bootrom.hex), and filter out its
loader header information using an xxxToBin utility. For example:

elfToBin < bootrom > bootrom.bin

Use the resulting bootrom.bin as input to tffsBootImagePut().

The discussion above assumes that you want only to use the flash device to store a VxWorks
image that is retrieved from the flash device and then run out of RAM. However, because
it is possible to map many flash devices directly into the target's memory, it is also possible
run the VxWorks image from flash memory, although there are some restrictions:

- The flash device must be non-NAND.

- Only the text segment of the VxWorks image (vxWorks.res_rom) may run out of flash
memory. The data segment of the image must reside in standard RAM.

- No part of the flash device may be erased while the VxWorks image is running from
flash memory.

Because TrueFFS garbage collection triggers an erase, this last restriction means that you
cannot run a VxWorks boot image out of a flash device that must also support a writable
file system (although a read-only file system is OK).

2 Routines
tffsShowAll()

321

2

This last restriction arises from the way in which flash devices are constructed. The current
physical construction of flash memory devices does not allow access to the device while an
erase is in progress anywhere on the flash device. As a result, if TrueFFS tries to erase a
portion of the flash device, the entire device becomes inaccessible to all other users. If that
other user happens to be the VxWorks image looking for its next instruction, the VxWorks
image crashes.

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO tffsConfig

tffsShow()

NAME tffsShow() – show device information on a specific socket interface

SYNOPSIS void tffsShow
 (
 int driveNo /* TFFS drive number */
)

DESCRIPTION This routine prints device information on the specified socket interface. This information is
particularly useful when trying to determine the number of Erase Units required to contain
a boot image. The field called unitSize reports the size of an Erase Unit.

If the process of getting physical information fails, an error code is printed. The error codes
can be found in flbase.h.

RETURNS N/A

ERRNO Not Available

SEE ALSO tffsConfig

tffsShowAll()

NAME tffsShowAll() – show device information on all socket interfaces

SYNOPSIS void tffsShowAll (void)

VxWorks Drivers API Reference, 6.2
vgaInit()

322

DESCRIPTION This routine prints device information on all socket interfaces.

RETURNS N/A

ERRNO Not Available

SEE ALSO tffsConfig

vgaInit()

NAME vgaInit() – initializes the VGA chip and loads font in memory.

SYNOPSIS STATUS vgaInit
 (
 void
)

DESCRIPTION This routine will initialize the VGA-specific register set to bring a VGA card in VGA 3+
mode and loads the font in plane 2.

RETURNS OK/ERROR

ERRNO Not Available

SEE ALSO vgaInit

wancomEndDbg()

NAME wancomEndDbg() – Print pDrvCtrl information regarding Tx ring and Rx queue desc.

SYNOPSIS void wancomEndDbg
 (
 WANCOM_DRV_CTRL * pDrvCtrl /* pointer to WANCOM_DRV_CTRL structure */
)

DESCRIPTION none

RETURNS N/A

2 Routines
wancomEndLoad()

323

2

ERRNO Not Available

SEE ALSO wancomEnd

wancomEndLoad()

NAME wancomEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ* wancomEndLoad
 (
 char *initString /* parameter string */
)

DESCRIPTION This routine initializes both, driver and device to an operational state using device-specific
parameters specified by initString.

The parameter string, initString, is an ordered list of parameters each separated by a colon.
The format of initString is, "memBase:memSize:nCfds:nRfds:flags"

The GT642xx shares a region of memory with the driver. The caller of this routine can
specify the address of this memory region, or can specify that the driver must obtain this
memory region from the system resources.

A default number of transmit/receive frames of 32 can be selected by passing zero in the
parameters nTfds and nRfds. In other cases, the number of frames selected should be greater
than two.

The memBase parameter is used to inform the driver about the shared memory region. If this
parameter is set to the constant NONE, this routine will attempt to allocate the shared
memory from the system. Any other value for this parameter is interpreted by this routine
as the address of the shared memory region to be used. The memSize parameter is used to
check that this region is large enough with respect to the provided values of both
transmit/receive descriptors.

If the caller provides the shared memory region, the driver assumes that this region does not
require cache coherency operations, nor does it require conversions between virtual and
physical addresses.

If the caller indicates that this routine must allocate the shared memory region, this routine
will use cacheDmaMalloc() to obtain some non-cacheable memory.

The flags parameter is used to select if packet is copied to one buffer when CFDs are short of
multiple fragmented data sent through multiple CFDs and at least one CFD is available
which can be used to transfer the packet with copying the fragmented data to the buffer.
Setting the bit 0 enables this capability and requires 1536 bytes (depends on

VxWorks Drivers API Reference, 6.2
wdbEndPktDevInit()

324

WANCOM_BUF_DEF_SIZE, defined in wancomEnd.h, and _CACHE_ALIGN_SIZE, defined in
the architecture-specific header file) per CFD from system memory.

RETURNS an END object pointer, or NULL on error.

ERRNO Not Available

SEE ALSO wancomEnd, ifLib, Marvell GT64240 Data Sheet, Marvell GT64260 Data Sheet, Marvell
GT64260 Errata

wdbEndPktDevInit()

NAME wdbEndPktDevInit() – initialize an END packet device

SYNOPSIS STATUS wdbEndPktDevInit
 (
 WDB_END_PKT_DEV * pPktDev, /* device structure to init */
 void (*stackRcv) (), /* recv packet callback (udpRcv) */
 char * pDevice, /* Device (ln, ie, etc.) that we */

/* wish to bind to. */
 int unit /* unit number (0, 1, etc.) */
)

DESCRIPTION This routine initializes an END packet device. It is typically called from configlette
wdbEnd.c when the WDB agent's lightweight END communication path
(INCLUDE_WDB_COMM_END) is selected.

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO wdbEndPktDrv

2 Routines
wdbPipePktDevInit()

325

2

wdbNetromPktDevInit()

NAME wdbNetromPktDevInit() – initialize a NETROM packet device for the WDB agent

SYNOPSIS void wdbNetromPktDevInit
 (
 WDB_NETROM_PKT_DEV *pPktDev, /* packet device to initialize */
 caddr_t dpBase, /* address of dualport memory */
 int width, /* number of bytes in a ROM word */
 int index, /* pod zero's index in a ROM word */
 int numAccess, /* to pod zero per byte read */
 void (*stackRcv)(), /* callback when packet arrives */
 int pollDelay /* poll task delay */
)

DESCRIPTION This routine initializes a NETROM packet device. It is typically called from usrWdb.c when
the WDB agents NETROM communication path is selected. The dpBase parameter is the
address of NetROM's dualport RAM. The width parameter is the width of a word in ROM
space, and can be 1, 2, or 4 to select 8-bit, 16-bit, or 32-bit width respectivly (use the macro
WDB_NETROM_WIDTH in configAll.h for this parameter). The index parameter refers to
which byte of the ROM contains pod zero. The numAccess parameter should be set to the
number of accesses to POD zero that are required to read a byte. It is typically one, but some
boards actually read a word at a time. This routine spawns a task which polls the NetROM
for incomming packets every pollDelay clock ticks.

RETURNS N/A

ERRNO Not Available

SEE ALSO wdbNetromPktDrv

wdbPipePktDevInit()

NAME wdbPipePktDevInit() – initialize a pipe packet device

SYNOPSIS STATUS wdbPipePktDevInit
 (
 WDB_PIPE_PKT_DEV * pPktDev,/* pipe device structure to init */
 void (*stackRcv) () /* receive packet callback (udpRcv)*/
)

VxWorks Drivers API Reference, 6.2
wdbSlipPktDevInit()

326

DESCRIPTION This routine initializes a pipe device. It is typically called from configlette wdbPipe.c when
the WDB agent's lightweight pipe communication path (INCLUDE_WDB_COMM_PIPE) is
selected.

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO wdbPipePktDrv

wdbSlipPktDevInit()

NAME wdbSlipPktDevInit() – initialize a SLIP packet device for a WDB agent

SYNOPSIS void wdbSlipPktDevInit
 (
 WDB_SLIP_PKT_DEV *pPktDev, /* SLIP packetizer device */
 SIO_CHAN * pSioChan, /* underlying serial channel */
 void (*stackRcv)() /* callback when a packet arrives */
)

DESCRIPTION This routine initializes a SLIP packet device on one of the BSP's serial channels. It is typically
called from usrWdb.c when the WDB agent's lightweight SLIP communication path is
selected.

RETURNS N/A

ERRNO Not Available

SEE ALSO wdbSlipPktDrv

wdbTsfsDrv()

NAME wdbTsfsDrv() – initialize the TSFS device driver for a WDB agent

SYNOPSIS STATUS wdbTsfsDrv
 (
 char * name /* root name in i/o system */
)

2 Routines
wdbVioDrv()

327

2

DESCRIPTION This routine initializes the VxWorks virtual I/O "2" driver and creates a TSFS device of the
specified name.

This routine should be called exactly once, before any reads, writes, or opens. Normally, it
is automatically called if the component INCLUDE_WDB_TSFS is added at configuration
time and the device name created is /tgtsvr.

After this routine has been called, individual virtual I/O channels can be opened by
appending the host file name to the virtual I/O device name. For example, to get a file
descriptor for the host file /etc/passwd, call open() as follows:

 fd = open ("/tgtsvr/etc/passwd", O_RDWR, 0)

RETURNS OK, or ERROR if the driver cannot be installed.

ERRNO Not Available

SEE ALSO wdbTsfsDrv

wdbVioDrv()

NAME wdbVioDrv() – initialize the tty driver for a WDB agent

SYNOPSIS STATUS wdbVioDrv
 (
 char * name /* device name */
)

DESCRIPTION This routine initializes the VxWorks virtual I/O driver and creates a virtual I/O device of
the specified name.

This routine should be called exactly once, before any reads, writes, or opens. Normally, it
is automatically called when the component INCLUDE_WDB_VIO_DRV is included at
configuration time and the device name created is "/vio".

After this routine has been called, individual virtual I/O channels can be opened by
appending the channel number to the virtual I/O device name. For example, to get a file
descriptor for virtual I/O channel 0x1000017, call open() as follows:

 fd = open ("/vio/0x1000017", O_RDWR, 0)

RETURNS OK, or ERROR if the driver cannot be installed.

ERRNO Not Available

SEE ALSO wdbVioDrv

VxWorks Drivers API Reference, 6.2
xbdAttach()

328

xbdAttach()

NAME xbdAttach() – attach an XBD device

SYNOPSIS int xbdAttach
 (
 XBD * xbd,
 struct xbd_funcs * funcs,
 const char * name,
 unsigned blocksize,
 sector_t nblocks,
 device_t * result
)

DESCRIPTION none

RETURNS 0 upon success, non-zero otherwise

ERRNO Not Available

SEE ALSO xbd

xbdBlockSize()

NAME xbdBlockSize() – retrieve the block size

SYNOPSIS int xbdBlockSize
 (
 device_t d,
 unsigned * result
)

DESCRIPTION none

RETURNS 0 on success, error code otherwise

ERRNO Not Available

SEE ALSO xbd

2 Routines
xbdDump()

329

2

xbdDetach()

NAME xbdDetach() – detach an XBD device

SYNOPSIS void xbdDetach
 (
 XBD * xbd /* pointer to XBD device to detach */
)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO xbd

xbdDump()

NAME xbdDump() – XBD dump routine

SYNOPSIS int xbdDump
 (
 device_t d,
 sector_t pos,
 void * data,
 size_t size
)

DESCRIPTION none

RETURNS 0 on success, error code otherwise

ERRNO Not Available

SEE ALSO xbd

VxWorks Drivers API Reference, 6.2
xbdInit()

330

xbdInit()

NAME xbdInit() – initialize the XBD library

SYNOPSIS STATUS xbdInit (void)

DESCRIPTION This routine initializes the XBD libarary.

RETURNS OK upon success, ERROR otherwise

ERRNO Not Available

SEE ALSO xbd

xbdIoctl()

NAME xbdIoctl() – XBD device ioctl routine

SYNOPSIS int xbdIoctl
 (
 device_t d,
 int cmd,
 void * arg
)

DESCRIPTION none

RETURNS varies

ERRNO Not Available

SEE ALSO xbd

2 Routines
xbdSize()

331

2

xbdNBlocks()

NAME xbdNBlocks() – retrieve the total number of blocks

SYNOPSIS int xbdNBlocks
 (
 device_t d,
 sector_t * result
)

DESCRIPTION none

RETURNS 0 on success, error code otherwise

ERRNO Not Available

SEE ALSO xbd

xbdSize()

NAME xbdSize() – retrieve the total number of bytes

SYNOPSIS int xbdSize
 (
 device_t d,
 long long * result
)

DESCRIPTION This routine retrieves the total number of bytes on the backing media.

RETURNS 0 on success, error code otherwise

ERRNO Not Available

SEE ALSO xbd

VxWorks Drivers API Reference, 6.2
xbdStrategy()

332

xbdStrategy()

NAME xbdStrategy() – XBD strategy routine

SYNOPSIS int xbdStrategy
 (
 device_t d,
 struct bio * bio
)

DESCRIPTION none

RETURNS 0 upon success, error code otherwise

ERRNO Not Available

SEE ALSO xbd

z8530DevInit()

NAME z8530DevInit() – intialize a Z8530_DUSART

SYNOPSIS void z8530DevInit
 (
 Z8530_DUSART * pDusart
)

DESCRIPTION The BSP must have already initialized all the device addresses, etc in Z8530_DUSART
structure. This routine initializes some SIO_CHAN function pointers and then resets the chip
to a quiescent state.

RETURNS N/A

ERRNO Not Available

SEE ALSO z8530Sio

2 Routines
z8530IntEx()

333

2

z8530Int()

NAME z8530Int() – handle all interrupts in one vector

SYNOPSIS void z8530Int
 (
 Z8530_DUSART * pDusart
)

DESCRIPTION On some boards, all SCC interrupts for both ports share a single interrupt vector. This is the
ISR for such boards. We determine from the parameter which SCC interrupted, then look at
the code to find out which channel and what kind of interrupt.

RETURNS N/A

ERRNO Not Available

SEE ALSO z8530Sio

z8530IntEx()

NAME z8530IntEx() – handle error interrupts

SYNOPSIS void z8530IntEx
 (
 Z8530_CHAN * pChan
)

DESCRIPTION This routine handles miscellaneous interrupts on the SCC.

RETURNS N/A

ERRNO Not Available

SEE ALSO z8530Sio

VxWorks Drivers API Reference, 6.2
z8530IntRd()

334

z8530IntRd()

NAME z8530IntRd() – handle a reciever interrupt

SYNOPSIS void z8530IntRd
 (
 Z8530_CHAN * pChan
)

DESCRIPTION This routine handles read interrupts from the SCC.

RETURNS N/A

ERRNO Not Available

SEE ALSO z8530Sio

z8530IntWr()

NAME z8530IntWr() – handle a transmitter interrupt

SYNOPSIS void z8530IntWr
 (
 Z8530_CHAN * pChan
)

DESCRIPTION This routine handles write interrupts from the SCC.

RETURNS N/A

ERRNO Not Available

SEE ALSO z8530Sio

335

Keyword Index

Keyword Name Page

nth device with given device & vendor ID. find ... pciFindDevice() 288
general purpose pins GPIO 0-4. configures... sym895GPIOConfig() 314
general purpose pins GPIO 0-4. controls ... sym895GPIOCtrl() 315

initialize NS 16550 chip. .. evbNs16550HrdInit() 217
/interrupt for NS 16550 chip. ... evbNs16550Int() 217

NS 16550 UART tty driver. ... ns16550Sio 84
configuration/ write one 16-bit word to PCI .. pciConfigOutWord() 284

interface/ END-style DEC 21x40 PCI Ethernet network.. dec21x40End 22
find device by 24-bit class code. .. pciFindClassShow() 288
module. VGA 3+ mode initialization source ... vgaInit 126

interface driver for 3COM 3C509. END network .. elt3c509End 33
interface driver for 3COM 3C90xB XL. END network .. el3c90xEnd 29

network interface driver for 3COM 3C509. END ... elt3c509End 33
network interface driver for 3COM 3C90xB XL. END ... el3c90xEnd 29

(SIOP) library (SCSI-2). NCR 53C8xx PCI SCSI I/O Processor.. ncr810Lib 80
control structure for NCR 53C8xx SIOP. create.. ncr810CtrlCreate() 251
control structure for NCR 53C8xx SIOP. initialize... ncr810CtrlInit() 252

/registers for NCR 53C8xx SIOP. ... ncr810SetHwRegister() 253
/values of all readable NCR 53C8xx SIOP registers... ncr810Show() 254
/values of all readable SYM 53C8xx SIOP registers... sym895Show() 318

NEC 765 floppy disk device driver. .. nec765Fd 83
adaptor chip library. Intel 82365SL PCMCIA host bus.. pcic 108
adaptor chip show/ Intel 82365SL PCMCIA host bus.. pcicShow 108
82546/ MAC driver. Intel 82540/82541/82543/82544/82545/ gei82543End 42
specified register value in 82543 chip. get .. gei82543RegGet() 226
interface/ END-style Intel 82557 Ethernet network.. fei82557End 37

loopback diagnotics on 895 chip. /routine performs sym895Loopback() 316
initialize configuration access-method and addresses........................... pciConfigLibInit() 280

TCIC/2 PCMCIA host bus adaptor chip driver. Databook .. tcic 124
Intel 82365SL PCMCIA host bus adaptor chip library... pcic 108
Intel 82365SL PCMCIA host bus adaptor chip show library. ... pcicShow 108

VxWorks Drivers API Reference, 6.2

336

/TCIC/2 PCMCIA host bus adaptor chip show library. ... tcicShow 124
access-method and addresses. /configuration pciConfigLibInit() 280
set correct I/O port addresses for Super I/O chip.......... smcFdc37b78xDevCreate() 309

locate addresses in packet............................ endEtherPacketAddrGet() 207
/to show FCC parameter ram addresses, initial BD and/.............................. motFccDrvShow() 245

NETROM packet driver for WDB agent. .. wdbNetromPktDrv 129
serial line packetizer for WDB agent. .. wdbSlipPktDrv 131

file I/O driver for WDB agent. virtual generic .. wdbTsfsDrv 132
virtual tty I/O driver for WDB agent. ... wdbVioDrv 136

NETROM packet device for WDB agent. initialize..................................... wdbNetromPktDevInit() 325
SLIP packet device for WDB agent. initialize... wdbSlipPktDevInit() 326
TSFS device driver for WDB agent. initialize... wdbTsfsDrv() 326
initialize tty driver for WDB agent. .. wdbVioDrv() 327

boundary conditions. align PCI address and check pciAutoAddrAlign() 262
allocate memory blocks. ... bio_alloc() 192

Category. allocates user-defined Event erfCategoryAllocate() 211
for this Category. allocates user-defined Type............................. erfTypeAllocate() 216

PCI bus scan and resource allocation facility. .. pciAutoConfigLib 87
driver. END-style AMD Am79C97X PCnet-PCI Ethernet ln97xEnd 53

initialize AMBA channel... ambaDevInit() 147
ARM AMBA UART tty driver.. ambaSio 3

Ethernet driver. END-style AMD Am79C97X PCnet-PCI .. ln97xEnd 53
END style AMD8111 LAN Ethernet driver......................... amd8111LanEnd 6

ARM AMBA UART tty driver. .. ambaSio 3
initialize ATA device. ... ataInit() 157

low-level initialization of ATA device. .. iPIIX4AtaInit() 230
Initialize ATA driver. ... ataDrv() 157

issue RegisterFile command to ATA/ATAPI device. .. ataCmd() 150
drive. get ATA/ATAPI version number of atapiVersionNumberGet() 186

and PCMCIA) disk device/ ATA/IDE and ATAPI CDROM (LOCAL ataDrv 8
create device for ATA/IDE disk. ... ataDevCreate() 154

create XBD device for ATA/IDE disk. ... ataXbdDevCreate() 161
reset specified ATA/IDE disk controller. ataCtrlReset() 154

routine. initialize ATA/IDE disk driver show.................................... ataShowInit() 160
show ATA/IDE disk parameters. ... ataShow() 159

disk device driver show/ ATA/IDE (LOCAL and PCMCIA).................................. ataShow 13
init ATAPI CD-ROM disk controller. ataPiInit() 158
init ATAPI CD-ROM disk controller. atapiInit() 171

disk device/ ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA)........................... ataDrv 8
processing. execute ATAPI command with error atapiPktCmd() 179

read one or more blocks from ATAPI Device. .. atapiRead10() 180
CD-ROM CAPACITY command to ATAPI device. issue READ atapiReadCapacity() 181

issue READ TOC command to ATAPI device.. atapiReadTocPmaAtip() 181
issue SCAN packet command to ATAPI drive... atapiScan() 182

SET CD SPEED packet command to ATAPI drive. issue... atapiSetCDSpeed() 183
PLAY/SCAN packet command to ATAPI drive. issue STOP............................ atapiStopPlayScan() 185
TEST UNIT READY command to ATAPI drive. issue... atapiTestUnitRdy() 185

END style Au MAC Ethernet driver. ... auEnd 14
initialize PCI autoconfig library................................... pciAutoConfigLibInit() 273

nonexcluded PCI headers. Automatically configure all pciAutoCfg() 264

 Keyword Index

337

Index

nonexcluded PCI headers/ automatically configure all pciAutoConfig() 272
result. check auto-negotiation process ... miiAnCheck() 238

memory. initializes B69000 chip and loads font in............................ ctB69000VgaInit() 196
module. CHIPS B69000 initialization source .. ctB69000Vga 20

assign PCI space to single PCI base address register. pciAutoRegConfig() 275
lightweight UDP/IP. END based packet driver for.. wdbEndPktDrv 129

END style BCM1250 MAC Ethernet driver. bcm1250MacEnd 17
/ram addresses, initial BD and cluster settings....................................... motFccDrvShow() 245

initialize bio library... bioInit() 192
free bio memory. .. bio_free() 193

terminates bio operation. .. bio_done() 193
Extended Block Device Library. ... xbd 137

retrieve block size. .. xbdBlockSize() 328
allocate memory blocks. .. bio_alloc() 192

retrieve total number of blocks. ... xbdNBlocks() 331
read one or more blocks from ATAPI Device... atapiRead10() 180

disable cards for warm boot.. pciConfigReset() 285
device. write to boot-image region of flash tffsBootImagePut() 320

align PCI address and check boundary conditions...................................... pciAutoAddrAlign() 262
initializes PCI-ISA/IDE bridge. ... iPIIX4KbdInit() 232
for single PCI-Cardbus bridge. /mem and I/O registers pciAutoCardBusConfig() 263

buffer I/O Implementation.. bio 18
check condition on specified bus. ... pciConfigForeachFunc() 277

configure device on PCI bus. .. pciDevConfig() 286
Databook TCIC/2 PCMCIA host bus adaptor chip driver. ... tcic 124

Intel 82365SL PCMCIA host bus adaptor chip library. .. pcic 108
Intel 82365SL PCMCIA host bus adaptor chip show library... pcicShow 108

Databook TCIC/2 PCMCIA host bus adaptor chip show library.. tcicShow 124
secondary, and subordinate bus number. set primary,....................... pciAutoBusNumberSet() 263

allocation facility. PCI bus scan and resource... pciAutoConfigLib 87
Show routines of PCI bus(I/O mapped) library. pciConfigShow 106

retrieve total number of bytes. .. xbdSize() 331
read two bytes from serial ROM......................... dec21140SromWordRead() 197

get number of Bytes per sector. atapiBytesPerSectorGet() 161
get number of Bytes per track. .. atapiBytesPerTrackGet() 162

dummy callback routine. ppc403DummyCallback() 296
Maximum PIO mode that drive can support. get ... atapiMaxPioModeGet() 177

Maximum Ultra DMA mode drive can support. get atapiMaxUDmaModeGet() 178
find extended capability in ECP linked list. pciConfigExtCapFind() 277

device. issue READ CD-ROM CAPACITY command to ATAPI atapiReadCapacity() 181
enable PCMCIA Etherlink III card... pccardEltEnabler() 260

PC CARD enabler library. .. pccardLib 86
interrupt service for card interrupts. .. iOlicomIntHandle() 230

get information from PC card’s CIS... cisGet() 195
disable cards for warm boot.. pciConfigReset() 285

Get maximum number of Categories... erfCategoriesAvailable() 210
Get number of unallocated User Categories... erfCategoriesAvailable() 210

allocates user-defined Event Category... erfCategoryAllocate() 211
user-defined Type for this Category. allocates.. erfTypeAllocate() 216

of unallocated User Types for category. Get number....................................... erfTypesAvailable() 216

VxWorks Drivers API Reference, 6.2

338

Queue. Creates Category Event Processing................. erfCategoryQueueCreate() 212
ATAPI drive. issue SET CD SPEED packet command to...................... atapiSetCDSpeed() 183

ATAPI device. issue READ CD-ROM CAPACITY command to.............. atapiReadCapacity() 181
init ATAPI CD-ROM disk controller. .. ataPiInit() 158
init ATAPI CD-ROM disk controller. .. atapiInit() 171

device/ ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) disk ataDrv 8
initialize AMBA channel. .. ambaDevInit() 147

intialize NS16550 channel. .. ns16550DevInit() 256
intialize NS16550 channel. .. rm9000x2glDevInit() 299

handle channel’s error interrupt.. shSciIntErr() 302
handle channel’s error interrupt.. shScifIntErr() 304

interrupt. handle channel’s receive-character .. shSciIntRcv() 303
interrupt. handle channel’s receive-character shScifIntRcv() 305
interrupt. handle channels transmitter-ready... shSciIntTx() 303
interrupt. handle channels transmitter-ready... shScifIntTx() 305

initialize NS 16550 chip... evbNs16550HrdInit() 217
interrupt for NS 16550 chip. /receiver/transmitter evbNs16550Int() 217
register value in 82543 chip. get specified .. gei82543RegGet() 226

initialize chip... i8250HrdInit() 228
initialize PCIC chip... pcicInit() 293

all configurations of PCIC chip. show... pcicShow() 293
all configurations of PCMCIA chip. show... pcmciaShow() 294
port addresses for Super I/O chip. set correct I/O............................. smcFdc37b78xDevCreate() 309

loopback diagnotics on 895 chip. This routine performs.............................. sym895Loopback() 316
initialize TCIC chip.. tcicInit() 319

all configurations of TCIC chip. show.. tcicShow() 319
initializes B69000 chip and loads font in memory. ctB69000VgaInit() 196

initializes VGA chip and loads font in memory. ... vgaInit() 322
LPT. parallel chip device driver for IBM-PC.. lptDrv 59

TCIC/2 PCMCIA host bus adaptor chip driver. Databook... tcic 124
PCMCIA host bus adaptor chip library. Intel 82365SL .. pcic 108

initializes Super I/O chip Library.. smcFdc37b78xInit() 309
sets Sym895 chip Options. ... sym895SetHwOptions() 317

PCMCIA host bus adaptor chip show library. /82365SL.. pcicShow 108
TCIC/2 PCMCIA host bus adaptor chip show library. Databook ... tcicShow 124

source module. CHIPS B69000 initialization ... ctB69000Vga 20
get information from PC card’s CIS. ... cisGet() 195

show CIS information.. cisShow() 196
PCMCIA CIS library. .. cisLib 19
PCMCIA CIS show library. .. cisShow 19

occurrence of device by PCI class code. find nth .. pciFindClass() 287
find device by 24-bit class code.. pciFindClassShow() 288

ram addresses, initial BD and cluster settings. /parameter motFccDrvShow() 245
of device by PCI class code. find nth occurrence ... pciFindClass() 287

find device by 24-bit class code. .. pciFindClassShow() 288
low-level initialization code for PCI ISA/IDE/... iPIIX4 50
initialize on-chip serial communication interface. ... shSciDevInit() 302
initialize on-chip serial communication interface. shScifDevInit() 304

driver. Z8530 SCC Serial Communications Controller.. z8530Sio 137
Hitachi SH SCI (Serial Communications Interface)/ .. shSciSio 112

 Keyword Index

339

Index

Renesas SH SCIF (Serial Communications Interface)/... shScifSio 113
Check status of drive and compare to requested status. ataStatusChk() 160

enable/disable TBI compatibility workaround......................... gei82543TbiCompWr() 227
check condition on specified bus. pciConfigForeachFunc() 277

PCI address and check boundary conditions. align ... pciAutoAddrAlign() 262
and addresses. initialize configuration access-method............................ pciConfigLibInit() 280

Register. pack parameters for Configuration Address.................................... pciConfigBdfPack() 276
function. perform final configuration and enable pciAutoFuncEnable() 274

function. show configuration details about......................... pciConfigFuncShow() 278
VxWorks. TrueFFS configuration file for .. tffsConfig 125

get PCMCIA configuration register.. cisConfigregGet() 194
set PCMCIA configuration register... cisConfigregSet() 194

read one byte from PCI configuration space... pciConfigInByte() 278
read one longword from PCI configuration space.. pciConfigInLong() 279

read one word from PCI configuration space... pciConfigInWord() 279
write one byte to PCI configuration space.. pciConfigOutByte() 283

write one longword to PCI configuration space.. pciConfigOutLong() 284
write one 16-bit word to PCI configuration space.. pciConfigOutWord() 284
support for PCI drivers. PCI Configuration space access... pciConfigLib 95

show all configurations of PCIC chip. ... pcicShow() 293
show all configurations of PCMCIA chip. pcmciaShow() 294
show all configurations of TCIC chip. .. tcicShow() 319

headers. Automatically configure all nonexcluded PCI................................... pciAutoCfg() 264
headers/ automatically configure all nonexcluded PCI............................. pciAutoConfig() 272

configure device on PCI bus.................................. pciDevConfig() 286
initialize and configure PHY devices. .. miiPhyInit() 240

pins GPIO 0-4. configures general purpose sym895GPIOConfig() 314
PCI interrupt. connect interrupt handler to.................................. pciIntConnect() 290

Find first PHY connected to DEC MII port.............................. dec21x40PhyFind() 198
to show driver-specific control data. Debug Function................................... motFccShow() 250

Control drive... atapiIoctl() 172
53C8xx SIOP. create control structure for NCR ncr810CtrlCreate() 251

53C8xx SIOP. initialize control structure for NCR ncr810CtrlInit() 252
driver for Symbios SYM895 SCSI Controller. SCSI-2 .. sym895Lib 122

reset specified ATA/IDE disk controller... ataCtrlReset() 154
init ATAPI CD-ROM disk controller... ataPiInit() 158
init ATAPI CD-ROM disk controller... atapiInit() 171

initializes keyboard controller.. smcFdc37b78xKbdInit() 310
service routine for SCSI Controller. interrupt.. sym895Intr() 315

SCC Serial Communications Controller driver. Z8530 ... z8530Sio 137
initialize SCSI Controller Structure. .. sym895CtrlInit() 313

turn on or off individual controllers dma support... ataDmaToggle() 156
GPIO 0-4. controls general purpose pins sym895GPIOCtrl() 315

Super I/O chip. set correct I/O port addresses for............ smcFdc37b78xDevCreate() 309
change MIB-II error count... mib2ErrorAdd() 237

Display statistical counters. .. amd8111LanDumpPrint() 148
dump statistical counters. amd8111LanErrCounterDump() 149

Display statistical counters. ... fei82557DumpPrint() 220
dump statistical counters. .. fei82557ErrCounterDump() 222

Debug Function to show FCC CP ethernet parameter ram. motFccEramShow() 247

VxWorks Drivers API Reference, 6.2

340

Debug Function to show FCC CP internal ram parameters. motFccIramShow() 248
Debug Function to show FCC CP parameter ram... motFccPramShow() 249

NCR 53C8xx SIOP. create control structure for ncr810CtrlCreate() 251
disk. create device for ATA/IDE...................................... ataDevCreate() 154

create device for floppy disk. fdDevCreate() 218
create device for LPT port.. lptDevCreate() 234

device. create PCMCIA memory disk sramDevCreate() 310
device. create structure for SYM895 sym895CtrlCreate() 312

disk. create XBD device for ATA/IDE..................... ataXbdDevCreate() 161
Processing Queue. Creates Category Event erfCategoryQueueCreate() 212

generate special cycle with message. ... pciSpecialCycle() 292
get logical number of cylinders in drive. atapiCurrentCylinderCountGet() 163

get number of cylinders in drive. atapiCylinderCountGet() 166
bus adaptor chip driver. Databook TCIC/2 PCMCIA host ... tcic 124
bus adaptor chip show/ Databook TCIC/2 PCMCIA host tcicShow 124

driver-specific control data. Debug Function to show... motFccShow() 250
ethernet parameter ram. Debug Function to show FCC CP motFccEramShow() 247
internal ram parameters. Debug Function to show FCC CP motFccIramShow() 248

parameter ram. Debug Function to show FCC CP motFccPramShow() 249
parameter ram addresses,/ Debug Function to show FCC........................... motFccDrvShow() 245

statistics. Debug Function to show MIB.......................... motFccMibShow() 248
settings in Phy Info/ Debug Function to show Mii motFccMiiShow() 249

Shows debug info for this library. .. erfShow() 215
handler. Enable debugging output in timer emacTimerDebugDump() 205

interface driver. END-style DEC 21x40 PCI Ethernet network dec21x40End 22
Find first PHY connected to DEC MII port. ... dec21x40PhyFind() 198

show decoded value of command word... pciConfigCmdWordShow() 276
show decoded value of status word........ pciConfigStatusWordShow() 285

Get size of default queue.. erfDefaultQueueSizeGet() 212
regarding Tx ring and Rx queue desc. /pDrvCtrl information............................. wancomEndDbg() 322

Show Receive Ring details. .. motFccDumpRxRing() 245
Show Transmit Ring details. .. motFccDumpTxRing() 246
show configuration details about function.................................. pciConfigFuncShow() 278

find nth device with given device & vendor ID. ... pciFindDevice() 288
initialize driver and device... amd8111LanEndLoad() 149

command to ATA/ATAPI device. issue RegisterFile ... ataCmd() 150
identify device... ataDevIdentify() 155

initialize ATA device... ataInit() 157
one or more blocks from ATAPI Device. read ... atapiRead10() 180
CAPACITY command to ATAPI device. issue READ CD-ROM....................... atapiReadCapacity() 181
READ TOC command to ATAPI device. issue... atapiReadTocPmaAtip() 181

initialize driver and device.. auEndLoad() 188
initialize driver and device... bcm1250MacEndLoad() 189
initialize driver and device.. dec21x40EndLoad() 198

attach device.. devAttach() 199
detach device... devDetach() 199

map device... devMap() 200
name device... devName() 201

unmap device.. devUnmap() 201
initialize driver and device... el3c90xEndLoad() 201

 Keyword Index

341

Index

initialize driver and device... elt3c509Load() 203
initialize driver and device.. emacEndLoad() 205
initialize driver and device... fei82557EndLoad() 220
initialize driver and device.. gei82543EndLoad() 224
initialize driver and device... iOlicomEndLoad() 229
initialization of ATA device. low-level .. iPIIX4AtaInit() 230

initializes floppy disk device... iPIIX4FdInit() 230
initialize driver and device.. ln97xEndLoad() 232
initialize driver and device.. m8260SccEndLoad() 236
initialize driver and device... motFccEndLoad() 246
initialize driver and device... motFecEndLoad() 250
initialize driver and device... ne2000EndLoad() 255
initialize driver and device... ns83902EndLoad() 258

enable PCMCIA-ATA device... pccardAtaEnabler() 259
print header of specified PCI device... pciHeaderShow() 289
to MUX, initialize driver and device. attach SM interface.................................. smEndLoad() 306

create PCMCIA memory disk device.. sramDevCreate() 310
create structure for SYM895 device.. sym895CtrlCreate() 312

to boot-image region of flash device. write .. tffsBootImagePut() 320
initialize driver and device.. wancomEndLoad() 323

initialize END packet device.. wdbEndPktDevInit() 324
initialize pipe packet device... wdbPipePktDevInit() 325

attach XBD device... xbdAttach() 328
detach XBD device.. xbdDetach() 329

information. find PCI device and display................................. pciFindDeviceShow() 289
system. initialize device and mount DOS file pccardMkfs() 260

status bits. quiesce PCI device and reset all writeable.................... pciAutoDevReset() 273
find device by 24-bit class code....................... pciFindClassShow() 288

find nth occurrence of device by PCI class code. pciFindClass() 287
PCMCIA SRAM device driver. ... sramDrv 121

NEC 765 floppy disk device driver. .. nec765Fd 83
CDROM (LOCAL and PCMCIA) disk device driver. /and ATAPI ... ataDrv 8

parallel chip device driver for IBM-PC LPT... lptDrv 59
initialize TSFS device driver for WDB agent. wdbTsfsDrv() 326

/(LOCAL and PCMCIA) disk device driver show routine. .. ataShow 13
create device for ATA/IDE disk.................................. ataDevCreate() 154

create XBD device for ATA/IDE disk........................... ataXbdDevCreate() 161
create device for floppy disk. .. fdDevCreate() 218
create device for LPT port. .. lptDevCreate() 234

initialize NETROM packet device for WDB agent. wdbNetromPktDevInit() 325
initialize SLIP packet device for WDB agent. wdbSlipPktDevInit() 326

socket interfaces. show device information on all..................................... tffsShowAll() 321
socket interface. show device information on specific.................................. tffsShow() 321

Device Infrastructure Library.. device 28
give device interrupt level to use............................. iPIIX4GetIntr() 231
XBD device ioctl routine. ... xbdIoctl() 330

Extended Block Device Library. ... xbd 137
initialize device manager. ... devInit() 200

probe list. find next device of specific type from............... pciAutoGetNextClass() 275
configure device on PCI bus. .. pciDevConfig() 286

VxWorks Drivers API Reference, 6.2

342

display device status... auDump() 187
vendor ID. find nth device with given device & pciFindDevice() 288

initialize and configure PHY devices. .. miiPhyInit() 240
print information about PCI devices. ... pciDeviceShow() 287

This routine performs loopback diagnotics on 895 chip. sym895Loopback() 316
from PCI interrupt. disconnect interrupt handler pciIntDisconnect2() 291

(OBSOLETE). disconnect interrupt handler pciIntDisconnect() 291
create device for ATA/IDE disk. ... ataDevCreate() 154

create XBD device for ATA/IDE disk. ... ataXbdDevCreate() 161
create device for floppy disk. .. fdDevCreate() 218

reset specified ATA/IDE disk controller. ... ataCtrlReset() 154
init ATAPI CD-ROM disk controller. .. ataPiInit() 158
init ATAPI CD-ROM disk controller. .. atapiInit() 171

initializes floppy disk device.. iPIIX4FdInit() 230
create PCMCIA memory disk device.. sramDevCreate() 310

NEC 765 floppy disk device driver. .. nec765Fd 83
ATAPI CDROM (LOCAL and PCMCIA) disk device driver. /and... ataDrv 8

ATA/IDE (LOCAL and PCMCIA) disk device driver show/... ataShow 13
initialize floppy disk driver. .. fdDrv() 219

initialize ATA/IDE disk driver show routine.................................. ataShowInit() 160
show ATA/IDE disk parameters. ... ataShow() 159

of sectors on current track in DMA mode. read/write number ataDmaRW() 156
get enabled Multi word DMA mode.......................... atapiCurrentMDmaModeGet() 164

get enabled Single word DMA mode............................ atapiCurrentSDmaModeGet() 165
get enabled Ultra DMA mode........................... atapiCurrentUDmaModeGet() 166

support /get Maximum Ultra DMA mode drive can atapiMaxUDmaModeGet() 178
get Maximum Multi word DMA mode drive supports. ... atapiMaxMDmaModeGet() 176

get Maximum Single word DMA mode drive supports. atapiMaxSDmaModeGet() 177
display RX DMA register values................ bcm1250MacRxDmaShow() 190
display TX DMA register values................ bcm1250MacTxDmaShow() 191

or off individual controllers dma support. turn on ataDmaToggle() 156
initialize device and mount DOS file system. ... pccardMkfs() 260

mount DOS file system. .. pccardMount() 261
National Semiconductor DP83902A ST-NIC.. ns83902End 84

logical number of cylinders in drive. get.......................... atapiCurrentCylinderCountGet() 163
number of read/write heads in drive. get................................ atapiCurrentHeadCountGet() 163

get number of cylinders in drive. .. atapiCylinderCountGet() 166
get features supported by drive. ... atapiFeatureSupportedGet() 169

get firmware revision of drive. .. atapiFirmwareRevisionGet() 170
get number heads in drive. ... atapiHeadCountGet() 171

Control drive. .. atapiIoctl() 172
get model number of drive. .. atapiModelNumberGet() 178

SCAN packet command to ATAPI drive. issue .. atapiScan() 182
issues SEEK packet command to drive. .. atapiSeek() 183

SPEED packet command to ATAPI drive. issue SET CD atapiSetCDSpeed() 183
packet command to ATAPI drive. issue STOP PLAY/SCAN atapiStopPlayScan() 185

UNIT READY command to ATAPI drive. issue TEST..................................... atapiTestUnitRdy() 185
ATA/ATAPI version number of drive. get...................................... atapiVersionNumberGet() 186

status. Check status of drive and compare to requested ataStatusChk() 160
get Maximum PIO mode that drive can support. atapiMaxPioModeGet() 177

 Keyword Index

343

Index

get Maximum Ultra DMA mode drive can support. atapiMaxUDmaModeGet() 178
Read drive parameters. ... ataParamRead() 158
Print drive parameters. .. atapiParamsPrint() 179

get drive serial number.................... atapiDriveSerialNumberGet() 167
Maximum Multi word DMA mode drive supports. get.......................... atapiMaxMDmaModeGet() 176

Maximum Single word DMA mode drive supports. get........................... atapiMaxSDmaModeGet() 177
get drive type. .. atapiDriveTypeGet() 167

ppc403GA serial driver... ppc403Sio 110
MPC800 SMC UART serial driver. Motorola .. ppc860Sio 111

RM9000 tty driver... rm9000x2glSio 111
Communications Interface) driver. /SH SCI (Serial .. shSciSio 112
Communications Interface) driver. /SH SCIF (Serial .. shScifSio 113

memory (SM) network interface driver. END shared... smEnd 113
PCMCIA SRAM device driver.. sramDrv 121

PCMCIA host bus adaptor chip driver. Databook TCIC/2.. tcic 124
Ethernet network interface driver. /GT642xx... wancomEnd 126

Communications Controller driver. Z8530 SCC Serial ... z8530Sio 137
END style Au MAC Ethernet driver.. auEnd 14

Initialize ATA driver.. ataDrv() 157
END style BCM1250 MAC Ethernet driver... bcm1250MacEnd 17

initialize floppy disk driver... fdDrv() 219
PCI Ethernet network interface driver. END-style DEC 21x40................................... dec21x40End 22

initialize LPT driver.. lptDrv() 235
enable PCMCIA-SRAM driver.. pccardSramEnabler() 261

enable PCMCIA-TFFS driver.. pccardTffsEnabler() 262
install PCMCIA SRAM memory driver.. sramDrv() 311

Ethernet network interface driver. END-style Intel 82557 fei82557End 37
ARM AMBA UART tty driver.. ambaSio 3

/MAC driver... gei82543End 42
I8250 serial driver.. i8250Sio 46

PCMCIA network interface driver. /style Intel Olicom.. iOlicomEnd 47
Am79C97X PCnet-PCI Ethernet driver. END-style AMD ... ln97xEnd 53

MPC8260 network interface driver. END style Motorola m8260SccEnd 60
END style AMD8111 LAN Ethernet driver.. amd8111LanEnd 6

FEC Ethernet network interface driver. END style Motorola ... motFecEnd 74
NE2000 END network interface driver.. ne2000End 81

NEC 765 floppy disk device driver... nec765Fd 83
NS 16550 UART tty driver.. ns16550Sio 84

(LOCAL and PCMCIA) disk device driver. /and ATAPI CDROM .. ataDrv 8
initialize driver and device. amd8111LanEndLoad() 149
initialize driver and device. ... auEndLoad() 188
initialize driver and device. bcm1250MacEndLoad() 189
initialize driver and device. ... dec21x40EndLoad() 198
initialize driver and device. ... el3c90xEndLoad() 201
initialize driver and device. ... elt3c509Load() 203
initialize driver and device. .. emacEndLoad() 205
initialize driver and device. ... fei82557EndLoad() 220
initialize driver and device. .. gei82543EndLoad() 224
initialize driver and device. ... iOlicomEndLoad() 229
initialize driver and device. .. ln97xEndLoad() 232

VxWorks Drivers API Reference, 6.2

344

initialize driver and device.. m8260SccEndLoad() 236
initialize driver and device.. motFccEndLoad() 246
initialize driver and device.. motFecEndLoad() 250
initialize driver and device... ne2000EndLoad() 255
initialize driver and device... ns83902EndLoad() 258

interface to MUX, initialize driver and device. attach SM smEndLoad() 306
initialize driver and device.. wancomEndLoad() 323

END network interface driver for 3COM 3C509. ... elt3c509End 33
END network interface driver for 3COM 3C90xB XL.. el3c90xEnd 29

evaluation. NS16550 serial driver for IBM PPC403GA.................................... evbNs16550Sio 37
parallel chip device driver for IBM-PC LPT. ... lptDrv 59
END based packet driver for lightweight UDP/IP. wdbEndPktDrv 129

pipe packet driver for lightweight UDP/IP. wdbPipePktDrv 130
Controller. SCSI-2 driver for Symbios SYM895 SCSI................................ sym895Lib 122
NETROM packet driver for WDB agent..................................... wdbNetromPktDrv 129

virtual generic file I/O driver for WDB agent.. wdbTsfsDrv 132
virtual tty I/O driver for WDB agent.. wdbVioDrv 136

initialize TSFS device driver for WDB agent.. wdbTsfsDrv() 326
initialize tty driver for WDB agent... wdbVioDrv() 327

(LOCAL and PCMCIA) disk device driver show routine. ATA/IDE ataShow 13
initialize ATA/IDE disk driver show routine... ataShowInit() 160

shared memory network END driver show routines. ... smEndShow 118
all show routines for PCMCIA drivers. initialize ... pcmciaShowInit() 295
support library for END-based drivers. ... endLib 35

space access support for PCI drivers. PCI Configuration....................................... pciConfigLib 95
Debug Function to show driver-specific control data. motFccShow() 250

dummy callback routine.................... ppc403DummyCallback() 296
XBD dump routine. .. xbdDump() 329

dump statistical counters. amd8111LanErrCounterDump() 149
dump statistical counters. fei82557ErrCounterDump() 222

find extended capability in ECP linked list... pciConfigExtCapFind() 277
PC CARD enabler library. ... pccardLib 86

support library for END-based drivers. .. endLib 35
return pointer to END_DEVICE for gei unit. gei82543Unit() 228

set flags member of END_OBJ structure. ... endObjFlagSet() 208
initialize END_OBJ structure. .. endObjInit() 208

PCnet-PCI Ethernet driver. END-style AMD Am79C97X .. ln97xEnd 53
Ethernet network interface/ END-style DEC 21x40 PCI .. dec21x40End 22

network interface driver. END-style Intel 82557 Ethernet fei82557End 37
change MIB-II error count. ... mib2ErrorAdd() 237

handle channel’s error interrupt. ... shSciIntErr() 302
handle channel’s error interrupt. ... shScifIntErr() 304

handle error interrupts... ppc403IntEx() 296
handle error interrupts.. z8530IntEx() 333

execute ATAPI command with error processing. .. atapiPktCmd() 179
enable PCMCIA Etherlink III card... pccardEltEnabler() 260

form Ethernet address into packet............... endEtherAddressForm() 206
END style Au MAC Ethernet driver. .. auEnd 14

END style BCM1250 MAC Ethernet driver. ... bcm1250MacEnd 17
AMD Am79C97X PCnet-PCI Ethernet driver. END-style.. ln97xEnd 53

 Keyword Index

345

Index

END style AMD8111 LAN Ethernet driver... amd8111LanEnd 6
Second Generation Motorola FCC Ethernet network interface. ... motFcc2End 65

/style Marvell/Galileo GT642xx Ethernet network interface/... wancomEnd 126
END-style DEC 21x40 PCI Ethernet network interface/.. dec21x40End 22

driver. END-style Intel 82557 Ethernet network interface .. fei82557End 37
END style Motorola FEC Ethernet network interface/... motFecEnd 74

Debug Function to show FCC CP ethernet parameter ram................................... motFccEramShow() 247
serial driver for IBM PPC403GA evaluation. NS16550 ... evbNs16550Sio 37

Raises event. .. erfEventRaise() 213
event handler for particular event. Registers... erfHandlerRegister() 213
event handler for particular event. Registers... erfHandlerUnregister() 214

allocates user-defined Event Category. .. erfCategoryAllocate() 211
event. Registers event handler for particular.......................... erfHandlerRegister() 213
event. Registers event handler for particular...................... erfHandlerUnregister() 214

Creates Category Event Processing Queue...................... erfCategoryQueueCreate() 212
library. Initialize Event Reporting Framework... erfLibInit() 215

Library. Event Reporting Framework... erfLib 36
Library Show routines. Event Reporting Framework... erfShow 36

generic PCMCIA event-handling facilities.. pcmciaLib 108
initialize PCMCIA event-handling package. ... pcmciaInit() 294

handle task-level PCMCIA events. .. pcmciad() 295
error processing. execute ATAPI command with atapiPktCmd() 179

Extended Block Device Library. ... xbd 137
linked list. find extended capability in ECP...................... pciConfigExtCapFind() 277

Debug Function to show FCC CP ethernet parameter ram. motFccEramShow() 247
Debug Function to show FCC CP internal ram/ motFccIramShow() 248
Debug Function to show FCC CP parameter ram. motFccPramShow() 249

Second Generation Motorola FCC Ethernet network/ ... motFcc2End 65
Debug Function to show FCC parameter ram addresses,/....................... motFccDrvShow() 245
source module. superIO (fdc37b78x) initialization.. smcFdc37b78x 118

get enabled features. .. atapiFeatureEnabledGet() 168
get features supported by drive. atapiFeatureSupportedGet() 169

driver. END style Motorola FEC Ethernet network interface..................................... motFecEnd 74
TrueFFS configuration file for VxWorks.. tffsConfig 125

virtual generic file I/O driver for WDB agent...................................... wdbTsfsDrv 132
device and mount DOS file system. initialize ... pccardMkfs() 260

mount DOS file system... pccardMount() 261
get firmware revision of drive. atapiFirmwareRevisionGet() 170

structure. set flags member of END_OBJ endObjFlagSet() 208
write to boot-image region of flash device... tffsBootImagePut() 320

create device for floppy disk. ... fdDevCreate() 218
initializes floppy disk device.. iPIIX4FdInit() 230
NEC 765 floppy disk device driver. ... nec765Fd 83
initialize floppy disk driver... fdDrv() 219

B69000 chip and loads font in memory. initializes ctB69000VgaInit() 196
initializes VGA chip and loads font in memory. .. vgaInit() 322

Initialize Event Reporting Framework library... erfLibInit() 215
Event Reporting Framework Library. .. erfLib 36

routines. Event Reporting Framework Library Show ... erfShow 36
pointer to END_DEVICE for gei unit. return ... gei82543Unit() 228

VxWorks Drivers API Reference, 6.2

346

configures general purpose pins GPIO 0-4................... sym895GPIOConfig() 314
controls general purpose pins GPIO 0-4........................ sym895GPIOCtrl() 315

Ethernet network/ Second Generation Motorola FCC ... motFcc2End 65
general purpose pins GPIO 0-4. configures sym895GPIOConfig() 314

controls general purpose pins GPIO 0-4. ... sym895GPIOCtrl() 315
END style Marvell/Galileo GT642xx Ethernet network/ ... wancomEnd 126

to MII optional registers handlers. set pointers miiPhyOptFuncMultiSet() 242
for NCR 53C8xx SIOP. set hardware-dependent registers................. ncr810SetHwRegister() 253

device. print header of specified PCI pciHeaderShow() 289
configure all nonexcluded PCI headers. Automatically ... pciAutoCfg() 264

/configure all nonexcluded PCI headers (obsolete). ... pciAutoConfig() 272
get number of read/write heads in drive. atapiCurrentHeadCountGet() 163

get number heads in drive. ... atapiHeadCountGet() 171
Communications Interface)/ Hitachi SH SCI (Serial .. shSciSio 112
Databook TCIC/2 PCMCIA host bus adaptor chip driver. .. tcic 124

Intel 82365SL PCMCIA host bus adaptor chip library. .. pcic 108
library. Intel 82365SL PCMCIA host bus adaptor chip show .. pcicShow 108

Databook TCIC/2 PCMCIA host bus adaptor chip show/.. tcicShow 124
I8250 serial driver... i8250Sio 46

NS16550 serial driver for IBM PPC403GA evaluation. evbNs16550Sio 37
chip device driver for IBM-PC LPT. parallel.. lptDrv 59

identify device.. ataDevIdentify() 155
enable PCMCIA Etherlink III card. .. pccardEltEnabler() 260

buffer I/O Implementation... bio 18
Media Independent Interface library.. miiLib 63

support. turn on or off individual controllers dma.................................... ataDmaToggle() 156
Shows debug info for this library. .. erfShow() 215

to show Mii settings in Phy Info structure. /Function motFccMiiShow() 249
Device Infrastructure Library. .. device 28

controller. init ATAPI CD-ROM disk ... ataPiInit() 158
controller. init ATAPI CD-ROM disk ... atapiInit() 171

parse init string. ... elt3c509Parse() 204
FCC parameter ram addresses, initial BD and cluster/ /show motFccDrvShow() 245

Return current RU status and int mask. ... fei82557GetRUStatus() 223
adaptor chip library. Intel 82365SL PCMCIA host bus ... pcic 108

adaptor chip show library. Intel 82365SL PCMCIA host bus pcicShow 108
Intel/.. gei82543End 42

interface driver. END-style Intel 82557 Ethernet network .. fei82557End 37
interface driver. END style Intel Olicom PCMCIA network.................................... iOlicomEnd 47

handle receiver interrupt. .. ambaIntRx() 147
handle transmitter interrupt. ... ambaIntTx() 148

handle receiver/transmitter interrupt. .. i8250Int() 229
handle receiver interrupt. .. ns16550IntRd() 257

handle transmitter interrupt. .. ns16550IntWr() 258
handler for shared PCI interrupt. interrupt ... pciInt() 290

interrupt handler to PCI interrupt. connect... pciIntConnect() 290
interrupt handler from PCI interrupt. disconnect pciIntDisconnect2() 291

handle receiver interrupt. ... ppc403IntRd() 297
handle transmitter interrupt. ... ppc403IntWr() 297

handle SMC interrupt. ... ppc860Int() 298

 Keyword Index

347

Index

handle receiver interrupt... rm9000x2glIntRd() 301
handle transmitter interrupt... rm9000x2glIntWr() 301

handle channel’s error interrupt... shSciIntErr() 302
channel’s receive-character interrupt. handle ... shSciIntRcv() 303
channels transmitter-ready interrupt. handle ... shSciIntTx() 303

handle channel’s error interrupt.. shScifIntErr() 304
channel’s receive-character interrupt. handle .. shScifIntRcv() 305
channels transmitter-ready interrupt. handle .. shScifIntTx() 305

handle reciever interrupt... z8530IntRd() 334
handle transmitter interrupt.. z8530IntWr() 334

handle receiver/transmitter interrupt for NS 16550 chip. evbNs16550Int() 217
PCI interrupt. interrupt handler for shared... pciInt() 290

interrupt. disconnect interrupt handler from PCI............................. pciIntDisconnect2() 291
disconnect interrupt handler (OBSOLETE)........................ pciIntDisconnect() 291

interrupt. connect interrupt handler to PCI... pciIntConnect() 290
give device interrupt level to use.. iPIIX4GetIntr() 231

miscellaneous interrupt processing.. ns16550IntEx() 257
miscellaneous interrupt processing.. rm9000x2glIntEx() 300

interrupts. interrupt service for card iOlicomIntHandle() 230
SCSI Controller. interrupt service routine for .. sym895Intr() 315

PCI Shared Interrupt support. .. pciIntLib 107
interrupt-level processing. .. ns16550Int() 256
interrupt-level processing. rm9000x2glInt() 299
interrupt-level processing. rm9000x2glIntMod() 300

interrupt service for card interrupts. ... iOlicomIntHandle() 230
handle error interrupts. ... ppc403IntEx() 296
handle error interrupts. ... z8530IntEx() 333

handle all interrupts in one vector. .. z8530Int() 333
intialize NS16550 channel. ns16550DevInit() 256
intialize NS16550 channel. rm9000x2glDevInit() 299
intialize Z8530_DUSART.. z8530DevInit() 332

provide raw I/O access... fdRawio() 219
I/O port addresses for Super I/O chip. set correct smcFdc37b78xDevCreate() 309

initializes Super I/O chip Library. .. smcFdc37b78xInit() 309
virtual generic file I/O driver for WDB agent. ... wdbTsfsDrv 132

virtual tty I/O driver for WDB agent. .. wdbVioDrv 136
buffer I/O Implementation. .. bio 18

I/O chip. set correct I/O port addresses for Super smcFdc37b78xDevCreate() 309
(SCSI-2). NCR 53C8xx PCI SCSI I/O Processor (SIOP) library ... ncr810Lib 80

PCI-Cardbus/ set mem and I/O registers for single pciAutoCardBusConfig() 263
XBD device ioctl routine. .. xbdIoctl() 330

PCMCIA memory onto specified ISA address space. map... sramMap() 311
initialization code for PCI ISA/IDE Xcelerator. low-level .. iPIIX4 50

REMOVAL packet command. Issues PREVENT/ALLOW MEDIUM atapiCtrlMediumRemoval() 162
drive. issues SEEK packet command to atapiSeek() 183

command. Issues START STOP UNIT packet................. atapiStartStopUnit() 184
initializes keyboard controller. smcFdc37b78xKbdInit() 310

END style AMD8111 LAN Ethernet driver. .. amd8111LanEnd 6
turn off LED... gei82543LedOff() 224
turn on LED.. gei82543LedOn() 225

VxWorks Drivers API Reference, 6.2

348

END based packet driver for lightweight UDP/IP. .. wdbEndPktDrv 129
pipe packet driver for lightweight UDP/IP. .. wdbPipePktDrv 130

free tuples from linked list... cisFree() 195
extended capability in ECP linked list. find .. pciConfigExtCapFind() 277

free tuples from linked list. .. cisFree() 195
of specific type from probe list. find next device pciAutoGetNextClass() 275

capability in ECP linked list. find extended ... pciConfigExtCapFind() 277
initializes B69000 chip and loads font in memory.. ctB69000VgaInit() 196

initializes VGA chip and loads font in memory... vgaInit() 322
ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) disk device/ ataDrv 8
driver show routine. ATA/IDE (LOCAL and PCMCIA) disk device ataShow 13

locate addresses in packet. endEtherPacketAddrGet() 207
drive. get logical number of cylinders in .. atapiCurrentCylinderCountGet() 163

configuration space. read one longword from PCI... pciConfigInLong() 279
Perform masked longword register update. pciConfigModifyByte() 281
Perform masked longword register update. pciConfigModifyLong() 282
Perform masked longword register update. pciConfigModifyWord() 283
space. write one longword to PCI configuration........................ pciConfigOutLong() 284

chip. This routine performs loopback diagnotics on 895 sym895Loopback() 316
for PCI ISA/IDE Xcelerator. low-level initialization code .. iPIIX4 50

ATA device. low-level initialization of.. iPIIX4AtaInit() 230
chip device driver for IBM-PC LPT. parallel .. lptDrv 59

initialize LPT driver. .. lptDrv() 235
create device for LPT port... lptDevCreate() 234

show LPT statistics. ... lptShow() 236
82541/82543/82544/82545/82546/ MAC driver. Intel 82540/ .. gei82543End 42

END style Au MAC Ethernet driver.. auEnd 14
END style BCM1250 MAC Ethernet driver.. bcm1250MacEnd 17

display MAC register values... bcm1250MacShow() 191
map device.. devMap() 200

specified ISA address space. map PCMCIA memory onto ... sramMap() 311
Show routines of PCI bus(I/O mapped) library.. pciConfigShow 106
Ethernet network/ END style Marvell/Galileo GT642xx... wancomEnd 126

current RU status and int mask. Return... fei82557GetRUStatus() 223
update. Perform masked longword register.......................... pciConfigModifyByte() 281
update. Perform masked longword register......................... pciConfigModifyLong() 282
update. Perform masked longword register......................... pciConfigModifyWord() 283

drive supports. get Maximum Multi word DMA mode ... atapiMaxMDmaModeGet() 176
Get maximum number of Categories.............. erfCategoriesAvailable() 210
Get maximum number of Types. erfCategoriesAvailable() 211

can support. get Maximum PIO mode that drive atapiMaxPioModeGet() 177
drive supports. get Maximum Single word DMA mode atapiMaxSDmaModeGet() 177

can support. get Maximum Ultra DMA mode drive atapiMaxUDmaModeGet() 178
library. Media Independent Interface... miiLib 63

Version. get Media Stat Notification.. atapiRemovMediaStatusNotifyVerGet() 182
Issues prevent/allow medium removal packet command ... atapiCtrlMediumRemoval() 162

single PCI-Cardbus/ set mem and I/O registers for pciAutoCardBusConfig() 263
set flags member of END_OBJ structure. endObjFlagSet() 208
free bio memory.. bio_free() 193

B69000 chip and loads font in memory. initializes.. ctB69000VgaInit() 196

 Keyword Index

349

Index

VGA chip and loads font in memory. initializes ... vgaInit() 322
allocate memory blocks. .. bio_alloc() 192

create PCMCIA memory disk device.. sramDevCreate() 310
install PCMCIA SRAM memory driver. .. sramDrv() 311

show information about shared memory network... smNetShow() 308
routines. shared memory network END driver show smEndShow 118

address space. map PCMCIA memory onto specified ISA .. sramMap() 311
driver. END shared memory (SM) network interface.. smEnd 113

generate special cycle with message.. pciSpecialCycle() 292
Debug Function to show MIB statistics. .. motFccMibShow() 248

change MIB-II error count. ... mib2ErrorAdd() 237
initialize MIB-II structure. .. mib2Init() 238
initialize MII library.. miiLibInit() 239

uninitialize MII library.. miiLibUnInit() 239
show routine for MII library.. miiShow() 244

handler. set pointer to MII optional registers miiPhyOptFuncSet() 243
handlers. set pointers to MII optional registers miiPhyOptFuncMultiSet() 242

first PHY connected to DEC MII port. Find .. dec21x40PhyFind() 198
get contents of MII registers. .. miiRegsGet() 244

Debug Function to show Mii settings in Phy Info/.................................... motFccMiiShow() 249
processing. miscellaneous interrupt.. ns16550IntEx() 257
processing. miscellaneous interrupt...................................... rm9000x2glIntEx() 300

get model number of drive. atapiModelNumberGet() 178
get token string (modified version).. endTok_r() 209

interface. Second Generation Motorola FCC Ethernet network motFcc2End 65
interface driver. END style Motorola FEC Ethernet network.................................... motFecEnd 74

serial driver. Motorola MPC800 SMC UART .. ppc860Sio 111
interface driver. END style Motorola MPC8260 network m8260SccEnd 60

initialize device and mount DOS file system... pccardMkfs() 260
mount DOS file system... pccardMount() 261

Motorola MPC800 SMC UART serial driver. ppc860Sio 111
driver. END style Motorola MPC8260 network interface m8260SccEnd 60

get enabled Multi word DMA mode. atapiCurrentMDmaModeGet() 164
supports. get Maximum Multi word DMA mode drive.......... atapiMaxMDmaModeGet() 176

attach SM interface to MUX, initialize driver and/ smEndLoad() 306
name device. ... devName() 201

DP83902A ST-NIC. National Semiconductor .. ns83902End 84
Processor (SIOP) library/ NCR 53C8xx PCI SCSI I/O.. ncr810Lib 80

create control structure for NCR 53C8xx SIOP. ... ncr810CtrlCreate() 251
control structure for NCR 53C8xx SIOP. initialize................................... ncr810CtrlInit() 252

/registers for NCR 53C8xx SIOP. ncr810SetHwRegister() 253
display values of all readable NCR 53C8xx SIOP registers....................................... ncr810Show() 254

driver. NE2000 END network interface...................................... ne2000End 81
driver. NEC 765 floppy disk device ... nec765Fd 83

agent. initialize NETROM packet device for WDB wdbNetromPktDevInit() 325
agent. NETROM packet driver for WDB................... wdbNetromPktDrv 129

about shared memory network. show information smNetShow() 308
routines. shared memory network END driver show ... smEndShow 118

Motorola FCC Ethernet network interface. /Generation motFcc2End 65
END shared memory (SM) network interface driver.. smEnd 113

VxWorks Drivers API Reference, 6.2

350

/GT642xx Ethernet network interface driver. .. wancomEnd 126
/DEC 21x40 PCI Ethernet network interface driver. ... dec21x40End 22

END-style Intel 82557 Ethernet network interface driver. .. fei82557End 37
END style Intel Olicom PCMCIA network interface driver. .. iOlicomEnd 47

END style Motorola MPC8260 network interface driver. ... m8260SccEnd 60
style Motorola FEC Ethernet network interface driver. END motFecEnd 74

NE2000 END network interface driver. .. ne2000End 81
3COM 3C509. END network interface driver for....................................... elt3c509End 33

3COM 3C90xB XL. END network interface driver for... el3c90xEnd 29
prints current value of NIC registers. .. ns83902RegShow() 259

Automatically configure all nonexcluded PCI headers.. pciAutoCfg() 264
automatically configure all nonexcluded PCI headers/ pciAutoConfig() 272

get Media Stat notification version... atapiRemovMediaStatusNotifyVerGet() 182
initialize NS 16550 chip. ... evbNs16550HrdInit() 217

/interrupt for NS 16550 chip. ... evbNs16550Int() 217
NS 16550 UART tty driver. ... ns16550Sio 84

intialize NS16550 channel.. ns16550DevInit() 256
intialize NS16550 channel.. rm9000x2glDevInit() 299

PPC403GA evaluation. NS16550 serial driver for IBM evbNs16550Sio 37
all nonexcluded PCI headers (obsolete). /configure .. pciAutoConfig() 272
disconnect interrupt handler (OBSOLETE).. pciIntDisconnect() 291

interface/ END style Intel Olicom PCMCIA network.. iOlicomEnd 47
interface. initialize on-chip serial communication shSciDevInit() 302
interface. initialize on-chip serial communication shScifDevInit() 304
set pointer to MII optional registers handler.......................... miiPhyOptFuncSet() 243

set pointers to MII optional registers handlers.............. miiPhyOptFuncMultiSet() 242
Enable debugging output in timer handler..................... emacTimerDebugDump() 205

Configuration Address/ pack parameters for...................................... pciConfigBdfPack() 276
PCMCIA event-handling package. initialize ... pcmciaInit() 294

form Ethernet address into packet. .. endEtherAddressForm() 206
locate addresses in packet. ... endEtherPacketAddrGet() 207

PREVENT/ALLOW MEDIUM REMOVALpacket command. Issues............... atapiCtrlMediumRemoval() 162
Issue Packet command... atapiPktCmdSend() 180

Issues START STOP UNIT packet command.. atapiStartStopUnit() 184
issue SCAN packet command to ATAPI drive............................... atapiScan() 182

issue SET CD SPEED packet command to ATAPI drive................ atapiSetCDSpeed() 183
issue STOP PLAY/SCAN packet command to ATAPI drive.............. atapiStopPlayScan() 185

issues SEEK packet command to drive.. atapiSeek() 183
return beginning of packet data... endEtherPacketDataGet() 207

initialize END packet device. .. wdbEndPktDevInit() 324
initialize pipe packet device. ... wdbPipePktDevInit() 325

initialize NETROM packet device for WDB agent. wdbNetromPktDevInit() 325
initialize SLIP packet device for WDB agent. wdbSlipPktDevInit() 326

UDP/IP. END based packet driver for lightweight.............................. wdbEndPktDrv 129
UDP/IP. pipe packet driver for lightweight............................. wdbPipePktDrv 130

NETROM packet driver for WDB agent. wdbNetromPktDrv 129
serial line packetizer for WDB agent. wdbSlipPktDrv 131

for IBM-PC LPT. parallel chip device driver ... lptDrv 59
PC CARD enabler library. .. pccardLib 86

get information from PC card’s CIS. .. cisGet() 195

 Keyword Index

351

Index

conditions. align PCI address and check boundary............. pciAutoAddrAlign() 262
initialize PCI autoconfig library. pciAutoConfigLibInit() 273

assign PCI space to single PCI base address register. pciAutoRegConfig() 275
configure device on PCI bus. ... pciDevConfig() 286

allocation facility. PCI bus scan and resource pciAutoConfigLib 87
Show routines of PCI bus(I/O mapped) library.............................. pciConfigShow 106

nth occurrence of device by PCI class code. find.. pciFindClass() 287
read one byte from PCI configuration space. pciConfigInByte() 278

read one longword from PCI configuration space. pciConfigInLong() 279
read one word from PCI configuration space. pciConfigInWord() 279

write one byte to PCI configuration space. pciConfigOutByte() 283
write one longword to PCI configuration space. pciConfigOutLong() 284

write one 16-bit word to PCI configuration space. pciConfigOutWord() 284
support for PCI drivers. PCI Configuration space access pciConfigLib 95
print header of specified PCI device. ... pciHeaderShow() 289

information. find PCI device and display pciFindDeviceShow() 289
writeable status/ quiesce PCI device and reset all pciAutoDevReset() 273

print information about PCI devices... pciDeviceShow() 287
space access support for PCI drivers. /Configuration.................................... pciConfigLib 95

driver. END-style DEC 21x40 PCI Ethernet network interface dec21x40End 22
disable specific PCI function. ... pciAutoFuncDisable() 274

configure all nonexcluded PCI headers. Automatically..................................... pciAutoCfg() 264
/configure all nonexcluded PCI headers (obsolete).. pciAutoConfig() 272

interrupt handler for shared PCI interrupt.. pciInt() 290
connect interrupt handler to PCI interrupt... pciIntConnect() 290

interrupt handler from PCI interrupt. disconnect............................. pciIntDisconnect2() 291
/initialization code for PCI ISA/IDE Xcelerator. ... iPIIX4 50

library (SCSI-2). NCR 53C8xx PCI SCSI I/O Processor (SIOP)...................................... ncr810Lib 80
PCI Shared Interrupt support. .. pciIntLib 107

address register. assign PCI space to single PCI base....................... pciAutoRegConfig() 275
show PCI topology. .. pciConfigTopoShow() 286

set or get pciAutoConfigLib options................................ pciAutoCfgCtl() 265
initialize PCIC chip. ... pcicInit() 293

show all configurations of PCIC chip. ... pcicShow() 293
and I/O registers for single PCI-Cardbus bridge. set mem........... pciAutoCardBusConfig() 263

initialize pciIntLib module... pciIntLibInit() 292
initializes PCI-ISA/IDE bridge. ... iPIIX4KbdInit() 232

show all configurations of PCMCIA chip. ... pcmciaShow() 294
PCMCIA CIS library. .. cisLib 19
PCMCIA CIS show library.. cisShow 19

get PCMCIA configuration register. cisConfigregGet() 194
set PCMCIA configuration register. cisConfigregSet() 194

/and ATAPI CDROM (LOCAL and PCMCIA) disk device driver. .. ataDrv 8
show/ ATA/IDE (LOCAL and PCMCIA) disk device driver.. ataShow 13

all show routines for PCMCIA drivers. initialize pcmciaShowInit() 295
enable PCMCIA Etherlink III card............................ pccardEltEnabler() 260

facilities. generic PCMCIA event-handling ... pcmciaLib 108
initialize PCMCIA event-handling package. pcmciaInit() 294

handle task-level PCMCIA events... pcmciad() 295
driver. Databook TCIC/2 PCMCIA host bus adaptor chip... tcic 124

VxWorks Drivers API Reference, 6.2

352

library. Intel 82365SL PCMCIA host bus adaptor chip .. pcic 108
show library. Intel 82365SL PCMCIA host bus adaptor chip pcicShow 108

show library. Databook TCIC/2 PCMCIA host bus adaptor chip ... tcicShow 124
create PCMCIA memory disk device. sramDevCreate() 310

ISA address space. map PCMCIA memory onto specified sramMap() 311
END style Intel Olicom PCMCIA network interface/ .. iOlicomEnd 47

PCMCIA show library... pcmciaShow 110
PCMCIA SRAM device driver. ... sramDrv 121

install PCMCIA SRAM memory driver...................................... sramDrv() 311
enable PCMCIA-ATA device. pccardAtaEnabler() 259
enable PCMCIA-SRAM driver. pccardSramEnabler() 261
enable PCMCIA-TFFS driver. pccardTffsEnabler() 262

END-style AMD Am79C97X PCnet-PCI Ethernet driver.. ln97xEnd 53
Tx ring and Rx queue/ Print pDrvCtrl information regarding....................... wancomEndDbg() 322

get number of Bytes per sector. .. atapiBytesPerSectorGet() 161
get number of Bytes per track. ... atapiBytesPerTrackGet() 162

on 895 chip. This routine performs loopback diagnotics.......................... sym895Loopback() 316
get register value in PHY. .. gei82543PhyRegGet() 225
set register value in PHY. ... gei82543PhyRegSet() 226

uninitialize PHY. ... miiPhyUnInit() 243
Find first PHY connected to DEC MII port. dec21x40PhyFind() 198

initialize and configure PHY devices.. miiPhyInit() 240
to show Mii settings in Phy Info structure. /Function motFccMiiShow() 249

Read all PHY registers out. dec21145SPIReadBack() 197
display physical register values........................... bcm1250MacPhyShow() 190

initialize PIIX4. .. iPIIX4Init() 231
configures general purpose pins GPIO 0-4. ... sym895GPIOConfig() 314

controls general purpose pins GPIO 0-4. .. sym895GPIOCtrl() 315
get enabled PIO mode. .. atapiCurrentPioModeGet() 164

support. get Maximum PIO mode that drive can.......................... atapiMaxPioModeGet() 177
initialize pipe packet device. wdbPipePktDevInit() 325

lightweight UDP/IP. pipe packet driver for... wdbPipePktDrv 130
Route PIRQ[A:D]... iPIIX4IntrRoute() 232

ATAPI drive. issue STOP PLAY/SCAN packet command to atapiStopPlayScan() 185
unit. return pointer to END_DEVICE for gei gei82543Unit() 228

registers handler. set pointer to MII optional.................................. miiPhyOptFuncSet() 243
registers handlers. set pointers to MII optional miiPhyOptFuncMultiSet() 242

initialize polling statistics updates. endPollStatsInit() 209
first PHY connected to DEC MII port. Find... dec21x40PhyFind() 198

create device for LPT port.. lptDevCreate() 234
chip. set correct I/O port addresses for Super I/O............. smcFdc37b78xDevCreate() 309

initialize serial port unit.. ppc403DevInit() 295
NS16550 serial driver for IBM PPC403GA evaluation.. evbNs16550Sio 37

ppc403GA serial driver. ... ppc403Sio 110
packet command. Issues prevent/allow medium removal.... atapiCtrlMediumRemoval() 162

subordinate bus number. set primary, secondary, and......................... pciAutoBusNumberSet() 263
Print drive parameters. atapiParamsPrint() 179

device. print header of specified PCI pciHeaderShow() 289
devices. print information about PCI................................ pciDeviceShow() 287

regarding Tx ring and Rx/ Print pDrvCtrl information wancomEndDbg() 322

 Keyword Index

353

Index

registers. prints current value of NIC ns83902RegShow() 259
device of specific type from probe list. find next pciAutoGetNextClass() 275
NCR 53C8xx PCI SCSI I/O Processor (SIOP) library/... ncr810Lib 80

configures general purpose pins GPIO 0-4. sym895GPIOConfig() 314
controls general purpose pins GPIO 0-4. sym895GPIOCtrl() 315

Category Event Processing Queue. Creates...................................... erfCategoryQueueCreate() 212
Get size of default queue... erfDefaultQueueSizeGet() 212

regarding Tx ring and Rx queue desc. /information wancomEndDbg() 322
all writeable status bits. quiesce PCI device and reset pciAutoDevReset() 273

Raises event... erfEventRaise() 213
show FCC CP ethernet parameter ram. Debug Function to motFccEramShow() 247

to show FCC CP parameter ram. Debug Function....................................... motFccPramShow() 249
/Function to show FCC parameter ram addresses, initial BD and/ motFccDrvShow() 245

to show FCC CP internal ram parameters. /Function motFccIramShow() 248
provide raw I/O access. .. fdRawio() 219

Read all PHY registers out. dec21145SPIReadBack() 197
to ATAPI device. issue READ CD-ROM CAPACITY command atapiReadCapacity() 181

Read drive parameters. .. ataParamRead() 158
configuration space. read one byte from PCI pciConfigInByte() 278
configuration space. read one longword from PCI............................ pciConfigInLong() 279

ATAPI Device. read one or more blocks from.................................... atapiRead10() 180
configuration space. read one word from PCI................................... pciConfigInWord() 279

device. issue READ TOC command to ATAPI............ atapiReadTocPmaAtip() 181
ROM. read two bytes from serial dec21140SromWordRead() 197

display values of all readable NCR 53C8xx SIOP/ ncr810Show() 254
display values of all readable SYM 53C8xx SIOP/ sym895Show() 318

required sector. read/write data from/to.. ataRW() 159
get number of read/write heads in drive............. atapiCurrentHeadCountGet() 163

on current track in DMA mode. read/write number of sectors ataDmaRW() 156
issue TEST UNIT READY command to ATAPI drive. atapiTestUnitRdy() 185
handle channel’s receive-character interrupt... shSciIntRcv() 303
handle channel’s receive-character interrupt.. shScifIntRcv() 305

handle receiver interrupt... ambaIntRx() 147
handle receiver interrupt.. ns16550IntRd() 257
handle receiver interrupt.. ppc403IntRd() 297
handle receiver interrupt.. rm9000x2glIntRd() 301

interrupt. handle receiver/transmitter .. i8250Int() 229
for NS 16550 chip. handle receiver/transmitter interrupt evbNs16550Int() 217

handle reciever interrupt.. z8530IntRd() 334
Print pDrvCtrl information regarding Tx ring and Rx queue/.................... wancomEndDbg() 322
get PCMCIA configuration register... cisConfigregGet() 194
set PCMCIA configuration register.. cisConfigregSet() 194
to single PCI base address register. assign PCI space pciAutoRegConfig() 275
for Configuration Address Register. pack parameters pciConfigBdfPack() 276
Perform masked longword register update... pciConfigModifyByte() 281
Perform masked longword register update.. pciConfigModifyLong() 282
Perform masked longword register update... pciConfigModifyWord() 283

set specified register value.. gei82543RegSet() 227
get specified register value in 82543 chip. gei82543RegGet() 226

get register value in PHY. gei82543PhyRegGet() 225

VxWorks Drivers API Reference, 6.2

354

set register value in PHY. gei82543PhyRegSet() 226
display physical register values. bcm1250MacPhyShow() 190

display RX DMA register values. bcm1250MacRxDmaShow() 190
display MAC register values. ... bcm1250MacShow() 191

display TX DMA register values. bcm1250MacTxDmaShow() 191
ATA/ATAPI device. issue RegisterFile command to... ataCmd() 150

get contents of MII registers... miiRegsGet() 244
all readable NCR 53C8xx SIOP registers. display values of.................................. ncr810Show() 254

prints current value of NIC registers... ns83902RegShow() 259
all readable SYM 53C8xx SIOP registers. display values of................................. sym895Show() 318

particular event. Registers event handler for erfHandlerRegister() 213
particular event. Registers event handler for erfHandlerUnregister() 214

set hardware-dependent registers for NCR 53C8xx SIOP. ncr810SetHwRegister() 253
PCI-Cardbus/ set mem and I/O registers for single pciAutoCardBusConfig() 263

set pointer to MII optional registers handler. miiPhyOptFuncSet() 243
set pointers to MII optional registers handlers. miiPhyOptFuncMultiSet() 242

Read all PHY registers out. .. dec21145SPIReadBack() 197
Issues PREVENT/ALLOW MEDIUM REMOVAL packet command. .. atapiCtrlMediumRemoval() 162

Communications Interface)/ Renesas SH SCIF (Serial ... shScifSio 113
read/write data from/to required sector... ataRW() 159

bits. quiesce PCI device and reset all writeable status pciAutoDevReset() 273
controller. reset specified ATA/IDE disk............................. ataCtrlReset() 154

check auto-negotiation process result.. miiAnCheck() 238
get firmware revision of drive......................... atapiFirmwareRevisionGet() 170

Show Receive ring. ... fei82557ShowRxRing() 223
/information regarding Tx ring and Rx queue desc. wancomEndDbg() 322

Show Receive Ring details.. motFccDumpRxRing() 245
Show Transmit Ring details.. motFccDumpTxRing() 246

RM9000 tty driver... rm9000x2glSio 111
read two bytes from serial ROM. ... dec21140SromWordRead() 197

Route PIRQ[A:D]... iPIIX4IntrRoute() 232
Return current RU status and int mask........................ fei82557GetRUStatus() 223

display RX DMA register values............. bcm1250MacRxDmaShow() 190
regarding Tx ring and Rx queue desc. /information...................... wancomEndDbg() 322

facility. PCI bus scan and resource allocation pciAutoConfigLib 87
drive. issue SCAN packet command to ATAPI.......................... atapiScan() 182

Controller driver. Z8530 SCC Serial Communications... z8530Sio 137
Interface) driver. Hitachi SH SCI (Serial Communications... shSciSio 112

Interface) driver. Renesas SH SCIF (Serial Communications...................................... shScifSio 113
driver for Symbios SYM895 SCSI Controller. SCSI-2.. sym895Lib 122
interrupt service routine for SCSI Controller.. sym895Intr() 315

initialize SCSI Controller Structure. sym895CtrlInit() 313
library/ NCR 53C8xx PCI SCSI I/O Processor (SIOP).. ncr810Lib 80

I/O Processor (SIOP) library (SCSI-2). NCR 53C8xx PCI SCSI................................. ncr810Lib 80
SYM895 SCSI Controller. SCSI-2 driver for Symbios... sym895Lib 122

Ethernet network interface. Second Generation Motorola FCC motFcc2End 65
number. set primary, secondary, and subordinate bus..... pciAutoBusNumberSet() 263

data from/to required sector. read/write ... ataRW() 159
get number of Bytes per sector.. atapiBytesPerSectorGet() 161

DMA/ read/write number of sectors on current track in..................................... ataDmaRW() 156

 Keyword Index

355

Index

issues SEEK packet command to drive. atapiSeek() 183
National Semiconductor DP83902A ST-NIC. ns83902End 84

interface. initialize on-chip serial communication ... shSciDevInit() 302
interface. initialize on-chip serial communication .. shScifDevInit() 304

Controller driver. Z8530 SCC Serial Communications .. z8530Sio 137
Interface)/ Hitachi SH SCI (Serial Communications... shSciSio 112

Interface)/ Renesas SH SCIF (Serial Communications... shScifSio 113
ppc403GA serial driver. .. ppc403Sio 110

Motorola MPC800 SMC UART serial driver. .. ppc860Sio 111
I8250 serial driver. ... i8250Sio 46

evaluation. NS16550 serial driver for IBM PPC403GA............................. evbNs16550Sio 37
agent. serial line packetizer for WDB................................ wdbSlipPktDrv 131

get drive serial number. atapiDriveSerialNumberGet() 167
initialize serial port unit. ... ppc403DevInit() 295

read two bytes from serial ROM. ... dec21140SromWordRead() 197
interrupt service for card interrupts.............................. iOlicomIntHandle() 230

Controller. interrupt service routine for SCSI .. sym895Intr() 315
Interface) driver. Hitachi SH SCI (Serial Communications ... shSciSio 112

Interface) driver. Renesas SH SCIF (Serial Communications shScifSio 113
PCI Shared Interrupt support. ... pciIntLib 107

show information about shared memory network.. smNetShow() 308
driver show routines. shared memory network END..................................... smEndShow 118
interface driver. END shared memory (SM) network ... smEnd 113
interrupt handler for shared PCI interrupt. ... pciInt() 290

PCIC chip. show all configurations of.. pcicShow() 293
PCMCIA chip. show all configurations of... pcmciaShow() 294

TCIC chip. show all configurations of... tcicShow() 319
show ATA/IDE disk parameters. ataShow() 159
show CIS information.. cisShow() 196

about function. show configuration details pciConfigFuncShow() 278
word. show decoded value of command... pciConfigCmdWordShow() 276
word. show decoded value of status pciConfigStatusWordShow() 285

socket interfaces. show device information on all................................. tffsShowAll() 321
specific socket interface. show device information on.. tffsShow() 321
data. Debug Function to show driver-specific control motFccShow() 250
ram. Debug Function to show FCC CP ethernet parameter motFccEramShow() 247

parameters. Debug Function to show FCC CP internal ram.............................. motFccIramShow() 248
Debug Function to show FCC CP parameter ram......................... motFccPramShow() 249

addresses,/ Debug Function to show FCC parameter ram.................................. motFccDrvShow() 245
memory network. show information about shared................................ smNetShow() 308

PCMCIA host bus adaptor chip show library. Intel 82365SL.. pcicShow 108
PCMCIA show library.. pcmciaShow 110

PCMCIA host bus adaptor chip show library. Databook TCIC/2 .. tcicShow 124
PCMCIA CIS show library.. cisShow 19

show LPT statistics... lptShow() 236
Debug Function to show MIB statistics. ... motFccMibShow() 248

structure. Debug Function to show Mii settings in Phy Info............................ motFccMiiShow() 249
show PCI topology. pciConfigTopoShow() 286
Show Receive ring. fei82557ShowRxRing() 223
Show Receive Ring details. motFccDumpRxRing() 245

VxWorks Drivers API Reference, 6.2

356

and PCMCIA) disk device driver show routine. ATA/IDE (LOCAL ... ataShow 13
initialize ATA/IDE disk driver show routine. ... ataShowInit() 160

show routine for MII library. ... miiShow() 244
memory network END driver show routines. shared ... smEndShow 118
Reporting Framework Library Show routines. Event .. erfShow 36

drivers. initialize all show routines for PCMCIA...................................... pcmciaShowInit() 295
mapped) library. Show routines of PCI bus(I/O...................................... pciConfigShow 106

Show Transmit Ring details. motFccDumpTxRing() 246
library. Shows debug info for this ... erfShow() 215

structure for NCR 53C8xx SIOP. create control ... ncr810CtrlCreate() 251
structure for NCR 53C8xx SIOP. initialize control ... ncr810CtrlInit() 252
registers for NCR 53C8xx SIOP. set hardware-dependent....................... ncr810SetHwRegister() 253

53C8xx PCI SCSI I/O Processor (SIOP) library (SCSI-2). NCR... ncr810Lib 80
of all readable NCR 53C8xx SIOP registers. /values... ncr810Show() 254
of all readable SYM 53C8xx SIOP registers. /values.. sym895Show() 318

agent. initialize SLIP packet device for WDB wdbSlipPktDevInit() 326
initialize driver and/ attach SM interface to MUX, .. smEndLoad() 306

END shared memory (SM) network interface driver. .. smEnd 113
initialize SMC... ppc860DevInit() 298

handle SMC interrupt... ppc860Int() 298
Motorola MPC800 SMC UART serial driver. ... ppc860Sio 111

device information on specific socket interface. show .. tffsShow() 321
show device information on all socket interfaces. ... tffsShowAll() 321

(fdc37b78x) initialization source module. superIO... smcFdc37b78x 118
VGA 3+ mode initialization source module. ... vgaInit 126
CHIPS B69000 initialization source module. ... ctB69000Vga 20
byte from PCI configuration space. read one .. pciConfigInByte() 278

from PCI configuration space. read one longword....................................... pciConfigInLong() 279
word from PCI configuration space. read one ... pciConfigInWord() 279
one byte to PCI configuration space. write ... pciConfigOutByte() 283

longword to PCI configuration space. write one... pciConfigOutLong() 284
word to PCI configuration space. write one 16-bit ... pciConfigOutWord() 284
onto specified ISA address space. map PCMCIA memory ... sramMap() 311
drivers. PCI Configuration space access support for PCI ... pciConfigLib 95

address register. assign PCI space to single PCI base pciAutoRegConfig() 275
generate special cycle with message. pciSpecialCycle() 292

drive. issue SET CD SPEED packet command to ATAPI atapiSetCDSpeed() 183
PCMCIA SRAM device driver.. sramDrv 121

install PCMCIA SRAM memory driver. .. sramDrv() 311
get Media Stat Notification Version. .. atapiRemovMediaStatusNotifyVerGet() 182

Display statistical counters.. amd8111LanDumpPrint() 148
dump statistical counters............................. amd8111LanErrCounterDump() 149

Display statistical counters.. fei82557DumpPrint() 220
dump statistical counters..................................... fei82557ErrCounterDump() 222

show LPT statistics. .. lptShow() 236
Debug Function to show MIB statistics. ... motFccMibShow() 248

initialize polling statistics updates. ... endPollStatsInit() 209
drive and compare to requested status. Check status of .. ataStatusChk() 160

display device status. .. auDump() 187
Return current RU status and int mask. .. fei82557GetRUStatus() 223

 Keyword Index

357

Index

device and reset all writeable status bits. quiesce PCI pciAutoDevReset() 273
requested status. Check status of drive and compare to................................ ataStatusChk() 160
show decoded value of status word....................................... pciConfigStatusWordShow() 285

Semiconductor DP83902A ST-NIC. National ... ns83902End 84
XBD strategy routine.. xbdStrategy() 332

parse initialization string. ... auInitParse() 188
parse initialization string. ... el3c90xInitParse() 202

parse init string. .. elt3c509Parse() 204
parse initialization string. .. ln97xInitParse() 233

get token string (modified version). ... endTok_r() 209
set primary, secondary, and subordinate bus number. pciAutoBusNumberSet() 263

correct I/O port addresses for Super I/O chip. set............................... smcFdc37b78xDevCreate() 309
initializes Super I/O chip Library.................................... smcFdc37b78xInit() 309

initialization source module. superIO (fdc37b78x).. smcFdc37b78x 118
get features supported by drive. atapiFeatureSupportedGet() 169

Multi word DMA mode drive supports. get Maximum.................... atapiMaxMDmaModeGet() 176
Single word DMA mode drive supports. get Maximum..................... atapiMaxSDmaModeGet() 177

display values of all readable SYM 53C8xx SIOP registers. sym895Show() 318
sets Sym895 chip Options............................... sym895SetHwOptions() 317

create structure for SYM895 device... sym895CtrlCreate() 312
SCSI-2 driver for Symbios SYM895 SCSI Controller... sym895Lib 122

Controller. SCSI-2 driver for Symbios SYM895 SCSI.. sym895Lib 122
handle task-level PCMCIA events.. pcmciad() 295

enable/disable TBI compatibility workaround.................. gei82543TbiCompWr() 227
initialize TCIC chip. ... tcicInit() 319

show all configurations of TCIC chip. ... tcicShow() 319
chip driver. Databook TCIC/2 PCMCIA host bus adaptor.. tcic 124

chip show library. Databook TCIC/2 PCMCIA host bus adaptor................................... tcicShow 124
terminates bio operation. .. bio_done() 193

Enable debugging output in timer handler.. emacTimerDebugDump() 205
issue READ TOC command to ATAPI device............ atapiReadTocPmaAtip() 181
version). get token string (modified... endTok_r() 209

show PCI topology. ... pciConfigTopoShow() 286
retrieve total number of blocks.. xbdNBlocks() 331
retrieve total number of bytes... xbdSize() 331

get number of Bytes per track... atapiBytesPerTrackGet() 162
number of sectors on current track in DMA mode. read/write................................ ataDmaRW() 156

get current Data transfer mode...................................... atapiCurrentRwModeGet() 165
Show Transmit Ring details.................................. motFccDumpTxRing() 246

handle transmitter interrupt. .. ambaIntTx() 148
handle transmitter interrupt. ... ns16550IntWr() 258
handle transmitter interrupt. ... ppc403IntWr() 297
handle transmitter interrupt. ... rm9000x2glIntWr() 301
handle transmitter interrupt. .. z8530IntWr() 334

handle channels transmitter-ready interrupt.. shSciIntTx() 303
handle channels transmitter-ready interrupt... shScifIntTx() 305

VxWorks. TrueFFS configuration file for .. tffsConfig 125
agent. initialize TSFS device driver for WDB..................................... wdbTsfsDrv() 326

RM9000 tty driver. ... rm9000x2glSio 111
ARM AMBA UART tty driver. .. ambaSio 3

VxWorks Drivers API Reference, 6.2

358

NS 16550 UART tty driver... ns16550Sio 84
initialize tty driver for WDB agent. ... wdbVioDrv() 327

virtual tty I/O driver for WDB agent. wdbVioDrv 136
free tuples from linked list. ... cisFree() 195

display TX DMA register values. bcm1250MacTxDmaShow() 191
/pDrvCtrl information regarding Tx ring and Rx queue desc. wancomEndDbg() 322

Motorola MPC800 SMC UART serial driver.. ppc860Sio 111
ARM AMBA UART tty driver... ambaSio 3

NS 16550 UART tty driver... ns16550Sio 84
packet driver for lightweight UDP/IP. END based.. wdbEndPktDrv 129
packet driver for lightweight UDP/IP. pipe ... wdbPipePktDrv 130

get enabled Ultra DMA mode. atapiCurrentUDmaModeGet() 166
support. get Maximum Ultra DMA mode drive can atapiMaxUDmaModeGet() 178

Get number of unallocated User Categories. erfCategoriesAvailable() 210
category. Get number of unallocated User Types for............................. erfTypesAvailable() 216

uninitialize MII library. .. miiLibUnInit() 239
uninitialize PHY. .. miiPhyUnInit() 243
unmap device. ... devUnmap() 201

masked longword register update. Perform .. pciConfigModifyByte() 281
masked longword register update. Perform pciConfigModifyLong() 282
masked longword register update. Perform pciConfigModifyWord() 283
initialize polling statistics updates. ... endPollStatsInit() 209

Get number of unallocated User Categories. erfCategoriesAvailable() 210
Get number of unallocated User Types for category................................... erfTypesAvailable() 216

allocates user-defined Event Category....................... erfCategoryAllocate() 211
Category. allocates user-defined Type for this................................... erfTypeAllocate() 216

handle all interrupts in one vector. .. z8530Int() 333
nth device with given device & vendor ID. find.. pciFindDevice() 288

get Media Stat Notification Version. atapiRemovMediaStatusNotifyVerGet() 182
get token string (modified version).. endTok_r() 209

get ATA/ATAPI version number of drive. atapiVersionNumberGet() 186
source module. VGA 3+ mode initialization ... vgaInit 126

memory. initializes VGA chip and loads font in.. vgaInit() 322
driver for WDB agent. virtual generic file I/O... wdbTsfsDrv 132

agent. virtual tty I/O driver for WDB..................................... wdbVioDrv 136
TrueFFS configuration file for VxWorks. ... tffsConfig 125

disable cards for warm boot. ... pciConfigReset() 285
NETROM packet driver for WDB agent. ... wdbNetromPktDrv 129

serial line packetizer for WDB agent. ... wdbSlipPktDrv 131
generic file I/O driver for WDB agent. virtual ... wdbTsfsDrv 132
virtual tty I/O driver for WDB agent. .. wdbVioDrv 136

NETROM packet device for WDB agent. initialize.............................. wdbNetromPktDevInit() 325
SLIP packet device for WDB agent. initialize.................................... wdbSlipPktDevInit() 326
TSFS device driver for WDB agent. initialize.. wdbTsfsDrv() 326
initialize tty driver for WDB agent. ... wdbVioDrv() 327

show decoded value of command word... pciConfigCmdWordShow() 276
show decoded value of status word... pciConfigStatusWordShow() 285

get enabled Multi word DMA mode......................... atapiCurrentMDmaModeGet() 164
get enabled Single word DMA mode........................... atapiCurrentSDmaModeGet() 165

get Maximum Multi word DMA mode drive supports.... atapiMaxMDmaModeGet() 176

 Keyword Index

359

Index

get Maximum Single word DMA mode drive supports. atapiMaxSDmaModeGet() 177
space. read one word from PCI configuration pciConfigInWord() 279

space. write one 16-bit word to PCI configuration pciConfigOutWord() 284
TBI compatibility workaround. enable/disable..................... gei82543TbiCompWr() 227

configuration space. write one 16-bit word to PCI pciConfigOutWord() 284
configuration space. write one byte to PCI pciConfigOutByte() 283
configuration space. write one longword to PCI pciConfigOutLong() 284

flash device. write to boot-image region of tffsBootImagePut() 320
/PCI device and reset all writeable status bits. ... pciAutoDevReset() 273

attach XBD device. ... xbdAttach() 328
detach XBD device. .. xbdDetach() 329
create XBD device for ATA/IDE disk........................ ataXbdDevCreate() 161

XBD device ioctl routine. .. xbdIoctl() 330
XBD dump routine... xbdDump() 329

initialize XBD library.. xbdInit() 330
XBD strategy routine. ... xbdStrategy() 332

code for PCI ISA/IDE Xcelerator. /initialization... iPIIX4 50
driver for 3COM 3C90xB XL. END network interface .. el3c90xEnd 29

Communications Controller/ Z8530 SCC Serial ... z8530Sio 137
intialize Z8530_DUSART... z8530DevInit() 332

	VxWorks Drivers API Reference
	Contents
	1 Libraries
	ambaSio
	amd8111LanEnd
	ataDrv
	ataShow
	auEnd
	bcm1250MacEnd
	bio
	cisLib
	cisShow
	ctB69000Vga
	dec21x40End
	device
	el3c90xEnd
	elt3c509End
	endLib
	erfLib
	erfShow
	evbNs16550Sio
	fei82557End
	gei82543End
	i8250Sio
	iOlicomEnd
	iPIIX4
	ln97xEnd
	lptDrv
	m8260SccEnd
	miiLib
	motFcc2End
	motFecEnd
	ncr810Lib
	ne2000End
	nec765Fd
	ns16550Sio
	ns83902End
	pccardLib
	pciAutoConfigLib
	pciConfigLib
	pciConfigShow
	pciIntLib
	pcic
	pcicShow
	pcmciaLib
	pcmciaShow
	ppc403Sio
	ppc860Sio
	rm9000x2glSio
	shSciSio
	shScifSio
	smEnd
	smEndShow
	smcFdc37b78x
	sramDrv
	sym895Lib
	tcic
	tcicShow
	tffsConfig
	vgaInit
	wancomEnd
	wdbEndPktDrv
	wdbNetromPktDrv
	wdbPipePktDrv
	wdbSlipPktDrv
	wdbTsfsDrv
	wdbVioDrv
	xbd
	z8530Sio

	2 Routines
	ambaDevInit()
	ambaIntRx()
	ambaIntTx()
	amd8111LanDumpPrint()
	amd8111LanEndLoad()
	amd8111LanErrCounterDump()
	ataCmd()
	ataCtrlReset()
	ataDevCreate()
	ataDevIdentify()
	ataDmaRW()
	ataDmaToggle()
	ataDrv()
	ataInit()
	ataParamRead()
	ataPiInit()
	ataRW()
	ataShow()
	ataShowInit()
	ataStatusChk()
	ataXbdDevCreate()
	atapiBytesPerSectorGet()
	atapiBytesPerTrackGet()
	atapiCtrlMediumRemoval()
	atapiCurrentCylinderCountGet()
	atapiCurrentHeadCountGet()
	atapiCurrentMDmaModeGet()
	atapiCurrentPioModeGet()
	atapiCurrentRwModeGet()
	atapiCurrentSDmaModeGet()
	atapiCurrentUDmaModeGet()
	atapiCylinderCountGet()
	atapiDriveSerialNumberGet()
	atapiDriveTypeGet()
	atapiFeatureEnabledGet()
	atapiFeatureSupportedGet()
	atapiFirmwareRevisionGet()
	atapiHeadCountGet()
	atapiInit()
	atapiIoctl()
	atapiMaxMDmaModeGet()
	atapiMaxPioModeGet()
	atapiMaxSDmaModeGet()
	atapiMaxUDmaModeGet()
	atapiModelNumberGet()
	atapiParamsPrint()
	atapiPktCmd()
	atapiPktCmdSend()
	atapiRead10()
	atapiReadCapacity()
	atapiReadTocPmaAtip()
	atapiRemovMediaStatusNotifyVerGet()
	atapiScan()
	atapiSeek()
	atapiSetCDSpeed()
	atapiStartStopUnit()
	atapiStopPlayScan()
	atapiTestUnitRdy()
	atapiVersionNumberGet()
	auDump()
	auEndLoad()
	auInitParse()
	bcm1250MacEndLoad()
	bcm1250MacPhyShow()
	bcm1250MacRxDmaShow()
	bcm1250MacShow()
	bcm1250MacTxDmaShow()
	bioInit()
	bio_alloc()
	bio_done()
	bio_free()
	cisConfigregGet()
	cisConfigregSet()
	cisFree()
	cisGet()
	cisShow()
	ctB69000VgaInit()
	dec21140SromWordRead()
	dec21145SPIReadBack()
	dec21x40EndLoad()
	dec21x40PhyFind()
	devAttach()
	devDetach()
	devInit()
	devMap()
	devName()
	devUnmap()
	el3c90xEndLoad()
	el3c90xInitParse()
	elt3c509Load()
	elt3c509Parse()
	emacEndLoad()
	emacTimerDebugDump()
	endEtherAddressForm()
	endEtherPacketAddrGet()
	endEtherPacketDataGet()
	endObjFlagSet()
	endObjInit()
	endPollStatsInit()
	endTok_r()
	erfCategoriesAvailable()
	erfCategoriesAvailable()
	erfCategoriesAvailable()
	erfCategoryAllocate()
	erfCategoryQueueCreate()
	erfDefaultQueueSizeGet()
	erfEventRaise()
	erfHandlerRegister()
	erfHandlerUnregister()
	erfLibInit()
	erfShow()
	erfTypeAllocate()
	erfTypesAvailable()
	evbNs16550HrdInit()
	evbNs16550Int()
	fdDevCreate()
	fdDrv()
	fdRawio()
	fei82557DumpPrint()
	fei82557EndLoad()
	fei82557ErrCounterDump()
	fei82557GetRUStatus()
	fei82557ShowRxRing()
	gei82543EndLoad()
	gei82543LedOff()
	gei82543LedOn()
	gei82543PhyRegGet()
	gei82543PhyRegSet()
	gei82543RegGet()
	gei82543RegSet()
	gei82543TbiCompWr()
	gei82543Unit()
	i8250HrdInit()
	i8250Int()
	iOlicomEndLoad()
	iOlicomIntHandle()
	iPIIX4AtaInit()
	iPIIX4FdInit()
	iPIIX4GetIntr()
	iPIIX4Init()
	iPIIX4IntrRoute()
	iPIIX4KbdInit()
	ln97xEndLoad()
	ln97xInitParse()
	lptDevCreate()
	lptDrv()
	lptShow()
	m8260SccEndLoad()
	mib2ErrorAdd()
	mib2Init()
	miiAnCheck()
	miiLibInit()
	miiLibUnInit()
	miiPhyInit()
	miiPhyOptFuncMultiSet()
	miiPhyOptFuncSet()
	miiPhyUnInit()
	miiRegsGet()
	miiShow()
	motFccDrvShow()
	motFccDumpRxRing()
	motFccDumpTxRing()
	motFccEndLoad()
	motFccEramShow()
	motFccIramShow()
	motFccMibShow()
	motFccMiiShow()
	motFccPramShow()
	motFccShow()
	motFecEndLoad()
	ncr810CtrlCreate()
	ncr810CtrlInit()
	ncr810SetHwRegister()
	ncr810Show()
	ne2000EndLoad()
	ns16550DevInit()
	ns16550Int()
	ns16550IntEx()
	ns16550IntRd()
	ns16550IntWr()
	ns83902EndLoad()
	ns83902RegShow()
	pccardAtaEnabler()
	pccardEltEnabler()
	pccardMkfs()
	pccardMount()
	pccardSramEnabler()
	pccardTffsEnabler()
	pciAutoAddrAlign()
	pciAutoBusNumberSet()
	pciAutoCardBusConfig()
	pciAutoCfg()
	pciAutoCfgCtl()
	pciAutoConfig()
	pciAutoConfigLibInit()
	pciAutoDevReset()
	pciAutoFuncDisable()
	pciAutoFuncEnable()
	pciAutoGetNextClass()
	pciAutoRegConfig()
	pciConfigBdfPack()
	pciConfigCmdWordShow()
	pciConfigExtCapFind()
	pciConfigForeachFunc()
	pciConfigFuncShow()
	pciConfigInByte()
	pciConfigInLong()
	pciConfigInWord()
	pciConfigLibInit()
	pciConfigModifyByte()
	pciConfigModifyLong()
	pciConfigModifyWord()
	pciConfigOutByte()
	pciConfigOutLong()
	pciConfigOutWord()
	pciConfigReset()
	pciConfigStatusWordShow()
	pciConfigTopoShow()
	pciDevConfig()
	pciDeviceShow()
	pciFindClass()
	pciFindClassShow()
	pciFindDevice()
	pciFindDeviceShow()
	pciHeaderShow()
	pciInt()
	pciIntConnect()
	pciIntDisconnect()
	pciIntDisconnect2()
	pciIntLibInit()
	pciSpecialCycle()
	pcicInit()
	pcicShow()
	pcmciaInit()
	pcmciaShow()
	pcmciaShowInit()
	pcmciad()
	ppc403DevInit()
	ppc403DummyCallback()
	ppc403IntEx()
	ppc403IntRd()
	ppc403IntWr()
	ppc860DevInit()
	ppc860Int()
	rm9000x2glDevInit()
	rm9000x2glInt()
	rm9000x2glIntEx()
	rm9000x2glIntMod()
	rm9000x2glIntRd()
	rm9000x2glIntWr()
	shSciDevInit()
	shSciIntErr()
	shSciIntRcv()
	shSciIntTx()
	shScifDevInit()
	shScifIntErr()
	shScifIntRcv()
	shScifIntTx()
	smEndLoad()
	smNetShow()
	smcFdc37b78xDevCreate()
	smcFdc37b78xInit()
	smcFdc37b78xKbdInit()
	sramDevCreate()
	sramDrv()
	sramMap()
	sym895CtrlCreate()
	sym895CtrlInit()
	sym895GPIOConfig()
	sym895GPIOCtrl()
	sym895Intr()
	sym895Loopback()
	sym895SetHwOptions()
	sym895Show()
	tcicInit()
	tcicShow()
	tffsBootImagePut()
	tffsShow()
	tffsShowAll()
	vgaInit()
	wancomEndDbg()
	wancomEndLoad()
	wdbEndPktDevInit()
	wdbNetromPktDevInit()
	wdbPipePktDevInit()
	wdbSlipPktDevInit()
	wdbTsfsDrv()
	wdbVioDrv()
	xbdAttach()
	xbdBlockSize()
	xbdDetach()
	xbdDump()
	xbdInit()
	xbdIoctl()
	xbdNBlocks()
	xbdSize()
	xbdStrategy()
	z8530DevInit()
	z8530Int()
	z8530IntEx()
	z8530IntRd()
	z8530IntWr()

	Keyword Index

