
1. Why Wyvern?

Wyvern is a new programming language exploring how to help software engi-
neers build software better at scale. Our primary aim is to do research that
discovers and validates new principles for designing engineering-focused pro-
gramming languages. Part of the �validation� bit is actually writing interesting
programs in Wyvern, and so we hope to also make it a great language to write
code in�for us, and for you!

Wyvern's design incorporates a lot of great ideas from prior languages: it
is a statically-typed, garbage-collected general-purpose applications program-
ming language with excellent support for both object-oriented and functional
programming. However, Wyvern is most interesting because of the new ideas
it explores. Most of these are best illustrated through the examples below, but
here's a brief overview of Wyvern's most interesting design features and what
motivates them.

� Large programs must be composed from parts, so Wyvern has an advanced
module system with features echoing those of Standard ML's module sys-
tem. However, modern programs often load and (re-)compose modules at
run time, so Wyvern modules and functors are �rst-class objects and func-
tions, respectively, providing programmers with the power and �exibility
they need.

� No one language can be good at everything, so Wyvern is extensible:
libraries can de�ne new syntax for the abstractions that they provide, and
that syntax can be embedded seamlessly in Wyvern expressions.

� Engineers need to control the access that untrusted code has to resources
such as the network or �le system, and so Wyvern's module system is
the �rst to be designed from the ground up to be capability-safe. We
are designing an e�ect system that leverages these capabilities to provide
lightweight and automatically-checked control of resources.

� More broadly, understanding and controlling the software architecture of
a program is critical to understanding its properties and evolving it over
time. Thus we are building a way of expressing software architecture as
an integrated part of Wyvern programs, including a static view building
on the module system and a dynamic view showing run-time components
and the connections between them. Wyvern architectures are �live� in
that changing the architecture speci�cation a�ects the program semantics,
and they are �trusted� in that they are guaranteed to be an accurate
abstraction of what the program does.

2. Hello, World! in Wyvern

Here is a �Hello, World!� program in Wyvern (examples/rosetta/hello.wyv):

require stdout

1



stdout.print("Hello, World!")

This program already illustrates a couple of basic aspects of Wyvern. First,
Wyvern is object-oriented: stdout is an object, and we are invoking the print
method on it. For expressions, much of Wyvern's syntax is similar to Java's.

Second, system resources such as the standard output object, stdout, are
not ambiently available to programs, but must be explicitly required from the
operating system. A primary goal of Wyvern's module system is helping de-
velopers to reason about the use of resources. Thus even a simple script such
as Hello World must declare the resources it requires in order to execute. This
allows engineers to determine at a glance what kind of I/O a program might do,
and provides a basis for making a decision about whether to run this program
in a particular situation. In this case, even without looking at the actual code,
we know that this program may write to the standard output stream, but will
not access the �le system or access the network.

3. Anonymous Functions

Wyvern has good support for functional programming, and anonymous functions
can be de�ned in Wyvern using the syntax:

(x:Int) => x + 1

We can bind the expresison above to a variable and invoke it:

val addOne = (x:Int) => x + 1

addOne(1)

and the result will be 2.
Anonymous functions can also have multiple parameters:

(x:Int,y:Int) => x + y

or no parameters:

() => 7

Function types can be denoted with an arrow, and we can annotate a variable
with this type. If we annotate the type of the variable we are binding to the
function, we can leave out the type annotation (and even the parentheses) on
the function's argument:

val annotatedAddOne : Int -> Int = x => x + 1

This also works if we pass an anonymous function to a higher-order function:

val invokeIt = (f:Int -> Int, x:Int) => f(x)

invokeIt(x => x+1, 5)

The code above can be found in examples/introductory/functions.wyv

2



Function types with multiple arguments can use * to separate them; e.g.
Int * Int -> Int is a function that takes two integers and returns an integer.

4. Functions in Wyvern

Consider the de�nition of the factorial function inWyvern (examples/rosetta/factorial.wyv):

require stdout

def factorial(n:Int):Int

(n < 2).ifTrue(

() => 1,

() => n * factorial(n-1)

)

stdout.print("factorial(15) = ")

stdout.printInt(factorial(15))

A function is de�ned with the def keyword, and its argument and return types
are given in Algol-like syntax. Functions de�ned with def are recursive, so
we can call factorial in the body. The example illustrates how an integer
comparison n-2 is a boolean object, on which we can invoke the ifTrue method.
This method takes two functions, one of which is evaluated in the true case and
one of which is evaluated in the false case.

Note that factorial(15) would over�ow in languages such as Java in which
the default integer types is represented using only 32 bits. In Wyvern, Intmeans
an arbitrary precision integer.

Wyvern provides two nicer ways to write the if statement above:

def fact(n:Int):Int

if (n < 2)

1

else

n * fact(n-1)

def fact2(n:Int):Int

if (n < 2) { 1 } else { n * fact2(n-1) }

In the �rst case, we put the then computation on a new, indented line, followed
by else (also indented, but not as much), and then the else computation. In
the second case, we put it all on one line of code, but put the then and else

computations in curly braces to set them o�.
It turns out that both versions of the if function can be user-de�ned. In

the �rst case, Wyvern takes all the indented code and passes it as an argument
to the if function. In the second case, Wyvern passes the code in each set of
curly braces as a separate argument to the if...else... function.

If you'd like to see how these if functions are actually user-de�ned, look in

3



the Wyvern standard prelude (stdlib/prelude.wyv):

import metadata wyvern.IfTSL

val ifelseARG = (cond:Boolean, tt:IfTSL.FnExpr, ff:IfTSL.FnExpr) => IfTSL.doif(cond, tt, ff)

val if = (cond:Boolean, blocks:IfTSL.Blocks) => IfTSL.doifblk(cond, blocks)

The import statement loads the IfTSL module from the wyvern package. The
metadata keyword indicates that the library de�nes new syntax, in this case
for then and else clauses of an if statement. We de�ne an if shorthand
for calling the doifblk function from that library. The ifelseARG function is
how if...else... is written: keywords separated by a single argument are
concatenated, and whenever more than one argument separates keywords (or
comes after them all) ARG is added to the name. Parsers associated with the
IfTSL.FnExpr and IfTSL.Blocks are de�ned in stdlib/wyvern/IfTSL.wyv.

5. Objects and Object Types in Wyvern

We can de�ne a sumable integer list type as follows (examples/introductory/objects.wyv):

type IntList

def sum():Int

The type keyword declares a new object type, called IntList in this case. The
public methods available in the type are listed below, but no method bodies
may be given as we are de�ning a type, not an implementation.

We can implement a constant representing the empty list and a constructor
for creating a larger list out of a smaller one as follows:

val empty:IntList = new

def sum():Int = 0

def cons(elem:Int,rest:IntList):IntList = new

def sum():Int = elem + rest.sum()

cons(3,cons(4,empty)).sum() // evalutes to 7

The new expression creates an object with the methods given. In the example
above, we just have one method, sum(), which evaluates to 0 in the case of the
empty list and sums up the integers in the list otherwise.

6. Strings and Characters

String literals can be written in quotes, using the same escapes as in Java.
Strings support several operations, including ==, <, >, length(), and charAt(Int).
The last of these returns a Character, which supports ==, <, and > operations. A
simple program illustrating these is in examples/introductory/strings.wyv

Wyvern will support character literals but doesn't yet.

4



7. Anonymous Functions as Objects

The anonymous function syntax described above is actually a shorthand for
creating an object with an apply method that has the same arguments and
body:

new

def apply(x:Int):Int = x + 1

which is an instance of the following type:

type IntToIntFn

def apply(x:Int):Int

As mentioned earlier, the type above can be abbreviated Int -> Int, as in
many other languages with good support for functional programming.

8. Mutable State and Resource Types

Types with mutable state can be de�ned, but need to be marked as resource
types (examples/introductory/cell.wyv):

resource type Cell

def set(newValue:Int):Unit

def get():Int

def makeCell(initVal:Int):Cell = new

var value : Int = initVal

def set(newValue:Int):Unit

this.value = newValue

def get():Int = this.value

val c = makeCell(5)

c.get() // evalutes to 5

c.set(3)

c.get() // evalutes to 3

Here makeCell uses a new statement to create an object with a var �eld value.
var �elds are assignable, so the set funtion is implemented to assign the value
�eld of the receiver object this to the passed-in argument. Note that we must
initialize a var �eld with an initial value. If we had not declared Cell to be
a resource type, we would get an error because the new expression creates a
stateful object that is a resource.

In the example above, Unit is used as the return type of functions that do
not return any interesting value.

For function types, -> indicates a resource type (i.e. some state is captured
by the function) whereas => indicates non-resource type.

5



9. Modules

We can de�ne the Cell abstraction above in a module (examples/modules/cell.wyv):

module cell

resource type Cell

def set(newValue:Int):Unit

def get():Int

def make(initVal:Int):Cell = new

var value : Int = initVal

def set(newValue:Int):Unit

this.value = newValue

def get():Int = this.value

In Wyvern, analogously to Java, a module named m should be stored in a �le
m.wyv (we expect that the implementation will enforce this in the near fu-
ture). The �le system forms a hierarchical namespace with one name per di-
rectory that allows us to �nd modules by their quali�ed name. In this case,
within the examples directory of the Wyvern distribution we have the directory
modules that contains cell.wyv, so we can use it in a program as follows (see
examples/modules/cellClient.wyv):

import modules.cell

val myCell : cell.Cell = cell.make(3)

myCell.set(7)

myCell.get() // evalutes to 7

Here the import statement takes a fully quali�ed name and uses this to �nd the
�le de�ning module cell. The module is actually an object that gets bound
to the name cell. We can invoke make() on cell just as if it were a method.
Types such as Cell de�ned in the cell module can be referred to by their
quali�ed names, i.e. cell.Cell. In fact, types can be de�ned as members of
an object as well, and the same quali�ed syntax can be used to refer to them.
So modules are not special semantically: they are just a convenient syntax for
de�ning an object. Consider what is the type of cell? The answer could be
written as follows:

type TCell

resource type Cell

def set(newValue:Int):Unit

def get():Int

def make(initVal:Int):this.Cell

Wyvern �les that de�ne a type use a .wyt extension (for Wyvern Type), and

6



you can �nd the above de�nition at examples/modules/TCell.wyt.
Regular modules can't have var declarations, but functors (below) can.

10. Functors

Although modules are objects, they cannot contain any state and they cannot
encapsulate system resources. How can we express designs similar to those in
other languages, in which modules do these things? We can do so by de�ning
functors. A functor is a module that is de�ned as a function: it takes zero or
more arguments and returns an object. For example, we can de�ne a functor
that returns a stateful Cell object (examples/modules/cellAsModule.wyv):

module def cellAsModule()

var value : Int = 0

def set(newValue:Int):Unit

value = newValue

def get():Int = value

Wyvern does not allow implicitly shared global state, because this often causes
problems in software development. So cellAsModule does not evaluate to an ob-
ject, but rather a function that, when invoked, yields a fresh object with its own
copy of the internal state de�ned by the module. The module def syntax indi-
cates this; it is reminiscent of the def syntax for de�ning functions. The word
functor that we used from this is based on a similar construct in Standard ML
(and inspired by category theory, for the mathematically inclined). We can use
cellAsModule in a program as follows (examples/modules/cellModuleClient.wyv):

import modules.cellAsModule

val m1 = cellAsModule()

val m2 = cellAsModule()

m1.set(1)

m2.set(2)

m1.get() // evalutes to 1

m2.get() // evalutes to 2

In this example you can see that we have called the functor cellAsModule twice,
and each resulting object instance has its own internal state.

Note that in the example above, we cannot access the value declaration
from outside the module. Wyvern hides all var declarations from clients. If you
want to access state, provide getters and setters, as suggested in the example.

7



11. Module Parameters

If objects are produced by functors (module functions), we expect to be able to
pass parameters�and so we can. First let's de�ne the type that cellAsModule
returns. For convenience, we will put this type in a �le TCellAsModule.wyt

(here .wyt stands for Wyvern Type):

resource type TCellAsModule

def set(newValue:Int):Unit

def get():Int

Here is a client of the cellAsModule (examples/modules/cellClientFunctor.wyv):

module def cellClientFunctor(cell : modules.TCellAsModule)

def addOne():Unit

cell.set(cell.get()+1)

def getValue():Int = cell.get()

We can put module parameters in between the parentheses in the de�nition of
the functor, specifying the type in the usual way.

Now we can use cellAsModule together with cellClientFunctor in a pro-
gram (examples/modules/cellClientMain.wyv):

import myPackage.cellAsModule

import myPackage.cellClientFunctor

val client = cellClientFunctor(cellAsModule())

client.addOne()

client.getValue() // evalutes to 1

12. Dynamic Types

Wyvern is intended to be a mostly statically typed language. However, while
getting parameterized types to work, we implemented a Dyn type that partially
implements dynamic types. Speci�cally, Dyn is a subtype of any type, and any
type is a subtype of Dyn. (Note that subtyping is not transitive where Dyn is
involved, as this would e�ectively collapse the type system to a single type.)

We recommend avoiding Dyn where possible, and now that parameterized
types work well, we are gradually transitioning existing Dyn code to remove use
of this construct. If we do keep this in the long term, we need to think about
how it interacts with resource types.

13. To Add

Datatypes

8



� Note that these can't have methods, nor �elds other than those in the
constructors

14. Declaration Sequences and Mutual Recursion

Programs are made up of four kinds of core declarations: val, var, def, and
type, as well as expressions. The val and var declarations and the expressions
in a program are evaluated in sequence, and the variables de�ned earlier in the
sequence are in scope in later declarations and expressions. In contrast, def and
type declarations do not evaluate, and therefore these declaration forms can be
safely used to de�ne mutually recursive functions and types. Each sequence of
declarations that consists exclusively of def and type is therefore treated as a
mutually recursive block, so that the de�nition or type de�ned in each of the
declarations is in scope in all the other declarations.

To understand why we allow recursive def and type declarations but do not
allow this for val and var declarations, consider the following example:

// NOTE: this example does not typecheck

type IntCell

def get():Int

def foo():IntCell = baz()

val bar:IntCell = foo()

def baz():IntCell = bar

bar.get()

When we try to initialize the bar value, we call foo(), which in turn invokes
baz(). However, baz() reads the bar variable, which is what we are de�ning, so
there is no well-de�ned result. Languages such as Java handle this by initializing
bar to null at �rst and then writing a permanent value to it after the initializer
executes. However, in order to avoid null pointer errors, Wyvern does not
allow null as a value. Languages such as Haskell would use a special �black
hole� value and signal a run-time error if the black hole is ever used, as in the
bar.get statement at the end. We avoid this semantics as it adds complexity
and means the program can fail at run time. Of course, in�nite loops can
still exist in Wyvern, but they come from recursive functions, never recursively
de�ned values.

15. Some More Examples

The Wyvern standard library �les are in subdirectories of stdlib. For example,
earlier we used the IfTSL library, de�ned in stdlib/wyvern/IfTSL.wyv. When
importing �les from the standard library, leave out stdlib; i.e. in the example
above, just use import wyvern.IfTSL

9



Platform-speci�c de�nitions are in the platform subdirectory of stdlib,
in a sub-subdirectory named after the platform (e.g. java). For example,
stdout is de�ned in stdlib/platform/java/stdout.wyv for the java plat-
form; there is an analogous de�nition for the python platform too. The de�ni-
tion of stdout for java uses some Java helper code de�ned in the Java class
wyvern.stdlib.support.Stdio. These libraries should be imported without
using stdlib.platform.java.

An example of a utility library that provides a small part of a regular ex-
pression package is in wyvern/util/matching/regex.wyv. The design approx-
imately follows the corresponding Scala library.

An example of a data structure library is wyvern/collections/list.wyv.
Also see wyvern/option.wyv.

All of the above examples are tested by the Wyvern regression test suite that
is run as part of ant test when building Wyvern.

10


	1. Why Wyvern?
	2. Hello, World! in Wyvern
	3. Anonymous Functions
	4. Functions in Wyvern
	5. Objects and Object Types in Wyvern
	6. Strings and Characters
	7. Anonymous Functions as Objects
	8. Mutable State and Resource Types
	9. Modules
	10. Functors
	11. Module Parameters
	12. Dynamic Types
	13. To Add
	14. Declaration Sequences and Mutual Recursion
	15. Some More Examples

