EUCHNER

Operating Instructions

Safety Systems MGB-LO...-AR.-..

Contents

1. About this document 4
1.1. Scope 4
1.1.1. Notes on older product versions 4
1.2. Target group 4
1.3. Key to symbols. 4
1.4. Supplementary documents 4
2. Correct use 5
2.1. Main differences between MGB-AP and MGB-AR 6
3. Description of the safety function 6
4. Exclusion of liability and warranty 6
5. General safety precautions 7
6. Function 8
7. System overview. 9
7.1. Interlocking module MGB-LO- 9
7.2. Handle module MGB-H- 9
7.3. Escape release MGB-E-... (optional) 9
7.4. Dimension drawing 10
7.5. Lockout mechanism 11
7.6. Escape release (optional) 11
7.6.1. \quad Preparing escape release 11
8. Installation 13
8.1. Mounting lens 14
9. Changing actuating direction (here: from right to left) 16
10. Protection against environmental effects 17
11. Electrical connection 18
11.1. Notes about © (4l)us 19
11.2. Safety in case of faults 19
11.3. Fuse protection for power supply 19
11.4. Requirements for connection cables 20
11.5. Notes on cable laying 20
11.6. Changing device configuration (using DIP switches) 21
11.6.1. Changing system family (AR/AP switching) 21
11.7. Notes on operation with control systems 22
11.8. Terminal assignment and contact description 23
11.9. Operation as separate device 24
11.10. Operation in an AR switch chain 25
11.11. Information on operation in an AR switch chain 26
11.11.1. System times 26
11.11.2. Wiring an AR switch chain 26
11.11.3. Number of devices in switch chains 26
11.11.4. Resetting in switch chains 26
12. Commissioning 27
12.1. Teach-in operation (only for MGB unicode) 27
12.2. Mechanical function test 27
12.3. Electrical function test 28
13. Technical data 29
13.1. Radio frequency approvals (for devices with FCC ID and IC on the type label) 30
13.2. Typical system times 31
14. System states 31
14.1. Key to symbols 31
14.2. System status table MGB-AR 32
14.3. System status table MGB-AP 33
15. Troubleshooting and assistance 34
15.1. Fault reset. 34
15.2. Help on troubleshooting in the Internet 34
15.3. Help on mounting in the Internet 34
15.4. Application examples 34
16. Service 34
17. Inspection and service 35
18. Declaration of conformity 36

1. About this document

1.1. Scope

These operating instructions are valid for all MGB-LO...-AR.-... and MGB-LO...-AP.-.... These operating instructions, the document Safety information and any enclosed data sheet form the complete user information for your device.

Series	Version	System families	Product versions
MGB	(without guard locking)	\ldots AP...	from V3.0.0
		\ldots AR...	

1.1.1. Notes on older product versions

Products with lower product versions or without a version number are not described by these operating instructions. Please contact our support team in this case.

1.2. Target group

Design engineers and installation planners for safety devices on machines, as well as setup and servicing staff possessing special expertise in handling safety components.

1.3. Key to symbols

Symbol/depiction	Meaning
$\begin{aligned} & \text { AP } \\ & \text { AP } \end{aligned}$	This section applies on operation as MGB-AP
$\overbrace{A R}$	This section applies on operation as MGB-AR
	In this section attention must be paid to the DIP switch settings
[D]	Printed document
(www)	Document is available for download at www.euchner.com
DANGER WARNING CAUTION	Safety precautions Danger of death or severe injuries Warning about possible injuries Caution Slight injuries possible
NOTICE Important!	Notice about possible device damage Important information
Tip	Useful information

1.4. Supplementary documents

The overall documentation for this device consists of the following documents:

Document title (document number)	Contents	
Safety information (2525460)	Basic safety information	
Operating Instructions (2112657)	(this document)	
Possibly enclosed data sheet	Item-specific information about deviations or additions	(www

Important!

Always read all documents to gain a complete overview of safe installation, setup and use of the device. The documents can be downloaded from www.euchner.com. For this purpose enter the doc. no. in the search box.

2. Correct use

The system comprises at least one interlocking module MGB-LO-... and one handle module MGB-H...
The safety system MGB is an interlocking device without guard locking (type 4). Devices with unicode evaluation possess a high coding level, devices with multicode evaluation possess a low coding level.
The interlocking module can be configured with the aid of DIP switches. Depending on the setting, the interlocking module behaves like an AP or AR device (see chapter 2.1. Main differences between MGB-AP and MGB-AR on page 6). More detailed information about the possible settings is available in the chapter 11.6. Changing device configuration (using DIP switches) on page 21.
In combination with a movable guard and the machine control, this safety component prevents dangerous machine functions from occurring while the guard is open. A stop command is triggered if the guard is opened during the dangerous machine function.
This means:

- Starting commands that cause a dangerous machine function must become active only when the guard is closed.
- Opening the guard triggers a stop command.
- Closing a guard must not cause automatic starting of a dangerous machine function. A separate start command must be issued. For exceptions, refer to EN ISO 12100 or relevant C-standards.

Before the device is used, a risk assessment must be performed on the machine, e.g. in accordance with the following standards:

- EN ISO 13849-1
- EN ISO 12100
- IEC 62061

Correct use includes observing the relevant requirements for installation and operation, particularly based on the following standards:

- EN ISO 13849-1
- EN ISO 14119
- EN 60204-1

The safety system MGB can be combined only with the intended modules in the MGB system family. On the modification of system components, EUCHNER provides no warranty for function.

Interlocking modules with the configuration MGB-AR can be integrated into an AR switch chain.
AR
Connection of several devices in an AR switch chain is permitted only using devices intended for series connection in an AR switch chain. Check the operating instructions for the related device.

(i) | Important! |
| :--- |
| - The user is responsible for the proper integration of the device into a safe overall system. For this |
| purpose, the overall system must be validated, e.g. in accordance with EN ISO 13849-2. |
| - Correct use requires observing the permissible operating parameters (see chapter 13. Technical |
| data on page 29). |
| , If a data sheet is included with the product, the information on the data sheet applies. |

Table 1: Possible combinations for MGB components

		Handle module	
Evaluation unit			$\begin{aligned} & \text { MGB-H-... } \\ & \text { from V2.0.0 } \end{aligned}$
Key to symbols	\bigcirc	Combination possible	

2.1. Main differences between MGB-AP and MGB-AR

System family	Symbol	Use
MGB-AP	AP	Optimized for operation in safe control systems. If series connection is not necessary, the number of terminals required can be reduced using this system family.
MGB-AR	AR	Linking of several guards on one shutdown path. As a consequence several safety doors can be very simply polled using one evalua- tion unit or two control system inputs.

3. Description of the safety function

Devices from this series feature the following safety functions:

Monitoring of the guard position (interlocking device according to EN ISO 14119)

- Safety function: the safety outputs are switched off when the guard is open (see chapter 6. Function on page 8).
- Safety characteristics: category, Performance Level, PFH (see chapter 13. Technical data on page 29).

The following applies to devices with emergency stop:

Emergency stop
 (emergency stop device according to EN ISO 13850)

- Safety function: emergency stop function
- Safety characteristics: $\mathrm{B}_{10 \mathrm{D}}$ value (see chapter 13. Technical data on page 29)

4. Exclusion of liability and warranty

In case of failure to comply with the conditions for correct use stated above, or if the safety instructions are not followed, or if any servicing is not performed as required, liability will be excluded and the warranty void.

5. General safety precautions

Safety switches fulfill personnel protection functions. Incorrect installation or tampering can lead to fatal injuries to personnel.
Check the safe function of the guard particularly

- after any setup work
- after the replacement of an MGB component
- after an extended period without use
- after every fault
- after any change to the DIP switch settings

Independent of these checks, the safe function of the guard should be checked at suitable intervals as part of the maintenance schedule.
WARNING
Danger to life due to improper installation or due to bypassing (tampering). Safety components fulfill
a personnel protection function.

- Safety components must not be bypassed, turned away, removed or otherwise rendered ineffec-
tive. On this topic pay attention in particular to the measures for reducing the possibility of bypass-
ing according to EN ISO $14119: 2013$, section 7 .
- The switching operation is allowed to be triggered only by the intended handle module MGB-H...
that is positively fastened to the guard.
- Prevent bypassing by means of replacement actuators (only for multicode evaluation). For this
purpose, restrict access to actuators and to keys for releases, for example.
, Mounting, electrical connection and setup only by authorized personnel possessing the following
knowledge:
- specialist knowledge in handling safety components
- knowledge about the applicable EMC regulations
- knowledge about the applicable regulations on occupational safety and accident prevention.

Important!

Prior to use, read the operating instructions and keep these in a safe place. Ensure the operating instructions are always available during mounting, setup and servicing. EUCHNER cannot provide any warranty in relation to the readability of the $C D$ for the storage period required. For this reason you should archive a printed copy of the operating instructions. You can download the operating instructions from www.euchner.com.

6. Function

Together with a handle module, the interlocking module makes it possible to monitor the position of moving guards. The combination also serves as a mechanical door stop at the same time.

The following switch-on condition applies to the safety outputs F01A and F01B (also see chapters 14.2. System status table MGB-AR on page 32 and 14.3. System status table MGB-AP on page 33):

	Configuration System family	MGB-AR	MGB-AP
$\begin{aligned} & \text { 든 } \\ & \text { 흔 } \\ & \text { OU } \end{aligned}$	No fault in the device	TRUE	TRUE
	Guard closed	TRUE	TRUE
	Bolt tongue inserted in interlocking module	TRUE	TRUE
	In case of series connection: Signal available from the upstream switch on the safety inputs FI1A and FI1B In case of separate operation: DC 24 V present at the safety inputs FI1A and FI1B	TRUE	Not relevant

The interlocking module detects the position of the guard and the position of the bolt tongue.
The bolt tongue in the handle module is moved into and out of the interlocking module by actuating the door handle.

7. System overview

7.1. Interlocking module MGB-LO-...

Key:	
$\begin{array}{ll}1 & \text { Cover for auxiliary release } \\ \text { (2) } & \text { LED indicator } \\ \text { (3) } & \text { DIP switches } \\ \text { (4) } & \text { Terminals X2 - } \mathrm{X5} \\ \text { (5) } & \text { Depending on version: } \\ & \text { Cable entry M20x1.5 or plug connector } \\ \text { (6) } & \text { Internal reset } \\ \text { (7) } & \text { Auxiliary marking for maximum permitted mounting distance }\end{array}$	

Notice:
Depending on the version, additional controls and indicators may be integrated into the cover and a mounting plate can be included.
See enclosed data sheet.
Figure 1: Interlocking module MGB-L.-...

7.2. Handle module MGB-H-...

Figure 2: Handle module MGB-H-...

Key:

(1) Door handle
(2) Fold-out lockout mechanism
(optional: second, automatically extending lockout mechanism)
(3) Locking pin for handle adjustment
(4) Locking screws T10 for housing cover
(5) Bolt tongue

Notice:

Depending on the version, a mounting plate can be included. See enclosed data sheet.

7.3. Escape release MGB-E-... (optional)

Key:
(1) Door handle
(2) Cover
(3) Actuation axis $8 \times 8 \mathrm{~mm}$
(different lengths available)
(4) Protective sleeve

Notice:

Depending on the version, a mounting plate can be included.
See enclosed data sheet.

Figure 3: Escape release MGB-E-...
7.4. Dimension drawing

Figure 4: Dimension drawing MGB fitted, without optional mounting plates

7.5. Lockout mechanism

If the lockout mechanism is pivoted out/extended, the bolt tongue cannot be extended. The lockout mechanism can be secured with padlocks (see Figure 5).
\Rightarrow To pivot out, press the grooved part (possible only with bolt tongue retracted).

Key:
(1) Padlock \varnothing min. $2 \mathrm{~mm}, \varnothing$ max. 10 mm Notice: You can fit a maximum of 3 locks $\emptyset 8 \mathrm{~mm}$.
(2) Automatically extending, second lockout mechanism Padlock \varnothing min. $6 \mathrm{~mm}, \varnothing$ max. 10 mm

Figure 5: Lockout mechanism secured with padlock

7.6. Escape release (optional)

The escape release is used to open a guard from the inside without tools.

1	Important! o It must be possible to actuate the escape release manually from inside the protected area without tools. , It must not be possible to reach the escape release from the outside. , The actuator must not be under tensile stress during manual release. , The escape release meets the requirements of Category B according to EN ISO 13849-1:2008.

- Fit escape release such that operation, inspection and maintenance are possible.
- The actuation axis for the escape release must be inserted min. 10 mm into the handle module. Note the information on the different profile widths in the next chapter.
- Align escape release axis at right angles to the handle module. See Figure 4 and Figure 7.

7.6.1. Preparing escape release

(also see Figure 6: Preparing escape release on page 12)

Profile width	Length required for actuation axis		Which EUCHNER parts are required?	Necessary work steps
	Without plates	With mounting plates (4 mm each)		
D	D+13	D+21		
30 mm	43 mm	51 mm	Standard escape release with 110 mm axis (order no. 100465)	Shorten to required length
40 mm	53 mm	61 mm	Standard escape release with 110 mm axis (order no. 100465) If necessary, extended actuation axis (order no. 106761)	Without mounting plates: None With mounting plates: Use long actuation axis and protective sleeve and shorten to required length
45 mm	58 mm	66 mm	Standard escape release with 110 mm axis (order no. 100465) and extended actuation axis (order no. 106761)	Use long actuation axis and protective sleeve and shorten to required length
50 mm	63 mm	71 mm	Standard escape release with 110 mm axis (order no. 100465) and extended actuation axis (order no. 106761)	Use long actuation axis and protective sleeve and shorten to required length

(1) Insert actuation axis. The snap ring \mathbf{A} must be in contact with the escape release \mathbf{B}.
(2) Fit door handle.
(3) Tighten fixing screw to 2 Nm and press in cap.
(4) Fit protective sleeve.

Figure 6: Preparing escape release

8. Installation

Mounting must be performed only by authorized personnel.
With two-leaf hinged doors, one of the two door leaves must also be latched mechanically.
Use a rod latch (Item) or a double-door lock (Bosch Rexroth) for this purpose, for example.

For mounting steps, see Figure 7 and Figure 8 to Figure 13.
Install system so that inspection and maintenance are possible.

8.1. Mounting lens

Installation

Removal

Figure 7: Installation example for door hinged on the right (general view)

Recommended fixing material:

For mounting on the mounting plate:
DIN 912-M6X25-8.8 ZN CYLINDER HEAD SCREW

9. Changing actuating direction (here: from right to left)

Important!

It is possible to make this change only when the bolt tongue is not extended and an escape release is not yet mounted.

As supplied, the handle module is set either for doors hinged on the right or for doors hinged on the left.
Based on the example of a handle module for doors hinged on the right this means:

- The guard opens by pressing down the door handle.
- The system is mounted the other way around for doors hinged on the left. In other words, the guard opens by pressing up the door handle (see Figure 8). For this reason the actuating direction of the door handle must be changed (see Figure 8 to Figure 13).

(Similarly on handle modules for doors hinged on the left)

Figure 8: \quad Changing actuating direction, step (1)

Figure 10: Changing actuating direction, steps (4) and (5)

Figure 9: Changing actuating direction, steps (2) and (3)

Figure 11: Changing actuating direction, steps (6) to (8)

(9) Remove cover and undo hexagon socket screw.
(10) Reposition the door handle by 90° in clockwise direction and fasten it again.
(11) Tighten hexagon socket screw to 3 Nm

Figure 12: \quad Changing actuating direction, steps (9) and (11)

Figure 13: Changing actuating direction, final state

10. Protection against environmental effects

Lasting and correct safety function requires that the system must be protected against foreign bodies such as swarf, sand, blasting shot, etc., which can become lodged in the interlocking and handle modules. For this purpose a suitable installation position should be selected.
Cover device during painting work!

11. Electrical connection

\. WARNING

If there is a mistake, loss of the safety function due to incorrect connection.

- To ensure safety, both safety outputs (FO1A and FO1B) must always be evaluated.
- The monitoring outputs must not be used as safety outputs.
- Lay the connection cables with protection to prevent the risk of short circuits.

1	CAUTION
	Risk of damage to equipment or malfunctions as a result of incorrect connection. - The inputs on an evaluation unit connected must be positive-switching, as the two outputs on the safety switch deliver a level of +24 V in the switched-on state. - All the electrical connections must either be isolated from the mains supply by a safety transformer according EN IEC 61558-2-6 with limited output voltage in the event of a fault, or by other equivalent isolation measures. - All electrical outputs must have an adequate protective circuit for inductive loads. The outputs must be protected with a free-wheeling diode for this purpose. RC interference suppression units must not be used. - Power devices which are a powerful source of interference must be installed in a separate location away from the input and output circuits for signal processing. The cable routing for safety circuits should be as far away as possible from the cables of the power circuits. - To prevent EMC problems, it is imperative you follow the chapter 11.5. Notes on cable laying on page 20. Follow EMC notes on devices in the immediate vicinity of the MGB system and their cables. - In order to avoid EMC interference, the physical environmental and operating conditions at the installation site of the device must comply with the requirements according to the standard DIN EN 60204-1:2006, section 4.4.2/EMC.

Important!
If the device does not appear to function when the operating voltage is applied (e.g. green Power LED does not illuminate), the safety switch must be returned to the manufacturer.
To ensure the stated degree of protection is achieved, the cover screws must be tightened to a tightening torque of 1 Nm .
Tighten screw for the cover for the auxiliary release to 0.5 Nm .

11.1. Notes about (띠us

Important!

For use and operation as per the (14s requirements ${ }^{1)}$, a power supply with the feature for use in class 2 circuits must be used. The same requirement applies to the safety outputs.
Alternative solutions must comply with the following requirements:
a) Electrically isolated power supply unit with a max. open-circuit voltage of $30 \mathrm{~V} / \mathrm{DC}$ and a limited current of max. 8 A .
b) Electrically isolated power supply unit in combination with fuse as per UL248. This fuse should be designed for max. 3.3 A and should be integrated into the 30 V DC voltage section.
The mounting of conduits directly on the MGB is not allowed. Cables are allowed to be connected only via suitable cable glands. For this purpose use EUCHNER cable gland of type EKPM20/06U. Equivalent cable glands can be used if they are UL-listed (QCRV) and are suitable for the related cable diameter (22 AWG - 17 AWG).

1) Note on the scope of the UL approval: Only for applications as per NFPA 79 (Industrial Machinery).

The devices have been tested as per the requirements of UL508 (protection against electric shock and fire).

11.2. Safety in case of faults

- The operating voltage UB is reverse polarity protected.
- The safety outputs F01A/F01B are short circuit-proof.
- A short circuit between FI1A and FI1B or F01A and FO1B is detected by the device.
- A short circuit in the cable can be excluded by laying the cable with protection.

11.3. Fuse protection for power supply

The power supply must be provided with fuse protection depending on the number of devices and current required for the outputs. The following rules apply:

Max. current consumption of an individual device $I_{\text {max }}$
$I_{\max }=I_{U B}+I_{U A}+I_{\text {FO1A }}+$ FO1B
lub = Device operating current (80 mA)
IUA $=$ Load current of monitoring outputs OD, OT and OI ($3 \times$ max. 50 mA) + switches
$I_{\text {F01A }+ \text { FO1B }}=$ Load current of safety outputs FO1A + FO1B ($2 \times$ max. 50 mA)
Max. current consumption of a switch chain $\Sigma I_{\max }$
$\Sigma I_{\max }=I_{\text {F01A }}+$ F01B $+n x\left(I_{U B}+I_{U A}\right)$
$=$ Number of connected devices

Current assignment to the fuses

Current	Fuse circuit F1	Fuse circuit F2
luB	80 mA	
$\mathrm{I}_{\text {F01A+F01B }}$	(2 x max. 200 mA)	
IUA		$\begin{gathered} \hline \mathrm{I}_{\mathrm{OD}, \mathrm{O}, \mathrm{OI}}=(3 \times \mathrm{max} .50 \mathrm{~mA}) \\ \mathrm{I}_{\text {switches }}=\text { max. } 100 \mathrm{~mA} \\ \text { (per switch) } \\ \mathrm{I}_{\text {lidicators }}=\text { max. } 5 \mathrm{~mA} \\ \text { (per indicator) } \end{gathered}$

11.4. Requirements for connection cables

!	CAUTION Risk of damage to equipment or malfunctions as a result of incorrect connection cables. - On the usage of other connection components, the requirements in the following table apply. EUCHNER provides no warranty for safe function in case of failure to comply with these requirements.		
Observe the following requirements with respect to the connection cables:			
Parameter		Value	Unit
Conductor cross-section, min.		0.13	mm^{2}
R max.		60	Ω / km
C max.		120	$\mathrm{nF} / \mathrm{km}$
L max.		0.65	$\mathrm{mH} / \mathrm{km}$

11.5. Notes on cable laying

Lay all MGB connection cables in a common cable harness.

Important: lay cables in a common harness
Figure 14: Stipulated cable laying

11.6. Changing device configuration (using DIP switches)

(i)	Tip!
You will find an animation on device configuration at www.euchner.com.	

DIP switches

The devices can be configured using the DIP switches. The following settings are possible:

- Changing system family (AR/AP switching)

Position of the switches

Item	Description
1	DIP switches
2	Sticker with factory setting

Function of the switches

Detail	Switch	Function
A	+2	On: Device is operated as AP system
		Off: Device is operated as AR system
B	$3+4$	No function
C	5	On: Configuration possible
		Off: Configuration inhibited (factory setting)
D	6	No function

11.6.1. Changing system family (AR/AP switching)

CAUTION

Malfunction due to incorrect configuration or incorrect connection.

- Note that the terminal assignment also changes on changing the configuration (see chapter 11.8. Terminal assignment and contact description on page 23).

1. Switch off power supply.
2. Set DIP switches 1,2 and 5 as shown.

3. Switch on power supply for 5 s .
\Rightarrow The change is confirmed by the illumination of the Power LED. All other LEDs are off.
4. Switch off power supply and set DIP switch 5 to OFF.
\Rightarrow The next time the device is started, it operates in the operating mode set.

11.7. Notes on operation with control systems

Please observe the following requirements for connection to safe control systems:

General notes

- Use a common power supply for the control system and the connected safety switches.
- A pulsed power supply must not be used for UB/UA. Tap the supply voltage directly from the power supply unit. If the supply voltage is connected to a terminal of a safe control system, this output must provide sufficient electrical current.
, The safety outputs (FO1A and FO1B) can be connected to the safe inputs of a control system. Prerequisite: the input must be suitable for pulsed safety signals (OSSD signals, e.g. from light grids). The control system must tolerate test pulses on the input signals. This normally can be set up by parameter assignment in the control system. Observe the notes of the control system manufacturer. For the pulse duration of your safety switch, please refer to chapter 13. Technical data on page 29.
- The inputs on an evaluation unit connected must be positive-switching, as the two outputs on the safety switch deliver a level of +24 V in the switched-on state.

Always connect inputs FI1A and FI1B directly to a power supply unit or to outputs F01A and F01B of another EUCHNER AR device (series connection). Pulsed signals must not be present at inputs FI1A and FI1B. The test pulses are also present when the safety outputs are switched off (only on FO1A). Depending on the inertia of the downstream device (control system, relay, etc.), this can lead to short switching processes.

The inputs on an evaluation unit connected must be positive-switching, as the two outputs on the safety switch deliver a level of +24 V in the switched-on state.

| NOTICE |
| :--- | :--- |
| Due to the fact that short circuit monitoring of the safety outputs F01A/FO1B is performed by the |
| device itself, the Performance Level in accordance with EN 13849 is not reduced if the control system |
| pulsing is switched off. |

11.8. Terminal assignment and contact description

Figure 15: Connections and LEDs

Terminal	Designation	Description
X3.1 to X3.3	-	See the enclosed data sheet
X3.4	UA	Power supply for monitoring outputs and cover assembly, DC 24 V , must be permanently present.
X3.5	OV	Ground, DC 0 V (connected internally to X5.5).
X3.6	-	Not used
X3.7	-	Not used
X3.8	-	Not used
X4.1	Fl1A	In case of AR configuration: Enable input for channel A , connect to DC 24 V in separate operation. In case of switch chains, connect output signal F01A from previous device. In case of AP configuration: Input is not evaluated.
X4.2	FI1B	In case of AR configuration: Enable input for channel B, connect to DC 24 V in separate operation. In case of switch chains, connect output signal FO1B from previous device. In case of AP configuration: Input is not evaluated.
X4.3	-	See the enclosed data sheet
X4.4	F01A	Safety output channel A, ON when door is closed and bolt tongue is inserted.
X4.5	F01B	Safety output channel B, ON when door is closed and bolt tongue is inserted.
X4.6	RST	Reset input, device is reset if DC 24 V is applied to RST for at least 3 s .
X5.1	OD	Door monitoring output, ON when the door is closed.
X5.2	OT	Bolt tongue monitoring output, ON when the door is closed and the bolt tongue is inserted in the interlocking module.
X5.3	-	Not used
X5.4	이	Diagnostics monitoring output, ON when the device is in the fault state.
X5.5	OV	Ground, DC 0 V (connected internally to X3.5).
X5.6	UB	Power supply, DC 24 V
X2.1 to X2.8	-	See the enclosed data sheet
X1	-	Reserved for connection of the cover circuit board (only for populated covers)

Table 2: Terminal assignment and contact description

11.9. Operation as separate device

Figure 16: Connection example for separate operation
The switches can be reset via the RST input. To do this, a voltage of 24 V is applied to the RST input for at least 3 seconds. The supply voltage to the switches is interrupted during this time. The RST input must be connected to 0 V if it is not used.

11.10. Operation in an AR switch chain

Figure 17: Connection examples for operation in a CES-AR switch chain
For detailed information on operation in an AR switch chain, see the related CES-AR operating instructions. The interlocking module MGB-LO-AR-... behaves in the switch chain in practice like a safety switch CES-AR. The differences to the CES-AR are described in the following.

11.11. Information on operation in an AR switch chain

11.11.1. System times

The interlocking module has longer reaction times than a CES-AR switch (see chapters 13. Technical data on page 29 and 13.1. Typical system times on page 31).

11.11.2. Wiring an AR switch chain

To prevent earth loops, the wiring should be in a star configuration (see Figure 18).

Important: lay cables in a common harness
Figure 18: Central wiring of an AR switch chain in the control cabinet

11.11.3. Number of devices in switch chains

In a pure MGB switch chain a maximum of ten devices can be connected in series. In mixed switch chains (e.g. MGB together with CES-AR) the maximum number of devices is also ten.

11.11.4. Resetting in switch chains

Important!
Use the reset input (RST) for resetting in AR switch chains. All devices in the chain must be reset simultaneously. Resetting individual switches will result in faults.

12. Commissioning

12.1. Teach-in operation (only for MGB unicode)

The handle module must be assigned to the interlocking module using a teach-in function before the system comprising interlocking module and handle module forms a functional unit.
During a teach-in operation the safety outputs are switched off.

Important!

The interlocking module disables the code for the previous handle module if teach-in is carried out for a new handle module. Teach-in is not possible again immediately for this actuator if a new teach-in operation is carried out. The disabled code is deleted again in the interlocking module only after a third code has been taught.
The interlocking module can only be operated with the last handle module taught.

- If, in the teach-in standby state, the interlocking module detects the handle module taught-in or a disabled handle module, the teach-in standby state is ended immediately and the interlocking module changes to normal operation.
If the bolt tongue is in the operating distance for less than 60 s , the handle module is not taught.

Tip!

A teach-in adapter is available to make it easier to teach-in AR devices already mounted in series or for device replacement (order no. 122369). It is simply inserted between the connecting cable and the AR device. The device immediately enters teach-in operation on reconnection. After teach-in, the adapter is removed again and the MGB is connected normally.

Teaching in handle module

1. Fit handle module.
2. Close guard. Check for correct alignment and distance using the marking on the interlocking module and re-adjust if necessary.
3. Insert bolt tongue in the interlocking module.
4. Apply operating voltage to the interlocking module, optionally connect teach-in adapter.
\Rightarrow The green LED (State) flashes quickly (approx. 5 Hz). A self-test is performed during this time (approx. 10 s in case of AR configuration). Teach-in operation starts, green LED (State) flashes slowly (approx. 1 Hz). During the teach-in operation, the interlocking module checks whether the handle module is a disabled handle module. Provided this is not the case, the teach-in operation is completed after approx. 60 seconds, and the green LED (State) goes out. The new code has now been stored, and the old code is disabled.
5. To activate the handle module's code from the teach-in operation in the interlocking module, the operating voltage must then be switched off at the interlocking module for min. 3 seconds. As an alternative, 24 V can be applied to the input RST for at least 3 seconds.
Teach-in in a series connection works analogously. Here, the complete series connection must be restarted using the input RST.

12.2. Mechanical function test

It must be possible to insert the bolt tongue easily in the interlocking module. To check, close guard several times and actuate door handle.
If available, check function of the escape release. It must be possible to operate the escape release from the inside without excessive effort (approx 40 N).

12.3. Electrical function test

| WARNING |
| :--- | :--- |
| On usage in a switch chain with different AR devices (e.g. CES-AR, CET-AR), also follow the |
| procedure for the functional check in the related operating instructions. |

1. Switch on operating voltage.
\Rightarrow The interlocking module carries out a self-test. In case of AR configuration: The green State LED flashes for 10 s at 5 Hz . The green State LED then flashes at regular intervals.
2. Close all guards and insert the bolt tongue in the interlocking module. As soon as the bolt tongue is inserted in the interlocking module, the safety outputs F01A/F01B are ON.
\Rightarrow The machine must not start automatically.
\Rightarrow The green State LED illuminates continuously.
3. Enable operation in the control system.
4. Open the guard.
\Rightarrow The machine must switch off and it must not be possible to start it as long as the guard is open.
Repeat steps 2-4 for each guard.

Operating Instructions Safety Systems MGB-LO...-AR.-... and MGB-LO...-AP.-...

13. Technical data

NOTICE

If a product data sheet is included with the product, the information on the data sheet applies in case of discrepancies with the operating instructions.

Parameter	Value	Unit
Housing material	Fiber glass reinforced plastic die-cast zinc, nickel-plated stainless steel	
Dimensions	See chapter 7.4. Dimension drawing on page 10	
Weight Interlocking module Handle module Escape release	$\begin{aligned} & 0.75 \\ & 1.00 \\ & 0.50 \end{aligned}$	kg
Ambient temperature at $\mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}$	$-20 \ldots+55$	${ }^{\circ} \mathrm{C}$
Degree of protection Cover not populated/populated with buttons/indi- cators/selector switches Cover populated with key-operated switch Cover populated with key-operated rotary switch FS22	$\begin{aligned} & \text { IP } 65 \\ & \text { IP } 54 \\ & \text { IP } 42 \end{aligned}$	
Safety class	III	
Degree of contamination	3	
Installation position	Any	
Connection	4 cable entries M20x1.5 or plug connector	
Conductor cross-section (rigid/flexible) - With ferrule according to DIN 46228/1 - With ferrule with collar according to DIN 46228/1	$\begin{gathered} 0.13 \ldots 1.5(\text { AWG } 24 \ldots \text { AWG 16) } \\ 0.25 \ldots 1.5 \\ 0.25 \ldots 0.75 \end{gathered}$	mm^{2}
Operating voltage UB (reverse polarity protected, regulated, residual ripple $<5 \%$)	$24+10 \% /-15 \%$ (PELV)	V DC
Auxiliary voltage UA (reverse polarity protected, regulated, residual ripple $<5 \%$)	$24+10 \% /-15 \% ~(P E L V) ~$	V DC
Current consumption luB (no load on any outputs)	80	mA
Current consumption IUA - Pushbutton S (unloaded, per LED)	5	mA
External fuse	See chapter 11.3. Fuse protection for power supply on page 19	
Safety outputs F01A/F01B	Semiconductor outputs, p-switching, short circuit-proof	
Test pulses	AR < 1,000/AP < 300	$\mu \mathrm{s}$
Test-pulse interval	Min. 100	ms
Output voltage $U_{\text {FO1A }} / U_{\text {FO1B }}{ }^{1)}$ HIGH $U_{\text {FO1A }} / U_{\text {F01B }}$ LOW $U_{\text {FO1A }} / U_{\text {FO1B }}$	$\begin{gathered} U_{B}-2 \mathrm{~V} \ldots U_{B} \\ 0 \ldots 1 \end{gathered}$	V DC
Switching current per safety output	1 ... 200	mA
Utilization category according to EN IEC 60947-5-2	DC-13 24 V 200 mA Caution: outputs must be protected with a free-wheeling diode in case of inductive loads.	
Monitoring outputs - Output voltage 1) - Max. load	p-switching, short circuit-proof $\begin{gathered} U_{A}-2 V \ldots U_{A} \\ \quad M a x .50 \\ \hline \end{gathered}$	mA
Rated insulation voltage U_{i}	30	V
Rated impulse withstand voltage Uimp	1.5	kV
Resilience to vibration	Acc. to EN IEC 60947-5-3	
Switching frequency	0.25	Hz
EMC protection requirements	Acc. to EN IEC 60947-5-3	
Reliability values acc. to EN ISO 13849-1		
Category	4	
Performance Level	PLe	
PFH ${ }_{\text {D }}$	$\left.3.7 \times 10^{-9} / \mathrm{h} 2\right)$	
Mission time	20	years
Mechanical life - In case of use as door stop, and 1 Joule impact energy	$\begin{gathered} 1 \times 10^{6} \\ 0.1 \times 10^{6} \end{gathered}$	
$\mathrm{B}_{10 \mathrm{D}}$ (emergency stop)	0.065×10^{6}	
Emergency stop		
Operating voltage	5... 24	V
Operating current	$1 \ldots 100$	mA
Breaking capacity max.	250	mW
Power supply LED	24	V DC
Controls and indicators		
Operating voltage	UA	V
Operating current	$1 \ldots 10$	mA
Breaking capacity max.	250	mW
Power supply LED	24	V DC

1) Values at a switching current of 50 mA without taking into account the cable length.
2) Applying the limit value from EN ISO 13849-1:2008, section 4.5 . (MTTFd = max. 100 years), the employers' liability insurance association certifies a PFHd of max. 2.47×10^{-8}.

13.1. Radio frequency approvals (for devices with FCC ID and IC on the type label)

Product description: Safety Switch

FCC ID: 2AJ58-09

IC: 22052-09

FCC/IC-Requirements

This device complies with part 15 of the FCC Rules and with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions:

1) This device may not cause harmful interference, and
2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:
(1) l'appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This device complies with the Nerve Stimulation Exposure Limits (ISED SPR-002) for direct touch operations.
Cet appareil est conforme aux limites d'exposition relatives à la stimulation des nerfs (ISED CNR-102) pour les opérations tactiles directes.

Supplier's Declaration of Conformity

 47 CFR § 2.1077 Compliance Information
Unique Identifier:

MGB-LO-AR Series
MGB-L1-AR Series
MGB-L2-AR Series
MGB-LO-AP Series
MGB-L1-AP Series
MGB-L2-AP Series

Responsible Party - U.S. Contact Information

 EUCHNER USA Inc.6723 Lyons Street
East Syracuse, NY 13057
+1 315 701-0315
+1315 701-0319
info(at)euchner-usa.com
http://www.euchner-usa.com

13.2. Typical system times

(1)	Important! The system times given are maximum values for one device.

Ready delay:

In case of AR configuration the following applies: After switching on, the unit carries out a self-test for 10 s .
The system is ready for operation only after this time.
In case of AP configuration the following applies: After switching on, the unit carries out a self-test for 0.5 s .
The system is ready for operation only after this time.

Switch-on time of safety outputs:

In case of AR configuration the following applies: The max. reaction time from the moment when the guard is locked to the moment when the safety outputs switch on $\mathrm{T}_{\text {on }}$ is 570 ms .
In case of AP configuration the following applies: The max. reaction time from the moment when the bolt tongue is inserted to the moment when the safety outputs switch on $\mathrm{T}_{\text {on }}$ is 570 ms . Simultaneity monitoring, safety inputs FI1A/FI1B: If the safety inputs have different switching states for longer than 150 ms , the safety outputs F01A/F01B will be switched off. The device switches to fault state.

Risk time according to EN 60947-5-3:

If the bolt tongue is pulled out of the interlocking module, the safety outputs FO1A and FO1B are deactivated after a maximum of 350 ms .

This value applies to a single switch. For each additional switch in a chain the risk time increases by 5 ms .
Difference time: The safety outputs F01A and F01B switch with a slight delay in relation to each other. They both have the ON state at the latest after a difference time of 10 ms .

Time offset: The max. permissible time offset between switch-on of operating voltage UB and auxiliary voltage UA is 1 s .

14. System states

14.1. Key to symbols

\bigcirc	LED not illuminated
-16	LED illuminated
$\because 10 \mathrm{~Hz}(8 \mathrm{~s})$	LED flashes for 8 seconds at 10 Hz
$\therefore 3 x$	LED flashes three times
X	Any state

14．2．System status table MGB－AR

Operating mode									LED in	ndicator	$$	State
Self－test	X	X	X	OFF	OFF	OFF	OFF	$\pm \frac{1}{11}$	安	5 Hz	\bigcirc	Self－test after power－up
Normal oper－ ation	X	open	not inserted	OFF	OFF	OFF	OFF			Long OFF short ON		Normal operation，door open
	X	closed	not inserted	OFF	ON	OFF	OFF		为	Long ON， short OFF		Normal operation，door closed
	OFF	closed	inserted	OFF	ON	ON	OFF		系	Long ON， short OFF		Normal operation，door closed，bolt tongue inserted safety inputs FIIA／FI1B OFF
	ON	closed	inserted	ON	ON	ON	OFF		－＝1－			Normal operation，door closed，bolt tongue inserted．Safety inputs FIIAFFIIB are ON．Safety outputs F01A and F01B are ON
	OFF	closed	inserted	OFF	ON	ON	OFF		曲	Long ON， short OFF		Operation in an AR chain：Normal operation，door closed and locked．Safety outputs on the previous device OFF
	ON	closed	inserted	ON	ON	ON	OFF					Operation as separate device：Normal operation，door closed and locked．
												Operation in an AR chain：Normal operation，door closed and locked．Safety outputs on the previous device ON
Teach－in standby （only for MGB unicode）	X	open	not inserted	OFF	OFF	OFF	OFF		嫁	3 x		Door open；device is ready for teach－in of another handle module（only 3 min．after Power UP）
Commissioning （only for MGB unicode）	X	closed	inserted	OFF	OFF	OFF	OFF		－	1 Hz		Teach－in operation，tip：To prevent the interruption of teach－in operations，close door and insert bolt tongue．
	X	X	X	OFF	OFF	OFF	OFF		0			Positive acknowledgment after completion of teach－in operation
Diagnostics	X	x	X	OFF	OFF	OFF	ON		呠	1 x	$-\frac{1}{1}$	Error during teach－in／configuration or invalid DIP switch setting
	errone－ ous	X	X	OFF	OFF	OFF	ON		为	$2 \times$		FIIA／FI1B input error（e．g．missing test pulses，illogical switching state from previous switch）
	X	X	X	OFF	X	X	OFF		呠	$3 \times$		Handle module read error（e．g．error in code）
	X	X	X	OFF	OFF	OFF	ON		为	4 x		Output fault（e．g．short circuit，loss of switching capability）or short circuit at the outputs
	x	x	x	X	OFF	OFF	ON		\bigcirc			Internal fault（e．g．component faulty，data error）
	X	X	X	OFF	OFF	OFF	ON		\bigcirc			Signal sequence erroneous（e．g．broken bolt tongue）

14．3．System status table MGB－AP

Operating mode									dicator	$\begin{aligned} & \frac{0}{5} \\ & \frac{1}{\overline{0}} \end{aligned}$	State
Normal oper－ ation	open	not inserted	OFF	OFF	OFF	OFF	$-\frac{1}{1}$	$\therefore \because$	Long OFF short ON	0	Normal operation，door open
	closed	not inserted	OFF	ON	OFF	OFF			Long ON， short OFF		Normal operation，door closed
	closed	inserted	ON	ON	ON	OFF		－\10			Normal operation，door closed，bolt tongue inserted．Safety outputs FO1A and FO1B are ON
	closed	inserted	ON	ON	ON	OFF		－＜			Normal operation，door closed and locked．
Teach－in standby （only for MGB unicode）	open	not inserted	OFF	OFF	OFF	OFF		吕	3 x		Door open；device is ready for teach－in of another handle module（only 3 min．after Power UP）
Commissioning （only for MGB unicode）	closed	inserted	OFF	OFF	OFF	OFF		曲	1 Hz		Teach－in operation，tip：To prevent the interruption of teach－in operations，close door and insert bolt tongue．
	x	x	OFF	OFF	OFF	OFF		\bigcirc			Positive acknowledgment after completion of teach－in operation
Diagnostics	x	x	OFF	OFF	OFF	ON		曲	1 x	-10	Error during teach－in／configuration or invalid DIP switch setting
	x	x	OFF	x	x	OFF		曲	3 x		Handle module read error（e．g．error in code）
	X	x	OFF	OFF	OFF	ON		曲	4 x		Output fault（e．g．short circuit，loss of switching capability）or short circuit at the outputs
	X	X	X	OFF	OFF	ON		\bigcirc			Internal fault（e．g．component faulty，data error）
	X	X	OFF	OFF	OFF	ON		0			Signal sequence erroneous（e．g．broken bolt tongue）

15. Troubleshooting and assistance

15.1. Fault reset

Proceed as follows:

1. Open the guard.
2. Switch off operating voltage at the interlocking module for min. 3 seconds or connect 24 V to the input RST for min. 3 seconds.
Alternatively, the internal reset (see 7. System overview on page 9) can be pressed for 3 seconds with a pointed object, e.g. ball-point pen.
\Rightarrow The green LED (State) flashes quickly (approx. 5 Hz in case of AR configuration). A self-test is performed during this time (approx. 10 s in case of AR configuration). The LED then cyclically flashes three times.
3. Close the guard.
\Rightarrow The system is in normal operation again.

15.2. Help on troubleshooting in the Internet

You will find a help file on troubleshooting under Support in the service area at www.euchner.com.

15.3. Help on mounting in the Internet

You will find an animation on the mounting process at www.euchner.com.

15.4. Application examples

You will find application examples on connecting the device to various control systems at www.euchner.com.

16. Service

If service support is required, please contact:
EUCHNER GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen
Germany

Service telephone:

+49 711 7597-500

E-mail:

support@euchner.de
Internet:
www.euchner.com

17. Inspection and service

. WARNIIG

Loss of the safety function because of damage to the system.

- In case of damage, the affected module must be replaced completely. Only accessories or spare parts that can be ordered from www.euchner.com may be replaced.
- Check the device for proper function at regular intervals and after every fault. For information about possible time intervals, refer to EN ISO 14119:2013, section 8.2.

Regular inspection of the following is necessary to ensure trouble-free long-term operation:

- Check the switching function (see chapter 12.3. Electrical function test on page 28)
- Check the secure fastening of the devices and the connections
- Check for soiling

No servicing is required. Repairs to the device are only allowed to be made by the manufacturer.

NOTICE

The year of manufacture can be seen in the lower right corner of the type label.

18. Declaration of conformity

EUCHNER

More than safety.
EU-Konformitätserklärung
EU declaration of conformity
ranslation EN
Déclaration UE de conformité
Traduction FR
nformite
Traduction FR
Dichiarazione di conformità UE
Traducción ES

Die nachfolgend aufgeführten Produkte sind konform mit den Anforderungen der folgenden Richtlinien (falls zutreffend): The beneath listed products are in conformity with the requirements of the following directives (if applicable): Les produits mentionnés ci-dessous sont conformes aux exigences imposées par les directives suivantes (si valable) I prodotti sotto elencati sono conformi alle direttive sotto riportate (dove applicabili):
Los productos listados a continuación son conforme a los requisitos de las siguientes directivas (si fueran aplicables):

I:	Maschinenrichtlinie	2006/42/EG	
	Machinery directive	2006/42/EC	
	Directive Machines	2006/42/CE	
	Direttiva Macchine	2006/42/CE	
	Directiva de máquinas	2006/42/CE	
II:	Funkanlagen-Richtlinie (RTTE / RED)	1999/5/EC bis 2017-06-12	2014/53/EU ab 2017-06-13
	Radio equipment directive	1999/5/EC until 2017-06-12	2014/53/EU from 2017-06-13
	Directive équipement radioélectrique	1999/5/CE	2014/53/UE
	Direttiva apparecchiatura radio	1999/5/CE	2014/53/UE
	Directiva equipo radioeléctrico	1999/5/CE	2014/53/UE
III:	RoHS Richtlinie	2011/65/EU	
	RoHS directive	2011/65/EU	
	Directive de RoHS	2011/65/UE	
	Direttiva RoHS	2011/65/UE	
	Directiva RoHS	2011/65/UE	

Die Schutzziele der Niederspannungsrichtinie 2014/35/EU und EMV Richtlinie 2014/30/EU werden gemäß Artikel 3.1 der FunkanlagenRichtlinie eingehalten.
The safety objectives of the Low-voltage directive 2014/35/EU and EMC Directive 2014/30/EU comply with article 3.1 of the Radio equipment directive.
Les objectifs de sécurité de la Directive basse tension 2014/35/UE et Directive de CEM 2014/30/EU sont conformes à l'article 3.1 de la Directive équipement radioélectrique.
Gli obiettivi di sicurezza della Direttiva bassa tensione 2014/35/UE e Direttiva CEM 2014/30/UE sono conformi a quanto riportato nell articolo 3.1 della Direttiva apparecchiatura radio.

Los objetivos de seguridad de la Directiva de bajo voltaje 2014/35/UE y Directiva CEM 2014/30/UE cumplen con el articulo 3.1 de la Directiva equipo radioeléctrico.

Folgende Normen sind angewandt:	a:	EN 60947-5-3:2013
Following standards are used:	b:	EN ISO 14119:2013
Les normes suivantes sont appliquées:	c:	EN ISO 13849-1:2015
Vengono applicate le seguenti norme:	d:	EN 60947-5-5:1997/A1:2005/A11:2013
Se utilizan los siguientes estándares:	e:	EN 50364:2010
	f:	EN 300 330-2 V1.6.1
	g:	EN 50581:2012 (RoHS)

Bezeichnung der Bauteile	Type	Richtlinie	Normen	Zertifikats-Nr.
Description of components	Type	Directives	Standards	No. of certificate
Description des composants	Type	Directive	Normes	Numéro du certificat
Descrizione dei componenti	Tipo	Direttiva	Norme	Numero del certificato
Descripción de componentes	Typo \quad DirectivasMGB-L...AR...		Estándares	Número del certificado
Sicherheitsschalter			a, b, c, e, f, g	UQS 123125
Safety Switches	MGB-L...-AP...			
Interrupteurs de sécurité	MGB-H...			
Finecorsa di sicurezza	MGB-E...			
Interruptores de seguridad	MGB-C...			
Sicherheitsschalter mit Not-Halt-Einrichtungen				
Safety Switches with Emergency-Stop facilities	MGB-L...-AR...			
Interrupteurs de sécurité avec appareillage arrêt d'urgence	MGB-L...-AP...			
Finecorsa di sicurezza con dispositivi di arresto di emergenza Interruptores de seguridad con dispositivos de parada de emergencia	MGB-C...	1, II	a, b, c, d, e, f, g	UQS 123125

Genehmigung der umfassenden Qualitätssicherung (UQS) durch die benannte Stelle 0035 Approval of the full quality assurance system by the notified body 0035
Approbation du système d'assurance qualité complet par l'organisme notifié 0035
Approvazione del sistema di garanzia di qualità totale da parte dellorganismo notificato 0035
Aprobación del sistema de aseguramiento de calidad total por parte del organismo 0035 notificado

TÜV Rheinland Industrie Service GmbH
Alboinstrasse 56
12103 Berlin
Germany

C

EUCHNER

More than safety.

Die alleinige Verantwortung für die Ausstellung dieser Konformitätserklärung trägt der Hersteller:
This declaration of conformity is issued under the sole responsibility of the manufacturer:
La présente déclaration de conformité est établie sous la seule responsabilité du fabricant:
La presente dichiarazione di conformità è rilasciata sotto la responsabilità esclusiva del fabbricante: La presente declaración de conformidad se expide bajo la exclusiva responsabilidad del fabricante:

EUCHNER GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen Germany

i.A. Dipl.-Ing. (FH) Duc Binh Nguyen Dokumentationsbevollmächtigter Documentation manager
Responsable documentation
Responsabilità della documentazione Agente documenta

EUCHNER GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen Germany

[^0]Subject to technical modifications; no responsibility is accepted for the accuracy of this information.

[^0]: Euchner GmbH + Co. KG
 Kohlhammerstraße 16
 70771 Leinfelden-Echterdingen
 Germany
 info@euchner.de
 www.euchner.com
 Edition:
 2112657-15-06/20
 Title:
 Operating Instructions Safety Systems MGB-LO...-AR.-... and
 MGB-LO...-AP.-... from V3.0.0
 (translation of the original operating instructions)
 Copyright:
 © EUCHNER GmbH + Co. KG, 06/2020

