

Section 4 - Diagram

Contents:

- Cable diagram
- MTF0077AR0 Amplifier module Component list
- SCH0192AR0 (200W UHF LDMOS Amplifier module)
- SCH0223AR1 (Control board and display)
- SCH0259AR0 (RF Amplifier interface)
- SCH0265AR0 (Mains distribution board)
- SCH0288AR1 (Interface board)
- E0012 (SP500-27-DE2 Switching power supply)

Component list

MTF0077AR0 Amplifier module

Page 1/2

Part Name Code	Description	Qty
00441	TERMINAZIONE 50Ω 500W 32-1123-50-5	1
01400	C. PAS. 2499-003-X5U0-102M	11
02402	7/16 FEMMINA ANIM. FILET. cod. 0142	1
SCH0192AR0	SCHEDA AMPLIFIC. 200W UHF LDMOS PHILIPS	7
00424	TERMINAZIONE 50Ω 250W 32-1037-50-5	6
03207	DIODO HSMS-2802*L31	3
00028A	82Ω RESISTENZA SMD 1/4W	3
01041D	1nF COND, SMD 1206 2%	3
08527	CAVO HF-85 ENDIFORM	0,40
08502	CAVORG31650Ω	1,70
CAV092	CAVO RG17975Ω DA 10cm	8
DET0732	DET0732R1 PIASTRINA SUPPORTO CONNESSIONI	1
DET0959	DET0959R0 SPESSORE x PN1120A	1
02520	GE 65125 D/22 SMA A VIT. RG174/c	1
02512	J01151A0531 PRESA SMA SEN. BAT	1
DET0868	DET0868R0 SPESS. ACC. DIR. ING. 1000W UHF	1
PN1083A	C.S. PN1083AR2 ACCOPPIATORE INGRES. 1500W	1
PN1091A	C.S. PN1091AR3 ACCOP. DIREZ. OUT 1500W UHF	1
DET0839	DET0839R2 ACCOPPIATORE DIREZIONALE	1
DET0810	DET0810R0 PART. x ACCOPPIATORE DIREZIONALE	1
00029D	100Ω RESISTENZA SMD 1206 1%	1
00221B	75Ω RESISTENZA SMD 1206 1%	2
01408	C. PAS. 5000PF	2
DET0811	DET0811R1 CHIUS. x ACCOP. DIREZIONALE	1
DET0812	DET0812R1 ANELLO IN TEFLON x ACCOP. DIR.	1
00001	0Ω REISTENZA SMD 1206	2
PN1077A	C.S. PN1077AR2 COMBINATORE 6VIE 1kW UHF	1
PN1120A	C.S. PN1120AR1 COMBINATORE 2VIE 1kW UHF	1
PN1118A	C.S. PN1118AR1 DIVISORE 2VIE 1kW UHF	1
PN1066A	C.S. PN1066AR3 DIVIS. 3VIE UHF 1kW DESTRO	1
PN1080A	C.S. PN1080AR2 DIVIS. 3VIE 1kW UHF SINIST.	1
DET0960	DET0960R0 SPESSORE x PN1077A	1
DET0961	DET0961R0 CHIUSURA MODULO RF 1kW UHF	1
00383	RESISTENZA SMD 1W 2512 100R 224/0272	12
00395	560Ω RESISTENZA SMD 1W 224-0373	2
00399	220Ω RESISTENZA SMD 1W 224-0317	2
00403	270Ω RESISTENZA SMD 1W 2512 1%	12
DET0901	DET0901R0 DISSIPATORE 1kW UHF 6 MOD.	1
DET0902	DET0902R0 SPONDINA ANT. 1kW UHF 6 MOD.	1
DET0903	DET0903R0 SPONDINA POST. 1kW UHF 6 MOD.	1
DET0803	DET0803R1 SPOND. LATERALE 1kW IIIBd	1
DET0905	DET0905R0 SPONDINA CENTR. 1kW UHF 6 MOD.	1
DET0906	DET0906R0 SPONDINA LATER. SX 1kW UHF 6 MOD.	1
DET0907	DET0907R0 SPONDINA PILOTA 1kW UHF 6 MOD.	1
DET0908	DET0908R0 SPOND. WILKINSON 1kW UHF 6 MOD.	2

Part Name Code	Description	Qty
08503A	CABLERG30275Ω	0,20
08521	CAVO RG179 BU 75 Ω	0,54
DET0904	DET0904R0 SPONDINA LAT. DX 1kW UHF 6 MOD.	1

Page 2/2

Component list

APT148B - AUTV/1000LD

Part Name Code	Description	Qty
APT148A	AMPLIFICATORE UHF 1000W LDMOS MEANWELL	1
06659	BANDPASS FILTER CL3N60C-AEE IV/VBd	1
RO156F	RACK 20U 565x1000 CON COPER. FORATO	1
Z0500	TAV. 1081RF GUIDA RACK 3000W P. 2328 ZN	4
DET0462	DET0462R0 BARRA x RACK SOSTEGNO PCAV ZN	4
PAN0082	PAN0082R0 PANN. FRONT. 3U CON POLICARB.	2
PAN0080	PAN0080R0 PANN. FRONT. 1U CON POLICARB.	1
PAN0081	PAN0081R0 PANN. FRONT. 2U CON POLICARB.	2
CSS5011	CAVO IN RG58 DA 1.5MT NM/NM	1
CON0093	CON0093R3 POSTERIORE RACK 20U VR P. 2544	1
CMS6006	CAVO 1/2" DA 1MT CONN. 7/16(M) BN203391	1
02502	J01150A0041 SMA x RG58/c	1
08504	CABLERG5850Ω	1
02009	GE35145 D/60 BN (UG909/cxRG58)	1
07595	VENTOLE G2E160.AD01.21	1
07595A	COND. 6uF VENTOLA G2E160.AD01.21	1
Z0114	REGGI TUBO ARIA x 1kW P. 2058 TAV. 358/A ZN	1
DET0434	DET0434R2 ANCORAGGIO FLANG. 7/8 CON RACK	1
DET0564	DET0564R0 COLLARE FISS. EIA 7/8	1
DET0565	DET0565R0 ANCORAGGIO COLL. EIA 7/8	1
02450	CONNECTOR EIA 7/8" FOR 1/2" cod. 9713	1
02458	INNER EIA 7/8" cod. 0135	1
08515A	CABLE 1/2" LDF4-50A 50Ω	1
02410	CONNECTOR 7/16 x 1/8" SP 10 CLX 160	1
07959B	GRIGLIA x VENTOLA G2E160.AD01.21	1
07596	GRIGLIE VENTOLE LZ 201	1
DET0609	DET0609R0 BARRETTA REGGI FILTRO	2
R0031	CERNIERA PER SCURETTO LACCATA	2
D0101	CHIAVE QUADRA MM8 E3-8-1	1
D0100	CHIUSURA A COMPRESSIONE SE3-1010-045	2
DET0671	DET0671R0 SPES. x CERNIERA REG. PORTIERA	2

This page is intentionally blank

DESCRIPTION

The RF module is an integrated TV linear amplifier designed for UHF band, this module employs push-pull LDMOS technology in order to achieve very good efficiency, high linearity and reliability. LDMOS transistors operate in AB class. It is a wideband amplifier over the full frequency, no adjustment is required for the channel change. The board includes RF section amplifier, bias circuit, protection circuit and matching networks. A silver plated copper plate is brazed with PCB in order to obtain low thermal resistance. Providing a minimum of 200W Pk sync linear power, this module is the perfect amplifier for any broadband UHF power transmitter.

TECHNICAL CHARACTERISTICS

Output power	300W max
Input power	15W max
Frequency	470 - 860MHz
Gain	> 13dB
LDMOS Power supply	32V±2%
LDMOS Bias current @+32V Vdc	2A
RF Input impedance	50Ω
RF Output impedance	50Ω
Input / Output return loss	> = 15dB
Drain efficiency	47% @ 250W
Storage temperature range	-50° to +150°C
Dimensions (LxWxH)	165x95x29mm

- Curve response graphic

Middle frequency 660MHz, span 500MHz, 2dB/div., reference to the arrow

CALIBRATION PROCEDURE

- Technical characteristics

Power supply voltage	$32V(\pm 2\%)$
Polarisation current	1.0 cold for each device (2A total), $\pm 0.1A$
Gain for low signal	Not less than 13dB in the 470-860MHz band $(\pm 1dB)$
	Compare to the typical curve eclosed

- Adjustment procedure

Polarisation current calibration	32V stabilised power supply
	10A amperometer
Gaincurve	Network analyser

- Adjustment points description

R7-R8 (Trimmers)	Adjust the current absorbed in stand	1-by (1.0A)	per device)
------------------	--------------------------------------	-------------	-------------

- Calibration steps

STEP 1. Close the input and the output of the module by connecting them to a 50Ω dummy load and connect the spectrum analyser through a directive sample, in order to look for self-oscillation of the module, if any (anyway the module has been designed so that it would not self-oscillate even if totally decoupled, without any input or output load).

STEP 2. Check the voltages of the polarisation circuits *without assembling the transistors first:* connect the 32V power supply to the proper turret by means of a fastening screw, then give power and check data:

- the stabilised voltage on the zener diodes DZ1 and DZ2 is about 15V compared to the ground;

- the stabilised voltage on the zener diodes DZ3 and DZ4 is about 6.8V compared to the ground;

- the voltage on the pads to which the gates of the LDMOS transistors will be soldered (R23 and R24 resistors side) changes from 0V to a maximum value of about 6V when moving the relevant trimmer (R7-R8).

STEP 3. Check the work of the protections.

- Set both trimmers so that there is a value of about 4.5V on the pads of the gates;

- solder some wire to the pad between the two LEDs, next to the serigraphy of the input hybrid H1;

- in order to check the work of the protections aboard, a power of about 4V has to be supplied to the wire, for example by touching with it the reophore of C23 or C24 which is not connected to ground; the two red LEDs will immediately light up and the two RF transistors will be switched off at the same time: the polarisation current (2A) will decrease to 0 and of course the gain curve displayed by the spectrum analyser will decrease; - after this it is **important** *to restore the position of the two trimmers for the minimum voltage!* Then disconnect the 32V power supply.

STEP 4. **Fastening of the LDMOS transistors:** after properly cleaning the plate surface, smear a thin layer of silicone fat on the lower side of the flange of the MOSFETs, fasten them to the heat sink and solder the gate first, then the drain. Solder the two 13pF (ATC) chip capacitors and above them the two 1-5pF

capacitive trimmers, between the two pair of gates, as shown by the mounting plan.

STEP 5. Connect serially a c.c. amperometer to the power supply, with scale starting from more than 5A (i.e. 10A).

STEP 6. Power the module and check the MOSFET is not absorbing current; this means that the device is integral and working correctly.

STEP 7. Slowly turn the R7 trimmer until the MOSFET absorbs 1A, always checking that there are no self-oscillation; under this conditions it is possible to check by means of a digital tester that the voltage on the gate is about 5.2-5.4V.

STEP 8. Repeat the previous step for the other section of the module, this time turnign R8 and checking that the indication of the current on the amperometer increases to 2A total (which includes the current of the other device left on).

STEP 9. Check the response curve of the module by means of the *network analyser*.

STEP 10. Check the response curve for low signal with centre 660MHz and span 500MHz, 2dB/div.

STEP 11. The curve should be similar to the one enclosed, with a tolerance of ± 0.5 dB. To obtain this, act on the four trimmers C41-C41a and C42-C42a with the proper "calibrator", inorder to flatten the curve as much as possible, especially at the edged of the band which represents the minimum values.

STEP 12. Finally, check that the current in stand-by does not increase by more than $15\div20\%$, reaching at worst $2.3\div2.4A$ when the heat sink is hot and not ventilated.

Note: when mounting-removing the PALLET on the heat sink, tightly fasten the screw of each all "N" input and output connectors. These are mounted with a single 3mm screw and if it is not properly fastened it may be detached from the PCB by a movement of the connector once it has already been soldered to the path.

Component layout SCH0192AR0

COMPONENT LIST SCH0192AR0

REF.	DESCRIPTION	ELETTRONIKA CODE	Page 1/3
R1	2200Ω 1/4W 1206 SMD RESISTOR	00045A	
R2	2200Ω 1/4W 1206 SMD RESISTOR	00045A	
R3	2200Ω 1/4W 1206 SMD RESISTOR	00045A	
R4	2200Ω 1/4W 1206 SMD RESISTOR	00045A	
R5	1200Ω 1/4W 1206 SMD RESISTOR	00042A	
R6	1200Ω 1/4W 1206 SMD RESISTOR	00042A	
R7	$50 \mathrm{k}\Omega$ MULTITURNS PTH TRIMMER	00800	
R8	$50 \mathrm{k}\Omega$ MULTITURNS PTH TRIMMER	00800	
R9	1200Ω 1/4W 1206 SMD RESISTOR	00042A	
R10	1200Ω 1/4W 1206 SMD RESISTOR	00042A	
R11	18kΩ 1/4W 1206 SMD RESISTOR	00056B	
R12	18kΩ 1/4W 1206 SMD RESISTOR	00056B	
R13	680KΩ1/4W1206 SMD RESISTOR	00075A	
R14	0Ω 1/4W 1206 SMD RESISTOR	00001	
R15	50Ω 30W 1512EBX SMD RESISTOR	00416A	
R16	$50\Omega60W$	00432	
R17	4.7kΩ 1/4W 1206 SMD RESISTOR	00049A	
R18	4.7kΩ 1/4W 1206 SMD RESISTOR	00049A	
R19	$3.9\Omega 1/4W 1206 \text{SMD RESISTOR}$	00012A	
R20	$3.9\Omega 1/4W 1206 \text{SMD RESISTOR}$	00012A	
R21	3.9Ω 1/4W 1206 SMD RESISTOR	00012A	
R22	$3.9\Omega 1/4W 1206 \text{SMD RESISTOR}$	00012A	
R23	1000Ω 1W 2512 SMD RESISTOR	00396	
R24	1000Ω 1W 2512 SMD RESISTOR	00396	
*R25	= R15 (da montare se si inverte l'ingresso)		
*R26	= R26 (da montare se si inverte l'uscita)		
C1	470uF 50V PTH ELECTROLYTIC CAPACITOR	01807B	
C2	470uF 50V PTH ELECTROLYTIC CAPACITOR	01807B	
C3	470uF 50V PTH ELECTROLYTIC CAPACITOR	01807B	
C4	100uF 50V PTH ELECTROLYTIC CAPACITOR	01795	
C5	100uF 50V PTH ELECTROLYTIC CAPACITOR	01795	
C6	1nF ATC 100B CAPACITOR OR EQUIVALENT	01145	
C7	1nF ATC 100B CAPACITOR OR EQUIVALENT	01145	
C8 x 2	2 x 100nF ATC CAPACITOR OR EQUIVALENT	01065H	
C9 x 2	2 x 100nF ATC CAPACITOR OR EQUIVALENT	01065H	
C10x4	4 x 100pF ATC 100B CAPACITOR OR EQUIVALENT	01135	
C11x4	4 x 100pF ATC 100B CAPACITOR OR EQUIVALENT	01135	
C12	100nF 1210 SMD CAPACITOR	1065G	
C13	100nF 1210 SMD CAPACITOR	1065G	
C14	100nF 1210 SMD CAPACITOR	1065G	
C15	1uF 35V SMD TANTALIUM CAPACITOR	01613A	
C16	1uF 35V SMD TANTALIUM CAPACITOR	01613A	
C17	100nF 1210 SMD CAPACITOR	1065G	

REF.	DESCRIPTION	ELETTRONIKA CODE	Page 2/3
C18	100nF 1210 SMD CAPACITOR	1065G	
C19	10uF 16V SMD TANTALIUM CAPACITOR	01626A	
C20	10uF 16V SMD TANTALIUM CAPACITOR	01626A	
C21	100nF 1210 SMD CAPACITOR	1065G	
C22	100nF 1210 SMD CAPACITOR	1065G	
C23	100nF 1210 SMD CAPACITOR	1065G	
C24	100nF 1210 SMD CAPACITOR	1065G	
C25	1nF ATC 100B CAPACITOR OR EQUIVALENT	01145	
C26	1nF ATC 100B CAPACITOR OR EQUIVALENT	01145	
C27	1nF ATC 100B CAPACITOR OR EQUIVALENT	01145	
C28	1nF ATC 100B CAPACITOR OR EQUIVALENT	01145	
C29	20pF ATC 100B CAPACITOR OR EQUIVALENT	01123	
C30	20pF ATC 100B CAPACITOR OR EQUIVALENT	01123	
C31	20pF ATC 100B CAPACITOR OR EQUIVALENT	01123	
C32	20pF ATC 100B CAPACITOR OR EQUIVALENT	01123	
C33	1.3pF ATC 100B CAPACITOR OR EQUIVALENT	01104	
C34	1.3pF ATC 100B CAPACITOR OR EQUIVALENT	01104	
C35	470pF ATC 100B CAPACITOR OR EQUIVALENT	01143	
C36	470pF ATC 100B CAPACITOR OR EQUIVALENT	01143	
C37	470pF ATC 100B CAPACITOR OR EQUIVALENT	01143	
C38	470pF ATC 100B CAPACITOR OR EQUIVALENT	01143	
C39	4.7pF ATC 100B CAPACITOR OR EQUIVALENT	01108	
C40	4.7pF ATC 100B CAPACITOR OR EQUIVALENT	01108	
C41 x 2	2 x 1÷5pF JOHANSON SMD TRIMMER	1485	
C42 x 2	2 x 1÷5pF JOHANSON SMD TRIMMER	1485	
C43	3.6pF ATC 100B CAPACITOR OR EQUIVALENT	01104B	
C44	3.6pF ATC 100B CAPACITOR OR EQUIVALENT	01104B	
C45	6.8pF ATC 100B CAPACITOR OR EQUIVALENT	01111	
C46	6.8pF ATC 100B CAPACITOR OR EQUIVALENT	01111	
C47	6.8pF ATC 100B CAPACITOR OR EQUIVALENT	01111	
C48	6.8pF ATC 100B CAPACITOR OR EQUIVALENT	01111	
C49	13pF ATC 100B CAPACITOR OR EQUIVALENT	01119A	
C50	13pF ATC 100B CAPACITOR OR EQUIVALENT	01119A	
C51	8.2pF ATC 100B CAPACITOR OR EQUIVALENT	01113	
C52	8.2pF ATC 100B CAPACITOR OR EQUIVALENT	01113	
C53	8.2pF ATC 100B CAPACITOR OR EQUIVALENT	01113	
C54	8.2pF ATC 100B CAPACITOR OR EQUIVALENT	01113	
C55	10pF ATC 100B CAPACITOR OR EOUIVALENT	01117	
C56	10pF ATC 100B CAPACITOR OR EOUIVALENT	01117	
C57	4.7pF ATC 100B CAPACITOR OR EOUIVALENT	01108	
C58	4.7pF ATC 100B CAPACITOR OR EOUIVALENT	01108	
C59	0.3pF ATC 100B CAPACITOR OR EOUIVALENT	01160	
T1	BLF861A RF LDMOS POWER TRANSISTOR	04034	
T2	BLF861A RF LDMOS POWER TRANSISTOR	04034	
Bl	COAX 2:1 BALUN	08491	

REF.	DESCRIPTION	ELETTR
B2	COAX 2:1 BALUN	08491
B3	COAX 4:1 BALUN	08492
B4	COAX 4:1 BALUN	08492
L1	4 TURNS SILV. COP. WIRE 1.2mm WOUND ON OD 5mm	07684
L2	4 TURNS SILV. COP. WIRE 1.2mm WOUND ON OD 5mm	07684
L3	1/2 TURN COIL	
L4	1/2 TURN COIL	
H1	HYBRID COUPLER 3dB 90° ANAREN	05368
H2	HYBRID COUPLER 3dB 90° SAGE	05369
NTC1	NTC 100K Ω PTH	00661
NTC2	NTC 100K Ω PTH	00661
IC1	DG419DY	04583
IC2	DG419DY	04583
DZ1	15V SMD ZENER DIODE	03135
DZ2	15V SMD ZENER DIODE	03135
DZ3	6.8V SMD ZENER DIODE	03137
DZ4	6.8V SMD ZENER DIODE	03137
DL1	SMD LED DIODE - RED -	03056
DL2	SMD LED DIODE - RED -	03056
PN964AR3	PCB	0643K
	Torretta 3x10 f/f	V0774
	Imballo velapack 200x125x50	09983

ELETTRONIKACODE Page 3/3

DESCRIPTION

The control board SCH0223AR1 manages the operational logic of the amplifier: switching on and off, power supply and fans, alarms and protections, remote control, human-machine interface. All of that is performed by a modern and powerful 16 bit micro-controller, which is the main part of the board. Figure 1 shows the block diagram.

Figure 1: Simplified block diagram of the control and display board

It can be seen that the micro-controller is the heart of the control system, to which the various peripherals (power supply, serial ports, telemeasure socket, AGC port, RF amplifier module, ROM, clock, display and keys) are interfaced.

- Power Supply

The board is powered with a continuous +24V voltage applied on the J14 connector. From that the +5V voltage, powering the most of the chips (micro-controller, operational amplifiers, display, etc.) is derived by means of a switching converter (see IC19). A +12Vdc voltage is obtained from it as well, by means of a linear conversion provided by the integrated circuit IC8. From this, a -12Vdc voltage is obtained by means of the integrated circuit IC5. The -12V voltage is used to adjust the contrast of the display.

- Connectors

On the board SCH0223AR1 there are several connectors used as interfaces for the peripherals of the apparatus and the ports for external communication.

POWER SUPPLY

The connectors J1, J6, J8 e J12 are used to connect the power supply powering the RF modules. The number of power supply used changes depending on the amplifier, up to eight power supply. They are connected in the order shown in Table 1 below. Remaining connectors, if any, are left unconnected.

CONNECTOR	POWER SUPPLY N°
J1	1 - 2
J6	3 - 4
J8	5 - 6
J12	7 - 8

Table 1: Interface connectors for the power supply

Through this connection, each power supply provides the level of voltage and current acquired by the microcontroller by means of an internal ADC. Besides the connectors allow the control board to turn on or off the individual power supply (for instance when an alarm occurs).

RF AMPLIFICATION

The J3 connector interfaces the control board with the RF amplification section. Through this connector the micro-controller acquires the forward and reflected powers, unbalancing (if any), and temperature of the critic amplification area. It also allows to inhibit the transistors in case of reflected power alarm, by means of a totally hardware, thus extremely fast protection.

Depending on the apparatus, this connector may also allow to enable or disable the cooling fans of the critic area.

RS485

The J11 connector (10 pin socket) is directly wired to a DB9 female connector placed on the rear panel of the apparatus. This communication bus allows to connect the amplifier to the control (Amplifier Control) module of a high-power transmitter composed by several individual amplifiers. In this case, each amplifier and the Amplifier Control are connected to the same 4-wires RS485 bus and each of them has a unique address (which can be set by means of the keys and the display) for correct communication.

In case of single (stand-alone) amplifier, the RS485 connector can be used to interface to the Remote Control Unit (RCU) made by Elettronika S.r.l. This unit allows to monitor and control the remote transmitter from any site provided with PSTN or GSM¹ phone connection.

Table 2 shows the wiring between the J11 connector on the board and the DB9 female connector on the rear panel, along with the description of the lines.

PIN N° ON DB9	PIN N° ON J11	DESCRIPTION
1	1	Not used
2	3	Rx-
3	5	Rx+
4	7	+5V
5	9	GND
6	2	Not used
7	4	Tx-
8	6	Tx+
9	8	Not used

Table 2: Description of the RS485 connector

¹ For more details about the control system contact the distributor or the manufacturer.

TELEMEASURES

The J9 telemeasure connector (10 pins socket) is directly wired on a DB9 female connector placed on the rear panel. There are input and output digital lines (TTL level) and analog output lines on this connector, which are used to monitor and control the amplifier by means of a general-purpose remote control system. The correspondence between the pins of the J9 connector on the board and the DB9 female connector on the rear panel, as well as the meaning of the various lines, is shown in table 3 below (the directions are in respect to the micro-controller on the board).

PIN N° ON DB9	PIN N° ON J9	TYPE	DIRECTION	DESCRIPTION
1	1	Analog	Output	Forward power (*)
2	3	Analog	Output	Reflected power (*)
3	5	Analog	Output	Temperature
4	7	Digital	Input	Interlock: 0V = Interlock Alarm 5V = Normal
5	9	-	-	Ground
6-7	2-4	Digital	Output	Free Contact (closed when amplifier is in alarm)
8	6	Digital	Input	Turning-on control (normally high, active when low)
9	8	Digital	Input	Turning-off control (normally high, active when low)

(*) You can select by means of two jumpers on the board (JP1 and JP2) RMS or peak power. If there are two jumpers on pins 1 and 2 of JP1 and JP2 connectors, RMS power is selected. Otherwise, if there are two jumpers on pins 2 and 3 of the same connectors, peak power is selected.

Table 3: Description of the telemeasures connector

The input stage of the digital pins has an internal pull-up towards the 5V power supply voltage. To use these lines it only takes setting a switch to close to earth. When closed, the relevant control (turning on or off) is enabled and the switch may be open again (impulse controls).

The interlock pin may be used as protection so that the amplifier is switched off when the digital input level is low. It is possible to use several serially connected switches to make an interlock chain. Usually all switches are closed and the interlock level is low, thus the amplifier is on. If even only one of the switches is open, the

level of the interlock signal becomes high (this line has a pull-up towards the +5V power supply voltage as well) and the interlock protection activates switching off the amplifier. Note that in case the interlock protection is not used, the pin 4 of the DB9 telemeasure connector and the earth pin (pin 5) must be short circuited. Otherwise it is possible to disable the monitoring of the interlock chain from menu (see user manual). Figure 2 shows a typical usage for the digital input signals to turn on and off the amplifier and for the interlock alarm.

Figure 2: Usage of the digital input signals of the telemeasures connector

AGC / EXCITER

The connector called J10, as the telemeasures connector and the RS485 bus, is wired to a DB9 female connector placed on the rear panel of the amplifier. This connector allow the implementation of an automatic gain control between an exciter and the amplifier. A voltage signal related to the forward output power supplied by the amplifier is provided through two pins of the AGC connector. Connecting one of these to the relevant input pin of the exciter, this can pursuit a given voltage level, so that the output power is always constant. In order to avoid that, in case of an alarm decreasing the forward power, the exciter increases its output level due to the AGC, thus damaging the amplification stages, the connector is provided with two digital output lines called AGC Alarm. Under alarm conditions, this lines are brought by the micro-controller at a low level, so that the exciter can stop the AGC.

Table 4 shows the connection between the J10 connector on the board and the DB9 connector on the rear panel, along with the description of each pin (the direction of the pin is referred to the position of the micro-controller on the board).

PIN N° ON DB9	PIN N° ON J10	TYPE	DIRECTION	DESCRIPTION
1	1	-	-	Ground
2	3	Digital	Output	AGC Alarm 0V = Alarm 5V = Normal
3	5	Digital	Output	AGC Alarm 0V = Alarm 5V = Normal
4	7	-	-	Not used
5	9	-	-	Not used
6	2	-	-	Not used
7	4	-	-	Nout used
8	6	Analog	Output	Forward power
9	8	Analog	Output	Forward power

Table 4: Description of the AGC connector

RS232

The DB9 female connector on the front panel is an external communication RS232 serial port, through which a PC can be connected directly to the amplifier in order to perform operations such as the remote control (by means of an adequate software²) and the update of the microcontroller firmware.

The used communication protocol is asynchronous, at a 19200bps speed, 1 start bit, 8 data bits, 1 stop bit, no parity. No hardware flow control is used. The connector is DCE type and the pin used are shown in Table 5.

PIN N° ON DB9	1	2	3	4	5	6	7	8	9
DESCRIPTION	-	TxD	RxD	-	GND	-	-	-	-

Table 5: Description of the RS232 connector

MISCELLANEOUS

The J2 (called AUX), J4, J5 and J17 connectors are not used and are there only for future updates. The SW1 dip-switches are partially used for the configuration of the correct mode for the micro-controller. The other switches are not used. It is important that the position of the dip-switches is left unchanged, because changing it may set a wrong mode for the micro-controller, affecting the work of the whole amplifier.

² For more information about this application contact the distributor of the manufacturer.

FIRMWARE UPDATE

The microcontroller is provided with a built-in Flash memory containing the firmware. The firmware can be updated with a later version without removing the apparatus from the rack and/or replacing the chip. To upgrade it, connect a PC to the RS232 socket on the front panel of the apparatus by means of a cable

To upgrade it, connect a PC to the RS232 socket on the front panel of the apparatus by means of a cable DB9 male - DB9 female (pin-to-pin).

Launch on the PC the EKAFlash application, select the serial port in use on the PC, choose the update file by pressing the "..." key and click on Download button.

Eventually, turn off the amplifier from the main switch and then turn it on again. The upgrade of the firmware begins on the EKAFlash window. Fifure 3 shows this window while a firmware is being updated.

EKAFlash (Flash MCU Programmer)	
Serial Port	Help
COM2	Cancel
	Download
File to download	
C:\amplifier.mhx	
Flash programming	

Figure 3: The EKAFlash window while updating a firmware

COMPONENT LIST SCH0223AR1

Part Name/Number	Description	Qty.	Comps.	Page 1/2
BATT BH001RB 3093_90	03093 03090 BATTERY HOLDER	1	BATT1	
CC 100nF-S 01065C	01065C Y 5V 1206 COND	46	C2, C7-10, C12, C C29, C31, C33, C C49, C58-61, C63	216, C19, C21-27 37-40, C44-46, 5, C65-69, C74,
			C76, C78-81, C83	-84, C87, C90
CC 15pF-S 01088	01088 SMD 1206 COND	4	C13-15,C17	
CC 1nF-S 01096	01096 SMD 1206 COND	7	C3-6, C50-51, C5	3
CC 1uF100V-S 01760A	01760A Y5V 1206 COND	13	C1, C18, C28, C3 C56-57, C62, C73	6, C43, C54, , C77, C88-89
CC 47pF-S 01100	01100 SMD 1206 COND	2	C42, C52	
CE 100uF25V-S 01793B	01793B ELETTR SMD COND	2	C11,C47	
CE 10uF35V-S 01778A	01778A ELETTR SMD COND	2	C20, C32	
CE 1uF35V-S 01613A	01613A TANTALIUM ELETTR SMD CO	5	C70-72, C75, C82	
CE 220uF50V LOW ESR	1799A ELETTR SMD COND LOW ESR	4	C55, C64, C85-86	
CE 22uF16V-S	01780A ELETTR SMD COND	4	C34-35, C41, C48	
CE 47uF35V-S 01790A	01790A ELETTR SMD COND	1	C30	
D 1N4148-S 03002	03002 SMD DIODE	7	D1-2, D5-9	
D 50WQ06FN	03019A SMD DIODE SCHOTTKY 5,5A	1	D23	
DBAS85-S	03024 SMD DIODE SCHOTTKY	2	D14-15	
D BAT54S	03199 SMD SCHOTTKY DIODE A-K T	19	D3-4, D10-13, D1	6-22, D24-29
DISMGLS12864T	03083A 128x64 DOT (BLUE-LED WH	1	DIS1	
DLKA-3528SGC 03057	03057 GREEN SMD LED DIODE	7	DL2, DL5-10	
DL LEDG5 03060	03060 GREEN LED DIODE 5mm	1	DL1	
DL LEDR5 03061	03061 RED LED DIODE 5mm	1	DL4	
DL LEDY5 03054B	03054B YELLOW LED DIODE 5mm	1	DL3	
IC 24LC64 04815	04815 SMD INTEG CIRCUIT	1	IC17	
IC 78M12 4307B	04307B SMD VOLTAGE REGULATOR	1	IC8	
IC CD4051BM-S	04615 SMD INTEG CIRCUIT	3	IC7, IC14, IC23	
IC LM2596S-5.0	04580 SMD INTEG CIRCUIT	1	IC19	
IC LM358M-S 04660	04660 SMD INTEG CIRCUIT	1	IC3	
IC LM393-S 04639	04639 SMD INTEG CIRCUIT	1	IC2	
ICLMC6482-S	04632 SMD INTEG CIRCUIT	1	IC24	
ICLMC6484-S	04634 SMD INTEG CIRCUIT	7	IC1, IC4, IC6, IC9 IC25	9, IC13, IC18,
IC M41T5604611	04611 SMD INTEG CIRCUIT	1	IC20	
IC MAX232-S 04804B	04804B SMD INTEG CIRCUIT	1	IC21	
IC MAX3080-S 04770	04770 SMD INTEG CIRCUIT	1	IC22	
IC MAX942CSA-S	04572 SMD INTEG CIRCUIT	1	IC10	
IC MB90F543PF	04596 SMD INTEG CIRCUIT	1	IC11	
ICMPC100-450DI-TO	04608 INTEG CIRCUIT	1	IC16	
IC TC7662BCOA 04758A	04758A SMD INTEG CIRCUIT	1	IC5	
IC ULN2003A 4870	04870 SMD INTEG CIRCUIT	2	IC12, IC15	
IND 2u2H-S 05020A	05020A INDUCTOR	1	L1	

Part Name/Number	Description	Qty.	Comps.	Page 2/2
IND MS85 10uH-S	04948 INDUCTOR 2,7 A	1	L2	
IND T100uH-1.8A 4958	04958 TOROIDAL-STORAGE CHOKES	1	L3	
JCONHD515V/05-4PVE	02881+02882 PANDUIT PCB CONN	1	J14	
JDB9_F-0°LT	02794 PCB CONNECTOR DB9 LONG T	1	J13	
JFC-10P02697-02699	02697+02699 PCB CONNECTOR POL	8	J1-2, J6, J8-12	2
JFC-16P02701-02700	02701+02700 PCB CONNECTOR POL	1	J3	
JPAN2 02739-40-41	02739+02740+02741 PCB CONNECTO	3	J5, J7, J15	
J PAN8 02716	02716 PCB CONNECTOR	1	J4	
JU JUMP2 02739-02742	02739+02742 MASCHIO PAN2	1	JP3	
JU JUMP3 02707-02742	02707+02742 MASCHIO PAN3	2	JP1-2	
R 100K-1%-S 00065B	00065B RES 1/4W 1% SMD 1206	10	R65-66, R94-1	01
R 100R-1%-S 00029D	00029D RES 1/4W 1% SMD 1206	12	R24, R47, R58	3, R71, R75, R81,
			R83, R89, R10)3-105, R113
R 10K-1%-S 00053B	00053B RES 1/4W 1% SMD 1206	32	R7, R10, R12,	R14-16, R22, R25,
			R27, R30, R33	3-34, R36, R38, R51,
			R62-64, R78-	79, R84-85, R87-88,
			R92-93, R106	-111
R 10R-S 00017A	00017A RES 1/4W 5% SMD 1206	1	R68	
R 1206 NOT MOUNTED	NOT MOUNTED RES 1/4W 5% SMD 12	1	R91	
R 1K0-1%-S 00041B	00041B RES 1/4W 1% SMD 1206	8	R17, R54, R59 R90	9-60, R76-77, R86,
R 22K-1%-S 00057B	00057B RES 1/4W 1% SMD 1206	11	R9, R21, R26, R28-29, R37, R45, R48 50 R69	
R 2K2-1%-S00045B	00045B RES 1/4W 1% SMD 1206	3	R52, R55, R61	
R 470K-S 00073A	00073A RES 1/4W 5% SMD 1206	11	R8, R23, R40,	R42, R46, R57, R70
			R74. R80. R10)2.R112
R 470R-1%-S 00037B	00037B RES 1/4W 1% SMD 1206	6	R11, R13, R39), R53, R56, R67
R4K7-1%-S00049B	00049B RES 1/4W 1% SMD 1206	3	R18, R31, R43	;; }
R 68K-1%-S 00063B	00063B RES 1/4W 1% SMD 1206	4	R19-20, R32, 1	R44
R 820R-S 00040A	00040A RES 1/4W 5% SMD 1206	7	R35, R72-73,	R82.R114-116
R 8K2-1%-S 00052B	00052B RES 1/4W 1% SMD 1206	1	R41	- 3
RL 30.22.24 07569	07569 RELE	3	RLY1-3	
RV100K-3266X	00814 VARIABLE RESISTOR	4	R1-4	
RV 10K-3266X 00807	00807 VARIABLE RESISTOR	2	R5-6	
SW SWITCH-8DIP	07530A PCB DIP SWITCH SMD	1	SW1	
T 06086 N 7630 7632	7630 7632 KTI06086 PULSANTE 2	4	T1-4	
TR BC84803457	03457 NPN SMD TRANSISTOR	2	TR1-2	
TR BC85603455	03455 PNP SMD TRANSISTOR	2	TR3-4	
XTAL 32.768k-S 05146	05146 OUARTZ	1	XTAL2	
XTAL 4MHz-S 05101A	05101A OUARTZ	1	XTAL1	
	•			

Component layout SCH0259AR0

COMPONENT LIST SCH0259AR0

Part Name/Number	Description	Qty.	Comps.
CC 100nFAVX 01065A	01065A CERAMIC COND	4	C1, C3, C6, C8
CE100uF100V	01795B ELETT. COND.	1	C2
CE 100uF50V 01795	01795 ELETT. COND.	1	C7
CE 10uF35V-S 01778A	01778A ELETTR SMD COND	2	C4-5
D 1N4007 03009	03009 DIODE	1	D4
D6CWQ10FN	03026 SMD DIODE SCHOTTKY 3,5A	3	D1-3
ICLM317HV	04340A INTEG CIRCUIT	2	IC1-2
JFC-16P02701-02700	02701+02700 PCB CONNECTOR POL	1	J21
JSCREWCONN202853	02853 PCB SCREW CONNECTOR	2	J11, J19
J SCREWCONN3 02860	02860 PCB SCREW CONNECTOR	1	J20
JTESTP1.3mm 07913	07913 TEST POINT	17	J1-10, J12-18
JU JUMP2 02739-02742	02739+02742 MASCHIO PAN2	3	JP1-2, JP4
JU JUMP3 02707-02742	02707+02742 MASCHIO PAN3	1	JP3
R0R33-1W-S	00380 RES 1W 5% SMD 2512	2	R1-2
R 100K-S 00065A	00065A RES 1/4W 5% SMD 1206	1	R7
R 220R-S 00033A	00033A RES 1/4W 5% SMD 1206	1	R4
R 22K-S 00057A	00057A RES 1/4W 5% SMD 1206	1	R5
R270R-S00034A	00034A RES 1/4W5% SMD 1206	1	R3
R4K7-S00049A	00049A RES 1/4W 5% SMD 1206	1	R6
TR BC856 03455	03455 PNP SMD TRANSISTOR	1	TR1

Component layout SCH0265AR0

COMPONENT LIST SCH0265AR0

Part Name/Number	Description	Qty.	Comps.
CC 2nF2 2kV 01045A	01045A CERAMIC COND	2	C1-2
CNV AC-DC ATC-12S	E0037 AC DC CONVERTER	1	CNV1
D 1N4148 03001	03001 DIODE	2	D1-2
DL LEDG3 03053	03053 GREEN LED DIODE 3mm	1	DL1
JCON HD515V/05-4PVE	02881+02882 PANDUIT PCB CONN	1	J2
JCON HD515V/05-5PVE	PANDUIT PCB CO	1	J1
R 2K7 0046	0046 RES 1/4W 5%	1	R1
RL 40.31.24	7567C RELE	2	RLY1-2

Component layout SCH0288AR1

COMPONENT LIST SCH0288AR1

Part Name/Number	Description	Qty.	Comps.
CC 1nF-S 01096	01096 SMD 1206 COND	16	C1-16
DZ 5V1-S 03128	03128 SMD ZENER DIODE	8	DZ1-8
JFC-10P 02697-02699	02697+02699 PCB CONNECTOR POL	4	J2-3, J6-7
JFC-10PPCBFEMALE	02706 PCB FEMALE CONNECTOR POL	4	J1, J4-5, J8
R 0R0-S 00001	00001 RES 1/4W 5% SMD 1206	16	R1, R8, R12, R15, R21, R23, R26 R28, R33, R40, R44, R47, R53, R55, R58, R60
R 10K-S 00053A	00053A RES 1/4W 5% SMD 1206	16	R3-6, R17-18, R31-32, R35-38, R49-50, R63-64
R 1206 NOT MOUNTED	NOT MOUNTED RES 1/4W 5% SMD 12	16	R2, R10, R14, R16, R19, R24, R29, R30, R34, R42, R46, R48, R51, R56, R61-62
RV 3266W NOT MOUNT	NOT MOUNTED VARIABLE RESISTOR	16	R7, R9, R11, R13, R20, R22, R25, R27, R39, R41, R43, R45, R52, R54, R57, R59
TR BC847 03456	03456 NPN SMD TRANSISTOR	8	TR1-8

SPECIFICATION

MODEL

DC Output Voltage Output Rated Current Output Current Range Ripple & Noise (p-p) DC Output Power Efficiency DC Voltage Adj. Over V. Protection Input Voltage Range Input Frequency Power Factor Overload Protection

Over Temp. Protection Fan Control

Working Temp., Humidity Dimension Weight

SP-500-27 (E0012 Code)

27Vdc 18A 0-18A 200mVp-p 486W 87% 24-30V 31V-36.5V 88-264Vac 47-63Hz 0.95/100-240Vac 105%-135% Type: Foldback current limiting Recovery: Auto >=70°C Output Shutdown Temp. > =60°C Fan On <=50°C Fan Off -10°C/+50°C, 20%-90% RH 185x120x93 1.8Kg.

SP-500-48 (E0013 Code)

48Vdc 10A 0-10A 240mVp-p 480W 87% 41-56V 57.6V-67.2V

9 250

Span 27.500 MHz

9.250 MHz 0.157dB

s 2:

FEATURES

- UHF 1kW analog TV output filter
- 3 bandpass resonators and 2 notches
- Foreshorten in-line combline structure
- Iris couplings with fine bandwidth regulation
- Phase regulation between bandpass and notches
- 3D Electromagnetic CAD
- Low loss (Typ. 0.35dB @ V.C. Ch. 69 G)

mission

Center 642.000 MHz

Ζ

- Compact and lightweight

сонте

CL 3NL 15

dE

-16

-13

-21 -2: -3!

SPECIFICATIONS (Value referred to G Standard)

Frequency Range Max Input Power Insertion Loss	474 - 862MHz 1kW Analog TV < 0.40dB @ V.C. Ch. 69 < 0.34dB @ V.C. Ch. 21	Selectivity Temperature Stability Connectors	> 35dB @ V.C5.5 / +11MHz > 24dB @ V.C11 / +16.5MHz < 17kHz / K 7/16 Female
Return Loss Group Delay Variation Bandwidth	> 28dB < 25ns 6 to 8MHz	Weight (Approx) Operating temperature	5.8kg -10 to +50°C

AVAILABLE OPTIONS

A	SMA Output Monitor Probe
Н	EIA 7/8" Flange Connectors

В

SMB Output Monitor Probe

TECHNICAL DESCRIPTION

The output filter mod. CL3NL15 is made up by a band-pass section with 3 resonators and two notch resonators. It may be adjusted on all channels of the YHF TV band (470 - 860MHz) and for any world standard (intercarrier 4.5 - 6.5MHz). The band-pass section is made up by the group of the three resonators, while the two separated resonators are the notches. The filter is symmetrical, as such any notch, upper or lower, can be chosen without any difference.

The band width is adjusted by changing the insertion of the two post screws which are between the band-pass resonators; when they are inserted, the band width is increased. To make this adjustment the bolt of each post screw has to be loosened by means of a tubular wrench n° 19.

The input and output couplings, which can be reached after removing the protection cups, can be adjusted trough the coupling stubs put in correspondence to the connectors. The adjustment is made by means of a flat wrench n° 8, taking into consideration that the maximum coupling is obtained when the flat sides are parallel to the longer side of the filter, the minimum one when they are orthogonal.

Finally, the symmetry of the response is given by the extrusion of the coupling stubs; these are set by loosening the relevant clamps by means of a tubular wrench n° 16. Once these clamps are fastened, they also determine the friction for the rotation of the couplings.

The suggested calibration procedure is;

1. Set the measurement instrument on

- C.F. = (P.V. + P.A.)/2
- SPAN = INTERCARRIER * 5 (Es. 27,5MHz std. B/G)
- RESPONSE = 5 dB/div.
- ADAPTATION = 10dB/div.

2. Set the coupling stubs of the couplers and the post screws according to the following extrusions, measured from the edge to the body of the filter:

C.F. (MHz)	COUPLING STUB (mm)	POST SCREW (mm)
474	11	21
666	28	20
858	39	16

3. Tune the band-pass section on the desired channel and load input and output correctly until an optimal response is obtained. At this stage the tuning of the two notches must be kept distant from each other. Adjust the band width to -27dB at the edges of the screen (es. std. B/G: BW (-27dB) = 27,5MHz). The input and output couplings may affect the tuning of the resonators, as such it takes adjusting them at the same time in little steps.

4. Tune the two notches bringing them to the frequencies P.V.-INTERCARRIER and P.A.+INTERCARRIER. This will cause a variation in response and adaptation of the band-pass. Correct the response by acting on the band-pass tunings.

5. Complete the calibration by acting alternately on the two sides according to this sequence: adjust the coupling, re-tune the notch if it moved and then the band-pass tunings. Repeat these sequence in little steps trying to improve the adaptation.

6. Check the symmetry of the obtained response and if needed correct it as follows: if the lower notch is more marked than the other, insert the coupling stubs, if it is less, extract them.

7. Once the response symmetry is correct, complete the calibration as explained above.

8. It is possible to obtain a particularly favourable response by slightly unbalancing the post screws from the nominal values, so that the post screw on the side of the lower-frequency notch is slightly more inserted than the one on the side of the higher-frequency one. The difference in adjustment should be about 1-2 mm and the best adjustment will be made clear by the appearance of three very marked peaks in the adaptation curve.

9. Once the calibration is completed, reposition the protection cups on the coupling adjustments.

PRESCRIPT CALIBRATION VALUE

MEASURE	VALUE
Insertion loss @ V.C. (dB)	< -0.40 (typ0.34)
Return Loss (from V.C0.75 to V.C. +0.25) (db)	< -26
Attenuation @ V.CINTERCARRIER	< -40
Attenuation @ V.C. +INTERCARRIER	< -35

SAMPLE FREQUENCY RESPONSE DIAGRAM