

Section 4 - Diagram

Contents:

- Cable diagram
- MTF0070CR0 RF Amplifier module Cable Diagram
- MTF0070CR0 RF Amplifier module Connections Diagram
- MTF0070CR0 Amplifier module - Component list
- SCH0192ARO (200W UHF LDMOS Amplifier module)
- SCH0223AR1 (Control board and display)
- SCH0221AR1 (Amplifier interface)
- SCH0265ARO (Mains distribution board)
- SCH0288AR1 (Interface board)
- E0012 (SP500-27-DI Switching power supply)

Part Name Code Description Qty
00001 $0 \Omega 1206$ SMD RESISTOR 2
01041D $1 \mathrm{nF} 12062 \%$ SMD CAPACITOR 2
00221B $75 \Omega 1206$ 1\% SMD RESISTOR 2
03207 HSMS-2802*L31 DIODE 2
SCH0192AR0 200W UHF LDMOS AMPLIFIER MODULE 9
SCH0221AR0 AMPLIFIER INTERFACE 1
SCH0248AR0 8 WAY WILKINSON 1
SCH0249AR0 4 WAY WILKINSON Dx 1
SCH0250AR0 4 WAY WILKINSON Sx 1
SCH0251AR0 2 WAY WILKINSON 1
SCH0252AR0 1500W UHF INPUT COUPLER 1
PN1091A C.S.PN1091AR3 OUTPUT DIRECTIONALCOUPLER 102402
02512
014007/16" FEMALECONNECTOR cod. 01421
01400 2499-003-X5U0-102MFEED-THROUGH CAPACITOR01408DET07261
5000PF FEED-THROUGH CAPACITOR 2
DET0726R2 SIDE x 1500W UHF AMP. MOD. 2
DET0727 DET0727R1 INTERNAL FRONT SIDE x AMP. MOD. 1
DET0728 DET0728R4 INTERNAL SIDE x AMP. MOD. 2
DET0729 DET0729R2 FRONT SIDE x AMP. MOD. 1
DET0730 1
1
DET0730R2 REAR SIDE x AMP. MOD.
DET0730R2 REAR SIDE x AMP. MOD.DET0732
DET0734 DET0734R0 COVER x AMPLIFIER MODULE P. 2634 1
DET0736 DET0736R6HEATSINK x AMPLIFIER MODULE 1
DET0807 DET0807R3 SCREENDIR. COUPLER MODULE 1
DET0810
DET0810R0 PART.x DIRECTIONALCOUPLER
DET0810R0 PART.x DIRECTIONALCOUPLER 1 1
DET0811 DET0812
DET0812R1 TEFLONRINGxDIRECTIONALCOUPLERDET0819DET0828DET0839
DET0819R0 SPESS. x INPUT DIR. COUPLER 1
DET0828R0 COVER x AMPLIFIER MODULE P. 2644 1
DET0839R2DIRECTIONALCOUPLER 1
RG31650』CABLE 3,00
08527 HF-85 ENDIFORMCABLE 0,20
03017 MBR3045PTDIODE 4
PN0998A

This page is intentionally blank

DESCRIPTION

The RF module is an integrated TV linear amplifier designed for UHF band, this module employs push-pull LDMOS technology in order to achieve very good efficiency, high linearity and reliability.
LDMOS transistors operate in AB class. It is a wideband amplifier over the full frequency, no adjustment is required for the channel change. The board includes RF section amplifier, bias circuit, protection circuit and matching networks. A silver plated copper plate is brazed with PCB in order to obtain low thermal resistance. Providing a minimum of 200 W Pk sync linear power, this module is the perfect amplifier for any broadband UHF power transmitter.

TECHNICAL CHARACTERISTICS

Output power	$300 \mathrm{~W} \max$
Input power	$15 \mathrm{~W} \max$
Frequency	$470-860 \mathrm{MHz}$
Gain	$>13 \mathrm{~dB}$
LDMOS Power supply	$32 \mathrm{~V} \pm 2 \%$
LDMOS Bias current $@+32 \mathrm{~V}$ Vdc	2 A
RF Input impedance	50Ω
RF Output impedance	50Ω
Input / Output return loss	$>=15 \mathrm{~dB}$
Drain efficiency	$47 \% @ 250 \mathrm{~W}$
Storage temperature range	-50° to $+150^{\circ} \mathrm{C}$
Dimensions $($ LxWxH)	$165 \times 95 \times 29 \mathrm{~mm}$

- Curve response graphic

Middle frequency 660 MHz , span $500 \mathrm{MHz}, 2 \mathrm{~dB} /$ div., reference to the arrow

CALIBRATION PROCEDURE

- Technical characteristics

Power supply voltage
Polarisation current
Gain for low signal
$32 \mathrm{~V}(\pm 2 \%)$
1.0 cold for each device (2 A total), $\pm 0.1 \mathrm{~A}$

Not less than 13 dB in the $470-860 \mathrm{MHz}$ band ($\pm 1 \mathrm{~dB}$)
Compare to the typical curve eclosed

- Adjustment procedure

Polarisation current calibration

Gain curve

32 V stabilised power supply
10A amperometer
Network analyser

- Adjustment points description

R7-R8 (Trimmers)

Adjust the current absorbed in stand-by (1.0A per device)

- Calibration steps

STEP 1. Close the input and the output of the module by connecting them to a 50Ω dummy load and connect the spectrum analyser through a directive sample, in order to look for self-oscillation of the module, if any (anyway the module has been designed so that it would not self-oscillate even if totally decoupled, without any input or output load).

STEP 2. Check the voltages of the polarisation circuits without assembling the transistors first: connect the 32 V power supply to the proper turret by means of a fastening screw, then give power and check data:

- the stabilised voltage on the zener diodes DZ1 and DZ2 is about 15 V compared to the ground;
- the stabilised voltage on the zener diodes $\mathrm{DZ3}$ and $\mathrm{DZ4}$ is about 6.8 V compared to the ground;
- the voltage on the pads to which the gates of the LDMOS transistors will be soldered (R23 and R24 resistors side) changes from 0 V to a maximum value of about 6 V when moving the relevant trimmer (R7-R8).

STEP 3. Check the work of the protections.

- Set both trimmers so that there is a value of about 4.5 V on the pads of the gates;
- solder some wire to the pad between the two LEDs, next to the serigraphy of the input hybrid H 1 ;

- in order to check the work of the protections aboard, a power of about 4 V has to be supplied to the wire, for example by touching with it the reophore of C23 or C24 which is not connected to ground; the two red LEDs will immediately light up and the two RF transistors will be switched off at the same time: the polarisation current (2A) will decrease to 0 and of course the gain curve displayed by the spectrum analyser will decrease; - after this it is important to restore the position of the two trimmers for the minimum voltage! Then disconnect the 32 V power supply.

STEP 4. Fastening of the LDMOS transistors: after properly cleaning the plate surface, smear a thin layer of silicone fat on the lower side of the flange of the MOSFETs, fasten them to the heat sink and solder the gate first, then the drain. Solder the two 13 pF (ATC) chip capacitors and above them the two $1-5 \mathrm{pF}$
capacitive trimmers, between the two pair of gates, as shown by the mounting plan.
STEP 5. Connect serially a c.c. amperometer to the power supply, with scale starting from more than 5A (i.e. 10A).

STEP 6. Power the module and check the MOSFET is not absorbing current; this means that the device is integral and working correctly.

STEP 7. Slowly turn the R7 trimmer until the MOSFET absorbs 1A, always checking that there are no self-oscillation; under this conditions it is possible to check by means of a digital tester that the voltage on the gate is about $5.2-5.4 \mathrm{~V}$.

STEP 8. Repeat the previous step for the other section of the module, this time turnign R 8 and checking that the indication of the current on the amperometer increases to 2 A total (which includes the current of the other device left on).

STEP 9. Check the response curve of the module by means of the network analyser.
STEP 10. Check the response curve for low signal with centre 660 MHz and span $500 \mathrm{MHz}, 2 \mathrm{~dB} / \mathrm{div}$.
STEP 11. The curve should be similar to the one enclosed, with a tolerance of $\pm 0.5 \mathrm{~dB}$. To obtain this, act on the four trimmers C41-C41a and C42-C42a with the proper "calibrator", inorder to flatten the curve as much as possible, especially at the edged of the band which represents the minimum values.

STEP 12. Finally, check that the current in stand-by does not increase by more than $15 \div 20 \%$, reaching at worst $2.3 \div 2.4 \mathrm{~A}$ when the heat sink is hot and not ventilated.

Note: when mounting-removing the PALLET on the heat sink, tightly fasten the screw of each all " N " input and output connectors. These are mounted with a single 3 mm screw and if it is not properly fastened it may be detached from the PCB by a movement of the connector once it has already been soldered to the path.

COMPONENT LIST SCH0192ARO

REF.	DESCRIPTION	ELETTR
R1	$2200 \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00045A
R2	$2200 \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00045A
R3	2200Ω 1/4W 1206 SMD RESISTOR	00045A
R4	$2200 \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00045A
R5	$1200 \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00042A
R6	1200Ω 1/4W 1206 SMD RESISTOR	00042A
R7		00800
R8	50k M MULTITURNS PTH TRIMMER	00800
R9	1200Ω 1/4W 1206 SMD RESISTOR	00042A
R10	1200Ω 1/4W 1206 SMD RESISTOR	00042A
R11	$18 \mathrm{k} \Omega$ 1/4W 1206 SMD RESISTOR	00056B
R12	18k ${ }^{\text {1/4W }} 1206$ SMD RESISTOR	00056B
R13	$680 \mathrm{~K} \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00075A
R14	$0 \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00001
R15	$50 \Omega 30 \mathrm{~W} 1512 \mathrm{EBX}$ SMD RESISTOR	00416A
R16	$50 \Omega 60 \mathrm{~W}$	00432
R17	$4.7 \mathrm{k} \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00049A
R18	$4.7 \mathrm{k} \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00049A
R19	$3.9 \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00012A
R20	$3.9 \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00012A
R21	$3.9 \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00012A
R22	$3.9 \Omega 1 / 4 \mathrm{~W} 1206$ SMD RESISTOR	00012A
R23	$1000 \Omega 1 \mathrm{~W} 2512$ SMD RESISTOR	00396
R24	$1000 \Omega 1 \mathrm{~W} 2512$ SMD RESISTOR	00396
*R25	= R15 (da montare se si inverte l'ingresso)	
*R26	= R26 (da montare se si inverte l'uscita)	
Cl	470uF 50V PTH ELECTROLYTIC CAPACITOR	01807B
C2	470uF 50V PTH ELECTROLYTIC CAPACITOR	01807B
C3	470uF 50V PTH ELECTROLYTIC CAPACITOR	01807B
C4	100 uF 50 V PTH ELECTROLYTIC CAPACITOR	01795
C5	100uF 50V PTH ELECTROLYTIC CAPACITOR	01795
C6	1 nF ATC 100B CAPACITOR OR EQUIVALENT	01145
C7	1 nF ATC 100B CAPACITOR OR EQUIVALENT	01145
C8x2	2 x 100 nF ATC CAPACITOR OR EQUIVALENT	01065H
C9x 2	2 x 100 nF ATC CAPACITOR OR EQUIVALENT	01065H
C10x4	$4 \times 100 \mathrm{pF}$ ATC 100B CAPACITOR OR EQUIVALENT	01135
C11x4	$4 \times 100 \mathrm{pF}$ ATC 100B CAPACITOR OR EQUIVALENT	01135
C12	100 nF 1210 SMD CAPACITOR	1065G
C13	100 nF 1210 SMD CAPACITOR	1065G
C14	100 nF 1210 SMD CAPACITOR	1065G
C15	1 l F 35V SMD TANTALIUM CAPACITOR	01613A
C16	1 l 35V SMD TANTALIUM CAPACITOR	01613A
C17	100 nF 1210 SMD CAPACITOR	1065G

REF.	DESCRIPTION	ELETTR
C18	100 nF 1210 SMD CAPACITOR	1065G
C19	10 uF 16 V SMD TANTALIUM CAPACITOR	01626A
C20	10 uF 16 V SMD TANTALIUM CAPACITOR	01626A
C21	100 nF 1210 SMD CAPACITOR	1065G
C22	100 nF 1210 SMD CAPACITOR	1065G
C23	100 nF 1210 SMD CAPACITOR	1065G
C24	100 nF 1210 SMD CAPACITOR	1065G
C25	1 nF ATC 100B CAPACITOR OR EQUIVALENT	01145
C26	1 nF ATC 100B CAPACITOR OR EQUIVALENT	01145
C27	1 nF ATC 100B CAPACITOR OR EQUIVALENT	01145
C28	1 nF ATC 100B CAPACITOR OR EQUIVALENT	01145
C29	20pF ATC 100B CAPACITOR OR EQUIVALENT	01123
C30	20pF ATC 100B CAPACITOR OR EQUIVALENT	01123
C31	20pF ATC 100B CAPACITOR OR EQUIVALENT	01123
C32	20pF ATC 100B CAPACITOR OR EQUIVALENT	01123
C33	1.3 pF ATC 100B CAPACITOR OR EQUIVALENT	01104
C34	1.3 pF ATC 100B CAPACITOR OR EQUIVALENT	01104
C35	470pF ATC 100B CAPACITOR OR EQUIVALENT	01143
C36	470 pF ATC 100B CAPACITOR OR EQUIVALENT	01143
C37	470pF ATC 100B CAPACITOR OR EQUIVALENT	01143
C38	470pF ATC 100B CAPACITOR OR EQUIVALENT	01143
C39	4.7 pF ATC 100B CAPACITOR OR EQUIVALENT	01108
C40	4.7 pF ATC 100B CAPACITOR OR EQUIVALENT	01108
C41x 2	$2 \mathrm{x} 1 \div 5 \mathrm{pF}$ JOHANSON SMD TRIMMER	1485
C42x 2	$2 \mathrm{x} 1 \div 5 \mathrm{pF}$ JOHANSON SMD TRIMMER	1485
C43	3.6 pF ATC 100B CAPACITOR OR EQUIVALENT	01104B
C44	3.6 pF ATC 100B CAPACITOR OR EQUIVALENT	01104B
C45	6.8pF ATC 100B CAPACITOR OR EQUIVALENT	01111
C46	6.8 pF ATC 100B CAPACITOR OR EQUIVALENT	01111
C47	6.8 pF ATC 100B CAPACITOR OR EQUIVALENT	01111
C48	6.8 pF ATC 100B CAPACITOR OR EQUIVALENT	01111
C49	13pF ATC 100B CAPACITOR OR EQUIVALENT	01119A
C50	13pF ATC 100B CAPACITOR OR EQUIVALENT	01119A
C51	8.2pF ATC 100B CAPACITOR OR EQUIVALENT	01113
C52	8.2 pF ATC 100B CAPACITOR OR EQUIVALENT	01113
C53	8.2 pF ATC 100B CAPACITOR OR EQUIVALENT	01113
C54	8.2 pF ATC 100B CAPACITOR OR EQUIVALENT	01113
C55	10pF ATC 100B CAPACITOR OR EQUIVALENT	01117
C56	10pF ATC 100B CAPACITOR OR EQUIVALENT	01117
C57	4.7 pF ATC 100B CAPACITOR OR EQUIVALENT	01108
C58	4.7pF ATC 100B CAPACITOR OR EQUIVALENT	01108
C59	0.3 pF ATC 100B CAPACITOR OR EQUIVALENT	01160
T1	BLF861A RF LDMOS POWER TRANSISTOR	04034
T2	BLF861A RF LDMOS POWER TRANSISTOR	04034
B1	COAX2:1 BALUN	08491

REF.	DESCRIPTION	ELETTR
B2	COAX 2:1 BALUN	08491
B3	COAX $4: 1$ BALUN	08492
B4	COAX4:1 BALUN	08492
L1	4 TURNS SILV. COP. WIRE 1.2mm WOUND ON OD 5 mm	07684
L2	4 TURNS SILV. COP. WIRE 1.2mm WOUND ON OD 5 mm	07684
L3	½TURNCOIL	
L4	½TURNCOIL	
H1	HYBRID COUPLER 3 $\mathrm{dB} 90^{\circ}$ ANAREN	05368
H2	HYBRID COUPLER 3dB 90° SAGE	05369
NTC1	NTC 100K Ω PTH	00661
NTC2	NTC 100K Ω PTH	00661
IC1	DG419DY	04583
IC2	DG419DY	04583
DZ1	15V SMD ZENER DIODE	03135
DZ2	15 V SMD ZENER DIODE	03135
DZ3	6.8V SMD ZENER DIODE	03137
DZ4	6.8V SMD ZENER DIODE	03137
DL1	SMD LED DIODE-RED -	03056
DL2	SMD LED DIODE-RED -	03056
PN964AR3	PCB	0643K
	Torretta $3 \times 10 \mathrm{f} / \mathrm{f}$	V0774
	Imballo velapack 200x125x50	09983

DESCRIPTION

The control board SCH0223AR1 manages the operational logic of the amplifier: switching on and off, power supply and fans, alarms and protections, remote control, human-machine interface. All of that is performed by a modern and powerful 16 bit micro-controller, which is the main part of the board.
Figure 1 shows the block diagram.

Figure 1: Simplified block diagram of the control and display board

It can be seen that the micro-controller is the heart of the control system, to which the various peripherals (power supply, serial ports, telemeasure socket, AGC port, RF amplifier module, ROM, clock, display and keys) are interfaced.

- Power Supply

The board is powered with a continuous +24 V voltage applied on the J 14 connector. From that the +5 V voltage, powering the most of the chips (micro-controller, operational amplifiers, display, etc.) is derived by means of a switching converter (see IC19). A +12 Vdc voltage is obtained from it as well, by means of a linear conversion provided by the integrated circuit IC8. From this, a-12Vdc voltage is obtained by means of the integrated circuit IC5. The -12 V voltage is used to adjust the contrast of the display.

- Connectors

On the board SCH0223AR1 there are several connectors used as interfaces for the peripherals of the apparatus and the ports for external communication.

POWER SUPPLY

The connectors $\mathrm{J} 1, \mathrm{~J} 6, \mathrm{~J} 8$ e J 12 are used to connect the power supply powering the RF modules. The number of power supply used changes depending on the amplifier, up to eight power supply. They are connected in the order shown in Table 1 below. Remaining connectors, if any, are left unconnected.

CONNECTOR	POWER SUPPLY ${ }^{\circ}$
J 1	$1-2$
J 6	$3-4$
J 8	$5-6$
J 12	$7-8$

Table 1: Interface connectors for the power supply

Through this connection, each power supply provides the level of voltage and current acquired by the microcontroller by means of an internal ADC. Besides the connectors allow the control board to turn on or off the individual power supply (for instance when an alarm occurs).

RF AMPLIFICATION

The J3 connector interfaces the control board with the RF amplification section. Through this connector the micro-controller acquires the forward and reflected powers, unbalancing (if any), and temperature of the critic amplification area. It also allows to inhibit the transistors in case of reflected power alarm, by means of a totally hardware, thus extremely fast protection.
Depending on the apparatus, this connector may also allow to enable or disable the cooling fans of the critic area.

RS485

The J11 connector (10 pin socket) is directly wired to a DB9 female connector placed on the rear panel of the apparatus. This communication bus allows to connect the amplifier to the control (Amplifier Control) module of a high-power transmitter composed by several individual amplifiers. In this case, each amplifier and the Amplifier Control are connected to the same 4 -wires RS485 bus and each of them has a unique address (which can be set by means of the keys and the display) for correct communication.
In case of single (stand-alone) amplifier, the RS485 connector can be used to interface to the Remote Control Unit (RCU) made by Elettronika S.r.l. This unit allows to monitor and control the remote transmitter from any site provided with PSTN or GSM ${ }^{1}$ phone connection.
Table 2 shows the wiring between the J11 connector on the board and the DB9 female connector on the rear panel, along with the description of the lines.

PIN N ON DB9	PIN N ON J11	DESCRIPTION
1	1	Not used
2	3	$R x-$
3	5	$R x+$
4	7	+5 V
5	9	GND
6	2	Not used
7	4	Tx-
8	6	Tx +
9	8	Not used

Table 2: Description of the RS485 connector

[^0]
TELEMEASURES

The J9 telemeasure connector (10 pins socket) is directly wired on a DB9 female connector placed on the rear panel. There are input and output digital lines (TTL level) and analog output lines on this connector, which are used to monitor and control the amplifier by means of a general-purpose remote control system.
The correspondence between the pins of the J9 connector on the board and the DB9 female connector on the rear panel, as well as the meaning of the various lines, is shown in table 3 below (the directions are in respect to the micro-controller on the board).

PIN N ${ }^{\circ}$ ON DB9	PIN N ${ }^{\circ}$ ON J9	TYPE	DIRECTION	DESCRIPTION
1	1	Analog	Output	Forward power (*)
2	3	Analog	Output	Reflected power (*)
3	5	Analog	Output	Temperature
4	7	Digital	Input	Interlock: $\mathrm{OV}=$ Interlock Alarm $5 \mathrm{~V}=$ Normal
5	9	-	-	Ground
6-7	2-4	Digital	Output	Free Contact (closed when amplifier is in alarm)
8	6	Digital	Input	Turning-on control (normally high, active when low)
9	8	Digital	Input	Turning-off control (normally high, active when low)

(*) You can select by means of two jumpers on the board (JP1 and JP2) RMS or peak power. If there are two jumpers on pins 1 and 2 of JP1 and JP2 connectors, RMS power is selected. Otherwise, if there are two jumpers on pins 2 and 3 of the same connectors, peak power is selected.

Table 3: Description of the telemeasures connector

The input stage of the digital pins has an internal pull-up towards the 5 V power supply voltage. To use these lines it only takes setting a switch to close to earth. When closed, the relevant control (turning on or off) is enabled and the switch may be open again (impulse controls).
The interlock pin may be used as protection so that the amplifier is switched off when the digital input level is low. It is possible to use several serially connected switches to make an interlock chain. Usually all switches are closed and the interlock level is low, thus the amplifier is on. If even only one of the switches is open, the
level of the interlock signal becomes high (this line has a pull-up towards the +5 V power supply voltage as well) and the interlock protection activates switching off the amplifier. Note that in case the interlock protection is not used, the pin 4 of the DB9 telemeasure connector and the earth pin (pin 5) must be short circuited. Otherwise it is possible to disable the monitoring of the interlock chain from menu (see user manual).
Figure 2 shows a typical usage for the digital input signals to turn on and off the amplifier and for the interlock alarm.

Figure 2: Usage of the digital input signals of the telemeasures connector

AGC/EXCITER

The connector called J10, as the telemeasures connector and the RS485 bus, is wired to a DB9 female connector placed on the rear panel of the amplifier. This connector allow the implementation of an automatic gain control between an exciter and the amplifier. A voltage signal related to the forward output power supplied by the amplifier is provided through two pins of the AGC connector. Connecting one of these to the relevant input pin of the exciter, this can pursuit a given voltage level, so that the output power is always constant. In order to avoid that, in case of an alarm decreasing the forward power, the exciter increases its output level due to the AGC, thus damaging the amplification stages, the connector is provided with two digital output lines called AGC Alarm. Under alarm conditions, this lines are brought by the micro-controller at a low level, so that the exciter can stop the AGC.
Table 4 shows the connection between the J10 connector on the board and the DB9 connector on the rear panel, along with the description of each pin (the direction of the pin is referred to the position of the microcontroller on the board).

PIN N ON DB9	PIN N ON J10	TYPE	DIRECTION	DESCRIPTION
1	1	-	-	Ground
2	3	Digital	Output	AGC Alarm $0 \mathrm{~V}=$ Alarm $5 \mathrm{~V}=$ Normal
3	5	Digital	Output	AGC Alarm $0 \mathrm{~V}=$ Alarm $5 \mathrm{~V}=$ Normal
4	7	-	-	Not used
5	9	-	-	Not used
6	2	-	-	Not used
7	4	-	-	Nout used
8	6	Analog	Output	Forward power
9	8	Analog	Output	Forward power

Table 4: Description of the AGC connector

RS232
The DB9 female connector on the front panel is an external communication RS232 serial port, through which a PC can be connected directly to the amplifier in order to perform operations such as the remote control (by means of an adequate software ${ }^{2}$) and the update of the microcontroller firmware.
The used communication protocol is asynchronous, at a 19200bps speed, 1 start bit, 8 data bits, 1 stop bit, no parity. No hardware flow control is used. The connector is DCE type and the pin used are shown in Table 5.

PIN N ${ }^{\circ}$ ON DB9	1	2	3	4	5	6	7	8	9
DESCRIPTION	-	TxD	RxD	-	GND	-	-	-	-

Table 5: Description of the RS232 connector

MISCELLANEOUS

The J2 (called AUX), J4, J5 and J17 connectors are not used and are there only for future updates. The SW1 dip-switches are partially used for the configuration of the correct mode for the micro-controller. The other switches are not used. It is important that the position of the dip-switches is left unchanged, because changing it may set a wrong mode for the micro-controller, affecting the work of the whole amplifier.

[^1]
FIRMWARE UPDATE

The microcontroller is provided with a built-in Flash memory containing the firmware. The firmware can be updated with a later version without removing the apparatus from the rack and/or replacing the chip.
To upgrade it, connect a PC to the RS232 socket on the front panel of the apparatus by means of a cable DB9 male - DB9 female (pin-to-pin).
Launch on the PC the EKAFlash application, select the serial port in use on the PC, choose the update file by pressing the "..." key and click on Download button.
Eventually, turn off the amplifier from the main switch and then turn it on again. The upgrade of the firmware begins on the EKAFlash window. Fifure 3 shows this window while a firmware is being updated.

Figure 3: The EKAFlash window while updating a firmware

	DESCRIPTION Piano di Montaggio superiore SCHEDA CONTROLLO E DISPLAY	DESIGNER	DE ROBERTIS	SICNATURE	$\begin{array}{\|l\|} \hline \text { DATE } \\ 10 / 04 / 03 \end{array}$
	Til	PCB DESIGNER	TULLO D.co	SIGNATURE	REF: PN1039AR2
${ }^{\text {CODE }}$ S \quad SH0223AR1	CONTROL BOARD AND DISPLAY Top layer Component Loyout	QUALITY CON TROI	-	SIGNATURE	SHEET $\begin{aligned} & \\ & \\ & 1 / \uparrow\end{aligned}$

COMPONENT LIST SCH0223AR1

Part Name/Number	Description	Qty.	Comps. Page 1/2
BATT BH001RB 3093_90	0309303090 BATTERY HOLDER	1	BATT1
CC 100nF-S 01065C	01065CY5V 1206COND	46	$\begin{aligned} & \text { C2, C7-10, C12, C16, C19, C21-27 } \\ & \text { C29, C31, C33, C37-40, C44-46, } \\ & \text { C49, C58-61, C63, C65-69, C74, } \\ & \text { C76, C78-81, C83-84, C87, C90 } \end{aligned}$
CC 15pF-S 01088	01088 SMD 1206 COND	4	C13-15, C17
CC 1nF-S 01096	01096 SMD 1206 COND	7	C3-6, C50-51, C53
CC 1uF100V-S 01760 A	01760A Y5V 1206COND	13	$\begin{aligned} & \text { C1, C18, C28, C36, C43, C54, } \\ & \text { C56-57, C62, C73, C77, C88-89 } \end{aligned}$
CC 47pF-S 01100	01100 SMD 1206 COND	2	C42, C52
CE 100uF25V-S 01793B	01793B ELETTR SMDCOND	2	C11, C47
CE 10uF35V-S 01778A	01778A ELETTR SMD COND	2	C20, C32
CE 1uF35V-S 01613 A	01613A TANTALIUM ELETTR SMD CO	5	C70-72, C75, 882
CE220uF50VLOWESR	1799A ELETTR SMD COND LOW ESR	4	C55, C64, C85-86
CE22uF16V-S	01780A ELETTR SMD COND	4	C34-35, C41, C48
CE47uF35V-S 01790 A	01790A ELETTR SMD COND	1	C30
D 1N4148-S 03002	03002 SMD DIODE	7	D1-2, D5-9
D 50WQ06FN	03019A SMD DIODE SCHOTTKY 5,5A	1	D23
DBAS85-S	03024 SMD DIODE SCHOTTKY	2	D14-15
D BAT54S	03199 SMD SCHOTTKY DIODE A-K T	19	D3-4, D10-13, D16-22, D24-29
DIS MGLS12864T	03083A 128x64 DOT (BLUE-LED WH	1	DIS1
DLKA-3528SGC 03057	03057 GREEN SMD LED DIODE	7	DL2, DL5-10
DLLEDG5 03060	03060GREENLEDDIODE 5mm	1	DL1
DLLEDR503061	03061 RED LEDDIODE 5mm	1	DL4
DLLEDY503054B	03054B YELLOWLEDDIODE 5mm	1	DL3
IC24LC6404815	04815 SMD INTEG CIRCUIT	1	IC17
IC 78M124307B	04307B SMD VOLTAGE REGULATOR	1	IC8
ICCD4051BM-S	04615 SMD INTEG CIRCUIT	3	IC7, IC14, IC23
ICLM2596S-5.0	04580 SMD INTEG CIRCUIT	1	IC19
IC LM358M-S 04660	04660 SMD INTEG CIRCUIT	1	IC3
IC LM393-S 04639	04639 SMD INTEG CIRCUIT	1	IC2
IC LMC6482-S	04632 SMD INTEG CIRCUIT	1	IC24
ICLMC6484-S	04634 SMD INTEG CIRCUIT	7	$\begin{aligned} & \mathrm{IC} 1, \mathrm{IC} 4, \mathrm{IC} 6, \mathrm{IC} 9, \mathrm{IC} 13, \mathrm{IC} 18 \\ & \mathrm{IC} 25 \end{aligned}$
ICM41T5604611	04611 SMD INTEG CIRCUIT	1	IC20
ICMAX232-S 04804B	04804B SMD INTEG CIRCUIT	1	IC21
ICMAX3080-S 04770	04770 SMD INTEG CIRCUIT	1	IC22
IC MAX942CSA-S	04572 SMD INTEG CIRCUIT	1	IC10
ICMB90F543PF	04596 SMD INTEG CIRCUIT	1	IC11
ICMPC100-450DI-TO	04608 INTEG CIRCUIT	1	IC16
IC TC7662BCOA 04758A	04758A SMD INTEG CIRCUIT	1	IC5
ICULN2003A 4870	04870 SMD INTEG CIRCUIT	2	IC12, IC15
IND 2u2H-S 05020A	05020A INDUCTOR	1	L1

Part Name/Number

IND MS85 10uH-S
IND T100uH-1.8A 4958
JCONHD515V/05-4PVE
JDB9_F-0 ${ }^{\circ}$ LT
JFC-10P 02697-02699
JFC-16P 02701-02700
JPAN2 02739-40-41
J PAN8 02716
JU JUMP2 02739-02742
JU JUMP3 02707-02742
R 100K-1\%-S 00065B
R 100R-1\%-S 00029D
R 10K-1\%-S 00053B

R 10R-S 00017A
R 1206 NOT MOUNTED
R 1K0-1\%-S 00041B

R 22K-1\%-S 00057B
R 2K2-1\%-S 00045B
R 470K-S 00073A
R 470R-1\%-S 00037B
R 4K7-1\%-S 00049B
R 68K-1\%-S 00063B
R 820R-S 00040A
R 8K2-1\%-S 00052B
RL 30.22.2407569
RV 100K-3266X
RV 10K-3266X 00807
SW SWITCH-8DIP
T06086N 76307632
TRBC84803457
TR BC856 03455
XTAL 32.768k-S 05146
XTAL 4MHz-S 05101A

Description

04948 INDUCTOR 2,7 A
04958 TOROIDAL-STORAGECHOKES
$02881+02882$ PANDUIT PCB CONN
02794 PCB CONNECTOR DB9LONGT
02697+02699 PCB CONNECTOR POL
$02701+02700$ PCB CONNECTOR POL
$02739+02740+02741$ PCBCONNECTO
02716 PCBCONNECTOR
02739+02742 MASCHIO PAN2
02707+02742 MASCHIO PAN3
00065B RES 1/4W 1\% SMD 1206
00029D RES 1/4W 1\% SMD 1206
00053B RES 1/4W 1\% SMD 1206

00017A RES 1/4W 5\% SMD 1206
NOT MOUNTED RES 1/4W 5\% SMD 12
00041B RES 1/4W 1\% SMD 1206

00057B RES 1/4W 1\% SMD 1206
00045B RES 1/4W 1\% SMD 1206
00073A RES 1/4W 5\% SMD 1206

00037B RES 1/4W 1\% SMD 1206
00049B RES 1/4W 1\% SMD 1206
00063B RES 1/4W 1\% SMD 1206
00040A RES 1/4W 5\% SMD 1206
00052B RES 1/4W 1\% SMD 1206
07569 RELE
00814 VARIABLE RESISTOR
00807 VARIABLE RESISTOR 07530A PCB DIP SWITCH SMD
76307632 KTI06086 PULSANTE 2
03457 NPN SMD TRANSISTOR
03455 PNP SMD TRANSISTOR
05146QUARTZ
05101A QUARTZ

Qty. Comps.
Page 2/2
L2
1 L3
1 J14
1 J13
8 J1-2, J6, J8-12
1 J3

3 J5, J7, J15
1 J4
1 JP3

2 JP1-2
10 R65-66,R94-101
12 R24,R47,R58,R71,R75,R81, R83, R89, R103-105, R113 R7, R10, R12, R14-16, R22, R25, R27, R30, R33-34, R36, R38, R51, R62-64, R78-79, R84-85, R87-88, R92-93, R106-111
R68
R91
R17, R54, R59-60, R76-77, R86, R90
R9, R21, R26, R28-29, R37, R45, R48-50, R69
3 R52, R55, R61
11 R8, R23, R40, R42, R46, R57, R70
R74,R80,R102, R112
6 R11,R13,R39, R53, R56, R67
3 R18,R31,R43
4 R19-20, R32,R44
7 R35,R72-73, R82, R114-116
1 R41
3 RLY1-3
4 R1-4
2 R5-6
1 SW1
4 T1-4
2 TR1-2
2 TR3-4
1 XTAL2
1 XTAL1

[^0]: ${ }^{1}$ For more details about the control system contact the distributor or the manufacturer.

[^1]: ${ }^{2}$ For more information about this application contact the distributor of the manufacturer.

