Appendix 5

Remote Unit Radio System

Appendix 5

Contents

1.0 Overall Description of RU

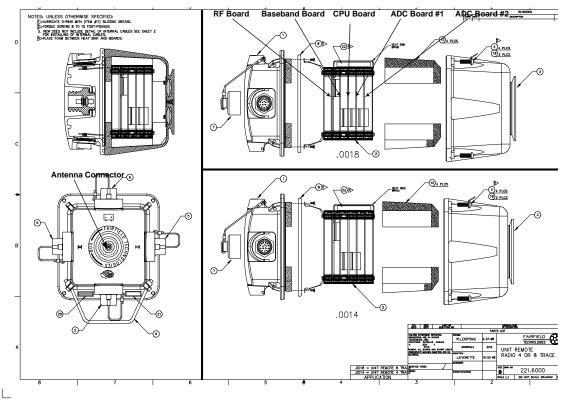
- 2.0 RF Module
- 2.1 Overall Description
- 2.2 Dallas Temperature Sensor
- 2.3 Cartesian Loop Linearizer
- 2.3.1 Operation
- 2.3.1.1 Instability Detection
- 2.3.1.2 DC Null
- 2.3.2 Transmit/Receive Switching
- 2.4 Receiver

2.5 **Power Amplifier (Transmitter)**

- 2.5.1 Overall Description
- 2.5.2 Sub-Modules
- 2.5.3 Power amplifier
- 2.5.4 Transmitter Mask
- 2.5.5 Electrical Specifications
- 2.6 Synthesizer
- 2.6.1 Performance Parameters
- 3.0 Baseband Module
- 3.1 Overall Description
- 3.2 Processor
- 3.3 Codec
- 3.4 Memory
- 3.5 Clock Generation
- 3.6 Parallel Host Interface
- 3.7 Temperature Sensing
- 4.0 RU Power Supply

5.0 RU Signals and Connections

- 5.1 RF Module
- 5.1.1 Power Amplifier
- 5.2 Synthesizer
- 5.3 Receiver
- 5.4 Baseband Module


Appendix 5 Page 1 of 27

1.0 Overall Description of RU

Each remote unit (RU) is mounted on and powered by a Battery power unit.

All RUs are identical, each containing a stack of five interconnected circuit boards, held together by spacers and secured by shock mountings. As shown in figure 1, the board order (top to bottom) is:

Radio System RF Module Radio System Baseband Module Main CPU Module ADC Module #1 ADC Module #

Remote Unit - Assembly Figure 1

The radio sub-system, which includes the RF and Baseband boards, is able to

- Transmit data to the CRS using 16QAM transmission at 60 kb/s (up-link) and
- Receive commands from the CRS, which have been transmitted using 10 kb/s QPSK transmission (down-link).

The whole radio sub-system is depicted in block form in figure 2.

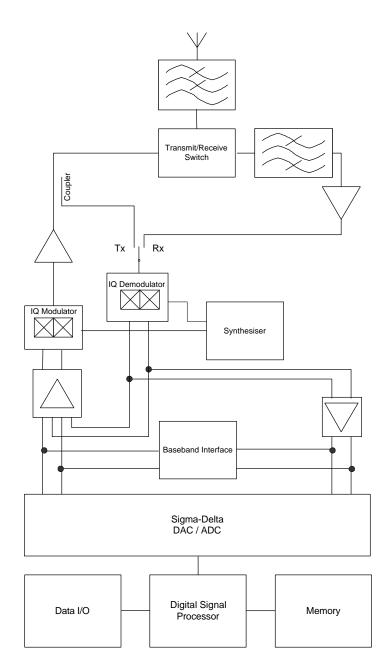
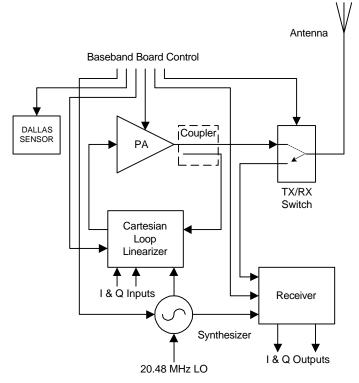


Figure 2

2.0 RF Module

2.1 Overall Description


The RF Module of the RU contains

- the receiver for commands downlinked from the CRS and
- the transmitter for uplinking data from the RU to the CRS.

With reference to figure 3 it can be seen that the RF modle can be split into six discrete sub-modules, these being:

Cartesian Loop Linearizer Transmitter/Power Amplifier Transmit/Receive Switch Synthesizer Receiver Dallas temperature sensor

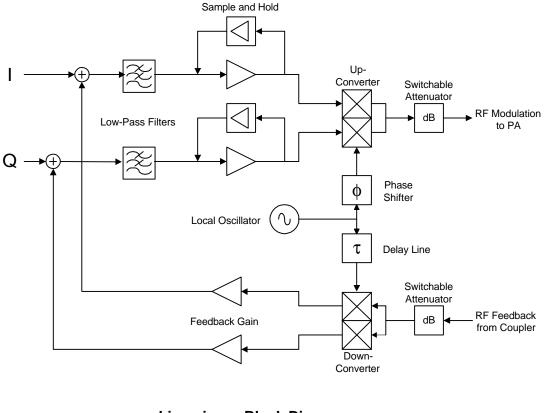
The RU Receiver is described in 2.4 and the RU Transmitter/Power Amplifier in 2.5.

Remote Unit RF Module Overall Block Diagram

Figure 3:

Appendix 5 Page 4 of 27

2.2 Dallas Temperature Sensor


The temperature-sensing device (manufactured by Dallas Corporation) is programmed by the Baseband board and incorporates two important features.

First it provides a temperature measurement system with a one-second acquisition time, the data being read as an integer byte via a two wire serial (i²c) line.

Second it incorporates 256 bytes of non-volatile memory for storing details unique to the individual amplifier – such as phase control voltages, phase and image-balance information, and model details including serial number and revision details.

2.3 Cartesian Loop Linearizer

Figure 4 shows a block diagram of the linearizer.

Linearizer – Block Diagram Figure 4

2.3.1 Operation

A fraction of the transmitted power is fed back from the output via the coupler. Further attenuation is required to reduce the signal to a level suitable for input to the down-converter, where the signal is split and down-converted, with two carriers of 90° phase difference yielding the I and Q baseband signals.

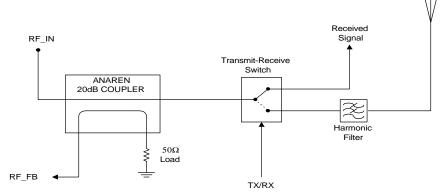
Feedback gain is provided by low-noise operational amplifiers.

The signal is then subtracted from the modulation input and the forward-path error signal is low-pass filtered and pre-amplified at baseband.

2.3.1.1 Instability Detection

During operation, the loop may become unstable. Therefore, to monitor loop stability, a circuit is provided which detects energy in the output spectrum at around 200 kHz above the carrier.

If the loop starts to become unstable, high frequency components appear in the output spectrum and correspondingly at baseband level.


A high-pass filter is used to isolate these higher frequencies, which are then fed through an amplitude detector. When the detected amplitude reaches a preset dc detected level, an instability error is flagged.

2.3.1.2 DC Null

As a result of carrier up/down-converter feed-through during Power Amplifier operation, a steadilyrising carrier component can be seen on the output spectrum. This may also be seen at baseband as a dc component superimposed on the I and Q signals. As this is essentially an unwanted tone in the output spectrum it must be removed.

Removal is achieved by sampling the magnitude of this dc component at the start of transmission, and removing it from the following thirty seconds of transmission.

2.4 Transmit/Receive Switching

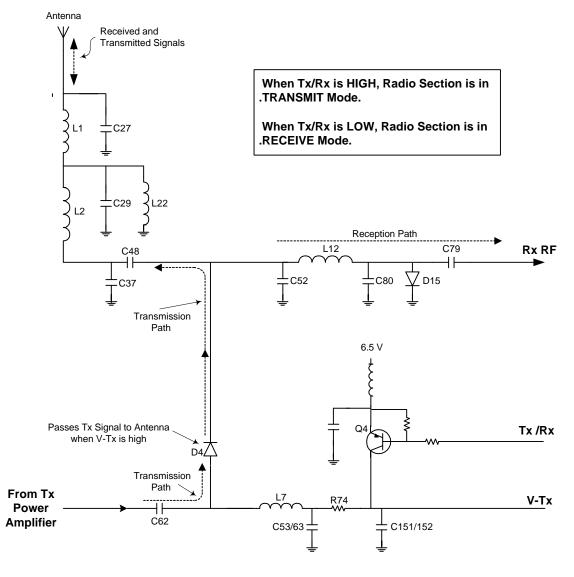
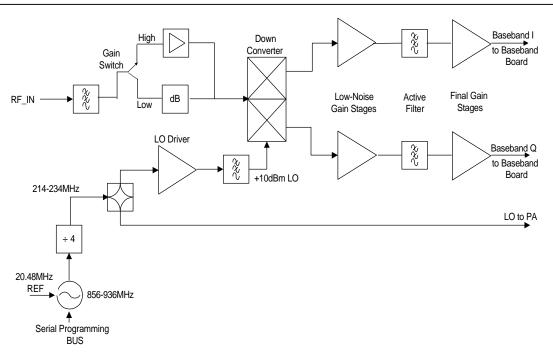

Coupler and Transmit/Receive Switching

Figure 5

PIN diodes are used to direct signals from the antenna during Receive and to the antenna during Transmit.

These diodes can be biased either positive or negative by Transistor switch Q4.

The RF path is determined by the PIN diodes' bias which, in conjunction with matching circuitry, appears to BOX RF signals as quarter wavelength sections. These sections have the ability to behave as open circuits or 50Ω line depending on the polarity of the bias voltage.


Transmit/Receive Switch & RF Paths to and from Antenna Figure 6

The RF LO is fed into a Wilkinson power divider, giving an approximate 3 dB split.

One half is used directly by the Cartesian loop at –10dBm. The other is fed through a small gain stage to provide a +10dBm signal for the receiver.

2.4. Receiver

The RU receiver, which is part of the RF board, provides the RF receiver path for the Command downlink. Demodulation is achieved through ac-coupled direct conversion, which is suitable for QPSK.

Receiver Block Diagram

Figure 7

The receiver is capable of operation in two modes: high-gain and low-gain.

- The high-gain setting is employed for maximum sensitivity and introduces an additional 20 dB gain stage in the receive path.
- The low-gain setting is used for maximum signal handling, introducing a 4 dB pad in the receive path, preventing saturation when large signals are encountered.

The RF signal received at the antenna is band-pass filtered and passed through the high/low gain switch.

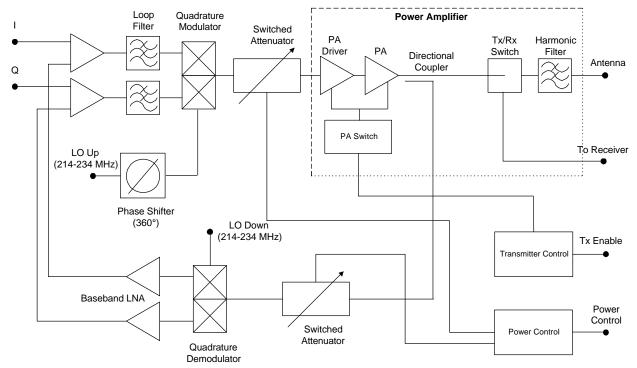
It is then fed into a Mini-Circuits down-converter (JSIQ-234D1) and mixed with the +10 dBm LO, resulting in the production of I and Q baseband signals. These I and Q signals are fed into a low noise op-amp stage, consisting of a CLC428 with a voltage gain of about 10.

The baseband signals are then fed into an active filter chain, with a roll-off from 80 to 140 kHz. The final stage involves amplitude-balancing, followed once again by a low-noise gain stage. The baseband I and Q signals are then fed to the baseband Remote Unit board.

2.5 **Power Amplifier (Transmitter)**

2.5.1 Overall Description

The RU transmitter, which is shown in block form in figure 8, is part of the RF module.

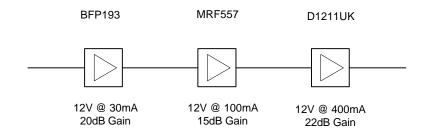

It provides the data uplink channel for both command and sample data.

The transmitter consists of a Cartesian linearized power amplifier suitable for both 16QAM data modulation and (if required) linear voice modulation. The RU Transmitter's chief specifications are summarised as follows:

Output Power:+27 dBmRF power control:58 dBSupply voltage:12 V nominal, 10.5 V min, 14.8 V max.Channel bandwidth:20 kHzData format:Pilot aided 16QAM

2.5.2 Sub-Modules

The RU transmitter contains two sub-modules, the Power Amplifier and the Cartesian Linearizer.



Remote Unit – Radio Transmitter Figure 8

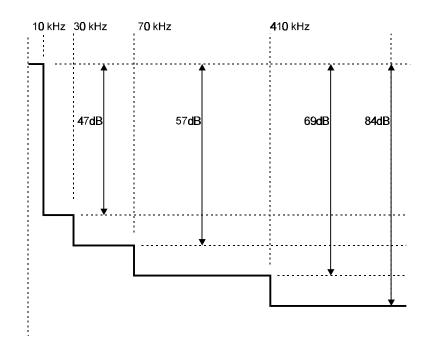
2.5.3 Power Amplifier

The power amplifier sub-module provides most of the RF gain and final output drive for the RU transmitter. Also included is transmit/receive switching and an output coupler for the Cartesian linearizer.

This output coupler provides the forward-path gain and the final output drive. Figure 9 shows the three-stage device line-up employed. High or low gain modes can be selected depending on the range of output level required.

Device line-up (high gain setting)

Figure 9


Feedback is employed on the first two stages to reduce the gain from the maximum available. When the device is switched OFF in the low-gain mode, the feedback on the second stage also provides an RF forward-path

There is a signal gain of 56 dB in high-gain mode and approximately 23 dB in low-gain mode.

The Semelab D1211 is capable of 40 dBm output and is under-driven to maximize the intermodulation distortion performance of the PA.

2.5.4 Transmitter Mask

Figure 10 shows the transmit mask in direct mode. All numbers are power relative to the wanted channel, measured in a 20 kHz bandwidth.

Transmitter Mask

Figure 10

2.5.5 Electrical Specifications

Frequency Range:	216 - 220 MHz
Output power:	0.5 W (27 dBm)
Stability:	Stable with loads \leq 3:1 (all angles)

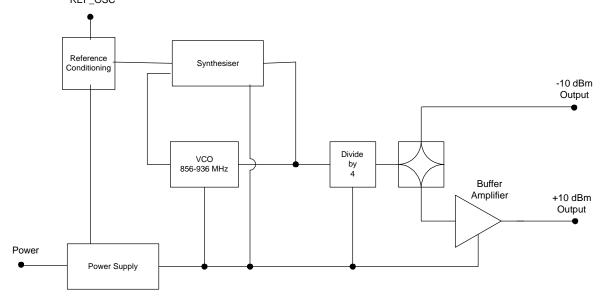
High Gain:	56 dB nom.
High Gain flatness:	±1 dB max.

Low Gain: 22 dB nom Low Gain flatness ±1 dB max

Power added efficiency:30% min.Noise floor: \leq -90 dBm/Hz at \geq 2 MHz from carrierThe above powers are measured at the antenna connector.

2.6 Synthesizer

The RU Synthesizer is part of the RF module. It is illustrated in block schematic diagram in figure 11.


This synthesizer serves two main purposes:

• Generation of the local oscillator required for the direct down-conversion receiver.

• Generation of the two local oscillators required for the direct up-conversion Cartesian loop transmitter.

Control of synthesizer frequency is achieved by programming the synthesizer hardware via a serial bus.

In order to avoid possible interference problems in transmit-mode the voltage-controlled oscillator (VCO), which forms part of the synthesizer, runs at four times the fundamental operating frequency REF_OSC

RU Synthesizer – Block Diagram

Figure 11

2.6.1 **Performance Parameters**

2.6.1.1 Transmit & Receive Frequencies

The operating band is 216 to 220 MHz in 20kHz channels and the synthesizer is able to generate a 216.01 to 219.99 MHz Local Oscillator, programmable in 10kHz steps.

2.6.1.2 Phase Noise

The synthesizer's frequency-dependent phase noise is illustrated in Figure 12.

2.6.1.3 Lock time

Less than 20 ms.

2.6.1.4 Spurious output

Harmonics< 30 dBc</th>Non harmonics<70 dBc</td>

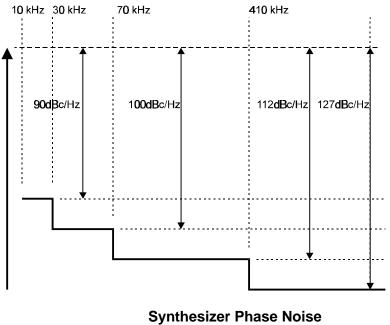
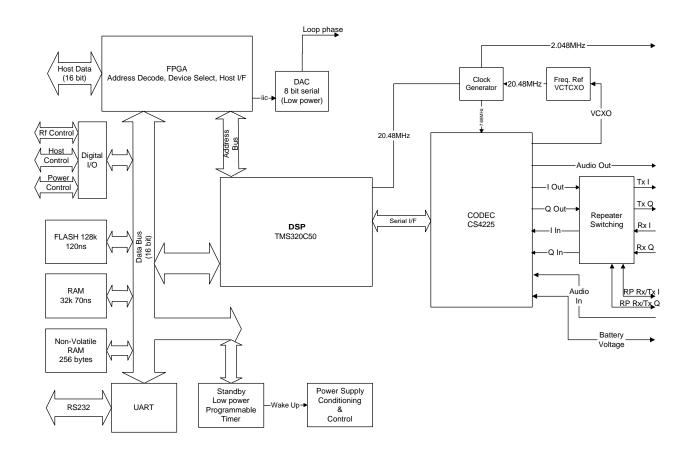


Figure 12


3.0 Baseband Module

3.1 Overall Description

The Remote Unit baseband board, which is shown in block form in Figure 13, comprises a single digital signal processor (DSP) with ancillary memory and peripherals.

This sub-module carries out the following functions:

- Modulation of the uplink 16QAM baseband signal
- Demodulation of the downlink QPSK baseband signal
- Command and data communications with the host processor through the host parallel interface
- RS232 communications for firmware downloads and for use in testing.
- Timer functions to control the duty cycle in sleep and standby modes.
- Power supply management and regulation for baseband and RF board switching.
- Digital I/O associated with control of the RF board and PA module
- Digital I/O signals to/from the host CPU card
- Clock generation for Codec, processor and frequency locked reference
- Local frequency reference pulling
- Analog control signals for the RF module (if required)

Remote Unit - Baseband Sub-Module

Figure 13

3.2 Processor

The baseband sub-module is designed around a single 40.96 MHz Texas Instruments TMS320C50 digital signal processor which is capable of performing all modulation, demodulation, control and communication tasks on the RF module.

3.3 Codec

A single Crystal Semiconductor CS4225 Codec device performs most of the analog to digital and digital to analog conversion. This device also provides channel and anti-aliasing filtering of the baseband signals.

An additional low current DAC provides phase control of the Cartesian loop transmitter. The complete analog signal set is:

• I in

Cartesian loop phase control outputFrequency reference adjust

- Q in
 - l out
- Q out

3.4 Memory

Three types of memory are provided in the baseband module for program and data storage:

- FLASH RWM
- Static RAM
- Non-volatile RAM

3.5 Clock Generation

A clock generator circuit derives the following clock waveforms from the 20.48 MHz frequency Reference on the board. This Reference is locked to the base-station Master Reference during receive:

- 7.68 MHz to drive the Codec at the correct sampling rate
- 20.48 MHz DSP clock. This is clocked into the DSP in ×1 mode to give a minimum internal cycle time of 48.82 ns, corresponding to a basic processor speed of 20.48 MIPS.
- 2.048 MHz a divided and buffered version of the on-board reference for use by the CPU host

When the RF module is frequency locked (i.e. during receive mode); stability of all clocks is ± 0.5 ppm with respect to the Central Recording System's Master Reference.

At other times, when the on-board reference is free-running, clock stability is ± 3 ppm.

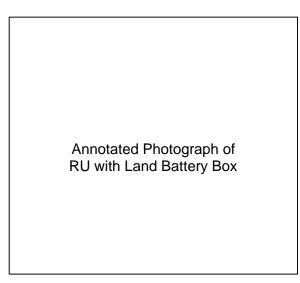
It is the responsibility of the host CPU to ensure the integrity of any data transferred to the radio system for the purpose of firmware updates *before* the transfer is made.

3.6 Parallel Host Interface

A parallel bi-directional interface is provided between the Host CPU (Motorola 68336 processor) and the RF board TMS320C50 processor. This interface is used for passing:

downlink messages from the radio system to the host CPU and uplink data from the host to the radio.

Additionally the host interface is used for control messaging issued by the host CPU, and for any subsequent baseband replies.


3.7 Temperature sensing

Thermal monitoring is provided on the radio transmitter, with the baseband module DSP able to read the PA temperature and ascertain if it is approaching its maximum recommended operating temperature. Data from this sensor is made available to the host processor over the host parallel interface.

4.0 RU Power Supply

The RU is powered by a power-supply unit (or "battery pack) located beneath and attached to the RU housing as shown in figure 14.

The unit contains one 12 V --- AH rechargeable lead-acid battery, which may be recharged without removing it from the unit.

Figure 14

The Power-Supply Unit may be rectangular for land use as or cylindrical for marine use as illustrated in fires 15 and 16 respectively.

Assembly Drawing	Assembly Drawing
Land Power Unit	Marine Power Unit
Figure 15	Figure 16

5.0 RU Signals and Connections

- 5.1 RF Module
- 5.1.1 Power Amplifier

5.1.1.1 External Interfaces

External interfaces to the transmitter sub-module are defined as those signals which leave the radio system RF board. They therefore include all

- transmitter control signals which originate on the baseband board, and
- all status signals that go to the baseband board.

Table 1 lists the signals that constitute the external interface between the Power Amplifier (transmitter) and the rest of the Remote Unit (excluding signals internal to the RF module).

Signal Name	Direction	Туре	Description
20dB_ATT_B	In	Digital	HCMOS power control: 20dB step
10dB_ATT_A	In	Digital	HCMOS power control: 10dB step
25dB_DOWN	In	Digital	HCMOS power control, down converter:
			switches in delay line
25dB_UP	In	Digital	HCMOS power control, up converter:
			switches second stage of PA
ANT	In/Out	RF	Antenna connector
			50Ω SMA female
BATT	In	Power	Unregulated power supply for PA
DC_NULL	In	Digital	Cartesian loop dc null control
GND	In	Power	Ground
I_DOWN	Out	Analog	Baseband I channel output (to receiver)
Q_DOWN	Out	Analog	Baseband Q channel output (to receiver)
I_UP	In	Analog	Baseband I channel input (from codec)
Q_UP	In	Analog	Baseband Q channel input (from codec)
INSTB	Out	Digital	Transmitter instability detector (to DSP)
PA_ON	In	Digital	Switches PA on
PH_CTL	In	Analog	Cartesian loop phase control
TX_RX	In	Digital	Switches between Tx & Rx mode
SCL	In	Digital	PA temperature sensor Clock
SDA	Out	Digital	PA temperature sensor Serial Data

RU Transmitter - External/Interface Signals

Table 1

5.1.1.2 Internal Interfaces

Table 2 lists the internal interface signals between the Cartesian Linear Transmitter and the other submodules on the RF module.

Signal Name	Direction	Туре	Description
C10V	In	Power	Power supply for CLT
			Regulated from raw battery power
S2V5	In	Power	Power supply for CLT
RX_RF	Out	RF	Received RF output to Receiver front-end
			Frequency range: 214 - 234 MHz
			Source impedance: 50Ω nominal
			Power: 0 dBm max
RF_FB	In	RF	Coupled RF input from PA directional coupler
RF_MOD	Out	RF	Low level modulated RF output to PA
Rx_D	In	RF	Down converter RF input from Receiver front-end
LO_+10dBm	In	RF	Local oscillator input for down converter
			50Ω, +10 dBm nom.
LO10dBM	In	RF	Local oscillator input for up converter
			50Ω, -10 dBm nominal

RU - Interface Signals between Cartesian Linear Transmitter Sub-Module and other Radio Board Sub-Modules

Table 2:

5.2 Synthesizer

5.2.1 Interfaces

All interfaces to and from the synthesizer are internal, i.e. between the synthesiser and other submodules within the RF module.

5.2.1.1 Inputs

Signal Name	Description	
S5V	Synthesizer +5 V Power supply	
	50 mA max	
S10V	Synthesizer +10 V Power supply	
	10 mA max	
GND	Analog ground	
S_CLK	Synthesizer serial data clock	
	High impedance CMOS input	
	Data clocked in on rising edge	
S_DATA	Synthesizer serial data	
	High impedance CMOS input	
	Data entered MSB first	
	Continued Overleaf	

S_LE	Synthesizer load enable High impedance CMOS input When SLE goes high, data stored in synthesizer shift registers is loaded into the appropriate latch.
REF_OSC	20.48 MHz Reference oscillator input

Synthesizer – Input Signals

Table 3

5.2.1.2 Outputs

Signal Name	Description	
LO_+10dBm	LO output to the down-converter	
	+9 dBm, ±1 dB, nominal impedance 50 Ω	
LO10dBm	LO output to the transmitter up-converter	
	-8 dBm, \pm 2 dB, nominal impedance 50 Ω	

Synthesizer – Output Signals

Table 4

5.2.1.5 Internal Interfaces

Signal Name	Direction	Туре	Description
C10V	In	Power	Power supply for CLT
			Regulated from battery power
S2V5	In	Power	Power supply for CLT
RX_RF	Out	RF	Received RF output to Receiver front-end
			Frequency range: 214 - 234 MHz
			Source impedance: 50Ω nominal
			Power: 0 dBm max
RF_FB	In	RF	Coupled RF input from PA directional coupler
RF_MOD	Out	RF	Low level modulated RF output to PA
Rx_D	In	RF	Down converter RF input from Receiver front-end
LO_+10 dBm	In	RF	Local oscillator input for down converter
			50Ω, +10 dBm nominal
LO10 dBM	In	RF	Local oscillator input for up converter
			50Ω, -10 dBm nominal

Synthesizer – Internal Interfaces Table 7

5.2.1.6 Digital Control Signals

Signal	Direction	Connector	Туре	Description
SLE	In	P2: 15; 16	TTL	Synthesizer enable
S_DATA	In	P2: 17; 18	TTL	Synthesizer data
S_CLOCK	In	P2: 19; 20	TTL	Synthesizer clock
PA_ON	In	P2: 25; 26	HCMOS	PA bias switch
			Continued of	overleaf
DC_NULL	In	P2: 29; 30	HCMOS	Transmitter DC Null
				LOW = Null; HIGH = normal transmit

RX_GAIN	In	P2: 31; 31	HCMOS	RX gain HI/LO switch
CON	In	P2: 35; 36	HCMOS	Cartesian loop
RON	In	P2: 37; 38	HCMOS	Receiver
SON	In	P2: 39; 40	HCMOS	Synthesizer
TX_RX	In	P2: 42; 43	HCMOS	Transmit/Receive
				LOW = receive; HIGH = transmit
SCL	In	P2: 45; 46	HCMOS	Dallas chip clock
SDA	In	P2: 47; 48	HCMOS	Dallas chip data
INSTAB	In	P2: 51; 52	TTL	Transmitter unstable
				LOW = unstable; HIGH = unstable
20DB_ATTB	In	P2: 55; 56	HCMOS	Power control (see Table 9)
10DB_ATTA	In	P2: 57; 58	HCMOS	Power control (see Table 9)
25DB_UP	In	P2: 59; 60	HCMOS	Power control (see Table 9)

Synthesizer – Digital Control Signals

Table 8

5.3 Receiver

5.3.1 Receiver Inputs, Outputs and Internal Signals

These are shown in Table 9.

Signal Name	Direction	Туре	Description	
BATT	In	Power	 Unregulated power supply for PA 	
GND	In	Power	Ground	
R5V	In	Power	5V Power supply	
			200 mA max	
A6V5	In	Power	6.5V Power supply to front end	
			20mA max	
AGND	In	Power	Analogue ground	
RX_RF	Out	RF	Received RF output after Tx-Rx switch to Receiver front-end.	
			Frequency range: 214 - 234 MHz	
LO_+10dBm	In	RF	RF Local oscillator input for receiver	
			50Ω, +10dBm nom.	
ANT	In/Out	RF	Antenna connector	
			50Ω SMA female	
IRX	Out	RF	Baseband I channel output	
			Level 2.5 V pp \pm 0.1 v pp max.	
QRX	Out	RF	Baseband Q channel output	
			Level 2.5 V pp ±0.1 v pp max.	
TX_RX	In	Digital	I Switches between TX & RX mode	
RX_GAIN	In	HCMOS	Set RX gain for either maximum sensitivity or large signal	
			handling	
RON	In	HOS	Receiver Enable - used by FET switches on baseband inputs	

Table 9

5.4 Baseband Module

5.4.1 External Interfaces

These signals which originate from or go directly to the Baseband module from any part of the RU (other than the radio RF module) are listed in Table 10.

Signal Name	Direction	Туре	Connector	Description		
HI_D0 -	In/Out	Digital	H1 pin 1-16	16 bit parallel interface, Host CPU data bus		
HI_D15	1.	Distil		TTL		
HI_C/D	In	Digital	H1 pin 33	Indicates whether host interface contents are		
				command or data (host to radio direction only)		
				See Ref. [8] for levels & timing		
HI_WSTRB	In	Digital	H1:37	Buffer read/write		
		Digital	111.57	TTL		
				See Ref. [8] for levels & timing		
HI_RFLAG	Out	Digital	H1:35	Read buffer full flag		
	Out	Digital	111.00	TTL		
				See Ref. [8] for levels & timing		
HI WFLAG	Out	Digital	H1:36	Write buffer full flag		
	out	Digital		TTL		
				See Ref. [8] for levels & timing		
HI_RSTRB	In/Out	Digital	H1:34	Read data strobe		
		3	-	TTL		
				See Ref. [8] for levels & timing		
WKUPH	Out	Digital	H1:39	Wakeup to Host CPU from Radio system		
				TTL high: wakeup		
				TTL low: radio card in sleep mode		
WKUPR	In	Digital	H1:38	Wakeup from Host CPU to Radio system		
				TTL high: Wakeup radio system from sleep		
HI_RESET	In	Digital	H1:40	Hardware reset from Host		
				TTL active high		
REF	Out	Digital	H1:41	2.048 MHz reference locked to master ref.		
				Buffering HCMOS		
TZERO	Out	Digital	H1:42	T-zero		
				HCMOS, timing ±20 μs		
AUD_IN	In	Analog	TBD	Audio input		
				0 dBm into 600Ω		
AUD_OUT	Out	Analog	TBD	Audio output		
				0 dBm into 600Ω		
RP_I+	In/Out	Analog	H6 pin 2	Repeater I channel		
				Analog differential line driver 5 V		
RP_I-	In/Out	Analog	H6 pin 1	Repeater I channel		
				Analogue Differential line driver 5 V		
RP_Q+	In/Out	Analog	H6 pin 5	Repeater Q channel		
				Analogue differential line driver 5 V		
Continued overleaf						

Continued overleaf

RP_Q-	In/Out	Analog	H6 pin 4	Repeater Q channel Analogue differential line driver 5 V
RP_DIR+	In/Out	Digital	H6 pin 8	Repeater uplink/downlink select
	III/Out	Digital		Digital differential line driver 5 V
RP_DIR-	In/Out	Digital	H6 pin 7	Repeater uplink/downlink select
	in/Out	Digital		Digital differential line driver 5 V
RP_MODE	In	Digital	H6 pin 15	Repeater/Normal mode select
		Digital		HCMOS high: Repeater
				HCMOS low: Normal
RP_MS	In	Digital	H6 pin 13	Repeater master/slave select
		Digital		HCMOS high: master
				HCMOS low: slave
RP WKUP+	In/Out	Digital	H6 pin 10	Wakeup to repeater slave
	in # O dt	Digital		
RP WKUP-	In/Out		H6 pin 9	Wakeup to repeater slave
	in # O ut			
RP_U1+	In/Out		H6 pin 12	Unused
				Digital differential line driver ±5 V
RP_U1-	In/Out	Digital	H6 pin 11	Unused
—		5		Digital differential line driver ±5 V
RP_GND	Out	Power	H6 pins 14	Ground for repeater link
RP AGND	In	Power	H6 pin 3	Analogue ground connection
RP SCRN	In	Power	H6 pin 6	Cable screen connection
PTT	In	Digital	TBD	Push-to-talk test connector
TCK	In	Digital	H3 pin 11	JTAG test clock
		Digital		HCMOS
TDI	In	Digital	H3 pin 3	JTAG test data input
		9		HCMOS
TDO	Out	Digital	H3 pin 7	JTAG test data output
		5		HCMOS
TMS	In	Digital	H3 pin 1	JTAG test mode select
		U		HCMOS
TRST	In	Digital	H3 pin 2	JTAG test reset
				HCMOS
EMU0	In/Out	Digital	H3 pin 13	JTAG emulation pin 0
		_		HCMOS
EMU1	In/Out	Digital	H3 pin 14	JTAG emulation pin 1
		_		HCMOS
PD	Out	Digital	H3 pin 5	JTAG presence detect
				HCMOS
TCK_RET	Out	Digital	H3 pin 9	JTAG test clock return
				HCMOS
RXD	Out	RS232	H4 pin 2	RS232 Receive Data
TXD	In	RS232	H4 pin 3	RS232 Transmit Data
DTR	Out	RS232	H4 pin 4	RS232 Data Terminal Ready
DSR	Out	RS232	H4 pin 6	RS232 Data Set Ready
RTS	In	RS232	H4 pin 7	RS232 Ready To Send
CTS	Out	RS232	H4 pin 8	RS232 Clear To Send
BATT	In	power	H1 pin 52,	+12V nominal battery power
			54, 56, 58, 60	range 10.8V to 15.6V
				1.5 A max

GND	In	power	H1 pin 17, 18	Battery ground
		-	31, 32, 43, 44,	
			49, 51, 53, 55,	
			57, 59	

Baseband Module - External Interface Signals

Table 10

Table 11 lists the signals which constitute the interfaces between the baseband sub-module and the host CPU card or PA module.

Signal Name	Direction	Туре	Connector	Description
DGND	In	Power	H1 pin 49	Digital ground
TZERO	Out	Digital	H1 pin 42	Timing pulse for reception of synch. code TTL active high
2.048MHz	Out	Digital	H1 pin 41	Reference clock TTL
HI_D0 -HI_D16	In/Out	Digital	H1 pin 1- 16	16 bit parallel interface, Host CPU data bus TTL
HI_C/D	In	Digital	H1 pin 33	Indicates whether host interface contents are command or data (host to radio direction only) TTL high: command TTL low: data
HI_RFLAG	Out	Digital	H1 pin 35	Read buffer empty interrupt TTL active high: Timing to correspond to C50 interrupt requirement
HI_WFLAG	Out	Digital	H1 pin 36	Write buffer full interrupt TTL active high Timing to correspond to C50 interrupt requirement
HI_WSTRB	In	Digital	H1 pin 37	Data strobe TTL
HI_RSTRB	In	Digital	H1 pin 34	Data strobe TTL
WKUPHOST	Out	Digital	H1 pin 39	Wakeup to Host CPU TTL high: wakeup
HI_RESET	In	Digital	H1 pin 40	Hardware reset from Host TTL active high

External interface signals

Table 11

5.4.2 Connectors

Connectors for the Baseband module are defined in Table 12.

Connector Name	Description
H1	Radio card to Host CPU
	60 way Molex 53408-1200
H2	Connector to RF board
	60 way Molex 53408-1200
JT1 ¹	JTAG connector
	14-pin header (two 7-pin rows)
	Pin-to-pin spacing 0.100 in (X,Y)
	Pin width: 0.025 in. square post
	Pin length: 0.235 in nominal
	RS232 connector
	9-way SM Molex
	Repeater connector
	15-way SM Molex
	Audio Connector

Baseband Module Connectors

5.4.3 Internal Interfaces (Radio System)

described in Table 13.

			Conne	ctor	
	Source	Туре		RF	Description
	BB	Power			
DGND	BB				Digital ground
GND		Power			Battery ground
	BB	Power			
PA_ON	BB		H2 pin 31		Switches power supply to PA (slow)
					HCMOS low PA off
SON		HCMOS	H2 pin 19		
RON	BB		H2 pin 23		Switches power supply to receiver section
	BB	HCMOS			Switches power to the Cartesian loop section
TX_RX		HCMOS	H2 pin 28		
			-		HCMOS high: Tx mode
					HCMOS low: Rx mode
	BB	HCMOS			Switches gain in Rx chain
					High = Low gain
DC_NULL	BB	HCMOS	H2 pin 32		Causes Cartesian loop to perform DC NULL
			-		HCMOS low: DC null active
					HCMOS high: Normal loop operation
25dB_DOWN	BB	HCMOS	H2 pin 34		For operation see
25dB_UP	BB	HCMOS	H2 pin 33		For operation see
			Con	tinued o	overleaf

20dB_ATTA	BB		H2 pin 35	For operation see
20dB_ATTB	BB		H2 pin 36	For operation see
	RF	HCMOS		Cartesian loop instability detector output HCMOS high: Loop stable
PWR_CNT	BB			Controls 20dB Tx power control HCMOS high: 0 dB
S_CLK	BB		H2 pin 22	Synthesizer serial data bit clock
	BB	HCMOS		Synthesizer serial data
S_LE		HCMOS	H2 pin 26	
PA_EN	BB		H2 pin 25	PA enable (fast)
				HCMOS low: PA not enabled
T_CLK		HCMOS	H2 pin 42	
T_DATA	BB		H2 pin 41	Temperature sensor data
	RF	Analog		I channel from Rx (to Codec) AC coupled, 2.8 V p-p signal
RX_Q	RF	Analog	H2 pin 15	Q channel from Rx (to Codec) AC coupled, 2.8 V p-p signal
TX_I	BB	Analog	H2 pin 3	I channel to transmitter (from Codec) AC coupled, 2.8 V p-p signal Input impedance > 10 k Ω
TX_Q	BB	Analog	H2 pin 7	Q channel to transmitter (from Codec) AC coupled, 2.8 V p-p signal Input impedance > 10 k Ω
PH_CTL	BB	Analog	H2 pin 20	Cartesian loop phase control 0.5-2.5 V

Remote Unit Radio Internal Interface Signals

Table 13

5.4.4 Bi-Directional Host Interface Signals

These signals are defined in Table 14.

Signal Name	Direction	Description	
HI_C/D	$H \rightarrow R$	Indicates whether interface contents are command or data (host to radio communications only). TTL high: Command information TTL low: Seismic data	
HI_RSTRB	$H \rightarrow R$	Read Data Strobe High indicates that Host CPU it has read data from radio.	
HI_WSTRB	$H \rightarrow R$	Write Data strobe High indicates presence of data on interface	
Continued Overleaf			

HI_WFLAG	\rightarrow H	for this buffer to be empty before transferring data to the radio baseband board
		TTL low: buffer empty
	$R \rightarrow$	Flag indicating the state of the "to host" buffer. The radio DSP should wait for this buffer to be empty before transferring data to the host CPU.
		TTL low: buffer empty

Host Interface Signals