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About This Book

The primary objective of this reference manual is to define the functionality of the MCF548x processors
for use by software and hardware developers.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are
using the most recent version of the documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.freescale.com/coldfire.

Audience

This manual is intended for system software and hardware developers and applications programmers who
want to develop products for the MCF548x. It is assumed that the reader understands operating systems,
microprocessor system design, basic principles of software and hardware, and basic details of the ColdFire
architecture.

Organization

Following is a summary and a brief description of the major sections of this manual:

* Chapter 1, “Overview,” includes general descriptions of the modules and features incorporated in
the MCF548x, focussing in particular on new features.

» Chapter 2, “Signal Descriptions,” provides an alphabetical listing of MCF548x signals, including
which are inputs or outputs, how they are multiplexed, and the state of each signal at reset.

» Part I, “Processor Core,” is intended for system designers who need to understand the operation of
the MCF548x ColdFire core and its enhanced multiply/accumulate (EMAC) execution unit. It
describes the programming and exception models, Harvard memory implementation, and debug
module. Part 1 contains the following chapters:

— Chapter 3, “ColdFire Core,” provides an overview of the microprocessor core of the
MCF548x. The chapter begins with a description of enhancements from the V3 ColdFire core,
and then fully describes the V4e programming model as it is implemented on the MCF548x. It
also includes a full description of exception handling, data formats, an instruction set summary,
and a table of instruction timings.

— Chapter 4, “Enhanced Multiply-Accumulate Unit (EMAC),” describes the MCF548x
enhanced multiply/accumulate unit, which executes integer multiply, multiply-accumulate, and
miscellaneous register instructions. The EMAC is integrated into the operand execution
pipeline (OEP).

— Chapter 5, “Memory Management Unit (MMU),” describes describes the ColdFire virtual
memory management unit (MMU), which provides virtual-to-physical address translation and
memory access control.

— Chapter 6, “Floating-Point Unit (FPU),” describes instructions implemented in the
floating-point unit (FPU) designed for use with the ColdFire family of microprocessors.
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— Chapter 7, “Local Memory,” describes the MCF548x implementation of the ColdFire V4e
local memory specification.

— Chapter 8, “Debug Support,” describes the Revision C enhanced hardware debug support in the
MCF548x. This revision of the ColdFire debug architecture encompasses earlier revisions.

Part II, “System Integration Unit,” describes the system integration unit, which provides overall

control of the bus and serves as the interface between the ColdFire core processor complex and

internal peripheral devices. It includes a general description of the SIU and individual chapters that
describe components of the SIU, such as the interrupt controller, general purpose timers, slice
timers, and GPIOs. Part II contains the following chapters:

— Chapter 9, “System Integration Unit (SIU),” describes the SIU programming model, bus
arbitration, and system-protection functions for the MCF548x.

— Chapter 10, “Internal Clocks and Bus Architecture,” describes the clocking and internal buses
of the MCF548x and discusses the main functional blocks controlling the XL bus and the XL
bus arbiter.

— Chapter 11, “General Purpose Timers (GPT),” describes the functionality of the four general
purpose timers, GPTO—GPT3.

— Chapter 12, “Slice Timers (SLT),” describes the two slice timers, shorter term periodic
interrupts, used in the MCF548x.

— Chapter 13, “Interrupt Controller,” describes operation of the interrupt controller portion of the
SIU. Includes descriptions of the registers in the interrupt controller memory map and the
interrupt priority scheme.

— Chapter 14, “Edge Port Module (EPORT),” describes EPORT module functionality.

— Chapter 15, “GPIO,” describes the operation and programming model of the parallel port pin
assignment, direction-control, and data registers.

Part III, “On-Chip Integration,” describes the on-chip integration for the MCF548x device. It

includes descriptions of the system SRAM, FlexBus interface, SDRAM controller, PCI, and SEC

cryptography accelerator. Part III contains the following chapters:

— Chapter 16, “32-Kbyte System SRAM,” describes the MCF548x on-chip system SRAM
implementation. It covers general operations, configuration, and initialization.

— Chapter 17, “FlexBus,” describes data transfer operations, error conditions, and reset
operations. It describes transfers initiated by the MCF548x and by an external master, and
includes detailed timing diagrams showing the interaction of signals in supported bus
operations.

— Chapter 18, “SDRAM Controller (SDRAMC),” describes configuration and operation of the
synchronous DRAM controller component of the SIU. It includes a description of signals
involved in DRAM operations, including chip select signals and their address, mask, and
control registers.

— Chapter 19, “PCI Bus Controller,” details the operation of the PCI bus controller for the
MCF548x.

— Chapter 20, “PCI Bus Arbiter Module,” describes the MCF548x PCI bus arbiter module,
including timing for request and grant handshaking, the arbitration process, and the register in
the PCI bus arbiter programing model.
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Suggested Reading

Chapter 21, “FlexCAN,” describes the MCF548 implementation of the controller area network
(CAN) protocol. This chapter describes FlexCAN module operation and provides a
programming model.

Chapter 22, “Integrated Security Engine (SEC),” provides an overview of the MCF548x
security encryption controller.

Chapter 23, “IEEE 1149.1 Test Access Port (JTAG),” describes configuration and operation of
the MCF548x JTAG test implementation. It describes the use of JTAG instructions and
provides information on how to disable JTAG functionality.

Part IV, “Communications Subsystem,” contains chapters that discuss the operation and
configuration of the communications I/O subsystem including the MCF548x multichannel DMA,
communications timer, PSC, FEC, DSPI, and USB2, and I2C.

Chapter 24, “Multichannel DMA,” provides an overview of the multichannel DMA controller
module including the operation of the external DMA request signals.

Chapter 25, “Comm Timer Module (CTM),” contains a detailed description of the
communications timer module, which functions as a baud clock generator or as a DMA task
initiator.

Chapter 26, “Programmable Serial Controller (PSC),” provides an overview of asynchronous,

synchronous, and IrDA 1.1 compliant receiver/transmitter serial communications of the
MCF548x.

Chapter 27, “DMA Serial Peripheral Interface (DSPI),” describes the use of the DMA serial
peripheral interface (DSPI) implemented on the MCF548x processor, including details of the
DSPI data transfers. The chapter concludes with timing diagrams and the DSPI features that
support Tx and Rx FIFO queue management.

Chapter 28, “I12C Interface,” describes the MCF548x I>C module, including I’C protocol,
clock synchronization, and the registers in the C programing model. It also provides
programming examples.

Chapter 29, “USB 2.0 Device Controller,” provides an overview of the USB 2.0 device
controller module used in the MCF548x.

Chapter 30, “Fast Ethernet Controller (FEC),” provides a feature-set overview, a functional
block diagram, and transceiver connection information for both MII (Media Independent
Interface) and 7-wire serial interfaces. It also provides describes operation and the
programming model.

Part V, “Mechanical,” provides a pinout and both electrical and functional descriptions of the
MCF548x signals. It also describes how these signals interact to support the variety of bus
operations shown in timing diagrams.

Chapter 31, “Mechanical Data,” provides a functional pin listing and package diagram for the
MCF548x.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as
general information about the ColdFire architecture.
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General Information

The following documentation provides useful information about the ColdFire architecture and computer
architecture in general:
* ColdFire Programmers Reference Manual (CFPRM)
»  Using Microprocessors and Microcomputers: The Motorola Family, William C. Wray, Ross
Bannatyne, Joseph D. Greenfield

»  Computer Architecture: A Quantitative Approach, Second Edition, by John L. Hennessy and David
A. Patterson.

»  Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A.
Patterson and John L. Hennessy.

ColdFire Documentation

The ColdFire documentation is available from the sources listed on the back cover of this manual.
Document order numbers are included in parentheses for ease in ordering.
* ColdFire Programmers Reference Manual, R1.0 (CFPRM)

» Reference manuals—These books provide details about individual ColdFire implementations and
are intended to be used in conjunction with The ColdFire Programmers Reference Manual. These
include the following:

— ColdFire CF4e Core User's Manual (VAECFUM)
— MCF5475 Reference Manual (MCF5475RM)
— MCF5485 Reference Manual (MCF5485RM)

Additional literature on ColdFire implementations is being released as new processors become available.
For a current list of ColdFire documentation, refer to the World Wide Web at
http://www.freescale.com/coldfire.

Conventions
This document uses the following notational conventions:
MNEMONICS In text, instruction mnemonics are shown in uppercase.
mnemonics In code and tables, instruction mnemonics are shown in lowercase.
italics Italics indicate variable command parameters.
Book titles in text are set in italics.
0x0 Prefix to denote hexadecimal number
0b0 Prefix to denote binary number
REGI[FIELD] Abbreviations for registers are shown in uppercase. Specific bits, fields, or ranges

appear in brackets. For example, RAMBAR[BA] identifies the base address field
in the RAM base address register.

nibble A 4-bit data unit
byte An 8-bit data unit
word A 16-bit data unit
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longword
X
n

&
|

A 32-bit data unit

In some contexts, such as signal encodings, x indicates a don’t care.

Used to express an undefined numerical value

NOT logical operator
AND logical operator
OR logical operator

Register Conventions

This reference manual uses the register diagram format shown below.

Acronyms and Abbreviations

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 4 3 2 1 0
Rl O 0 0 0 0 0 0 0 0 0 0 DFL
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg 0x00C
Addr

Table i. Example Register Diagram

Acronyms and Abbreviations

Table ii lists acronyms and abbreviations used in this document.

Table ii. . Acronyms and Abbreviated Terms

Term Meaning
ADC Analog-to-digital conversion
ALU Arithmetic logic unit
AVEC Autovector
BDM Background debug mode
BIST Built-in self test
BSDL Boundary-scan description language
CODEC Code/decode
comm bus Internal communications bus
DAC Digital-to-analog conversion
DMA Direct memory access
DSP Digital signal processing

MCF548x Reference Manual, Rev. 3

Freescale Semiconductor

xlv



Table ii. . Acronyms and Abbreviated Terms (continued)

Term Meaning
EA Effective address
EDO Extended data output (DRAM)
FIFO First-in, first-out
GPIO General-purpose 1/O
1°C Inter-integrated circuit
IEEE Institute for Electrical and Electronics Engineers
IFP Instruction fetch pipeline
IPL Interrupt priority level
JEDEC Joint Electron Device Engineering Council
JTAG Joint Test Action Group
LIFO Last-in, first-out
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MAC Multiple accumulate unit
MBAR Memory base address register
MSB Most-significant byte
msb Most-significant bit
Mux Multiplex
NOP No operation
OEP Operand execution pipeline
PC Program counter
PCLK Processor clock
PLL Phase-locked loop
PLRU Pseudo least recently used
POR Power-on reset
PQFP Plastic quad flat pack
RISC Reduced instruction set computing
Rx Receive
SIM System integration module
SOF Start of frame
TAP Test access port
TTL Transistor-to-transistor logic
Tx Transmit
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Terminology and Notational Conventions

Table ii. . Acronyms and Abbreviated Terms (continued)

Term Meaning
UART Universal asynchronous/synchronous receiver transmitter
XLB bus Internal 64-bit bus

Terminology and Notational Conventions

Table iii shows notational conventions used throughout this document.

Table iii. Notational Conventions

Instruction Operand Syntax

Opcode Wildcard

cc Logical condition (example: NE for not equal)

Register Specifications

An Any address register n (example: A3 is address register 3)
Ay,Ax Source and destination address registers, respectively
Dn Any data register n (example: D5 is data register 5)
Dy,Dx Source and destination data registers, respectively
Rc Any control register (example VBR is the vector base register)
Rm MAC registers (ACC, MAC, MASK)
Rn Any address or data register
Rw Destination register w (used for MAC instructions only)
Ry,Rx Any source and destination registers, respectively
Xi index register i (can be an address or data register: Ai, Di)

Register Names

ACC MAC accumulator register
CCR Condition code register (lower byte of SR)
MACSR MAC status register
MASK MAC mask register
PC Program counter
SR Status register

Port Name

PSTDDATA Processor status/debug data port

Miscellaneous Operands

#<data> Immediate data following the 16-bit operation word of the instruction

<ea> Effective address
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Table iii. Notational Conventions (continued)

Instruction Operand Syntax
<ea>y,<ea>X | Source and destination effective addresses, respectively
<label> Assembly language program label
<list> List of registers for MOVEM instruction (example: D3-D0)
<shift> Shift operation: shift left (<<), shift right (>>)
<size> Operand data size: byte (B), word (W), longword (L)
bc Both instruction and data caches
dc Data cache
ic Instruction cache
# <vector> Identifies the 4-bit vector number for trap instructions
<> identifies an indirect data address referencing memory
<XXX> identifies an absolute address referencing memory
dn Signal displacement value, n bits wide (example: d16 is a 16-bit displacement)
SF Scale factor (x1, x2, x4 for indexed addressing mode, <<1n>> for MAC operations)
Operations
+ Arithmetic addition or postincrement indicator
- Arithmetic subtraction or predecrement indicator
X Arithmetic multiplication
/ Arithmetic division
~ Invert; operand is logically complemented
& Logical AND
| Logical OR
A Logical exclusive OR
<< Shift left (example: DO << 3 is shift DO left 3 bits)
>> Shift right (example: DO >> 3 is shift DO right 3 bits)
- Source operand is moved to destination operand
«—> Two operands are exchanged

sign-extended

All bits of the upper portion are made equal to the high-order bit of the lower portion

If <condition>

Test the condition. If true, the operations after ‘then’ are performed. If the condition is false and the

then optional ‘else’ clause is present, the operations after ‘else’ are performed. If the condition is false
<operations> | and else is omitted, the instruction performs no operation. Refer to the Bcc instruction description
else as an example.
<operations>
Subfields and Qualifiers
{ Optional operation
0 Identifies an indirect address
d, Displacement value, n-bits wide (example: dy¢ is a 16-bit displacement)
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Terminology and Notational Conventions

Table iii. Notational Conventions (continued)

Instruction Operand Syntax
Address Calculated effective address (pointer)
Bit Bit selection (example: Bit 3 of DO)
Isb Least significant bit (example: Isb of DO)
LSB Least significant byte
LSW Least significant word
msb Most significant bit
MSB Most significant byte
MSW Most significant word
Condition Code Register Bit Names
C Carry
N Negative
\ Overflow
X Extend
Z Zero

Table iv. MCF548x Revision History

Section/Page

Substantive Changes

Revision 1.0 (03/2004)

Initial release.

Revision 1.1 (03/2004

Figure 15-1/Page 15-2

Changed instances of FEC2 to FEC1 and FEC1 to FECO.

30.3.1/30-6—
30.3.3.1/30-10

Changed instances of FEC2 to FEC1 and FEC1 to FECO.

Revision 1.2 (03/2004)

Revision 2.0 (10/2004)

Many content changes, the biggest being greatly enhancing the MC-DMA chapter and adding Clocks and
Internal Buses chapter. Many editorial changes.

Revision 2.1 (10/2004)

Chapter 17 | Took out FlexCan chapter. Fixed timing diagrams in FlexBus chapter.
Revision 3.0 (01/2006)
Throughout | Added all documentation errata from Revision 3 of the MCF5485RMAD document as described below.
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Table iv. MCF548x Revision History (continued)

Section/Page

Substantive Changes

Table 2-1/2-3

Add column to indicate whether the signal has a pull-up resistor.

These signals have a pull-up resistor at all times:
DSCLK/TRST, BKPT/TMS, DSI/TDI

These signals have a pull-up resistor whenever configured for general-purpose input (default state after

reset):
PCIBR[4:3], PCIGNTI[4:3], EIMDIO, EIMDC, E1TXCLK, E1TXEN, E1TXD[3:0], E1ICOL, E1RXCLK,

E1RXDV, E1RXD[3:0], EICRS, E1TXER, E1RXER

Table 2-1/2-3

Remove overbars from the following signals: FBADDR1, FBADDRO, SDDATA, SDADDR, SDBA, TIN3,
TOUT3

Table 2-1/2-3

In entry AD6, remove overbar from ALE and change description from “Transfer start” to “Address latch
enable”

Table 2-1/2-3

Add overbars to IRQ[6:5].

Table 2-2/2-10

* Replace PPSCLn entries under the GPIO column with PPSC1PSCOn. There is no PPSCL port.
* Replace PPSCHn entries under the GPIO column with PPSC3PSC2n. There is no PPSCH port.

Table 2-2/2-10

The GPIO bit number for each of the UART control signals are incorrect for Table 2-2. However, they are
correct for Table 2-1:

* Y23/PSC1RTS pin: Change GPIO entry from PPSCL7 to PPSC1PSCO06.

AB23/PSC3RTS pin: Change GPIO entry from PPSCH7 to PPSC3PSC26.

AB26/PSCORTS pin: Change GPIO entry from PPSCL3 to PPSC1PSCO02.

* AC19/PSC2CTS pin: Change GPIO entry from PPSCH2 to PPSC3PSC23.

* AD26/PSC2RTS pin: Change GPIO entry from PPSCH3 to PPSC3PSC22.

e AE23/PSCOCTS pin: Change GPIO entry from PPSCL2 to PPSC1PSCO03.

* AF23/PSC3CTS pin: Change GPIO entry from PPSCH6 to PPSC3PSC27.

¢ AF25/PSC1CTS pin: Change GPIO entry from PPSCL6 to PPSC1PSCO07.

Table 2-2/2-10

Remove overbars from the following signals: IVDD, TCK, PLLVDD, PSTDDATA1, PSTDDATA7, SDDATA21,
PSTDDATA2, E1RXCLK, E1RXD2, SDVDD, SDDATA31, SDADDR4, DSCLK, VSS, EVDD, PCIAD29,
PCIAD30, SCL, SDDATA16, AD17, AD20, E1CRS, EOTXD2, TOUT2, TOUT1, PSC2TXD, ALE, EOTXDS3,
SDBA1, SDBAO, USBVDD, PSC3RXD, AD25, USBRBIAS, TIN1, TIN2, TINO

Table 2-2/2-10

Add overbars to the following signals: IRQ3, IRQ2

Table 2-4/2-22

Replace table with the following:

Table 1. MCF548x Divide Ratio Encodings

, | Clock | CLKIN-PCl and FlexBus | 'Mternal XLB, SDRAM | ¢ o £ o quency
AD[12:8] Ratio |Frequency Range (MHz) bus, and PSTCLK Range (MHz)
q y 9 Frequency Range (MHz) 9
00011 1:2 41.6-50.0 83.33-100 166.66—200
00101 1:2 25.0-41.5 50.0-83.0° 100.0-166.66
01111 1:4 25.0 100 200

1 All other values of AD[12:8] are reserved.
2 Note that DDR memories typically have a minimum speed of 83 MHz. Some vendors specifiy
down to 75 MHz. Check with the memory component specifications to verify.
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Terminology and Notational Conventions

Table iv. MCF548x Revision History (continued)

Section/Page Substantive Changes
2.2.6.1/2-22 Add the following after Table 2-4:
Figure 1 correlates CLKIN, internal bus, and core clock frequencies for the 1x—4x multipliers.
CLKIN Internal Clock Core Clock
I:l: 2x >| |<— 2X ——> |
25.0 50.0 50.0 100.0 100.0 200.0
I: 4x ‘I < 2x I
25.0 1£)0.0 209.0
25 40 50 60 70 30 40 50 60 70 80 90 100 60 70 80 90 100110120 130 140 150 160 170 180 190 200
CLKIN (MHz) Internal Clock (MHz) Core Clock (MHz)

Figure 1. CLKIN, Internal Bus, and Core Clock Ratios

3.8.1/3-38 Change the second sentence of the first paragraph from “The second holds the 32-bit program counter
address of the faulted instruction.” to “The second holds the 32-bit program counter address of the faulted
or interrupted instruction.”

Table 3-23/3-40 The “Interrupt exception” entry’s description is outdated. Change from “Interrupt exception processing, with
interrupt recognition and vector fetching, includes uninitialized and spurious interrupts as well as those
where the requesting device supplies the 8-bit interrupt vector. Autovectoring can optionally be configured
through the system interface module (SIM).” to “Please refer to Chapter 13 ‘Interrupt Controller.”

Table 10-2/10-5 Add missing table using Table 1 from this document.
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Table iv. MCF548x Revision History (continued)

Section/Page Substantive Changes

10.2/10-5

10.2 PLL
10.2.1 PLL Memory Map/Register Descriptions

Insert the following section before section 10.2 “XL Bus Arbiter”.

Table 2. System PLL Memory Map

MBAR Offset

Name

Byte0 Byte1 Byte2

Byte3

Access

0x300

System PLL Control Register

SPCR

R/W

10.2.2 System PLL Control Register (SPCR)

The system PLL control register (SPCR) defines the clock enables used to control clocks to a set of peripherals. Unused peripherals
can have their clock stopped, reducing power consumption. In addition, the SPCR contains a read-only bit for the system PLL lock
status. At reset, the clock enables are set, enabling all system PLL gated output clocks.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rl O COR | CRY | CRY |CAN1 0 PSC 0 USB | FEC1 | FECO | DMA |CANO| FB PCI | MEM
W EN ENB | ENA | EN EN EN EN EN EN EN EN EN EN
Reset 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Addr MBAR + 0x300
Figure 2. System PLL Control Register (SPCR)
Table 3. SPCR Field Descriptions
Bits Name Description
31 PLLK System PLL Lock Status - Read-only lock status of the system PLL.
1 PLL has obtained frequency lock
0 PLL has not locked
30-15 —_ Reserved, should be cleared.
14 COREN Core & Communications Sub-System Clock Enable - Controls clocks for the CF4 Core, System SRAM, CommBus
Arbiter, 12C, Comm Timers, and External DMA modules
13 CRYENB Crypto Clock Enable B - Controls the fast clock to the SEC
12 CRYENA Crypto Clock Enable A - Controls the slow clock to the SEC
11 CAN1EN CANT1 Clock Enable
10 — Reserved, should be cleared.
9 PSCEN PSC Clock Enable - Controls clock for all PSC modules.
8 — Reserved, should be cleared.
7 USBEN USB Clock Enable
6 FEC1EN FEC1 Clock Enable
5 FECOEN FECO Clock Enable
4 DMAEN Multi-channel DMA Clock Enable
3 CANOEN CANO Clock Enable
2 FBEN FlexBus Clock Enable
1 PCIEN PCI Bus Clock Enable
0 MEMEN Memory Clock Enable - Controls clocks of the SDRAM controller module
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Table iv. MCF548x Revision History (continued)

Section/Page

Substantive Changes

Table 10-3/10-5

Bits BA, DT, and AT: The 0 and 1 are switched. Setting each bit enables operation, while clearing disables
operation. The 0 and 1 (or the corresponding descriptions) need to be swapped for all three bits.

11.4.2/11-8 Remove all text from bullet item #2 starting with “This scenario works for all pulses except...” This errata
does not apply to this processor.
13.1.1/13-1 Correct the cross-reference link at top of page that reads “Section 3.8.1, ‘Exception Stack Frame

)

Definition.

Table 15-27/15-24

In the bit 7-6, PAR1_E1MDC entry, change ‘11’ bit setting description from: “E1MDC pin configured for
FEC1 MDC function” to “E1MDC pin configured for FEC1 E1MDC function” to be consistent with rest of
section.

Table 15-34/15-30

Remove extraneous “/” from “DSPICS0//SS” in second sentence of the PAR_CSO bit description.

Table 16-1/16-2

Extend SSCR entry to include bytes 2 & 3 as well as bytes 0 and 1, since it is a 32 bit register.

17.6.5.4.2/17-23

Change “transfer start” to “address latch enable” in second sentence.

21.4.9/21-28

Figure 21-14 and Table 21-18 are missing. Add them as shown below and correct the cross-references to
them.

VA
x NRZ Signal ( )
SYNC_SEG Time Segment 1 Time Segment 2
(PROP_SEG + PSEG1 + 2) (PSEG2 + 1)
! Y 4..16 AAA 2.8
< 8 ... 25 Time Quanta L >
=1 Bit Time |
| |
Transmit Point Sample Point _
(single or triple sampling)
Figure 21-14. Segments within the Bit Time
Table 21-18. Time Segment Syntax
Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

Transmit Point | A node in transmit mode transfers a new value to the CAN bus at this point.

Sample Point | A node samples the bus at this point. If the three samples per bit option is selected,
then this point marks the position of the third sample.

MCF548x Reference Manual, Rev. 3

Freescale Semiconductor liii




Table iv. MCF548x Revision History (continued)

Section/Page

Substantive Changes

21.4.9/21-28

Add the following table below the note at the end of the section and correct the cross-reference pointing to
it:

Table 21-19. CAN Standard Compliant Bit Time Segment Settings

Time Segment1 | Time Segment 2 Re-j{ll::;c\;?(:::tion
5..10 2 1.2
4.1 3 1.3
5..12 4 1.4
6..13 5 1..4
7..14 6 1..4
8..15 7 1.4
9..16 8 1.4

Table 23-5/23-7

The JTAG IR codes are incorrect. Replace table with the following:

Instruction | IR[5:0] Instruction Summary

EXTEST |000000|Selects boundary scan register while applying fixed values to output
pins and asserting functional reset

SAMPLE |000001|Selects boundary scan register for shifting, sampling, and preloading
without disturbing functional operation

IDCODE |011101|Selects IDCODE register for shift

CLAMP 011111 |Selects bypass while applying fixed values to output pins and
asserting functional reset

HIGHZ 111101 | selects bypass register while tri-stating all output pins and asserting
functional reset

ENABLE |000010|Selects TEST_CTRL register

BYPASS 111111 |Selects bypass register for data operations

23.4.3/23-7

Remove the TEST_LEAKAGE section, as the instruction is not supported.

23.4.3/23-7

Remove the LOCKOUT_RECOVERY section, as the instruction is not supported.

Table 24-18/24-20

Correct Base Address Mask Register 1 mnemonic from EREQMASKO to EREQMASK1.

24.3.4.2/24-20

Correct overbar in first sentence. From “After DREQ is asserted, this register contains...” to “After DREQ
is asserted, this register contains..”
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Terminology and Notational Conventions

Table iv. MCF548x Revision History (continued)

Section/Page

Substantive Changes

25.1.2/25-2

Add the following section after section 24.1.2:

24.1.3 Comm Timer External Clock[7:0]

The comm timer external clock is the alternate clock signal and is provided by the user. The user must write
a 1to CTCRJS] in the variable channel and write a 1001 to CTCR[S] within the fixed channel to select this
signal. If this signal is selected, all timing will be with respect to this clock signal. This signal is restricted to
being half the frequency or less of the system bus clock.

Table 0-4. Comm Timers External Clock

Timer Channel External Signal

0 TINO
TIN1
TIN2
TIN3

PSC3BCLK

PSC2BCLK

PSC1BCLK

PSCOBCLK

N o| o] M O[N] =

Table 25-3/25-5

In the S bit description change the 1001 setting from “Reserved” to “External clock”

Table 25-4/25-6

The S bit field is incorrect. Bits 31-29 should be reserved, and only bit 28 should be the S bit. And the S bit
description should be:

Clock enable source select. Selects the clock rate for the fixed timer channels. The clock rate for the timer
is the internal system clock divided by an 8-bit prescaler.

1 External Clock

0 Sysclk

Note: The external bus clock cannot be an faster than half the frequency of the system clock.

26.1/26-1

Fix broken cross-reference to Figure 26-1.

Table 26-13/26-19

In description of TXRDY change PSCTFALARM to PSCTFAR

Table 26-30/26-29

In description of ALARM change instance of “less than alarm bytes” to “more than alarm bytes” and change
instance of “more than alarm bytes” to “less than alarm bytes”.

26.3.3.24/26-30

Change bit 30 to reserved, as the WFR field is only one-bit wide.

Figure 26-22/Page
26-32

Remove shading from W field as the PSCRFARn and PSCTFARn registers are R/W accessible.

26.4/26-35

Add section 15.3.7 “PSC FIFO System” from the MPC5200 User’s Manual to before section 26.4.9
“Looping Modes.” Change the following text to apply to the MCF548x:

MPC5200 — MCF5478x

BestComm — Multichannel DMA

MR1 —» PSCMR1n

SR— PSCSRn

ORERR — ERR

Figure 28-1/Page 28-1

Change IFDR to I12FDR and IADR to I2ADR in figure.

28.3.2.1/28-3 Change instances of 12AR to I2ADR.
28.3.2.3/28-5 Change I12ICR to 12CR throughout section.
Chapter 28, “12C After section 27.3.2.4, change instances of R/W to R/W throughout chapter.
Interface”
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Table iv. MCF548x Revision History (continued)

Section/Page

Substantive Changes

27.6.1/27-5

Remove instances of MDIS bit as it is not present on this version of the DSPI.

Table 29-3/29-11

USBCR[APPLOCK] bit description, the bit setting numbers are incorrrect. When cleared (0), APPLOCK is
deasserted. When set (1), APPLOCK is asserted.

Table 29-29/29-30

Endpoint status register's PSTALL entry: the last sentence should be “Setting this bit also sets
USBAISR[EPSTALL].” instead of “Setting this bit also sets USBAISR[EPHALT]”

Table 29-37/29-36

EPnISR[EOT] bit description, add a note to the last sentence of the first paragraph stating “The EOT
interrupt will not assert for an isochronous OUT packet that experiences a PID sequencing error.”

29.4.3.1/29-51

Add a section below USB Packets entitled “Handshakes” with the following paragraphs:
“The USB device will return a NYET handshake packet to an OUT transaction if there is already data
present in the FIFO and there are less than 2*MAXPACKETSIZE bytes free in the FIFO.

In cases where the FIFO depth is larger than 2*MAXPACKETSIZE (i.e. 3x or 4x), the following behavior
will occur. If after a transfer that returned a NYET handshake there is at least 1*MAXPACKETSIZE of free
space in the FIFO, the device will ACK the first PING request from the host and accept another
MAXPACKETSIZE transfer from the host. The device will again send a NYET handshake.

The only time the device will NAK a PING is when there is less than 1*MAXPACKETSIZE of free space in
the FIFO”

Table 30-41/30-42

Change bit description of the FECFRST[SW_RST] bit to “Software Reset - This bit controls the soft reset
of the FEC FIFOs. A soft reset will reset the FIFO pointers and byte counters but not the status and control
registers. To cause a soft reset this bit should be set and then cleared by application software.”

Change bit description of the FECFRST[RST_CTL] bit to “Reset control - Setting this bit allows the FEC
controller to perform a soft reset of the FIFOs when the FEC is disabled (ECR[ETHER_EN] cleared).”

Table 31-1/31-1

Add column to indicate whether the signal has a pull-up resistor.

These signals have a pull-up resistor at all times:
DSCLK/TRST, BKPT/TMS, DSI/TDI

These signals have a pull-up resistor whenever configured for general-purpose input (default state after
reset):

PCIBRI[4:3], PCIGNTI[4:3], EIMDIO, EIMDC, E1TXCLK, E1TXEN, E1TXD[3:0], E1ICOL, E1RXCLK,
E1RXDV, E1RXD[3:0], E1ICRS, E1TXER, E1RXER

Table 31-1/31-1

Ball P3 should be SD_VDD instead of EVDD.

Table 31-1/31-1

The GPIO bit number for each of the UART control signals are incorrect for Table 31-1. However, they are
correct for Table 2-1:

¢ Y23/PSC1RTS pin: Change GPIO entry from PPSCL7 to PPSC1PSCO06.

* AB23/PSC3RTS pin: Change GPIO entry from PPSCH7 to PPSC3PSC26.

* AB26/PSCORTS pin: Change GPIO entry from PPSCL3 to PPSC1PSCO02.

* AC19/PSC2CTS pin: Change GPIO entry from PPSCH2 to PPSC3PSC23.

* AD26/PSC2RTS pin: Change GPIO entry from PPSCH3 to PPSC3PSC22.

e AE23/PSCOCTS pin: Change GPIO entry from PPSCL2 to PPSC1PSCO03.

* AF23/PSC3CTS pin: Change GPIO entry from PPSCH6 to PPSC3PSC27.

¢ AF25/PSC1CTS pin: Change GPIO entry from PPSCL6 to PPSC1PSCO07.

Table 31-1/31-1

Remove overbar from ALE at location ADG6.

Table 31-1/31-1

* Replace PPSCLn entries under the GPIO column with PPSC1PSCOn. There is no PPSCL port.
* Replace PPSCHn entries under the GPIO column with PPSC3PSC2n. There is no PPSCH port.
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Table iv. MCF548x Revision History (continued)

Section/Page Substantive Changes

Figure 31-3/Page 31-10 | Remove overbar from ALE at location ADB6.

Figure 31-7/Page 31-14 | Remove overbar from ALE at location AD6.

Figure 31-11/Page Remove overbar from ALE at location AD6.
31-18
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Chapter 1
Overview

This chapter provides an overview of the MCF548x microprocessor features, including the major
functional components.

1.1 MCF548x Family Overview

The MCF548x family is based on the ColdFire V4e core, a complex which comprises the ColdFire V4
central processor unit (CPU), an enhanced multiply-accumulate unit (EMAC), a memory management unit
(MMU), a double-precision floating point unit (FPU) conforming to standard IEEE-754, and controllers
for caches and local data memories. The MCF548x family is capable of performing at an operating
frequency of up to 200 MHz or 308 MIPS (Dhrystone 2.1).

To maximize throughput, the MCF548x family incorporates three independent external bus interfaces:

1. The general-purpose local bus (FlexBus) is used for system boot memories and simple peripherals
and has up to six chip selects.

2. Program code and data can be stored in SDRAM connected to a dedicated 32-bit double data rate
(DDR) bus that can run at up to one-half of the CPU core frequency. The glueless DDR SDRAM
controller handles all address multiplexing, input and output strobe timing, and memory bus clock
generation.

3. A 32-bit PCI bus compliant with the version 2.2 specification and running at a typical frequency
of 33 MHz or 66 MHz supports peripherals that require high bandwidth, the ability to arbitrate for
bus mastership, and access to internal MCF548x memory resources.

The MCF548x family provides substantial communications functionality by integrating the following
connectivity peripherals:

* Up to two 10/100 Mbps fast Ethernet controllers (FECs)

*  One optional USB 2.0 device (slave) module with seven endpoints and an integrated transceiver
* Up to four UART/USART/IRDA/modem programmable serial controllers (PSCs)

* One DMA serial peripheral interface (DSPI)

* One inter-integrated circuit (12C™) bus controller

» Two controller area network 2.0B (FlexCAN) interfaces with 16 message buffers each

Additionally, the MCF548x provides hardware support for a range of Internet security standards with an
optional bus-mastering cryptography accelerator. This module incorporates units to speed DES/3DES and
AES block ciphers, the RC4 stream cipher, bulk data hashing (MD5/SHA-1/SHA-256/HMAC), and
random number generation. Hardware acceleration of these functions is critical to avoiding the throughput
bottlenecks associated with software-only implementations of SSH, SSL/TLS, IPsec, SRTP, WEP, and
other security standards. The incorporation of cryptography acceleration makes the MCF548x family a
compelling solution for a wide range of office automation, industrial control, and SOHO networking
devices that must have the ability to securely transmit critical equipment control information across
typically insecure Ethernet data networks.

Additional features of MCF548x products include a watchdog timer, two 32-bit slice timers for RTOS
scheduling and alarm functionality, up to four 32-bit general-purpose timers with capture, compare, and
pulse width modulation capability, a multisource vectored interrupt controller, a phase-locked loop (PLL)
to generate the system clock, 32 Kbytes of SRAM for high-speed local data storage, and multiple
general-purpose I/O ports.
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With on-chip support for multiple common communications interfaces, MCF548x products require only
the addition of memories and certain physical layer transceivers to be cost-effective system solutions for
many applications. Such applications include industrial routers, high-end POS terminals, building
automation systems, and process control equipment.

MCF548x products require four supply voltages: 1.5V for the high-performance, low power, internal core
logic, 2.5V for the DDR SDRAM bus interface, 1.25V for the DDR SDRAM Vygg, and 3.3V for all other
I/O functionality, including the PCI and FlexBus interfaces.

1.2
Figure 1-1 shows a top-level block diagram of the MCF548x products.

MCF548x Block Diagram

ColdFire V4e Core
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FlexCAN Multichannel DMA PCI Interface
x2 Master Bus Interface and FIFOs & FIFOs 2 c
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CommBus 32
58
E®
USB 2.0 § g
DSPI 12c PSC x4 FECA1 FEC2? DEVICI.E1

1 Available in MCF5485, MCF5484, MCF5483, and MCF5482 devices.
2 Available in MCF5485, MCF5484, MCF5481, and MCF5480 devices.
3 Available in MCF5485, MCF5483, and MCF5481 devices.

Figure 1-1. MCF548x Block Diagram
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1.3 MCF548x Family Products

Table 1-1 summarizes the products available within the MCF548x product family. All products are
available in pin-compatible, 388-pin PBGA packaging allowing for ease of migration between products
within the family. A printed circuit board designed using the MCF5485/4 footprint is compatible with any
of the MCF548x family devices.

Table 1-1. MCF548x Family Products

MCF548x Family Products

Product

Performance

Features

Temperature Range

MCF5485

308 MIPS
200 MHz

Two 10/100 Ethernet Controllers
Two CAN Controllers
USB 2.0 Device with Integrated PHY
v2.2 PCI Controller
DDR Memory Controller
Encryption Accelerator

-40t085°C

MCF5484

308 MIPS
200 MHz

Two 10/100 Ethernet Controllers
Two CAN Controllers
USB 2.0 Device with Integrated PHY
v2.2 PCI Controller
DDR Memory Controller

-40t085°C

MCF5483

255 MIPS
166 MHz

One 10/100 Ethernet Controller
Two CAN Controllers
USB 2.0 Device with Integrated PHY
v2.2 PCI Controller
DDR Memory Controller
Encryption Accelerator

-40t085°C

MCF5482

255 MIPS
166 MHz

One 10/100 Ethernet Controller
Two CAN Controllers
USB 2.0 Device with Integrated PHY
v2.2 PCI Controller
DDR Memory Controller

-40t085°C

MCF5481

255 MIPS
166 MHz

Two 10/100 Ethernet Controllers
Two CAN Controllers
v2.2 PCI Controller
DDR Memory Controller
Encryption Accelerator

-40t085°C

MCF5480

255 MIPS
166 MHz

Two 10/100 Ethernet Controllers
Two CAN Controllers
v2.2 PCI Controller
DDR Memory Controller

-40t085°C

1.4 MCF548x Family Features

* ColdFire V4e core

— Limited superscalar V4 ColdFire processor core
— Up to 200 MHz peak internal core frequency (308 Dhrystone 2.1 MIPS)
— Harvard architecture

— 32-Kbyte instruction cache

— 32-Kbyte data cache
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— Memory management unit (MMU)
— Separate, 32-entry, fully-associative instruction and data translation lookahead buffers

— Floating point unit (FPU)

— Double-precision support that conforms to IEEE-754 standard

— Eight floating point registers
Internal master bus (XLB) arbiter
— High performance split address and data transactions
— Support for various parking modes
32-bit double data rate (DDR) synchronous DRAM (SDRAM) controller
— 66—133 MHz operation
— Supports both DDR and SDR DRAM
— Built-in initialization and refresh
— Up to four chip selects enabling up to 1 GB of external memory
Version 2.2 peripheral component interconnect (PCI) bus
— 32-bit target and initiator operation
— Support for up to five external PCI masters
— 33-66 MHz operation with PCI bus to XLB divider ratios of 1:1, 1:2, and 1:4
Flexible multi-function external bus (FlexBus)
— Supports operation with the following:

Non-multiplexed 32-bit address and 32-bit data (32-bit address muxed over
PCI bus—PCI not usable)

— Multiplexed 32-bit address and 32-bit data (PCI usable)

— Multiplexed 32-bit address and 16-bit data

— Multiplexed 32-bit address and 8-bit data

— Provides a glueless interface to boot Flash/ROM, SRAM, and peripheral devices

— Up to six chip selects

— 33-66 MHz operation

Communications I/O subsystem

— Intelligent 16-channel DMA controller

— Dedicated DMA channels for receive and transmit on all subsystem peripheral interfaces

— Up to two 10/100 Mbps fast Ethernet controllers (FECs), each with separate 2-Kbyte receive
and transmit FIFOs

— Universal serial bus (USB) version 2.0 device controller
— Support for one control and six programmable endpoints — interrupt, bulk, or isochronous
— 4 Kbytes of shared endpoint FIFO RAM and 1 Kbyte of endpoint descriptor RAM
— Integrated physical layer interface

— Up to four programmable serial controllers (PSCs) each with separate 512-byte receive and
transmit FIFOs for UART, USART, modem, codec, and IrDA 1.1 interfaces

— 1’C peripheral interface

— Two FlexCAN controller area network 2.0B controllers each with 16 message buffers
— DMA serial peripheral interface (DSPI)

Optional security encryption controller (SEC) module
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MCF548x Family Features

— Execution units for the following:
— DES/3DES block cipher

— AES block cipher
— RC4 stream cipher
— MD5/SHA-1/SHA-256/HMAC hashing

— Random number generator compliant with FIPS 140-1 standards for randomness and
non-determinism

— Dual-channel architecture permits single-pass encryption and authentication
* 32-Kbyte system SRAM

— Arbitration mechanism shares bandwidth between internal bus masters (CPU, cryptography
accelerator, PCI, and DMA)

* System integration unit (SIU)
— Interrupt controller
— Watchdog timer
— Two 32-bit slice timers for periodic alarm and interrupt generation
— Up to four 32-bit general-purpose timers with capture, compare, and PWM capability
— General-purpose I/O ports multiplexed with peripheral pins
* Debug and test features
— Core debug support via ColdFire background debug mode (BDM) port
— Chip debug support via JTAG/ IEEE 1149.1 test access port
* PLL and clock generator
— 30-66.67 MHz input frequency range
* Operating Voltages
— 1.5V internal logic
— 2.5V DDR SDRAM bus I/O (1.25V Vggp)
— 3.3V PCI, FlexBus, and all other I/O
+ Estimated power consumption
— <1.5W

1.4.1 ColdFire V4e Core Overview

The ColdFire V4e core is a variable-length RISC, clock-multiplied core that includes a Harvard memory
architecture, branch cache acceleration logic, and limited superscalar dual-instruction issue capabilities.
The limited superscalar design approaches dual-issue performance with the cost of a scalar execution
pipeline.

The ColdFire V4e processor core is comprised of two separate pipelines that are decoupled by an
instruction buffer. The four-stage instruction fetch pipeline (IFP) prefetches the instruction stream,
examines it to predict changes of flow, partially decodes instructions, and packages fetched data into
instructions for the operand execution pipeline (OEP). The IFP can prefetch instructions before the OEP
needs them, minimizing the wait for instructions. The instruction buffer is a 10 instruction, first-in-first-out
(FIFO) buffer that decouples the IFP and OEP by holding prefetched instructions awaiting execution in
the OEP. The OEP includes five pipeline stages: the first stage decodes instructions and selects operands
(DS), and the second stage generates operand addresses (OAG). The third and fourth stages fetch operands
(OC1 and OC2), and the fifth stage executes instructions (EX).
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The ColdFire V4e processor contains a double-precision floating point unit (FPU). The FPU conforms to
the American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE)
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754). The FPU operates on 64-bit,
double-precision floating point data and supports single-precision and signed integer input operands. The
FPU programming model is like that in the MC68060 microprocessor. The FPU is intended to accelerate
the performance of certain classes of embedded applications, especially those requiring high-speed
floating point arithmetic computations.

The ColdFire V4e processor also incorporates the ColdFire memory management unit (MMU), which
provides virtual-to-physical address translation and memory access control. The MMU consists of
memory-mapped control, status, and fault registers that provide access to translation lookaside buffers
(TLBs). Software can control address translation and access attributes of a virtual address by configuring
MMU control registers and loading TLBs. With software support, the MMU provides demand-paged,
virtual addressing.

The ColdFire V4e core implements the ColdFire instruction set architecture revision B with support for
floating Point instructions. Additionally, the ColdFire V4e core includes the enhanced
multiply-accumulate unit (EMAC) for improved signal processing capabilities. The EMAC implements a
4-stage execution pipeline, optimized for 32 x 32-bit operations, with support for four 48-bit accumulators.
Supported operands include 16- and 32-bit signed and unsigned integers, as well as signed fractional
operands and a complete set of instructions to process these data types. The EMAC provides superb
support for execution of DSP operations within the context of a single processor at a minimal hardware
cost.

Refer to Chapter 3, “ColdFire Core,” for detailed information on the ColdFire V4e core architecture.

1.4.2 Debug Module (BDM)

The ColdFire processor core debug interface is provided to support system debugging in conjunction with
low-cost debug and emulator development tools. Through a standard debug interface, users can access
real-time trace and debug information. This allows the processor and system to be debugged at full speed
without the need for costly in-circuit emulators.

The MCF548x debug module provides support in three different areas:

» Real-time trace support: The ability to determine the dynamic execution path through an
application is fundamental for debugging. The ColdFire solution implements an 8-bit parallel
output bus that reports processor execution status and data to an external BDM emulator system.

* Background debug mode (BDM): Provides low-level debugging in the ColdFire processor
complex. In BDM, the processor complex is halted and a variety of commands can be sent to the
processor to access memory and registers. The external BDM emulator uses a three-pin, serial,
full-duplex channel.

* Real-time debug support: BDM requires the processor to be halted, which many real-time
embedded applications cannot permit. Debug interrupts let real-time systems execute a unique
service routine that can quickly save key register and variable contents and return the system to
normal operation without halting. External development systems can access saved data, because
the hardware supports concurrent operation of the processor and BDM-initiated commands. In
addition, the option is provided to allow interrupts to occur.

1.43 JTAG

The MCF548x family supports circuit board test strategies based on the Test Technology Committee of
IEEE and the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting
of a 16-state controller, an instruction register, and three test registers (a 1-bit bypass register, a 256-bit
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MCF548x Family Features

boundary-scan register, and a 32-bit ID register). The boundary scan register links the device’s pins into
one shift register. Test logic, implemented using static logic design, is independent of the device system
logic. The MCF548x implementation can do the following:

» Perform boundary scan operations to test circuit board electrical continuity

» Sample MCF548x system pins during operation and transparently shift out the result in the
boundary scan register

* Bypass the MCF548x for a given circuit board test by effectively reducing the boundary-scan
register to a single bit

» Disable the output drive to pins during circuit-board testing

» Drive output pins to stable levels

1.4.4 On-Chip Memories

1.4.4.1 Caches

There are two independent caches associated with the ColdFire V4e core complex: a 32-Kbyte instruction
cache and a 32-Kbyte data cache. Caches improve system performance by providing single-cycle access
to the instruction and data pipelines. This decouples processor performance from system memory
performance, increasing bus availability for on-chip DMA or external devices.

1.4.4.2 System SRAM

The SRAM module provides a general-purpose 32-Kbyte memory block that the ColdFire core can access
in a single cycle. The location of the memory block can be set to any 32-Kbyte address boundary within
the 4-Gbyte address space. The memory is ideal for storing critical code or data structures, for use as the
system stack, or for storing FEC data buffers. Because the SRAM module is physically connected to the
processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing
commands from the debug module.

The SRAM module is also accessible by multiple non-core bus masters, such as the DMA controller, the
encryption accelerator, and the PCI Controller.

1.4.5 PLL and Chip Clocking Options

MCF548x products contain an on-chip PLL capable of accepting input frequencies from 30-66.66 MHz.
Table 1-2 contains the frequencies of the system buses for the members of the MCF548x family under
various core/SDRAM/PCI/Flexbus clocking options.

Table 1-2. MCF548x Family Clocking Options

Internal XLB, SDRAM
(‘,\:n‘:; Bus, and PSTCLK CLKI':"::':S:I:’:“?I\:::’Z’;B“S Clock Ratio
Frequency (MHz) q v
120.0-200 60.0-100 30.0-50.0 1:2
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1.4.6 Communications I/O Subsystem

1.4.6.1 DMA Controller

The communications subsystem contains an intelligent DMA unit that provides front line interrupt control
and data movement interface via a separate peripheral bus to the on-chip peripheral functions, leaving the
processor core free to handle higher level activities. This concurrent operation enables a significant boost
in overall system performance.

The communications subsystem can support up to 16 simultaneously enabled DMA tasks, with support for
up to two external DMA requests. It uses internal buffers to prefetch reads and post writes such that
bursting is used whenever possible. This optimizes both internal and external bus activity. The following
communications and computer control peripheral functions are integrated and controlled by the
communications subsystem:

* Up to two 10/100 Mbps fast Ethernet controllers (FECs)

* Optional universal serial bus (USB) version 2.0 device controller

» Up to four programmable serial controllers (PSCs)

- I%C peripheral interface

* DMA serial peripheral interface (DSPI)

* Two FlexCAN controller area network 2.0B controllers

1.4.6.2 10/100 Fast Ethernet Controller (FEC)

The FEC supports two standard MAC/PHY interfaces: 10/100 Mbps IEEE 802.3 MII and 10Mbps 7-wire
interface. The controller is full duplex, supports a programmable maximum frame length and
retransmission from the transmit FIFO following a collision.

Support for different Ethernet physical interfaces:
— 100 Mbps IEEE 802.3 MII
— 10 Mbps IEEE 802.3 MII
— 10 Mbps 7-wire interface

» IEEE 802.3 full-duplex flow control.

» Support for full-duplex operation (200 Mbps throughput) with a minimum system clock frequency
of 50 MHz.

» Support for half duplex operation (100 Mbps throughput) with a minimum system clock frequency
of 25 MHz.

* Retransmit from transmit FIFO following collision.
» Internal loopback for diagnostic purposes.

1.4.6.3 USB 2.0 Device (Universal Serial Bus)

The USB module implementation on the MCF548x product family provides all the logic necessary to
process the USB protocol as defined by version 2.0 specification for peripheral devices. It features the
following:

* High-speed operation up to 480 Mbps, full-speed operation at 12 Mbps, and low-speed operation
at 1.5 Mbps

» Physical interface on chip

* Bulk, interrupt, and isochronous transport modes.

» Six programmable in/out endpoints and one control endpoint
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MCF548x Family Features

* 4 Kbytes of shared endpoint FIFO RAM and 1 Kbyte of endpoint descriptor RAM

1.4.6.4 Programmable Serial Controllers (PSCs)

The MCF548x product family supports four PSCs that can be independently configured to operate in the
following modes:
» Universal asynchronous receiver transmitter (UART) mode
— 5,6,7,8 bits of data plus parity
— 0Odd, even, none, or force parity
— Stop bit width programmable in 1/16 bit increments
— Parity, framing, and overrun error detection
— Automatic PSCCTS and PSCRTS modem control signals
« IrDA 1.0 SIR mode (SIR)
— Baud rate range of 2400-115200 bps
— Selectable pulse width: either 3/16 of the bit duration or 1.6 ps
+ IrDA 1.1 MIR mode (MIR)
— Baud rate of 0.576 or 1.152 Mbps
« IrDA 1.1 FIR mode (FIR)
— Baud rate of 4.0 Mbps
» 8-bit soft modem mode (modemS)

* 16-bit soft modem mode (modem16)
* AC97 soft modem mode (AC97)

Each PSC supports synchronous (USART) and asynchronous (UART) protocols. The PSCs can be used to
interface to external full-function modems or external codecs for soft modem support, as well as IrDA 1.1
or 1.0 interfaces. Both 8- and 16-bit data widths are supported. PSCs can be configured to support a
1200-baud plain old telephone system (POTS) modem, V.34 or V.90 protocols. The standard UART
interface supports connection to an external terminal/computer for debug support.

1.4.6.5 I2C (Inter-Integrated Circuit)

The MCF548x product family provides an I2C two-wire, bidirectional serial bus for on-board
communication. It features the following:

*  Multimaster operation with arbitration and collision detection

» Calling address recognition and interrupt generation

* Automatic switching from master to slave on arbitration loss

» Software-selectable acknowledge bit

+ Start and stop signal generation and detection

* Bus busy status detection

1.4.6.6 DMA Serial Peripheral Interface (DSPI)

The DSPI block operates as a basic SPI block with FIFOs providing support for external queue operation.
Data to be transmitted and data received reside in separate FIFOs. The FIFOs can be popped and pushed
by host software or by the system DMA controller. The DSPI supports these SPI features:

* Full-duplex, three-wire synchronous transfers
* Master and slave mode—two peripheral chip selects in master mode
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*  DMA support

1.4.6.7 Controller Area Network (CAN)

The FlexCAN modules are communication controllers implementing the CAN protocol. The CAN
protocol can be used as an industrial control serial data bus, meeting the specific requirements of real-time
processing and reliable operation in a harsh EMI environment, while maintaining cost-effectiveness. Each
of the two CAN controllers on the MCF548x family products contains sixteen message buffers. The CAN
controllers can be configured to either function as an interface with two separate CAN networks, or as a
single 32 message buffer CAN network.

1.4.7 DDR SDRAM Memory Controller

The DDR SDRAM memory controller is a glueless interface to DDR memories. The module uses a 32-bit
memory port and can address a maximum of 1 Gbyte of data with 16 64M x 8 (512-Mbit) devices, four
per chip select. The controller supplies two clock lines and respective inverted clock lines to help minimize
system complexity when using DDR. The module supports either DDR or SDR, but not both. This is due
to voltage differences between the memory technologies.

The supported memory clock rate is up to 133 MHz. At this memory clock rate, DDR memory can receive
data at an effective rate of up to 266 MHz.

* Support for up to 13 lines of row address, 11 lines of column address, two lines of bank address,
and up to four chip selects

*  Memory bus width fixed at 32 bits

*  Four chip selects support up to 1 GByte of SDRAM memory

* Support for page mode to maximize the data rate. Page mode remembers active pages for all four
chip selects

» Support for sleep mode and self refresh

* Cache line reads that can use critical word first. These reads can start in the center of a burst and
will wrap to the beginning. This allows the processor quicker access to a needed instruction.

All on-chip bus masters have access to DRAM. This includes PCI, the ColdFire V4e core, the
cryptography accelerator, and the DMA controller.

1.4.8 Peripheral Component Interconnect (PCI)

The PCI controller is a PCI V2.2-compliant bus controller and arbiter. The PCI bus is capable of 66-MHz
operation with a 32-bit address/data bus and support for five external masters.

The PCI module includes an inbound FIFO to increase performance when using an external bus master.
The bus can address all 4 Gbytes of PCI-addressable space.

The PCI bus is also multiplexed with the flexible local bus (FlexBus) address lines. If 32-bit non-muxed
local address and data is required, it can be obtained at the expense of utilizing the PCI bus.

When implemented, the PCI controller acts as the central resource, bus arbiter, and configuring master on
the PCI bus.

1.4.9 Flexible Local Bus (FlexBus)

The FlexBus module is intended to provide the user with basic functionality required to interface to
peripheral devices. The FlexBus interface is a multiplexed or non-multiplexed bus, with an operating
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MCF548x Family Features

frequency from 33—-66 MHz. The Flexbus is targeted to support external Flash memories, boot ROMs,
gate-array logic, or other simple target interfaces. Up to six chip selects are supported by the FlexBus.

Possible combinations of address and data bits are the following:
*  Non-multiplexed 32-bit address and 32-bit data (32-bit address muxed over
PCI bus—PCI not usable)
» Multiplexed 32-bit address and 32-bit data (PCI usable)
*  Multiplexed 32-bit address and 16-bit data
» Multiplexed 32-bit address and 8-bit data

The non-multiplexed 32-bit address and 32-bit data mode is determined at chip reset. For all other modes,
the full 32-bit address is driven during the address phase. The number of bytes used for data are determined
on a chip select by chip select basis.

1.4.10 Security Encryption Controller (SEC)

As consumers and businesses continue to embrace the Internet, the need for secure point-to-point
communications across what is an entirely insecure network has been met by the development of a range
of standard protocols. Computer cryptography fundamentally involves calculations with very large
numbers. Personal computers have sufficient processing power to implement these algorithms entirely in
software. When placed upon the embedded devices typically used for routing and remote access functions,
this same computational burden can potentially decrease the throughput of a 100 Mbps Ethernet interface
down to 10 Mbps.

Hardware acceleration of common cryptography algorithms is the solution to the computational bandwidth
requirements of Internet security standards. Discrete solutions currently address this problem, but the next
logical step is to integrate a cryptography accelerator on an embedded processor, such as the MCF548x
family.

Freescale has developed the SEC on the MCF548x family for this purpose. This block accelerates the core
cryptography algorithms that underlie standard Internet security protocols like SSL/TLS, IPSec, IKE, and
WTLS/WAP.

» The SEC includes execution units for the following:
— DES/3DES block cipher
— AES block cipher
— RC4 stream cipher
— MDS5/SHA-1/SHA-256/HMAC hashing

— Random number generator compliant with FIPS 140-1 standards for randomness and
non-determinism

* Dual-channel architecture permits single-pass encryption and authentication
1.4.11 System Integration Unit (SIU)

1.4.11.1 Timers

The MCF548x family integrates several timer functions required by most embedded systems. Two internal
32-bit slice timers create short cycle periodic interrupts, typically utilized for RTOS scheduling and alarm
functionality. A watchdog timer resets the processor if not regularly serviced, catching software hang-ups.
Four 32-bit general purpose timers can perform input capture, output compare, and PWM functionality.
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1.4.11.2 Interrupt Controller

The interrupt controller on the MCF548x family can support up to 63 interrupt sources. The interrupt
controller is organized as seven levels with nine interrupt sources per level. Each interrupt source has a
unique interrupt vector, and 56 of the 63 sources of a given controller provide a programmable level [1-7]
and priority within the level.
» Support for up to 63 interrupt sources organized as follows:
— 56 fully-programmable interrupt sources
— 7 fixed-level interrupt sources
» Seven external interrupt signals
» Unique vector number for each interrupt source
+ Ability to mask any individual interrupt source or all interrupt sources (global mask-all)
*  Support for hardware and software interrupt acknowledge (IACK) cycles
+ Combinatorial path to provide wake-up from stop mode

1.4.11.3 General Purpose I/O

All peripheral I/O pins on the MCF548x family are multiplexed with GPIO, adding flexibility and usability
to all signals on the chip.
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Chapter 2
Signal Descriptions

2.1 Introduction

This chapter describes the MCF548x signals.

NOTE

The terms ‘assertion’ and ‘negation’ are used to avoid confusion when
dealing with a mixture of active-low and active-high signals. The term
‘asserted’ indicates that a signal is active, independent of the voltage level.
The term ‘negated’ indicates that a signal is inactive.

Active-low signals, such as RAS and TA, are indicated with an overbar.

2.1.1  Block Diagram
Figure 2-1 displays the signals of the MCF548x.
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PCIBR[3:0]/ PPCIBR[3:0] / TIN[3:0]

PCSOTXD / PPSCLO
PSCORXD / PPSCL1
PSCOCTS / PPSCL2 / PSCOBCLK
PSCORTS / PPSCL3 / PSCOFSYNC
PSCITXD / PPSCL4
PSCIRXD / PPSCLS
PSCICTS / PPSCL6 / PSCIBCLK
PSCIRTS / PPSCL7 / PSCIFSYNC
PSC2TXD / PPSCHO
PSC2RXD / PPSCH1
PSC2CTS / PPSCH2 / PSC2BCLK / CANRX0
PSC2RTS / PPSCH3 / PSC2FSYNC / CANTX0
PSC3TXD / PPSCH4
PSC3RXD / PPSCHS
PSC3CTS /PPSCH6 / PSC3BCLK
L PSC3RTS / PPSCH7 / PSC3FSYNC

DSPISOUT / PDSPIO / PSC3TXD
DSPISIN / PDSPI1 / PSC3RXD

DSPISCK / PDSPI2 / PSC3CTS / PSC3BCLK
DSPICSS/PCSS / PDSPI6
DSPICS3 / PDSPIS / TOUT3 / CANTX1
DSPICS2 / PDSPI4 / TOUT2 / CANTX1

<
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>

L DSPICS0/SS / PDSPI3 / PSC3RTS / PSC3FSYNC

MCF548x

l«——> EOMDIO / PFECI2C3
l«—> EOMDC / PFECI2C2
l«—> EOTXCLK / PFECOH7
«—> EOTXEN / PFECOH6
<—> E0TXDO0 / PFECOH5
<—> E0COL / PFECOH4
<—> EORXCLK / PFECOH3
<—> EORXDV / PFECOH2
<——> EORXDO/ PFECOH]1
<——> EOCRS / PFECOHO
l<——> EOTXD[3:1]/ PFECOL[7:5]
<—> EOTXER / PFECOL4
<—> EORXD[3:1]/ PFECOL[3:1]
<<—> EORXER / PFECOL0

l«——> EIMDIO / SDA / CANRX0
l«—> EIMDC / SCL / CANTX0
l«—> EITXCLK / PFECIH7
l«—> EITXEN / PFEC1H6
<—> EITXD0/ PFECIH5
<—> EICOL / PFECIH4
<—> EIRXCLK / PFECIH3
<—> EIRXDV / PFECIH2
<—> EIRXDO0/PFECIHI
l<—> EICRS / PFEC1HO
l<—> EITXD[3:1]/ PFECIL[7:5]
<—> EITXER / PFECIL4
<—> EIRXD[3:1]/ PFECIL[3:1]
<—> EIRXER / PFECIL0

Ethernet
MAC 0

Ethernet
MAC 1

<<—> USBD+
<—> USBD-
«<«—— USBVBUS
<— USBRBIAS
< USBCLKIN
> USBCLKOUT

USB

<—> SDA /PFECI2C1
<—> SCL / PFECI2C0

'«——TRQ7/ PIRQ7
<— IRQ[6:5]/ PIRQ[6:5] / CANRX1

l<—> DREQI / PDMAI1 / TIN1 / TRQI
<——> DREQO / PDMAO / TINO
<—> DACK][1:0]/ PDMA[3:2] / TOUT[1:0] _|

l<—> TIN3 /PTIM7 / IRQ3 / CANRX1
«—> TOUT3 / PTIM6 / CANTX1
<—> TIN2/ PTIM5 / IRQ2 / CANRX1
«—> TOUT2 / PTIM4 / CANTX1
<—> TINI

] 12C

External
Interrupts
Port

DMA
Controller

Timer
Module

I > PSTCLK
——> PSTDDATA[7:0]
l<——— DSCLK / TRST
<——— BKPT / TMS
l«——— DSI/ TDI
——> DSO/TDO
<—— TCK

<——— MTMODJ[3:0]
l«——— RSTI
<—>» RSTO
l«——— CLKIN

Debug &
JTAG
Test Port
Control

Test /
Reset &
Clock

«<—— EVDD

<—— IVDD

——— VSS

—— SDVDD
— PLLVDD
—— PLLVSS
———— USB_OSCVDD
———— USB_PHYVDD
—— USB_OSCAVDD
—— USB_PLLVDD
— USBVDD

Power
Supplies

Figure 2-1. MCF548x Signals
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Table 2-1 lists the signals for the MCF548x in functional group order.
Table 2-1. MCF548x Signal Description

Introduction

Pin Functions o |52
PBGA Pin Description w |z |2 |28
Primary GPIO Secondary Tertiary g |0 |xc?
FlexBus
AE2, AF3, AF1, AD[31:24] — — — Multiplexed 1/0 16 | Hi-Z
AE3, AE4, AD5, address/data bus
AF2, AD4
AD3, AC3, AD2, AD[23:16] — — — Multiplexed 1/0 16 | Hi-Z
AC2, AA4, AE1, address/data bus
AC1, AD1
AB2, AA3, W4, AD[15:8] — — — Multiplexed 1/0 16 | Hi-Z
AB1, AA2, AA1, address/data bus
Y1, Y2
W3, W1, W2, V3, AD[7:0] — — — Multiplexed 1/0 16 | Hi-Z
V1,V2, T4, U3 address/data bus
R1,T2,T3,T1,U2 FBCS[5:1] PFBCS[5:1] — — Chip selects 5—1 0:1/0 24 | High
U1 FBCSO — — — Chip select 0 O 24 | High
AD6 ALE PFBCTLO TBST — Address Latch Enable | O:1/0 16 | High
AE5 R/W PFBCTL2 TBST — Read/write 0:1/0 16 | Hi-Z
AF4 BE/BWES3 PFBCTL7 TSIZA — Byte enables 0:1/0 16 | High
AF5 BE/BWE2 PFBCTL6 TSIZ0 — Byte enables 0:1/0 16 | High
AC4 BE/BWE1 PFBCTL5 FBADDR1 — Byte enables 0:1/0 16 | High
AE7 BE/BWEO PFBCTL4 FBADDRO — Byte enables 0:1/0 16 | High
AE6 OE PFBCTL3 — — Output enable 0:/0 16 | High
AF6 TA PFBCTLA1 — — Transfer acknowledge | 1:1/O 16 —
SDRAM Controller
C10, B9, A8, D5, | SDDATA[31:24] — — — SDRAM data bus /0 24 | Hi-Z
A6, C8, B7, A5
A4, C7,B6,B4, | SDDATA[23:16] — — — SDRAM data bus 1/0 24 | Hi-Z
C5, B3, C4, D4
E2, D1, G4, E1, SDDATA[15:8] — — — SDRAM data bus 1/0 24 | Hi-Z
K4, F1, G2, H3
N4, G1, H2, J3, SDDATA[7:0] — — — SDRAM data bus I/0 24 | Hi-Z
J1, M4, K3, K2
A13, A12, D10, SDADDR[12:0] — — — SDRAM address bus | O 24 | Low
B12, C12, A11,
D8, B11, C11,
A10, D7, B10, A9
MCF548x Reference Manual, Rev. 3
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Table 2-1. MCF548x Signal Description (Continued)

Pin Functions

o -
S |9 | @8
PBGA Pin Description w |z |2 |38
Primary GPIO Secondary Tertiary g |0 |x?
M2, M3 SDBA[1:0] — — — SDRAM bank (0] 24 | Low
addresses
E3 RAS — — — SDRAM row address | O 24 | High
strobe
Cc2 CAS — — — SDRAM column O 24 | High
address strobe
R2, P2, P1, N3 SDCSJ[3:0] — — — SDRAM chip selects (0] 24 | High
B8, A3, G3, J2 SDDM[3:0] — — — SDRAM write data (0] 24 | High
byte mask
A7, B5, F2, H1 SDDQSJ[3:0] — — — SDRAM data strobe | 1/0 24 | High
L1, N1 SDCLK][1:0] — — — SDRAM clock (0] 24 | Low
M1, N2 SDCLK[1:0] — — — Inverted SDRAM 0] 24 | Low
clock
K1 SDWE — — — SDRAM write enable @) 24 | Low
E4 SDCKE — — — SDRAM clock enable | O 24 | Low
L2 SDRDQS — — — SDR SDRAM data 0] 24 | Low
strobe
D2 VREF — — — SDRAM reference | — —
voltage
PCI Controller
V25, V26, U25, PCIAD[31:24] — FBADDR[31:24] — PCI address/data bus | 1/0 16 | Hi-Z
U26, T24, T25,
T26, R24
R25, R26, P26, PCIAD[23:16] — FBADDR[23:16] — PCI address/data bus | 1/0 16 | Hi-Z
P24, P23, P25,
N25, N23
N26, N24, M26, PCIAD[15:8] — FBADDR[15:8] — PCIl address/data bus | 1/0 16 | Hi-Z
M25, L26, L25,
K26, K25
J26, K24, J25, PCIAD[7:0] — FBADDR[7:0] — PCI address/data bus | 1/0 16 | Hi-Z
H26, J24, G26,
H25, K23
F26, G25, E26, PCICXBE[3:0] — — — PCl command/byte 1/0 16 | Hi-Z
G24 enables
J23 PCIDEVSEL — — — PCI device select /10 16 | Hi-Z
F25 PCIFRM — — — PCI frame 1/0 16 | Hi-Z
c23 PCIIDSEL — — — PCl initialization | — —
device select
MCF548x Reference Manual, Rev. 3
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Table 2-1. MCF548x Signal Description (Continued)

Introduction

Pin Functions o |52
PBGA Pin Description w |z |2 |38
Primary GPIO Secondary Tertiary g |0 |x@
D24 PCIIRDY — — — PCl initiator ready /0 16 | Hi-Z
F23 PCIPAR — — — PCI parity /0 16 | Hi-Z
D26 PCIPERR — — — PCI parity error /0 16 | Hi-Z
G23 PCIRESET — — — PCI reset 0] 16 | Low
F24 PCISERR — — — PCI system error /0 16 | Hi-Z
E25 PCISTOP — — — PCI stop /0 16 | Hi-Z
C26 PCITRDY — — — PCI target ready I/0 16 | Hi-Z
w24 PCIBG4 PPCIBG4 TBST — PCI external grant 4 | O:1/O 16 | GPI
Y26, W25, V24, PCIBG[3:0] PPCIBG[3:0] TOUT[3:0] — PCl external grant 3—0 | O:1/O 16 | GPI
W26
D21 PCIBR4 PPCIBR4 IRQ4 — PCI external /o | Y| 8 GPI
request 4
B24 PCIBR3 PPCIBR3 TIN3 — PCI external /o | Y| 8 GPI
request 3
A25, B23, A24 PCIBR[2:0] PPCIBR[2:0] TIN[2:0] — PCI external I:1/0 8 GPI
request 2-0
External Interrupts Port
D14 IRQ7 PIRQ7 — — External interrupt 1:I/0O — —
request 7
B14, A14 1RQ[6:5] PIRQ[6:5] CANRX1 — External interrupt | L:1/O — | —
request 6-5
Ethernet MAC 0
AF10 EOMDIO PFECI2C3 — — Managementchannel | 1/O 8 GPI
serial data
AD11 EOMDC PFECI2C2 — — Management channel | O:1/O 8 GPI
clock
AF9 EOTXCLK PFECOH7 — — MAC transmit clock | I:1/O 8 GPI
AE10 EOTXEN PFECOH6 — — MAC transmit enable | O:I/O 8 GPI
AD9 EOTXDO PFECOH5 — — MAC transmit data | O:I/O 8 GPI
AC9 EOCOL PFECOH4 — — MAC collision I:I/0 8 GPI
AD14 EORXCLK PFECOH3 — — MAC receive clock | I:I/O 8 GPI
AE14 EORXDV PFECOH2 — — MAC receive enable | I:I/O 8 GPI
AD13 EORXDO PFECOHA1 — — MAC receive data 1:1/0 8 GPI
AE19 EOCRS PFECOHO — — MAC carrier sense | I:I/O 8 GPI
MCF548x Reference Manual, Rev. 3
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Table 2-1. MCF548x Signal Description (Continued)

Pin Functions o |52

PBGA Pin Description w |z |2 |38

Primary GPIO Secondary Tertiary g |0 |x?

ADS8, AC6, AF7 EOTXD[3:1] PFECOL[7:5] — — MAC transmit data | O:1/O 8 | GPI

AE9 EOTXER PFECOL4 — — MAC transmit error | O:1/O 8 GPI

AF11, AF12, EORXD[3:1] PFECOL[3:1] — — MAC receive data | 1:I/O GPI
AF13

AC14 EORXER PFECOLO — — MAC receive error 1:1/0 8 GPI

Ethernet MAC 1
AE252 E1MDIO — SDA CANRXO | Managementchannel | I/O | Y' | 8 | —
serial data
AD24? E1MDC — SCL CANTX0 | Managementchannel [O:l/O| Y' | 8 | —
clock

AE13? E1TXCLK PFEC1H7 — — MAC Transmitclock | I://0 | Y' | 8 | GPI

AD25? E1TXEN PFEC1H6 — — MAC Transmit enable |O:I/0| Y' | 8 | GPI

AE122 E1TXDO PFEC1H5 — — MAC Transmitdata |O:/O| Y' | 8 | GPI

AF8? E1COL PFEC1H4 — — MAC Collision /o | Y | 8 | GPI

B222 E1RXCLK PFEC1H3 — — MAC Receive clock | /0 | Y' | 8 | GPI

B252 E1RXDV PFEC1H2 — — MAC Receive enable | /0 | Y' | 8 | GPI

AF242 E1RXDO PFEC1H1 — — MAC Receive data | I:/0 | Y' | 8 | GPI

AC52 E1CRS PFEC1HO — — MAC Carriersense | /O | Y' | 8 | GPI

AC82, AC112, E1TXD[3:1] PFEC1L[7:5] — — MAC Transmitdata |O:/O| Y' | 8 | GPI
AE112

AE242 E1TXER PFEC1L4 — — MAC Transmiterror |O:l/O| Y' | 8 | GPI

D25°, B262, A262 | E1RXD[3:1] PFEC1L[3:1] — — MAC Receivedata | /O | Y' | 8 | GPI

AE8? E1RXER PFEC1LO — — MAC Receive error | 11I/0 | Y' | 8 | GPI

UsB

AF16°8 USBD+ — — — USB differential data | 1/O 24 —

AF173 USBD- — — — USB differential data | 1/O 24 —

AC178 USBVBUS — — — USB Vbus monitor | — | —

input

AF18 USBRBIAS — — — USB bias resistor | — —

AF153 USBCLKIN = = = USB crystal input | = =

AF143 USBCLKOUT — — — USB crystal output | O 24 | —

DSPI
Y24 DSPISOUT PDSPIO PSC3TXD — QSPI data out 0:1/0 24 | GPI
MCF548x Reference Manual, Rev. 3
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Table 2-1. MCF548x Signal Description (Continued)

Introduction

Pin Functions o |52
PBGA Pin Description w |z |2 |38
Primary GPIO Secondary Tertiary g |0 |x?
AC24 DSPISIN PDSPI1 PSC3RXD — QSPI data in 1:I/0 24 | GPI
AD22 DSPISCK PDSPI2 PSC3CTS PSC3BCLK QSPI clock 1’0 24 | GPI
w23 DSPICS5/PCSS PDSPI6 — — QSPI chip select | O:1/0 24 | GPI
V23 DSPICS3 PDSPI5 TOUT3 CANTX1 QSPI chip select | O:1/0 24 | GPI
AA26 DSPICS2 PDSPI4 TOUT2 CANTX1 QSPI chip select | O:1/0 24 | GPI
Y25 DSPICS0/SS PDSPI3 PSC3RTS |PSC3FSYNC| QSPI chip select |O:1/O 24 | GPI
12c
C24 SDA PFECI2CH — — I°C Serial data 110 8 | GPI
C25 sCL PFECI2CO — — I°C Serial clock o) 8 | GPI
PSCs
AA25 PSCOTXD PPSC1PSC00 — — PSCO transmit data | O:1/O 8 | GPI
AC21 PSCORXD PPSC1PSCO01 — — PSCO receive data | I:1/0 8 | GPI
AE23 PSCOCTS PPSC1PSC03 | PSCOBCLK — PSCO clear to send | I:I/O 8 | GPI
AB26 PSCORTS PPSC1PSC02 | PSCOFSYNC — PSCO request to send | I/O 8 | GPI
AB25 PSC1TXD PPSC1PSC04 — — PSC1 transmit data | O:1/O 8 | GPI
AE22 PSC1RXD PPSC1PSC05 — — PSC1 receive data | 1:1/0O 8 | GPI
AF25 PSCICTS PPSC1PSC07 | PSC1BCLK — PSC1 clear to send | I:I/O 8 | GPI
Y23 PSC1RTS PPSC1PSC06 | PSC1FSYNC — PSC1 request to send | I/O 8 | GPI
AC26 PSC2TXD PPSC3PSC20 — — PSC2 transmit data | O:1/O 8 | GPI
AD21 PSC2RXD PPSC3PSC21 — — PSC2 receive data | I:1/O 8 | GPI
AC19 PSC2CTS PPSC3PSC23 | PSC2BCLK CANRXO0 PSC2 clear to send | I:I/O 8 | GPI
AD26 PSC2RTS PPSC3PSC22 | PSC2FSYNC CANTX0 |PSC2 requestto send| I/O 8 | GPI
AE26 PSC3TXD PPSC3PSC24 — — PSC3 transmit data | O:1/O 8 | GPI
AE21 PSC3RXD PPSC3PSC25 — — PSC3 receive data | 1:1/0 8 | GPI
AF23 PSC3CTS PPSC3PSC27 | PSC3BCLK — PSC3 clear to send | I:I/O 8 | GPI
AB23 PSC3RTS PPSC3PSC26 | PSC3FSYNC — PSC3 request to send | 1/0 8 | GPI
DMA Controller
AF19 DREQ1 PDMA1 TINT IRQ1 DMA request l:1/0 8 | GPI
AF20 DREQO PDMAO TINO — DMA request l:I/0 8 | GPI
AC25, AB24 DACK(1:0] PDMA[3:2] TOUT[1:0] — DMA acknowledge | O:l/O 8 | GPI
MCF548x Reference Manual, Rev. 3
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Table 2-1. MCF548x Signal Description (Continued)

Pin Functions o |52
PBGA Pin Description w |z |2 |38
Primary GPIO Secondary Tertiary g |0 |x?
Timer Module
AD19 TIN3 PTIM7 IRQS3 CANRX1 Timer input I:1/0 8 GPI
AD23 TOUT3 PTIM6 CANTX1 — Timer output Oo:l/0 8 GPI
AF21 TIN2 PTIM5 IRQ2 CANRX1 Timer input I:1/0 8 GPI
AC22 TOUT2 PTIM4 CANTX1 — Timer output 0:1/0 8 GPI
AE20 TINA — — — Timer input | 8 GPI
AC23 TOUTH — — — Timer output 0] 8 GPI
AF22 TINO — — — Timer input | 8 GPI
AF26 TOUTO — — — Timer output 0] 8 GPI
Debug and JTAG Test Port Control
D20 PSTCLK — — — Processor clock o 8 | High
output
A23, B21, D18, PSTDDATA[7:0] — — — Processor status (0] 8 High
C20, A22, B20, debug data
A21,B19
C15 DSCLK — TRST — Debug clock / TAP | Y | — —
reset
B15 BKPT — TMS — Breakpoint/TAP test | Y | — —
mode select
A15 DSl — TDI — Debug data in / TAP | Y | — —
data in
D17 DSO — TDO — Debug data out/ TAP | O 8 | High
data out
A16 TCK — — — TAP clock | — —
Test, Reset, and Clock
B17, C14, A18, MTMOD[3:0] — — — Test mode pins | — —
B16
B13 RSTI — — — Reset input | — —
A20 RSTO — — — Reset output 0] 8 Low
A17 CLKIN — — — Clock input | — —
D15 NC — — — No Connect | — —
AC15 NC — — — No Connect | — —

MCF548x Reference Manual, Rev. 3
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Table 2-1. MCF548x Signal Description (Continued)

Introduction

PBGA Pin

Pin Functions

Primary

GPIO

Secondary

Tertiary

Description

/0

Pull-up

Drive

Reset

State

Power Supplies

C1e, C22, E24,
H24, M24, R3,
U24, Y3, AA24,
ABS3, AD7, AD10,
AD18

EVDD

Positive 1/0 supply

C18, D11, D12,
D19, D22, H4,
H23, L23, P4,
R23, V4, AA23,
AC12, AC20

IVDD

Positive core supply

A2,B2, C3, C17,
C19,C21,Ds6, D9,
D13, D16, D23,
E23, F4, J4, L4,
L11, L12, L13,
L14, L15, L16,
L24, M11, M12,
M13, M14, M15,
M16, M23, N11,
N12, N13, N14,
N15, N16, P11,
P12, P13, P14,
P15, P16, R4,
R11, R12, R13,
R14, R15, R16,
T11,T12, T13,
T14, T15, T16,
T23, U4, U283, Y4,
AB4, AC7, AC10,
AC18, AD12,
AD17, AD20,
AE15, AE16,
AE17

VSS

Ground

A1, B1,C1,Cs,
C9, C13, D3, F3,
L3, P3

SDVDD

Positive SDRAM
supply

A19

PLLVDD

Positive PLL analog
supply

B18

PLLVSS

PLL ground

AC13*

USB_OSCVDD

USB oscillator supply

AC164

USB_PHYVDD

USB PHY supply

AD15%

USB_OSCAVDD

USB oscillator analog
supply
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Table 2-1. MCF548x Signal Description (Continued)

Pin Functions Slo |8 Qo
PBGA Pin Description w |z |2 |38
Primary GPIO Secondary Tertiary g |0 |x?
AD16% USB_PLLVDD — — — USB PLL supply
AE18* USBVDD — — — USB supply

' Pull-up resistor when configured for general purpose input (default state after reset).
2 This pin is a “no connect” on the MCF5483 and MCF5482 devices.
3 This pin is a “no connect” on the MCF5481 and MCF5480 devices.

4 This pin is a “no connect” on the MCF5481 and MCF5480 devices. On MCF5485, MCF5484, MCF5483, and MCF5482 device the pin
should be connected to the appriopriate power rail even is USB is not being used.

Table 2-2 lists the MCF548x signals in pin number order for the 388 PBGA package.
Table 2-2. MCF5485/MCF5484 Signal Description by Pin Number

E Pin Functions hE. Pin Functions
< <
g Primary GPIO Secondary | Tertiary ;."5 Primary GPIO Secondary Tertiary
A1 SDVDD — — — P1 SDCS1 — — —
A2 VSS — — — P2 SDCS2 — _ _
A3 SDDM2 — — — P3 SDVDD —_ — —
A4 | SDDATA23 — — — P4 IVDD —_ — —
A5 | SDDATA24 — — — P11 VSS — — —_
A6 | SDDATA27 — — — P12 VSS — — —_
A7 SDDQS3 — — — P13 VSS — — —
A8 | SDDATA29 — — — P14 VSS — — —_
A9 SDADDRO — — — P15 VSS — — —
A10 | SDADDRS3 — — — P16 VSS — — —
A11 | SDADDR7 — — — P23 PCIAD19 — FBADDR19 —
A12 | SDADDR11 — — — P24 PCIAD20 — FBADDR20 —
A13 | SDADDR12 — — — P25 PCIAD18 — FBADDR18 —
Al14 IRQ5 PIRQ5 CANRX1 — P26 PCIAD21 — FBADDR21 —
A15 DSI — TDI — R1 FBCS5 PFBCS5 — —
A16 TCK — — — R2 SDCS3 — — —
A17 CLKIN — — — R3 EVDD —_ — _
A18 | MTMOD1 — — — R4 VSS —_ — —
A19 PLLVDD — — — R11 VSS —_ — —
A20 RSTO — — — R12 VSS — — —
MCF548x Reference Manual, Rev. 3
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Table 2-2. MCF5485/MCF5484 Signal Description by Pin Number (Continued)

Introduction

E Pin Functions hE. Pin Functions
< <
g Primary GPIO Secondary | Tertiary ;."5 Primary GPIO Secondary Tertiary
A21 | PSTDDATAT — — — R13 VSS — — —
A22 | PSTDDATA3 — — — R14 VSS — — —
A23 | PSTDDATA7 — — — R15 VSS — — —
A24 | PCIBRO | PPCIBRO TINO — R16 VSS — — —
A25 | PCIBR2 | PPCIBR2 TIN2 — R23 IVDD — — —
A26'| E1RXD1 | PFEC1L5 — — R24 PCIAD24 — FBADDR24 —
B1 SDVDD — — — R25 PCIAD23 — FBADDR23 —
B2 VSS — — — R26 PCIAD22 — FBADDR22 —
B3 | SDDATA18 — — — T FBCS2 PFBCS2 — —
B4 | SDDATA20 — — — T2 FBCS4 PFBCS4 — —
B5 | SDDQS2 — — — T3 FBCS3 PFBCS3 — —
B6 | SDDATA21 — — — T4 AD1 — — —
B7 | SDDATA25 — — — T VSS — — —
B8 SDDM3 — — — T12 VSS — — —
B9 | SDDATA30 — — — T13 VSS — — —
B10 | SDADDRI — — — T14 VSS — — —
B11 | SDADDR5 — — — T15 VSS — — —
B12 | SDADDR9 — — — T16 VSS — — —
B13 RSTI — — — T23 VSS — — —
B14 IRQ6 PIRQ6 CANRX1 — T24 PCIAD27 — FBADDR27 —
B15 BKPT — T™S — T25 PCIAD26 — FBADDR26 —
B16 | MTMODO — — — T26 PCIAD25 — FBADDR25 —
B17 | MTMOD3 — — — U1 FBCSO0 — — —
B18 | PLLVSS — — — u2 FBCS1 PFBCS1 — —
B19 | PSTDDATAO — — — us ADO — — —
B20 | PSTDDATA2 — — — U4 VSS — — —
B21 | PSTDDATA6 — — — u23 VSS — — —
B22" | E1RXCLK | PFEC1H3 — — u24 EVDD — — —
B23 | PCIBR1 | PPCIBR1 TIN1 — u25 PCIAD29 — FBADDR29 —
B24 | PCIBR3 | PPCIBR3 TIN3 — uU26 PCIAD28 — FBADDR28 —
B25'"| E1RXDV | PFEC1H2 — — V1 AD3 — — —
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Table 2-2. MCF5485/MCF5484 Signal Description by Pin Number (Continued)

E Pin Functions hE. Pin Functions

< <

g Primary GPIO Secondary | Tertiary ;."5 Primary GPIO Secondary Tertiary
B26'| E1RXD2 | PFEC1L2 — — V2 AD2 — — —
c1 SDVDD — — — V3 AD4 — — —
c2 CAS — — — \Z! IVDD — — —
C3 VSS — — — V23 DSPICS3 PDSPI5 TOUT3 CANTX1
C4 | SDDATA17 — — — V24 PCIBG1 PPCIBGH TOUTH —
C5 | SDDATA19 — — — V25 PCIAD31 — FBADDR31 —
c6 SDVDD — — — V26 PCIAD30 — FBADDR30 —
C7 | SDDATA22 — — — w1 AD6 — — —
C8 | SDDATA26 — — — w2 AD5 — — —
C9 SDVDD — — — w3 AD7 — — —
C10 | SDDATA31 — — — W4 AD13 — — —
C11 | SDADDR4 — — — W23 | DSPICS5/PCSS PDSPI6 — —
C12 | SDADDRS — — — w24 PCIBG4 PPCIBG4 TBST —
C13| SDvVDD — — — w25 PCIBG2 PPCIBG2 TOUT2 —
C14 | MTMOD2 — — — w26 PCIBGO PPCIBGO TOUTO —
C15 | DSCLK — TRST — Y1 AD9 — — —
c16 EVDD — — — Y2 AD8 — — —
Cc17 VSS — — — Y3 EVDD — — —
c18 IVDD — — — Y4 VSS — — —
c19 VSS — — — Y23 PSC1RTS  |PPSC1PSC06 | PSC1FSYNC —
C20 | PSTDDATA4 — — — Y24 DSPISOUT PDSPIO PSC3TXD —
c21 VSS — — — Y25 | DSPICS0/SS PDSPI3 — —
Cc22 EVDD — — — Y26 PCIBG3 PPCIBG3 TOUT3 —
C23 | PCIIDSEL — — — AA1 AD10 — — —
C24 SDA PFECI2C1 — — AA2 AD11 — — —
c25 SCL PFECI2CO — — AA3 AD14 — — —
C26 | PCITRDY — — — AA4 AD19 — — —
D1 | SDDATA14 — — — AA23 VDD — — —
D2 VREF — — — AA24 EVDD — — —
D3 SDVDD — — — AA25 PCSOTXD |PPSC1PSC00 — —
D4 | SDDATA16 — — — AA26 DSPICS2 PDSPI4 TOUT2 CANTX1
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Table 2-2. MCF5485/MCF5484 Signal Description by Pin Number (Continued)

E Pin Functions hE. Pin Functions
< <
g Primary GPIO Secondary | Tertiary ;."5 Primary GPIO Secondary Tertiary
D5 | SDDATA28 — — — AB1 AD12 — — —
D6 VSS — — — AB2 AD15 — — —
D7 | SDADDR2 — — — AB3 EVDD — — —
D8 | SDADDR6 — — — AB4 VSS — — —
D9 VSS — — — AB23 PSC3RTS  |PPSC3PSC26 | PSC3FSYNC —
D10 | SDADDR10 — — — AB24 DACKO PDMA2 TOUTO —
D11 IVDD — — — AB25 PSC1TXD |PPSC1PSC04 — —
D12 IVDD — — — AB26 PSCORTS |PPSC1PSC02 | PSCOFSYNC —
D13 VSS — — — ACT AD17 — — —
D14 IRQ7 PIRQ7 — — AC2 AD20 — — —
D15 NC — — — AC3 AD22 — — —
D16 VSS — — — AC4 BE/BWET PFBCTL5 FBADDR1 —
D17 DSO — TDO — Acs' E1CRS PFEC1HO — —
D18 | PSTDDATA5 — — — AC6 EOTXD2 PFECOL6 — —
D19 IVDD — — — AC7 VSS — — —
D20 | PSTCLK — — — Acs! E1TXD3 PFEC1L7 — —
D21 | PCIBR4 | PPCIBR4 IRQ4 — AC9 EOCOL PFECOH4 — —
D22 IVDD — — — AC10 VSS — — —
D23 VSS — — — AC11’ E1TXD2 PFEC1L6 — —
D24 | PCIIRDY — — — AC12 IVDD — — —
D25'| E1RXD3 | PFEC1L3 — — AC13? | USB_OSCVDD — — —
D26 | PCIPERR — — — AC14 EORXER PFECOLO — —
E1 | SDDATA12 — — — AC15 NC — — —
E2 | SDDATA15 — — — AC16° | USB_PHYVDD — — —
E3 RAS — — — AC17%2| USBVBUS — — —
E4 SDCKE — — — AC18 VSS — — —
E23 VSS — — — AC19 PSC2CTS |PPSC3PSC23| PSC2BCLK | CANRXO
E24 EVDD — — — AC20 IVDD — — —
E25 | PCISTOP — — — AC21 PSCORXD |PPSC1PSCO01 — —
E26 | PCICXBE1 — — — AC22 TOUT2 PTIM4 CANTX1 —
F1 | SDDATA10 — — — AC23 TOUTH — — —
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Table 2-2. MCF5485/MCF5484 Signal Description by Pin Number (Continued)

E Pin Functions hE. Pin Functions

< <

g Primary GPIO Secondary | Tertiary ;."5 Primary GPIO Secondary Tertiary
F2 | SDDQSH1 — — — AC24 DSPISIN PDSPI1 PSC3RXD —
F3 SDVDD — — — AC25 DACK1 PDMA3 TOUT1 —
F4 VSS — — — AC26 PSC2TXD |PPSC3PSC20 — —
F23 | PCIPAR — — — AD1 AD16 — — —
F24 | PCISERR — — — AD2 AD21 — — —
F25 | PCIFRM — — — AD3 AD23 — — —
F26 | PCICXBE3 — — — AD4 AD24 — — —
G1 | SDDATA6 — — — AD5 AD26 — — —
G2 | SDDATA9 — — — AD6 ALE PFBCTLO TBST —
G3 SDDM1 — — — AD7 EVDD — — —
G4 | SDDATA13 — — — AD8 EOTXD3 PFECOL7 — —
G23 | PCIRESET — — — AD9 EOTXDO PFECOH5 — —
G24 | PCICXBEO — — — AD10 EVDD — — —
G25 | PCICXBE2 — — — AD11 EOMDC PFECI2C2 — —
G26 | PCIAD2 — FBADDR2 — AD12 VSS — — —
H1 | SDDQSO — — — AD13 EORXDO PFECOH1 — —
H2 | SDDATA5 — — — AD14 EORXLK PFECOH3 — —
H3 | SDDATA8 — — — AD152 | USB_OSCAVDD — — —
H4 IVDD — — — AD162| USB_PLLVDD — — —
H23 IVDD — — — AD17 VSS — — —
H24 EVDD — — — AD18 EVDD — — —
H25 | PCIAD1 — FBADDRT — AD19 TIN3 PTIM7 IRQ3 CANRX1
H26 | PCIAD4 — FBADDR4 — AD20 VSS — — —
J1 | SDDATA3 — — — AD21 PSC2RXD |PPSC3PSC21 — —
J2 SDDMO — — — AD22 DSPISCK PDSPI2 PSC3CTS | PSC3BCLK
J3 | SDDATA4 — — — AD23 TOUT3 PTIM6 CANTX1 —
J4 VSS — — — AD24! E1MDC — SCL CANTXO0
J23 | PCIDEVSEL — — — AD25' E1TXEN PFEC1H6 — —
J24 | PCIAD3 — FBADDR3 — AD26 PSC2RTS  |PPSC3PSC22| PSC2FSYNC | CANTXO
J25 | PCIAD5 — FBADDR5 — AEA1 AD18 — — —
J26 | PCIAD7 — FBADDR?7 — AE2 AD31 — — —
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Table 2-2. MCF5485/MCF5484 Signal Description by Pin Number (Continued)

Introduction

E Pin Functions hE. Pin Functions
< <
g Primary GPIO Secondary | Tertiary ;."5 Primary GPIO Secondary Tertiary
K1 SDWE — — — AE3 AD28 — — —
K2 SDDATAO — — — AE4 AD27 — — —
K3 SDDATA1 — — — AES5 R/W PFBCTL2 TBST —
K4 | SDDATA11 — — — AEG6 OE PFBCTL3 — —
K23 PCIADO — FBADDRO — AE7 BE/BWEO PFBCTL4 FBADDRO —
K24 PCIAD6 — FBADDRG6 — AE8! E1RXER PFEC1LO — —
K25 PCIADS — FBADDRS — AE9 EOTXER PFECOL4 — —
K26 PCIAD9 — FBADDR9 — AE10 EOTXEN PFECOH6 — —
L1 SDCLK1 — — — AE11! E1TXD1 PFEC1L5 — —
L2 SDRDQS — — — AE12! E1TXDO PFEC1h5 — —
L3 SDvDD — — — AE13! E1TXCLK PFEC1H7 — —
L4 VSS — — — AE14 EORXDV PFEC1H2 — —
L11 VSS — — — AE15 VSS — — —
L12 VSS — — — AE16 VSS — — —
L13 VSS — — — AE17 VSS — — —
L14 VSS — — — AE182 USBVDD — — —
L15 VSS — — — AE19 EOCRS PFECOHO — —
L16 VSS — — — AE20 TINA — — —
L23 IVDD — — — AE21 PSC3RXD PPSC3PSC25 — —
L24 VSS — — — AE22 PSC1RXD PPSC1PSCO05 — —
L25 | PCIAD10 — FBADDR10 — AE23 PSCOCTS  |PPSC1PSC03| PSCOBCLK —
L26 PCIAD11 — FBADDR11 — AE241 E1TXER PFEC1L4 — —
M1 SDCLK1 — — — AE25" E1MDIO — SCL CANTXO0
M2 SDBA1 — — — AE26 PSC3TXD PPSC3PSC24 — —
M3 SDBAO — — — AF1 AD29 — — —
M4 SDDATA2 — — — AF2 AD25 — — —
M11 VSS — — — AF3 AD30 — — —
M12 VSS — — — AF4 BE/BWE3 PFBCTL7 TSIZ1 —
M13 VSS — — — AF5 BE/BWE2 PFBCTL6 TSIZ0 —
M14 VSS — — — AF6 TA PFBCTLA1 — —
M15 VSS — — — AF7 EOTXDA1 PFECOL5 — —
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Table 2-2. MCF5485/MCF5484 Signal Description by Pin Number (Continued)

E Pin Functions hE. Pin Functions

< <

g Primary GPIO Secondary | Tertiary ;."5 Primary GPIO Secondary Tertiary
M16 VSS — — — AFsg! E1COL PFEC1H4 — —
M23 VSS — — — AF9 EOTXCLK PFECOH7 — —
M24 EVDD — — — AF10 EOMDIO PFECI2C3 — —
M25 | PCIAD12 — FBADDR12 — AF11 EORXD3 PFECOL3 — —
M26 | PCIAD13 — FBADDR13 — AF12 EORXD2 PFECOL2 — —
N1 SDCLKO — — — AF13 EORXD1 PFECOL1 — —
N2 | SDCLKO — — — AF143 | USBCLKOUT — — —
N3 SDCSO0 — — — AF15%|  USBCLKIN — — —
N4 | SDDATA7 — — — AF16° USBD+ — — —
N11 VSS — — — AF178 USBD- — — —
N12 VSS — — — AF18 | USBRBIAS — — —
N13 VSS — — — AF19 DREQ1 PDMAT TIN1 IRQ1
N14 VSS — — — AF20 DREQO PDMAO TINO —
N15 VSS — — — AF21 TIN2 PTIM5 IRQ2 CANRX1
N16 VSS — — — AF22 TINO — — —
N23 | PCIAD16 — FBADDR16 — AF23 PSC3CTS PPSC3PSC27| PSC3BCLK —
N24 | PCIAD14 — FBADDR14 — AF241 E1RXDO PFEC1H1 — —
N25 | PCIAD17 — FBADDR17 — AF25 PSC1CTS PPSC1PSC07 | PSC1BCLK —
N26 | PCIAD15 — FBADDR15 — AF26 TOUTO — — —

! This pin is a “no connect” on the MCF5483 and MCF5482 devices.

2 This pin is a “no connect” on the MCF5481 and MCF5480 devices. On MCF5485, MCF5484, MCF5483, and MCF5482 device the pin
should be connected to the appriopriate power rail even is USB is not being used.

3 This pin is a “no connect” on the MCF5481 and MCF5480 devices.

2.2

2.2.1

2.2.

MCF548x External Signals

1.1

FlexBus Signals

Address/Data Bus (AD[31:0])

The AD[31:0] bus carries address and data. The full 32-bit address is always driven on the first clock of a
bus cycle (address phase). The number of bytes used for data during the data phase is determined by the
port size associated with the matching chip select.
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MCF548x External Signals

2.2.1.2 Chip Select (FBCS[5:0])

FBCSJ5:0] are asserted to indicate which device is being selected. A particular chip select asserts when
the transfer address is within the device’s address space as defined in the base and mask address registers.
Each chip select can be programmed for a base address location, masking addresses, port size,
burst-capability indication, wait-state generation, and internal/external termination.

Reset clears all chip select programming; FBCSO is the only chip select initialized out of reset. FBCSO is
also unique because it can function at reset as a global chip select that allows boot ROM to be selected at
any defined address space. Port size and termination (internal vs. external) for boot FBCSO0 are configured
by the levels on AD[2:0] on the rising edge of RSTI, as described in Section 2.2.6, “Reset Configuration
Pins.”

2.2.1.3 Address Latch Enable (ALE)

The assertion of ALE indicates that the MCF548x has begun a bus transaction and that the address and
attributes are valid. ALE is asserted for one bus clock cycle. In multiplexed bus mode, ALE is used
externally as an address latch enable to capture the address phase of the bus transfer.

2.2.1.4 Read/Write (R/W)

The MCF548x drives the R/W signal to indicate the direction of the current bus operation. It is driven high
during read bus cycles and driven low during write bus cycles.

2.21.5 Transfer Burst (TBST)

Transfer burst indicates that a burst transfer is in progress. A burst transfer can be 2 to 16 beats depending
on the size of the transfer and the port size.

2.21.6 Transfer Size (TSIZ[1:0])

For memory accesses, these signals along with TBST, indicate the data transfer size of the current bus
operation. The FlexBus interface supports byte, word, and longword operand transfers and allows accesses
to 8-, 16-, and 32-bit data ports.

For misaligned transfers, TSIZ[1:0] indicates the size of each transfer. For example, if a longword access
through a 32-bit port device occurs at a misaligned offset of 0x1, a byte is transferred first (TSIZ[1:0] =
01), a word is next transferred at offset 0x2 (TSIZ[1:0] = 10), then the final byte is transferred at offset 0x4
(TSIZ[1:0] =01).

For aligned transfers larger than the port size, TSIZ[1:0] behaves as follows:

» If bursting is used, TSIZ[1:0] is driven to the size of transfer.

* Ifbursting is inhibited, TSIZ[1:0] first shows the size of the entire transfer and then shows the port
size.

Table 2-3. Data Transfer Size

TSIZ[1:0] Transfer Size
00 4 bytes (longword)
01 1 byte
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Table 2-3. Data Transfer Size (Continued)

TSIZ[1:0] Transfer Size
10 2 bytes (word)
11 16 bytes (line)

For burst-inhibited transfers, TSIZ[1:0] changes with each ALE assertion to reflect the next transfer size.
For transfers to port sizes smaller than the transfer size, TSIZ[1:0] indicates the size of the entire transfer
on the first access and the size of the current port transfer on subsequent transfers. For example, for a
longword write to an 8-bit port, TSIZ[1:0] = 2°b00 for the first transaction and 2°b01 for the next three
transactions. If bursting is used and in the case of longword write to an 8-bit port, TSIZ[1:0] is driven to
2’b00 for the entire transfer.

2.2.1.7 Byte Selects (BE/BWE[3:0])

The four byte-enables are multiplexed with the byte-write-enable signals. Each pin can be individually
programmed through the chip select control registers (CSCRs). For each chip select, assertion of
byte-enables for reads and byte-write enables for write cycles can be programmed. Alternatively, users can
program byte-write enables to assert on writes and byte-enable to not assert on reads.

The byte strobe (BE/BWE[3:0]) outputs indicate that data is to be latched or driven onto a byte of the data.
BE/BWE]3:0] signals are asserted only to the memory bytes used during a read or write access.

2.2.1.8 Output Enable (OE)

The output enable signal is sent to the interfacing memory and/or peripheral to enable a read transfer. OE
is asserted only when a chip select matches the current address decode.

2.2.1.9 Transfer Acknowledge (TA)

The external system drives this input to terminate the bus transfer. For write cycles, the processor continues
to drive data at least one clock after FBCSx is negated. During read cycles, the peripheral must continue
to drive data until TA is recognized. The number_of wait states is determined either by an internally
programmed auto acknowledgement or the external TA input. If the external TA is used, the peripheral has
total control over the number of wait states.

2.2.2 SDRAM Controller Signals

These signals are used for SDRAM accesses.

2.2.21 SDRAM Data Bus (SDDATA[31:0])

SDDATA[31:0] is the bidirectional, non-multiplexed data bus used for SDRAM accesses. Data is sampled
by the MCF548x on the rising edge of SDCLK when in SDR mode, and on both the rising and falling edge
of SDCLK when in DDR mode.

2222 SDRAM Address Bus (SDADDR[12:0])

The SDADDR[12:0] signals are the 13-bit address bus used for multiplexed row and column addresses
during SDRAM bus cycles. The address multiplexing supports up to 256 Mbits of SDRAM per chip select.

MCF548x Reference Manual, Rev. 3

2-18 Freescale Semiconductor
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2.2.2.3 SDRAM Bank Addresses (SDBA[1:0])

Each SDRAM module has four internal row banks. The SDBA[1:0] signals are used to select the row bank.
It is also used to select the SDRAM internal mode register during power-up initialization.

2224 SDRAM Row Address Strobe (RAS)
This output is the SDRAM synchronous row address strobe.

2.2.25 SDRAM Column Address Strobe (CAS)
This output is the SDRAM synchronous column address strobe.

2.2.2.6 SDRAM Chip Selects (SDCS[3:0])

These signals interface to the chip select lines of the SDRAMs within a memory block. Thus, there is one
SDCS line for each memory block (the MCF548x supports up to four SDRAM memory blocks).

2.2.2.7 SDRAM Write Data Byte Mask (SDDM[3:0])

These output signals are sampled by the SDRAM on both edges of SDDQS to determine which byte lanes
of the SDRAM data bus should be latched during a write cycle. In DDR mode, these bits are ignored during
read operations.

2.2.2.8 SDRAM Data Strobe (SDDQS[3:0])

These bidirectional signals indicate when valid data is on the SDRAM data bus when in DDR mode.

2229 SDRAM Clock (SDCLK[1:0])
These signals are the output clock for SDRAM cycles.

2.2.2.10 Inverted SDRAM Clock (SDCLK][1:0])

These signals are the inverted version of the SDRAM clock. They are used with SDCLK to provide the
differential clocks for DDR SDRAM.

2.2.2.11 SDRAM Write Enable (SDWE)

The SDRAM write enable (SDWE) is asserted to signify that an SDRAM write cycle is underway. A read
cycle is indicated by the negation of SDWE.

2.2.2.12 SDRAM Clock Enable (SDCKE)

This output is the SDRAM clock enable. SDCKE is negated to put the SDRAM into low-power,
self-refresh mode.

2.2.2.13 SDR SDRAM Data Strobe (SDRDQS)
This signal is connected to SDDQS inputs. It is used in SDR mode only.
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2.2.2.14 SDRAM Reference Voltage (VREF)
This is the input reference voltage for differential SSTL 2 inputs. It is used in both DDR and SDR modes.

2.2.3 PCI Controller Signals

2.2.3.1 PCI Address/Data Bus (PCIAD[31:0])

The PCIAD[31:0] lines are a time-multiplexed address data bus. The address is presented on the bus during
the address phase while the data is presented on the bus during one or more data phases.

If the FlexBus is used in 32-bit address or 32-bit data non-multiplexed mode, PCIAD[31:0] are used as a
32-bit address for FlexBus transfers.

2.2.3.2 Command/Byte Enables (PCICXBE[3:0])

The PCICXBE[3:0] lines are time-multiplexed. The PCI command is presented during the address phase,
and the byte enables are presented during the data phase.

2.2.3.3 Device Select (PCIDEVSEL)

The PCIDEVSEL signal is asserted active low when the MCF548x decodes that it is the target of a PCI
transaction from the address presented on the PCI bus during the address phase.

2.2.3.4 Frame (PCIFRM)

The PCIFRM signal is asserted by a PCI initiator to indicate the beginning of a transaction. It is negated
when the initiator is ready to complete the final data phase.

2.2.3.5 Initialization Device Select (PCIIDSEL)

The PCIIDSEL signal is asserted during a PCI type-0 configuration cycle to address the PCI configuration
header.

2.2.3.6 Initiator Ready (PCIIRDY)

The PCIIRDY signal is asserted to indicate that the PCI initiator is ready to transfer data. During a write
operation, assertion indicates that the master is driving valid data on the bus. During a read operation,
assertion indicates that the master is ready to accept data.

2.2.3.7 Parity (PCIPAR)
The PCIPAR signal indicates the parity of data on the PCIAD[31:0] and PCICXBE[3:0] lines.

2.2.3.8 Parity Error (PCIPERR)
The PCIPERR signal is asserted when a data phase parity error is detected if enabled.
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2.2.3.9 Reset (PCIRESET)

The PCIRESET signal is asserted active low by MCF548x to reset the PCI bus. This signal is asserted after
the MCF548x is reset and must be negated to enable usage of the PCI bus.

2.2.3.10 System Error (PCISERR)
The PCISERR signal, if enabled, is asserted when an address phase parity error is detected.

2.2.3.11 Stop (PCISTOP)

The PCISTOP signal is asserted by the currently addressed target to indicate that it wishes to stop the
current transaction.

2.2.3.12 Target Ready (PCITRDY)

The PCITRDY signal is asserted by the currently addressed target to indicate that it is ready to complete
the current data phase.

2.2.3.13 External Bus Grant (PCIBG[4:1])

The PCIBG signal is asserted to an external master to give it control of the PCI bus. If the internal PCI
arbiter is enabled, it asserts one of the PCIBG[4:1] lines to grant ownership of the PCI bus to an external
master. When the PCI arbiter module is disabled, PCIBG[4:1] is driven high and should be ignored.

2.2.3.14 External Bus Grant/Request Output (PCIBGO/PCIREQOUT)

The PCIBGO signal is asserted to external master device () to give it control of the PCI bus. When the PCI
arbiter module is disabled, the signal operates as the PCIREQOUT output. It is asserted when the
MCF548x needs to initiate a PCI transaction.

2.2.3.15 External Bus Request (PCIBR[4:0])

The PCIBR signal is asserted by an external PCI master when it requires access to the PCI bus.

2.2.3.16 External Request/Grant Input (PCIBRO/PCIGNTIN)

The PCIBRO signal is asserted by external PCI master device 0 when it requires access to the PCI bus.
When the internal PCI arbiter module is disabled, this signal is used as a grant input for the PCI bus,
PCIGNTIN. It is driven by an external PCI arbiter.

2.2.4 Interrupt Control Signals

The interrupt control signals supply the external interrupt level to the MCF548x device.

2.2.4.1 Interrupt Request (IRQ[7:1])
The IRQJ7:1] signals are the external interrupt inputs.
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2.2.5

The clock and reset signals configure the MCF548x and provide interface signals to the external system.

Clock and Reset Signals

2.2.5.1 ResetIn (RSTI)

Asserting RSTI causes the MCF548x to enter reset exception processing. RSTO is asserted automatically
when RSTI is asserted.

2.25.2 Reset Out (RSTO)

After RSTI is asserted, the PLL temporarily loses its lock, during which time RSTO is asserted. When the
PLL regains its lock, RSTO negates again. This signal can be used to reset external devices.

2.2.5.3 Clock In (CLKIN)

CLKIN is the MCF548x input clock frequency to the on-board, phase-locked loop (PLL) clock generator.
CLKIN is used to internally clock or sequence the MCF548x internal bus interface at a selected multiple
of the input frequency used for internal module logic.

CLKIN is used as the clock reference for PCI and FlexBus transfers.

2.2.6
This section describes address/data pins, AD[12:0], that are read at reset to configure the MCF548x.

Reset Configuration Pins

2.2.6.1 AD[12:8]—CLKIN to SDCLK Ratio (CLKCONFIG[4:0])

The clock configuration inputs, CLKCONFIG[4:0], indicate the CLKIN to SDCLK ratio. CLKIN is used
as the external reference for both PCI and FlexBus cycles. The CLKIN to SDCLK ratio is selectable, where
SDCLK is the clock frequency used for SDRAM accesses and the internal XLB bus. The core is always
clocked at twice the SDCLK frequency.

These signals are sampled on the rising edge of RSTI. Table 2-4 shows how the logic levels of AD[12:8]
correspond to the selected clock ratio.

Table 2-4. MCF548x Divide Ratio Encodings

Internal XLB, SDRAM
1 . CLKIN—PCI and FlexBus Bus, and PSTCLK Core Frequency Range
FB_AD[12:8]" | Clock Ratio Frequency Range F
(MHz) requency Range (MHz)
(MHz)
00011 1:2 41.6-50.0 83.33-100 166.66—200
00101 1:2 30.0-44.4 60.0-88.8 120.0-177.66

T All other values of FB_AD[12:8] are reserved.

Figure 2-2 correlates CLKIN, internal bus, and core clock frequenciesi for the 1x—4x multipliers.
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CLKIN Internal Clock Core Clock
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Figure 2-2. CLKIN, Internal Bus, and Core Clock Ratios

2.2.6.2 AD5—FlexBus Size Configuration (FBSIZE)

At reset, the enabling and disabling of BE/BWE[3:0] versus TSIZ[1:0] and ADDR[1:0] is determined by
the logic level driven on ADS at the rising edge of RSTI. FBSIZE is multiplexed with AD5 and sampled
only at reset. Table 2-5 shows how the ADS5 logic level corresponds to the BE/BWE[3:0] function.

Table 2-5. AD5/FBSIZE Selection of BE/BWE[3:0] Signals

AD5 FlexBus Byte Enable Mode
0 BE/BWE[3:0] used as byte/byte write
enables.
1 E/BWE[&Z] configured as TSIZ[1:0].
BE/BWE[1:0] configured as FBADDR][1:0].

2.2.6.3 AD4—32-bit FlexBus Configuration (FBMODE)

During reset, the FlexBus can be configured to operate in a non-multiplexed 32-bit address with 32-bit data
mode. In this mode, the 32-bit FlexBus AD[31:0] is used for the data bus, and the PCI bus PCIAD[31:0]
is used as the address bus. The FlexBus operating mode is determined by the logic level driven on AD4 at
the rising edge of RSTI. Table 2-6 shows how the logic level of AD4 corresponds to the FlexBus mode.

Table 2-6. AD4/FBMODE Selection of Non-Multiplexed
32-bit Address/32-bit Data Mode

AD4 FlexBus Operating Mode

0 AD[31:0] used for data.
PCIAD[31:0] used for address’

1 PCIAD[31:0] used for PCI bus.
AD[31:0] used for both address and data.

' If the non-multiplexed 32-bit address/32-bit data mode is selected, the PCI bus
cannot be used.

2.2.6.4 AD3—Byte Enable Configuration (BECONFIG)

The default byte enable mode of the boot FBCSO is determined by the logic level driven on AD3 at the
rising edge of RSTI. This logic level is reflected as the reset value of CSCRO[BEM]. Table 2-7 shows how
the logic level of AD3 corresponds to the byte enable mode for FBCSO at reset.
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Table 2-7. AD3/BECONFIG, BE/BWE[3:0] Boot Configuration

AD3 Boot FBCSO Byte Strobe Configuration
0 BE[3:0] can assert for both read and write cycles.
1 BWE[3:0] are not asserted for reads;
BWE[3:0] only assert for write cycles

2.2.6.5 AD2—Auto Acknowledge Configuration (AACONFIG)

At reset, the enabling and disabling of auto acknowledge for boot FBCSO0 is determined by the logic level
driven on AD2 at the rising edge of RSTI. AACONFIG is multiplexed with AD2 and sampled only at reset.
The AD2 logic level is reflected as the reset value of CSCRO[AA]. Table 2-8 shows how the AD2 logic
level corresponds to the auto acknowledge timing for FBCSO at reset. Auto acknowledge can be disabled
by driving a logic 0 on AD?2 at reset.

Table 2-8. AD2/AA_CONFIG Selection of FBCS0 Automatic Acknowledge

AD2 Boot FBCS0 AA Configuration at Reset
0 Disabled
1 Enabled with 63 wait states

2.2.6.6 AD[1:0]—Port Size Configuration (PSCONFIG)

The default port size value of the boot FBCSO is determined by the logic levels driven on AD[1:0] at the
rising edge of RSTI, which are reflected as the reset value of CSCRO[PS]. Table 2-9 shows how the logic
levels of AD[1:0] correspond to the FBCSO port size at reset.

Table 2-9. AD[1:0//PSCONFIG[1:0] Selection of FBCS0 Port Size

AD[1:0] Boot FBCSO Port Size
00 32-bit port
01 8-bit port
1X 16-bit port

2.2.7 Ethernet Module Signals

The following signals are used by the Ethernet module for data and clock signals.

2.2.71 Management Data (EOMDIO, E1MDIO)

The bidirectional EMDIO signals transfer control information between the external PHY and the
media-access controller. Data is synchronous to EMDC and applies to MII mode operation. This signal is
an input after reset. When the FEC operates in 10 Mbps 7-wire interface mode, this signal should be
connected to Vgg.
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2.2.7.2 Management Data Clock (EOMDC, E1MDC)

EMDOC is an output clock that provides a timing reference to the PHY for data transfers on the EMDIO
signal; it applies to MII mode operation.

2.2.7.3 Transmit Clock (EOTXCLK, E1TXCLK)
This is an input clock that provides a timing reference for ETXEN, ETXD[3:0], and ETXER.

2.2.7.4 Transmit Enable (EOTXEN, E1TXEN)

The transmit enable (ETXEN) output indicates when valid nibbles are present on the MII. This signal is
asserted with the first nibble of a preamble and is negated before the first ETXCLK following the final
nibble of the frame.

2.2.7.5 Transmit Data 0 (EOTXDO, E1TXDO)

ETXDO is the serial output Ethernet data and is only valid during the assertion of ETXEN. This signal is
used for 10 Mbps Ethernet data. This signal is also used for MII mode data in conjunction with ETXD[3:1].

2.2.7.6 Collision (EOCOL, E1COL)

The ECOL input is asserted upon detection of a collision and remains asserted while the collision persists.
This signal is not defined for full-duplex mode.

2.2.7.7 Receive Clock (EORXCLK, E1RXCLK)
The receive clock (ERXCLK) input provides a timing reference for ERXDV, ERXD[3:0], and ERXER.

2.2.7.8 Receive Data Valid (EORXDV, E1RXDV)

Asserting the receive data valid (ERXDV) input indicates that the PHY has valid nibbles present on the
MIIL. ERXDV should remain asserted from the first recovered nibble of the frame through to the last nibble.
Assertion of ERXDV must start no later than the SFD and exclude any EOF.

2.2.7.9 Receive Data 0 (EORXDO, E1IRXDO)

ERXDO is the Ethernet input data transferred from the PHY to the media-access controller when ERXDV
is asserted. This signal is used for 10 Mbps Ethernet data. This signal is also used for MII mode Ethernet
data in conjunction with ERXD[3:1].

2.2.7.10 Carrier Receive Sense (EOCRS, E1CRS)

ECRS is an input signal that, when asserted, signals that transmit or receive medium is not idle, and applies
to MII mode operation.

2.2.7.11 Transmit Data 1-3 (EOTXD[3:1], E1TXD[3:1])

These pins contain the serial output Ethernet data and are valid only during assertion of ETXEN in MII
mode.
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2.2.7.12 Transmit Error (EOTXER, E1TXER)

When the ETXER output is asserted for one or more clock cycles while ETXEN is also asserted, the PHY
sends one or more illegal symbols. ETXER has no effect at 10 Mbps or when ETXEN is negated, and
applies to MII mode operation.

2.2.7.13 Receive Data 1-3 (EORXDI[3:1], E1RXD[3:1])

These pins contain the Ethernet input data transferred from the PHY to the media-access controller when
ERXDV is asserted in MII mode operation.

2.2.7.14 Receive Error (EORXER, E1RXER)

ERXER is an input signal that, when asserted along with ERXDYV, signals that the PHY has detected an
error in the current frame. When ERXDV is not asserted, ERXER has no effect and applies to MII mode
operation.

2.2.8 Universal Serial Bus (USB)

2.2.8.1 USB Differential Data (USBD+, USBD-)

USBD+ and USBD- are the outputs of the on-chip USB 2.0 transceiver. They provide differential data for
the USB 2.0 bus.

2.2.8.2 USBVBUS
This is the USB cable Vbus monitor input.

2.2.8.3 USBRBIAS

This is the connection for external current setting resistor. It should be connected to a 9.1kQ +/— 1%
pull-down resistor.

For the MCF5481 and MCF5480 devices this pin should be connected to a 9.1kQ +/— 20% pull-down
resistor.

2284 USBCLKIN
This is the input pin for 12-MHz USB crystal circuit.

2.2.8.5 USBCLKOUT
This is the output pin for 12-MHz USB crystal circuit.

2.2.9 DMA Serial Peripheral Interface (DSPI) Signals

2.29.1 DSPI Synchronous Serial Data Output (DSPISOUT)

The DSPISOUT output provides the serial data from the DSPI and can be programmed to be driven on the
rising or falling edge of DSPISCK.
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2.2.9.2 DSPI Synchronous Serial Data Input (DSPISIN)

The DSPISIN input provides the serial data to the DSPI and can be programmed to be sampled on the
rising or falling edge of DSPISCK.

2.2.9.3 DSPI Serial Clock (DSPISCK)

DSPISCK is a serial communication clock signal. In master mode, the DSPI generates the DSPISCK. In
slave mode, DSPISCK is an input from an external bus master.

2.2.9.4 DSPI Peripheral Chip Select/Slave Select (DSPICS0/SS)

In master mode, the DSPICSO signal is a peripheral chip select output that selects which slave device the
current transmission is intended for.

In slave mode, the SS signal is a slave select input signal that allows an SPI master to select the DSPI as
the target for transmission.

2.2.9.5 DSPI Chip Selects (DSPICS[2:3])

The synchronous peripheral chip selects (DSPICS[2:3]) outputs provide DSPI peripheral chip selects that
can be programmed to be active high or low.

2.2.9.6 DSPI Peripheral Chip Select 5/Peripheral Chip Select Strobe
(DSPICS5/PCSS)

DSPICSS is a peripheral chip select output signal. When the DSPI is in master mode and the
DMCR[PCSSE] bit is cleared, this signal is used to select which slave device the current transfer is
intended for.

PCSS provides a strobe signal that can be used with an external demultiplexer for_deglitching of the
DSPICSn signals. When the DSPI is in master mode and DMCR[PCSSE] is set, the PCSS provides the
appropriate timing for the decoding of the DSPICS[0,2,3] signals which prevents glitches from occurring.

This signal is not used in slave mode.

2.2.10 FlexCAN Signals

2.2.10.1 FlexCAN Transmit (CANTXO0, CANTX1)

Controller area network transmit data output.

2.2.10.2 FlexCAN Receive (CANRX0, CANRX1)

Controller area network receive data input.

2.2.11 I2C I/O Signals

The IC serial interface module uses the signals in this section.
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2.2.11.1 Serial Clock (SCL)

This bidirectional open-drain signal is the clock signal for the I2C interface. It is elther driven by the I>C
module when the bus is in master mode, or it becomes the clock input when the I2C is in slave mode.

2.2.11.2 Serial Data (SDA)

This bidirectional open-drain signal is the data input/output for the 12C interface.

2.2.12 PSC Module Signals

The PSC modules use the signals in this section. The baud rate clock inputs are not supported.

2.2.12.1 Transmit Serial Data Output (PSCOTXD, PSC1TXD, PSC2TXD, PSC3TXD)

PSCnTXD are the transmitter serial data outputs for the PSC modules. The output is held high (mark
condition) when the transmitter is disabled, idle, or in the local loopback mode. The PSCxTXD pins can
be programmed to be driven low (break status) by a command.

2.2.12.2 Receive Serial Data Input (PSCORXD, PSC1RXD, PSC2RXD, PSC3RXD)

PSCnRXD are the receiver serial data inputs for the PSC modules. When the PSC clock is stopped for
power-down mode, any transition on the pins restarts them.

2.2.12.3 Clear-to-Send (PSCnCTS/PSCBCLK)

These signals either operate as the clear-to-send input signals in UART mode or the bit clock input signals
in modem modes and IrDA modes. In MIR and FIR mode, the frequency is a multiple of the input bit clock
frequency, and the bit clock frequency should be within +/-0.1% and +/-0.01% of the ideal one,
respectively.

2.2.12.4 Request-to-Send (PSCnRTS/PSCFSYNC)

The PSCnRTS signals act as transmitter request-to-send (RTS) outputs in UART mode, the frame sync
input in modem8 and modem16 modes, or the RTS output (which acts as frame sync) in AC97 modem
mode.

2.2.13 DMA Controller Module Signals

The DMA controller module uses the signals in the following subsections to provide external requests for
either a source or destination.

2.2.13.1 DMA Request (DREQ[1:0])

These inputs are asserted by a peripheral device to request an operand transfer between that peripheral and
memory by either channel 0 or 1 of the on-chip DMA module.

2.2.13.2 DMA Acknowledge (DACK]1:0])

These outputs are asserted to acknowledge that a DMA request has been recognized.
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2.2.14 Timer Module Signals

The signals in the following sections are external interfaces to the four general-purpose MCF548x timers.
These 32-bit timers can capture timer values, trigger external events or internal interrupts, or count
external events.

2.2.14.1 Timer Inputs (TIN[3:0])

TIN#z can be programmed as clocks that cause events in the counter and prescalers. They can also cause
captures on the rising edge, falling edge, or both edges.

2.2.14.2 Timer Outputs (TOUT[3:0])

The programmable timer outputs, TOUTn, pulse or toggle on various timer events.

2.2.15 Debug Support Signals

The MCF548x complies with the IEEE 1149.1a JTAG testing standard. JTAG test pins are multiplexed
with background debug pins. Except for TCK, these signals are selected by the value of MTMODO. If
MTMODO is high, JTAG signals are chosen; if it is low, debug module signals are chosen. MTMODO
should be changed only while RSTT is asserted.

2.2.15.1 Processor Clock Output (PSTCLK)

The internal PLL generates this output signal, and is the processor clock output that is used as the timing
reference for the debug bus timing (PSTDDATA[7:0]). PSTCLK is at the same frequency as the internal
XLB and SDRAM bus frequency. The frequency is one-half the core frequency.

2.2.15.2 Processor Status Debug Data (PSTDDATA[7:0])

Processor status data outputs indicate both processor status and captured address/data values. They operate
at half the processor’s frequency, using PSTCLK. Given that real-time trace information appears as a
sequence of 4-bit data values, there are no alignment restrictions; that is, PST values and operands may
appear on either PSTDDATA[7:0] nibble. The upper nibble, PSTDDATA[7:4], is most significant.

2.2.15.3 Development Serial Clock/Test Reset (DSCLK/TRST)

If MTMODO is low, DSCLK is selected. DSCLK is the development serial clock for the serial interface to
the debug module. The maximum DSCLK frequency is 1/5 CLKIN.

If MTMODO is high, TRST is selected. TRST asynchronously resets the internal JTAG controller to the
test logic reset state, causing the JTAG instruction register to choose the bypass instruction. When this
occurs, JTAG logic is benign and does not interfere with normal MCF548x functionality.

Although TRST is asynchronous, Freescale recommends that it makes an asserted-to-negated transition
only while TMS is held high. TRST has an internal pull-up resistor so if it is not driven low, it defaults to
alogic level of 1. If TRST is not used, it can be tied to ground or, if TCK is clocked, to EVpp. Tying TRST
to ground places the JTAG controller in test logic reset state immediately. Tying it to EVpp causes the
JTAG controller (if TMS is a logic level of 1) to eventually enter test logic reset state after 5 TCK clocks.
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2.2.15.4 Breakpoint/Test Mode Select (BKPT/TMS)

If MTMODO is low, BKPT is selected. BKPT signals a hardware breakpoint to the processor in debug
mode.

If MTMODO is high, TMS is selected. The TMS input provides information to determine the JTAG test
operation mode. The state of TMS and the internal 16-state JTAG controller state machine at the rising
edge of TCK determine whether the JTAG controller holds its current state or advances to the next state.
This directly controls whether JTAG data or instruction operations occur. TMS has an internal pull-up
resistor so that if it is not driven low, it defaults to a logic level of 1. But if TMS is not used, it should be
tied to VDD'

2.2.15.5 Development Serial Input/Test Data Input (DSI/TDI)

If MTMODO is low, DSI is selected. DSI provides the single-bit communication for debug module
commands.

If MTMODO is high, TDI is selected. TDI provides the serial data port for loading the various JTAG
boundary scan, bypass, and instruction registers. Shifting in data depends on the state of the JTAG
controller state machine and the instruction in the instruction register. Shifts occur on the TCK rising edge.

TDI has an internal pull-up resistor, so when not driven low it defaults to high. But if TDI is not used, it
should be tied to EVDD.

2.2.15.6 Development Serial Output/Test Data Output (DSO/TDO)

If MTMODO is low, DSO is selected. DSO provides single-bit communication for debug module
responses.

If MTMODO is high, TDO is selected. The TDO output provides the serial data port for outputting data
from JTAG logic. Shifting out data depends on the JTAG controller state machine and the instruction in
the instruction register. Data shifting occurs on the falling edge of TCK. When TDO is not outputting test
data, it is three-stated. TDO can be three-stated to allow bused or parallel connections to other devices
having a JTAG port.

2.2.15.7 Test Clock (TCK)

TCK is the dedicated JTAG test logic clock independent of the MCF548x processor clock. Various JTAG
operations occur on the rising or falling edge of TCK. Holding TCK high or low for an indefinite period
does not cause JTAG test logic to lose state information. If TCK is not used, it must be tied to ground.

2.2.16 Test Signals

2.2.16.1 Test Mode (MTMODI[3:0])

The test mode signals choose between multiplexed debug module and JTAG signals. [f MTMODO is low,
the part is in normal and background debug mode (BDM); if it is high, it is in normal and JTAG mode. All
other MTMOD values are reserved; MTMOD[3:1] should be tied to ground and MTMOD][3:0] should not
be changed while RSTI is negated
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2.2.17 Power and Reference Pins

These pins provide system power, ground, and references to the device. Multiple pins are provided for
adequate current capability. All power supply pins must have adequate bypass capacitance for
high-frequency noise suppression.

2.2.17.1 Positive Pad Supply (EVDD)
This pin supplies positive power to the I/O pads.

2.2.17.2 Positive Core Supply (IVDD)

This pin supplies positive power to the core logic.

2.2.17.3 Ground (VSS)
This pin is the negative supply (ground) to the chip.

2.2.17.4 USB Power (USBVDD)
This pin supplies positive power to the USB module’s digital logic.

2.2.17.5 USB Oscillator Power (USB_OSCVDD)
This pin supplies positive power to the USB oscillator’s digital logic.

2.2.17.6 USB PHY Power (USB_PHYVDD)
This pin supplies positive power to the USB PHY’s digital logic.

2.2.17.7 USB Oscillator Analog Power (USB_OSCAVDD)

This pin supplies positive power to the USB oscillator’s analog circuits.

2.2.17.8 USB PLL Analog Power (USB_PLLVDD)
This pin supplies positive power to the USB PLL’s circuits.

2.2.17.9 SDRAM Memory Supply (SDVDD)
This pin supplies positive power to the SDRAM module.

2.2.17.10 PLL Analog Power (PLLVDD)
This pin supplies the positive power for the PLL.

2.2.17.11 PLL Analog Ground (PLLVSS)
This pin is the negative supply (ground) to the PLL.
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Part |
Processor Core

Part I is intended for system designers who need to understand the operation of the MCF548x ColdFire
core and its enhanced multiply/accumulate (EMAC) execution unit. It describes the programming and
exception models, Harvard memory implementation, and debug module.

Contents

Part 1 contains the following chapters:

Chapter 3, “ColdFire Core,” provides an overview of the microprocessor core of the MCF548x.
The chapter begins with a description of enhancements from the V3 ColdFire core, and then fully
describes the V4e programming model as it is implemented on the MCF548x. It also includes a full
description of exception handling, data formats, an instruction set summary, and a table of
instruction timings.

Chapter 4, “Enhanced Multiply-Accumulate Unit (EMAC),” describes the MCF548x enhanced
multiply/accumulate unit, which executes integer multiply, multiply-accumulate, and
miscellaneous register instructions. The EMAC is integrated into the operand execution pipeline
(OEP).

Chapter 5, “Memory Management Unit (MMU),” describes the ColdFire virtual memory
management unit (MMU), which provides virtual-to-physical address translation and memory
access control.

Chapter 6, “Floating-Point Unit (FPU),” describes instructions implemented in the floating-point
unit (FPU) designed for use with the ColdFire family of microprocessors.

Chapter 7, “Local Memory,” describes the MCF548x implementation of the ColdFire V4e local
memory specification.

Chapter 8, “Debug Support,” describes the Revision C enhanced hardware debug support in the
MCF548x. This revision of the ColdFire debug architecture encompasses earlier revisions.
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Chapter 3
ColdFire Core

This chapter provides an overview of the microprocessor core of the MCF548x. The CF4e implementation
of the Version 4 (V4) core includes the floating-point unit (FPU), enhanced multiply-accumulate unit
(EMAC), and memory management unit (MMU); all are defined as optional in the V4 architecture. This
chapter also includes a full description of exception handling, data formats, an instruction set summary,
and a table of instruction timings.

3.1 Core Overview

The MCF548x is the first standard product to contain a Version 4e ColdFire microprocessor core. To create
this next-generation, high-performance core, many advanced microarchitectural techniques were
implemented. Most notable are a Harvard memory architecture, branch cache acceleration logic, and
limited superscalar dual-instruction issue capabilities, which together provide 308 (Dhrystone 2.1) MIPS
performance at 200 MHz.

The MCF548x core design emphasizes performance and backward compatibility, and represents the next
step on the ColdFire performance roadmap.

3.2 Features

The CF4e includes the following features defined as optional in the V4 core architecture:
* Floating-point unit (FPU)
* Virtual memory management unit (MMU)

* Enhanced multiply-accumulate unit (EMAC) for increased signal processing functionality plus
backward code compatibility with the MAC unit of previous ColdFire processors

V4 architecture features are defined as follows:

* Variable-length RISC, clock-multiplied core

» Revision B of the ColdFire instruction set architecture (ISA_B), providing new instructions to
improve performance and code density

» Two independent, decoupled pipelines—four-stage instruction fetch pipeline (IFP) and five-stage
operand execution pipeline (OEP) for increased performance

* Ten-instruction, FIFO buffer that decouples the IFP and OEP

* Limited superscalar design approaches dual-issue performance with the cost of a scalar execution
pipeline

» Two-level branch acceleration mechanism with a branch cache, plus a prediction table for
increased performance of conditional Bee instructions

» 32-bit address bus supporting 4 Gbytes of linear address space

* 32-bit data bus

* 16 user-accessible, 32-bit-wide, general-purpose registers

» Supervisor/user modes for system protection

» Two separate stack pointer (A7) registers—the supervisor stack pointer (SSP) and the user stack
pointer (USP)—that provide the required isolation between operating modes to support the MMU.

» Vector base register to relocate the exception-vector table
*  Optimized for high-level language constructs
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3.2.1 Enhanced Pipelines

The IFP prefetches instructions. The OEP decodes instructions, fetches required operands, then executes
the specified function. The two independent, decoupled pipeline structures maximize performance while
minimizing core size. Pipeline stages are shown in Figure 3-1 and are summarized as follows:

* Four-stage IFP (plus optional instruction buffer stage)
— Instruction address generation (IAG) calculates the next prefetch address.
— Instruction fetch cycle 1 (IC1) initiates prefetch on the processor’s local instruction bus.
— Instruction fetch cycle 2 (IC2) completes prefetch on the processor’s local instruction bus.
— Instruction early decode (IED) generates time-critical decode signals needed for the OEP.
— Instruction buffer (IB) stage uses FIFO queue to minimize effects of fetch latency.
» Five-stage OEP with two optional processor bus write cycles
— Decode stage (DS/secDS) decodes and selects for two sequential instructions.
— Operand address generation (OAG) generates the address for the data operand.
— Operand fetch cycle 1 and 2 (OC1 and OC2) fetch data operands.
— Execute (EX) performs prescribed operations on previously fetched data operands.
— Write data available (DA) makes data available for operand write operations only.
— Store data (ST) updates memory element for operand write operations only.
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Figure 3-1. ColdFire Enhanced Pipeline

3.2.1.1 Instruction Fetch Pipeline (IFP)

Because the fetch and execution pipelines are decoupled by a ten-instruction FIFO buffer, the IFP can
prefetch instructions before the OEP needs them, minimizing stalls.

MCF548x Reference Manual, Rev. 3

Freescale Semiconductor



3.21.1.1 Branch Acceleration

To maximize the performance of conditional branch instructions, the IFP implements a sophisticated
two-level acceleration mechanism. The first level is an 8-entry, direct-mapped branch cache with 2 bits for
indicating four prediction states (strongly or weakly; taken or not-taken) for each entry. The branch cache
also provides the association between instruction addresses and the corresponding target address. In the
event of a branch cache hit, if the branch is predicted as taken, the branch cache sources the target address
from the IC1 stage back into the IAG to redirect the prefetch stream to the new location.

The branch cache implements instruction folding, so conditional branch instructions correctly predicted as
taken can execute in zero cycles. For conditional branches with no information in the branch cache, a
second-level, direct-mapped prediction table is accessed. Each of its 128 entries uses the same 2-bit
prediction mechanism as the branch cache.

If a branch is predicted as taken, branch acceleration logic in the IED stage generates the target address.
Other change-of-flow instructions, including unconditional branches, jumps, and subroutine calls, use a
similar mechanism where the IFP calculates the target address. The performance of subroutine return
instruction (RTS) is improved through the use of a four-entry, LIFO hardware return stack. In all cases,
these mechanisms allow the IFP to redirect the fetch stream down the predicted path well ahead of
instruction execution.

3.2.1.2 Operand Execution Pipeline (OEP)

The two instruction registers in the decode stage (DS) of the OEP are loaded from the FIFO instruction
buffer or are bypassed directly from the instruction early decode (IED). The OEP consists of two
traditional, two-stage RISC compute engines with a dual-ported register file access feeding an arithmetic
logic unit (ALU).

The compute engine at the top of the OEP (the address ALU) is used typically for operand address
calculations; the execution ALU at the bottom is used for instruction execution. The resulting structure
provides 4 Gbytes/S operand bandwidth (at 162 MHz) to the two compute engines and supports
single-cycle execution speeds for most instructions, including all load and store operations and most
embedded-load operations. The V4 OEP supports the ColdFire Revision B instruction set, which adds a
few new instructions to improve performance and code density.

The OEP also implements the following advanced performance features:
+ Stalls are minimized by dynamically basing the choice between the address ALU or execution
ALU for instruction execution on the pipeline state.

* The address ALU and register renaming resources together can execute heavily used opcodes and
forward results to subsequent instructions with no pipeline stalls.

 Instruction folding involving MOVE instructions allows two instructions to be issued in one cycle.
The resulting microarchitecture approaches full superscalar performance at a much lower silicon
cost.

3.2.1.2.1 lllegal Opcode Handling

To aid in conversion from M68000 code, every 16-bit operation word is decoded to ensure that each
instruction is valid. If the processor attempts execution of an illegal or unsupported instruction, an illegal
instruction exception (vector 4) is taken.

3.2.1.2.2 Enhanced Multiply/Accumulate (EMAC) Unit

The EMAC unit in the Version 4e provides hardware support for a limited set of digital signal processing
(DSP) operations used in embedded code, while supporting the integer multiply instructions in the
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ColdFire microprocessor family. The MAC features a four-stage execution pipeline, optimized for 32 x 32
multiplies. It is tightly coupled to the OEP, which can issue a 32 x 32 multiply with a 32-bit accumulation
and fetch a 32-bit operand in a single cycle. A 32 x 32 multiply with a 32-bit accumulation requires four
cycles before the next instruction can be issued.

Figure 3-2 shows basic functionality of the EMAC. A full set of instructions are provided for signed and
unsigned integers plus signed, fixed-point fractional input operands.

Operand Y Operand X

Shift 0,1,-1

Accumulator

\j
Figure 3-2. ColdFire Multiply-Accumulate Functionality Diagram

The EMAC provides functionality in the following three related areas, which are described in detail in
Chapter 4, “Enhanced Multiply-Accumulate Unit (EMAC):”

» Signed and unsigned integer multiplies
*  Multiply-accumulate operations with signed and unsigned fractional operands
* Miscellaneous register operations

3.2.1.23 Memory Management Unit (MMU)

The ColdFire memory management architecture provides a demand-paged, virtual-address environment
with hardware address translation acceleration. It supports supervisor/user, read, write, and execute
permission checking on a per-memory request basis.

The architecture defines the MMU TLB, associated control logic, TLB hit/miss logic, address translation
based on the TLB contents, and access faults due to TLB misses and access violations. It intentionally
leaves some virtual environment details undefined to maximize the software-defined flexibility. These
include the exact structure of the memory-resident pointer descriptor/page descriptor tables, the base
registers for these tables, the exact information stored in the tables, the methodology (if any) for
maintenance of access, and written information on a per-page basis.

3.2.1.2.4 Floating Point Unit (FPU)

The floating-point unit (FPU) provides hardware support for floating point math operations. The FPU
conforms to the American National Standards Institute (ANSI)/Institute of Electrical and Electronics
Engineers (IEEE) Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754).
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The hardware unit is optimized for real-time execution with exceptions disabled and default results
provided for specific operations, operands, and number types. The FPU does not support all IEEE-754
number types and operations in hardware. Exceptions can be enabled to support these cases in software.

3.2.1.2.5 Hardware Divide Unit

The hardware divide unit performs the following integer division operations:

» 32-bit operand/16-bit operand producing a 16-bit quotient and a 16-bit remainder
* 32-bit operand/32-bit operand producing a 32-bit quotient
» 32-bit operand/32-bit operand producing a 32-bit remainder

3.2.1.3 Harvard Memory Architecture

A Harvard memory architecture supports the increased bandwidth requirements of the CF4e processor
pipelines by providing separate configuration, access control, and protection resources for data (operand)
and instruction memory. The CF4e has separate instruction and data buses to processor-local memories,
eliminating conflicts between instruction fetches and operand accesses.

3.2.2 Debug Module Enhancements

The ColdFire processor core debug interface supports system integration in conjunction with low-cost
development tools. Real-time trace and debug information can be accessed through a standard interface,
which allows the processor and system to be debugged at full speed without costly in-circuit emulators.
The CF4e debug unit is a compatible upgrade to MCF52xx and MCF53xx debug modules with added
support for the CF4e MMU module.

The Version 2 ColdFire core implemented the original debug architecture, now called Revision A. Based
on feedback from customers and third-party developers, enhancements have been added to succeeding
generations of ColdFire cores. For Revision A, CSR[HRL] is 0. See Section 8.4.2, “Configuration/Status
Register (CSR).”

The Version 3 core implements Revision B of the debug architecture, offering more flexibility for
configuring the hardware breakpoint trigger registers and removing the restrictions involving concurrent
BDM processing while hardware breakpoint registers are active. For Revision B, CSR[HRL] is 1.

Revision C of the debug architecture more than doubles the on-chip breakpoint registers and provides an
ability to interrupt debug service routines. For Revision C, CSR[HRL] is 2.

Differences between Revision B and C are summarized as follows:

* Debug Revision B has separate PST[3:0] and DDATA[3:0] signals.

» Debug Revision C adds breakpoint registers and supports normal interrupt request service during
debug. It combines debug signals into PSTDDATA[7:0].

The addition of the memory management unit (MMU) to the baseline architecture requires corresponding
enhancements to the ColdFire debug functionality, resulting in Revision D. For Revision D, the revision
level bit, CSR[HRL], is 3.

With software support, the MMU can provide a demand-paged, virtual address environment. To support
debugging in this virtual environment, the debug enhancements are primarily related to the expansion of
the virtual address to include the 8-bit address space identifier (ASID). Conceptually, the virtual address
is expanded to a 40-bit value: the 8-bit ASID plus the 32-bit address.

The expansion of the virtual address affects the following two major debug functions:
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» The ASID is optionally included in the specification of the hardware breakpoint registers. As an
example, the four PC breakpoint registers are each expanded by 8 bits, so that a specific ASID
value may be programmed as part of the breakpoint instruction address. Likewise, each operand
address/data breakpoint register is expanded to include an ASID value. Finally, new control
registers define if and how the ASID is to be included in the breakpoint comparison trigger logic.

* The debug module implements the concept of ownership trace in which the ASID value may be
optionally displayed as part of the real-time trace functionality. When enabled, real-time trace
displays instruction addresses on every change-of-flow instruction that is not absolute or
PC-relative. For Revision D, this instruction address display optionally includes the contents of the
ASID, thus providing the complete instruction virtual address on these instructions.

Additionally when a Sync PC serial BDM command is loaded from the external development

system, the processor optionally displays the complete virtual instruction address, including the
8-bit ASID value.

In addition to these ASID-related changes, the new MMU control registers are accessible by using serial
BDM commands. The same BDM access capabilities are also provided for the EMAC and FPU
programming models.

Finally, a new serial BDM command is implemented to assist debugging when a software error generates
an incorrect memory address that hangs the external bus. The new BDM command attempts to break this
condition by forcing a bus termination.

3.3 Programming Model

The MCF548x programming model consists of two instruction and register groups—user and supervisor,
shown in Figure 3-3. User mode programs are restricted to user, EMAC, and floating point instructions
and programming models. Supervisor-mode system software can reference all user-mode, EMAC, and
floating point instructions and registers and additional supervisor instructions and control registers. The
user or supervisor programming model is selected based on SR[S]. The following sections describe the
registers in the user, EMAC, floating point, and supervisor programming models.
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User Registers

Supervisor Registers

63

31 0

DO

D1

D2

D3

D4

D5

D6

D7

31 0

A0

A1l

A2

A3

Ad

A5

A6

A7

PC

CCR

FPO

FP1

FP2

FP3

FP4

FP5

FP6

FP7

FPCR

FPSR

FPIAR

31 0

MACSR

ACCO

ACC1

ACC2

ACC3

ACCext01

ACCext23

MASK

3t 19 [ T(CCR)|SR

OTHER_A7

| Must be zeros |VBR

CACR

ASID

ACRO

ACR1

ACR2

ACRS3

MMUBAR

ROMBARO

ROMBARH1

RAMBARO

RAMBARH1

MBAR

Data registers

Address registers

User stack pointer
Program counter

Condition code register

Floating-point data registers

Floating-point control register
Floating-point status register
Floating-point instruction address register

MAC status register

MAC accumulator 0

MAC accumulator 1 (EMAC only)
MAC accumulator 2 (EMAC only)
MAC accumulator 3 (EMAC only)
ACCO and ACC1 extensions
ACC2 and ACC3 extensions
MAC mask register

Status register

Supervisor A7 stack pointer

Vector base register

Cache control register

Address space ID register

Access control register 0 (data)
Access control register 1 (data)
Access control register 2 (instruction)
Access control register 3 (instruction)
MMU base address register

ROM base address register 0

ROM base address register 1

RAM base address registerO

RAM base address register 1

Module base address register

Figure 3-3. ColdFire Programming Model
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3.3.1  User Programming Model

The user programming model, shown in Figure 3-3, consists of the following registers:

* 16 general-purpose, 32-bit registers (D7-D0 and A7-A0); A7 is a user stack pointer
* 32-bit program counter

+ 8-bit condition code register

» Registers to support the EMAC

» Register to support the floating-point unit (FPU)

3.3.1.1  Data Registers (D0-D7)

Registers DO-D7 are used as data registers for bit, byte (8-bit), word (16-bit), and longword (32-bit)
operations. They may also be used as index registers.

3.3.1.2 Address Registers (A0—A6)

The address registers (A0—A6) can be used as software stack pointers, index registers, or base address
registers, and may be used for word and longword operations.

3.3.2 User Stack Pointer (A7)

The CF4e architecture supports two unique stack pointer (A7) registers—the supervisor stack pointer
(SSP) and the user stack pointer (USP). This support provides the required isolation between operating
modes as dictated by the virtual memory management scheme provided by the memory management unit
(MMU). The SSP is described in Section 5.4.2, “Supervisor/User Stack Pointers.”

3.3.2.1 Program Counter (PC)

The PC holds the address of the executing instruction. For sequential instructions, the processor
automatically increments PC. When program flow changes, the PC is updated with the target instruction.
For some instructions, the PC specifies the base address for PC-relative operand addressing modes.

3.3.2.2 Condition Code Register (CCR)

The CCR, Figure 3-4, occupies SR[7-0], as shown in Figure 3-3. The CCR[4-0] bits are indicator flags
based on results generated by arithmetic operations.

6 5 4 3 2 1 0
Rl O 0 0 X N z \Y C
W
Reset| 0 0 0 0 0 0 0 0
Reg Accessed using R/W commands for the status register
Addr

Figure 3-4. Condition Code Register (CCR)
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Table 3-1. CCR Field Descriptions

Bits Name Description

7-5 — Reserved, should be cleared.

4 X Extend condition code bit. Assigned the value of the carry bit for arithmetic operations;
otherwise not affected or set to a specified result. Also used as an input operand for
multiple-precision arithmetic.

3 N Negative condition code bit. Set if the msb of the result is set; otherwise cleared.
2 Z Zero condition code bit. Set if the result equals zero; otherwise cleared.
1 \ Overflow condition code bit. Set if an arithmetic overflow occurs, implying that the result

cannot be represented in the operand size; otherwise cleared.

0 C Carry condition code bit. Set if a carry-out of the data operand msb occurs for an addition
or if a borrow occurs in a subtraction; otherwise cleared.

3.3.3

EMAC Programming Model

The registers in the EMAC portion of the user programming model are described in Chapter 4, “Enhanced
Multiply-Accumulate Unit (EMAC),” and include the following registers:

Four 48-bit accumulator registers partitioned as follows:

— Four 32-bit accumulators (ACC0-ACC3)

— Eight 8-bit accumulator extension bytes (two per accumulator). These are grouped into two
32-bit values for load and store operations (ACCEXTO01 and ACCEXT23).

Accumulators and extension bytes can be loaded, copied, and stored, and results from EMAC

arithmetic operations generally affect the entire 48-bit destination.

Eight 8-bit accumulator extensions (two per accumulator), packaged as two 32-bit values for load
and store operations (ACCext01 and ACCext23)

One 16-bit mask register (MASK)

One 32-bit status register (MACSR), including four indicator bits signaling product or
accumulation overflow (one for each accumulator: PAVO-PAV3).

These registers are shown in Figure 3-5.

3.3.4

31 0

MACSR MAC status register
ACCO MAC accumulator 0
ACCH1 MAC accumulator 1
ACC2 MAC accumulator 2
ACC3 MAC accumulator 3
ACCext01 Extensions for ACCO and ACC1
ACCext23 Extensions for ACC2 and ACC3
MASK MAC mask register

Figure 3-5. EMAC Register Set

FPU Programming Model

The registers in the FPU portion of the programming model are described in Chapter 6, “Floating-Point
Unit (FPU),” and include the folllowing registers:
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» Eight 64-bit floating-point data registers (FPO—-FP7)
*  One 32-bit floating-point control register (FPCR)

*  One 32-bit floating-point status register (FPSR)

* One 32-bit floating-point instruction address register (FPIAR)

Figure 3-6 shows the FPU programming model.

ProgrammingModel

63 31

FPO

FP1

FP2

FP3

FP4

FP5

FP6

FP7

FPCR

FPSR

FPIAR

Floating-point data registers

Floating-point control register
Floating-point status register
Floating-point instruction address register

Figure 3-6. Floating-Point Programmer’s Model

3.3.5 Supervisor Programming Model

The MCF548x supervisor programming model is shown in Figure 3-3. Typically, system programmers use
the supervisor programming model to implement operating system functions and provide memory and I/O
control. The supervisor programming model provides access to the user registers and additional supervisor
registers, which include the upper byte of the status register (SR), the vector base register (VBR), and
registers for configuring attributes of the address space connected to the Version 4 processor core. Most
supervisor-level registers are accessed by using the MOVEC instruction with the control register

definitions in Table 3-2.

Table 3-2. MOVEC Register Map

Rc[11-0]

Register Definition

0x002

Cache control register (CACR)

0x004

Access control register 0 (ACRO)

0x005

0x006

Access control register 2 (ACR2)

0x007

(
Access control register 1 (ACR1)

(

(

Access control register 3 (ACR3)

0x801

Vector base register (VBR)

0xCo4

RAM base address register 0 (RAMBARO)

0xC05

RAM base address register 1 (RAMBAR1)

0xCOF

Module base address register (MBAR)
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3.3.5.1  Status Register (SR)

The SR stores the processor status, the interrupt priority mask, and other control bits. Supervisor software
can read or write the entire SR; user software can read or write only SR[7-0], described in Section 3.3.2.2,
“Condition Code Register (CCR).” The control bits indicate processor states—trace mode (T), supervisor
or user mode (S), and master or interrupt state (M). SR is set to 0x27xx after reset.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
System byte Condition code register (CCR)
Rl T 0 S M 0 00| O0|X N z Vv C
W
Reset| 0 0 1 0 0 1 1 1 o 0 0 — — — — —
Reg 0x27xx
Addr

Figure 3-7. Status Register (SR)

Table 3-3 describes SR fields.
Table 3-3. SR Field Descriptions

Bits Name Description
15 T Trace enable. When T is set, the processor performs a trace exception after every
instruction.
13 S Supervisor/user state. Indicates whether the processor is in supervisor or user mode

0 User mode
1 Supervisor mode

12 M Master/interrupt state. Cleared by an interrupt exception. It can be set by software during
execution of the RTE or move to SR instructions so the OS can emulate an interrupt stack
pointer.

10-8 Interrupt priority mask. Defines the current interrupt priority. Interrupt requests are inhibited

for all priority levels less than or equal to the current priority, except the edge-sensitive
level-7 request, which cannot be masked.

7-0 CCR Condition code register. See Table 3-1.

3.3.5.2 Vector Base Register (VBR)

The VBR holds the base address of the exception vector table in memory. The displacement of an
exception vector is added to the value in this register to access the vector table. The VBR[19-0] bits are
not implemented and are assumed to be zero, forcing the vector table to be aligned on a 0-modulo-1-Mbyte
boundary.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R Exception vector table base address’ 0 0 0 0
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0
Reg 0x801
Addr
15 14 13 12 1M 10 9 8 7 6 5 4 3 2 1
R| O 0 0 0 0 0 0 0 ojo0j0]|O 0 0 0 0
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0
Reg 0x801
Addr

Written from a BDM serial command or from the CPU using the MOVEC instruction. VBR can be read from
the debug module only. The upper 12 bits are returned, the low-order 20 bits are undefined.

Figure 3-8. Vector Base Register (VBR)

3.3.5.3 Cache Control Register (CACR)

The CACR controls operation of both the instruction and data cache memory. It includes bits for enabling,
freezing, and invalidating cache contents. It also includes bits for defining the default cache mode and
write-protect fields. See Section 7.10.1, “Cache Control Register (CACR).”

3.3.5.4 Access Control Registers (ACR0-ACR3)

The access control registers (ACRO—ACR3) define attributes for four user-defined memory regions: ACRO
and ACRI1 control data memory space, and ACR2 and ACR3 control instruction memory space. Attributes
include definition of cache mode, write protect and buffer write enables. See Section 7.10.2, “Access
Control Registers (ACR0-ACR3).”

3.3.5.5 RAM Base Address Registers (RAMBARO and RAMBAR1)

The RAMBAR registers determine the base address location of the internal SRAM modules and indicate
the types of references mapped to each. Each RAMBAR includes a base address, write-protect bit, address
space mask bits, and an enable. The RAM base address must be aligned on a 0-module-2-Kbyte boundary.
See Section 7.4.1, “SRAM Base Address Registers (RAMBARO/RAMBARI).”

3.3.5.6 Module Base Address Register (MBAR)
The module base address register (MBAR) defines the logical base address for the memory-mapped space

containing the control registers for the on-chip peripherals. See Section 9.3.1, “Module Base Address
Register (MBAR).”
3.3.6 Programming Model Table

Table 3-4 lists register names, the CPU space location, whether the register is written from the processor
using the MOVEC instruction, and the complete register name.
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Table 3-4. ColdFire CPU Registers

Name CPU Space (Rc) | Written with MOVEC Register Name
Memory Management Control Registers

CACR 0x002 Yes Cache control register
ASID 0x003 Yes Address space identifier
ACRO0-ACRS3 | 0x004—-0x007 Yes Access control registers 0-3
MMUBAR 0x008 Yes MMU base address register

Processor General-Purpose Registers
D0-D7 0x(0,1)80-0x(0,1 No Data registers 0—7 (0 = load, 1 = store)

)87
AO-A7 0x(0,1)88-0x(0,1 No Address registers 0-7 (0 = load, 1 = store) A7 is user
)8F stack pointer
Processor Miscellaneous Registers
OTHER_A7 | 0x800 No Other stack pointer
VBR 0x801 Yes Vector base register
MACSR 0x804 No MAC status register
MASK 0x805 No MAC address mask register
ACCO0-ACCS3 | 0x806—-0x80B No MAC accumulators 0-3
ACCext01 0x807 No MAC accumulator 0, 1 extension bytes
ACCext23 0x808 No MAC accumulator 2, 3 extension bytes
SR 0x80E No Status register
PC O0x80F Yes Program counter
Processor Floating-Point Registers

FPUO 0x810 No 32 msbs of floating-point data register 0
FPLO 0x811 No 32 Isbs of floating-point data register 0
FPU1 0x812 No 32 msbs of floating-point data register 1
FPLA1 0x813 No 32 Isbs of floating-point data register 1
FPU2 0x814 No 32 msbs of floating-point data register 2
FPL2 0x815 No 32 Isbs of floating-point data register 2
FPU3 0x816 No 32 msbs of floating-point data register 3
FPL3 0x817 No 32 Isbs of floating-point data register 3
FPU4 0x818 No 32 msbs of floating-point data register 4
FPL4 0x819 No 32 Isbs of floating-point data register 4
FPU5 0x81A No 32 msbs of floating-point data register 5
FPL5 0x81B No 32 Isbs of floating-point data register 5
FPU6 0x81C No 32 msbs of floating-point data register 6
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Table 3-4. ColdFire CPU Registers (Continued)

Name CPU Space (Rc) | Written with MOVEC Register Name
FPL6 0x81D No 32 Isbs of floating-point data register 6
FPU7 O0x81E No 32 msbs of floating-point data register 7
FPL7 Ox81F No 32 Isbs of floating-point data register 7
FPIAR 0x821 No Floating-point instruction address register
FPSR 0x822 No Floating-point status register
FPCR 0x824 No Floating-point control register

Local Memory and Module Control Registers

RAMBARO 0xC04 Yes RAM base address register 0

RAMBAR1 0xCO05 Yes RAM base address register 1

MBAR 0xCOF Yes Primary module base address register (not a core
register)

3.4 Data Format Summary

Table 3-5 lists the operand data formats. Integer operands can reside in registers, memory, or instructions.
The operand size is either explicitly encoded in the instruction or implicitly defined by the instruction
operation.

Table 3-5. Integer Data Formats

Operand Data Format Size
Bit 1 bit
Byte integer 8 bits
Word integer 16 bits
Longword integer 32 bits

3.4.1 Data Organization in Registers

The following sections describe data organization in data, address, and control registers. Section 6.2.2,
“Floating-Point Data Formats,” describes floating-point formatting.

3.4.1.1 Integer Data Format Organization in Registers

Figure 3-9 shows the integer format for data registers. Each integer data register is 32 bits wide. Byte and
word operands occupy the lower 8- and 16-bit portions of integer data registers, respectively. Longword
operands occupy the entire 32 bits of integer data registers. A data register that is either a source or
destination operand only uses or changes the appropriate lower 8 or 16 bits in byte or word operations,
respectively. The remaining high-order portion does not change. Note that the least-significant bit is bit 0
for all data types, whereas the msbs for longword integer is bit 31, the msb of a word integer is bit 15, and
the msb of a byte integer is bit 7.
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31 30 1 0

msb Isb | Bit (0 bit number 31)
31 8 7 6 1 0
Not used msb |Lower-order byte| Isb | Byte (8 bits)
31 16 15 14 1 0
Not used msb| Lower-order word Isb | Word (16 bits)
31 30 1 0
msb Longword Isb | Longword (32 bits)

Figure 3-9. Organization of Integer Data Format in Data Registers

Instruction encodings disallow use of address registers for byte operands. When an address register is a
source operand, either the low-order word or the entire longword operand is used, depending on the
operation size. Word-length source operands are sign-extended to 32 bits and then used in the operation
with an address register destination. When an address register is a destination, the entire register is
affected, regardless of the operation size. Figure 3-10 shows integer formats for address registers.

31 16 15 0
Sign-Extended 16-Bit Address Operand

31 0
Full 32-Bit Address Operand

Figure 3-10. Organization of Integer Data Formats in Address Registers

The size of control registers varies according to function. Some have undefined bits reserved for future
definition by Freescale. Those bits read as zeros and must be written as zeros for future compatibility.
Operations to the SR and CCR are word-sized. The upper CCR byte is read as all zeros and is ignored when
written, regardless of privilege mode.

3.4.1.2 Integer Data Format Organization in Memory

ColdFire processors use big-endian addressing. Byte-addressable memory organization allows lower
addresses to correspond to higher-order bytes. The address N of a longword data item corresponds to the
address of the high-order word. The lower-order word is at address N + 2. The address of a word data item
corresponds to the address of the high-order byte. The lower-order byte is at address N + 1. This
organization is shown in Figure 3-11.
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31 24 23 16 15 8 7 0
Longword 0x0000_0000

Word 0x0000_0000 Word 0x0000_0002
Byte 0x0000_0000 | Byte 0x0000_0001 Byte 0x0000_0002 | Byte 0x0000_0003
Longword 0x0000_0004
Word 0x0000_0004 Word 0x0000_0006
Byte 0x0000_0004 | Byte 0x0000_0005 Byte 0x0000_0006 | Byte 0x0000_0007

Longword OxFFFF_FFFC
Word OxFFFF_FFFC Word OxFFFF_FFFE
Byte OxFFFF_FFFC | Byte OxFFFF_FFFD Byte OXFFFF_FFFE | Byte OXFFFF_FFFF

Figure 3-11. Memory Operand Addressing

3.4.2 EMAC Data Representation

The EMAC supports the following three modes, where each mode defines a unique operand type.

» Two’s complement signed integer: In this format, an N-bit operand value lies in the range 2(N-1)
< operand < 2" _ 1 The binary point is right of the lsb.

* Unsigned integer: In this format, an N-bit operand value lies in the range 0 < operand < 2N_1.The
binary point is right of the Isb.

+ Two’s complement, signed fractional: In an N-bit number, the first bit is the sign bit. The remaining
bits signify the first N-1 bits after the binary point. Given an N-bit number, apy_;an. ay.3... aya;ay,
its value is given by the equation in Figure 3-12.

N-2

value = —(1-ay )+ Z 201N s

1=0
Figure 3-12. Two’s Complement, Signed Fractional Equation
This format can represent numbers in the range -1 < operand <1 - 2(N-D),

For words and longwords, the largest negative number that can be represented is -1, whose 1nterna1
representation is 0x8000 and 0x8000_0000, respectlvelg The largest positive word is 0x7FFF or (1-2"1;
the most positive longword is 0x7FFF_FFFF or (1 —

For more information, see Chapter 4, “Enhanced Multlply-Accumulate Unit (EMAC).”

3.4.2.1 Floating-Point Data Formats and Types

The FPU supports signed byte, word, and longword integer formats, which are identical to those
supported by the integer unit. The FPU also supports single- and double-precision binary
floating-point formats that fully comply with the IEEE-754 standard.

For more information, see Chapter 6, “Floating-Point Unit (FPU).”
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3.4.21.1 Signed-Integer Data Formats
The FPU supports 8-bit byte (B), 16-bit word (W), and 32-bit longword (L) integer data formats.

3.4.21.2 Floating-Point Data Formats

Figure 3-13 shows the two binary floating-point data formats.

31 30 22 0
S 8-Bit Exponent 23-Bit Fraction Single
\— Sign of Mantissa
63 62 51 0
11-Bit Exponent 52-Bit Fraction Double

\— Sign of Mantissa

Figure 3-13. Floating-Point Data Formats

Note that, throughout this chapter, a mantissa is defined as the concatenation of an integer bit, the binary
point, and a fraction. A fraction is the term designating the bits to the right of the binary point in the
mantissa.

Mantissa

(integer bit).(fraction)

Figure 3-14. Mantissa

The integer bit is implied to be set for normalized numbers and infinities, clear for zeros and denormalized
numbers. For not-a-numbers (NANSs), the integer bit is ignored. The exponent in both floating-point
formats is an unsigned binary integer with an implied bias added to it. Subtracting the bias from exponent
yields a signed, two’s complement power of two. This represents the magnitude of a normalized
floating-point number when multiplied by the mantissa.

By definition, a normalized mantissa always takes values starting from 1.0 and going up to, but not
including, 2.0; that is, [1.0...2.0).

3.5 Addressing Mode Summary

Addressing modes are categorized by how they are used. Data addressing modes refer to data operands.
Memory addressing modes refer to memory operands. Alterable addressing modes refer to alterable
(writable) data operands. Control addressing modes refer to memory operands without an associated size.

These categories sometimes combine to form more restrictive categories. Two combined classifications
are alterable memory (both alterable and memory) and data alterable (both alterable and data). Twelve of
the most commonly used effective addressing modes from the M68000 Family are available on ColdFire
microprocessors. Table 3-6 summarizes these modes and their categories.
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Table 3-6. ColdFire Effective Addressing Modes

Category
Addressing Modes Syntax I\:;?: :2?‘1
Data Memory Control Alterable
Register direct
Data Dn 000 reg. no. — — X
Address An 001 reg. no. — — — X
Register indirect
Address (An) 010 reg. no. X X X X
Address with (An)+ 011 reg. no. X X — X
Postincrement —(An) 100 reg. no. X X — X
Address with (d4g, An) 101 reg. no. X X X X
Predecrement
Address with
Displacement
Address register indirect with
scaled index (dg, An, 110 reg. no. X X X X
8-bit displacement Xi*SF)
Program counter indirect
with displacement (d46, PC) 111 010 X X X —
Program counter indirect with
scaled index (dg, PC, 111 011 X X X —
8-bit displacement Xi*SF)
Absolute data addressing
Short (xxx).W 111 000 X X X —
Long (xxx).L 111 001 X X X —
Immediate H#<XXX> 111 100 — —

3.6

The ColdFire instruction set is a simplified version of the M68000 instruction set. The removed
instructions include BCD, bit field, logical rotate, decrement and branch, and integer multiply with a 64-bit
result.

Instruction Set Summary

“About This Book™ lists notational conventions used throughout this manual.

3.6.1 Additions to the Instruction Set Architecture

The original ColdFire ISA was derived from M68000 Family opcodes based on extensive analysis of
embedded application code. After the first ColdFire compilers were created, developers identified ISA
additions that would enhance both code density and overall performance. Additionally, as users
implemented ColdFire-based designs into a wide range of embedded systems, they identified frequently
used instruction sequences that could be improved by creating new instructions. This observation was
especially prevalent in environments that used substantial amounts of assembly language code.

The original ISA minimized support for instructions referencing byte and word operands. MOVE.B and
MOVE.W were fully supported; otherwise, only CLR (clear) and TST (test) supported these data types.

Based on input from compiler writers and system users, a set of instruction enhancements was proposed
to address the following:
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Enhanced support for byte and word-sized operands through new move operations
Enhanced support for position-independent code

For descriptions of the ColdFire instruction set, see the latest version of the ColdFire Programmers
Reference Manual.

The following list summarizes new and enhanced instructions of ISA_B:

New instructions:

— INTOUCH loads blocks of instructions to be locked in the instruction cache.
— MOV3Q.L moves 3-bit immediate data to the destination location.
— MOVE to/from USP loads and stores user stack pointer.
— MVS.{B,W} sign-extends the source operand and moves it to the destination register.
— MVZ.{B,W} zero-fills the source operand and moves it to the destination register.

— SATS.L performs a saturation operation for signed arithmetic and updates the destination
register depending on CCR[V] and bit 31 of the register.

— TAS.B performs an indivisible read-modify-write cycle to test and set the addressed memory

byte.

Enhancements to existing Revision_A instructions:

— Longword support for branch instructions (Bcc, BRA, BSR)
— Byte and word support for compare instructions (CMP, CMPI)

— Word support for the compare address register instruction (CMPA)
— Byte and longword support for MOVE.x,where the source is immediate data and the
destination is specified by d16(Ax); that is, MOVE.{B,W} #<data>, d16(Ax)
Floating-point instructions. See Chapter 6, “Floating-Point Unit (FPU).”
EMAC instructions. See Chapter 4, “Enhanced Multiply-Accumulate Unit (EMAC),” for more

information.

Table 3-7 shows the syntax for the new and enhanced instructions. As Table 3-7 shows, some ISA B
opcodes were defined in the M68000 family and others are new.

Table 3-7. V4 New Instruction Summary

Instruction Mnemonic' Source Destination M68000
ISA_B Extensions

Branch Always bra.l <label> Yes
Branch Conditionally bece.l <label> Yes
Branch to Subroutine bsr.l <label> Yes
Compare cmp.{b,w,l} <ea>y Dx Yes
Compare Address cmpa.w <ea>y Ax Yes
Compare Immediate cmpi.{b,w} #<data> Dx Yes
Instruction Fetch Touch intouch <Ay>

Move 3-Bit Data Quick mov3q.| #<data> <ea>X

Move Data Source to Destination move.{b,w} #<data> d16(Ax) Yes
Move from USP move.| USP Ax Yes
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Instruction Set Summary

Table 3-7. V4 New Instruction Summary (Continued)

Instruction Mnemonic! Source Destination M68000
Move to USP move.| Ay USP Yes
Move with Sign Extend mvs.{b,w} <ea>y Dx
Move with Zero-Fill mvz.{b,w} <ea>y Dx
Signed Saturate sats.| Dx
Test and Set an Operand tas.b <ea>x Yes

EMAC Extensions

Move from an Accumulator and Clear movclr.| ACCx Rx No
Copy an Accumulator move.| ACCy ACCx No
Move from Accumulator 0 and 1 Extensions move.| ACCext01 Rx No
Move from Accumulator 2 and 3 Extensions move.| ACCext23 Rx No
Move to Accumulator 0 and 1 Extensions move.| Ry ACCext01 No
Move to Accumulator 2 and 2 Extensions move.| Ry ACCext23 No

FPU Instructions

Floating-Point Absolute Value fabs.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Add fadd.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Branch Conditionally fbce.{w,} <label> Yes
Floating-Point Compare fecmp.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Divide fdiv.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Integer fint.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Integer Round-to-Zero fintrz.{b,w,l,s,d} <ea>y FPx Yes
Move Floating-Point Data Register fmove.{b,w,l,s,d} <ea>y FPx Yes
Move from FPCR fmove.| FPCR <ea>X Yes
Move from FPIAR fmove.l FPIAR <ea>X Yes
Move from FPSR fmove.l FPSR <ea>X Yes
Move from FPCR fmove.l <ea>y FPCR Yes
Move from FPIAR fmove.l <ea>y FPIAR Yes
Move from FPSR fmove.l <ea>y FPSR Yes
Move Multiple Floating Point Data Registers fmovem.d #list <ea>X Yes
<ea>y #list
Floating-Point Multiply fmul.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Negate fneg.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point No Operation fnop Yes
Restore Internal Floating Point State frestore <ea>y Yes
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Table 3-7. V4 New Instruction Summary (Continued)

Instruction Mnemonic! Source Destination M68000
Save Internal Floating Point State fsave <ea>Xx Yes
Floating-Point Square Root fsqrt.{b,w,l,s,d} <ea>y FPx Yes
Floating-Point Subtract fsub.{b,w,l,s,d} <ea>y FPx Yes
Test Floating-Point Operand ftst.{b,w,l,s,d} <ea>y Yes

1 Operand sizes in this column reflect only newly supported operand sizes for existing instructions (Bcc, BRA,

BSR, CMP, CMPA, CMPI, and MOVE)

3.6.2

Instruction Set Summary

Table 3-8 lists user-mode instructions by opcode.

Table 3-8. User-Mode Instruction Set Summary

Instruction Operand Syntax Operand Size Operation
ADD Dy,<ea>x L Source + Destination — Destination
<ea>y,Dx L
ADDA <ea>y,Ax L
ADDI #<data>,Dx L Immediate Data + Destination — Destination
ADDQ #<data>,<ea>x L
ADDX Dy,Dx L Source + Destination + CCR[X] — Destination
AND <ea>y,Dx L Source & Destination — Destination
Dy,<ea>x L
ANDI #<data>, Dx L Immediate Data & Destination — Destination
ASL Dy,Dx L CCRI[X,C] < (Dx << Dy) <~ 0
#<data>,Dx L CCRI[X,C] « (Dx << #<data>) <~ 0
ASR Dy,Dx L msb — (Dx >> Dy) —» CCR[X,C]
#<data>,Dx L msb — (Dx >> #<data>) - CCR[X,C
Bcc <label> B,W,L If Condition True, Then PC + d,, > PC
BCHG Dy,<ea>x B, L ~ (<bit number> of Destination) - CCR[Z] —
#<data>,<ea>x B, L <bit number> of Destination
BCLR Dy,<ea>x B, L ~ (<bit number> of Destination) - CCR[Z];
#<data>,<ea>x B, L 0 —<bit number> of Destination
BRA <label> B,W,L PC +d, > PC
BSET Dy,<ea>x B, L ~ (<bit number> of Destination) — CCR[Z];
#<data>,<ea>x B, L 1 — <bit number> of Destination
BSR <label> B, W, L SP —4 — SP; nextPC — (SP); PC +d,, > PC
BTST Dy,<ea>x B, L ~ (<bit number> of Destination) - CCR[Z]
#<data>,<ea>x B, L
CLR <ea>Xx B,W,L 0 — Destination
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Instruction Set Summary

Table 3-8. User-Mode Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
CMP <ea>y,Dx B, W, L Destination — Source — CCR
CMPA <ea>y,Ax W, L
CMPI #<data>,Dx B,W, L Destination — Immediate Data - CCR
DIVS/DIVU <ea>y,Dx W, L Destination / Source — Destination
(Signed or Unsigned)
EOR Dy,<ea>x L Source ” Destination — Destination
EORI #<data>,Dx L Immediate Data ~ Destination — Destination
EXT Dx B->W Sign-Extended Destination — Destination
Dx WL
EXTB Dx B—>L
FABS <ea>y,FPx B,W,L,S,D Absolute Value of Source — FPx
FPy,FPx D
FPx D Absolute Value of FPx — FPx
FADD <ea>y,FPx B,W,L,S,D Source + FPx — FPx
FPy,FPx D
FBcc <label> W, L If Condition True, Then PC + d,, > PC
FCMP <ea>y,FPx B,W,L,S,D FPx - Source
FPy,FPx D
FDABS <ea>y,FPx B,W,L,S,D Absolute Value of Source — FPx; round destination
FPy,FPx D to double
FPx D Absolute Value of FPx — FPXx; round destination to
double
FDADD <ea>y,FPx B,W,L,S,D Source + FPx — FPx; round destination to double
FPy,FPx D
FDDIV <ea>y,FPx B,W,L,S,D FPx / Source — FPx; round destination to double
FPy,FPx D
FDIV <ea>y,FPx B,W,L,S,D FPx / Source - FPx
FPy,FPx D
FDMOVE FPy,FPx D Source — Destination; round destination to double
FDMUL <ea>y,FPx B,W,L,S,D Source * FPx — FPx; round destination to double
FPy,FPx D
FDNEG <ea>y,FPx B,W,L,S,D - (Source) — FPx; round destination to double
FPy,FPx D
FPx D - (FPx) — FPx; round destination to double
FDSQRT <ea>y,FPx B,W,L,S,D Square Root of Source — FPx; round destination to
FPy,FPx D double
FPx D Square Root of FPx — FPx; round destination to
double
FDSUB <ea>y,FPx B,W,L,S,D FPx - Source — FPx; round destination to double
FPy,FPx D
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Table 3-8. User-Mode Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
FINT <ea>y,FPx B,W,L,S,D Integer Part of Source — FPx
FPy,FPx D
FPx D Integer Part of FPx — FPx
FINTRZ <ea>y,FPx B,W,L,S,D Integer Part of Source — FPx; round to zero
FPy,FPx D
FPx D Integer Part of FPx — FPx; round to zero
FMOVE <ea>y,FPx B,W,L,S,D Source — Destination
FPy,<ea>x B,W,L,S,D
FPy,FPx D
FPcr,<ea>x L FPcr can be any floating point control register:
<ea>y,FPcr L FPCR, FPIAR, FPSR
FMOVEM #list,<ea>x D Listed registers — Destination
<ea>y,ilist Source — Listed registers
FMUL <ea>y,FPx B,wW,L,S,D Source * FPx — FPx
FPy,FPx D
FNEG <ea>y,FPx B,W,L,S,D - (Source) — FPx
FPy,FPx D
FPx D - (FPx) —» FPx
FNOP none none PC + 2 —» PC (FPU Pipeline Synchronized)
FSABS <ea>y,FPx B,W,L,S,D Absolute Value of Source — FPx; round destination
FPy,FPx D to single
FPx D Absolute Value of FPx — FPx; round destination to
single
FSADD <ea>y,FPx B,W,L,S,D Source + FPx — FPx; round destination to single
FPy,FPx
FSDIV <ea>y,FPx B,W,L,S,D FPx / Source — FPx; round destination to single
FPy,FPx D
FSMOVE <ea>y,FPx B,W,L,S,D Source — Destination; round destination to single
FSMUL <ea>y,FPx B,W,L,S,D Source * FPx — FPx; round destination to single
FPy,FPx D
FSNEG <ea>y,FPx B,W,L,S,D - (Source) — FPx; round destination to single
FPy,FPx D
FPx D - (FPx) — FPx; round destination to single
FSQRT <ea>y,FPx B,W,L,S,D Square Root of Source — FPx
FPy,FPx D
FPx D Square Root of FPx — FPx
FSSQRT <ea>y,FPx B,W,L,S,D Square Root of Source — FPx; round destination to
FPy,FPx D single
FPx D Square Root of FPx — FPx; round destination to
single
FSSUB <ea>y,FPx B,W,L,S,D FPx - Source — FPx; round destination to single
FPy,FPx D
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Instruction Set Summary

Table 3-8. User-Mode Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
FSUB <ea>y,FPx B,W,L,S,D FPx - Source — FPx
FPy,FPx D
FTST <ea>y B,W,L, S, D Source Operand Tested - FPCC
ILLEGAL none none SP -4 - SP; PC - (SP) » PC; SP -2 — SP;
SR — (SP); SP — 2 — SP; Vector Offset — (SP);
(VBR + 0x10) —» PC
JMP <ea>y none Source Address —» PC
JSR <ea>y none SP — 4 — SP; nextPC — (SP); Source — PC
LEA <ea>y,Ax L <ea>y — Ax
LINK Ay, #<displacement> w SP -4 — SP; Ay — (SP); SP — Ay, SP +d,, > SP
LSL Dy,Dx L CCR[X,C] < (Dx << Dy) «- 0
#<data>,Dx L CCRI[X,C] < (Dx << #<data>) < 0
LSR Dy,Dx L 0 — (Dx >> Dy) — CCR[X,C]
#<data>,Dx L 0 — (Dx >> #<data>) — CCR[X,C]
MAC Ry,RxSFACCx W, L ACCx + (Ry * Rx){<<|>>}SF — ACCx
Ry,RxSF,<ea>y,Rw,ACCx W, L ACCx + (Ry * Rx){<<I>>}SF — ACCx;
(<ea>y(&MASK)) - Rw
MOV3Q #<data>,<ea>x L Immediate Data — Destination
MOVCLR ACCy,Rx L Accumulator — Destination, 0 — Accumulator
MOVE <ea>y,<ea>x B,W,L Source — Destination
MACcr,Dx L where MACcr can be any MAC control register:
<ea>y,MACcr L ACCx, ACCext01, ACCext23, MACSR, MASK
MOVE from CCR,Dx w
CCR <ea>y,CCR w
MOVE to CCR
MOVEA <ea>y,Ax WL —>L Source — Destination
MOVEM #list,<ea>x L Listed Registers — Destination
<ea>y,#list Source — Listed Registers
MOVEQ #<data>,Dx B—->L Immediate Data — Destination
MSAC Ry,RxSFACCx W, L ACCx - (Ry * Rx){<<I>>}SF — ACCx
Ry,RxSF,<ea>y,Rw,ACCx W, L ACCx - (Ry * Rx){<<I>>}SF — ACCx;
(<ea>y(&MASK)) - Rw
MULS/MULU <ea>y,Dx W*W L Source * Destination — Destination
L*L->L (Signed or Unsigned)
MVS <ea>y,Dx B,.W Source with sign extension — Destination
MVZ <ea>y,Dx B,W Source with zero fill - Destination
NEG Dx L 0 — Destination — Destination
NEGX Dx L 0 — Destination — CCR[X] — Destination
NOP none none PC + 2 - PC (Integer Pipeline Synchronized)
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Table 3-8. User-Mode Instruction Set Summary (Continued)

Instruction Operand Syntax Operand Size Operation
NOT Dx L ~ Destination — Destination
OR <ea>y,Dx L Source | Destination — Destination
Dy,<ea>x L
ORI #<data>,Dx L Immediate Data | Destination — Destination
PEA <ea>y L SP -4 — SP; <ea>y — (SP)
PULSE none none Set PST = 0x4
REMS/REMU <ea>y,Dw:Dx L Destination / Source — Remainder
(Signed or Unsigned)
RTS none none (SP) > PC; SP +4 — SP
SATS Dx L If CCR[V] == 1;
then if Dx[31] == 0;
then Dx[31:0] = 0x80000000;
else Dx[31:0] = Ox7FFFFFFF;
else Dx[31:0] is unchanged
Scc Dx B If Condition True, Then 1s — Destination;
Else Os — Destination
SuUB <ea>y,Dx L Destination - Source — Destination
Dy,<ea>x L
SUBA <ea>y,Ax L
SUBI #<data>,Dx L Destination — Immediate Data — Destination
SUBQ #<data>,<ea>x L
SUBX Dy,Dx L Destination — Source — CCR[X] — Destination
SWAP Dx w MSW of Dx <> LSW of Dx
TAS <ea>X B Destination Tested — CCR;
1 — bit 7 of Destination
TPF none none PC +2— PC
#<data> w PC+4 > PC
#<data> L PC + 6— PC
TRAP #<vector> none 1 — S Bit of SR; SP — 4 — SP; nextPC — (SP);
SP -2 — SP; SR — (SP)
SP — 2 —» SP; Format/Offset — (SP)
(VBR + 0x80 +4*n) — PC, where n is the TRAP
number
TST <ea>y B, W, L Source Operand Tested —» CCR
UNLK Ax none Ax — SP; (SP) —» Ax; SP + 4 — SP
WDDATA <ea>y B,W, L Source — DDATA port

Table 3-9 describes supervisor-mode instructions.
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Instruction Execution Timing

Table 3-9. Supervisor-Mode Instruction Set Summary

Instruction Operand Syntax | Operand Size Operation
CPUSHL ic,(Ax) none If data is valid and modified, push cache line; invalidate line
dc,(Ax) if programmed in CACR (synchronizes pipeline)
bc,(Ax)
FRESTORE <ea>y none FPU State Frame — Internal FPU State
FSAVE <ea>x none Internal FPU State —» FPU State Frame
HALT none none Halt processor core
INTOUCH Ay none Instruction fetch touch at (Ay)
MOVE from SR SR,Dx w SR — Destination
MOVE from USP USP,Dx L USP — Destination
MOVE to SR <ea>y,SR w Source — SR; Dy or #<data> source only
MOVE to USP Ay,USP L Source — USP
MOVEC Ry,Rc L Ry — Rc
RTE none none 2 (SP) -» SR; 4 (SP) » PC; SP + 8 »SP
Adjust stack according to format
STOP #<data> none Immediate Data — SR; STOP
WDEBUG <ea>y L Addressed Debug WDMREG Command Executed

3.7

Instruction Execution Timing

The timing data in this section assumes the following:

Execution times for individual instructions make no assumptions concerning the OEP’s ability to
dispatch multiple instructions in one machine cycle. For sequences where instruction pairs are
issued, the execution time of the first instruction defines the execution time of pair; the second
instruction effectively executes in zero cycles.

The OEP is loaded with the opword and all required extension words at the beginning of each
instruction execution. This implies that the OEP spends no time waiting for the IFP to supply
opwords or extension words.

The OEP experiences no sequence-related pipeline stalls. For the V4, the most common example
of'this type of stall occurs when a register is modified in the EX engine and a subsequent instruction
generates an address that uses the previously modified register. The second instruction stalls in the
OEP until the previous instruction updates the register. For example:

muls.l #<data>,do
move.l (a0,d0.1*4),d1

move.l waits 3 cycles for the muls.l to update dO. If consecutive instructions update a register and
use that register as a base of index value with a scale factor of 1 (Xi.1*1) in an address calculation,
a 2-cycle pipeline stall occurs. If the destination register is used as an index register with any other
scale factor (Xi.1*2, Xi.1*4), a 3-cycle stall occurs.

NOTE

Address register results from postincrement and predecrement modes are
available to subsequent instructions without stalls.
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The OEP can complete all memory accesses without memory causing any stalls. Thus, these
timings assume an infinite, zero-wait state memory attached to the core.

* Operand accesses are assumed to be aligned as follows:
— 16-bit operands are aligned on 0-modulo-2 addresses
— 32-bit operands are aligned on 0-modulo-4 addresses
Operands that do not meet these guidelines are misaligned. Table 3-10 shows how the core
decomposes a misaligned operand reference into a series of aligned accesses.

Table 3-10. Misaligned Operand References

A[1:0] Size Bus Operations Additional C(FIIW)1
x1 Word Byte, Byte 2(1/0) if read
1(0/1) if write
x1 Long Byte, Word, Byte 3(2/0) if read
2(0/2) if write
10 Long Word, Word 2(1/0) if read
1(0/1) if write

T Each timing entry is presented as C(r/w), described as follows:

C is the number of processor clock cycles, including all applicable operand fetches and writes, as well as all
internal core cycles required to complete the instruction execution.

r/w is the number of operand reads (r) and writes (w) required by the instruction. An operation performing a
read-modify write function is denoted as (1/1).

3.7.1  MOVE Instruction Execution Timing

The following tables show execution times for the MOVE.{B,W,L} instructions. Table 3-13 shows the

timing for the other generic move operations.

NOTE

In these tables, times using PC-relative effective addressing modes are the
same as using An-relative mode.

ET with {<ea> = (d16,PC)} equals ET with {<ea> = (d16,An)}

ET with {<ea> = (d8,PC,Xi*SF)} equals ET with {<ea> = (d8,An,Xi*SF)}

The (xxx).wl nomenclature refers to both forms of absolute addressing,
(xxx).w and (xxx).1.

Table 3-11 lists execution times for MOVE.{B,W} instructions.
Table 3-11. Move Byte and Word Execution Times

Destination
Source
Rx (Ax) (Ax)+ —(Ax) (d16,Ax) | (d8,Ax,Xi*SF) (xxx).wl
Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
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Table 3-11. Move Byte and Word Execution Times (Continued)

Destination
Source

Rx (Ax) (Ax)+ —(Ax) (d16,Ax) | (d8,Ax,Xi*SF) (xxx).wl
(Ay)+ 1(1/0) 2(11) 2(11) 2(1/1) 2(1/1) 3(1/1) 2(11)
-(Ay) 1(1/0) 21/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(d16,Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,Ay,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
(xxx).w 1(1/0) 2(11) 2(11) 2(11) — — —
(xxx).1 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
(d16,PC) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,PC,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
Hxxx> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) — —

Table 3-12 lists timings for MOVE.L.
Table 3-12. Move Long Execution Times

Destination
Source

Rx (Ax) (Ax)+ —(Ax) (d16,Ax) | (d8,Ax,Xi*SF) (xxx).wl
Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
(Ay) 1(1/0) 2(1/1) 2(11) 2(11) 2(11) 3(1/1) 2(11)
(Ay)+ 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
-(Ay) 1(1/0) 2(1/1) 2(1/1) 2(11) 2(1/1) 3(1/1) 2(111)
(d16,Ay) 1(1/0) 2(1/1) 2(1/1) 2(11) 2(1/1) — —
(d8,Ay, Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
(xxx).w 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
(xxx).1 1(1/0) 2(11) 2(1/1) 2(1/1) — — —
(d16,PC) 1(1/0) 2(1/1) 2(11) 2(11) 2(11) — —
(d8,PC,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
H<XXX> 1(0/0) 1(0/1) 1(0/1) 1(0/1) — — —

Table 3-13 gives timings for MOVE.L instructions accessing program-visible EMAC registers, along with
other MOVE.L timings. Execution times for moving ACC or MACSR contents into a destination location
represent the best-case scenario when the store instruction is executed and no load, MAC, or MSAC
instructions are in the EMAC execution pipeline. In general, these store operations take only 1 cycle to
execute, but if preceded immediately by a load, MAC, or MSAC instruction, the EMAC pipeline depth is
exposed and execution time is 3 cycles.

Table 3-19 lists EMAC execution times.
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Table 3-13. MAC and Miscellaneous Move Execution Times

Effective Address
Opcode <ea>
Rn (An) (An)+ | —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>
move.| <ea>,ACC 1(0/0) — — — — — — 1(0/0)
move.| <ea>,MACSR 6(0/0) — — — — — — 6(0/0)
move.| <ea>,MASK 5(0/0) — — — — — — 5(0/0)
move.| ACC,Rx 1(0/0) — — — — — — —
move.| MACSR,CCR 1(0/0) — — — — — — —
move.| MACSR,Rx 1(0/0) — — — — — — —
move.| MASK,Rx 1(0/0) — — — — — — —
moveq #imm,Dx — — — — — — — 1(0/0)
mov3q #imm,<ea> 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) —
mvs <ea>,Dx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
mvz <ea>,Dx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)

3.7.2 One-Operand Instruction Execution Timing

Table 3-14 shows standard timings for single-operand instructions.
Table 3-14. One-Operand Instruction Execution Times

Effective Address
Opcode | <ea>

Rn (An) (An)+ —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl #xXX
clr.b <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clrw <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clr.l <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
ext.w Dx 1(0/0) — — — — — — —
ext.| Dx 1(0/0) — — — — — — —
extb.| Dx 1(0/0) — — — — — — —
neg.l Dx 1(0/0) — — — — — — —
negx.| Dx 1(0/0) — — — — — — —
not.| Dx 1(0/0) — — — — — — —
sats.| Dx 1(0/0) — — — — — — —
scc Dx 1(0/0) — — — — — — —
swap Dx 1(0/0) — — — — — — —
tas <ea> 1(1/1) 1(1/1) 1(1/1) 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
tst.b <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
tst.w <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
tst.l <ea> 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
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3.7.3 Two-Operand Instruction Execution Timing

Table 3-15 shows standard timings for double operand instructions.
Table 3-15. Two-Operand Instruction Execution Times

Effective Address

Opcode <ea>

Rn (An) (An)+ | —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>
add.| <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
add.| Dy,<ea> — 1(1/1) | 1(1/1) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
addi.l #imm,Dx 1(0/0) — — — — — — —
addq.| #imm,<ea> 1(0/0) | 1(1/1) | 1(1/1) | 1(1/1) 1(11) 2(11) 1(1/1) —
addx.| Dy,Dx 1(0/0) — — — — — — —
and.| <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
and.| Dy,<ea> — 1(1/1) | 1(1/1) | 1(1/1) 1(1/1) 2(11) 1(1/1) —
andi.l #imm,Dx 1(0/0) — — — — — — —
asl.| <ea>,Dx 1(0/0) — — — — — — 1(0/0)
asr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)
bchg Dy,<ea> 2(0/0) | 2(1/1) | 211) | 2(1/1) 2(11) 3(1/1) 2(11) —
bchg #imm,<ea> 2(0/0) | 2(11) | 2(1/1) | 2(1/1) 2(11) — — —
belr Dy,<ea> 2(0/0) | 2(1/1) | 2(11) | 2(1/1) 2(11) 3(1/1) 2(11) —
bclr #imm,<ea> 2(0/0) | 2(111) | 211) | 2(1/1) 2(1/1) — — —
bset Dy,<ea> 2(0/0) | 2(1/1) | 211) | 2(1/1) 2(11) 3(1/1) 2(11) —
bset #imm,<ea> 2(0/0) | 2(111) | 2(11) | 2(1/1) 2(11) — — —
btst Dy,<ea> 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) —
btst #imm,<ea> 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
cmp.b <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
cmp.w <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
cmp.l <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
cmpi.b #imm,Dx 1(0/0) — — — — — — —
cmpi.w #imm,Dx 1(0/0) — — — — — — —
cmpi.l #imm,Dx 1(0/0) — — — — — — —
divs.w <ea>,Dx 20(0/0) | 20(1/0) | 20(1/0) | 20(1/0) | 20(1/0) 21(1/0) 20(1/0) 20(0/0)
divu.w <ea>,Dx 20(0/0) | 20(1/0) | 20(1/0) | 20(1/0) | 20(1/0) 21(1/0) 20(1/0) 20(0/0)
divs.| <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
divu.l <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
eor.| Dy,<ea> 1(0/0) | 1(1/1) | 1(1/1) | 1(1/1) 1(111) 2(111) 1(1/1) —
eori.l #imm,Dx 1(0/0) — — — — — — —
lea <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —
Isl.I <ea>,Dx 1(0/0) — — — — — — 1(0/0)
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Table 3-15. Two-Operand Instruction Execution Times (Continued)

Effective Address

Opcode <ea>

Rn (An) (An)+ | —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl H#<xxx>
Isr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)
mac.w Ry,Rx 1(0/0) — — — — — — —
mac.| Ry,Rx 3(0/0) — — — — — — —
msac.w Ry,Rx 1(0/0) — — — — — — —
msac.| Ry,Rx 3(0/0) — — — — — — —
mac.w Ry,Rx,ea,Rw — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
mac.| Ry,Rx,ea,Rw — 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) — — —
msac.w Ry,Rx,ea,Rw — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) — — —
msac.| Ry,Rx,ea,Rw — 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) — — —
muls.w <ea>,Dx 3(0/0) | 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(0/0)
mulu.w <ea>,Dx 3(0/0) | 3(1/0) | 3(1/0) | 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(0/0)
muls.| <ea>,Dx 5(0/0) | 5(1/0) | 5(1/0) | 5(1/0) 5(1/0) — — —
mulu.l <ea>,Dx 5(0/0) | 5(1/0) | 5(1/0) | 5(1/0) 5(1/0) — — —
or.l <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
or.l Dy,<ea> — 1(171) | 1(1/1) | 1(1/1) 1(1/1) 2(1/1) 1(1/1) —
or.l #imm,Dx 1(0/0) — — — — — — —
rems.| <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
remu.| <ea>,Dx 35(0/0) | 35(1/0) | 35(1/0) | 35(1/0) | 35(1/0) — — —
sub. <ea>,Rx 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
sub.| Dy,<ea> — 1(1/1) | 1(1/1) | 1(1/1) 1(1/1) 2(11) 1(1/1) —
subi.l #imm,Dx 1(0/0) — — — — — — —
subq.| #imm,<ea> 1(0/0) | 1(1/1) | 1(1/1) | 1(1/1) 1(1/1) 2(11) 1(11) —
subx. Dy,Dx 1(0/0) — — — — — — —

3.7.4 Miscellaneous Instruction Execution Timing

Table 3-16 lists timings for miscellaneous instructions.
Table 3-16. Miscellaneous Instruction Execution Times

Effective Address
Opcode <ea>
Rn (An) (An)+ | —=(An) | (d16,An) | (d8,AnXi*SF) | (xxx).wl | #<xxx>

cpushl | (Ax) — 9(0/1) — — — — — —
intouch (Ay) — 19(1/0)

link.w Ay, #imm 2(0/1) — — — — — — —
move.w | CCR,Dx 1(0/0) — — — — — — —
move.w <ea>,CCR 1(0/0) — — — — — — 1(0/0)
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Table 3-16. Miscellaneous Instruction Execution Times (Continued)

Effective Address
Opcode <ea>

Rn (An) (An)+ | —(An) | (d16,An) | (d8,An,Xi*SF) | (xxx).wl | #<xxx>
move.w SR,Dx 1(0/0) — — — — — — —
move.w <ea>,SR 4(0/0) — — — — — — 4(0/0)
movec Ry,Rc 20(0/1) — — — — — — —
movem.l ! | <ea>, &list — n(n/0) — — n(n/0) — — —
movem.l | &list,<ea> — n(0/n) — — n(0/n) — — —
nop 6(0/0) — — — — — — —
pea <ea> — 1(0/1) — — 1(0/1)2 2(0/1)3 1(0/1) —
pulse 1(0/0) — — — — — — —
stop #imm — — — — — — — 6(0/0)*
trap #imm — — — — — — — 18(1/2)
tpf 1(0/0) — — — — — — —
tpf.w 1(0/0) — — — — — — —
tpf.l 1(0/0) — — — — — — —
unlk Ax 1(1/0) — — — — — — —
wddata.l |<ea> — 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) 2(1/0) 1(1/0) —
wdebug.l |<ea> — 3(2/0) — — 3(2/0) — — —

' nis the number of registers moved by the MOVEM opcode.
2 PEA execution times are the same for (d16,PC).
3 PEA execution times are the same for (d8,PC,Xi*SF).
4 The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.

3.7.5

Branch Instruction Execution Timing

Table 3-17 shows general branch instruction timing.

Table 3-17. General Branch Instruction Execution Times

Effective Address
Opcode | <ea>
Rn (An) (An)+ —(An) (d16,An) | (d8,An,Xi*SF) | (xxx).wl H<XXX>

bra — — — — 1(0/1)’ — — —
bsr — — — — 1(0/1)’ — — —
jmp <ea> — 5(0/0) — — 5(0/0)" 6(0/0) 1(0/0)" —
jsr <ea> — 5(0/1) — — 5(0/1) 6(0/1) 1(0/1)" —
rte — — 15(2/0) — — — — —
rts — — 2(1/0)2 — — — — —

9(1/0)3

8(1/0)*

T Assumes branch acceleration. Depending on the pipeline status, execution times may vary from 1 to 3 cycles.
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2 if predicted correctly by the hardware return stack.
8 |f mispredicted by the hardware return stack.
4 If not predicted by the hardware return stack.

Table 3-18 shows timing for Bce instructions.
Table 3-18. Bcc Instruction Execution Times

Branch Cache Prediction Table Predicted
Opcode Correctly Predicts . Correctly as Predicted Incorrectly
Correctly Predicts Taken
Taken Not Taken
bce 0(0/0) 1(0/0) 1(0/0) 8(0/0)

3.7.6 EMAC Instruction Execution Times

Table 3-19 specifies instruction execution times associated with the enhanced multiply-accumulate
(EMAC) execute engine.

Table 3-19. EMAC Instruction Execution Times

Effective Address

opeode ey rn | ) | e | an) | 1SRN | (BARXSE) [ |
mac.| Ry,Rx,ACCx 1(0/0) — — — — — — —
mac.| Ry,Rx,<ea>,Rw,ACCx — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0)’ — — —
mac.w Ry,Rx,ACCx 1(0/0) — — — — — — —
mac.w Ry,Rx,<ea>,Rw,ACCx — 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0)" — — —
mov.| <ea>y,ACCx 1(0/0) — — — — — — 1(0/0)
mov.| ACCy,ACCx 1(0/0) — — — — — — —
mov.| <ea>y,MACSR 8(0/0) — — — — — — 8(0/0)
mov.| <ea>y,MASK 7(0/0) — — — — — — 7(0/0)
mov.| <ea>y,ACCext01 1(0/0) — — — — — — 1(0/0)
mov.| <ea>y,ACCext23 1(0/0) — — — — — — 1(0/0)
mov.| ACCx,<ea>x 1(0/0)%2 | — — — — — — —
mov.| MACSR,<ea>x 1(0/0) — — — — — — —
mov.| MASK,<ea>x 1(0/0) — — — — — — —
mov.| ACCext01,<ea>x 1(0/0) — — — — — — —
mov.| ACCext23,<ea>x 1(0/0) — — — — — — —
msac.| Ry,Rx,ACCx 1(0/0) — — — — — — —
msac.| Ry,Rx,<ea>,Rw,ACCx — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0)’ — — —
msac.w Ry,Rx,ACCx 1(0/0) — — — — — — —
msac.w Ry,Rx,<ea>,Rw,ACCx — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0)" — — —
muls.| <ea>y,Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) 4(1/0) — — —
muls.w <ea>y,Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) 4(1/0) 5(1/0) 4(1/0) | 4(0/0)
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Table 3-19. EMAC Instruction Execution Times

Effective Address
Opcode <ea>y (d16,An) | (d8,An,Xi*SF)
Rn (An) | (An)+ | —(An) (d16,PC) (d8.PC Xi*SF) xxx.wl | #xxx
mulu.l <ea>y,Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) 4(1/0) — — —
mulu.w <ea>y,Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) 4(1/0) 5(1/0) 4(1/0) | 4(0/0)

! Effective address of (d16,PC) not supported.

2 Storing the accumulator requires 1 additional clock cycle when saturation is enabled, or fractional rounding is performed
(MACSR[7:4] = 1---, -11-, --11).

Execution times for moving the contents of the ACC, ACCext[01,23], MACSR, or MASK into a
destination location <ea>x in this table represent the best-case scenario when the store is executed and no
load, copy, MAC, or MSAC instructions are in the EMAC execution pipeline. In general, these store
operations require only a single cycle for execution, but if preceded immediately by a load, copy, MAC,
or MSAC instruction, the depth of the EMAC pipeline is exposed and the execution time is 4 cycles.

3.7.7 FPU Instruction Execution Times

Table 3-20 specifies the instruction execution times associated with the FPU execute engine.
Table 3-20. FPU Instruction Execution Times': 2

Effective Address <ea>
Opcode Format
FPn Dn (An) (An)+ | —(An) | (dqg,An) (d46,PC)
fabs <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 1(1/0)
fadd <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fbce <label> — — — — — — 2(0/0) if correct,
9(0/0) if incorrect
fcmp <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fdiv <ea>y,FPx | 23(0/0) | 23(0/0) | 23(1/0) | 23(1/0) | 23(1/0) | 23(1/0) 23(1/0)
fint <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fintrz <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fmove <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 1(1/0)
fmove FPy,<ea>x — 2(0/1) 2(0/1) 2(0/1) | 2(0/1) 2(0/1) —
fmove <ea>y,FP*R — 6(0/0) 6(1/0) 6(1/0) | 6(1/0) 6(1/0) 6(1/0)
fmove FP*R,<ea>x — 1(0/0) 1(0/1) 1(0/1) | 1(0/1) 1(0/1) —
fmovem?3 <ea>y,#list — — 2n(2n/0) — — 2n(2n/0) 2n(2n/0)
fmovem® 4 | #list,<ea>x — — | 1+2n(0/2n) | — — | 1+2n(0/2n) —
fmul <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
fneg <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 1(1/0)
fnop — — — — — — 2(0/0)
frestore <ea>y — — 6(4/0) — — 6(4/0) 6(4/0)
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Table 3-20. FPU Instruction Execution Times"

2

Effective Address <ea>
Opcode Format
FPn Dn (An) (An)+ | —(An) (d4e,AN) (d46,PC)
fsave <ea>x — — 7(0/3) — — 7(0/3) —
fsqrt <ea>y,FPx 56(0/0) | 56(0/0) 56(1/0) | 56(1/0) | 56(1/0) 56(1/0) 56(1/0)
fsub <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
ftst <ea>y,FPx 1(0/0) | 1(0/0) 1(1/0) 1(1/0) | 1(1/0) 1(1/0) 1(1/0)

Add 1(1/0) for an external read operand of double-precision format for all instructions except FMOVEM, and
1(0/1) for FMOVE FPy,<ea>x when the destination is double-precision.

If the external operand is an integer format (byte, word, or longword), there is a 4-cycle conversion time that
must be added to the basic execution time.

For FMOVEM, n refers to the number of registers being moved.

If any exceptions are enabled, the execution time for FMOVE FPy,<ea>x increases by 1 cycle. If the BSUN
exception is enabled, the execution time for FBcc increases by one cycle.

3.8

Exception processing for ColdFire processors is streamlined for performance. Differences from previous
ColdFire Family processors include the following:

* An instruction restart model for translation (TLB miss) and access faults. This new functionality
extends the existing ColdFire access error fault vector and exception stack frames.

» Use of separate system stack pointers for user and supervisor modes.

Exception Processing Overview

Previous ColdFire processors use an instruction restart exception model but require additional software
support to recover from certain access errors.

Exception processing can be defined as the time from the detection of the fault condition until the fetch of
the first handler instruction has been initiated. It consists of the following four major steps:

1. The processor makes an internal copy of the status register (SR) and then enters supervisor mode
by setting SR[S] and disabling trace mode by clearing SR[T]. The occurrence of an interrupt
exception also clears SR[M] and sets the interrupt priority mask, SR[I] to the level of the current
interrupt request.

2. The processor determines the exception vector number. For all faults except interrupts, the
processor bases this calculation on exception type. For interrupts, the processor performs an
interrupt acknowledge (IACK) bus cycle to obtain the vector number from peripheral. The IACK
cycle is mapped to a special acknowledge address space with the interrupt level encoded in the
address.

The processor saves the current context by creating an exception stack frame on the system stack.
As aresult, the exception stack frame is created at a 0-modulo-4 address on top of the system stack
pointed to by the supervisor stack pointer (SSP). As shown in Figure 3-15, the CF4e processor uses
the same fixed-length stack frame as previous ColdFire Versions with additional fault status (FS)
encodings to support the MMU. In some exception types, the program counter (PC) in the
exception stack frame contains the address of the faulting instruction (fault); in others the PC
contains the next instruction to be executed (next). (Note that previous ColdFire processors support
a single stack pointer in the A7 address register.)
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Exception Processing Overview

If the exception is caused by an FPU instruction, the PC contains the address of either the next
floating-point instruction (nextFP) if the exception is pre-instruction, or the faulting instruction
(fault) if the exception is post-instruction.

3. The processor acquires the address of the first instruction of the exception handler. The instruction
address is obtained by fetching a value from the exception table at the address in the vector base

register. The index into the table is calculated as 4 x vector number. When the index value is

generated, the vector table contents determine the address of the first instruction of the desired

handler. After the fetch of the first opcode of the handler is initiated, exception processing

terminates and normal instruction processing continues in the handler.

The vector base register described in the ColdFire Programmers Reference Manual, holds the base address
of the exception vector table in memory. The displacement of an exception vector is added to the value in
this register to access the vector table. VBR[19-0] are not implemented and are assumed to be zero, forcing
the vector table to be aligned on a 0-modulo-1-Mbyte boundary.

ColdFire processors support a 1,024-byte vector table aligned on any 0-modulo-1 Mbyte address
boundary; see Table 3-21. The table contains 256 exception vectors, the first 64 of which are defined by
Freescale. The rest are user-defined interrupt vectors.

Table 3-21. Exception Vector Assignments

Vector Numbers | Vector Offset (Hex) | Stacked Program Counter’ Assignment
0 000 — Initial supervisor stack pointer
1 004 — Initial program counter
2 008 Fault Access error
3 0oC Fault Address error
4 010 Fault lllegal instruction
5 014 Fault Divide by zero
67 018-01C — Reserved
8 020 Fault Privilege violation
9 024 Next Trace
10 028 Fault Unimplemented line-a opcode
11 02C Fault Unimplemented line-f opcode
12 030 Next Non-PC breakpoint debug interrupt
13 034 Next PC breakpoint debug interrupt
14 038 Fault Format error
15 03C Next Uninitialized interrupt
1623 040-05C — Reserved
24 060 Next Spurious interrupt
25-31 064-07C Next Level 1—7 autovectored interrupts
32-47 080-0BC Next Trap #0-15 instructions
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Table 3-21. Exception Vector Assignments (Continued)

Vector Numbers | Vector Offset (Hex) | Stacked Program Counter’ Assignment
48 0Co Fault Floating-point branch on unordered
condition
49 0C4 NextFP or Fault Floating-point inexact result
50 0Cs8 NextFP Floating-point divide-by-zero
51 0CC NextFP or Fault Floating-point underflow
52 0DO NextFP or Fault Floating-point operand error
53 0D4 NextFP or Fault Floating-point overflow
54 oD8 NextFP or Fault Floating-point input not-a-number (NAN)
55 oDC NextFP or Fault Floating-point input denormalized
number
56-60 OEO-OF0 — Reserved
61 OF4 Fault Unsupported instruction
62—-63 0F8-0FC — Reserved
64255 100-3FC Next User-defined interrupts

" ‘Fault refers to the PC of the faulting instruction. ‘Next’ refers to the PC of the instruction immediately after the
faulting instruction. NextFP’ refers to the PC of the next floating-point instruction.

ColdFire processors inhibit sampling for interrupts during the first instruction of all exception handlers.
This allows any handler to effectively disable interrupts, if necessary, by raising the interrupt mask level
in the SR.

3.8.1 Exception Stack Frame Definition

The first longword of the exception stack frame, Figure 3-15, holds the 16-bit format/vector word (F/V)
and 16-bit status register. The second holds the 32-bit program counter address of the faulted or interrupted
instruction.

31 28 27 26 25 18 17 16 15 0
A7— FORMAT FS[3-2] VEC FS[1-0] STATUS REGISTER
+ 0x04 PROGRAM COUNTER [31:0]

Figure 3-15. Exception Stack Frame

Table 3-22 describes F/V fields. FS encodings added to support the CF4e MMU are noted.

MCF548x Reference Manual, Rev. 3

3-38 Freescale Semiconductor



Exception Processing Overview

Table 3-22. Format/Vector Word

Bits Name Description
31-28 FORMAT | Format field. Written with a value of {4,5,6,7} by the processor indicating a 2-longword frame format.
FORMAT records any longword stack pointer misalignment when the exception occurred.
A7 at Exception A7 at First Instruction Format
Bits 1-0 of Handler
00 Original A7-8 0100
01 Original A7-9 0101
10 Original A7-10 0110
11 Original A7-11 0111
27-26 FS[3:2] |Fault status. Defined for access and address errors and for interrupted debug service routines.
0000 Not an access or address error nor an interrupted debug service routine
0001 Reserved
0010 Interrupt during a debug service routine for faults other than access errors. ' [
0011 Reserved
0100 Error (for example, protection fault) on instruction fetch
0101 TLB miss on opword of instruction fetch (New in CF4e)
0110 TLB miss on extension word of instruction fetch (New in CF4e)
0111 IFP access error while executing in emulator mode (New in CF4e)
1000 Error on data write
1001 Error on attempted write to write-protected space
1010 TLB miss on data write (New in CF4e)
1011 Reserved
1100 Error on data read
1101 Attempted read, read-modify-write of protected space (New in CF4e)
1110 TLB miss on data read, or read-modify-write (New in CF4e)
1111 OEP access error while executing in emulator mode (New in CF4e)
25-18 VEC Vector number. Defines the exception type. It is calculated by the processor for internal faults and is
supplied by the peripheral for interrupts. See Table 3-21.
17-16 FS[1:0] |See bits 27—-26.

T This generally refers to taking an I/O interrupt during a debug service routine but also applies to other fault types. If an access
error occurs during a debug service routine, FS is setto 0111 if it is due to an instruction fetch or to 1111 for a data access. This
applies only to access errors with the MMU present. If an access error occurs without an MMU, FS is set to 0010.

3.8.2

Processor Exceptions

Table 3-23 describes CF4e exceptions. Note that if a ColdFire processor encounters any fault while
processing another fault, it immediately halts execution with a catastrophic fault-on-fault condition. A
reset is required to force the processor to exit this halted state.
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Table 3-23. Processor Exceptions

Type

Description

Access error

If the MMU is disabled, access errors are reported only in conjunction with an attempted store to
write-protected memory. Thus, access errors associated with instruction fetch or operand read accesses are
not possible. The Version 4 processor, unlike the Version 2 and 3 processors, updates the condition code
register if a write-protect error occurs during a CLR or MOV3Q operation to memory.

accesses that fault (that is, terminated with a transfer error acknowledge) generate an access error
exception. MMU TLB misses and access violations use the same fault. If the MMU is enabled, all TLB misses
and protection violations generate an access error exception. To determine if a fault is due to a TLB miss or
another type of access error, new FS encodings (described in Table 3-22) signal TLB misses on the following:
¢ Instruction fetch

* Instruction extension fetch

e Data read

e Data write

Address error

An address error is caused by an attempted execution transferring control to an odd instruction address (that
is, if bit O of the target address is set), an attempted use of a word-sized index register (Xi.w) or by an
attempted execution of an instruction with a full-format indexed addressing mode.

If an address error occurs on a JSR instruction, the Version 4 processor first pushes the return address onto
the stack and then calculates the target address.

On Version 2 and 3 processors, the target address is calculated then the return address is pushed on stack.
If an address error occurs on an RTS instruction, the Version 4 processor preserves the original return PC
and writes the exception stack frame above this value. On Version 2 and 3 processors, the faulting return PC
is overwritten by the address error stack frame.

lllegal
instruction

The scope of illegal instruction detection is implementation-specific across the generations of ColdFire cores.
For the CF4e core, the complete 16-bit opcode is decoded and this exception is generated if execution of an
unsupported instruction is attempted. Additionally, attempting to execute an illegal line A or line F opcode
generates unique exception types: vectors 10 and 11, respectively. ColdFire processors do not provide illegal
instruction detection on extension words of any instruction, including MOVEC. Attempting to execute an
instruction with an illegal extension word causes undefined results.

Divide-by-zero

Attempting to divide by zero causes an exception (vector 5, offset = 0x014).

Privilege
violation

Caused by attempted execution of a supervisor mode instruction while in user mode. The ColdFire
Programmer’s Reference Manual lists supervisor- and user-mode instructions.

Trace exception

Trace mode, which allows instruction-by-instruction tracing, is enabled by setting SR[T].

If SR[T] is set, instruction completion (for all but the STOP instruction) signals a trace exception.The STOP

instruction has the following effects:

1 The instruction before the STOP executes and then generates a trace exception. In the exception stack
frame, the PC points to the STOP opcode.

2 When the trace handler is exited, the STOP instruction is executed, loading the SR with the immediate
operand from the instruction.

3 The processor then generates a trace exception. The PC in the exception stack frame points to the
instruction after STOP, and the SR reflects the value loaded in the previous step.

If the processor is not in trace mode and executes a STOP instruction where the immediate operand sets

SR([T], hardware loads the SR and generates a trace exception. The PC in the exception stack frame points

to the instruction after STOP, and the SR reflects the value loaded in step 2. Note that because ColdFire

processors do not support hardware stacking of multiple exceptions, it is the responsibility of the operating

system to check for trace mode after processing other exception types. For example, when a TRAP

instruction executes in trace mode, the processor initiates the TRAP exception and passes control to the

corresponding handler. If the system requires a trace exception, the TRAP exception handler must check for

this condition (SR[15] in the exception stack frame set) and pass control to the trace handler before returning

from the original exception.
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Table 3-23. Processor Exceptions (Continued)

Type

Description

Unimplemented
line-a opcode

A line-a opcode results when bits 15—12 of the opword are 1010. This exception is generated by the
attempted execution of an undefined line-a opcode.

Unimplemented
line-f opcode

A line-f opcode results when bits 15—-12 of the opword are 1111. This exception is generated under the
following conditions:

* When attempting to execute an undefined line-f opcode.

* When attempting to execute an FPU instruction when the FPU has been disabled in the CACR.

Debug interrupt

The debug interrupt exception is caused by a hardware breakpoint register trigger. Rather than generating
an IACK cycle, the processor internally calculates the vector number (12 or 13, depending on the type of
breakpoint trigger). Additionally, SR[M,|] are unaffected by the interrupt.

Separate exception vectors are provided for PC breakpoints and for address/data breakpoints. In the case of
a two-level trigger, the last breakpoint determines the vector. The two unique entries occur when a PC
breakpoint generates the 0x034 vector. In case of a two-level trigger, the last breakpoint event determines
the vector. See Chapter 8, “Debug Support,” for more information.

Format error

When an RTE instruction executes, the processor first examines the 4-bit format field to validate the frame

type. For a ColdFire processor, attempted execution of an RTE where the format is not equal to {4, 5, 6, 7}

generates a format error. The exception stack frame for the format error is created without disturbing the

original exception frame and the stacked PC points to RTE. The selection of the format value provides limited

debug support for porting code from M68000 applications. On M68000 Family processors, the SR was at the

top of the stack. Bit 30 of the longword addressed by the system stack pointer is typically zero. Attempting an

RTE using this old format generates a format error on a ColdFire processor. If the format field defines a valid

type, the processor does the following:

1 Reloads the SR operand.

2 Fetches the second longword operand.

3 Adjusts the stack pointer by adding the format value to the auto-incremented address after the first
longword fetch.

4 Transfers control to the instruction address defined by the second longword operand in the stack frame.

When the processor executes a FRESTORE instruction, if the restored FPU state frame contains a

non-supported value, execution is aborted and a format error exception is generated.

Trap Executing a TRAP instruction always forces an exception and is useful for implementing system calls. The
trap instruction may be used to change from user to supervisor mode.
Interrupt Please refer to Section Chapter 13, “Interrupt Controller.”
exception

Reset exception

Asserting the reset input signal (RSTI) causes a reset exception, which has the highest exception priority and
provides for system initialization and recovery from catastrophic failure. When assertion of RSTI is
recognized, current processing is aborted and cannot be recovered. The reset exception places the
processor in supervisor mode by setting SR[S] and disables tracing by clearing SR[T]. It clears SR[M] and
sets SR]I] to the highest level (0b111, priority level 7). Next, VBR is cleared. Configuration registers
controlling operation of all processor-local memories are invalidated, disabling the memories.

Note: Implementation-specific supervisor registers are also affected at reset.

After RSTI is negated, the processor waits 16 cycles before beginning the reset exception process. During
this time, certain events are sampled, including the assertion of the debug breakpoint signal. If the processor
is not halted, it initiates the reset exception by performing two longword read bus cycles. The longword at
address 0 is loaded into the stack pointer and the longword at address 4 is loaded into the PC. After the initial
instruction is fetched from memory, program execution begins at the address in the PC. If an access error or
address error occurs before the first instruction executes, the processor enters a fault-on-fault halted state.

Unsupported
instruction
exception

If the CF4e attempts to execute a valid instruction but the required optional hardware module is not present
in the OEP, a non-supported instruction exception is generated (vector 0x61). Control is then passed to an
exception handler that can then process the opcode as required by the system.
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3.9 Precise Faults

To support a demand-paged virtual memory environment, all memory references require precise,
recoverable faults. The ColdFire instruction restart mechanism ensures that a faulted instruction restarts
from the beginning of execution; that is, no internal state information is saved when an exception occurs
and none is restored when the handler ends. Given the PC address defined in the exception stack frame,
the processor reestablishes program execution by transferring control to the given location as part of the
RTE (return from exception) instruction.

The instruction restart recovery model requires program-visible register changes made during execution
to be undone if that instruction subsequently faults.

The Version 4 (and later) OEP structure naturally supports this concept for most instructions;
program-visible registers are updated only in the final OEP stage when fault collection is complete. If any
type of exception occurs, pending register updates are discarded.

For V4 cores and later, most single-cycle instructions already support precise faults and instruction restart.
Some complex instructions do not. Consider the following memory-to-memory move:

mov.l (Ay)+, (Ax)+ # copy 4 bytes from source to destination
On a Version 4 processor, this instruction takes one cycle to read the source operand (Ay) and one to write

the data into Ax. Both the source and destination address pointers are updated as part of execution.
Table 3-24 lists the operations performed in execute stage (EX).

Table 3-24. OEP EX Cycle Operations

EX Cycle Operations
1 Read source operand from memory @ (Ay), update Ay, new Ay = old Ay + 4
2 Write operand into destination memory @ (Ax), update Ax, new Ax = old Ax + 4, update CCR

A fault detected with the destination memory write is reported during the second cycle. At this point,
operations performed in the first cycle are complete, so if the destination write takes any type of access
error, Ay is updated. After the access error handler executes and the faulting instruction restarts, the
processor’s operation is incorrect because the source address register has an incorrect (post-incremented)
value.

To recover the original state of the programming model for all instructions, the CF4e CPU adds the needed
hardware to support full register recovery. This hardware allows program-visible registers to be restored
to their original state for multi-cycle instructions so that the instruction restart mechanism is supported.
Memory-to-memory moves and move multiple loads are representative of the complex instructions
needing the special recovery support.

The other major pipeline change affects the IFP. The IFP and OEP are decoupled by a FIFO instruction
buffer. In the V4 IFP, each buffer entry includes 48 bits of instruction data fetched from memory and 64
bits of early decode and branch prediction information. This datapath is expanded slightly to include IFP
fault status information. Thus, every IFP access can be tagged in case an instruction fetch terminates with
an error acknowledge.
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NOTE

For access errors signaled on instruction prefetches, an access error
exception is generated only if instruction execution is attempted. If an
instruction fetch access error exception is generated and the FS field
indicates the fault occurred on an extension word, it may be necessary for
the exception PC to be rounded-up to the next page address to determine the
faulting instruction fetch address.
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Chapter 4
Enhanced Multiply-Accumulate Unit (EMAC)

This chapter describes the functionality, microarchitecture, and performance of the enhanced
multiply-accumulate (EMAC) unit in the ColdFire family of processors.

4.1 Introduction

The MAC design provides a set of DSP operations which can be used to improve the performance of
embedded code while supporting the integer multiply instructions of the baseline ColdFire architecture.

The MAC provides functionality in three related areas:

» Signed and unsigned integer multiplies

»  Multiply-accumulate operations supporting signed and unsigned integer operands, as well as
signed, fixed-point, fractional operands

» Miscellaneous register operations

The ColdFire family supports two MAC implementations with different performance levels and
capabilities. The original MAC uses a three-stage execution pipeline optimized for 16-bit operands and
featuring a 16 x 16 multiply array with a single 32-bit accumulator. The EMAC features a four-stage
pipeline optimized for 32-bit operands, with a fully pipelined 32 x 32 multiply array and four 48-bit
accumulators.

The first ColdFire MAC supported signed and unsigned integer operands and was optimized for 16 x 16
operations, such as those found in a variety of applications, including servo control and image
compression. As ColdFire-based systems proliferated, the desire for more precision on input operands
increased. The result was an improved ColdFire MAC with user-programmable control to optionally
enable use of fractional input operands.

EMAC improvements target three primary areas:

* Improved performance of 32 x 32 multiply operations.

+ Addition of three more accumulators to minimize EMAC pipeline stalls caused by exchanges
between the accumulator and the pipeline’s general-purpose registers.

* A 48-bitaccumulation data path to allow the use of a 40-bit product plus the addition of 8 extension
bits to increase the dynamic number range when implementing signal processing algorithms.

The three areas of functionality are addressed in detail in following sections. The logic required to support
this functionality is contained in a MAC module, as shown in Figure 4-1.

Operand Y Operand X

Shift 0,1,-1

| Accumulator(s)

Y
Figure 4-1. Multiply-Accumulate Functionality Diagram
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411 MAC Overview

The MAC is an extension of the basic multiplier found in most microprocessors. It is typically
implemented in hardware within an architecture and supports rapid execution of signal processing
algorithms in fewer cycles than comparable non-MAC architectures. For example, small digital filters can
tolerate some variance in an algorithm’s execution time, but larger, more complicated algorithms such as
orthogonal transforms may have more demanding speed requirements beyond the scope of any processor
architecture, and may require full DSP implementation.

To strike a balance between speed, size, and functionality, the ColdFire MAC is optimized for a small set
of operations that involve multiplication and cumulative additions. Specifically, the multiplier array is
optimized for single-cycle pipelined operations with a possible accumulation after product generation.
This functionality is common in many signal processing applications. The ColdFire core architecture also
has been modified to allow an operand to be fetched in parallel with a multiply, increasing overall
performance for certain DSP operations.

Consider a typical filtering operation where the filter is defined,11 as in Figure 4-2.

N-1 N-1
y() = > aky(i-k)+ > blk)x(i-k)
k=1 k=0

Figure 4-2. Infinite Impulse Response (lIR) Filter

Here, the output y(i) is determined by past output values and past input values. This is the general form of
an infinite impulse response (IIR) filter. A finite impulse response (FIR) filter can be obtained by setting
coefficients a(k) to zero. In either case, the operations involved in computing such a filter are multiplies
and product summing. To show this point, reduce the above equation to a simple, four-tap FIR filter, shown
in Figure 4-3, in which the accumulated sum is a sum of past data values and coefficients.

3
y() = 3 b)x(i k) = b(0)x(i) +b(1)x(i~ 1)+ b(2)x(i - 2) + b(3)x(i - 3)

k=0

Figure 4-3. Four-Tap FIR Filter
4.1.2 General Operation

The MAC speeds execution of ColdFire integer multiply instructions (MULS and MULU) and provides
additional functionality for multiply-accumulate operations. By executing MULS and MULU in the MAC,
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execution times are minimized and deterministic compared to the 2-bit/cycle algorithm with early
termination that the OEP normally uses if no MAC hardware is present.

The added MAC instructions to the ColdFire ISA provide for the multiplication of two numbers, followed
by the addition or subtraction of the product to or from the value in an accumulator. Optionally, the product
may be shifted left or right by 1 bit before addition or subtraction. Hardware support for saturation
arithmetic can be enabled to minimize software overhead when dealing with potential overflow conditions.
Multiply-accumulate operations support 16- or 32-bit input operands of the following formats:

» Signed integers
* Unsigned integers
» Signed, fixed-point, fractional numbers

The EMAC is optimized for single-cycle, pipelined 32 x 32 multiplications. For word- and
longword-sized integer input operands, the low-order 40 bits of the product are formed and used with the
destination accumulator. For fractional operands, the entire 64-bit product is calculated and either
truncated or rounded to the most-significant 40-bit result using the round-to-nearest (even) method before
it is combined with the destination accumulator.

For all operations, the resulting 40-bit product is extended to a 48-bit value (using sign-extension for
signed integer and fractional operands, zero-fill for unsigned integer operands) before being combined
with the 48-bit destination accumulator.

Figure 4-4 and Figure 4-5 show relative alignment of input operands, the full 64-bit product, the resulting
40-bit product used for accumulation, and 48-bit accumulator formats.

OperandY 32
X OperandX 32
Product 40 23 “Q
Extended Product 8 40
+ | I
Accumulator 8 40 8
Extension Byte Upper [7:0] Accumulator [31:0] Extension Byte Lower [7:0]

Figure 4-4. Fractional Alignment
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OperandY 32

X OperandX 32

Product 24 8 32
| |

Extended Product 8 8 32
+ [ [ [

Accumulator 8 8 32

Extension Byte Upper [7:£ Accumulator [31:0]

Extension Byte Lower [7:0]
Figure 4-5. Signed and Unsigned Integer Alignment
Thus, the 48-bit accumulator definition is a function of the EMAC operating mode. Given that each 48-bit

accumulator is the concatenation of 16-bit accumulator extension register (ACCextn) contents and 32-bit
ACChn contents, the specific definitions are as follows:

if MACSR[6:5] == 00/* signed integer mode */

Complete Accumulator[47:0] = {ACCextn[1l5:0], ACCn[31:0]}
if MACSR[6:5] == -1/* signed fractional mode */

Complete Accumulator [47:0] = {ACCextn[l15:8], ACCn[31:0], ACCextn[7:0]}
if MACSR[6:5] == 10/* unsigned integer mode */

Complete Accumulator[47:0] = {ACCextn[15:0], ACCn[31:0]}

The four accumulators are represented as an array, ACCn, where n selects the register.

Although the multiplier array is implemented in a four-stage pipeline, all arithmetic MAC instructions
have an effective issue rate of 1 cycle, regardless of input operand size or type.

All arithmetic operations use register-based input operands, and summed values are stored internally in an
accumulator. Thus, an additional move instruction is needed to store data in a general-purpose register.
One new feature found in EMAC instructions is the ability to choose the upper or lower word of a register
as a 16-bit input operand. This is useful in filtering operations if one data register is loaded with the input
data and another is loaded with the coefficient. Two 16-bit multiply accumulates can be performed without
fetching additional operands between instructions by alternating the word choice during the calculations.

The EMAC has four accumulator registers versus the MAC’s one accumulator. The additional registers
improve the performance of some algorithms by minimizing pipeline stalls needed to store an accumulator
value back to general-purpose registers. Many algorithms require multiple calculations on a given data set.
By applying different accumulators to these calculations, it is often possible to store one accumulator
without any stalls while performing operations involving a different destination accumulator.
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The need to move large amounts of data presents an obstacle to obtaining high throughput rates in DSP
engines. New and existing ColdFire instructions can accommodate these requirements. A MOVEM
instruction can move large blocks of data efficiently by generating line-sized burst transfers. The ability to
simultaneously load an operand from memory into a register and execute a MAC instruction makes some
DSP operations such as filtering and convolution more manageable.

The programming model includes a 16-bit mask register (MASK), which can optionally be used to
generate an operand address during MAC + MOVE instructions. The application of this register with
auto-increment addressing mode supports efficient implementation of circular data queues for memory
operands.

The additional MAC status register (MACSR) contains a 4-bit operational mode field and condition flags.
Operational mode bits control whether operands are signed or unsigned and whether they are treated as
integers or fractions. These bits also control the overflow/saturation mode and the way in which rounding
is performed. Negative, zero, and multiple overflow condition flags are also provided.

4.2 Memory Map/Register Definition

The EMAC provides the following program-visible registers:

* Four 32-bit accumulators (ACCr = ACC0, ACC1, ACC2, and ACC3)

» Eight 8-bit accumulator extensions (two per accumulator), packaged as two 32-bit values for load
and store operations (ACCext01 and ACCext23)

*  One 16-bit mask register (MASK)

*  One 32-bit MAC status register (MACSR) including four indicator bits signaling product or
accumulation overflow (one for each accumulator: PAVO-PAV3)

These registers are shown in Figure 4-6.
31 0

MACSR  MAC status register
ACCO MAC accumulator 0
ACC1 MAC accumulator 1
ACC2 MAC accumulator 2
ACC3 MAC accumulator 3
ACCext01 Extensions for ACC0O and ACC1
ACCext23 Extensions for ACC2 and ACC3
MASK MAC mask register

Figure 4-6. EMAC Register Set

4.2.1 MAC Status Register (MACSR)

MACSR functionality is organized as follows:

*  MACSR][11-8] contains one product/accumulation overflow flag per accumulator.
*  MACSR|[7-4] defines the operating configuration of the MAC unit.
*  MACSR][3-0] contains indicator flags from the last MAC instruction execution.
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Reset

Reg
Addr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 PAVX OMC|SMU | FI | RT| N Z \ EV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-7. MAC Status Register (MACSR)

Table 4-1 describes MACSR fields.

Table 4-1. MACSR Field Descriptions

Bits

Name

Description

31-12

Reserved, should be cleared.

11-8

PAVXx

Product/accumulation overflow flags. Contains four flags, one per accumulator, that indicate if past
MAC or MSAC instructions generated an overflow during product calculation or the 48-bit
accumulation. When a MAC or MSAC instruction is executed, the PAVx flag associated with the
destination accumulator is used to form the general overflow flag, MACSRI[V]. Once set, each flag
remains set until V is cleared by a MOV.L , MACSR instruction or the accumulator is loaded directly.

omMmC

Operational mode field: Overflow/saturation mode. Used to enable or disable saturation mode on
overflow. If set, the accumulator is set to the appropriate constant on any operation which overflows
the accumulator. Once saturated, the accumulator remains unaffected by any other MAC or MSAC
instructions until either the overflow bit is cleared or the accumulator is directly loaded.

S/U

Operational mode field: Signed/unsigned operations.

In integer mode:

S/U determines whether operations performed are signed or unsigned. It also determines the

accumulator value during saturation, if enabled.

0 Signed numbers. On overflow, if OMC is enabled, an accumulator saturates to the most positive
(0x7FFF_FFFF) or the most negative (0x8000_0000) number, depending on both the instruction
and the value of the product that overflowed.

1 Unsigned numbers. On overflow, if OMC is enabled, an accumulator saturates to the smallest
value (0x0000_0000) or the largest value (OXFFFF_FFFF), depending on the instruction.

In fractional mode:

S/U controls rounding while storing an accumulator to a general-purpose register.

0 Move accumulator without rounding to a 16-bit value. Accumulator is moved to a general-purpose
register as a 32-bit value.

1 The accumulator is rounded to a 16-bit value using the round-to-nearest (even) method when it
is moved to a general-purpose register. See Section 4.2.1.1.1, “Rounding.” The resulting 16-bit
value is stored in the lower word of the destination register. The upper word is zero-filled. The
accumulator value is not affected by this rounding procedure.
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Table 4-1. MACSR Field Descriptions (Continued)

Bits

Name

Description

F/l

Operational mode field: Fractional/integer mode Determines whether input operands are treated as
fractions or integers.

0 Integers can be represented in either signed or unsigned notation, depending on the value of S/U.
1 Fractions are represented in signed, fixed-point, two’s complement notation. Values range from
-1 to 1- 271° for 16-bit fractions and -1 to 1 - 2°3! for 32-bit fractions. See Section 4.3.2, “Data

Representation.”

R/T

Operational mode field: Round/truncate mode. Controls the rounding procedure for MOV.L

ACCx,Rx, or MSAC.L instructions when operating in fractional mode.

0 Truncate. The product’s Isbs are dropped before it is combined with the accumulator. Additionally,
when a store accumulator instruction is executed (MOV.L ACCx,Rx), the 8 Isbs of the 48-bit
accumulator logic are simply truncated.

1 Round-to-nearest (even). The 64-bit product of two 32-bit, fractional operands is rounded to the
nearest 40-bit value. If the low-order 24 bits equal 0x80_0000, the upper 40 bits are rounded to
the nearest even (Isb = 0) value.See Section 4.2.1.1.1, “Rounding.” Additionally, when a store
accumulator instruction is executed (MOV.L ACCx,Rx), the Isbs of the 48-bit accumulator logic are
used to round the resulting 16- or 32-bit value. If MACSR[S/U] = 0 and MACSR[R/T] = 1, the
low-order 8 bits are used to round the resulting 32-bit fraction. If MACSR[S/U] = 1, the low-order
24 bits are used to round the resulting 16-bit fraction.

Negative flag. Set if the msb of the result is set, otherwise cleared. N is affected only by MAC, MSAC,
and load operations; it is not affected by MULS and MULU instructions.

Zero flag. Set if the result equals zero, otherwise cleared. This bit is affected only by MAC, MSAC,
and load operations; it is not affected by MULS and MULU instructions.

Overflow flag. Set if an arithmetic overflow occurs on a MAC or MSAC instruction indicating that the
result cannot be represented in the limited width of the EMAC. V is set only if a product overflow
occurs or the accumulation overflows the 48-bit structure. V is evaluated on each MAC or MSAC
operation and uses the appropriate PAVx flag in the next-state V evaluation.

EV

Extension overflow flag. Signals that the last MAC or MSAC instruction overflowed the 32 Isbs in
integer mode or the 40 Isbs in fractional mode of the destination accumulator. However, the result is
still accurately represented in the combined 48-bit accumulator structure. Although an overflow has
occurred, the correct result, sign, and magnitude are contained in the 48-bit accumulator.
Subsequent MAC or MSAC operations may return the accumulator to a valid 32/40-bit result.

Table 4-2 summarizes the interaction of the MACSR[S/U,F/I,LR/T] control bits.
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Table 4-2. Summary of S/U, F/l, and R/T Control Bits

S/U | Fl | RIT Operational Modes

0 | 0| x |Signed, integer

0 1 0 |Signed, fractional
Truncate on MAC.L and MSAC.L
No round on accumulator stores

0 1 1 | Signed, fractional
Round on MAC.L and MSAC.L
Round-to-32-bits on accumulator stores

1 0 | x [Unsigned, integer

1 1 0 |Signed, fractional
Truncate on MAC.L and MSAC.L
Round-to-16-bits on accumulator stores

1 1 1 | Signed, fractional
Round on MAC.L and MSAC.L
Round-to-16-bits on accumulator stores

4.2.1.1 Fractional Operation Mode
This section describes behavior when the fractional mode is used (MACSRJ[F/I] is set).

42.1.1.1 Rounding

When the processor is in fractional mode, there are two operations during which rounding can occur.

» Execution of a store accumulator instruction (MOV.L ACCx,Rx). The Isbs of the 48-bit
accumulator logic are used to round the resulting 16- or 32-bit value. If MACSR[S/U] is cleared,
the low-order 8 bits are used to round the resulting 32-bit fraction. If MACSR[S/U] is set, the
low-order 24 bits are used to round the resulting 16-bit fraction.

» Execution of a MAC (or MSAC) instruction with 32-bit operands. If MACSR[R/T] is zero,
multiplying two 32-bit numbers creates a 64-bit product that is truncated to the upper 40 bits;
otherwise, it is rounded using round-to-nearest (even) method.

To understand the round-to-nearest-even method, consider the following example involving the rounding
of a 32-bit number, RO, to a 16-bit number. Using this method, the 32-bit number is rounded to the closest
16-bit number possible. Let the high-order 16 bits of RO be named R0.U and the low-order 16 bits be RO.L.

* IfRO.L is less than 0x8000, the result is truncated to the value of R0.U.
» IfRO.L is greater than 0x8000, the upper word is incremented (rounded up).

« IfRO.L is 0x8000, RO is half-way between two 16-bit numbers. In this case, rounding is based on
the Isb of R0.U, so the result is always even (Isb = 0).

— If the Isb of RO.U = 1 and RO.L = 0x8000, the number is rounded up.
— If'the Isb of RO.U = 0 and R0.L =0x8000, the number is rounded down.

This method minimizes rounding bias and creates as statistically correct an answer as possible.

The rounding algorithm is summarized in the following pseudocode:
if RO.L < 0x8000

then Result = R0O.U
else if RO.L > 0x8000
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then Result = R0O.U + 1

else if 1sb of RO.U = 0 /* RO.L = 0x8000 */
then Result = R0O.U
else Result = R0O.U + 1

The round-to-nearest-even technique is also known as convergent rounding.

4.2.1.1.2 Saving and Restoring the EMAC Programming Model

The presence of rounding logic in the output datapath of the EMAC requires that special care be taken
during the EMAC’s save/restore process. In particular, any result rounding modes must be disabled during
the save/restore process so the exact bit-wise contents of the EMAC registers are accessed. Consider the
following memory structure containing the EMAC programming model:

struct macState {

int accO;
int accl;
int acc?2;
int acc3;
int accext01;
int accext02;
int mask;
int macsr;

} macState;

The following assembly language routine shows the proper sequence for a correct EMAC state save. This
code assumes all Dn and An registers are available for use and the memory location of the state save is
defined by A7.

EMAC state save:

move.l macsr,d’ ; save the macsr

clr.1l do ; zero the register to

move.l dO,macsr ; disable rounding in the macsr
move.l acc0,d0 ; save the accumulators

move.l accl,dl

move.l acc2,d2

move.l acc3,d3

move.l accext01l,d4 ; save the accumulator extensions
move.l accext23,d5

move.l mask,d6 ; save the address mask

movem.l #0xO00ff, (a7) ; move the state to memory

The following code performs the EMAC state restore:

EMAC state restore:

movem.l (a7),#0x00ff ; restore the state from memory
move.l #0,macsr ; disable rounding in the macsr
move.l d0,accO ; restore the accumulators

move.l dl,accl

move.l d2,acc?

move.l d3,acc3

move.l d4,accext01 ; restore the accumulator extensions
move.l d5,accext23
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move.l d6,mask ; restore the address mask
move.l d7,macsr ; restore the macsr

By executing this type of sequence, the exact state of the EMAC programming model can be correctly
saved and restored.

421.1.3 MULS/MULU

MULS and MULU are unaffected by fractional mode operation; operands are still assumed to be integers.

4.2.1.1.4 Scale Factor in MAC or MSAC Instructions

The scale factor is ignored while the MAC is in fractional mode.

4.2.2 Mask Register (MASK)

The 32-bit MASK implements the low-order 16 bits to minimize the alignment complications involved
with loading and storing only 16 bits. When the MASK is loaded, the low-order 16 bits of the source
operand are actually loaded into the register. When it is stored, the upper 16 bits are all forced to ones.

This register performs a simple AND with the operand address for MAC instructions. That is, the
processor calculates the normal operand address and, if enabled, that address is then ANDed with
{OxFFFF, MASK]15:0]} to form the final address. Therefore, with certain MASK bits cleared, the operand
address can be constrained to a certain memory region. This is used primarily to implement circular queues
in conjunction with the (An)+ addressing mode.

This feature minimizes the addressing support required for filtering, convolution, or any routine that
implements a data array as a circular queue. For MAC + MOVE operations, the MASK contents can
optionally be included in all memory effective address calculations. The syntax is as follows:

MAC.sz Ry,RxSF,<ea>vyé&,Rw

The & operator enables the use of MASK and causes bit 5 of the extension word to be set. The exact
algorithm for the use of MASK is as follows:

if extension word, bit [5] = 1, the MASK bit, then

if <ea> = (An)

oca = An & {0OxFFFF, MASK}
if <ea> = (An)+

oa = An

An = (An + 4) & {0xFFFF, MASK}
if <ea> =-(An)

oa = (An - 4) & {OxFFFF, MASK}

An = (An - 4) & {OxFFFF, MASK}
if <ea> = (dl6,An)

oca = (An + se dl6) & {0xFFFFOx, MASK}

Here, oa is the calculated operand address and se d16 is a sign-extended 16-bit displacement. For
auto-addressing modes of post-increment and pre-decrement, the calculation of the updated An value is
also shown.

Use of the post-increment addressing mode, {(An)+} with the MASK is suggested for circular queue
implementations.
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4.3

Table 4-3 summarizes EMAC unit instructions.

EMAC Instruction Set Summary

EMAC Instruction Set Summary

Table 4-3. EMAC Instruction Summary

Command

Mnemonic

Description

Multiply Signed

MULS <ea>y,Dx

Multiplies two signed operands yielding a signed result

Multiply Unsigned

MULU <ea>y,Dx

Multiplies two unsigned operands yielding an unsigned result

Multiply Accumulate

MAC Ry,RxSF,ACCx
MSAC Ry,RxSF,ACCx

Multiplies two operands and adds/subtracts the product to/from an
accumulator

Multiply Accumulate
with Load

MAC Ry,Rx,<ea>y,Rw,ACCx
MSAC Ry,Rx,<ea>y,Rw,ACCx

Multiplies two operands and combines the product to an
accumulator while loading a register with the memory operand

Load Accumulator

MOV.L {Ry,#imm},ACCx

Loads an accumulator with a 32-bit operand

Store Accumulator

MOV.L ACCx,Rx

Writes the contents of an accumulator to a CPU register

Copy Accumulator

MOV.L ACCy,ACCx

Copies a 48-bit accumulator

Load MACSR

MOV.L {Ry,#imm},MACSR

Writes a value to MACSR

Store MACSR

MOV.L MACSR,Rx

Write the contents of MACSR to a CPU register

Store MACSR to CCR

MOV.L MACSR,CCR

Write the contents of MACSR to the CCR

Load MAC Mask Reg

MOV.L {Ry,#imm},MASK

Writes a value to the MASK register

Store MAC Mask Reg

MOV.L MASK,Rx

Writes the contents of the MASK to a CPU register

Load AccExtensions01

MOV.L {Ry,#imm},ACCext01

Loads the accumulator 0,1 extension bytes with a 32-bit operand

Load AccExtensions23

MOV.L {Ry,#imm},ACCext23

Loads the accumulator 2,3 extension bytes with a 32-bit operand

Store AccExtensions01

MOV.L ACCext01,Rx

Writes the contents of accumulator 0,1 extension bytes into a CPU
register

Store AccExtensions23

MOV.L ACCext23,Rx

Writes the contents of accumulator 2,3 extension bytes into a CPU
register

4.3.1

The instruction execution times for the EMAC can be found in Section 3.7,

Timing.”

EMAC Instruction Execution Timing

“Instruction Execution

The ColdFire family supports two multiply-accumulate implementations that provide different levels of
performance and capability for differing silicon costs. The EMAC features a four-stage execution pipeline,
optimized for 32-bit operands with a fully-pipelined 32 x 32 multiply array and four 48-bit accumulators.

The EMAC execution pipeline overlaps the AGEX stage of the OEP; that is, the first stage of the EMAC
pipeline is the last stage of the basic OEP. EMAC units are designed for sustained, fully-pipelined
operation on accumulator load, copy, and multiply-accumulate instructions. However, instructions that
store contents of the multiply- ~accumulate programming model can generate OEP stalls that expose the
EMAC execution pipeline depth, as in the following:

mac.w Ry, Rx,

move.l AccO, Rz

AccO
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The mov.l instruction that stores the accumulator to an integer register (Rz) stalls until the program-visible
copy of the accumulator is available. Figure 4-8 shows EMAC timing.

Three-cycle
regBusy stall

DSOC ‘ mac mov | mov |

AGEX mac mov

EMAC EX1 mac mov
EMAC EX2 mac
EMAC EX3 mac ‘

EMAC EX4 mac

Accumulator 0 old >< new

Figure 4-8. EMAC-Specific OEP Sequence Stall

In Figure 4-8, the OEP stalls the store-accumulator instruction for 3 cycles: the depth of the EMAC
pipeline minus 1. The minus 1 factor is needed because the OEP and EMAC pipelines overlap by a cycle,
the AGEX stage. As the store-accumulator instruction reaches the AGEX stage where the operation is
performed, the just-updated accumulator 0 value is available.

As with change or use stalls between accumulators and general-purpose registers, introducing intervening
instructions that do not reference the busy register can reduce or eliminate sequence-related store-MAC
instruction stalls. In fact, a major benefit of the EMAC is the addition of three accumulators to minimize
stalls caused by exchanges between the accumulator(s) and the general-purpose registers.

4.3.2 Data Representation

MACSRJ[S/U,F/T] selects one of the following three modes, where each mode defines a unique operand
type:
* Two’s complement signed integer: In this format, an N-bit operand value lies in the range 2 (N-D)
< operand < 2(N-D 17 The binary point is right of the Isb.
» Unsigned integer: In this format, an N-bit operand value lies in the range 0 < operand < 2N_1.The
binary point is right of the Isb.
* Two’s complement, signed fractional: In an N-bit number, the first bit is the sign bit. The remaining
bits signify the first N-1 bits after the binary point. Given an N-bit number, ay_;ap.ray.3... aya;ay,
its value is given by the equation in Figure 4-9.

N-2
value = —(1-ay )+ Z QUMY s
1=0

Figure 4-9. Two’s Complement, Signed Fractional Equation
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This format can represent numbers in the range -1 < operand <1 - 2

(N-1)

EMAC Instruction Set Summary

For words and longwords, the largest negative number that can be represented is -1, whose 1nterna1
representation is 0x8000 and 0x8000_0000, respectwel}y The largest positive word is 0x7FFF or (1-271);

the most positive longword is 0x7FFF_FFFF or (1 - 2

4.3.3 EMAC Opcodes

EMAC opcodes are described in the ColdFire Programmer s Reference Manual. Note the following:

Unless otherwise noted, the value of MACSR[N,Z] is based on the result of the final operation that
involves the product and the accumulator.

The overflow (V) flag is handled differently. It is set if the complete product cannot be represented
as a 40-bit value (this applies to 32 x 32 integer operations only) or if the combination of the
product with an accumulator cannot be represented in the given number of bits. The EMAC design
includes an additional product/accumulation overflow bit for each accumulator that are treated as
sticky indicators and are used to calculate the V bit on each MAC or MSAC instruction. See
Section 4.2.1, “MAC Status Register (MACSR).”

For the MAC design, the assembler syntax of the MAC (multiply and add to accumulator) and
MSAC (multiply and subtract from accumulator) instructions does not include a reference to the
single accumulator. For the EMAC, it is expected that assemblers support this syntax and that no
explicit reference to an accumulator is interpreted as a reference to ACCO. These assemblers would
also support syntaxes where the destination accumulator is explicitly defined.

The optional 1-bit shift of the product is specified using the notation {<<|>>} SF, where <<1
indicates a left shift and >>1 indicates a right shift. The shift is performed before the product is
added to or subtracted from the accumulator. Without this operator, the product is not shifted. If the
EMAC is in fractional mode (MACSR[F/I] is set), SF is ignored and no shift is performed. Because
a product can overflow, the following guidelines are implemented:

— For unsigned word and longword operations, a zero is shifted into the product on right shifts.

— For signed, word operations, the sign bit is shifted into the product on right shifts unless the
product is zero. For signed, longword operations, the sign bit is shifted into the product unless
an overflow occurs or the product is zero, in which case a zero is shifted in.

— For all left shifts, a zero is inserted into the Isb position.

The following pseudocode explains basic MAC or MSAC instruction functionality. This example is
presented as a case statement covering the three basic operating modes with signed integers, unsigned
integers, and signed fractionals. Throughout this example, a comma-separated list in curly brackets, {},
indicates a concatenation operation.

switch (MACSR[6:5]) /* MACSR[S/U, F/I] */
{
case 0: /* signed integers */
if (MACSR.OMC == 0 || MACSR.PAVx == 0)

then {
MACSR.PAVx = 0
/* select the input operands */

if (sz == word)
then {if (U/Ly == 1)
then operandY[31:0] = {sign-extended Ry[31], Ry[31:16]}
else operandY[31:0] = {sign-extended Ry[15], Ry[15:0]}
if (U/Lx == 1)
then operandX[31:0] = {sign-extended Rx[31], Rx[31:16]}
else operandX[31:0] = {sign-extended Rx[15], Rx[15:0]}
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}
else {operandY¥[31:0]
operandX[31:0]

Ry[31:0]
Rx[31:0]

/* perform the multiply */
product[63:0] = operandY[31:0] * operandX([31:0]

/* check for product overflow */

if ((product[63:39] != 0x0000 00 0) && (product[63:39] != Oxfff
f ff 1))
then { /* product overflow */

MACSR.PAVx = 1
MACSR.V = 1
if (inst == MSAC && MACSR.OMC == 1)
then if (product[63] == 1)
then result[47:0]
else result[47:0]
else 1if (MACSR.OMC == 1)
then /* overflowed MAC,
saturationMode enabled */

0x0000_7fff ffff
Oxffff 8000 0000

if (product[63] == 1)
then result[47:0] = Oxffff 8000 0000
else result[47:0] = 0x0000 7fff ffff

/* sign-extend to 48 bits before performing any scaling */
product[47:40] = {8{product[39]}} /* sign-extend */

/* scale product before combining with accumulator */

switch (SF) /* 2-bit scale factor */
{
case 0: /* no scaling specified */
break;
case 1: /* SF = “< 17 */
product[40:0] = {product([39:0], 0}
break;
case 2: /* reserved encoding */
break;
case 3: /* SF = “>> 17 */
product[39:0] = {product([39], product([39:1]}
break;
}
if (MACSR.PAVx == 0)
then {if (inst == MSACQC)

then result[47:0]
else result[47:0]

ACCx[47:0] - product[47:0]
ACCx[47:0] + product[47:0]

/* check for accumulation overflow */
if (accumulationOverflow == 1)
then {MACSR.PAVx = 1
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MACSR.V = 1
if (MACSR.OMC == 1)
then /* accumulation overflow,
saturationMode enabled */

if (result[47] == 1)
then result[47:0] = 0x0000 7fff ffff
else result[47:0] = Oxffff 8000 0000

}
/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]
}
MACSR.V = MACSR.PAVx
MACSR.N = ACCx[47]
if (ACCx[47:0] == 0x0000_0000_0000)
then MACSR.Z = 1
else MACSR.Z = 0
if ((ACCx[47:31] == 0x0000 0) || (ACCx[47:31] == Oxffff 1))
then MACSR.EV = 0
else MACSR.EV = 1

break;
case 1,3: /* signed fractionals */
if (MACSR.OMC == | | MACSR.PAVx == 0)
then {
MACSR.PAVx = 0
if (sz == word)
then {if (U/Ly == 1)
then operandY[31:0] = {Ry[31:16], 0x0000}
else operandY[31:0] = {Ry[15:0], 0x0000}
if (U/Lx == 1)
then operandX([31:0] = {Rx[31:16], 0x0000}
else operandX([31:0] = {Rx[15:0], 0x0000}

}
else {operand¥[31:0] Ry[31:0]
operandX[31:0] = Rx[31:0]

}
/* perform the multiply */
product[63:0] = (operandY[31:0] * operandX([31:0]) << 1
/* check for product rounding */
if (MACSR.R/T == 1)
then { /* perform convergent rounding */
if (product[23:0] > 0x80 _0000)
then product[63:24] = product[63:24] + 1
else if ((product[23:0] == 0x80 _0000) && (product[24] == 1))
then product[63:24] = product[63:24] + 1
}
/* sign-extend to 48 bits and combine with accumulator */
/* check for the -1 * -1 overflow case */

if ((operandY[31:0] == 0x8000 0000) && (operandX[31:0] == 0x8000 _0000))
then product[71:64] = 0x00 /* zero-fill */
else product[71:64] = {8{product[63]}} /* sign-extend */

if (inst == MSACQC)

then result[47:0] = ACCx[47:0] - product([71:24]
else result[47:0] = ACCx[47:0] + product([71:24]
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/* check for accumulation overflow */
if (accumulationOverflow == 1)
then {MACSR.PAVx = 1
MACSR.V = 1
if (MACSR.OMC == 1)
then /* accumulation overflow,
saturationMode enabled */
if (result[47] == 1)
then result[47:0]
else result[47:0]

0x007f ffff ££f00
= 0xff80_0000_ 0000
}
/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]
}
MACSR.V = MACSR.PAVx
MACSR.N = ACCx[47]
if (ACCx[47:0] == 0x0000_0000_0000)
then MACSR.Z =1
else MACSR.Z = 0
if ((ACCx[47:39] == 0x00 _0) || (ACCx[47:39] == 0xff 1))
then MACSR.EV = 0
else MACSR.EV = 1

break;
case 2: /* unsigned integers */
if (MACSR.OMC == | | MACSR.PAVx == 0)
then {

MACSR.PAVx = 0
/* select the input operands */

if (sz == word)
then {if (U/Ly == 1)
then operandY[31:0] = {0x0000, Ry[31:16]}
else operandY[31:0] = {0x0000, Ry[15:0]}
if (U/Lx == 1)
then operandX[31:0] = {0x0000, Rx[31:16]}

else operandX[31:0] {0x0000, Rx[15:071}
}
else {operand¥[31:0] = Ry[31:0]

operandX[31:0] Rx[31:0]

/* perform the multiply */
product[63:0] = operandY[31:0] * operandX([31:0]

/* check for product overflow */
if (product[63:40] != 0x0000_00)
then { /* product overflow */
MACSR.PAVx = 1
MACSR.V = 1

if (inst == MSAC && MACSR.OMC == 1)
then result([47:0] = 0x0000 0000 0000
else 1if (MACSR.OMC == 1)

then /* overflowed MAC,
saturationMode enabled */

MCF548x Reference Manual, Rev. 3

4-16 Freescale Semiconductor



EMAC Instruction Set Summary

result[47:0] = Oxffff ffff ffff

/* zero-fill to 48 bits before performing any scaling */
product[47:40] = 0 /* zero-fill upper byte */

/* scale product before combining with accumulator */

switch (SF) /* 2-bit scale factor */
{
case 0: /* no scaling specified */
break;
case 1: /* SF = “< 17 */
product[40:0] = {product([39:0], 0}
break;
case 2: /* reserved encoding */
break;
case 3: /* SF = “>> 17 */
product[39:0] = {0, product[39:1]}
break;

/* combine with accumulator */
if (MACSR.PAVx == 0)
then {if (inst == MSACQC)
then result[47:0] = ACCx[47:0] - product[47:0]
else result[47:0] ACCx[47:0] + product[47:0]

/* check for accumulation overflow */
if (accumulationOverflow == 1)
then {MACSR.PAVx = 1
MACSR.V = 1

if (inst == MSAC && MACSR.OMC == 1)
then result([47:0] = 0x0000 0000 0000
else 1if (MACSR.OMC == 1)

then /* overflowed MAC,
saturationMode enabled */
result([47:0] = Oxffff ffff ffff

/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]

}
MACSR.V = MACSR.PAVx

MACSR.N = ACCx[47]

if (ACCx[47:0] == 0x0000_0000_0000)
then MACSR.Z = 1
else MACSR.Z = 0

if (ACCx[47:32] == 0x0000)
then MACSR.EV 0
else MACSR.EV 1

break;
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Chapter 5
Memory Management Unit (MMU)

This chapter describes the ColdFire virtual memory management unit (MMU), which provides
virtual-to-physical address translation and memory access control. The MMU consists of memory-mapped
control, status, and fault registers that provide access to translation-lookaside buffers (TLBs). Software can
control address translation and access attributes of a virtual address by configuring MMU control registers
and loading TLBs. With software support, the MMU provides demand-paged, virtual addressing.

5.1 Features

The MMU has the following features:

*  MMU memory-mapped control, status, and fault registers
— Support a flexible, software-defined virtual environment
— Provide control and maintenance of TLBs
— Provide fault status and recovery information functions

» Separate, 32-entry, fully associative instruction and data TLBs (Harvard TLBs)
— Resides in the controller
— Operates in parallel with the memories
— Suffers no performance penalty on TLB hits
— Supports 1-, 4-, and 8-Kbyte and 1-Mbyte page sizes concurrently
— Contains register-based TLB entries

» Core extensions:
— User stack pointer
— All access error exceptions are precise and recoverable

» Harvard TLB provides 97% of baseline performance on large embedded applications using
equivalent V4 without MMU support as a baseline.

5.2  Virtual Memory Management Architecture

The ColdFire memory management architecture provides a demand-paged, virtual-address environment
with hardware address translation acceleration. It supports supervisor/user, read, write, and execute
permission checking on a per-memory request basis.

The architecture defines the MMU TLB, associated control logic, TLB hit/miss logic, address translation
based on the TLB contents, and access faults due to TLB misses and access violations. It intentionally
leaves some virtual environment details undefined to maximize the software-defined flexibility. These
include the exact structure of the memory-resident pointer descriptor/page descriptor tables, the base
registers for these tables, the exact information stored in the tables, the methodology (if any) for
maintenance of access, and written information on a per-page basis.

5.2.1 MMU Architecture Features

To add optional virtual addressing support, demand-page support, permission checking, and hardware
address translation acceleration to the ColdFire architecture, the MMU architecture features the following:

* Addresses from the core to the MMU are treated as physical or virtual addresses.
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5.2.2

The address access control logic, address attribute logic, memories, and controller function as in

previous ColdFire versions with the addition of the MMU. The MMU, its TLB, and associated

control reside in the logic.

The MMU appears as a memory-mapped device in the space. Information for access error fault

processing is stored in the MMU.

A precise fault (transfer error acknowledge) signals the core on translation (TLB miss) and access

faults. The core supports an instruction restart model for this fault class. Note that this structure

uses the existing ColdFire access error fault vector and needs no new ColdFire exception stack

frames.

The following additions are made to the memory access control to better support the fault

processing and memory maintenance necessary for this virtual addressing environment. These

additions improve memory performance and functionality for physical and virtual address

environments:

— New supervisor-protect bits to the access control registers (ACRs) and the cache control
register (CACR)

— Improved addressing of the ACRs

MMU Architecture Location

Figure 5-1 shows the placement of the MMU/TLB hardware. It follows a traditional model in which it is
closely coupled to the processor local-memory controllers.
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Figure 5-1. CF4e Processor Core Block with MMU

5.2.3 MMU Architecture Implementation

This section describes ColdFire design additions and changes for the MMU architecture. It includes
precise faults, MMU access, virtual mode, virtual memory references, instruction and data cache
addresses, supervisor/user stack pointers, access error stack frame additions, expanded control register
space, ACR address improvements, supervisor protection, and debugging in a virtual environment.
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5.2.3.1 Precise Faults

The MMU architecture performs virtual-to-physical address translation and permission checking in the
core. To support demand-paging, the core design provides a precise, recoverable fault for all references.

5.2.3.2 MMU Access

The MMU TLB control registers are memory-mapped. The TLB entries are read and written indirectly
through the MMU control registers. The memory space for these resources is defined by a new supervisor
program model register, the MMU base address register (MMUBAR). This register defines a
supervisor-mode, data-only space. It has the highest priority for the data address mode determination.

5.2.3.3 Virtual Mode

Every instruction and data reference is either a virtual or physical address mode access. All addresses for
special mode (interrupt acknowledges, emulator mode operations, etc.) accesses are physical. All
addresses are physical if the MMU is not enabled. If the MMU is present and enabled, the address mode
for normal accesses is determined by the MMUBAR, RAMBARSs, and ACRs in the priority order listed.
Addresses that hit in the MMUBAR, RAMBARs, and ACRs are treated as physical references. These
addresses are not translated and their address attributes are sourced from the highest priority mapping
register they hit. If an address hits none of these mapping registers, it is a virtual address and is sent to the
MMU. If the MMU is enabled, the default CACR information is not used.

5.2.3.4 Virtual Memory References

The ColdFire MMU architecture references the MMU for all virtual mode accesses to the . MMU, SRAM
and ACR memory spaces are treated as physical address spaces and all permissions that apply to these
spaces are contained in the respective mapping register. The virtual mode access either hits or misses in
the TLB of the MMU. A TLB miss generates an access fault in the processor, allowing software to either
load the appropriate translation into the TLB and restart the faulting instruction or abort the process. Each
TLB hit checks permissions based on the access control information in the referenced TLB entry.

5.2.3.5 Instruction and Data Cache Addresses

For a given page size, virtual address bits that reference within a page are called the in-page address. All
bits above this are the virtual page number. Likewise, the physical address has a physical page number and
in-page address bits. Virtual and physical in-page address bits are the same; the MMU translates the virtual
page number to the physical page number.

Instruction and data caches are accessed with the untranslated address. The translated address is used for
cache allocation. That is, caches are virtual-address accessed and physical-address tagged. If instruction
and data cache addresses are not larger than the in-page address for the smallest active MMU page, the
cache is considered physically accessed; if they are larger, the cache can have aliasing problems between
virtual and cache addresses. Software handles these problems by forcing the virtual address to be equal to
the physical address for those bits addressing the cache, but above the in-page address of the smallest
active page size. The number of these bits depends on cache and page sizes.

Caches are addressed with the virtual address, because the cache uses synchronous memory elements, and
an access starts at the rising-clock edge of the first pipeline stage. The MMU provides a physical address
midway through this cycle.

If the cache set address has fewer bits than the in-page address, the cache is considered physically
addressed because these bits are the same in the virtual and physical addresses. If the cache set address has
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more bits than the in-page address, one or more of the low-order virtual page number bits are used to
address the cache. The MMU translates these bits; the resulting low-order physical page number bits are
used to determine cache hits.

Address aliasing problems occur when two virtual addresses access one physical page. This is generally
allowed and, if the page is cacheable, one coherent copy of the page image is mapped in the cache at any
time.

If multiple virtual addresses pointing to the same physical address differ only in the low-order virtual page
number bits, conflicting copies can be allocated. For an 8-Kbyte, 4-way, set-associative cache with a
16-byte line size, the cache set address uses address bits 10—4. If virtual addresses 0x0 1000 and 0x0 1400
are mapped to physical address 0x0_ 1000, using virtual address 0x0 1000 loads cache set 0x00; using
virtual address 0x0 1400 loads cache set 0x40. This puts two copies of the same physical address in the
cache making this memory space not coherent. To avoid this problem, software must force low-order
virtual page number bits to be equal to low-order physical address bits for all bits used to address the cache
set.

5.2.3.6 Supervisor/User Stack Pointers

To isolate supervisor and user modes, CF4e implements two A7 register stack pointers, one for supervisor
mode (SSP) and one for user mode (USP). Two former M68000 family privileged instructions to load and
store the user stack pointer are restored in the instruction set architecture.

5.2.3.7 Access Error Stack Frame

accesses that fault (that is, terminate with a transfer error acknowledge) generate an access error

exception. MMU TLB misses and access violations use the same fault. To quickly determine if a fault was
due to a TLB miss or another type of access error, new fault status field (FS) encodings in the exception
stack frame signal TLB misses on the following:

* Instruction fetch

* Instruction extension fetch

» Data read

* Data write

See Section 5.4.3, “Access Error Stack Frame Additions,” for more information.

5.2.3.8 Expanded Control Register Space

The MMU base address register (MMUBAR) is added for ColdFire virtual mode. Like other control
registers, it can be accessed from the debug module or written using the privileged MOVEC instruction.
See Section 5.5.3.1, “MMU Base Address Register (MMUBAR).”

5.2.3.9 Changes to ACRs and CACR

New ACR and CACR bits, Table 5-1, improve address granularity and supervisor mode protection. These
improvements are not necessary to implement the ColdFire MMU, but they improve memory
functionality for physical and virtual address environments.
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Table 5-1. New ACR and CACR Bits

Bits Name Description

ACRnN[10] AMM Address mask mode. Determines access to the associated address space.

0 The ACR hit function is the same as previous versions, allowing control of a 16-Mbyte
or greater memory region.

1 The upper 8 bits of the address and ACR are compared without a mask function; bits
23-20 of the address and ACR are compared masked by ACR[19-16], allowing control
of a 1- to 16-Mbyte region.

Reset value is 0.

ACRN[3] SP Supervisor protect. Determines access to the associated address space.

0 Supervisor and user access allowed.

1 Only supervisor access allowed. Attempted user access causes an access error
exception.

Reset value is 0.

CACR[23] DDSP Default data supervisor protect. Determines access to the associated data space.

0 Supervisor and user access allowed.

1 Only supervisor access allowed. Attempted user access causes an access error
exception.

Reset value is 0.

CACRI7] DISP Default instruction supervisor protect. Determines access to the associated instruction
space.

0 Supervisor and user access allowed.

1 Only supervisor access allowed. Attempted user access causes access error exception

Reset value is 0.

5.2.3.10 ACR Address Improvements

ACRs provide a 16-Mbyte address window. For a given request address, if the ACR is valid and the request
mode matches the mode specified in the supervisor mode field, ACR#[S], hit determination is specified as
follows:

ACRx Hit = 0;
if ((address[31:24] & ~ACRn[23:16]) == (ACRn[31:24] & ~ACRn[23:16]))
ACRx Hit = 1;

With this hit function, ACRs can assign address attributes for user or supervisor requests to memory spaces
of at least 16 Mbytes (through the address mask). With the MMU definition, the ACR hit function is
improved by the address mask mode bit (ACRr[AMM]), which supports finer address granularity. See
Table 5-1.

The revised hit determination becomes the following:

ACRx_Hit = 0;
if (ACRn[10] == 1)
if ((address[31-24] == ACRn[31-24]1)) &&
((address([23-20] & ~ACRn[19-16]) == (ACRn[23-20] & ~ACRn[19-16])))
ACRx Hit = 1;
else if (address[31-24] & ~ACRn[23-16]) == (ACRn[31-24] & ~ACRn[23-161]))

ACRx Hit = 1;
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5.2.3.11 Supervisor Protection

Each instruction or data reference is either a supervisor or user access. The CPU’s status register supervisor
bit (SR[S]) determines the operating mode. New ACR and CACR bits protect supervisor space. See
Table 5-1.

5.3 Debugging in a Virtual Environment

To support debugging in a virtual environment, numerous enhancements are implemented in the ColdFire
debug architecture. These enhancements are collectively called Debug revision D and primarily relate to
the addition of an 8-bit address space identifier (ASID) to yield a 40-bit virtual address. This expansion
affects two major debug functions:

» The ASID is optionally included in the hardware breakpoint registers specification. For example,
the four PC breakpoint registers are expanded by 8 bits each, so that a specific ASID value can be
part of the breakpoint instruction address. Likewise, data address/data breakpoint registers are
expanded to include an ASID value. The new control registers define whether and how the ASID
is included in the breakpoint comparison trigger logic.

* The debug module implements the concept of ownership trace in which an ASID value can be
optionally displayed as part of real-time trace. When enabled, real-time trace displays instruction
addresses on any change-of-flow instruction that is not absolute or PC-relative. For Debug revision
D architecture, the address display is expanded to optionally include ASID contents, thus providing
the complete instruction virtual address on these instructions. Additionally, when a Sync PC serial
BDM command is loaded from the external development system, the processor displays the
complete virtual instruction address, including the 8-bit ASID value.

The MMU control registers are accessible through serial BDM commands. See Chapter 8, “Debug
Support.”

5.4  Virtual Memory Architecture Processor Support

To support the MMU, enhancements have been made to the exception model, the stack pointers, and the
access error stack frame.

5.4.1 Precise Faults

To support demand-paging, all memory references require precise, recoverable faults. The ColdFire
instruction restart mechanism ensures that a faulted instruction restarts from the beginning of execution;
that is, no internal state information is saved when an exception occurs and none is restored when the
handler ends. Given the PC address defined in the exception stack frame, the processor reestablishes
program execution by transferring control to the given location as part of the RTE (return from exception)
instruction.

For a detailed description, see Section 3.9, “Precise Faults.”

5.4.2 Supervisor/User Stack Pointers
To provide the required isolation between these operating modes as dictated by a virtual memory

management scheme, a user stack pointer (A7-USP) is added. The appropriate stack pointer register (SSP,
USP) is accessed as a function of the processor’s operating mode.
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In addition, the following two privileged M68000 family instructions to load/store the USP are added to
the ColdFire instruction set architecture:

mov.1l Ay, USP # move to USP: opcode = 0x4E6{0-7}
mov.l USP, Ax # move from USP: opcode = 0x4E6{8-F}

The address register number is encoded in the three low-order bits of the opcode.

These instructions are described in detail in Section 5.7, “MMU Instructions.”

5.4.3 Access Error Stack Frame Additions

ColdFire exceptions generate a standard 2-longword stack frame, signaling the contents of the SR and PC
at the time of the exception, the exception type, and a 4-bit fault status field (FS). The first longword
contains the 16-bit format/vector word (F/V) and the 16-bit status register. The second contains the 32-bit
program counter address of the faulted instruction.

31 28 27 26 25 18 17 16 15 0
A7 —>| FORMAT FS[3-2] | VEC[7-0] | FS[1-0] STATUS REGISTER
+0x04 PROGRAM COUNTER [31-0]

Figure 5-2. Exception Stack Frame

The FS field is used for access and address errors. To optimize TLB miss exception handling, new FS
encodings (Table 5-2) allow quick error classification.

Table 5-2. Fault Status Encodings

FS[3:0] Definition
0000 Not an access or address error
0001, 001x Reserved
0100 Error (for example, protection fault) on instruction fetch
0101 TLB miss on opword of instruction fetch (New in CF4e)
0110 TLB miss on extension word of instruction fetch (New in CF4e)
0111 IFP access error while executing in emulator mode (New in CF4e)
1000 Error on data write
1001 Attempted write of protected space
1010 TLB miss on data write (New in CF4e)
1011 Reserved
1100 Error on data read
1101 Attempted read, read-modify-write of protected space (New in CF4e)
1110 TLB miss on data read, or read-modify-write (New in CF4e)
1111 OEP access error while executing in emulator mode (New in CF4e)

MCF548x Reference Manual, Rev. 3

5-8 Freescale Semiconductor



MMU Definition

5.5 MMU Definition

The ColdFire MMU provides a virtual address, demand-paged memory architecture. The MMU supports
hardware address translation acceleration using software-managed TLBs. It enforces permission checking
on a per-memory request basis, and has control, status, and fault registers for MMU operation.

5.5.1 Effective Address Attribute Determination

The ColdFire core generates an effective memory address for all instruction fetches and data read and write
memory accesses. The previous ColdFire memory access control model was based strictly on physical
addresses. Every memory request address is a physical address that is analyzed by this memory access
control logic and assigned address attributes, which include the following:

* Cache mode

*  SRAM enable information

»  Write protect information

*  Write mode information

These attributes control processing of the memory request. The address itself is not affected by memory
access control logic.

Instruction and data references base effective address attributes and access mode on the instruction type
and the effective address. Accesses are of the following two types:

» Special mode accesses, including interrupt acknowledges, reads/writes to program-visible control
registers (such as CACR, ROMBARs, RAMBARs, and ACRs), cache control commands
(CPUSHL and INTOUCH), and emulator mode operations. These accesses have the following
attributes:

— Non-cacheable
— Precise
— No write protection

Unless the CPU space/IACK mask bit is set, interrupt acknowledge cycles and emulator mode
operations are allowed to hitin RAMBARs and ROMBARs. All other operations are normal mode
accesses.

* Normal mode accesses. For these accesses, an effective cache mode, precision and write-protection
are calculated for each request.

For data, a normal mode access address is compared with the following priority, from highest to lowest:
RAMBARO, RAMBAR1, ROMBARO, ROMBARI1, ACRO, and ACRI. If no match is found, default
attributes in the CACR are used. The priority for instruction accesses is RAMBARO, RAMBARI,
ROMBARO, ROMBARI1, ACR2, and ACR3. Again, if no match is found, default CACR attributes are
used.

Only the test-and-set (TAS) instruction can generate a normal mode access with implied cache mode and
precision. TAS is a special, byte-sized, read-modify-write instruction used in synchronization routines. A
TAS data access that does not hit in the RAMBARS is non-cacheable and precise. TAS uses the normal
effective write protection.

The ColdFire MMU is an optional enhancement to the memory access control. If the MMU is present and
enabled, it adds two factors for calculating effective address attributes:

« MMUBAR defines a memory-mapped, privileged data-only space with the highest priority in
effective address attribute calculation for the data (that is, the MMUBAR has priority over
RAMBARO).
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« If virtual mode is enabled, any normal mode access that does not hit in the MMUBAR,
RAMBARs, ROMBARs, or ACRs is considered a normal mode virtual address request and
generates its access attributes from the MMU. For this case, the default CACR address attributes
are not used.

The MMU also uses TLB contents to perform virtual-to-physical address translation.

5.5.2 MMU Functionality

The MMU provides virtual-to-physical address translation and memory access control. The MMU consists
of memory-mapped, control, status, and fault registers, and a TLB that can be accessed through MMU
registers. Supervisor software can access these resources through MMUBAR. Software can control
address translation and access attributes of a virtual address by configuring MMU control registers and
loading the MMU’s TLB, which functions as a cache, associating virtual addresses to corresponding
physical addresses and providing access attributes. Each TLB entry maps a virtual page. Several page sizes
are supported. Features such as clear-all and probe-for-hit help maintain TLBs.

Fault-free, virtual address accesses that hit in the TLB incur no pipeline delay. Accesses that miss the TLB
or hit the TLB but violate an access attribute generate an access error exception. On an access error,
software can reference address and information registers in the MMU to retrieve data. Depending on the
fault source, software can obtain and load a new TLB entry, modify the attributes of an existing entry, or
abort the faulting process.

5.5.3 MMU Organization

Access to the MMU memory-mapped region is controlled by MMUBAR, a 32-bit supervisor control
register at 0x008 that is accessed using MOVEC or the serial BDM debug port. The ColdFire
Programmers Reference Manual describes the MOVEC instruction.

5.5.3.1 MMU Base Address Register (MMUBAR)

Figure 5-3 shows MMUBAR. The default reset state is an invalid MMUBAR, so that the MMU is disabled
and the memory-mapped space is not visible.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R BA
W
Reset| 0 0 0 0 0 0 0 0 0O o0 o0 o 0 0 0 0
15 14 13 12 1M 10 9 8 7 1 0
R| O 0 0 0 0 0 0 0 ojo0oj0]|O 0 0 0 \
W
Reset| 0 0 0 0 0 0 0 0 0O 0 o0 o 0 0 0 0
Reg CPU + 0x008
Addr

Figure 5-3. MMU Base Address Register (MMUBAR)
Table 5-3 describes MMU base address register fields.
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Table 5-3. MMUBAR Field Descriptions

Bits Name Description
31-16 BA Base address. Defines the base address for the 64-Kbyte address space mapped to the
MMU.
15-1 — Reserved, should be cleared. Writes are ignored and reads return zeros.
0 \ Valid. Indicates when MMUMBAR contents are valid. BA is not used unless V is set.
0 MMUBAR contents are not valid.
1 MMUBAR contents are valid.

5.5.3.2 MMU Memory Map

MMUBAR holds the base address for the 64-Kbyte MMU memory map, shown in Table 5-4. The MMU
memory map area is not visible unless the MMUBAR is valid and must be referenced aligned. A large
portion of the map is reserved for future use.

Table 5-4. MMU Memory Map

Offset from MMUBAR Name
+ 0x0000 MMU control register (MMUCR)
+ 0x0004 MMU operation register (MMUOR)
+ 0x0008 MMU status register (MMUSR)
+ 0x000C Reserved
+ 0x0010 MMU fault, test, or TLB address register (MMUAR)
+ 0x0014 MMU read/write TLB tag register (MMUTR)
+ 0x0018 MMU read/write TLB data register (MMUDR)
+0x001C-0xFFFC | Reserved'

1 May be used for implementation-specific information/control registers

The address space ID (ASID) is located in a CPU space control register. The 8-bit ASID value located in
the low order byte of a 32-bit supervisor control register, mapped into CPU space at address 0x003 and
accessed using a MOVEC instruction. The ColdFire Family Programmer s Reference Manual describes

MOVEC.

This 8-bit field is the current user ASID. The ASID is an extension to the virtual address. Address space
0x00 may be reserved for supervisor mode. See address space mode functionality in Section 5.5.3.3,
“MMU Control Register (MMUCR).” The other 255 address spaces are used to tag user processes. The
TLB entry ASID values are compared to this value for user mode unless the TLB entry is marked shared
(MMUTR[SG] is set). The TLB entry ASID value may be compared to 0x00 for supervisor accesses.

5.5.3.3 MMU Control Register (MMUCR)

MMUCR, Figure 5-4, has the address space mode and virtual mode enable bits. The user must force
pipeline synchronization after writing to this register. Therefore, all writes to this register must be
immediately followed by a NOP instruction.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 o000 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0O o0 o0 o 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0 o000 0 0 ASM | EN
w
Reset 0 0 0 0 0 0 0 0 0O o0 o0 o 0 0 0 0
Reg MMUBAR + 0x000
Addr

Figure 5-4. MMU Control Register (MMUCR)

Table 5-5 describes MMUCR fields.
Table 5-5. MMUCR Field Descriptions

Bits Name Description
31-2 — Reserved, should be cleared. Writes are ignored and reads return zeros.
1 ASM Address space mode. Controls how the address space ID is used for TLB hits.

0 TLB entry ASID values are compared to the address space ID register value for user or
supervisor mode unless the TLB entry is marked shared (MMUTR[SG] = 1). The
address space ID register value is the effective address space for all requests,
supervisor and user.

1 Address space 0x00 is reserved for supervisor mode and the effective address space
is forced to 0x00 for all supervisor accesses. The other 255 address spaces are used to
tag user processes. The TLB entry ASID values are compared to the address space ID
register for user mode unless the TLB entry is marked shared (SG = 1). The TLB entry
ASID value is always compared to 0x00 for supervisor accesses. This allows two levels
of sharing. All users but not the supervisor share an entry if SG = 1and ASID : 0. All
users and the supervisor share an entry if SG =1 and ASID =0

0 EN Virtual mode enabled. Indicates when virtual mode is enabled.
0 Virtual mode is disabled.
1 Virtual mode is enabled.

5.5.3.4 MMU Operation Register (MMUOR)
Figure 5-5 shows the MMUOR.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R AA
W
Reset| 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R| O 0 0 0 0 0 0 |[STLB|CA|CNL |CAS|ITLB| ADR | R/W | ACC | UAA
W
Reset| 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0
Reg MMUBAR + 0x004
Addr

Figure 5-5. MMU Operation Register (MMUOR)

Table 5-6 describes MMUOR fields.

Table 5-6. MMUOR Field Descriptions

Bits

Name

Description

31-16

AA

TLB allocation address. This read-only field is maintained by MMU hardware. Its range and
format depend on the TLB implementation (specific TLB size in entries, associativity, and
organization). The access TLB function can use AA to read or write the addressed TLB
entry. The MMU loads AA on the following three events:
e On DTLB access errors, it loads the address of the TLB entry that caused the error.
* If UAA is set, it loads the address of the TLB entry chosen by the MMU for replacement.
e |f STLB is set, it uses the data in MMUAR to search the TLB and if the TLB hits, loads
the address of the TLB entry that hits, or if the TLB misses, loads the TLB entry chosen
by the MMU for replacement.
The MMU never picks a locked entry for replacement, and TLB hits of locked entries do not
update hardware replacement algorithm information. This is so access error handlers
mapped with locked TLB entries do not influence the replacement algorithm. Further, TLB
search operations do not update the hardware replacement algorithm information while
TLB writes (loads) do update the hardware replacement algorithm information. The
algorithm used to choose the allocation address depends on the TLB implementation
(such as LRU, round-robin, pseudo-random).

15-9

Reserved, should be cleared. Writes are ignored and reads return zeros.

STLB

Search TLB. STLB always reads as zero.

0 No operation

1 The MMU searches the TLB using data in MMUAR. This operation updates the probe
TLB hit bit in the status register plus loads the AA field as described above.

CA

Clear all TLB entries. CA always reads as zero.
0 No operation
1 Clear all TLB entries and all hardware TLB replacement algorithm information.

CNL

Clear all non-locked TLB entries. Setting CNL clears all TLB entries that do not have their
locked bit set. CNL always reads as zero.

0 No operation

1 Clear all non-locked TLB entries.
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Table 5-6. MMUOR Field Descriptions (Continued)

Bits Name Description
5 CAS Clear all non-locked TLB entries that match ASID. CAS is always reads as a zero.

0 No operation

1 Clear all non-locked TLB entries that match ASID register.

4 ITLB ITLB operation. Used by TLB search and access operations that use the TLB allocation
address.

0 The MMU uses the DTLB to search or update the allocation address.

1 The MMU uses the ITLB for searches and updates of the allocation address.

3 ADR TLB address select. Indicates which address to use when accessing the TLB.

0 Use the TLB allocation address for the TLB address.

1 Use MMUAR for the TLB address.

2 R/W TLB access read/write select. Indicates whether to do a read or a write when accessing
the TLB.

0 Write

1 Read

1 ACC MMU TLB access. This bit always reads as a zero. STLB is used for search operations.

0 No operation. ACC should be a zero to search the TLB.

1 The MMU reads or writes the TLB depending on R/W. For TLB reads, TLB tag and data
results are loaded into MMUTR and MMUDR. For TLB writes, the contents of these
registers are written to the TLB. The TLB is accessed using the TLB allocation address
if ADR is zero or using MMUAR if ADR is set.

0 UAA Update allocation address. UAA always reads as a zero.

0 No operation

1 MMU updates the allocation address field with the MMU’s choice for the allocation
address in the ITLB or DTLB depending on the ITLB instruction operation bit.

5.5.3.5 MMU Status Register (MMUSR)

MMUSR, Figure 5-6, is updated on all data access faults and search TLB operations.

31 30 29 28 27 26 25 24 23 22 2 20 19 18 17 16
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1
R| O 0 0 0 0 0 0 0 0 0 |SPF| RF | WF 0 HIT 0
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MMUBAR + 0x008
Addr

Figure 5-6. MMU Status Register (MMUSR)

Table 5-7 describes MMUSR fields.
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Table 5-7. MMUSR Field Descriptions

Name

Description

Reserved, should be cleared. Writes are ignored and reads return zeros.

SPF

Supervisor protect fault. Indicates if the last data fault was a user mode access that hit in
a TLB entry that had its supervisor protect bit set.

0 Last data access fault did not have a supervisor protect fault.

1 Last data access fault had a supervisor protect fault.

RF

Read access fault. Indicates if the last data fault was an data read access that hitin a TLB
entry that did not have its read bit set.

0 Last data access fault did not have a read protect fault.

1 Last data access fault had a read protect fault.

WF

Write access fault. Indicates if the last data fault was an data write access that hitin a TLB
entry that did not have its write bit set.

0 Last data access fault did not have a write protect fault.

1 Last data access fault had a write protect fault.

Reserved, should be cleared. Writes are ignored and reads return zeros.

1 HIT

Search TLB hit. Indicates if the last data fault or the last search TLB operation hit in the
TLB.

0 Last data access fault or search TLB operation did not hit in the TLB.

1 Last data access fault or search TLB operation hit in the TLB.

Reserved, should be cleared. Writes are ignored and reads return zeros.

5.5.3.6

MMU Fault,

Test, or TLB Address Register (MMUAR)

The MMUAR format, Figure 5-7, depends on how the register is used.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R FA
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R FA
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MMUBAR + 0x010
Addr

Figure 5-7. MMU Fault, Test, or TLB Address Register (MMUAR)

Table 5-8 describes MMUAR fields.
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Table 5-8. MMUAR Field Descriptions

Name

Description

FA

Form address. Written by the MMU with the virtual address on DTLB misses and access
faults. For this case, all 32 bits are address bits. This register may be written with a virtual
address and address attribute information for searching the TLB (MMUCR[STLB]). For this
case, FA[31-1] are the virtual page number and FA[O] is the supervisor bit. The current
ASID is used for the TLB search. MMUAR can also be written with a TLB address for use
with the access TLB function (using MMUCR[ACC]).

5.5.3.7

address or MMUAR.

MMUTR, Figure 5-8, contains the virtual address tag, the address space ID (ASID), a shared page

MMU Read/Write Tag and Data Entry Registers (MMUTR and MMUDR)

Each TLB entry consists of a 32-bit TLB tag entry and a 32-bit TLB data entry. TLB entries are referenced
through MMUTR and MMUDR. For read TLB accesses, the contents of the TLB tag and data entries
referenced by the allocation address or MMUAR are loaded in MMUTR and MMUDR. TLB write
accesses place MMUTR and MMUDR contents into the TLB tag and data entries defined by the allocation

indicator, and the valid bit.

31 30 29 28 27 26 25 24 23 22 2 20 19 18 17 16
R VA
W
Reset| 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R VA ID SG \
W
Reset| 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0
Reg MMUBAR + 0x014
Addr

Figure 5-8. MMU Read/Write TLB Tag Register (MMUTR)
Table 5-9 describes MMUTR fields.

Table 5-9. MMUTR Field Descriptions

Bits Name Description
31-10 VA Virtual address. Defines the virtual address mapped by this entry. The number of bits used
in the TLB hit determination depends on the page size field in the corresponding TLB data
entry.
9-2 ID Address space ID (ASID). This extension to the virtual address marks this entry as part of

1 of 256 possible address spaces. Address space 0x00 can be reserved for supervisor
mode. The other 255 address spaces are used to tag user processes. TLB entry ASID
values are compared to the ASID register value for user mode unless the TLB entry is
marked shared (SG = 1). The TLB entry ASID value may be compared to 0x00 for
supervisor accesses or to the ASID. The description of MMUCR[ASM] in Table 5-5 gives
details on supervisor mode and ASID compares.
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Table 5-9. MMUTR Field Descriptions (Continued)

Bits

Name

Description

SG

Shared global. Indicates when the entry is shared among user address spaces. If an entry
is shared, its ASID is not part of the TLB hit determination for user accesses.

0 This entry is not shared globally.

1 This entry is shared globally.

Note that the ASID can be used to determine supervisor mode hits to allow two sharing
levels. If SG and MMUCR[ASM] are set and the ASID is not zero, all users (but not the
supervisor) share an entry. If SG and MMUCR[ASM] are set and the ASID is zero, all users
and the supervisor share an entry. The description of ASM in Table 5-5 details supervisor
mode and ASID compares.

Valid. Indicates when the entry is valid. Only valid entries generate a TLB hit.
0 Entry is not valid.
1 Entry is valid.

MMUDR, Figure 5-9, contains the physical address, page size, cache mode field, supervisor-protect bit,
read, write, execute permission bits, and lock-entry bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R PA

w

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PA SZ CM SP R w X LK 0
w

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MMUBAR + 0x014

Addr

Figure 5-9. MMU Read/Write TLB Data Register (MMUDR)

Table 5-10 describes MMUDR fields.

Table 5-10. MMUDR Field Descriptions

Bits Name Descriptions
31-10 PA Physical address. Defines the physical address which is mapped by this entry. The number
of bits used to build the effective physical address if this TLB entry hits depends on the
page size field.
9-8 Sz Page size. Page size for this entry:

00 1 Mbyte: VA[31—20] used for TLB hit
01 4 Kbytes VA[31-12] used for TLB hit
10 8 Kbytes VA[31—13] used for TLB hit
11 1 Kbyte VA[31-10] used for TLB hit
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Table 5-10. MMUDR Field Descriptions (Continued)

Bits Name Descriptions

7-6 CM Cache mode. If a Harvard TLB implementation is used, CMOQ is a don’t care for the ITLB.
CM is ignored on writes and always reads as zero for the ITLB.

Instruction cache modes:

1x Page is non-cacheable.

0x Page is cacheable.

Data cache modes

00 Page is cacheable writethrough.

01 Page is cacheable copyback.

10 Page is non-cacheable precise.

11 Page is non-cacheable imprecise.

5 SP Supervisor protect. Controls user mode access to the page mapped by this entry.

0 Entry is not supervisor protected.

1 Entry is supervisor protected. An attempted user mode access that matches this entry
generates an access error exception.

4 R Read access enable. Indicates if data read accesses to this entry are allowed. If a Harvard

TLB implementation is used, this bit is a don’t care for the ITLB. This bit is ignored on writes

and always reads as zero for the ITLB.

0 Do not allow data read accesses. Attempted data read accesses that match this entry
generate an access error exception.

1 Allow data read accesses.

3 w Write access enable. Indicates if data write accesses are allowed to this entry. If separate

ITLB and DTLBs) are used, W is a don’t care for the ITLB. W is ignored on writes and reads

as zero for the ITLB.

0 Do not allow data write accesses. Attempted data write accesses that match this entry
generate an access error exception.

1 Allow data write accesses.

2 X Execute access enable. Indicates if instruction fetches to this entry are allowed. If separate

ITLB and DTLBs are is used, X is a don’t care for the DTLB. X is ignored on writes and

reads as zero for the DTLB.

0 Do not allow instruction fetches. Attempted instruction fetches that match this entry
cause an access error exception.

1 Allow instruction fetch accesses.

1 LK Lock entry bit. Indicates if this entry is included in the replacement algorithm. TLB hits of
locked entries do not update replacement algorithm information.

0 Include this entry when determining the best entry for a TLB allocation.

1 Do not allow this entry to be selected by the replacement algorithm.

0 — Reserved, should be cleared. Writes are ignored and reads return zeros.

554 MMUTLB

Each TLB entry consists of two 32-bit fields. The first is the TLB tag entry, and the second is the TLB data
entry. TLB size and organization are implementation dependent. TLB entries can be read and written
through MMU registers. TLB contents are unaffected by reset.
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5.5.5 MMU Operation

The processor sends instruction fetch requests and data read/write requests to the MMU in the instruction
and operand address generation cycles (IAG and OAG). The controller and memories occupy the next two
pipeline stages, instruction fetch cycles 1 and 2 (IC1 and IC2) and operand fetch cycles 1 and 2 (OC1 and
OC2). For late writes, optional data pipeline stages are added to the controller as well as any writable
memories.

Table 5-11 shows the association between memory pipeline stages and the processor’s pipeline structures,
shown in Figure 5-1.

Table 5-11. Version 4 Memory Pipelines

Memory Pipeline Stage Instruction Fetch Pipeline | Operand Execution Pipeline
J stage IAG OAG
KC1 stage IC1 OCH1
KC2 stage IC2 0oc2
Operand execute stage n/a EX
Late-write stage n/a DA

Version 4 use the same 2-cycle read pipeline developed for Version 3. Each has 32-bit address and 32-bit
read data paths. Version 4 uses synchronous memory elements for all memory control units. To support
this, certain control information and all address bits are sent on the at the end of the cycle before the initial
bus access cycle (The data has an additional 32-bit write data path). For processor store operations,
Version 4 ColdFire uses a late-write strategy, which can require 2 additional data cycles. This strategy
yields the pipeline behavior described in Table 5-12.

Table 5-12. Pipeline Cycles

Cycle Description

J Control and partial address broadcast (to start synchronous memories)

KC1 Complete address and control broadcast plus MMU information. It is during this cycle that all memory
element read operations are performed; that is, memory arrays are accessed.

KC2 Select appropriate memory as source, return data to processor, handle cache misses or hold pipeline
as needed.

EX Optional write stage, pipeline address and control for store operations.

DA Data available for stores from processor; memory element update occurs in the next cycle.

The contains two independent memory unit access controllers and two independent controllers. Each
instruction and data is analyzed to see which, if any, controller is referenced. This information, along with
cache mode, store precision, and fault information, is sourced during KC1.

The optional MMU is referenced concurrently with the memory unit access controllers. It has two
independent control sections to simultaneously process an instruction and data request. Figure 5-1 shows
how the MMU and memory unit access controllers fit in the pipeline. As the diagram shows, core address
and attributes are used to access the mapping registers and the MMU. By the middle of the KC1 cycle, the
memory address is available along with its corresponding access control.
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Figure 5-10 shows more details of the MMU structure. The TLB is accessed at the beginning of the KC1
pipeline stage so the resulting physical address can be sourced to the cache controllers to factor into the
cache hit/miss determination. This is required because caches are virtually indexed but physically mapped.

N~ JADDR, J Control — To memory controllers
J
/ / /
Memory unit access control
oo 129 T8 daal | (MMUBAR, RAMBARS, ROMBARS,
ACRs, CACR priority hit logic)
+ YYVYY
Comp—>L ) To control for TLB miss
logic
TLB hit
entry
data
KC1
TLB Hit Translated address Untranslated address
MMU’s access control mapping register’s
¢ access control
To control for TLB miss
logic
\ A
-«—— Mapping register hit
or special mode access
To memory controllers plus
T bus interface
KADDR_KCH1
AN KC1 cycle access control

Figure 5-10. Address and Attributes Generation

5.6 MMU Implementation

The MMU implements a 64-entry full-associative Harvard TLB architecture with 32-entry ITLB and
DTLB. This section provides more details of this specific TLB implementation. This section details the
operation and looks at the size, frequency, miss rate, and miss recovery time of this specific TLB
implementation.

5.6.1 TLB Address Fields

Because the TLB has a total of 64 entries (32 each for the ITLB and DTLB), a 6-bit address field is
necessary. TLB addresses 0-31 reference the ITLB, and TLB addresses 32—63 reference the DTLB.

In the MMUOR, bits 0 through 5 of the TLB allocation address (AA[5—0]) have this address format for
CF4e. The remaining TLB allocation address bits (AA[15-6]) are ignored on updates and always read as
Zero.
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When MMUAR is used for a TLB address, bits FA[5-0] also have this address format for CF4e. The
remaining form address bits (FA[31-6]) are ignored when this register is being used for a TLB address.

5.6.2 TLB Replacement Algorithm

The instruction and data TLBs provide low-latency access to recently used instruction and operand
translation information. CF4e ITLBs and DTLBs are 32-entry fully associative caches. The 32 ITLB
entries are searched on each instruction reference; the 32 DTLB entries are searched on each operand
reference.

CF4e TLBs are software controlled. The TLB clear-all function clears valid bits on every TLB entry and
resets the replacement logic. A new valid entry is loaded in the TLBs may be designated as locked and
unavailable for allocation. TLB hits to locked entries do not update replacement algorithm information.

When a new TLB entry needs to be allocated, the user can specify the exact TLB entry to be updated
(through MMUOR[ADR] and MMUAR) or let TLB hardware pick the entry to update based on the
replacement algorithm. A pseudo-least-recently used (PLRU) algorithm picks the entry to be replaced on
a TLB miss. The algorithm works as follows:

« If any element is empty (non-valid), use the lowest empty element as the allocate entry (that is,
entry 0 before 1, 2, 3, and so on).

» Ifall entries are valid, use the entry indicated by the PLRU as the allocate entry.

The PLRU algorithm uses 31 most-recently used state bits per TLB to track the TLB hit history. Table 5-13
lists these state bits.

Table 5-13. PLRU State Bits

State Bits Meaning
rdRecent31To16 A one indicates 31To16 is more recent than 15To00
rdRecent31To24 A one indicates 31To24 is more recent than 23To16
rdRecent15To08 A one indicates 15To08 is more recent than 07To00
rdRecent31To28 A one indicates 31To28 is more recent than 27To24
rdRecent23To20 A one indicates 23To20 is more recent than 19To16
rdRecent15To12 A one indicates 15To12 is more recent than 11To08
rdRecent07To04 A one indicates 07To04 is more recent than 03To00
rdRecent31To30 A one indicates 31To30 is more recent than 297028
rdRecent27To26 A one indicates 27To26 is more recent than 25To24
rdRecent23To22 A one indicates 23To22 is more recent than 21T020
rdRecent19To18 A one indicates 19To18 is more recent than 17To16
rdRecent15To14 A one indicates 15To14 is more recent than 13To12
rdRecent11To10 A one indicates 11To10 is more recent than 09To08
rdRecent07To06 A one indicates 07To06 is more recent than 05To04
rdRecent03To02 A one indicates 03To02 is more recent than 01To00

rdRecent31 A one indicates 31 is more recent than 30

rdRecent29 A one indicates 29 is more recent than 28
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Table 5-13. PLRU State Bits (Continued)

State Bits Meaning

rdRecent27 A one indicates 27 is more recent than 26
rdRecent25 A one indicates 25 is more recent than 24
rdRecent23 A one indicates 23 is more recent than 22
rdRecent21 A one indicates 21 is more recent than 20
rdRecent19 A one indicates 19 is more recent than 18
rdRecent17 A one indicates 17 is more recent than 16
rdRecent15 A one indicates 15 is more recent than 14
rdRecent13 A one indicates 13 is more recent than 12
rdRecent11 A one indicates 11 is more recent than 10
rdRecent09 A one indicates 09 is more recent than 08
rdRecent07 A one indicates 07 is more recent than 06
rdRecent05 A one indicates 05 is more recent than 04
rdRecent03 A one indicates 03 is more recent than 02
rdRecent01 A one indicates 01 is more recent than 00

Binary state bits are updated on all TLB write (load) operations, as well as normal ITLB and DTLB hits
of non-locked entries. Also, if all entries in a binary state are locked, than that state is always set. That is,
if entries 15, 14, 13, and 12 were locked, LRU state bit rdRecent15To14 is forced to one.

For a completely valid TLB, binary state information determines the LRU entry. The CF4e replacement
algorithm is deterministic and, for the case of a full TLB (with no locked entries and always touching new
pages), the replacement entry repeats every 32 TLB loads.

5.6.3 TLB Locked Entries
Figure 5-11 is a ColdFire MMU Harvard TLB block diagram.

For TLB miss faults, the instruction restart model completely reexecutes an instruction on returning from
the exception handler. An instruction can touch two instruction pages (a 32- or 48-bit instruction can
straddle two pages) or four data pages (a memory-to-memory word or longword move where misaligned
source and destination operands straddle two pages). Therefore, one instruction may take two ITLB misses
and allocate two ITLB pages before completion. Likewise, one instruction may require four DTLB misses
and allocate four DTLB pages. Because of this, a pool of unlocked TLB entries must be available if virtual
memory is used.

The above examples show the fewest entries needed to guarantee an instruction can complete execution.
For good MMU performance, more unlocked TLB entries should be available.
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[~"~" < Current address space ID (ASID)
J -«——— |[nstruction or data address and attributes
TLB Tag TLB Tag TLB Tag TLB Tag
Entry 3 ®e®e® | Entry0 Entry 3 ®®® ! Entry0
Y \
KCH1 YVvYY YVYY
| Compare| e o @ | Compare
\
Y Y O
Instruction or data hit select
L

To control for instruction or DTLB miss

IC1 or OC1 translated address
logic

IC1 or OC1 access control
Figure 5-11. Version 4 ColdFire MMU Harvard TLB

5.7 MMU Instructions

The MOVE to USP and MOVE from USP instructions have been added for accessing the USP. Refer to
the ColdFire Programmer s Reference Manual for more information.
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Chapter 6
Floating-Point Unit (FPU)

6.1 Introduction

This chapter describes instructions implemented in the floating-point unit (FPU) designed for use with the
ColdFire family of microprocessors. The FPU conforms to the American National Standards Institute
(ANSI)/Institute of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Standard 754).

The hardware unit is optimized for real-time execution with exceptions disabled and default results
provided for specific operations, operands, and number types. The FPU does not support all IEEE-754
number types and operations in hardware. Exceptions can be enabled to support these cases in software.

6.1.1 Overview

The FPU operates on 64-bit, double-precision, floating-point data and supports single-precision and signed
integer input operands. The FPU programming model is like that in the MC68060 microprocessor. The
FPU is intended to accelerate the performance of certain classes of embedded applications, especially
those requiring high-speed floating-point arithmetic computations. See Section 6.7.3, “Key Differences
between ColdFire and M68000 FPU Programming Models.”

The FPU appears as another execute engine at the bottom stages of the operand execution pipeline (OEP),
using operands from a dual-ported register file.

Setting bit 4 in the cache control register (CACR[DF]) disables the FPU. If CACR[DF] is cleared, all FPU
instructions are issued and executed, otherwise the processor responds with an unimplemented line-F
instruction exception (vector 11).

Operating systems often assume user applications are integer-only (to minimize the time required by save
context) by setting CACR[DF] at process initiation. If the application includes floating-point instructions,
the attempted execution of the first FP instruction generates the unimplemented line-F exception, which
signals the kernel that the FPU registers must be included in the context for the application. The application
then continues execution with CACR[DF] cleared to enable FPU execution.

6.1.1.1 Notational Conventions

Table 6-1 defines notational conventions used in this chapter.
Table 6-1. Notational Conventions

Symbol Description

Single- and Double-Precision Operand Operations

+ Arithmetic addition or postincrement indicator

- Arithmetic subtraction or predecrement indicator

X Arithmetic multiplication

+ Arithmetic division or conjunction symbol

~ Invert, operand is logically complemented. An overbar, , is also used for this operation.
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Table 6-1. Notational Conventions (Continued)

Symbol Description
& Logical AND
| Logical OR
- Source operand is moved to destination operand
<op> Any double-operand operation
<operand>tested | Operand is compared to zero and the condition codes are set appropriately

sign-extended

All bits of the upper portion are made equal to the high-order bit of the lower portion

Other Operations

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after then are performed. If the condition is false and the
optional else clause is present, the operations after else are performed. If the condition is false
and else is omitted, the instruction performs no operation. Refer to the Bcc instruction description
as an example.

Register Specifications

An Address register n (example: A3 is address register 3)
Ay, Ax Source and destination address registers, respectively

Dn Data register n (example: D3 is data register 3)
Dy,Dx Source and destination data registers, respectively
FPCR Floating-point control register
FPIAR Floating-point instruction address register

FPn Floating-point data register n (example: FP3 is FPU data register 3)
FPSR Floating-point status register

FPy,FPx Source and destination floating-point data registers, respectively

PC Program counter

Rn Address or data register

Rx Destination register

Ry Source register

Xi Index register

Table 6-2 describes addressing modes and syntax for floating-point instructions.
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Table 6-2. Floating-Point Addressing Modes

Addressing Modes Syntax
Register direct
Address register direct Dy
Address register direct Ay
Register indirect
Address register indirect (Ay)
Address register indirect with postincrement —(Ay)
Address register indirect with predecrement (d46,AY)
Address register indirect with displacement
Program counter indirect with displacement (d46,PC)

6.2 Operand Data Formats and Types

The FPU supports signed byte, word, and longword integer formats, which are identical to those supported
by the integer unit. The FPU also supports single- and double-precision binary floating-point formats that
fully comply with the IEEE-754 standard.

6.2.1 Signed-Integer Data Formats
The FPU supports 8-bit byte (B), 16-bit word (W), and 32-bit longword (L) integer data formats.

6.2.2 Floating-Point Data Formats

Figure 6-1 shows the two binary floating-point data formats.

31 30 22 0
S 8-Bit Exponent 23-Bit Fraction Single
\— Sign of Mantissa
63 62 51 0
11-Bit Exponent 52-Bit Fraction Double

\— Sign of Mantissa

Figure 6-1. Floating-Point Data Formats

Note that, throughout this chapter, a mantissa is defined as the concatenation of an integer bit, the binary
point, and a fraction. A fraction is the term designating the bits to the right of the binary point in the
mantissa.

Mantissa

(integer bit).(fraction)

Figure 6-2. Mantissa
The integer bit is implied to be set for normalized numbers and infinities, clear for zeros and denormalized

numbers. For not-a-numbers (NANs), the integer bit is ignored. The exponent in both floating-point
formats is an unsigned binary integer with an implied bias added to it. Subtracting the bias from exponent
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yields a signed, two’s complement power of two. This represents the magnitude of a normalized
floating-point number when multiplied by the mantissa.

By definition, a normalized mantissa always takes values starting from 1.0 and going up to, but not
including, 2.0; that is, [1.0...2.0).

6.2.3 Floating-Point Data Types

Each floating-point data format supports five unique data types: normalized numbers, zeros, infinities,
NANSs, and denormalized numbers. The normalized data type, Figure 6-3, never uses the maximum or
minimum exponent value for a given format.

6.2.3.1 Normalized Numbers

Normalized numbers include all positive or negative numbers with exponents between the maximum and
minimum values. For single- and double-precision normalized numbers, the implied integer bit is one and
the exponent can be zero.

Min < Exponent < Max Fraction = Any bit pattern

L— Sign of Mantissa, 0 or 1
Figure 6-3. Normalized Number Format

6.2.3.2 Zeros

Zeros can be positive or negative and represent real values, + 0.0 and — 0.0. See Figure 6-4.

Exponent =0 Fraction =0

L Sign of Mantissa, 0 or 1
Figure 6-4. Zero Format

6.2.3.3 Infinities

Infinities can be positive or negative and represent real values that exceed the overflow threshold. A
result’s exponent greater than or equal to the maximum exponent value indicates an overflow for a given
data format and operation. This overflow description ignores the effects of rounding and the
user-selectable rounding models. For single- and double-precision infinities, the fraction is a zero. See
Figure 6-5.

Exponent = Maximum Fraction =0

—— Sign of Mantissa, 0 or 1
Figure 6-5. Infinity Format
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6.2.3.4 Not-A-Number

When created by the FPU, NANs represent the results of operations having no mathematical interpretation,
such as infinity divided by infinity. Operations using a NAN operand as an input return a NAN result.
User-created NANSs can protect against uninitialized variables and arrays or can represent user-defined
data types. See Figure 6-6.

Exponent = Maximum Fraction = Any nonzero bit pattern

L Sign of Mantissa, 0 or 1
Figure 6-6. Not-a-Number Format

If an input operand to an operation is a NAN, the result is an FPU-created default NAN. When the FPU
creates a NAN, the NAN always contains the same bit pattern in the fraction: all fraction bits are ones and
the sign bit is zero. When the user creates a NAN, any nonzero bit pattern can be stored in the fraction and
the sign bit.

6.2.3.5 Denormalized Numbers

Denormalized numbers represent real values near the underflow threshold. Denormalized numbers can be
positive or negative. For denormalized numbers in single- and double-precision, the implied integer bit is
a zero. See Figure 6-7.

Exponent =0 Fraction = Any nonzero bit pattern

L Sign of Mantissa, 0 or 1
Figure 6-7. Denormalized Number Format

Traditionally, the detection of underflow causes floating-point number systems to perform a flush-to-zero.
The IEEE-754 standard implements gradual underflow: the result mantissa is shifted right (denormalized)
while the result exponent is incremented until reaching the minimum value. If all the mantissa bits of the
result are shifted off to the right during this denormalization, the result becomes zero.

Denormalized numbers are not supported directly in the hardware of this implementation but can be
handled in software if needed (software for the input denorm exception could be written to handle
denormalized input operands, and software for the underflow exception could create denormalized
numbers). If the input denorm exception is disabled, all denormalized numbers are treated as zeros.

Table 6-3 summarizes the data type specifications for byte, word, longword, single- and double-precision
data formats.

Table 6-3. Real Format Summary

Parameter Single-Precision Double-Precision

Data Format 3130 2322 0 6362 52 51 0
[s| e f | ls| e f

Field Size in Bits

Sign (s) 1 1
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Table 6-3. Real Format Summary (Continued)

Parameter Single-Precision Double-Precision

Biased exponent (e) 8 11

Fraction (f) 23 52

Total 32 64
Interpretation of Sign

Positive fraction s=0 s=0

Negative fraction s=1 s=1
Normalized Numbers

Bias of biased exponent +127 (0OX7F) +1023 (0x3FF)

Range of biased exponent

0 < e < 255 (OxFF)

0 < e <2047 (Ox7FF)

Range of fraction

Zero or Nonzero

Zero or Nonzero

Mantissa

1.f

1.f

Relation to representation of real numbers

(-1)8x 287127 1 ¢

(_1 )S % 26—1 023 1.f

Denormalized Numbers

Biased exponent format minimum

0 (0x00)

0 (0x000)

Bias of biased exponent

+126 (OX7E)

+1022 (OX3FE)

Range of fraction

Nonzero

Nonzero

Mantissa

0.f

0.f

Relation to representation of real numbers

(-1 x271%6 5 0.f

(-1)$x 271022, o f

Signed Zeros

Biased exponent format minimum

0 (0x00)

0 (0x00)

Mantissa

0.f=0.0

0.f=0.0

Signed Infinities

Biased exponent format maximum 255 (OxFF) 2047 (OX7FF)
Mantissa 0.f=0.0 0.f=0.0
NANs

Sign Don’t Care Oor1
Biased exponent format maximum 255 (OxFF) 2047 (OX7FF)
Fraction Nonzero Nonzero
Representation of Fraction

Nonzero Bit Pattern Created by User XXXXX. .. XXXX XXXXX. .. XXXX

Fraction When Created by FPU

11111...1111

111111111

MCF548x Reference Manual, Rev. 3

Freescale Semiconductor




RegisterDefinition

Table 6-3. Real Format Summary (Continued)

Parameter Single-Precision Double-Precision

Approximate Ranges

Maximum Positive Normalized 3.4 x 1038 1.8 x 10308
Minimum Positive Normalized 1.2x 10738 2.2x 107308
Minimum Positive Denormalized 1.4 x 10745 4.9x 107324

6.3 Register Definition

The programmer’s model for the FPU consists of the following:
» Eight 64-bit floating-point data registers (FPO-FP7)
*  One 32-bit floating-point control register (FPCR)
* One 32-bit floating-point status register (FPSR)
*  One 32-bit floating-point instruction address register (FPIAR)

Figure 6-8 shows the FPU programming model.

63 0

FPO Floating-point data registers
FP1

FP2

FP3

FP4

FP5

FP6

FP7

FPCR Floating-point control register
FPSR Floating-point status register
FPIAR Floating-point instruction address register

Figure 6-8. Floating-Point Programmer’s Model

6.3.1 Floating-Point Data Registers (FPO-FP7)

Floating-point data registers are analogous to the integer data registers for the 68K/ColdFire family. They
always contain numbers in double-precision format, even though the operand may be a single-precision
value used in a single-precision calculation. All external operands, regardless of the source data format,
are converted to double-precision format before being used in any calculation or being stored in a
floating-point data register. A reset or a null-restore operation sets FPO—FP7 to positive, nonsignaling
NANS.

6.3.2 Floating-Point Control Register (FPCR)
The FPCR, Figure 6-9, contains an exception enable byte (EE) and a mode control byte (MC). Each EE

bit corresponds to a floating-point exception class. The user can separately enable traps for each class of
floating-point exceptions. The MC bits control FPU operating modes.
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The user can read or write to FPCR using FMOVE or FRESTORE. A processor reset or a restore operation
of the null state clears the FPCR. When this register is cleared, the FPU never generates exceptions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl O 0 0 0 0 0 0 0 0 0 0 |oO 0 0 0 0

W
Reset| 0 0 0 0 0 0 0 0 0 0 0 o0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Exception Enable Byte (EE) Mode Control Byte (MC)

R|BSUN | INAN | OPERR |OVFL |UNFL| DZ |[INEX| IDE | 0 |PREC| RND 0 0 0 0

W
Reset| 0 0 0 0 0 0 0 0 0 0 0 o0 0 0 0 0

Reg CPU + 0x824
Addr

Figure 6-9. Floating-Point Control Register (FPCR)

Table 6-4 describes FPCR fields.
Table 6-4. FPCR Field Descriptions

Bits Field Description
31-16 — Reserved, should be cleared.
15 BSUN Branch set on unordered
14 INAN Input not-a-number
13 OPERR | Operand error
12 OVFL Overflow
11 UNFL Underflow
10 DZ Divide by zero
9 INEX Inexact operation
8 IDE Input denormalized
7 — Reserved, should be cleared.
6 PREC Rounding precision
0 Double (D)
1 Single (S)
5-4 RND Rounding mode
00 To nearest (RN)
01 To zero (R2)
10 To minus infinity (RM)
11 To plus infinity (RP)
3-0 — Reserved, should be cleared.
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6.3.3 Floating-Point Status Register (FPSR)

The FPSR, Figure 6-10, contains a floating-point condition code byte (FPCC), a floating-point exception
status byte (EXC), and a floating-point accrued exception byte (AEXC). The user can read or write all
FPSR bits. Execution of most floating-point instructions modifies FPSR. FPSR is loaded using FMOVE
or FRESTORE. A processor reset or a restore operation of the null state clears the FPSR.

The floating-point condition code byte contains 4 condition code bits that are set after completion of all
arithmetic instructions involving the floating-point data registers. The floating-point store operation,
FMOVEM, and move system control register instructions do not affect the FPCC.

The exception status byte contains a bit for each floating-point exception that might have occurred during
the most recent arithmetic instruction or move operation. This byte is cleared at the start of all operations
that generate floating-point exceptions (except FBcc only affects BSUN and that only for nonaware tests).
Operations that do not generate floating-point exceptions do not clear this byte. An exception handler can
use this byte to determine which floating-point exception or exceptions caused a trap. The equations below
the table show the comparative relationship between the EXC byte and AEXC byte.

The accrued exception byte contains 5 required bits for IEEE-754 exception-disabled operations. These
exceptions are logical combinations of EXC bits. AEXC records all floating-point exceptions since AEXC
was last cleared, either by writing to FPSR or as a result of reset or a restore operation of the null state.

Many users disable traps for some or all floating-point exception classes. AEXC eliminates the need to
poll EXC after each floating-point instruction. At the end of arithmetic operations, EXC bits are logically
combined to form an AEXC value that is logically ORed into the existing AEXC byte (FBcc only updates
IOP). This operation creates sticky floating-point exception bits in AEXC that the user can poll only at the
end of a series of floating-point operations. A sticky bit is one that remains set until the user clears it.

Setting or clearing AEXC bits neither causes nor prevents an exception. The equations below the table
show relationships between EXC and AEXC. Comparing the current value of an AEXC bit with a
combination of EXC bits derives a new value in the corresponding AEXC bit. These boolean equations
apply to setting AEXC bits at the end of each operation affecting AEXC.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Floating-Point Condition Code Byte (FPCC)
Rl O 0 0 0 N z I [NAN| O 0 0 0 0 oj0]| O
W
Reset| 0 0 0 0 0 0 ©0 0 0 0 0 0 0 0O 0 ©
15 14 13 12 1 10 9 8 7 6 5 4 3 2 A 0
Exception Status Byte (EXC) Floating-Point Accrued Exception Byte (AEXC)

R|BSUN | INAN |OPERR |OVFL |UNFL| DZ |INEX| IDE | IOP |OVFL |UNFL| DZ |INEX| O | O 0

W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 O
Reg CPU + 0x822
Addr

Figure 6-10. Floating-Point Status Register (FPSR)
Table 6-5 describes FPSR fields.
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Table 6-5. FPSR Field Descriptions

Bits Field Description
31-28 — Reserved, should be cleared.
27 N Negative
26 z Zero
25 I Infinity
24 NAN Not-a-number
23-16 — Reserved, should be cleared.
15 BSUN Branch/set on unordered
14 INAN Input not-a-number
13 OPERR | Operand error
12 OVFL Overflow
11 UNFL Underflow
10 Dz Divide by zero
9 INEX Inexact result
8 IDE Input is denormalized
7 IOP Invalid operation
6 OVFL Overflow
5 UNFL Underflow
4 Dz Divide by zero
3 INEX Inexact result
2-0 — Reserved, should be cleared.

For AEXC[OVFL], AEXC[DZ], and AEXC[INEX], the next value is determined by ORing the current
AEXC value with the EXC equivalent, as shown in the following:

«  Next AEXC[OVFL] = Current AEXC[OVFL] | EXC[OVFL]

*  Next AEXC[DZ] = Current AEXC[DZ] | EXC[DZ]

«  Next AEXC[INEX] = Current AEXC[INEX] | EXC[INEX]

For AEXC[IOP] and AEXC[UNFL], the next value is calculated by ORing the current AEXC value with
EXC bit combinations, as follows:

«  Next AEXC[IOP] = Current AEXC[IOP] | EXC[BSUN | INAN | OPERR]
«  Next AEXC[UNFL] = Current AEXC[UNFL] | EXC[UNFL & INEX]

6.3.4 Floating-Point Instruction Address Register (FPIAR)

The ColdFire OEP can execute integer and floating-point instructions simultaneously. As a result, the PC
value stacked by the processor in response to a floating-point exception trap may not point to the
instruction that caused the exception.
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For FPU instructions that can generate exception traps, the 32-bit FPIAR is loaded with the instruction PC
address before the FPU begins execution. In case of an FPU exception, the trap handler can use the FPIAR
contents to determine the instruction that generated the exception. FMOVE to/from FPCR, FPSR, or
FPIAR and FMOVEM instructions cannot generate floating-point exceptions; therefore, they do not
modify FPIAR. A reset or a null-restore operation clears FPIAR.

6.4 Floating-Point Computational Accuracy

The FPU performs all floating-point internal operations in double-precision. It supports mixed-mode
arithmetic by converting single-precision operands to double-precision values before performing the
specified operation. The FPU converts all memory data formats to the double-precision data format and
stores the value in a floating-point register or uses it as the source operand for an arithmetic operation.
When moving a double-precision floating-point value from a floating-point data register, the FPU can
convert the data depending on the destination, as follows:

* Valid data formats for memory destination: B, W, L, S, or D
» Valid data formats for integer data register destinations: B, W, L, or S

Normally if the input operand is a denormalized number, the number must be normalized before an FPU
instruction can be executed. A denormalized input operand is converted to zero if the input denorm
exception (IDE) is disabled. If IDE is enabled, the floating-point engine traps to allow software action to
be taken by the handler.

6.4.1 Intermediate Result

All FPU calculations use an intermediate result. When the FPU performs any operation, the calculation is
carried out using double-precision inputs, and the intermediate result is calculated as if to produce infinite
precision. After the calculation is complete, any necessary rounding of the intermediate result for the
selected precision is performed and the result is stored in the destination.

Figure 6-11 shows the intermediate result format. The intermediate result’s exponent for some dyadic
operations (for example, multiply and divide) can easily overflow or underflow the 11-bit exponent of the
designated floating-point register. To simplify overflow and underflow detection, intermediate results in
the FPU maintain a 12-bit two’s complement, integer exponent. Detection of an intermediate result
overflow or underflow always converts the 12-bit exponent into a 11-bit biased exponent before being
stored in a floating-point data register. The FPU internally maintains a 56-bit mantissa for rounding
purposes. The mantissa is always rounded to 53 bits (or fewer, depending on the selected rounding
precision) before it is stored in a floating-point data register.

56-Bit Intermediate Mantissa
I 1

| 12-Bit Exponent | | 52-Bit Fraction | | | ’|j

Integer Isb

Guard
Round
Sticky
Figure 6-11. Intermediate Result Format

If the destination is a floating-point data register, the result is in double-precision format but may be
rounded to single-precision, if required by the rounding precision, before being stored. If the
single-precision mode is selected, the exponent value is in the correct range even if it is stored in
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double-precision format. If the destination is a memory location or an integer data register, rounding
precision is ignored. In this case, a number in the double-precision format is taken from the source
floating-point data register, rounded to the destination format precision, and then written to memory or the
integer data register.

Depending on the selected rounding mode or destination data format, the location of the 1sb of the mantissa
and the locations of the guard, round, and sticky bits in the 56-bit intermediate result mantissa vary. Guard
and round bits are calculated exactly. The sticky bit creates the illusion of an infinitely wide intermediate
result. As the arrow in Figure 6-11 shows, the sticky bit is the logical OR of all bits to the right of the round
bit in the infinitely precise result. During calculation, nonzero bits generated to the right of the round bit
set the sticky bit. Because of the sticky bit, the rounded intermediate result for all required IEEE arithmetic
operations in RN mode can err by no more than one half unit in the last place.

6.4.2 Rounding the Result

The FPU supports the four rounding modes specified by the IEEE-754 standard: round-to-nearest (RN),
round-toward-zero (RZ), round-toward-plus-infinity (RP), and round-toward-minus-infinity (RM). The
RM and RP modes are often referred to as directed-rounding-modes and are useful in interval arithmetic.
Rounding is accomplished through the intermediate result. Single-precision results are rounded to a 24-bit
mantissa boundary; double-precision results are rounded to a 53-bit mantissa boundary.

The current floating-point instruction can specify rounding precision, overriding the rounding precision
specified in FPCR for the duration of the current instruction. For example, the rounding precision for
FADD is determined by FPCR, while the rounding precision for FSADD is single-precision, independent
of FPCR.

Range control helps emulate devices that support only single-precision arithmetic by rounding the
intermediate result’s mantissa to the specified precision and checking that the intermediate exponent is in
the representable range of the selected rounding precision. If the intermediate result’s exponent exceeds
the range, the appropriate underflow or overflow value is stored as the result in the double-precision format
exponent. For example, if the data format and rounding mode is single-precision RM and the result of an
arithmetic operation overflows the single-precision format, the maximum normalized single-precision
value is stored as a double-precision number in the destination floating-point data register; that is, the
unbiased 11-bit exponent is 0xOFF and the 52-bit fraction is OxF_FFFF_E000 0000. If an infinity is the
appropriate result for an underflow or overflow, the infinity value for the destination data format is stored
as the result; that is, the exponent has the maximum value and the mantissa is zero.

Figure 6-12 shows the algorithm for rounding an intermediate result to the selected rounding precision and
destination data format. If the destination is a floating-point register, the rounding boundary is determined
by either the selected rounding precision specified by FPCR[PREC] or by the instruction itself. For
example, FSADD and FDADD specify single- and double-precision rounding regardless of FPCR[PREC].
If the destination is memory or an integer data register, the destination data format determines the rounding
boundary. If the rounded result of an operation is inexact, INEX is set in FPSR[EXC].
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Guard, Round
and Sticky Bits =0

INEX = 1

Select Rounding Mode

Check Intermediate Result

N
RN RM RP Rz
Pos Neg Pos Neg

Gandlsb =1, G, R, G, R,
RandS=0 orS=1 orS=1
or
Exact Result
& xact Resu
RorS= G,R,and S
| are chopped
Add 1 to Isb
Add 1 to
Isb

Overflow = 1

K

Shift mantissa
right 1 bit, Cl)
Add 1 to exponent
Guard >0
Round>» 0
Sticky 30

( Exit ) ( Exit )

Figure 6-12. Rounding Algorithm Flowchart

The 3 additional bits beyond the double-precision format, the difference between the intermediate result’s
56-bit mantissa and the storing result’s 53-bit mantissa, allow the FPU to perform all calculations as
though it were performing calculations using a compute engine with infinite bit precision. The result is
always correct for the specified destination’s data format before rounding (unless an overflow or
underflow error occurs). The specified rounding produces a number as close as possible to the infinitely
precise intermediate value and still representable in the selected precision. The tie case in Table 6-6 shows
how the 56-bit mantissa allows the FPU to meet the error bound of the IEEE specification.
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Table 6-6. Tie-Case Example

Result Integer 52-Bit Fraction Guard Round Sticky
Intermediate X XXX...X00 1 0 0
Rounded-to-Nearest X XXX...x00 0 0 0

The Isb of the rounded result does not increment even though the guard bit is set in the intermediate result.
The IEEE-754 standard specifies this way of handling ties. If the destination data format is
double-precision and there is a difference between the infinitely precise intermediate result and the
round-to-nearest result, the relative difference is 27> (the value of the guard bit). This error is equal to half
of the Isb’s value and is the worst case error that can be introduced with RN mode. Thus, the term one-half
unit in the last place correctly identifies the error bound for this operation. This error spe01ﬁcat10n is the
relative error present in the result; the absolute error bound is equal to 26XP"et x 2753 Table 6-7 shows
the error bound for other roundlng modes.

Table 6-7. Round Mode Error Bounds

Result Integer 52-Bit Fraction Guard Round Sticky
Intermediate X XxX...x00 1 1 1
Rounded-to-Zero X XxX...x00 0 0 0

The difference between the infinitely precise result and the rounded result is 2~ 33 4+279%4 2755 which is
slightly less than 27 (the value of the Isb). Thus, the error bound for this operation is not more than one
unit in the last place. The FPU meets these error bounds for all arithmetic operations, providing accurate,
repeatable results.

6.5 Floating-Point Post-Processing

Most operations end with post-processing, for which the FPU provides two steps. First, FPSR[FPCC] bits
are set or cleared at the end of each arithmetic or move operation to a single floating-point data register.
FPCC bits are consistently set based on the result of the operation. Second, the FPU supports 32
conditional tests that allow floating-point conditional instructions to test floating-point conditions in the
same way that integer conditional instructions test the integer condition code. The combination of
consistently set FPCC bits and the simple programming of conditional instructions gives the processor a
highly flexible, efficient way to change program flow based on floating-point results. When the summary
for each instruction is read, it should be assumed that an instruction performs post processing, unless the
summary specifically states otherwise. The following paragraphs describe post processing in detail.

6.5.1 Underflow, Round, and Overflow

During calculation of an arithmetic result, the FPU has more precision and range than the 64-bit
double-precision format. However, the final result is a double-precision value. In some cases, an
intermediate result becomes either smaller or larger than can be represented in double-precision. Also, the
operation can generate a larger exponent or more bits of precision than can be represented in the chosen
rounding precision. For these reasons, every arithmetic instruction ends by checking for underflow,
rounding the result and checking for overflow.

At the completion of an arithmetic operation, the intermediate result is checked to see if it is too small to
be represented as a normalized number in the selected precision. If so, the underflow (UNFL) bit is set in
FPSR[EXC]. If no underflow occurs, the intermediate result is rounded according to the user-selected
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rounding precision and mode. After rounding, the inexact bit (INEX) is set as described in Figure 6-12.
Lastly, the magnitude of the result is checked to see if it exceeds the current rounding precision. If so, the
overflow (OVFL) bit is set, and a correctly signed infinity or correctly signed largest normalized number
is returned, depending on the rounding mode.

NOTE

INEX can also be set by OVFL, UNFL, and when denormalized numbers
are encountered.

6.5.2 Conditional Testing

Unlike operation-dependent integer condition codes, an instruction either always sets FPCC bits in the
same way or does not change them at all. Therefore, instruction descriptions do not include FPCC settings.
This section describes how FPCC bits are set.

FPCC bits differ slightly from integer condition codes. An FPU operation’s final result sets or clears FPCC
bits accordingly, independent of the operation itself. Integer condition code bits N and Z have this
characteristic, but V and C are set differently for different instructions. Table 6-8 lists FPCC settings for
each data type. Loading FPCC with another combination and executing a conditional instruction can
produce an unexpected branch condition.

Table 6-8. FPCC Encodings

Data Type N Y4 | NAN
+ Normalized or Denormalized 0 0 0 0
— Normalized or Denormalized 1 0 0 0
+0 0 1 0 0
-0 1 1 0 0
+ Infinity 0 0 1 0
— Infinity 1 0 1 0
+ NAN 0 0 0 1
— NAN 1 0 0 1

The inclusion of the NAN data type in the IEEE floating-point number system requires each conditional
test to include FPCC[NAN] in its boolean equation. Because it cannot be determined whether a NAN is
bigger or smaller than an in-range number (since it is unordered), the compare instruction sets
FPCC[NAN] when an unordered compare is attempted. All arithmetic instructions that result in a NAN
also set the NAN bit. Conditional instructions interpret NAN being set as the unordered condition.

The IEEE-754 standard defines the following four conditions:
* Equal to (EQ)
* Greater than (GT)
* Less than (LT)
* Unordered (UN)

The standard requires only the generation of the condition codes as a result of a floating-point compare
operation. The FPU can test for these conditions and 28 others at the end of any operation affecting
condition codes. For floating-point conditional branch instructions, the processor logically combines the
4 bits of the FPCC condition codes to form 32 conditional tests, 16 of which cause an exception if an
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unordered condition is present when the conditional test is attempted (IEEE nonaware tests). The other 16
do not cause an exception (IEEE-aware tests). The set of IEEE nonaware tests is best used in one of the
following cases:

*  When porting a program from a system that does not support the IEEE standard to a conforming
system

»  When generating high-level language code that does not support IEEE floating-point concepts (that
is, the unordered condition).

An unordered condition occurs when one or both of the operands in a floating-point compare operation is
a NAN. The inclusion of the unordered condition in floating-point branches destroys the familiar
trichotomy relationship (greater than, equal, less than) that exists for integers. For example, the opposite
of floating-point branch greater than (FBGT) is not floating-point branch less than or equal (FBLE).
Rather, the opposite condition is floating-point branch not greater than (FBNGT). If the result of the
previous instruction was unordered, FBNGT is true, whereas both FBGT and FBLE would be false because
unordered fails both of these tests (and sets BSUN). Compiler code generators should be particularly
careful of the lack of trichotomy in the floating-point branches, because it is common for compilers to
invert the sense of conditions.

When using the IEEE nonaware tests, the user receives a BSUN exception if a branch is attempted and
FPCC[NAN] is set, unless the branch is an FBEQ or an FBNE. If the BSUN exception is enabled in FPCR,
the exception takes a BSUN trap. Therefore, the IEEE nonaware program is interrupted if an unexpected
condition occurs. Users knowledgeable of the IEEE-754 standard should use IEEE-aware tests in
programs that contain ordered and unordered conditions. Because the ordered or unordered attribute is
explicitly included in the conditional test, EXC[BSUN] is not set when the unordered condition occurs.
Table 6-9 summarizes conditional mnemonics, definitions, equations, predicates, and whether
EXC[BSUN] is set for the 32 floating-point conditional tests. The equation column lists FPCC bit
combinations for each test in the form of an equation. Condition codes with an overbar indicate cleared
bits; all other bits are set.

Table 6-9. Floating-Point Conditional Tests

Mnemonic Definition Equation Predicate ' EXC[BSUN] Set
IEEE Nonaware Tests
EQ Equal z 000001 No
NE Not equal z 001110 No
GT Greater than NANTZIN 010010 Yes
NGT Not greater than NANIZIN 011101 Yes
GE Greater than or equal Z | (NANTN) 010011 Yes
NGE Not greater than or equal NAN | (N & 2Z) 011100 Yes
LT Less than N & (NANT2Z) 010100 Yes
NLT Not less than NAN | (Z | N) 011011 Yes
LE Less than or equal Z | (N & NAN) 010101 Yes
NLE Not less than or equal NAN | (NT2Z) 011010 Yes
GL Greater or less than NANTZ 010110 Yes
NGL Not greater or less than NAN | Z 011001 Yes
GLE Greater, less or equal NAN 010111 Yes
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Table 6-9. Floating-Point Conditional Tests (Continued)

Floating-PointExceptions

Mnemonic Definition Equation Predicate ' EXC[BSUN] Set
NGLE Not greater, less or equal NAN 011000 Yes
IEEE-Aware Tests
EQ Equal z 000001 No
NE Not equal pd 001110 No
OGT Ordered greater than NANTZIN 000010 No
ULE Unordered or less or equal NANIZIN 001101 No
OGE Ordered greater than or equal | Z | (NANTN) 000011 No
ULT Unordered or less than NAN | (N & Z) 001100 No
OoLT Ordered less than N & (NAN [ 2) 000100 No
UGE Unordered or greater or equal NAN [ (Z I N) 001011 No
OLE Ordered less than or equal Z | (N & NAN) 000101 No
UGT Unordered or greater than NAN | (NT2) 001010 No
OGL Ordered greater or less than NAN1Z 000110 No
UEQ Unordered or equal NAN | Z 001001 No
OR Ordered NAN 000111 No
UN Unordered NAN 001000 No
Miscellaneous Tests

F False False 000000 No
T True True 001111 No
SF Signaling false False 010000 Yes
ST Signaling true True 011111 Yes
SEQ Signaling equal z 010001 Yes
SNE Signaling not equal Z 011110 Yes

" This column refers to the value in the instruction’s conditional predicate field that specifies this test.

6.6 Floating-Point Exceptions

This section describes floating-point exceptions and how they are handled. Table 6-10 lists the vector
numbers related to floating-point exceptions. If the exception is taken pre-instruction, the PC contains the
address of the next floating-point instruction (nextFP). If the exception is taken post-instruction, the PC
contains the address of the faulting instruction (fault).
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Table 6-10. Floating-Point Exception Vectors

Vector Number | Vector Offset | Program Counter Assignment
48 0x0CO0 Fault Floating-point branch/set on unordered condition
49 0x0C4 NextFP or Fault |Floating-point inexact result
50 0x0C8 NextFP Floating-point divide-by-zero
51 0x0CC NextFP or Fault | Floating-point underflow
52 0x0DO0 NextFP or Fault | Floating-point operand error
53 0x0D4 NextFP or Fault |Floating-point overflow
54 0x0D8 NextFP or Fault | Floating-point input NAN
55 0x0DC NextFP or Fault | Floating-point input denormalized number

In addition to these vectors, attempting to execute a FRESTORE instruction with a unsupported frame
value generates a format error exception (vector 14). See the FRESTORE instruction in the ColdFire
Programmers Reference Manual.

Attempting to execute an FPU instruction with an undefined or unsupported value in the 6-bit effective
address, the 3-bit source/destination specifier, or the 7-bit opmode generates a line-F emulator exception,
vector 11. See Table 6-23.

6.6.1  Floating-Point Arithmetic Exceptions

This section describes floating-point arithmetic exceptions; Table 6-11 lists these exceptions in order of
priority:

Table 6-11. Exception Priorities

Priority Exception

1 Branch/set on unordered (BSUN)

Input Not-a-Number (INAN)

Input denormalized number (IDE)

Operand error (OPERR)

Overflow (OVFL)

Underflow (UNFL)

Divide-by-zero (DZ)

(N O| O B~ WO| DN

Inexact (INEX)

Most floating-point exceptions are taken when the next floating-point arithmetic instruction is encountered
(this is called a pre-instruction exception). Exceptions set during a floating-point store to memory or to an
integer register are taken immediately (post-instruction exception).

Note that FMOVE is considered an arithmetic instruction because the result is rounded. Only FMOVE
with any destination other than a floating-point register (sometimes called FMOVE OUT) can generate
post-instruction exceptions. Post-instruction exceptions never write the destination. After a
post-instruction exception, processing continues with the next instruction.
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A floating-point arithmetic exception becomes pending when the result of a floating-point instruction sets
an FPSR[EXC] bit and the corresponding FPCR[ENABLE] bit is set. A user write to the FPSR or FPCR
that causes the setting of an exception bit in FPSR[EXC] along with its corresponding exception enabled
in FPCR, leaves the FPU in an exception-pending state. The corresponding exception is taken at the start
of the next arithmetic instruction as a pre-instruction exception.

Executing a single instruction can generate multiple exceptions. When multiple exceptions occur with
exceptions enabled for more than one exception class, the highest priority exception is reported and taken.
It is up to the exception handler to check for multiple exceptions. The following multiple exceptions are
possible:

* Operand error (OPERR) and inexact result (INEX)

* Overflow (OVFL) and inexact result (INEX)

* Underflow (UNFL) and inexact result (INEX)

* Divide-by-zero (DZ) and inexact result (INEX)

* Input denormalized number (IDE) and inexact result (INEX)

* Input not-a-number (INAN) and input denormalized number (IDE)

In general, all exceptions behave similarly. If the exception is disabled when the exception condition
exists, no exception is taken, a default result is written to the destination (except for BSUN exception,
which has no destination), and execution proceeds normally.

If an enabled exception occurs, the same default result above is written for pre-instruction exceptions but
no result is written for post-instruction exceptions.

An exception handler is expected to execute FSAVE as its first floating-point instruction. This also clears
FPCR, which keeps exceptions from occurring during the handler. Because the destination is overwritten
for floating-point register destinations, the original floating-point destination register value is available for
the handler on the FSAVE state frame. The address of the instruction that caused the exception is available
in the FPIAR. When the handler is done, it should clear the appropriate FPSR exception bit on the FSAVE
state frame, then execute FRESTORE. If the exception status bit is not cleared on the state frame, the same
exception occurs again.

Alternatively, instead of executing FSAVE, an exception handler could simply clear appropriate FPSR
exception bits, optionally alter FPCR, and then return from the exception. Note that exceptions are never
taken on FMOVE to or from the status and control registers and FMOVEM to or from the floating-point
data registers.

At the completion of the exception handler, the RTE instruction must be executed to return to normal
instruction flow.

6.6.1.1 Branch/Set on Unordered (BSUN)

A BSUN results from performing an IEEE nonaware conditional test associated with the FBcc instruction
when an unordered condition is present. Any pending floating-point exception is first handled by a
pre-instruction exception, after which the conditional instruction restarts. The conditional predicate is
evaluated and checked for a BSUN exception before executing the conditional instruction. A BSUN
exception occurs if the conditional predicate is an IEEE non-aware branch and FPCC[NAN] is set. When
this condition is detected, FPSR[BSUN] is set.
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Table 6-12. BSUN Exception Enabled/Disabled Results

Condition BSUN Description

Exception 0 The floating-point condition is evaluated as if it were the equivalent IEEE-aware conditional
disabled predicate. No exceptions are taken.

Exception 1 The processor takes a floating-point pre-instruction exception.
Enabled The BSUN exception is unique in that the exception is taken before the conditional

predicate is evaluated. If the user BSUN exception handler fails to update the PC to the

instruction after the excepting instruction when returning, the exception executes again.

Any of the following actions prevent taking the exception again:

¢ Clearing FPSR[NAN]

* Disabling FPCR[BSUN]

* Incrementing the stored PC in the stack bypasses the conditional instruction. This
applies to situations where fall-through is desired. Note that to accurately calculate the
PC increment requires knowledge of the size of the bypassed conditional instruction.

6.6.1.2 Input Not-A-Number (INAN)

The INAN exception is a mechanism for handling a user-defined, non-IEEE data type. If either input
operand is a NAN, FPSR[INAN] is set. By enabling this exception, the user can override the default action
taken for NAN operands. Because FMOVEM, FMOVE FPCR, and FSAVE instructions do not modify
status bits, they cannot generate exceptions. Therefore, these instructions are useful for manipulating
INAN:S. See Table 6-13.

Table 6-13. INAN Exception Enabled/Disabled Results

Condition INAN Description
Exception 0 If the destination data format is single- or double-precision, a NAN is generated with a
disabled mantissa of all ones and a sign of zero transferred to the destination. If the destination data
format is B, W, or L, a constant of all ones is written to the destination.
Exception 1 The result written to the destination is the same as the exception disabled case unless the
enabled exception occurs on a FMOVE OUT, in which case the destination is unaffected.

6.6.1.3 Input Denormalized Number (IDE)

The input denorm bit, FPCR[IDE], provides software support for denormalized operands. When the IDE
exception is disabled, the operand is treated as zero, FPSR[INEX] is set, and the operation proceeds. When
the IDE exception is enabled and an operand is denormalized, an IDE exception is taken, but FPSR[INEX]
is not set to allow the handler to set it appropriately. See Table 6-14.

Note that the FPU never generates denormalized numbers. If necessary, software can create them in the
underflow exception handler.

Table 6-14. IDE Exception Enabled/Disabled Results

Condition IDE Description
Exception 0 Any denormalized operand is treated as zero, FPSR[INEX] is set, and the operation
disabled proceeds.
Exception 1 The result written to the destination is the same as the exception disabled case unless the
enabled exception occurs on a FMOVE OUT, in which case the destination is unaffected.
FPSRI[INEX] is not set to allow the handler to set it appropriately.
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6.6.1.4 Operand Error (OPERR)

The operand error exception encompasses problems arising in a variety of operations, including errors too
infrequent or trivial to merit a specific exception condition. Basically, an operand error occurs when an
operation has no mathematical interpretation for the given operands. Table 6-15 lists possible operand
errors. When one occurs, FPSR[OPERR] is set.

Table 6-15. Possible Operand Errors

Instruction Condition Causing Operand Error

FADD [(+00) + (-0)] or [(-0) + (+0)]

FDIV (0 + 0) or (o + o)

FMOVE OUT (to B, W, or L) |Integer overflow, source is NAN or +oo

FMUL One operand is 0 and the other is +o
FSQRT Source is < 0 or -
FSUB [(+20) - (+o0)] or [(-00) - (-00)]

Table 6-16 describes results when the exception is enabled and disabled.
Table 6-16. OPERR Exception Enabled/Disabled Results

Condition | OPERR Description
Exception 0 When the destination is a floating-point data register, the result is a double-precision NAN, with
disabled its mantissa set to all ones and the sign set to zero (positive).

For a FMOVE OUT instruction with the format S or D, an OPERR exception is impossible. With
the format B, W, or L, an OPERR exception is possible only on a conversion to integer overflow,
or if the source is either an infinity or a NAN. On integer overflow and infinity source cases, the
largest positive or negative integer that can fit in the specified destination size (B, W, or L) is
stored. In the NAN source case, a constant of all ones is written to the destination.

Exception 1 The result written to the destination is the same as for the exception disabled case unless the
enabled exception occurred on a FMOVE OUT, in which case the destination is unaffected. If desired,
the user OPERR handler can overwrite the default result.

6.6.1.5 Overflow (OVFL)

An overflow exception is detected for arithmetic operations in which the destination is a floating-point
data register or memory when the intermediate result’s exponent is greater than or equal to the maximum
exponent value of the selected rounding precision. Overflow occurs only when the destination is S- or
D-precision format; overflows for other formats are handled as operand errors. At the end of any operation
that could potentially overflow, the intermediate result is checked for underflow, rounded, and then
checked for overflow before it is stored to the destination. If overflow occurs, FPSR[OVFL,INEX] are set.

Even if the intermediate result is small enough to be represented as a double-precision number, an
overflow can occur if the magnitude of the intermediate result exceeds the range of the selected rounding
precision format. See Table 6-17.
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Table 6-17. OVFL Exception Enabled/Disabled Results

Condition OVFL Description
Exception 0 The values stored in the destination based on the rounding mode defined in FPCR[MODE].
disabled RN Infinity, with the sign of the intermediate result.

RZ Largest magnitude number, with the sign of the intermediate result.
RM For positive overflow, largest positive normalized number

For negative overflow, -o.
RP For positive overflow, +o

For negative overflow, largest negative normalized number.

Exception 1 The result written to the destination is the same as for the exception disabled case unless
enabled the exception occurred on a FMOVE OUT, in which case the destination is unaffected. If
desired, the user OVFL handler can overwrite the default result.

6.6.1.6  Underflow (UNFL)

An underflow exception occurs when the intermediate result of an arithmetic instruction is too small to be
represented as a normalized number in a floating-point register or memory using the selected rounding
precision; that is, when the intermediate result exponent is less than or equal to the minimum exponent
value of the selected rounding precision. Underflow can only occur when the destination format is single
or double precision. When the destination is byte, word, or longword, the conversion underflows to zero
without causing an underflow or an operand error. At the end of any operation that could underflow, the
intermediate result is checked for underflow, rounded, and checked for overflow before it is stored in the
destination. FPSR[UNFL] is set if underflow occurs. If the underflow exception is disabled, FPSR[INEX]
is also set.

Even if the intermediate result is large enough to be represented as a double-precision number, an
underflow can occur if the magnitude of the intermediate result is too small to be represented in the
selected rounding precision. Table 6-18 shows results when the exception is enabled or disabled.

Table 6-18. UNFL Exception Enabled/Disabled Results

Condition UNFL Description
Exception 0 The stored result is defined below. The UNFL exception also sets FPSR[INEX] if the UNFL
disabled exception is disabled.

RN Zero, with the sign of the intermediate result.
RZ Zero, with the sign of the intermediate result.
RM For positive underflow, + 0
For negative underflow, smallest negative normalized number.
RP  For positive underflow, smallest positive normalized number
For negative underflow, - 0

Exception 1 The result written to the destination is the same as for the exception disabled case unless

enabled the exception occurs on a FMOVE OUT, in which case the destination is unaffected. If
desired, the user UNFL handler can overwrite the default result. The UNFL exception does
not set FPSR[INEX] if the UNFL exception is enabled so the exception handler can set
FPSRI[INEX] based on results it generates.

6.6.1.7 Divide-by-Zero (DZ)

Attempting to use a zero divisor for a divide instruction causes a divide-by-zero exception. When a
divide-by-zero is detected, FPSR[DZ] is set. Table 6-19 shows results when the exception is enabled or
disabled.
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Table 6-19. DZ Exception Enabled/Disabled Results

Condition Dz Description

Exception 0 The destination floating-point data register is written with infinity with the sign set to the
disabled exclusive OR of the signs of the input operands.

Exception 1 The destination floating-point data register is written as in the exception is disabled case.
enabled

6.6.1.8 Inexact Result (INEX)

An INEX exception condition exists when the infinitely precise mantissa of a floating-point intermediate
result has more significant bits than can be represented exactly in the selected rounding precision or in the
destination format. If this condition occurs, FPSR[INEX] is set and the infinitely-precise result is rounded
according to Table 6-20.

Table 6-20. Inexact Rounding Mode Values

Mode Result

RN The representable value nearest the infinitely-precise intermediate value is the result. If the two nearest
representable values are equally near, the one whose Isb is 0 (even) is the result. This is sometimes called
round-to-nearest-even.

Rz The result is the value closest to and no greater in magnitude than the infinitely-precise intermediate
result. This is sometimes called chop-mode, because the effect is to clear bits to the right of the rounding

point.

RM The result is the value closest to and no greater than the infinitely-precise intermediate result (possibly -x).

RP The result is the value closest to and no less than the infinitely-precise intermediate result (possibly +x).

FPSR[INEX] is also set for any of the following conditions:
* Ifan input operand is a denormalized number and the IDE exception is disabled
* An overflowed result
* An underflowed result with the underflow exception disabled
Table 6-18 shows results when the exception is enabled or disabled.
Table 6-21. INEX Exception Enabled/Disabled Results

Condition INEX Description

Exception 0 The result is rounded and then written to the destination.

disabled

Exception 1 The result written to the destination is the same as for the exception disabled case unless

enabled the exception occurred on a FMOVE OUT, in which case the destination is unaffected. If
desired, the user INEX handler can overwrite the default result.

6.6.2 Floating-Point State Frames

Floating-point arithmetic exception handlers should have FSAVE as the first floating-point instruction;
otherwise, encountering another floating-point arithmetic instruction will cause the exception to be
reported again. After FSAVE executes, the handler should use FMOVEM to access floating-point data
registers, because it cannot generate further exceptions or change the FPSR.
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Note that if no intervention is needed, instead of FSAVE, the handler can simply clear the appropriate
FPCR and FPSR bits and then return from the exception.

Because the FPCR and FPSR are written in the FSAVE frame, a context switch needs only execute FSAVE
and FMOVEM for data registers. The new process needs to load data registers by using a
FMOVEM/FRESTORE sequence before it can continue.

FSAVE operations always write a 4-longword floating-point state frame that holds a 64-bit exception
operand. Figure 6-13 shows FSAVE frame contents.

31 24 23 19 18 16 15 0
Format word Control Register (FPCR)

Frame Format ‘ 0000_0 | Vector
Exception operand upper 32 bits

Exception operand lower 32 bits
Status register (FPSR)
Figure 6-13. Floating-Point State Frame Contents

Table 6-22 describes format word fields.
Table 6-22. Format Word Field Descriptions

Bits Name Description

31-24 Frame Defines the format of the frame.
format 0x00 Null Frame (NULL)
0x05 Idle Frame (IDLE)
OXE5 Exception Frame (EXCP)

23-19 — Zeros

18-16 Vector Exception vector
000 BSUN
001 INEX
010 DZ

011 UNFL
100 OPERR
101 OVFL
110 INAN

111 IDE

When FSAVE executes, the floating-point frame reflects the FPU state at the time of the FSAVE.
Internally, the FPU can be in the NULL, IDLE, or EXCP states. Upon reset, the FPU is in NULL state, in
which all floating-point registers contain NANs and the FPCR, FPSR, and FPIAR contain zeros. The FPU
remains in NULL state until execution of an implemented floating-point instruction (except FSAVE). At
this point, the FPU transitions from NULL to an IDLE state. A FRESTORE of NULL returns the FPU to
NULL state.

EXCEP state is entered as a result of a floating-point exception or an unsupported data type exception. The
vector field identifies exception types associated with the EXCP state. This field and the exception vector
taken are determined directly from the exception control (FPCR) and status (FPSR) bits. An FSAVE
instruction always clears FPCR after saving its state. Thus, after an FSAVE, a handler does not generate
further floating-point exceptions unless the handler re-enables the exceptions. FRESTORE returns FPCR
and FPSR to their previous state before entering the handler, as stored in the state frame. A handler could
alter the state frame to restore the FPU (using FRESTORE) into a different state than that saved by using
FSAVE.
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Normally, an exception handler executes FSAVE, processes the exception, clears the exception bit in the
FSAVE state frame status word, and executes FRESTORE. If appropriate exception bits set in the status
word are not cleared, the same exception is taken again. If multiple exception bits are set in the status word,
each should be processed, cleared, and restored by their respective handlers. In this way, all exceptions are
processed in priority order.

If it is not necessary to handle multiple exceptions, the exception model can be simplified (after any
processing) by the handler manually loading FPCR and FPSR and then discarding the state frame before
executing an RTE. Given that state frames are four longwords, it may be quicker to discard the state frame
by incrementing the address pointer (often the system stack pointer, A7) by 16.

The exception operand, contained in longwords two and three of the FSAVE frame, is always the value of
the destination operand before the operation which caused the exception commenced. Thus, for dyadic
register-to-register operations, the exception operand contains the value of the destination register before
it was overwritten by the operation which caused the exception. This operand can be retrieved by an
exception handler that needs both original operands in order to process the exception.

6.7 Instructions

This section includes an instruction set summary, execution times, and differences between ColdFire and
M68000 FPU programming models. For detailed instruction descriptions, see the ColdFire Programmers
Reference Manual.

6.7.1 Floating-Point Instruction Overview

ColdFire instructions are 16-, 32-, or 48-bits long. The general definition of a floating-point operation and
effective addressing mode require 32 bits; some addressing modes require another 16-bit extension word.
Table 6-23 shows the minimum size instruction formats. The first word is the opword; the second is
extension word 1.

Table 6-23. Floating-Point Instruction Formats

Mnemonic Instruction Code

FABS 1111001000 ea eareg |0|r/m|0]|srcspec | destreg opmode
mode

FADD 1111001000 ea eareg |0|r/m|0]|srcspec | destreg opmode
mode

FBcc 11110010 1|s| condpredicate 16b displacement or MS Word of 32b

z

LS Word of 32b Displacement

FCMP 1111001000 ea eareg [0|r/m|0O|srcspec|destreg|0 1 1 1 0 0 O
mode

FDIV 1111001000 ea eareg [0 |r/m|O0|srcspec | destreg opmode
mode

FINT 1111001000 ea eareg |0|r/m|0|srcspec|destreg/0 O O O O O 1
mode

FINTRZ 1111001000 ea eareg |0|r/m|0|srcspec|destreg/0 O O O O 1 1
mode
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Table 6-23. Floating-Point Instruction Formats (Continued)

Mnemonic Instruction Code

FMOVE 1111001000 ea eareg |0|r/m|0|srcspec | destreg opmode
mode

1111001000 ea eareg |0| 1 |1]|destfmt| srcreg |O O 0 O O O O
mode
1111001000 ea eareg |1| O |d| regsel [0 O 0 0O O OO OOO

mode r

FMOVEM |1 1 1 1 0 01 0 0O ea eareg (1| 1 |(d|1 0 0 0 O register list
mode r

FMUL 1111001000 ea eareg |0|r/m|0]|srcspec | destreg opmode
mode

FNEG 1111001000 ea eareg |0 |r/m|O0|srcspec|destreg opmode
mode

FNOP 1111001010 0000000O0O O0C0OO0OOOTOOOOOOODO

FRESTOR {1 1 1 1 0 0 1 1 0 1 ea eareg

E mode

FSAVE 1111001100 ea eareg
mode

FSQRT 1111001000 ea eareg |0|r/m|0]|srcspec | destreg opmode
mode

FSUB 1111001000 ea eareg |0|r/m|0]|srcspec | destreg opmode
mode

FTST 1111001000 ea eareg |0|r/m|0|srcspec|destreg|0 1 1 1 0 1 0
mode

Table 6-24 defines the terminology used in Table 6-23.
Table 6-24. Instruction Format Terminology

Term Definition
Instructions | Instructions appear in memory as sequential, 16-bit values, and are read in the above table
left to right. An instruction can have from 1 to 3 16-bit words. A shaded block indicates this
word is never used and is not present.
EA MODE Defines the effective address for an operand located external to the FPU. For most FPU
EA REG instructions, this field defines the location of an external source operand; for FP store
operations, it specifies the destination location.
R/M If R/M = 0, an FPU data register is one source operand, otherwise the source operand is
specified by the EA {MODE, REG} fields.
SRC SPEC | Defines the format (byte, word, longword, single-, or double-precision) of an external
operand.
DEST REG | Specifies the destination FPU data register.
COND Defines the condition to be evaluated (EQ, NE, and so on) during the execution of the FPU
PREDICATE | conditional branch instruction.
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Table 6-24. Instruction Format Terminology (Continued)

Term Definition
OPMODE Defines the exact operation to be performed by the FPU.
SZ Defines the length of the PC-relative displacement for the FPU conditional branch
instruction. If SZ = 0, the displacement is 16 bits, otherwise a 32-bit displacement is used.
dr Specifies direction of the MOVE transfer. As a 0, it moves from memory to the FP; as 1, it
moves from the FP to memory.
REGISTER | Defines FPU data registers to be moved during the execution of the FMOVEM instruction.
LIST
REG SEL Indicates the FPU control register to be moved during execution of an FMOVE control
register instruction.

6.7.2

Table 6-25 shows the ColdFire execution times for the floating-point instructions in terms of processor
core clock cycles. Each timing entry is presented as C(r/w).

* C=The number of processor clock cycles including all applicable operand reads and writes plus
all internal core cycles required to complete instruction execution

* 7= The number of operand reads

* w = The number of operand writes

Floating-Point Instruction Execution Timing

NOTE

Timing assumptions are the same as those for the ColdFire ISA. See the
ColdFire Microprocessor Family Programmer s Reference Manual.

Table 6-25. Floating-Point Instruction Execution Times'> 2 3

Effective Address <ea>
Opcode Format
FPn Dn (An) (An)+ | -(An) (d4e,An) (d4,PC)
FABS <ea>y,FPx 1(0/0) 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0)
FADD <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FBcc <label> — — — — — — 2(0/0) if correct,
9(0/0) if incorrect
FCMP <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FDIV <ea>y,FPx | 23(0/0) | 23(0/0) | 23(1/0) | 23(1/0) | 23(1/0) | 23(1/0) 23(1/0)
FINT <ea>y,FPx | 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FINTRZ <ea>y,FPx 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FMOVE <ea>y,FPx 1(0/0) 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0)
FPy,<ea>x — 2(0/1) 2(0/1) 2(0/1) | 2(0/1) 2(0/1) —
<ea>y,FP*R — 6(0/0) 6(1/0) 6(1/0) | 6(1/0) 6(1/0) 6(1/0)
FP*R,<ea>x | — 1(0/0) 1(0/1) 1(0/1) | 1(0/1) 1(0/1) —
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Table 6-25. Floating-Point Instruction Execution Times' 2 3 (Continued)

Effective Address <ea>
Opcode Format
FPn Dn (An) (An)+ | -(An) (d4g,An) (d46,PC)
FMOVEM # <ea>y,#list — — 2n(2n/0) — — 2n(2n/0) 2n(2n/0)
#list,<ea>x — — 1+2n(0/2n) — — 1+2n(0/2n) —
FMUL <ea>y,FPx | 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FNEG <ea>y,FPx 1(0/0) 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0)
FNOP — — — — — — 2(0/0)
FRESTORE <ea>y — — 6(4/0) — — 6(4/0) 6(4/0)
FSAVE <ea>x — — 7(0/4) — — 7(0/4) —
FSQRT <ea>y,FPx | 56(0/0) | 56(0/0) | 56(1/0) | 56(1/0) | 56(1/0) | 56(1/0) 56(1/0)
FSUB <ea>y,FPx | 4(0/0) | 4(0/0) 4(1/0) 4(1/0) | 4(1/0) 4(1/0) 4(1/0)
FTST <ea>y,FPx 1(0/0) 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0)

Add 1(1/0) for an external read operand of double-precision format for all instructions except FMOVEM, and 1(0/1)
for FMOVE FPy,<ea>x when the destination is double-precision.

If the external operand is an integer format (byte, word, longword), there is a 4 cycle conversion time which must be
added to the basic execution time.

If any exceptions are enabled, the execution time for FMOVE FPy,<ea>x increases by one cycle. If the BSUN
exception is enabled, the execution time for FBcc increases by one cycle.

For FMOVEM, n refers to the number of registers being moved.

The ColdFire architecture supports concurrent execution of integer and floating-point instructions. The
latencies in this table define the execution time needed by the FPU. After a multi-cycle FPU instruction is
issued, subsequent integer instructions can execute concurrently with the FPU execution. For this
sequence, the floating-point instruction occupies only one OEP cycle.

6.7.3 Key Differences between ColdFire and M68000 FPU Programming

Models

This section is intended for compiler developers and developers porting assembly language routines from
the M68000 family to ColdFire. It highlights major differences between the ColdFire FPU instruction set
architecture (ISA) and the equivalent M68000 family ISA, using the MC68060 as the reference. The
internal FPU datapath width is the most obvious difference. ColdFire uses 64-bit double-precision and the
M68000 family uses 80-bit extended precision. Other differences pertain to supported addressing modes,
both across all FPU instructions as well as specific opcodes. Table 6-26 lists key differences. Because all
ColdFire implementations support instruction sizes of 48 bits or less, M68000 operations requiring larger
instruction lengths cannot be supported.

Table 6-26. Key Programming Model Differences

Feature M68000 ColdFire
Internal datapath width 80 bits 64 bits
Support for fpGEN dg(An,Xi),FPx Yes No
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Table 6-26. Key Programming Model Differences (Continued)

Feature M68000 ColdFire
Support for fpGEN xxx.{w,I},FPx Yes No
Support for fpGEN dg(PC,Xi),FPx Yes No
Support for fpGEN #xxx,FPx Yes No
Support for fmovem (Ay)+,#list Yes No
Support for fmovem #list,-(Ax) Yes No
Support for fmovem FP Control Registers Yes No

Some differences affect function activation and return. M68000 subroutines typically began with
FMOVEM #list,-(a7) to save registers on the system stack, with each register occupying three longwords.
In ColdFire, each register occupies two longwords and the stack pointer must be adjusted before the
FMOVEM instruction. A similar sequence generally occurs at the end of the function, preparing to return
control to the calling routine.

The examples in Table 6-27, Table 6-28, and Table 6-29 show a M68000 operation and the equivalent
ColdFire sequence.

Table 6-27. M68000/ColdFire Operation Sequence 1!

M68000 ColdFire Equivalent

fmovem.x #list,-(a7) lea -8*n(a7),a7;allocate stack space
fmovem.d #list,(a7) ;save FPU registers

fmovem.x (a7)+,#list fmovem.d (a7),#list ;restore FPU registers
lea 8*n(a7),a7 ;deallocate stack space

" nis the number of FP registers to be saved/restored.

If the subroutine includes LINK and UNLK instructions, the stack space needed for FPU register storage
can be factored into these operations and LEA instructions are not required.

The M68000 FPU supports loads and stores of multiple control registers (FPCR, FPSR, and FPIAR) with
one instruction. For ColdFire, only one can be moved at a time.

For instructions that require an unsupported addressing mode, the operand address can be formed with a
LEA instruction immediately before the FPU operation. See Table 6-28.

Table 6-28. M68000/ColdFire Operation Sequence 2

M68000 ColdFire Equivalent
fadd.s label,fp2 lea label,a0;form pointer to data
fadd.s (a0),fp2
fmul.d (d8,a1,d7),fp5 lea (d8,a1,d7),a0;form pointer to data

fmul.d (a0),fp5

femp.l (d8,pc,d2),fp3 lea (d8,pc,d2),a0;form pointer to data
femp.l (a0),fp3

The M68000 FPU allows floating-point instructions to directly specify immediate values; the ColdFire
FPU does not support these types of immediate constants. It is recommended that floating-point immediate
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values be moved into a table of constants that can be referenced using PC-relative addressing or as an offset
from another address pointer. See Table 6-29.

Table 6-29. M68000/ColdFire Operation Sequence 3

M68000 ColdFire Equivalent

fadd.l #imm1,fp3 fadd.l (imm1_label,pc),fp3

fsub.s #imm2,fp4 fsub.s (imm2_label,pc),fp3

fdiv.d #imm3,fp5 fdiv.d (imm3_label,pc),fp3
align 4
imm1_label:
long imm1 ;integer longword
imm2_label:
long imm2 ;single-precision
imm3_label:
long imm3_upper,
imm3_lower ;double-precision

Finally, ColdFire and the M68000 differ in how exceptions are made pending. In the ColdFire exception
model, asserting both an FPSR exception indicator bit and the corresponding FPCR enable bit makes an
exception pending. Thus, a pending exception state can be created by loading FPSR and/or FPCR. On the
M68000, this type of pending exception is not possible.

Analysis of compiled floating-point applications indicates these differences account for most of the
changes between M68000-compatible text and the equivalent ColdFire program.
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Chapter 7
Local Memory

This chapter describes the MCF548x implementation of the ColdFire Version 4e local memory
specification. It consists of two major sections.

« Section 7.2, “SRAM Overview,” describes the MCF548x core’s local static RAM (SRAM)
implementation. It covers general operations, configuration, and initialization. It also provides
information and examples showing how to minimize power consumption when using the SRAM.

» Section 7.7, “Cache Overview,” describes the MCF548x cache implementation, including
organization, configuration, and coherency. It describes cache operations and how the cache
interfaces with other memory structures.

7.1 Interactions between Local Memory Modules

Depending on configuration information, instruction fetches and data read accesses may be sent
simultaneously to the SRAM and cache controllers. This approach is required because all three controllers
are memory-mapped devices, and the hit/miss determination is made concurrently with the read data
access. Power dissipation can be minimized by configuring the RAMBARSs to mask unused address spaces
whenever possible.

If the access address is mapped into the region defined by the SRAM (and this region is not masked), the
SRAM provides the data back to the processor, and the cache data is discarded. Accesses from the SRAM
module are never cached. The complete definition of the processor’s local bus priority scheme for read
references is as follows:

if (SRAM “hits”)
SRAM supplies data to the processor
else if (data cache “hits”)
data cache supplies data to the processor

else system memory reference to access data

For data write references, the memory mapping into the local memories is resolved before the appropriate
destination memory is accessed. Accordingly, only the targeted local memory is accessed for data write
transfers.

NOTE

The two SRAMs discussed in this chapter is on the processor local bus.
There is a third 32-Kbyte SRAM on the MCF548x device. See Chapter 16,
“32-Kbyte System SRAM,” for more information.

7.2 SRAM Overview

The two 4-Kbyte, on-chip SRAM modules provide the core with pipelined, single-cycle access to memory.
Memory can be independently mapped to any 0-modulo-4K location in the 4-Gbyte address space and
configured to respond to either instruction or data accesses.

The following summarizes features of the MCF548x SRAM implementation:

* Two 4-Kbyte SRAMs, organized as 1024 x 32 bits
» Single-cycle throughput. When the pipeline is full, one access can occur per clock cycle.
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» Physical location on the processor’s high-speed local bus with a user-programmed connection to
the internal instruction or data bus

*  Memory location programmable on any 0-modulo-4K address boundary
* Byte, word, and longword address capabilities

» The RAM base address registers (RAMBARO and RAMBART1) define the logical base address,
attributes, and access types for the two SRAM modules.

7.3 SRAM Operation

Each SRAM module provides a general-purpose memory block that the ColdFire processor can access
with single-cycle throughput. The location of the memory block can be specified to any 0-module-4K
address boundary in the 4-Gbyte address space by RAMBAR#[BA], described in Section 7.4.1, “SRAM
Base Address Registers (RAMBARO/RAMBARI1).” The memory is ideal for storing critical code or data
structures or for use as the system stack. Because the SRAM module connects physically to the processor’s
high-speed local bus, it can service processor-initiated accesses or memory-referencing debug module
commands.

The Version 4e ColdFire processor core implements a Harvard memory architecture. Each SRAM module
may be logically connected to either the processor’s internal instruction or data bus. This logical
connection is controlled by a configuration bit in the RAM base address registers (RAMBARO and
RAMBARTI).

If an instruction fetch is mapped into the region defined by the SRAM, the SRAM sources the data to the
processor and any cache data is discarded. Likewise, if a data access is mapped into the region defined by
the SRAM, the SRAM services the access and the cache is not affected. Accesses from SRAM modules
are never cached, and debug-initiated references are treated as data accesses.

Note also that the SRAMs cannot be accessed by the on-chip DMAs. The on-chip system configuration
allows concurrent core and DMA execution, where the CPU can reference code or data from the internal
SRAMs or caches while performing a DMA transfer.

Accesses are attempted in the following order:
1. SRAM
2. Cache (if space is defined as cacheable)

3. System SRAM, MBAR space, or external access

7.4 SRAM Register Definition
The SRAM programming model consists of RAMBARO and RAMBARI.

741 SRAM Base Address Registers (RAMBARO/RAMBAR1)

The SRAM modules are configured through the RAMBARS, shown in Figure 7-1. Each RAMBAR holds
the base address of the SRAM. The MOVEC instruction provides write-only access to this register from
the processor. Each RAMBAR can be read or written from the debug module in a similar manner. All
undefined RAMBAR bits are reserved. These bits are ignored during writes to the RAMBAR and return
zeros when read from the debug module. The valid bits, RAMBAR#[ V], are cleared at reset, disabling the
SRAM modules. All other bits are unaffected.

NOTE
RAMBAR® is read/write by the debug module.
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SRAM Register Definition

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R BA
W
Resetf 0 O 0 0 0 0 0 0 0 0 0 O 0 0 0 0
15 14 13 12 11 10 8 7 5 4 3 2 1 0
R BA 0 0 0 WP D/l 0 CN|SC|SD |UC | UD| V
W
Resetf 0 O 0 0 0 0 0 0 0 0 0 O 0 0 0 0
Reg CPU space + 0xC04 (RAMBARQO), 0xC05 (RAMBART)
Addr

Figure 7-1. SRAM Base Address Registers (RAMBARN)

RAMBAR® fields are described in detail in Table 7-1.

Table 7-1. RAMBARnN Field Description

Bits

Name

Description

31-12

BA

Base address. Defines the SRAM module’s word-aligned base address. Each SRAM
module occupies a 4-Kbyte space defined by the contents of BA. SRAM may reside on any
4-Kbyte boundary in the 4 Gbyte address space.

Reserved. Should be cleared.

WP

Write protect. Controls read/write properties of the SRAM.

0 Allows read and write accesses to the SRAM module

1 Allows only read accesses to the SRAM module. Any attempted write reference
generates an access error exception to the ColdFire processor core.

D/l

Data/instruction bus. Indicates whether SRAM is connected to the internal data or
instruction bus.

0 Data bus

1 Instruction bus

Reserved, should be cleared.
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Table 7-1. RAMBARnN Field Description (Continued)

Bits Name Description

5 C/ Address space masks (ASn). These fields allow certain types of accesses to be masked,

or inhibited from accessing the SRAM module. These bits are useful for power

management as described in Section 7.6, “Power Management.” In particular, C/l is

typically set.

The address space mask bits are follows:

3 sD C/I = CPU space/interrupt acknowledge cycle mask. Note that C/lI must be set if BA = 0.

SC = Supervisor code address space mask

SD = Supervisor data address space mask

2 ucC UC = User code address space mask

UD = User data address space mask

For each ASn bit:

0 An access to the SRAM module can occur for this address space

1 Disable this address space from the SRAM module. If a reference using this address
space is made, it is inhibited from accessing the SRAM module and is processed like
any other non-SRAM reference.

0 \Y Valid. Enables/disables the SRAM module. V is cleared at reset.
0 RAMBAR contents are not valid.
1 RAMBAR contents are valid.

The mapping of a given access into the SRAM uses the following algorithm to determine if the access hits
in the memory:

if (RAMBARI[O0] = 1)
if (((access = instructionFetch) & (RAMBAR[7] = 1)) |
((access = dataReference) & (RAMBARI[7] = 0)))
if (requested address[31:10] = RAMBAR[31:10])
if (requested address[31:n] = RAMBAR[31l:n]

if (ASn of the requested type = 0)
Access 1is mapped to the SRAM module

if (access = read)

Read the SRAM and return the data
if (access = write)

if (RAMBAR[8] = 0)

Write the data into the SRAM
else Signal a write-protect access error

ASn refers to the five address space mask bits: C/I, SC, SD, UC, and UD.

7.5 SRAM Initialization

After a hardware reset, the contents of each SRAM module are undefined. The valid bits, RAMBAR#[V],
are cleared, disabling the SRAM modules. If the SRAM requires initialization with instructions or data,
the following steps should be performed:

1. Load RAMBAR~# with bit 7 = 0, mapping the SRAM module to the desired location. Clearing
RAMBAR®([7] logically connects the SRAM module to the processor’s data bus.

2. Read the source data and write it to the SRAM. Various instructions support this function,
including memory-to-memory move instructions and the move multiple instruction (MOVEM).
MOVEM is optimized to generate line-sized burst fetches on line-aligned addresses, so it
generally provides maximum performance.
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SRAMInitialization

3. After the data is loaded into the SRAM, it may be appropriate to revise the RAMBAR attribute
bits, including the write-protect and address-space mask fields. If the SRAM contains
instructions, RAMBAR[D/I] must be set to logically connect the memory to the processor’s
internal instruction bus.

Remember that the SRAM cannot be accessed by the on-chip DMAs. The on-chip system configuration
allows concurrent core and DMA execution, where the core can execute code out of internal SRAM or
cache during DMA access.

The ColdFire processor or an external emulator using the debug module can perform these initialization
functions.

7.5.1 SRAM Initialization Code

The code segment below initializes the SRAM using RAMBARO. The code sets the base address of the
SRAM at 0x2000_0000 before it initializes the SRAM to zeros.

RAMBASE EQU 0x20000000 ;set this variable to 0x20000000
RAMVALID EQU 0x00000035

move. 1l #RAMBASE+RAMVALID, DO ;load RAMBASE + valid bit into DO
movec. 1 DO, RAMBARO ;load RAMBARO and enable SRAM

The following loop initializes the entire SRAM to zero:

lea.l RAMBASE, A0 ;load pointer to SRAM
move.l #1024, DO ;load loop counter into DO

SRAM INIT LOOP:

clr.1l (A0) + ;jclear 4 bytes of SRAM
subg.l #1,D0 ;decrement loop counter
bne.b SRAM INIT LOOP ;exit if done; else continue looping

The following function copies the number of bytesToMove from the source (*src) to the processor’s local
SRAM at an offset relative to the SRAM base address defined by destinationOffset. The bytesToMove
must be a multiple of 16. For best performance, source and destination SRAM addresses should be
line-aligned (0-modulo-16).

; copyToCpuRam (*src, destinationOffset, bytesToMove)

RAMBASE EQU 0x20000000 ; SRAM base address
RAMFLAGS EQU 0x00000035 ;RAMBAR valid + mask bits
lea.l -12(a7),a7;allocate temporary space

movem.l #0xlc, (a7);store D2/D3/D4 registers

; stack arguments and locations

; +0 saved d2
; +4 saved d3
; +8 saved d4
; +12 returnPc
; +16 pointer to source operand
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;7 +20 destinationOffset
; +24 bytesToMove

move.l RAMBASE+RAMFLAGS, a0 ;define RAMBARO contents
movec.l a0,rambar0;load it

move.l 16(a7),a0;load argument defining *src

lea.l RAMBASE, al;memory pointer to SRAM base
add.l 20(a7),al;include destinationOffset

move.l 24 (a7),d4;load byte count

asr.l #4,d4 ;divide by 16 to convert to loop count
.align 4 ;force loop on 0-mod-4 address
loop: movem.l (a0),#0xf;read 16 bytes from source
movem.l #0xf, (al);store into SRAM destination
lea.l 16(a0),a0;increment source pointer
lea.l 16(al),al;increment destination pointer
subg. 1l #1,d4 ;decrement loop counter
bne.b loop ;if done, then exit, else continue

movem.l (a7),#0xlc;restore d2/d3/d4 registers
lea.l 12 (a7),a7;deallocate temporary space
rts

7.6 Power Management

Because processor memory references may be simultaneously sent to an SRAM module and cache, power
can be minimized by configuring RAMBAR address space masks as precisely as possible. For example,
if an SRAM is mapped to the internal instruction bus and contains instruction data, setting the AS»n mask
bits associated with operand references can decrease power dissipation. Similarly, if the SRAM contains
data, setting ASn bits associated with instruction fetches minimizes power.

Table 7-2 shows typical RAMBAR configurations.
Table 7-2. Examples of Typical RAMBAR Settings

Data Contained in SRAM RAMBARJ5-0]
Code only 0x2B
Data only 0x35
Both code and data 0x21

7.7 Cache Overview

This section describes the MCF548x cache implementation, including organization, configuration, and
coherency. It describes cache operations and how the cache interacts with other memory structures.

The MCF548x implements a special branch instruction cache for accelerating branches, enabled by a bit
in the cache access control register (CACR[BEC]). The branch cache is described in Section 3.2.1.1.1,
“Branch Acceleration.”
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CacheOrganization

The MCF548x processor’s Harvard memory structure includes a 32-Kbyte data cache and a 32-Kbyte
instruction cache. Both are nonblocking and 4-way set-associative with a 16-byte line. The cache improves
system performance by providing single-cycle access to the instruction and data pipelines. This decouples
processor performance from system memory performance, increasing bus availability for on-chip DMA
or external devices. Figure 7-2 shows the organization and integration of the data cache.

Cache
Control External
Lontrot | Control Bus
- Control Logic —
v |
' ‘ Data Array contro
. System :‘>
P(ﬁgg;,srgr Integration Address/
. Unit
Core Directory Array (SIU) Data

Data Data

l Data Path
‘ Address

Address L’ Address Path

EE

Figure 7-2. Data Cache Organization

Both caches implement line-fill buffers to optimize line-sized burst accesses. The data cache supports
operation of copyback, write-through, or cache-inhibited modes. A four-entry, 32-bit buffer supports cache
line-push operations, and can be configured to defer write buffering in write-through or cache-inhibited
modes. The cache lock feature can be used to guarantee deterministic response for critical code or data
areas.

A nonblocking cache services read hits or write hits from the processor while a fill (caused by a cache
allocation) is in progress. As Figure 7-2 shows, accesses use a single bus connected to the cache.

All addresses from the processor to the cache are physical addresses. A cache hit occurs when an address
matches a cache entry. For a read, the cache supplies data to the processor. For a write, which is permitted
only to the data cache, the processor updates the cache. If an access does not match a cache entry (misses
the cache) or if a write access must be written through to memory, the cache performs a bus cycle on the
internal bus and correspondingly on the external bus by way of the system integration unit (SIU).

The cache module does not implement bus snooping; cache coherency with other possible bus masters
must be maintained in software.

7.8 Cache Organization

A four-way set associative cache is organized as four ways (levels). There are 512 sets in the 32-Kbyte
data cache with each line containing 16 bytes (4 longwords). The 32-Kbyte instruction cache has 512 sets.
Entire cache lines are loaded from memory by burst-mode accesses that cache 4 longwords of data or
instructions. All 4 longwords must be loaded for the cache line to be valid.

Figure 7-3 shows data cache organization as well as terminology used.
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Way 0 Way 1 Way 2 Way 3

Set0

Set 1

Set 510 LT Line
Set 511 - -

Cache Line Format
| TAG |[VIM]| Longword0 | Longwordi | Longword2 | Longword3 ]

Where:

TAG—21-bitaddresstag
V—Validbitforline

M—Modified bit for line (data cache only)

Figure 7-3. Data Cache Organization and Line Format

A set is a group of four lines (one from each level, or way), corresponding to the same index into the cache
array.

7.8.1 Cache Line States: Invalid, Valid-Unmodified, and Valid-Modified

As shown in Table 7-3, a data cache line can be invalid, valid-unmodified (often called exclusive), or
valid-modified. An instruction cache line can be valid or invalid.

Table 7-3. Valid and Modified Bit Settings

\Y M Description

0 X Invalid. Invalid lines are ignored during lookups.

1 0 Valid, unmodified. Cache line has valid data that matches system memory.

1 1 Valid, modified. Cache line contains most recent data, data at system memory location is
stale.

A valid line can be explicitly invalidated by executing a CPUSHL instruction.

7.8.2 The Cache at Start-Up

As Figure 7-4 (A) shows, after power-up, cache contents are undefined; V and M may be set on some lines
even though the cache may not contain the appropriate data for start up. Because reset and power-up do
not invalidate cache lines automatically, the cache should be cleared explicitly by setting
CACR[DCINVA,ICINVA] before the cache is enabled (B).

After the entire cache is flushed, cacheable entries are loaded first in way 0. If way 0 is occupied, the
cacheable entry is loaded into the same set in way 1, as shown in Figure 7-4 (D). This process is described
in detail in Section 7.9, “Cache Operation.”
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= Invalid (V = 0)

mmm  Valid, not modified (V =1, M =0)
== Valid, modified (V=1,M=1)
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Setting CACR[DCINVA] Initial cacheable
invalidates the entire accesses to memory-fill
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only if that set is full in
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Figure 7-4. Data Cache—A: at Reset, B: after Invalidation, C and D: Loading Pattern
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7.9 Cache Operation

Figure 7-5 shows the general flow of a caching operation using the 32-Kbyte data cache as an example.
The discussion in this chapter assumes a data cache. Instruction cache operations are similar except that
there is no support for writing to the cache; therefore, such notions of modified cache lines and write
allocation do not apply.

Address
I ' |
31 13 12 430
Way 3
Tag Data/Tag Reference Index Way 2
T Way 1
| Way 0
i d Y
I
I
Set 0 TAG |STATUS|LWO|LW1|LW2|LW3
Set Set 1
——  Select » . . S . . . .
A[12:4] . . . P - - —
)
Set511| TAG |STATUS |[LWO|LW1|[LW2|LW3[—
| ) , J
| ﬁ Data
Address — . MUX -
A[31:13] [
‘ A
| 3 Line Select
ly R Hit 3
[y ¢ 1| [— Hit2 Hit
o| — Hit1 _| Logical OR [
Comparator | Hit 0

Figure 7-5. Data Caching Operation

The following steps determine if a data cache line is allocated for a given address:
1. The cache set index, A[12:4], selects one cache set.
2. A[31:13] and the cache set index are used as a tag reference or are used to update the cache line
tag field. Note that A[31:13] can specify 19 possible address lines that can be mapped to one of
the four ways.

3. The four tags from the selected cache set are compared with the tag reference. A cache hit occurs
if a tag matches the tag reference and the V bit is set, indicating that the cache line contains valid
data. If a cacheable write access hits in a valid cache line, the write can occur to the cache line
without having to load it from memory.

If the memory space is copyback, the updated cache line is marked modified (M = 1), because the
new data has made the data in memory out of date. If the memory location is write-through, the

write is passed on to system memory and the M bit is never used. Note that the tag does not have
TT or TM bits.

To allocate a cache entry, the cache set index selects one of the cache’s 512 sets. The cache control logic
looks for an invalid cache line to use for the new entry. If none is available, the cache controller uses a
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CacheOperation

pseudo-round-robin replacement algorithm to choose the line to be deallocated and replaced. First the
cache controller looks for an invalid line, with way 0 the highest priority. If all lines have valid data, a 2-bit
replacement counter is used to choose the way. After a line is allocated, the pointer increments to point to
the next way.

Cache lines from ways 0 and 1 can be protected from deallocation by enabling half-cache locking. If
CACR[DHLCK,IHLCK] = 1, the replacement pointer is restricted to way 2 or 3.

As part of deallocation, a valid, unmodified cache line is invalidated. It is consistent with system memory,
so memory does not need to be updated. To deallocate a modified cache line, data is placed in a push buffer
(for an external cache line push) before being invalidated. After invalidation, the new entry can replace it.
The old cache line may be written after the new line is read.
When a cache line is selected to host a new cache entry, the following three things happen:

1. The new address tag bits A[31:13] are written to the tag.

2. The cache line is updated with the new memory data.

3. The cache line status changes to a valid state (V = 1).

Read cycles that miss in the cache allocate normally as previously described.

Write cycles that miss in the cache do not allocate on a cacheable write-through region, but do allocate for
addresses in a cacheable copyback region.

A copyback byte, word, longword, or line write miss causes the following:
1. The cache initiates a line fill or flush.
2. Space is allocated for a new line.

3. Vand M are both set to indicate valid and modified.
4. Data is written in the allocated space. No write to memory occurs.

Note the following:
* Read hits cannot change the status bits and no deallocation or replacement occurs; the data or
instructions are read from the cache.

» If'the cache hits on a write access, data is written to the appropriate portion of the accessed cache
line. Write hits in cacheable, write-through regions generate an external write cycle and the cache
line is marked valid, but is never marked modified. Write hits in cacheable copyback regions do
not perform an external write cycle; the cache line is marked valid and modified (V=1and M =1).

* Misaligned accesses are broken into at least two cache accesses.

* Validity is provided only on a line basis. Unless a whole line is loaded on a cache miss, the cache
controller does not validate data in the cache line.

Write accesses designated as cache-inhibited by the CACR or ACR bypass the cache and perform a
corresponding external write.

Normally, cache-inhibited reads bypass the cache and are performed on the external bus. The exception to
this normal operation occurs when all of the following conditions are true during a cache-inhibited read:
* The cache-inhibited fill buffer bit, CACR[DNFB], is set.
» The access is an instruction read.
» The access is normal (that is, transfer type (TT) equals 0).
In this case, an entire line is fetched and stored in the fill buffer. It remains valid there, and the cache can

service additional read accesses from this buffer until either another fill or a cache-invalidate-all operation
occurs.
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Valid cache entries that match during cache-inhibited address accesses are neither pushed nor invalidated.
Such a scenario suggests that the associated cache mode for this address space was changed. To avoid this,
it is generally recommended to use the CPUSHL instruction to push or invalidate the cache entry or set
CACR[DCINVA] to invalidate the data cache before switching cache modes.

7.9.1 Caching Modes

For every memory reference generated by the processor or debug module, a set of effective attributes is
determined based on the address and the ACRs. Caching modes determine how the cache handles an
access. A data access can be cacheable in either write-through or copyback mode; it can be cache-inhibited
in precise or imprecise modes. For normal accesses, the ACR#[CM] bit corresponding to the address of
the access specifies the caching modes. If an address does not match an ACR, the default caching mode is
defined by CACR[DDCM,IDCM]. The specific algorithm is as follows:

if (address == ACRO-address including mask)
effective attributes = ACRO attributes
else if (address == ACRl-address including mask)

effective attributes = ACR1l attributes
else effective attributes = CACR default attributes

Addresses matching an ACR can also be write-protected using ACR[W]. Addresses that do not match
either ACR can be write-protected using CACR[DW].

Reset disables the cache and clears all CACR bits. As shown in Figure 7-4, reset does not automatically
invalidate cache entries; they must be invalidated through software.

The ACRs allow the defaults selected in the CACR to be overridden. In addition, some instructions (for
example, CPUSHL) and processor core operations perform accesses that have an implicit caching mode
associated with them. The following sections discuss the different caching accesses and their associated
cache modes.

7.9.1.1 Cacheable Accesses

If ACRa[CM] or the default field of the CACR indicates write-through or copyback, the access is
cacheable. A read access to a write-through or copyback region is read from the cache if matching data is
found. Otherwise, the data is read from memory and the cache is updated. When a line is being read from
memory for either a write-through or copyback read miss, the longword within the line that contains the
core-requested data is loaded first and the requested data is given immediately to the processor, without
waiting for the three remaining longwords to reach the cache.

The following sections describe write-through and copyback modes in detail. Note that some of this
information applies to data caches only.

7.9.1.1.1  Write-Through Mode (Data Cache Only)

Write accesses to regions specified as write-through are always passed on to the external bus, although the
cycle can be buffered, depending on the state of CACR[DESB]. Writes in write-through mode are handled
with a no-write-allocate policy—that is, writes that miss in the cache are written to the external bus but do
not cause the corresponding line in memory to be loaded into the cache. Write accesses that hit always
write through to memory and update matching cache lines. The cache supplies data to data-read accesses
that hit in the cache; read misses cause a new cache line to be loaded into the cache.
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7.9.1.1.2 Copyback Mode (Data Cache Only)

Copyback regions are typically used for local data structures or stacks to minimize external bus use and
reduce write-access latency. Write accesses to regions specified as copyback that hit in the cache update
the cache line and set the corresponding M bit without an external bus access.

The cache should be flushed using the CPUSHL instruction before invalidating the cache in copyback
mode using the CINV bit. Modified cache data is written to memory only if the line is replaced because of
a miss or a CPUSHL instruction pushes the line. If a byte, word, longword, or line write access misses in
the cache, the required cache line is read from memory, thereby updating the cache. When a miss selects
a modified cache line for replacement, the modified cache data moves to the push buffer. The replacement
line is read into the cache and the push buffer contents are then written to memory.

7.9.1.2 Cache-Inhibited Accesses

Memory regions can be designated as cache-inhibited, which is useful for memory containing targets such
as I/0 devices and shared data structures in multiprocessing systems. It is also important to not cache the
MCF548x memory-mapped registers. If the corresponding ACRn[CM] or CACR[DDCM] indicates
cache-inhibited, precise or imprecise, the access is cache-inhibited. The caching operation is identical for
both cache-inhibited modes, which differ only regarding recovery from an external bus error.

In determining whether a memory location is cacheable or cache-inhibited, the CPU checks
memory-control registers in the following order:

1. RAMBARs

2. ACRO and ACR2

3. ACRI and ACR3

4. If an access does not hit in the RAMBARS or the ACRs, the default is provided for all accesses in

CACR.

Cache-inhibited write accesses bypass the cache, and a corresponding external write is performed.
Cache-inhibited reads bypass the cache and are performed on the external bus, except when all of the
following conditions are true:

* The cache-inhibited fill-buffer bit, CACR[DNFB], is set.
» The access is an instruction read.
» The access is normal (that is, TT = 0).

In this case, a fetched line is stored in the fill buffer and remains valid there; the cache can service
additional read accesses from this buffer until another fill occurs or a cache-invalidate-all operation occurs.

If ACRr[CM] indicates cache-inhibited mode, precise or imprecise, the controller bypasses the cache and
performs an external transfer. If a line in the cache matches the address and the mode is cache-inhibited,
the cache does not automatically push the line if it is modified, nor does it invalidate the line if it is valid.
Before switching cache mode, execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] to
invalidate the entire cache.

If ACRn[CM] indicates precise mode, the sequence of read and write accesses to the region is guaranteed
to match the instruction sequence. In imprecise mode, the processor core allows read accesses that hit in
the cache to occur before completion of a pending write from a previous instruction. Writes are not
deferred past data-read accesses that miss the cache (that is, that must be read from the bus).

Precise operation forces data-read accesses for an instruction to occur only once by preventing the
instruction from being interrupted after data is fetched. Otherwise, if the processor is not in precise mode,
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an exception aborts the instruction and the data may be accessed again when the instruction is restarted.
These guarantees apply only when ACR»n[CM] indicates precise mode and aligned accesses.

CPU space-register accesses using the MOVEC instruction are treated as cache-inhibited and precise.

7.9.2 Cache Protocol

The following sections describe the cache protocol for processor accesses and assumes that the data is
cacheable (that is, write-through or copyback). Note that the discussion of write operations applies to the
data cache only.

7.9.2.1 Read Miss

A processor read that misses in the cache requests the cache controller to generate a bus transaction. This
bus transaction reads the needed line from memory and supplies the required data to the processor core.
The line is placed in the cache in the valid state.

7.9.2.2 Write Miss (Data Cache Only)

The cache controller handles processor writes that miss in the data cache differently for write-through and
copyback regions. Write misses to copyback regions cause the cache line to be read from system memory,
as shown in Figure 7-6.

1. Writing character X to OxOB generates a write miss. Data cannot be written to an invalid line.

Cache Line

0x0C 0x08 0x04 0x00 v
MCF548x | | | | | M

0
0

| X A

.. The cache line (characters A—P) is updated from system memory, and the line is marked valid.

0x0C_0x08 0x04 0x00 .
|ABCD|EFGH| IJKL [MNOP| 1~ ¢
[ ) ( [

System
Memory

3. After the cache line is filled, the write that initiated the write miss (the character X) completes to Ox0B.

0xOC 0x08 0x04 0x00
MCF548x [ABCD[EXGH] IJKL [MNOP]

=1
=1

\
M

Figure 7-6. Write-Miss in Copyback Mode
The new cache line is then updated with write data and the M bit is set for the line, leaving it in modified

state. Write misses to write-through regions write directly to memory without loading the corresponding
cache line into the cache.
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7.9.2.3 Read Hit

On aread hit, the cache provides the data to the processor core and the cache line state remains unchanged.
If the cache mode changes for a specific region of address space, lines in the cache corresponding to that
region that contain modified data are not pushed out to memory when a read hit occurs within that line.
First execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching the cache mode.

7.9.2.4 Write Hit (Data Cache Only)

The cache controller handles processor writes that hit in the data cache differently for write-through and
copyback regions. For write hits to a write-through region, portions of cache lines corresponding to the
size of the access are updated with the data. The data is also written to external memory. The cache line
state is unchanged. For copyback accesses, the cache controller updates the cache line and sets the M bit
for the line. An external write is not performed and the cache line state changes to (or remains in) the
modified state.

7.9.3 Cache Coherency (Data Cache Only)

The MCF548x provides limited cache coherency support in multiple-master environments. Both
write-through and copyback memory update techniques are supported to maintain coherency between the
cache and memory.

The cache does not support snooping (that is, cache coherency is not supported while external or DMA
masters are using the bus). Therefore, on-chip DMAs of the MCF548x cannot access local memory and
do not maintain coherency with the data cache.

7.9.4 Memory Accesses for Cache Maintenance

The cache controller performs all maintenance activities that supply data from the cache to the core,
including requests to the SIU for reading new cache lines and writing modified lines to memory. The
following sections describe memory accesses resulting from cache fill and push operations. Chapter 17,
“FlexBus,” describes required bus cycles in detail.

7.9.4.1 Cache Filling

When a new cache line is required, a line read is requested from the SIU, which generates a burst-read
transfer by indicating a line access with the size signals, SIZ[1:0].

The responding device supplies 4 consecutive longwords of data. Burst operations can be inhibited or
enabled through the burst read/write enable bits (BSTR/BSTW) in the chip-select control registers
(CSCRO-CSCR?7).

SIU line accesses implicitly request burst-mode operations from memory. For more information regarding
external bus burst-mode accesses, see Chapter 17, “FlexBus.”

The first cycle of a cache-line read loads the longword entry corresponding to the requested address.
Subsequent transfers load the remaining longword entries.

A burst operation is aborted by an a write-protection fault, which is the only possible access error.
Exception processing proceeds immediately. Note that unlike Version 2 and Version 3 access errors, the
program counter stored on the exception stack frame points to the faulting instruction. See Section 3.8.2,
“Processor Exceptions.”
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7.9.4.2 Cache Pushes

Cache pushes occur for line replacement and as required for the execution of the CPUSHL instruction. To
reduce the requested data’s latency in the new line, the modified line being replaced is temporarily placed
in the push buffer while the new line is fetched from memory. After the bus transfer for the new line
completes, the modified cache line is written back to memory and the push buffer is invalidated.

7.9.4.2.1 Push and Store Buffers

The 16-byte push buffer reduces latency for requested new data on a cache miss by holding a displaced
modified data cache line while the new data is read from memory.

If a cache miss displaces a modified line, a miss read reference is immediately generated. While waiting
for the response, the current contents of the cache location load into the push buffer. When the burst-read
bus transaction completes, the cache controller can generate the appropriate line-write bus transaction to
write the push buffer contents into memory.

In imprecise mode, the FIFO store buffer can defer pending writes to maximize performance. The store
buffer can support as many as four entries (16 bytes maximum) for this purpose.

Data writes destined for the store buffer cannot stall the core. The store buffer effectively provides a
measure of decoupling between the pipeline’s ability to generate writes (one per cycle maximum) and the
external bus’s ability to retire those writes. In imprecise mode, writes stall only if the store buffer is full
and a write operation is on the internal bus. The internal write cycle is held, stalling the data execution
pipeline.

If the store buffer is not used (that is, store buffer disabled or cache-inhibited precise mode), external bus
cycles are generated directly for each pipeline write operation. The instruction is held in the pipeline until
external bus transfer termination is received. Therefore, each write is stalled for 5 cycles, making the
minimum write time equal to 6 cycles when the store buffer is not used. See Section 3.2.1.2, “Operand
Execution Pipeline (OEP).”

The data store buffer enable bit, CACR[DESB], controls the enabling of the data store buffer. This bit can
be set and cleared by the MOVEC instruction. DESB is zero at reset and all writes are performed in order
(precise mode). ACRr[CM] or CACR[DDCM] generates the mode used when DESB is set. Cacheable
write-through and cache-inhibited imprecise modes use the store buffer.

The store buffer can queue data as much as 4 bytes wide per entry. Each entry matches the corresponding
bus cycle it generates; therefore, a misaligned longword write to a write-through region creates two entries
if the address is to an odd-word boundary. It creates three entries if it is to an odd-byte boundary—one per
bus cycle.

7.9.4.2.2 Push and Store Buffer Bus Operation

As soon as the push or store buffer has valid data, the internal bus controller uses the next available external
bus cycle to generate the appropriate write cycles. In the event that another cache fill is required (for
example, cache miss to process) during the continued instruction execution by the processor pipeline, the
pipeline stalls until the push and store buffers are empty, then generate the required external bus
transaction.

Supervisor instructions, the NOP instruction, and exception processing synchronize the processor core and
guarantee the push and store buffers are empty before proceeding. Note that the NOP instruction should
be used only to synchronize the pipeline. The preferred no-operation function is the TPF instruction. See
the ColdFire Programmer s Reference Manual for more information on the TPF instruction.
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7.9.5 Cache Locking

Ways 0 and 1 of the data cache can be locked by setting CACR[DHLCK]; likewise, ways 0 and 1 of the
instruction cache can be locked by setting CACR[IHLCK]. If a cache is locked, cache lines in ways 0 and
1 are not subject to being deallocated by normal cache operations.

As Figure 7-7 (B and C) shows, the algorithm for updating the cache and for identifying cache lines to be
deallocated is otherwise unchanged. If ways 2 and 3 are entirely invalid, cacheable accesses are first
allocated in way 2. Way 3 is not used until the location in way 2 is occupied.

Ways 0 and 1 are still updated on write hits (D in Figure 7-7) and may be pushed or cleared only explicitly
by using specific cache push/invalidate instructions. However, new cache lines cannot be allocated in ways
0 and 1.
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—— Invalid (V=0)

mmm  Valid, not modified (V =1, M =0)
=== Valid, modified (V =1, M= 1)

A: Ways 0 and 1 are
filled. Ways 2 and 3
are invalid.

Way OWay 1Way 2Way 3

=

B: CACR[DHLCK] is set,
locking ways 0 and 1.

Way OWay 1Way 2Way 3

C: When a setin Way 2 is
occupied, the setin way 3
is used for a cacheable

access.

Way OWay 1Way 2Way 3

D: Write hits to ways 0
and 1 update cache
lines.

Way OWay 1Way 2Way &

——

!c

Se5|

After reset, the cache is
invalidated, ways 0 and 1
are then written with data
that should not be
deallocated. Ways 0 and 1
can be filled systematically
by using the INTOUCH
instruction.

After CACR[DHLCK] is
set, subsequent cache
accesses go to ways 2
and 3.

;

While the cache is locked
and after a position in
ways is full, the set in
Way 3 is updated.

Figure 7-7. Data Cache Locking
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While the cache is
locked, ways 0 and 1 can
be updated by write hits.
In this example, memory
is configured as
copyback, so updated
cache lines are marked
modified.
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7.10 Cache Register Definition

This section describes the MCF548x implementation of the Version 4e cache registers.

7.10.1 Cache Control Register (CACR)

The CACR in Figure 7-8 contains bits for configuring the cache. It can be written by the MOVEC register
instruction and can be read or written from the debug facility. A hardware reset clears CACR, which
disables the cache; however, reset does not affect the tags, state information, or data in the cache.

NOTE
CACR is read/write by the debug module.

31 30 29 28 27 26 25 24 23 22 2 20 19 18 17 16
R|DEC | DW |DESB| DDPI | DHLCK| DDCM |DCINVA|DDSP | 0 0 0 |[BEC|BCINVA| 0 0
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0O O 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1
R| IEC | O |DNFB| IDPI | IHLCK [IDCM| O |ICINVA|IDSP | O |EUSP|DF| O 0 0 0
W
Reset| 0 0 0 0 0 0 0 0 0 0 0O O 0 0 0
Reg 0x002
Addr

Figure 7-8. Cache Control Register (CACR)

Table 7-4 describes CACR fields. Note that some implementations may include fields not defined here;
consult the part-specific documentation.

Table 7-4. CACR Field Descriptions

Bits Name Description

31 DEC Enable data cache.
0 Cache disabled. The data cache is not operational, but data and tags are preserved.
1 Cache enabled.

30 DW Data default write-protect. For normal operations that do not hit in the RAMBARSs or ACRs, this field
defines write-protection. See Section 7.9.1, “Caching Modes.”

0 Not write protected.

1 Write protected. Write operations cause an access error exception.

29 DESB Enable data store buffer. Affects the precision of transfers.

0 Imprecise-mode, write-through or cache-inhibited writes bypass the store buffer and generate
bus cycles directly. Section 7.9.4.2.1, “Push and Store Buffers,” describes the associated
performance penalty.

1 The four-entry FIFO store buffer is enabled; to maximize performance, this buffer defers pending
imprecise-mode, write-through or cache-inhibited writes.

Precise-mode, cache-inhibited accesses always bypass the store buffer. Precise and imprecise

modes are described in Section 7.9.1.2, “Cache-Inhibited Accesses.”
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Table 7-4. CACR Field Descriptions (Continued)

Bits

Name

Description

28

DDPI

Disable CPUSHL invalidation.

0 Normal operation. A CPUSHL instruction causes the selected line to be pushed if modified, then
invalidated.

1 No clear operation. A CPUSHL instruction causes the selected line to be pushed if modified, then
left valid.

27

DHLCK

Half-data cache lock mode

0 Normal operation. The cache allocates the lowest invalid way. If all ways are valid, the cache
allocates the way pointed at by the counter and then increments this counter.

1 Half-cache operation. The cache allocates to the lower invalid way of levels 2 and 3; if both are
valid, the cache allocates to Way 2 if the high-order bit of the round-robin counter is zero;
otherwise, it allocates Way 3 and increments the round-robin counter. This locks the contents of
ways 0 and 1. Ways 0 and 1 are still updated on write hits and may be pushed or cleared by
specific cache push/invalidate instructions.

26-25

DDCM

Default data cache mode. For normal operations that do not hit in the RAMBARs, ROMBARSs, or
ACRs, this field defines the effective cache mode.

00 Cacheable write-through imprecise

01 Cacheable copyback

10 Cache-inhibited precise

11 Cache-inhibited imprecise

Precise and imprecise accesses are described in Section 7.9.1.2, “Cache-Inhibited Accesses.”

24

DCINVA

Data cache invalidate all. Writing a 1 to this bit initiates entire cache invalidation. Once invalidation
is complete, this bit automatically returns to O; it is not necessary to clear it explicitly. Note the caches
are not cleared on power-up or normal reset, as shown in Figure 7-4.

0 No invalidation is performed.

1 Initiate invalidation of the entire data cache. The cache controller sequentially clears V and M bits
in all sets. Subsequent data accesses stall until the invalidation is finished, at which point, this bit
is automatically cleared. In copyback mode, the cache should be flushed using a CPUSHL
instruction before setting this bit.

23

DDSP

Data default supervisor-protect. For normal operations that do not hit in the RAMBAR, ROMBAR,
or ACRs, this field defines supervisor-protection

0 Not supervisor protected

1 Supervisor protected. User operations cause a fault

22-20

Reserved, should be cleared.

19

BEC

Enable branch cache.
0 Branch cache disabled. This may be useful if code is unlikely to be reused.
1 Branch cache enabled.

18

BCINVA

Branch cache invalidate. Invalidation occurs when this bit is written as a 1. Note that branch caches
are not cleared on power-up or normal reset.

0 No invalidation is performed.

1 Initiate an invalidation of the entire branch cache.

17-16

Reserved, should be cleared.

15

IEC

Enable instruction cache
0 Instruction cache disabled. All instructions and tags in the cache are preserved.
1 Instruction cache enabled.

14

Reserved, should be cleared.

MCF548x Reference Manual, Rev. 3

7-20

Freescale Semiconductor



Cache Register Definition

Table 7-4. CACR Field Descriptions (Continued)

Bits

Name

Description

13

DNFB

Default cache-inhibited fill buffer

0 Fill buffer does not store cache-inhibited instruction accesses (16 or 32 bits).

1 Fill buffer can store cache-inhibited accesses. The buffer is used only for normal (TT = 0)
instruction reads of a cache-inhibited region. Instructions are loaded into the buffer by a burst
access (line fill). They stay in the buffer until they are displaced; subsequent accesses may not
appear on the external bus.

Setting DNFB can cause a coherency problem for self-modifying code. If a cache-inhibited access

uses the buffer while DNFB = 1, instructions remain valid in the buffer until a cache-invalidate-all

instruction, another cache-inhibited burst, or a miss that initiates a fill. A write to the line in the fill
goes to the external bus without updating or invalidating the buffer. Subsequent reads of that written
data are serviced by the fill buffer and receive stale information.

Note: Freescale discourages the use of self-modifying code.

12

IDPI

Instruction CPUSHL invalidate disable.
0 Normal operation. A CPUSHL instruction causes the selected line to be invalidated.
1 No clear operation. A CPUSHL instruction causes the selected line to be left valid.

11

IHLCK

Instruction cache half-lock.

0 Normal operation. The cache allocates to the lowest invalid way; if all ways are valid, the cache
allocates to the way pointed at by the round-robin counter and then increments this counter.

1 Half cache operation. The cache allocates to the lowest invalid way of ways 2 and 3; if both of
these ways are valid, the cache allocates to way 2 if the high-order bit of the round-robin counter
is zero; otherwise, it allocates way 3 and then increments the round-robin counter. This locks the
contents of ways 0 and 1. Ways 0 and 1 are still updated on write hits and may be pushed or
cleared by specific cache push/invalidate instructions.

10

IDCM

Instruction default cache mode. For normal operations that do not hitin the RAMBARSs or ACRs, this
field defines the effective cache mode.

0 Cacheable

1 Cache-inhibited

Reserved, should be cleared.

ICINVA

Instruction cache invalidate. Invalidation occurs when this bit is written as a 1. Note the caches are

not cleared on power-up or normal reset.

0 No invalidation is performed.

1 Initiate invalidation of instruction cache. The cache controller sequentially clears all V bits.
Subsequent local memory bus accesses stall until invalidation completes, at which point ICINVA
is cleared automatically without software intervention. For copyback mode, use CPUSHL before
setting ICINVA.

IDSP

Default instruction supervisor protection bit. For normal operations that do not hit in the RAMBAR,
ROMBAR, or ACRs, this field defines supervisor-protection.

0 Not supervisor protected

1 Supervisor protected. User operations cause a fault

Reserved, should be cleared.

EUSP

Enable USP. Enables the use of the user stack pointer.
0 USP disabled. Core uses a single stack pointer.
1 USP enabled. Core uses separate supervisor and user stack pointers.

DF

Disable FPU. Determines whether the FPU is enabled. See Section 6.1.1, “Overview.”
0 FPU enabled.
1 FPU disabled

3-0

Reserved, should be cleared.
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7.10.2 Access Control Registers (ACR0-ACR3)

The ACRs, Figure 7-9, assign control attributes, such as cache mode and write protection, to specified
memory regions. ACR0 and ACRI1 control data attributes; ACR2 and ACR3 control instruction attributes.
Registers are accessed with the MOVEC instruction with the Rc encodings in Figure 7-9.

For overlapping data regions, ACRO takes priority; ACR2 takes priority for overlapping instruction
regions. Data transfers to and from these registers are longword transfers.

Reset

Reg
Addr

Reset

Reg
Addr

NOTE

The MBAR region should be mapped as cache-inhibited through an ACR or
the CACR.

NOTE

ACRO-ACR3 is read/write by the debug module.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BA ADMSK

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ACRO: 0x004; ACR1: 0x005; ACR2: 0x006; ACR3: 0x007

15 14 13 12 11 10 8 6 5 3 2 1

E S 0 0 AMM| O 0 0 CM 0| SP w! 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACRO: 0x004; ACR1: 0x005; ACR2: 0x006; ACR3: 0x007

1 Reserved in ACR2 and ACR3.

Figure 7-9. Access Control Register Format (ACRn)

Table 7-5 describes ACRu# fields.

Table 7-5. ACRn Field Descriptions

Bits

Name

Description

31-24

BA

Base address. Compared with address bits A[31:24]. Eligible addresses that match are assigned
the access control attributes of this register.

23-16

ADMSK

Address mask. Setting a mask bit causes the corresponding address base bit to be ignored. The
low-order mask bits can be set to define contiguous regions larger than 16 Mbytes. The mask can
define multiple noncontiguous regions of memory.

15

Enable. Enables or disables the other ACRn bits.
0 Access control attributes disabled
1 Access control attributes enabled
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Table 7-5. ACRn Field Descriptions (Continued)

Bits Name Description

14-13 S Supervisor mode. Specifies whether only user or supervisor accesses are allowed in this address
range or if the type of access is a don’t care.

00 Match addresses only in user mode

01 Match addresses only in supervisor mode

1x Execute cache matching on all accesses

12-11 — Reserved, should be cleared.

10 AMM Address mask mode.

0 The ACR hit function allows control of a 16 Mbytes or greater memory region.

1 The upper 8 bits of the address and ACR are compared without a mask function. Address bits
[23:20] of the address and ACR are compared using ACR[19:16] as a mask, allowing control of
a 1-16 Mbyte memory region.

9-7 — Reserved; should be cleared.

6-5 CM Cache mode. Selects the cache mode and access precision. Precise and imprecise modes are
described in Section 7.9.1.2, “Cache-Inhibited Accesses.”

00 Cacheable, write-through

01 Cacheable, copyback

10 Cache-inhibited, precise

11 Cache-inhibited, imprecise

4 — Reserved, should be cleared.

3 SP Supervisor protect.

0 Indicates supervisor and user mode access allowed, reset value is 0

1 Indicates only supervisor access is allowed to this address space and attempted user mode
accesses generate an access error exception

2 w ACRO/ACR1 only. Write protect. Selects the write privilege of the memory region. ACR2[W] and
ACRB3[W] are reserved.

0 Read and write accesses permitted

1 Write accesses not permitted

1-0 — Reserved, should be cleared.

7.11 Cache Management

The cache can be enabled and configured by using a MOVEC instruction to access CACR. A hardware
reset clears CACR, disabling the cache and removing all configuration information; however, reset does
not affect the tags, state information, and data in the cache.

Set CACR[DCINVA,ICINVA] to invalidate the caches before enabling them.

The privileged CPUSHL instruction supports cache management by selectively pushing and invalidating
cache lines. The address register used with CPUSHL directly addresses the cache’s directory array. The
CPUSHL instruction flushes a cache line.

The value of CACR[DDPLIDPI] determines whether CPUSHL invalidates a cache line after it is pushed.
To push the entire cache, implement a software loop to index through all sets and through each of the four
lines within each set (a total of 512 lines for the data cache and 1024 lines for the instruction cache). The
state of CACR[DEC,IEC] does not affect the operation of CPUSHL or CACR[DCINVA,ICINVA].
Disabling a cache by setting CACR[IEC] or CACR[DEC] makes the cache nonoperational without
affecting tags, state information, or contents.
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The contents of An used with CPUSHL specify cache row and line indexes. This differs from the 68K
family where a physical address is specified. Figure 7-11 shows the An format for the data cache. The
contents of An used with CPUSHL specify cache row and line indexes.

Figure 7-10 shows the An format for the data cache.

31 13 12 4 3 0
Set Index Way Index
Figure 7-10. An Format (Data Cache)
Figure 7-11 shows the An format for the instruction cache.
31 13 12 4 3 0
Set Index Way Index

Figure 7-11. An Format (Instruction Cache)

The following code example flushes the entire data cache:

_cache disable:

nop
move.w
jsr
clr.1l
movec
movec
move.l
movec
rts

_cache flush:

setloop:

nop
moveq. 1l
moveq. 1l
move.l

cpushl
add.1l
addg.1l
cmpi.l
bne

moveq. 1l
addg.1l
move. 1l
cmpi.l
bne
rts

#0x2700, SR ;mask off IRQs

_cache_ flush ;flush the cache completely
do

d0, ACRO ;ACRO off

d0, ACR1 ;ACR1l off

#0x01000000,d0 ;Invalidate and disable cache
d0, CACR

;synchronize—flush store buffer

#0,d0 ;initialize way counter
#0,d1 ;initialize set counter
do, a0 ;initialize cpushl pointer
dc, (a0) ;push cache line a0
#0x0010, a0 ;increment set index by 1
#1,d1 ;increment set counter
#511,d1 ;are sets for this way done?
setloop

#0,d1 ;set counter to zero again
#1,d0 ;increment to next way

do, a0 ;set = 0, way = dO

#4,d0 ;flushed all the ways?
setloop

The following CACR loads assume the instruction cache has been invalidated, the default instruction
cache mode is cacheable, and the default data cache mode is copyback.
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dataCacheLoadAndLock:

move.l #0xa3080800,d0; enable and invalidate data cache
movec d0,cacr ; ... in the CACR

The following code preloads half of the data cache (16 Kbytes). It assumes a contiguous block of data is
to be mapped into the data cache, starting at a 0-modulo-16K address.

move.1l #1024,d0 ;256 16-byte lines in 16K space

lea data ,a0 ; load pointer defining data area
dataCacheLoop:

tst.b (a0) ;touch location + load into data cache

lea 16 (a0),a0;increment address to next line

subg. 1l #1,d0 ;decrement loop counter

bne.b dataCacheloop;if done, then exit, else continue

; A 16K region has been loaded into ways 0 and 1 of the 32K data cache. lock it!

move.l #0xaa088000,d0;set the data cache lock bit
movec d0,cacr ; ... in the CACR
rts

align 16

The following CACR loads assume the data cache has been invalidated, the default instruction cache mode
is cacheable and the default operand cache mode is copyback.

Note that this function must be mapped into a cache inhibited or SRAM space, or these text lines will be
prefetched into the instruction cache, possibly displacing some of the 8-Kbyte space being explicitly
fetched.

instructionCachelLoadAndLock:

move.l #0xa2088100,d0;enable and invalidate the instruction
movec d0,cacr ;cache in the CACR

The following code segments preload half of the instruction cache (8 Kbytes). It assumes a contiguous
block of data is to be mapped, starting at a 0-modulo-8K address

move. 1l #512,d0 ;512 16-byte lines in 8K space

lea code ,a0 ;load pointer defining code area
instCacheLoop:
intouch (a0) ;touch location + load into instruction cache

; Note in the assembler we use, there is no INTOUCH opcode. The following
; 1s used to produce the required binary representation

cpushl #nc, (a0) ;touch location + load into
;instruction cache

lea 16 (a0),a0;increment address to next line
subg.l #1,d0 ;decrement loop counter
bne.b instCachelLoop;if done, then exit, else continue
; A 8K region was loaded into levels 0 and 1 of the 16-Kbyte instruction cache. ; lock it!

move.l #0xa2088800,d0;set the instruction cache lock bit
movec d0,cacr ;in the CACR
rts
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7.12 Cache Operation Summary

This section gives operational details for the cache and presents instruction and data cache-line state
diagrams.

7.12.1 Instruction Cache State Transitions

Because the instruction cache does not support writes, it supports fewer operations than the data cache. As
Figure 7-12 shows, an instruction cache line can be in one of two states, valid or invalid. Modified state is
not supported. Transitions are labeled with a capital letter indicating the previous state and a number
indicating the specific case listed in Table 7-6. These numbers correspond to the equivalent operations on
data caches, described in Section 7.12.2, “Data Cache State Transitions.”

II5—ICINVA
I16—CPUSHL & IDPI
II7—CPUSHL & IDPI

IV1—CPU read miss
IV2—CPU read hit

IV7—CPUSHL & IDPI
11—CPU read miss

Invalid Valid
V=0 V=1

IV5—ICINVA
IV6—CPUSHL & IDPI

Figure 7-12. Instruction Cache Line State Diagram

Table 7-6 describes the instruction cache state transitions shown in Figure 7-12.
Table 7-6. Instruction Cache Line State Transitions

Current State
Access

Invalid (V = 0) Valid (V = 1)

Read miss |II1 |Read line from memory and update cache; | IV1 | Read new line from memory and update cache;
supply data to processor; supply data to processor; stay in valid state.
go to valid state.

Read hit [12 | Not possible IV2 | Supply data to processor;
stay in valid state.
Write miss | 113 | Not possible IV3 | Not possible
Write hit 114 | Not possible IV4 | Not possible
Cache 115 | No action; IV5 | No action;
invalidate stay in invalid state. go to invalid state.
Cache 116, | No action; IV6 | No action;
push 117 |stay in invalid state. go to invalid state.
IV7 | No action;

stay in valid state.
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7.12.2 Data Cache State Transitions

Using the V and M bits, the data cache supports a line-based protocol allowing individual cache lines to
be invalid, valid, or modified. To maintain memory coherency, the data cache supports both write-through
and copyback modes, specified by the corresponding ACR[CM], or CACR[DDCM] if no ACR matches.

Read or write misses to copyback regions cause the cache controller to read a cache line from memory into
the cache. If available, tag and data from memory update an invalid line in the selected set. The line state
then changes from invalid to valid by setting the V bit. If all lines in the row are already valid or modified,
the pseudo-round-robin replacement algorithm selects one of the four lines and replaces the tag and data.
Before replacement, modified lines are temporarily buffered and later copied back to memory after the
new line has been read from memory.

Figure 7-13 shows the three possible data cache line states and possible processor-initiated transitions for
memory configured as copyback. Transitions are labeled with a capital letter indicating the previous state
and a number indicating the specific case; see Table 7-7.

CI5—DCINVA
Cl6—CPUSHL & DDPI
CI7—CPUSHL & DDPI

CV1—CPU read miss
CV2—CPU read hit
CV7—CPUSHL & DDPI

CI1—CPU read miss

CV5—DCINVA

CV6—CPUSHL & DDPI
CI3—CPU

ite mi
write miss CD1—CPU

read miss,
CD7—CPUSH
CD5—DCINVA

CD6—CPUSHL & DDPI

CV3—CPU write miss
CV4—CPU write hit

CD2—CPU read hit
CD3—CPU write miss
CD4—CPU write hit

Figure 7-13. Data Cache Line State Diagram—Copyback Mode
Figure 7-14 shows the two possible states for a cache line in write-through mode.

WV1—CPU read miss
WV2—CPU read hit
WV3—CPU write miss
WV4—CPU write hit
WI1—CPU read miss WV7—CPUSHL & DDPI

Invalid Valid
V=0 V=1
WV5—DCINVA
WV6—CPUSHL & DDPI

WI3—CPU write miss
WI5—DCINVA
WI6—CPUSHL & DDPI

Figure 7-14. Data Cache Line State Diagram—Write-Through Mode

Table 7-7 describes data cache line transitions and the accesses that cause them.
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Table 7-7. Data Cache Line State Transitions

Current State
Access
Invalid (V = 0) Valid (V=1, M =0) Modified (V=1,M=1)
Read (C,W)I1 | Read line from (C,W)V1 | Read new line from CD1 | Push modified line to buffer;
miss memory and update memory and update read new line from memory and
cache; cache; update cache;
supply data to supply data to processor; supply data to processor;
processor; stay in valid state. write push buffer contents to
go to valid state. memory;
go to valid state.
Read hit | (C,W)I2 | Not possible. (C,W)V2 | Supply data to processor; | CD2 | Supply data to processor;
stay in valid state. stay in modified state.
Write CI3 Read line from CV3 Read new line from CD3 | Push modified line to buffer;
miss memory and update memory and update read new line from memory and
(copy- cache; cache; update cache;
back) write data to cache; write data to cache; write push buffer contents to
go to modified state. go to modified state. memory;
stay in modified state.
Write WI3 Write data to memory; | WV3 Write data to memory; WD3 | Write data to memory;
miss stay in invalid state. stay in valid state. stay in modified state.
(write- Cache mode changed for the
through) region corresponding to this
line. To avoid this state, execute
a CPUSHL instruction or set
CACRIDCINVA,ICINVA] before
switching modes.
Write hit | Cl4 Not possible. Cv4 Write data to cache; CD4 | Write data to cache;
(copy- go to modified state. stay in modified state.
back)
Write hit | WI4 Not possible. Wwv4 Write data to memory and | WD4 | Write data to memory and to
(write- to cache; cache;
through) stay in valid state. go to valid state.
Cache mode changed for the
region corresponding to this
line. To avoid this state, execute
a CPUSHL instruction or set
CACRIDCINVA,ICINVA] before
switching modes.
Cache (C,W)I5 | No action; (C,W)V5 | No action; CD5 | No action (modified data lost);
invalidate stay in invalid state. go to invalid state. go to invalid state.
Cache (C,W)I6 | No action; (C,W)V6 | No action; CD6 | Push modified line to memory;
push (C,W)I7 | stay in invalid state. go to invalid state. go to invalid state.
(C,W)V7 | No action; CD7 | Push modified line to memory;
stay in valid state. go to valid state.

The following tables present the same information as Table 7-7, organized by the current state of the cache
line. In Table 7-8 the current state is invalid.
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Table 7-8. Data Cache Line State Transitions (Current State Invalid)

Access Response

Read miss (C,W)I1 | Read line from memory and update cache;
supply data to processor;
go to valid state.

Read hit (C,W)I2 | Not possible

Write miss (copyback) CI3 Read line from memory and update cache;
write data to cache;
go to modified state.

Write miss (write-through) | WI3 Write data to memory;
stay in invalid state.

Write hit (copyback) Cl4 Not possible

Write hit (write-through) Wi4 Not possible

Cache invalidate (C,W)I5 | No action;
stay in invalid state.

Cache push (C,W)I6 | No action;
stay in invalid state.

Cache push (C,W)I7 | No action;
stay in invalid state.

In Table 7-9 the current state is valid.
Table 7-9. Data Cache Line State Transitions (Current State Valid)

Access Response

Read miss (C,W)V1 | Read new line from memory and update cache;
supply data to processor; stay in valid state.

Read hit (C,W)V2 | Supply data to processor;
stay in valid state.

Write miss (copyback) Cv3 Read new line from memory and update cache;
write data to cache;
go to modified state.

Write miss (write-through) | WV3 Write data to memory;
stay in valid state.

Write hit (copyback) Cv4 Write data to cache;
go to modified state.

Write hit (write-through) wv4 Write data to memory and to cache;
stay in valid state.

Cache invalidate (C,W)V5 | No action;
go to invalid state.

Cache push (C,W)V6 | No action;
go to invalid state.

Cache push (C,W)V7 | No action;
stay in valid state.
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In Table 7-10 the current state is modified.
Table 7-10. Data Cache Line State Transitions (Current State Modified)

Access Response
Read miss CD1 | Push modified line to buffer;
read new line from memory and update cache;
supply data to processor;
write push buffer contents to memory;
go to valid state.
Read hit CD2 | Supply data to processor;
stay in modified state.
Write miss CD3 | Push modified line to buffer;
(copyback) read new line from memory and update cache;
write push buffer contents to memory;
stay in modified state.
Write miss WDS3 | Write data to memory;
(write-through) stay in modified state.
Cache mode changed for the region corresponding to this line. To avoid this state, execute
a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching modes.
Write hit CD4 | Write data to cache;
(copyback) stay in modified state.
Write hit WD4 | Write data to memory and to cache;
(write-through) go to valid state.
Cache mode changed for the region corresponding to this line. To avoid this state, execute
a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching modes.
Cache invalidate CD5 | No action (modified data lost);
go to invalid state.
Cache push CD6 | Push modified line to memory;
go to invalid state.
Cache push CD7 | Push modified line to memory;

go to valid state.

7.13 Cache Initialization Code
The following example sets up the cache for FLASH or ROM space only.

move.l

movec

move.l #0xFF00C000,DO

movec

DO,

#0xA30C8100, D0

DO, ACRO

//enable cache, invalidate it,

//default mode is cache-inhibited imprecise

CACR

//cache FLASH space,
//ignore FC2,

enable,
cacheable, writethrough
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Chapter 8
Debug Support

8.1

Introduction

This chapter describes the Revision D enhanced hardware debug support in the ColdFire Version 4. This
revision of the ColdFire debug architecture encompasses earlier revisions. An expanded set of debug
functionality is defined as Revision B (or Rev. B). The further enhanced debug architecture implemented
in the Version 4 ColdFire is known as Revision C (or Rev. C). The addition of the memory management
unit (MMU) in the Version 4e ColdFire requires corresponding enhancements to the ColdFire debug
functionality, resulting in Revision D.

8.1.1

Overview

The debug module interface is shown in Figure 8-1.

High-speed

ColdFire CPU Core <_\_> local bus

'

Debug Module

T Trace Port

Control PSTDDATA[7:0] Communication Port
BKPT PSTCLK DSCLK, DSI, DSO

A

Figure 8-1. Processor/Debug Module Interface

Debug support is divided into three areas:

Real-time trace support: The ability to determine the dynamic execution path through an
application is fundamental for debugging. The ColdFire solution implements an 8-bit parallel
output bus that reports processor execution status and data to an external BDM emulator system.
See Section 8.3, “Real-Time Trace Support.”

Background debug mode (BDM): Provides low-level debugging in the ColdFire processor
complex. In BDM, the processor complex is halted and a variety of commands can be sent to the
processor to access memory and registers. The external BDM emulator uses a three-pin, serial,
full-duplex channel. See Section 8.5, “Background Debug Mode (BDM),” and Section 8.4,
“Memory Map/Register Definition.”

Real-time debug support: BDM requires the processor to be halted, which many real-time
embedded applications cannot do. Debug interrupts let real-time systems execute a unique service
routine that can quickly save key register and variable contents and return the system to normal
operation without halting. External development systems can access saved data, because the
hardware supports concurrent operation of the processor and BDM-initiated commands. In
addition, the option is provided to allow interrupts to occur. See Section 8.6, “Real-Time Debug
Support.”

The Version 2 ColdFire core implemented the original debug architecture, now called Revision A. Based
on feedback from customers and third-party developers, enhancements have been added to succeeding
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generations of ColdFire cores. For Revision A, CSR[HRL] is 0. See Section 8.4.2, “Configuration/Status
Register (CSR).”

The Version 3 core implements Revision B of the debug architecture, offering more flexibility for
configuring the hardware breakpoint trigger registers and removing the restrictions involving concurrent
BDM processing while hardware breakpoint registers are active. For Revision B, CSR[HRL] is 1.

Revision C of the debug architecture more than doubles the on-chip breakpoint registers and provides an
ability to interrupt debug service routines. For Revision C, CSR[HRL] is 2.

Differences between Revision B and C are summarized as follows:

» Debug Revision B has separate PST[3:0] and DDATA[3:0] signals.

» Debug Revision C adds breakpoint registers and supports normal interrupt request service during
debug. It combines debug signals into PSTDDATA[7:0].

The addition of the memory management unit (MMU) to the baseline architecture requires corresponding
enhancements to the ColdFire debug functionality, resulting in Revision D. For Revision D, the revision
level bit, CSR[HRL], is 3.

With software support, the MMU can provide a demand-paged, virtual address environment. To support
debugging in this virtual environment, the debug enhancements are primarily related to the expansion of
the virtual address to include the 8-bit address space identifier (ASID). Conceptually, the virtual address
is expanded to a 40-bit value: the 8-bit ASID plus the 32-bit address.

The expansion of the virtual address affects two major debug functions:

» The ASID is optionally included in the specification of the hardware breakpoint registers. As an
example, the four PC breakpoint registers are each expanded by 8 bits, so that a specific ASID
value may be programmed as part of the breakpoint instruction address. Likewise, each operand
address/data breakpoint register is expanded to include an ASID value. Finally, new control
registers define if and how the ASID is to be included in the breakpoint comparison trigger logic.

* The debug module implements the concept of ownership trace in which the ASID value may be
optionally displayed as part of the real-time trace functionality. When enabled, real-time trace
displays instruction addresses on every change-of-flow instruction that is not absolute or
PC-relative. For Rev. D, this instruction address display optionally includes the contents of the
ASID, thus providing the complete instruction virtual address on these instructions.
Additionally when a Sync_PC serial BDM command is loaded from the external development
system, the processor optionally displays the complete virtual instruction address, including the
8-bit ASID value.

In addition to these ASID-related changes, the new MMU control registers are accessible by using serial
BDM commands. The same BDM access capabilities are also provided for the EMAC and FPU
programming models.

Finally, a new serial BDM command is implemented (FORCE_TA) to assist debugging when a software
error generates an incorrect memory address that hangs the external bus. The new BDM command
attempts to break this condition by forcing a bus termination.

8.2  Signal Descriptions

Table 8-1 describes debug module signals. All ColdFire debug signals are unidirectional and related to a
rising edge of the processor core’s clock signal. The standard 26-pin debug connector is shown in
Section 8.9, “Freescale-Recommended BDM Pinout.”
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Signal Descriptions

Table 8-1. Debug Module Signals

Signal Description

DSCLK Development Serial Clock-Internally synchronized input. (The logic level on DSCLK is validated
if it has the same value on two consecutive rising bus clock edges.) Clocks the serial
communication port to the debug module during packet transfers. Maximum frequency is
PSTCLK/5. At the synchronized rising edge of DSCLK, the data input on DSl is sampled and
DSO changes state.

DSl Development Serial Input -Internally synchronized input that provides data input for the serial
communication port to the debug module, once the DSCLK has been seen as high (logic 1).

DSO Development Serial Output -Provides serial output communication for debug module responses.
DSO is registered internally. The output is delayed from the validation of DSCLK high.

BKPT Breakpoint - Input used to request a manual breakpoint. Assertion of BKPT puts the processor
into a halted state after the current instruction completes. Halt status is reflected on processor
status/debug data signals (PSTDDATA[7:0]) as the value OxF. If CSR[BKD] is set (disabling

normal BKPT functionality), asserting BKPT generates a debug interrupt exception in the
processor.

PSTCLK Processor Status Clock - Half-speed version of the processor clock. Its rising edge appears in the
center of the two-processor-cycle window of valid PSTDDATA output. See Figure 8-2. PSTCLK
indicates when the development system should sample PSTDDATA values.

If real-time trace is not used, setting CSR[PCD] keeps PSTCLK and PSTDDATA outputs from
toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing
CSR[PCD], although the external development systems must resynchronize with the PSTDDATA
output.

PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or OxF) occurs during
system reset exception processing. Table 8-4 describes PST values.

PSTDDATA[7:0] Processor Status/Debug Data - These outputs, which change on the negative edge of PSTCLK,
indicate both processor status and captured address and data values and are discussed more
thoroughly in Section 8.2.1, “Processor Status/Debug Data (PSTDDATA[7:0])”

Figure 8-2 shows PSTCLK timing with respect to PSTDDATA.

PSTCLK

STDDATA !>< |>< D< D< |><

Al -

Figure 8-2. PSTCLK Timing

8.2.1 Processor Status/Debug Data (PSTDDATA[7:0])

Processor status data outputs are used to indicate both processor status and captured address and data
values. They operate at half the processor’s frequency. Given that real-time trace information appears as a
sequence of 4-bit data values, there are no alignment restrictions; that is, the processor status (PST) values
and operands may appear on either nibble of PSTDDATA[7:0]. The upper nibble (PSTDDATA[7:4]) is the
more significant and yields values first.

CSR controls capturing of data values to be presented on PSTDDATA. Executing the WDDATA
instruction captures data that is displayed on PSTDDATA too. These signals are updated each processor
cycle and display two values at a time for two processor clock cycles. Table 8-2 shows the PSTDDATA
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output for the processor’s sequential execution of single-cycle instructions (A, B, C, D...). Cycle counts
are shown relative to processor frequency. These outputs indicate the current processor pipeline status and
are not related to the current bus transfer.

Table 8-2. PSTDDATA: Sequential Execution of Single-Cycle Instructions

Cycles PSTDDATA[7:0]

T+0, T+1 {PST for A, PST for B}
T+2, T+3 {PST for C, PST for D}
T+4, T+5 {PST for E, PST for F}

The signal timing for the example in Table 8-2 is shown in Figure 8-3.

T+0 T+1 T+2 T+3 T+4 T+5 T+6

Processor Clock

PSTCLK

PSTDDATA >< {A, B} >< {C, D} >< {E, F} ><

Figure 8-3. PSTDDATA: Single-Cycle Instruction Timing

Table 8-3 shows the case where a PSTDDATA module captures a memory operand on a simple load
instruction: mov.l <mem>,Rx.

Table 8-3. PSTDDATA: Data Operand Captured

Cycle PSTDDATA[7:0]
T {PST for mov.l, PST marker for captured operand) = {Ox1, 0xB}

T+1 {Ox1, OxB}

T+2 {Operand[3:0], Operand[7:4]}

T+3 {Operand[3:0], Operand[7:4]}

T+4 {Operand[11:8], Operand[15:12]}

T+5 {Operand[11:8], Operand[15:12]}

T+6 {Operand[19:16], Operand[23:20]}

T+7 {Operand[19:16], Operand[23:20]}

T+8 {Operand[27:24], Operand[31:28]}

T+9 {Operand[27:24], Operand[31:28]}

T+10 (PST for next instruction)

T+11 (PST for next instruction,...)
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Real-Time Trace Support

NOTE

A PST marker and its data display are sent contiguously. Except for this
transmission, the IDLE status (0x0) can appear anytime. Again, given that
real-time trace information appears as a sequence of 4-bit values, there are
no alignment restrictions. That is, PST values and operands may appear on
either nibble of PSTDDATA.

8.3 Real-Time Trace Support

Real-time trace, which defines the dynamic execution path, is a fundamental debug function. The ColdFire
solution is to include a parallel output port providing encoded processor status and data to an external
development system. This 8-bit port is partitioned into two consecutive 4-bit nibbles. Each nibble can
either transmit information concerning the processor’s execution status (PST) or debug data (DDATA).
The processor status may not be related to the current bus transfer, due to the decoupling FIFOs.

External development systems can use PSTDDATA outputs with an external image of the program to
completely track the dynamic execution path. This tracking is complicated by any change in flow,
especially when branch target address calculation is based on the contents of a program-visible register
(variant addressing). PSTDDATA outputs can be configured to display the target address of such
instructions in sequential nibble increments across multiple processor clock cycles, as described in
Section 8.3.1, “Begin Execution of Taken Branch (PST = 0x5).” Four 32-bit storage elements form a FIFO
buffer connecting the processor’s high-speed local bus to the external development system through
PSTDDATA[7:0]. The buffer captures branch target addresses and certain data values for eventual display
on the PSTDDATA port, two nibbles at a time starting with the least significant bit (Isb).

Execution speed is affected only when three storage elements contain valid data to be dumped to the
PSTDDATA port. This occurs only when two values are captured simultaneously in a read-modify-write
operation. The core stalls until two FIFO entries are available.

Table 8-4 shows the encoding of these signals.
Table 8-4. Processor Status Encoding

PSTI[3:0]
Definition

Hex Binary

0x0 0000 Continue execution. Many instructions execute in one processor cycle. If an instruction requires
more clock cycles, subsequent clock cycles are indicated by driving PSTDDATA outputs with this
encoding.

0x1 0001 Begin execution of one instruction. For most instructions, this encoding signals the first clock cycle
of an instruction’s execution. Certain change-of-flow opcodes, plus the PULSE and WDDATA
instructions, generate different encodings.

0x2 0010 Begin execution of two instructions. For superscalar instruction dispatches, this encoding signals the
first clock cycle of the simultaneous instructions’ execution.

0x3 0011 Entry into user-mode. Signaled after execution of the instruction that caused the ColdFire processor

to enter user mode. If the display of the ASID is enabled (CSR[3] = 1), the following occurs:

¢ The 8-bit ASID follows the instruction address; that is, the PSTDDATA sequence is {0x3, 0x5,
marker, instruction address, 0x8, ASID}, where 0x8 is the ASID data marker.

* Whenever the current ASID is loaded by the privileged MOVEC instruction, the ASID is displayed
on PSTDDATA. The resulting PSTDDATA sequence for the MOVEC instruction is then {0x1, 0x8,
ASID}, where the 0x8 is the data marker for the ASID.
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Table 8-4. Processor Status Encoding (Continued)

PST[3:0]

Definition
Hex Binary

0x4 0100 Begin execution of PULSE and WDDATA instructions. PULSE defines logic analyzer triggers for
debug or performance analysis. WDDATA lets the core write any operand (byte, word, or longword)
directly to the PSTDDATA port, independent of debug module configuration. When WDDATA is
executed, a value of Ox4 is signaled, followed by the appropriate marker, and then the data transfer
on the PSTDDATA port. Transfer length depends on the WDDATA operand size.

0x5 0101 Begin execution of taken branch or SYNC_PC command. For some opcodes, a branch target
address may be displayed on PSTDDATA depending on the CSR settings. CSR also controls the
number of address bytes displayed, indicated by the PST marker value preceding the DDATA nibble
that begins the data output. See Section 8.3.1, “Begin Execution of Taken Branch (PST = 0x5).” Also
indicates that the SYNC_PC command has been issued.

0x6 0110 Begin execution of instruction plus a taken branch. The processor completes execution of a taken
conditional branch instruction and simultaneously starts executing the target instruction. This is
achieved through branch folding.

0x7 0111 Begin execution of return from exception (RTE) instruction.

0x8-0xB | 1000-1011 | Indicates the number of bytes to be displayed on the DDATA port on subsequent clock cycles. The
value is driven onto the PSTDDATA port one cycle before the data is displayed.

0x8 Begin 1-byte transfer on PSTDDATA.

0x9 Begin 2-byte transfer on PSTDDATA.

O0xA Begin 3-byte transfer on PSTDDATA.

0xB Begin 4-byte transfer on PSTDDATA.

0xC 1100 Normal exception processing. Exceptions that enter emulation mode (debug interrupt or optionally
trace) generate a different encoding, as described below. Because the 0xC encoding defines a
multiple-cycle mode, PSTDDATA outputs are driven with 0xC until exception processing completes.

0xD 1101 Emulator mode exception processing. Displayed during emulation mode (debug interrupt or
optionally trace). Because this encoding defines a multiple-cycle mode, PSTDDATA outputs are
driven with OxD until exception processing completes.

OxE 1110 A breakpoint state change causes this encoding to assert for one cycle only followed by the trigger
status value. If the processor stops waiting for an interrupt, the encoding is asserted for multiple
cycles. See Section 8.3.2, “Processor Stopped or Breakpoint State Change (PST = OxE).”

OxF 1111 Processor is halted. Because this encoding defines a multiple-cycle mode, the PSTDDATA outputs
display OxF until the processor is restarted or reset. (see Section 8.5.1, “CPU Halt”)

8.3.1 Begin Execution of Taken Branch (PST = 0x5)

PST is 0x5 when a taken branch is executed. For some opcodes, a branch target address may be displayed
on PSTDDATA depending on the CSR settings. CSR also controls the number of address bytes displayed,
which is indicated by the PST marker value immediately preceding the PSTDDATA nibble that begins the
data output.

Multiple byte DDATA values are displayed in least-to-most-significant order. The processor captures only
those target addresses associated with taken branches which use a variant addressing mode, that is, RTE
and RTS instructions, JMP and JSR instructions using address register indirect or indexed addressing
modes, and all exception vectors.
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The simplest example of a branch instruction using a variant address is the compiled code for a C language
case statement. Typically, the evaluation of this statement uses the variable of an expression as an index
into a table of offsets, where each offset points to a unique case within the structure. For such
change-of-flow operations, the V4 microarchitecture uses the debug pins to output the following sequence
of information on two successive processor clock cycles:

1. Use PSTDDATA (0x5) to identify that a taken branch is executed.

2. Optionally signal the target address to be displayed sequentially on the PSTDDATA pins.

Encodings 0x9—0xB identify the number of bytes displayed.

3. The new target address is optionally available on subsequent cycles using the PSTDDATA port.
The number of bytes of the target address displayed on this port is configurable (2, 3, or 4 bytes,
where the encoding is 0x9, 0xA, and 0xB, respectively).

Another example of a variant branch instruction would be a JMP (A0) instruction. Figure 8-4 shows when
the PSTDDATA outputs that indicate when a JMP (A0) executed, assuming the CSR was programmed to
display the lower 2 bytes of an address.

Processor Clock

PSTCLK

PSTDDATA >< 0x59 >< A0[3-0,7—-4] >< A0[11-8,15-12] ><
Figure 8-4. Example JMP Instruction Output on PSTDDATA

PSTDDATA is driven two nibbles at a time with a 0x59; 0x5 indicates a taken branch and the marker value
0x9 indicates a 2-byte address. Thus, the subsequent 4 nibbles display the lower 2 bytes of address register
A0 in least-to-most-significant nibble order. The PSTDDATA output after the JMP instruction continues
with the next instruction.

8.3.2 Processor Stopped or Breakpoint State Change (PST = OxE)

The OxE encoding is generated either as a one- or multiple-cycle issue as follows:

*  When the core is stopped by a STOP instruction, this encoding appears in multiple-cycle format.
The ColdFire processor remains stopped until an interrupt occurs; thus, PSTDDATA outputs
display OxE until stopped mode is exited.

* When a breakpoint status change is to be output on PSTDDATA, OxE is displayed for one cycle,
followed immediately with the 4-bit value of the current trigger status, where the trigger status is
left justified rather than in the CSR[BSTAT] description. Section 8.4.2, “Configuration/Status
Register (CSR),” shows that status is right justified. That is, the displayed trigger status on
PSTDDATA after a single OxE is as follows:

— 0x0 = no breakpoints enabled

— 0x2 = waiting for level-1 breakpoint
— 0x4 = level-1 breakpoint triggered
— OxA = waiting for level-2 breakpoint
— 0xC = level-2 breakpoint triggered

Thus, 0XE can indicate multiple events, based on the next value, as Table 8-5 shows.
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Table 8-5. OxE Status Posting

PSTDDATA Stream Includes Result
{OxE, 0x2} Breakpoint state changed to waiting for level-1 trigger
{OxE, 0x4} Breakpoint state changed to level-1 breakpoint triggered
{OxE, OxA} Breakpoint state changed to waiting for level-2 trigger
{OxE, 0xC} Breakpoint state changed to level-2 breakpoint triggered
{OxE, OxE} Stopped mode.

8.3.3 Processor Halted (PST = 0xF)

PST is OxF when the processor is halted (see Section 8.5.1, “CPU Halt”). Because this encoding defines a
multiple-cycle mode, the PSTDDATA outputs display OxF until the processor is restarted or reset.
Therefore, PSTDDATA[7:0] continuously are OxFF.

NOTE

HALT can be distinguished from a data output OxFF by counting OxFF
occurrences on PSTDDATA. Because data always follows a marker (0x8,
0x9, 0xA, or 0xB), the longest occurrence in PSTDDATA of OxFF in a data
output is four.

Two scenarios exist for data OxFFFF_FFFF:

* The B marker occurs on the most-significant nibble of PSTDDATA with the data of OxFF
following:

PSTDDATA[7:0]

0xBF

OxFF

OxFF

OxFF

OxFX (X indicates that the next PST value is guaranteed to not be 0xF.)

» The B marker occurs on the least-significant nibble of PSTDDATA with the data of OxFF
following:
PSTDDATA[7:0]
0xYB
OxFF
OxFF
OxFF
OxFF
0xXY (X indicates the PST value is guaranteed not to be OxF, and Y signifies a PSTDDATA
value that doesn’t affect the OXFF count.)

NOTE

As the result of the above, a count of at least nine or more sequential single
OxF wvalues or five or more sequential OxFF values indicates the HALT
condition.
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8.4 Memory Map/Register Definition

In addition to the existing BDM commands that provide access to the processor’s registers and the memory
subsystem, the debug module contains 19 registers to support the required functionality. These registers
are also accessible from the processor’s supervisor programming model by executing the WDEBUG
instruction (write only). Thus, the breakpoint hardware in the debug module can be read or written by the
external development system using the debug serial interface or written by the operating system running
on the processor core. Software is responsible for guaranteeing that accesses to these resources are
serialized and logically consistent. Hardware provides a locking mechanism in the CSR to allow the
external development system to disable any attempted writes by the processor to the breakpoint registers
(setting CSR[IPW]). BDM commands must not be issued if the WDEBUG instruction is used to access
debug module registers or the resulting behavior is undefined.

These registers, shown in Figure 8-5, are treated as 32-bit quantities, regardless of the number of
implemented bits.

31 15 7 0
| | | | AATR  Address attribute trigger register
31 15 0
ABLR  Address low breakpoint register
ABHR  Address high breakpoint register
31 15 7 0
| | | | AATR1 Address 1 attribute trigger register
31 15 0
ABLR1 Address low breakpoint 1 register
ABHR1 Address high breakpoint 1 register
31 15 7 0
| | | BAAR  BDM address attributes register
31 15 0
| | | CSR Configuration/status register
31 15 0
DBR Data breakpoint register
DBMR Data breakpoint mask register
31 15 0
| DBR1 Data breakpoint 1 register
DBMR1 Data breakpoint mask 1 register
a4 |15 0
PBR PC breakpoint register
PBR1 PC breakpoint 1 register
PBR2 PC breakpoint 2 register
PBR3  PC breakpoint 3 register
PBMR PC breakpoint mask register
31 15 0
| | | TDR Trigger definition register
31 15 0
| [ | XTDR  Extended trigger definition register

Note: Each debug register is accessed as a 32-bit register; shaded fields above are not used (don’t care).
All debug control registers are writable from the external development system or the CPU via the WDEBUG
instruction.
CSR is write-only from the programming model. It can be read from and written to through the BDM port.
CSR is accessible in supervisor mode as debug control register 0x00 using the WDEBUG instruction and

Figure 8-5. Debug Programming Model
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The registers in Table 8-7 are accessed through the BDM port by BDM commands, WDMREG and RDMREG,
described in Section 8.5.3.3, “Command Set Descriptions.” These commands contain a 5-bit field, DRc,
that specifies the register, as shown in Table 8-6.

Table 8-6. BDM/Breakpoint Registers

DRc[4-0] Register Name Abbreviation Initial State S:cat;:nl
0x00 Configuration/status register" CSR 0x0020_0000 | 8.4.2/8-11
0x01-0x05 | Reserved — — —
0x04 PC breakpoint ASID control PBAC — 8.4.3/8-14
0x05 BDM address attribute register BAAR 0x0000_0005 | 8.4.4/8-15
0x06 Address attribute trigger register AATR 0x0000_0005 | 8.4.5/8-16
0x07 Trigger definition register TDR 0x0000_0000 | 8.4.6/8-17
0x08 Program counter breakpoint register PBR — 8.4.7/8-20
0x09 Program counter breakpoint mask register PBMR — 8.4.7/8-20
0x0A-0x0B | Reserved — — —
0x0C Address breakpoint high register ABHR — 8.4.8/8-21
0x0D Address breakpoint low register ABLR — 8.4.8/8-21
O0x0E Data breakpoint register DBR — 8.4.9/8-22
O0xOF Data breakpoint mask register DBMR — 8.4.9/8-22
0x10-0x153 | Reserved — — —
0x14 PC breakpoint ASID register PBASID — 8.4.10/8-24
0x15 Reserved — — —
0x16 Address attribute trigger register 1 AATRA1 0x0000_0005 | 8.4.5/8-16
0x17 Extended trigger definition register XTDR 0x0000_0000 | 8.4.11/8-25
0x18 Program counter breakpoint 1 register PBR1 0x0000_0000 | 8.4.7/8-20
0x19 Reserved — — —
Ox1A Program counter breakpoint register 2 PBR2 0x0000_0000 | 8.4.7/8-20
0x1B Program counter breakpoint register 3 PBR3 0x0000_0000 | 8.4.7/8-20
0x1C Address high breakpoint register 1 ABHR1 — 8.4.8/8-21
0x1D Address low breakpoint register 1 ABLR1 — 8.4.8/8-21
Ox1E Data breakpoint register 1 DBR1 — 8.4.9/8-22
Ox1F Data breakpoint mask register 1 DBMR1 — 8.4.9/8-22

1 CSRis write-only from the programming model. It can be read or written through the BDM port using the
RDMREG and WDMREG commands.

These registers are also accessible from the processor’s supervisor programming model through the
execution of the WDEBUG instruction. Thus, the external development system and the operating system
running on the processor core can access the breakpoint hardware. It is the responsibility of the software
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to guarantee that all accesses to these resources are serialized and logically consistent. The hardware
provides a locking mechanism in the CSR to allow the external development system to disable any
attempted writes by the processor to the breakpoint registers (setting [PW = 1). BDM commands must not
be issued if the ColdFire processor is accessing debug module registers with the WDEBUG instruction or
the resulting behavior is undefined.

The ColdFire debug architecture supports a number of hardware breakpoint registers, that can be
configured into single- or double-level triggers based on the PC or operand address ranges with an optional
inclusion of specific data values. With the addition of the MMU capabilities, the breakpoint specifications
must be expanded to optionally include the address space identifier (ASID) in these user-programmable
virtual address triggers.

The core includes four PC breakpoint triggers and two sets of operand address breakpoint triggers, each
with two independent address registers (to allow specification of a range) and a data breakpoint with
masking capabilities. Core breakpoint triggers are accessible through the serial BDM interface or written
through the supervisor programming model using the WDEBUG instruction.

Two ASID-related registers (PBAC and PBASID) are added for the PC breakpoint qualification, and two
existing registers (AATR and AATR1) are expanded for the address breakpoint qualification.

8.4.1 Revision A Shared Debug Resources

In the Revision A implementation of the debug module, certain hardware structures are shared between
BDM and breakpoint functionality, as shown in Table 8-7.

Table 8-7. Rev. A Shared BDM/Breakpoint Hardware

Register BDM Function Breakpoint Function

AATR Bus attributes for all memory commands | Attributes for address breakpoint

ABHR Address for all memory commands Address for address breakpoint

DBR Data for all BDM write commands Data for data breakpoint

Thus, loading a register to perform a specific function that shares hardware resources is destructive to the
shared function. For example, a BDM command to access memory overwrites an address breakpoint in
ABHR. A BDM write command overwrites the data breakpoint in DBR.

Revision B added hardware registers to eliminate these shared functions. The BAAR is used to specify bus
attributes for BDM memory commands and has the same format as the LSB of the AATR. Note that the
registers containing the BDM memory address and the BDM data are not program visible.

8.4.2 Configuration/Status Register (CSR)

The configuration/status register (CSR) defines the debug configuration for the processor and memory
subsystem and contains status information from the breakpoint logic. CSR is write-only from the
programming model. CSR is accessible in supervisor mode as debug control register 0x00 using the
WDEBUG instruction and through the BDM port using the RDMREG and WDMREG commands. It can
be read from and written to through the BDM port.

MCF548x Reference Manual, Rev. 3

Freescale Semiconductor 8-11



R

Reset

Reset

Reg
Addr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
BSTAT FOF | TRG | HALT BKPT HRL 0 |BKDO|PCDO | IPWO
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
15 14 13 12 11 10 9 8 6 4 3 1 0
MAP |TRC| EMU DDC UHE BTB O |[NPL| O |SSM|OTE| O 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CPU + 0x00

Figure 8-6. Configuration/Status Register (CSR)

Table 8-8 describes CSR fields.

Table 8-8. CSR Field Descriptions

Bits

Name

Description

31-28

BSTAT

Breakpoint status. Provides read-only status information concerning hardware breakpoints. Also
output on PSTDDATA when it is not displaying PST or other processor data. BSTAT is cleared by a
TDR or XTDR write or by a CSR read when either a level-2 breakpoint is triggered or a level-1
breakpoint is triggered and the level-2 breakpoint is disabled.

0000 No breakpoints enabled

0001 Waiting for level-1 breakpoint

0010 Level-1 breakpoint triggered

0101 Waiting for level-2 breakpoint

0110 Level-2 breakpoint triggered

27

FOF

Fault-on-fault. If FOF is set, a catastrophic halt occurred and forced entry into BDM.

26

TRG

Hardware breakpoint trigger. If TRG is set, a hardware breakpoint halted the processor core and
forced entry into BDM. Reset, and the debug GO command clear TRG.

25

HALT

Processor halt. If HALT is set, the processor executed a HALT and forced entry into BDM. Reset,
and the debug GO command clear HALT.

24

BKPT

Breakpoint assert. If BKPT is set, BKPT is asserted, forcing the processor into BDM. Reset, and
the debug GO command clear BKPT.

23-20

HRL

Hardware revision level. Indicates the level of debug module functionality. An emulator could use
this information to identify the level of functionality supported.

0000 Initial debug functionality (Revision A)

0001 Revision B

0010 Revision C

0011 Revision D

19

Reserved, should be cleared.

MCF548x Reference Manual, Rev. 3

Freescale Semiconductor



Memory Map/Register Definition

Table 8-8. CSR Field Descriptions (Continued)

Bits

Name

Description

18

BKD

Breakpoint disable. Used to disable the normal BKPT input functionality and to allow the assertion

of BKPT to generate a debug interrupt.

0 Normal operation

1 BKPT is edge-sensitive: a high-to-low edge on BKPT signals a debug interrupt to the processor.
The processor makes this interrupt request pending until the next sample point, when the
exception is initiated. In the ColdFire architecture, the interrupt sample point occurs once per
instruction. There is no support for nesting debug interrupts.

17

PCD

PSTCLK disable. Setting PCD disables generation of PSTCLK and PSTDDATA outputs and forces
them to remain quiescent.

16

IPW

Inhibit processor writes. Setting IPW inhibits processor-initiated writes to the debug module’s
programming model registers. IPW can be modified only by commands from the external
development system.

15

MAP

Force processor references in emulator mode.

0 All emulator-mode references are mapped into supervisor code and data spaces.

1 The processor maps all references while in emulator mode to a special address space, TT = 10,
TM = 101 or 110. The internal SRAM and caches are disabled.

14

TRC

Force emulation mode on trace exception. If TRC = 1, the processor enters emulator mode when a
trace exception occurs. If TRC=0, the processor enters supervisor mode.

13

EMU

Force emulation mode. If EMU = 1, the processor begins executing in emulator mode. See
Section 8.6.1.1, “Emulator Mode.”

12-11

DDC

Debug data control. Controls operand data capture for PSTDDATA, which displays the number of
bytes defined by the operand reference size before the actual data; byte displays 8 bits, word
displays 16 bits, and long displays 32 bits (one nibble at a time across multiple clock cycles). See
Table 8-4.

00 No operand data is displayed.

01 Capture all write data.

10 Capture all read data.

11 Capture all read and write data.

10

UHE

User halt enable. Selects the CPU privilege level required to execute the HALT instruction.
0 HALT is a supervisor-only instruction.
1 HALT is a supervisor/user instruction.

9-8

BTB

Branch target bytes. Defines the number of bytes of branch target address PSTDDATA displays.
00 O bytes

01 Lower 2 bytes of the target address

10 Lower 3 bytes of the target address

11 Entire 4-byte target address

See Section 8.3.1, “Begin Execution of Taken Branch (PST = 0x5).”

Reserved, should be cleared.
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Table 8-8. CSR Field Descriptions (Continued)

Bits Name Description

6 NPL Non-pipelined mode. Determines whether the core operates in pipelined or mode.

0 Pipelined mode

1 Non-pipelined mode. The processor effectively executes one instruction at a time with no overlap.
This adds at least 5 cycles to the execution time of each instruction. Superscalar instruction
dispatch is disabled when operating in this mode. Given an average execution latency of 1.6,
throughput in non-pipeline mode would be 6.6, approximately 25% or less of pipelined
performance.

Regardless of the NPL state, a triggered PC breakpoint is always reported before the triggering

instruction executes. In normal pipeline operation, the occurrence of an address or data breakpoint

trigger is imprecise. In non-pipeline mode, triggers are always reported before the next instruction

begins execution and trigger reporting can be considered precise.

An address or data breakpoint should always occur before the next instruction begins execution.

Therefore, the occurrence of the address/data breakpoints should be guaranteed.

5 — Reserved, should be cleared.

4 SSM Single-step mode. Setting SSM puts the processor in single-step mode.

0 Normal mode.

1 Single-step mode. The processor halts after execution of each instruction. While halted, any
BDM command can be executed. On receipt of the GO command, the processor executes the
next instruction and halts again. This process continues until SSM is cleared.

3 OTE Ownership-trace enable.
1 The display of the ASID on the PSTDDATA outputs by entering in user mode, by loading the
ASID by a MOVEC, or by executing a BDM SYNC_PC command.

3-0 — Reserved, should be cleared.

8.4.3 PC Breakpoint ASID Control Register (PBAC)

The PBAC configures the breakpoint qualification for each PC breakpoint register (PBR, PBR1, PBR2,
and PBR3). Four bits are dedicated for each breakpoint register and specify how the ASID is used in PC
breakpoint qualification.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R| O 0 0 0 0 0 0 0 0 0 0| O 0 0 0 0
W
Reset| 0 0 0 0 0 0 0 0 0 0 0O O 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R PBR3AC PBR2AC PBR1AC PBRAC
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0
Reg CPU + Ox0A
Addr

Figure 8-7. PC Breakpoint ASID Control Register (PBAC)

PBR3AC, PBR2AC, PBR1AC, and PBRAC apply to PBR3, PBR2, PBR1, and PBR, respectively, and are
functionally identical. They enable or disable ASID, supervisor mode, and user mode breakpoint
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qualification. Reset clears these fields, disabling qualifications and defaulting to the Revision C debug
module functionality.

Table 8-9. PBAC Field Descriptions

Bits Name Description

31-16 — Reserved, should be cleared.

15-12 PBR3AC | PBRn ASID control. Corresponds to the ASID control associated with PBRn. Determines
whether the ASID is included in the PC breakpoint comparison and whether the operating

11-8 PBR2AC | moge (supervisor or user) is included in the comparison logic.
7-4 PBR1AC |X00x No ASID qualification; no mode qualification
x010 No ASID qualification; user mode qualification enabled
3-0 PBRAC [x011 No ASID qualification; supervisor mode qualification enabled

x10x ASID qualification enabled; no mode qualification
x110 ASID qualification enabled; user mode qualification enabled
x111 ASID qualification enabled; supervisor mode qualification enabled

8.4.4 BDM Address Attribute Register (BAAR)

The BAAR defines the address space for memory-referencing BDM commands. To maintain
compatibility with Revision A, BAAR is loaded with any data written to the LSB of AATR. See
Figure 8-8. The reset value of 0x5 sets supervisor data as the default address space.

BAAR is write only. BAAR[R,SZ] are loaded directly from the BDM command. BAAR[TT,TM] can be
programmed as debug control register 0x05 from the external development system. For compatibility with
Rev. A, BAAR is loaded each time AATR is written.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Reg CPU + 0x05
Addr

Figure 8-8. BDM Address Attribute Register (BAAR)

Table 8-10 describes BAAR fields.
Table 8-10. BAAR Field Descriptions

Bits Name Description
31-8 — Reserved
7 R Read/write
0 Write
1 Read
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Table 8-10. BAAR Field Descriptions

Bits Name Description
6-5 SZ Size

00 Longword

01 Byte

10 Word

11 Reserved
4-3 TT Transfer type. See the TT definition in Table 8-11.
2-0 ™ Transfer modifier. See the TM definition in Table 8-11.

8.4.5 Address Attribute Trigger Registers (AATR, AATR1)

The AATR and AATRI1, Figure 8-9, define address attributes and a mask to be matched in the trigger. The
register value is compared with address attribute signals from the processor’s local high-speed bus, as
defined by the setting of the trigger definition register (TDR) for AATR and the extended trigger definition
register (XTDR) for AATRI.

This register is expanded to include an optional ASID specification and a control bit that enables the use
of the ASID field.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R| O 0 0 0 0 0 0 |ASIDCTRL' ATTRASID
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R| RM SZM TT™ TMM R Sz TT ™
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
Reg CPU + 0x06 (AATR), 0x16( AATR1)
Addr

T Write only. AATR and AATR1 are accessible in supervisor mode as debug control register 0x06 and 0x16
respectively using the WDEBUG instruction and through the BDM port using the WDMREG command.

Figure 8-9. Address Attribute Trigger Registers (AATR, AATR1)

Table 8-11 describes AATR and AATRI1 fields.
Table 8-11. AATR and AATR1 Field Descriptions

Bits Name Description
31-25 — Reserved, should be cleared.
24 ASIDCTRL | ABLR/ABHR/ATTR address breakpoint ASID enable. Corresponds to the ASID control enable for

the address breakpoint defined in ABLR, ABHR, and ATTR.
0 Disable ASID qualifier (reset default)
1 Enable ASID qualifier
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Table 8-11. AATR and AATR1 Field Descriptions (Continued)

Bits Name Description
23-16 ATTRASID | ABLR/ABHR/ATTR ASID. Corresponds to the ASID to be included in the address breakpoint
specified by ABLR, ABHR, and ATTR.
15 RM Read/write mask. Setting RM masks R in address comparisons.
14-13 SZM Size mask. Setting an SZM bit masks the corresponding SZ bit in address comparisons.
12-11 ™ Transfer type mask. Setting a TTM bit masks the corresponding TT bit in address comparisons.
10-8 TMM Transfer modifier mask. Setting a TMM bit masks the corresponding TM bit in address
comparisons.
7 R Read/write. R is compared with the R/W signal of the processor’s local bus.
6-5 SZ Size. Compared to the processor’s local bus size signals.
00 Longword
01 Byte
10 Word
11 Reserved
4-3 TT Transfer type. Compared with the local bus transfer type signals.
00 Normal processor access
01 Reserved
10 Emulator mode access
11 Acknowledge/CPU space access
These bits also define the TT encoding for BDM memory commands. In this case, the 01 encoding
indicates an external or DMA access (for backward compatibility). These bits affect the TM bits.
2-0 ™ Transfer modifier. Compared with the local bus transfer modifier signals, which give supplemental
information for each transfer type.
TT =00 (normal mode):
000 Data and instruction cache line push
001 User data access
010 User code access
011 Instruction cache invalidate
100 Data cache push/Instruction cache invalidate
101 Supervisor data access
110 Supervisor code access
111 INTOUCH instruction access
TT =10 (emulator mode):
0xx—100 Reserved
101 Emulator mode data access
110 Emulator mode code access
111 Reserved
TT = 11 (acknowledge/CPU space transfers):
000 CPU space access
001-111 Interrupt acknowledge levels 1-7
These bits also define the TM encoding for BDM memory commands (for backward compatibility).
8.4.6 Trigger Definition Register (TDR)

The TDR, shown in Table 8-10, configures the operation of the hardware breakpoint logic that corresponds
with the ABHR/ABLR/AATR, PBR/PBR1/PBR2/PBR3/PBMR, and DBR/DBMR registers within the
debug module. In conjunction with the XTDR and its associated debug registers, TDR controls the actions
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taken under the defined conditions. Breakpoint logic may be configured as one- or two-level triggers.
TDR[31-16] or XTDR[31-16] define second-level triggers, and bits 15-0 define first-level triggers.

TDR is accessible in supervisor mode as debug control register 0x07 using the WDEBUG instruction and
through the BDM port using the WDMREG command.

NOTE

The debug module has no hardware interlocks, so to prevent spurious
breakpoint triggers while the breakpoint registers are being loaded, disable
TDR and XTDR (by clearing TDR[29,13] and XTDR[29,13]) before
defining triggers.

A write to TDR clears the CSR trigger status bits, CSR[BSTAT].

When cleared, the data enable bits (EDxx) for both the second level and first level triggers disable data
breakpoints. When set, these bits enable the corresponding data breakpoint condition based on the size and
placement on the processor’s local data bus.

The address breakpoint for each trigger is enabled by setting the address enable bits (EAx); clearing all
three bits disables the corresponding breakpoint.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Second Level Triggers

R TRC EBL |EDLW |EDWL EDWU | EDLL |EDLM |[EDUM|EDUU| DI | EAlI | EAR | EAL | EPC | PCI
2 2 2 2 2 2 2 2 2 2 2 2 2 2
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

First Level Triggers

Rl O 0 EBL | EDLW | EDWL |[EDWU | EDLL | EDLM |EDUM | EDUU | DI | EAIl | EAR | EAL | EPC | PCI
1 1 1 1 1 1 1 1 1 1 1 1 1 1
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg CPU + 0x07
Addr

Figure 8-10. Trigger Definition Register (TDR)

Table 8-12 describes TDR fields.
Table 8-12. TDR Field Descriptions

Bits Name Description

31-30 TRC Trigger response control. Determines how the processor responds to a completed trigger
condition. The trigger response is always displayed on PSTDDATA.

00 Display on PSTDDATA only

01 Processor halt

10 Debug interrupt

11 Reserved

29 EBL2 Enable breakpoint. Global enable for the breakpoint trigger. Setting TDR[EBL] or XTDR[EBL]
enables a breakpoint trigger. If both TDL[EBL] and XTDL[EBL] are cleared, all breakpoints are
disabled.
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Table 8-12. TDR Field Descriptions (Continued)

Bits Name Description

28 EDLW2 | Data enable bit: Data longword. Entire processor’s local data bus.

27 EDWL2 |Data enable bit: Lower data word.

26 EDWU2 |Data enable bit: Upper data word.

25 EDLL2 Data enable bit: Lower lower data byte. Low-order byte of the low-order word.

24 EDLM2 |Data enable bit: Lower middle data byte. High-order byte of the low-order word.

23 EDUM2 | Data enable bit: Upper middle data byte. Low-order byte of the high-order word.

22 EDUU2 |Data enable bit: Upper upper data byte. High-order byte of the high-order word.

21 DI2 Data breakpoint invert. Provides a way to invert the logical sense of all the data breakpoint
comparators. This can develop a trigger based on the occurrence of a data value other than the
DBR contents.

20 EAI2 Address enable bit: Enable address breakpoint inverted. Breakpoint is based outside the range
between ABLR and ABHR. Trigger if address > ABHR or if address < ABLR.

19 EAR2 Address enable bit: Enable address breakpoint range. :I'he breakpoint is based on the inclusive
range defined by ABLR and ABHR. Trigger if address S ABHR or if address & ABLR.

18 EAL2 Address enable bit: Enable address breakpoint low. The breakpoint is based on the address in the
ABLR. Trigger address = ABLR

17 EPC2 Enable PC breakpoint. If set, this bit enables the PC breakpoint for the second level trigger.

16 PCI2 Breakpoint invert. If set, this bit allows execution outside a given region as defined by
PBR/PBR1/PBR2/PBR3 and PBMR to enable a trigger. If cleared, the PC breakpoint is defined
within the region defined by PBR/PBR1/PBR2/PBR3 and PBMR.

15-14 — Reserved, should be cleared.

13 EBL1 Enable breakpoint. Global enable for the breakpoint trigger. Setting TDR[EBL] or XTDR[EBL]
enables a breakpoint trigger. If both TDL[EBL] and XTDL[EBL] are cleared, all breakpoints are
disabled.

12 EDLW1 |Data enable bit: Data longword. Entire processor’s local data bus.

11 EDWL1 |Data enable bit: Lower data word.

10 EDWU1 |Data enable bit: Upper data word.

9 EDLLA1 Data enable bit: Lower lower data byte. Low-order byte of the low-order word.

8 EDLM1 Data enable bit: Lower middle data byte. High-order byte of the low-order word.

7 EDUM1 | Data enable bit: Upper middle data byte. Low-order byte of the high-order word.

6 EDUU1 Data enable bit: Upper upper data byte. High-order byte of the high-order word.

5 DI Data breakpoint invert. Provides a way to invert the logical sense of all the data breakpoint
comparators. This can develop a trigger based on the occurrence of a data value other than the
DBR contents.

4 EAI1 Address enable bit: Enable address breakpoint inverted. Breakpoint is based outside the range
between ABLR and ABHR. Trigger if address > ABHR or if address < ABLR.

3 EAR1 Address enable bit: Enable address breakpoint range. The breakpoint is based on the inclusive
range defined by ABLR and ABHR. Trigger if address S ABHR or if address 8 ABLR.
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Table 8-12. TDR Field Descriptions (Continued)

Bits Name Description
2 EAL1 Address enable bit: Enable address breakpoint low. The breakpoint is based on the address in the
ABLR. Trigger address = ABLR
1 EPC1 Enable PC breakpoint. If set, this bit enables the PC breakpoint for the first level trigger.
0 PCI1 Breakpoint invert. If set, this bit allows execution outside a given region as defined by

PBR/PBR1/PBR2/PBR3 and PBMR to enable a trigger. If cleared, the PC breakpoint is defined
within the region defined by PBR/PBR1/PBR2/PBR3 and PBMR.

8.4.7 Program Counter Breakpoint and Mask Registers (PBRn, PBMR)

Each PC breakpoint register (PBR, PBR1, PBR2, PBR3) defines an instruction address for use as part of
the trigger. These registers’ contents are compared with the processor’s program counter register when the
appropriate valid bit is set, and TDR or XTDR are configured appropriately. PBR bits are masked by
setting corresponding PBMR bits. Results are compared with the processor’s program counter register, as
defined in TDR or XTDR. PBR1-PBR3 are not masked. Figure 8-11 shows the PC breakpoint register.

PC breakpoint registers are accessible in supervisor mode using the WDEBUG instruction and through the
BDM port using the RDMREG and WDMREG commands using values shown in Section 8.5.3.3, “Command
Set Descriptions.”

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R CNTRAD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
R CNTRAD 0

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg CPU + 0x08 (PBR); 0x18 (PBR1); 0x1A (PBR2); 0x1B (PBR3)
Addr

1 PBRO does not have a valid bit. PBRO is read as 0 and should be cleared.

Figure 8-11. Program Counter Breakpoint Registers (PBR, PBR1, PBR2, PBR3)
Table 8-13 describes PBR, PBR1, PBR2, and PBR3 fields.
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Table 8-13. PBR, PBR1, PBR2, PBR3 Field Descriptions

Bits Name Description
31-1 CNTRAD | PC breakpoint address. The 31-bit address to be compared with the PC as a breakpoint
trigger.
0 \ Valid.

0 Breakpoint registers are not compared with the processor’s program counter register

1 Breakpoint registers are compared with the processor’s program counter register when
the appropriate valid bit is set and TDR or XTDR are configured appropriately.

Note: This bit is not implemented on PBRO; it is implemented on PBR[1:3].

Figure 8-12 shows PBMR. PBMR is accessible in supervisor mode as debug control register 0x09 using
the WDEBUG instruction and via the BDM port using the WDMREG command.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R CNTRMSK

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R CNTRMSK

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg CPU + 0x09
Addr

Figure 8-12. Program Counter Breakpoint Mask Register (PBMR)

Table 8-14 describes PBMR fields.
Table 8-14. PBMR Field Descriptions

Bits Name Description

31-0 CNTRMSK | PC breakpoint mask.

0 This PBMR bit causes the corresponding PBR bit to be compared to the appropriate
program counter register bit.

1 This PBMR bit causes the corresponding PBR bit to be ignored.

8.4.8 Address Breakpoint Registers (ABLR/ABLR1, ABHR/ABHR1)

The ABLR, ABLR1, ABHR, and ABHR1, shown in Figure 8-13, define regions in the processor’s data
address space that can be used as part of the trigger. These register values are compared with the address
for each transfer on the processor’s high-speed local bus. The trigger definition register (TDR) identifies
the trigger as one of three cases:

» Identically the value in ABLR

* Inside the range bound by ABLR and ABHR inclusive

* Outside that same range

XTDR determines the same for ABLR1 and ABHRI.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R AD

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Reg CPU + 0x0D (ABLRY); 0x1D (ABLR1); 0xOC (ABHR); 0x1C (ABHR1)
Addr

' ABHR and ABHR1 are accessible in supervisor mode as debug control registers 0x0C and 0x1C, using the

WDEBUG instruction and via the BDM port using the RDMREG and WDMREG commands.
Figure 8-13. Address Breakpoint Registers (ABLR, ABHR, ABLR1, ABHR1)

Table 8-15 describes ABLR and ABLR1 fields.
Table 8-15. ABLR and ABLR1 Field Description

Bits Name Description

31-0 AD Low address. Holds the 32-bit address marking the lower bound of the address breakpoint
range. Breakpoints for specific addresses are programmed into ABLR or ABLR1.

Table 8-16 describes ABHR and ABHRI fields.
Table 8-16. ABHR and ABHR1 Field Description

Bits Name Description

31-0 AD High address. Holds the 32-bit address marking the upper bound of the address breakpoint
range.

8.4.9 Data Breakpoint and Mask Registers (DBR/DBR1, DBMR/DBMR1)

The data breakpoint registers (DBR/DBR1, Figure 8-14), specify data patterns used as part of the trigger
into debug mode. DBR~# bits are masked by setting corresponding DBMR bits, as defined in TDR.

DBR and DBRI1 are accessible in supervisor mode as debug control register OxOE and 0x1E, using the
WDEBUG instruction and through the BDM port using the RDMREG and WDMREG commands.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R DATA (DBR/DBR1)

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R DATA (DBR/DBR1)
w
Restf 0 0o O O O 0 O O O O O 0 0 0 0 0
Reg CPU + 0xOE (DBR), Ox1E (DBR1)
Addr

Figure 8-14. Data Breakpoint Registers (DBR/DBR1)

Table 8-17 describes DBRu# fields.
Table 8-17. DBRn Field Descriptions

Bits Name Description

31-0 DATA Data breakpoint value. Contains the value to be compared with the data value from the
processor’s local bus as a breakpoint trigger.

DBMR and DBMRI1 are accessible in supervisor mode as debug control register 0xOF and Ox1F, using the
WDEBUG instruction and via the BDM port using the WDMREG command.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R MSK (DBMR/DBMR1)

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R MSK (DBMR/DBMR1)
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg CPU + OxOF (DBMR), 0x1F (DBMR1)
Addr

Figure 8-15. Data Breakpoint Mask Registers (DBMR/DBMR1)

Table 8-18 describes DBMRu# fields.
Table 8-18. DBMRn Field Descriptions

Bits Name Description

31-0 MSK Data breakpoint mask. The 32-bit mask for the data breakpoint trigger. Clearing a DBRn
bit allows the corresponding DBRn bit to be compared to the appropriate bit of the
processor’s local data bus. Setting a DBMRn bit causes that bit to be ignored.
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DBRs support both aligned and misaligned references. Table 8-19 shows relationships between processor
address, access size, and location within the 32-bit data bus.

Table 8-19. Access Size and Operand Data Location

A[1:0] Access Size Operand Location

00 Byte D[31:24]
01 Byte D[23:16]
10 Byte D[15:8]
11 Byte D[7:0]

Ox Word D[31:16]
1x Word D[15:0]
XX Longword D[31:0]

8.4.10 PC Breakpoint ASID Register (PBASID)

Each PC breakpoint register (PBR, PBR1, PBR2, or PBR3) specifies an instruction address that can be
used to trigger a breakpoint. To support debugging in a virtual environment, an ASID can optionally be
associated with the instruction address in the PC breakpoint registers. The optional specification of an

ASID value is made using PBASID and its exact inclusion within the breakpoint specification defined by
the PBAC.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R PBR3ASID PBR2ASID

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R PBR1ASID PBRASID

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg CPU + 0x14
Addr

Figure 8-16. PC Breakpoint ASID Register (PBASID)

PBASID contains one 8-bit ASID values for each PC breakpoint register, as described in Table 8-20,
which allows each PC breakpoint register to be associated with a unique virtual address and process.

Table 8-20. PBASID Field Descriptions

Bits Name Description

31-24 PBA3SID |PBR3ASID. Corresponds to the ASID associated with PBRS3.

23-16 PBA2SID |PBR2ASID Corresponds to the ASID associated with PBR2.
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Table 8-20. PBASID Field Descriptions (Continued)

Bits Name Description
15-8 PBA1SID |PBR1ASID. Corresponds to the ASID associated with PBR1.
7-0 PBASID | PBRASID. Corresponds to the ASID associated with PBR.

8.4.11 Extended Trigger Definition Register (XTDR)

The XTDR configures the operation of the hardware breakpoint logic that corresponds with the
ABHR1/ABLR1/AATR1 and DBR1/DBMRI1 registers within the debug module and, in conjunction with
the TDR and its associated debug registers, controls the actions taken under the defined conditions. The
breakpoint logic may be configured as a one- or two-level trigger, where TDR[31-16] or XTDR[31-16]
define the second-level trigger and bits 15-0 define the first-level trigger. The XTDR is accessible in
supervisor mode as debug control register 0x17 using the WDEBUG instruction and via the BDM port
using the WDMREG command.

NOTE

The debug module has no hardware interlocks, so to prevent spurious
breakpoint triggers while the breakpoint registers are being loaded, disable
TDR and XTDR (by clearing TDR[29,13] and XTDR[29,13]) before
defining triggers.

A write to the XTDR clears the trigger status bits, CSR[BSTAT].

When cleared, the data enable bits (EDxx) for both the second level and first level triggers disable data
breakpoints. When set, these bits enable the corresponding data breakpoint condition based on the size and
placement on the processor’s local data bus.

The address breakpoint for each trigger is enabled by setting the address enable bits (EAx); clearing all
three bits disables the corresponding breakpoint.

Section 8.4.11.1, “Resulting Set of Possible Trigger Combinations,” describes how to handle multiple
breakpoint conditions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Second Level Triggers

Rl O 0 EBL | EDLW |EDWL [EDWU| EDLL | EDLM |EDUM |EDUU | DI EAl |EAR| EAL| O 0

2 2 2 2 2 2 2 2 2 2 2 2
w —
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

First Level Triggers

Rl O 0 EBL | EDLW |EDWL [EDWU| EDLL | EDLM |[EDUM EDUU | DI EAl |EAR| EAL| O 0

1 1 1 1 1 1 1 1 1 1 1 1

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg CPU + 0x17
Addr

Figure 8-17. Extended Trigger Definition Register (XTDR)
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Table 8-21 describes XTDR fields.

Table 8-21. XTDR Field Descriptions

Bits Name Description
31-30 — Reserved, should be cleared.

29 EBL2 Enable breakpoint level. If set, EBL2 is the global enable for the breakpoint trigger; that is, if
TDRIEBL2] or XTDR[EBL2] is set, a breakpoint trigger is enabled. Clearing both disables all
breakpoints.

28 EDLW2 |Data enable bit: Data longword. Entire processor’s local data bus.

27 EDWL2 |Data enable bit: Lower data word.

26 EDWU2 | Data enable bit: Upper data word.

25 EDLL2 Data enable bit: Lower lower data byte. Low-order byte of the low-order word.

24 EDLM2 | Data enable bit: Lower middle data byte. High-order byte of the low-order word.

23 EDUM2 | Data enable bit: Upper middle data byte. Low-order byte of the high-order word.

22 EDUU2 |Data enable bit: Upper upper data byte. High-order byte of the high-order word.

21 DI2 Data breakpoint invert. Provides a way to invert the logical sense of all the data breakpoint
comparators. This can develop a trigger based on the occurrence of a data value other than the
DBR1 contents.

20 EAI2 Address enable bit: Enable address breakpoint inverted. Breakpoint is based outside the range
between ABLR1 and ABHR1. Trigger if address > ABHR or if address < ABLR.

19 EAR2 Address enable bit: Enable address breakpoint range. The breakpoint is based on the inclusive
range defined by ABLR1 and ABHR1. Trigger if address S ABHR or if address & ABLR.

18 EAL2 Address enable bit: Enable address breakpoint low. The breakpoint is based on the address in the
ABLR1. Trigger address = ABLR

17-14 — Reserved, should be cleared.

13 EBL1 Enable breakpoint level. If set, EBL1 is the global enable for the breakpoint trigger; that is, if
TDRIEBL1] or XTDR[EBL1] is set, a breakpoint trigger is enabled. Clearing both disables all
breakpoints.

12 EDLW1 |Data enable bit: Data longword. Entire processor’s local data bus.

11 EDWL1 Data enable bit: Lower data word.

10 EDWU1 | Data enable bit: Upper data word.

9 EDLLA1 Data enable bit: Lower lower data byte. Low-order byte of the low-order word.

8 EDLM1 Data enable bit: Lower middle data byte. High-order byte of the low-order word.

7 EDUM1 | Data enable bit: Upper middle data byte. Low-order byte of the high-order word.

6 EDUUA1 Data enable bit: Upper upper data byte. High-order byte of the high-order word.

5 DI Data breakpoint invert. Provides a way to invert the logical sense of all the data breakpoint
comparators. This can develop a trigger based on the occurrence of a data value other than the
DBR contents.

4 EAN Address enable bit: Enable address breakpoint inverted. Breakpoint is based outside the range
between ABLR1 and ABHR1. Trigger if address > ABHR or if address < ABLR.
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Table 8-21. XTDR Field Descriptions (Continued)

Bits Name Description

3 EAR1 Address enable bit: Enable address breakpoint range. Thve breakpoint is based on the inclusive
range defined by ABLR1 and ABHR1. Trigger if address S ABHR or if address 8 ABLR.

2 EALA1 Address enable bit: Enable address breakpoint low. The breakpoint is based on the address in the
ABLR1. Trigger address = ABLR

1-0 — Reserved, should be cleared.

8.4.11.1 Resulting Set of Possible Trigger Combinations

The resulting set of possible breakpoint trigger combinations consist of the following options where ||
denotes logical OR, && denotes logical AND, and {} denotes an optional additional trigger term:

One-level triggers of the form:

if (PC_breakpoint)
if (PC_breakpoint|| Address breakpoint{&& Data breakpoint})
if (PC_breakpoint|| Address breakpoint{&& Data breakpoint}

| Addressl breakpoint{&& Datal breakpoint})
if (Address breakpoint {&& Data breakpoint})
if ((Address breakpoint {&& Data breakpoint})

| (Addressl breakpoint{&& Datal breakpoint}))
if (Addressl breakpoint {&& Datal breakpoint})

Two-level triggers of the form:

if (PC_breakpoint)

then if (Address breakpoint{&& Data breakpoint})
if (PC_breakpoint)

then if (Address breakpoint{&& Data breakpoint}

| Addressl breakpoint{&& Datal breakpoint})

if (PC_breakpoint)

then if (Addressl breakpoint{&& Datal breakpoint})
if (Address breakpoint {&& Data breakpoint})

then if (Addressl breakpoint{&& Datal breakpoint})
if (Addressl breakpoint {&& Datal breakpoint})

then if (Address breakpoint{&& Data breakpoint})
if (Address breakpoint {&& Data breakpoint})

then if (PC_breakpoint)
if (Addressl breakpoint {&& Datal breakpoint})

then 1if (PC_breakpoint)
if (Address breakpoint {&& Data breakpoint})
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then 1if (PC_breakpoint
| Addressl breakpoint{&& Datal breakpoint})

if (Addressl breakpoint {&& Datal breakpoint})
then 1if (PC_breakpoint
| Address breakpoint{&& Data breakpoint})

In this example, PC_breakpoint is the logical summation of the PBR/PBMR, PBR1, PBR2, and PBR3
breakpoint registers; Address breakpoint is a function of ABHR, ABLR, and AATR; Data breakpomt 1s
a function of DBR and DBMR; Address1 breakpoint is a function of ABHRI ABLRI and AATR1; and
Datal breakpoint is a function of DBR1 and DBMRI1. In all cases, the data breakpomts can be included
with an address breakpoint to further qualify a trigger event as an option.

8.5 Background Debug Mode (BDM)

The ColdFire Family implements a low-level system debugger in the microprocessor hardware.
Communication with the development system is handled through a dedicated, high-speed serial command
interface. The ColdFire architecture implements the BDM controller in a dedicated hardware module.
Although some BDM operations, such as CPU register accesses, require the CPU to be halted, all other
BDM commands, such as memory accesses, can be executed while the processor is running.

BDM is useful for the following reasons:
» In-circuit emulation is not needed, so physical and electrical characteristics of the system are not
affected.

* BDM is always available for debugging the system and provides a communication link for
upgrading firmware in existing systems.

» Provides high-speed cache downloading (500 Kbytes/sec), especially useful for flash
programming

» Provides absolute control of the processor, and thus the system. This feature allows quick hardware
debugging with the same tool set used for firmware development.

8.5.1 CPU Halt

Although most BDM operations can occur in parallel with CPU operations, unrestricted BDM operation
requires the CPU to be halted. The sources that can cause the CPU to halt are listed below, in order of
priority:

1. A catastrophic fault-on-fault condition automatically halts the processor.

2. A hardware breakpoint can be configured to generate a pending halt condition similar to the
assertion of BKPT. This type of halt is always first made pending in the processor. Next, the
processor samples for pending halt and interrupt conditions once per instruction. When a pending
condition is asserted, the processor halts execution at the next sample point. See Section 8.6.1,
“Theory of Operation.”

3. The execution of a HALT instruction immediately suspends execution. Attempting to execute
HALT in user mode while CSR[UHE] = 0 generates a privilege violation exception. If
CSR[UHE] = 1, HALT can be executed in user mode. After HALT executes, the processor can be
restarted by serial shifting a GO command into the debug module. Execution continues at the
instruction after HALT.
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4. The assertion of the BKPT input is treated as a pseudo-interrupt; that is, asserting BKPT creates a
pending halt, which is postponed until the processor core samples for halts/interrupts. The
processor samples for these conditions once during the execution of each instruction; if a pending
halt is detected then, the processor suspends execution and enters the halted state.

The assertion of BKPT should be considered in the following two special cases:

» After the system reset signal is negated, the processor waits for 16 processor clock cycles before
beginning reset exception processing. If the BKPT input is asserted within eight cycles after RSTI
is negated, the processor enters the halt state, signaling halt status (0xF) on the PSTDDATA
outputs. While the processor is in this state, all resources accessible through the debug module can
be referenced. This is the only chance to force the processor into emulation mode through
CSR[EMU].

After system initialization, the processor’s response to the GO command depends on the set of
BDM commands performed while it is halted for a breakpoint. Specifically, if the PC register was
loaded, the GO command causes the processor to exit halted state and pass control to the instruction
address in the PC, bypassing normal reset exception processing. If the PC was not loaded, the GO
command causes the processor to exit halted state and continue reset exception processing.

» The ColdFire architecture also handles a special case of BKPT being asserted while the processor
is stopped by execution of the STOP instruction. For this case, the processor exits the stopped mode
and enters the halted state. At this point, all BDM commands may be exercised. When restarted,
the processor continues by executing the next sequential instruction, that is, the instruction
following the STOP opcode.

CSR[27-24] indicates the halt source, showing the highest priority source for multiple halt conditions.
Debug module Revisions A and B clear CSR[27-24] upon a read of the CSR, but Revision C and D (in
V4) do not. The debug GO command clears CSR[26-24].

HALT can be recognized by counting OxFF occurrences on PSTDDATA. The count is necessary to
determine between a possible data output value of OxFF and the HALT condition. Because data always
follows a marker (0x8, 0x9, 0xA, or 0xB), PSTDDATA can display no more than four data OxFFs. Two
such scenarios exist:

* A B marker occurs on the left nibble of PSTDDATA with the data of OxFF following:
PSTDDATA[7:0]

0xBF
OxFF
OxFF
OxFF
OxFX (X indicates that the next PST value is guaranteed to not be 0xF)

* A B marker occurs on the right nibble of PSTDDATA with the data of OxFF following:
PSTDDATA[7:0]

0xYB

OxFF

OxFF

OxFF

OxFF

0xXY (Xindicates that the PST value is guaranteed to not be OxF, and Y indicates a PSTDDATA
value that doesn’t affect the OXFF count).

Thus, a count of either nine or more sequential single OxF values or five or more sequential OxFF values
signifies the HALT condition.
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8.5.2 BDM Serial Interface

When the CPU is halted and PSTDDATA reflects the halt status, the development system can send
unrestricted commands to the debug module. The debug module implements a synchronous protocol using
two inputs (DSCLK and DSI) and one output (DSO), where DSO is specified as a delay relative to the
rising edge of the processor clock. See Table 8-1. The development system serves as the serial
communication channel master and must generate DSCLK.

The serial channel operates at a frequency from DC to 1/5 of the PSTCLK frequency. The channel uses
full-duplex mode, where data is sent and received simultaneously by both master and slave devices. The
transmission consists of 17-bit packets composed of a status/control bit and a 16-bit data word. As shown
in Figure 8-18, all state transitions are enabled on a rising edge of the PSTCLK clock when DSCLK is
high; that is, DSI is sampled and DSO is driven.

Co C1 Cc2 C3 C4

estork | L] L) L L
DSCLK |

I
I
>< I
I
I

| | |
[ [ [
I I I
I I I
I Current I
| |
I I
| |
| |
I

|
|
X
|
|

| |

DSI | |

I | |

BDM State | | | |
Machine : Current State : >< Nérxt State :
DSO I Past I >< éurrent I

I T .

Figure 8-18. Maximum BDM Serial Interface Timing

DSCLK and DSI are synchronized inputs. DSCLK acts as a pseudo clock enable and is sampled, along
with DSI, on the rising edge of PSTCLK. DSO is delayed from the DSCLK-enabled PSTCLK rising edge
(registered after a BDM state machine state change). All events in the debug module’s serial state machine
are based on the PSTCLK rising edge. DSCLK must also be sampled low (on a positive edge of PSTCLK)
between each bit exchange. The msb is sent first. Because DSO changes state based on an internally
recognized rising edge of DSCLK, DSO cannot be used to indicate the start of a serial transfer. The
development system must count clock cycles in a given transfer. C0—C4 are described as follows:

» CO0: Set the state of the DSI bit.

» CI: First synchronization cycle for DSI (DSCLK is high).

» (C2: Second synchronization cycle for DSI (DSCLK is high).

» (C3: BDM state machine changes state depending upon DSI and whether the entire input data
transfer has been transmitted.

* (C4: DSO changes to next value.
NOTE

A not-ready response can be ignored except during a memory-referencing
cycle. Otherwise, the debug module can accept a new serial transfer after 32
processor clock periods.

8.5.2.1 Receive Packet Format

The basic receive packet, Figure 8-19, consists of 16 data bits and 1 status bit
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16 15 0
S Data Field [15:0]

Figure 8-19. Receive BDM Packet

Table 8-22 describes receive BDM packet fields.
Table 8-22. Receive BDM Packet Field Description

Bits Name Description

16 S Status. Indicates the status of CPU-generated messages listed below. The not-ready response can
be ignored unless a memory-referencing cycle is in progress. Otherwise, the debug module can
accept a new serial transfer after 32 processor clock periods.

DataMessage

xxxx Valid data transfer

OxFFFFStatus OK

0x0000Not ready with response; come again
0x0001Error: Terminated bus cycle; data invalid
OxFFFFlllegal command

- aa00Wm

15-0 Data Data. Contains the message to be sent from the debug module to the development system. The
response message is always a single word, with the data field encoded as shown above.

8.5.2.2 Transmit Packet Format
The basic transmit packet, Figure 8-20, consists of 16 data bits and 1 control bit.

16 15 0
C D[15:0]

Figure 8-20. Transmit BDM Packet

Table 8-23 describes transmit BDM packet fields.
Table 8-23. Transmit BDM Packet Field Description

Bits Name Description

16 C Control. This bit is reserved. Command and data transfers initiated by the development
system should clear C.

15-0 Data Contains the data to be sent from the development system to the debug module.

8.5.3 BDM Command Set

Table 8-24 summarizes the BDM command set. Subsequent paragraphs contain detailed descriptions of
each command. Issuing a BDM command when the processor is accessing debug module registers using
the WDEBUG instruction causes undefined behavior.
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Table 8-24. BDM Command Summary

. I CPU . Command

Command | Mnemonic Description State! Section (Hex)

Read A/D rareg/ Read the selected address or data register and Halted | 8.5.3.3.1 |0x218 {A/D,
register rdreg return the results through the serial interface. Reg[2:0]}
Write A/D wareg/ | Write the data operand to the specified address or Halted | 8.5.3.3.2 | 0x208 {A/D,
register wdreg data register. Reg[2:0]}
Read read Read the data at the memory location specified by Steal 8.5.3.3.3 | 0x1900—byte
memory the longword address. 0x1940—word
location 0x1980—Iword
Write write Write the operand data to the memory location Steal 8.5.3.3.4 | 0x1800—byte
memory specified by the longword address. 0x1840—word
location 0x1880—Iword
Dump dump Used with READ to dump large blocks of memory. An Steal 8.5.3.3.5 | 0x1D00—Dbyte
memory initial READ is executed to set up the starting address 0x1D40—word
block of the block and to retrieve the first result. A bump 0x1D80—Iword
command retrieves subsequent operands.
Fill memory fill Used with WRITE to fill large blocks of memory. An Steal 8.5.3.3.6 | 0x1C00—byte
block initial WRITE is executed to set up the starting 0x1C40—word
address of the block and to supply the first operand. 0x1C80—Iword
A FILL command writes subsequent operands.
Resume go The pipeline is flushed and refilled before resuming | Halted | 8.5.3.3.7 |0x0C00
execution instruction execution at the current PC.
No operation nop Perform no operation; may be used as a null Parallel | 8.5.3.3.8 | 0x0000
command.
Output the sync_pc | Capture the current PC and display it on the Parallel | 8.5.3.3.9 | 0x0001

current PC PSTDDATA output pins.

Read control rcreg Read the system control register. Halted |8.5.3.3.11|0x2980
register

Write control wcreg Write the operand data to the system control Halted |8.5.3.3.15|0x2880
register register.

Read debug rdmreg | Read the debug module register. Parallel |8.5.3.3.16 | 0x2D {0x42
module DRc[4:0]}
register

Write debug | wdmreg | Write the operand data to the debug module Parallel |8.5.3.3.17 | 0x2C {0x4?
module register. DRc[4:0]}
register

General command effect and/or requirements on CPU operation:
- Halted. The CPU must be halted to perform this command.

- Steal. Command generates bus cycles that can be interleaved with bus accesses.
- Parallel. Command is executed in parallel with CPU activity.

0x4 is a three-bit field.

Unassigned command opcodes are reserved by Freescale. All unused command formats within any
revision level perform a NOP and return the illegal command response.

MCF548x Reference Manual, Rev. 3

8-32 Freescale Semiconductor



Background Debug Mode (BDM)

8.5.3.1 ColdFire BDM Command Format

All ColdFire Family BDM commands include a 16-bit operation word followed by an optional set of one
or more extension words, as shown in Figure 8-21.

15 10 9 8 7 6 5 4 3 2 0
Operation 0 R/W Op Size 0 0 A/D Register

Extension Word(s)

Figure 8-21. BDM Command Format

Table 8-25 describes BDM fields.
Table 8-25. BDM Field Descriptions

Bit Name Description
15-10 Operation | Specifies the command. These values are listed in Table 8-24.
9 — Reserved
8 R/W Direction of operand transfer.

0 Data is written to the CPU or to memory from the development system.
1 The transfer is from the CPU to the development system.

7-6 Operand | Operand data size for sized operations. Addresses are expressed as 32-bit absolute
Size values. Note that a command performing a byte-sized memory read leaves the upper 8 bits
of the response data undefined. Referenced data is returned in the lower 8 bits of the
response.

Operand SizeBit Values
00 Byte8 bits

01 Word16 bits

10 Longword32 bits

11 Reserved—

5-4 — Reserved

3 A/D Address/data. Determines whether the register field specifies a data or address register.
0 Indicates a data register.
1 Indicates an address register.

2-0 Register | Contains the register number in commands that operate on processor registers.

8.5.3.1.1 Extension Words as Required

Some commands require extension words for addresses or immediate data. Addresses require two
extension words because only absolute long addressing is permitted. Longword accesses are forcibly
longword-aligned and word accesses are forcibly word-aligned. Immediate data can be 1 or 2 words long.
Byte and word data each requires one extension word and longword data requires two extension words.

Operands and addresses are transferred most-significant word first. In the following descriptions of the
BDM command set, the optional set of extension words is defined as address, data, or operand data.

8.5.3.2 Command Sequence Diagrams

The command sequence diagram in Figure 8-22 shows serial bus traffic for commands. Each bubble
represents a 17-bit bus transfer. The top half of each bubble indicates the data the development system

MCF548x Reference Manual, Rev. 3

Freescale Semiconductor 8-33



sends to the debug module; the bottom half indicates the debug module’s response to the previous

development system commands. Command and result transactions overlap to minimize latency.

— Commands transmitted to the debug module

— Command code transmitted during this cycle
High-order 16 bits of memory address
Low-order 16 bits of memory address

Non-serial-related
activity Sequence taken if operation
J has not completed

Y

Next
>/READ (LONG)\ ./ MS ADDR LS ADDR | , READ ‘/ XXX \) Command

L— Responses from the debug module

[

=72 J [ \NOTREADY/ ~\NOT READY ] 'L%%hﬂ%g\r(u > °NOT READY’ ) Code
‘ Y

[ XXX < o/ NEXT CMD [ XXX \ / NEXT CMD \
A \UILLEGAC /| 7 UNOT READY’ / > MS RESULT / \_ LS RESULT /

L Data used from this transfer [ XXX \ [ NEXTCMD \
“\UNOT READY’ /

Sequence taken if bus error
occurs on memory access

High- and low-order 16 bits of result

Sequence taken if illegal command
is received by debug module

Results from previous command

Figure 8-22. Command Sequence Diagram

The sequence is as follows:

In cycle 1, the development system command is issued (READ in this example). The debug module
responds with either the low-order results of the previous command or a command complete status
of the previous command, if no results are required.

In cycle 2, the development system supplies the high-order 16 address bits. The debug module
returns a not-ready response unless the received command is decoded as unimplemented, which is
indicated by the illegal command encoding. If this occurs, the development system should
retransmit the command.

NOTE

A not-ready response can be ignored except during a memory-referencing
cycle. Otherwise, the debug module can accept a new serial transfer after 32
processor clock periods.

In cycle 3, the development system supplies the low-order 16 address bits. The debug module
always returns a not-ready response.

At the completion of cycle 3, the debug module initiates a memory read operation. Any serial
transfers that begin during a memory access return a not-ready response.

Results are returned in the two serial transfer cycles after the memory access completes. For any
command performing a byte-sized memory read operation, the upper 8 bits of the response data are
undefined and the referenced data is returned in the lower 8 bits. The next command’s opcode is
sent to the debug module during the final transfer. If a memory or register access is terminated with
a bus error, the error status (S = 1, DATA = 0x0001) is returned instead of result data.
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8.5.3.3 Command Set Descriptions

The following sections describe the commands summarized in Table 8-24.

NOTE

The BDM status bit (S) is 0 for normally completed commands. S =1 for
illegal commands, not-ready responses, and transfers with bus-errors.
Section 8.5.2, “BDM Serial Interface,” describes the receive packet format.

Freescale reserves unassigned command opcodes for future expansion. Unused command formats in any
revision level perform a NOP and return an illegal command response.

8.5.3.3.1 Read A/D Register (RAREG/RDREG)

Read the selected address or data register and return the 32-bit result. A bus error response is returned if
the CPU core is not halted.

Command/Result Formats:

15 12 11 8 7 4 3 2 0
Command 0x2 0x1 0x8 A/D Register
Result D[31:16]
D[15:0]

Figure 8-23. RAREG/RDREG Command Format

Command Sequence:

/ﬁAREG/RDREG\ o/ XXX \ /[ NEXT CMD
\ ?7? J | 7\ MS RESULT / \_ LS RESULT /

-/ XXX \ [ NEXT CMD
BERR \'NOT READY’ /

Figure 8-24. RAREG/RDREG Command Sequence

Operand Data: None

Result Data: The contents of the selected register are returned as a longword value,
most-significant word first.

8.5.3.3.2 Write A/D Register (WAREG/WDREG)

The operand longword data is written to the specified address or data register. A write alters all 32 register
bits. A bus error response is returned if the CPU core is not halted.
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Command Format:

15 12 11 8 7 4 3 2 0
0x2 0x0 0x8 A/D Register
D[31:16]
D[15:0]

Figure 8-25. WAREG/WDREG Command Format

Command Sequence

Operand Data

Result Data

(WAREG/WDREG\ _/ MSDATA

[ LSDATA \

[/ NEXTCMD

\ ?7? /

~\UNOT READY’ /
( XXX \

\'NOT READY’ /
[ NEXT CMD \

BERR

\'NOT READY’ /

“\CMD COMPLETE/

Figure 8-26. WAREG/WDREG Command Sequence

Longword data is written into the specified address or data register. The data is
supplied most-significant word first.

Command complete status is indicated by returning OxFFFF (with S cleared)
when the register write is complete.

8.5.3.3.3 Read Memory Location (READ)

Read data at the longword address. Address space is defined by BAAR[TT,TM]. Hardware forces
low-order address bits to zeros for word and longword accesses to ensure that word addresses are
word-aligned and longword addresses are longword-aligned.

Command/Result Formats:
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15 12 11 8 7 4 3 0
Byte 0x1 0x9 0x0 0x0
Command A[31:16]
A[15:0]
Result X X | X X X | X X | X D[7:0]
Word |Command 0x1 0x9 0x4 0x0
A[31:16]
A[15:0]
Result D[15:0]
Longword | Command 0x1 0x9 0x8 0x0
A[31:16]
A[15:0]
Result D[31:16]
D[15:0]

Figure 8-27. READ Command/Result Formats

Command Sequence:

READBW)\ _/ MSADDR \ _/ LSADDR \ _ M'EEA'%DRY ‘ [oxxx )
7722 / > UNOTREADY’'/ ~\UNOT READY’ / Joortion [ T CNOT READY' /

NEXT CMD
RESULT

[ XXX \ o[ NEXTCMD )
\ BERR /7 \UNOT READY’ /

READ (LONG)\ ./ MSADDR \ ./ LSADDR \ _ MEEA%DRY ‘J XXX\ )
7722 /> UNOTREADY'/ ~\UNOT READY' / LOCATION {UNOT READY’

[ XXX \ /[ NEXTCMD )\
\_MS RESULT / \_ LS RESULT /

[ XXX \ o[ NEXTCMD )\
\ BERR /7 \UNOT READY’ /

Figure 8-28. READ Command Sequence

Operand Data The only operand is the longword address of the requested location.
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Result Data Word results return 16 bits of data; longword results return 32. Bytes are returned
in the LSB of a word result, the upper byte is undefined. 0x0001 (S = 1) is returned
if a bus error occurs.

8.5.3.3.4 Write Memory Location (WRITE)

Write data to the memory location specified by the longword address. The address space is defined by
BAARJ[TT,TM]. Hardware forces low-order address bits to zeros for word and longword accesses to
ensure that word addresses are word-aligned and longword addresses are longword-aligned.

Command Formats:

15 12 11 8 7 4 3 1
Byte 0x1 0x8 0x0 0x0

A[31:16]
A[15:0]
X | X | x| x| x| x| x| x D[7:0]

Word 0Ox1 0x8 0x4 0x0
A[31:16]
A[15:0]

D[15:0]

Longword 0x1 0x8 0x8 0x0
A[31:16]
A[15:0]
D[31:16]
D[15:0]
Figure 8-29. WRITE Command Format
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Command Sequence:

WRITE BW)\ _/ MSADDR \ _/ LSADDR \ ./ DATA \ _ MVI‘éF,\*A'CT)EY 4; XXX ;)
\_ 772 ] \NOTREADY,) ~\NOTREADY) > \NOTREADY,  |'CM2RL ™ NOT READY" )

[ NEXTCMD

\\CMD COMPLETE/

NEXT CMD

“\'NOT READY’ /

(WRITE (LONG)\ ./ MSADDR \ ./ LSADDR \ _/ MSDATA
\ 277 /> UNOT READY’/ ~ UNOT READY’J  UNOT READY’/

LS DATA MVEK‘A'SEY 4 ; XXX ;)
NOT READY L OCATION UNOT READY’ /

[ NEXTCMD

\\CMD COMPLETE/

NEXT CMD

“"\UNOT READY’ /

Figure 8-30. WRITE Command Sequence

Operand Data This two-operand instruction requires a longword absolute address that specifies
a location to which the data operand is to be written. Byte data is sent as a 16-bit
word, justified in the LSB; 16- and 32-bit operands are sent as 16 and 32 bits,
respectively.

Result Data Command complete status is indicated by returning OxFFFF (with S cleared)
when the register write is complete. A value of 0x0001 (with S set) is returned if
a bus error occurs.

8.5.3.3.5 Dump Memory Block (DumP)

DUMP is used with the READ command to access large blocks of memory. An initial READ is executed to
set up the starting address of the block and to retrieve the first result. If an initial READ is not executed
before the first DUMP, an illegal command response is returned. The DUMP command retrieves subsequent
operands. The initial address is incremented by the operand size (1, 2, or 4) and saved in a temporary
register. Subsequent DUMP commands use this address, perform the memory read, increment it by the
current operand size, and store the updated address in the temporary register.
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The size field is examined each time a DUMP command is processed, allowing the operand size to be

NOTE

DUMP does not check for a valid address; it is a valid command only when
preceded by NOP, READ, or another DUMP command. Otherwise, an illegal
command response is returned. NOP can be used for intercommand padding
without corrupting the address pointer.

dynamically altered.

Command/Result Formats:

15 12 1N 8 7 4 3 0
Byte Command 0x1 0xD 0x0 0x0
Result X | X X[ X | X | X | X D[7:0]

Word Command 0x1 0xD 0x4 0x0
Result D[15:0]

Longword | Command 0x1 0xD 0x8 0x0
Result D[31:16]
D[15:0]

Command Sequence:

Figure 8-31. buMmp Command/Result Formats

/ DUMP (B/W) \
N

777

>

READ

(

[ XXX \)

MEMORY
LOCATION

XXX

/[ NEXT CMD

“\ ’ILLEGAL

\'NOT READY’ /

/DUMP (LONG)
N

???

XXX

READ

> UNOT READY’ /
[/ NEXTCMD

“\_ RESULT )
[ XXX \

/[ NEXT CMD

“\ BERR /

/XXX \)

MEMORY
LOCATION

./ NEXT CMD

Operand Data:

;\ ILLEGAL /7 \UNOT READY’ /

Figure 8-32. pbump Command Sequence

None

“\’NOT READY’ /
/[ NEXTCMD \

“\'NOT READY’ /

/ NEXT CMD

“\ MS RESULT /
I XXX \

“\ LSRESULT /
[ NEXT CMD \
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Result Data: Requested data is returned as either a word or longword. Byte data is returned in
the least-significant byte of a word result. Word results return 16 bits of significant

data; longword results return 32 bits. A value of 0x0001 (with S set) is returned if
a bus error occurs.

8.5.3.3.6  Fill Memory Block (FILL)

A FILL command is used with the WRITE command to access large blocks of memory. An initial WRITE is
executed to set up the starting address of the block and to supply the first operand. The FILL command
writes subsequent operands. The initial address is incremented by the operand size (1, 2, or 4) and saved
in a temporary register after the memory write. Subsequent FILL commands use this address, perform the
write, increment it by the current operand size, and store the updated address in the temporary register.

If an initial WRITE is not executed preceding the first FILL command, the illegal command response is
returned.

NOTE

The FILL command does not check for a valid address: FILL is a valid
command only when preceded by another FILL, a NOP, or a WRITE command.
Otherwise, an illegal command response is returned. The NOP command can
be used for intercommand padding without corrupting the address pointer.

The size field is examined each time a FILL command is processed, allowing the operand size to be altered
dynamically.

Command Formats:

15 12 1 8 7 4 3 0
Byte 0x1 0xC 0x0 0x0
X X X X X X X X D[7:0]

Word 0x1 0xC 0x4 0x0
D[15:0]

Longword 0x1 0xC 0x8 0x0
D[31:16]

D[15:0]

Figure 8-33. FILL Command Format
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Command Sequence:

[FILLLONG)\ _/ MSDATA \ [/ LSDATA \ _ MVEEA'CT)EY { [OXXX ) )
" 272 J [ > UNOTREADY'/ ~\UNOT READY' ) LOCATION UNOT READY’

./ NEXTCMD
[/ XXX\ / NEXTCMD \ > CMD COMPLETE /

“\ ’ILLEGAL ) \'NOT READY’ /
XXX /[ NEXT CMD
“\ BERR / \'NOT READY’ /

FILL (BW) [/ pAAa \ MVEK‘A'CT)EY ( o XXX \)
222 /[ > UNOTREADY"/ L OCATION UNOT READY’ /

./ NEXTCMD
XXX / NEXT CMD > "CMD COMPLETE’ /

“\ 'ILLEGAL / \'NOT READY’ /
[ XXX \ o/ NEXTCMD )\
\ BERR /7 \UNOT READY’ /

Figure 8-34. FiLL Command Sequence

Operand Data: A single operand is data to be written to the memory location. Byte data is sent as
a 16-bit word, justified in the least-significant byte; 16- and 32-bit operands are
sent as 16 and 32 bits, respectively.

Result Data: Command complete status (0OXxFFFF) is returned when the register write is
complete. A value of 0x0001 (with S set) is returned if a bus error occurs.

8.5.3.3.7 Resume Execution (G0)

The pipeline is flushed and refilled before normal instruction execution resumes. Prefetching begins at the
current address in the PC and at the current privilege level. If any register (such as the PC or SR) is altered
by a BDM command while the processor is halted, the updated value is used when prefetching resumes.
If a GO command is issued and the CPU is not halted, the command is ignored.

15 12 11 8 7 4 3 0
0x0 0xC 0x0 0x0

Figure 8-35. o Command Format

Command Sequence:

[ 6o\ / NEXTCMD
\ 277 J— > \"CMD COMPLETE’/

Figure 8-36. Go Command Sequence

Operand Data: None
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Result Data: The command-complete response (0XxFFFF) is returned during the next shift
operation.

8.5.3.3.8 No Operation (NOP)

NOP performs no operation and may be used as a null command where required.

Command Formats:

15 12 11 8 7 4 3 0
0x0 0x0 0x0 0x0

Figure 8-37. Nop Command Format

Command Sequence:

[ NOP \ L/ NEXT CMD \
\ ??7? J 7\'CMD COMPLETE’/

Figure 8-38. Nop Command Sequence

Operand Data: None

Result Data: The command-complete response, OXFFFF (with S cleared), is returned during the
next shift operation.

8.5.3.3.9 Synchronize PC to the PSTDDATA Lines (SYNC_PC)

The SYNC PC command captures the current PC and displays it on the PSTDDATA outputs. After the
debug module receives the command, it sends a signal to the ColdFire processor that the current PC must
be displayed. The processor then forces an instruction fetch at the next PC with the address being captured
in the DDATA logic under control of CSR[BTB]. The specific sequence of PSTDDATA values is as
follows:

1. Debug signals a SYNC_PC command is pending.

2. CPU completes the current instruction.

3. CPU forces an instruction fetch to the next PC, generates a PST = 0x5 value indicating a taken
branch and signals the capture of DDATA.

. The instruction address corresponding to the PC is captured.
5. The PST marker (0x9-0xB) is generated and displayed as defined by CSR[BTB] followed by the
captured PC address.

If the option to display ASID is enabled (CSR[3] = 1), the 8-bit ASID follows the address. That is, the
PSTDDATA sequence is {0x5, Marker, Instruction Address, 0x8, ASID}, where the 0x8 is the marker for
the ASID.

The SYNC _PC command can be used to dynamically access the PC for performance monitoring. The
execution of this command is considerably less obtrusive to the real-time operation of an application than
a HALT-CPU/READ-PC/RESUME command sequence.

Command Formats:
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15

12

0x0

0x0

0x0

Ox1

Command Sequence:

Operand Data:
Result Data:

8.5.3.3.10 Force Transfer Acknowledge (FORCE_TA)

None

Figure 8-39. syYNCc_PCc Command Format

( SYNC_PC \

( NEXT CMD \

27??

\'CMD COMPLETE}/

Figure 8-40. syYNC_PCc Command Sequence

Command complete status (OxFFFF) is returned when the register write is
complete.

DEBUG_D logic implements the new FORCE_TA serial BDM command to resolve a hung bus condition.
In some system designs, references to certain unmapped memory addresses may cause the external bus to
hang with no transfer acknowledge generated by any bus responders. The FORCE TA forces generation of
a transfer acknowledge signal, which can be logically summed into the normal acknowledge logic located

in the system integration module (SIM) outside of the ColdFire core.

There are two scenarios of interest, one caused by a processor access and the other caused by a BDM
access. The following sequences identify the operations needed to break the hung bus condition:

» Bus hang caused by processor or external or internal alternate master:
— Assert the breakpoint input to force a processor core halt.

— If the bus hang was caused by a processor access, send in FORCE_TA commands until the
processor is halted, as signaled by PST = OxF. Due to pipeline and store buffer depths, many
memory accesses may be queued up behind the access causing the bus hang. Repeated
FORCE_TA commands eventually allow processing of all these pending accesses. As soon as the

processor is halted, the system reaches a quiescent, controllable state.

— If the hang was caused by another master, such as a DMA channel, the processor can halt
immediately. In this case as well, multiple assertions of the FORCE TA command may be

required to terminate the alternate master’s errant access.

* Bus hang caused by BDM access:
— It is assumed the processor is already halted at the time of the errant BDM access. To resolve
the hung bus, it is necessary to process four or more FORCE TA commands, because the BDM
command may have initiated a cache line access that fetches 4 longwords, each needing a
unique transfer acknowledge.

Formats:

15

11

0x0

0x0

0x0

0x2

Command Sequence:

Figure 8-41. FORCE_TA Command
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( FORCE_TA\ ( NEXT CMD \
2?7 \“CMD COMPLETE’)’

Figure 8-42. FORCE_TA Command Sequence

Operand Data: None

Result Data: The command complete response, OXFFFF (with the status bit cleared), is returned
during the next shift operation. This response indicates the FORCE TA command
was processed correctly and does not necessarily reflect the status of any internal
bus.

8.5.3.3.11 Read Control Register (RCREG)

Read the selected control register and return the 32-bit result. Accesses to the processor/memory control
registers are always 32 bits wide, regardless of register width. The second and third words of the command
form a 32-bit address, which the debug module uses to generate a special bus cycle to access the specified
control register. The 12-bit Rc field is the same as that used by the MOVEC instruction.

Command/Result Formats:

15 12 11 8 7 4 3 0
Command 0x2 0x9 0x8 0x0
0x0 0x0 0x0 0x0
0x0 Rc
Result D[31:16]
D[15:0]

Figure 8-43. RCREG Command/Result Formats

Command Sequence:

/ RCREG \ ./ MSADDR \ _/ MSADDR \ ‘Cgﬁﬁgm 4‘/ XXX \)
" 222 /] > UNOTREADY'/ ~\UNOT READY' / REGisTER | | UNOT READY /

[ NEXTCMD \ _/ NEXTCMD )\
\MSRESULT / ~ \ LSRESULT /

( XXX \ o/ NEXTCMD )\
\ BERR J 7 \UNOT READY’ /

Figure 8-44. RCREG Command Sequence

Operand Data: The only operand is the 32-bit Rc control register select field.

Result Data: Control register contents are returned as a longword, most-significant word first.
The implemented portion of registers smaller than 32 bits is guaranteed correct;
other bits are undefined.

Rc encoding: See Table 8-26.
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Table 8-26. ColdFire CPU Control Register Map

Name CPU Space (Rc) Register Name

Memory Management Control Registers

CACR 0x002 Cache control register

ASID 0x003 Address space identifier

ACRO-ACR3 0x004—-0x007 Access control registers 0-3

MMUBAR 0x008 MMU base address register

Processor General-Purpose Registers

D0-D7 0x(0,1)80-0x(0,1)87 | Data registers 0-7 (0 = load, 1 = store)

AO-A7 0x(0,1)88—-0x(0,1)8F | Address registers 0-7 (0 = load, 1 = store) A7 is user stack pointer

Processor Miscellaneous Registers

OTHER_A7 0x800 Other stack pointer

VBR 0x801 Vector base register
MACSR 0x804 MAC status register

MASK 0x805 MAC address mask register

ACCO0-ACC3 0x806—0x80B MAC accumulators 0-3

ACCext01 0x807 MAC accumulator 0, 1 extension bytes
ACCext23 0x808 MAC accumulator 2, 3 extension bytes
SR 0x80E Status register

PC 0x80F Program counter

Processor Floating-Point Registers

FPUO 0x810 32 msbs of floating-point data register 0
FPLO 0x811 32 Isbs of floating-point data register 0
FPUA 0x812 32 msbs of floating-point data register 1
FPLA1 0x813 32 Isbs of floating-point data register 1
FPU2 0x814 32 msbs of floating-point data register 2
FPL2 0x815 32 Isbs of floating-point data register 2
FPU3 0x816 32 msbs of floating-point data register 3
FPL3 0x817 32 Isbs of floating-point data register 3
FPU4 0x818 32 msbs of floating-point data register 4
FPL4 0x819 32 Isbs of floating-point data register 4
FPU5 0x81A 32 msbs of floating-point data register 5
FPL5 0x81B 32 Isbs of floating-point data register 5
FPU6 0x81C 32 msbs of floating-point data register 6
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Table 8-26. ColdFire CPU Control Register Map (Continued)

Name CPU Space (Rc) Register Name
FPL6 0x81D 32 Isbs of floating-point data register 6
FPU7 0x81E 32 msbs of floating-point data register 7
FPL7 0x81F 32 Isbs of floating-point data register 7
FPIAR 0x821 Floating-point instruction address register
FPSR 0x822 Floating-point status register
FPCR 0x824 Floating-point control register

Local Memory and Module Control Registers

RAMBARO 0xC04 RAM base address register 0
RAMBART1 0xCO05 RAM base address register 1
MBAR 0xCOF Primary module base address register (not a core register)

8.5.3.3.12 BDM Accesses of the Stack Pointer Registers (A7: SSP and USP)

The Version 4 ColdFire core supports two unique stack pointer (A7) registers: the supervisor stack pointer
(SSP) and the user stack pointer (USP). The hardware implementation of these two programmable-visible
32-bit registers does not uniquely identify one as the SSP and the other as the USP. Rather, the hardware
uses one 32-bit register as the currently-active A7; the other is named simply the OTHER A7. Thus, the
contents of the two hardware registers is a function of the operating mode of the processor:

if SR[S] =1
then A7 = Supervisor Stack Pointer
OTHER A7 = User Stack Pointer
else A7 = User Stack Pointer

OTHER A7 = Supervisor Stack Pointer

The BDM programming model supports reads and writes to A7 and OTHER A7 directly. It is the
responsibility of the external development system to determine the mapping of A7 and OTHER A7 to the
two program-visible definitions (supervisor and user stack pointers), based on the SR[S].

8.5.3.3.13 BDM Accesses of the EMAC Registers

The presence of rounding logic in the output datapath of the EMAC requires special care for
BDM-initiated reads and writes of its programming model. In particular, any result rounding modes must
be disabled during the read/write process so the exact bit-wise EMAC register contents are accessed.

For example, a BDM read of an accumulator (ACCx) requires the following sequence:

BdmReadACCx (
rcreg macsr; // read current macsr contents & save
wcreg #0,macsr; // disable all rounding modes
rcreg ACCx; // read the desired accumulator
wcreg #saved data,macsr; // restore the original macsr
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Likewise, to write an accumulator register, the following BDM sequence is needed:

BdmWriteACCx (
rcreg macsr; // read current macsr contents & save
wcreg #0,macsr; // disable all rounding modes
wcreg #data, ACCx; // write the desired accumulator
wcreg #saved data,macsr; // restore the original macsr

)

Additionally, writes to the accumulator extension registers must be performed after the corresponding
accumulators are updated because a write to any accumulator alters the corresponding extension register
contents.

For more information on saving and restoring the complete EMAC programming model, see the
appropriate section of the EMAC chapter.

8.5.3.3.14 BDM Accesses of Floating-Point Data Registers (FPn)

The ColdFire debug architecture allows BDM accesses of the entire programming model (including all
FPU-related registers) of the processor core using RCREG and WCREG. However, certain hardware
restrictions require the accesses related to the 64-bit FPn data registers be performed in a certain manner
to guarantee correct operation.

The serial BDM command structure supports 8-, 16- and 32-bit accesses, but there is no direct mechanism
for accessing 64-bit data values. Rather than changing this well-established protocol and command set,
BDM accesses of 64-bit data values are treated as two independent 32-bit references. In particular, 64-bit
FPn data registers are treated as two separate values from the BDM perspective. Each FPn is partitioned
into upper and lower longwords, FPUn and FPLn.

Either longword can be read first. The processor treats the BDM read command as a pseudo-FMOVEM.
Accordingly, all rounding modes and exception enables are ignored and the 32-bit contents of FPUrn or
FPLn are sent to the debug module for transmission over the serial communication channel. The FPU
programming model is unchanged.

To write to an FPU data register, FPUn must be written first and followed by a write to FPLn. The
processor operates as follows: the BDM write to FPUn is performed, which loads the upper 32 bits of an
internal double-precision operand register; the BDM write to FPL#n loads the supplied operand into the
lower 32 bits of the same internal register, and the entire 64-bit value is loaded into the selected FPn.
Failure to execute this sequence of commands produces an undefined value in the FPUn.

Note that any BDM write of an FPU register changes the internal state from NULL to IDLE.

8.5.3.3.15 Write Control Register (WCREG)

The operand (longword) data is written to the specified control register. The write alters all 32 register bits.
See the RCREG instruction description for the Rc encoding and for additional notes on writes to the A7
stack pointers and the EMAC and FPU programming models.

Command/Result Formats:
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15 12 1 8 7 4 3 0
Command 0x2 0x8 0x8 0x0
0x0 0x0 0x0 0x0
0x0 Rc
Result D[31:16]
D[15:0]

Figure 8-45. wWcREG Command/Result Formats

Command Sequence:

( WCREG \ _/ MSADDR )\ [ MSADDR \ _/ MSDATA )\
\ 777 /7 \NOT READY’/ \NOT READY’/ ”~ UNOT READY’/

LS DATA C‘(’)V,\FI‘FR%L 4 ; XXX ;)
NOT READY REGisTER| | UNOT READY /

[ NEXTCMD
\\CMD COMPLETE’/

[ XXX \

BERR

NEXT CMD

“\NOT READY’ /

Figure 8-46. WCREG Command Sequence

Operand Data: This instruction requires two longword operands. The first selects the register to
which the operand data is to be written; the second contains the data.

Result Data: Successful write operations return OXFFFF. Bus errors on the write cycle are
indicated by the setting of bit 16 in the status message and by a data pattern of
0x0001.

8.5.3.3.16 Read Debug Module Register (RDMREG)

Read the selected debug module register and return the 32-bit result. The only valid register selection for
the RDMREG command is CSR (DRc = 0x00). Note that this read of the CSR clears the trigger status bits
(CSR[BSTAT)) if either a level-2 breakpoint has been triggered or a level-1 breakpoint has been triggered
and no level-2 breakpoint has been enabled.

Command/Result Formats:
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15 12 11 8 7 5 4 0
Command 0x2 0xD 100 DRc

Result D[31:16]

D[15:0]

Figure 8-47. RDMREG BDM Command/Result Formats

Table 8-27 shows the definition of DRc encoding.
Table 8-27. Definition of DRc Encoding—Read

DRc[4:0] Debug Register Definition Mnemonic Initial State Page
0x00 Configuration/Status CSR 0x0 p. 8-11
0x01-0x1F Reserved — — —

Command Sequence:

( RDMREG \ _/ XXX \ /[ NEXT CMD
\ ??? J | 7\ MS RESULT / \ LS RESULT /

/[ XXX\ / NEXTCMD )\
T ILLEGALC / ~UNOT READY’ /

Figure 8-48. RDMREG Command Sequence

Operand Data: None

Result Data: The contents of the selected debug register are returned as a longword value. The
data is returned most-significant word first.

8.5.3.3.17 Write Debug Module Register (WDMREG)

The operand (longword) data is written to the specified debug module register. All 32 bits of the register
are altered by the write. DSCLK must be inactive while the debug module register writes from the CPU
accesses are performed using the WDEBUG instruction.

Command Format:

Figure 8-49. wbDMREG BDM Command Format

15 12 11 8 7 5 4 0
0x2 0xC 100 DRc

D[31:16]

D[15:0]

Table 8-6 shows the definition of the DRc¢ write encoding.

Command Sequence:
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([ WDMREG \ _/ MSDATA \ [ LSDATA \ [/ NEXTCMD
\ 277 /| 7 \UNOT READY’ / \'NOT READY’/ ~ \\CMD COMPLETE’/

o/ XXX \ /[ NEXT CMD
“\_ ’ILLEGAL / \UNOT READY’ /

Figure 8-50. WDMREG Command Sequence

Operand Data: Longword data is written into the specified debug register. The data is supplied
most-significant word first.

Result Data: Command complete status (OXFFFF) is returned when register write is complete.

8.6 Real-Time Debug Support

The ColdFire Family provides support debugging real-time applications. For these types of embedded
systems, the processor must continue to operate during debug. The foundation of this area of debug support
is that while the processor cannot be halted to allow debugging, the system can generally tolerate the small
intrusions of the BDM inserting instructions into the pipeline with minimal effect on real-time operation.

The debug module provides three types of breakpoints: PC with mask, operand address range, and data
with mask. These breakpoints can be configured into one- or two-level triggers with the exact trigger
response also programmable. The debug module programming model can be written from either the
external development system using the debug serial interface or from the processor’s supervisor
programming model using the WDEBUG instruction. Only CSR is readable using the external
development system.

8.6.1  Theory of Operation

Breakpoint hardware can be configured through TDR[TCR] to respond to triggers by displaying
PSTDDATA, initiating a processor halt, or generating a debug interrupt. As shown in Table 8-28, when a
breakpoint is triggered, an indication (CSR[BSTAT]) is provided on the PSTDDATA output port of the
DDATA information when it is not displaying captured processor status, operands, or branch addresses.
See Section 8.3.2, “Processor Stopped or Breakpoint State Change (PST = 0xE).”

Table 8-28. PSTDDATA Nibble/CSR[BSTAT] Breakpoint Response

PSTDDATA Nibble/CSR[BSTAT] ! Breakpoint Status
0000/0000 No breakpoints enabled
0010/0001 Waiting for level-1 breakpoint
0100/0010 Level-1 breakpoint triggered
1010/0101 Waiting for level-2 breakpoint
1100/0110 Level-2 breakpoint triggered

1 Encodings not shown are reserved for future use.

The breakpoint status is also posted in CSR. Note that CSR[BSTAT] is cleared by a CSR read when either
a level-2 breakpoint is triggered or a level-1 breakpoint is triggered and a level-2 breakpoint is not enabled.
Status is also cleared by writing to either TDR or XTDR to disable trigger options.
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BDM instructions use the appropriate registers to load and configure breakpoints. As the system operates,
a breakpoint trigger generates the response defined in TDR.

PC breakpoints are treated in a precise manner: exception recognition and processing are initiated before
the excepting instruction is executed. All other breakpoint events are recognized on the processor’s local
bus, but are made pending to the processor and sampled like other interrupt conditions. As a result, these
interrupts are said to be imprecise.

In systems that tolerate the processor being halted, a BDM-entry can be used. With TDR[TRC] =01, a
breakpoint trigger causes the core to halt (PST = 0xF).

If the processor core cannot be halted, the debug interrupt can be used. With this configuration,
TDR[TRC] = 10, the breakpoint trigger becomes a debug interrupt to the processor, which is treated higher
than the nonmaskable level-7 interrupt request. As with all interrupts, it is made pending until the
processor reaches a sample point, which occurs once per instruction. Again, the hardware forces the PC
breakpoint to occur before the targeted instruction executes and is precise. This is possible because the PC
breakpoint is enabled when interrupt sampling occurs. For address and data breakpoints, reporting is
considered imprecise because several instructions may execute after the triggering address or data is
detected.

As soon as the debug interrupt is recognized, the processor aborts execution and initiates exception
processing. This event is signaled externally by the assertion of a unique PST value (PST = 0xD) for
multiple cycles. The core enters emulator mode when exception processing begins. After the standard
8-byte exception stack is created, the processor fetches a unique exception vector from the vector table.
Table 8-29 describes the two unique entries that distinguish PC breakpoints from other trigger events.

Table 8-29. Exception Vector Assignments

Vector Number | Vector Offset (Hex) | Stacked Program Counter Assignment
12 0x030 Next Non-PC-breakpoint debug interrupt
13 0x034 Next PC-breakpoint debug interrupt

(Refer to the ColdFire Programmer s Reference Manual.)

In the case of a two-level trigger, the last breakpoint event determines the exception vector; however, if
the second-level trigger is PC || Address {&& Data} (as shown in the last condition in the code example
in Section 8.4.11.1, “Resulting Set of Possible Trigger Combinations”), the vector taken is determined by
the first condition that occurs after the first-level trigger: vector 13 if PC occurs first or vector 12 if Address
{&& Data} occurs first. If both occur simultaneously, the non-PC-breakpoint debug interrupt is taken
(vector number 12).

Execution continues at the instruction address in the vector corresponding to the breakpoint triggered. The
debug interrupt handler can use supervisor instructions to save the necessary context such as the state of
all program-visible registers into a reserved memory area.

During a debug interrupt service routine, all normal interrupt requests are evaluated and sampled once per
instruction. If any exception occurs, the processor responds as follows:

1. Itsaves a copy of the current value of the emulator mode state bit and then exits emulator mode by
clearing the actual state.

2. Bit 1 of the fault status field (FS1) in the next exception stack frame is set to indicate the
processor was in emulator mode when the interrupt occurred. This corresponds to bit 17 of the
longword at the top of the system stack. See Section 3.8.1, “Exception Stack Frame Definition.”

3. It passes control to the appropriate exception handler.
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4. Tt executes an RTE instruction when the exception handler finishes. During the processing of the
RTE, FS1 is reloaded from the system stack. If this bit is set, the processor sets the emulator mode
state and resumes execution of the original debug interrupt service routine. This is signaled
externally by the generation of the PST value that originally identified the debug interrupt
exception, that is, PST = 0xD.

Fault status encodings are listed in Table 5-2. Implementation of this debug interrupt handling fully
supports the servicing of a number of normal interrupt requests during a debug interrupt service routine.

The emulator mode state bit is essentially changed to be a program-visible value, stored into memory
during exception stack frame creation, and loaded from memory by the RTE instruction.

When debug interrupt operations complete, the RTE instruction executes and the processor exits emulator
mode. After the debug interrupt handler completes execution, the external development system can use
BDM commands to read the reserved memory locations.

In Revision A, if a hardware breakpoint such as a PC trigger is left unmodified by the debug interrupt
service routine, another debug interrupt is generated after the completion of the RTE instruction. In
Revisions B and C, the generation of another debug interrupt during the first instruction after the RTE exits
emulator mode is inhibited. This behavior is consistent with the existing logic involving trace mode where
the first instruction executes before another trace exception is generated. Thus, all hardware breakpoints
are disabled until the first instruction after the RTE completes execution, regardless of the programmed
trigger response.

8.6.1.1 Emulator Mode

Emulator mode is used to facilitate nonintrusive emulator functionality. This mode can be entered in three
different ways:

» Setting CSR[EMU] forces the processor into emulator mode. EMU is examined only if RSTT is
negated and the processor begins reset exception processing. It can be set while the processor is
halted before reset exception processing begins. See Section 8.5.1, “CPU Halt.”

* A debug interrupt always puts the processor in emulation mode when debug interrupt exception
processing begins.
+ Setting CSR[TRC] forces the processor into emulation mode when trace exception processing
begins.
While operating in emulation mode, the processor exhibits the following properties:
* Unmasked interrupt requests are serviced. The resulting interrupt exception stack frame has FS[1]
set to indicate the interrupt occurred while in emulator mode.

» If CSR[MAP] =1, all caching of memory and the SRAM module are disabled. All memory
accesses are forced into a specially mapped address space signaled by TT = 0x2, TM = 0x5 or 0x6.
This includes stack frame writes and the vector fetch for the exception that forced entry into this
mode.

The RTE instruction exits emulation mode. The processor status output port provides a unique encoding
for emulator mode entry (0xD) and exit (0x7).

8.6.2 Concurrent BDM and Processor Operation

The debug module supports concurrent operation of both the processor and most BDM commands. BDM
commands may be executed while the processor is running, except the following:

* Read/write address and data registers
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* Read/write control registers

For BDM commands that access memory, the debug module requests the processor’s local bus. The
processor responds by stalling the instruction fetch pipeline and waiting for current bus activity to
complete before freeing the local bus for the debug module to perform its access. After the debug module
bus cycle, the processor reclaims the bus.

NOTE

Breakpoint registers must be carefully configured in a development system
if the processor is executing. The debug module contains no hardware
interlocks, so TDR and XTDR should be disabled while breakpoint registers
are loaded, after which TDR and XTDR can be written to define the exact
trigger. This prevents spurious breakpoint triggers.

Because there are no hardware interlocks in the debug unit, no BDM operations are allowed while the CPU
is writing the debug’s registers (DSCLK must be inactive).

8.7 Debug C Definition of PSTDDATA Outputs

This section specifies the ColdFire processor and debug module’s generation of the PSTDDATA output on
an instruction basis. In general, the PSTDDATA output for an instruction is defined as follows:

PSTDDATA = 0x1, {[0x89B], operand}
where the {...} definition is optional operand information defined by the setting of the CSR.

The CSR provides capabilities to display operands based on reference type (read, write, or both). A PST
value {0x8, 0x9, or 0xB} identifies the size and presence of valid data to follow on the PSTDDATA output
{1, 2, or 4 bytes}. Additionally, for certain change-of-flow branch instructions, CSR[BTB] provides the
capability to display the target instruction address on the PSTDDATA output {2, 3, or 4 bytes} using a PST
value of {0x9, 0xA, or 0xB}.

8.7.1 User Instruction Set

Table 8-30 shows the PSTDDATA specification for user-mode instructions. Rn represents any {Dn, An}
register. In this definition, the ‘y’ suffix generally denotes the source and ‘x’ denotes the destination
operand. For a given instruction, the optional operand data is displayed only for those effective addresses
referencing memory.

Table 8-30. PSTDDATA Specification for User-Mode Instructions

Instruction | Operand Syntax PSTDDATA

add.l <ea>y,Dx PSTDDATA = 0x1,{0OxB, source operand}

add.l Dy,<ea>x PSTDDATA = 0x1,{0xB, source},{0xB, destination}
adda.l <ea>y,Ax PSTDDATA = 0x1,{0OxB, source operand}

addi.l #<data>,Dx PSTDDATA = 0x1

addq.l #<data>,<ea>x PSTDDATA = 0x1,{0xB, source},{0xB, destination}
addx. Dy,Dx PSTDDATA = 0x1

and.l <ea>y,Dx PSTDDATA = 0x1,{0OxB, source operand}

and.l Dy,<ea>x PSTDDATA = 0x1,{0xB, source},{0xB, destination}
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Table 8-30. PSTDDATA Specification for User-Mode Instructions (Continued)

Debug C Definition of PSTDDATA Outputs

Instruction | Operand Syntax PSTDDATA

andi.l #<data>,Dx PSTDDATA = 0x1

asl.| {Dy,#<data>},Dx PSTDDATA = 0x1

asr.| {Dy,#<data>},Dx PSTDDATA = 0x1

bee.{b,w,} if taken, then PSTDDATA = 0x5, else PSTDDATA = 0x1
bchg.{b,} #<data>,<ea>x PSTDDATA = 0x1,{0x8, source},{0x8, destination}
bchg.{b,} Dy,<ea>x PSTDDATA = 0x1,{0x8, source},{0x8, destination}
belr.{b,I} #<data>,<ea>x PSTDDATA = 0x1,{0x8, source},{0x8, destination}
belr.{b,I} Dy,<ea>x PSTDDATA = 0x1,{0x8, source},{0x8, destination}
bra.{b,w,I} PSTDDATA = 0x5

bset.{b,I} #<data>,<ea>x PSTDDATA = 0x1,{0x8, source},{0x8, destination}
bset.{b,I} Dy,<ea>x PSTDDATA = 0x1,{0x8, source},{0x8, destination}
bsr.{b,w,l} PSTDDATA = 0x5,{0xB, destination operand}
btst.{b,} #<data>,<ea>x PSTDDATA = 0x1,{0x8, source operand}

btst.{b,l} Dy,<ea>x PSTDDATA = 0x1,{0x8, source operand}

clr.b <ea>X PSTDDATA = 0x1,{0x8, destination operand}

clrl <ea>X PSTDDATA = 0x1,{0OxB, destination operand}
clr.w <ea>X PSTDDATA = 0x1,{0x9, destination operand}
cmp.b <ea>y,Dx PSTDDATA = 0x1, {Ox8, source operand}

cmp.l <ea>y,Dx PSTDDATA = 0x1,{0OxB, source operand}

cmp.w <ea>y,Dx PSTDDATA = 0x1, {Ox9, source operand}

cmpa.l <ea>y,Ax PSTDDATA = 0x1,{0OxB, source operand}

cmpa.w <ea>y,Ax PSTDDATA = 0x1, {Ox9, source operand}

cmpi.b #<data>,Dx PSTDDATA = 0x1

cmpi.l #<data>,Dx PSTDDATA = 0x1

cmpi.w #<data>,Dx PSTDDATA = 0x1

divs.| <ea>y,Dx PSTDDATA = 0x1,{0OxB, source operand}

divs.w <ea>y,Dx PSTDDATA = 0x1,{0x9, source operand}

divu.l <ea>y,Dx PSTDDATA = 0x1,{0OxB, source operand}

divu.w <ea>y,Dx PSTDDATA = 0x1,{0x9, source operand}

eor.l Dy,<ea>x PSTDDATA = 0x1,{0xB, source},{0xB, destination}
eori.l #<data>,Dx PSTDDATA = 0x1

ext.| Dx PSTDDATA = 0x1

ext.w Dx PSTDDATA = 0x1
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Table 8-30. PSTDDATA Specification for User-Mode Instructions (Continued)

Instruction | Operand Syntax PSTDDATA

extb.| Dx PSTDDATA = 0x1

illegal PSTDDATA = 0Ox1'

jmp <ea>y PSTDDATA = 0x5, {{0x9AB], target address} 2

jsr <ea>y PSTDDATA = 0x5, {{0x9AB], target address},{0B , destination operand}2
lea.l <ea>y,Ax PSTDDATA = 0x1

link.w Ay, #<displacement> | PSTDDATA = 0x1,{0xB, destination operand}

Isl.| {Dy,#<data>},Dx PSTDDATA = 0x1

Isr.l {Dy,#<data>},Dx PSTDDATA = 0x1

mov3q.| #<data>,<ea>x PSTDDATA = 0x1, {OxB, destination operand}
move.b <ea>y,<ea>X PSTDDATA = 0x1,{0x8, source},{0x8, destination}
move.l <ea>y,<ea>X PSTDDATA = 0x1,{0xB, source},{0xB, destination}
move.w <ea>y,<ea>X PSTDDATA = 0x1,{0x9, source},{0x9, destination}
move.w CCR,Dx PSTDDATA = 0x1

move.w {Dy,#<data>},CCR PSTDDATA = 0x1

movea.l <ea>y,Ax PSTDDATA = 0x1,{0xB, source}
movea.w <ea>y,Ax PSTDDATA = 0x1,{0x9, source}

movem.| #list,<ea>x PSTDDATA = 0x1,{0xB, destination},... 3
movem.| <ea>y,#list PSTDDATA = 0x1,{0xB, source},... 3
moveq.| #<data>,Dx PSTDDATA = 0x1

muls.| <ea>y,Dx PSTDDATA = 0x1,{0OxB, source operand}
muls.w <ea>y,Dx PSTDDATA = 0x1,{0x9, source operand}
mulu.l <ea>y,Dx PSTDDATA = 0x1,{0xB, source operand}
mulu.w <ea>y,Dx PSTDDATA = 0x1,{0x9, source operand}
mvs.b <ea>y,Dx PSTDDATA = 0x1, {Ox8, source operand}
mvs.w <ea>y,Dx PSTDDATA = 0x1, {Ox9, source operand}
mvz.b <ea>y,Dx PSTDDATA = 0x1, {Ox8, source operand}
mvz.w <ea>y,Dx PSTDDATA = 0x1, {Ox9, source operand}
neg.! Dx PSTDDATA = 0x1

negx.| Dx PSTDDATA = 0x1

nop PSTDDATA = 0x1

not.| Dx PSTDDATA = 0x1

or.l <ea>y,Dx PSTDDATA = 0x1,{0OxB, source operand}
or.l Dy,<ea>x PSTDDATA = 0x1,{0xB, source},{0xB, destination}
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Table 8-30. PSTDDATA Specification for User-Mode Instructions (Continued)

Debug C Definition of PSTDDATA Outputs

Instruction | Operand Syntax PSTDDATA

ori.l #<data>,Dx PSTDDATA = 0x1

pea.l <ea>y PSTDDATA = 0x1,{0OxB, destination operand}
pulse PSTDDATA = 0x4

rems.| <ea>y,Dw:Dx PSTDDATA = 0x1,{0OxB, source operand}

remu.l <ea>y,Dw:Dx PSTDDATA = 0x1,{0OxB, source operand}

rts PSTDDATA = 0x1, PSTDDATA = 0x5, {[0x9AB], target address}
sats.| Dx PSTDDATA = 0x1

scc.b Dx PSTDDATA = 0x1

sub.l <ea>y,Dx PSTDDATA = 0x1,{0OxB, source operand}

sub.l Dy,<ea>x PSTDDATA = 0x1,{0xB, source},{0xB, destination}
suba.l <ea>y,Ax PSTDDATA = 0x1,{0xB, source operand}

subi.l #<data>,Dx PSTDDATA = 0x1

subq.l #<data>,<ea>x PSTDDATA = 0x1,{0xB, source},{0xB, destination}
subx.| Dy,Dx PSTDDATA = 0x1

swap.w Dx PSTDDATA = 0x1

tas.b <ea>X PSTDDATA = 0x1, {0x8, source}, {0x8, destination}
tpf PST = 0x1

tpf.l #<data> PST = 0x1

tpf.w #<data> PST = 0x1

trap #<data> PSTDDATA = 0x1’

tst.b <ea>X PSTDDATA = 0x1,{0Ox8, source operand}

tst.l <ea>y PSTDDATA = 0x1,{0OxB, source operand}

tst.w <ea>y PSTDDATA = 0x1,{0x9, source operand}

unlk Ax PSTDDATA = 0x1,{0OxB, destination operand}
wddata.b <ea>y PSTDDATA = 0x4, {Ox8, source operand

wddata.l <ea>y PSTDDATA = 0x4, {OxB, source operand
wddata.w <ea>y PSTDDATA = 0x4, {0x9, source operand
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1 During normal exception processing, the PSTDDATA output is driven to a 0xC indicating the exception
processing state. The exception stack write operands, as well as the vector read and target address of the
exception handler may also be displayed.

Exception ProcessingPSTDDATA = 0xC,{0xB,destination},//stack frame

{OxB,destination},// stack frame

{OxB,source},// vector read

PSTDDATA = 0x5,{[0x9AB],target}// handlerPC

The PSTDDATA specification for the reset exception is shown below:

Exception ProcessingPSTDDATA = 0xC,

PSTDDATA = 0x5,{[0x9AB],target}/ handlerPC

The initial references at address 0 and 4 are never captured nor displayed since these accesses are treated
as instruction fetches.

For all types of exception processing, the PSTDDATA = 0xC value is driven at all times, unless the PSTDDATA
output is needed for one of the optional marker values or for the taken branch indicator (0x5).

For JMP and JSR instructions, the optional target instruction address is displayed only for those effective
address fields defining variant addressing modes. This includes the following <ea>x values: (An), (d16,An),
(d8,An,Xi), (d8,PC,Xi).

For Move Multiple instructions (MOVEM), the processor automatically generates line-sized transfers if the
operand address reaches a 0-modulo-16 boundary and there are four or more registers to be transferred. For
these line-sized transfers, the operand data is never captured nor displayed, regardless of the CSR value.
The automatic line-sized burst transfers are provided to maximize performance during these sequential
memory access operations.

Table 8-31 shows the PSTDDATA specification for multiply-accumulate instructions.
Table 8-31. PSTDDATA Values for User-Mode Multiply-Accumulate Instructions

Instruction Operand Syntax PSTDDATA
mac.! Ry,Rx PSTDDATA = 0x1
mac.! Ry,Rx,<ea>y,Rw,ACCx PSTDDATA = 0x1,{0xB, source operand}
mac.! Ry,Rx,ACCx PSTDDATA = 0x1
mac.| Ry,Rx,ea,Rw PSTDDATA = 0x1,{0xB, source operand}
mac.w Ry,Rx PSTDDATA = 0x1
mac.w Ry,Rx,<ea>y,Rw,ACCx PSTDDATA = 0x1,{0xB, source operand}
mac.w Ry,Rx,ACCx PSTDDATA = 0x1
mac.w Ry,Rx,ea,Rw PSTDDATA = 0x1,{0xB, source operand}
move.| {Ry,#<data>},ACCext01 PSTDDATA = 0x1
move.| {Ry,#<data>},ACCext23 PSTDDATA = 0x1
move.| {Ry,#<data>},ACCx PSTDDATA = 0x1
move.| {Ry,#<data>},MACSR PSTDDATA = 0x1
move.| {Ry,#<data>},MASK PSTDDATA = 0x1
move.| ACCext01,Rx PSTDDATA = 0x1
move.| ACCext23,Rx PSTDDATA = 0x1
move.| ACCy,ACCx PSTDDATA = 0x1
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Table 8-31. PSTDDATA Values for User-Mode Multiply-Accumulate Instructions (Continued)

Debug C Definition of PSTDDATA Outputs

Instruction Operand Syntax PSTDDATA

move.| ACCy,Rx PSTDDATA = 0x1

move.| MACSR,CCR PSTDDATA = 0x1

move.l MACSR,Rx PSTDDATA = 0x1

move.l MASK,Rx PSTDDATA = 0x1

msac.! Ry,Rx PSTDDATA = 0x1

msac.! Ry,Rx,<ea>y,Rw,ACCx PSTDDATA = 0x1,{0xB, source operand}

msac.! Ry,Rx,ACCx PSTDDATA = 0x1

msac.| Ry,Rx,<ea>y,Rw PSTDDATA = 0x1,{0xB, source},{0xB, destination}
msac.w Ry,Rx PSTDDATA = 0x1

msac.w Ry,Rx,<ea>y,Rw,ACCx PSTDDATA = 0x1,{0xB, source operand}

msac.w Ry,Rx,ACCx PSTDDATA = 0x1

msac.w Ry,Rx,<ea>y,Rw PSTDDATA = 0x1,{0xB, source},{0xB, destination}

Table 8-32 shows the PSTDDATA specification for floating-point instructions; note that <ea>y includes
FPy, Dy, Ay, and <mem>y addressing modes. The optional operand capture and display applies only to the
<mem>y addressing modes. Note also that the PSTDDATA values are the same for a given instruction,
regardless of explicit rounding precision.

Table 8-32. PSTDDATA Values for User-Mode Floating-Point Instructions

Instruction ! | Operand Syntax PSTDDATA
fabs.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
fadd.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
fbce.{w,1} <label> if taken, then PSTDDATA = 5, else PSTDDATA = 0x1
fcmp.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
fdiv.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
fint.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
fintrz.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
fmove.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
fmove.sz FPy,<ea>x PSTDDATA = 0x1, [89B], destination}
fmove.l <ea>y,FP*R PSTDDATA = 0x1, B, source}
fmove.l FP*R,<ea>x PSTDDATA = 0x1, B, destination}
fmovem <ea>y,#list PSTDDATA = Ox1
fmovem #list,<ea>x PSTDDATA = 0x1
fmul.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
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Table 8-32. PSTDDATA Values for User-Mode Floating-Point Instructions (Continued)

Instruction ! | Operand Syntax PSTDDATA
fneg.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
fnop PSTDDATA = 0x1
fsqrt.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
fsub.sz <ea>y,FPx PSTDDATA = 0x1, [89B], source}
ftst.sz <ea>y PSTDDATA = 0x1, [89B], source}

1 The FP*R notation refers to the floating-point control registers: FPCR, FPSR, and FPIAR.

Depending on the size of any external memory operand specified by the f<op>.fmt field, the data marker

is defined as shown in Table 8-33.
Table 8-33. Data Markers and FPU Operand Format Specifiers

8.7.2

Format Specifier

Data Marker

.b 8
W 9
i B
.S B
d Never captured

Supervisor Instruction Set

The supervisor instruction set has complete access to the user mode instructions plus the opcodes shown

below. The PSTDDATA specification for these opcodes is shown in Table 8-34.

Table 8-34. PSTDDATA Specification for Supervisor-Mode Instructions

Instruction | Operand Syntax PSTDDATA

cpushl dc,(Ax) PSTDDATA = 0x1

ic,(Ax)

bc,(Ax)
frestore <ea>y PSTDDATA = Ox1
fsave <ea>Xx PSTDDATA = 0x1
halt PSTDDATA = 0x1,

PSTDDATA = OxF

intouch (Ay) PSTDDATA = 0x1
move.| Ay,USP PSTDDATA = 0x1
move.| USP,Ax PSTDDATA = 0x1
move.w SR,Dx PSTDDATA = 0x1
move.w {Dy,#<data>},SR | PSTDDATA = 0x1, {Ox3}
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ColdFire Debug History

Table 8-34. PSTDDATA Specification for Supervisor-Mode Instructions (Continued)

Instruction | Operand Syntax PSTDDATA
movec.| Ry,Rc PSTDDATA = 0x1, {8, ASID}
rte PSTDDATA = 0x7, {OxB, source operand}, {3},{0xB, source operand}, {DD},

PSTDDATA = 0x5, {{0x9AB], target address}

stop #<data> PSTDDATA = 0x1,
PSTDDATA = OxE

wdebug.| <ea>y PSTDDATA = 0x1, {OxB, source, 0xB, source}

The move-to-SR and RTE instructions include an optional PSTDDATA = 0x3 value, indicating an entry
into user mode. Additionally, if the execution of a RTE instruction returns the processor to emulator mode,
a multiple-cycle status of 0xD is signaled.

Similar to the exception processing mode, the stopped state (PSTDDATA = 0xE) and the halted state
(PSTDDATA = 0xF) display this status throughout the entire time the ColdFire processor is in the given
mode.

8.8 ColdFire Debug History

This section describes the origins of the ColdFire debug systems.

8.8.1 ColdFire Debug Classic: The Original Definition

The original design, Revision A, provided debug support in three separate areas:

* Real-time trace
* Background debug mode (BDM)
* Real-time debug

The real-time debug features may be accessed from the external BDM emulator or from the supervisor
programming model of the processor. The hardware breakpoint registers include: a PC breakpoint + mask,
two address registers for defining a specific address or a range of addresses, and a data breakpoint + mask.
The original design supported breakpoints of the form:

if PC breakpoint is triggered
then respond using user-defined configuration

if Address breakpoint {&& Data breakpoint} is triggered
then respond using user-defined configuration

Two-level triggers of the form:

if PC breakpoint is triggered
then if Address breakpoint {&& Data breakpoint} is triggered
then respond using user-defined configuration

if Address breakpoint {&& Data breakpoint} is triggered
then if PC breakpoint is triggered
then respond using user-defined configuration
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The data_breakpoint can be included as an optional part of an address breakpoint.

The ColdFire debug architecture was created to provide this set of functionality without requiring the
traditional connection to the external system bus. Rather, the functionality is provided using only a
connection to a Freescale-defined 26-pin debug connector. By providing the required debug signals in
customer-specific designs, standard third-party emulators can be used for debug of these designs.

NOTE

The baseline debug functionality is described in any of the ColdFire
MCF52xx Users Manuals, which are available as PDF files at:
http://www.freescale.com/ColdFire/. As an example, see the debug section
of the MCF5272 Users Manual located under MCF5272 Product
Information.

8.8.2 ColdFire Debug Revision B

During development of the Version 3 ColdFire design, there were a number of enhancements to the
original debug functionality requested by customers and third-party developers. These requests resulted in
an expanded set of debug functionality named Revision B.

The Rev. B enhancements are as follows:

* Addition of a BDM SYNC PC command to display the processor’s current PC

* Creation of more flexible hardware breakpoint triggers, i.e., support for “OR” combinations

* Removal of the restrictions involving concurrent hardware breakpoint use and BDM command
activity

» Redefinition of the processor status values for the RTS instruction

* An external mechanism to generate a debug interrupt

* A mechanism to inhibit debug interrupts after the RTE exit

* A mechanism to identify the revision level of the debug module

Rev. B enhancements provide backward compatibility with the original design.

8.8.3 ColdFire Debug Revision C

Continuing discussions with customers and the developer community led to Revision C design
enhancements primarily related to improvements in the real-time debug capabilities of the ColdFire
architecture. The remainder of this section details these enhancements.

8.8.3.1 Debug Interrupts and Interrupt Requests (Emulator Mode)

In Rev. A and Rev. B ColdFire debug implementations, the response to a user-defined breakpoint trigger
can be configured to be one of three possibilities:

» The breakpoint trigger can merely be displayed on the DDATA bus, with no internal reaction to the
trigger. The trigger state information is displayed on DDATA in all situations.
» The breakpoint trigger can force the processor to halt and allow BDM activities.

» The breakpoint trigger can generate a special debug interrupt to allow real-time systems to quickly
process the interrupt and return to normal system executing as rapidly as possible.

The occurrence of the debug interrupt exception is treated as a special type of interrupt. It is considered to
be higher in priority than all normal interrupt requests and has special processor status values to provide
an external indication that this interrupt has occurred.
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Freescale-Recommended BDM Pinout

Additionally, the execution of the debug interrupt service routine is forced to be interrupt-inhibited by the
processor hardware. While in this service routine, there is an optional capability to map all instruction and
operand references into a separate address space, so that an emulator could define the routine dynamically.
The current processor implementations actually include a program-invisible state bit that defines this
emulator mode of operation. Also note, the interrupt mask level is not modified during the processing of
a debug interrupt.

Customers with real-time embedded systems have specifically asked for the ability to service normal
interrupt requests while processing the debug interrupt service routine. In many systems of this type,
motion-based servo interrupts must be considered as the highest priority interrupt request.

To provide this functionality and be able to service any number of normal interrupt requests (including the
possibility of nested interrupts), the processor state signaling emulator mode must be included as part of
the exception stack frame.

As part of the Rev. C functionality, the operation of the debug interrupt is modified in the following
manner:

1. The occurrence of the breakpoint trigger, configured to generate a debug interrupt, is treated
exactly as before. The debug interrupt is treated as a higher priority exception relative to the normal
interrupt requests encoded on the interrupt priority input signals.

2. At the appropriate sample point, the ColdFire processor initiates debug interrupt exception
processing. This event is signaled externally by the generation of a unique PST value (PST =
0xD) asserted for multiple cycles. The processor sets the emulator mode state bit as part of this
exception processing.

3. While the processor in the debug interrupt service routine, all normal interrupt requests are
evaluated and sampled once per instruction. While in this routine, if any type of exception occurs,
the processor responds in the following manner:

a) Inresponse to the new exception, the processor saves a copy of the current value of the
emulator mode state bit and then exits emulator mode by clearing the actual state.

b) The new exception stack frame sets bit 1 of the fault status field, using the saved emulator
mode bit, indicating execution while in emulator mode has been interrupted. This corresponds
to bit 17 of the longword at the top of the system stack.

c) Control is passed to the appropriate exception handler.

d) When the exception handler is complete, a Return From Exception (RTE) instruction is
executed. During the processing of the RTE, FS[1] is reloaded from the system stack. If this
bit is asserted, the processor sets the emulator mode state and resumes execution of the
original debug interrupt service routine. This is signaled externally by the generation of the
PST value that originally identified the occurrence of a debug interrupt exception, that is,
PST = 0xD.

Implementation of this revised debug interrupt handling fully supports the servicing of any number of
normal interrupt requests while in a debug interrupt service routine. The emulator mode state bit is
essentially changed to be a program-visible value, stored into memory during exception stack frame
creation and loaded from memory by the RTE instruction.

8.9 Freescale-Recommended BDM Pinout
The ColdFire BDM connector, Figure 8-51, is a 26-pin Berg connector arranged 2 x 13.
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Developer reserved ' 1 2—»  BKPT
GND — »'3 4—» DSCLK
GND ——»5 6 Developer reserved’
RESET =-=———»7 88—  DSI
VDD_I02 —— > 9 10 l«———  DSO
GND ———> 11 12 <«————  PSTDDATA7
PSTDDATA6 —  »13 14 |l€——— PSTDDATA5S
PSTDDATA4 —  »15 16 l€«——— PSTDDATA3
PSTDDATA2 —» 17 18 f€—— PSTDDATA1
PSTDDATAO ——> 19 20 =— GND
Freescale reserved 21 22 Freescale reserved
GND —» 23 24 «——  PSTCLK
VDD_.CPU —» 25 26— TA

" Pins reserved for BDM developer use.
2 Supplied by target.

Figure 8-51. Recommended BDM Connector

MCF548x Reference Manual, Rev. 3

8-64 Freescale Semiconductor



Part Il
System Integration Unit

Part I describes the system integration unit, which provides overall control of the bus and serves as the
interface between the ColdFire core processor complex and internal peripheral devices. It includes a
general description of the SIU and individual chapters that describe components of the SIU, such as the
interrupt controller, general purpose timers, slice timers, and GPIOs.

Contents

Part II contains the following chapters:

Chapter 9, “System Integration Unit (SIU),” describes the SIU programming model, bus
arbitration, and system-protection functions for the MCF548x.

Chapter 10, “Internal Clocks and Bus Architecture,” describes the clocking and internal buses of
the MCF548x and discusses the main functional blocks controlling the XL bus and the XL bus
arbiter

Chapter 11, “General Purpose Timers (GPT),” describes the functionality of the four general
purpose timers, GPT0-GPT3.

Chapter 12, “Slice Timers (SLT),” describes the two slice timers, shorter term periodic interrupts,
used in the MCF548x.

Chapter 13, “Interrupt Controller,” describes operation of the interrupt controller portion of the
SIU. It includes descriptions of the registers in the interrupt controller memory map and the
interrupt priority scheme.

Chapter 14, “Edge Port Module (EPORT),” describes EPORT module functionality.

Chapter 15, “GPIO,” describes the operation and programming model of the parallel port pin
assignment, direction-control, and data registers.
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Chapter 9
System Integration Unit (SIU)

9.1 Introduction

The system integration unit (SIU) of the MCF548x family integrates several timer functions required by
most embedded systems. The SIU contains the following components:

» Slice timers

*  Watchdog timer

* General purpose timers

» General purpose 1/O ports

* Interrupt controller

Two internal 32-bit slice timers are provided to create short cycle periodic interrupts, typically utilized for
RTOS scheduling and alarm functionality. A watchdog timer is included that will reset the processor if not
regularly serviced, catching software hang-ups. Up to four 32-bit general purpose timers are included,
which are capable of input capture, output compare, and PWM functionality. Most peripheral I/O pins on
the MCF548x family are muxed with GPIO, adding flexibility and usability to pins on the chip.

The programmable interrupt controller multiplexes the external interrupts, general purpose timers, slice
timers, and peripheral sources to the CF4e core. Refer to Chapter 13, “Interrupt Controller,” for
information about the MCF548x interrupt controller.

The SIU timers are discussed in the following chapters:

» General purpose timers and watchdog timer (GPTO) are described in Chapter 11, “General Purpose
Timers (GPT).”
— The watchdog timer is further detailed in Section 10.3.2.3, “Watchdog Functions.”

» Slice timers are detailed in Chapter 12, “Slice Timers (SLT).”

* GPIO functionality is discussed in Chapter 15, “GPIO.”

9.2 Features

The system integration unit has the following features:
* Interrupt controller
* Two 32-bit slice timers for periodic alarm and interrupt generation
» Software watchdog timer with programmable secondary bus monitor
* Up to four 32-bit general-purpose timers with capture, compare, and PWM capability
* General-purpose I/O ports multiplexed with peripheral pins
» System protection and reset status and control

9.3 Memory Map/Register Definition
Table 9-1 shows the programming model for the SIU.

MCF548x Reference Manual, Rev. 3

Freescale Semiconductor 9-1



Table 9-1. SIU Register Map

&%d;;s-‘s-) Name Byte0 Byte1 Byte2 Byte3 Access
CPU+0xCOF | Module Base Address Register MBAR R/W
0x04 SDRAM Drive Strength Register’ SDRAMDS' R/W
0x08-0x0C Reserved
0x10 System Breakpoint Control Regis- SBCR R/W
ter
0x1-0x1C Reserved
0x20 SDRAM Chip Select 0 CSOCFGO' R/W
Configuration Register’
0x24 SDRAM Chip Select 1 CS1CFG1' R/W
Configuration Register’
0x28 SDRAM Chip Select 2 CS2CFG2! R/W
Configuration Register’
0x2C SDRAM Chip Select 3 CS3CFG3! R/W
Configuration Hegister1
0x30-0x34 RESERVED
0x38 Sequential Access Control Register SECSACR R/W
0x3C—-0x40 RESERVED
0x44 Reset Status Register RSR R/W
0x48-0x4C RESERVED
0x50 JTAG Device ldentification Number JTAGID R

T The SDRAM Drive Strength and Chip Select Configuration registers are discussed in Chapter 18, “SDRAM Controller
(SDRAMC)” They are shown in this memory map for reference purposes.

9.3.1 Module Base Address Register (MIBAR)

The supervisor-level MBAR, Figure 9-1, specifies the base address and allowable access types for all
internal peripherals. It is written with a MOVEC instruction using the CPU address 0xCOF (refer to the
ColdFire Family Programmer's Reference Manual). MBAR can be read or written through the debug
modules as a read/write register, as described in Chapter 8, “Debug Support.” Only the debug module can
read MBAR.

The MBAR is initialized to 0x8000 0000 at reset; however, it can be relocated to a new base address. To
access internal peripherals, write MBAR with the appropriate base address (BA) after system reset.

All internal peripheral registers occupy a single relocatable memory block along 256-KByte boundaries.
MBAR[BA] is compared to the upper 14 bits of the full 32-bit internal address to determine if an internal
peripheral is being accessed. Any accesses in this range, whether to a valid peripheral address or not, will
be made internally rather than using the external bus.

NOTE
The MBAR region must be mapped to non-cacheable space.
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Memory Map/Register Definition

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R BA 0 0
w
Reset| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 1
Rl © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg CPU + OxCOF
Addr
Figure 9-1. Module Base Address Register (MBAR)
9.3.1.1 System Breakpoint Control Register (SBCR)

The System Breakpoint Control Register allows for discrete control over functionality of the BKPT signal.
The assertion of the BKPT signal can be programmed to halt the core, DMA, and DSPI or any
combination. In addition, a halt condition in the DMA can be programmed to halt the CPU, or a halt in the

CPU can halt the DMA.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R| PIN2 | PIN2 |CPU2|DMA2| PIN2 | O 0 0 0 0 0 0 0 0 0 0
W CPU | DMA | DMA | CPU | DSPI
Reset| 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 3 1
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x0010
Addr
Figure 9-2. System Breakpoint Control Register (SBCR)
Table 9-2. SBCR Field Descriptions
Bit Name Description
31 PIN2CPU | Pin control of the ColdFire V4e breakpoint. This bit controls whether the BKPT pin can halt the
ColdFire V4e.
0 The assertion of BKPT will not halt the ColdFire V4e core.
1 The assertion of BKPT will halt the ColdFire V4e core.
30 PIN2DMA | Pin control of the multichannel DMA breakpoint. This bit controls whether the BKPT pin can halt
the DMA.
0 The assertion of BKPT will not halt the DMA.
1 The assertion of BKPT will halt the DMA.
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Table 9-2. SBCR Field Descriptions (Continued)

Bit Name Description
29 CPU2DMA | ColdFire V4e control of the multichannel DMA breakpoint. This bit controls whether a ColdFire
V4e halt condition causes the assertion of the DMA breakpoint.
0 A ColdFire V4e halt condition will not halt the DMA.
1 A ColdFire V4e halt condition will halt the DMA.
28 DMA2CPU | DMA control of the ColdFire V4e breakpoint. This bit controls whether a DMA halt condition
causes the assertion of the ColdFire V4e breakpoint.
0 A DMA halt condition will not halt the ColdFire V4e.
1 A DMA halt condition will halt the ColdFire V4e.
27 PIN2DSPI | Pin control of the DSPI breakpoint. This bit controls whether the BKPT pin can halt the DSPI.
0 The assertion of BKPT will not halt the DSPI.
1 The assertion of BKPT will halt the DSPI.
26-0 — Reserved, should be cleared.
9.3.1.2  SEC Sequential Access Control Register (SECSACR)

This register is used to control bus accesses to the SEC module. If a sequential accesses to the SEC are
enabled, then data will be buffered to create a single 64-bit access to the SEC instead of splitting up the

transfer into two longwords. This can help to improve overall SEC performance.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |[SEQEN
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x38
Addr
Figure 9-3. SEC Sequential Access Control Register (SECSACR)
Table 9-3. SECSACR Field Descriptions
Bits Name Description
31-1 — Reserved
0 SEQEN | SEC Sequential access enable.

0 SEC Sequential Access is disabled.
1 SEC Sequential Access is enabled.
Note: Setting this bit is recommended when the SEC is in use.
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9.3.1.3

RSR allows the software, particularly the reset exception service routine, to know what type of reset has
been asserted. When a reset signal is asserted, the associated status bit is set, and it maintains its value until
the software explicitly clears the bit.

Memory Map/Register Definition

Reset Status Register (RSR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rl O 0 0 0 0 0 0 0 0 0 0 0 RST 0 RST | RST
W JTG WD
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Reg MBAR + Ox44
Addr
Figure 9-4. Reset Status Register (RSR)
Table 9-4. RSR Field Descriptions
Bits Name Description
314 — Reserved, should be cleared.
3 RSTJTG |JTAG reset asserted. Cleared by writing 1 to this bit position or by external reset.
2 — Reserved, should be cleared.
1 RSTWD | General purpose watchdog timer reset asserted. Cleared by writing 1 to this bit position or
by external reset.
0 RST External reset (PLL Lock qualification) asserted. Cleared by writing a 1 to this bit position.
9.3.1.4 JTAG Device Identification Number (JTAGID)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R JTAGID
W
Reset See Table 9-5
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R JTAGID
W
Reset See Table 9-5
Reg MBAR + 0x50
Addr

Figure 9-5. JTAG Device ID Register (JTAGID)

MCF548x Reference Manual, Rev. 3

Freescale Semiconductor



Table 9-5. JTAGID Field Descriptions

Bits Name Description

31-0 JTAGID |The JTAG Identification Number Register is a read only register which contains the JTAG
ID number for the MCF548x. Its value is hard coded and cannot be modified.

Values for the MCF548x are the following:

MCF5485 0x0800c01d

MCF5484 0x0800d01d

MCF5483 0x0800e01d

MCF5482 0x0800f01d

MCF5481 0x0801001d

MCF5480 0x0801101d
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Chapter 10
Internal Clocks and Bus Architecture

10.1 Introduction

This chapter describes the clocking and internal buses of the MCF548x and discusses the main functional
blocks controlling the XL bus and the XL bus arbiter.

10.1.1 Block Diagram
Figure 10-1 shows a top-level block diagram of the MCF548x products.

FPU, MMU

EMAC
32K D-cache XL Bus Memory FlexBus
32K I-cache Arbiter Controller Controller
XL Bus
g Interrupt Master/Slave
g _5 Controller Interface
23
()]
.g Watchdog Cryptography PCI 2.2
= Timer Accelerator*** Controller
Slice g z
Timers x 2 S' o
[~ e ] 32K System XL Bus
Timers x 4 ° SRAM Read/Write
dE
©
=21n <z <|le
n o =l
2lg 3|
FlexCAN Multichannel DMA PCI Interface
x2 Master Bus Interface and FIFOs & FIFOs 2 c
S o
CommBus 82
58
E®
USB 2.0 § 2
DSPI 1’c PSC x 4 FECO FEC1™ | | pEvice*

*Available in MCF5485, MCF5484, MCF5483, and MCF5482 devices.
**Available in MCF5485, MCF5484, MCF5481, and MCF5480 devices.
***Available in MCF5485, MCF5483, and MCF5481 devices.

Figure 10-1. MCF548x Internal Bus Architecture
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10.1.2 Clocking Overview

The MCF548x requires a clock generated externally to be input to the CLKIN signal. The MCF548x uses
this clock as the reference clock for the internal PLL. The internal PLL then generates the clocks needed
by the CPU core and integrated peripherals.

The external PCI and FlexBus signals are always clocked at the same frequency as the CLKIN signal. A
programmable clock multiplier (determined by the AD[12:8] signals at reset) is used to determine the XL
bus frequency. All integrated peripherals and the 32KB system SRAM are clocked at the same frequency
as the XLB. The ColdFire V4e core complex (core, MMU, FPU, SRAMs, etc.) is always clocked at twice
the XLB frequency.

Table 10-1 shows the supported PLL encodings and the corresponding clock frequency ranges.
Table 10-1. MCF548x Divide Ratio Encodings

Clock CLKIN-PCI and Internal XLB, SDRAM bus, Core Frequenc
AD[12:8]1 Ratio FlexBus Frequency and PSTCLK Frequency Rande ?MHz) v
Range (MHz) Range (MHz) 9
00011 1:2 41.6-50.0 83.33-100 166.66—-200
00101 1:2 25.0-41.5 50.0-83.02 100.0-166.66
01111 1:4 25.0 100 200

T All other values of AD[12:8] are reserved.

2 Note that DDR memories typically have a minimum speed of 83 MHz. Some vendors specifiy down to
75 MHz. Check with the memory component specifications to verify.

Figure 10-2 correlates CLKIN, internal bus, and core clock frequencies for the 1x—4x multipliers.

CLKIN Internal Clock Core Clock
o] < |
25.0 50.0 50.0 100.0 100.0 200.0
I: 4x > || < 2x ;I
25.0 100.0 200.0

—_
25 40 50 60 70 30 40 50 60 70 80 90 100 60 70 80 90 100110 120 130 140 150 160 170 180 190 200
CLKIN (MHz) Internal Clock (MHz) Core Clock (MHz)

Figure 10-2. CLKIN, Internal Bus, and Core Clock Ratios

10.1.3

There are three main internal buses in the MCF548x—the extended local bus (XL bus), the internal
peripheral bus (slave bus), and the communication subsystem bus (CommBus). See Figure 10-1.

* XL bus — Interface between the ColdFire core, memory controller, communication subsystem,
FlexBus controller, and PCI controller.

* Internal peripheral bus (slave bus) — The control/data interface from the core to the

communication subsystem or peripheral programming registers and FIFOs. The base address of

this memory-mapped bus will be stored in the internal peripheral bus base address register
(MBAR).

Internal Bus Overview
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* CommBus — The data transfer interface between the multichannel DMA and each peripheral
function.

10.1.4 XL Bus Features

Features of the XL bus and its integration modules include the following:

» 32-bit physical address
*  64-bit data bus width
» Split-transaction bus; address and data tenures occur independently.

* One-level address pipeline; supports up to two complete address tenures before the first data tenure
completes.

» Strict, in-order, address and data tenures are enforced.

* Address and data bus “parking” may be used to remove arbitration phase from the address and data
tenures—most recent master, programmed master, or no parking methods supported.

» Access can occur in single (1-8 bytes) beat, or four-beat (32 bytes) burst transfers.

» Eight-level arbitration priority that is hardware selectable for each master with a least recently used
(LRU) protocol for masters of equal priority. Priority may change dynamically based on specific
system requirements.

+ Fully static, multiplexed bus architecture.

10.1.5 Internal Bus Transaction Summaries

The XL bus can be mastered by the ColdFire core, multichannel DMA controller, and the PCI controller
(external PCI master). Any of these masters can access all resources available to the XL bus.

Bus masters can access any on-chip or off-chip resources via the XL bus. The sequence is as follows:

* Bus masters gains mastership of the XL bus from the XL bus arbiter.

» The bus master’s address is asserted during the address tenure. XL bus slave devices (SDRAM,
PCI, etc.) decode the address. If the address falls within a slave’s space, it returns an address
acknowledge.

» The bus master initiates the data tenure and transfers the data to the appropriate slave device.

10.1.6 XL Bus Interface Operations

This section describes how the XLB interface operates.

10.1.6.1 Basic Transfer Protocol

An XLB interface memory transaction is illustrated in Figure 10-3. It shows that the transaction consists
of distinct address and data tenures, each having three phases: arbitration, transfer, and termination. The
separation of these operations allows address pipelines and split transactions to be implemented.

Split-bus transaction capability allows one master to have mastership of the address bus, while another
master has mastership of the data bus. Pipelines allows the address tenure of a bus transaction to begin
before the data tenure of the previous transaction finishes.

The data transfer phase can either be one beat or four, depending on whether or not the transaction is a
burst.
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Freescale Semiconductor 10-3



Address Tenure

Arbitration

Transfer

Termination

The following outlines the basic functions of each of the phases:

* Address tenure:

Data Tenure

Arbitration

Transfer

Termination

Figure 10-3. Address and Data Tenures

— Arbitration: During arbitration, address bus arbitration signals are used to gain mastership of

the address bus.

— Transfer: After mastership is obtained, the address bus master transfers the address and transfer
attributes on the address bus. Address signals and transfer attribute signals control the address

transfer.

— Termination: After the address transfer, the system signals that the address tenure is complete
or that it must be repeated.

e Data tenure:

— Arbitration: To begin a data tenure, the master arbitrates for data bus mastership.
— Transfer: After mastership is obtained, the data bus master samples the data bus for read

operations or drives the data bus for write operations.

— Termination: Data termination signals are required after each data beat in a data transfer. In a
single-beat transaction, data termination signals also indicate the end of the tenure; in burst
accesses, data termination signals apply to individual beats and indicate the end of the tenure
only after the final data beat.

10.1.6.2 Address Pipelines

The XLB protocol provides independent address and data bus capability to support pipeline and split-bus
transaction system organizations.

The XLB arbiter allows for one level of pipeline. This feature can be enabled and disabled in the Arbiter
Configuration Register (XARB CFG). While this feature does not improve latency, it can significantly
improve bus/memory throughput, so it should be considered for systems that expect to stress bus

throughput capacity.

The XLB arbiter effects pipelines by regulating address bus grant, data bus grants, and address
acknowledge signals. For example, a one-level pipeline is enabled by asserting the address acknowledge
signal to the current address bus master, as well as granting the address bus to the next requesting master

before the current data bus tenure completes.
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10.2 PLL

10.2.1 PLL Memory Map/Register Descriptions
Table 10-2. System PLL Memory Map

MBAR
Offset Name Byte0 | Bytel | Byte2 | Byte3 | Access
0x300 System PLL Control Register SPCR R/W

10.2.2 System PLL Control Register (SPCR)

The system PLL control register (SPCR) defines the clock enables used to control clocks to a set of
peripherals. Unused peripherals can have their clock stopped, reducing power consumption. In addition,
the SPCR contains a read-only bit for the system PLL lock status. At reset, the clock enables are set,
enabling all system PLL gated output clocks.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 | CoR|CRY|CRY |CAN1| O PSC 0 USB |FEC1 |FECO| DMA [CANO| FB | PCI | MEM

W EN | ENB | ENA | EN EN EN EN EN EN EN EN EN EN
Reset O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reg
Addr MBAR + 0x300

Figure 10-4. System PLL Control Register (SPCR)

Table 10-3. SPCR Field Descriptions

Bits Name Description

31 PLLK System PLL Lock Status - Read-only lock status of the system PLL.
1 PLL has obtained frequency lock
0 PLL has not locked

30-15 — Reserved, should be cleared.
14 COREN Core & Communications Sub-System Clock Enable - Controls clocks for the CF4 Core, System
SRAM, CommBus Arbiter, 12C, Comm Timers, and External DMA modules
13 CRYENB Crypto Clock Enable B - Controls the fast clock to the SEC
12 CRYENA Crypto Clock Enable A - Controls the slow clock to the SEC
11 CAN1EN CANT1 Clock Enable
10 — Reserved, should be cleared.
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Table 10-3. SPCR Field Descriptions (Continued)

Bits Name Description

9 PSCEN PSC Clock Enable - Controls clock for all PSC modules.

8 — Reserved, should be cleared.

7 USBEN USB Clock Enable

6 FEC1EN FEC1 Clock Enable

5 FECOEN FECO Clock Enable

4 DMAEN Multi-channel DMA Clock Enable

3 CANOEN CANO Clock Enable

2 FBEN FlexBus Clock Enable

1 PCIEN PCI Bus Clock Enable

0 MEMEN Memory Clock Enable - Controls clocks of the SDRAM controller module
10.3 XL Bus Arbiter

The XL bus arbiter handles bus arbitration between XL bus masters.

10.3.1 Features

The arbiter features are as follows:

Eight priority levels

Priority levels may be changed dynamically by XL bus masters
XL bus arbitration support for eight masters

Least recently used (LRU) priority scheme for masters of equal priority
Multiple masters at each priority level supported

One level of address pipelines is enforced by the arbiter

Bus grant parking modes:

— No parking

— Park on last master

— Park on programmed master

Watchdog timers for various XL bus time-out conditions

10.3.2 Arbiter Functional Description

10.3.2.1 Prioritization

The prioritization function will indicate that a master is requesting the bus and indicate which master has

priority.

Priority is determined first by using the hardcoded master priority or the master » priority bits in the arbiter
master priority register (XARB_PRIEN), depending on the arbiter master priority enable bit for each

master. Secondly, masters at the same level of priority will be further sorted by a least recently used
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algorithm (LRU). Once a requesting master is identified as having priority and is granted the bus, that
master will be continue to be granted the bus if:

1. Itisrequesting the bus. The request must occur immediately after the required 1 clock de-assertion
after a qualified bus grant.
and
2. Tt is the highest priority device.

and
3. There is no address retry.

Multiple masters at level 0 will only be able to perform one tenure before the bus is passed to the next
master at level 0 using the LRU algorithm.

The priority level of each master may be changed while the arbiter is running. This allows dynamic
changes in priority such as an aging scheme. The arbiter recognizes changes after one clock.

It is possible to control priority by enabling the master priority enable bits for a master (XARB_PRIEN).
This causes the priority to be determined from the master » priority bits in the arbiter master priority
register (XARB_PRI). Once again a system dependent dynamic scheme may be employed.

10.3.2.2 Bus Grant Mechanism

10.3.2.2.1 Bus Grant

The bus grant mechanism generates the address bus grant signals to the masters using the signals from the
prioritization function. It will also generate required indicators of state to the prioritization and watchdog
functions.

The bus grant mechanism will enforce the one level address pipeline. The critical condition is that before
a third address tenure is granted, the first tenure (address and, if needed, data) must be completed. The
arbiter will assert a bus grant to a master when there are masters requesting, or if parking is enabled and
the one level pipeline condition is met.

10.3.2.2.2 Parking Modes

The bus grant mechanism will support the no parking, park on programmed master, and park on last master
bus parking modes.

*  When in no parking mode, the arbiter will not assert a bus grant when there are no masters asserting
a bus request.

* In park on programmed master mode, the arbiter will assert a bus grant to the master indicated in
the select parked master field (ACFG[SP]) when no masters are asserting a bus request and the one
level pipeline will not be violated.

* In park on last master mode, the arbiter will assert a bus grant to the last master granted the bus
when no masters are asserting a bus request and the one level pipeline will not be violated.
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10.3.2.3 Watchdog Functions

10.3.2.3.1 Timer Functions

There are three watchdog timers: address tenure time out, data tenure time out, and bus activity time out.
Each has a programmable timer count and can be disabled. A timer time-out will set a status bit and trigger
an interrupt if that interrupt is enabled.

The address tenure watchdog is a 32-bit timer. If an acknowledge is not detected by the
programmed number of clocks after bus grant is accepted, the address watchdog timer will expire
and the arbiter will issue an acknowledge. The related data tenure will be terminated with a transfer
error acknowledge. The arbiter will set the Address Tenure Time-out Status bit in the arbiter status
register and issue an interrupt if that interrupt is enabled.

The upper 28 bits of address tenure time-out are programmed via the address tenure time-out
register. The lower 4 bits are always OxF.

The data tenure watchdog is a 32-bit timer. If a data tenure is not terminated, the data watchdog
timer will expire and the arbiter will issue a transfer error acknowledge. The arbiter will set the
Data Tenure Time-out Status bit in the arbiter status register and issue an interrupt if that interrupt
is enabled.

Address Time-out (32 bits) = {address tenure time-out register (28bits), OxF}
Data Time-out (32 bits) = {data tenure time-out register (28 bits), OxF}

The bus activity watchdog is a 32-bit timer. If no bus activity is detected by the programmed
number of clocks, the bus activity watchdog timer will expire and the arbiter will set the Bus
Activity Time-out Status bit in the arbiter status register and issue an interrupt if that interrupt is
enabled.

NOTE

Enabling the data time-out will also enable the address time-out. It is
recommended that the data watchdog timer should always be programmed
to a value that is larger than the address watchdog timer. This prevents the
XL bus arbiter from generating a transfer error acknowledge due to
expiration of the data watchdog timer while the address tenure has not
completed.

10.3.3 XLB Arbiter Register Descriptions
The XLB Arbiter registers and their locations are defined in Table 10-4.

Table 10-4. XL Bus Arbiter Memory Map

ngfsA; Name Byte0 Byte1 Byte2 Byte3 Access
0x240 Arbiter Configuration Register XARB_CFG R/W
0x244 Arbiter Version Register XARB_VER R
0x248 Arbiter Status Register XARB_SR R/W
0x24C Arbiter Interrupt Mask Register XARB_IMR R/W
0x250 Arbiter Address Capture XARB_ADRCAP R/W
0x254 Arbiter Signal Capture XARB_SIGCAP R/W
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Table 10-4. XL Bus Arbiter Memory Map (Continued)

MBAR
Offset Name Byte0 Byte1 Byte2 Byte3 Access
0x258 Arbiter Address Timeout XARB_ADRTO R/W
0x25C Arbiter Data Timeout XARB_DATTO R/wW
0x260 Arbiter Bus Timeout XARB_BUSTO R/wW
0x264 Arbiter Master Priority Enable XARB_PRIEN R/W
0x268 Arbiter Master Priority XARB_PRI R/W
10.3.3.1 Arbiter Configuration Register (XARB_CFG)
The arbiter configuration register is used to enable watchdog functions and arbiter protocol functions.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R|PLDIS| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 3 2 1
R O 0 0 0 0 SP 0 PM 0 BA DT AT 0
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
Reg MBAR + 0x0240
Addr
Figure 10-5. Arbiter Configuration Register (XARB_CFQG)
Table 10-5. XARB_CFG Bit Descriptions
Bit Name Description
31 PLDIS Pipeline Disable. This bit is used to control the pipeline functionality
0 Enable pipeline
1 Disable pipeline
30-11 — Reserved, should be cleared.
10-8 SP Select Parked Master. These bits set the master that is used in Park on Programmed Master mode.
000 Master 0
001 Master 1
111 Master 7).
7 — Reserved, should be cleared.
6-5 PM[1:0] |Parking Mode. Parking modes are detailed in Section 10.3.2.2.2, “Parking Modes.”
00 No parking (default)
01 Reserved
10 Park on most recently used master
11 Park on programmed master as specified by the Select Parked Master bits 21:23 above.
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Table 10-5. XARB_CFG Bit Descriptions (Continued)

Bit

Name Description

— Reserved, should be cleared.

BA Bus Activity Time-out Enable. If enabled, the arbiter will set the Bus Activity Time-out Status bit
(XARB_SR[BA]) when the Bus Activity Time-out is reached. Bus Activity Time-out is derived from
the arbiter bus activity time out count register.

0 Disable bus activity time-out

1 Enable bus activity time-out

DT Data Tenure Time-out Enable. If enabled, the arbiter will transfer error acknowledge when the Data
Tenure Time-out is reached. Data Tenure Time-out is derived from the arbiter data tenure time out
count register. Also, the arbiter will set the Data Tenure Time-out Status bit (Arbiter Status Register
Bit 30). Setting this bit will also enable the Address Tenure Time-out. This is required to ensure that
a data time-out will not occur before an address acknowledge.

0 Disable data tenure time-out

1 Enable data tenure time-out

AT Address Tenure Time-out Enable. If enabled, the arbiter will AACK and TEA (if required) when the
Address Tenure Time-out is reached. Address Tenure Time-out is derived from the Arbiter Address
Tenure Time Out Count register. Also, the arbiter will set the Address Tenure Time-out Status bit

(Arbiter Status Register Bit 31). Address Tenure Time-out is also enabled by the DT bit above.

0 Disable address tenure time-out

1 Enable address tenure time-out

— Reserved, should be cleared.

10.3.3.2 Arbiter Version Register (XARB_VER)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R VER
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R VER
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Reg MBAR + 0x0244
Addr
Figure 10-6. Arbiter Version Register (XARB_VER)
Table 10-6. VER Field Descriptions
Bit Name Description
31-0 VER Hardware Version ID. The current version number is 0x0001.
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10.3.3.3 Arbiter Status Register (XARB_SR)

The arbiter status register indicates the state of watchdog functions. When a monitored condition occurs,
the respective bit is set to 1. The bit will stay set until the bit is cleared by writing a 1 into that bit. Even if
the causal condition is removed, the bit will remain set until cleared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rl O 0 0 0 0 0 0 SEA| MM | TTA | TTR |[ECW | TTM | BA | DT | AT

w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x0248
Addr
Figure 10-7. Arbiter Status Register (XARB_SR)
Table 10-7. XARB_SR Field Descriptions
Bits Name Description
31-9 — Reserved, should be cleared.

8 SEA Slave Error Acknowledge. This bit is set when an error is detected by any slave devices during the
transfer.

7 MM Multiple Masters at priority 0. If more than 1 master is recognized at priority 0, this bit is set. Once this
occurs this bit will remain set until cleared. This bit is intended to help in tuning dynamic priority
algorithm development.

6 TTA TT Address Only. The arbiter automatically AACKs for address only TT codes. This bit is set when this
occurs.

5 TTR TT Reserved. The arbiter automatically AACKs for reserved TT codes. This bit is set when this occurs.

4 ECW External Control Word Read/Write. External Control Word Read/Write operations are not supported
on the XL bus. If either occur, the arbiter AACKs and TEAs and sets this bit.

3 TT™ TBST/TSIZ mismatch. Set when an illegal/reserved TBST and TSIZ[0:2] combination occurs. These
combinations are TBST asserted and TSIZ[0:2] = 000, 001, 011, or 1xx (x is 0 or 1).

2 BA Bus Activity Tenure Time-out. Set when the bus activity time-out counter expires.

1 DT Data Tenure Time-out. Set when the data tenure time-out counter expires.

0 AT Address Tenure Time-out. Set when the address tenure time-out counter expires.

10.3.3.4 Arbiter Interrupt Mask Register (XARB_IMR)
The arbiter interrupt mask register is used to enable a status bit to cause an interrupt. If the interrupt mask

and corresponding status bits are set in the arbiter status register and arbiter interrupt mask register, the
arbiter will assert the interrupt signal. Normally, an interrupt service routine would read the status register
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to determine the state of the arbiter. It is possible that multiple conditions exist that would cause an
interrupt. Disabling an interrupt by writing a 0 to a bit in this register will not clear the status bit in the
arbiter status register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rl 0 0 0 0 0 0 0 |SEAE| MME | TTAE | TTRE | ECWE | TTME | BAE | DTE | ATE
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x024C
Addr
Figure 10-8. Arbiter Interrupt Mask Register (XARB_IMR)
Table 10-8. XARB_IMR Field Descriptions
Bits Name Description
31-9 — Reserved, should be cleared.
8 SEAE Slave Error Acknowledge interrupt enable.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is enabled.
7 MME Multiple Masters at priority 0 interrupt enable.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is enabled.
6 TTAE TT Address Only interrupt enable.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is enabled.
5 TTRE TT Reserved interrupt enable.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is enabled.
4 ECWE External Control Word Read/Write interrupt enable.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is enabled.
3 TTME TBST/TSIZ mismatch interrupt enable.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is enabled.
2 BAE Bus Activity Tenure Time-out interrupt enable.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is enabled.
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Table 10-8. XARB_IMR Field Descriptions (Continued)

Bits Name Description

1 DTE Data Tenure Time-out interrupt enable.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is enabled.

0 ATE Address Tenure Time-out interrupt enable.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is enabled.

10.3.3.5 Arbiter Address Capture Register (XARB_ADRCAP)

The arbiter address capture register will capture the address for a tenure that has an address time-out, data
time-out, or there is a transfer error acknowledge from another source. This value is held until unlocked
by writing any value to the arbiter address capture register or arbiter bus signal capture register. This value
is also unlocked by writing a 1 to either XARB SR[DT] or XARB_ SR[AT]. Unlocking the register does
not clear its contents.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R ADRCAP

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R ADRCAP

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg MBAR + 0x0250
Addr

Figure 10-9. Arbiter Address Capture Register (XARB_ADRCAP)

Table 10-9. XARB_ADRCAP Field Descriptions

Bits Name Description

31-0 ADRCAP | Address that is captured when a bus error occurs. This happens on an address time-out,
data time-out, or any transfer error acknowledge.

10.3.3.6 Arbiter Bus Signal Capture Register (XARB_SIGCAP)

Important bus signals are captured when a bus error occurs. This happens on an address time-out, data
time-out, or any transfer error acknowledge.

The arbiter bus signal capture register will capture TT, TBST, and TSIZ for a tenure that has an address
time-out or data time-out, or there is a transfer error acknowledge from another source. These values are
held until unlocked by writing any value to the arbiter address capture register (XARB_ADRCAP) or
arbiter bus signal capture register (XARB_ SIGCAP). These values are also unlocked by writing a 1 to
either XARB_SR[DT] or XARB SR[AT]. Unlocking the register does not clear its contents.
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31

30

29 28 27 26 25 24 23 22 21 20 19 18 17 16

Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Rl © 0 0 0 0 0 TSIZ[0:2] — |TBST TT[0:4]
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x0254
Addr
Figure 10-10. Arbiter Bus Signal Capture Register (XARB_SIGCAP)
Table 10-10. XARB_SIGCAP Field Descriptions
Bits Name Description
31-10 — Reserved, should be cleared.
9-7 TSIZ[0:2] |TSIZ[0:2]
6 — Reserved, should be cleared
5 TBST TBST
4-0 TT TT[0:4]

10.3.3.7 Arbiter Address Tenure Time Out Register (XARB_ADRTO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R| 0 0 0 0 ADRTO
w
Reset| 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R ADRTO
w
Reset| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reg MBAR + 0x0258
Addr

Figure 10-11. Arbiter Address Tenure Time Out Register (XARB_ADRTO)
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Table 10-11. XARB_ADRTO Field Descriptions

Bits Name Description
31-28 — Reserved, should be cleared.
27-0 ADRTO | Upper 28-bits of the Address time-out counter value. This field is prepended to OxF to
generate the full 32-bit time-out counter value.

10.3.3.8 Arbiter Data Tenure Time Out Register (XARB_DATTO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R| O 0 0 0 DATTO
W
Reset| 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R DATTO
W
Reset| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reg MBAR + 0x025C
Addr
Figure 10-12. Arbiter Data Tenure Time Out Register (XARB_DATTO)
Table 10-12. XARB_DATTO Field Descriptions
Bits Name Description
31-28 — Reserved, should be cleared.
27-0 DATTO | Upper 28-bits fo the Data time-out counter value. This field is prepended to OxF to generate
the full 32-bit time-out counter value.
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10.3.3.9 Arbiter Bus Activity Time Out Register (XARB_BUSTO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R BUSTO
w
Reset| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 14 13 12 1N 10 9 8 7 6 5 4 3 2 1 0
R BUSTO
w
Reset| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reg MBAR + 0x0260
Addr
Figure 10-13. Arbiter Bus Activity Time Out Register (XARB_BUSTO)
Table 10-13. XARB_BUSTO Field Descriptions
Bits Name Description
31-0 BUSTO | Bus activity time-out counter value in XLB clocks.

10.3.3.10 Arbiter Master Priority Enable Register (XARB_PRIEN)

The arbiter master priority enable register determines whether the arbiter uses the hardwired or software
programmable priority for a master. The default is enabled for all masters. Both methods may be used at
the same time for different masters. This register may be written at any time. The change will become
effective 1 clock after the register is written.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl o|o|o|o]o|]o|o|o]o]|]o|o|]o]|o]|o|o]lo
w
Restf 0 0o o0 o0 o0 O O O O O O 0 0 O0 0 ©
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RIro|lo|o|o]o]|]o|o|o|—|—|—|—=/|M3|M|—|Mo
w
Resstf 0 0 0 0 0 O O 0 1 1 1 1 1 1 1 1
Reg MBAR + 0x0264
Addr

Figure 10-14. Arbiter Master Priority Enable Register (XARB_PRIEN)
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Table 10-14. XARB_PRIEN Field Descriptions

Bits Name Description
314 — Reserved, should be cleared.

3 M3 Master 3 Priority Register Enable

2 M2 Master 2 Priority Register Enable

1 — Reserved, should be cleared.

0 MO Master O Priority Register Enable

When enabled, the software programmable value in the arbiter master priority register (XARB_PRI) is
used as the priority for the master. When disabled, the master’s priority is determined as follows:

Table 10-15. Hardcoded Master Priority

Master Priority Description
M7-M4 — Unused

M3 7 PCI Target Interface

M2 7 Multichannel DMA

M1 — Unused

MO 7 ColdFire core

10.3.3.11 Arbiter Master Priority Register (XARB_PRI)

The master n priority bits of the arbiter master priority register are used to set the priority of each master
if the corresponding arbiter master priority enable register bit is enabled. This XARB_PRI register, in
conjunction with the arbiter master priority enable (XARB_PRIEN) register, allows master priorities to be
set, ignoring the hardcoded priority. This register may be written at anytime. The change will become
effective 1 clock after the register is written. Valid values are from 0 to 7, with 0 being the highest priority.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R| O Reserved 0 Reserved 0 Reserved 0 Reserved
W
Reset| 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rl O M3 Priority 0 M2 Priority 0 Reserved 0 MO Priority
W
Reset| 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
Reg MBAR + 0x0268
Addr

Figure 10-15. Arbiter Master Priority Register (XARB_PRI)
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Table 10-16. XARB_PRI Field Descriptions

Bits Name Description
31-15 — Reserved, should be cleared.
14-12 M3P Master 3 Priority
11 — Reserved, should be cleared.
10-8 M2P Master 2 Priority
7-3 — Reserved, should be cleared.
2-0 MOP Master O Priority
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Chapter 11
General Purpose Timers (GPT)

11.1

Introduction

This chapter describes the operation of the MCF548x general purpose timers.

11.1.1 Overview

The MCF548x has four general-purpose timers (GPT[0:3]) that are configurable for the following
functions:

Input capture

Output capture

Pulse width modulation (PWM) output
Simple GPIO

Internal CPU timer

Watchdog timer (on GPTO only)

Timer modules run off the internal peripheral bus clock. Each timer is associated to a single I/O signal.
Each timer has a 16-bit prescaler and 16-bit counter, thus achieving a 32-bit range (but only 16-bit
resolution).

11.1.2 Modes of Operation

The following gives a brief description of the available GPT modes:

1.

Input Capture—When enabled in this mode, the counters run until the specified capture event
occurs (rise, fall, or pulse) on TIN[3:0]. At the capture event, the counter value is latched in the
status register. When this occurs, a CPU interrupt is generated.

Output Capture—When enabled in this mode, the counters run until they reach the programmed
terminal count value. At this point, the specified output event is generated (toggle, pulse high, or
pulse low) on TOUT([3:0]. When this occurs, a CPU interrupt is generated.

PWM (pulse width modulation)—In this mode the user can program period and width values to
create an adjustable, repeating output waveform on TOUT[3:0]. A CPU interrupt can be
generated at the beginning of each PWM period, at which time a new width value can be loaded.
The new width value, which represents “ON time,” is automatically applied at the beginning of
the next period. This mode is suitable for PWM audio encoding.

Simple GPIO—In this mode TOUT[3:0] and TIN[3:0] operate as a GPIO. Either TOUT[3:0] or
TIN[3:0] are specified, according to the programmable GPIO field. GPIO mode is mutually
exclusive of modes 1 through 3 (listed above). In GPIO mode, modes 5 through 6 (listed below)
remain available.

CPU Timer—The I/0 signal is not used in this mode. Once enabled, the counters run until they
reach a programmed terminal count. When this occurs, an interrupt can be generated to the CPU.
This timer mode can be used simultaneously with the simple GPIO mode.
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6. Watchdog Timer—This is a special CPU timer mode, available only on GPTO0. The user must
enable the watchdog timer mode, which is not active upon reset. The terminal count value is
programmable. If the counter is allowed to expire, a full reset occurs. To prevent the watchdog
timer from expiring, software must periodically write 0xAS5 to the GMSO[OCPW] field. This
causes the counter to reset.

11.2 External Signals

The GPT signals are the following:

* TIN[3:0]—External timer input
*  TOUTJ[3:0]—External timer output

11.3 Memory Map/Register Definition
Each GPT uses four 32-bit registers. These registers are located at MBAR + the GPT offset 0x800.

Table 11-1 summarizes the GPT control registers.

Table 11-1. General Purpose Timer Memory Map

(':\\ndBdAreRsf) Name Byte 0 Byte 1 Byte 2 Byte 3 Access
0x800 | GPT Enable and Mode Select Register 0 GMSO0 R/W
0x804 GPT Counter Input Register 0 GCIRO R/W
0x808 GPT PWM Configuration Register 0 GPWMO R/W
0x80C GPT Status Register 0 GSRO R
0x810 | GPT Enable and Mode Select Register 1 GMSH1 R/W
0x814 GPT Counter Input Register 1 GCIR1 R/W
0x818 GPT PWM Configuration Register 1 GPWM1 R/W
0x81C GPT Status Register 1 GSR1 R
0x820 | GPT Enable and Mode Select Register 2 GMS2 R/W
0x824 GPT Counter Input Register 2 GCIR2 R/W
0x828 GPT PWM Configuration Register 2 GPWM2 R/W
0x82C GPT Status Register 2 GSR2 R
0x830 | GPT Enable and Mode Select Register 3 GMS3 R/W
0x834 GPT Counter Input Register 3 GCIR3 R/W
0x838 GPT PWM Configuration Register 3 GPWMS3 R/W
0x83C GPT Status Register 3 GSR3 R
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Memory Map/Register Definition

11.3.1 GPT Enable and Mode Select Register (GMSn)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R OCPW 0 0 OCT 0 0 ICT
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R{WDE| 0 0 CE 0 SC | OD | IEN 0 0 GPIO 0 TMS
N
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x800 (GMS0), 0x810 (GMS1), 0x820 (GMS2), 0x830 (GSMB3)
Addr
Figure 11-1. GPT Enable and Mode Select Register (GMSn)
Table 11-2. GMSn Field Descriptions
Bits Name Description
31-24 OCPW | Output capture pulse width. Applies to OC pulse types only. This field specifies the number of clocks
(non-prescaled) to create a short output pulse at each output event. This pulse is generated at the
end of the output capture period and overlays the next OC period (rather than adding to the period).
This field is alternately used as the watchdog reset field if watchdog timer mode is enabled.
23-22 — Reserved, should be cleared.
21-20 OoCT Output capture type. Describes action to occur at each output capture event, as follows:
00 Special case, output is immediately forced low without respect to each output capture event.
01 Output pulses highs, initial value is low (OCPW field applies).
10 Output pulses low, initial value is high (OCPW field applies).
11 Output toggles.
GPIO modalities can be used to achieve an initial output state prior to enabling OC mode. It is
important to move directly from GPIO output mode to OC mode and not to pass through the
TMS=000 state.
To prevent the internal timer mode from engaging during the GPIO state, CE bit should be cleared
during the configuration steps.
GPIO initialization is needed when presetting the 1/0 to 1 in conjunction with a simple toggle OCT
setting.
19-18 — Reserved, should be cleared.
17-16 ICT Input capture type. Describes the input transition type required to trigger an input capture event, as
follows:
00 Any input transition causes an IC event.
01 IC event occurs at input rising edge.
10 IC event occurs at input falling edge.
11 IC event occurs at any input pulse (i.e., at the second input edge).
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Table 11-2. GMSnh Field Descriptions (Continued)

Bits

Name

Description

15

WDEN

Watchdog enable. Enables watchdog operation. A timer expiration causes an internal MCF548x
reset. Watchdog operation requires the TMS field be set for internal timer mode and the CE bit to be
set.

In this mode the OCPW byte field operates as a watchdog reset field. Writing A5 to the OCPW field
resets the watchdog timer, preventing it from expiring. As long as the timer is properly configured, the
watchdog operation continues.

This bit (and functionality) is implemented only for GPTO.

0 Watchdog not enabled

1 Watchdog enabled

14-13

Reserved, should be cleared.

12

CE

Counter enable. Enables or resets the internal counter during internal timer modes only. CE must be
set to enable these modes. If cleared, counter is held in reset.

0 Timer counter held in reset

1 Timer counter enabled

This bit is secondary to the timer mode select bits (TMS). If TMS is1XX, internal timer modes are
enabled. CE can then enable or reset the internal counter without changing the TMS field.

GPIO operation is also available in this mode.

11

Reserved, should be cleared.

10

SC

Stop/continuous mode.

0 Stops the operation

1 Continues the operation

The SC bit applies to multiple modes, as follows:

IC mode (input capture mode)

Stop operation—At each IC event, counter is reset.

Continuous operation—counter is not reset at each IC event.

Effect is to create status count values that are cumulative between capture events. If the special pulse
mode capture type is specified, the SC bit is not used, operation fixed as if it were stop.

OC mode (output capture mode)

Stop operation—Counter resets and stops at the first output capture event. Software needs to pass
through TMS=000 state to restart timer.

Continuous operation—counter resets and continues at each OC event. The effect to is create
back-to-back periodic OC events.

PWM mode (pulse width modulation mode)
The SC bit is not used; operation is always continuous.

CPU Timer mode

Stop operation—On counter expiration, timer waits until status bit is cleared by passing through
TMS=000 state before beginning a new cycle.

Continuous operation—On counter expiration, timer resets and immediately begin a new cycle. The
effect is to generate fixed periodic timeouts.

WatchDog Timer and GPIO modes
The SC bit is not used.

oD

Open drain.

0 Normal I/O

1 Open Drain emulation—affects all modes that drive the I/0 pin (GPIO, OC, and PWM). Any output
“1” is converted to a tri-state at the 1/0 pin.
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Memory Map/Register Definition

Table 11-2. GMSnh Field Descriptions (Continued)

Bits

Name

Description

IEN

Interrupt enable. Enables interrupt generation to the CPU for all modes (IC, OC, PWM, and Internal
Timer). IEN is not required for watchdog expiration to create a reset.

0 Interrupt disabled

1 Interrupt enabled

7-6

Reserved, should be cleared.

5-4

GPIO

GPIO mode type. Simple GPIO functionality that can be used simultaneously with the internal timer
mode. It is not compatible with IC, OC, or PWM modes, because these modes dictate the usage of
the 1/0 signals.

0X Timer enabled as simple GPIO input on TINn

10 Timer enabled as simple GPIO output, TOUTn=0

11 Timer enabled as simple GPIO output, TOUTn=1 (tri-state if OD=1)

While in GPIO modes, internal timer mode is also available. To prevent undesired timer expiration,
keep the CE bit cleared.

Reserved, should be cleared.

TMS

Timer mode select (and module enable).

000 Timer module not enabled. All timer operation is completely disabled. Control and status
registers are still accessible. This mode should be entered when the timer is to be re-configured,.
001 Timer enabled for input capture.

010 Timer enabled for output capture.

011 Timer enabled for PWM.

1XX Timer enabled for simple GPIO. Internal timer modes available. CE bit controls timer counter.

11.3.2 GPT Counter Input Register (GCIRn)

Reset

Reg
Addr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PRE

o o o o O o0 O0O O o0 O0O O 0 O0 0 0 ©

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CNT

o o o o O o0 O O o0 O0O O 0 O0 0 0 ©

MBAR + 0x804 (GCIR0), 0x814 (GCIR1), 0x824 (GCIR2), 0x834 (GCIR3)

Figure 11-2. GPT Counter Input Register (GCIRn)
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Table 11-3. GCIRn Field Descriptions

Bits Name Description

31-16 PRE Prescaler. Prescale amount applied to internal counter (in clocks).

Note that in addition to other enable bits and field settings, the PRE field must be written as
non-zero to enable counter operation for all modes except the simple GPIO mode. A prescale of
0x0001 means one clock per count increment.

15-0 CNT Count value. Sets number of prescaled counts applied to reference events, as follows:
|IC—Field has no effect, internal counter starts at 0.

OC—Number of prescaled counts counted before creating output event.

PWM—Number of prescaled counts defining the PWM output period.

Internal Timer—Number of prescaled counts counted before timer (or watchdog) expires.
Reading this register only returns the programmed value, intermediate values of the internal
counter are not available to software.

11.3.3 GPT PWM Configuration Register (GPWMn)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R WIDTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rl O 0 0 0 0 0 0 |PWM| O 0 0 0 0 0 0 |LOAD
OoP
W

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg MBAR + 0x808 (GPWMO0), 0x818 (GPWM1), 0x828 (GPWM2), 0x838 (GPWM3)
Addr

Figure 11-3. GPT PWM Configuration Register (GPWMn)

Table 11-4. GPWMn Field Descriptions

Bits Name Description

31-16 WIDTH | PWM width. Used in PWM mode only. Defines ON time for output in prescaled counts. Similar to
count value, which defines the period. ON time overlays the period time.

If WIDTH = 0, output is always OFF.

If WIDTH exceeds count value, output is always ON.

ON and OFF polarity is set by the PWMOP bit.

15-9 — Reserved. Should be cleared.

8 PWMOP | PWM output polarity. Defines PWM output polarity for OFF time. Opposite state is ON time. PWM
cycles begin with ON time.

0 PWM output is low during OFF time

1 PWM output is high during OFF time
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Memory Map/Register Definition

Table 11-4. GPWMn Field Descriptions (Continued)

Name

Description

Reserved. Should be cleared.

LOAD

Bit forces immediate period update. Bit auto clears itself. A new period begins immediately with the
current count and width settings.

If LOAD = 0, new count or width settings are not updated until end of current period.

Prescale setting is not part of this process. Changing prescale value while PWM is active causes
unpredictable results for the period in which it was changed. The same is true for PWMOP bit.

11.3.4 GPT Status Register (GSRn)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R CAPTURE
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 8 3 2 1 0
Rl O OVF 0 0 0 PIN 0 0 0 0 |TEXP|PWMP|COMP|CAPT
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x80C (GSRO0), 0x81C (GSR1), 0x82C (GSR2), 0x83C (GSR3)
Addr
Figure 11-4. GPT Status Register (GSRn)
Table 11-5. GSRn Field Descriptions
Bits Name Description
31-16 CAPTURE | Read of internal counter, latch at reference event. This is pertinent only in IC mode, in which case
it represents the count value at the time the input event occurred. Capture status does not shadow
the internal counter while an event is pending, it is updated only at the time the input event occurs.
If ICT is set to 11, which is Pulse Capture Mode, the Capture value records the width of the pulse.
Also, the SC bit is irrelevant in Pulse Capture Mode, operation is as if SC were 0.
15 — Reserved. Should be cleared.
14-12 OVF Overflow counter. Represents how many times internal counter has rolled over. This is pertinent
only during IC mode and would represent an extremely long period of time between input events.
However, if SC = 1 (indicating cumulative reporting of input events), this field could come into play.
This field is cleared by any “sticky bit” status write in the TEXP, PWMP, COMP, or CAPT bit fields.
11-9 — Reserved
8 PIN GPIO input value. This bit reflects the registered state of the TINn pin (all modes). The clock
registers the state of the input. Valid, even if timer is not enabled.
7-4 — Reserved. Should be cleared.
3 TEXP Timer expired in internal timer mode. Cleared by writing 1 to this bit position. Also cleared if TMS
is 000 (i.e., timer not enabled).
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Table 11-5. GSRn Field Descriptions (Continued)

Bits Name Description

PWMP | PWM end of period occurred. Cleared by writing 1 to this bit position. Also cleared if TMS is 000
(i.e., timer not enabled).

COMP | OC reference event occurred. Cleared by writing 1 to this bit position. Also cleared if TMS is 000
(i.e., timer not enabled).

CAPT IC reference event occurred. Cleared by writing 1 to this bit position. Also cleared if TMS is 000
(i.e., timer not enabled).

11.4 Functional Description

11.4.1 Timer Configuration Method

Use the following method to configure each timer:

P

Determine the mode select field (GMSn[TMS]) value for the desired operation.
Program any other registers associated with this mode.

Program interrupt enable as desired.
Enable the timer by writing the mode select value into the TMS field.

11.4.2 Programming Notes

Programmers should observe the following notes:

1.
2.

Intermediate values of the timer internal counters are not readable by software.

In PWM mode, an interrupt occurs at the beginning of a pulse. An interrupt service routine
prepares the new pulse width of the next pulse while the current pulse is running.

The stop/continuous mode bit (GMS#n[SC] ) operates differently for different modes. In general,
this bit controls whether the timer halts at the end of a current mode, or resets and continues with
a repetition of the mode. See Table 11-2 for precise operation.

The GMSn[TMS] field operates somewhat as a global enable. If it is zero, then all timer modes
are disabled and internal counters are reset. See Table 11-2 for more detail.

There is a counter enable bit (GMSn[CE]) that operates somewhat independently of the TMS
field. This bit controls the counter for CPU timer or watchdog timer modes only. See Table 11-2
to understand the operation of these bits across the various modes.
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Chapter 12
Slice Timers (SLT)

12.1 Introduction
This chapter explains the operation of the MCF548x slice timers.

12.1.1 Overview

Two slice timers are included to provide shorter term periodic interrupts—SLTO and SLT1. Each timer
consists of a 32-bit counter with no prescale. The counters count down from a prescribed value and
expire/interrupt when they reach zero. They can be configured to automatically preset to the prescribed
value and resume counting or wait until the status/interrupt is serviced before beginning a new cycle.

The current count value can be read without disturbing the count operation. Each SLT has a status bit to
indicate the timer has expired. If enabled, a CPU interrupt is generated at count expiration. Each timer has
a separate interrupt. Clearing the status and/or interrupt is accomplished by writing 1 to the status bit, or
disabling the timer entirely with the timer enable (SCR[TEN]) bit.

Software should write a terminal count value of greater than 255.

12.2 Memory Map/Register Definition

There are two slice timers. Each one uses four 32-bit registers. These registers are located at an offset from
MBAR of 0x900.

Table 12-1 summarizes the SLT control registers.
Table 12-1. Slice Timer Memory Map

(:\\n(’Bd;eRsf) Name Byte 0 Byte 1 Byte 2 Byte 3 Access
0x900 SLT Terminal Count Register 0 STCNTO R/W
0x904 SLT Control Register 0 SCRO R/W
0x908 SLT Count Value Register 0 SCNTO R
0x90C SLT Status Register 0 SSRO R
0x910 SLT Terminal Count Register 1 STCNTAH R/W
0x914 SLT Control Register 1 SCR1 R/W
0x918 SLT Count Value Register 1 SCNT1
0x91C SLT Status Register 1 SSR1
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12.2.1 SLT Terminal Count Register (STCNTn)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R TC
w

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg MBAR + 0x900 (STCNTO), + 0x910 (STCNT1)
Addr
Figure 12-1. SLT Terminal Count Register (STCNTn)
Table 12-2. STCNTn Field Descriptions
Bits Name Description
31-0 TC Terminal count. GPIO output bit set. The user programs this register to set the terminal count value

to be used by the SLT. This register can be updated even if the timer is running; the new value takes
effect immediately. The new value also clears any existing interrupt.
Note: Software should not write a value less than 255 to the timer.

12.2.2 SLT Control Register (SCRn)

31

30

29

28

27

26

25

24

23

22

21

20

19

Rl O 0 0 0 0 RUN | IEN | TEN 0 0 0 0 0 0 0 0
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 1 10 1
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x904 (SCRO), + 0x914 (SCR1)
Addr

Figure 12-2. SLT Control Register (SCRn)
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Memory Map/Register Definition

Table 12-3. SCRn Field Descriptions

Bits Name Description
31-27 — Reserved, should be cleared.
26 RUN Run or wait mode
0 Timer counter expires, but then waits until the timer is cleared (either by writing 1 to the status
bit or by disabling and re-enabling the timer), before resuming operation.
1 Timer is enabled, and runs continuously. When the timer counter expires the terminal count
value immediately is reloaded and resumes counting down.
25 IEN Interrupt enable. A CPU interrupt is generated only if this bit is set.
0 Interrupt is not generated
1 Interrupt is generated
This bit does not affect operation of the timer counter or status bit registers.
24 TEN Timer enable
0 Timer is reset, then remains idle
1 Normal timer operation
23-0 — Reserved, should be cleared.

12.2.3 SLT Timer Count Register (SCNTn)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R CNT
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R CNT
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x908 (SCNTO0), + 0x918 (SCNT1)
Addr
Figure 12-3. SLT Count Register (SCNTh)
Table 12-4. SCNTn Field Descriptions
Bits Name Description
31-0 CNT Timer count. GPIO output bit set. Provides the current state of the timer counter. This

register does not change while a read is in progress, but the actual timer counter continues
unaffected.
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12.2.4 SLT Status Register (SSRn)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reg MBAR + 0x90C (SSR0), + 0x91C (SSR1)
Addr

Figure 12-4. SLT Status Register (SSRn)

Table 12-5. SSRn Field Descriptions

Bits Name Description
31-26 — Reserved, should be cleared

25 BE Bus Error Status. Provides information on attempted write to read-only register. The bit is
cleared by writing 1 to its bit position.

24 ST SLT timeout. This status bit is set whenever the timer has expired. The bit is cleared by
writing 1 to its bit position. If interrupts are enabled, clearing this status bit also clears the
interrupt.

23-0 — Reserved, should be cleared.
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Chapter 13
Interrupt Controller

13.1 Introduction

This section details the functionality for the MCF548x interrupt controller. The general features of the
interrupt controller include:

* 63 interrupt sources, organized as:
— 56 fully-programmable interrupt sources
— 7 fixed-level interrupt sources

» Each of the 63 sources has a unique interrupt control register (ICR#n) to define the
software-assigned levels and priorities within the level

» Unique vector number for each interrupt source

» Ability to mask any individual interrupt source, plus global mask-all capability
*  Support for both hardware and software interrupt acknowledge cycles

*  “Wake-up” signal from stop mode

The 56 fully-programmable and seven fixed-level interrupt sources for each of the two interrupt controllers
on the MCF548x handle the complete set of interrupt sources from all of the modules on the device. This
section describes how the interrupt sources are mapped to the interrupt controller logic, and how interrupts
are serviced.

13.1.1 68K/ColdFire Interrupt Architecture Overview

Before continuing with the specifics of the MCF548x interrupt controller, a brief review of the interrupt
architecture of the 68K/ColdFire family is appropriate.

The interrupt architecture of ColdFire is exactly the same as the M68000 family, where there is a 3-bit
encoded interrupt priority level sent from the interrupt controller to the core, providing 7 levels of interrupt
requests. Level 7 represents the highest priority interrupt level, while level 1 is the lowest priority. The
processor samples for active interrupt requests once per instruction by comparing the encoded priority
level against a 3-bit interrupt mask value (I) contained in bits 10:8 of the machine’s status register (SR). If
the priority level is greater than the SR[I] field at the sample point, the processor suspends normal
instruction execution and initiates interrupt exception processing. Level 7 interrupts are treated as
non-maskable and edge-sensitive within the processor, while levels 1-6 are treated as level-sensitive and
may be masked depending on the value of the SR[I] field. For correct operation, the ColdFire requires that,
once asserted, the interrupt source remain asserted until explicitly disabled by the interrupt service routine.

During the interrupt exception processing, the CPU enters supervisor mode, disables trace mode, and then
fetches an 8-bit vector from the interrupt controller. This byte-sized operand fetch is known as the interrupt
acknowledge (IACK) cycle, with the ColdFire implementation using a special encoding of the transfer
type and transfer modifier attributes to distinguish this data fetch from a “normal” memory access. The
fetched data provides an index into the exception vector table that contains 256 addresses, each pointing
to the beginning of a specific exception service routine. In particular, vectors 64—255 of the exception
vector table are reserved for user interrupt service routines. The first 64 exception vectors are reserved for
the processor to handle reset, error conditions (access, address), arithmetic faults, system calls, etc.

Once the interrupt vector number has been retrieved, the processor continues by creating a stack frame in
memory. For ColdFire, all exception stack frames are 2 longwords in length and contain 32 bits of vector
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and status register data, along with the 32-bit program counter value of the instruction that was interrupted
(see Section 3.8.1, “Exception Stack Frame Definition,” for more information on the stack frame format).

After the exception stack frame is stored in memory, the processor accesses the 32-bit pointer from the
exception vector table using the vector number as the offset, and then jumps to that address to begin
execution of the service routine.

After the status register is stored in the exception stack frame, the SR[I] mask field is set to the level of the
interrupt being acknowledged, effectively masking that level and all lower values while in the service
routine. For many peripheral devices, the processing of the IACK cycle directly negates the interrupt
request, while other devices require that request to be explicitly negated during the processing of the
service routine.

For the MCF548x, the processing of the interrupt acknowledge cycle is fundamentally different than
previous 68K/ColdFire cores. In the new approach, all IACK cycles are directly handled by the interrupt
controller, so the requesting peripheral device is not accessed during the IACK. As a result, the interrupt
request must be explicitly cleared in the peripheral during the interrupt service routine. For more
information, see Section 13.1.1.1.3, “Interrupt Vector Determination.”

Unlike the M68000 family, all ColdFire processors guarantee that the first instruction of the service routine
is executed before sampling for interrupts is resumed. By making this initial instruction a load of the SR,
interrupts can be safely disabled, if required.

During the execution of the service routine, the appropriate actions must be performed on the peripheral
to negate the interrupt request.

For more information on exception processing, see the ColdFire Programmer’s Reference Manual at
http://www.freescale.com/coldfire

13.1.1.1 Interrupt Controller Theory of Operation

To support the interrupt architecture of the 68K/ColdFire programming model, the combined 63 interrupt
sources are organized as 7 levels, with each level supporting up to nine prioritized requests. Consider the
priority structure within a single interrupt level (from highest to lowest priority) as shown in Table 13-1.

Table 13-1. Interrupt Priority Within a Level

ICR[2:0] Priority g‘;irr':‘ellt
111 7 (Highest) 8-63
110 6 8-63
101 5 8-63
100 4 8-63

— Fixed Midpoint Priority 1-7

011 3 8-63
010 2 8-63
001 1 8-63
000 0 (Lowest) 8-63

The level and priority is fully programmable for all sources except interrupt sources 1-7. Interrupt source
1-7 (the external interrupts) are fixed at the corresponding level’s midpoint priority. Thus, a maximum of
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Introduction

8 fully-programmable interrupt sources are mapped into a single interrupt level. The “fixed” interrupt
source is hardwired to the given level and represents the mid-point of the priority within the level. For the
fully-programmable interrupt sources, the 3-bit level and the 3-bit priority within the level are defined in
the 8-bit interrupt control register (ICRn).

The operation of the interrupt controller can be broadly partitioned into three activities:
* Recognition
* Prioritization
* Vector determination during IACK

13.1.1.1.1 Interrupt Recognition

The interrupt controller continuously examines the request sources and the interrupt mask register to
determine if there are active requests. This is the recognition phase.

13.1.1.1.2 Interrupt Prioritization

As an active request is detected, it is translated into the programmed interrupt level, and the resulting 7-bit
decoded priority level (IRQ[7:1]) is driven out of the interrupt controller.

13.1.1.1.3 Interrupt Vector Determination

Once the core has sampled for pending interrupts and begun interrupt exception processing, it generates
an interrupt acknowledge cycle (IACK). The IACK transfer is treated as a memory-mapped byte read by
the processor and routed to the interrupt controller. Next, the interrupt controller extracts the level being
acknowledged from address bits[4:2], determines the highest priority interrupt request active for that level,
and returns the 8-bit interrupt vector for that request to complete the cycle. The 8-bit interrupt vector is
formed using the following algorithm:

vector number = 64 + interrupt source number

Recall vector numbers 0—63 are reserved for the ColdFire processor and its internal exceptions. Thus, the
mapping of bit positions to vector numbers that apply are the following:

if interrupt source 1 is active and acknowledged, then vector number = 65
if interrupt source 2 is active and acknowledged, then vector number = 66
if interrupt source 8 is active and acknowledged, then vector number = 72
if interrupt source 9 is active and acknowledged, then vector number = 73
if interrupt source 63 is active and acknowledged, then vector number = 127

The net effect is a fixed mapping between the bit position within the source to the actual interrupt vector
number.

If there is no active interrupt source for the given level, a special “spurious interrupt” vector
(vector number = 24) is returned, and it is the responsibility of the service routine to handle this error
situation.

Note this protocol implies the interrupting peripheral is not accessed during the acknowledge cycle since
the interrupt controller completely services the acknowledge. This means the interrupt source must be
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explicitly cleared in the interrupt service routine. This design provides unique vector capability for all
interrupt requests, regardless of the “complexity” of the peripheral device.

Vector number 64 is unused.

13.2 Memory Map/Register Descriptions

The register programming model for the interrupt controllers is memory-mapped to a 256-byte space. In
the following discussion, there are a number of program-visible registers greater than 32 bits in size. For
these control fields, the physical register is partitioned into two 32-bit values: a register “High” (the upper
longword) and a register “Low” (the lower longword). The nomenclature <reg name>H and
<reg name>L is used to reference these values.

The registers and their locations are defined in Table 13-2.
Table 13-2. Interrupt Controller Memory Map

Address
Offset Name ByteO Byte1 Byte2 Byte3 Access
0x700 Interrupt Pending Register High IPRH R
[63:32]
0x704 Interrupt Pending Register Low IPRL R
[31:0]
0x708 Interrupt Mask Register High IMRH R/W
[63:32]
0x70c Interrupt Mask Register Low IMRL R/W
[31:0]
0x710 Interrupt Force Register High INTFRCH R/W
[63:32]
0x714 Interrupt Force Register Low INTFRCL R
[31:0]
0x718 Interrupt Request Level Register | IRLR[7:1] IACKLPR Reserved R
and Interrupt Acknowledge Level
and Priority Register
0x71C— — Reserved —
0x73C
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Memory Map/Register Descriptions

Table 13-2. Interrupt Controller Memory Map (Continued)

Ag;if;ists Name Byte0 Byte1 Byte2 Byte3 Access
0x740 Interrupt Control Registers Reserved ICRO1 ICR02 ICRO3
0x744 ICR04 ICRO5 ICR06 ICRO7 R
0x748 ICR08 ICRO9 ICR10 ICR11 R/W
0x74c ICR12 ICR13 ICR14 ICR15 R/W
0x750 ICR16 ICR17 ICR18 ICR19 R/W
0x754 ICR20 ICR21 ICR22 ICR23 R/W
0x758 ICR24 ICR25 ICR26 ICR27 R/W
0x75C ICR28 ICR29 ICR30 ICR31 R/W
0x760 ICR32 ICR33 ICR34 ICR35 R/W
0x764 ICR36 ICR37 ICR38 ICR39 R/W
0x768 ICR40 ICR41 ICR42 ICR43 R/W
0x76C ICR44 ICR45 ICR46 ICR47 R/W
0x770 ICR48 ICR49 ICR50 ICR51 R/W
0x774 ICR52 ICR53 ICR54 ICR55 R/W
0x778 ICR56 ICR57 ICR58 ICR59 R/W
0x77C ICR60 ICR61 ICR62 ICR63 R/W
0x780-0x7D — Reserved —
C
0x7EO Software IACK Register SWIACK Reserved R
0x7E4 Level NIACK Registers L1IACK Reserved R
Ox7ES8 L2IACK Reserved R
Ox7EC L3IACK Reserved R
0x7FO0 L4IACK Reserved R
0x7F4 L5IACK Reserved R
0x7F8 L6IACK Reserved R
0x7FC L7IACK Reserved R

13.2.1 Register Descriptions

13.2.1.1 Interrupt Pending Registers (IPRH, IPRL)

The IPRH and IPRL registers, Figure 13-1 and Figure 13-2, are each 32 bits in size and provide a bit map
for each interrupt request to indicate if there is an active request for the given source (1 = active request,
0 = no request). The state of the interrupt mask register does not affect the IPR. The IPR is cleared by reset.
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The IPR is a read-only register, so any attempted write to this register is ignored. Bit 0 is not implemented
and reads as a zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R INT[63:48]
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R INT[47:32]
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x700
Addr
Figure 13-1. Interrupt Pending Register High (IPRH)
Table 13-3. IPRH Field Descriptions
Bits Name Description
31-0 INT[63:32] | Interrupt pending. Each bit corresponds to an interrupt source. The corresponding IMRH bit
determines whether an interrupt condition can generate an interrupt. At every system clock, the
IPRH samples the signal generated by the interrupting source. The corresponding IPRH bit
reflects the state of the interrupt signal even if the corresponding IMRH bit is set.
0 The corresponding interrupt source does not have an interrupt pending
1 The corresponding interrupt source has an interrupt pending
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R INT[31:16]
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1
R INT[15:1] 0
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x704
Addr

Figure 13-2. Interrupt Pending Register Low (IPRL)
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Table 13-4. IPRL Field Descriptions

Bits Name Description

31-1 INT[31:1] | Interrupt Pending. Each bit corresponds to an interrupt source. The corresponding IMRL bit
determines whether an interrupt condition can generate an interrupt. At every system clock, the
IPRL samples the signal generated by the interrupting source. The corresponding IPRL bit reflects
the state of the interrupt signal even if the corresponding IMRL bit is set.

0 The corresponding interrupt source does not have an interrupt pending

1 The corresponding interrupt source has an interrupt pending

0 — Reserved, should be cleared.

13.2.1.2 Interrupt Mask Register (IMRH, IMRL)

The IMRH and IMRL registers are each 32 bits in size and provide a bit map for each interrupt to allow
the request to be disabled (1 = disable the request, 0 = enable the request). The IMR is set to all ones by
reset, disabling all interrupt requests. The IMR can be read and written. A write that sets bit 0 of the IMR
forces the other 63 bits to be set, disabling all interrupt sources and providing a global mask-all capability.

NOTE

If an interrupt source is masked in the interrupt controller mask register
(IMR) or a module’s interrupt mask register while the interrupt mask in the
status register (SR[I]) is set to a value lower than the interrupt’s level, a
spurious interrupt may occur. This situation occurs because by the time the
status register acknowledges the interrupt, it has been masked and the CPU
cannot determine the interrupt source. To avoid this situation for interrupt
sources with levels 1-6, first write a higher level interrupt mask to the status
register before setting the mask in the IMR or the module’s interrupt mask
register. After the mask is set, return the interrupt mask in the status register
to its previous value. Since level 7 interrupts cannot be disabled in the status
register prior to masking, use of the IMR or module interrupt mask registers
to disable level 7 interrupts is not recommended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R INT_MASK[63:48]

Reset| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
R INT_MASK[47:32]

Reset| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Reg MBAR + 0x708
Addr

Figure 13-3. Interrupt Mask Register High (IMRH)
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Table 13-5. IMRH Field Descriptions

Bits Name Description

31-0 INT_MASK | Interrupt mask. Each bit corresponds to an interrupt source. The corresponding IMRH bit
determines whether an interrupt condition can generate an interrupt. The corresponding
IPRH bit reflects the state of the interrupt signal even if the corresponding IMRH bit is set.
0 The corresponding interrupt source is not masked

1 The corresponding interrupt source is masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R INT_MASK[31:16]
w
Reset| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R INT_MASK[15:1] MASK
ALL
w
Reset| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reg MBAR + 0x70C
Addr
Figure 13-4. Interrupt Mask Register Low (IMRL)
Table 13-6. IMRL Field Descriptions
Bits Name Description
31-1 INT_MASK | Interrupt mask. Each bit corresponds to an interrupt source. The corresponding IMRL bit

determines whether an interrupt condition can generate an interrupt. The corresponding
IPRL bit reflects the state of the interrupt signal even if the corresponding IMRL bit is set.
0 The corresponding interrupt source is not masked

1 The corresponding interrupt source is masked

0 MASKALL | Mask all interrupts. Setting this bit will force the other 63 bits of the IMRH and IMRL to ones,
disabling all interrupt sources, and providing a global mask-all capability.

13.2.1.3 Interrupt Force Registers (INTFRCH, INTFRCL)

The INTFRCH and INTFRCL registers are each 32 bits in size and provide a mechanism to allow software
generation of interrupts for each possible source for functional or debug purposes. The system design may
reserve one or more sources to allow software to self-schedule interrupts by forcing one or more of these
bits in the appropriate INTFRC register (1 = force request, 0 = negate request). The assertion of an interrupt
request via the INTFRC register is not affected by the interrupt mask register. The INTFRC register is
cleared by reset.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R INTFRC[63:48]
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R INTFRCI[47:32]
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x710
Addr
Figure 13-5. Interrupt Force Register High (INTFRCH)
Table 13-7. INTFRCH Field Descriptions
Bits Name Description
31-0 INTFRC | Interrupt force. Allows software generation of interrupts for each possible source for functional or
debug purposes.
0 No interrupt forced on corresponding interrupt source
1 Force an interrupt on the corresponding source
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R INTFRCI[31:16]
w
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R INTFRC[16:1] —
W
Reset| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reg MBAR + 0x714
Addr
Figure 13-6. Interrupt Force Register Low (INTFRCL)
Table 13-8. INTFRCL Field Descriptions
Bits Name Description
311 INTFRC | Interrupt force. Allows software generation of interrupts for each possible source for functional or
debug purposes.
0 No interrupt forced on corresponding interrupt source
1 Force an interrupt on the corresponding source
0 — Reserved, should be cleared.
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13.2.1.4 Interrupt Request Level Register (IRLR)

This 7-bit register is updated each machine cycle and represents the current interrupt requests for each
interrupt level, where bit 7 corresponds to level 7, bit 6 to level 6, etc.

7 6 5 4 3 2 1 0
R IRQ 0
W
Reset 0 0 0 0 0 0 0 0
Reg MBAR + 0x718
Addr
Figure 13-7. Interrupt Request Level Register (IRLR)
Table 13-9. IRQn Field Descriptions
Bits Name Description
7-1 IRQ Interrupt requests. Represents the prioritized active interrupts for each level.
0 There are no active interrupts at this level
1 There is an active interrupt at this level
0 — Reserved

13.2.1.5 Interrupt Acknowledge Level and Priority Register (IACKLPR)

Each time an IACK is performed, the interrupt controller responds with the vector number of the highest
priority source within the level being acknowledged. In addition to providing the vector number directly
for the byte-sized IACK read, this 8-bit register is also loaded with information about the interrupt level
and priority being acknowledged. This register provides the association between the acknowledged
“physical” interrupt request number and the programmed interrupt level/priority. The contents of this
read-only register are described in Figure 13-8 and Table 13-10.

7 6 5 4 3 2 1 0
R — LEVEL PRI
w
Reset 0 0 0 0 0 0 0 0
Reg MBAR + 0x719
Addr
Figure 13-8. IACK Level and Priority Register (IACKLPR)
Table 13-10. IACKLPR Field Descriptions
Bits Name Description
7 — Reserved
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Table 13-10. IACKLPR Field Descriptions (Continued)

Bits

Name

Description

64

LEVEL

Interrupt level. Represents the interrupt level currently being acknowledged.

3-0

PRI

Interrupt Priority. Represents the priority within the interrupt level of the interrupt currently
being acknowledged.

Priority 0

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

Priority 6

Priority 7

Mid-Point Priority associated with the fixed level interrupts only

oONOOOA~WN=2O

13.2.1.6

Interrupt Control Registers 1-63 (ICRn)

Each ICRu# specifies the interrupt level (1-7) and the priority within the level (0—7). All ICR# registers can
be read, but only ICR8 to ICR63 can be written. It is software’s responsibility to program the ICRn
registers with unique and non-overlapping level and priority definitions. Failure to program the ICRn
registers in this matter can result in undefined behavior. If a specific interrupt request is completely unused,
the ICR# value can remain in its reset (and disabled) state.

5 4 3 2 1 0
R 0 0 IL IP
w
Reset 0 0 0 0 0 0 0 0
Reg See Table 13-2 for register offsets

Addr

Figure 13-9. Interrupt Control Registers 1-63 (ICRn)
Table 13-11. ICRn Field Descriptions

Bits Name Description

7-6 — Reserved, should be cleared.

5-3 IL Interrupt level. Indicates the interrupt level assigned to each interrupt input.

2-0 IP Interrupt priority. Indicates the interrupt priority for internal modules within the
interrupt-level assignment. 000b represents the lowest priority and 111b represents the
highest. For the fixed level interrupt sources, the priority is fixed at the midpoint for the level,
and the IP field will always read as 000b.
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13.2.1.6.1

Interrupt Sources

Table 13-12 lists the interrupt sources for each interrupt request line

Table 13-12. Interrupt Source

Assignments

So:rc Module Flag Source Description Flag Clearing Mechanism
1 EPORT EPF1 Edge port flag 1 Write ‘1’ to EPFR[EPF1]
2 EPF2 Edge port flag 2 Write ‘1’ to EPFR[EPF2]
3 EPF3 Edge port flag 3 Write ‘1’ to EPFR[EPF3]
4 EPF4 Edge port flag 4 Write ‘1’ to EPFR[EPF4]
5 EPF5 Edge port flag 5 Write ‘1’ to EPFR[EPF5]
6 EPF6 Edge port flag 6 Write ‘1’ to EPFR[EPF6]
7 EPF7 Edge port flag 7 Write ‘1’ to EPFR[EPF7]
8-14 Not used
15 USB 2.0 EPOISR | Endpoint O interrupt Write ‘1’ to appropriate bit in EPOISR
16 EP1ISR | Endpoint 1 interrupt Write ‘1’ to appropriate bit in EP1ISR
17 EP2ISR | Endpoint 2 interrupt Write ‘1’ to appropriate bit in EP2ISR
18 EP3ISR | Endpoint 3 interrupt Write ‘1’ to appropriate bit in EP3ISR
19 EP4ISR | Endpoint 4 interrupt Write ‘1’ to appropriate bit in EP4ISR
20 EP5ISR | Endpoint 5 interrupt Write ‘1’ to appropriate bit in EP5ISR
21 EP6ISR | Endpoint 6 interrupt Write ‘1’ to appropriate bit in EP6ISR
22 USBISR |USB 2.0 general interrupt Write ‘1’ to appropriate bit in USBISR
23 USBAISR | USB 2.0 core interrupt Write ‘0’ to appropriate bit in USBAISR
24 — OR of all USB interrupts Clear appropriate USB interrupt(s)
25 DSPI RFOF | | DSPI overflow or underflow Write ‘1’ to DSR[RFDF] and/or DSR[TFUF]
TFUF
26 RFOF | Receive FIFO overflow interrupt | Write ‘1’ to DSR[RFOF]
27 RFDF Receive FIFO drain interrupt Write ‘1’ to DSR[RFDF] or DMA acknowledge
28 TFUF | Transmit FIFO underflow interrupt | Write ‘1’ to DSR[TFUF]
29 TCF Transfer complete interrupt Write ‘1’ to DSR[TCF]
30 TFFF | Transfer FIFO fill interrupt Write ‘1’ to DSR[TFFF] or DMA acknowledge
31 EOQF |End of queue interrupt Write ‘1’ to DSR[EOQF]
32 |PSC3 — PSC3 interrupt Cleared when service complete
33 |PSC2 — PSC2 interrupt Cleared when service complete
34 |PSC1 — PSC1 interrupt Cleared when service complete
35 |PSCO — PSCO interrupt Cleared when service complete
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Table 13-12. Interrupt Source Assignments (Continued)

So:rc Module Flag Source Description Flag Clearing Mechanism
36 | CommTim TC Combined interrupts from comm | Write ‘1’ to CTCRn[l]
timers
37 SEC — SEC interrupt Service interrupt and write ‘1’ to SICR
38 |FEC1 — FEC1 interrupt Write appropriate interrupt condition bit = 1
39 |FECO — FECO interrupt Write appropriate interrupt condition bit = 1
40 |l12C — 12C interrupt Write IIF =0
41 PCIARB — PCI arbiter interrupt Write ‘1’ to PASRIEXTMBK] or PASR[ITLMBK]
42 | CBPCI — Comm bus PCl interrupt Clear FIFO alarm condition
43 | XLBPCI — XLB PCI interrupt Write ‘1’ to appropriate PCIISR bit(s)
44-46 Not used
47 | XLBARB — XLBARB to CPU interrupt Write ‘1’ to appropriate ARB_SR bit(s)
48 DMA — Multichannel DMA interrupt Write ‘1’ to DIPR[TASKn]
49 CANO ERROR | FlexCAN error interrupt Read error bits in ESR or write ERR_INT =0
50 BUSOFF | FlexCAN bus off interrupt Write BOFF_INT =0
51 MBOR | Message buffer ORed interrupt | Write BUFnl = 1 after reading BUFnl = 1
52 Not used
53 | Slice SLT1 Slice timer 1 interrupt Write ST =1
54 Timer SLTO Slice timer 0 interrupt Write ST =1
55 CAN1 ERROR | FlexCAN error interrupt Read error bits in ESR or write ERR_INT =0
56 BUSOFF | FlexCAN bus off interrupt Write BOFF_INT =0
57 MBOR | Message buffer ORed interrupt | Write BUFnl = 1 after reading BUFnl = 1
58 Not used
59 GPTs GPT3 |GPTS3 interrupt Write ‘1’ to appropriate GSR bit
60 GPT2 GPT2 interrupt Write ‘1’ to appropriate GSR bit
61 GPT1 GPT1 interrupt Write ‘1’ to appropriate GSR bit
62 GPTO |GPTO interrupt Write ‘1’ to appropriate GSR bit
63 Not used

13.2.1.7 Software and Level n IACK Registers (SWIACKR, L1IACK-L7IACK)

The eight TACK registers can be explicitly addressed via the CPU, or implicitly addressed via a
processor-generated interrupt acknowledge cycle during exception processing. In either case, the interrupt

controller’s actions are very similar.

First, consider an IACK cycle to a specific level: that is, a level-n IACK. When this type of IACK arrives
in the interrupt controller, the controller examines all the currently-active level-n interrupt requests,
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determines the highest priority within the level, and then responds with the unique vector number
corresponding to that specific interrupt source. The vector number is supplied as the data for the byte-sized
IACK read cycle. In addition to providing the vector number, the interrupt controller also loads the level
and priority number for the level into the IACKLPR, where it may be retrieved later.

This interrupt controller design also supports the concept of a software IACK. A software IACK is a useful
concept that allows an interrupt service routine to determine if there are other pending interrupts, so that
the overhead associated with interrupt exception processing (including machine state save/restore
functions) can be minimized. In general, the software IACK is performed near the end of an interrupt
service routine, and if there are additional active interrupt sources, the current interrupt service routine
(ISR) passes control to the appropriate service routine, but without taking another interrupt exception.

When the interrupt controller receives a software IACK read, it returns the vector number associated with
the highest level, highest priority unmasked interrupt source for that interrupt controller. The IACKLPR
is also loaded as the software IACK is performed. If there are no active sources, the interrupt controller
returns an all-zero vector as the operand. For this situation, the IACKLPR is also cleared.

In addition to the software IACK registers within each interrupt controller, there are global software [TACK
registers. A read from the global SWIACK will return the vector number for the highest level and priority
unmasked interrupt source from all interrupt controllers. A read from one of the LnIACK registers will
return the vector for the highest priority unmasked interrupt within a level for all interrupt controllers.

7 6 5 4 3 2 1 0
R VECTOR
w
Reset 0 0 0 0 0 0 0 0
Reg See Table 13-2 for register offsets
Addr

Figure 13-10. Software and Level n IACK Registers (SWIACKR, L1IACK-L7IACK)

Table 13-13. SWIACK and L1IACK-L7IACK Field Descriptions

Bits Name Description

7-0 VECTOR | Vector number. A read from the SWIACK register returns the vector number associated
with the highest level, highest priority unmasked interrupt source. A read from one of the
LnACK registers returns the highest priority unmasked interrupt source within the level.
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Chapter 14
Edge Port Module (EPORT)

14.1 Introduction

The edge port module (EPORT) has seven external interrupt pins, IRQ[7:1]. Each pin can be configured
individually as a level-sensitive interrupt pin, an edge-detecting interrupt pin (rising edge, falling edge, or
both), or a general-purpose input/output (I/O) pin. See Figure 14-1.

Stop

Mode —
»|EPPAR[2N, 2n + 1]

Y Y
Edge Detec