A GUIDE TO
THE INSPECTION AND ANALYSIS OF ELECTRONIC PACKAGES
with phoenix x-ray microfocus and nanofocus X-ray systems
FAQs about X-ray

How X-ray inspection works
X-ray starts with a sample being irradiated by an X-ray source and projected onto a detector. The geometric magnification M of the image is the ratio of focus-detector distance (FDD), Focus-object distance (FOD): M=FDD/FOD. The smaller the focal spot, the greater the resolution. With the nanofocus technology a unique detail detectability down to 0.2 microns can be achieved. phoenix|x-ray systems reach geometric magnifications over 2 000 x resulting in total magnifications beyond 24 000 x.

How X-ray tubes work
The heart of the X-ray machine is an electrode pair consisting of a cathode, the filament, and an anode, that is located inside a vacuum tube. Current is passed through the filament heating it up, causing the filament to emit electrons. The positively charged anode draws the electrons across the tube. Unlike with conventional X-ray tubes, the electrons pass through the anode into a specifically designed set-up of electromagnetic lenses, where they are bundled and directed onto a small spot on the target, a flat metal disc covered by a layer of tungsten. When the electrons collide with the target, they interact with the ions in the tungsten, causing X-rays to be emitted. Key to sharp, crisp X-ray images at micron or even submicron resolutions is the size of the focal spot, meaning the ability to focus the electron beam in such way that the area on the target where the electrons hit be as small as possible – an obstacle yet to be overcome by conventional X-ray machines. However, phoenix|x-ray has mastered this challenge with its unique nanofocus tube providing detail detectabilities as low as 200 nanometers (0.2 microns).

What makes an excellent X-ray?
In addition to resolution, maximum voltage, and power, stability is very important for reliable results and highest up-time. One of phoenix|x-ray’s key technology competencies are tube design and manufacturing.

- High power nanofocus X-ray tubes up to 180 kV and unipolar microfocus X-ray tubes up to 300 kV maximum voltage
- Up to 200 nm (0.2 microns) detail detectability
- Dose-rate stabilization: the emitted intensity only varies by less than 0.5 % within 8 hours (see diagram)
- Anti-arcing: dedicated surface treatment during fabrication and automated warm-up procedures prevent discharges
- Self adjustment: all tube adjustments are performed automatically during warm-up to achieve optimum results
- Plug-in cathodes: pre-adjusted spare cathodes prevent malfunction due to wrong filament adjustment and minimize downtime to less than 20 min.
- Target check: target condition is checked automatically; automatic target wear is indicated

Why can the collision protection be deactivated?
phoenix|x-ray systems come standard with a password-protected, anti-collision feature to ensure the protection of your samples. When inspecting certain samples, it might become necessary to deactivate the collision protection (e.g. with 25 μm bond wires, which, even for magnifications of just 500 x, need to be as close as 4 mm to the tube head). phoenix|x-ray provides the user the flexibility when dealing with small samples. Unlike with conventional systems, the X-ray tube is located above the sample tray allowing the user to move the sample as close to the tube head as needed.
The View Inside

What can X-ray inspection tell us about package quality?
Electronic packages are sophisticated electronic devices with complex, internal features. In order to meet the quality requirements of the industry, X-ray inspection solutions must be capable of delivering detail detectabilities in the submicron range and detecting hidden defect flaws.

Phoenix|x-ray offers automated microfocus and nanofocus X-ray inspection solutions for any package inspection task including, but not limited to the following:

Standard IC packages: DIP, SOT, VSOP, (P)LCC, QFP, Flat Pack

![IC-package, top-down view](image)

Any internal details such as bond wires, inner and outer bonds, die, die attach, lead frame and moulding can be examined for defects e.g. broken wires, excessive wire sweep, extraneous or crossing wires, die attach voids and die tilt, die cracks, defective lid seals, moulding voids, entrapped particles and delaminations.

Wire-bonded area array packages: PBGA, CSP, etc.

![Chip-scale package in top-down view (not balled yet)](image)

The image gives a clear view of the integrity of the vias and lead tracks of the PCB and the quality of the solder joints.

Flip-chip bonded area array packages: CBGA etc.

![FC-bonded IC, top-down view](image)

Applications include the inspection of microscopic solder joints connecting IC and ceramic substrate as well as underfill inspection. The most common defects are open solder joints, missing solder joints, solder bridges, solder and underfill voids.
What is it that makes the difference?
Image definition and contrast are both key to detecting. With the nanofocus technology with detail detectabilities down to 200 nanometers, submicron resolutions and a fully digital high-contrast detector that outperforms any image intensifier-based image chain, phoenix|x-ray is once more leading the way in X-ray inspection technology.

High dynamic digital detectors
active temperature stabilization
The image quality is essential for an optimal defect coverage of all 2D and 3D inspection tasks. The new active temperature stabilized GE DXR detectors ensure a very low noise live imaging. Due to its high dynamic, the DXR detector shows a brilliant live image with 30 frames per second at full resolution.

Technology
What is the difference between nanofocus and microfocus tubes?

Microfocus X-ray tubes have focal spots that are as small as 3 microns in size. But penumbra effects, and, as a consequence, residual unsharpness, still occur. With its nanofocus technology with focal spot sizes well below 1 micron, phoenix|x-ray has successfully managed to eliminate the penumbra effect even when using highest-intensity X-rays.

Verification of resolution using a periodic test pattern. If the grid period is the same size as the focal spot, the pattern vanishes. Using nanofocus technology, the bars are clearly visible proving that nanofocus tubes deliver detail detectabilities well below 1 micron – proved with Jima.

Unrivaled resolutions

<table>
<thead>
<tr>
<th>nanofocus technology</th>
<th>microfocus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal spot size 5 microns</td>
<td>Focal spot size 10 microns</td>
</tr>
</tbody>
</table>

Superior contrast

<table>
<thead>
<tr>
<th>high-contrast detector</th>
<th>image intensifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-conductive die attach</td>
<td>high-contrast detector</td>
</tr>
</tbody>
</table>

Copper Wires
High-contrast detectors enable inspection of low absorbing features
The efficient way of process control and rework: AXI

Efficient soldering process control requires the acquisition of statistical data on the solder joints of a larger number of samples. phoenix|x-ray offers a range of plug-in software modules for the automatic evaluation of standard solder joints like BGA, QFP, QFN, or PTH. For non-typical interconnections, appropriate modules can quickly be customized with the XE² (X-ray image Evaluation Environment) software. Together with the high precision CNC manipulation, which comes standard with phoenix|x-ray systems these modules enable the automatic X-ray inspection (AXI) of solder joints at minimum set-up time, due to teach-in programming and auto-setup routines. An additional software package – quality|review – is the perfect connection to rework. phoenix|x-ray's inspection modules can also easily be activated during manual inspection as a quick inspection aid.

c4|module

flip-chip inspection

Software for the automated X-ray analysis of microscopic solder joints, even with background structures present. The analysis runs fully automated and is extremely time-saving.

The following c4-parameters can be inspected:
- Missing solder balls
- Void size
- Void percentage
- Number of voids

vc|module

voiding calculations

Software designed for the automated voiding analysis of die-attach and planar solder joints with versatile set-up options:
- Calculation of the total voiding percentage
- Calculation of the void count
- Sorting voids according to variable thresholds
- Definition of hot zones
- Calculation of the minimum void diameter
- Calculation of die tilt and rotation
- Automated die inspection
- Dimple solder joint correction
- Inspection and analysis of multiple-die packages

x|act

AXI with highest defect coverage

As a solution for AXI with highest defect coverage, phoenix|x-ray provides calibrated high precision offline AXI systems including the unique x|act software package for fast and easy offline CAD-programming. Small views with highest resolution of a few micrometers, 360° rotation and oblique viewing up to 70° ensure to meet highest quality standards.

Among the automated X-ray inspection, the AXI system can be used for manual failure analysis or 3D computed tomography as well.

Technology

The radiation dose typically used in X-ray inspection is only a thousandth of the dose rate that would cause damage to semiconductor components. phoenix|x-ray provides a variety of options for controlling and adjusting the dose rate e.g.:
- low-dose|mode
- automated inspection routines (AXI)
- collimated beams
- self-filtering target
Oblique or straight X-ray inspection seen from a different perspective

Sometimes when inspecting a sample, it may become necessary to see your sample from a different angle. An example of this would be an inspection via platings or wire loops. phoenix|x-ray systems provide oblique views of up to 70 degrees using the unique ovhm-technology. Automatic isocentric manipulator movement locks the field of view during rotation and ovhm tilt in the image centre.

ovhm: Oblique views at highest magnifications

Conventional tilt techniques generate oblique views by simply tilting the sample to the side, which involves moving one part of the sample further away from the X-ray tube resulting in a decrease in magnification. The ovhm module was specifically designed to enable oblique views of up to 70 degrees and 0 to 360 degree rotations without a decrease in magnification. Magnification remains the same because the distance between focus and sample does not change while the detector is being tilted.

High-resolution 3D imaging

nanoCT®

The proven and successful v|tome|x technology by phoenix|x-ray is also available as an add-on for the nanome|x system. High-power nano-focus X-ray technology paired with a fast reconstruction software deliver unrivaled, highest-quality inspection results with nanoCT® image resolutions. This technology is especially suitable for the inspection and three-dimensional analysis of smaller samples.
Phoenix|x-ray offers a wide range of X-ray systems in different configurations for a variety of inspection tasks in the electronics and semiconductor industries. Phoenix|x-ray’s systems have superior specifications that are able to solve the highest demands:

<table>
<thead>
<tr>
<th>System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nanome</td>
<td>x</td>
</tr>
<tr>
<td>pcb</td>
<td>inspector</td>
</tr>
<tr>
<td>nanotom°</td>
<td>Highest resolution in three dimensions</td>
</tr>
<tr>
<td>microme</td>
<td>x</td>
</tr>
</tbody>
</table>

Closed tube or open tube?

Closed tubes: All tube components are contained in a sealed vacuum vessel container. Closed tubes are maintenance-free and are completely replaced at the end of their lifetime.

Open tubes: All components and wear-out parts are accessible and replaceable, the tube is continuously evacuated by a turbomolecular pump. Open tubes yield higher resolution and magnification and are not limited in lifetime.

Systems

Closed tube or open tube?

Closed tubes: All tube components are contained in a sealed vacuum vessel container. Closed tubes are maintenance-free and are completely replaced at the end of their lifetime.

Open tubes: All components and wear-out parts are accessible and replaceable, the tube is continuously evacuated by a turbomolecular pump. Open tubes yield higher resolution and magnification and are not limited in lifetime.
Regional Contact Information

Europe, Asia, Africa, South America
GE Sensing & Inspection Technologies
Niels-Bohr-Str. 7
31515 Wunstorf
P.O. Box 6241
31510 Wunstorf
Germany
Tel.: +49 5031 172 0
Fax: +49 5031 172 299
E-mail: phoenix-info@ge.com
phoenix-asia@ge.com

Americas
GE Sensing & Inspection Technologies
50 Industrial Park Road
Lewistown, PA 17044
USA
Tel: +1 (866) 243 2638 (toll-free)
Tel: +1 (717) 242 0327
E-mail: phoenix-usa@ge.com

www.phoenix-xray.com