Autodesk® Algor® Simulation – Course Agenda

- Introduction
 - Course Overview
 - Overview of Services and Support
 - System Requirements
 - Installing and Running Algor
 - Algor User's Guide
 - My Account Area
 - Tutorials
 - Webcasts
 - Web Courses
 - Updates
 - How to Receive Technical Support
 - Background of FEA
 - What is Finite Element Analysis?
 - Basic FEA Concepts
 - How Does FEMPRO Work?
 - The General Flow of an Analysis in FEMPRO
 - Stress and Strain Review
 - Equations Used in the Solution
 - Limits of Static Stress with Linear Material Models
 - Mechanical Event Simulation (MES) Overcomes Limitations
 - Hand-Calculated Example
 - Heat Transfer Review
 - Equations Used in the Solution
 - Linear Dynamics Review
- Example Using FEMPRO (Linear Static Stress Analysis)
- Working with CAD Solid Models and Static Stress
 - o Archiving a Model
 - Types of Brick Elements
 - Generating Meshes for CAD Models
 - Tips for Modeling with CAD Solid Model Software for FEA
 - Loading Options
 - Load Cases
 - Constraint Options
 - Modeling Symmetry and Antisymmetry
 - Design Scenarios
 - FEA Object Groups
 - Local Coordinate Systems

- o Defining Materials and Using the Material Library Manager
 - Adding Material Libraries and Material Properties
- Examples of Loads and Constraints
 - When to Use Displacement Boundary Elements
 - Using Local Coordinate Systems
 - Using Surface Variable Loads
- Individual Exercise: Full to Quarter-Symmetry Model Comparison
- Results Evaluation and Presentation
 - o Background on How Results are Calculated
 - How to Evaluate Results
 - Displacement Results
 - Stress Results
 - Reaction Force Results
 - Inquiring on the Results at a Node
 - Graphing the Results
 - Presentation Options
 - Contour Plots
 - Image File Creation
 - Animating FEA Results
 - Using the Configure Report Utility
 - o Individual Exercise: Evaluation of Results and Generation of a Report
- Midplane Meshing and Plate Elements
 - Meshing Options
 - Element Options
 - Plate Theory and Assumptions
 - Loading Options
 - Example of Defining the Element Normal Point
 - Result Options
 - o Individual Exercise: Midplane Meshing and Plate Element Orientation
- Meshing
 - Refinement Options
 - Automatic Refinement Points
 - Global Refinement Options
 - o Creating Joints
 - Creating Bolts
 - Mesh Convergence Testing
 - Performing a Mesh Study
 - Individual Exercise
- Introduction to Contact
 - Uses for Contact

- Contact Options
 - Setting up Contact Pairs
 - Types of Contact
 - Friction
 - Surface Contact Direction
- Contact Examples: How to Model Shrink Fits
- o Result Options
- Individual Exercise: Linear Contact
- Introduction to Linear Dynamics
 - o Modal Analysis
 - Lumped Masses
 - Load Stiffening
 - Group Example: Natural Frequency (Modal) Analysis
 - o Critical Buckling Analysis
 - o Result Options
 - Other Linear Dynamics Analyses (Self-Study)
 - Individual Exercise: Modal and Critical Buckling Analysis
- Steady-State Heat Transfer
 - Group Example
 - Meshing Options
 - Thermal Contact
 - Element Options
 - Rod Elements
 - 2-D Elements
 - Plate Elements
 - Brick and Tetrahedral Elements
 - Loading Options
 - Body-to-Body Radiation
 - Controlling Nonlinear Iterations
 - Result Options
 - Individual Exercise
- Transient Heat Transfer
 - When to Use Transient Heat Transfer
 - Element Options
 - Loading Options
 - Load Curves
 - Controlling Nodal and Surface Applied Temperatures
 - Result Options
 - Individual Exercise
- Thermal Stress

- Performing a Thermal Stress Analysis
- Individual Exercise
- Self Study: Linear Dynamics Supplement
 - o Overview and Example of a Response Spectrum Analysis
 - o Self-Study Exercise: Response Spectrum Analysis
 - Overview and Example of Random Vibration Analysis
 - Self-Study Exercise: Random Vibration Analysis
 - Frequency Response
 - Self-Study Exercise: Frequency Response
 - Transient Stress (Modal Superposition) Analysis
 - Transient Stress (Direct Integration)
 - Self-Study Exercise: Transient Stress (Direct Integration)
- Appendices
 - Finite Element Method Using Hand Calculations
 - Analysis Types in FEMPRO
 - Linear Loads and Constraints
 - Material Model Options