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1 Introduction

This document introduces the reader to generalized linear modeling with H20.
Examples are written in R and Python. Topics include:

e installation of H20

e basic GLM concepts

e building GLM models in H20
e interpreting model output

e making predictions

2 What is H207?

H20 is fast, scalable, open-source machine learning and deep learning for
smarter applications. With H20, enterprises like PayPal, Nielsen Catalina,
Cisco, and others can use all their data without sampling to get accurate
predictions faster. Advanced algorithms such as deep learning, boosting, and
bagging ensembles are built-in to help application designers create smarter
applications through elegant APIs. Some of our initial customers have built
powerful domain-specific predictive engines for recommendations, customer
churn, propensity to buy, dynamic pricing, and fraud detection for the insurance,
healthcare, telecommunications, ad tech, retail, and payment systems industries.

Using in-memory compression, H20 handles billions of data rows in-memory,
even with a small cluster. To make it easier for non-engineers to create complete
analytic workflows, H20's platform includes interfaces for R, Python, Scala,
Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web interface,
Flow. H20 is designed to run in standalone mode, on Hadoop, or within a
Spark Cluster, and typically deploys within minutes.

H20 includes many common machine learning algorithms, such as generalized
linear modeling (linear regression, logistic regression, etc.), Naive Bayes, principal
components analysis, k-means clustering, and others. H20 also implements
best-in-class algorithms at scale, such as distributed random forest, gradient
boosting, and deep learning. Customers can build thousands of models and
compare the results to get the best predictions.

H20 is nurturing a grassroots movement of physicists, mathematicians, and
computer scientists to herald the new wave of discovery with data science by
collaborating closely with academic researchers and industrial data scientists.
Stanford university giants Stephen Boyd, Trevor Hastie, Rob Tibshirani advise
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the H20 team on building scalable machine learning algorithms. With hundreds
of meetups over the past three years, H20 has become a word-of-mouth
phenomenon, growing amongst the data community by a hundred-fold, and
is now used by 30,000+ users and is deployed using R, Python, Hadoop, and
Spark in 2000+ corporations.

Try it out
e Download H20 directly at http://h20.ai/download.

e Install H2O's R package from CRAN at https://cran.r-project.
org/web/packages/h2o/.

e Install the Python package from PyPl at https://pypi.python.
org/pypi/h2o/.

Join the community

e To learn about our meetups, training sessions, hackathons, and product
updates, visit http://h20.ai.

e Visit the open source community forum at https://groups.google.
com/d/forum/h2ostream.

e Join the chat at https://gitter.im/h20ai/h20-3.

3 Installation

H20 requires Java; if you do not already have Java installed, install it from
https://java.com/en/download/ before installing H20.

The easiest way to directly install H20 is via an R or Python package.

3.1 Installation in R

To load a recent H20 package from CRAN, run:

install.packages ("h20")

Note: The version of H20 in CRAN may be one release behind the current
version.

For the latest recommended version, download the latest stable H20-3 build
from the H20 download page:



http://h2o.ai/download
https://cran.r-project.org/web/packages/h2o/
https://cran.r-project.org/web/packages/h2o/
https://pypi.python.org/pypi/h2o/
https://pypi.python.org/pypi/h2o/
http://h2o.ai
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
https://gitter.im/h2oai/h2o-3
https://java.com/en/download/
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. Goto http://h20.ai/download
. Choose the latest stable H20-3 build.
. Click the “Install in R" tab.

AW N -

After H20 is installed on your system, verify the installation:

. Copy and paste the commands into your R session.

library (h20)

#Start H20 on your local machine using all available

cores.

#By default, CRAN policies limit use to only 2 cores.

h2o0.init (nthreads = -1)

#Get help
?h20.glm
?h2o0.gbm
?h2o0.deeplearning

#Show a demo
demo (h20.glm)
demo (h20.gbm)
demo (h2o.deeplearning)

3.2 Installation in Python

To load a recent H20 package from PyPlI, run:

pip install h2o

To download the latest stable H20-3 build from the H20 download page:

. Goto http://h20.ai/download
. Choose the latest stable H20-3 build.
. Click the “Install in Python" tab.

BN =

After H20 is installed, verify the installation:

. Copy and paste the commands into your Python session.



http://h2o.ai/download
http://h2o.ai/download
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import h2o

# Start H20 on your local machine
h2o0.init ()

# Get help

help (h2o0.estimators.glm.H20GeneralizedLinearEstimator)

help (h2o.estimators.gbm.H20GradientBoostingEstimator)

help (h2o.estimators.deeplearning.
H20DeepLearningEstimator)

# Show a demo

h2o.demo ("glm")

h2o.demo ("gbm")

h2o.demo ("deeplearning")

3.3 Pointing to a Different H20 Cluster

The instructions in the previous sections create a one-node H2O cluster on your
local machine.

To connect to an established H20 cluster (in a multi-node Hadoop environment,
for example) specify the IP address and port number for the established cluster
using the ip and port parameters in the h2o.init () command. The syntax
for this function is identical for R and Python:

h2o.init (ip = "123.45.67.89", port = 54321)

3.4 Example Code

Python and R code for the examples in this document can be found here:

https://github.com/h20ai/h20-3/tree/master/h2o0-docs/src/

booklets/v2_2015/source/GLM_Vignette_code_examples

The document source itself can be found here:

https://github.com/h20ai/h20-3/blob/master/h2o-docs/src/

booklets/v2_2015/source/GLM_Vignette.tex



https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/GLM_Vignette_code_examples
https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/GLM_Vignette_code_examples
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/v2_2015/source/GLM_Vignette.tex
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/v2_2015/source/GLM_Vignette.tex
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3.5 Citation
To cite this booklet, use the following:

Nykodym, T., Kraljevic, T., Hussami, N., Rao, A., and Wang, A. (Dec 2016).
Generalized Linear Modeling with H20. http://h20.ai/resources/.

4 Generalized Linear Models

Generalized linear models (GLMs) are an extension of traditional linear models.
They have gained popularity in statistical data analysis due to:

e the flexibility of the model structure unifying the typical regression methods
(such as linear regression and logistic regression for binary classification)

e the recent availability of model-fitting software

e the ability to scale well with large datasets

4.1 Model Components

The estimation of the model is obtained by maximizing the log-likelihood over
the parameter vector ( for the observed data

max ( GLM Log-likelihood).

In the familiar linear regression setup, the independent observations vector y is
assumed to be related to its corresponding predictor vector = by

y=x"B+p+e,

where 3 is the parameter vector, 5y represents the intercept term and € ~
N(0,0?) is a gaussian random variable which is the noise in the model.

The response y is normally distributed y ~ AN (2" 3 + By, 0?) as well. Since
it assumes additivity of the covariates, normality of the error term as well as
constancy of the variance, this model is restrictive. Because these assumptions
are not applicable to many problems and datasets, a more flexible model is
beneficial.

GLMs relax the above assumptions by allowing the variance to vary as a function
of the mean, non-normal errors and a non-linear relation between the response
and covariates. More specifically, the response distribution is assumed to belong
to the exponential family, which includes the Gaussian, Poisson, binomial,
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multinomial and gamma distributions as special cases. The components of a
GLM are:

e The random component f for the dependent variable y: the density
function f(y;6,¢) has a probability distribution from the exponential
family parametrized by 6 and ¢. This removes the restriction on the
distribution of the error and allows for non-homogeneity of the variance
with respect to the mean vector.

e The systematic component 77: 7 = X[, where X is the matrix of all
observation vectors z;.

e The link function g: E(y) = p = g~ '(n) which relates the expected
value of the response p to the linear component 7. The link function can
be any monotonic differentiable function. This relaxes the constraints on
the additivity of the covariates, and it allows the response to belong to a
restricted range of values depending on the chosen transformation g.

This generalization makes GLM suitable for a wider range of problems. An
example of a particular case of the GLM representation is the familiar logistic
regression model commonly used for binary classification in medical applications.

4.2 GLM in H20

H20's GLM algorithm fits generalized linear models to the data by maximizing
the log-likelihood. The elastic net penalty can be used for parameter regulariza-
tion. The model fitting computation is distributed, extremely fast, and scales
extremely well for models with a limited number of predictors with non-zero
coefficients (~ low thousands).

H20's GLM fits the model by solving the following likelihood optimization with
parameter regularization:

%%x ( GLM Log-likelihood — Regularization Penalty ).
»P0

The elastic net regularization penalty is the weighted sum of the ¢; and /5
norms of the coefficients vector. It is defined as

APa() = A (gl + 51— )113).

with no penalty on the intercept term. It is implemented by subtracting AP, (5)
from the optimized likelihood. This induces sparsity in the solution and shrinks
the coefficients by imposing a penalty on their size.
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These properties are beneficial because they reduce the variance in the predictions
and make the model more interpretable by selecting a subset of the given
variables. For a specific a value, the algorithm can compute models for a single
value of the tuning parameter \ or the full regularization path as in the glmnet
package for R (refer to Regularization Paths for Generalized Linear Models via
Coordinate Descent by Friedman et. al).

The elastic net parameter a € [0, 1] controls the penalty distribution between
the ¢; (least absolute shrinkage and selection operator or lasso) and ¢5 (ridge
regression) penalties. When o = 0, the ¢; penalty is not used and a ridge
regression solution with shrunken coefficients is obtained. If o = 1, the Lasso
operator soft-thresholds the parameters by reducing all of them by a constant
factor and truncating at zero. This sets a different number of coefficients to
zero depending on the X value.

H20’s GLM solves the following optimization over N observations:
al 1
xS toe f (5. ) A all gl + 500 @)l13)
=1

Similar to the methods discussed in Regularization Paths for Generalized Linear
Models via Coordinate Descent by Friedman et. al, H20 can compute the full
regularization path, starting from the null-model (evaluated at the smallest
penalty Amax for which all coefficients are set to zero) down to a minimally-
penalized model.

To improve the efficiency of this search, H20O employs the strong rules as
described in Strong Rules for Discarding Predictors in Lasso-type Problems by
Bien et. al to filter out inactive columns (whose coefficients will remain equal
to zero given the imposed penalty). Computing the full regularization path is
useful for convergence because it uses warm starts for consecutive \ values, and
gives an insight regarding the order in which the coefficients start entering the
model.

Moreover, cross-validation can be used after fitting models for the full regu-
larization path. H2O returns the optimal amount of regularization A for the
given problem and data by computing the errors on the validation dataset of
the fitted models created using the training data.
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4.3 Model Fitting

GLM models are fitted by finding the set of parameters that maximizes the
likelihood of the data. For the Gaussian family, maximum likelihood consists of
minimizing the mean squared error. This has an analytical solution and can be
solved with a standard method of least squares.

This is also applicable when the {5 penalty is added to the optimization. For
all other families and when the ¢; penalty is included, the maximum likelihood
problem has no analytical solution. An iterative method such as IRLSM, L-
BFGS, the Newton method, or gradient descent, must be used. To select the
solver, select the model and specify the exponential density.

4.4 Model Validation

After selecting the model, evaluate the precision of the estimates to determine
its accuracy. The quality of the fitted model can be obtained by computing the
goodness of fit between the predicted values that it generates and the given
input data. Multiple measures of discrepancy may be used.

H20 returns the logarithm of the ratio of likelihoods, called deviance, and
the Akaike information criterion (AIC) after fitting a GLM. A benchmark for
a good model is the saturated or full model, which is the largest model that
can be fitted. Assuming the dataset consists of N observations, the saturated
model fits N parameters fi;. Since it gives a model with one parameter per
observation, its predictions trivially fit the data perfectly.

The deviance is the difference between the maximized log-likelihoods of the
fitted and saturated models. Let ¢(y; i) be the likelihood corresponding to
the estimated means vector [i from the maximization, and let £(y;y) be the
likelihood of the saturated model which is the maximum achievable likelihood.

The scaled deviance, which is defined as D*(y, 1) = 2({(y;y) — £(y; it)), is
used as a goodness of fit measure for GLMs. When the deviance obtained is
too large, the model does not fit the data well.

Another metric to measure the quality of the fitted statistical model is the AIC,
defined as AIC = 2k — 2log(4(y; [1)), where k is the number of parameters
included in the model and ¢ is the likelihood of the fitted model defined as
above.

Given a set of models for a dataset, the AIC compares the qualities of the
models with respect to one another. This provides a way to select the optimal
one, which is the model with the lowest AIC score.
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The AIC score does not give an absolute measure of the quality of a given
model. It takes into account the number of parameters that are included in
the model by increasing the penalty as the number of parameters increases.
This prevents from obtaining a complex model that overfits the data, an aspect
which is not considered in the deviance computation.

4.5 Regularization

This subsection discusses the effects of parameter regularization. Penalties are
introduced to the model building process to avoid over-fitting, reduce variance
of the prediction error, and handle correlated predictors. The two most common
penalized models are ridge regression and Lasso (least absolute shrinkage and
selection operator). The elastic net combines both penalties.

4.5.1 Lasso and Ridge Regression

Lasso represents the ¢1 penalty and is an alternative regularized least squares
method that penalizes the sum of the absolute values of the coefficients ||3]|; =
> _11Bkl. Lasso leads to a sparse solution when the tuning parameter is
sufficiently large. As the tuning parameter value A is increased, all coefficients
are set to zero. Since reducing parameters to zero removes them from the
model, Lasso is a good selection tool.

Ridge regression penalizes the /5 norm of the model coefficients |33 =

i:l B%. It provides greater numerical stability and is easier and faster to
compute than Lasso. It keeps all the predictors in the model and shrinks them
proportionally. Ridge regression reduces coefficient values simultaneously as the
penalty is increased without however setting any of them to zero.

Variable selection is important in numerous modern applications with many
covariates where the /1 penalty has proven to be successful. Therefore, if
the number of variables is large or if the solution is known to be sparse, we
recommend using Lasso, which will select a small number of variables for
sufficiently high A that could be crucial to the interpretability of the model.
The ¢5 norm does not have this effect: it shrinks the coefficients, but does not
set them exactly to zero.

The two penalties also differ in the presence of correlated predictors. The /5
penalty shrinks coefficients for correlated columns towards each other, while
the ¢; penalty tends to select only one of them and set the other coefficients
to zero. Using the elastic net argument o combines these two behaviors.
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The elastic net both selects variables and preserves the grouping effect (shrinking
coefficients of correlated columns together). Moreover, while the number of
predictors that can enter a Lasso model saturates at min(n,p) (where n is the
number of observations and p is the number of variables in the model), the
elastic net does not have this limitation and can fit models with a larger number
of predictors.

4.5.2 Elastic Net Penalty

H20 supports elastic net regularization, which is a combination of the ¢; and
{5 penalties parametrized by the o and A arguments (similar to Regularization
Paths for Generalized Linear Models via Coordinate Descent by Friedman et.

al).

e « controls the elastic net penalty distribution between the ¢; and /o
norms. It can have any value in the [0, 1] range or a vector of values
(which triggers grid search). If @ =0, H20 solves the GLM using ridge
regression. If « =1, the Lasso penalty is used.

e )\ controls the penalty strength. The range is any positive value or a
vector of values (which triggers grid search). Note: Lambda values are
capped at A4z, Which is the smallest A for which the solution is all zeros
(except for the intercept term).

The combination of the ¢; and /5 penalties is beneficial, since the ¢; induces
sparsity while the ¢y gives stability and encourages the grouping effect (where
a group of correlated variables tends to be dropped or added into the model
simultaneously). When focusing on sparsity, one possible use of the o argument
involves using the ¢; mainly with very little 5 penalty (« almost 1) to stabilize
the computation and improve convergence speed.

4.6 GLM Model Families

The following subsection describes the GLM families supported in H20.

4.6.1 Linear Regression (Gaussian Family)

Linear regression corresponds to the Gaussian family model: the link function g
is the identity and the density f corresponds to a normal distribution. It is the
simplest example of a GLM, but has many uses and several advantages over
other families. For instance, it is faster and requires more stable computations.
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It models the dependency between a response y and a covariates vector x as a
linear function:

§=a"B+ fo.

The model is fitted by solving the least squares problem, which is equivalent to
maximizing the likelihood for the Gaussian family:

1

N 1
g S 0+ B0~ = (a3l + 51 - I31E).

The deviance is the sum of the squared prediction errors:

N

D= (v — )"

=1

Included in the H20 package is a prostate cancer dataset. The data was
collected by Dr. Donn Young at the Ohio State University Comprehensive
Cancer Center for a study of patients with varying degrees of prostate cancer.
The following example illustrates how to build a model to predict the volume
(VOL) of tumors obtained from ultrasounds based on features such as age and
race.

Example in R

library (h2o0)

h2o.init ()
path = system.file ("extdata", "prostate.csv", package
= "h2o")
h2o_df = h2o.importFile (path)
gaussian.fit = h2o0.glm(y = "VOL", x = c("AGE", "RACE",
"PSA", "GLEASON"), training_frame = h2o_df,
family = "gaussian")

Example in Python

import h2o

from h2o.estimators.glm import
H20GeneralizedLinearEstimator

h2o.init ()
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h2o.import_file ("http://h2o0-public-test—-data.

h2o_df =
s3.amazonaws.com/smalldata/prostate/prostate.csv")
H20GeneralizedLinearEstimator (family =

gaussian_fit

"gaussian")
gaussian_fit.train(y = "VOL", x = ["AGE", "RACE", "PSA
", "GLEASON"], training_frame = h2o_df)

4.6.2 Logistic Regression (Binomial Family)

Logistic regression is used for binary classification problems where the response is
a categorical variable with two levels. It models the probability of an observation
belonging to an output category given the data (for instance Pr(y = 1|z)).
The canonical link for the binomial family is the logit function (also known as
log odds). Its inverse is the logistic function, which takes any real number and
projects it onto the [0, 1] range as desired to model the probability of belonging
to a class. The corresponding s-curve (or sigmoid function) is shown below,

000 0 00000

@ o o0

1.0

08
1

0.6

0.4

0.2

0.0

100

and the fitted model has the form:
6$T5+50

Z/ZPT(ZUZH@’):W
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This can alternatively be written as:
U Pr(y = 1|z) T
1 =1 — ) =
oo (125) =toe (B =ai ) =+

The model is fitted by maximizing the following penalized likelihood:

1 N

e 7 22 (w8 + ) —log(1-+- 7)) 22 (a3l + 50 -l818)

The corresponding deviance is equal to
D =23 (y:log(i) + (1 — ;) log(1 — ).
i=1

Using the prostate dataset, this example builds a binomial model that classifies
the incidence of penetration of the prostatic capsule (CAPSULE). Confirm the
entries in the CAPSULE column are binary using the h2o.table () function.
Change the regression by changing the family to binomial.

Example in R

w

® N o o b

library (h2o0)

h2o0.init ()
path = system.file("extdata", "prostate.csv", package
— llhzo")

h2o_df = h2o.importFile (path)

is.factor (h2o_dfS$CAPSULE)

h2o_df$CAPSULE = as.factor (h2o_df$SCAPSULE)
is.factor (h2o_dfS$SCAPSULE)

binomial.fit = h2o0.glm(y = "CAPSULE", x = c("AGE", "
RACE", "PSA", "GLEASON"), training_ frame = h2o_df,
family = "binomial")

4.6.3 Multi-class classification (Multinomial Family)

Multinomial family generalization of the binomial model is used for multi-class
response variables. Similar to the binomial family, we model the conditional
probability of observing class ¢ given x. We have a vector of coefficients for
each of the output classes (3 is a matrix). The probabilities are defined as
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emTﬁchﬁco

ZkK: (62T BrtBro)

g = Priy = clr) =
The penalized negative log-likelihood is defined as:

1 N K K ( )
e S0 k(e Byt o)) —log (Y el Bty A 813+a S I8

i=1 k=1 k=1 j=1

, where f3. is vector of coefficients for class c and y; j, is kth element of the binary
vector produced by expanding the response variable using one-hot encoding (i.e.
yik == 1 iff the response at the ith observation is k. It is 0 otherwise.

Here is a simple example using the iris dataset:

Example in R

library (h20)

h2o.init ()

iris_h20 = as.h2o(iris)

h2o0.fit = h2o.glm(training_frame=iris_h2o,y="Species",
x=1:4, family="multinomial")

h2o.fit

Example in Python

import h2o

from h2o.estimators.glm import
H20GeneralizedLinearEstimator

h2o0.init ()

h2o_df = h2o.import_file("http://h2o0-public-test-data.
s3.amazonaws.com/smalldata/iris/iris.csv")

multinomial_fit = H20GeneralizedLinearEstimator (family
= "multinomial")

multinomial_fit.train(y = 4, x = [0,1,2,3],
training_frame = h2o_df)
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4.6.4 Poisson Models

Poisson regression is typically used for datasets where the response represents
counts and the errors are assumed to have a Poisson distribution. In general, it
can be applied to any data where the response is non-negative. It models the
dependency between the response and covariates as:

j= efl’TﬁJrﬂo

The model is fitted by maximizing the corresponding penalized likelihood:

1

al T 1
a2 (e 8-+ 80— 7)< (sl + 50— lo18)

The corresponding deviance is equal to:

N

D = *22 (yi log(yi/9:) — (yi — i)

=1

This example loads the Insurance data from the MASS library, imports it into
H20, and runs a Poisson model that predicts the number of claims (Claims)
based on the district of the policy holder (District), their age (Age), and the
type of car they own (Group).

Example in R

library (h20)
h2o.init ()
library (MASS)
data (Insurance)

# Convert ordered factors into unordered factors.
# H20 only handles unordered factors today.

class (Insurance$Group) <- "factor"

class (Insurance$Age) <- "factor"

# Copy the R data.frame to an H20Frame using as.h2o()
h2o_df = as.h2o(Insurance)
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poisson.fit = h2o0.glm(y = "Claims", x = c("District",
"Group", "Age"), training_frame = h2o_df, family =
"poisson")

Example in Python

# Used swedish insurance data from smalldata instead
of MASS/insurance due to the license of the MASS R
package.

import h2o

from h2o.estimators.glm import
H20GeneralizedLinearEstimator

h2o.1init ()

h2o_df = h2o.import_file("http://h2o0-public-test-data.
s3.amazonaws.com/smalldata/glm_test/

Motor_insurance_sweden.txt", sep = '\t’)
poisson_fit = H20GeneralizedLinearEstimator (family = "
poisson")
poisson_fit.train(y="Claims", x = ["Payment", "Insured

", "Kilometres", "Zone", "Bonus", "Make"],
training_frame = h2o_df)
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4.6.5 Gamma Models

The gamma distribution is useful for modeling a positive continuous response
variable, where the conditional variance of the response grows with its mean but
the coefficient of variation of the response o%(y;)/; is constant. It is usually
used with the log link g(p;) = log(p;), or the inverse link g(u;) = ui which is
equivalent to the canonical link.

The model is fitted by solving the following likelihood maximization:

1
- _NZ i +toa(aT 54 ) = ) (alllh + 50 - @)l13)

The corresponding deviance is equal to:
_ 22 log (yz) (yi — Ui)
Yi

To change the link function from the default inverse function to the log link
function, modify the 1ink argument.

Example in R

library (h20)

h2o0.init ()

path = system.file("extdata", "prostate.csv", package
= "h20o")

h2o_df = h2o.importFile (path)

gamma.inverse <- h2o.glm(y = "DPROS", x = c("AGE","
RACE", "CAPSULE", "DCAPS", "PSA", "VOL"), training_
frame = h2o_df, family = "gamma", link = "inverse"
)

gamma.log <- h2o0.glm(y="DPROS", x = c("AGE","RACE","
CAPSULE", "DCAPS", "PSA","VOL"), training frame =
h2o_df, family = "gamma", link = "log")
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Example in Python

import h2o

from h2o.estimators.glm import
H20GeneralizedLinearEstimator

h2o.init ()

h2o_df = h2o.import_file("http://h20-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

gamma_inverse = H20GeneralizedLinearEstimator (family =

"gamma", link = "inverse")
gamma_inverse.train(y = "DPROS", x = ["AGE","RACE","
CAPSULE", "DCAPS", "PSA", "VOL"], training_ frame =
h2o_df)

n

gamma_log = H20GeneralizedLinearEstimator (family =
gamma", link = "log")

gamma_log.train (y="DPROS", x = ["AGE","RACE","CAPSULE"
, "DCAPS", "PSA","VOL"], training_frame = h2o_df)

4.6.6 Tweedie Models

Tweedie distributions are a family of distributions which include gamma, normal,
Poisson and their combination. It is especially useful for modeling positive
continuous variables with exact zeros. The variance of the Tweedie distribution
is proportional to the p-th power of the mean var(y;) = ou?.

The Tweedie distribution is parametrized by variance power p. It is defined for
all p values except in the (0, 1) interval, and has the following distributions as
special cases.

e p =0: Normal

e p = 1: Poisson

p € (1,2): Compound Poisson, non-negative with mass at zero

p=2: Gamma

p = 3: Inverse-Gaussian

p > 2: Stable, with support on the positive reals
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Example in R

library (h20)

h2o0.init ()

library (HDtweedie)

data (auto) # 2812 policy samples with 56 predictors

dim (auto$x)
hist (auto$y)

# Copy the R data.frame to an H20Frame using as.h2o()

h2o_df = as.h2o (auto)

vars= paste("x.",colnames (autos$x), sep="")

tweedie.fit = h2o.glm(y = "y", x = vars, training_
frame = h2o_df, family = "tweedie")

Example in Python

import h2o

from h2o.estimators.glm import
H20GeneralizedLinearEstimator

h2o0.init ()

h2o_df = h2o.import_file("http://h20-public-test-data.
s3.amazonaws.com/smalldata/glm_test/auto.csv")

tweedie_fit = H20GeneralizedLinearEstimator (family = "
tweedie")

tweedie_fit.train(y = "y", x = h2o_df.col_names[1l:],
training_frame = h2o_df)

The normal and Poisson examples have already been covered in the previous
sections. For p > 1, the model likelihood to maximize has the form:

e Y tostatu o)+ (5 (W ) )2 (alalh + 0 - olE)
B.bo " o\ 1-p v 2 va

where k(u,p) = p?7?/(2 — p) for p # 2 and k(u,p) = log(p) for p = 2 and
where the function a(y;, ¢) is evaluated using series expansion, since it does
not have an analytical solution. The link function in the GLM representation of
the Tweedie distribution defaults to g(u) = u?4 =n = XS with g =1—p. The
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link power ¢ can be set to other values, including ¢ = 0 which is interpreted as
log(p) = n.
The corresponding deviance when p # 1 and p # 2 is equal to:

al 1— 1— (yzip - 33'271])
D:_szi(yi Peg ) 2= 7) .
i=1 p

5 Building GLM Models in H20

H20's GLM implementation presents a high-performance distributed algorithm
that scales linearly with the number of rows and works extremely well for
datasets with a limited number of active predictors.

5.1 Classification and Regression

GLM can produce two categories of models: classification (binary classifica-
tion only) and regression. Logistic regression is the GLM to perform binary
classification.

The data type of the response column determines the model category. If the
response is a categorical variable (also called a factor or an enum), then a
classification model is created. If the response column data type is numeric
(either integer or real), then a regression model is created.

The following examples show how to coerce the data type of a column to a
factor.

Example in R

library (h20)

h2o.init ()
path = system.file("extdata", "prostate.csv", package
- "hzo")

h2o_df = h2o.importFile (path)
h2o_df$CAPSULE = as.factor (h2o_df$CAPSULE)
summary (h2o_df)
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Example in Python

import h2o

h2o0.init ()

h2o_df = h2o.import_file("http://h20-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

h2o_df ["CAPSULE"] = h2o0_df["CAPSULE"] .asfactor ()

h2o_df.summary ()

5.2 Training and Validation Frames

Frame refers to an H2OFrame, the fundamental method of data storage in
H20's distributed memory.

training_frame refers to a frame containing a training dataset. All pre-
dictors and the response (as well as offset and weights, if specified) must be
included in this frame.

validation_frame refers to an optional frame containing a validation
dataset. If specified, this frame must have exactly the same columns as
the training dataset. Metrics are calculated on the validation dataset for
convenience.

5.3 Predictor and Response Variables

Every model must specify its predictors and response. Predictors and responses
are specified by the x and y parameters.

x contains the list of column names or column indices referring to vectors from
the training frame; periods are not supported characters.

y is a column name or index referring to a vector from the training frame.

5.3.1 Categorical Variables

If the response column is categorical, then a classification model is created.
GLM only supports binary classification, so the response column may only have
two levels. Categorical predictor columns may have more than two levels.

We recommend letting GLM handle categorical columns, as it can take advantage
of the categorical column for better performance and memory utilization.
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We strongly recommend avoiding one-hot encoding categorical columns with
many levels into many binary columns, as this is very inefficient. This is
especially true for Python users who are used to expanding their categorical
variables manually for other frameworks.

5.4 Family and Link

Family and Link are optional parameters. The default family is Gaussian and
the default link is a canonical link for the selected family. These are passed as
strings, e.g. family = "gamma", link = "log". While it is possible
to select a non-canonical link, this may lead to an unstable computation.

5.5 Regularization Parameters

To get the best possible model, we need to find the optimal values of the
regularization parameters o and A. To find the optimal values, H20 provides
grid search over o and a special form of grid search called “lambda search”
over A. For a detailed explanation, refer to Regularization.

The recommended way to find optimal regularization settings on H20 is to do
a grid search over a few a values with an automatic lambda search for each a.
Both are described below in greater detail.

5.5.1 Alpha and Lambda

The alpha parameter controls the distribution between the ¢; (Lasso) and ¢,
(Ridge regression) penalties. A value of 1.0 for alpha represents Lasso, and
an alpha value of 0.0 produces ridge regression.

The lambda parameter controls the amount of regularization applied. |If
lambda is 0.0, no regularization is applied and the alpha parameter is ignored.
The default value for 1ambda is calculated by H20 using a heuristic based on
the training data. If you let H20 calculate the value for 1ambda, you can see
the chosen value in the model output.

5.5.2 Lambda Search

Lambda search enables efficient and automatic search for the optimal value of
the 1ambda parameter. When lambda search is enabled, GLM will first fit a
model with maximum regularization and then keep decreasing it until overfitting
occurs. The resulting model is based on the best Lambda value.



Building GLM Models in H20 | 27

When looking for sparse solution (alpha > 0), lambda search can also be
used to efficiently handle very wide datasets because it can filter out inactive
predictors (known as noise) and only build models for a small subset of predictors.
A common use of lambda search is to run it on a dataset with many predictors
but limit the number of active predictors to a relatively small value.

Lambda search can be enabled by setting 1ambda_search and can be config-
ured using the following arguments:

e alpha: Regularization distribution between ¢ and /5.

e validation_frame andor n_folds: Used to select the best lambda
based on the cross-validation performance or the validation or training
data. If available, cross-validation performance takes precedence. If no
validation data is available, the best lambda is selected based on training
data performance and is therefore guaranteed to always be the minimal
lambda computed, since GLM can not overfit on a training dataset.

Note: If running lambda search with a validation dataset and cross-
validation disabled, the chosen lambda value corresponds to the lambda
with the lowest validation error. The validation dataset is used to select
the model and the model performance should be evaluated on another
independent test dataset.

e lambdamin_ratio and nlambdas: The sequence of As is automati-
cally generated as an exponentially decreasing sequence. It ranges from
Amaz, the smallest X so that the solution is a model with all Os, to A,,in =
lambda_min_ratio * A\jqq.

H20 computes A-models sequentially and in decreasing order, warm-
starting the model for A; with the solution for A\;_;. By warm-starting
(using the previous solution as the initial prediction) the models, we get
better performance: typically models for subsequent As are close to each
other, so only a few iterations per A are needed (typically two or three).
This also achieves greater numerical stability, since models with a higher
penalty are easier to compute. This method starts with an easy problem
and then continues to make small adjustments.

Note: nlambda and lambdamin_ratio also specify the relative
distance of any two lambdas in the sequence. This is important when
applying recursive strong rules, which are only effective if the neighboring
lambdas are ‘“close” to each other. The default values are nlambda =
100 and Anin = Amazle ™, which gives us the ratio of 0.912. For best
results when using strong rules, keep the ratio close to the default.
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e max_active predictors: This limits the number of active predictors
(the actual number of non-zero predictors in the model is going to be
slightly lower). It is useful when obtaining a sparse solution to avoid
costly computation of models with too many predictors.

5.6 Solver Selection

This section provides general guidelines for best performance from the H20 GLM
implementation options. The optimal solver depends on the data properties
and prior information regarding the variables (if available).

The data are considered sparse if the ratio of zeros to non-zeros in the input
matrix is greater than ~ 10. The solution is sparse when only a subset of the
original set of variables is intended to be kept in the model. In a dense solution,
all predictors have non-zero coefficients in the final model.

5.6.1 Solver Details

H20's GLM offers two different solvers:
e the lteratively Reweighted Least Squares Method (IRLSM)

e the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-
BFGS)

IRLSM uses a Gram Matrix approach, which is very efficient for tall and narrow
datasets and when running lambda search with a sparse solution. For wider
and dense datasets (thousands of predictors and up), the L-BFGS solver scales
better. If there are fewer than ~ 500 predictors in the data, use the default,
which is IRLSM.

For larger numbers of predictors, it is recommended to run IRLSM with lambda
search and compare it to L-BFGS with just the /5 penalty. For advanced users,
we recommend the following general guidelines:

e For a dense solution and a dense dataset, use IRLSM if there are fewer
than ~ 500 predictors in the data; otherwise, use L-BFGS. Set alpha
to 0 to include ¢5 regularization in the elastic net penalty term to avoid
inducing sparsity in the model.

e For a dense solution with a sparse dataset, use IRLSM if there are fewer
than ~ 2000 predictors in the data; otherwise, use L-BFGS. Set alpha
to 0.
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e For a sparse solution with a dense dataset, use IRLSM with lambda-
search if fewer than ~ 500 active predictors in the solution are expected;
otherwise, use L-BFGS. Set alpha to be greater than zero to add an
{1 penalty to the elastic net regularization, which induces sparsity in the
estimated coefficients.

e For a sparse solution with a sparse dataset, use IRLSM with lambda-search
if you expect less than ~ 5000 active predictors in the solution; otherwise,
use L-BFGS. Set alpha to be greater than zero.

e If unsure whether the solution should be sparse or dense, try both and
a grid of alpha values. The optimal model can be picked based on its
performance on the validation data (or alternatively the performance in
cross-validation when not enough data is available to have a separate
validation dataset).

The above recommendations are general guidelines; if the performance of the
method seems slow, experiment with the available options.

IRLSM can be run with two algorithms to solve its innermost loop: ADMM and
cyclical coordinate descent. The latter is used in glmnet.

The method is able to handle large datasets well and deals efficiently with sparse
features. It should improve the performance when the data contains categorical
variables with a large number of levels, as it is implemented to deal with such
variables in a parallelized way.

Coordinate descent can be implemented with naive or covariance updates as
explained in the glmnet paper. The covariance updates version is faster when
N > p and p ~ 500.

In summary, the solver options for fitting a GLM in H20 are:
e L-BFGS: when the number of predictors is large

e IRLSM: IRLSM with the ADMM solver in the innermost loop when you
have a limited number of predictors

5.6.2 Stopping Criteria
When using the ¢; penalty with lambda search, specify a value for the
max_active_predictors parameter to stop the search before it completes.

Models built at the beginning of the lambda search have higher lambda values,
consider fewer predictors, and take less time to calculate the model.
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Models built at the end of the lambda search have lower lambda values,
incorporate more predictors, and take a longer time to calculate the model. Set
the nlambdas parameter for a lambda search to specify the number of models
attempted across the search.

Example in R

library (h20)

h2o0.init ()

h2o_df = h2o.importFile ("http://s3.amazonaws.com/h20-
public-test-data/smalldata/airlines/allyears2k_
headers.zip")

#stops the model when we reach 10 active predictors

model = h2o0.glm(y = "IsDepDelayed", x = c("Year", "
Origin"), training frame = h2o_df, family = "
binomial", lambda_search = TRUE, max_active_

predictors = 10)
print (model)

Example in Python

import h2o

from h2o.estimators.glm import
H20GeneralizedLinearEstimator

h2o0.init ()

h2o_df = h2o.import_file("http://s3.amazonaws.com/h20-
public-test-data/smalldata/airlines/
allyears2k_headers.zip")

#stops the model when we reach 10 active predictors

model = H20GeneralizedLinearEstimator (family = "
binomial", lambda_search = True,
max_active_predictors = 10)

model.train(y = "IsDepDelayed", x = ["Year", "Origin"
], training frame = h2o_df)

print (model)
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5.7 Advanced Features

H20’s GLM has several advanced features to help build better models.

5.7.1 Standardizing Data

The standardize parameter, which is enabled by default, standardizes
numeric columns to have zero mean and unit variance. This parameter must
be enabled (using standardize=TRUE) to produce standardized coefficient
magnitudes in the model output.

We recommend enabling standardization when using regularization (i.e. lambda
is chosen by H20 or greater than 0). Only advanced users should disable
standardization.

5.7.2 Auto-remove collinear columns

Collinear columns can cause problems during model fitting. The preferred way
to deal with collinearity is to add some regularization (either L1, L2 or Elastic
Net). This is the default H20 behavior. However, if you want a non-regularized
solution, you can choose to automatically remove collinear columns by setting
the remove_collinear_columns option.

This option can only be used with the TRLSM solver and no regularization.
If selected, H20 will automatically remove columns if it detects collinearity.
Which columns are removed depends on the order of the columns in the vector
of coefficients (Intercept first, then categorical variables ordered by cadrinality
from largest to smallest, and then numbers).

Example in R

library (h2o0)

h2o0.init ()

a = runif (100)
b = 2xa

c = —-3*%a + 10

df = data.frame(a,b,c)

h2o_df = as.h2o (df)

h2o0.fit = h2o0.glm(y = "c", x = c("a", "b"), training_
frame = h2o_df, lambda=0,remove_collinear_columns=
TRUE)
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5.7.3 P-Values

Z-score, standard error and p-values are classical statistical measures of model
quality. p-values are essentially hypothesis tests on the values of each coefficient.
A high p-value means that a coefficient is unreliable (insiginificant) while a low
p-value suggest that the coefficient is statistically significant.

You can request p-values by setting the

compute_p_values option. It can only be used with the TRI.SM solver and no
regularization. It is recommended that you also set the remove_collinear_columns
option. Otherwise, H20 will return an error if it detects collinearity in the
dataset and p-values are requested.

Note: GLM auto-standardizes the data by default (recommended). This
changes the p-value of the constant term (intercept).

Example in R

library (h2o0)

h2o0.init ()

a = runif (100)

b = runif (100)

c = -3xa + 10 + 0.0l runif (100)

df = data.frame(a,b,c)

h2o_df = as.h2o(df)

h2o0.fit = h2o0.glm(y = "c¢", x = c("a", "b"), training_
frame = h2o_df, lambda=0, remove_collinear_columns=
TRUE, compute_p_values=TRUE)

h2o.fit

5.7.4 K-fold Cross-Validation

All validation values can be computed using either the training dataset (the
default option) or using K-fold cross-validation (kfolds > 1). When K-
fold cross-validation is enabled, H20 randomly splits data into K equally-sized
sections, trains each of the K models on K —1 sections, and computes validation
on the section that was not used for training.
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You can also specify the rows assigned to each fold using the
fold.assignment or fold_column parameters.

Example in R

library (h20)

h2o.init ()
path = system.file ("extdata", "prostate.csv", package
— "hZO")

h2o_df = h2o.importFile (path)
h2o_df$CAPSULE = as.factor (h2o_df$SCAPSULE)

binomial.fit = h2o0.glm(y = "CAPSULE", x = c("AGE", "
RACE", "PSA", "GLEASON"), training_ frame = h2o_df,
family = "binomial", nfolds = 5)
print (binomial.fit)
print (paste ("training auc: ", binomial.

fit@modelS$training_metrics@metrics$SAUC))
print (paste("cross-validation auc:", binomial.
fit@modelS$Scross_validation_metrics@metricsS$SAUC))

Example in Python

import h2o

from h2o.estimators.glm import
H20GeneralizedLinearEstimator

h2o.init ()

h2o_df = h2o.import_file("http://h2o0-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

h2o_df[/"CAPSULE’] = h2o_df[’CAPSULE’] .asfactor ()

binomial_fit = H20GeneralizedLinearEstimator (family =
"binomial", nfolds=5, fold_assignment="Random")

binomial_ fit.train(y = "CAPSULE", x = ["AGE", "RACE",
"PSA", "GLEASON"], training_frame = h2o_df)

print "training auc:", binomial_fit.auc(train=True)

print "cross-validation auc:", binomial_fit.auc(xval=
True)
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5.7.5 Grid Search Over Alpha

Alpha search is not always necessary; changing its value to 0.5 (or 0 or 1 if
we only want Ridge or Lasso, respectively) works in most cases. If o search
is required, specifying only a few values is typically sufficient. Alpha search is
invoked by supplying a list of values for « instead of a single value. H20 then
produces one model per « value.

The grid search computation can be done in parallel (depending on the cluster
resources) and it is generally more efficient than computing different models
separately from R.

Use caution when including &« = 0 or & = 1 in the grid search. a = 0 will
produce a dense solution and it can be very slow (or even impossible) to compute
in large NN situations. oz = 1 has no {2 penalty, so it is therefore less numerically
stable and can be very slow as well due to slower convergence. In general, we
recommend using alpha = 1 — € instead.

Example in R

library (h20)

h2o.init ()
path = system.file("extdata", "prostate.csv", package
— "h20")

h2o_df = h2o.importFile (path)

h2o_df$CAPSULE = as.factor (h2o_df$CAPSULE)

alpha_opts = list(list (0), list(.25), list(.5), list
(.75), list (1))

hyper_parameters = list (alpha = alpha_opts)

grid <- h2o0.grid("glm", hyper_params = hyper_
parameters,

y = "CAPSULE", x = c("AGE", "RACE", "
PSA", "GLEASON"), training frame
= h2o0_df, family = "binomial")

grid_models <- lapply(grid@model_ids, function (model_
id) { model = h2o.getModel (model_id) })
for (i in 1l:length(grid_models)) {
print (sprintf ("regularization: %-50s auc: %f",
grid_models[[i]]@modelSmodel_ summary$
regularization, h2o.auc(grid_models[[i]])))
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Example in Python

import h2o

from h2o.estimators.glm import
H20GeneralizedLinearEstimator

from h2o.grid.grid_search import H20GridSearch

h2o0.init ()

h2o_df = h2o.import_file("http://h2o0-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

h2o_df[’CAPSULE’] = h2o_df[’CAPSULE’] .asfactor ()

alpha_opts = [0.0, 0.25, 0.5, 1.0]

hyper_parameters = {"alpha":alpha_opts}

grid = H20GridSearch (H20GeneralizedLinearEstimator (
family="binomial"), hyper_params=hyper_parameters)
grid.train(y = "CAPSULE", x = ["AGE", "RACE", "PSA", "
GLEASON"], training_frame = h2o_df)
for m in grid:
print "Model ID: " + m.model_id + " auc: " , m.auc
()
print m.summary ()
print "\n\n"

5.7.6 Grid Search Over Lambda

While automatic lambda search is the preferred method, a grid search over
lambda values is also supported by passing in a vector of lambdas and disabling
the lambda-search option. The behavior will be identical to lambda search,
except H20 will use the specified list of lambdas instead (still capped at A4z

Example in R

library (h20)

h2o0.init ()
path = system.file("extdata", "prostate.csv", package
= llh2o")

h2o_df = h2o.importFile (path)
h2o_df$CAPSULE = as.factor (h2o_df$CAPSULE)
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lambda_opts = list(list (1), list(.5), 1list(.1l), list
(.01), 1list(.001), 1list(.0001), 1list(.00001), 1list
(0))

hyper_parameters = list (lambda = lambda_opts)

grid <- h2o0.grid("glm", hyper_params = hyper_
parameters,

y = "CAPSULE", x = c("AGE", "RACE", "
PSA", "GLEASON"), training_ frame
= h2o_df, family = "binomial")

grid_models <- lapply(grid@model_ids, function (model_
id) { model = h2o.getModel (model_id) })
for (i in 1l:length(grid_models)) {
print (sprintf ("regularization: %-50s auc: %f",
grid_models[[i]]@modelS$model_summary$
regularization, h2o.auc(grid_models[[i]])))

Example in Python

import h2o

from h2o0.estimators.glm import
H20GeneralizedLinearEstimator

from h2o0.grid.grid_search import H20GridSearch

h2o.init ()

h2o_df = h2o.import_file ("http://h2o0-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

h2o_df[’"CAPSULE’] = h20_df[’CAPSULE’].asfactor ()

lambda_opts = [1, 0.5, 0.1, 0.01, 0.001, 0.0001,
0.00001, 0]

hyper_parameters = {"lambda":lambda_opts}

grid = H20GridSearch (H20GeneralizedLinearEstimator (
family="binomial"), hyper_params=hyper_parameters)
grid.train(y = "CAPSULE", x = ["AGE", "RACE", "PSA", "
GLEASON"], training_frame = h2o_df)
for m in grid:
print "Model ID:", m.model_id, " auc:", m.auc()
print m.summary ()
print "\n\n"
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5.7.7 Offsets

offset_column is an optional column name or index referring to a column
in the training frame. This column specifies a prior known component to be
included in the linear predictor during training. Offsets are per-row “bias values”
that are used during model training.

For Gaussian distributions, they can be seen as simple corrections to the response
(v) column. Instead of learning to predict the response (y-row), the model
learns to predict the (row) offset of the response column.

For other distributions, the offset corrections are applied in the linearized space
before applying the inverse link function to get the actual response values.

5.7.8 Row Weights

weights_column is an optional column name or index referring to a column
in the training frame. This column specifies on a per-row basis the weight of
that row. If no weight column is specified, a default value of 1 is used for each
row. Weights are per-row observation weights. This is typically the number of
times a row is repeated, but non-integer values are supported as well. During
training, rows with higher weights matter more, due to the larger loss function
pre-factor.

5.7.9 Coefficient Constraints

Coefficient constraints allow you to set special conditions over the model
coefficients. Currently supported constraints are upper and lower bounds and
the proximal operator interface, as described in Proximal Algorithms by Boyd
et. al.

The constraints are specified as a frame with following vecs (matched by name;
all vecs can be sparse):

e names: (mandatory) coefficient names

e lower_bounds: (optional) coefficient lower bounds , must be less than
or equal to upper_bounds

e upper_bounds: (optional) coefficient upper bounds , must be greater
than or equal to lower_bounds

e beta_given: (optional) specifies the given solution in proximal operator
interface
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e rho (mandatory if beta_given is specified, otherwise ignored): specifies
per-column /5 penalties on the distance from the given solution

5.7.10 Proximal Operators

The proximal operator interface allows you to run the GLM with a proximal
penalty on a distance from a specified given solution. There are many potential
uses: for example, it can be used as part of an ADMM consensus algorithm to
obtain a unified solution over separate H20 clouds or in Bayesian regression
approximation.

6 GLM Model Output

The following sections represent the output produced by logistic regression (i.e.
binomial classification).

Example in R

library (h2o0)

h2o.init ()
path = system.file ("extdata", "prostate.csv", package
— "h2o")

h2o_df = h2o.importFile (path)
h2o_df$CAPSULE = as.factor (h2o_dfS$SCAPSULE)
rand_vec <— h2o.runif (h2o_df, seed = 1234)
train <- h2o_df[rand_vec <= 0.8, ]

valid <- h2o_df[rand_vec > 0.8,]

binomial.fit = h2o0.glm(y = "CAPSULE", x = c("AGE", "
RACE", "PSA", "GLEASON"), training_frame = train,
validation_frame = valid, family = "binomial")

print (binomial.fit)

Example in Python

import h2o

from h2o0.estimators.glm import
H20GeneralizedLinearEstimator

h2o.init ()

h2o_df = h2o.import_file("http://h20-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")
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h2o_df["CAPSULE’] = h2o_df[’CAPSULE’] .asfactor ()
r = h2o_df[0] .runif (seed=1234)

train = h2o_df[r <= 0.8]

valid = h2o_df[r > 0.8]

binomial_ fit = H20GeneralizedLinearEstimator (family =
"binomial")
binomial_fit.train(y = "CAPSULE", x = ["AGE", "RACE",

"PSA", "GLEASON"], training_frame = train,
validation_frame=valid)
print binomial_ fit
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Model Details:

H20BinomialModel: glm

Model ID: GLM model R_1439511782434_25

GLM Model:

family link

regularization number_of_ predictors_total
number_of_active_predictors
number_of_iterations training frame

1 binomial logit Elastic Net (alpha = 0.5, lambda

4.674E-4 ) 4
5
subset_39

Coefficients:

names coefficients standardized_coefficients
1 Intercept -6.467393 -0.414440
2 AGE -0.021983 -0.143745
3 RACE -0.295770 -0.093423
4 PSA 0.028551 0.604644
5 GLEASON 1.156808 1.298815

H20BinomialMetrics: glm
*x Reported on training data. *x*

MSE: 0.1735008

R"2: 0.2842015

LogLoss: 0.5151585

AUC: 0.806806

Gini: 0.6136121

Null Deviance: 403.9953
Residual Deviance: 307.0345
AIC: 317.0345

Confusion Matrix for Fl-optimal threshold:

0 1 Error Rate
0 125 50 0.285714 =50/175
1 24 99 0.195122 =24/123

Totals 149 149 0.248322 =74/298
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Maximum Metrics:

metric threshold value
1 max f1 0.301518 0.727941
2 max £2 0.203412 0.809328
3 max fOpoint5 0.549771 0.712831
4 max accuracy 0.301518 0.751678
5 max precision 0.997990 1.000000
6 max absolute_MCC 0.301518 0.511199
7 max min_per_class_accuracy 0.415346 0.739837

H20BinomialMetrics: glm
*+ Reported on validation data. *x

MSE: 0.1981162

R"2: 0.1460683

LogLoss: 0.5831277

AUC: 0.7339744

Gini: 0.4679487

Null Deviance: 108.4545
Residual Deviance: 95.63294
AIC: 105.6329

Confusion Matrix for Fl-optimal threshold:

0 1 Error Rate
0 35 17 0.326923 =17/52
1 8 22 0.266667 =8/30

Totals 43 39 0.304878 =25/82

Maximum Metrics:

metric threshold value
1 max f1 0.469237 0.637681
2 max f£2 0.203366 0.788043
3 max fOpoint5 0.527267 0.616438
4 max accuracy 0.593421 0.719512
5 max precision 0.949357 1.000000
6 max absolute MCC 0.469237 0.391977
7 max min_per_class_accuracy 0.482906 0.692308

idx
147
235

91
147

147
134

idx
38
63
28
18

0
38
36
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6.1 Coefficients and Normalized Coefficients

Coefficients are the predictor weights (i.e. the actual model used for prediction).
Coefficients should be used to make predictions for new data points:

binomial.fit@modelS$Scoefficients

binomial_ fit.coef ()

Intercept AGE RACE PSA
GLEASON

-6.46739299 -0.02198278 -0.29576986 0.02855057
1.15680761

If the standardize option is enabled, H20 returns another set of coefficients:
the standardized coefficients. These are the predictor weights of the standardized
data and are included only for informational purposes (e.g. to compare relative
variable importance).

In this case, the “normal” coefficients are obtained from the standardized
coefficients by reversing the data standardization process (de-scaled, with the
intercept adjusted by an added offset) so that they can be applied to data in its
original form (i.e. no standardization prior to scoring). Note: These are not
the same as coefficients of a model built on non-standardized data.

Standardized coefficients are useful for comparing the relative contribution of
different predictors to the model:

binomial.fit@modelS$Scoefficients_table

binomial_ fit.pprint_coef ()

Coefficients:

names coefficients standardized_coefficients
1 Intercept -6.467393 -0.414440
2 AGE -0.021983 -0.143745
3 RACE -0.295770 -0.093423
4 PSA 0.028551 0.604644
5 GLEASON 1.156808 1.298815

This view provides a sorted list of standardized coefficients in descending order
for easy comparison:
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binomial.fit@modelS$Sstandardized_coefficient_magnitudes

sorted (binomial_fit.coef_norm().items (), key=lambda x:
x[1], reverse=True)

Standardized Coefficient Magnitudes:
names coefficients sign

GLEASON GLEASON 1.298815 POS
PSA PSA 0.604644 POS
AGE AGE 0.143745 NEG
RACE RACE 0.093423 NEG

6.2 Model Statistics

Various model statistics are available:

MSE is the mean squared error: MSE = + SV | (actual; — prediction;)?

R"2 is the R squared: R? =1 — MSE

Ty

LogLoss is the log loss. LogLoss = 3 va ZJC yilog(pi ;)

AUC is available only for binomial models and is defined the area under ROC
curve.

Null deviance Deviance (defined by selected family) computed for the null
model.

Residual deviance Deviance of the built model
AIC is based on log-likelihood, which is summed up similarly to deviance
Retrieve these statistics using the following accessor functions:

Example in R

h2o.num_iterations (binomial.fit)

h2o.null_dof (binomial.fit, train = TRUE, valid = TRUE)

h2o.residual_dof (binomial.fit, train = TRUE, valid =
TRUE)

h2o.mse (binomial.fit, train = TRUE, valid = TRUE)
h2o0.r2 (binomial.fit, train = TRUE, valid = TRUE)
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h2o0.logloss (binomial.fit, train = TRUE, valid = TRUE)

h2o.auc (binomial.fit, train = TRUE, valid = TRUE)

h2o0.giniCoef (binomial.fit, train = TRUE, valid = TRUE)

h2o0.null_deviance (binomial.fit, train = TRUE, valid =
TRUE)

h2o.residual_deviance (binomial.fit, train
valid = TRUE)

h2o0.aic(binomial.fit, train = TRUE, valid = TRUE)

TRUE,

Example in Python

binomial_fit.summary ()
binomial_fit._model_json["output"] ["model_summary"].
__getitem__ ('number_of_iterations’)

binomial_ fit.null_ degrees_of_freedom(train=True, valid
=True)

binomial_fit.residual_degrees_of_freedom(train=True,
valid=True)

binomial_fit.mse(train=True, valid=True)
binomial_fit.r2 (train=True, valid=True)
binomial_fit.logloss (train=True, valid=True)

binomial_ fit.auc (train=True, valid=True)
binomial_fit.giniCoef (train=True, valid=True)
binomial_fit.null_deviance (train=True, valid=True)
binomial_ fit.residual_deviance (train=True, valid=True)
binomial_fit.aic(train=True, valid=True)

6.3 Confusion Matrix

Fetch the confusion matrix directly using the following accessor function:

Example in R

h2o.confusionMatrix (binomial.fit, wvalid = FALSE)
h2o.confusionMatrix (binomial.fit, wvalid TRUE)
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Example in Python

binomial_ fit.confusion matrix(valid=False)
binomial_ fit.confusion_matrix(valid=True)

6.4 Scoring History

The following output example represents a sample scoring history:

binomial.fit@modelS$scoring_history

Example in Python

binomial_fit.scoring_history

Scoring History:
timestamp

duration iteration

log_likelihood objective
0.000 sec

1 2015-08-13 19:05:17
201.99764 0.67784
2 2015-08-13 19:05:17
158.46117 0.53216
3 2015-08-13 19:05:17
153.74404 0.51658
4 2015-08-13 19:05:17
153.51935 0.51590
5 2015-08-13 19:05:17
153.51723 0.51590
6 2015-08-13 19:05:17
153.51723 0.51590

0.

0.

0.

0.

0.

002

003

004

005

006

secC

secC

secC

sSecC

secC

7 Making Predictions

Once you have built a model, you can use it to make predictions using two
different approaches: the in-H20 batch scoring approach and the real-time

nano-fast POJO approach.
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7.1 Batch In-H20 Predictions

Batch in-H20 predictions are made using a normal H20 cluster on a new
H20Frame. When you use h2o.predict (), the order of the rows in the
results is the same as the order in which the data was loaded, even if some rows
fail (for example, due to missing values or unseen factor levels). In addition
to predictions, you can view metrics such as area under curve (AUC) if you
include the response column in the new data. The following example represents
a logistic regression model (i.e. binomial classification).

Example in R

library (h2o0)

h2o.init ()
path = system.file("extdata", "prostate.csv", package
= "hzoll)

h2o_df = h2o.importFile (path)

h2o_df$CAPSULE = as.factor (h2o_dfS$SCAPSULE)

rand_vec <- h2o.runif (h2o_df, seed = 1234)

train <- h2o_df[rand_vec <= 0.8, ]

valid <- h2o_df[ (rand_vec > 0.8) & (rand_vec <= 0.9),]
test <- h2o_df[rand_vec > 0.9,]

binomial.fit = h2o0.glm(y = "CAPSULE", x = c("AGE", "
RACE", "PSA", "GLEASON"), training_frame = train,
validation_frame = valid, family = "binomial")

# Make and export predictions.

pred = h2o.predict (binomial.fit, test)

h2o.exportFile (pred, "/tmp/pred.csv", force = TRUE)

# Or you can export the predictions to hdfs:

# h2o.exportFile (pred, "hdfs://namenode/path/to/file
.csv")

# Calculate metrics.
perf = h2o.performance (binomial.fit, test)
print (perf)
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Example in Python

h2o0.init ()

h2o_df = h2o.import_file("http://h20-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

h2o_df["CAPSULE’] = h2o_df[’CAPSULE’] .asfactor ()

rand_vec = h2o_df.runif (1234)

train = h2o_df[rand_vec <= 0.8]

valid = h2o_df[ (rand_vec > 0.8) & (rand_vec <= 0.9)]

test = h2o_df[rand_vec > 0.9]

binomial fit = H20GeneralizedLinearEstimator (family =
"binomial")

binomial_fit.train(y = "CAPSULE", x = ["AGE", "RACE",

"PSA", "GLEASON"], training_frame = train,
validation_frame = wvalid)

# Make and export predictions.

pred = binomial_fit.predict (test)

h2o.export_file (pred, "/tmp/pred.csv", force = True)

# Or you can export the predictions to hdfs:

# h2o.exportFile (pred, "hdfs://namenode/path/to/file
.csv")

# Calculate metrics.
binomial_fit.model_performance (test)

Here is an example of making predictions on new data:

# Remove the response column to simulate new data
points arriving without the answer being known.

newdata = test

newdata$CAPSULE <- NULL

newpred = h2o.predict (binomial.fit, newdata)

head (newpred)

# Remove the response column to simulate new data
points arriving without the answer being known.

newdata = test

newdata [’ CAPSULE’] = None
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newpred = binomial_ fit.predict (newdata)

newpred

predict rO pl
1 1 0.1676892 0.8323108
2 0 0.4824181 0.5175819
3 1 0.2000061 0.7999939
4 0 0.9242169 0.0757831
5 0 0.5044669 0.4955331
6 0 0.7272743 0.2727257

The three columns in the prediction file are the predicted class, the probability
that the prediction is class 0, and the probability that the prediction is class 1.
The predicted class is chosen based on the maximum-F1 threshold.

You can change the threshold manually, for example to 0.3, and recalculate the
predict column like this:

newpreds$predict = newpred$pl > 0.3
head (newpred)

#manually define threshold for predictions to 0.3
import pandas as pd

pred = binomial_fit.predict (h2o_df)
pred[’predict’] = pred[’'pl’]>0.3

predict rO pl
1 1 0.1676892 0.8323108
2 1 0.4824181 0.5175819
3 1 0.2000061 0.7999939
4 0 0.9242169 0.0757831
5 1 0.5044669 0.4955331
6 0 0.7272743 0.2727257

7.2 Low-latency Predictions using POJOs

For nano-fast scoring, H20 GLM models can be directly rendered as a Plain Old
Java Object (POJO). POJOs are very low-latency and can easily be embedded
in any Java environment (a customer-facing web application, a Storm bolt, or
a Spark Streaming pipeline, for example).




Making Predictions | 49

The POJO does nothing but pure math, and has no dependencies on any other
software packages (not even H20), so it is easy to implement.

Directions for using the POJO in detail are beyond the scope of this document,
but the following example demonstrates how to generate and view a POJO. To
access the POJO from the Flow Web Ul, click the DowNLOAD POJO button
at the bottom of the cell containing the generated model.

For more information on how to use an H20 POJO, refer to the POJO Quick
Start Guide at https://github.com/h20ai/h20-3/blob/master/
h2o-docs/src/product/howto/POJO_QuickStart.md

Example in R

library (h20)

h2o0.init ()
path = system.file("extdata", "prostate.csv", package
= "h2oll)

h2o_df = h2o.importFile (path)
h2o_df$CAPSULE = as.factor (h2o_df$CAPSULE)

binomial.fit = h2o0.glm(y = "CAPSULE", x = c("AGE", "
RACE", "PSA", "GLEASON"), training_frame = h2o_df,
family = "binomial")

h2o.download_pojo (binomial.fit)

Example in Python

import h2o

from h2o.estimators.glm import
H20GeneralizedLinearEstimator

h2o.init ()

h2o_df = h2o.import_file("http://h2o0-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

h2o_df["CAPSULE’] = h2o_df[’CAPSULE’] .asfactor ()

binomial_fit = H20GeneralizedLinearEstimator (family =
"binomial")

binomial_ fit.train(y = "CAPSULE", x = ["AGE", "RACE",

"PSA", "GLEASON"], training_frame = h2o_df)
h2o.download_pojo (binomial_fit)



https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/howto/POJO_QuickStart.md
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/howto/POJO_QuickStart.md
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8 Best Practices

Here are a few rules of thumb to follow:

e Use symmetric nodes in your H20 cluster
e Impute data before running GLM
e The IRLSM solver works best on tall and skinny datasets

e If you have a wide dataset, use an /1 penalty to eliminate columns from
the model

e If you have a wide dataset, use the L-BFGS solver

e When using lambda search, specify a value for max_predictors if the
process takes too long. 90% of the time is spent on the larger models
with the small lambdas, so specifying max_predictors can reduce this
time

e Retain a small ¢y penalty (i.e. ridge regression) for numerical stability
(i.e. don't use alpha 1.0, use 0.95 instead)

e When using the IRLSM solver, larger nodes can help the ADMM (Cholesky
decomposition) run faster

8.1 Verifying Model Results

To determine the accuracy of your model, use the following guidelines:

e Look for conspicuously different cross-validation results between folds:

Example in R

library (h20)

h2o.init ()

h2o_df = h2o.importFile ("http://s3.amazonaws.com/
h2o-public-test—-data/smalldata/airlines/
allyears2k_headers.zip")

model = h2o0.glm(y = "IsDepDelayed", x = c("Year",
"Origin"), training frame = h2o_df, family = "
binomial", nfolds = 5)

print (paste ("full model training auc:",
model@model$training_metrics@metricsS$AUC))

print (paste ("full model cv auc:", model@models$
cross_validation_metrics@metrics$SAUC))
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for (i in 1:5) {
cv_model_name = model@modelS$Scross_validation_
models[[i]]$name
cv_model = h2o.getModel (cv_model_name)

print (paste("cv fold ", i, " training auc:",
cv_model@model$training_metrics@metricss$
AUC, " wvalidation auc: ", cv_model@model$

validation_metrics@metrics$SAUC))

Example in Python

h2o_df = h2o.import_file("http://s3.amazonaws.com/
h2o-public-test-data/smalldata/airlines/
allyears2k_headers.zip")

model = H20GeneralizedLinearEstimator (family = "
binomial", nfolds = 5)
model.train(y = "IsDepDelayed", x = ["Year", "

Origin"], training frame = h2o_df)

print "full model training auc:", model.auc()
print "full model cv auc:", model.auc (xval=True)
for model_ in model.get_xval_models():
print model_.model_id, " training auc:",
model_.auc (), " validation auc: ", model_.
auc (valid=True)

. . NullDev—ResDev
Look for explained deviance (1 — W)

— Too close to 0: model doesn't predict well (underfitting)

— Too close to 1: model predicts too well due to noisy data (overfitting)
For logistic regression (i.e. binomial classification) models, look for AUC

— Too close to 0.5: model doesn‘t predict well (underfitting)

— Too close to 1: model predicts too well due to noisy data (overfitting)

Look at the number of iterations or scoring history to see if GLM stops
early for a specific lambda; performing all the iterations usually means
the solution is not good. This is controlled by the max_iterations
parameter.
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e The fewer the NA values in your training data, the better; GLM will
either skip or mean-impute rows with NA values. Always check degrees
of freedom in the output model. Degrees of freedom is the number of
observations used to train the model minus the size of the model. If this
number is much smaller than expected, it is likely that too many rows
have been excluded due to missing values.

— If you have few columns with many NAs, you might accidentally be
losing all your rows, so it's better to exclude them.

— If you have many columns with small fraction of uniformly-distributed
missing values, every row will likely have at least one missing value.
In this case, impute the NAs (e.g. substituted with mean values)
before modeling.

9 Implementation Details

The following sections discuss some of the implementation choices in H20's
GLM.

9.1 Categorical Variables

When applying linear models to datasets with categorical variables, the usual
approach is to expand the categoricals into a set of binary vectors, with one
vector per each categorical level (e.g. by calling model .matrix in R). H20
performs similar expansions automatically and no prior changes to the dataset
are needed. Each categorical column is treated as a set of sparse binary vectors.

9.1.1 Largest Categorical Speed Optimization

Categoricals have special handling during GLM computation as well. When
forming the gram matrix, we can take advantage of the fact that columns
belonging to the same categorical never co-occur and the gram matrix region
belonging to these columns will not have any non-zero elements outside of the
diagonal.

This keeps it in sparse representation, taking only O(N) elements instead of
O(N % N). Furthermore, the complexity of Choelsky decomposition of a matrix
that starts with a diagonal region can be greatly reduced. H20's GLM exploits
these two facts to handle the largest categorical “for free”. Therefore, when
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analyzing the performance of GLM in the equation expressed above, we can
subtract the size of the largest categoricals from the number of predictors.

N = .d ) — .d ] N
EZC(HC omainl||) — arg max le.domain]|| + || Nums||
c

0.2 Performance Characteristics

This section discusses the CPU and memory cost of each available non-
experimental solver for running GLM.

9.2.1 IRLSM Solver

The implementation is based on iterative re-weighted least squares with an
ADMM inner solver (as described in Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers by Boyd et. al) to
deal with the ¢; penalty. Every iteration of the algorithm consists of following
steps:

1. Generate weighted least squares problem based on previous solution, i.e.
vector of weights w and response z

2. Compute the weighted gram matrix X7”W X and X7z vector

3. Decompose the gram matrix (Cholesky decomposition) and apply ADMM
solver to solve the /1 penalized least squares problem

Steps 1 and 2 are performed distributively. Step 3 is computed in parallel on
a single node. This method characterizes the computational complexity and
scalability of a dataset with M observations and N columns (predictors) on a
cluster with n nodes with p CPUs each.

CPU Memory
Gram matrix (XTX) O(]WN2) O(training data) + O(gram matrix)
(distributed) o O(MN) + O(N?pn)
ADMM + Cholesky decomposition N3
g P 0(—) O(N?)
(single node) P
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M Number of rows in the training data
N Number of predictors in the training data
P Number of CPUs per node

n  Number of nodes in the cluster

If M >> N, the algorithm scales linearly both in the number of nodes and the
number of CPUs per node. However, the algorithm is limited in the number of
predictors it can handle, since the size of the Gram matrix grows quadratically,
due to a memory and network throughput issue with the number of predictors.

Its decomposition cost grows as the cube of the number of predictors increases,
which is a computational cost issue. In many cases, H20 can work around these
limitations due to its handling of categoricals and by employing strong rules to
filter out inactive predictors.

9.2.2 L-BFGS solver

In each iteration, L-BFGS computes a gradient at the current vector of coeffi-
cients and then computes an updated vector of coefficients in an approximated
Newton-method step.

The cost of the coefficient update is k& x N, where N is number of predictors
and k is a constant, the cost of gradient computation is 2N where M is
number of observations in the dataset and pn is the number of CPU cores in
the cluster. Since k is a small constant, the runtime of L-BFGS is dominated
by the gradient computation, which is fully parallelized, scaling L-BFGS almost
linearly.

9.3 FAQ

e What if the training data contains NA values?

The rows with missing response are ignored during model training and
validation.

e What if the testing data contains NA values?

If the missing value handling is set to skip and you are generating predic-
tions, skipped rows will have NA (missing) prediction.

e What if, while making predictions on testing data, a predictor
column is categorical and the predictor is a level not observed
during training?

The value is zero for all predictors associated with that categorical variable.
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What if, while making predictions on testing data, the response
column is categorical and the response is a level not observed
during training?

H20 supports binomial models only; any extra levels in the test response
will generate an error.

Appendix: Parameters

x: A vector containing the names of the predictors to use while building
the GLM model. No default.

y: A character string or index that represents the response variable in the
model. No default.

training_frame: An H20Frame object containing the variables in
the model.

model_id: (Optional) The unique ID assigned to the generated model.
If not specified, an ID is generated automatically.

validation_frame: An H20ParsedData object containing the val-
idation dataset used to construct confusion matrix. If blank, the training
data is used by default.

max_iterations: A non-negative integer specifying the maximum
number of iterations.

objective_epsilon: Specify a threshold for convergence. If the
objective value is less than this threshold, the model is converged.

beta_epsilon: A non-negative number specifying the magnitude of
the maximum difference between the coefficient estimates from successive
iterations. Defines the convergence criterion.

gradient_epsilon: (For L-BFGS only) Specify a threshold for con-
vergence. If the objective value (using the L-infinity norm) is less than
this threshold, the model is converged.

solver: A character string specifying the solver used: either TRLSWV,
which supports more features, or L_BFGS, which scales better for datasets
with many columns.

standardize: A logical value that indicates whether the numeric
predictors should be standardized to have a mean of 0 and a variance of
1 prior to model training.
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e family: A description of the error distribution and corresponding

link function to be used in the model. The following options are sup-
ported: gaussian, binomial, gamma, multinomial, poisson,
tweedie, or quasibinomial. When a model is specified as Tweedie,
users must also specify the appropriate Tweedie power. No default.

link: The link function relates the linear predictor to the distribution
function. The default is the canonical link for the specified family. The
full list of supported links:

gaussian: identity, log, inverse

binomial: logit

quasibinomial: logit

multinomial: multinomial (family_default)

poisson: log, identity
— gamma: inverse, log, identity

tweedie: tweedie

tweedie_variance_power: A numeric specifying the power for the
variance function when family = "tweedie". Default is 0.

tweedie_link_power: A numeric specifying the power for the link
function when family = "tweedie". Default is 1.

alpha: The elastic-net mixing parameter, which must be in [0,1]. The
penalty is defined to be P(a, 8) = (1 —a)/2||]13 + «||B8][1 = 32,[(1 -
@) /27 + a|f;|] so alpha=1 is the Lasso penalty, while alpha=0 is
the ridge penalty. Default is 0.5.

prior: (Optional) A numeric specifying the prior probability of class 1
in the response when family = "binomial". The default value is
the observation frequency of class 1. Must be from (0,1) exclusive range
or NULL (no prior).

lambda: A non-negative value representing the shrinkage parameter,
which multiplies P(«, 8) in the objective. The larger lambda is, the more
the coefficients are shrunk toward zero (and each other). When the value
is 0, regularization is disabled and ordinary generalized linear models are
fit. The default is 1e-05.

lambda_search: A logical value indicating whether to conduct a search
over the space of lambda values, starting from the max lambda, given
lambda will be interpreted as the min. lambda. Default is false.
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nlambdas: The number of lambda values when lambda_search =
TRUE. Default is -1.

lambda_min_ratio: Smallest value for lambda as a fraction of
lambda.max, the entry value, which is the smallest value for which all
coefficients in the model are zero. If the number of observations is greater
than the number of variables then lambda_ min_ratio = 0.0001; if
the number of observations is less than the number of variables then
lambda_min_ratio = 0.01. Default is -1.0.

nfolds: Number of folds for cross-validation. If nfolds >=2, then
validation_frame must remain blank. Default is 0.

fold_column: (Optional) Column with cross-validation fold index as-
signment per observation.

fold_assignment: Cross-validation fold assignment scheme, if
fold_column is not specified. The following options are supported:
AUTO, Random, or Modulo.

keep_cross_validation_predictions: Specify whether to keep
the predictions of the cross-validation models.

beta_constraints: A data frame or H20ParsedData object with
the columns ["names", "lower_bounds", "upper_bounds",
"beta_given"], where each row corresponds to a predictor in the GLM.
"names" contains the predictor names, "lower bounds"/
"upper_bounds" are the lower and upper bounds (respectively) of the
beta, and "beta_given" is a user-specified starting value.

offset_column: Specify the offset column. Note: Offsets are per-row
bias values that are used during model training. For Gaussian distributions,
they can be seen as simple corrections to the response (y) column. Instead
of learning to predict the response (y-row), the model learns to predict the
(row) offset of the response column. For other distributions, the offset
corrections are applied in the linearized space before applying the inverse
link function to get the actual response values.

weights_column: Specify the weights column. Note: Weights are
per-row observation weights. This is typically the number of times a row
is repeated, but non-integer values are supported as well. During training,
rows with higher weights matter more, due to the larger loss function
pre-factor.
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intercept: Logical; includes a constant term (intercept) in the model.
If there are factor columns in your model, then the intercept must be
included.

max_runtime_secs: Maximum allowed runtime in seconds for model
training. Use 0 to disable.

missing_values_handling: Handling of missing values. Either
Skip or MeanImputation (default).

seed: Specify the random number generator (RNG) seed for algorithm
components dependent on randomization. The seed is consistent for
each H20 instance so that you can create models with the same starting
conditions in alternative configurations.

max_active_predictors: Specify the maximum number of active
predictors during computation. This value is used as a stopping criterium
to prevent expensive model building with many predictors.

compute_p_values: Request GLM to compute p-values. This is only
applicable with no penalty (lambda = 0 and no beta constraints). Setting
remove_collinear_columns is recommended. H20 will return an
error if p-values are requested when there are collinear columns and the
remove_collinear_columns flag is not enabled.

non_negative: Forces coefficients to have non-negative values.

remove_collinear_columns: Specify whether to automatically re-
move collinear columns during model building. When enabled, collinear
columns will be dropped from the model and will have a 0 coefficient
in the returned model. This can only be set if there is no regularization
(lambda=0).

interactions: Optionally specify a list of predictor column indices to
interact. All pairwise combinations will be computed for this list.
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