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1 What is H2O?

H2O is fast, scalable, open-source machine learning and deep learning for Smarter Applications. With H2O,
enterprises like PayPal, Nielsen, Cisco, and others can use all their data without sampling to get accurate
predictions faster. Advanced algorithms, like Deep Learning, Boosting, and Bagging Ensembles are built-in
to help application designers create smarter applications through elegant APIs. Some of our initial customers
have built powerful domain-specific predictive engines for Recommendations, Customer Churn, Propensity
to Buy, Dynamic Pricing, and Fraud Detection for the Insurance, Healthcare, Telecommunications, AdTech,
Retail, and Payment Systems industries.

Using in-memory compression, H2O handles billions of data rows in-memory, even with a small cluster. To
make it easier for non-engineers to create complete analytic workflows, H2O’s platform includes interfaces
for R, Python, Scala, Java, JSON, and Coffeescript/JavaScript, as well as a built-in web interface, Flow.
H2O was built alongside (and on top of) Hadoop and Spark Clusters and typically deploys within minutes.

H2O includes many common machine learning algorithms, such as generalized linear modeling (linear
regression, logistic regression, etc.), Näıve Bayes, principal components analysis, time series, k-means
clustering, and others. H2O also implements best-in-class algorithms at scale, such as Random Forest,
Gradient Boosting and Deep Learning. Customers can build thousands of models and compare the results
to get the best predictions.

H2O is nurturing a grassroots movement of physicists, mathematicians, and computer scientists to herald
the new wave of discovery with data science by collaborating closely with academic researchers and
Industrial data scientists. Stanford university giants Stephen Boyd, Trevor Hastie, Rob Tibshirani advise
the H2O team on building scalable machine learning algorithms. With hundreds of meetups over the past
three years, H2O has become a word-of-mouth phenomenon, growing amongst the data community by a
hundred-fold, and is now used by 30,000+ users and is deployed using R, Python, Hadoop, and Spark in
2000+ corporations.

Try it out

H2O’s R package can be installed from CRAN at https://cran.r-project.org/web/packages/
h2o/. A Python package can be installed from PyPI at https://pypi.python.org/pypi/h2o/.
Download H2O directly from http://h2o.ai/download.

Join the community

Visit the open source community forum at https://groups.google.com/d/forum/h2ostream.
To learn about our meetups, training sessions, hackathons, and product updates, visit http://h2o.ai.

2 Introduction

This documentation describes the functionality of R in H2O. Further information on H2O’s system and
algorithms (as well as R user documentation) can be found at the H2O website at http://docs.h2o.ai.

https://cran.r-project.org/web/packages/h2o/
https://cran.r-project.org/web/packages/h2o/
https://pypi.python.org/pypi/h2o/
http://h2o.ai/download
https://groups.google.com/d/forum/h2ostream
http://h2o.ai
http://docs.h2o.ai
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This introductory section describes how H2O works with R, followed by a brief overview of generalized
linear models (GLM).

R requires a reference object to the H2O instance because it uses a REST API to send functions to H2O.
Data sets are not transmitted directly through the REST API. Instead, the user sends a command (for
example, an HDFS path to the data set) either through the browser or via the REST API to ingest data
from disk.

The data set is then assigned a Key in H2O that you can use as a reference in future commands to the
web server. After preparing your dataset for modeling by defining the significant data and removing the
insignificant data, you can create models to represent the results of the data analysis. One of the most
popular models for data analysis is GLM.

GLM estimates regression models for outcomes following exponential distributions in general. In addition to
the Gaussian (i.e. normal) distribution, these include Poisson, binomial, gamma and Tweedie distributions.
Each serves a different purpose, and depending on distribution and link function choice, it can be used
either for prediction or classification.

H2O supports Spark, YARN, and all versions of Hadoop. Hadoop is a scalable open-source file system that
uses clusters to enable distributed storage and processing of datasets. Depending on your data size, you
can get started on your desktop or scale using multiple nodes with Hadoop.

H2O nodes run as JVM invocations on Hadoop nodes. For performance reasons, we recommend you avoid
running an H2O node on the same hardware as the Hadoop NameNode if possible.

Since H2O nodes run as mapper tasks in Hadoop, administrators can see them in the normal JobTracker
and TaskTracker frameworks. This provides process-level (i.e. JVM instance-level) visibility.

H2O helps R users make the leap from laptop-based processing to large-scale environments. Hadoop helps
H2O users scale their data processing capabilities based on their current needs. Using H2O, R, and Hadoop,
you can create a complete end-to-end data analysis solution. For more information about H2O on Hadoop,
refer to http://docs.h2o.ai.

This document will walk you through the four steps of data analysis with H2O: installing H2O, preparing
your data for modeling (data munging), creating a model using state-of-the-art machine learning algorithms,
and scoring your models.

3 Installation

To use H2O with R, you can start H2O outside of R and connect to it, or you can launch H2O from R.
However, if you launch H2O from R and close the R session, the H2O instance is closed as well. The client
object is used to direct R to datasets and models located in H2O.

3.1 Installing R or R Studio

To download R:

1. Go to http://cran.r-project.org/mirrors.html.

2. Select your closest local mirror.

3. Select your operating system (Linux, OS X, or Windows).

4. Depending on your OS, download the appropriate file, along with any required packages.

5. When the download is complete, unzip the file and install.

To download R Studio:

http://docs.h2o.ai
http://cran.r-project.org/mirrors.html
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1. Go to http://www.rstudio.com/products/rstudio/.

2. Select your deployment type (desktop or server).

3. Download the file.

4. When the download is complete, unzip the file and install.

3.2 Installing H2O in R

Load the latest CRAN H2O package by running

install.packages("h2o")

Note: Our push to CRAN will be behind the bleeding edge version and due to resource constraints, may be
behind the published version. However, there is a best-effort to keep the versions the same.

1 # The following two commands remove any previously installed H2O packages
for R.

2 if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) }
3 if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") }
4

5 # Next, we download packages that H2O depends on.
6 if (! ("methods" %in% rownames(installed.packages()))) { install.packages

("methods") }
7 if (! ("statmod" %in% rownames(installed.packages()))) { install.packages

("statmod") }
8 if (! ("stats" %in% rownames(installed.packages()))) { install.packages("

stats") }
9 if (! ("graphics" %in% rownames(installed.packages()))) { install.

packages("graphics") }
10 if (! ("RCurl" %in% rownames(installed.packages()))) { install.packages("

RCurl") }
11 if (! ("jsonlite" %in% rownames(installed.packages()))) { install.

packages("jsonlite") }
12 if (! ("tools" %in% rownames(installed.packages()))) { install.packages("

tools") }
13 if (! ("utils" %in% rownames(installed.packages()))) { install.packages("

utils") }

1 # Now we download, install and initialize the H2O package for R (
replacing

2 #the * with the latest version number obtained from the H2O download page
)

3 install.packages("h2o", type="source", repos=(c("http://h2o-release.s3.
amazonaws.com/h2o/master/*/R")))

4 library(h2o)
5 localH2O = h2o.init(nthreads = -1)

3.3 Making a build from the Source Code

If you are a developer who wants to make changes to the R package before building and installing it, pull
the source code from Git (https://github.com/h2oai/h2o-3) and follow the instructions in at
https://github.com/h2oai/h2o-3/blob/master/README.md.

http://www.rstudio.com/products/rstudio/
https://github.com/h2oai/h2o-3
https://github.com/h2oai/h2o-3/blob/master/README.md
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After making the build, navigate to the top-level h2o-3 directory using cd ∼/h2o-3, then run the
following (replacing the asterisks [*] with the version number) and install.

1 ./gradlew clean
2 ./gradlew build
3 $ cd target/Rcran
4 $ R CMD INSTALL h2o-r/R/src/contrib/h2o_****.tar.gz
5 * installing to library /Users/H2OUser/.Rlibrary
6 * installing *source* package h 2 o ...
7 ** R
8 ** demo
9 ** inst

10 ** preparing package for lazy loading
11 Creating a generic function for ...[output truncated]
12 ** help
13 *** installing help indices
14 ** building package indices
15 ** testing if installed package can be loaded
16 * DONE (h2o)

4 H2O Initialization

This section describes how to launch H2O:

� from R

� from the command line

� on Hadoop

� on an EC2 cluster

4.1 Launching from R

If you do not specify the argument max mem size when you run h2o.init(nthreads = -1), the
default heap size of the H2O instance running on 32-bit Java is 1g. H2O checks the Java version and
suggests an upgrade if you are running 32-bit Java. On 64-bit Java, the heap size is 1/4 of the total
memory available on the machine. The nthreads = -1 parameter allows H2O to use all CPUs on the
host, which is recommended.

For best performance, the allocated memory should be 4x the size of your data, but never more than the
total amount of memory on your computer. For larger data sets, we recommend running on a server or
service with more memory available for computing.

To launch H2O from R, run the following in R:

1 library(h2o)
2 # Start H2O on localhost, port 54321, with 4g of memory using all CPUs
3 localH2O <- h2o.init(ip = ’localhost’, port = 54321, nthreads= -1, max_

mem_size = ’4g’)

R displays the following output:

1 Successfully connected to http://localhost:54321
2 R is connected to H2O cluster:
3 H2O cluster uptime: 11 minutes 35 seconds
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4 H2O cluster version: 2.7.0.1497
5 H2O cluster name: H2O_started_from_R
6 H2O cluster total nodes: 1
7 H2O cluster total memory: 3.56 GB
8 H2O cluster total cores: 8
9 H2O cluster allowed cores: 8

10 H2O cluster healthy: TRUE

If you are operating on a single node, initialize H2O using all CPUs with:

1 h2o_server = h2o.init(nthreads = -1)

To connect with an existing H2O cluster node other than the default localhost:54321, specify the IP address
and port number in the parentheses. For example:

1 h2o_cluster = h2o.init(ip = "192.555.1.123", port = 12345, nthreads = -1)

4.2 Launching from the Command Line

After launching the H2O instance, initialize the connection by running h2o.init(nthreads = -1)
with the IP address and port number of a node in the cluster. In the following example, change 192.168.1.161
to your machine’s local host.

1 library(h2o)
2 localH2O <- h2o.init(ip = ’192.168.1.161’, port = 54321, nthreads = -1)

4.3 Launching on Hadoop

To launch H2O nodes and form a cluster on the Hadoop cluster, run:

1 hadoop jar h2odriver.jar -nodes 1 -mapperXmx 6g -output hdfsOutputDirName

� For each major release of each distribution of Hadoop, there is a driver jar file that the user
will need to launch H2O with. Currently available driver jar files in each build of H2O include
h2odriver cdh5.3.jar, h2odriver hdp2.1.jar, and mapr3.1.1.jar.

� The above command launches exactly one 6g node of H2O; however, we recommend launching the
cluster with 4 times the memory of your data file.

� mapperXmx is the mapper size or the amount of memory allocated to each node.

� nodes is the number of nodes requested to form the cluster.

� output is the name of the directory created each time a H2O cloud is created so it is necessary for
the name to be unique each time it is launched.

4.4 Launching on an EC2

Note: If you would like to try out H2O on an EC2 cluster, http://play.h2o.ai is the easiest way to
get started. H2O Play provides access to a temporary cluster managed by H2O.

If you would still like to set up your own EC2 cluster, follow the instructions below to build a cluster of
EC2 instances by running the following commands on the host that can access the nodes using a public
DNS name.

http://play.h2o.ai
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1. Edit h2o-cluster-launch-instances.pyto include your SSH key name and security group
name, as well as any other environment-specific variables:

1 ./h2o-cluster-launch-instances.py
2 ./h2o-cluster-distribute-h2o.sh

—OR—

1 ./h2o-cluster-launch-instances.py
2 ./h2o-cluster-download-h2o.sh

Note: The second method may be faster than the first, since download pulls from S3.

2. Distribute the credentials using ./h2o-cluster-distribute-aws-credentials.sh.

Note: If you are running H2O using an IAM role, it is not necessary to distribute the AWS credentials
to all the nodes in the cluster. The latest version of H2O can access the temporary access key.

Caution: Distributing the AWS credentials copies the Amazon AWS ACCESS KEY ID and AWS SECRET ACCESS KEY
to the instances to enable S3 and S3N access. Use caution when adding your security keys to the
cloud.

3. Start H2O by launching one H2O node per EC2 instance: ./h2o-cluster-start-h2o.sh.
Wait 60 seconds after entering the command before entering it on the next node.

4. In your internet browser, substitute any of the public DNS node addresses for IP ADDRESS in the
following example: http://IP ADDRESS:54321

5. To start H2O: ./h2o-cluster-start-h2o.sh

6. To stop H2O: ./h2o-cluster-stop-h2o.sh

7. To shut down the cluster, use your Amazon AWS console to shut down the cluster manually. For
more information, refer to the Amazon AWS documentation at http://docs.aws.amazon.com/
ElasticMapReduce/latest/DeveloperGuide/UsingEMR_TerminateJobFlow.html.

4.5 Checking Cluster Status

To check the status and health of the H2O cluster, use h2o.clusterInfo().

1 > library(h2o)
2 > localH2O = h2o.init(ip = ’localhost’, port = 54321, nthreads = -1)
3 > h2o.clusterInfo(localH2O)

An easy-to-read summary of information about the cluster displays.

1 R is connected to H2O cluster:
2 H2O cluster uptime: 43 minutes 43 seconds
3 H2O cluster version: 2.7.0.1497
4 H2O cluster name: H2O_started_from_R
5 H2O cluster total nodes: 1
6 H2O cluster total memory: 3.56 GB
7 H2O cluster total cores: 8
8 H2O cluster allowed cores: 8
9 H2O cluster healthy: TRUE

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_TerminateJobFlow.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_TerminateJobFlow.html
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5 Data Preparation in R

The following section describes some important points to remember about data preparation (also known as
data munging) and some of the tools and methods available in H2O, as well as a data training example.

5.1 Notes

� Although it may seem like you are manipulating the data in R due to the look and feel, once the
data has been passed to H2O, all data munging occurs in the H2O instance. The information is
passed to R through JSON APIs, so some functions may not have another method.

� You are not limited by R’s ability to handle data, but by the total amount of memory allocated to
the H2O instance. To process large data sets, make sure to allocate enough memory. For more
information, refer to Launching from R.

� You can manipulate datasets with thousands of factor levels using H2O in R, so if you ask H2O to
display a table in R with information from high cardinality factors, the results may overwhelm R‘s
capacity.

� To manipulate data in R and not in H2O, use as.data.frame(), as.h2o(), and str().

– as.data.frame() converts an H2O data frame into an R data frame. Be aware that if your
request exceeds R′s capabilities due to the amount of data, the R session will crash. If possible,
we recommend only taking subsets of the entire data set (the necessary data columns or rows),
and not the whole data set.

– as.h2o() transfers data from R to the H2O instance. We recommend ensuring that you
allocate enough memory to the H2O instance for successful data transfer.

– str() returns the elements of the new object to confirm that the data transferred correctly.
It′s a good way to verify there were no data loss or conversion issues.

5.2 Tools and Methods

The following section describes some of the tools and methods available in H2O for data preparation.

� Data Profiling: Quickly summarize the shape of your dataset to avoid bias or missing information
before you start building your model. Missing data, zero values, text, and a visual distribution of the
data are visualized automatically upon data ingestion.

� Summary Statistics: Visualize your data with summary statistics to get the mean, standard deviation,
min, max, or quantile (for numeric columns) or cardinality and counts (for enum columns), and a
preview of the data set.

� Aggregate, Filter, Bin, and Derive Columns: Build unique views with Group functions, Filtering,
Binning, and Derived Columns.

� Slice, Log Transform, and Anonymize: Normalize and partition to get your data into the right
shape for modeling, and anonymize to remove confidential information.

� Variable Creation: Highly customizable variable value creation to hone in on the key data charac-
teristics to model.

� PCA: Principal Component Analysis makes feature selection easy with a simple interface and standard
input values to reduce the many dimensions in your dataset into key components.

� Training and Validation Sampling Plan: Design a random or stratified sampling plan to generate
data sets for model training and scoring.
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5.3 Demo: Creating Aggregates from Split Data

The following section depicts an example of creating aggregates for data training using ddply(). Using
this method, you can split your dataset and apply a function to the subsets.

To apply a user-specified function to each subset of an H2O dataset and combine the results, use ddply(),
with the name of the H2O object, the variable name, and the function in the parentheses. For more
information about functions, refer to h2o.addFunction in the Appendix.

1 library(h2o)
2 localH2O = h2o.init(nthreads = -1)
3

4 # Import iris dataset to H2O
5 > irisPath = system.file("extdata", "iris_wheader.csv", package = "h2o")
6 > iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
7

8 # Add function taking mean of sepal_len column
9 > fun = function(df) { sum(df[,1], na.rm = T)/nrow(df) }

10 > h2o.addFunction(localH2O, fun)
11

12 # Apply function to groups by class of flower
13 # uses h2o’s ddply, since iris.hex is an H2OParsedData object
14 > res = ddply(iris.hex, "class", fun)
15 > head(res)

6 Models

The following section describes the features and functions of some common models available in H2O. For
more information about running these models in R using H2O, refer to “Running Models.”

H2O supports the following models: Deep Learning, Generalized Linear Models (GLM), Gradient Boosted
Regression (GBM), K-Means, Näıve Bayes, Principal Components Analysis (PCA), Principal Components
Regression (PCR), Random Forest (RF), and Cox Proportional Hazards (PH).

The list is growing quickly, so check back often at www.h2o.ai to see the latest additions. The following
list describes some common model types and features.

Generalized Linear Models (GLM): A flexible generalization of ordinary linear regression for response
variables that have error distribution models other than a normal distribution. GLM unifies various other
statistical models, including linear, logistic, Poisson, and more.

Decision trees: Used in RF; a decision support tool that uses a tree-like graph or model of decisions and
their possible consequences.

Gradient Boosting (GBM): A method to produce a prediction model in the form of an ensemble of weak
prediction models. It builds the model in a stage-wise fashion and is generalized by allowing an arbitrary
differentiable loss function. It is one of the most powerful methods available today.

K-Means: A method to uncover groups or clusters of data points often used for segmentation. It clusters
observations into k certain points with the nearest mean.

Anomaly Detection: Identify the outliers in your data by invoking a powerful pattern recognition model,
the Deep Learning Auto-Encoder.

Deep Learning: Model high-level abstractions in data by using non-linear transformations in a layer-by-layer
method. Deep learning is an example of supervised learning and can make use of unlabeled data that other
algorithms cannot.

www.h2o.ai
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Näıve Bayes: A probabilistic classifier that assumes the value of a particular feature is unrelated to the
presence or absence of any other feature, given the class variable. It is often used in text categorization.

Grid Search: The standard way of performing hyper-parameter optimization to make model configuration
easier. It is measured by cross-validation of an independent data set.

After creating a model, use it to make predictions. For more information about predictions, refer to
“Predictions.”

6.1 Demo: GLM

The following demo demonstrates how to import a file, define significant data, view data, create testing
and training sets using sampling, define the model, and display the results.

1 # Import dataset and display summary
2 airlinesURL = "https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.

csv"
3 airlines.hex = h2o.importFile(localH2O, path = airlinesURL, key = "

airlines.hex")%%please update - fails here
4 summary(airlines.hex)
5

6 # Define columns to ignore, quantiles and histograms
7 high_na_columns = h2o.ignoreColumns(data = airlines.hex)
8 delay_quantiles = quantile(x = airlines.hex$ArrDelay, na.rm = TRUE)
9 hist(airlines.hex$ArrDelay)

10

11 # Find number of flights by airport
12 originFlights = h2o.ddply(airlines.hex, ’Origin’, nrow)
13 originFlights.R = as.data.frame(originFlights)
14

15 # Find number of cancellations per month
16 flightsByMonth = h2o.ddply(airlines.hex,"Month", nrow)
17 flightsByMonth.R = as.data.frame(originFlights)
18

19 # Find months with the highest cancellation ratio
20 fun = function(df) {sum(df$Cancelled)}
21 h2o.addFunction(h, fun)
22 cancellationsByMonth = h2o.ddply(airlines.hex,"Month", fun)
23 cancellation_rate = cancellationsByMonth$C1/flightsByMonth$C1)
24 rates_table = cbind(flightsByMonth$Month, cancellation_rate)
25 rates_table.R = as.data.frame(rates.table)
26

27 # Construct test and train sets using sampling
28 airlines.split = h2o.splitFrame(data = airlines.hex,ratios = 0.85)
29 airlines.train = airlines.split[[1]]
30 airlines.test = airlines.split[[2]]
31

32 # Display a summary using table-like functions
33 h2o.table(airlines.train$Cancelled)
34 h2o.table(airlines.test$Cancelled)
35

36 # Set predictor and response variables
37 Y = "IsDepDelayed"
38 X = c("Origin", "Dest", "DayofMonth", "Year", "UniqueCarrier", "DayOfWeek

", "Month", "DepTime", "ArrTime", "Distance")
39 # Define the data for the model and display the results
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40 airlines.glm <- h2o.glm(data=airlines.train, x=X, y=Y, family = "binomial
", alpha = 0.5)

41

42 # Predict using GLM model
43 pred = h2o.predict(object = airlines.glm, newdata = airlines.test)

7 Data Manipulation in R

The following section describes some common R commands. For a complete command list, including
parameters, refer to http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.
html. For additional help within R’s Help tab, precede the command with a question mark (for example,
?h2o) for suggested commands containing the search terms. For more information on a command, precede
the command with two question marks (??h2o).

7.1 Importing Files

The H2O package consolidates all of the various supported import functions using h2o.importFile().
Although h2o.importFolder and h2o.importHDFS will still work, these functions are deprecated
and should be updated to h2o.importFile(). There are a few ways to import files:

1

2 # To import small iris data file from H2O’s package:
3 irisPath = system.file("extdata", "iris.csv", package="h2o")
4 iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
5 |=================================================| 100%
6

7 # To import an entire folder of files as one data object:
8 pathToFolder = "/Users/Amy/data/airlines/"
9 airlines.hex = h2o.importFile(localH2O, path = pathToFolder, key = "

airlines.hex")
10 |=================================================| 100%
11

12 # To import from HDFS, connect to your Hadoop cluster and start an H2O
instance in R using the IP that was specified by Hadoop:

13 remoteH2O = h2o.init(ip= <IPAddress>, port =54321, nthreads = -1)
14 pathToData = "hdfs://mr-0xd6.h2oai.loc/datasets/airlines_all.csv"
15 airlines.hex = h2o.importFile(remoteH2O, path = pathToData, key = "

airlines.hex")
16 |=================================================| 100%

7.2 Uploading Files

To upload a file in a directory local to your H2O instance, we recommend h2o.importFile(). The
alternative is to use h2o.uploadFile() which can also upload data local to your H2O instance in
addition to uploading data local to your R session. In the parentheses, specify the H2O reference object in
R and the complete URL or normalized file path for the file.

1 irisPath = system.file("extdata", "iris.csv", package="h2o")
2 iris.hex = h2o.uploadFile(localH2O, path = irisPath, key = "iris.hex")
3 |====================================================| 100%

http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html
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7.3 Finding Factors

To determine if any column in a data set is a factor (contains categorical data), use h2o.anyFactor()
with the name of the R reference object in the parentheses.

1 irisPath = system.file("extdata", "iris_wheader.csv", package="h2o")
2 iris.hex = h2o.importFile(localH2O, path = irisPath)
3 |===================================================| 100%
4 h2o.anyFactor(iris.hex)
5 [1] TRUE

7.4 Converting to Factors

To convert an integer into a non-ordered factor (also called an enum or categorical), use as.factor()
with the name of the R reference object in parentheses followed by the number of the column to convert in
brackets.

1 # Import prostate data
2 prosPath <- system.file("extdata", "prostate.csv", package="h2o")
3 prostate.hex <- h2o.importFile(localH2O, path = prosPath)
4 |===================================================| 100%
5 # Converts column 4 (RACE) to an enum
6 is.factor(prostate.hex[,4])
7 [1] FALSE
8 prostate.hex[,4]<-as.factor(prostate.hex[,4])
9 is.factor(prostate.hex[,4])

10 [1] TRUE
11 # Summary will return a count of the factors
12 summary(prostate.hex[,4])
13 RACE
14 1 :341
15 2 : 36
16 0 : 3

7.5 Converting Data Frames

To convert an H2O parsed data object into an R data frame that can be manipulated using R commands,
use as.data.frame() with the name of the R reference object in the parentheses.

Caution: While this can be very useful, be careful using this command when converting H2O parsed data
objects. H2O can easily handle data sets that are often too large to be handled equivalently well in R.

1 # Creates object that defines path
2 prosPath <- system.file("extdata", "prostate.csv", package="h2o")
3 # Imports data set
4 prostate.hex = h2o.importFile(localH2O, path = prosPath)
5 |===================================================| 100%
6 # Converts current data frame (prostate data set) to an R data frame
7 prostate.R <- as.data.frame(prostate.hex)
8 # Displays a summary of data frame where the summary was executed in R
9 summary(prostate.data.frame)

10 ID CAPSULE AGE RACE
11 Min. : 1.00 Min. :0.0000 Min. :43.00 Min. :0.000
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12 1st Qu.: 95.75 1st Qu.:0.0000 1st Qu.:62.00 1st Qu.:1.000
13 ....

7.6 Transferring Data Frames

To transfer a data frame from the R environment to the H2O instance, use as.h2o(). In the parentheses,
specify the name of the h2o.init object that communicates with R and H2O and the object in the R
environment to be converted to an H2O object. Optionally, you can include the reference to the H2O
instance (the key). Precede the key with key= and enclose the key in quotes as in the following example.

1 # Import the iris data into H2O
2 > data(iris)
3 > iris
4 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5 1 5.1 3.5 1.4 0.2 setosa
6 2 4.9 3.0 1.4 0.2 setosa
7 3 4.7 3.2 1.3 0.2 setosa
8 4 4.6 3.1 1.5 0.2 setosa
9 5 5.0 3.6 1.4 0.2 setosa

10 6 5.4 3.9 1.7 0.4 setosa
11

12 # Converts R object "iris" into H2O object "iris.hex"
13 iris.hex = as.h2o(localH2O, iris, key= "iris.hex")
14 |=============================================================| 100%
15 IP Address: localhost
16 Port : 54321
17 Parsed Data Key: iris.hex
18

19 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
20 1 5.1 3.5 1.4 0.2 setosa
21 2 4.9 3.0 1.4 0.2 setosa
22 3 4.7 3.2 1.3 0.2 setosa
23 4 4.6 3.1 1.5 0.2 setosa
24 5 5.0 3.6 1.4 0.2 setosa
25 6 5.4 3.9 1.7 0.4 setosa

7.7 Renaming Data Frames

To rename a dataframe on the server running H2O for a data set manipulated in R, use h2o.assign().
For instance, in the following example, the prostate data set was uploaded to the H2O instance and the
data was manipulated to remove outliers. h2o.assign() saves the new data set on the H2O server so
that it can be analyzed using H2O without overwriting the original data set.

1 prosPath <- system.file("extdata", "prostate.csv", package="h2o")
2 prostate.hex<-h2o.importFile(localH2O, path = prosPath)
3 |===================================================| 100%
4 ## Assign a new name to prostate dataset in the KV store
5 prostate.hex@key
6 [1] "prostate.hex"
7 prostate.hex <- h2o.assign(data = prostate.hex, key = "newName.hex")
8 prostate.hex@key
9 [1] "newName.hex"
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7.8 Getting Column Names

To obtain a list of the column names in the data set, use colnames() or names() with the name of
the R reference object in the parentheses.

1 ##Displays the titles of the columns
2 colnames(iris.hex)
3 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
4 names(iris.hex)
5 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

7.9 Getting Minimum and Maximum Values

To obtain the maximum values for the real-valued columns in a data set, use max() with the name of the
R reference object in the parentheses.

To obtain the minimum values for the real-valued columns in a data set, use min() with the name of the
R reference object in the parentheses.

min(prostate.hex$AGE)
[1] 43
max(prostate.hex$AGE)
[1] 79

7.10 Getting Quantiles

To request quantiles for an H2O parsed data set, use quantile() with the name of the R reference object in
the parentheses. To request a quantile for a single numerical column, use quantile(ReferenceObject$ColumnName),
where ReferenceObject represents the R reference object name and ColumnName represents the
name of the specified column. When you request for a full parsed data set consisting of a single column,
quantile() displays a matrix with quantile information for the data set.

prosPath <- system.file("extdata", "prostate.csv", package="h2o")
prostate.hex <- h2o.importFile(localH2O, path = prosPath)
# Returns the percentiles at 0, 10, 20, ..., 100%
prostate.qs <- quantile(prostate.hex$PSA, probs = (1:10)/10)
prostate.qs

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
2.60 4.48 5.77 7.40 8.75 11.00 13.70 20.16 33.21

139.70
# Take the outliers or the bottom and top 10% of data
PSA.outliers <- prostate.hex[prostate.hex$PSA <= prostate.qs["10%"] |

prostate.hex$PSA >= prostate.qs["90%"],]
# Check that the number of rows return is about 20% of the original data
nrow(prostate.hex)
[1] 380
nrow(PSA.outliers)
[1] 78
nrow(PSA.outliers)/nrow(prostate.hex)
[1] 0.2052632
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7.11 Summarizing Data

To generate a summary (similar to the one in R) for each of the columns in the data set, use summary()
with the name of the R reference object in the parentheses. For continuous real functions, this produces a
summary that includes information on quartiles, min, max, and mean. For factors, this produces information
about counts of elements within each factor level.

summary(australia.hex)
premax salmax minairtemp maxairtemp maxsst
Min. : 18.0 Min. :3441 Min. :272.6 Min. :285.0 Min. :285697
1st Qu.: 75.0 1st Qu.:3490 1st Qu.:277.0 1st Qu.:292.0 1st Qu.:290491
Median :150.0 Median :3533 Median :278.8 Median :299.9 Median :293643
Mean :161.5 Mean :3529 Mean :279.9 Mean :297.5 Mean :295676
3rd Qu.:250.0 3rd Qu.:3558 3rd Qu.:282.0 3rd Qu.:302.4 3rd Qu.:301942
Max. :450.0 Max. :3650 Max. :290.0 Max. :310.0 Max. :303697
maxsoilmoist Max_czcs runoffnew
Min. : 0.000 Min. : 0.160 Min. : 0.0
1st Qu.: 0.000 1st Qu.: 0.629 1st Qu.: 0.0
Median : 4.000 Median : 1.020 Median : 19.0
Mean : 5.117 Mean : 1.369 Mean : 232.2
3rd Qu.: 9.000 3rd Qu.: 1.705 3rd Qu.: 300.0
Max. :16.000 Max. :11.370 Max. :2400.0

7.12 Summarizing Data in a Table

To summarize the data, use h2o.table(). Because H2O can handle larger data sets, it is possible to
generate tables that are larger than R‘s capacity.

To summarize multiple columns, use head(h2o.table (ObjectName[, c(ColumnNumber,ColumnNumber)]))
where ObjectName is the name of the object in R and ColumnNumber is the number of the column.

# Counts of the ages of all patients
h2o.table(prostate.hex[,"AGE"])
IP Address: localhost
Port : 54321
Parsed Data Key: Last.value.128

row.names Count
1 43 1
2 47 1
3 50 2
4 51 3
5 52 2
6 53 4
h2o.table(prostate.hex[,"AGE"], return.in.R = TRUE)
row.names
43 47 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79
1 1 2 3 2 4 10 5 7 10 10 13 9 13 20 11 17 24 23 16 28 23 29 24

13 15 13 14 9 4 5 2

# Two-way table of ages (rows) and race (cols) of all patients
# Example: For the first row there is one count of a 43 year old that’s

labeled as RACE = 0
h2o.table(prostate.hex[,c("AGE","RACE")])
IP Address: localhost
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Port : 54321
Parsed Data Key: Last.value.139

row.names X0 X1 X2
1 43 1 0 0
2 47 0 1 0
3 50 0 2 0
4 51 0 3 0
5 52 0 2 0
6 53 0 3 1

7.13 Generating Random Uniformly Distributed Numbers

To append a column of random numbers to an H2O data frame for facilitating creation of testing/training
data splits for analysis and validation in H2O, use h2o.runif() with the name of the R reference object in
the parentheses. This method is best for customized frame splitting; otherwise, use h2o.splitFrame().
However, h2o.runif() is not as fast or stable as h2o.splitFrame().

s <- h2o.runif(phbirths.hex) ##Creates object for h2o.runif on phbirths
data set

summary (s) ##Summarize the results of h2o.runif
rnd
Min. :0.000105
1st Qu.:0.249472
Median :0.489969
Mean :0.492103
3rd Qu.:0.739377
Max. :0.998859

phbirths.train <- phbirths.hex[s <= 0.8,] ##Create training set with
threshold of 0.8

phbirths.train <- h2o.assign(phbirths.train, phbirths.train") ##Assign
name to training set

phbirths.test <- phbirths.hex[s > 0.8,] ##Create test set with threshold
to filter values greater than 0.8

phbirths.test <- h2o.assign(phbirths.test, phbirths.test") ##Assign name
to test set

nrow(phbirths.train) + nrow(phbirths.test) ##Combine results of test &
training sets, then display result

[1] 1115

7.14 Splitting Frames

To generate two subsets (according to specified ratios) from an existing H2O data set for testing/training,
use h2o.splitFrame(). This method is preferred over h2o.runif because it is faster and more
stable.

# Splits data in prostate data frame with a ratio of 0.75
prostate.split <- h2o.splitFrame(data = prostate.hex , ratios = 0.75)
# Creates training set from 1st data set in split
prostate.train <- prostate.split[[1]]
# Creates testing set from 2st data set in split
prostate.test <- prostate.split[[2]]
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7.15 Getting Frames

To create a reference object to the data frame in H2O, use h2o.getFrame(). This is helpful for users
that alternate between the web UI and the R API or multiple users accessing the same H2O instance. The
following example assumes prostate.hex is in the key-value (KV) store.

prostate.hex <- h2o.getFrame(h2o = localH2O, key = "prostate.hex")

7.16 Getting Models

To create a reference object for the model in H2O, use h2o.getModel(). This is helpful for users that
alternate between the web UI and the R API or multiple users accessing the same H2O instance. The
following example assumes gbm.model is in the key-value (KV) store.

gbm.model <- h2o.getModel(h2o = localH2O, key = "GBM_8e4591a9b413407b983d73fbd9eb44cf")

7.17 Listing H2O Objects

To generate a list of all H2O objects generated during a session, along with each objects size in bytes, use
h2o.ls() with the address of the instance in the parentheses. If the instance is local, use localH2O.

h2o.ls(localH2O)
Key Bytesize

1 GBM_8e4591a9b413407b983d73fbd9eb44cf 40617
2 GBM_a3ae2edf5dfadbd9ba5dc2e9560c405d 1516

7.18 Removing H2O Objects

To remove an H2O object on the server associated with an object in the R environment, use h2o.rm().
For optimal performance, we recommend removing the object from the R environment as well using
remove(), with the name of the object in the parentheses. If you do not specify an R environment, then
the current environment is used.

h2o.rm(object = localH2O, keys = "prostate.train")

7.19 Adding Functions

To add a user-defined function in R to the H2O instance, use h2o.addFunction(), with the IP address
of the H2O instance and the function in the parentheses.

# Send the functional expression to H2O
simpleFun <- h2o.addFunction(localH2O, function(x) { 2*x + 5 }, "simpleFun")
# Evaluate the expression across prostate’s AGE column
calculated = h2o.exec(expr_to_execute = simpleFun(prostate.hex[,"AGE"]), h2o
= localH2O)
cbind(prostate.hex[,"AGE"], calculated)
IP Address: localhost
Port : 54321
Parsed Data Key: Last.value.152

AGE fun
1 65 135
2 72 149
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3 70 145
4 76 157
5 69 143
6 71 147

8 Running Models

To run the models, use the following commands.

8.1 Gradient Boosted Models (GBM)

To generate gradient boosted models for developing forward-learning ensembles, use h2o.gbm(). In
the parentheses, define x (the predictor variable vector), y (the integer or categorical response variable),
the distribution type (multinomial is the default, gaussian is used for regression), and the name of the
H2OParsedData object.

For more information, use help(h2o.gbm).

library(h2o)
localH2O <- h2o.init(nthreads = -1)
iris.hex <- as.h2o(localH2O, object = iris, headers = T, key = "iris.hex")
iris.gbm <- h2o.gbm(y = 1, x = 2:5, data = iris.hex, n.trees = 10,
interaction.depth = 3, n.minobsinnode = 2, shrinkage = 0.2, distribution= "gaussian")
|===================================================| 100%
# To obtain the Mean-squared Error by tree from the model object:
iris.gbm@model[,"err"]
[1] 0.68112220 0.47215388 0.33393673 0.24465574 0.18596269 0.14500129
[7] 0.11792983 0.10003321 0.08793070 0.07862922 0.07232574

To generate a classification model that uses labels, use distribution= "multinomial":

iris.gbm2 <- h2o.gbm(y = 5, x = 1:4, data = iris.hex, n.trees = 15,
interaction.depth = 5, n.minobsinnode = 2, shrinkage = 0.01,
distribution= "multinomial")

IP Address: localhost
Port : 54321
Parsed Data Key: iris.hex

GBM Model Key: GBM_baa2f910e4dcbd61fa60da4f2d034687

Confusion matrix:
Reported on 0-fold cross-validated data

Predicted
Actual Iris-setosa Iris-versicolor Iris-virginica Error

Iris-setosa 50 0 0 0
Iris-versicolor 0 50 0 0
Iris-virginica 0 0 50 0
Totals 50 50 50 0

Overall Mean-squared Error: 0.3251718
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8.2 Generalized Linear Models (GLM)

Generalized linear models (GLM) are some of the most commonly-used models for many types of data
analysis use cases. While some data analysis can be done using general linear models, if the variables are
more complex, general linear models may not be as accurate. For example, if the dependent variable has a
non-continuous distribution or if the effect of the predictors is not linear, generalized linear models will
produce more accurate results than general linear models.

Generalized Linear Models (GLM) estimate regression models for outcomes following exponential distribu-
tions in general. In addition to the Gaussian (i.e. normal) distribution, these include Poisson, binomial,
gamma and Tweedie distributions. Each serves a different purpose, and depending on distribution and link
function choice, it can be used either for prediction or classification.

H2O’s GLM algorithm fits the generalized linear model with elastic net penalties. The model fitting
computation is distributed, extremely fast,and scales extremely well for models with a limited number (˜
low thousands) of predictors with non-zero coefficients. The algorithm can compute models for a single
value of a penalty argument or the full regularization path, similar to glmnet. It can compute gaussian
(linear), logistic, poisson, and gamma regression models.

To generate a generalized linear model for developing linear models for exponential distributions, use
h2o.glm(). You can apply regularization to the model by adjusting the lambda and alpha parameters.
For more information, use help(h2o.glm).

prostate.hex <- h2o.importFile(localH2O, path = "https://raw.github.com/
h2oai/h2o/master/smalldata/logreg/prostate.csv", key = "prostate.hex
")

|===================================================| 100%
h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"), data = prostate

.hex, family = "binomial", nfolds = 10, alpha = 0.5)
|===================================================| 100%

Coefficients:
AGE RACE DCAPS PSA Intercept
-0.01104 -0.63136 1.31888 0.04713 -1.10896

Normalized Coefficients:
AGE RACE DCAPS PSA Intercept
-0.07208 -0.19495 0.40972 0.94253 -0.33707

Degrees of Freedom: 379 Total (i.e. Null); 375 Residual
Null Deviance: 514.9
Residual Deviance: 461.3 AIC: 471.3
Deviance Explained: 0.10404
AUC: 0.68875 Best Threshold: 0.328

Confusion Matrix:
Predicted

Actual false true Error
false 127 100 0.441
true 51 102 0.333
Totals 178 202 0.397

Cross-Validation Models:
Nonzeros Deviance Explained

Model 1 4 0.6532738 0.048419803
Model 2 4 0.6316527 -0.006414532
Model 3 4 0.7100840 0.087779178
Model 4 4 0.8268698 0.243020554
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Model 5 4 0.6354167 0.153190735
Model 6 4 0.6888889 0.041892118
Model 7 4 0.7366071 0.164717509
Model 8 4 0.6711310 0.004897310
Model 9 4 0.7803571 0.200384622
Model 10 4 0.7435897 0.114548543

8.3 K-Means

To generate a K-Means model for data characterization, use h2o.kmeans(). This algorithm does not
rely on a dependent variable. For more information, use help(h2o.kmeans).

iris.km = h2o.kmeans(data = iris.hex, centers = 3, cols = 1:4)
|===================================================| 100%
print(iris.km)
IP Address: localhost
Port : 54321
Parsed Data Key: iris.hex
K-Means Model Key: KMeans2_937845cadf924db4612c3a7d8f9744a0
K-means clustering with 3 clusters of sizes 50, 38, 62
Cluster means:

C1 C2 C3 C4
1 5.006000 3.418000 1.464000 0.244000
2 6.850000 3.073684 5.742105 2.071053
3 5.901613 2.748387 4.393548 1.433871

....

8.4 Principal Components Analysis (PCA)

To map a set of variables onto a subspace using linear transformations, use h2o.prcomp(). This is the
first step in Principal Components Regression. For more information, use help(h2o.prcomp).

ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
|===================================================| 100%
australia.pca <- h2o.prcomp(data = australia.hex, standardize = TRUE)
|===================================================| 100%

....
PCA Model Key: PCA_8fbc38e360de5b3c1ae6b7cc754b499c
Standard deviations:
1.750703 1.512142 1.031181 0.8283127 0.6083786 0.5481364 0.4181621 0.2314953

....
summary(australia.pca)
Importance of components: PC1 PC2 PC3 PC4 PC5

PC6
Standard deviation 1.7507032 1.5121421 1.0311814 0.82831266 0.60837860
0.54813639
Proportion of Variance 0.3831202 0.2858217 0.1329169 0.08576273 0.04626556
0.03755669
Cumulative Proportion 0.3831202 0.6689419 0.8018588 0.88762155 0.93388711
0.97144380
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8.5 Principal Components Regression (PCR)

To map a set of variables to a set of linearly independent variables, use h2o.pcr(). The variables in
the new set are linearly independent linear combinations of the original variables and exist in a lower-
dimension subspace. This transformation is prepended to the regression model to improve results. For
more information, use help(h2o.pcr).

prostate.pcr <- h2o.pcr(x = c("AGE","RACE","PSA","DCAPS"), y = "CAPSULE",
data = prostate.hex, family = "binomial", nfolds = 0, alpha = 0.5,
ncomp = 2)

....
GLM2 Model Key: GLMModel__a71b8209871c4a70d037f113d99d4a89

Coefficients:
PC0 PC1 Intercept

3.55117 1.08603 -0.12964
....

8.6 Predictions

The following section describes some of the prediction methods available in H2O.

Predict: Generate outcomes of a data set with any model. Predict with GLM, GBM, Decision Trees or
Deep Learning models.

Confusion Matrix: Visualize the performance of an algorithm in a table to understand how a model
performs.

Area Under Curve (AUC): A graphical plot to visualize the performance of a model by its sensitivity,
true positives and false positives to select the best model.

Hit Ratio: A classification matrix to visualize the ratio of the number of correctly classified and incorrectly
classified cases.

PCA Score: Determine how well your feature selection fits a particular model.

Multi-Model Scoring: Compare and contrast multiple models on a data set to find the best performer to
deploy into production.

To apply an H2O model to a holdout set for predictions based on model results, use h2o.predict().
In the following example, H2O generates a model and then displays the predictions for that model.

prostate.fit = h2o.predict(object = prostate.glm, newdata = prostate.hex)
(prostate.fit)

predict X0 X1
1 0 0.7452267 0.2547732
2 1 0.3969807 0.6030193
3 1 0.4120950 0.5879050
4 1 0.3726134 0.6273866
5 1 0.6465137 0.3534863
6 1 0.4331880 0.5668120
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9 Support

There are multiple ways to request support for H2O:

Email: h2ostream@googlegroups.com

H2OStream on Google Groups: https://groups.google.com/d/forum/h2ostream

JIRA: http://jira.0xdata.com/

Meetup information: http://h2o.ai/events

10 References

R Package: http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html

R Ensemble documentation: http://www.stat.berkeley.edu/˜ledell/R/h2oEnsemble.
pdf

Slide deck: http://h2o.ai/blog/2013/08/big-data-science-in-h2o-with-r/

R project website: http://www.r-project.org

h2ostream@googlegroups.com
https://groups.google.com/d/forum/h2ostream
http://jira.0xdata.com/
http://h2o.ai/events
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html
http://www.stat.berkeley.edu/~ledell/R/h2oEnsemble.pdf
http://www.stat.berkeley.edu/~ledell/R/h2oEnsemble.pdf
http://h2o.ai/blog/2013/08/big-data-science-in-h2o-with-r/
http://www.r-project.org
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11 Appendix: Commands

The following section lists some common commands by function that are available in R and a brief
description of each command.

11.1 Data Set Operations

Data Import/Export

h2o.downloadCSV: Download a H2O dataset to a CSV file on local disk.
h2o.exportFile: Export H2O Data Frame to a File.
h2o.importFile: Import a file from the local path and parse it.
h2o.parseRaw: Parse a raw data file.
h2o.uploadFile: Upload a file from the local drive and parse it.

Native R to H2O Coercion

as.h2o: Convert an R object to an H2O object.

H2O to Native R Coercion

as.data.frame: Check if an object is a data frame, or coerce it if possible.
as.matrix: Convert the specified argument to a matrix.
as.table: Build a contingency table of the counts at each combination of factor levels.

Data Generation

h2o.createFrame: Create an H2O data frame, with optional randomization.
h2o.runif: Produce a vector of random uniform numbers.
h2o.interaction: Create interaction terms between categorical features of an H2O Frame.
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Data Sampling / Splitting

h2o.sample: Sample an existing H2O Frame by number of observations.
h2o.splitFrame: Split an existing H2O data set according to user-specified ratios.
h2o.nFoldExtractor: Split an existing H2O data set into N folds and return a specified holdout split,
and the rest.

Missing Data Handling

h2o.impute: Impute a column of data using the mean, median, or mode.
h2o.insertMissingValues: Replaces a user-specified fraction of entries in a H2O dataset with
missing values.
h2o.ignoreColumns: Returns columns’ names of a parsed H2O data object that are recommended to
be ignored in an analysis per the specified ratio in max na.

11.2 General Data Operations

Subscripting example to pull pieces from data object.

x[i]
x[i, j, ... , drop = TRUE]
x[[i]]
x$name

x[i] <- value
x[i, j, ...] <- value
x[[i]] <- value
x$i <- value

Subsetting
head, tail: Return the First or Last Part of an Object

Concatenation

c: Combine Values into a Vector or List
h2o.cbind: Take a sequence of H2O datasets and combine them by column.

Data Attributes

colnames: Return column names for a parsed H2O data object.
colnames<-: Retrieve or set the row or column names of a matrix-like object.
names: Get the name of an object.
names<-: Set the name of an object.
dim: Retrieve the dimension of an object.
length: Get the length of vectors (including lists) and factors.
nrow: Return a count of the number of rows in an H2OParsedData object.
ncol: Return a count of the number of columns in an H2OParsedData object.
h2o.anyFactor: Check if an H2O parsed data object has any categorical data columns.
is.factor: Check if a given column contains categorical data.

Data Type Coercion

as.factor: Convert a column from numeric to factor.
as.Date: Converts a column from factor to date.
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11.3 Methods from Group Generics

Math (H2O)

abs: Compute the absolute value of x.
sign: Return a vector with the signs of the corresponding elements of x (the sign of a real number is 1, 0,
or -1 if the number is positive, zero, or negative, respectively).
sqrt: Computes the principal square root of x,

√
x.

ceiling: Take a single numeric argument x and return a numeric vector containing the smallest integers
not less than the corresponding elements of x.
floor: Take a single numeric argument x and return a numeric vector containing the largest integers not
greater than the corresponding elements of x.
trunc: Take a single numeric argument x and return a numeric vector containing the integers formed by
truncating the values in x toward 0.
log: Compute logarithms (by default, natural logarithms).
exp: Compute the exponential function.

Math (generic)

cummax: Display a vector of the cumulative maxima of the elements of the argument.
cummin: Display a vector of the cumulative minima of the elements of the argument.
cumprod: Display a vector of the cumulative products of the elements of the argument.
cumsum: Display a vector of the cumulative sums of the elements of the argument.
log10: Compute common (i.e., base 10) logarithms
log2: Compute binary (i.e., base 2) logarithms.
log1p: Compute log(1+x) accurately also for |x|<< 1.
acos: Compute the trigonometric arc-cosine.
acosh: Compute the hyperbolic arc-cosine.
asin: Compute the trigonometric arc-sine.
asinh: Compute the hyperbolic arc-sine.
atan: Compute the trigonometric arc-tangent.
atanh: Compute the hyperbolic arc-tangent.
expm1: Compute exp(x) - 1 accurately also for |x|<< 1.
cos: Compute the trigonometric cosine.
cosh: Compute the hyperbolic cosine.
cospi: Compute the trigonometric two-argument arc-cosine.
sin: Compute the trigonometric sine.
sinh: Compute the hyperbolic sine.
sinpi: Compute the trigonometric two-argument arc-sine.
tan: Compute the trigonometric tangent.
tanh: Compute the hyperbolic tangent.
tanpi: Compute the trigonometric two-argument arc-tangent.
gamma: Display the gamma function γx
lgamma: Display the natural logarithm of the absolute value of the gamma function.
digamma: Display the first derivative of the logarithm of the gamma function.
trigamma: Display the second derivative of the logarithm of the gamma function.

Math2 (H2O)

round: Round the values to the specified number of decimal places (default 0).
signif: Round the values to the specified number of significant digits.

Summary (H2O)

max: Display the maximum of all the input arguments.
min: Display the minimum of all the input arguments.
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range: Display a vector containing the minimum and maximum of all the given arguments.
sum: Calculate the sum of all the values present in its arguments.

Summary (generic)

prod: Display the product of all values present in its arguments.
any: Given a set of logical vectors, determine if at least one of the values is true.
all: Given a set of logical vectors, determine if all of the values are true.

11.4 Other Aggregations

Non-Group Generic Summaries

mean: Generic function for the (trimmed) arithmetic mean.
sd: Calculate the standard deviation of a column of continuous real valued data.
var: Compute the variance of x.
summary: Produce result summaries of the results of various model fitting functions.
quantile: Obtain and display quantiles for H2O parsed data.

Row / Column Aggregation

apply: Apply a function over an H2O parsed data object (an array).
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Group By Aggregation

h2o.ddply: Split H2O dataset, apply a function, and display results.
h2o.addFunction: Add a function defined in R to the H2O server for future use.

Tabulation

h2o.table: Use the cross-classifying factors to build a table of counts at each combination of factor
levels.

11.5 Data Munging

General Column Manipulations

is.na: Display missing elements.
unique: Display a vector, data frame, or array with duplicate elements/rows removed.

Element Index Selection

findInterval: Find Interval Numbers or Indices.
h2o.which: Display the row numbers for which the condition is true.

Conditional Element Value Selection

h2o.ifelse: Apply conditional statements to numeric vectors in H2O parsed data objects.

Numeric Column Manipulations

h2o.cut: Convert H2O Numeric Data to Factor.
diff: Display suitably lagged and iterated differences.

Character Column Manipulations

h2o.strsplit: Splits the given factor column on the input split.
h2o.tolower: Change the elements of a character vector to lower case.
h2o.toupper: Change the elements of a character vector to lower case.
h2o.trim: Remove leading and trailing white space.
h2o.gsub: Match a pattern & replace all instances of the matched pattern with the replacement string
globally.
h2o.sub: Match a pattern & replace the first instance of the matched pattern with the replacement string.

Factor Level Manipulations

h2o.levels: Display a list of the unique values found in a column of categorical data.
revalue: Replace specified values with new values in a factor or character vector.

Date Manipulations

h2o.month: Convert the entries of a H2OParsedData object from milliseconds to months (on a 0 to 11
scale).
h2o.year: Convert the entries of a H2OParsedData object from milliseconds to years, indexed starting
from 1900.

Matrix Operations
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%∗%: Multiply two matrices, if they are conformable.
t: Given a matrix or data.frame x, t returns the transpose of x.

11.6 Data Modeling

Model Training

h2o.coxph: Fit a Cox Proportional Hazards Model.
h2o.gbm: Build gradient boosted classification trees and gradient boosted regression trees on a parsed
data set.
h2o.glm: Fit a generalized linear model, specified by a response variable, a set of predictors, and a
description of the error distribution.
h2o.kmeans: Perform k-means clustering on a data set.
h2o.naiveBayes: Build gradient boosted classification trees and gradient boosted regression trees on a
parsed data set.
h2o.pcr: Run GLM regression on PCA results, and allow for transformation of test data to match PCA
transformations of training data.
h2o.prcomp: Perform principal components analysis on the given data set.
h2o.randomForest: Perform random forest classification on a data set.

Deep Learning

h2o.deeplearning: Perform Deep Learning neural networks on an H2OParsedData object.
h2o.anomaly: Detect anomalies in a H2O dataset using a H2O deep learning model with auto-encoding.
h2o.deepfeatures: Extract the non-linear features from a H2O dataset using a H2O deep learning
model.
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Model Scoring

predict.H2OModel: Obtain predictions from various fitted H2O model objects.

Classification Model Helpers

h2o.confusionMatrix: Display prediction errors for classification data from a column of predicted
responses and a column of actual (reference) responses in H2O.
h2o.gains: Construct the gains table and lift charts for binary outcome algorithms.
h2o.hit ratio table: Retrieve the Hit Ratios. If train, valid, and xval parameters are FALSE
(default), then the training Hit Ratios value is returned. If more than one parameter is set to TRUE, then
a named list of Hit Ratio tables are returned, where the names are train, valid, or xval.
h2o.performance: Evaluate the predictive performance of a model via various measures.

Clustering Helper

h2o.gapStatistic: Measure the suitability of the fit of a clustering algorithm.

Regression Model Helper

h2o.mse: Display the mean squared error calculated from a column of predicted responses and a column
of actual (reference) responses in H2O.

GLM Helper

h2o.getGLMLambdaModel: Retrieve the H2O GLM model built using a specific value of lambda from
a lambda search.

11.7 H2O Cluster Operations

H2O Key Value Store Access

h2o.assign: Assign H2O hex.keys to objects in their R environment.
h2o.getFrame: Get a reference to an existing H2O data set.
h2o.getModel: Get a reference to an existing H2O model.
h2o.ls: Display a list of object keys in the running instance of H2O.
h2o.rm: Remove H2O objects from the server where the instance of H2O is running, but does not remove
it from the R environment.

H2O Object Serialization

h2o.loadAll: Load all H2OModel object in a directory from disk that was saved using h2o.saveModel
or h2o.saveAll.
h2o.loadModel: Load an H2OModel object from disk.
h2o.saveAll: Save all H2OModel objects to disk to be loaded back into H2O using h2o.loadModel
or h2o.loadAll.
h2o.saveModel: Save an H2OModel object to disk to be loaded back into H2O using h2o.loadModel.

H2O Cluster Connection

h2o.init (nthreads = -1): Connect to a running H2O instance using all CPUs on the host and
check the local H2O R package is the correct version.
h2o.shutdown: Shut down the specified H2O instance. All data on the server will be lost!
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H2O Load Balancing

h2o.rebalance: Rebalance (repartition) an existing H2O data set into given number of chunks (per
Vec), for load-balancing across multiple threads or nodes.

H2O Cluster Information

h2o.clusterInfo: Display the name, version, uptime, total nodes, total memory, total cores and health
of a cluster running H2O.
h2o.clusterStatus: Retrieve information on the status of the cluster running H2O.

H2O Logging

h2o.clearLog: Clear all H2O R command and error response logs from the local disk.
h2o.downloadAllLogs: Download all H2O log files to the local disk.
h2o.logAndEcho: Write a message to the H2O Java log file and echo it back.
h2o.openLog: Open existing logs of H2O R POST commands and error responses on the local disk.
h2o.getLogPath: Get the file path for the H2O R command and error response logs.
h2o.setLogPath: Set the file path for the H2O R command and error response logs.
h2o.startLogging: Begin logging H2O R POST commands and error responses.
h2o.stopLogging: Stop logging H2O R POST commands and error responses.
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