
Machine Learning with R and H2O

Spencer Aiello Eric Eckstrand Anqi Fu

Mark Landry Patrick Aboyoun

Edited by: Jessica Lanford

http://h2o.ai/resources/

May 2016: Sixth Edition

http://h2o.ai/resources/

Machine Learning with R and H2O
by Spencer Aiello, Eric Eckstrand,
Anqi Fu, Mark Landry,
& Patrick Aboyoun
Edited by: Jessica Lanford

Published by H2O.ai, Inc.
2307 Leghorn St.
Mountain View, CA 94043

©2016 H2O.ai, Inc. All Rights Reserved.

May 2016: Sixth Edition

Photos by ©H2O.ai, Inc.

All copyrights belong to their respective owners.
While every precaution has been taken in the
preparation of this book, the publisher and
authors assume no responsibility for errors or
omissions, or for damages resulting from the
use of the information contained herein.

Printed in the United States of America.

Contents

1 Introduction 5

2 What is H2O? 6

3 Installation 7
3.1 Installing R . 7
3.2 Installing H2O from R . 8
3.3 Example Code . 9
3.4 Citation . 9

4 H2O Initialization 9
4.1 Launching from R . 9
4.2 Launching from the Command Line 11
4.3 Launching on Hadoop . 11
4.4 Checking Cluster Status . 12

5 Data Preparation in R 12
5.1 Notes . 12

6 Models 13
6.1 Supervised Learning . 14
6.2 Unsupervised Learning . 14
6.3 Modeling Constructs . 14

7 Demo: GLM 15

8 Data Manipulation in R 17
8.1 Importing Files . 17
8.2 Uploading Files . 18
8.3 Finding Factors . 18
8.4 Converting to Factors . 18
8.5 Converting Data Frames . 19
8.6 Transferring Data Frames . 19
8.7 Renaming Data Frames . 20
8.8 Viewing Column Names . 21
8.9 Getting Minimum and Maximum Values 21
8.10 Getting Quantiles . 21
8.11 Summarizing Data . 22
8.12 Summarizing Data in a Table 23
8.13 Generating Random Numbers 24

8.14 Splitting Frames . 25
8.15 Getting Frames . 26
8.16 Getting Models . 26
8.17 Listing H2O Objects . 26
8.18 Removing H2O Objects . 27
8.19 Adding Functions . 27

9 Running Models 28
9.1 Gradient Boosted Models (GBM) 28
9.2 Generalized Linear Models (GLM) 30
9.3 K-means . 32
9.4 Principal Components Analysis (PCA) 32
9.5 Predictions . 33

10 Appendix: Commands 34
10.1 Dataset Operations . 34
10.2 General Data Operations . 35
10.3 Methods from Group Generics 36
10.4 Other Aggregations . 38
10.5 Data Munging . 39
10.6 Data Modeling . 40
10.7 H2O Cluster Operations . 42

11 Authors 44

12 References 45

Introduction | 5

1 Introduction
This documentation describes how to use H2O in the R environment. More
information on H2O’s system and algorithms (as well as R user documentation)
is available at the H2O website at http://docs.h2o.ai.

R uses a REST API to connect to H2O. To use H2O in R or launch H2O from
R, specify the IP address and port number of the H2O instance in the R
environment . Datasets are not directly transmitted through the REST API.
Instead, commands (for example, importing a dataset at specified HDFS
location) are sent either through the browser or the REST API to perform the
specified task.

The dataset is then assigned an identifier (the .hex file type in H2O) used as a
reference in commands to the web server. After preparing the dataset for
modeling by defining significant data and removing insignificant data, H2O
creates a model that represents the results of the data analysis. These models
are assigned IDs used as references in commands. One of the most popular
models for data analysis is GLM.

GLM estimates regression models for outcomes following exponential
distributions in general. In addition to the Gaussian (i.e. normal) distribution,
these include binomial, gamma, Poisson, and Tweedie distributions. Each
serves a different purpose, and depending on distribution and link function, can
be used for prediction or classification.

This booklet demonstrates H2O’s implementation of GLM in an R environment.
For more information on GLM, refer to Generalized Linear Modeling with
H2O at http://h2o.ai/resources/.

H2O supports Spark, YARN, and most versions of Hadoop. Hadoop is a
scalable open-source file system that uses clusters for distributed storage and
dataset processing. Depending on the size of your data, H2O can run on your
desktop or scale using multiple nodes with Hadoop, an EC2 cluster, or S3
storage.

H2O nodes run as JVM invocations on Hadoop nodes. For performance
reasons, we recommend that you do not run an H2O node on the same
hardware as the Hadoop NameNode. Because H2O nodes run as mapper tasks
in Hadoop, administrators can view them in the normal JobTracker and
TaskTracker frameworks, providing process-level (i.e. JVM instance-level)
visibility.

H2O helps R users make the leap from laptop-based processing to large-scale
environments. Hadoop lets H2O users scale their data processing capabilities

http://docs.h2o.ai
http://h2o.ai/resources/

6 | What is H2O?

based on their current needs. Using H2O, R, and Hadoop, you can create a
complete end-to-end data analysis solution.

This document describes the four steps of data analysis with H2O:

1. installing H2O

2. preparing your data for modeling (data munging)

3. creating a model using simple but powerful machine learning algorithms

4. scoring your models

2 What is H2O?
H2O is fast, scalable, open-source machine learning and deep learning for
smarter applications. With H2O, enterprises like PayPal, Nielsen Catalina,
Cisco, and others can use all their data without sampling to get accurate
predictions faster. Advanced algorithms such as deep learning, boosting, and
bagging ensembles are built-in to help application designers create smarter
applications through elegant APIs. Some of our initial customers have built
powerful domain-specific predictive engines for recommendations, customer
churn, propensity to buy, dynamic pricing, and fraud detection for the
insurance, healthcare, telecommunications, ad tech, retail, and payment
systems industries.

Using in-memory compression, H2O handles billions of data rows in-memory,
even with a small cluster. To make it easier for non-engineers to create
complete analytic workflows, H2O’s platform includes interfaces for R, Python,
Scala, Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web
interface, Flow. H2O is designed to run in standalone mode, on Hadoop, or
within a Spark Cluster, and typically deploys within minutes.

H2O includes many common machine learning algorithms, such as generalized
linear modeling (linear regression, logistic regression, etc.), Näıve Bayes,
principal components analysis, k-means clustering, and others. H2O also
implements best-in-class algorithms at scale, such as distributed random forest,
gradient boosting, and deep learning. Customers can build thousands of
models and compare the results to get the best predictions.

H2O is nurturing a grassroots movement of physicists, mathematicians, and
computer scientists to herald the new wave of discovery with data science by
collaborating closely with academic researchers and industrial data scientists.
Stanford university giants Stephen Boyd, Trevor Hastie, Rob Tibshirani advise
the H2O team on building scalable machine learning algorithms. With

Installation | 7

hundreds of meetups over the past three years, H2O has become a
word-of-mouth phenomenon, growing amongst the data community by a
hundred-fold, and is now used by 30,000+ users and is deployed using R,
Python, Hadoop, and Spark in 2000+ corporations.

Try it out

� Download H2O directly at http://h2o.ai/download.

� Install H2O’s R package from CRAN at
https://cran.r-project.org/web/packages/h2o/.

� Install the Python package from PyPI at
https://pypi.python.org/pypi/h2o/.

Join the community

� To learn about our meetups, training sessions, hackathons, and product
updates, visit http://h2o.ai.

� Visit the open source community forum at https://groups.google.
com/d/forum/h2ostream.

� Join the chat at https://gitter.im/h2oai/h2o-3.

3 Installation
H2O requires Java; if you do not already have Java installed, install it from
https://java.com/en/download/ before installing H2O.

To use H2O with R, start H2O outside of R and connect to it, or launch H2O
from R. However, if you launch H2O from R and close the R session, the H2O
session closes as well. The H2O session directs R to the datasets and models
located in H2O.

This following sections describe:

� installing R

� installing H2O from R

3.1 Installing R

To download R:

1. Go to http://cran.r-project.org/mirrors.html.

http://h2o.ai/download
https://cran.r-project.org/web/packages/h2o/
https://pypi.python.org/pypi/h2o/
http://h2o.ai
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
https://gitter.im/h2oai/h2o-3
https://java.com/en/download/
http://cran.r-project.org/mirrors.html

8 | Installation

2. Select your closest local mirror.

3. Select your operating system (Linux, OS X, or Windows).

4. Depending on your OS, download the appropriate file, along with any
required packages.

5. When the download is complete, unzip the file and install.

3.2 Installing H2O from R

To load a recent H2O package from CRAN, run:

Example in R

1 install.packages("h2o")

Note: The version of H2O in CRAN is often one release behind the current
version.

For the latest recommended version, download the latest stable H2O-3 build
from the H2O download page:

1. Go to http://h2o.ai/download.

2. Choose the latest stable H2O-3 build.

3. Click the “Install in R” tab.

4. Copy and paste the commands into your R session.

After H2O is installed on your system, verify the installation completed
successfully by initializing H2O:

Example in R

1 library(h2o)
2

3 #Start H2O on your local machine using all available
cores

4 #(By default, CRAN policies limit use to only 2 cores)
5 h2o.init(nthreads = -1)
6

7 #Get help
8 ?h2o.glm
9 ?h2o.gbm

10

11 #Show a demo

http://h2o.ai/download

H2O Initialization | 9

12 # demo(h2o.glm)
13 # demo(h2o.gbm)

3.3 Example Code

R code for the examples in this document is located here:

http://github.com/h2oai/h2o-3/tree/master/h2o-docs/
src/booklets/v2_2015/source/R_Vignette_code_examples

3.4 Citation

To cite this booklet, use the following:

Aiello, S., Eckstrand, E., Fu, A., Landry, M., and Aboyoun, P. (May 2016).
Machine Learning with R and H2O. http://h2o.ai/resources/.

4 H2O Initialization
This section describes how to launch H2O:

� from R

� from the command line

� on Hadoop

4.1 Launching from R

To specify the number of CPUs for the H2O session, use the nthreads =
parameter in the h2o.init command. -2 uses the CRAN default of 2 CPUs.
-1 uses all CPUs on the host, which is strongly recommended. To use a
specific number of CPUs, enter a positive integer.

To specify the maximum amount of memory for the H2O session, use the
max mem size parameter in the h2o.init command. The value must a
multiple of 1024 greater than 2MB. Append the letter m or M to indicate
megabytes, or g or G to indicate gigabytes.

If you do not specify a value for max mem size when you run h2o.init,
the default heap size of the H2O instance running on 32-bit Java is 1g.

http://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/R_Vignette_code_examples
http://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/R_Vignette_code_examples
http://h2o.ai/resources/

10 | H2O Initialization

For best performance, the allocated memory should be 4x the size of your data,
but never more than the total amount of memory on your computer. For larger
datasets, we recommend running on a server or service with more memory
available for computing.

H2O checks the Java version and suggests an upgrade if you are running 32-bit
Java. On 64-bit Java, the heap size is 1/4 of the total memory available on the
machine.

To launch H2O locally from R, run the following in R:

Example in R

1 library(h2o)
2 # Starts H2O using localhost IP, port 54321, all CPUs,

and 4g of memory
3 h2o.init(ip = ’localhost’, port = 54321, nthreads= -1,

max_mem_size = ’4g’)

After successfully launching, R displays output similar to the following example:

1 Successfully connected to http://localhost:54321
2 R is connected to H2O cluster:
3 H2O cluster uptime: 11 minutes 35 seconds
4 H2O cluster version: 2.7.0.1497
5 H2O cluster name: H2O_started_from_R
6 H2O cluster total nodes: 1
7 H2O cluster total memory: 3.56 GB
8 H2O cluster total cores: 8
9 H2O cluster allowed cores: 8

10 H2O cluster healthy: TRUE

To launch H2O locally with default initialization arguments, use the following:

Example in R

1 h2o.init()

H2O Initialization | 11

To connect to an established H2O cluster (in a multi-node Hadoop
environment, for example) specify the IP address and port number for the
established cluster using the ip and port parameters in the h2o.init()
command.

Example in R

1 h2o.init(ip = "123.45.67.89", port = 54321)

4.2 Launching from the Command Line

A simple way to launch H2O from the command line is to download the H2O
zip file from the H2O download page. Unzip and launch H2O with the
following:

1 unzip h2o-3.5.0.1-*.zip
2 cd h2o-3.5.0.1-*
3 java -jar h2o.jar

See the H2O Documentation for additional JVM and H2O command line
options. After launching the H2O instance, connect to it from R with
h2o.init() as described above.

4.3 Launching on Hadoop

To launch H2O nodes and form a cluster on the Hadoop cluster, run:

1 hadoop jar h2odriver.jar -nodes 1 -mapperXmx 6g -
output hdfsOutputDirName

� You must launch the Hadoop-specific H2O driver jar
(h2odriver.jar) for your Hadoop distribution. Specific driver jar
files are available for the following Hadoop versions:

– cdh5.2
– cdh5.3
– cdh5.4.2

– hdp2.1
– hdp2.2
– hdp2.3

– mapr3.1.1
– mapr4.0.1
– mapr5.0

� The above command launches exactly one 6g node of H2O; however, we
recommend launching the cluster with 4 times the memory of your data
file.

12 | Data Preparation in R

� mapperXmx is the mapper size or the amount of memory allocated to
each node.

� nodes is the number of nodes requested to form the cluster.

� output is the name of the directory created each time a H2O cloud is
created so it is necessary for the name to be unique each time it is
launched.

4.4 Checking Cluster Status

To check the status and health of the H2O cluster, use
h2o.clusterInfo().

Example in R

1 library(h2o)
2 h2o.init()
3 h2o.clusterInfo()

An easy-to-read summary of information about the cluster displays.

1

2 R is connected to H2O cluster:
3 H2O cluster uptime: 43 minutes 43 seconds
4 H2O cluster version: 2.7.0.1497
5 H2O cluster name: H2O_started_from_R
6 H2O cluster total nodes: 1
7 H2O cluster total memory: 3.56 GB
8 H2O cluster total cores: 8
9 H2O cluster allowed cores: 8

10 H2O cluster healthy: TRUE

5 Data Preparation in R
The following section contains information about data preparation (also known
as data munging) and some of the tools and methods available in H2O, as well
as a data training example.

5.1 Notes

� Although it may seem like you are manipulating the data in R, once the
data has been passed to H2O, all data munging occurs in the H2O

Models | 13

instance. The information is passed to R through JSON APIs, so some
functions may not have another method.

� You are limited by the total amount of memory allocated to the H2O
instance, not by R’s ability to handle data. To process large datasets,
make sure to allocate enough memory. For more information, refer to
Launching from R.

� You can manipulate datasets with thousands of factor levels using H2O
in R, so if you ask H2O to display a table in R with information from
high cardinality factors, the results may overwhelm R‘s capacity.

� To manipulate data in R and not in H2O, use as.data.frame(),
as.h2o(), and str().

– as.data.frame() converts an H2O data frame into an R data
frame. If your request exceeds the amount of data supported by R,
the R session will crash. If possible, we recommend only taking
subsets of the entire dataset (the necessary data columns or rows)
instead of the whole dataset.

– as.h2o() transfers data from R to the H2O instance. For
successful data transfer, we recommend confirming enough memory
is allocated to the H2O instance.

– str.H2OFrame() returns the elements of the new object to
confirm that the data transferred correctly. It′s a good way to
verify there were no data loss or conversion issues.

6 Models

The following section describes the features and functions of some common
models available in H2O. For more information about running these models in
R using H2O, refer to Running Models.

H2O supports the following models:

� Deep Learning
� Näıve Bayes
� Principal Components Analysis

(PCA)
� K-means

� Generalized Linear Models
(GLM)

� Gradient Boosted Regression
(GBM)

� Distributed Random Forest
(DRF)

14 | Models

The list is growing quickly, so check www.h2o.ai to see the latest additions.
The following list describes some common model types and features.

6.1 Supervised Learning

Generalized Linear Models (GLM): Provides flexible generalization of
ordinary linear regression for response variables with error distribution models
other than a Gaussian (normal) distribution. GLM unifies various other
statistical models, including Poisson, linear, logistic, and others when using `1
and `2 regularization.

Distributed Random Forest (DRF): Averages multiple decision trees, each
created on different random samples of rows and columns. It is easy to use,
non-linear, and provides feedback on the importance of each predictor in the
model, making it one of the most robust algorithms for noisy data.

Gradient Boosting (GBM): Produces a prediction model in the form of an
ensemble of weak prediction models. It builds the model in a stage-wise
fashion and is generalized by allowing an arbitrary differentiable loss function.
It is one of the most powerful methods available today.

Deep Learning: Models high-level abstractions in data by using non-linear
transformations in a layer-by-layer method. Deep learning is an example of
supervised learning, which can use unlabeled data that other algorithms cannot.

Näıve Bayes: Generates a probabilistic classifier that assumes the value of a
particular feature is unrelated to the presence or absence of any other feature,
given the class variable. It is often used in text categorization.

6.2 Unsupervised Learning

K-means: Reveals groups or clusters of data points for segmentation. It
clusters observations into k-number of points with the nearest mean.

Anomaly Detection: Identifies the outliers in your data by invoking the deep
learning autoencoder, a powerful pattern recognition model.

6.3 Modeling Constructs

Grid Search: Performs standard hyper-parameter optimization to simplify
model configuration.

After creating a model, use it to make predictions. For more information about
predictions, refer to Predictions.

www.h2o.ai

Demo: GLM | 15

7 Demo: GLM
The following demo demonstrates how to:

1. Import a file

2. Define significant data

3. View data

4. Create testing and training sets using sampling

5. Define the model

6. Display the results

Example in R

1 # Import dataset and display summary
2 library(h2o)
3 h2o.init()
4 airlinesURL = "https://s3.amazonaws.com/h2o-airlines-

unpacked/allyears2k.csv"
5 airlines.hex = h2o.importFile(path = airlinesURL,

destination_frame = "airlines.hex")
6 summary(airlines.hex)
7

8 # View quantiles and histograms
9 #high_na_columns = h2o.ignoreColumns(data = airlines.

hex)
10 quantile(x = airlines.hex$ArrDelay, na.rm = TRUE)
11 h2o.hist(airlines.hex$ArrDelay)
12

13 # Find number of flights by airport
14 originFlights = h2o.group_by(data = airlines.hex, by =

"Origin", nrow("Origin"),gb.control=list(na.
methods="rm"))

15 originFlights.R = as.data.frame(originFlights)
16

17 # Find number of flights per month
18 flightsByMonth = h2o.group_by(data = airlines.hex, by

= "Month", nrow("Month"),gb.control=list(na.
methods="rm"))

19 flightsByMonth.R = as.data.frame(flightsByMonth)
20

21 # Find months with the highest cancellation ratio

16 | Demo: GLM

22 which(colnames(airlines.hex)=="Cancelled")
23 cancellationsByMonth = h2o.group_by(data = airlines.

hex, by = "Month", sum("Cancelled"),gb.control=
list(na.methods="rm"))

24 cancellation_rate = cancellationsByMonth$sum_Cancelled
/flightsByMonth$nrow_Month

25 rates_table = h2o.cbind(flightsByMonth$Month,
cancellation_rate)

26 rates_table.R = as.data.frame(rates_table)
27

28 # Construct test and train sets using sampling
29 airlines.split = h2o.splitFrame(data = airlines.hex,

ratios = 0.85)
30 airlines.train = airlines.split[[1]]
31 airlines.test = airlines.split[[2]]
32

33 # Display a summary using table-like functions
34 h2o.table(airlines.train$Cancelled)
35 h2o.table(airlines.test$Cancelled)
36

37 # Set predictor and response variables
38 Y = "IsDepDelayed"
39 X = c("Origin", "Dest", "DayofMonth", "Year", "

UniqueCarrier", "DayOfWeek", "Month", "DepTime", "
ArrTime", "Distance")

40 # Define the data for the model and display the
results

41 airlines.glm <- h2o.glm(training_frame=airlines.train,
x=X, y=Y, family = "binomial", alpha = 0.5)

42 # View model information: training statistics,
performance, important variables

43 summary(airlines.glm)
44

45 # Predict using GLM model
46 pred = h2o.predict(object = airlines.glm, newdata =

airlines.test)
47 # Look at summary of predictions: probability of TRUE

class (p1)
48 summary(pred$p1)

Data Manipulation in R | 17

8 Data Manipulation in R

The following section describes some common R commands. For a complete
command list, including parameters, refer to http://h2o-release.s3.
amazonaws.com/h2o/latest_stable_Rdoc.html.

For additional help within R’s Help tab, precede the command with a question
mark (for example, ?h2o) for suggested commands containing the search
terms. For more information on a command, precede the command with two
question marks (??h2o).

8.1 Importing Files

The H2O package consolidates all of the various supported import functions
using h2o.importFile(). There are a few ways to import files shown in
the following examples:

Example in R

1 #To import small iris data file from H2O’s package:
2 irisPath = system.file("extdata", "iris.csv", package=

"h2o")
3 iris.hex = h2o.importFile(path = irisPath, destination

_frame = "iris.hex")
4

5 #To import an entire folder of files as one data
object:

6 # pathToFolder = "/Users/data/airlines/"
7 # airlines.hex = h2o.importFile(path = pathToFolder,

destination_frame = "airlines.hex")
8

9 #To import from HDFS and connect to H2O in R using the
IP and port of an H2O instance running on your

Hadoop cluster:
10 # h2o.init(ip= <IPAddress>, port =54321, nthreads =

-1)
11 # pathToData = "hdfs://mr-0xd6.h2oai.loc/datasets/

airlines_all.csv"
12 # airlines.hex = h2o.importFile(path = pathToData,

destination_frame = "airlines.hex")

http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html

18 | Data Manipulation in R

8.2 Uploading Files

To upload a file in a directory local to your H2O instance, use
h2o.importFile(). h2o.uploadFile() uploads data local to your
H2O instance as well as uploading data local to your R session. In the
parentheses, specify the H2O reference object in R and the complete URL or
normalized file path for the file.

Example in R

1 irisPath = system.file("extdata", "iris.csv", package=
"h2o")

2 iris.hex = h2o.uploadFile(path = irisPath, destination
_frame = "iris.hex")

8.3 Finding Factors

To determine if any column contains categorical data (also known as a factor),
use h2o.anyFactor(), with the R reference object in the parentheses.

Example in R

1 irisPath = system.file("extdata", "iris_wheader.csv",
package="h2o")

2 iris.hex = h2o.importFile(path = irisPath)
3 h2o.anyFactor(iris.hex)

8.4 Converting to Factors

To convert an integer into a non-ordered factor (also called an enum or
categorical), use as.factor() with the name of the R reference object in
parentheses, followed by the number of the column to convert in brackets.

Example in R

1 # Import prostate data
2 prosPath <- system.file("extdata", "prostate.csv",

package="h2o")
3 prostate.hex <- h2o.importFile(path = prosPath)
4

5 # Converts column 4 (RACE) to an enum
6 as.factor(prostate.hex[,4])
7

Data Manipulation in R | 19

8 prostate.hex[,4] <- as.factor(prostate.hex[,4])
9 as.factor(prostate.hex[,4])

10

11 # Summary will return a count of the factors
12 summary(prostate.hex[,4])

8.5 Converting Data Frames

To convert an H2O parsed data object into an R data frame that can be
manipulated using R commands, use as.data.frame() with the name of
the R reference object in the parentheses. Caution: While this can be very
useful, be careful when using this command to convert H2O parsed data
objects. H2O can easily handle datasets that are often too large to be handled
equivalently well in R.

Example in R

1 # Creates object that defines path
2 prosPath <- system.file("extdata", "prostate.csv",

package="h2o")
3 # Imports data set
4 prostate.hex = h2o.importFile(path = prosPath,

destination_frame="prostate.hex")
5

6 # Converts current data frame (prostate data set) to
an R data frame

7 prostate.R <- as.data.frame(prostate.hex)
8 # Displays a summary of data frame where the summary

was executed in R
9 summary(prostate.R)

8.6 Transferring Data Frames

To transfer a data frame from the R environment to the H2O instance, use
as.h2o(). In the parentheses, specify the object in the R environment to
convert to an H2O object. Optionally, include the name of the destination
frame in H2O. Precede the destination frame name with
destination frame = and enclose the name in quotes as in the
following example.

Example in R

20 | Data Manipulation in R

1 # Import the iris data into H2O
2 data(iris)
3 iris
4

5 # Converts R object "iris" into H2O object "iris.hex"
6 iris.hex = as.h2o(iris, destination_frame= "iris.hex")
7

8 head(iris.hex)

8.7 Renaming Data Frames

To rename a dataframe on the server running H2O for a dataset manipulated
in R, use h2o.assign(). In the following example, the prostate dataset was
uploaded to the H2O instance and the data was manipulated to remove
outliers. h2o.assign() saves the new dataset on the H2O server so it can
be analyzed using H2O without overwriting the original dataset.

Example in R

1 prosPath <- system.file("extdata", "prostate.csv",
package="h2o")

2 prostate.hex<-h2o.importFile(path = prosPath)
3

4 ## Assign a new name to prostate dataset in the KV
store

5 h2o.ls()
6

7 prostate.hex <- h2o.assign(data = prostate.hex, key =
"myNewName")

8 h2o.ls()

Data Manipulation in R | 21

8.8 Viewing Column Names

To view a list of the column names in the dataset, use colnames() or
names() with the name of the R reference object in the parentheses.

Example in R

1 ##Displays the titles of the columns
2 > colnames(iris.hex)
3 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "

Petal.Width" "Species"
4 > names(iris.hex)
5 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "

Petal.Width" "Species"

8.9 Getting Minimum and Maximum Values

To view the maximum values for the real-valued columns in a dataset, use
max() with the name of the R reference object in the parentheses. To obtain
the minimum values for the real-valued columns in a dataset, use min() with
the name of the R reference object in the parentheses.

Example in R

1 > min(prostate.hex$AGE)
2 [1] 43
3 > max(prostate.hex$AGE)
4 [1] 79

8.10 Getting Quantiles

To request quantiles for an H2O parsed dataset, use quantile() with the
name of the R reference object in the parentheses.

Use quantile(ReferenceObject$ColumnName), where
ReferenceObject represents the R reference object name and
ColumnName represents the name of the specified column to request a
quantile for a single numerical column.

When you request quantiles for a full parsed dataset consisting of a single
column, quantile() displays a matrix with quantile information for the
dataset.

22 | Data Manipulation in R

Example in R

1 prosPath <- system.file("extdata", "prostate.csv",
package="h2o")

2 prostate.hex <- h2o.importFile(path = prosPath)
3 # Returns the percentiles at 0, 10, 20, ..., 100%
4 prostate.qs <- quantile(prostate.hex$PSA, probs =

(1:10)/10)
5 prostate.qs
6

7 # Take the outliers or the bottom and top 10% of data
8 PSA.outliers <- prostate.hex[prostate.hex$PSA <=

prostate.qs["10%"] | prostate.hex$PSA >=
prostate.qs["90%"],]

9 # Check that the number of rows return is about 20% of
the original data

10 nrow(prostate.hex)
11

12 nrow(PSA.outliers)
13

14 nrow(PSA.outliers)/nrow(prostate.hex)

8.11 Summarizing Data

To generate a summary similar to the one in R for each of the columns in the
dataset, use summary() with the name of the R reference object in the
parentheses.

For continuous real functions, this produces a summary that includes
information on quartiles, min, max, and mean. For factors, this produces
information about counts of elements within each factor level.

Example in R

1 > summary(prostate.hex)
2 ID CAPSULE AGE RACE

DPROS
3 Min. : 1.00 Min. :0.0000 Min. :43.00 Min.

:0.000 Min. :1.000
4 1st Qu.: 95.75 1st Qu.:0.0000 1st Qu.:62.00 1st Qu

.:1.000 1st Qu.:1.000
5 Median :190.50 Median :0.0000 Median :67.00 Median

:1.000 Median :2.000

Data Manipulation in R | 23

6 Mean :190.50 Mean :0.4026 Mean :66.04 Mean
:1.087 Mean :2.271

7 3rd Qu.:285.25 3rd Qu.:1.0000 3rd Qu.:71.00 3rd Qu
.:1.000 3rd Qu.:3.000

8 Max. :380.00 Max. :1.0000 Max. :79.00 Max.
:2.000 Max. :4.000

9 DCAPS PSA VOL GLEASON
10 Min. :1.000 Min. : 0.300 Min. : 0.00 Min.

:0.000
11 1st Qu.:1.000 1st Qu.: 4.900 1st Qu.: 0.00 1st Qu

.:6.000
12 Median :1.000 Median : 8.664 Median :14.20 Median

:6.000
13 Mean :1.108 Mean : 15.409 Mean :15.81 Mean

:6.384
14 3rd Qu.:1.000 3rd Qu.: 17.063 3rd Qu.:26.40 3rd Qu

.:7.000
15 Max. :2.000 Max. :139.700 Max. :97.60 Max.

:9.000

8.12 Summarizing Data in a Table

To summarize data, use h2o.table(). Because H2O can handle larger
datasets, it is possible to generate tables that are larger than R‘s capacity, so
use caution when executing this command. To summarize multiple columns,
use head(h2o.table (ObjectName[,
c(ColumnNumber,ColumnNumber)])), where ObjectName is the
name of the object in R and ColumnNumber is the number of the column.

Example in R

1

2 # Counts of the ages of all patients
3 > head(as.data.frame(h2o.table(prostate.hex[,"AGE"])))
4 AGE Count
5 1 43 1
6 2 47 1
7 3 50 2
8 4 51 3
9 5 52 2

10 6 53 4
11

12 # Two-way table of ages (rows) and race (cols) of all
patients

24 | Data Manipulation in R

13 # Example: For the first row there is one count of a
43 year old that’s labeled as RACE = 0

14 > h2o.table(prostate.hex[,c("AGE","RACE")])
15 H2OFrame with 53 rows and 3 columns
16

17 First 10 rows:
18 AGE RACE count
19 1 53 1 3
20 2 61 1 12
21 3 70 0 1
22 4 75 1 11
23 5 74 1 13
24 6 76 2 1
25 7 53 2 1
26 8 52 1 2
27 9 61 2 1
28 10 60 1 9

8.13 Generating Random Numbers

To append a column of random numbers to an H2O data frame for
testing/training data splits that are used for analysis and validation in H2O,
use h2o.runif() with the name of the R reference object in the
parentheses. This method is best for customized frame splitting; otherwise, use
h2o.splitFrame(). However, h2o.runif() is not as fast or stable as
h2o.splitFrame().

Example in R

1 > prosPath <- system.file("extdata", "prostate.csv",
package="h2o")

2 > prostate.hex <- h2o.importFile(path = prosPath)
3

4 ## Creates object for uniform distribution on prostate
data set

5 > s <- h2o.runif(prostate.hex)
6 > summary (s) ## Summarize the results of h2o.runif
7 rnd
8 Min. :0.000863
9 1st Qu.:0.239763

10 Median :0.507936
11 Mean :0.506718

Data Manipulation in R | 25

12 3rd Qu.:0.765194
13 Max. :0.993178
14 ## Create training set with threshold of 0.8
15 > prostate.train <- prostate.hex[s <= 0.8,]
16 ##Assign name to training set
17 > prostate.train <- h2o.assign(prostate.train, "

prostate.train")
18 ## Create test set with threshold to filter values

greater than 0.8
19 > prostate.test <- prostate.hex[s > 0.8,]
20 ## Assign name to test set
21 > prostate.test <- h2o.assign(prostate.test, "prostate

.test")
22 ## Combine results of test & training sets, then

display result
23 > nrow(prostate.train) + nrow(prostate.test)
24 [1] 380
25 > nrow(prostate.hex) ## Matches the full set
26 [1] 380

8.14 Splitting Frames

To generate two subsets (according to specified ratios) from an existing H2O
dataset for testing/training, use h2o.splitFrame(), which returns
contiguous sections of the data without random sampling.

Example in R

1 # Splits data in prostate data frame with a ratio of
0.75

2 prostate.split <- h2o.splitFrame(data = prostate.hex ,
ratios = 0.75)

3 # Creates training set from 1st data set in split
4 prostate.train <- prostate.split[[1]]
5 # Creates testing set from 2st data set in split
6 prostate.test <- prostate.split[[2]]

26 | Data Manipulation in R

8.15 Getting Frames

To create a reference object to the data frame in H2O, use
h2o.getFrame(). This is helpful for switching between the web UI and the
R API or for multiple users accessing the same H2O instance. The following
example assumes prostate.hex is in the key-value (KV) store.

Example in R

1 prostate.hex <- h2o.getFrame(id = "prostate.hex")

8.16 Getting Models

To create a reference object for the model in H2O, use h2o.getModel().
This is helpful for users that alternate between the web UI and the R API or
multiple users accessing the same H2O instance.

In the following example, it is assumed that a GBM with the ID
GBM 8e4591a9b413407b983d73fbd9eb44cf is in the key-value (KV)
store.

Example in R

1 gbm.model <- h2o.getModel(model_id = "GBM_8
e4591a9b413407b983d73fbd9eb44cf")

8.17 Listing H2O Objects

To generate a list of all H2O objects generated during a session and each
object‘s size in bytes, use h2o.ls().

Example in R

1 > h2o.ls()
2 Key Bytesize
3 1 GBM_8e4591a9b413407b983d73fbd9eb44cf 40617
4 2 GBM_a3ae2edf5dfadbd9ba5dc2e9560c405d 1516

Data Manipulation in R | 27

8.18 Removing H2O Objects

To remove an H2O object on the server associated with the object in the R
environment, use h2o.rm(). For optimal performance, we recommend
removing the object from the R environment as well using remove(), with
the name of the object in the parentheses. If you do not specify an R
environment, then the current environment is used.

Example in R

1 h2o.rm(c("prostate.train","prostate.test"))
2 h2o.ls()

8.19 Adding Functions

User-defined functions no longer need to be added explicitly to the H2O
instance. An R function can be defined and executed against an H2OFrame.

Example in R

1 # Create an R functional expression
2 > simpleFun <- function(x) { 2*x + 5 }
3 # Evaluate the expression across prostate’s AGE column
4 > calculated <- simpleFun(prostate.hex[,"AGE"])
5 > h2o.cbind(prostate.hex[,"AGE"], calculated)
6

7 H2OFrame with 380 rows and 2 columns
8

9 First 10 rows:
10 AGE AGE0
11 1 65 135
12 2 72 149
13 3 70 145
14 4 76 157
15 5 69 143
16 6 71 147
17 7 68 141
18 8 61 127
19 9 69 143
20 10 68 141

28 | Running Models

9 Running Models
This section describes how to run the following model types:

� Gradient Boosted Models (GBM)

� Generalized Linear Models (GLM)

� K-means

� Principal Components Analysis (PCA)

as well as how to generate predictions.

9.1 Gradient Boosted Models (GBM)

To generate gradient boosted models for developing forward-learning ensembles,
use h2o.gbm(). In the parentheses, define x (the predictor variable vector),
y (the integer or categorical response variable), the distribution type
(multinomial is the default, gaussian is used for regression), and the name of
the H2OParsedData object. For more information, use help(h2o.gbm).

Example in R

1 > library(h2o)
2 > h2o.init(nthreads = -1)
3 > data(iris)
4 > iris.hex <- as.h2o(iris,destination_frame = "iris.

hex")
5 > iris.gbm <- h2o.gbm(y = 1, x = 2:5, training_frame =

iris.hex, ntrees = 10,
6 max_depth = 3,min_rows = 2, learn_rate = 0.2,

distribution= "gaussian")
7

8 # To obtain the Mean-squared Error by tree from the
model object:

9 > iris.gbm@model$scoring_history
10 Scoring History:
11 timestamp duration number_of_trees

training_MSE training_deviance
12 1 2015-09-11 09:50:16 0.005 sec 1

0.47256 0.47256
13 2 2015-09-11 09:50:16 0.008 sec 2

0.33494 0.33494

Running Models | 29

14 3 2015-09-11 09:50:16 0.011 sec 3
0.24291 0.24291

15 4 2015-09-11 09:50:16 0.014 sec 4
0.18414 0.18414

16 5 2015-09-11 09:50:16 0.017 sec 5
0.14363 0.14363

17 6 2015-09-11 09:50:16 0.020 sec 6
0.11677 0.11677

18 7 2015-09-11 09:50:16 0.023 sec 7
0.09916 0.09916

19 8 2015-09-11 09:50:16 0.026 sec 8
0.08649 0.08649

20 9 2015-09-11 09:50:16 0.029 sec 9
0.07761 0.07761

21 10 2015-09-11 09:50:16 0.032 sec 10
0.07071 0.07071

To generate a classification model that uses labels, use distribution=
"multinomial":

Example in R

1 > iris.gbm2 <- h2o.gbm(y = 5, x = 1:4, training_frame
= iris.hex, ntrees = 15, max_depth = 5, min_rows =
2, learn_rate = 0.01, distribution= "multinomial"

)
2

3 > iris.gbm2@model$training_metrics
4

5 H2OMultinomialMetrics: gbm
6 ** Reported on training data. **
7

8 Training Set Metrics:
9 =====================

10

11 Extract training frame with ‘h2o.getFrame("iris.hex")‘
12 MSE: (Extract with ‘h2o.mse‘) 0.3293958
13 Rˆ2: (Extract with ‘h2o.r2‘) 0.5059063
14 Logloss: (Extract with ‘h2o.logloss‘) 0.8533637
15 Confusion Matrix: Extract with ‘h2o.confusionMatrix(<

model>,train=TRUE)‘)
16 ===

30 | Running Models

17 setosa versicolor virginica Error
Rate

18 setosa 50 0 0 0.00000000 0 /
50

19 versicolor 0 49 1 0.02000000 1 /
50

20 virginica 0 1 49 0.02000000 1 /
50

21 Totals 50 50 50 0.01333333 2 /
150

22

23 Hit Ratio Table: Extract with ‘h2o.hit_ratio_table(<
model>,train=TRUE)‘

24 ==
25 Top-3 Hit Ratios:
26 k hit_ratio
27 1 1 0.986667
28 2 2 1.000000
29 3 3 1.000000

9.2 Generalized Linear Models (GLM)

Generalized linear models (GLM) are some of the most commonly-used models
for many types of data analysis use cases. While some data can be analyzed
using general linear models, general linear models may not be as accurate if the
variables are more complex. For example, if the dependent variable has a
non-continuous distribution or if the effect of the predictors is not linear,
generalized linear models will produce more accurate results than general linear
models.

Generalized Linear Models (GLM) estimate regression models for outcomes
following exponential distributions in general. In addition to the Gaussian (i.e.
normal) distribution, these include Poisson, binomial, gamma and Tweedie
distributions. Each serves a different purpose, and depending on distribution
and link function choice, it can be used either for prediction or classification.

H2O’s GLM algorithm fits the generalized linear model with elastic net
penalties. The model fitting computation is distributed, extremely fast,and
scales extremely well for models with a limited number (∼ low thousands) of
predictors with non-zero coefficients. The algorithm can compute models for a
single value of a penalty argument or the full regularization path, similar to

Running Models | 31

glmnet. It can compute Gaussian (linear), logistic, Poisson, and gamma
regression models.

To generate a generalized linear model for developing linear models for
exponential distributions, use h2o.glm(). You can apply regularization to
the model by adjusting the lambda and alpha parameters. For more
information, use help(h2o.glm).

Example in R

1 > prostate.hex <- h2o.importFile(path = "https://raw.
github.com/h2oai/h2o/master/smalldata/logreg/
prostate.csv" , destination_frame = "prostate.hex"
)

2

3 > prostate.glm<-h2o.glm(y = "CAPSULE", x = c("AGE","
RACE","PSA","DCAPS"), training_frame = prostate.
hex, family = "binomial", nfolds = 10, alpha =
0.5)

4 > prostate.glm@model$cross_validation_metrics
5 H2OBinomialMetrics: glm
6 ** Reported on cross-validation data. **
7 Description: 10-fold cross-validation on training data
8 MSE: 0.2093902
9 Rˆ2: 0.1294247

10 LogLoss: 0.6095525
11 AUC: 0.6909965
12 Gini: 0.381993
13 Null Deviance: 513.8229
14 Residual Deviance: 463.2599
15 AIC: 473.2599
16 Confusion Matrix for F1-optimal threshold:
17 0 1 Error Rate
18 0 122 105 0.462555 =105/227
19 1 41 112 0.267974 =41/153
20 Totals 163 217 0.384211 =146/380
21 Maximum Metrics:
22 metric threshold value idx
23 1 max f1 0.312978 0.605405 216
24 2 max f2 0.138305 0.772727 377
25 3 max f0point5 0.400689 0.628141 110
26 4 max accuracy 0.400689 0.700000 110
27 5 max precision 0.998848 1.000000 0
28 6 max absolute_MCC 0.400689 0.357638 110

32 | Running Models

29 7 max min_per_class_accuracy 0.330976 0.621145 181

9.3 K-means

To generate a K-means model for data characterization, use h2o.kmeans().
This algorithm does not rely on a dependent variable. For more information,
use help(h2o.kmeans).

Example in R

1 > h2o.kmeans(training_frame = iris.hex, k = 3, x =
1:4)

2 Model Details:
3 ==============
4 H2OClusteringModel: kmeans
5 Model ID: K-means_model_R_1441989204383_30
6 Model Summary:
7 number_of_rows number_of_clusters number_of_

categorical_columns number_of_iterations within_
cluster_sum_of_squares

8 1 150 3
0 8

139.09920
9 total_sum_of_squares between_cluster_sum_of_squares

10 1 596.00000 456.90080
11 H2OClusteringMetrics: kmeans
12 ** Reported on training data. **
13 Total Within SS: 139.0992
14 Between SS: 456.9008
15 Total SS: 596
16 Centroid Statistics:
17 centroid size within_cluster_sum_of_squares
18 1 1 44.00000 43.34674
19 2 2 50.00000 47.35062
20 3 3 56.00000 48.40184

9.4 Principal Components Analysis (PCA)

To map a set of variables onto a subspace using linear transformations, use
h2o.prcomp(). This is the first step in Principal Components Regression.
For more information, use help(h2o.prcomp).

Running Models | 33

Example in R

1 > ausPath = system.file("extdata", "australia.csv",
package="h2o")

2 > australia.hex = h2o.importFile(path = ausPath)
3 > australia.pca <- h2o.prcomp(training_frame =

australia.hex, transform = "STANDARDIZE",k = 3)
4 > australia.pca
5 Model Details:
6 ==============
7 H2ODimReductionModel: pca
8 Model Key: PCA_model_R_1441989204383_36
9 Importance of components:

10 pc1 pc2 pc3
11 Standard deviation 1.750703 1.512142 1.031181
12 Proportion of Variance 0.383120 0.285822 0.132917
13 Cumulative Proportion 0.383120 0.668942 0.801859

9.5 Predictions

The following section describes some of the prediction methods available in
H2O.

Predict: Generate outcomes of a dataset with any model. Predict with GLM,
GBM, Decision Trees or Deep Learning models.

Confusion Matrix: Visualize the performance of an algorithm in a table to
understand how a model performs.

Area Under Curve (AUC): A graphical plot to visualize the performance of a
model by its sensitivity, true positives and false positives to select the best
model.

Hit Ratio: A classification matrix to visualize the ratio of the number of
correctly classified and incorrectly classified cases.

PCA Score: Determine how well your feature selection fits a particular model.

Multi-Model Scoring: Compare and contrast multiple models on a dataset to
find the best performer to deploy into production.

To apply an H2O model to a holdout set for predictions based on model
results, use h2o.predict(). In the following example, H2O generates a
model and then displays the predictions for that model. For classification, the
predict column is the model’s discrete prediction, based on maximum F1 by

34 | Appendix: Commands

default; the individual class probabilities are the remaining columns in the data
frame. It is common to utilize the p1 column for binary classification, if a raw
probability is desired.

Example in R

1 > prostate.fit = h2o.predict(object = prostate.glm,
newdata = prostate.hex)

2 > prostate.fit
3 H2OFrame with 380 rows and 3 columns. First 10 rows:
4 predict p0 p1
5 1 0 0.74476265 0.2552373
6 2 1 0.39763451 0.6023655
7 3 1 0.41268532 0.5873147
8 4 1 0.37270563 0.6272944
9 5 1 0.64649990 0.3535001

10 6 1 0.43367145 0.5663285
11 7 1 0.26542251 0.7345775
12 8 1 0.06143281 0.9385672
13 9 0 0.73057373 0.2694263
14 10 1 0.46709293 0.5329071

10 Appendix: Commands
The following section lists some common R commands by function and a brief
description of each command.

10.1 Dataset Operations

Data Import/Export

h2o.downloadCSV: Download a H2O dataset to a CSV file on local disk.

h2o.exportFile: Export H2O Data Frame to a file.

h2o.importFile: Import a file from the local path and parse it.

h2o.parseRaw: Parse a raw data file.

h2o.uploadFile: Upload a file from the local drive and parse it.

Native R to H2O Coercion

as.h2o: Convert an R object to an H2O object.

Appendix: Commands | 35

H2O to Native R Coercion

as.data.frame: Check if an object is a data frame, or coerce it if possible.

Data Generation

h2o.createFrame: Create an H2O data frame, with optional
randomization.

h2o.runif: Produce a vector of random uniform numbers.

h2o.interaction: Create interaction terms between categorical features
of an H2O Frame.

Data Sampling/Splitting

h2o.splitFrame: Split an existing H2O dataset according to user-specified
ratios.

Missing Data Handling

h2o.impute: Impute a column of data using the mean, median, or mode.

h2o.insertMissingValues: Replaces a user-specified fraction of entries
in a H2O dataset with missing values.

10.2 General Data Operations

Subscripting example to pull pieces from data object.

1 x[j] ## note: chooses column J, not row J
2 x[i, j]
3 x[[i]]
4 x$name
5 x[i] <- value
6 x[i, j, ...] <- value
7 x[[i]] <- value
8 x$i <- value

Subsetting

head, tail: Return the First or Last Part of an Object

Concatenation

c: Combine Values into a Vector or List

36 | Appendix: Commands

h2o.cbind: Take a sequence of H2O datasets and combine them by column.

Data Attributes

colnames: Return column names for a parsed H2O data object.

colnames<-: Retrieve or set the row or column names of a matrix-like
object.

names: Get the name of an object.

names<-: Set the name of an object.

dim: Retrieve the dimension of an object.

length: Get the length of vectors (including lists) and factors.

nrow: Return a count of the number of rows in an H2OParsedData object.

ncol: Return a count of the number of columns in an H2OParsedData object.

h2o.anyFactor: Check if an H2O parsed data object has any categorical
data columns.

is.factor: Check if a given column contains categorical data.

Data Type Coercion

as.factor: Convert a column from numeric to factor.

as.Date: Converts a column from factor to date.

10.3 Methods from Group Generics

Math (H2O)

abs: Compute the absolute value of x.

sign: Return a vector with the signs of the corresponding elements of x (the
sign of a real number is 1, 0, or -1 if the number is positive, zero, or negative,
respectively).

sqrt: Computes the principal square root of x,
√
x.

ceiling: Take a single numeric argument x and return a numeric vector
containing the smallest integers not less than the corresponding elements of x.

floor: Take a single numeric argument x and return a numeric vector
containing the largest integers not greater than the corresponding elements of
x.

Appendix: Commands | 37

trunc: Take a single numeric argument x and return a numeric vector
containing the integers formed by truncating the values in x toward 0.

log: Compute logarithms (by default, natural logarithms).

exp: Compute the exponential function.

Math (generic)

cummax: Display a vector of the cumulative maxima of the elements of the
argument.

cummin: Display a vector of the cumulative minima of the elements of the
argument.

cumprod: Display a vector of the cumulative products of the elements of the
argument.

cumsum: Display a vector of the cumulative sums of the elements of the
argument.

log10: Compute common (i.e., base 10) logarithms

log2: Compute binary (i.e., base 2) logarithms.

log1p: Compute log(1+x) accurately also for |x|<< 1.

acos: Compute the trigonometric arc-cosine.

acosh: Compute the hyperbolic arc-cosine.

asin: Compute the trigonometric arc-sine.

asinh: Compute the hyperbolic arc-sine.

atan: Compute the trigonometric arc-tangent.

atanh: Compute the hyperbolic arc-tangent.

expm1: Compute exp(x) - 1 accurately also for |x|<< 1.

cos: Compute the trigonometric cosine.

cosh: Compute the hyperbolic cosine.

cospi: Compute the trigonometric two-argument arc-cosine.

sin: Compute the trigonometric sine.

sinh: Compute the hyperbolic sine.

sinpi: Compute the trigonometric two-argument arc-sine.

38 | Appendix: Commands

tan: Compute the trigonometric tangent.

tanh: Compute the hyperbolic tangent.

tanpi: Compute the trigonometric two-argument arc-tangent.

gamma: Display the gamma function γx

lgamma: Display the natural logarithm of the absolute value of the gamma
function.

digamma: Display the first derivative of the logarithm of the gamma function.

trigamma: Display the second derivative of the logarithm of the gamma
function.

Math2 (H2O)

round: Round the values to the specified number of decimal places. The
default is 0.

signif: Round the values to the specified number of significant digits.

Summary (H2O)

max: Display the maximum of all the input arguments.

min: Display the minimum of all the input arguments.

range: Display a vector containing the minimum and maximum of all the
given arguments.

sum: Calculate the sum of all the values present in its arguments.

Summary (generic)

prod: Display the product of all values present in its arguments.

any: Given a set of logical vectors, determine if at least one of the values is
true.

all: Given a set of logical vectors, determine if all of the values are true.

10.4 Other Aggregations

Non-Group Generic Summaries

mean: Generic function for the (trimmed) arithmetic mean.

Appendix: Commands | 39

sd: Calculate the standard deviation of a column of continuous real valued
data.

var: Compute the variance of x.

summary: Produce result summaries of the results of various model fitting
functions.

quantile: Obtain and display quantiles for H2O parsed data.

Row / Column Aggregation

apply: Apply a function over an H2O parsed data object (an array).

Group By Aggregation

h2o.group by: Apply an aggregate function to each group of an H2O
dataset.

Tabulation

h2o.table: Use the cross-classifying factors to build a table of counts at
each combination of factor levels.

10.5 Data Munging

General Column Manipulations

is.na: Display missing elements.

Element Index Selection

h2o.which: Display the row numbers for which the condition is true.

Conditional Element Value Selection

h2o.ifelse: Apply conditional statements to numeric vectors in H2O
parsed data objects.

Numeric Column Manipulations

h2o.cut: Convert H2O Numeric Data to Factor.

Character Column Manipulations

h2o.strsplit: Splits the given factor column on the input split.

40 | Appendix: Commands

h2o.tolower: Change the elements of a character vector to lower case.

h2o.toupper: Change the elements of a character vector to lower case.

h2o.trim: Remove leading and trailing white space.

h2o.gsub: Match a pattern & replace all instances of the matched pattern
with the replacement string globally.

h2o.sub: Match a pattern & replace the first instance of the matched
pattern with the replacement string.

Factor Level Manipulations

h2o.levels: Display a list of the unique values found in a column of
categorical data.

Date Manipulations

h2o.month: Convert the entries of a H2OParsedData object from
milliseconds to months (on a 0 to 11 scale).

h2o.year: Convert the entries of a H2OParsedData object from milliseconds
to years, indexed starting from 1900.

Matrix Operations

%∗%: Multiply two matrices, if they are conformable. t: Given a matrix or
data.frame x, t returns the transpose of x.

10.6 Data Modeling

Model Training: Supervised Learning

h2o.deeplearning: Perform Deep Learning neural networks on an
H2OParsedData object.

h2o.gbm: Build gradient boosted classification trees and gradient boosted
regression trees on a parsed dataset.

h2o.glm: Fit a generalized linear model, specified by a response variable, a
set of predictors, and a description of the error distribution.

h2o.naiveBayes: Build gradient boosted classification trees and gradient
boosted regression trees on a parsed dataset.

h2o.prcomp: Perform principal components analysis on the given dataset.

h2o.randomForest: Perform random forest classification on a dataset.

Appendix: Commands | 41

Model Training: Unsupervised Learning

h2o.anomaly: Detect anomalies in a H2O dataset using a H2O deep
learning model with auto-encoding.

h2o.deepfeatures: Extract the non-linear features from a H2O dataset
using a H2O deep learning model.

h2o.kmeans: Perform k-means clustering on a dataset.

Grid Search

h2o.grid: Efficient method to build multiple models with different
hyperparameters.

Model Scoring

h2o.predict: Obtain predictions from various fitted H2O model objects.

Classification Model Helpers

h2o.accuracy: Get the between cluster sum of squares.

h2o.auc: Retrieve the AUC (area under ROC curve).

h2o.confusionMatrix: Display prediction errors for classification data
from a column of predicted responses and a column of actual (reference)
responses in H2O.

h2o.hit ratio table: Retrieve the Hit Ratios. If train, valid, and
xval parameters are FALSE (default), then the training Hit Ratios value is
returned. If more than one parameter is set to TRUE, then a named list

of Hit Ratio tables are returned, where the names are train, valid, or
xval.

h2o.performance: Evaluate the predictive performance of a model via
various measures.

Regression Model Helper

h2o.mse: Display the mean squared error calculated from a column of
predicted responses and a column of actual (reference) responses in H2O.

Clustering Model Helper

h2o.betweenss: Get the between cluster sum of squares.

h2o.centers: Retrieve the Model Centers.

42 | Appendix: Commands

10.7 H2O Cluster Operations

H2O Key Value Store Access

h2o.assign: Assign H2O hex.keys to objects in their R environment.

h2o.getFrame: Get a reference to an existing H2O dataset.

h2o.getModel: Get a reference to an existing H2O model.

h2o.ls: Display a list of object keys in the running instance of H2O.

h2o.rm: Remove H2O objects from the server where the instance of H2O is
running, but does not remove it from the R environment.

H2O Object Serialization

h2o.loadModel: Load an H2OModel object from disk.

h2o.saveModel: Save an H2OModel object to disk to be loaded back into
H2O using h2o.loadModel.

H2O Cluster Connection

h2o.init (nthreads = -1): Connect to a running H2O instance using
all CPUs on the host and check the local H2O R package is the correct version.

h2o.shutdown: Shut down the specified H2O instance. All data on the
server will be lost!

H2O Load Balancing

h2o.rebalance: Rebalance (repartition) an existing H2O dataset into given
number of chunks (per Vec), for load-balancing across multiple threads or
nodes.

H2O Cluster Information

h2o.clusterInfo: Display the name, version, uptime, total nodes, total
memory, total cores and health of a cluster running H2O.

h2o.clusterStatus: Retrieve information on the status of the cluster
running H2O.

H2O Logging

h2o.clearLog: Clear all H2O R command and error response logs from the
local disk.

Appendix: Commands | 43

h2o.downloadAllLogs: Download all H2O log files to the local disk.

h2o.logAndEcho: Write a message to the H2O Java log file and echo it
back.

h2o.openLog: Open existing logs of H2O R POST commands and error
responses on the local disk.

h2o.getLogPath: Get the file path for the H2O R command and error
response logs.

h2o.startLogging: Begin logging H2O R POST commands and error
responses.

h2o.stopLogging: Stop logging H2O R POST commands and error
responses.

H2O String Manipulation

h2o.gsub: String global substitution (all occurrences).

h2o.strsplit: String Split.

h2o.sub: String substitution (first occurrence).

h2o.tolower: Convert characters to lower case.

h2o.toupper: Convert characters to upper case.

h2o.trim: Trim spaces.

44 | Authors

11 Authors
Spencer Aiello

Spencer comes from an unconventional background. After studying Physics
and Math as an undergraduate at UCSC, he came to San Francisco to continue
his education, earning his MS in Analytics from USF. Spencer has worked on a
number of projects related to analytics in R, Python, Java, and SQL. At H2O,
he works primarily on the R front-end and the backend Java R-interpreter.

Eric Eckstrand

Eric is a Quality and Performance Hacker at H2O.ai. Eric has formal education
in computer science and systems engineering. Prior to joining H2O, Eric was a
submariner in the US Navy. His roles included Reactor Controls Assistant and
Communications Officer (USS Pittsburgh SSN-720) and Submarine Operations
Officer (Destroyer Squadron One).

Anqi Fu

Anqi is a data hacker at H2O.ai. After completing her undergraduate at
University of Maryland: College Park, she attended Stanford University. While
there she earned her master‘s degree in Economics, and a second masters
degree in Statistics. Her interests include machine learning and optimization.

Mark Landry

Mark Landry is a competition data scientist and product manager at H2O. He
enjoys testing ideas in Kaggle competitions, where he is ranked in the top 100
in the world (top 0.03%) and well-trained in getting quick solutions to iterate
over. Interests are multi-model architectures and helping the world make fewer
models that perform worse than the mean.

Patrick Aboyoun

Patrick is a former math and data hacker at H2O.ai who has made a career out
of creating and delivering software and training for data scientists, particularly
those who love R. Patrick received an M.S. in Statistics from the University of
Washington and a B.S. in Statistics from Carnegie Mellon University.

Jessica Lanford

Jessica is a word hacker and seasoned technical communicator at H2O.ai. She
brings our product to life by documenting the many features and functionality
of H2O. Having worked for some of the top companies in technology including
Dell, AT&T, and Lam Research, she is an expert at translating complex ideas
to digestible articles.

References | 45

12 References
H2O.ai Team. H2O website, 2016. URL http://h2o.ai

H2O.ai Team. H2O documentation, 2016. URL http://docs.h2o.ai

H2O.ai Team. H2O GitHub Repository, 2016. URL
https://github.com/h2oai

H2O.ai Team. H2O Datasets, 2016. URL http://data.h2o.ai

H2O.ai Team. H2O JIRA, 2016. URL https://jira.h2o.ai

H2O.ai Team. H2O R Package Documentation, 2016. URL
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_
Rdoc.html

H2O.ai Team. H2Ostream, 2016. URL
https://groups.google.com/d/forum/h2ostream

Erin LeDell. R Ensemble Documentation, 2014. URL
http://www.stat.berkeley.edu/˜ledell/R/h2oEnsemble.pdf

H2O.ai Team. h2o: R Interface for H2O, 2016. URL
http://www.h2o.ai. R package version 3.1.0.99999

http://h2o.ai
http://docs.h2o.ai
https://github.com/h2oai
http://data.h2o.ai
https://jira.h2o.ai
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html
https://groups.google.com/d/forum/h2ostream
http://www.stat.berkeley.edu/~ledell/R/h2oEnsemble.pdf
http://www.h2o.ai

	Introduction
	What is H2O?
	Installation
	Installing R
	Installing H2O from R
	Example Code
	Citation

	H2O Initialization
	Launching from R
	Launching from the Command Line
	Launching on Hadoop
	Checking Cluster Status

	Data Preparation in R
	Notes

	Models
	Supervised Learning
	Unsupervised Learning
	Modeling Constructs

	Demo: GLM
	Data Manipulation in R
	Importing Files
	Uploading Files
	Finding Factors
	Converting to Factors
	Converting Data Frames
	Transferring Data Frames
	Renaming Data Frames
	Viewing Column Names
	Getting Minimum and Maximum Values
	Getting Quantiles
	Summarizing Data
	Summarizing Data in a Table
	Generating Random Numbers
	Splitting Frames
	Getting Frames
	Getting Models
	Listing H2O Objects
	Removing H2O Objects
	Adding Functions

	Running Models
	Gradient Boosted Models (GBM)
	Generalized Linear Models (GLM)
	K-means
	Principal Components Analysis (PCA)
	Predictions

	Appendix: Commands
	Dataset Operations
	General Data Operations
	Methods from Group Generics
	Other Aggregations
	Data Munging
	Data Modeling
	H2O Cluster Operations

	Authors
	References

