21.4 MHz RECEIVER IF MODULE 12.5/25 kHz CHANNEL SPACING CB101128V1

TABLE OF CONTENTS

	Page
1.0 SPECIFICATIONS	
2.0 DESCRIPTION	4
3.0 CIRCUIT ANALYSIS	5
3.1 INPUT AMPLIFIER NETWORK	5
3.2 CRYSTAL FILTERS, IF AMPLIFIER	5
3.3 INTEGRATED CIRCUIT AGC AMPLIFIER	5
3.4 OSCILLATOR/MIXER/DETECTOR	6
3.5 AUDIO AMPLIFIER	6
3.6 SQUELCH	7
3.6.1 Buffer Amplifier	7
3.6.2 Bandpass Filter	
3.6.3 Noise Detector	
3.6.4 DC Amplifier	8
3.0.5 SCHMITT IIgger	8 o
2.9 VOLTACE DECLIATODS	
3.9 ADDRESS DECODER	9 9
	10
4.0 MAINTENANCE 4.1 RECOMMENDED TEST FOUR MENT	
4.1 RECOMMENDED TEST EQUITIMENT	
4.2 ALIGNMENT ROCEDORE	
4.3 Tuning FL1 and FL2	
4.3.2 Tuning FL3 and FL4	
4.4 AUDIO AND DATA OUTPUT ADJUSTMENTS	
4.5 TROUBLESHOOTING	
5.0 ASSEMBLY DIAGRAM	
6.0 PARTS LIST	
7.0 IC DATA	
8.0 OUTLINE DIAGRAM	
9.0 SCHEMATIC DIAGRAM	

NOTE

This device made under license under one or more of the following US patents: 4,590,473; 4,636,791; 5,148,482; 5,185,796; 5,271,017; 5,377,229.

NOTE

The voice coding technology embodied in this product is protected by intellectual property rights including patent rights, copyrights, and trade secrets of Digital Voice Systems, Inc. The user of this technology is explicitly prohibited from attempting to decompile, reverse engineer, or disassemble the Object Code, or in any other way convert the Object Code into human-readable form.

This manual is published by M/A-COM Private Radio Systems, Inc., without any warranty. Improvements and changes to this manual necessitated by typographical errors, inaccuracies of current information, or improvements to programs and/or equipment, may be made by M/A-COM Private Radio Systems, Inc., at any time and without notice. Such changes will be incorporated into new editions of this manual. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of M/A-COM Private Radio Systems, Inc.

Copyright© 2002, M/A-COM Private Radio Systems, Inc. All rights reserved.

1.0 SPECIFICATIONS¹

Item

Specification

I.F. (Intermediate Frequency) Input Impedance 12 dB SINAD Adj. CH Rejection **Image Rejection** Intermodulation Rejection Signal Displacement Bandwidth 2nd I.F. (Intermediate Frequency) 455 kHz Balanced Output Level 2nd L.O. Frequency AF Output (J2, Pin 31C) AF Output Impedance AF Distortion **AF** Response 10 Hz 300 Hz 1000 Hz 3 kHz (25 kHz Channel) 3 kHz (12.5 kHz Channel) Hum & Noise Rejection RSSI Output (J2, Pin 20C) **RSSI** Time Constant 5 msSQ Threshold Sensitivity SQ Maximum Sensitivity SQ Clipping SQ Attack SO Close SQ Output (J2, Pin 26C) Fault Output (J2, Pin 11C) AGC Range DC Supply

21.4 MHz 50 ohm \leq -120 dBm (25 kHz); \leq -119 dBm (12.5 kHz) ≥85 dB (25 kHz); ≥80 dB (12.5 kHz) ≥100 dB ≥83 dB (25 kHz); ≥78 dB (12.5 kHz) $\geq 2 \text{ kHz} (25 \text{ kHz}); \geq 1 \text{ kHz} (12.5 \text{ kHz})$ 455 kHz 2.2 V PP per line, adjustable 20.945 MHz 1 Vrms adjustable (with standard input signal) 1k ohm ≤3% (25 kHz); ≤5% (12.5 kHz) >-3 dB ref. ± 1 dB ref. 0 dB reference ± 1.6 dB ref. ± 2.5 dB ref. ≥55 dB (25 kHz); ≥50 dB (12.5 kHz) 0.7 to 2.7 VDC \leq -123 dBm (25 kHz); \leq -122 dBm (12.5 kHz) ≤-110 dBm (25 kHz); ≤-109 dBm (12.5 kHz) 3 kHz 150 ms 250 ms $5V \log (low = squelched)$ 5V logic (low = fault)50 dB 13.8V, 80 mA max.; 12.0V, 65 mA max.

¹ These specifications are intended to be used by the service technician during servicing. Refer to the appropriate Specification Sheet for the complete Specification.

2.0 DESCRIPTION

The MASTR III Receiver IF Module 19D902783G7/G11 provides amplification and demodulation of the 21.4 MHz Intermediate Frequency (IF) signal as well as Automatic Gain Controlled (AGC) 455 kHz outputs to the DSP Modem module(Figure 1 - 21.4 MHz Receiver IF Module). The IF Module also includes the receiver squelch circuitry. However, it does not include de-emphasis or squelch audio gating circuits. Figure 2 – 21.4 MHz IF Module Block Diagram shows the functional operation of the IF Module.

The IF Module circuitry contains the following:

- A 50 ohm input impedance IF Amplifier
- A chain of four crystal filters and IF amplifier
- A two stage AGC amplifier
- A two stage balanced output IF amplifier
- An integrated circuit containing a crystal oscillator, mixer, limiter, and quadrature detector
- A variable gain AF amplifier
- A squelch circuit
- A fault detector circuit
- An integrated circuit voltage regulator
- An address decoder

Figure 1 - 21.4 MHz Receiver IF Module

3.0 CIRCUIT ANALYSIS

3.1 INPUT AMPLIFIER NETWORK

The input amplifier consisting of transistor Q1 and transformer TX1, provides a 50 ohm load for the receiver IF module.

Capacitor C1 provides AC coupling and a DC block on the input line (J1). This DC block protects the module in the event of a failure in a preceding module.

Capacitor C1 and inductor L1 are series-resonant at 21.4 MHz and provide a lowimpedance path from J1 to amplifier transistor Q1. Capacitor C2 and inductor L2 are parallel-resonant at 21.4 MHz and provide a path to the 50-ohm load, resistor R1, for mixer products other than 21.4 MHz.

3.2 CRYSTAL FILTERS, IF AMPLIFIER

Crystal Filters FL1, FL2, FL3 and FL4, transistor Q2 circuit, and associated circuitry provide IF filtering and amplification at 21.4 MHz. Filters FL1 and FL2 are two pole crystal bandpass filters centered at 21.4 MHz with a typical combined 6 dB bandwidth of \pm 7.0 kHz. The loss of FL1 and FL2 combined is typically between 2.5 and 3.5 dB. When combined, the filter set has associated matching networks to match the combination to a 50-ohm input and output impedance. FL3 and FL4 are matched to a 50-ohm input impedance and a 470 ohm output impedance. The FL1 and FL2 pair is specified to have especially good intermodulation performance to meet the overall requirements for the module.

3.3 INTEGRATED CIRCUIT AGC AMPLIFIER

The first two stages of AGC Amplifier U100 consist of two IF amplifiers whose gain can be controlled with an AGC voltage. These two amplifiers are connected in cascade to combine their gains. The combined voltage gain varies from about 35 dB at an AGC voltage of 3.5 VDC down to about -25 dB at an AGC voltage of <1.5 VDC. The AGC voltage is supplied by the DSP Modem module. In the two level FM mode, when no DSP modem is present, the AGC voltage is set to a fixed voltage of 3.5 volts by voltage divider resistors R139 and R137 to set the cascaded AGC amplifier gain to maximum. The output of the second IF amplifier in U100 feeds the 21.4 MHz IF signal to the input of U101 through a matching network consisting of inductor L101 and capacitor C123. The matching network matches the output impedance of the second IF amplifier in U100 to resistor R103.

The video amplifier has a single ended voltage gain (from the input to one output) of from 25 to 43 dB. The gain is set in this range by adjusting resistor R100. The differential gain is 6 dB higher than the single ended gain. The input of this stage comes from the IC mixer U101 output by way of 455 kHz filter FL100. Filter FL100 has a 6 dB bandwidth of \pm 7.5 kHz to reduce the level of adjacent channel signals passing into the DSP Modem module. The differential output of the video amplifier is routed to U105, and then to the DSP Modem module via the Backplane board.

3.4 OSCILLATOR/MIXER/DETECTOR

Integrated circuit U101 performs several functions. The 20.945 MHz crystal oscillator provides local oscillator injection to the mixer in U101. This mixer converts the 21.4 MHz IF signal to 455 kHz. Capacitors C119 and C120 are oscillator feedback capacitors and have been chosen to provide the proper capacitance for crystal Y100. The frequency can be adjusted by means of L102. The proper oscillator output level is difficult to measure directly without affecting the circuit operation. The level at TP3 should be approximately 50 mVpk (Measured using a 10 megohm, 11pF oscilloscope probe).

The mixer is internally connected to the crystal oscillator. Pins 1 and 20 of U101 are the mixer input and output respectively. Typical mixer conversion voltage gain is approximately 12 dB. The mixer output feeds the transistor Q100 IF amplifier circuit and each analog switch, U102 and U103. The output from Q100 is routed to ceramic filter FL100. In the 12.5 kHz bandwidth mode, analog switches U102 and U103 route the 455 kHz IF through FL101 to the U101 IF amplifier input. In the 25 kHz mode, the mixer output is switched around FL101 by U102 and U103 and is then routed to the IF amplifier input. In the four level FM mode, FL101 is bypassed as in the 25 kHz two level mode. Ceramic filters FL101 and FL102 have a minimum 6dB bandwidth of 455 kHz ± 6 kHz.

The IF amplifier input is U101, Pin 18. The output at U101, Pin 16 is passed through an attenuator consisting of resistors R143, R144, and R145 to ceramic bandpass filter FL102, then to the limiter input at U101, Pin 14. The limiter output drives one input of the quadrature detector via capacitor C129.

A Received Signal Strength Indicator (**RSSI**) is provided at U101, Pin 7. This indicator signal is generated within the limiter circuitry and provides an output current proportional to the logarithm of the input signal strength. This current develops a voltage across resistor R141. The voltage varies from about 1.6 VDC for noise input, to about 2.4 VDC for a 12 dB SINAD signal, to a maximum of about 4.7 VDC for a -75 dBm IF input signal at J1. RSSI Buffer U200A provides buffering to eliminate loading effects on the RSSI line. The RSSI line will provide a constant output level above a -75 dBm IF input level, since the input to U101 is held constant by AGC from the DSP Modem module.

The quadrature detector provides a demodulated audio frequency output. One input to the detector is internally connected to the limiter and is not externally available. The output of the detector is at U101, Pin 9. Capacitor C145 provides lowpass filtering to remove 455 kHz feed-through. Ceramic resonator Y101 provides the frequency-selective component needed for FM demodulation. Y101 replaces the typical LC resonant circuit found in most quadrature detectors. In contrast to the typical LC network, Y101 requires no adjustment. In the four level FM mode, the detector output of U101 is not used. The detected audio output is derived by other circuitry in the base station.

Integrated circuit U101 general: The DC supply to U101 is provided through voltage dropping resistor R104 to U101, Pin 6. The voltage drop across resistor R104 is used to monitor the dc voltage on U101 for fault detection.

3.5 AUDIO AMPLIFIER

Operational amplifier U200C provides audio frequency amplification. The gain of U200C is set by associated resistors, including variable resistor R203. Resistor R203 allows adjustment of the AF output level to 1 Vrms with a standard input signal to the

module (1 kHz AF, 3 kHz peak deviation in the 25 kHz mode).

The typical amplifier gain is approximately 5. In the 12.5 kHz mode the standard deviation is 1.5 kHz. To provide the same 1 Vrms output, the gain is increased by shunting resistor R202 with resistor R201 by means of electronic switch U207. Operational amplifier U200B is used as a voltage regulator to provide 6 VDC for biasing U200C.

3.6 SQUELCH

3.6.1 Buffer Amplifier

Buffer amplifier U200D (Refer to Schematic Diagram WD-CB101128V1, Sh. 3) is configured as a unity gain buffer amplifier. Its purpose is to provide a high input impedance in order to minimize loading of preceding circuitry.

3.6.2 Bandpass Filter

Bandpass filter U203A, together with its associated circuitry, performs the function of an audio frequency bandpass filter, centered at 6 kHz with a gain of 2. The purpose of this filter is to reject all voice frequencies and allow only demodulated noise to pass. The functioning of the squelch circuit depends upon the presence or absence of this noise. When a signal is being received, i.e. the receiver is "quiet", the squelch circuit senses the absence of noise and unsquelches the radio.

3.6.3 <u>Noise Detector</u>

Noise detector U203B along with associated components are configured as an amplifier. A single +12 V dc supply powers this op-amp, therefore the output can only be positive. Because the ac noise input goes both positive and negative U203B effectively acts as a rectifier with gain. The rectified output of U203B charges capacitors C213 and C214 to a nearly constant dc voltage. (Actually the R216-C213,C214 time constant will allow a 5 Hz variation.)

3.6.4 DC Amplifier

DC amplifier U203C is configured as a basic amplifier with a gain of 5.0 in the 25 kHz mode. In the 12.5 kHz mode, the gain is increased by about 6 dB by shunting resistor R218 with resistor R219 by means of transistor switch Q201.

3.6.5 Schmitt Trigger

Schmitt trigger U203D is configured as an amplifier with positive feedback. This arrangement provides hysteresis in the output versus input characteristic. This eliminates the possibility of the squelch circuit repeatedly cutting in and out when the input signal is near a threshold. Resistors R223 and R224 act as a voltage divider to provide a 5 volt logic level output.

3.7 FAULT DETECTORS

Voltage comparators U1, U104, and U106 are configured as "window detectors," which pull the FAULT DETECT line low (approximately 0 volts) if the voltage applied falls outside the specified range (window). For example: U106C senses whether the input voltage is greater than the upper limit of the window. This limit is set by the voltage divider R128, R129, and R130 (6.75 VDC). Comparator U106D senses whether the input is less than the lower limit of the window (4.88 VDC, again set by R128, R129, and R130). Therefore, in this example the window is 4.88 VDC to 6.75 VDC. The U106C/U106D window detector circuit is used to determine whether the U200D voltage regulator output (+6 VDC) is within this range. The other window detector circuits U100 and U101 respectively.

Resistors R131 and R133 comprise a voltage divider to provide a 5 V logic level output. Also, these resistors act as a pull-up for the open collector comparators. A fault is indicated when the output drops to zero.

Diode Dl00 and transistor Q101 monitor the output of the 8 V regulator. Dl is a 8.2 Volt Zener diode. If the regulator output voltage should rise above 8.9 V (8.2 + 0.7 base-

emitter drop) Q101 will turn on and a fault will be indicated. Transistors Q3 and Q4 are drivers for the front panel LED D2. These are powered from the +13.8VDC supply. Therefore, if the 8V regulator opens, a fault will still be indicated.

3.8 VOLTAGE REGULATORS

8V regulator U201 is a monolithic integrated circuit voltage regulator providing 8 VDC (+8V). This powers all 8-volt circuitry in the module with the exception of U100 and Q100. A second 8 volt regulator, U208, supplies 8 VDC (+8VB) to U100 and Q100.

5V regulator U202 is a monolithic integrated circuit voltage regulator that provides 5VDC to U100, U204, U205, and U206. This regulator operates from the 8 VDC provided by U201.

3.9 ADDRESS DECODER

The address decoder circuit consists of binary-to-octal converter U204, quad or-gate U205, and eight bit shift register U206.

When a low (0) is present on the A0 line, and a high (1) on the A1 and A2 lines, U204, Pin 9 provides a low to U205A and U205B. When there is a clock input to U205A and an enable input to U205B, the output of U250C provides a latch clock input to U206, Pin 12, and U205A provides a shift clock input to U206, Pin 11. When U206 is enabled, it detects the data on the DATA input at Pin 14. Internal flip-flops latch the data to hold the output state on Pin 15. Depending on the data, U206, Pin 15 is either high for the narrowband (12.5 kHz) mode or low for the wideband (25 kHz) mode. A "high" is a voltage greater than 3.5 VDC, and a "low" is a voltage less than 1.0 VDC.

3.10 BUFFER AMPLIFIER U105

Operational amplifier U105 amplifies the 455kHz output from the video amplifier in U100 to a maximum level of 2.2 V peak-to-peak. The differential output of U105 is routed to J2, Pins A31 and A32. The differential signal passes through the backplane board to the DSP Modem module. Buffer amplifier U105 has a voltage gain of approximately 2.

4.0 MAINTENANCE

4.1 RECOMMENDED TEST EQUIPMENT

The following test equipment is required to test the IF Module

- 1. FM Signal Generator; HP 8640B, HP 8657A, or equivalent
- 2. AF Generator or Function Generator
- 3. Audio Analyzer; HP 8903B, HP 339A, or equivalent
- 4. Oscilloscope
- 5. Frequency Counter; Racal-Dana 9919 or equivalent
- 6. DC Meter for troubleshooting
- 7. Power Supply; 13.8 VDC @ 180 mA
- 8. Power Supply; 12 VDC @40 mA
- 9. M/A-COM Test Box TS101285V11

4.2 ALIGNMENT PROCEDURE

- 1. Apply 13.8 VDC and 12 Vdc supplies to the IF module.
- 2. Verify 13.8 VDC current consumption is between 55 and 80 mA, and 12 VDC current is between 45 and 65 mA.

The currents cannot be measured directly when the TS11285V11 test box is used. The currents can be determined by measuring the voltage drop across L201 and L202 on the Receiver IF printed wire board and the resistance of each coil. The current can be calculated with the following formula:

$$I = V_{drop}/R_{coil}$$

- 3. Set the AGC switch on the test box to "HIGH."
- 4. Verify fault output is 0 to 0.5 VDC and front panel LED is off.
- 5. Apply a standard input signal to the module input (-75 dBm, 21.4 MHz signal modulated with 1 kHz AF, 3 kHz peak deviation).
- 6. Monitor TP5 with a high-impedance probe connected to the frequency counter. Adjust inductor L102 for a reading of $455 \text{ kHz} \pm 100 \text{ Hz}$.
- 7. Set variable resistor R203 for 1 Vrms $\pm 3\%$ at module output (pin 31C on 96 pin connector J2).

4.3 CRYSTAL FILTER TUNING

4.3.1 Tuning FL1 and FL2

- 1. Connect test equipment as shown in Fig. 10.1.
- 2. Connect the high impedance probe to either side of resistor R152.
- 3. Set the span of the network analyzer to 20 kHz, and the center frequency to 21.4 MHz.
- 4. Set the analyzer RF output level to obtain -75 dBm at the input of the module.
- 5. Adjust C9, C12, and C17 for maximum response at 21.4 MHz.

4.3.2 Tuning FL3 and FL4

- 1. Adjust C24, C29, and C36 for maximum response at 21.4 MHz.
- 2. The 6 dB bandwidth displayed on the network analyzer shall be between fc +/- 6.1 and fc +/- 7.3 kHz. The peak-to-valley ripple shall be less than 1 dB.
- 3. If the requirements of step 2 are not met, adjust C9, C12, C17, C24, C29, and C36 as needed until the requirements are met.

The bandwidth is controlled primarily by C12 and C29.

4. Set the squelch pot on the test fixture to maximum (maximum means to set the wiper for maximum signal at the Sq-Arm terminal)

4.4 AUDIO AND DATA OUTPUT ADJUSTMENTS

- 1. In the 25 kHz mode, apply a standard input signal (-75 dBm, 21.4000 MHz signal modulated with a 1kHz Audio Frequency (AF), 3kHz peak deviation) to the module IF input. Turn the FM modulation off. Monitor TP5 with a high impedance probe connected to the frequency counter. Adjust L102 for a reading of 455 kHz ±100 Hz.
- 2. Turn the RF generator FM modulation on. Set R203 for 1.0 Vrms $\pm 3\%$ AF output at module output (Pin 31C on 96 pin connector, Pin 52).
- 3. Remove the FM modulation from the test signal. Monitor the 455kHz+ jack on the test box with an oscilloscope using a high-impedance probe. Adjust R100 for a 2.2 ± 0.1 volts peak-to-peak level. The 455 kHz-jack shall have a level of 2.2 ± 0.2 V peak-to-peak.

4.5 TROUBLESHOOTING

When troubleshooting the module, it is most convenient if the standard test fixture is used. The following conditions are with the module in the 25 kHz mode. This can be set up using a PC with the necessary software connected to the test box. Alternatively, a wire link can be soldered between pads H1 and H2 on the PC board.

MAINTENANCE

IF amplifier transistor Q2 has a nominal 8 dB gain. Transistor Q2 has a nominal gain of 8.5 dB. The mixer has about 14 dB voltage gain with proper LO injection. The proper crystal oscillator level is 10 mV pk measured at TP3.

The following four test points are provided on the PWB for additional test capability:

TP1: 45 mV pk @ 21.4 MHz with -20 dBm input signal

TP3: 10 mV pk @ 20.945 MHz independent of input signal

TP4: 20 mV pk @ 455 kHz with -60 dBm input signal

TP5: 750 mV pk @ 455 kHz with -75 dBm input signal All RF voltages measured with 10 Megohm, 11 pF probe.

Table 1 - Troubleshooting Guide

SYMPTOM	CHECK (CORRECT READING SHOWN)	INCORRECT READING INDICATES DEFECTIVE COMPONENT
Fault indicator on	Check DC voltages: +8V @ U201, Pin 3 +6V @ U200, Pin 7 1.5V @ Q1 and Q2 (emitters) 6V @ U101, Pin 5	If DC voltages not correct U201 or associated components U200 or associated components Q1 and Q2 or associated components U101 or associated components
No audio - no noise	With no signal applied to module IF input: Check for AF noise @ C146; 200mV Check for AF noise @ U200, Pin 8; 1 V	U101 or associated components U200 or associated components
Noise only - no demodulated audio	Check crystal oscillator: TP3, 10 mVpk, 20.945 MHz Apply -30 dBm, 21.4 MHz input, check TPI 60 mVpk Apply -60 dBm, 21.4 MHz input, check TP4 20 mVpk	U101, Y100 or associated components Q1, FL1, FL2 or associated components Q2, FL3, FL4, Y101, U100 or associated components
Poor 12 dB SINAD	Check crystal oscillator: TP3, 10 mVpk, 20.945 MHz Apply -30 dBm, 21.4 MHz input, check TP1, 60 mVpk Apply -60 dBm 21.4 MHz input, check TP4, 20 mVpk	U101, Y100 or associated components Q1, FL1, FL2, Y100, or associated components Q2, FL3, FL4, U100, U101 FL102 or associated components
No squelch function	With squelch pot maximum, or with module AUDIO/ SQUELCH/HI connected to SQUELCH/ARM input and with no signal to module IF input:	
	Check Presence of 1 Vpk noise @ U200, Pin 14 Check presence of 1 Vpk noise U7 @t Pin 12	U200 or associated components
	Check DC voltage U203 @t Pin 8: 7V Check DC voltage U203 @ Pin 14: 0.5V	U203 or associated components

5.0 ASSEMBLY DIAGRAM

Item	Part Number	Description	Qty
		21.4 MHz Receiver IF Module EA101401V1	
1	19D902508P1	Chassis	1
2	19D902509P1	Cover	1
3	19D902555P1	Handle	1
4	19A702381P506	Screw, torq	6
5	19A702381P513	Screw, torq	6
6	19B235310P1	NP, Blank	1
7	19B802690P1	Grommet	1
8	19A702381P508	Screw, torq	1
9	CB101128V1	Board, Component	1

RECEIVER IF MODULE EA101401V1

(AD-EA101401, Rev. A)

6.0 PARTS LIST

MASTR III RECEIVER IF CIRCUIT BOARD ASSEMBLY PL-CB101128V1² Revision: A

Symbol	Part Number	Description
		CAPACITORS
C1	RJC 463 4043/12	120pF
and		
C2		
C3	RJC 464 2045/47	
C4	RJC 464 2045/1	
C5	RJC 464 3044/47	4./nF
C6	RJC 464 2045/1	
C7	RJC 463 6042/15	15pF
and C8		
C9	19A704350P102	3-10pF: MURATA
C10	RJC 463 4042/33	33pF
C11	RJC 463 9041/27	2.7pF
C12	19A704350P102	3-10Pf: MURATA
C13	RJC 463 9041/27	2.7pF
C14	RJC 463 9041/56	5.6pF
and		
C15		
C16	RJC 463 9041/27	2.7pF
C17	19A704350P102	3-10pF: MURATA
C18	RJC 463 6042/15	15pF
and		
C 20	RIC 464 2045/1	10nF
C21	RIC 464 3044/47	4 7nE
C22	RIC 464 2045/47	47nF
C23	R IC 464 2045/1	10nF
C24	194704350P102	3-10 nF· MURATA
C25	RJC 463 4042/33	33pF
C26	RJC 463 9041/27	2.7pF
C27	RJC 463 6042/15	15pF
and		
C28	4047040505400	
029	19A/04350P102	3-TUPF: MURATA
030	RJC 463 9041/27	2.7pF
031	RJC 464 3044/47	4./NF
032	KJC 463 9041/27	2.7pF
033	RJC 464 3044/47	4./NF
C34	RJC 463 6042/15	15p⊢

² COMPONENTS ADDED, DELETED OR CHANGED BY PRODUCTION CHANGES.

Symbol	Part Number	Description
C35		Not Used
C36	19A704350P102	3-10pF
C37	RJC 464 3046/1	100nF
C38	RJC 463 4042/1	10pF
C39	RJC 463 0041/1	1pF
C40		Not Used
thru		
C99		
C100	RJC 464 3045/22	22nF
C102	RIC 464 3067/1	1uE
C102	RIC 464 3045/22	22nF
C103	RIC 464 3046/1	100nF
C105	RIC 464 3045/22	22nE
C105,	RIC 464 3046/1	100nF
C107	RIC 464 3045/22	22nE
C108	RIC 464 3043/22	4 7nF
C100	RIC 464 3046/1	100nF
C1103,	RIC 464 3067/1	1uE
C111	RIC 463 4043/33	330nE
C112	RIC 464 3046/1	100pF
C113	R IC 463 4044/1	1nF
C114	R IC 464 3045/22	22nF
C115	RJC 464 3046/1	100nF
and		
C116		
C117	RJC 463 4044/1	1nF
C118		Not Used
C119	RJC 463 4043/15	150pF
C120	RJC 463 4042/56	56pF
C121	RJC 463 0041/1	1pF
C122	RJC 464 3046/1	100nF
C123	RJC 464 2045/1	10nF
and		
C124		
C125	RJC 464 3046/1	100nF
C126		
C127	194705205P15	33 uE
C128	R IC 464 2045/1	10nF
C120	R IC 463 4042/27	27nF
C130	R.IC 464 3046/1	100pE
thru		
C135		
C136	RJC 463 4044/1	1nF

Symbol	Part Number	Description
C137	RJC 464 3046/1	100nF
and		
C138		
C139	RJC 463 4042/22	22pF
C140	RJC 464 3046/1	100nF
thru		
C144		
C145	RJC 463 4043/1	100pF
C146	19A705205P5	6.8µF
C147	RJC 464 3046/1	100nF
C148	RJC 463 4043/12	120pF
C149	RJC 464 3046/1	100nF
and C150		
C151	RJC 463 6042/15	15pF
and		- F
C152		
C153,	RJC 463 4042/22	22pF
C154	RJC 464 3046/1	100nF
and		
C155		
C156	RJC 463 4042/22	22pF
C157	RJC 464 3046/1	100nF
C158	RJC 463 4042/22	22pF
C159		Not Used
thru		
C199	4047050050444	
C200	19A705205P111	
C201,	RJC 464 3067/1	
C202	19A705205P2	1µF POL
C203	RJC 464 3046/1	
C204	19A705205P2	1µF POL
C205	RJC 464 3046/1	100nF
C206	RJC 464 3067/1	1µF
C207	RJC 464 2045/1	
C208,	RJC 463 4043/1	100pF
C209	RJC 464 3044/47	4.7nF
C210	RJC 464 2045/47	47nF
and C211		
0211	DIC 462 4042/47	470pE
C212	DIC 161 2016/1	470μ 100pE
and	KJC 404 3040/1	TOUTE
C214		
C215	RJC 463 4043/47	470pF
C216	RJC 464 3067/1	1µF
C217	RJC 463 4043/1	100pF
and		F

Symbol	Part Number	Description
C218		
C218	RJC 464 3067/1	1uE
C220	RJC 463 4043/1	100pF
and		
C221		
C222	19A705205P2	1µF POL
C223	RJC 464 3046/1	100nF
CZZ4 thru	RJC 403 4043/1	TOOPE
C226		
C227		Not Used
C228	RJC 463 4043/1	100pF
thru		
C232	PIC 464 2045/1	10nE
and	1/30 404 2043/1	
C234		
C235	RJC 464 3046/33	0.33µF
and		
C230	R IC 464 2045/1	10nF
thru	1/30 404 2043/1	
C242		
C243	RJC 463 4044/1	1nF
and		
C244	R IC 464 2045/1	10nF
and	1100 404 2043/1	
C246		
C247		Not Used
C248	RJC 463 4042/33	33pF
C249	RJC 464 2045/1	10nF
C250	RJC 463 4044/1	1nF
C251	D 10 400 4040/00	Not Used
C252	RJC 463 4042/33	33pF
D1		
	RKZ 323 001/5	
D2 D100	19A703393F10	BZX84C8V2/SOT: ON SEMI
D200	19A700155P2	BAT18: PHILIPS SEMI
2200		
FL1	FI101061V1	21.4 MHz (High IP3 filter set consists of a matched
and		pair): TEW
FL2		
FL100	VECFUM455E	455 kHz Ceramic Filter: MURATA
FL101	VECFUM455F	455 kHz Ceramic Filter: MURATA
FL102		

Symbol	Part Number	Description
		CONNECTORS
J1	19A115938P24	BNC
J2	19B801587P7	96 PIN
		INDUCTORS
L1 .	REG704593/47	0.47µH: TDK
and		
13	REG704594/68	6 8uH· TDK
and	1120704334/00	ο.ομπ. τ.οι.
L4		
L5	VELQS33N1R5G04	1.5µH: MURATA
and		
	REG704594/68	6 8uH
and	1120104004/00	0.0011
L8		
L9	VELQS33N1R5G04	1.5µH: MURATA
L10	REG 704 14/31	3.3µF
L100	REG 704 14/37	
	REG 704 593/27	0.27µH: TDK 0.75µH: Toko
L 102	REG 704 14/37	10/19µ11. 10k0 10/1H
2100		ισμι
L201	REG 704 14/37	10µH
and		
L202		TRANSISTORS
01 02	10470470902	
Q1,Q2 03	19A704706P2	MMBT3904/SOT: ON SEMI
and	13/10001012	
Q4		
Q100	19A700076P2	MMBT3904/SOT: ON SEMI
Q101		
Q201	19A700076P2	MMBT3904/SOT: ON SEMI
thru		
Q203		
D 4		RESISTORS
	344A33U4P51K1 344A3304D1000	
R3	344A3304P1002	10k Ohms
R4	344A3304P3321	3.32k Ohms
R5	344A3304P8250	825 Ohms
R6	344A3304P9090	909 Ohms
R7	19B801251P5R6	5.62 Ohms

Symbol	Part Number	Description
R8	344A3304P9090	909 Ohms
R9	344A3304P1000	100 Ohms
R10	344A3304P1002	10k Ohms
R11	344A3304P3321	3.32k Ohms
R12	344A3304P8250	825 Ohms
R13	344A3304P9090	909 Ohms
R14	19B801251P5R6	5.62 Ohms
R15	344A3304P9090	909 Ohms
R16	344A3304P3321	3.2k Ohms
and		
R17		
R18	344A3304P6811	6.81k Ohms
R19	344A3304P1003	100k Ohms
R20	344A3304P1502	15k Ohms
R21	344A3304P2211	2.21k Ohms
R22	344A3304P2741	2.74k Onms
R23	344A3304P4750	475 Onms
R24 and	344A3304P1000	100 Onms
R25		
R26	344A3304P6811	6.81k Ohms
and		
R27		
R28		Not Used
thru		
R34		Netlised
R35 D26		Not Used
thru		Not Osed
R99		
R100	REL 316 1114/1	1K VAR
R101	344A3304P2000	200 Ohms
R102	344A3304P1001	1k Ohms
R103	344A3304P51R1	51.1 Ohms
R104	344A3304P3320	332 Ohms
R105	344A3304P2212	22.1k Ohms
R106	19B801251P1	0 Ohms
R107	344A3304P2210	221 Ohms
R108	344A3304P1503	150k Ohms
R109	344A3304P1501	1.5k Ohms
R110	344A3304P8250	825 Ohms
R111	344A3304P1003	100k Ohms
R112	344A3304P1002	10k Ohms
R113	344A3304P4321	4.32k Ohms
R114	344A3304P3321	3.32k Ohms
R115	344A3304P6811	6.81k Ohms
R117	344A3304P3321	3.32k Ohms

Symbol	Part Number	Description
R118	344A3304P6811	6.81k Ohms
R119		Not Used
R120	344A3304P1212	12.1k Ohms
R121	344A3304P4750	475 Ohms
R122	344A3304P2211	2.21k Ohms
R123	344A3304P4750	475 Ohms
R124	344A3304P8250	825 Ohms
R125	344A3304P1002	10k Ohms
R126	344A3304P1211	1.21k Ohms
R127	344A3304P3921	3.92k Ohms
R128	344A3304P1211	1.21k Ohms
R129	344A3304P1821	1.82k Ohms
R130	344A3304P4751	4.75k Onms
R131	344A3304P8251	8.25k Onms
R132	344A3304P1002	10k Onms
R133	344A3304P1502	15k Onms
R134	344A3304P1003	
R135	344A3304P1002	
R136	344A3304P6812	68.1k Onms
R137	344A3304P1213	
R138	344A3304P1003	100K Ohma
R139 D140	344A3304P3322	SS.2k Onins
D1/1	3444330401003	100k Ohme
R141	344A3304F1003	1 21k Ohme
R143	344A3304P3321	3 32k Ohms
R144	344A3304P2211	2.21k Ohms
R145	344A3304P4751	4.75k Ohms
R146	344A3304P2670	267 Ohms
R147	344A3304P2211	2.21k Ohms
R148	344A3304P4750	475 Ohms
and		
R149		
R150		Not Used
and D151		
R152	19B801251P1	0 ohm
and	10000120111	
R153		
R154	344A3304P47R5	47.5 Ohms
R155	344A3304P4750	475 Ohms
R156		Not Used
thru		
R200	0444000450744	0.744 Ohme
KZU1	344A33U4P2741	2.74K UNITS
K2U2	344A33U4P3321	
R203	REL 316 1115/2	ZUK VAK.

Symbol	Part Number	Description
R204	344A3304P1502	15k Ohms
R205	344A3304P1003	100k Ohms
thru		
R207		
R208	344A3304P6811	6.81k Ohms
R209	344A3304P1001	1k Ohms
R210	344A3304P3322	33.2k Ohms
and R211		
R212	344A3304P5622	56.2k Ohms
R213	344A3304P8251	8.25k Ohms
R214	344A3304P1002	10k Ohms
R215	344A3304P1003	100k Ohms
R216	344A3304P3323	332k Ohms
R217	344A3304P1002	10k Ohms
and		
R218		
R219	344A3304P3922	39.2k Ohms
R220	344A3304P2212	22.1k Ohms
and		
R221		
R222	344A3304P6812	68.1k Ohms
R223	344A3304P7500	750 Ohms
R224	344A3304P8250	825 Ohms
R225	344A3304P4752	47.5k Ohms
and R226		
R227	344A3304P1002	10k Ohms
R228	344A3304P3922	39.2k Ohms
R229	344A3304P4752	47.5k Ohms
R230	344A3304P1002	10k Ohms
R231	344A3304P4751	4 75k Ohms
R232	344A3304P10R0	10 Ohms
R233	344A3304P4752	47.5k Ohms
thru		
R235		
R236	344A3304P4751	4.75k Ohms
R237	344A3304P1001	1k Ohms
thru		
R239		
R240		Not Used
R241	344A3304P1001	1k Ohms
thru		
N244	3444330404705	47.5 Obmc
R240 D246	344A3304F47K3	
R240	244A3304F1001	
R24/	344A33U4P4/K3	
KZ48	344A3304P1001	TK ONINS

PARTS LIST

Symbol	Part Number	Description
R249		Not Used
R250	344A3304P1001	1k Ohms
R251		Not Used
R252	344A3304P1001	1k Ohms
and		
R253		
R254	344A3304P1003	100k Ohms
		TEST POINTS
TP1		A trace on the printed wire board
1P2	344A3367P1	
TP3		Traces on the printed wire board
TP4		
TP5	344A3367P1	TEST POINT
		TRANSFORMERS
TX1 TX2	REGUA10003/1	B5F
111	GNI M239D	Quad Operational Amplifier M239A/SO: ON SEMI
	VELIPC3206GB-E1	Automatic Gain Control Amplifier LIPC3206GR: NEC
1101	19A705535P3	EM Receiver Module SA605: PHILIPS SEMI
U102	RYT 101 6239/C	Dual Analog Switch (SPDT) MAX4544 ⁻ MAXIM
and		
U103		
U104	GNLM239D	Quad Operational Amplifier LM239A/SO: ON SEMI
U105	VELM6172IM	Dual High Speed, Low Power, Low Distortion Voltage
11106		Feedback Amplifier LM01721M: NATIONAL SEMI
	GINLINIZ39D	Reil To Reil Operational Amplifier TL C2274/SO: TL
0200	104704071010	Kall-TO-Kall Operational Amplifier TEC2274/SO. T
11202	10A704971P10	+5 Volt Regulator I M781 054C/SO: EAIRCHILD SEMI
11203	RYT 101 6002/2C	Low Power Quad Operation Amplifier M2902/SO: ON
0203	11111010002/20	SEMI
U204	344A3064P201	3-To-8 Line Decoder/Demultiplexer 74HCT138/SO: ON
11005	4047024020244	SEMI
0205	19A703483P311	CMOS Quad-Input OR Gate 74HC32/SO: ON SEMI
0200	DVT 101 6220/C	Dual Apples Switch (SDST) MAX4544: MAXIM
0207	RTI 101 0239/C	MAX4544: MAXIM
U208	19A704971P10	+8 Volter Regulator MC78M08C/TO: ON SEMI
		CRYSTALS
Y100	CY101062V1	20.945 MHz: TEN, NDK, Toyocom
Y101	19A149976P1	Discriminator: 455 kHz MURATA
105	PB101127V1	Receiver IF Printed Wiring Board

7.0 IC DATA

U100 Automatic Gain Control (AGC) Amplifier VEUPC3206GR-E1 (UPC3206GR)

Continued

IC DATA

Continued

PIN FUNCTIONS

Pin No.	Pin Name	Pin Voltage TYP.(V)	Function and Explanation	Equivalent Circuit	
1	AGC GND1	0	Ground pin of AGC amplifier1. Form a ground pattern as wide as possible to maintain the minimum impedance.		
2	AGC IN 1 Note 1	1.02	Signal input pin to AGC amplifier.	AGC 56	
		1.02			
3	VAGC	0 to 5	Gain control pin. This pin's bias govern the AGC output level. Minimum gain at $V_{AGC} = 0 V$ Maximum gain at $V_{AGC} = 5 V$ Recommended to use by dividing AGC voltage with externally resistor (ex.100 k Ω).	AGC Control	
4	AGC Vcc1	5	Power supply pin of AGC amplifier1. Must be connected bypass capacitor to minimize ground impedance.		
5	BPCAP4	24 2.61 Bypass pin of AGC amplifier1 and 2. Refer to Equivalent circu	Refer to Equivalent circuit of pin1 and		
	Note 1	2.61		pin2.	
6	BPCAP2	2.84			
	Note 1	2.49			
7	G1A ^{Note 2}	1.72	Gain control pin of video amplifier.	Refer to Equivalent circuit of pin14	
		3.34	Maximum gain at G1A – G1B = short. Minimum gain at G1A – G1B = open.	and pin15.	
8	G1B ^{Note 2}	1.72	Gain is able to adjust by inserting arbitrary		
		3.34	resistor between 7pin and 8pin.		
9	VAMP GND1	0	Ground pin of video amplifier. Form a ground pattern as wide as possible to	(13)	
10	VAMP GND2	0	maintain the minimum impedance.		
11	VAMP	2.52	Signal output pin of video amplifier.		
	OUT ² Note 2	4.92	In case of $R_L = 1 \ k\Omega$, single-end output voltage equal $2V_{P-P}$.		
12	VAMP	2.52			
	OUI1 Note 2	4.92			

 Notes
 1.
 above : VAGC = VCc1
 below : VAGC = 0 V

 2.
 above : VCc2 = 5 V
 below : VCc2 = 9 V

U101 FM Receiver Module 19A705535P3

	MAX4544	
LOGIC	NC	NO
0	ON	OFF
1	OFF	ON
SWITCHE	S SHOWN FOR "	D" INPUT

U105

Dual High Speed, Low Power, Low Distortion Voltage Feedback Amplifier VELM6172IM (LM6172IM)

Top View

U200

Rail-to-Rail Operational Amplifier RYT 101 6140/2 (TLC2274/SO)

Terminal	Symbol	Function
1	OUT ₁	Output 1
2	IN ₁ -	Inverting input 1
3	IN ₁ +	Non-inverting input 1
4	V _{CC} +	Positive supply voltage
5	IN ₂ +	Non-inverting input 2
6	IN ₂ -	Inverting input 2
7	OUT ₂	Output 2
8	OUT ₃	Output 3
9	IN ₃ -	Inverting input 3
10	IN ₃ +	Non-inverting input 3
11	v _{cc} -	Negative supply voltage
12	IN ₄ +	Non-inverting input 4
13	IN ₄ -	Inverting input 4
14	OUT₄	Output 4

DPAK

U201, U208 +8 Volt Regulator 19A704971P10 (MC78M08C/TO)

(Heatsink surface connected to Pin 2)

PIN 1. INPUT 2. Ground 3. Output

U202 +5 Volt Regulator 19A704971P9 (LM78L05AC/SO)

E

Pinout:

- 1 Vout
- 2 Ground
- 3 Ground
- 4 N.C.
- 5 N.C.
- 6 Ground
- 7 Ground
- 8 Vin

U203 Low Power Quad Operation Amplifier RYT 101 6002/2C (LM2902/SO)

U204 3-8 Inverting Line Decoder/Demultiplexer 344A3064P201 (74HCT138/SO)m

U205 Quad 2-Input OR Gate 19A703483P311 (74HC32/SO)

LOGIC DIAGRAM

U206 8-Bit Shift Register 19A703987P324 (74HC595/SO)

8.0 OUTLINE DIAGRAM

RECEIVER IF MODULE CB101128V1

(AD-CB101128V1, Sh.3, Rev. B)

9.0 SCHEMATIC DIAGRAM

RECEIVER IF MODULE CB101128V1

(WD-CB101128V1, Sh. 1, Rev. A)

SCHEMATIC DIAGRAM

RECEIVER IF MODULE CB101128V1

(CB101128V1, Sh. 2, Rev. A)

SCHEMATIC DIAGRAM

RECEIVER IF MODULE CB101128V1

(CB101128V1, Sh. 3, Rev. A)

M/A-COM Wireless Systems 3315 Old Forest Road Lynchburg, Virginia 24501 (Outside USA, 434-385-2400) Toll Free 800-528-7711 <u>www.macom-wireless.com</u>

Printed in U.S.A.