Product Specification

Prouct:	Bluetooth 4.0 BLE Module
Module Number:	BB1737-25
Doc Version:	V1.1
Data:	October 17,2015

Section 1:Overview

The BB1737-25 is a Bluetooth 4.0 module based on the Broadcom BCM20737 specification basic rate-compliant stand alone baseband processor with an integrated 2.4GHz transceiver.

The module includes Flash, crystal and PCB antenna.

1.1 Applications

The following profiles are supported in ROM:

- Battery status
- Blood pressure monitor
- Find me
- Heart rate monitor
- Proximity
- Thermometer
- Weight scale
- Time

Additional profiles that can be supported from

RAM include:

- Blood glucose monitor
- Temperature alarm
- Location

1.2 Features

- Support for RSA encryption/decryption and key exchange mechanisms (up to 4 kbit)
- Support for X.509 certificate exchange
- Support for NFC tag-based "tap-to-pair"
- Support for Bluetooth Smart Based Audio
- Bluetooth low energy (BLE)-compliant
- Supports Adaptive Frequency Hopping
- Excellent receiver sensitivity
- 10-bit auxiliary ADC with nine analog channels
- On-chip support for serial peripheral interface(SPI,UART) (master and slave modes)
- Programmable output power control
- Integrated ARM Cortex[™]-M3 based microprocessor core
- Automation Profile
- Support for secure OTA
- On-chip power-on reset (POR)
- Integrated low-dropout regulator (LDO)
- On-chip software controlled power management unitq
- Package type:20.5*12.5*2mm FR4 PCB with 25 pads located around the perimeter.

1.3 Functional Description

The primary component on the module is the Broadcom BCM20737, which is a Bluetooth 4.0 compliant basic rate single-chip. The baseband and radio have been integrated into a single chip implemented in standard digital CMOS. The block diagram of the module is shown in Figure 1.

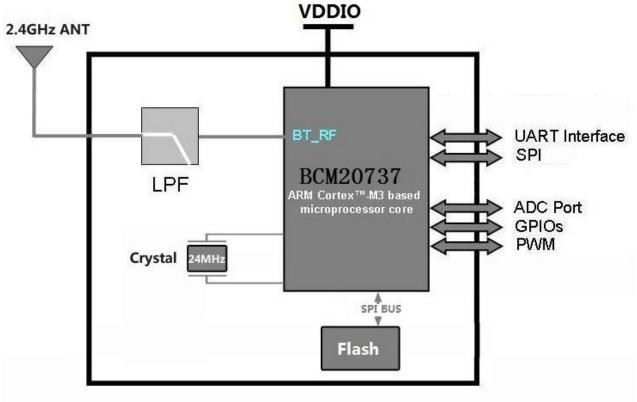
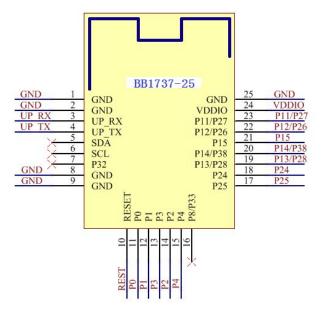


Figure 1: Block Diagram


The BB1737-25 employs an integrated ARM Cortex[™]-M3 microprocessor core that runs software from the Link Control layer up to the Host Controller Interface (HCI). The baseband portion of the BB1737-25 performs all the time-critical functions required for high-performance Bluetooth operations.

The radio incorporates the complete receive and transmit paths, including PLL, VCO, LNA, PA, upconverter, downconverter, modulator, demodulator, and channel select filtering.

The module has a SPI interface. The interface has a 16-byte transmit buffer and a 16-byte receive buffer .To support more flexibility for user applications. The module acts as an SPI master device that supports 1.8V or 3.3V SPI slaves.

1.4 Physical Description

The BB1737-25 is a 20.5*12.5*2mm FR4 PCB with 25 pads located around the perimeter Fingle 2 shows the pinout diagram of the module.

Fingle 2 Pin Location

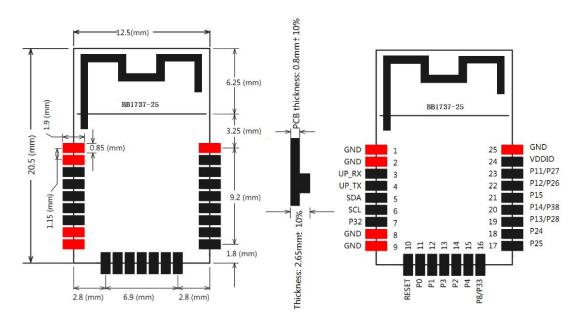


Figure 3: Module PCB Layout Mechanical Specification

Bluetooth 4.0 BLE Module

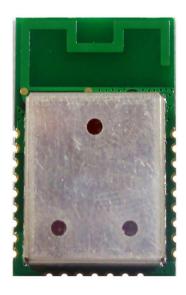


Figure 4 : Module PCB Top view

Figure 5 : Module PCB Bottom view

Table 1 shows the pin-out diagram of the module. *Table 1: Pin Description(Cont.)*

Pin	Pin	Default	Function
Number	Name	State	Description
1,2,8,9,25	GND		Connect to ground
3	UP_RX	Input	UART input serial data for the HCI UART interface
4	UP_TX	output	UART output serial data for the HCI UART interface
5	SDA	1/0	Internal flash memory use
6	SCL	1/0	Internal flash memory use
7	P32	1/0	Internal flash memory use
24	VDDIO	VDDO	Power supply
10	RST	I/O	Active-low system reset with open-drain output
	N31	1/ 0	& internal pull-up resistor
11	P0	Input floating	GPIO:P0 SPI_2:MOSI (master) A/D input
12	P1	Input floating	GPIO:P1 SPI_2:MISO (master) A/D input
13	Р3	Input floating	GPIO:P3 SPI_2:CLK (master)
14	P2	Input floating	GPIO:P2 SPI_2:CS (master)
15	P4	Input floating	GPIO:P4
16	P8/P33	Input floating	Internal flash memory use
17	P25	Input floating	GPIO:P25
18	P24	Input floating	GPIO:P24
19	P13/P28	Input floating	GPIO:P13,P28 A/D input PWM3
20	P14/P38	Input floating	GPIO:P14,P38 A/D input PWM2
21	P15	Input floating	GPIO:P15 A/D input(Battery moniter)
22	P11/P27	Input floating	GPIO:P11,P27 PWM1
23	P12/P26	Input floating	GPIO:P12,P26 PWM0

Section 2: Specifications

2.1 Electrical Characteristics

Table 2 shows the maximum electrical rating for voltages referenced to VDD pin.

Table 2: c

Rating	Symbol	Value	Unit
DC supply voltage for VDDIO domain	-	3.8	V
Voltage on input or output pin	-	VSS - 0.3 to VDD	+ 0.3 V
Operating ambient temperature range	Topr	-30°C to +85°C	°C
Storage temperature range	Tstg	–40 to +125	°C

Table 3 shows the power supply characteristics for the range $T_J = 0$ to 85°C.

Table 3: Power Supply

Parameter	Minimum ^a	Typical	Maximum ⁰	Unit
DC supply voltage for VDDM (UART/I ² C)	1.62	_	3.63	V
DC supply voltage for VDDIO	1.8	-	3.63	V

a. Overall performance degrades beyond minimum and maximum supply voltages.

Table 4: Current Consumption a

Operational Mode	Conditions	Тур	Max	Unit
Receive	Receiver and baseband are both operating, 100% ON.	26	_	mA
Transmit	Transmitter and baseband are both operating, 100% ON.	20	_	mA
Standby		4.3	_	mA
Broadcast		5.9	_	mA
Sleep		40	_	uA

a. Current consumption measurements are taken at VBAT 3V.

2.2 RF Specifications

Table 5: Receiver RF Specifications

Parameter	Mode and Conditions	Min	Тур	Max	Unit
Receiver Section ^a					
Frequency range	-	2402	_	2480	MHz
RX sensitivity (standard)	0.1%BER, 1 Mbps	_	-85	_	dBm
RX sensitivity (low current)	-	_	-85	_	dBm
Input IP3	-	-16	-	_	dBm
Maximum input	_	-10	_	_	dBm
Interference Performance ^{a,b}					
C/I cochannel	0.1%BER	_	_	21	dB
C/I 1 MHz adjacent channel	0.1%BER	_	_	15	dB
C/I 2 MHz adjacent channel	0.1%BER	_	-	-17	dB
C/I ≥ 3 MHz adjacent channel	0.1%BER	_	_	-27	dB
C/I image channel	0.1%BER	_	_	-9.0	dB
C/I 1 MHz adjacent to image channel	0.1%BER	-	_	-15	dB
Out-of-Band Blocking Performa	ince (CW) ^{a,b}				
30 MHz to 2000 MHz	0.1%BER ^c	_	-30.0	_	dBm
2003 MHz to 2399 MHz	0.1%BER ^d	-	-35	_	dBm
2484 MHz to 2997 MHz	0.1%BER ^d	-	- 35	_	dBm
3000 MHz to 12.75 GHz	0.1%BER ^e	-	-30.0	_	dBm
Spurious Emissions					
30 MHz to 1 GHz	_	-	-	-57.0	dBm
1 GHz to 12.75 GHz	-	_	_	-55.0	dBm

a. 30.8% PER.

b. Desired signal is 3 dB above the reference sensitivity level (defined as -70 dBm).

c. Measurement resolution is 10 MHz.

d. Measurement resolution is 3 MHz.

e. Measurement resolution is 25 MHz.

Table 6: Transmitter RF Specifications

Parameter	Min	Тур	Max	Unit
Transmitter Section				
Frequency range	2402	_	2480	MHz
Output power adjustment range	_	0	-	dBm
Default output power	_	4.0	_	dBm
Output power variation	-	2.0	_	dB
Adjacent Channel Power				
M - N = 2	_	_	-20	dBm
$ M-N \ge 3$	-	_	-30	dBm
Out-of-Band Spurious Emission				
30 MHz to 1 GHz	-	_	-36.0	dBm
1 GHz to 12.75 GHz	-	_	-30.0	dBm
1.8 GHz to 1.9 GHz	-	_	-47.0	dBm
5.15 GHz to 5.3 GHz	_	_	-47.0	dBm
LO Performance				
Initial carrier frequency tolerance	-	_	±150	kHz
Frequency Drift				
Frequency drift	-	_	±50	kHz
Drift rate	_	_	20	kHz/50 μs
Frequency Deviation				
Average deviation in payload	225	_	275	kHz
(sequence used is 00001111)				
Maximum deviation in payload	185	_	_	kHz
(sequence used is 10101010)				
Channel spacing	_	2	_	MHz

2.3 Timing and AC Charactristics

In this section, use the numbers listed in the **Reference** column of each table to interpret the following timing diagrams.

UART Timing

Table 7: UART Timing Specifications

Reference	Characteristics	Min	Max	Unit
1	Delay time, UART_CTS_N low to UART_TXD valid	_	24	Baud out cycles
2	Setup time, UART_CTS_N high before midpoint of stop bit	-	10	ns
3	Delay time, midpoint of stop bit to UART_RTS_N high	-	2	Baud out cycles



Figure 6: UART Timing

SPI Timing

The SPI interface supports clock speeds up to 12 MHz with VDDIO \geq 2.5V. The supported clock speed is 6 MHz when 2.5V > VDDIO \geq 2.35V.

Figure 7 and Figure 8 show the timing requirements when operating in SPI Mode 0 and 2, and SPI Mode 1 and 3, respectively.

Table 8:	SPI Interface Timing Specifications

Reference	Characteristics	Min	Тур	Max
1	Time from CSN asserted to first clock edge	1 SCK	100	∞
2	Master setup time	_	½ SCK	_
3	Master hold time	½ SCK	_	_
4	Slave setup time	_	½ SCK	_
5	Slave hold time	½ SCK	_	_
6	Time from last clock edge to CSN deasserted	1 SCK	10 SCK	100

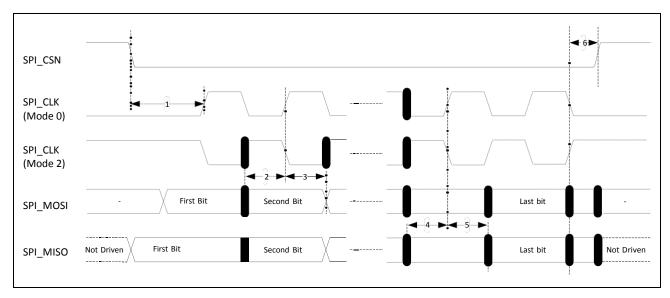


Figure 7: SPI Timing - Mode 0 and 2

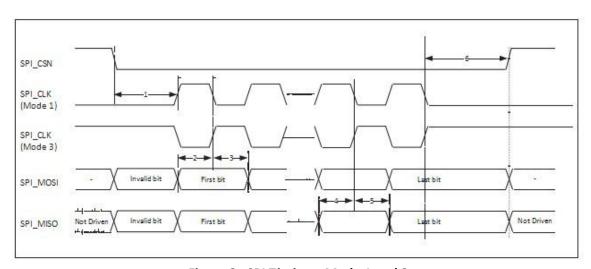
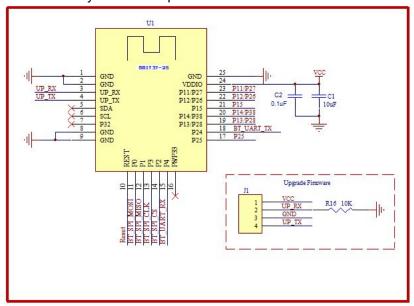



Figure 8: SPI Timing – Mode 1 and 3

Section3: Reference Design

The most recent schematic and design example, bill of material, and layout file are available from the ITON Technology Limit. Contact your ITON representative for details.

Figure 9: Module Reference Schematic



Figure 10: SPI/UART Reference Interface

REVISION HISTORY

Data	Revision	Changes
17-April-2015	1.0	Initial Version
17-October-2015	1.1	Update Working Voltage

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -Reorient or relocate the receiving antenna.
- —Increase the separation between the equipment and receiver.
- —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- —Consult the dealer or an experienced radio/TV technician for help.

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

(OEM) Integrator has to assure compliance of the entire end-product incl. the integrated RF Module. Additional measurements (15B) and/or equipment authorizations (e.g Verification) may need to be addressed depending on co-location or simultaenous transmission issues if applicable.

Integrator is reminded to assure that these installation instructions will not be made available to the end-user of the final host device.

With the low output power, this RF Module meets the FCC SAR exemption and can be therefore integrated into any (portable, mobile, fixed) host device that powered by battery.

The final host device, into which this RF Module is integrated" has to be labelled with an auxilliary lable stating the FCC ID of the RF Module, such as "Contains FCC ID: ZKJ-BLEA003".