Preliminary draft_1

Clear All Suffixes

Function Code Transmit

When this selection is enabled and function codes are contained within the scanned data, the scanner transmits the function code to the terminal. Charts of these function codes are provided in Supported Interface Keys starting on page 9-3. When the scanner is in keyboard wedge mode, the scan code is converted to a key code before it is transmitted. Default = Enable.

Intercharacter, Interfunction, and Intermessage Delays

Some terminals drop information (characters) if data comes through too quickly. Intercharacter, interfunction, and intermessage delays slow the transmission of data, increasing data integrity.

Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each character of scanned data. Scan the Intercharacter Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Intercharacter Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.
Note: Intercharacter delays are not supported in USB serial emulation.

User Specified Intercharacter Delay

An intercharacter delay of up to 5000 milliseconds (in 5 ms increments) may be placed after the transmission of a particular character of scanned data. Scan the Delay Length bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

Next, scan the Character to Trigger Delay bar code, then the 2-digit hex value for the ASCII character that will trigger the delay ASCII Conversion Chart (Code Page 1252), beginning on page A-3.

To remove this delay, scan the Delay Length bar code, and set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Interfunction Delay

An interfunction delay of up to 5000 milliseconds (in 5 ms increments) may be placed between the transmission of each control character in the message string. Scan the Interfunction Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Interfunction Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Intermessage Delay

An intermessage delay of up to 5000 milliseconds (in 5 ms increments) may be placed between each scan transmission. Scan the Intermessage Delay bar code below, then scan the number of 5 ms delays, and the Save bar code using the Programming Chart inside the back cover of this manual.

To remove this delay, scan the Intermessage Delay bar code, then set the number of delays to 0 . Scan the Save bar code using the Programming Chart inside the back cover of this manual.

Data Formatting

Data Format Editor Introduction

You may use the Data Format Editor to change the scanner's output. For example, you can use the Data Format Editor to insert characters at certain points in bar code data as it is scanned. The selections in the following pages are used only if you wish to alter the output. Default Data Format setting = None.
Normally, when you scan a bar code, it is output automatically. However, when you create a format, you must use a "send" command (see Send Commands on page 6-3) within the format program to output data.
Multiple formats may be programmed into the scanner. They are stacked in the order in which they are entered. However, the following list presents the order in which formats are applied:

1. Specific Terminal ID, Actual Code ID, Actual Length
2. Specific Terminal ID, Actual Code ID, Universal Length
3. Specific Terminal ID, Universal Code ID, Actual Length
4. Specific Terminal ID, Universal Code ID, Universal Length
5. Universal Terminal ID, Actual Code ID, Actual Length
6. Universal Terminal ID, Actual Code ID, Universal Length
7. Universal Terminal ID, Universal Code ID, Actual Length
8. Universal Terminal ID, Universal Code ID, Universal Length

The maximum size of a data format configuration is 2000 bytes, which includes header information.
If a bar code is read that fails the first data format, the next data format, if there is one, will be used on the bar code data. If there is no other data format, the raw data is output.
If you have changed data format settings, and wish to clear all formats and return to the factory defaults, scan the Default Data Format code below.

Add a Data Format

Step 1. Scan the Enter Data Format symbol (page 6-2).
Step 2. Select Primary/Alternate Format
Determine if this will be your primary data format, or one of 3 alternate formats. This allows you to save a total of 4 different data formats. To program your primary format, scan 0 using the Programming Chart inside the back cover of this manual. If you are programming an alternate format, $\operatorname{scan} \mathbf{1 , 2}$, or $\mathbf{3}$, depending on which alternate format you are programming. (See "Primary/Alternate Data Formats" on page 6-13 for further information.)

Step 3. Terminal Type

Refer to Terminal ID Table (page 6-3) and locate the Terminal ID number for your PC. Scan three numeric bar codes on the inside back cover to program the scanner for your terminal ID (you must enter 3 digits). For example, scan 00 3 for an AT wedge.
Note: 099 indicates all terminal types.
Step 4. Code I.D.
In the Symbology Charts, beginning on page A-1, find the symbology to which you want to apply the data format. Locate the Hex value for that symbology and scan the 2 digit hex value from the Programming Chart inside the back cover of this manual.
If you wish to create a data format for all symbologies, with the exception of some specific symbologies, refer to B8 (page 6-11).
If you are creating a data format for Batch Mode Quantity, use 35 for the Code I.D.
Note: 99 indicates all symbologies.

Step 5. Length

Specify what length (up to 9999 characters) of data will be acceptable for this symbology. Scan the four digit data length from the Programming Chart inside the back cover of this manual. For example, 50 characters is entered as 0050.
Note: 9999 indicates all lengths.

Step 6. Editor Commands

Refer to Data Format Editor Commands (page 6-3). Scan the symbols that represent the command you want to enter.
Step 7. Scan Save to save your data format, or Discard to exit without saving your changes.

DFMBK3.
Enter Data Format

Other Programming Selections

Clear One Data Format

This deletes one data format for one symbology. If you are clearing the primary format, scan $\mathbf{0}$ from the Programming Chart inside the back cover of this manual. If you are clearing an alternate format, scan $\mathbf{1 , 2}$, or $\mathbf{3}$, depending on the format you are clearing. Scan the Terminal Type and Code I.D. (see Symbology Charts on page A-1), and the bar code data length for the specific data format that you want to delete. All other formats remain unaffected.

Clear all Data Formats

This clears all data formats.
Save to exit and save your data format changes.
Discard to exit without saving any data format changes.

Terminal ID Table

Terminal	Model(s)	Terminal ID
USB	PC keyboard (HID)	124
	Mac Keyboard	125
	PC Keyboard (Japanese)	134
	Serial (COM driver required)	130
	HID POS	131
	USB SurePOS Handheld	128
	USB SurePOS Tabletop	129
Serial	RS232 TTL	000
	RS232 True	000
	RS485 (IBM-HHBCR 1+2, 46xx)	051
	PS2 compatibles	003
	AT compatibles	002

Data Format Editor Commands

When working with the Data Format Editor, a virtual cursor is moved along your input data string. The following commands are used to both move this cursor to different positions, and to select, replace, and insert data into the final output.

Send Commands

Send all characters

F1 Include in the output message all of the characters from the input message, starting from current cursor position, followed by an insert character. Syntax = F1xx where xx stands for the insert character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Send a number of characters

F2 Include in the output message a number of characters followed by an insert character. Start from the current cursor position and continue for "nn" characters or through the last character in the input message, followed by character "xx." Syntax = F2nnxx where nn stands for the numeric value (00-99) for the number of characters, and $x x$ stands for the insert character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

F2 Example: Send a number of characters

1234567B90ABCDEFGHIJ
Send the first 10 characters from the bar code above, followed by a carriage return. Command string: F2100D
F2 is the "Send a number of characters" command
10 is the number of characters to send
$0 D$ is the hex value for a CR
The data is output as: 1234567890

F2 and F1 Example: Split characters into 2 lines

Send the first 10 characters from the bar code above, followed by a carriage return, followed by the rest of the characters.

Command string: F2100DF10D
F2 is the "Send a number of characters" command
10 is the number of characters to send for the first line
0 D is the hex value for a CR

F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
1234567890
ABCDEFGHIJ
<CR>

Send all characters up to a particular character

F3 Include in the output message all characters from the input message, starting with the character at the current cursor position and continuing to, but not including, the search character "ss," followed by an insert character. The cursor is moved forward to the "ss" character. Syntax = F3ssxx where ss stands for the search character's hex value for its ASCII code, and xx stands for the insert character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

F3 Example: Send all characters up to a particular character

Using the bar code above, send all characters up to but not including " D," followed by a carriage return.
Command string: F3440D
F3 is the "Send all characters up to a particular character" command
44 is the hex value for a ' D "
$0 D$ is the hex value for a CR
The data is output as:
1234567890ABC
<CR>

Send all characters up to a string

B9 Include in the output message all characters from the input message, starting with the character at the current cursor position and continuing to, but not including, the search string "s...s." The cursor is moved forward to the beginning of the "s...s" string. Syntax = B9nnnns...s where nnnn stands for the length of the string, and s...s stands for the string to be matched. The string is made up of hex values for the characters in the string. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
B9 Example: Send all characters up to a defined string

Using the bar code above, send all characters up to but not including "AB."
Command string: B900024142
B9 is the "Send all characters up to a string" command
0002 is the length of the string (2 characters)
41 is the hex value for A
42 is the hex value for B
The data is output as: 1234567890

Send all but the last characters

E9 Include in the output message all but the last "nn" characters, starting from the current cursor position. The cursor is moved forward to one position past the last input message character included. Syntax $=E 9 n n$ where nn stands for the numeric value (00-99) for the number of characters that will not be sent at the end of the message.

Insert a character multiple times

F4 Send "xx" character "nn" times in the output message, leaving the cursor in the current position. Syntax = F4xxnn where $x x$ stands for the insert character's hex value for its ASCII code, and $n n$ is the numeric value (00-99) for the number of times it should be sent. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
E9 and F4 Example: Send all but the last characters, followed by 2 tabs

Send all characters except for the last 8 from the bar code above, followed by 2 tabs.
Command string: E908F40902
E9 is the "Send all but the last characters" command
08 is the number of characters at the end to ignore
F4 is the "Insert a character multiple times" command
09 is the hex value for a horizontal tab
02 is the number of times the tab character is sent
The data is output as: 1234567890AB <tab><tab>

Insert a string

BA Send "ss" string of "nn" length in the output message, leaving the cursor in the current position. Syntax = BAnnnns...s where nnnn stands for the length of the string, and s...s stands for the string. The string is made up of hex values for the characters in the string. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
B9 and BA Example: Look for the string "AB" and insert 2 asterisks (**)

1234567690AECDEFGHIJ
Using the bar code above, send all characters up to but not including "AB." Insert 2 asterisks at that point, and send the rest of the data with a carriage return after.

Command string: B900024142BA00022A2AF10D
B9 is the "Send all characters up to a string" command
0002 is the length of the string (2 characters)
41 is the hex value for A
42 is the hex value for B
BA is the "Insert a string" command
0002 is the length of the string to be added (2 characters)
2 A is the hex value for an asterisk (*)
2 A is the hex value for an asterisk (*)
F1 is the "Send all characters" command
$O D$ is the hex value for a CR
The data is output as:
1234567890**ABCDEFGHIJ
<CR>

Insert symbology name

B3 Insert the name of the bar code's symbology in the output message, without moving the cursor. Only symbologies with a Honeywell ID are included (see Symbology Charts on page A-1). Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Insert bar code length

B4 Insert the bar code's length in the output message, without moving the cursor. The length is expressed as a numeric string and does not include leading zeroes.
B3 and B4 Example: Insert the symbology name and length

Send the symbology name and length before the bar code data from the bar code above. Break up these insertions with spaces. End with a carriage return.
Command string: B3F42001B4F42001F10D
B3 is the "Insert symbology name" command
F4 is the "Insert a character multiple times" command
20 is the hex value for a space
01 is the number of times the space character is sent
B4 is the "Insert bar code length" command
F4 is the "Insert a character multiple times" command
20 is the hex value for a space
01 is the number of times the space character is sent
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
Code128 20 1234567890ABCDEFGHIJ
<CR>

Insert key strokes

B5 Insert a key stroke or combination of key strokes. Key strokes are dependent on your keyboard (see Unicode Key Maps on page A-10). Any key can be inserted, including arrows and functions. Syntax $=B 5 x x s s n n$ where xx is the number of keys pressed (without key modifiers), ss is the key modifier from the table below, and nn is the key number from the Unicode Key Maps, page A-10.

Key Modifiers	
No Key Modifier	00
Shift Left	01
Shift Right	02
Alt Left	04
Alt Right	08
Control Left	10
Control Right	20

For example, B501021F inserts an "A" on a 104 key, U.S. style keyboard. B5 = the command, $01=$ number of keys pressed (without the key modifier), 02 is the key modifier for Shift Right, and 1F is the "a" key. If a lower case "a" were to be inserted, B501001F would be entered.
If there are three keystrokes, the syntax would change from B5xxssnn for one keystroke to B5xxssnnssnnssnn. An example that would insert "abc" is as follows: B503001F00320030F833.
Note: Key modifiers can be added together when needed. Example: Control Left+Shift Left $=11$.

Move Commands

Move the cursor forward a number of characters

F5 Move the cursor ahead "nn" characters from current cursor position.
Syntax $=F 5 n n$ where nn is the numeric value (00-99) for the number of characters the cursor should be moved ahead.

F5 Example: Move the cursor forward and send the data

Move the cursor forward 3 characters, then send the rest of the bar code data from the bar code above. End with a carriage return.
Command string: F503F10D
F5 is the "Move the cursor forward a number of characters" command
03 is the number of characters to move the cursor
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
4567890ABCDEFGHIJ
<CR>

Move the cursor backward a number of characters

F6 Move the cursor back "nn" characters from current cursor position.
Syntax $=$ F6nn where $n n$ is the numeric value (00-99) for the number of characters the cursor should be moved back.
Move the cursor to the beginning
F7 Move the cursor to the first character in the input message. Syntax $=F 7$.
FE and F7 Example: Manipulate bar codes that begin with a 1

1234567B90AECDEFGHIJ
Search for bar codes that begin with a 1. If a bar code matches, move the cursor back to the beginning of the data and send 6 characters followed by a carriage return. Using the bar code above:
Command string: FE31F7F2060D
FE is the "Compare characters" command
31 is the hex value for 1
F7 is the "Move the cursor to the beginning" command
F2 is the "Send a number of characters" command
06 is the number of characters to send
$0 D$ is the hex value for a CR
The data is output as:
123456
<CR>

Move the cursor to the end

EA Move the cursor to the last character in the input message. Syntax $=E A$.

Search Commands

Search forward for a character

F8 Search the input message forward for "xx" character from the current cursor position, leaving the cursor pointing to the "xx" character. Syntax = F8xx where xx stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

F8 Example: Send bar code data that starts after a particular character

Search for the letter "D" in bar codes and send all the data that follows, including the "D." Using the bar code above:

Command string: F844F10D

F8 is the "Search forward for a character" command
44 is the hex value for "D"
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
DEFGHIJ
<CR>

Search backward for a character

F9 Search the input message backward for "xx" character from the current cursor position, leaving the cursor pointing to the "xx" character. Syntax = F9xx where xx stands for the search character's hex value for its ASCII code.
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Search forward for a string

B0 Search forward for "s" string from the current cursor position, leaving cursor pointing to "s" string. Syntax = B0nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B0000454657374 will search forward for the first occurrence of the 4 character string "Test."
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.
B0 Example: Send bar code data that starts after a string of characters

Search for the letters "FGH" in bar codes and send all the data that follows, including "FGH." Using the bar code above:
Command string: B00003464748F10D
B0 is the "Search forward for a string" command
0003 is the string length (3 characters)
46 is the hex value for "F"
47 is the hex value for " G "
48 is the hex value for "H"
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR
The data is output as:
FGHIJ
<CR>

Search backward for a string

B1 Search backward for " s " string from the current cursor position, leaving cursor pointing to " s " string. Syntax = B1nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B1000454657374 will search backward for the first occurrence of the 4 character string "Test."
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Search forward for a non-matching character

E6 Search the input message forward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character. Syntax = E6xx where xx stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

E6 Example: Remove zeroes at the beginning of bar code data

This example shows a bar code that has been zero filled. You may want to ignore the zeroes and send all the data that follows. E6 searches forward for the first character that is not zero, then sends all the data after, followed by a carriage return. Using the bar code above:

Command string: E630F10D

E6 is the "Search forward for a non-matching character" command
30 is the hex value for 0
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR
The data is output as:
37692
<CR>

Search backward for a non-matching character

E7 Search the input message backward for the first non-"xx" character from the current cursor position, leaving the cursor pointing to the non-"xx" character. Syntax = E7xx where xx stands for the search character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Miscellaneous Commands

Suppress characters

FB Suppress all occurrences of up to 15 different characters, starting at the current cursor position, as the cursor is advanced by other commands. When the FC command is encountered, the suppress function is terminated. The cursor is not moved by the FB command.
Syntax = FBnnxxyy . .zz where nn is a count of the number of suppressed characters in the list, and xxyy .. zz is the list of characters to be suppressed.
FB Example: Remove spaces in bar code data

This example shows a bar code that has spaces in the data. You may want to remove the spaces before sending the data. Using the bar code above:
Command string: FB0120F10D
FB is the "Suppress characters" command
01 is the number of character types to be suppressed
20 is the hex value for a space
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR
The data is output as:
34567890
<CR>

Stop suppressing characters

FC Disables suppress filter and clear all suppressed characters. Syntax $=F C$.

Replace characters

E4 Replaces up to 15 characters in the output message, without moving the cursor. Replacement continues until the E5 command is encountered. Syntax $=E 4 n n x x_{1} x x_{2} y y_{1} y y_{2} \ldots z z_{1} z z_{2}$ where nn is the total count of the number of characters in the list (characters to be replaced plus replacement characters); x_{1} defines characters to be replaced and x_{2} defines replacement characters, continuing through zz_{1} and zz_{2}.

E4 Example: Replace zeroes with CRs in bar code data

1234056780 ABC
If the bar code has characters that the host application does not want included, you can use the E4 command to replace those characters with something else. In this example, you will replace the zeroes in the bar code above with carriage returns.
Command string: E402300DF10D
E4 is the "Replace characters" command
02 is the total count of characters to be replaced, plus the replacement characters (0 is replaced by CR, so total characters = 2)

30 is the hex value for 0
OD is the hex value for a CR (the character that will replace the 0)
F1 is the "Send all characters" command
OD is the hex value for a CR
The data is output as:
1234
5678
ABC
<CR>

Stop replacing characters

E5 Terminates character replacement. Syntax = E5.

Compare characters

FE Compare the character in the current cursor position to the character "xx." If characters are equal, move the cursor forward one position. Syntax = FExx where xx stands for the comparison character's hex value for its ASCII code. Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Compare string

B2 Compare the string in the input message to the string "s." If the strings are equal, move the cursor forward past the end of the string. Syntax = B2nnnnS where nnnn is the string length (up to 9999), and S consists of the ASCII hex value of each character in the match string. For example, B2000454657374 will compare the string at the current cursor position with the 4 character string "Test."
Refer to the ASCII Conversion Chart (Code Page 1252), beginning on page A-3 for decimal, hex and character codes.

Check for a number

EC Check to make sure there is an ASCII number at the current cursor position. The format is aborted if the character is not numeric.

EC Example: Only output the data if the bar code begins with a number

If you want only data from bar codes that begin with a number, you can use EC to check for the number.

Command string: ECF10D

EC is the "Check for a number" command
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR

If this bar code is read

$$
\mathrm{AB} 1234
$$

the next data format, if there is one, will be used on the data. If there
is no other format, the format fails and the raw data is output as AB1234.
If this bar code is read: $\||\|\|\|\|\|\|\|\|\mid\|\|\|\|\|$ the data is output as:

1234AB

1234AB
<CR>

Check for non-numeric character

ED Check to make sure there is a non-numeric ASCII character at the current cursor position. The format is aborted if the character is numeric.

ED Example: Only output the data if the bar code begins with a letter

If you want only data from bar codes that begin with a letter, you can use ED to check for the letter.

Command string: EDF10D

ED is the "Check for a non-numeric character" command
F1 is the "Send all characters" command
$0 D$ is the hex value for a CR

If this bar code is read,
1234AB
the next data format, if there is one, will be used on this data. If there is no other format, the format fails and the raw data is output as 1234AB.

If this bar code is read: $\quad\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|$ the data is output as:
AB1234
<CR>

Insert a delay

EF Inserts a delay of up to 49,995 milliseconds (in multiples of 5), starting from the current cursor position. Syntax = EFnnnn where nnnn stands for the delay in 5 ms increments, up to 9999 . This command can only be used with keyboard emulation.a

Discard Data

B8 Discards types of data. For example, you may want to discard Code 128 bar codes that begin with the letter A. In step 4 (page 6-1), select 6A (for Code 128), and in step 5, select 9999 (for all lengths). Enter FE41B8 to compare and discard Code 128 bar codes that begin with the letter A. Syntax = B8.
Note: The B8 command must be entered after all other commands.
The Data Format must be Required (see page 6-12) in order for the B8 command to work. If Data Format is On, but Not Required (page 6-12), bar code data that meets the B8 format is scanned and output as usual.
Because the data format needs to be On and Required (page 6-12) for the B8 command, you must input data formats for all bar codes you wish to discard as well as all bar codes you wish to output.
Other data format settings impact the B8 command. If Data Format Non-Match Error Tone is On (page 6-13), the scanner emits an error tone. If Data format Non-Match Error Tone is Off, the code is disabled for reading and no tone is sounded.

Data Formatter

When Data Formatter is turned Off, the bar code data is output to the host as read, including prefixes and suffixes.

You may wish to require the data to conform to a data format you have created and saved. The following settings can be applied to your data format:

Data Formatter On, Not Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted.

Data Formatter On, Not Required, Drop Prefix/Suffix

Scanned data is modified according to your data format. If a data format is found for a particular symbol, those prefixes and suffixes are not transmitted. If a data format is not found for that symbol, the prefixes and suffixes are transmitted.

Data Format Required, Keep Prefix/Suffix

Scanned data is modified according to your data format, and prefixes and suffixes are transmitted. Any data that does not match your data format requirements generates an error tone and the data in that bar code is not transmitted. If you wish to process this type of bar code without generating an error tone, see Data Format Non-Match Error Tone.

Data Format Required, Drop Prefix/Suffix

Scanned data is modified according to your data format. If a data format is found for a particular symbol, those prefixes and suffixes are not transmitted. Any data that does not match your data format requirements generates an error tone. If you wish to process this type of bar code without generating an error tone, see Data Format Non-Match Error Tone.
Choose one of the following options. Default = Data Formatter On, Not Required, Keep Prefix/Suffix.

* Data Formatter On,

Not Required,
Keep Prefix/Suffix

DFM_EN3.
Data Formatter On,
Not Required,
Drop Prefix/Suffix
 Keep Prefix/Suffix

Data Format Non-Match Error Tone

When a bar code is encountered that doesn't match your required data format, the scanner normally generates an error tone. However, you may want to continue scanning bar codes without hearing the error tone. If you scan the Data Format Non-Match Error Tone Off bar code, data that doesn't conform to your data format is not transmitted, and no error tone will sound. If you wish to hear the error tone when a non-matching bar code is found, scan the Data Format Non-Match Error Tone On bar code. Default = Data Format Non-Match Error Tone On.

* Data Format Non-Match Error

Tone On

Data Format Non-Match Error Tone Off

Primary/Alternate Data Formats

You can save up to four data formats, and switch between these formats. Your primary data format is saved under $\mathbf{0}$. Your other three formats are saved under 1, 2, and 3. To set your device to use one of these formats, scan one of the bar codes below.

Primary Data Format

Data Format 1

Data Format 2

ALTFNM.
Data Format 3

Single Scan Data Format Change

You can also switch between data formats for a single scan. The next bar code is scanned using an alternate data format, then reverts to the format you have selected above (either Primary, 1, 2, or 3).

For example, you may have set your device to the data format you saved as Data Format 3. You can switch to Data Format 1 for a single trigger pull by scanning the Single Scan-Data Format 1 bar code below. The next bar code that is scanned uses Data Format 1, then reverts back to Data Format 3.

Single Scan-Primary
Data Format

Single Scan-Data Format 3

Symbologies

This programming section contains the following menu selections. Refer to Chapter 11 for settings and defaults.

- All Symbologies
- Aztec Code
- China Post (Hong Kong 2 of 5)
- Chinese Sensible (Han Xin) Code
- Codabar
- Codablock A
- Codablock F
- Code 11
- Code 128
- Code 32 Pharmaceutical (PARAF)
- Code 39
- Code 93
- Data Matrix
- EAN/JAN-13
- EAN/JAN-8
- GS1 Composite Codes
- GS1 DataBar Expanded
- GS1 DataBar Limited
- GS1 DataBar Omnidirectional
- GS1 Emulation
- GS1-128
- Interleaved 2 of 5
- Korea Post
- Matrix 2 of 5
- MaxiCode
- MicroPDF417
- MSI
- NEC 2 of 5
- Postal Codes - 2D
- Postal Codes - Linear
- PDF417
- GS1 DataBar Omnidirectional
- QR Code
- Straight 2 of 5 IATA (two-bar start/stop)
- Straight 2 of 5 Industrial (three-bar start/stop)
- TCIF Linked Code 39 (TLC39)
- Telepen
- Trioptic Code
- UPC-A
- UPC-A/EAN-13 with Extended Coupon Code
- UPC-E0
- UPC-E1

All Symbologies

If you want to decode all the symbologies allowable for your scanner, scan the All Symbologies On code. If on the other hand, you want to decode only a particular symbology, scan All Symbologies Off followed by the On symbol for that particular symbology.

All Symbologies On

Note: When All Symbologies On is scanned, 2D Postal Codes are not enabled. 2D Postal Codes must be enabled separately.

Message Length Description

You are able to set the valid reading length of some of the bar code symbologies. If the data length of the scanned bar code doesn't match the valid reading length, the scanner will issue an error tone. You may wish to set the same value for minimum and maximum length to force the scanner to read fixed length bar code data. This helps reduce the chances of a misread.
EXAMPLE: Decode only those bar codes with a count of 9-20 characters.
Min. length $=09 \mathrm{Max}$. length $=20$

EXAMPLE: Decode only those bar codes with a count of 15 characters. Min. length $=15 \mathrm{Max}$. length $=15$
For a value other than the minimum and maximum message length defaults, scan the bar codes included in the explanation of the symbology, then scan the digit value of the message length and Save bar codes on the Programming Chart inside the back cover of this manual. The minimum and maximum lengths and the defaults are included with the respective symbologies.

Codabar

<Default All Codabar Settings>

Codabar On/Off

Codabar Start/Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/ Stop characters. Default = Don't Transmit.

Codabar Check Character

Codabar check characters are created using different "modulos." You can program the scanner to read only Codabar bar codes with Modulo 16 check characters. Default = No Check Character.

No Check Character indicates that the scanner reads and transmits bar code data with or without a check character.
When Check Character is set to Validate and Transmit, the scanner will only read Codabar bar codes printed with a check character, and will transmit this character at the end of the scanned data.
When Check Character is set to Validate, but Don't Transmit, the unit will only read Codabar bar codes printed with a check character, but will not transmit the check character with the scanned data.

CBRCK 1
Validate Modulo 16, but
Don't Transmit

$||\mid$
 CBRCK 2

Validate Modulo 16 and Transmit

Codabar Concatenation

Codabar supports symbol concatenation. When you enable concatenation, the scanner looks for a Codabar symbol having a "D" start character, adjacent to a symbol having a "D" stop character. In this case the two messages are concatenated into one with the "D" characters omitted.

Select Require to prevent the scanner from decoding a single "D" Codabar symbol without its companion. This selection has no effect on Codabar symbols without Stop/Start D characters.

CBRCOTD.

* Off

Codabar Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=2-60$. Minimum Default $=4$, Maximum Default $=60$.

CERMIN.
Minimum Message Length

Preliminary draft_1

Code 39

< Default All Code 39 Settings >

Code 39 On/Off

Code 39 Start/Stop Characters

Start/Stop characters identify the leading and trailing ends of the bar code. You may either transmit, or not transmit Start/ Stop characters. Default $=$ Don't Transmit.

Code 39 Check Character

No Check Character indicates that the scanner reads and transmits bar code data with or without a check character.
When Check Character is set to Validate, but Don't Transmit, the unit only reads Code 39 bar codes printed with a check character, but will not transmit the check character with the scanned data.
When Check Character is set to Validate and Transmit, the scanner only reads Code 39 bar codes printed with a check character, and will transmit this character at the end of the scanned data. Default = No Check Character.

* No Check Character

Validate, but Don't Transmit

Validate and Transmit

Code 39 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=0-48$. Minimum Default $=0$, Maximum Default $=48$.

Maximum Message Length

Code 39 Append

This function allows the scanner to append the data from several Code 39 bar codes together before transmitting them to the host computer. When the scanner encounters a Code 39 bar code with the append trigger character(s), it buffers Code 39 bar codes until it reads a Code 39 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default = Off.

On

Code 32 Pharmaceutical (PARAF)

Code 32 Pharmaceutical is a form of the Code 39 symbology used by Italian pharmacies. This symbology is also known as PARAF.

Note: Trioptic Code (page 7-32) must be turned off while scanning Code 32 Pharmaceutical codes.

On

Full ASCII

If Full ASCII Code 39 decoding is enabled, certain character pairs within the bar code symbol will be interpreted as a single character. For example: $\$ V$ will be decoded as the ASCII character SYN, and /C will be decoded as the ASCII character \#. Default = Off.

NUL \%U	DLE \$P	SP	SPACE	0	0	@	\%V	P	P		\%W	p	+P
SOH \$A	DC1 \$Q	!	/A	1	1	A	A	Q	Q	a	+A	q	+Q
STX \$B	DC2 \$R	"	/B	2	2	B	B	R	R	b	+B	r	+R
ETX \$C	DC3 \$S	\#	/C	3	3	C	C	S	S	c	+C	S	+S
EOT \$D	DC4 \$T	\$	/D	4	4	D	D	T	T	d	+D	t	+T
ENQ \$E	NAK \$U	\%	/E	5	5	E	E	U	U	e	+E	u	+U
ACK \$F	SYN \$V	\&	/F	6	6	F	F	V	V	f	+F	v	+V
BEL \$G	ETB \$W		/G	7	7	G	G	W	W	g	+G	w	+W
BS \$H	CAN \$X	(/H	8	8	H	H	X	X	h	+H	x	+X
HT \$	EM \$Y)	/	9	9	1	1	Y	Y	i	+1	y	+Y
LF \$J	SUB \$Z	*	/J		IZ	J	J	Z	Z	j	+J	z	+Z
VT \$K	ESC \%A	+	/K		\%F	K	K	[\%K	k	+K	\{	\%P
FF \$L	FS \%B	,	/L	<	\%G	L	L	\backslash	\%L	1	+L	\|	\%Q
CR \$M	GS \%C	-	-	$=$	\%H	M	M]	\%M	m	+M	\}	\%R
SO \$N	RS \%D	.	.	>	\%	N	N	\wedge	\%N	n	+N		\%S
SI \$O	US \%E	/	/O	?	\%J	0	0	-	\%O	\bigcirc	+O	DEL	\%T

Character pairs $/ \mathrm{M}$ and $/ \mathrm{N}$ decode as a minus sign and period respectively.
Character pairs / P through $/ Y$ decode as 0 through 9.

Code 39 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-7), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

С39DCP.
Code 39 Code Page

Interleaved 2 of 5

< Default All Interleaved 2 of 5 Settings >

Interleaved 2 of 5 On/Off

Check Digit

No Check Digit indicates that the scanner reads and transmits bar code data with or without a check digit.
When Check Digit is set to Validate, but Don't Transmit, the unit only reads Interleaved 2 of 5 bar codes printed with a check digit, but will not transmit the check digit with the scanned data.
When Check Digit is set to Validate and Transmit, the scanner only reads Interleaved 2 of 5 bar codes printed with a check digit, and will transmit this digit at the end of the scanned data. Default $=$ No Check Digit.

Interleaved 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

125 MAX
Maximum Message Length

NEC 2 of 5

< Default All NEC 2 of 5 Settings >

NEC 2 of 5 On/Off

 N25ENA1.
 * On

Check Digit

No Check Digit indicates that the scanner reads and transmits bar code data with or without a check digit.
When Check Digit is set to Validate, but Don't Transmit, the unit only reads NEC 2 of 5 bar codes printed with a check digit, but will not transmit the check digit with the scanned data.
When Check Digit is set to Validate and Transmit, the scanner only reads NEC 2 of 5 bar codes printed with a check digit, and will transmit this digit at the end of the scanned data. Default = No Check Digit.

$\mathrm{N} 25 \mathrm{C}+21$
Validate, but Don't Transmit

Validate and Transmit

NEC 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

Maximum Message Length

Code 93

Code 93 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=0-80$. Minimum Default $=0$, Maximum Default $=80$.

Cg3MIN.
Minimum Message Length

Code 93 Append

This function allows the scanner to append the data from several Code 93 bar codes together before transmitting them to the host computer. When this function is enabled, the scanner stores those Code 93 bar codes that start with a space (excluding the start and stop symbols), and does not immediately transmit the data. The scanner stores the data in the order in which the bar codes are read, deleting the first space from each. The scanner transmits the appended data when it reads a Code 93 bar code that starts with a character other than a space. Default = Off.

Code 93 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-7), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Straight 2 of 5 Industrial (three-bar start/stop)

<Default All Straight 2 of 5 Industrial Settings>

Straight 2 of 5 Industrial On/Off

 R25ENA1.
 On

Straight 2 of 5 Industrial Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

Maximum Message Length

Straight 2 of 5 IATA (two-bar start/stop)

<Default All Straight 2 of 5 IATA Settings>

Straight 2 of 5 IATA On/Off

 A25ENA1.
 On

Straight 2 of 5 IATA Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

Maximum Message Length

Matrix 2 of 5

<Default All Matrix 2 of 5 Settings>

Matrix 2 of 5 On/Off

On

Matrix 2 of 5 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=4$, Maximum Default $=80$.

Preliminary draft_1

Code 11

<Default All Code 11 Settings>

Check Digits Required

This option sets whether 1 or 2 check digits are required with Code 11 bar codes. Default = Two Check Digits.

C 11 CK 1

* Two Check Digits

Code 11 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=4$, Maximum Default $=80$.

Minimum Message Length

Maximum Message Length

Code 128

<Default All Code 128 Settings>

Code 128 On/Off

 128ENA. 1.

* On

ISBT 128 Concatenation

In 1994 the International Society of Blood Transfusion (ISBT) ratified a standard for communicating critical blood information in a uniform manner. The use of ISBT formats requires a paid license. The ISBT 128 Application Specification describes 1) the critical data elements for labeling blood products, 2) the current recommendation to use Code 128 due to its high degree of security and its space-efficient design, 3) a variation of Code 128 that supports concatenation of neighboring symbols, and 4) the standard layout for bar codes on a blood product label. Use the bar codes below to turn concatenation on or off. Default =Off.

Code 128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=0-80$. Minimum Default $=0$, Maximum Default $=80$.

128 MIN.
Minimum Message Length

Maximum Message Length

Code 128 Append

This function allows the scanner to append the data from several Code 128 bar codes together before transmitting them to the host computer. When the scanner encounters a Code 128 bar code with the append trigger character(s), it buffers Code 128 bar codes until it reads a Code 128 bar code that does not have the append trigger. The data is then transmitted in the order in which the bar codes were read (FIFO). Default $=$ On.

Code 128 Code Page

Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-7), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Preliminary draft_1

GS1-128

<Default All GS1-128 Settings>

GS1-128 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-80$. Minimum Default $=1$, Maximum Default $=80$.

GS 1 MIN .
Minimum Message Length

Maximum Message Length

Telepen

<Default All Telepen Settings>

Telepen On/Off

 TELENA1.
 On

Telepen Output

Using AIM Telepen Output, the scanner reads symbols with start/stop pattern 1 and decodes them as standard full ASCII (start/stop pattern 1). When Original Telepen Output is selected, the scanner reads symbols with start/stop pattern 1 and decodes them as compressed numeric with optional full ASCII (start/stop pattern 2). Default = AIM Telepen Output.

Telepen Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-60$. Minimum Default $=1$, Maximum Default $=60$.

Minimum Message Length

Maximum Message Length

Preliminary draft_1

UPC-A

<Default All UPC-A Settings>

UPC-A On/Off

 * On

Note: To convert UPC-A bar codes to EAN-13, see Convert UPC-A to EAN-13 on page 7-24.

UPC-A Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

UPC-A Number System

The numeric system digit of a U.P.C. symbol is normally transmitted at the beginning of the scanned data, but the unit can be programmed so it will not transmit it. Default $=$ On.

UPC-A Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-A data.
Default = Off for both 2 Digit and 5 Digit Addenda.

UPC-A Addenda Required

When Required is scanned, the scanner will only read UPC-A bar codes that have addenda. You must then turn on a 2 or 5 digit addenda listed on page 7-20. Default $=$ Not Required.

UPC-A Addenda Separator

When this feature is on, there is a space between the data from the bar code and the data from the addenda. When turned off, there is no space. Default $=$ On.

UPC-A/EAN-13 with Extended Coupon Code

Use the following codes to enable or disable UPC-A and EAN-13 with Extended Coupon Code. When left on the default setting (Off), the scanner treats Coupon Codes and Extended Coupon Codes as single bar codes.
If you scan the Allow Concatenation code, when the scanner sees the coupon code and the extended coupon code in a single scan, it transmits both as separate symbologies. Otherwise, it transmits the first coupon code it reads.
If you scan the Require Concatenation code, the scanner must see and read the coupon code and extended coupon code in a single read to transmit the data. No data is output unless both codes are read. Default = Off.

Require Concatenation

Coupon GS1 DataBar Output

If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. Scan the GS1 Output On code below to scan and output only the GS1 DataBar code data. Default = GS1 Output Off.

CPNGS11
GS1 Output On

UPC-EO
<Default All UPC-E Settings>

UPC-EO On/Off

Most U.P.C. bar codes lead with the 0 number system. To read these codes, use the UPC-EO On selection. If you need to read codes that lead with the 1 number system, use UPC-E1 (page 7-24). Default = On.

UPC-EO Expand

UPC-E Expand expands the UPC-E code to the 12 digit, UPC-A format. Default = Off.

On

UPC-EO Addenda Required

When Required is scanned, the scanner will only read UPC-E bar codes that have addenda. Default = Not Required.

UPC-EO Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

UPC-EO Check Digit

Check Digit specifies whether the check digit should be transmitted at the end of the scanned data or not. Default =On.

UPC-EO Leading Zero

This feature allows the transmission of a leading zero (0) at the beginning of scanned data. To prevent transmission, scan Off. Default = On.

UPC-EO Addenda

This selection adds 2 or 5 digits to the end of all scanned UPC-E data. Default $=$ Off for both 2 Digit and 5 Digit Addenda.

UPEAD51.
5 Digit Addenda On

UPC-E1

Most U.P.C. bar codes lead with the 0 number system. For these codes, use UPC-E0 (page 7-22). If you need to read codes that lead with the 1 number system, use the UPC-E1 On selection. Default = Off.

UPEEN11.
UPC-E1 On

EAN/JAN-13

<Default All EAN/JAN Settings>

EAN/JAN-13 On/Off

* On

Convert UPC-A to EAN-13

When UPC-A Converted to EAN-13 is selected, UPC-A bar codes are converted to 13 digit EAN-13 codes by adding a zero to the front. When Do not Convert UPC-A is selected, UPC-A codes are read as UPC-A.

UPC-A Converted to EAN-13

EAN/JAN-13 Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

EAN/JAN-13 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-13 data. Default = Off for both 2 Digit and 5 Digit Addenda.

* 2 Digit Addenda Off

EAN/JAN-13 Addenda Required

When Required is scanned, the scanner will only read EAN/JAN-13 bar codes that have addenda. Default = Not Required.

* Not Required

EAN/JAN-13 Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

Note: If you want to enable or disable EAN13 with Extended Coupon Code, refer to UPC-A/EAN-13 with Extended Coupon Code (page 7-21).

ISBN Translate

When On is scanned, EAN-13 Bookland symbols are translated into their equivalent ISBN number format. Default = Off.

Preliminary draft_1

EAN/JAN-8

<Default All EAN/JAN-8 Settings>

EAN/JAN-8 On/Off

 * On

EAN/JAN-8 Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data or not. Default $=$ On.

EAN/JAN-8 Addenda

This selection adds 2 or 5 digits to the end of all scanned EAN/JAN-8 data. Default = Off for both 2 Digit and 5 Digit Addenda.

* 5 Digit Addenda Off

EAN/JAN-8 Addenda Required

When Required is scanned, the scanner will only read EAN/JAN-8 bar codes that have addenda. Default = Not Required.

* Not Required

EAN/JAN-8 Addenda Separator

When this feature is $\mathbf{O n}$, there is a space between the data from the bar code and the data from the addenda. When turned Off, there is no space. Default $=$ On.

* On

MSI

<Default All MSI Settings>

MSI On/Off

MSI Check Character

Different types of check characters are used with MSI bar codes. You can program the scanner to read MSI bar codes with Type 10 check characters. Default = Validate Type 10, but Don't Transmit.
When Check Character is set to Validate Type 10/11 and Transmit, the scanner will only read MSI bar codes printed with the specified type check character(s), and will transmit the character(s) at the end of the scanned data.
When Check Character is set to Validate Type 10/11, but Don't Transmit, the unit will only read MSI bar codes printed with the specified type check character(s), but will not transmit the check character(s) with the scanned data.

* Validate Type 10, but Don't Transmit

MSICHK5.
Validate Type 11 then Type 10 Character and Transmit

MBICH 6.

Disable MSI Check Characters

MSI Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=4-48$. Minimum Default $=4$, Maximum Default $=48$.

Minimum Message Length

GS1 DataBar Omnidirectional

< Default All GS1 DataBar Omnidirectional Settings >

RSSDFT.
GS1 DataBar Omnidirectional On/Off

Off
GS1 DataBar Limited
< Default All GS1 DataBar Limited Settings >

GS1 DataBar Limited On/Off

* On

GS1 DataBar Expanded

< Default All GS1 DataBar Expanded Settings >

 RSEDFT.

GS1 DataBar Expanded On/Off

RSEENA1.

* On

GS1 DataBar Expanded Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=4-74$. Minimum Default $=4$, Maximum Default $=74$.

Minimum Message Length

Maximum Message Length

Trioptic Code

Note: If you are going to scan Code 32 Pharmaceutical codes (page 7-5), Trioptic Code must be off.
Trioptic Code is used for labeling magnetic storage media.

Codablock A

<Default All Codablock A Settings>

 cBADFT.

Codablock A On/Off

On

Codablock A Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-600$. Minimum Default $=1$, Maximum Default $=600$.

Maximum Message Length

Codablock F

<Default All Codablock F Settings>

Codablock F On/Off

Codablock F Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-2048$. Minimum Default $=1$, Maximum Default $=2048$.

Minimum Message Length

PDF417

< Default All PDF417 Settings >

PDF417 On/Off

PDFENA.

* On

PDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-2750$. Minimum Default $=1$, Maximum Default $=2750$.

Minimum Message Length

MacroPDF417

MacroPDF417 is an implementation of PDF417 capable of encoding very large amounts of data into multiple PDF417 bar codes. When this selection is enabled, these multiple bar codes are assembled into a single data string. Default = On.

Preliminary draft_1

MicroPDF417

< Default All MicroPDF417 Settings >

MicroPDF417 On/Off

 MPDENA1.
 On

MicroPDF417 Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-366$. Minimum Default $=1$, Maximum Default $=366$.

Minimum Message Length

Maximum Message Length

GS1 Composite Codes

Linear codes are combined with a unique 2D composite component to form a new class called GS1 Composite symbology. GS1 Composite symbologies allow for the co-existence of symbologies already in use. Default = Off.

On

UPC/EAN Version

Scan the UPC/EAN Version On bar code to decode GS1 Composite symbols that have a U.P.C. or an EAN linear component. (This does not affect GS1 Composite symbols with a GS1-128 or GS1 linear component.) Default = UPC/EAN Version Off.

* UPC/EAN Version Off

Note: If you scan coupons that have both UPC and GS1 DataBar codes, you may wish to scan and output only the data from the GS1 DataBar code. See Coupon GS1 DataBar Output (page 7-21) for further information.

GS1 Composite Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-2435$. Minimum Default $=1$, Maximum Default $=2435$.

Minimum Message Length

Maximum Message Length

GS1 Emulation

The scanner can automatically format the output from any GS1 data carrier to emulate what would be encoded in an equivalent GS1-128 or GS1 DataBar symbol. GS1 data carriers include UPC-A and UPC-E, EAN-13 and EAN-8, ITF-14, GS1-128, and GS1-128 DataBar and GS1 Composites. (Any application that accepts GS1 data can be simplified since it only needs to recognize one data carrier type.)
If GS1-128 Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1-128 AIM ID,]C1 (see Symbology Charts on page A-1).
If GS1 DataBar Emulation is scanned, all retail codes (U.P.C., UPC-E, EAN8, EAN13) are expanded out to 16 digits. If the AIM ID is enabled, the value will be the GS1-DataBar AIM ID, Jem (see Symbology Charts on page A-1).
If GS1 Code Expansion Off is scanned, retail code expansion is disabled, and UPC-E expansion is controlled by the UPC-E0 Expand (page 7-22) setting. If the AIM ID is enabled, the value will be the GS1-128 AIM ID,]C1 (see Symbology Charts on page A-1).
If EAN8 to EAN13 Conversion is scanned, all EAN8 bar codes are converted to EAN13 format.
Default $=$ GS1 Emulation Off.

EANEMU1.
GS1-128 Emulation

* GS1 Emulation Off

TCIF Linked Code 39 (TLC39)

This code is a composite code since it has a Code 39 linear component and a MicroPDF417 stacked code component. All bar code readers are capable of reading the Code 39 linear component. The MicroPDF417 component can only be decoded if TLC39 On is selected. The linear component may be decoded as Code 39 even if TLC39 is off. Default = Off.

QR Code

QR Code On/Off

This selection applies to both QR Code and Micro QR Code.

QR Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-7089$. Minimum Default $=1$, Maximum Default $=7089$.

QR Code Append

This function allows the scanner to append the data from several QR Code bar codes together before transmitting them to the host computer. When the scanner encounters an QR Code bar code with the append trigger character(s), it buffers the number of QR Code bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default = On.

Off

QR Code Page

QR Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar codes were created (see ISO 2022/ISO 646 Character Replacements on page A-7), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Data Matrix

< Default All Data Matrix Settings >

Data Matrix On/Off

Data Matrix Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-3116$. Minimum Default $=1$, Maximum Default $=3116$.

Minimum Message Length

Maximum Message Length

Data Matrix Append

This function allows the scanner to append the data from several Data Matrix bar codes together before transmitting them to the host computer. When the scanner encounters an Data Matrix bar code with the append trigger character(s), it buffers the number of Data Matrix bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default $=$ On.

Off

Data Matrix Code Page

Data Matrix Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar
codes were created (see ISO 2022/ISO 646 Character Replacements on page A-7), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

MaxiCode

< Default All MaxiCode Settings >

MaxiCode On/Off

MaxiCode Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-150$. Minimum Default $=1$, Maximum Default $=150$.

MAXMAX
Maximum Message Length

Aztec Code

< Default All Aztec Code Settings >

Aztec Code On/Off

 AZTENA.
 * On

Ott

Aztec Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-3832$. Minimum Default $=1$, Maximum Default $=3832$.

Aztec Append

This function allows the scanner to append the data from several Aztec bar codes together before transmitting them to the host computer. When the scanner encounters an Aztec bar code with the append trigger character(s), it buffers the number of Aztec bar codes determined by information encoded in those bar codes. Once the proper number of codes is reached, the data is output in the order specified in the bar codes. Default $=$ On.

Aztec Code Page

Aztec Code pages define the mapping of character codes to characters. If the data received does not display with the proper characters, it may be because the bar code being scanned was created using a code page that is different from the one the host program is expecting. If this is the case, scan the bar code below, select the code page with which the bar
codes were created (see ISO 2022/ISO 646 Character Replacements on page A-7), and scan the value and the Save bar code from the Programming Chart on the inside the back cover of this manual. The data characters should then appear properly.

Chinese Sensible (Han Xin) Code

< Default All Han Xin Settings >

Han Xin Code On/Off

Han Xin Code Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=1-7833$. Minimum Default $=1$, Maximum Default $=7833$.

Minimum Message Length

Maximum Message Length

Postal Codes - 2D

The following lists the possible 2D postal codes, and 2D postal code combinations that are allowed. Only one 2D postal code selection can be active at a time. If you scan a second 2D postal code selection, the first selection is overwritten. Default = 2D Postal Codes Off.

Single 2D Postal Codes:

POSTALSO.
Canadian Post On

POSTAL4. KIX Post On

Planet Code On
Also see Planet Code
Check Digit, page 7-47.

POSTALG.
Postnet On
Also see Postnet Check
Digit, page 7-47.

Combination 2D Postal Codes:

Intelligent Mail Bar Code and Postnet with B and B' Fields On

POSTAL17.
Postal-4i and
Intelligent Mail Bar Code On

POSTAL18.

POSTAL13.
Planet Code and
Postal-4i On

POSTAL15.
Planet Code and Intelligent Mail Bar Code On

Planet Code,

Postnet, and
Intelligent Mail Bar Code On

POSTAL23.
Planet Code,
Postal-4i, and
Intelligent Mail Bar Code On

Postnet,
Postal-4i, and
Intelligent Mail Bar Code On

POSTAL25.
Planet Code,
Postal-4i, and
Postnet with B and B' Fields On

Planet Code,
Postal-4i,
Intelligent Mail Bar Code, and
Postnet On

Planet Code Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of Planet Code data. Default = Don't Transmit.

$P L \mathbb{C K} C O$.

* Don't Transmit Check Digit

Postnet Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of Postnet data. Default = Don't Transmit.

* Don’t Transmit Check Digit

Australian Post Interpretation

This option controls what interpretation is applied to customer fields in Australian 4-State symbols.
Bar Output lists the bar patterns in "0123" format.
Numeric N Table causes that field to be interpreted as numeric data using the N Table.
Alphanumeric C Table causes the field to be interpreted as alphanumeric data using the C Table. Refer to the Australian Post Specification Tables.

Combination \mathbf{C} and \mathbf{N} Tables causes the field to be interpreted using either the \mathbf{C} or N Tables.

Combination \mathbf{C} and N Tables

Postal Codes - Linear

The following lists linear postal codes. Any combination of linear postal code selections can be active at a time.

China Post (Hong Kong 2 of 5)

<Default All China Post (Hong Kong 2 of 5) Settings>

China Post (Hong Kong 2 of 5) On/Off

China Post (Hong Kong 2 of 5) Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=80$.

$\mathrm{CPCM} \| \mathrm{N}$.
Minimum Message Length

CPCMAX
Maximum Message Length

Korea Post

<Default All Korea Post Settings>

Korea Post

Korea Post Message Length

Scan the bar codes below to change the message length. Refer to Message Length Description (page 7-1) for additional information. Minimum and Maximum lengths $=2-80$. Minimum Default $=4$, Maximum Default $=48$.

Maximum Message Length

Korea Post Check Digit

This selection allows you to specify whether the check digit should be transmitted at the end of the scanned data. Default = Don't Transmit.

Transmit Check Digit

* Don't Transmit Check Digit

Preliminary draft_1

The scanner is like a digital camera in the way it captures, manipulates, and transfers images. The following commands allow you to alter the way the scanner performs these functions.
Note: If you are using the scanner in a stand, you must set the In-Stand Sensor Mode to Off in order to take images (see InStand Sensor Mode on page 4-10).

Single-Use Basis

Imaging Commands with their modifiers send instructions to the scanner on a single-use basis, and take effect for a single image capture. Once that capture is complete, the scanner reverts to its imaging default settings. If you want to permanently change a setting, you must use the serial default commands (see Chapter 11). When the serial default command is used, that selection becomes the new, permanent setting for the scanner.

Command Syntax

Multiple modifiers and commands can be issued within one sequence. If additional modifiers are to be applied to the same command, just add the modifiers to that command. For example, to add 2 modifiers to the Image Snap command, such as setting the Imaging Style to 1P and the Wait for Trigger to 1T, you would enter IMGSNP1P1T.
Note: After processing an image capture command (IMGSNP or IMGBOX), you must follow it with an IMGSHP command if you want to see it on your terminal.

To add a command to a sequence, each new command is separated with a semicolon. For example, to add the Image Ship command to the above sequence, you would enter IMGSNP1P1T;IMGSHP.
The imaging commands are:

```
Image Snap - IMGSNP (page 8-1)
Image Ship - IMGSHP (page 8-3)
Intelligent Signature Capture - IMGBOX (page 8-10)
```

The modifiers for each of these commands follow the command description.
Note: The images included with each command description are examples only. The results you achieve may be different from those included in this manual. The quality of the output you receive will vary depending on lighting, quality of the initial image/object being captured, and distance of the scanner from the image/object. To achieve a high quality image, it is recommended that you position your scanner 4-6" (10.2-15.2 cm) away from the image/object you are capturing.

Step 1 - Take a Picture Using IMGSNP

Image Snap - IMGSNP

An image is taken whenever the hardware button is pressed, or when the Image Snap (IMGSNP) command is processed.
The image snap command has many different modifiers that can be used to change the look of the image in memory. Any number of modifiers may be appended to the IMGSNP command. For example, you can use the following command to snap an image, increase the gain, and have the beeper sound once the snap is complete: IMGSNP2G1B

IMGSNP Modifiers

P-Imaging Style

This sets the Image Snap style.
OP Decoding Style. This processing allows a few frames to be taken until the exposure parameters are met. The last frame is then available for further use.
1P Photo Style (default). This mimics a simple digital camera, and results in a visually optimized image.
2P Manual Style. This is an advanced style that should only be used by an experienced user. It allows you the most freedom to set up the scanner, and has no auto-exposure.

B - Beeper

Causes a beep to sound after an image is snapped.

OB No beep (default)
1B Sounds a beep when the image is captured.

T-Wait for Trigger

Waits for a hardware button push before taking the image. This is only available when using Photo Style (1P).
OT Takes image immediately (default)
1T Waits for a button push, then takes the image

L-LED State

Determines if the LEDs should be on or off, and when. Ambient illumination (OL) is preferred for taking pictures of color documents, such as ID cards, especially when the scanner is in a stand. LED illumination (1L) is preferred when the scanner is handheld. LED State is not available when using Decoding Style (OP).

OL LEDs off (default)
1L LEDs on

E-Exposure

Exposure is used in Manual Style only (2P), and allows you to set the exposure time. This is similar to setting a shutter speed on a camera. The exposure time determines how long the scanner takes to record an image. On a bright day, exposure times can be very short because plenty of light is available to help record an image. At nighttime, exposure time can increase dramatically due to the near absence of light. Units are 127 microseconds. (Default $=7874$)
$n \mathrm{E}$ Range: 1-7874

Example of Exposure at 7874E with fluorescent lighting:

Example of Exposure at 100E with fluorescent lighting:

G-Gain

Gain is used in Manual Style only (2P). Like a volume control, the gain modifier boosts the signal and multiplies the pixel value. As you increase the gain, the noise in an image is also amplified.

1G No gain (default)
2G Medium gain
4G Heavy gain
8G Maximum gain

W - Target White Value

Sets the target for the median grayscale value in the captured image. For capturing close-up images of high contrast documents, a lower setting, such as 75, is recommended. Higher settings result in longer exposure times and brighter images, but if the setting is too high, the image may be overexposed. Target White Value is only available when using Photo Style (1P). (Default = 125)
nW Range: 0-255

D - Delta for Acceptance

This sets the allowable range for the white value setting (see W - Target White Value). Delta is only available when using Photo Style (1P). (Default = 25)
nD Range: 0-255

U - Update Tries

This sets the maximum number of frames the scanner should take to reach the D - Delta for Acceptance. Update Tries is only available when using Photo Style (1P). (Default = 6)
$n \cup$ Range: 0-10

$\%$ - Target Set Point Percentage

Sets the target point for the light and dark values in the captured image. A setting of 75% means 75% of the pixels are at or below the target white value, and 25% of the pixels are above the target white value. Altering this setting from the default is not recommended under normal circumstances. To alter grayscale values, W - Target White Value should be used.
(Default = 50)
n\% Range: 1-99

Example of Target Set Point	Example of Target Set Point	Example of Target Set Point
Lorem ipsum dolor sit amet, consectetuer adipi. scing clit. Curabitur massa. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec intertum volutpat arcu. Proin sed tupis. Done	Lorem ipsum dolor sit ame, consectetuer adippscing clit. Curabitur massa. Lerem ipsum dolor sif amet, consettetuer adipiscing eli. Donec interdum volutpat arcu. Proin sed turpis. Donec	Lorem ipsum dolore sit amet, consectetuer adipi. ssing liti. Curabiur mass. Lorem ipsum dolor sit amct, consesettuct adipiscing liti. Donec interdum volupata accu. Proin sed turpis. Donec

Step 2 - Ship a Picture Using IMGSHP

Image Ship - IMGSHP

An image is taken whenever the button is pressed, or when the Image Snap (IMGSNP) command is processed. The last image is always stored in memory. You can "ship" the image by using the IMGSHP command.
The image ship commands have many different modifiers that can be used to change the look of the image output. Modifiers affect the image that is transmitted, but do not affect the image in memory. Any number of modifiers may be appended to the IMGSHP command. For example, you can use the following command to snap and ship a bitmap image with gamma correction and document image filtering: IMGSNP;IMGSHP8F75K26U

IMGSHP Modifiers

A - Infinity Filter

Enhances pictures taken from very long distances (greater than 10 feet or $3 m$). The Infinity Filter should not be used with IMGSNP Modifiers (page 8-1).

OA Infinity filter off (default)
1A Infinity filter on

C - Compensation

Flattens the image to account for variations in illumination across the image.
OC Compensation disabled (default)
1C Compensation enabled
Example of Compensation at 0C: Example of Compensation at 1C:

D - Pixel Depth

Indicates the number of bits per pixel in the transmitted image (KIM or BMP format only).
8D 8 bits per pixel, grayscale image (default)
1D 1 bit per pixel, black and white image

Preliminary draft

E-Edge Sharpen

An edge sharpen filter cleans up the edges of an image, making it look cleaner and sharper. While edge sharpening does make the image look cleaner, it also removes some fine detail from the original image. The strength of the edge sharpen filter can be entered from 1 to 24. Entering a 23E gives the sharpest edges, but also increases noise in the image.

OE Don't sharpen image (default)
14E Apply edge sharpen for typical image
ne Apply edge sharpen using strength $n(n=1-24)$
Example of Edge Sharpen at 0E: Example of Edge Sharpen at 24 E :

F - File Format

Indicates the desired format for the image.
OF KIM format
1F TIFF binary
2F TIFF binary group 4, compressed
3F TIFF grayscale
4F Uncompressed binary (upper left to lower right, 1 pixel/bit, 0 padded end of line)
5F Uncompressed grayscale (upper left to lower right, bitmap format)
6F JPEG image (default)
8F BMP format (lower right to upper left, uncompressed)
10F TIFF color compressed image
11F TIFF color uncompressed image
12F JPEG color image
14F BMP color format
15F BMP Uncompressed raw image

H - Histogram Stretch

Increases the contrast of the transmitted image. Not available with some image formats.
OH No stretch (default)
1H Histogram stretch
Example of Histogram Stretch at 0H: Example of Histogram Stretch at 1H:

Preliminary draft

I - Invert Image

Invert image is used to rotate the image around the X or Y axis.
1ix Invert around the X axis (flips picture upside down)
1iy Invert around the Y axis (flips picture left to right)

Example of image not inverted:

Example of image with Invert Image set to 1ix:

Example of image with Invert Image set to 1iy:

IF- Noise Reduction

Used to reduce the salt and pepper noise in an image.
Oif No salt and pepper noise reduction (default)
1if Salt and pepper noise reduction

Example of Noise Reduction Off (Oif):

Example of Noise Reduction On (1if):

IR - Image Rotate

Oir Image as snapped (rightside up) (default)
1ir Rotate image 90 degrees to the right
2ir Rotate image 180 degrees (upside down)
3ir Rotate image 90 degrees to the left

Example of Image Rotate set to Oir:

Example of Image Rotate set to 1ir:

Example of Image Rotate set to 2 ir :

Example of Image Rotate set to 3ir:

J - JPEG Image Quality

Sets the desired quality when the JPEG image format is selected. Higher numbers result in higher quality, but larger files. Smaller numbers result in greater amounts of lossy compression, faster transmission times, lower quality, but smaller files. (Default = 50)
$n J$ Image is compressed as much as possible while preserving quality factor of $n(n=0-100)$
OJ worst quality (smallest file)
100Jbest quality (largest file)

K - Gamma Correction

Gamma measures the brightness of midtone values produced by the image. You can brighten or darken an image using gamma correction. A higher gamma correction yields an overall brighter image. The lower the setting, the darker the image. The optimal setting for text images is 50 K .

OK Gamma correction off (default)
50K Apply gamma correction for brightening typical document image
$n K$ Apply gamma correction factor $n(n=0-1,000)$

L, R, T, B, M - Image Cropping

Ships a window of the image by specifying the left, right, top, and bottom pixel coordinates. Device columns are numbered 0 through 1279, and device rows are numbered 0 through 959.

Preliminary draft

$n \mathrm{~L}$ The left edge of the shipped image corresponds to column n of the image in memory. Range: 000-843. (Default = 0)
$n \mathrm{R}$ The right edge of the shipped image corresponds to column $n-1$ of the image in memory. Range: 000-843. (Default = all columns)
$n T$ The top edge of the shipped image corresponds to row n of the image in memory. Range: 000-639. (Default $=0$)
$n \mathrm{~B}$ The bottom edge of the shipped image corresponds to row $n-1$ of the image in memory. Range: 000-639. (Default = all rows)

Alternately, specify the number of pixels to cut from the outside margin of the image; thus only the center pixels are transmitted.
$n \mathrm{M}$ Margin: cut n columns from the left, $n+1$ columns from the right, n rows from the top, and $n+1$ rows from the bottom of the image. Ship the remaining center pixels. Range: 0-238. (Default $=0$, or full image)

Example of Image Crop set to 238M:

P - Protocol

Used for shipping an image. Protocol covers two features of the image data being sent to the host. It addresses the protocol used to send the data (Hmodem, which is an Xmodem 1K variant that has additional header information), and the format of the image data that is sent.

OP None (raw data)
2P None (default for USB)
3P Hmodem compressed (default for RS232)
4P Hmodem

S - Pixel Ship

Pixel Ship sizes an image in proportion to its original size. It decimates the image by shipping only certain, regularly spaced pixels. For example, $\mathbf{4 S}$ would transmit every fourth pixel from every fourth line. The smaller number of pixels shipped, the smaller the image, however, after a certain point the image becomes unusable.

1S ship every pixel (default)
2S ship every 2nd pixel, both horizontally and vertically
ship every 3rd pixel, both horizontally and vertically

Example of Pixe
Ship set to $2 S$:

Example of Pixel Ship set to 3S:

U - Document Image Filter

Allows you to input parameters to sharpen the edges and smooth the area between the edges of text in an image. This filter should be used with gamma correction (see page 8-7), with the scanner in a stand, and the image captured using the command:

IMGSNP1P0L168W90\%32D

This filter typically provides better JPEG compression than the standard E - Edge Sharpen command (see page 8-9). This filter also works well when shipping pure black and white images (1 bit per pixel). The optimal setting is 26 U .

OU Document image filter off (default)
26 U Apply document image filter for typical document image
$n \mathrm{U}$ Apply document image filter using grayscale threshold n . Use lower numbers when the image contrast is lower. 1 U will have a similar effect to setting E - Edge Sharpen (page 8-5) to 22e. Range: 0-255.

V - Blur Image

Smooths transitions by averaging the pixels next to the hard edges of defined lines and shaded areas in an image.
OV Don't blur (default)
1V Blur

Example of Blur Image Off (0V):

Example of Blur Image On (1V):

W - Histogram Ship

A histogram gives a quick picture of the tonal range of an image, or key type. A low-key image has detail concentrated in the shadows; a high-key image has detail concentrated in the highlights; and an average-key image has detail concentrated in the midtones. This modifier ships the histogram for an image.

OW Don't ship histogram (default)

1W Ship histogram

Image used for histogram:

Histogram of image at left:

Image Size Compatibility

If you have applications that expect an image ship to return exactly 640×480 pixels, scan the Force VGA Resolution bar code. Default = Native Resolution.

* Native Resolution

Intelligent Signature Capture - IMGBOX

IMGBOX allows you to configure the size and location of a signature capture area relative to its proximity to a bar code. This allows you to tailor a signature capture area to a specific form. In order to use IMGBOX, you need a set form where the signature box location is in a known location relative to a bar code. You can input the overall size of the signature area, as well as specify how far the signature area is from the bar code, vertically and horizontally. You can also set the resolution and file format for the final output of the signature capture image.

Note: IMGBOX commands can only be triggered by one of the following types of bar codes: PDF417, Code 39, Code 128, Aztec, Codabar, and Interleaved 2 of 5. Once one of these symbologies has been read, the image is retained for a possible IMGBOX command.

Signature Capture Optimize

If you will be using your scanner to capture signatures frequently, you should optimize it for this purpose. However, the speed of scanning bar codes may be slowed when this mode is enabled. Default = Off.

Optimize On

* Optimize Off

Below is an example of a signature capture application. In this example, the aimer is centered over the signature capture area and the trigger is pressed. A single beep is emitted, indicating that the scanner has read a Code 128 bar code and the data has been transferred to the host. If using a Granit scanner, the scanner also vibrates. An IMGBOX command may now be sent from the host to specify the coordinates of the signature capture area below that code, and indicating that only that area containing the signature should be transferred as an image to the host.

To see this example, align the aimer with the signature area (not with the bar code), then press the trigger.

Send the following IMGBOX command string after the button push:
Example: IMGBOX245w37h55y.
Note: Case is not important in the command string. It is used here only for clarity.
The following image is captured:
Signature Capture Area

The IMGBOX commands have many different modifiers that can be used to change the size and appearance of the signature image output by the scanner. Modifiers affect the image that is transmitted, but do not affect the image in memory. Any number of modifiers may be appended to the IMGBOX command.

Note: The IMGBOX command will return a NAK unless a window size (width and height) are specified. See H-Height of Signature Capture Area (page 8-12) and W - Width of Signature Capture Area (page 8-13).

IMGBOX Modifiers

A - Output Image Width

This option is used to size the image horizontally. If using this option, set the resolution (R) to zero.
Example of Image Width set to 200A:

Example of Image Width set to 600A:

B - Output Image Height

This option is used to size the image vertically. If using this option, set the resolution (R) to zero.
Example of Image Height set to 50B:
Signature Capture Area

Example of Image Height set to 100B:

D - Pixel Depth

This indicates the number of bits per pixel in the transmitted image, which defines whether it will be grayscale or black and white.

8D 8 bits per pixel, grayscale image (default)
1D 1 bit per pixel, black and white image

F - File Format

This option indicates the type of file format in which to save the image.
OF KIM format
1F TIFF binary
2F TIFF binary group 4, compressed
3F TIFF grayscale
4F Uncompressed Binary
5F Uncompressed grayscale
6F JPEG image (default)
7F Outlined image
8F BMP format

H - Height of Signature Capture Area

The height of the signature capture area must be measured in inches divided by .01. In the example, the height of the area to be captured is $3 / 8$ inch, resulting in a value of $\mathrm{H}=.375 / 0.01=37.5$.

Example: IMGBOX245n37h55y.

K - Gamma Correction

Gamma measures the brightness of midtone values produced by the image. You can brighten or darken an image using gamma correction. A higher gamma correction yields an overall brighter image. The lower the setting, the darker the image. The optimal setting for text images is 50 K .

OK Gamma correction off (default)
50K Apply gamma correction for brightening typical document image
$n K$ Apply gamma correction factor $n(n=1-255)$
Example of Gamma
Correction set to OK:

Example of Gamma Correction set to 50 K :

> Signature Caplure Ara

Example of Gamma Correction set to 255 K :

```
Signature Capture Alwa
```


R - Resolution of Signature Capture Area

The resolution is the number of pixels that the scanner outputs per each minimum bar width. The higher the value for R, the higher the quality of the image, but also the larger the file size. Values begin at 1000. The scanner automatically inserts a decimal point between the first and second digit. For example, use 2500 to specify a resolution of 2.5 . Set to zero when using the A and B modifiers (see A - Output Image Width and B - Output Image Height on page 8-12).

Example of Resolution set to OR:

Signature Capture Area

Example of Resolution set to 1000R:

```
Signature Caplure Awa
```

Example of Resolution set to 2000R:

S - Bar Code Aspect Ratio

All dimensions used in IMGBOX are measured as multiples of the minimum element size of the bar code. The bar code aspect ratio allows you to set the ratio of the bar code height to the narrow element width. In the example, the narrow element width is .010 inches and the bar code height is 0.400 inches, resulting in a value of $S=0.4 / 0.01=40$.

W - Width of Signature Capture Area

The width of the signature capture area must be measured in inches divided by .01 . In the example, the width of the area to be captured is 2.4 inches, resulting in a value of $W=2.4 / 0.01=240$. (A value of 245 was used in the example to accommodate a slightly wider image area.)

Example: IMGBOX $245 w 37 h 55 y$.

X - Horizontal Bar Code Offset

The horizontal bar code offset allows you to offset the horizontal center of the signature capture area. Positive values move the horizontal center to the right and negative values to the left. Measurements are in multiples of the minimum bar width.

Example of Horizontal Offset set to 75X:

Example of Horizontal Offset set to -75X:
Signature Capture A

Y - Vertical Bar Code Offset

The vertical bar code offset allows you to offset the vertical center of the signature capture area. Negative numbers indicate that the signature capture is above the bar code, and positive numbers indicate that the area is below the bar code. Measurements are in multiples of the minimum bar width.

Example of Vertical Offset set to -7Y:

Example of Vertical Offset set to 65Y:
Signature Capture Avea

RF Default Imaging Device

The scanner supports imaging command processing (IMGSHP, IMGSNP, IMGBOX) so that EZConfig-Scanning (see page 103) and other applications are able to perform imaging functions as if they were communicating directly with a scanner. To accomplish this, the scanner uses a menu command called RF_DID (RF Default Imaging Device). RF_DID is the name of the scanner (BT_NAM) that is to receive imaging commands. The default for RF_DID is "*"indicating that imaging commands are to be sent to all associated scanners. Change this setting to RF_DIDscanner_name to ensure that they are sent to a particular scanner. Refer to "Paging" on page 3-7 to generate a report containing the port, work group, scanner name, and address for each scanner. Refer to "Scanner Name" on page 3-18 set a unique name for each scanner.

