
HP aC++/HP C A.06.28 Programmer's
Guide
Integrity servers

HP Part Number: 769150-001
Published: March 2014
Edition: 13

© Copyright 2012, 2014 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products
and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. UNIX is a registered
trademark of The Open Group.

Intel® and Itanium® are trademarks of Intel Corporation in the U.S. and other countries.

Contents
HP secure development lifecycle..17
About This Document ..18

Intended Audience..18
What’s in This Document...18

Typographical Conventions...19
HP-UX Release Name and Release Identifier..20

Publishing History...20
Related Documents...20
HP Encourages Your Comments..21

1 Getting Started with HP aC++...22
Components of the Compilation System...22

Using the aCC Command...23
Compiling a Simple Program...23
Executing the Program..23
Debugging Programs...23

HP Code Advisor..23
HP WDB Debugger...23
Accessing Online Example Source Files...24

Compiler Command Syntax and Environmental Variables...24
Examples of the aCC Command..24

Compiling and Renaming an Output File..24
Compiling and Debugging ..24
Compiling Without Linking...24
Linking Object Files...24
Compiling, Optimizing, and Getting Verbose Information...24
Compiling and Creating a Shared Library..25

Files on the aCC Command Line...25
C++ Source File (.C file)...25
Preprocessed Source Files (.i Files) ...25
Assembly Language Source Files (.s Files) ...25
Object Files (.o Files)..26
Library Files (.a and .so Files)..26
Configuration Files (.conf Files)..26

Environment Variables...26
aCC_FULL_PATHNAMES Environment Variable..27
aCC_MAXERR Environment Variable..27
CXXOPTS Environment Variable...27
CCLIBDIR Environment Variable...27
CCROOTDIR Environment Variable...28
CXX_MAP_FILE Environment Variable...29
TMPDIR Environment Variable..29

Floating Installation...29
HP aC++..30
HP C..30
Setting up Floating Installation...30

2 Command-Line Options...31
Options to Control Code Generation...32

-c ..32
+DOosname ..32
+DDdata_model ...32

Contents 3

+DSmodel..33
Using +DS to Specify Instruction Scheduling...33
Compiling in Networked Environments...33

-S...33
Data Alignment and Storage..34

-fshort-enums ..35
+unum ...35

Debugging Options..35
+d...35
+expand_types_in_diag...35
-g..35
-g0..35
-g1..36
Differences Between -g, -g0, and -g1 Options..36
When to use -g, -g0, and -g1..36
-g, -g1 Algorithm...36
+macro_debug..36
+[no]objdebug..37
+pathtrace..37

Error Handling...38
+p...38
-w..38
+w...39
+wn...39
+Wargs..39
+Wcontext_limit..39
+We..40
+Weargs..40
+Wv..40
+Wwargs...40
+wlint...40
+Wmacro...40
+wperfadvice..40
+wsecurity..41

Exception Handling..41
+noeh..41

Extensions to the Language..41
-ext..41
+e...42

Floating-Point Processing Options..42
+O[no]cxlimitedrange..42
+O[no]fenvaccess..42
-fpeval..43
-fpevaldec...43
-[no]fpwidetypes..43
+decfp...43
+FP..43
+FPmode..44
+O[no]libmerrno...44
+Oprefetch_latency..44
+O[no]preserved_fpregs...44
+O[no]rotating_fpregs..45
+O[no]sumreduction..45

Header File Options...45
-H..45

4 Contents

+hdr_create..45
+hdr_use..45
-I directory..45
-I-...46

Online Help Option..47
+help...47

Inlining Options...48
+inline_level num...48

Library Options..49
-b..49
-dynamic...49
-exec..49
-lname..49
-L directory..50
-minshared..50
+nostl...50
+Onolibcalls=...50

Linker Options..50
-e epsym...50
-n...50
-N..51
+O[no]dynopt...51
-q..51
-Q..51
-r...51
-s...51
-usymbol...51
+ild..52
+ildrelink..52

Options for Naming the Output File..52
-o...52
-.suffix..52

Native Language Support Option...52
-Y...52

Handling Null Pointers Options..53
-z...53
-Z..53

Code Optimizing Options...53
Basic Optimization Level Options...53

-O...54
+O0..54
+O1..54
+O2..54
+O3..54
+O4..55

Object Files Generated at Optimization Level 4..55
Additional Optimization Options for Finer Control..55

-ipo...56
Object Files Generated with -ipo..56

+[no]nrv..56
+O[no]failsafe..56
+O[no]aggressive...57
+O[no]limit..57
+O[no]ptrs_to_globals[=list]...57
+O[no]size...57

Contents 5

Advanced +Ooptimization Options..57
+O[no]cross_region_addressing..58
+O[no]datalayout...58
+O[no]dataprefetch...58
+O[no]fltacc...58
+Ofrequently_called..59
+O[no]initcheck..59
+O[no]inline..60
+Olit...60
+Ointeger_overflow...60
+Olevel...61
+O[no]loop_transform...61
+O[no]loop_unroll..61
+O[no]openmp...61
+opts...62
+O[no]parminit..62
+O[no]parmsoverlap...62
+O[no]procelim..62
+O[no]promote_indirect_calls...62
+Orarely_called..63
+O[no]signedpointers..63
+Oshortdata..63
+O[no]store_ordering..64
+Otype_safety..64
+Ounroll_factor..64

Profile-Based Optimization Options..64
+Oprofile...64

Information Embedding Options..65
-annotate=structs...65

Displaying Optimization Information...65
+O[no]info...65

Parallel Processing Options..65
-mt...66
+O[no]autopar..67
+tls=[static|dynamic]..67
+wlock...68

Performance Options...68
-fast..68
+Ofast..68
+Ofaster...69
+O[no]tls_calls_change_tp..69
+[no]srcpos...69
+DSmodel..69

Porting Options..70
-fast..70
+sb..70
+ub..70
+uc..70
+w64bit...71
+wdriver...71
+wendian...71

Preprocessor Options..72
-C..72
-dM..72
-Dname..72

6 Contents

-E...72
Redirecting Output From This Option...72

make[d]..73
+Make[d]...73
-P...73
-Uname..74

Profiling Code Options..74
-G..74
-p..74
+profilebucketsize..74

Runtime Checking Options...75
+check...75
+check=all..75
+check=none..75
+check=bounds...75
+check=globals...78
+check=lock..78
+check=malloc..79
+check=stack[:frame|:variables|:none]..80
+check=thread..80
+check=truncate[:explicit|:implicit]...81
+check=uninit ...81

Standards Related Options..82
-Aa..82
-AA..82
-Aarm...82
-AC89..83
-AC99..83
-Ae..83
-Ag++..83
-Agcc...83
-AOa and -AOe...84
-AP..84
-Ax..84
+legacy_cpp...84
+legacy_v5...84
+std=c89|c99|c++98|c++11|gcc|g++|gnu...85
+stl=rw|none..85
+tru64..86
-Wc,-ansi_for_scope,[on|off]...86
-Wc,-koenig_lookup,[on|off]..86

Subprocesses of the Compiler..87
-tx,name...87

More Examples of -t...87
-Wx,args..88

Passing Options to the Linker with -W...89
Passing Multiple Options to the Linker with -W..89

Symbol Binding Options..89
-Bdefault...89
-Bextern..89
-Bhidden...90
-Bhidden_def...90
-Bprotected..90
-Bprotected_data..90
-Bprotected_def..90

Contents 7

-Bsymbolic...91
Template Options...91

+[no]dep_name...91
+inst_compiletime..91
+inst_directed..91
+inst_implicit_include...91
+inst_include_suffixes...92

Trigraph Processing Suppression Option..92
-notrigraph..93

Verbose Compile and Link Information...93
-dumpversion...93
+dryrun..93
+O[no]info...93
+wsecurity..93
+time...93
-v...94
-V..94

Concatenating Options...95
3 Pragma Directives and Attributes..96

Initialization and Termination Pragmas..96
INIT...96
FINI...96

Copyright Notice and Identification Pragmas..97
COPYRIGHT..97
COPYRIGHT_DATE...97
LOCALITY...97
LOCALITY_ALL...97
VERSIONID...98

Data Alignment Pragmas...98
ALIGN...98
PACK ..98

Basic Example..100
Template Example...100
Handling Unaligned Data..101
Implicit Access to Unaligned Data...101

UNALIGN...102
Optimization Pragmas...103

OPT_LEVEL Pragma..103
OPTIMIZE Pragma...103
FLOAT_TRAPS_ON Pragma...103
[NO]INLINE Pragma..104
NO_INLINE Pragma..104
IVDEP Pragma...105
NODEPCHK Pragma..105
NO_RETURN Pragma...105

Diagnostic Pragmas..105
diag_xxx Pragmas...105

Other Pragmas...105
assert Pragma...105
BINDING Pragma..106
DEFAULT_BINDING Pragma..106
ESTIMATED_FREQUENCY Pragma...106
EXTERN Pragma..106
FREQUENTLY_CALLED Pragma..106

8 Contents

HDR_STOP Pragma..107
HIDDEN Pragma...107
HP_DEFINED_EXTERNAL Pragma..107
HP_DEFINED_INTERNAL Pragma...107
IF_CONVERT Pragma...107
POP Pragma...108
Pragma (once)...108
PROTECTED Pragma..108
PTRS_STRONGLY_TYPED Pragma...108
PTRS_TO_GLOBALS Pragma..108
PUSH Pragma...108
RARELY_CALLED Pragma..108
STDC CX_LIMITED_RANGE Pragma...109
STDC FLOAT_CONST_DECIMAL64 Pragma ...109
STDC FP_CONTRACT Pragma...109
STDC FENV_ACCESS Pragma...110
UNROLL_FACTOR Pragma..110
OMP ATOMIC Pragma...110
OMP BARRIER Pragma...111
OMP CRITICAL Pragma..111
OMP FOR Pragma...111
OMP FLUSH Pragma..111
OMP MASTER Pragma...112
OMP ORDERED Pragma...112
OMP PARALLEL Pragma..112
OMP PARALLEL FOR Pragma...112
OMP PARALLEL SECTIONS Pragma..113
OMP SECTIONS Pragma..113
OMP SINGLE Pragma..113
OMP TASK Pragma..113
OMP TASKWAIT Pragma..114
OMP THREADPRIVATE Pragma..114

OpenMP Clauses...114
private..114
firstprivate...114
lastprivate...114
copyprivate...115
if...115
default..115
shared..115
copyin..115
reduction..115
nowait..115
ordered..116
schedule...116
num_threads...116

Attributes...116
attribute aligned..116
attribute malloc..116
attribute non_exposing...117
attribute noreturn...117
attribute format..118
attribute visibility..118
attribute warn_unused_result..118

Contents 9

4 Preprocessing Directives..119
Overview of the Preprocessor...119

Syntax..119
Usage Guidelines..119
Source File Inclusion (#include, #include_next)...120

Syntax...120
Description...120
Examples...121

Macro Replacement (#define, #undef)..121
Syntax...121
Description...121
Macros with Parameters...121
Specifying String Literals with the # Operator..122
Concatenating Tokens with the ## Operator ..122

Example 1...122
Example 2...123

Using Macros to Define Constants...123
Other Macros...123

Example 1...124
Example 2...124

Using Constants and Inline Functions Instead of Macros...124
Example..124

Predefined Macros..125
Assertions (#assert, #unassert)...125

Syntax...125
Description...125

Conditional Compilation (#if, #ifdef, .. #endif)..126
Syntax...126
Description...126
Using the defined Operator..127
Using the #if Directive..127
The #endif Directive...127
Using the #ifdef and #ifndef Directives...127
Nesting Conditional Compilation Directives..127
Using the #else Directive..127
Using the #elif Directive...127
Examples...128

Line Control (#line)...128
Syntax...128
Description...128
Example..128

IOSTREAM Performance Improvement Pragma...129
Syntax:..129

Pragma Directive (#pragma) and _Pragma Operator..129
Syntax...129
Description...129
Example..129

Error Directive (#error)..130
Syntax...130
Example..130

Warning Directive..130
Syntax...130

Trigraph Sequences..130
Examples..130

10 Contents

5 Using HP aC++ Templates...132
Invoking Compile-Time Instantiation...132

Scope and Precedence...132
Template Processing...132
Explicit Instantiation..133

Usage...133
Performance...133
Examples...133

Class Template...133
Function Template...134

Command-Line Option Instantiation..134
Compile-Time Instantiation...134

Why Use Compile-Time Instantiation..135
Scope..135
Usage...135

Migrating from Automatic Instantiation to Compile-time Instantiation.......................................135
Possible Duplicate Symbols in Shared Libraries..135
Possible Duplicate Symbols in Archive Libraries..135

Building an Archive Library with +inst_auto/+inst_close...136
Building an Archive Library with Compile-time Instantiation..136

C++ Template Tutorial..136
Class Templates..136
Function Templates..137

6 Standardizing Your Code..138
HP aC++ Keywords..138

bool Keyword..138
Usage...138
Example..138

dynamic_cast Keyword...139
Usage...139
Example..139

explicit Keyword..141
Usage...141
Example..141

mutable Keyword...143
Usage...143
Example..143

namespace and using Keywords..144
Connections Across Translation Units...144
An Auxiliary Translation Unit...145
using- declarations and using- directives...145

using- declaration...145
using- directive...145

typeid Keyword...146
Usage...146

typeid Example..146
volatile Keyword..148

Usage...148
Example..148

wchar_t Keyword...149
Usage...149
Example..149

template Keyword..149
Usage...149

Contents 11

Example..149
typename Keyword..149

Usage...149
Example..149

Overloading new[] and delete[] for Arrays...150
Example...151

Standard Exception Classes...152
Example...152

Exceptions Thrown by the Standard C++ Library...153
type_info Class...153
Unsupported Functionality..154

7 Optimizing HP aC++ Programs..156
Requesting Optimization..156

Setting Basic Optimization Levels...156
Level 1 Optimization..156
Level 2 Optimization..156
Level 3 Optimization..157
Level 4 Optimization..157

Additional Options for Finer Control...157
Enabling Aggressive Optimizations..157
Enabling Only Conservative Optimizations...158
Removing Compilation Time Limits When Optimizing...158
Limiting the Size of Optimized Code..158
Combining Optimization Options..158

Profile-Based Optimization..158
Instrumentation...159
Collecting Data for Profiling..159
Maintaining Profile Data Files...159
Example 1...160
Example 2...160
Performing Profile-Based Optimization..160

Pragmas That Control Optimization...160
8 Exception Handling..161

Exception Handling..161
Exception Handling in C++...161
Exception Handling as Defined by the ANSI/ISO C++ International Standard.........................162
Basic Exception Handling Example..162
Function Try Block Examples..162
Debugging Exception Handling...163
Performance Considerations..163

Using Threads..163
Rogue Wave Standard C++ Library 2.2.1...163
Rogue Wave Standard C++ Library 1.2.1 and Tools.h++ 7.0.6..163
Using Locks...163
Required Command-line Options...164

Rogue Wave Standard C++ Library 2.2.1...164
Rogue Wave Standard C++ Library 1.2.1 and Tools.h++ 7.0.6..164

Limitations...165
Using -D_THREAD_SAFE with the cfront Compatible libstream...165
Differences between Standard iostreams and cfront Compatible libstream...........................165
Using -D__HPACC_THREAD_SAFE_RB_TREE...165

Exception Handling..166
Pthreads (POSIX Threads)...166

Limitations...166

12 Contents

Function Scoping..167
Performance Options...167
Parallel Programming Using OpenMP..167

OpenMP Implementation..167
OpenMP Header File...168
OpenMP Library...168
+O[no]openmp Command Line Option..169
_OPENMP Macro...169

Environment Variables in OpenMP...169
OMP_SCHEDULE..169
OMP_NUM_THREADS..169
OMP_DYNAMIC...170
OMP_NESTED..170

Runtime Library Functions in OpenMP...170
Execution Environment Functions..170

omp_set_num_threads..171
omp_get_num_threads...171
omp_get_max_threads...171
omp_get_thread_num..171
omp_get_num_procs..171
omp_in_parallel..171
omp_set_dynamic...172
omp_get_dynamic...172
omp_set_nested..172
omp_get_nested..172

Lock Functions...172
omp_init_lock and omp_init_nest_lock...173
omp_destroy_lock and omp_destroy_nest_lock..173
omp_set_lock and omp_set_nest_lock..173
omp_unset_lock and omp_unset_nest_lock..173
omp_test_lock and omp_test_nest_lock Functions...174

Timing Functions..174
omp_get_wtime..174
omp_get_wtick..174

9 Tools and Libraries..175
HP Specific Features of lex and yacc...175
Creating and Using Libraries..175

HP aC++ Libraries...176
Standard C++ Library..176
Introduction..176
Introduction to Using the Standard C++ Library...176
Differences between Standard C++ Library and Other Libraries...177
The Non-Object-Oriented Design of the Standard C++ Library..177

Smaller Source Code..178
Flexibility...178
Efficiency...178
Iterators: Mismatches and Invalidations...178
Templates: Errors and Code Bloat...178
Multithreading Problems..178

Standard C++ Library Reference...178
Incompatibilities Between the Library and the Standard..178
Tools.h++ Library..179
HP aC++ Runtime Support Library...179
IOStream Library...179

Contents 13

Standard Components Library Not Provided...179
Linking to C++ Libraries...180
Linking with Shared or Archive Libraries...180
Specifying Other Libraries..180

Creating and Using Shared Libraries..180
Compiling for Shared Libraries..180

Example..180
Creating a Shared Library..181

Example..181
Using a Shared Library..181

Example..181
Example of Creating and Using a Shared Library..181
Linking Archive or Shared Libraries..181

Syntax..182
Example..182

Updating a Shared Library...182
Advanced Shared Library Features...182

Forcing the Export of Symbols in main...182
Binding Times...183

Forcing Immediate Binding..183
Side Effects of C++ Shared Libraries..183
Routines and Options to Manage C++ Shared Libraries...183
Linker Options to Manage Shared Libraries..183
Version Control for Shared Libraries...183
Adding New Versions to a Shared Library..184

Standard HP-UX Libraries and Header Files...184
Location of Standard HP-UX Header Files...184
Using Header Files..184

Example..184
Allocation Policies for Containers...184

For -AP Standard Library..184
For -AA Standard Library..185

HP aC++ File Locations...186
HP aC++ Executable Files...186
HP aC++ Runtime Libraries and Header Files...187

10 Mixing C++ with Other Languages...188
Calling Other Languages...188
Data Compatibility between C and C++...188

HP aC++ Calling HP C...189
Using the extern "C" Linkage Specification...189
Syntax of extern "C"..189
Examples of extern "C"..189
Differences in Argument Passing Conventions..190
The main() Function...190
Examples: HP aC++ Calling HP C...190

Running the Example..191
HP C Calling HP aC++...191

Compiling and Running the Sample Programs...192
Calling HP FORTRAN 90 from HP aC++...193

The main() Function...193
Function Naming Conventions..193
Using Reference Variables to Pass Arguments..193

Example of Reference Variables as Arguments..193
Using extern "C" Linkage...194

14 Contents

Strings...194
Arrays...194
Files in FORTRAN..194

11 Distributing Your C++ Products..195
Applications that use HP aC++ Shared Libraries...195
Linking Your HP aC++ Libraries with Other Languages..196
Installing your Application...196
HP aC++ Files You May Distribute..196
Terms for Distribution of HP aC++ Files..197

12 Migrating from HP C++ (cfront) to HP aC++...198
General Guidelines for Migration...198

Getting Started with Migration...198
Writing Code for both Compilers...199
Explicit Loading and Unloading of Shared Libraries ...199
Memory Allocation..199

Command-Line Differences...199
New Command-Line Options...199
Obsolete Command-Line Options...200
Changed Command-Line Options..201

Migration Considerations when Debugging...202
Migration Considerations when Using Exception Handling...202

Exception Handling is the Default...202
Memory Allocation Failure and operator new..203
Possible Differences when Exiting a Signal Handler..203
Differences in setjmp/longjmp Behavior..204
Calling unexpected..204
Unreachable catch Clauses...205
Throwing an Object having an Ambiguous Base Class..205

Migration Considerations when Using Libraries...206
Standards Based Libraries...206
HP C++ (cfront) Compatibility Libraries...207

IOStream Library...207
Manpages...207
Header Files..207

Standard Components Library Not Provided...208
HP C++ (cfront) Complex Library Not Supported...208

Manpages...208
Header File...208

HP C++ (cfront) Task Library Not Supported...208
Manpages...208

Migration Considerations Related to Preprocessing...208
Obsolete Preprocessor Options..209

Migration Considerations Related to Standardization...209
Changes in C++ Semantics...209

Implicit Typing of Character String Literals...209
Overload Resolution Ambiguity of Subscripting Operator...210
Execution Order of Static Constructors in Shared Libraries...210
More Frequent Inlining of Inline Code..211

Changes in C++ Syntax..211
Explicit int Declaration...211
The for Statement, New Scoping Rules...212
struct as Template Type Parameter is Permitted...212
Base Template Class Reference Syntax Change...213
Tokens after #endif..213

Contents 15

overload not a Keyword...213
Dangling Comma in enum...214
Static Member Definition Required...214
Declaring friend Classes...214
Incorrect Syntax for Calls to operator new..215
Using :: in Class Definitions..215
Duplicate Formal Argument Names...215
Ambiguous Function or Object Declaration...215
Overloaded Operations ++ and --...216
Reference Initialization...216
Using operator new to Allocate Arrays...217
Parentheses in Static Member Initialization List...217
&qualified-id Required in Static Member Initialization List..218
Non-constant Reference Initialization..218
Digraph White Space Separators..219

Migration Considerations when Using Templates..219
Verbose Template Processing Information..219
Common Template Migration Syntax Changes...220
The cfront Implicit Include Convention...220
Converting Directed Mode to Explicit Instantiation..220

13 Documentation feedback...221
A Diagnostic Messages..222

aC++ Message Catalog..222
Command Errors..222
Command Warnings..222
Fatal Errors...222
Future Errors..222
Anachronisms..222
Warnings...222
Suggestion/Information..222
Tool Errors..222

Frequently Encountered Messages...222
Glossary..223
Index...227

16 Contents

HP secure development lifecycle
Starting with HP-UX 11i v3 March 2013 update release, HP secure development lifecycle provides
the ability to authenticate HP-UX software. Software delivered through this release has been digitally
signed using HP's private key. You can now verify the authenticity of the software before installing
the products, delivered through this release.
To verify the software signatures in signed depot, the following products must be installed on your
system:

• B.11.31.1303 or later version of SD (Software Distributor)

• A.01.01.07 or later version of HP-UX Whitelisting (WhiteListInf)

To verify the signatures, run: /usr/sbin/swsign -v –s <depot_path>. For more information,
see Software Distributor documentation at http://www.hp.com/go/sd-docs.

NOTE: Ignite-UX software delivered with HP-UX 11i v3 March 2014 release or later supports
verification of the software signatures in signed depot or media, during cold installation.
For more information, see Ignite-UX documentation at http://www.hp.com/go/ignite-ux-docs.

http://www.hp.com/go/sd-docs
http://www.hp.com/go/ignite-ux-docs.

About This Document
This manual presents programming information on the C++ programming language, as implemented
on Itanium®- based systems.
The document printing date and part number indicate the document’s current edition. The printing
date will change when a new edition is printed. Minor changes may be made at reprint without
changing the printing date. The document part number will change when extensive changes are
made.
Document updates may be issued between editions to correct errors or document product changes.
To ensure that you receive the updated or new editions, you should subscribe to the appropriate
product support service. Contact your HP sales representative for details.
The latest version of this document is available on the web at http://www.hp.com/go/
hpux-C-Integrity-docs.

Intended Audience
This manual is intended for experienced C and C++ programmers who are familiar with HP systems.

What’s in This Document
HP aC++/HP C Programmer’s Guide is divided into the following chapters:
Chapter 1 Getting Started

Gives you an introduction to the HP aC++ product and its components. It also
discusses the compiler command syntax and environment variables.

Chapter 2 Command Line Options
Discusses command line options. Command line options are categorized into
different sections based on how you can use them. This chapter also covers
diagnostic messages and pragma directives.

Chapter 3 Pragma Directives
Discusses pragmas supported in HP aC++. A pragma directive is an instruction
to the compiler. Use a #pragma directive to control the actions of the compiler
in a particular portion of a translation unit without affecting the translation unit
as a whole.

Chapter 4 Preprocessing Directives
Gives you an overview, the syntax, and usage guidelines of preprocessing
directives. This chapter also includes a section on using HP aC++ templates.

Chapter 5 Using HP aC++ Templates
Gives you an overview of template processing and describes the instantiation
coding methods available in HP aC++.

Chapter 6 Standardizing Your Code
Discusses HP aC++ keywords, Standard Exception Classes, and exceptions
thrown by the Standard C++ library, and lists unsupported functionality.

Chapter 7 Optimizing HP aC++ Programs
Gives you information about optimizing your programs.

Chapter 8 Exception Handling
Discusses exception handling, and information on using threads and parallel
programming.

18

http://www.hp.com/go/hpux-C-Integrity-docs
http://www.hp.com/go/hpux-C-Integrity-docs

Chapter 9 Tools and Libraries
Discusses the tools and libraries bundled with HP aC++.

Chapter 10 Mixing C++ with Other Languages
Provides guidelines for linking HP aC++ modules with modules written in HP C
and HP FORTRAN 90 on HP systems.

Chapter 11 Distributing Your C++ Products
Provides distribution-related information for C++ products. If you choose to
distribute archive libraries or object files, your customer must have purchased HP
aC++. Make sure that your customer has read this distribution information.

Chapter 12 Migrating from HP C++ (cfront) to HP aC++
Discusses differences in syntax and functionality that you may need to consider,
when migrating code from HP C++ (cfront) to HP aC++.

Appendix A Diagnostic Messages
Discusses the aCC message catalog and frequently encountered messages. The
aC++ compiler can issue a large variety of diagnostics in response to unexpected
situations or suspicious constructs.

Glossary Contains definitions of terms used in this book, listed alphabetically.

Typographical Conventions
This document uses the following conventions.
audit(5) An HP-UX manpage. In this example, audit is the name and 5 is the section in

the HP-UX Reference respectively. On the Web and on the Instant Information
CD, it may be a hot link to the manpage itself. From the HP-UX command line,
you can enter “man audit” or “man 5 audit” to view the manpage. See
man(1).

Book Title The title of a book. On the Web and on the Instant Information CD, it may be
a hot link to the book itself.

KeyCap The name of a keyboard key.
Emphasis Emphasized text.
Bold Strongly emphasized text.
Bold The defined use of an important word or phrase.
ComputerOut Text displayed by the computer.
UserInput Commands and other text that you type.
Command A command name or qualified command phrase.
Variable The name of a variable that you may replace in a command or function or

information in a display that represents several possible values.
[] The contents are optional in syntax. If the contents are a list separated by |,

you must choose one of the items.
{} The contents are required in syntax. If the contents are a list separated by |,

you must choose one of the items.
... The preceding element may be repeated an arbitrary number of times.
| Separates items in a list of choices.

What’s in This Document 19

HP-UX Release Name and Release Identifier
Each HP-UX 11i release has an associated release name and release identifier. Theuname(1)
command with the -r option returns the release identifier. This table shows the releases available
for HP-UX 11i.

Table 1 HP-UX 11i Releases

Supported Processor ArchitectureRelease NameRelease Identifier

Intel® Itanium®HP-UX 11i v3.0B.11.31

PA-RISCHP-UX 11i v1B.11.11

PA-RISCHP-UX 11i v2.0B.11.23

PA-RISCHP-UX 11i v3.0B.11.31

Intel® Itanium®HP-UX 11i v1.5B.11.20

Intel® Itanium®HP-UX 11i v1.6B.11.22

Intel® Itanium®HP-UX 11i v2.0B.11.23

Intel® Itanium®HP-UX 11i v3.0B.11.31

Publishing History

Product VersionRelease DateEdition

HP aC++ v A.06.28March 201413

HP aC++ v A.06.27September 201212

HP aC++ v A.06.26September 201111

HP aC++ v A.06.25March 201010

HP aC++ v A.06.20September 20099

HP aC++ v A.06.15September 20078

HP aC++ v A.06.12November 20067

HP aC++ v A.06.10May 20066

HP aC++ v A.06.05September 20055

HP aC++ v A.06.00/A.05.60December 20044

HP aC++ v A.05.55.02September 20043

HP aC++ v A.05.55March 20042

HP aC++ v A.05.50August 20031

Related Documents
You can fine additional information about the HP aC++/HP C compiler on the web at http://
www.hp.com/go/hpux-C-Integrity-docs.

20

http://www.hp.com/go/hpux-C-Integrity-docs
http://www.hp.com/go/hpux-C-Integrity-docs

The following is a list of documents available with this release:

• HP aC++/HP ANSI C Release Notes
This document gives an overview of new command-line options and features in HP aC++ and
HP C compilers for Itanium®-based systems.

• HP C/HP-UX Reference Manual
This manual presents reference information on the C and C++ programming languages.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are truly committed to providing
documentation that meets your needs.
Please send comments to: c++-editor@cup.hp.com
Please include document title, manufacturing part number, and any comment, error found, or
suggestion for improvement that you have about this document.

HP Encourages Your Comments 21

1 Getting Started with HP aC++
The information in this document applies to the release of HP aC++ and HP ANSI C compilers
version A.06.28 for the HP-UX 11i v3 operating system.
The HP ANSI C compiler supports ANSI programming language C standard ISO 9899:1999. HP
aC++ compiler supports the ISO/IEC 14882 Standard for the C++ Programming Language (the
international standard for C++).
Version A.06.28 of the HP aC++/HP C compiler provides leading edge support for C++11
standard language features, with complete binary compatibility with earlier releases and -AA
compilation mode.
This chapter discusses the following topics:

• “Components of the Compilation System” (page 22)

• “Compiler Command Syntax and Environmental Variables” (page 24)

• “Files on the aCC Command Line” (page 25)

• “Environment Variables” (page 26)

• “Floating Installation” (page 29)

Components of the Compilation System
The HP aC++ compiling system consists of the following components:
aCC The aCC driver is the only supported interface to HP aC++ and to the linker for HP aC++

object files.
cc cc is the HP-UX C compiler.
c89 c89 is the HP-UX ANSI-conforming C89 compiler.
c99 c99 is the HP-UX ANSI-conforming C99 compiler.
ecom The ecom compiler (for A.06.*) compiles the C++ source statements. Preprocessing is

incorporated into the compiler.
ctcom The ctcom compiler (for A.05.*) compiles the C++ source statements. Preprocessing is

incorporated into the compiler.
The other HP aC++ executable files are:
c++filt c++filt is the name demangler. It implements the name demangling algorithm which

encodes function name, class name, and parameter number and name.
ld ld is the linker. It links executables and builds shared libraries.
HP aC++ Runtime Libraries and Header Files:
Standard C++ Library
 /usr/lib/hpux32/libstd.so (32-bit shared version)
 /usr/lib/hpux32/libstd.a (32-bit archive version)
 /usr/lib/hpux64/libstd.so (64-bit shared version)
 /usr/lib/hpux64/libstd.a (64-bit archive version)

HP aC++ Runtime Support Library
 /usr/lib/hpux##/libCsup.so
 /usr/lib/hpux##/libCsup11.so — ISO C++11 standard compliant
 /usr/lib/hpux##/libstd.so and libstd_v2.so
 /usr/lib/hpux##/libstd_v2.so and librwtool_v2.so
 /usr/lib/hpux##/libstream.so
 Libraries in /usr/include/hpux##

 (where ## is 32 or 64 provided as part of the HP-UX core system)

22 Getting Started with HP aC++

Standard C++ Library
 /usr/lib/hpux32/libstream.so (32-bit shared version)
 /usr/lib/hpux32/libstream.a (32-bit archive version)
 /usr/lib/hpux64/libstream.so (64-bit shared version)
 /usr/lib/hpux64/libstream.a (64-bit archive version)

 Header files for these libraries are located at /opt/aCC/include/.

Using the aCC Command
To invoke the HP aC++ compiling system, use the aCC command at the shell prompt. TheaCC
command invokes a driver program that runs the compiling system according to the filenames and
command line options that you specify.

Compiling a Simple Program
The best way to get started with HP aC++ is to write, compile, and execute a simple program, as
shown in the following example:
#include <iostream.h>
int main()
{
 int x,y;
 cout << “Enter an integer: “;
 cin >> x;
 y = x * 2;
 cout << “\n” << y <<“ is twice “ << x <<“.\n”;
}

If this program is in the file getting_started.C, compiling and linking the program with the
aCC command produces an executable file named a.out, by default:
$ aCC getting_started.C

Executing the Program
To run this executable file, just enter the name of the file. The following summarizes this process
with the file getting_started.C:
$ a.out

 Enter an integer: 7

 14 is twice 7.

Debugging Programs
You can use programming and debugging aides.

HP Code Advisor
HP Code Advisor is a code checking tool that can be used to detect programming errors in C/C++
source code. Use "/opt/cadvise/bin/cadvise" to invoke the tool. A brief description is
available with the -help option.
$ /opt/cadvise/bin/cadvise -help

Additional information is available at: http://www.hp.com/go/cadvise/.

HP WDB Debugger
You can also use the HP WDB debugger to debug your C++ programs after compiling your
program with either the -g, the -g0, or the -g1 option.
Example:
The -g0 option enables generation of debug information:
$ aCC -g0 program.C

Components of the Compilation System 23

http://www.hp.com/go/cadvise/

The gdb command runs the HP WDB debugger:
$ gdb a.out

For more information on the HP WDB debugger, refer to “Debugging Options” (page 35).

Accessing Online Example Source Files
Online example source files are located in the directory /opt/aCC/contrib/Examples/
RogueWave. These include examples for the Standard C++ Library and for the Tools.h++ Library.

Compiler Command Syntax and Environmental Variables
The aCC command (the driver) invokes the HP aC++ compiling system. The aCC command is
followed by options and files that need to be compiled.
aCC [options] [files]

You must use the aCC command to link your C++ programs and libraries. This ensures that all
libraries and other files needed by the linker are available.
Example:
aCC prog.C

This command compiles the source file prog.C and puts the executable code in the file a.out.
For a complete list of command line options, see Chapter 2: “Command-Line Options” (page 31).

Examples of the aCC Command
Following are some examples of the aCC command:

Compiling and Renaming an Output File
aCC -o prog prog.C

This command compiles prog.C and puts the executable code in the file prog, rather than in the
default file a.out.

Compiling and Debugging
aCC -g prog.C

This command compiles prog.C and includes information that allows you to debug the program
with the HP WDB debugger, wdb.

Compiling Without Linking
aCC -c prog.C

This command compiles prog.C and puts the object code in the file prog.o. It neither links the
object file nor creates an executable file.

Linking Object Files
aCC file1.o file2.o file3.o

This command links the listed object files (file1.o, file2.o, and file3.o) and puts the
executable code in the file a.out.

NOTE: You must use the aCC command to link your HP aC++ programs and libraries. This ensures
that all libraries and other files needed by the linker are available.

Compiling, Optimizing, and Getting Verbose Information
aCC -O -v prog.C

24 Getting Started with HP aC++

This command compiles and optimizes prog.C, gives verbose progress reports, and creates an
executable file a.out.

Compiling and Creating a Shared Library
aCC +z -c prog.C

aCC -b -o mylib.sl prog.o

The first line compiles prog.C, creates the object file prog.o, and puts the position-independent
code (PIC) into the object file. The second line creates the shared library mylib.sl, and puts the
executable code into the shared library.

Files on the aCC Command Line
Files containing source or object code to be compiled or linked by HP aC++ can be any of these
files:

• A C++ Source File (.C file)

• Preprocessed Source Files (.i Files)

• Assembly Language Source Files (.s Files)

• Object Files (.o Files)

• Library Files (.a and .so Files)

• “Configuration Files (.conf Files)” (page 26)
Unless you use the -o option to specify otherwise, all files that the aCC compiling system generates
are put in the working directory, even if the source files are from other directories.

C++ Source File (.C file)
You must name the HP aC++ source files with extensions beginning with either .c or .C, possibly
followed by additional characters. If you compile only, for example by using -c, each C++ source
file produces an object file with the same file name prefix as the source file and a .o file name
suffix.
However, if you compile and link a single source file into an executable program in one step, the
.o file is automatically deleted, unless -g is used without +noobjdebug.

NOTE: HP recommends that your source files have .c or .C extensions only, without any
additional characters. While extensions other these are permitted for portability from other systems,
they may not be supported by HP tools and environments.

Preprocessed Source Files (.i Files)
Files with .i extensions are assumed to be preprocessor output files. These files are processed in
the same way as .c or .C files, except that the preprocessor is not run on the .i file before the
file is compiled.
Use the -P or the -E compiler option to preprocess a C++ source file without compiling it.

Assembly Language Source Files (.s Files)
Files with names ending in .s are assumed to be assembly source files. The compiler invokes the
assembler through cc to create .o files from these.
Use the -S option to compile a C++ source file to assembly code and put the assembly code into
a .s file.

Files on the aCC Command Line 25

Object Files (.o Files)
Files with .o extensions are assumed to be relocatable object files that have to be included in the
linking. The compiler invokes the linker to link the object files and create an executable file.
Use the -c option to compile a C++ source file into a .o file.

Library Files (.a and .so Files)
Files ending with .a are assumed to be archive libraries. Files ending with .so are assumed to
be shared libraries.
Use the -c and +z options to create object files of Position-Independent Code (PIC) and the -b
option to create a shared library.
Use the -c option to create object files and the ar command to combine the object files into an
archive library.

Configuration Files (.conf Files)
You can configure compiler options on a system-wide basis. The compiler reads the configuration
files:
/var/aCC/share/aCC.conf (aC++), or
/var/ansic/share/cc.conf(ANSI C), if present.
In C-mode, the configuration file defaults to/var/ansic/share/cc.conf, unless overridden
by the environment variable CC_CONFIG..
In C++ mode, the config file defaults to /var/aCC/share/aCC.conf, unless overriden by the
environment variable CXX_CONFIG.
The options in the configuration file can be specified in the same manner as that for CCOPTS and
CXXOPTS, namely:
[options-list-1] [|[options-list-2]]

where options in options-list-1 are applied before the options in the command line, and
options in options-list-2 are applied after the options in the command line.
The final option ordering would be:
<file-options-1><envvar-options-1><command-line-options>

<envvar-options-2><file-options-2>

NOTE: No configuration files are shipped along with aC++, but can be installed by the system
administrator, if required.

The config file options before the "|" character set the defaults for compilations, and the options
after the character override the user’s command line settings.

Environment Variables
This section describes the following environment variables that you can use to control the HP aC++
or HP C compiler:

• “aCC_FULL_PATHNAMES Environment Variable” (page 27)

• “aCC_MAXERR Environment Variable” (page 27)

• “CXXOPTS Environment Variable” (page 27)

• “CCLIBDIR Environment Variable” (page 27)

• “CCROOTDIR Environment Variable” (page 28)

26 Getting Started with HP aC++

• “CXX_MAP_FILE Environment Variable” (page 29)

• “TMPDIR Environment Variable” (page 29)

aCC_FULL_PATHNAMES Environment Variable
Exporting the aCC_FULL_PATHNAMES variable causes the compiler to include full path names for
files in compiler messages. This feature is useful in debugging.

aCC_MAXERR Environment Variable
The aCC_MAXERR environment variable allows you to set the maximum number of errors you want
the compiler to report before it terminates compilation. The default is 100.

CXXOPTS Environment Variable
The CXXOPTS environment variable provides a convenient way to include frequently used
command-line options automatically.
Options before the vertical bar (|) are placed before command-line options to aCC. The options
after the vertical bar are placed after any command-line option. Note that the vertical bar must be
delimited by white space.
If you do not use the vertical bar, all options are placed before the command line parameters. Set
the environment variable and the options you want are automatically included each time you
execute the aCC command.
Syntax:
export CXXOPTS="options | options" ksh/sh notation

setenv CXXOPTS "options | options" csh notation

Usage:
For quick or temporary changes to your build environment, use CXXOPTS instead of editing your
makefiles.
Example:
export CXXOPTS="-v | -lm" ksh/sh notation

setenv CXXOPTS "-v | -lm" csh notation

The above command causes the -v and -l options to be passed to the aCC command each time
you execute it.
When CXXOPTS is set as above, the following two commands are equivalent:
aCC -g prog.C

aCC -v -g prog.C -lm

CCLIBDIR Environment Variable
The CCLIBDIR environment variable causes the aCC command to search for libraries in an alternate
directory before searching in the default directories.
Syntax:
export CCLIBDIR=directory ksh/sh notation

setenv CCLIBDIR directory csh notation

directory is an HP-UX directory where you want HP aC++ to look for libraries.
Example:
export CCLIBDIR=/mnt/proj/lib

In this example HP aC++ searches the directory /mnt/proj/lib for libraries before searching
the directory /opt/aCC/lib.

Environment Variables 27

When CCLIBDIR is set a in the above example, the following two commands are equivalent:
aCC -L/mnt/proj/lib file.o

aCC file.o

NOTE: You can use the -Ldirectory option to specify additional directories for the linker to
search for libraries.

CCROOTDIR Environment Variable
The CCROOTDIR environment variable causes aCC to invoke all subprocesses from an alternate
aCC directory, rather than from their default directory. The default aCC root directory is /opt/
aCC.
Syntax:
export CCROOTDIR=directory ksh/sh notation

setenv CCROOTDIR directory csh notation

directory is an aCC root directory where you want the HP aC++ driver to search for
subprocesses.
Example:

28 Getting Started with HP aC++

export CCROOTDIR=/mnt/CXX2.1

In this example, HP aC++ searches the directories under /mnt/CXX2.1 (/mnt/CXX2.1/bin
and /mnt/CXX2.1/lbin) for subprocesses rather than their respective default directories.

CXX_MAP_FILE Environment Variable
To facilitate easy migration of build environment from a different compiler to HP aC++, an option
mapping support is provided. You can use the option mapping files to map the options in the third
party compilers to HP aC++ equivalents. The mapping file is a text file that defines the mapping
rules. The compiler reads the mapping file and applies the specified replacements to the options
on the command line. This minimizes the need to make Makefile or script changes. The
CXX_MAP_FILE environment variable allows you to change the location of the mapping file.
Syntax:
export CXX_MAP_FILE=file path

Example:
export CXX_MAP_FILE=/home/src/my_option.map

The example specifies that HP aC++ should use mapping file from file path specified using
CXX_MAP_FILE.
Defining the Mapping Rules:
Following is the syntax for defining the rules in the mapping file:
LHS => RHS
where:

• Left Hand Side (LHS) is the third party compiler option.

• Right Hand Side (RHS) is the HP aC++ compiler option

NOTE: Ensure to use a space before and after "=>".

To define rules for options that have arguments, use the $<number> wildcard.
For Example:
$1 for the first argument, and $2 for the second. If the third party compiler option (LHS) does not
match with any HP aC++option, leave the RHS blank.

TMPDIR Environment Variable
The TMPDIR environment variable allows you to change the location of temporary files created
by the compiler. The default directory is /var/tmp.
Syntax:
export TMPDIR=directory ksh/sh notation

setenv TMPDIR directory csh notation

directory is the name of an HP-UX directory where you want HP aC++ to put temporary files
during compilation.
Example:
export TMPDIR=/mnt/temp ksh notation

setenv TMPDIR /mnt/temp csh notation

The above example specifies that HP aC++ should put all temporary files in /mnt/temp.

Floating Installation
More than one version of the HP aC++ compiler can be installed on one system at the same time.
The floating installation feature allows you to install the compiler in any location. You can install
as many compiler versions as required, depending on your system’s resources.

Floating Installation 29

HP aC++
By default, HP aC++ is installed under the /opt/aCC directory. In earlier releases, the compiler
driver (aCC) looked for related files in subdirectories of the /opt/aCC directory. This prevented
installation of more than one version of HP aC++ on the same system at the same time.
Only files in /opt/aCC are affected by floating installation. Regardless of the HP aC++ driver
you use, the compiler still uses the libraries, linker, and other files located in /usr/lib and /usr/
ccs.
Floating installation is designed to help facilitate in-house development. You must not ship libraries
in non-standard places, because explicit runtime library specifications and linker options are
required.
You can use the __HP_aCC predefined macro to determine which version is being run.

HP C
You can use the __HP_cc predefined macro to determine which version is being run.

NOTE: Do not use floating installation with the following:
• CCROOTDIR environment variable

• -tc,name command line option

Setting up Floating Installation
You may want to install the most recent compiler version and keep the prior version on one system.
If there are problems with the most recent version, you can easily switch to the prior one. Following
is an example of how to set up the floating installation feature for this purpose. Assume that your
system will have two versions of the compiler, both floating install enabled. In this case, A.05.50
is the prior version, and A.05.60 or A.06.00 is the more recent version.
To setup floating installation, complete the following steps:
1. Copy the prior version to another directory.

cp -rp /opt/aCC /opt/aCC.05.55

2. Use swinstall to install the new version (A.06.00 or A.05.60 in this case).

30 Getting Started with HP aC++

2 Command-Line Options
You can specify command-line options to the aCC command. They allow you to override the default
actions of the compiler. Each option begins with either a - or a + sign. Any number of options can
be interspersed anywhere in the aCC command and they are typically separated by blanks. Unless
specified otherwise, all options are supported by C and C++ compilers.
Default options can be set using option configuration files. See “Configuration Files (.conf Files)”
(page 26).
This chapter discusses the following command-line options:

• “Options to Control Code Generation” (page 32)
• “Data Alignment and Storage” (page 34)
• “Debugging Options” (page 35)
• “Error Handling” (page 38)
• “Exception Handling” (page 41)
• “Extensions to the Language” (page 41)
• “Floating-Point Processing Options” (page 42)
• “Header File Options” (page 45)
• “Online Help Option” (page 47)
• “Inlining Options” (page 48)
• “Information Embedding Options” (page 65)
• “Library Options” (page 49)
• “Linker Options” (page 50)
• “Options for Naming the Output File” (page 52)
• “Native Language Support Option” (page 52)
• “Handling Null Pointers Options” (page 53)
• “Code Optimizing Options” (page 53)
• “Parallel Processing Options” (page 65)
• “Performance Options” (page 68)
• “Porting Options” (page 70)
• “Preprocessor Options” (page 72)
• “Profiling Code Options” (page 74)
• “Runtime Checking Options” (page 75)
• “Standards Related Options” (page 82)
• “Subprocesses of the Compiler” (page 87)
• “Symbol Binding Options” (page 89)
• “Template Options” (page 91)
• “Trigraph Processing Suppression Option” (page 92)
• “Verbose Compile and Link Information” (page 93)
• “Concatenating Options” (page 95)

31

Options to Control Code Generation
The following options allow you to control the kind of code that the compiler generates:

• -c

• +DOosname

• +DDdata_model

• +DSmodel

• -S

-c
You can use the -c option to compile one or more source files without entering the linking phase.
When compiled, the compiler produces an object file (a file ending with .o) for each source file
(a file ending with .c, .C, .s, or .i). Note that you must link object files before they can be
executed.
Example:
aCC -c sub.C prog.C

In this example, the compiler compiles sub.C and prog.C and puts the relocatable object code
in the files, sub.o and prog.o, respectively.

+DOosname

The +DOosname option sets the target operating system for the compiler, and is intended for
enabling optimizations that are not backward compatible.
For instance, the 11.23 compiler introduces new optimized math library functions that require
library support not available in prior operating systems. +DO can be used at any level of
optimization. The default value for osname is the operating system version on which the compiler
is invoked.
The syntax for this option is +DOosname, where osname is either 11.20, 11.22 or 11.23.
Example:
The following example generates code for the HP-UX 11.22 (or later) operating system. Binary
incompatible features introduced in later OS versions are inhibited.
aCC +DO11.22 +O3 app.C

+DDdata_model
The +DDdata_model option specifies the data model for the compiler.
data_model can be one of the following:

• 32 (This value generates ILP32 code and is the default.)

• 64 (This value generates LP64 code.)
This option specifies the data model for the compiler. Table 2 lists the differences between the two
data models.

Table 2 ILP32 Data Model and LP64 Data Model

LP64 Data ModelILP32 Data Model

The size of an int data type is 32-bits. The size of a long
or pointer data type is 64-bits.

The size of an int, long, or pointer data type is
32-bits.

The preprocessor predefined macros__LP64__ and _LP64
are defined.

The preprocessor predefined macro _ILP32 is defined.

32 Command-Line Options

Examples:
The following command generates code for the 64-bit data model:
aCC +DD64 app.C

The following command generates code for the 32-bit data model:
aCC app.C

+DSmodel
The +DSmodel option performs instruction scheduling for a particular implementation of the
Itanium®-based architecture.
model can be one of the following values.
blended Tune to run reasonably well on multiple implementations. As old implementation

become less important and new implementations are added, the behavior with
this value will change accordingly.

itanium Tune for the Itanium® processor.
itanium2 Tune for the Itanium2® processor.
mckinley See itanium2® .
montecito Tune for the Montecito® processor.
poulson Tune for the Poulson® processor.
native Tune for the processor on which the compiler is running.
The default is blended. Object code with scheduling tuned for a particular model will execute on
other HP-UX systems, although possibly less efficiently.

Using +DS to Specify Instruction Scheduling

Instruction scheduling is different on different implementations of Itanium®-based architectures.
You can improve performance on a particular model or processor of the HP-UX system by requesting
the compiler to use instruction scheduling tuned to that particular model or processor. Using
scheduling for one model or processor does not prevent your program from executing on another
model or processor.
If you plan to run your program on the same system where you are compiling, you do not need
to use the +DS option. The compiler generates code tuned for your system.
If you plan to run your program on a particular model of the HP-UX system, and that model is
different from the one where you compile your program, use +DSmodel with either the model
number of the target system or the processor name of the target system.

Compiling in Networked Environments
When compiles are performed using diskless workstations or NFS-mounted file systems, it is
important that the default code generation and scheduling are based on the local host processor.
The system model numbers of the hosts where the source or object files reside do not affect the
default code generation and scheduling.

-S
The -S option compiles a program and logs the assembly language output in a corresponding file
with a .s suffix. The -S option is only for displaying the assembler code. The generated code is
not intended to be used as input to the assembler (as).
Example:

Options to Control Code Generation 33

The following command compiles prog.C to assembly code rather than to object code, and puts
the assembly code in the file prog.s.
aCC -S prog.C

Data Alignment and Storage
This section describes default data storage allocation and alignment for HP compiler data types.
Data storage refers to the size of data types, such as bool, short, int, float, and char*.
Data alignment refers to the way the HP compiler aligns data structures in memory. Data type
alignment and storage differences can cause problems when moving data between systems that
have different alignment and storage schemes. These differences become apparent when a structure
is exchanged between systems using files or inter-process communication. In addition, misaligned
data addresses can cause bus errors when an attempt is made to dereference the address.
For information on unaligned data access, See “Handling Unaligned Data” (page 101).
Table 3 lists the size and alignment of the HP compiler data types:

Table 3 Size and Alignment of HP Compiler Data Types

AlignmentSize (in bytes)Data Type

1-byte1bool

11char, unsigned char, signed
char

44wchar_t

22short, unsigned short, signed
short

44int, unsigned int

4*4*long, unsigned long

44float

1616__float80

8**16__float128

44_Decimal32

88_Decimal64

1616_Decimal128

88double

8**16long double

88long long, unsigned long long

44enum

Alignment of array element typeSize of array element typearrays

1-, 2-, 4-, 8-, or 16-byte***struct

1-, 2-, 4-, 8-, or 16-byte***union

Alignment of declared typeSize of declared typebit-fields

4*4*pointer

* In 64-bit mode, long, unsigned long, and pointer data types are 8 bytes long and 8-byte aligned.
** In 64-bit mode, long double is 16-byte aligned.

34 Command-Line Options

Table 3 Size and Alignment of HP Compiler Data Types (continued)

AlignmentSize (in bytes)Data Type

*** struct and union alignment are same and follow strict alignment of any member. Padding is done to a multiple
of the alignment size.

-fshort-enums
cc -Agcc -Wc,--fshort-enums foo.c

aCC -Ag++ -Wc,--fshort-enums foo.c

The -fshort-enums option is used with the -Agcc or -Ag++ options to cause each enum type
to be represented using the smallest integer type that is capable of representing all values of the
enum type. Because it changes the representation of types, the code generated is not binary
compatible with code compiled without the option. The primary use of this option is for compatibility
with gcc, but it can provide performance improvement to applications that can accept the binary
incompatibility.

+unum
+unum
The +unum option allows pointers to access non-natively aligned data. This option alters the way
that the compiler accesses dereferenced data. Use of this option may reduce the efficiency of
generated code. Specify num as 1, 2, or 4, as follows:
1 - Assume single byte alignment. Dereferences are performed with a series of single-byte loads
and stores.
2 - Dereferences are performed with a series of two-byte loads and stores.
4 - Dereferences are performed with a series of four-byte loads and stores.
Example:
aCC +u1 app.C

Debugging Options
Debugging options enable you to use the HP WDB debugger.
Information on HP WDB is available at this location: http://www.hp.com/go/wdb

+d
The +d option prevents the expansion of inline functions. It is useful when you debug code because
breakpoints cannot be set at inline functions. Using the +d option disables all inlining. It is mapped
to the +inline_level 0 option.

+expand_types_in_diag
The +expand_types_in_diag option expands typedefs in diagnostics so that both the original
and final types are present.

-g
The -g option causes the compiler to generate minimal information for the debugger. It uses an
algorithm that attempts to reduce duplication of debug information.
To suppress expansion of inline functions, use the +d option.

-g0
The -g0 option causes the compiler to generate full debug information for the debugger.

Debugging Options 35

http://www.hp.com/go.wdb

To suppress expansion of inline functions, use the +d option.

-g1
Like the -g option, the -g1 option causes the compiler to generate minimal information for the
debugger. It uses an algorithm that attempts to reduce duplication of debug information. To suppress
expansion of inline functions, use the +d option.

Differences Between -g, -g0, and -g1 Options
The -g, -g0, and -g1 options generate debug information. The difference is that the -g0 option
emits full debug information about every class referenced in a file, which can result in some
redundant information.
The -g and -g1 options emit a subset of this debug information, thereby decreasing the size of
your object file. If you compile your entire application with -g or -g1, no debugger functionality
is lost.

NOTE: If you compile part of an application with -g or -g1 and part with debug off, (that is,
with neither the -g, the -g0, nor the -g1 option) the resulting executable may not contain complete
debug information. You will still be able to run the executable, but in the debugger, some classes
may appear to have no members.

When to use -g, -g0, and -g1
Use -g or -g1 when you are compiling your entire application with debug on and your application
is large, for example, greater than 1 MB.
Use -g0 when either of the following is true:

• You are compiling only a portion of your application with debug on, for example, a subset
of the files in your application.

• You are compiling your entire application with debug on and your application is not very
large, for example, less than 1 MB.

-g, -g1 Algorithm
In general, the compiler looks for the first non-inline, non-pure (non-zero) virtual function in order
to emit debug information for a class.If there are no virtual member functions, the compiler looks
for the first non-inline member function.
If there are no non-inline member functions, debug information is always generated.
A problem occurs if all functions are inline; in this case, no debug information is generated.

+macro_debug
This option controls the emission of macro debug information into the object file.
Set +macro_debug to one of the following required options:
ref Emits debug information only for referenced macros. This is the default for -g, -g1, or

-g0.
all Emits debug information for all macros. This option can cause a significant increase in

object file size.
none Does not emit any macro debug information.
One of the -g options (-g, -g0, or -g1) must be used to enable the +macro_debug option.

36 Command-Line Options

+[no]objdebug
The +objdebug option generates debug information in object files and not in the executable. The
HP WDB debugger then reads the object files to construct debugging information; they must be
present when debugging.
The +noobjdebug option generates debug information in object files which the linker places into
the executable. The HP WDB debugger then reads the executable to construct debugging
information.

NOTE: With +objdebug, the object files or archive libraries must not be removed.

+objdebug is the default at link time and at compile time. If +noobjdebug is used at link time,
all debug information goes into the executable, even if some objects were compiled with
+objdebug.
If +objdebug is used at compile time, extra debug information is placed into each object file to
help the debugger locate the object file and to quickly find global types and constants.
Usage:
Use +objdebug option to enable faster links and smaller executable file sizes for large applications,
rather than +noobjdebug where debug information is written to the executable.
Use +noobjdebug with the -g, -g0, or -g1 option when using +ild.

+pathtrace
+pathtrace[=kind]

The +pathtrace option provides a mechanism to record program execution control flow into
global and/or local path tables. The saved information can be used by the HP WDB debugger to
assist with crash path recovery from the core file, or to assist when debugging the program by
showing the executed branches.
Currently only if, else, switch-case-default, and try-catch execution paths are recorded
in the path table. If there is no condition statement inside a for, while, or do-while loop, then
no excution path is recorded.
Usage:
The defined values for kind are:
local Generates a local path table and records basic block-execution

information in it at runtime.
global Generates a global path table and records basic block-execution

information in it at runtime.
The global path table is a fixed size. The default size of the table is
8K items. Each basic block that is executed is recorded as an item of
path-trace information in the table. Each thread has its own table, and
when the table is full, the runtime system wraps the path table back to
the beginning of the table.
The table size can be configured at runtime using the environment
variable HP_PATHTRACE_CONFIG, which also lets you specify a file
to be used for dumping full tables and the dumping format, before
wrapping around or at thread/program termination.
The syntax of the environment variable HP_PATHTRACE_CONFIG is:
HP_PATHTRACE_CONFIG=item[:item]
 item := TABLE_SIZE=nnn |
 FILE=[stdout|stderr|<filename>] |
 FORMAT=[binary|text]

Debugging Options 37

where:

• TABLE_SIZE specifies the size, expressed as the number of items
(nnn), of the global path table.

• FILE specifies the dumping output filename to use when the global
path table is full.

• FORMAT specifies the dumping format in either "binary or
human-readable "text".

global_fixed_size Generates a fixed-size (65536 items) global path table and records
basic block-execution information in it at runtime.
This form differs from+pathtrace=global because the size of the
table cannot be configured at runtime, and the contents cannot be
dumped to a file. The fixed-size global path table has better runtime
performance than the configurable global path table. The performance
difference varies depending on the optimization level and how the
program is written.

none Disables generation of both the global and local path tables.
The values can be combined by joining them with a colon. For example:
+pathtrace=global:local

The global_fixed_size and global values are mutually exclusive. If more than one of them
are specified on the command line, the last one takes precedence. The same is true for the none
value.
+pathtrace with no values is equivalent to +pathtrace=global_fixed_size:local.

The use of this option and the -mt option must be consistent for all compilation and link steps.
That means if -mt is used with +pathtrace at compile time, it should also be used at link time;
if -mt is not used with +pathtrace at compile time, it should not be used at link time. Otherwise,
a link-time error can occur.

Error Handling
Use the following options to control how potential errors in your code are detected and handled.
You can also use the cadvise report feature of the HP Code Advisor tool to help analyze
compiler errors and warnings.

+p
The +p option disallows all anachronistic constructs.
Ordinarily, the compiler gives warnings about anachronistic constructs. Using the +p option, the
compiler gives errors for anachronistic constructs.
Example:
The following command compiles file.C and gives errors for all anachronistic constructs rather
than just giving warnings.
aCC +p file.C

-w
The -w option disables all warnings except those that are explicitly enabled with a +Wwargs
option or a subsequent +w-prefix option. By default, the compiler reports all errors and warnings.
HP recommends against using the -w option. In addition to disabling messages currently output
by the compiler, it will also disable any new messages added to the compiler in the future that
could identify problem areas in user code. HP recommends using the +Wargs option to disable a
message. Although it can often take a long list of +Warg options to disable all desired warnings,

38 Command-Line Options

this list can be included in an options file and referenced using the +opts option to avoid listing
them all directly on the command line.
Example:
The following command compiles file.C and reports errors but does not report any warnings.
aCC -w file.C

+w
The +w option warns you about all questionable constructs and gives pedantic warnings. +w
enables all checks except for the +wsecurity, +wendian, +wperfadvice, and+wlock
warnings. Those need to be enabled explicitly if needed. The default is to warn only about constructs
that are almost certainly problems.
For example, this option warns you when calls to inline functions cannot be expanded inline.
The following command compiles file.C and warns about both questionable and problematic
constructs:
aCC +w file.C

NOTE: This option is equivalent to the +w1 option of legacy HP C.

+wn
The +wn option specifies the level of the warnings messages.
+w{1|2|3}

The value of n can be one of the following:
1 All warnings are issued. This includes low level warnings that may not indicate anything wrong

with the program.
2 Only warnings indicating that code generation might be affected are issued. This is equivalent

to the compiler default without the -w options.
3 No warnings are issued. This is equivalent to the -w option. This option is the same as -W c

and-wn.

+Wargs
+Warg1[,arg2,..argn]

The +Wargs option selectively suppresses any specified warning messages.
Arguments arg1 through argn are valid compiler warning message numbers.
Example:
aCC +W600 app.C

+Wcontext_limit
+Wcontext_limit=num
The +Wcontext_limi option limits the number of instantiation contexts output by the compiler
for diagnostics involving template instantiations. At most num outermost contexts and num innermost
contexts are shown. If there are more than 2*num relevant contexts, the additional contexts are
omitted.
Omitted contexts are replaced by a single line separating the outermost num contexts from the
innermost num contexts, and indicating the number of contexts omitted. The default value for num
is 5. A value of 0 removes the limit.

Error Handling 39

+We
+We

The +We option interprets all warning and future error messages as errors.
Alternatively you can also use +We[arg1,...argn] option, where arg is a valid compiler
warning message number. Use of arg is optional.

+Weargs
+Wearg1[,arg2,..,argn]

The +Weargs option selectively interprets any specified warning or future error messages as errors.
arg1 through argn are valid compiler warning message numbers.
Example:
aCC +We 600,829 app.C

+Wv
+Wv[d1,d2,..,dn]

The +Wv option displays the description for diagnostic message numbers d1 through dn.
Specifying this option causes the compiler to emit the descriptive text for the specified dianostics
to stderr. This option must not be used with any other compiler options.
If the description for a diagnostic is not available, the compiler emits only the diagnostic with a
note that the description is not available.

+Wwargs
+Wwarg1[,arg2,..,argn]

The +Wwargs option selectively treats compiler remarks or discretionary errors as warnings. arg1
through argn are valid compiler message numbers. Conflicts between +W, +Ww, and +We are
resolved based on their severity. +We is the highest and +W is the lowest.

+wlint
This option enables several warnings in the compiler that provide lint like functionality. Checks are
made for memory leaks, out-of-scope memory access, null pointer dereference, and out-of-bounds
access. These compile time diagnostics can be very useful in detecting potential problems in the
source code. To disable a specific warning introduced by +wlint, a +Wargs option can be used
after the +wlint option.

NOTE: The +wlint option is only supported on Itanium-based systems.

+Wmacro
+Wmacro:MACRONAME:d1,d2,...,dn

The +Wmacro option disables warning diagnostics d1,d2,...,dn in the expansion of macro
MACRONAME. If -1 is given as the warning number, then all warnings are suppressed. This option
is not applicable to warning numbers greater than 20000. +Wmacro gets higher priority than the
other diagnostic-control command-line options that are applicable to the whole source. Diagnostic
control pragmas take priority based on where they are placed.

+wperfadvice
+wperfadvice[={1|2|3|4}]

The +wperfadvice option enables performance advisory messages.

40 Command-Line Options

The optional level 1, 2, 3,or 4 controls how verbosely the performance advisory messages are
emitted. The higher the level, the more messages generated. Level 1 emits only the most important
messages, while level 4 emits all the messages.
If the optional level is not specified, it defaults to 2.

+wsecurity
The +wsecurity option enables compile-time diagnostics for potential security violations. Warnings
are emitted for cases where untrusted (tainted) data may reach a critical reference point in the
program. This is based on cross-module analysis performed by the compiler. Hence the
+wsecurity option implicitly enables a limited form of cross-module analysis, even if -ipo or
+O4 options are not specified. This may lead to a significant increase in the compile time compared
to a build without the +wsecurity option. Using this option may result in the compiler invoking
optimizations other than those that are part of the user-specified optimization level. If +wsecurity
is used in addition to -ipo or +O4, the generated code is not affected and the compile time does
not significantly increase.
This option can optionally take an argument to control how verbosely the security messages are
emitted:
+wsecurity[={1|2|3|4}]

The higher the check level, the more warnings can be generated. Note that this may also generate
more false positives.
The default level is 2.

Exception Handling
By default, exception handling is enabled. To turn off exception handling, use the following option.

+noeh
+noeh

The +noeh option disables exception handling. With exception handling disabled, the keywords
throw and try generate an error.
Mixing code compiled with and without +noeh may give undesired results.
Example:
aCC +noeh progex.C

This command compiles and links progex.C, which does not use exception handling.
See Chapter 8: “Exception Handling” (page 161) for more information.

Extensions to the Language
These options support extensions to the C++ language.

-ext
-ext

Exception Handling 41

Specifying -ext, enables the following HP aC++ extensions to the C++ standard:

• 64-bit integer data type support for:

long long (signed 64-bit integer)◦
◦ unsigned long long (unsigned 64-bit integer)

• Use this option to declare 64-bit integer literals and for input and output of 64-bit integers.

• #assert, #unassert preprocessor directives, which allow you to set a predicate name or
predicate name and token to be tested with a #if directive.

When this option is used with -AC89 or -AC99, it defines the following macros:

• -D__STDC_EXT__

• -D_HPUX_SOURCE (unless -Aa is used)

NOTE: When using -ext, specify it at both compile and link time. For example:
aCC -ext foo.C

compiles foo.C which contains a long long declaration.
#include <iostream.h>

int main(){

 long long ll = 1;

 cout << ll << endl;

}

+e
The +e option is equivalent to the -ext option.

Floating-Point Processing Options
The following command-line options are used for floating-point processing.

+O[no]cxlimitedrange
+O[no]cxlimitedrange

The +O[no]cxlimitedrange option enables [disables] the specific block of codes with the usual
mathematical formulas. This option is equivalent to adding the pragma:
#pragma STDC CX_LIMITED_RANGE

The default is +Onocxlimitedrange.

+O[no]fenvaccess
+O[no]fenvaccess

The +O[no]fenvaccess option provides a means to inform the compiler when a program might
access the floating-point environment to test flags or run under non-default modes.
Use of the +Onofenvaccess option allows certain optimizations that could subvert flag tests and
mode changes such as global common subexpression elimination, code motion, and constant
folding. This option is equivalent to adding #pragma STDC FENV_ACCESS ON at the beginning
of each source file submitted for compilation.
The default is +Onofenvaccess.

42 Command-Line Options

-fpeval
-fpeval=precision

The -fpeval option specifies the minimum precision to use for floating-point expression evaluation.
This option does not affect the precision of parameters, return types, or assignments.
The defined values for precision are:
float Evaluates floating-point expressions and constants in their semantic type.
double Evaluates float operations and constants using the range and precision of double,

and evaluates all other floating-point expressions and constants in their semantic
type.

extended Utilizes hardware support of these floating-point registers for optimum speed in
floating-point computations. Evaluates float and double constants and expressions
using the range and precision of the extended type, and evaluates all other
floating-point expressions in their semantic type. Though this option provides greater
precision than double, it does not provide greater speed than double or float.

The default is -fpeval=float.

-fpevaldec
-fpevaldec=precision

The -fpevaldec option specifies the minimum precision to use for decimal floating-point
expression evaluation. The possible values for precision are _Decimal32, _Decimal64, and
_Decimal128. This option does not affect the precision of parameters, return types, or assignments.
The default is -fpevaldec=_Decimal32.

-[no]fpwidetypes
-[no]fpwidetypes

The -[no]fpwidetypes option enables [disables] extended and quad floating-point data
types. quad is equivalent to long double. This option also enables __float80 prototypes.
The compiler defines _FPWIDETYPES when -fpwidetypes is in effect.
The default is -nofpwidetypes.

+decfp
The +decfp option enables full decimal floating-point functionality according to the ISO/IEC C
draft Technical Report (http://www.open-std.org/jtc1/sc22/wg14/www/docs/
n1312.pdf)
Decimal floating-point is also supported in C++ compilation mode.
For more information on using Decimal FP, see the HP aC++/HP ANSI C Release Notes section
"Decimal floating-point arithmetic supported" under "New Features in the A.06.20 Release."

+FP
+FP[flags]

The +FP option specifies how the runtime environment for floating-point operations should be
initialized at program startup and used at link time. The default is that all trapping behaviors are
disabled.
The following flags are supported. Uppercase enables the flag, lowercase disables the flag.

Floating-Point Processing Options 43

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1312.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1312.pdf

Table 4 Options for +FP[flags]

DescriptionFlag

Trap on invalid floating-point operations.V (v)

Trap on divide by zero.Z (z)

Trap on floating-point overflow.O (o)

Trap on floating-point underflow.U (u)

Trap on floating-point operations that produce inexact results.I (i)

Enable sudden underflow (flush to zero) of denormalized values.D (d)

To dynamically change these settings at runtime, see fesetenv(3M).

+FPmode
+FPmode specifies how the run-time environment for floating-point operations should be initialized
at program start up. By default, modes are as specified in the IEEE floating-point standard: all traps
disabled, gradual underflow, and rounding to nearest. See ld(1) for specific values of mode.
To dynamically change these settings at run time, refer to fenv(5), fesettrapenable(3M),
and fesetround(3M).

+O[no]libmerrno
+O[no]libmerrno

Description:
The +O[no]libmerrno option enables [disables] support for errno in libm functions. The
default is +Onolibmerrno for C++, c99, or –AC99.
In C-mode, the default is +Olibmerrno with -Aa option.

+Oprefetch_latency
+Oprefetch_latency=cycles

The +Oprefetch_latency option applies to loops for which the compiler generates data prefetch
instructions. cycles represents the number of cycles for a data cache miss. For a given loop, the
compiler divides cycles by the estimated loop length to arrive at the number of loop iterations
for which to generate advanced prefetches.
cycles must be in the range of 0 to 10000. A value of 0 instructs the compiler to use the default
value, which is 480 cycles for loops containing floating-point accesses and 150 cycles for loops
that do not contain any floating-point accesses.
For tuning purposes, it is recommended that users measure their application’s performance using
a few different prefetch latency settings to determine the optimal value. Some floating-point codes
may benefit by increasing the distance to 960. Parallel applications frequently benefit from a
shorter prefetch distance of 150.

+O[no]preserved_fpregs
+O[no]preserved_fpregs

The +O[no]preserved_fprefs option specifies whether the compiler is allowed [not allowed]
to make use of the preserved subset of the floating-point register file as defined by the Itanium
runtime architecture.
The default is +Opreserved_fpregs.

44 Command-Line Options

+O[no]rotating_fpregs
+O[no]rotating_fpregs

The +O[no]rotating_fpregs option specifies whether the compiler is allowed [not allowed]
to make use of the rotating subset of the floating-point register file.
The default is +Orotating_fpregs.

+O[no]sumreduction
+O[no]sumreduction

This option enables [disables] sum reduction optimization. It allows the compiler to compute partial
sums to allow faster computations. It is not technically legal to do this in C or C++ because of
floating-point accuracy issues. This option is useful if an application cannot use the +Onofltacc
option but wants sum reduction to be performed.
When sum reduction optimization is enabled, the compiler may evaluate intermediate partial sums
of float or double precision terms using (wider) extended precision, which reduces variation in the
result caused by different optimization strategies and generally produces a more accurate result.

Header File Options
Following are the command-line options you can use for header files:

-H
cc -H file

The -H option causes HP aC++/HP C to print the order and hierarchy of included files. The -H
option dumps the include heirarchy to stderr so that the preprocessed compiler output indicates
the include file nesting.

+hdr_create
aCC progname -c +hdr_create headername

This option extracts the header from a program file and saves it as a precompiled header file.
Example:
aCC ApplicTemplate.C -c +hdr_create ApplicHeader

+hdr_use
aCC progname +hdr_use headerfile -c

This option adds a precompiled header file to a program when the program is compiled.
Example:
aCC Applic.C +hdr_use ApplicHeader -c

-I directory
-I directory

directory is the HP-UX directory where the compiler looks for header files.
During the compile phase, this option adds directory to the directories to be searched for
#include files during preprocessing. During the link phase, this option adds directory to the
directories to be searched for #include files by the link-time template processor.
For #include files that are enclosed in double quotes (" ") within a source file and do not begin
with a /, the preprocessor searches in the following order:

Header File Options 45

1. The directory of the source file containing the #include.
2. The directory named in the -I option.
3. The standard include directories /opt/aCC/include and /usr/include.
For #include files that are enclosed in angle brackets (< >), the preprocessor searches in the
following order:
1. The directory named in the -I option.
2. The standard include directories /opt/aCC/include and /usr/include.

NOTE: The current directory is not searched when angle brackets (< >) are used with #include.

Example:
The following example directs the compiler to search in the directory include for #include
files.
aCC -I include file.C

-I-
[-Idirs] -I- [-Idirs]

[-Idirs] indicates an optional list of -Idirectory specifications in which a directory name
cannot begin with a hyphen (-) character.
The -I- option allows you to override the default -Idirectory search-path. This feature is called
view-pathing. Specifying -I- serves two purposes:
1. It changes the compiler’s search-path for quote enclosed (" ") file names in a #include

directive to the following order:
a. The directory named in the -Ioption.
b. The standard include directories /opt/aCC/include* and /usr/include.

The preprocessor does not search the directory of the including file.

2. It separates the search-path list for quoted and angle-bracketed include files.
Angle-bracket enclosed file names in a #include directive are searched for only in the
-Idirectories specified after -I- on the command-line. Quoted include files are searched for
in the directories that both precede and follow the -I- option.

The standard aCC include directories (/usr/include and /opt/aCC/include*) are always
searched last for both types of include files.
Usage:
View-pathing can be particularly valuable for medium to large sized projects. For example, imagine
that a project comprises two sets of directories. One set contains development versions of some of
the headers that the programmer currently modifies. A mirror set contains the official sources.
Without view-pathing, there is no way to completely replace the default -Idirectory search-path
with one customized specifically for project development.
With view-pathing, you can designate and separate official directories from development directories
and enforce an unconventional search-path order. For quote enclosed headers, the preprocessor
can include any header files located in development directories and, in the absence of these,
include headers located in the official directories.
If -I- is not specified, view-pathing is turned off. This is the default.
Examples:
With view-pathing off, the following example obtains all the quoted include files from dir1 only
if they are not found in the directory of a.C and from dir2 only if they are not found in dir1.
Finally, if necessary, the standard include directories are searched. Angle-bracketed include files
are searched for in dir1, then dir2, followed by the standard include directories.

46 Command-Line Options

aCC -Idir1 -Idir2 -c a.C

With view-pathing on, the following example searches for quoted include files in dir1 first and
dir2 next, followed by the standard include directories, ignoring the directory of a.C.
Angle-bracketed includes are searched for in dir2 first, followed by the standard include directories.
aCC -Idir1 -I- -Idir2 -c a.C

NOTE: Some of the compiler’s header files are included using double quotes. Since the -I-
option redefines the search order of such includes, if any standard headers are used, it is your
responsibility to supply the standard include directories (/opt/aCC/include* and /usr/
include) in the correct order in your -I- command line.
For example, when using -I- on the aCC command line, any specified -I directory containing
a quoted include file having the same name as an HP-UX system header file, may cause the following
possible conflict.
In general, if your application includes no header having the same name as an HP-UX system
header, there is no chance of a conflict.
Suppose you are compiling program a.C with view-pathing on. a.C includes the file a.out.h
which is a system header in /usr/include:
aCC -IDevelopmentDir -I- -IOfficialDir a.C

If a.C contains:
// This is the file a.C

#include <a.out.h>

// ...

When a.out.h is preprocessed from the /usr/include directory, it includes other files that
are quote included (like #include "filehdr.h").
Since with view-pathing, quote enclosed headers are not searched for in the including file’s directory,
filehdr.h which is included by a.out.h will not be searched for in a.out.h’s directory
(/usr/include).
Instead, for the above command line, the system header is first searched for in DevelopmentDir,
then in OfficialDir and if it is found in neither, it is finally searched for in the standard include
directories, /opt/aCC/include* and /usr/include, in the latter of which it will be found.
However, if you have a file named filehdr.h in DevelopmentDir or OfficialDir, that file
(the wrong file) will be found.

Online Help Option
Use the +help option to view the HP aC++ Online Help.

+help
+help

The +help option invokes the initial menu window of this HP aC++ Online Help.
If +help is used on any command line, the compiler displays the HP aC++ Online Help with the
default web browser and then processes any other arguments.
If $DISPLAY is set, the default web browser is used. If the display variable is not set, a message
is displayed. Set your $DISPLAY variable as follows:
export DISPLAY=YourDisplayAddress (ksh/sh shell notation)
setenv DISPLAY YourDisplayAddress (csh shell notation)
Examples:

Online Help Option 47

To use a browser other than the default, first set the BROWSER environment variable to the alternate
browser’s location:
export BROWSER=AlternateBrowserLocation

To invoke the online guide, use the command:
aCC +help

Inlining Options
These options allow you to specify the amount of source code inlining done by HP aC++.

+inline_level num
+inline_level num

The +inline_level option controls how C/C++ inlining hints influence aCC or cc. Such inlining
happens in addition to functions that are explicitly tagged with the inline keyword. (For C89,
use the __inline keyword). This option controls functions declared with the inline keyword
or within the class declaration, and is effective at all optimization levels.

NOTE: The +d and +inline_level 0 options turn off all inlining, including implicit inlining.

The format for num is N[.n], where num is either an integral value from 0 to 9, or a value with a
single decimal place from 0.0 to 9.0, as described in the following table:

Descriptionnum

No inlining is done (same effect as the +d option).0

Only functions marked with the inline keyword or implied by the language to be inline are
considered for inlining.

1

This is the default for C++ at +O1.

Increasingly makes inliner more aggressive below 2.0.1.0 < num < 2.0

Provides more inlining than level 1. This is the default level at optimization levels +O2, +O3, and
+O4.

2

Increasing levels of inliner aggressiveness.2.0 < num < 9.0

Attempts to inline all functions other than recursive functions or those with a variable number of
arguments.

9

The default level depends on +Olevel as shown in the following table:

numlevel

10

11

22

23

24

The +O[no]inline option controls the high-level optimizer that recognizes other opportunities
in the same source file (+O3) or amongst all source files (+O4). For example,
aCC +inline_level 3 app.C

48 Command-Line Options

Library Options
Library options allow you to create, use, and manipulate libraries.

-b
-b

The -b option creates a shared library rather than an executable file.
Example:
The following command links utils.o and creates the shared library utils.so.
aCC -b utils.o -o utils.so

For more information on shared libraries, see “Creating and Using Libraries” (page 175).

-dynamic
-dynamic

The -dynamic option produces dynamically bound executables. See “-minshared” (page 50) for
partially statically bound executables.
The default is -dynamic.

-exec
-exec

The -exec option indicates that any object file created will be used to create an executable file.
Constants with a protected or hidden export class are placed in the read-only data section. This
option also implies -Bprotected_def. It makes all defined functions and data (even tentatively
defined data) protected by default (unless otherwise specified by another binding option or pragma).

-lname
-lname

The name value forms part of the name of a library the linker searches for when looking for routines
called by your program.
The -lname option causes the linker to search one of the following default libraries, if they exist,
in an attempt to resolve unresolved external references:

• /usr/lib/lib/hpux32/name.so

• /usr/lib/lib/hpux32/name.a

• /opt/langtools/lib/hpux32lib/name.so

• /opt/langtools/lib/hpux64lib/name.a

Whether it searches the shared library (.so) or the archive library (.a) depends on the value of
the -a linker option or the -minshared compiler option.

NOTE: Because a library is searched when its name is encountered, placement of a -l is
significant. If a file contains an unresolved external reference, the library containing the definition
must be placed after the file on the command line. For details refer to the description of ld in the
HP-UX Reference Manual or the ld(1) manpage for more information.

Example:
aCC file.o -lnumeric

This command directs the linker to link file.o and (by default) search the library /usr/lib/
hpux32/libnumeric.so.

Library Options 49

-L directory
-L directory

The directory parameter is the HP-UX directory where you want the linker to search for libraries
your program uses before searching the default directories.
The -L directory option causes the linker to search for libraries in directory in addition to using
the default search path.
See -lname option for default search path.
The -L option must precede any -lname option entry on the command line; otherwise -L is
ignored. This option is passed directly to the linker.
Example:
The following example compiles and links prog.C and directs the linker to search the directories
and /project/libs for any libraries that prog.C uses (in this case, mylib1 and mylib2).
aCC -L/project/libs prog.C -lmylib1 -lmylib2

-minshared
-minshared

The -minshared option indicates that the result of the current compilation is going into an
executable file that will make minimal use of shared libraries. This option is equivalent to -exec
-Bprotected.

+nostl
+nostl

By eliminating references to the standard header files and libraries bundled with HP aC++, the
+nostl option allows experienced users full control over the header files and libraries used in
compilation and linking of their applications, without potential complications that arise in mixing
different libraries.

NOTE: Complete understanding of the linking process and the behavior of the actual (third party)
libraries linked with the application is essential to avoid link or runtime failures.

For more information on shared libraries, see “Creating and Using Libraries” (page 175).

+Onolibcalls=
+Onolibcalls=function1,function2,...

This option allows you to turn off libcall optimizations (inlining or replacement) for calls to the listed
functions. This option overrides system header files.

Linker Options
You can specify the following linker options on the compiler command line:

-e epsym
-e epsym

Using the -e epsym option sets the default entry point address for the output file to be the same
as the symbol epsym. This option only applies to executable files. It does not work if epsym=xec.

-n
-n

The -n option causes the program file produced by the linker to be marked as sharable.

50 Command-Line Options

For details and system defaults, refer to the description of ld in the HP-UX Reference Manual or the
ld(1) manpage for more information.

-N
-N

The -N option causes the program file produced by the linker to be marked as unsharable.
For details and system defaults, refer to the description of ld in the HP-UX Reference Manual or the
ld(1) manpage for more information.

+O[no]dynopt
+O[no]dynopt

Supported only on HP-UX 11.31 systems, the +O[no]dynopt option enables [disables] dynamic
optimization for the output file. Both forms of this option change the default setting, which allows
the run-time environment to enable or disable dynamic optimization according to a system-wide
default. This option applies only to executable files and shared libraries, if the run-time environment
supports this feature. chatr(1) can be used to change this setting, including restoration of the
default setting, after the output file has been created.

-q
-q

The -q option causes the output file from the linker to be marked as demand-loadable.
For details and system defaults, refer to the description of ld in the HP-UX Reference Manual or the
ld(1) manpage for more information.

-Q
-Q

The -Q option causes the program file from the linker to be marked as not demand-loadable.
For details and system defaults, refer to the description of ld in the HP-UX Reference Manual or the
ld(1) manpage for more information.

-r
-r

Use the -r option to retain relocation information in the output file for subsequent relinking.

-s
-s

Using the -s option causes the executable program file created by the linker to be stripped of
symbol table information. Specifying this option prevents using a symbolic debugger on the resulting
program. For details and system defaults, refer to the description of ld in the HP-UX Reference
Manual or the ld(1) manpage for more information.

-usymbol
-usymbol

Enter symbol as an undefined symbol in ld’s symbol table. The resulting unresolved reference is
useful for linking a program solely from object files in a library. More than one symbol can be
specified, but each must be preceded by -u.
See ld(1) manpage for more information.

Linker Options 51

+ild
+ild

The +ild option specifies incremental linking. If the output file does not exist, or if it was created
without the +ild option, the linker performs an initial incremental link. The output file produced
is suitable for subsequent incremental links. The incremental link option is valid for both executable
and shared library links. It is not valid for relocatable links, options or tools that strip the output
module, and certain optimization options.
When sum reduction optimization is enabled, the compiler may evaluate intermediate partial sums
of float or double precision terms using (wider) extended precision, which reduces variation in the
result caused by different optimization strategies and generally produces a more accurate result.
See ld(1) manpage for more information.

+ildrelink
+ildrelink

The +ildrelink option performs an initial incremental link, regardless of the output load module.
In certain situations during incremental linking (for example, internal padding space is exhausted),
the incremental linker is forced to perform an initial incremental link. The +ildrelink option
allows you to avoid such unexpected initial incremental links by periodically rebuilding the output
file.
See ld(1) manpage for more information.

Options for Naming the Output File
These options allow you to name the compilation output file something other than the default name.

-o
-o outfile

The outfile parameter is the name of the file containing the output of the compilation. This option
causes the output of the compilation to be placed in outfile.
Without this option the default name is a.out. When compiling a single source file with the -c
option, you can use the -o option to specify the name and location of the object file.

-.suffix
-.suffix

The suffix parameter represents the character or characters to be used as the output file name
suffix. suffix cannot be the same as the original source file name suffix. Using this option causes
the compiler to direct output from the -E option into a file with the corresponding .suffix instead
of into a corresponding .c file.
Example:
aCC -E -.i prog.C

This command preprocesses the code in prog.C and puts the resulting code in the file prog.i.

Native Language Support Option
The following is an option to enable native language support:

-Y
-Y

The -Y option enables Native Language Support (NLS) of 8-bit, 16-bit and 4-byte EUC characters
in comments, string literals, and character constants.

52 Command-Line Options

The language value (refer to environ(5) for the LANG environment variable) is used to initialize
the correct tables for interpreting comments, string literals, and character constants. The language
value is also used to build the path name to the proper message catalog.
For more information and description of the NLS model, refer to hpnls, lang, and environ in
HP-UX Reference Manual.

Handling Null Pointers Options
The following options allow dereferencing of null pointers.

-z
-z

The -z option disallows dereferencing of null pointers at run time.
Fatal errors result if null pointers are dereferenced. If you attempt to dereference a null pointer, a
SIGSEGV error occurs at run time.
Example:
aCC -z file.C

The above command compiles file.C and generates code to disallow dereferencing of null
pointers.
For more information, see signal(2) and signal(5) manpages.

-Z
-Z

The -Z option allows dereferencing of null pointers at run time. This is the default. The value of a
dereferenced null pointer is zero.

Code Optimizing Options
Optimization options can be used to improve the execution speed of programs compiled with the
HP compiler.
To use optimization, first specify the appropriate basic optimization level (+O1, +O2, +O3, or +O4)
on the command line followed by one or more finer or more precise options when necessary.
For more information and examples, refer to Chapter 7: “Optimizing HP aC++ Programs” (page 156).
This section discusses the following topics:

• “Basic Optimization Level Options” (page 53)

• “Additional Optimization Options for Finer Control” (page 55)

• “Advanced +Ooptimization Options” (page 57)

• “Profile-Based Optimization Options” (page 64)

• “Displaying Optimization Information” (page 65)

Basic Optimization Level Options
The following options allow you to specify the basic level of optimization.
Compiling files at optimization level 2 ("-O" or "+O2") and above increases the amount of virtual
memory needed by the compiler. In cases where very large functions or files are compiled at +O2,
or in cases where aggressive (+O3 and above) optimization is used, ensure that the maxdsiz
kernel tunable is set appropriately on the machine where compilation takes place.
HP recommends a setting of 0x100000000, or 4 GB (the default for this parameter is
0x100000000, or 4 GB) for maxdsiz_64bit in such cases. Updating the maxdsiz_64bit

Handling Null Pointers Options 53

tunable will ensure that the compiler does not run out of virtual memory when compiling large files
or functions.
In addition, maxssiz_64bit should be set to 128 MB for very large or complex input files.
(Normally a maxssiz_64bit setting of 64 MB will be sufficient.)
See the kctune man page for more information on how to change kernel tunable parameters.

-O
-O

The -O option invokes the optimizer to perform level 2 optimization. This option is equivalent to
+O2 option.
Example:
This command compiles prog.C and optimizes at level 2:
aCC -O prog.C

+O0
+O0

Use +O0 for fastest compile time or with simple programs. No optimizations are performed.
Example:
This command compiles prog.C and optimizes at level 0:
aCC +O0 prog.C

+O1
+O1

The +O1 option performs level 1 optimization only. This includes branch optimization, dead code
elimination, faster register allocation, instruction scheduling, peephole optimization, and generation
of data prefetch instructions for the benefit of direct (but not indirect) memory accesses. This is the
default optimization level.
Example:
This command compiles prog.C and optimizes at level 1:
aCC +O1 prog.C

+O2
+O2

The +O2 option performs level 2 optimization. This includes level 1 optimizations plus optimizations
performed over entire functions in a single file.

NOTE: Compiling with this optimization setting may require additional memory resources. Refer
to the memory resource discussion above.

Example:
This command compiles prog.C and optimizes at level 2:
aCC +O2 prog.C

+O3
+O3

The +O3 option performs level 3 optimization. This includes level 2 optimizations plus full
optimization across all subprograms within a single file.

54 Command-Line Options

NOTE: Compiling with this optimization setting may require additional memory resources. Refer
to the memory resource discussion above.

Example:
This command compiles prog.C and optimizes at level 3:
aCC +O3 prog.C

+O4
+O4

The +O4 option performs level 4 optimization. This includes level 3 optimizations plus full
optimizations across the entire application program. Also, the defaults that depend on optimization
will be the defaults for +O3.
When you link a program, the compiler brings all modules that were compiled at optimization
level 4 into virtual memory at the same time. Depending on the size and number of the modules,
compiling at +O4 can consume a large amount of virtual memory. If you are linking a large program
that was compiled with the +O4 option, you may notice a system slow down. In the worst case,
you may see an error indicating that you have run out of memory.

NOTE: Compiling with this optimization setting may require additional memory resources. Refer
to the memory resource discussion above.

Example:
This command compiles prog.C and optimizes at level 4:
aCC +O4 prog.C

If you run out of memory when compiling at +O4 optimization, there are several things you can
do:

• Compile at +O4 only those modules that need to be compiled at optimization level 4, and
compile the remaining modules at a lower level.

• If you still run out of memory, increase the per-process data size limit. Run the System
Administrator Manager (SAM) to increase the maxdsiz_64bit process parameter to more
than 4GB. This procedure provides the process with additional data space.

• If increasing the per-process data size limit does not solve the problem, increase the system
swap space.
Refer to the System Administration Tasks manual for more information.

Object Files Generated at Optimization Level 4
Object files generated by the compiler with +O4 or -ipo, called intermediate object files, are
intended to be temporary files. These object files contain an intermediate representation of the user
code in a format that is designed for advanced optimizations. The size of these intermediate object
files can typically be 3 to 10 times as large as normal object files. Hewlett-Packard reserves the
right to change the format of these files without prior notice. There is no guarantee that intermediate
object files will be compatible from one revision of the compiler to the next. Use of intermediate
files must be limited to the compiler that created them. For the same reason, intermediate object
files should not be included into archived libraries that might be used by different versions of the
compiler. The compiler will issue an error message and terminate when an incompatible intermediate
file is generated.

Additional Optimization Options for Finer Control
Following are the additional optimizations options for finer control:

Code Optimizing Options 55

-ipo
The -ipo option enables interprocedural optimizations across files. The object file produced using
this option contains intermediate code (IELF file). At link time,ld automatically invokes the
interprocedural optimizer (u2comp), if any of the input object files is an IELF file.
For optimization levels +O0 and +O1, this option is silently ignored.
The-ipo option will get implicitly invoked with the +O4 and +Ofaster options to match current
behavior (+O4 ==> +O3 -ipo).
For -ipo compilations, the back end is parallelized, and the level of parallelism can be controlled
with the environment variable PARALLEL, since the standard HP-UX make utility is used for the
parallelization.

Object Files Generated with -ipo
Object files generated by the compiler with +O4 or -ipo, called intermediate object files, are
intended to be temporary files. These object files contain an intermediate representation of the user
code in a format that is designed for advanced optimizations. The size of these intermediate object
files can typically be 3 to 10 times as large as normal object files. Hewlett-Packard reserves the
right to change the format of these files without prior notice. There is no guarantee that intermediate
object files will be compatible from one revision of the compiler to the next. Use of intermediate
files must be limited to the compiler that created them. For the same reason, intermediate object
files should not be included into archived libraries that might be used by different versions of the
compiler. The compiler will issue an error message and terminate when an incompatible intermediate
file is generated.

+[no]nrv
+[no]nrv

-nrv_optimization,[off|on]

The +[no]nrv option enables [disables] the named return value (NRV) optimization. By default
it is disabled.
The NRV optimization eliminates a copy-constructor call by allocating a local object of a function
directly in the caller’s context if that object is always returned by the function.
Example:
 struct A{
 A(A const&); //copy-constructor
 };

 A f(A constA x) {
 A a(x);
 return a; // Will not call the copy constructor if the
 } // optimization is enabled.

This optimization will not be performed if the copy-constructor was not declared by the programmer.
Note that although this optimization is allowed by the ISO/ANSI C++ standard, it may have
noticeable side effects.
Example:
aCC -Wc,-nrv_optimization,on app.C

+O[no]failsafe
+O[no]failsafe

The +O[no]failsafe option enables [disables] failsafe optimization. When a compilation fails
at the current optimization level +Ofailsafe will automatically restart the compilation at +O2
(for specific high level optimizer errors +O3/+O4), O1, or +O0.
The default is +Ofailsafe.

56 Command-Line Options

+O[no]aggressive
+O[no]aggressive

The +Oaggressive option enables aggressive optimizations. The +Onoaggressive option
disables aggressive optimizations.
By default, aggressive optimizations are turned off. The +Oaggressive option is approximately
equivalent to +Osignedpointers +Onoinitcheck +Ofltacc=relaxed.

NOTE: This option is deprecated and may not be supported in future releases. Instead you can
use +Ofastoption.

+O[no]limit
+O[no]limit

The +Olimit option enables optimizations that significantly increase compile time or that consume
a lot of memory.
The +Onolimit option suppresses optimizations regardless of their effect on compile time or
memory consumption.
Use +Onolimit at all optimization levels.
Usage:
+O[no]limit=level

The defined values of level are:
default Based on tuning heuristics, the optimizer will spend a reasonable amount of time

processing large procedures. This is the default option.
min For large procedures, the optimizer will avoid non-linear time optimizations. This

option is a synonym for +Olimit.
none The optimizer will fully optimize large procedures, possibly resulting in significantly

increased compile time. This option is a synonym for +Onolimit.
Example:
To remove optimization time restrictions at O2, O3, or O4 optimization levels, use +Onolimit as
follows:
aCC <opt level> +Onolimit sourcefile.C

+O[no]ptrs_to_globals[=list]
+O[no]ptrs_to_globals[=list]

The +O[no]ptrs_to_globals option tells the optimizer whether global variables are accessed
[are not accessed] through pointers. If +Onoptrs_to_globals is specified, it is assumed that
statically-allocated data (including file-scoped globals, file-scoped statics, and function-scoped
statics) will not be read or written through pointers. The default is +Onoptrs_to_globals.

+O[no]size
+O[no]size

While most optimizations reduce code size, the +Osize option suppresses those few optimizations
that significantly increase code size. The +Onosize option enables code-expanding optimizations.
Use +Osize at all optimization levels. The default is +Onosize.

Advanced +Ooptimization Options
Advanced optimization options provide additional control for special situations.

Code Optimizing Options 57

+O[no]cross_region_addressing
+O[no]cross_region_addressing

The +O[no]cross_region_addressing option enables [disables] the use of cross-region
addressing. Cross-region addressing is required if a pointer, such as an array base, points to a
different region than the data being addressed due to an offset that results in a cross-over into
another region. Standard conforming applications do not require the use of cross-region addressing.
The default is +Onocross_region_addressing.

NOTE: Using this option may result in reduced runtime performance.

+O[no]datalayout
+O[no]datalayout

The +O[no]datalayout option enables [disables] profile-driven layout of global and static data
items to improve cache memory utilization. This option is currently enabled if +Oprofile=use
(dynamic profile feedback) is specified.
The default, in the absence of +Oprofile=use, is +Onodatalayout.

+O[no]dataprefetch
+O[no]dataprefetch

When +Odataprefetch is enabled, the optimizer inserts instructions within innermost loops to
explicitly prefetch data from memory into the data cache. Data prefetch instructions are inserted
only for data structures referenced within innermost loops using simple loop varying addresses
(that is, in a simple arithmetic progression).
Use this option for applications that have high data cache miss overhead.
+Odataprefetch is equivalent to +Odataprefetch=indirect. +Onodataprefetch is
equivalent to +Odataprefetch=none.
Usage:
+Odataprefetch=kind

The defined values for kind are:
direct Enable generation of data prefetch instructions for the benefit of direct memory

accesses, but not indirect memory accesses. This is the default at optimization level
+O1.

indirect Enables the generation of data prefetch instructions for the benefit of both direct and
indirect memory accesses. This is the default at optimization levels +O2 and above.
It is treated the same as direct at optimization level +O1.

none Disables the generation of data prefetch instructions. This is the default at optimization
level +O0.

+O[no]fltacc
+O[no]fltacc=level

The +O[no]fltacc option disables [enables] floating-point optimizations that can result in
numerical differences. Any option other than +Ofltacc=strict also generates Fused Multiply-Add
(FMA) instructions. FMA instructions can improve performance of floating-point applications.
If you specify neither +Ofltacc nor +Onofltacc, less optimization is performed than for
+Onofltacc. If you specify neither option, the optimizer generates FMA instructions but does not
perform any expression-reordering optimizations.
Specifying +Ofltacc insures the same result as in unoptimized code (+O0).
Usage:

58 Command-Line Options

+Ofltacc=level

The defined values for level are:
default Allows contractions, such as fused multiply- add (FMA), but disallows any other

floating-point optimization that can result in numerical differences.
limited Like default, but also allows floating-point optimizations which may affect the

generation and propagation of infinities, NaNs, and the sign of zero.
relaxed In addition to the optimizations allowed by limited, permits optimizations, such as

reordering of expressions, even if parenthesized, that may affect rounding error. This
is the same as +Onofltacc.

strict Disallows any floating-point optimization that can result in numerical differences. This
is the same as +Ofltacc.

All options except +Ofltacc=strict option allow the compiler to make transformations which
are algebraically correct, but which may slightly affect the result of computations due to the inherent
imperfection of computer floating-point arithmetic. For many programs, the results obtained with
these options are adequately similar to those obtained without the optimization.
For applications in which round-off error has been carefully studied, and the order of computation
carefully crafted to control error, these options may be unsatisfactory. To insure the same result as
in unoptimized code, use +Ofltacc.
Example:
All the options, except +Ofltacc=strict, allow the compiler to replace a division by a
multiplication using the reciprocal. For example, the following code:
for (int j=1;j<5;j++)
 a[j] = b[j] / x;

is transformed as follows (note that x is invariant in the loop):
x_inv = 1.0/x;
for (int j=1;j<5;j++)
 a[j] = b[j] * x_inv;

Since multiplication is considerably faster than division, the optimized program runs faster.

+Ofrequently_called
+Ofrequently_called=function1[,function2...]

The named functions are assumed to be frequently called. This option overrides any information
in a profile database.
+Ofrequently_called:filename

The file indicated by filename contains a list of functions, separated by spaces or newlines.
These functions are assumed to be frequently called. This option overrides any information in a
profile database.

+O[no]initcheck
+O[no]initcheck

The initialization checking feature of the optimizer can be on or off:
When on (+Oinitcheck), the optimizer issues warning messages when it discovers uninitialized
variables.
When off (+Onoinitcheck), the optimizer does not issue warning messages.
Use +Oinitcheck at optimization level 2 or above. If this option is used together with
+check=uninit, uninitialized variables will remain uninitialized so that an error will be reported
at runtime and trigger a program abort if the variables are accessed.

Code Optimizing Options 59

+O[no]inline
+O[no]inline

The +Oinline option indicates that any function can be inlined by the optimizer. +Onoinline
disables inlining of functions by the optimizer. This option does not affect functions inlined at the
source code level.
Use +O[no]inline at optimization levels 2, 3 and 4.
The default is +Oinline at optimization levels 3 and 4.
Usage:
+O[no]inline=function1{,function2...]

Enables [disables] optimizer inlining for the named functions.
+O[no]inline:filename

The file indicated by filename should contain a list of function names, separated by commas or
newlines. Optimization is enabled [disabled] for the named functions.

+Olit
+Olit=kind

The +Olit option places the data items that do not require load-time or runtime initialization in a
read-only data section. +Olit=all is the default for both HP aC++ and HP C. This represents a
change from earlier versions of the HP C compiler, which defaulted to +Olit=const. Note that
if you attempt to modify the constant or literal, a runtime signal 11 will be generated.
The defined values for kind are:
all All string literals and all const-qualified variables that do not require load-time or runtime

initialization will be placed in a read-only data section. +Olit=all replaces the
deprecated +ESlit option.

const All string literals appearing in a context where const char * is legal, and all
const-qualified variables that do not require load-time or runtime initialization will be
placed in a read-only data section. +Olit=const is mapped to +Olit=all with a
warning, except in C mode. +Olit=const replaces the deprecated +ESconstlit
option in C.

none No constants are placed in a read-only data section. +Olit=none replaces the
deprecated +ESnolit option.

+Ointeger_overflow
+Ointeger_overflow=kind

To provide the best runtime performance, the compiler makes assumptions that runtime integer
arithmetic expressions that arise in certain contexts do not overflow (produce values that are too
high or too low to represent) both expressions that are present in user code and expressions that
the compiler constructs itself. Note that if an integer arithmetic overflow assumption is violated,
runtime behavior is undefined.
+Ointeger_overflow=moderate is the default for all optimization levels. This was changed
to enable a wider class of applications to be compiled with optimization and run correctly.
The defined values of kind are:
conservative Directs the compiler to make fewer assumptions that integer arithmetic

expressions do not overflow.
moderate Allows the compiler to make a broad set of assumptions so that the integer

arithmetic expressions do not overflow, except that linear function test
replacement (LFTR) optimization is not performed.

60 Command-Line Options

+Olevel
+Olevel=name1[,name2,...,nameN]

The +Olevel option lowers optimization to the specified level for one or more named functions.
level can be 0, 1, 2, 3, or 4.
The name parameters are names of functions in the module being compiled. Use this option when
one or more functions do not optimize well or properly. This option must be used with a basic
+Olevel or -O option. Note that currently only the C++ mangled name of the function is allowed
for name.
This option works like the OPT_LEVEL pragma. The option overrides the pragma for the specified
functions. As with the pragma, you can only lower the level of optimization; you cannot raise it
above the level specified by a basic +Olevel or -O option. To avoid confusion, it is best to use
either this option or the OPT_LEVEL pragma rather than both.
You can use this option at optimization levels 1, 2, 3, and 4. The default is to optimize all functions
at the level specified by the basic +Olevel or -O option.
Examples:

• The following command optimizes all functions at level 3, except for the functions myfunc1
and myfunc2, which it optimizes at level 1.
aCC +O3 +O1=myfunc1,myfunc2 funcs.c main.c

• The following command optimizes all functions at level 2, except for the functions myfunc1
and myfunc2, which it optimizes at level 0.
aCC -O +O0=myfunc1,myfunc2 funcs.c main.c

+O[no]loop_transform
+O[no]loop_transform

This option transforms [does not transform] eligible loops for improved cache and other performance.
This option can be used at optimization levels 2, 3 and 4.
The default is +Oloop_transform.

+O[no]loop_unroll
+O[no]loop_unroll [=unroll_factor]

The +O[no]loop_unroll option enables [disables] loop unrolling. This optimization can occur
at optimization levels 2, 3, and 4. The default is +Oloop_unroll. The default is 4, that is, four
copies of the loop body. The unroll_factor controls code expansion. Note that
+Onoloop_unroll has no effect on loop unroll-and-jam.

+O[no]openmp
+O[no]openmp

The +Oopenmp option causes the OpenMP directives to be honored. This option is effective at any
optimization level. Non OpenMP parallelization directives are ignored with warnings. +Onoopenmp
requests that OpenMP directives be silently ignored. If neither +Oopenmp nor +Onoopenmp is
specified, OpenMP directives will be ignored with warnings.
The OpenMP specification is available at http://www.openmp.org/specs. OpenMP programs
require the libomp and libcps runtime support libraries to be present on both the compilation
and runtime systems. The compiler driver automatically includes them when linking.
If you use +Oopenmp in an application, you must use -mt with any files that are not compiled
with +Oopenmp. For additional information and restrictions, See “-mt” (page 66).

Code Optimizing Options 61

http://www.openmp.org/specs

It is recommended that you use the -N option when linking OpenMP programs to avoid exhausting
memory when running with large numbers of threads.

NOTE: HP aC++ version A.06.00 does not support C++ constructs in OpenMP. Use the
+legacy_v5 option to use this option.

+opts
+opts filename

The file indicated by filename contains a list of options that are processed as if they had been
specified on the command line at the point of the +opts option. The options must be delimited by
a blank character. You can add comments to the option file by using a "#" character in the first
column of a line. The "#" causes the entire line to be ignored by the compiler.
Example:
$ aCC +opts GNUOptions foo.c

Where GNUOptions contains:
#This file contains the set of options for programs needing GNU support -Ag++ -Wc,--fshort-enums

+O[no]parminit
+O[no]parminit

The +O[no]parminit option enables [disables] automatic initialization to non-NaT of unspecified
function parameters at call sites. This is useful in preventing NaT values in parameter registers. The
default is +Onoparminit.

+O[no]parmsoverlap
+O[no]parmsoverlap

The +Onoparmsoverlap option optimizes with the assumption that on entry to a function each
of that function’s pointer-typed formals points to memory that is accessed only through that formal
or through copies of that formal made within the function. For example, that memory must not be
accessed through a different formal, and that formal must not point to a global that is accessed by
name within the function or any of its calls.
Use +Onoparmsoverlap if C/C++ programs have been literally translated from FORTRAN
programs.
The default is +Oparmsoverlap.

+O[no]procelim
+O[no]procelim

The +O[no]procelim option enables [disables] the elimination of dead procedure code and
sometimes the unreferenced data.
Use this option when linking an executable file, to remove functions not referenced by the
application. You can also use this option when building a shared library to remove functions not
exported and not referenced from within the shared library. This may be especially useful when
functions have been inlined.

NOTE: Any function having symbolic debug information associated with it is not removed.

The default is +Onoprocelim at optimization levels 0 and 1; at levels 2, 3 and 4, the default is
+Oprocelim.

+O[no]promote_indirect_calls
+O[no]promote_indirect_calls

62 Command-Line Options

The +O[no]promote_indirect_calls option uses profile data from profile-based optimization
and other information to determine the most likely target of indirect calls and promotes them to
direct calls. Indirect calls occur with pointers to functions and virtual calls.
In all cases the optimized code tests to make sure the direct call is being taken and if not, executes
the indirect call. If +Oinline is in effect, the optimizer may also inline the promoted calls.
+Opromote_indirect_calls is only effective with profile-based optimization.

NOTE: The optimizer tries to determine the most likely target of indirect calls. If the profile data
is incomplete or ambiguous, the optimizer may not select the best target. If this happens, your
code’s performance may decrease.

This option can be used at optimization levels 3 and 4. At +O3, it is only effective if indirect calls
from functions within a file are mostly to target functions within the same file. This is because +O3
optimizes only within a file, whereas +O4 optimizes across files.
The default is +Opromote_indirect_calls at optimization level 3 and above.
+Onopromote_indirect_calls will be the default at optimization level 2 and below.

+Orarely_called
+Orarely_called=function1[,function2...]
The +Orarely_called option overrides any information in a profile database.
The named functions are assumed to be rarely called
+Orarely_called:filename

The file indicated by filename contains a list of functions, separated by spaces or newlines. These
functions are assumed to be rarely called. This option overrides any information in a profile
database.

+O[no]signedpointers
+O[no]signedpointers

NOTE: This option is deprecated and may not be supported in future releases.

The +Osignedpointers option treats pointers in Boolean comparisons (for example, <, <=, >,
>=) as signed quantities. Applications that allocate shared memory and that compare a pointer
to shared memory with a pointer to private memory may run incorrectly if this optimization is
enabled.
The default is +Onosignedpointers.

NOTE: This option is supported in C-mode only. A warning is displayed in C++ when this option
is used.

+Oshortdata
+Oshortdata[=size]

All objects of [size] bytes or smaller are placed in the short data area, and references to such
data assume it resides in the short data area. Valid values of size are a decimal number between
8 and 4,194,304 (4MB).
If no size is specified, all data is placed in the short data area. The default is +Oshortdata=8.

NOTE: Using a value that is too big or without the optional size, possibly through +Ofast, may
give various linker fix up errors, if there is more than 4Mb of short data.

Code Optimizing Options 63

+O[no]store_ordering
+O[no]store_ordering

The +O[no]store_ordering option preserves [does not preserve] the original program order
for stores to memory that is visible to multiple threads. This does not imply strong ordering. The
default is +Onostore_ordering.

+Otype_safety
+Otype_safety=kind

The +Otype_safety option controls type-based aliasing assumptions.
The defined values for kind are:
off The default. Specifies that aliasing can occur freely across types.
limited Code follows ANSI aliasing rules. Unnamed objects should be treated as if they had

an unknown type.
ansi Code follows ANSI aliasing rules. Unnamed objects should be treated the same as

named objects.
strong Code follows ANSI aliasing rules, except that accesses through lvalues of a

character type are not permitted to touch objects of other types and field addresses
are not to be taken.

The default is +Otype_safety=off.

+Ounroll_factor
+Ounroll_factor=n

The +Ounroll_factor option applies the unroll factor to all loops in the current translation unit.
You can apply an unroll factor which you think is best for the given loop or apply no unrolling
factor to the loop. If this option is not specified, the compiler uses its own heuristics to determine
the best unroll factor for the inner loop.
A user specified unroll factor will override the default unroll factor applied by the compiler.
Specifying n=1 will prevent the compiler from unrolling the loop.
Specifying n=0 allows the compiler to use its own heuristics to apply the unroll factor.

NOTE: This option will be ignored if it is placed in a loop other than the innermost loop.

Profile-Based Optimization Options
Profile-based optimization is a set of performance-improving code transformations based on the
runtime characteristics of your application.

+Oprofile
+Oprofile=[use|collect]

The +Oprofile option instructs the compiler to instrument the object code for collecting runtime
profile data. The profiling information can then be used by the linker to perform profile-based
optimization. When an application finishes execution, it will write profile data to the fileflow.data
or to the file/path in the environment variable FLOW_DATA (if set).
+Oprofile=use[:filename] causes the compiler to look for a profile database file. If a
filename is not specified, the compiler will look for a file named "flow.data" or the file/path
specified in the FLOW_DATA environment variable. If a filename is specified, it overrides the
FLOW_DATA environment variable.
After compiling and linking with +Oprofile=collect, run the resultant program using
representative input data to collect execution profile data. Profile data is stored in flow.data by

64 Command-Line Options

default. The name is generated as flow.<suffix> if there is already a flow.datafile present
in the current directory. Finally, recompile with the +Oprofile=use option (passing it the
appropriate filename if necessary) to perform profile-based optimization.
Example:
aCC +Oprofile=collect -O -o prog.pbo prog.C

The above command compiles prog.C with optimization, prepares the object code for data
collection, and creates the executable file prog.pbo. Running prog.pbo collects runtime
information in the file flow.data in preparation for optimization with +Oprofile=use.
+Oprofile=collect [:<qualifiers>]

<qualifiers> are a comma-separated list of profile collection qualifiers.
Supported profile collection qualifiers:
arc Enables collection of arc counts.
dcache Enables collection of data cache misses.
stride Enables collection of stride data.
loopiter Enables collection of loop iteration counts..
all Enables collection of all types of profile data. This is equivalent to

+Oprofile=collect:arc,dcache,stride,loopiter. This is the default.
This option merely enables the application for collection of the various forms of profiling data.
The environment variable PBO_DATA_TYPE controls the type of data collected at runtime. It may
be set to one of the following values, which must be consistent with the +Oprofile=collect
qualifiers used to create the application:
arc-stride Collects stride and/or arc counts. This is the default if PBO_DATA_TYPE is

not set.
dcache Collects data cache miss metrics.

NOTE: Data cache miss metrics cannot be collected during the same run of an application as
stride and/or arc data.

Information Embedding Options
The +annotate option annotates the compiled binary with extra information.

-annotate=structs
The+annotate option annotates the compiled binary with accesses to C/C++ struct fields for
use by other external tools such as Caliper. By default, no annotations are added.

Displaying Optimization Information
The +O[no]info option displays informational messages about the optimization process.

+O[no]info
+O[no]info

The +O[no]info option displays messages about the optimization process. This option may be
helpful in understanding what optimizations are occurring. You can use the option at levels 0-4.
The default is +Onoinfo at levels 0-4.

Parallel Processing Options
HP aC++ provides the following optimization options for parallel code.

Parallel Processing Options 65

-mt
The -mt option enables multi-threading capability without the need to set any other flags, such as
-l and -D. HP aC++ examines your environment and automatically selects and sets the appropriate
flags. “Performance Options” (page 167).
There are three possible sets of flags depending on your operating system and the libstd you
use. Table 5 lists the option matrix for -mt.

Table 5 Option Matrix for -mt

FlagsLibraries

-D_REENTRANTold-lib
libstd 1.2.1 -DRW_MULTI_THREAD

(-AP)& -DRWSTD_MULTI_THREAD

librwtool 7.0.x -D_THREAD_SAFE

-D_POSIX_C_SOURCE=199506L

-D_HPUX_SOURCE *

-lpthread

-D_REENTRANTnew-lib
(-AA) -D_RW_MULTI_THREAD

libstd 2.2.1 -D_RWSTD_MULTI_THREAD

-D_POSIX_C_SOURCE=199506L

-D_HPUX_SOURCE *

-lpthread

-D_REENTRANTC mode
-Ae/-Aa -D_POSIX_C_SOURCE=199506L

-lpthread

* required if -D_POSIX_C_SOURCE is used.

NOTE: For C++ and C -Ae -D_HPUX_SOURCE is set to be compatible with the default when
-mt is not used. For C mode options -AC89, -AC99, and -Aa, -D_HPUX_SOURCE is also set. If
you do not want to use-D_HPUX_SOURCE, you can undefine it by using -U. Example:
-U_HPUX_SOURCE

The following macros are used to compile multi-thread source code:

• _REENTRANT

Required by system header files that provide reentrant functions (suffixed by _r).

• RW_MULTI_THREAD / _RW_MULTI_THREAD

Required by Rogue Wave toolsh++ header files and libraries. RW_MULTI_THREAD is used
by toolsh++ 7.0.x. _RW_MULTI_THREAD is used by toolsh++ 8.x (not available yet).

• RWSTD_MULTI_THREAD / _RWSTD_MULTI_THREAD

Required by Rogue Wave standard library header files and libraries. RWSTD_MULTI_THREAD
is used by libstd 1.2.1. _RWSTD_MULTI_THREAD is used by libstd 2.2.1 when compiling
with -AA.

66 Command-Line Options

• _POSIX_C_SOURCE=199506L

Required by pthread.

• libpthread.*

Kernel thread library used on 11.x systems

See “Using Threads” (page 163) for more information.

NOTE: Make sure that -mt is used consistently at compile and link times. When you link with
-mt, everything must be compiled with -mt, even if you do not think your file will be used in a
threaded application. When you incorrectly mix and match with -mt, you get a runtime abort with
the following message:
aCC runtime: Use of "-mt" must be consistent during both compilation and linking.

To find the library or object that is missing -mt, use /usr/ccs/bin/footprints and look for
the following:
-mt [(off) 1] -mt [on 1] (Or not present)

The number 1 above is the count of objects with that -mt setting. Not present implies the source
was not compiled with a recent compiler that contains this information.

+O[no]autopar
+O[no]autopar

The +Oautopar option enables automatic parallelization of loops that are deemed safe and
profitable by the loop transformer.
Usage:
This optimization allows applications to exploit otherwise idle resources on multicore or
multiprocessor systems by automatically transforming serial loops into multithreaded parallel code.
When the +Oautopar option is used at optimization levels +O3 and above, the compiler
automatically parallelizes those loops that are deemed safe and profitable by the loop transformer.
Automatic parallelization can be combined with manual parallelization through the use of OpenMP
directives and the +Oopenmp option. When both +Oopenmp and +Oautopar options are specified,
then any existing OpenMP directives take precedence, and the compiler will only consider
auto-parallelizing other loops that are not controlled by those directives.
Programs compiled with the +Oautopar option require the libcps, libomp, and libpthreads runtime
support libraries to be present at both compilation and runtime. When linking with the HP-UX
B.11.61 linker, compiling with the +Oautoparoption causes them to be automatically included.
Older linkers require those libraries to be specified explicitly or by compiling with +Oopenmp.
The +Oautopar option is supported when compiling C, C++, or Fortran files. Specifying
+Oautopar implies the -mt option.
The default is +Onoautopar, which disables automatic parallelization of loops.

+tls=[static|dynamic]
+tls=[static|dynamic]

The +tls option specifies whether references to thread local data items are to be performed
according to the mode.
Usage:
+tls=mode

The defined values of mode are:
static This is a more efficient mode in which only thread local data in the program startup

set can be accessed.

Parallel Processing Options 67

dynamic This is a less efficient mode in which thread local data outside the program startup
set can be accessed as well. This is the default.

Translation units compiled with different settings of this option may be freely mixed, even within
the same load module.

+wlock
+wlock

The +wlock option enables compile-time diagnostic messages for potential errors in using
lock/unlock calls in programs that use pthread-library-based lock/unlock functions. Warnings are
emitted for acquiring an already acquired lock, releasing an already released lock, and
unconditionally releasing a lock that has been conditionally acquired.
This diagnostic checking is based on cross-module analysis performed by the compiler. Therefore,
the +wlockoption implicitly enables a limited form of cross-module analysis, even if -ipo or+O4
options are not specified. This can lead to a significant increase in the compile time compared to
a build without the +wlock option. Using this option could result in the compiler invoking
optimizations other than those that are part of the user-specified optimization level. If +wlock is
used in addition to -ipo or +O4, the generated code is not affected, and the compile time does
not increase much.

Performance Options
The HP compiler provides a variety of options to help improve build and runtime performance.
These options are:

-fast
-fast

The -fast option selects a combination of optimization options for optimum execution speed and
reasonable build times. This option is equivalent to +Ofast. Currently chosen options are:

• +O2

• +Ofltacc=relaxed

• +Onolimit

• +DSnative

• +FPD

You can override any of the options in -fast by specifying a subsequent option after it.
Use this option when porting C++ and C applications compiled on other UNIX operating systems
to HP-UX.

NOTE: Do not use this option for programs that depend on IEEE standard floating-point
denormalized numbers. Otherwise, different numerical results may occur.

+Ofast
+Ofast

The +Ofast option selects a combination of optimization options for optimum execution speed
for reasonable build times. Currently chosen options are:

• +O2

• +Ofltacc=relaxed

• +Onolimit

• +DSnative

68 Command-Line Options

• +FPD

• -Wl,+pi,1M

• -Wl,+pd,1M

• -Wl,+mergeseg

This option is a synonym for -fast.

NOTE: Do not use this option for programs that depend on IEEE standard floating point
denormalized numbers. Otherwise, different numerical results may occur. See +Ofltacc=relaxed.

+Ofaster
+Ofaster

The +Ofaster option is equivalent to +Ofast with an increased optimization level. The definition
of +Ofaster may change, or the option may be deprecated in future releases.

+O[no]tls_calls_change_tp
+O[no]tls_calls_change_tp

The +O[no]tls_calls_change_tp option specifies whether or not function calls can change the value
of the thread pointer(tp), resulting in less aggressive optimizations to TLS variables which are
accessed by name.

+[no]srcpos
+[no]srcpos

The +[no]srcpos option controls the generation of source position information for HP Caliper.
The default is +srcpos.
When +srcpos, is in effect, the compiler generates source position information. When +nosrcpos
is in effect, the compiler does not generate this information and the compiler instructs the linker to
discard any of this information found in the object files.

+DSmodel
+DSmodel

The +DSmodel option performs instruction scheduling for a particular implementation of the
Itanium®-based architecture. The default is blended.
model any of the values below.
blended Tune to run reasonably well on multiple implementations. As old implementation

become less important and new implementations are added, the behavior with
this value will change accordingly.

itanium Tune for the Itanium® processor.
itanium2 Tune for the Itanium2® processor.
mckinley See itanium2® .
montecito Tune for the Montecito® processor.
poulson Tune for the Poulson® processor.
native Tune for the processor on which the compiler is running.

Performance Options 69

Porting Options
Use the following options as necessary when porting your code from other operating environments
to HP-UX.

-fast
-fast

The -fast option selects a combination of optimization options for optimum execution speed and
reasonable build times. Currently chosen options are:

• +O2

• +Ofltacc=relaxed

• +Onolimit

• +DSnative

• +FPD

You can override any of the options in -fast by specifying a subsequent option after it. This
option is equivalent to +Ofast.
Use this option when porting C++ and C applications compiled on other UNIX operating systems
to HP-UX.

NOTE: Do not use this option for programs that depend on IEEE standard floating-point
denormalized numbers. Otherwise, different numerical results may occur.

+sb
+sb

The +sb option specifies unqualified char, short, int,long, and long long bitfields as
signed. The default is +sb.

NOTE: When both +sb and +uc are in effect, +uc will override this for char bit fields.

+ub
+ub

The +ub option specifies unqualified char, short, int, long, and long long bitfields as
unsigned. This option has no effect on signedness of enum bitfields or on signedness of non-bitfield
char. The default is +sb.

+uc
+uc

By default, all unqualified char data types are treated as signed char. Specifying +uc causes an
unqualified (plain) char data type to be treated as unsigned char. (Overloading and mangling
are unchanged.)
Use this option to help in porting applications from environments where an unqualified (plain)
char type is treated as unsigned char.

NOTE: Since all unqualified char types in the compilation unit will be affected by this option
(including those headers that define external and system interfaces), it is necessary to compile the
interfaces used in a single program uniformly.

70 Command-Line Options

+w64bit
The +w64bit option enables warnings that help detection of potential problems in converting
32-bit applications to 64-bit. The option is equivalent to the +M2 option.

+wdriver
The +wdriver option enables warnings for PA-RISC options that would otherwise be ignored
silently on Integrity servers. With the addition of this option in version A.06.05, a number of
warnings for PA options that had been reported by previous compiler versions were changed to
be silently ignored by default. The intent is to give good PA-RISC to Integrity makefile compatibility
by default, but provide this option to help users clean up unnecessary or misleading use of legacy
options when desired.

+wendian
This option allows the user to identify areas in their source code that might have porting issues
when going between little-endian and big-endian.
+wendian will warn of a de-reference that could cause endian-dependent behavior:
char charVal = *(char *) int_ptr;
short shortVal = ((short *) long_ptr)[0];

This warning can be suppressed by adding an extra cast:
char charVal = *(char *) (void *)int_ptr; // OK

+wendian warns that the initialization which may be endian-dependent, such as using hex constants
to init byte arrays:
char a[4] = { 0x11, 0x22, 0x33, 0x44 };
char b[4] = { 'a', 'b', 'c', 'd'}; // OK

This warning can be suppressed by not using a hex/octal constant:
char a[4] = { 17, 0x22, 0x33, 0x44 }; // OK

+wendian also warns of unions that make assumptions about data layout:
union u1 {
char c[4];
int v; };

union u2 {
long long ll;
short s[4];
char c[8]; };

This warning can be suppressed by adding a dummy member:
union u1 { // OK
char c[4];
int v;
char dummy; };

Another type of warning is on the use of IO functions that read/write persistent data from files that
may be endian-dependent:
read(0, &i, sizeof(i));
fread(&ai[0], sizeof(int), elems_of(ai, int), stdin);

write(1, &i, sizeof(i));
fwrite(&ai[0], sizeof(int), elems_of(ai, int), stdout);

This warning can be suppressed by adding an extra cast:
fread((char*)(void*)ai, sizeof(char), 1, stdin); // OK

Another +wendian warning captures cases where a cast when later dereferenced can cause
endian issues.

Porting Options 71

Preprocessor Options
The following options are accepted by the preprocessor:

-C
-C

Using the -C option prevents the preprocessor from stripping comments. See the description of
cpp in the cpp(1) manpage for details.

-dM
-dM

When -dM is present, instead of normal preprocessor output the compiler lists the #define
directives it encounters as it preprocesses the file, thus providing a list of all macros that are in
effect at the start of the compilation. The -dM option requires that -P or -E also be specified.
A common use of this option is to determine the compiler's predefined macros. For example:
touch foo.c ; cc -E -dM foo.c

-Dname
-Dname[=def]

name is the symbol name that is defined for the preprocessor.
def is the definition of the symbol name (name).
The -Dname option defines a symbol name (name) to the preprocessor, as if defined by the
preprocessing directive#define.
If no definition (def) is given, the name is defined as 1.

NOTE: __ia64 and __HP_aCC are defined automatically.

Example:
The following example defines the preprocessor symbol DEBUGFLAG and gives it the value 1.
aCC -DDEBUGFLAG file.C

The following program uses this symbol:
#include <iostream.h>
int main(){
 int i, j;
 #ifdef DEBUGFLAG
 int call_count=0;
 #endif
 /* ... */
}

-E
-E

Using the -E option runs only the preprocessor on the named C++ files and sends the result to
standard output (stdout).
An exception to this rule is when-E is used with +Make[d] option, the only output is the make
dependency information. Unlike the -P option, the output of -E contains #line entries indicating
the original file and line numbers.

Redirecting Output From This Option
Use the -.suffix option to redirect the output of this option.

72 Command-Line Options

make[d]
+make[d]

The +make[d] option directs a list of the quote enclosed (" ") header files upon which your source
code depends to stdout. The list is in a format accepted by the make command.
If +maked is specified, the list is directed to a .d file. The .d file name prefix is the same as that
of the object file. The .d file is created in the same directory as the object file.
Usage:
Use +maked when you also specify the -E or the -P option. When used with the -E option, only
dependency information is generated.
Table 6 lists examples of the +make[d] option.

Table 6 Examples

Preprocessing
output

.d file location.d file nameCommand line Specified

nonestdoutnoneaCC -c +make a.C

nonecurrent directorya.daCC -c -E -.i +maked a.C

a.icurrent directoryb.daCC -c -P +maked a.C -o b.o

a.i/tmp directoryc.daCC -c -P +maked a.C -o /tmp/c

+Make[d]
+Make[d]

The +Make[d] option directs a list of both the quote enclosed (" ") and angle bracket enclosed
(< >) header files upon which your source code depends to stdout. The list is in a format accepted
by the make command.
If +Maked is specified, the list is directed to a .d file. The .d file name prefix is the same as that
of the object file. The .d file is created in the same directory as the object file.
Usage:
Use +Maked when you also specify the -E or the -P option. When used with the -E option, only
dependency information is generated.

Table 7 Examples

Preprocessing output.d file location.d file
name

Command line specified

nonestdoutnoneaCC -c +Make a.C

nonecurrent directorya.daCC -c -E -.i +Maked a.C

a.icurrent directoryb.daCC -c -P +Maked a.C -o b.o

a.i/tmp directoryc.daCC -c -P +Maked a.C -o /tmp/c

-P
-P

Using the -P option only preprocesses the files named on the command line without invoking
further phases. It leaves the result in corresponding files with the suffix .i.
For example, the following command preprocesses the file prog.C leaving the output in the file
prog.i. It does not compile the program.
aCC -P prog.C

Preprocessor Options 73

-Uname
-Uname

name is the symbol name whose definition is removed from the preprocessor.
This option undefines any name that has initially been defined by the preprocessing stage of
compilation.
A name can be a definition set by the compiler. This is displayed when you specify the -v option.
A name can also be a definition that you have specified with the -D option on the command line.
The -D option has lower precedence than the -U option. If the same name is used in both, the -U
option and the -D option, the name is undefined regardless of the order of the options on the
command line.

Profiling Code Options
HP compilers provides the following options for profiling your code.

-G
-G

At compile time, the -G option produces code that counts the number of times each arc in the call
graph is traversed. At link-time, when you are building an executable (but not a shared library)
-G picks up profiled versions of certain system libraries and picks up the gprof support library.
Example:
aCC -G file.C

The above example compiles file.C and creates the executable file a.out instrumented for use
with gprof.
See gprof(1) manpage for more information.

-p
-p

At compile time, the -p option produces code that counts the number of times each routine is
called. At link-time, when you are building an executable (but not a shared library) -p picks up
profiled versions of certain system libraries and picks up the prof support library.
Example:
The following example compiles file.C and creates the executable file a.out instrumented for
use with prof.
aCC -p file.C

See the prof(1) manpage for more information.

+profilebucketsize
+profilebucketsize=[16|32]

This is a link-time option to support prof and gprof when building an executable, but not a
shared library. When prof or gprof startup code invokes sprofil, this option specifies the
size in bits of the counters used to record sampled values of the program counter.
The effect of this option can be overridden by setting the environment variable
LD_PROFILEBUCKET_SIZE when running the instrumented program. This environment variable
has no effect when building the instrumented program. Legal values are 16 (the default), and 32.
See gprof(1) and ld(1) manpages for more details.

74 Command-Line Options

Runtime Checking Options
The +check options allow you to check your application for errors at runtime.

+check
+check=all|none|bounds|globals|lock|malloc|stack|thread|truncate|uninit

The +check=xxx options provide runtime checks to detect many common coding errors in the
user program. These options introduce additional instructions for runtime checks that can significantly
slow down the user program. By default, a failed check will result in the program aborting at the
end of execution at runtime. In most cases, an error message and a stack trace will be emitted to
stderr before program termination. The environment variable RTC_NO_ABORT can be set to
0, 1, or 2 to change the behavior of failed runtime checks:
• 0 — A failed runtime check will abort the program immediately after the error message is

emitted.
• 1 — The default setting, which will abort the program at the end of execution upon failure.

• 2 — A failed runtime check will not enable the end of execution abort.
The +check options need to be specified at both compile time and link time, since they may
require additional libraries to be linked into the user program. If different +check options are
specified while compiling different source files, all the specified +check options are needed at
link time.
Multiple +check options are interpreted left to right. In case of conflicting options, the one on the
right will override an earlier +check option.

NOTE: The +check option is only supported on Integrity servers.

+check=all
The +check=all option enables all runtime checks provided by the compiler, except for
+check=truncate, +check=lock, and +check=thread, which must be explicitly specified
to enable them. It overrides any +check=xxx options that appear earlier on the command line.
The +check=all option is currently equivalent to the following options:
+check=bounds:array +check=globals +check=malloc
+check=stack:variables +check=uninit -z

The -z option, which is part of +check=all, can be overridden by an explicit -Z option.

+check=none
The +check=none option turns off all runtime checking options. It disables any +check=xxxoptions
that appear earlier on the command line.

+check=bounds
The +check=bounds option enables checks for out-of-bounds references to array variables or to
buffers through pointer access. The check is performed for each reference to an array element or
pointer access. If a check fails, an error message is emitted and the program is aborted.
The +check=bounds option applies only to local and global array variables. It also applies to
references to array fields of structs. It does not apply to arrays allocated dynamically using malloc
or alloca.
You can specify one of the following +check=bounds suboptions:
• array - Enables check for out-of-bounds references to array variables.
• pointer - Enables check for out-of-bounds references to buffers through pointer access. The

buffer could be a heap object, global variable, or local variable. This suboption also checks
out-of-bounds access through common libc function calls such as strcpy, strcat, memset,

Runtime Checking Options 75

and so on. The check can create significant run-time performance overhead. See
+check=uninit and +check=malloc for their interaction with this option.

• all - Enables out-of-bounds checks for both arrays and pointers. This is equal to
+check=bounds:array +check=bounds:pointer.

• none - Disables out-of-bounds checks.
+check=bounds (with no suboption) is equal to +check=bounds:array. This may change in
the future to also include +check=bounds:pointer.
When +check=all is specified, it enables +check=bounds:array only. To enable the pointer
out-of-bounds check, you must explicitly specify +check=bounds:pointer.
You can combine +check=bounds:[pointer | all] with all other +check options, except
for +check=globals (which would be ignored in this case).
Also see the +check=malloc and the +check=stack options for related runtime checks for
heap and stack objects.
Example:
This example uses +check=bounds:pointer to find a program bug:
 $ cat rttest3.c 1 #include <stdio.h>
 2 #include <memory.h>
 3 #include <stdlib.h>
 4 5 int a[10];
 6 char b[10];
 7 int *ip = &a[0]; // points to global array
 8
 9 int i;
 10
 11 void *foo(int n)
 12 {
 13 return malloc(n * sizeof(int));
 14 }
 15
 16 int main(int argc, char **argv)
 17 {
 18 int j; // uninitialized variable
 19
 20 int *lp = (int*)foo(10); // points to heap object
 21
 22 // out of bound if "a.out 10"
 23 if (argc > 1) {
 24 i = atoi(argv[1]);
 25 }
 26
 27 memset(b, 'a', i);
 28
 29 lp[i] = i;
 30
 31 ip[i+1] = i+1;
 32
 33 printf("lp[%d]=%d, ip[%d]=%d, ip[j=%d]=%d\n",
 34 i, lp[i], i+1, ip[i+1], j, ip[j]);
 35
 36 return 0;
 37 }

Compiling with +check=bounds:pointer:
$ cc +check=bounds:pointer rttest3.c

"rttest3.c", line 34: warning #2549-D: variable "j" is used before its
 value is set

76 Command-Line Options

 i, lp[i], i+1, ip[i+1], j, ip[j]);
 ^

Catch out-of-bounds pointer access through an uninitialized variable (the uninitialized variable can
be checked by +check=uninit):
$ RTC_NO_ABORT=1 a.out 2
Runtime Error: out of bounds buffer pointed by 0x40010320 has 40 bytes
(variable "a"), reading at 0x40010320-19824, 4 bytes ("rttest3.c", line 33)
(0) 0x0000000004004770 _rtc_raise_fault + 0x560 at rtc_utils.c:164
[./a.out](1) 0x0000000004008790 _rtc_oob_check_unknown_bounds + 0x1f0 at
rtc_bounds.c:465 [./a.out]
(2) 0x0000000004003920 main + 0x330 at rttest3.c:33 [./a.out]
(3) 0x60000000c0049c50 main_opd_entry + 0x50 [/usr/lib/hpux32/dld.so]
Memory fault(coredump)

Check off by one out-of-bounds access:
 $ RTC_NO_ABORT=1 a.out 10
Runtime Error: out of bounds buffer pointed by 0x400a1890 has 40 bytes
(allocation stack trace: 0x040035c2, 0x04003612, 0xc0049c42), writing
at 0x400a1890+40, 4 bytes ("rttest3.c", line 29)
(0) 0x0000000004004770 _rtc_raise_fault + 0x560 at rtc_utils.c:164
[./a.out]
(1) 0x0000000004008790 _rtc_oob_check_unknown_bounds + 0x1f0 at
rtc_bounds.c:465 [./a.out]
(2) 0x00000000040037b0 main + 0x1c0 at rttest3.c:29 [./a.out]
(3) 0x60000000c0049c50 main_opd_entry + 0x50 [/usr/lib/hpux32/dld.so]

Runtime Error: out of bounds buffer pointed by 0x40010320 has 40 bytes
(variable "a"), writing at 0x40010320+44, 4 bytes ("rttest3.c", line 31)
(0) 0x0000000004004770 _rtc_raise_fault + 0x560 at rtc_utils.c:164
[./a.out]
(1) 0x0000000004008790 _rtc_oob_check_unknown_bounds + 0x1f0 at
rtc_bounds.c:465 [./a.out]
(2) 0x0000000004003810 main + 0x220 at rttest3.c:31 [./a.out]
(3) 0x60000000c0049c50 main_opd_entry + 0x50 [/usr/lib/hpux32/dld.so]

Runtime Error: out of bounds buffer pointed by 0x400a1890 has 40 bytes
(allocation stack trace: 0x040035c2, 0x04003612, 0xc0049c42), reading
at 0x400a1890+40, 4 bytes ("rttest3.c", line 33)
(0) 0x0000000004004770 _rtc_raise_fault + 0x560 at rtc_utils.c:164
[./a.out]
(1) 0x0000000004008790 _rtc_oob_check_unknown_bounds + 0x1f0 at
rtc_bounds.c:465 [./a.out]
(2) 0x00000000040038a0 main + 0x2b0 at rttest3.c:33 [./a.out]
(3) 0x60000000c0049c50 main_opd_entry + 0x50 [/usr/lib/hpux32/dld.so]

Runtime Error: out of bounds buffer pointed by 0x40010320 has 40 bytes
(variable "a"), reading at 0x40010320+44, 4 bytes ("rttest3.c", line 33)
(0) 0x0000000004004770 _rtc_raise_fault + 0x560 at rtc_utils.c:164
[./a.out]
(1) 0x0000000004008790 _rtc_oob_check_unknown_bounds + 0x1f0 at
rtc_bounds.c:465 [./a.out]
(2) 0x00000000040038f0 main + 0x300 at rttest3.c:33 [./a.out]
(3) 0x60000000c0049c50 main_opd_entry + 0x50 [/usr/lib/hpux32/dld.so]

Runtime Error: out of bounds buffer pointed by 0x40010320 has 40 bytes
(variable "a"), reading at 0x40010320-19824, 4 bytes ("rttest3.c", line 33)
(0) 0x0000000004004770 _rtc_raise_fault + 0x560 at rtc_utils.c:164
[./a.out]
(1) 0x0000000004008790 _rtc_oob_check_unknown_bounds + 0x1f0 at
rtc_bounds.c:465 [./a.out]
(2) 0x0000000004003920 main + 0x330 at rttest3.c:33 [./a.out]
(3) 0x60000000c0049c50 main_opd_entry + 0x50 [/usr/lib/hpux32/dld.so]
Memory fault(coredump)

Check off by any number out-of-bounds access:

Runtime Checking Options 77

RTC_NO_ABORT=1 a.out 20
$Runtime Error: out of bounds buffer pointed by 0x40010350 has 10 bytes
(variable "b"), writing at 0x40010350+0, 20 bytes ("memset", line 0)
(0) 0x0000000004004770 _rtc_raise_fault + 0x560 at rtc_utils.c:164
[./a.out]
(1) 0x00000000040089d0 _rtc_oob_check_unknown_bounds + 0x430 at
rtc_bounds.c:480 [./a.out]
(2) 0x60000000c5f52440 libc_mem_common + 0x280 at infrtc.c:3286
[lib/hpux32/librtc.so]
(3) 0x60000000c5f53650 _memset + 0x80 at infrtc.c:3521
[lib/hpux32/librtc.so]
(4) 0x0000000004003760 main + 0x170 at rttest3.c:27 [./a.out]
(5) 0x60000000c0049c50 main_opd_entry + 0x50 [/usr/lib/hpux32/dld.so]

Runtime Error: out of bounds buffer pointed by 0x400a1890 has 40 bytes
(allocation stack trace: 0x040035c2, 0x04003612, 0xc0049c42), writing
at 0x400a1890-2054847100, 4 bytes ("rttest3.c", line 29)
(0) 0x0000000004004770 _rtc_raise_fault + 0x560 at rtc_utils.c:164
[./a.out]
(1) 0x0000000004008790 _rtc_oob_check_unknown_bounds + 0x1f0 at
rtc_bounds.c:465 [./a.out]
(2) 0x00000000040037b0 main + 0x1c0 at rttest3.c:29 [./a.out]
(3) 0x60000000c0049c50 main_opd_entry + 0x50 [/usr/lib/hpux32/dld.so]
Memory fault(coredump)

+check=globals
The +check=globals option enables runtime checks to detect corruption of global variables by
introducing and checking "guards" between them, at the time of program exit. Setting environment
variable RTC_ROUTINE_LEVEL_CHECKwill also enable the check whenever a function compiled
with this option returns.
For this purpose, the definition of global is extended to be all variables that have static storage
duration, including file or namespace scope variables, function scope static variables, and class
(or template class) static data members.

+check=lock
The +check=lock option enables checking of C and C++ user applications that use pthreads.
The option reports violations of locking discipline when appropriate locks are not held while
accessing shared data by different threads. The check is based on the lockset method for detecting
locking discipline violations, as described in the Eraser tool article at http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3256&rep=rep1&
type=pdf.
Note that +check=all does not enable +check=lock. Also note that since +check=lock
requires instrumenting each memory access, it can result in a considerable slowdown of the
application at runtime. +check=lock also increases the memory consumption of the instrumented
application.
The check is performed on each memory access. It detects violations in locking discipline for mutual
exclusion locks (mutexes) for applications using posix threads. When the locking discipline is
violated, it is reported along with the line number and the address for which the violation occurs.
Consider the following code example:
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
unsigned long things_done=0;
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;
void *thread1(void *arg) {
 pthread_mutex_lock(&mutex1);
 things_done++;
 pthread_mutex_unlock(&mutex1);
 return 0;
}

78 Command-Line Options

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3256&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3256&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3256&rep=rep1&type=pdf

void *thread2(void *arg) {
 pthread_mutex_lock(&mutex2);
 things_done++;
 pthread_mutex_unlock(&mutex2);
 return 0;
}

int main(int argc, char *argv[])
{
 pthread_t th1, th2;
 pthread_create(&th1, NULL, thread1, (void*)NULL);
 pthread_mutex_lock(&mutex1);
 things_done++;
 pthread_mutex_unlock(&mutex1);
 pthread_create(&th2, NULL, thread2, (void*)NULL);
 sleep(10);
 return 0;
}

cc +check=lock simple_race.c -lpthread

./a.out

Runtime Error: locking discipline violation: in file simple_race.c line 16 address 40010658

(0) 0x0000000004072ca0 _rtc_raise_fault + 0x2c0 at rtc_utils.c:382 [./a.out]
(1) 0x0000000004028650 _ZN11DRD_Runtime15HandleMemAccessEybPcjS0_ + 0x590 at lock_check.C:438
[./a.out]
(2) 0x0000000004029840 _ZN11DRD_Runtime17HandleStoreAccessEyPcjS0_ + 0x60 at lock_check.C:145
[./a.out]
(3) 0x000000000401bfa0 __DRD_RegisterStoreAccess__ + 0x160 at lock_check.H:126 [./a.out]
(4) 0x0000000004018780 thread2 + 0xd0 at simple_race.c:16 [./a.out]
(5) 0x60000000c57c3c60 __pthread_bound_body + 0x170
at /ux/core/libs/threadslibs/src/common/pthreads/pthread.c:4512
[/proj/thlo/Compilers/rt/usr/lib/hpux32/libpthread.so.1]

candidate lockset is as follows:
 lock1.c line number:23
incoming lockset is as follows:
 lock1.c line number:13

In the above message, the candidate lockset refers to the set of locks that are implied to be
associated with the symbol acesss in its previous accesses so far. The incoming lockset refers to
the set of locks that are held at the current access of the symbol. When the intersection between
the candidate lockset and incoming lockset is empty, the checker reports the locking discipline
violation. The candidate lockset and incoming lockset members are specified in terms of the source
file and line number pointing to the pthread_mutex_lock call associated with that lock. For
further details on detecting lock discipline violations, refer to the above-referenced Eraser article.
False positives are possible in certain cases, as mentioned in the Eraser article. Multiple locks can
be used to protect the same shared variable. For example, a linked list can be protected by an
overall lock and an individual entry lock. This can result in the tool reporting a false positive. False
positives might also be reported as a result of memory getting recycled in certain cases because
of deallocations (which the lock checker is not able to detect).

+check=malloc
The +check=malloc option enables memory leak and heap corruption checks at runtime. It will
cause the user program to abort for writes beyond boundaries of heap objects, free or realloc
calls for a pointer that is not a valid heap object, and out-of-memory conditions. Memory leak
information is captured and written out to a log file when the program exits. The name of the logfile
is printed out before program termination.
The +check=malloc option works by intercepting all heap allocation and deallocation calls.
This is done by the use of a debug malloc library, librtc.so. The option works for programs
that use the system malloc or for user provided malloc routines in a shared library. The
librtc.so library is also used by the HP WDB debugger to provide heap memory checking
features in the debugger. Please refer to the HP WDB debugger documentation for more information
about heap memory checking. The librtc.so library is shipped as part of the wdb product.

Runtime Checking Options 79

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.3256&rep=rep1&type=pdf

Please install the HP WDB bundled with the compiler or a more recent version of wdb to get full
functionality.
The default behavior of the +check=malloc option can be changed by users providing their own
rtcconfig file. The user specified rtcconfig file can be in the current directory or in a directory
specified by the GDBRTC_CONFIG environment variable. The default configuration used by the
+check=malloc option is:
check_bounds=1;check_free=1;scramble_block=1;
abort_on_bounds=1;abort_on_bad_free=1;abort_on_nomem=1;
check_leaks=1;min_leak_size=0;check_heap=0;
frame_count=4;output_dir=.;

When +check=bounds:pointer is also turned on, it can check freed memory read/write. But
the check needs to retain freed memory which is not turned on by default. To turn on the feature,
set the following environment variable at runtime:
RTC_MALLOC_CONFIG="retain_freed_blocks=1"

Or add "retain_freed_blocks=1" to the rtcconfig file. When malloc failes to allocate specified
memory, the runtime system will free the retained freed memory and try to allocate memory.
For a description for the above configuration parameters and the full list of other parameters,
please refer to the HP WDB debugger documentation.

+check=stack[:frame|:variables|:none]
The +check=stack[:frame|:variables|:none] option enables runtime checks to detect
writes outside stack boundaries. Markers are placed before and after the whole stack frame and
around some stack variables. On procedure exit, a check is done to see if any marker has been
overwritten. If any stack check fails, an error message and stack trace is written to stderr and
the program is aborted. The stack checks are not performed for an abnormal exit from the procedure
(for example, using longjmp, exit, abort, or exception handling).
+check=stack:frame

This option enables runtime checks for illegal writes from the current stack frame that overflow into
the previous stack frame.
+check=stack:variables

This option enables runtime checks for illegal writes to the stack just before or after some variables
on the stack. This includes array, struct/class/union, and variables whose address is taken.
It also includes the overflow check for the stack frame (+check=stack:frame). In addition to
the above checks, this option causes the whole stack to be initialized to a "poison" value, which
can help detect the use of uninitialized variables on the stack.
+check=stack:none

This option disables all runtime checks for the stack.
+check=stack

The +check=stackoption without any qualifiers is equivalent to +check=stack:variables
at optimization levels 0 and 1. It is equivalent to +check=stack:frame for optimization level
2 and above.

+check=thread
The +check=thread option enables the batch-mode thread-debugging features of HP WDB 5.9
or later, and can detect the following thread-related conditions:
• The thread attempts to acquire a nonrecursive mutex that it currently holds.

• The thread attempts to unlock a mutex or a read-write lock that it has not acquired.

• The thread waits (blocked) on a mutex or read-write lock that is held by a thread with a different
scheduling policy.

80 Command-Line Options

• Different threads non-concurrently wait on the same condition variable, but with different
associated mutexes.

• The threads terminate execution without unlocking the associated mutexes or read-write locks.

• The thread waits on a condition variable for which the associated mutex is not locked.

• The thread terminates execution, and the resources associated with the terminated thread
continue to exist in the application because the thread has not been joined or detached.

• The thread uses more than the specified percentage of the stack allocated to the thread.
The +check=thread option should only be used with multithreaded programs. It is not enabled
by +check=all.
Users can change the behavior of the +check=thread option by providing their own rtcconfig
file. The user specified rtcconfig file can be in the current directory or in a directory specified
by the GDBRTC_CONFIG environment variable. The default configuration used by the
+check=thread option is:
 thread-check=1;recursive-relock=1;unlock-not-own=1;
 mix-sched-policy=1;cv-multiple-mxs=1;cv-wait-no-mx=1;
 thread-exit-own-mutex=1;thread-exit-no-join-detach=1;stack-util=80;
 num-waiters=0;frame_count=4;output_dir=.;

If any thread error condition is detected during the application run, the error log is output to a file
in the current working directory. The output file will have the following naming convention:
<executable_name>.<pid>.threads

where <pid> is the process id.

+check=truncate[:explicit|:implicit]
The +check=truncate[:explicit|:implicit] option enables runtime checks to detect
data loss in assignment when integral values are truncated. Data loss occurs if the truncated bits
are not all the same as the left most non-truncated bit for signed type, or not all zero for unsigned
type.
Programs might contain intentional truncation at runtime, such as when obtaining a hash value
from a pointer or integer. To avoid runtime failures on these truncations, you can explicitly mask
off the value:
ch = (int_val & 0xff);

Note that the +check=all option does not imply +check=truncate. To enable
+check=truncate, you must explicitly specify it.
+check=truncate:explicit

This option turns on runtime checks for truncation on explicit user casts of integral values, such as
(char)int_val.
+check=truncate:implicit

This option turns on runtime checks for truncation on compiler-generated implicit type conversions,
such as ch = int_val;.
+check=truncate

This option turns on runtime checks for both explicit cast and implicit conversion truncation.

+check=uninit
The +check=uninit option checks for a use of a stack variable before it is defined. If such a
use is detected, an error message is emitted and the program is aborted. The check is done by
adding an internal flag variable to track the definition and use of user variables.

Runtime Checking Options 81

If the +check=bounds:pointer is on, +check=uninitwill check pointer access for uninitialized
memory read (UMR). To enable checking, the runtime system will initialize the heap objects and
stack variables with a special pattern. If the pointer accesses an area containing the specified
pattern for the specified length, then it assumes the read is UMR. To minimize UMR false positive,
the user may change the special pattern and number of bytes to check by using RTC_UMR
environment variable:
RTC_UMR=[INIT=0xnn][:CHECK_SIZE=sz]

where:
• INIT specifies the char type value used to initialize heap/local objects. The default pattern is

0xDE.
• CHECK_SIZE specifies the minimum number of bytes used to check for UMR. The default

number is 2.
Also see the +Oinitcheck option to enable compile-time warnings for variables that may be
used before they are set.

Standards Related Options
The compiler accepts the following options related to the ANSI/ISO 9899-1990 Standard for the
C Programming Language, the ANSI/ISO International Standard, and ISO/IEC 14882 Standard
for the C++ Programming Language:

-Aa
-Aa

The -Aa option instructs the compiler to use Koenig lookup and strict ANSI for scope rules. This
option is equivalent to specifying -Wc,-koenig_lookup,on and -Wc,-ansi_for_scope,on.
The default is on for C++, but off for C. Refer to the -Ae option for C-mode description. The
standard features enabled by -Aa are incompatible with earlier C and C++ features.

-AA
-AA

The -AA option enables the use of the new 2.0 Standard C++ Library, which includes the new
standard conforming (templatized) iostream library. It conforms to the ISO C++ standard.
The –AA option sets -Wc,-koenig_lookup,on and -Wc,-ansi_for_scope,on, and is the
default C++ compilation mode.
Usage:
The standard features enabled by -AA are incompatible with the older Rogue Wave Standard
C++ Library 1.2.1 and Tools.h++ 7.0.6. All modules must be consistent in using -AA. Mixing
modules compiled with -AA with ones that are not is not supported.

NOTE:
• This option is not supported in legacy HP C. This option is ignored with warnings in C-mode.

• This option will be removed in a future version of the compiler. Use the equivalent option
+std=c++98 to ensure that your builds do not break in future.

-Aarm
-Aarm

NOTE: This option was deprecated earlier and is obsolete in this release.

82 Command-Line Options

This option enables the Tru64 UNIX C++ Annotated Reference Manual (ARM) dialect. This dialect
was the default for Tru64 UNIX C++ compilers through compiler version 5.x. Support of this dialect
is intended only to ease porting of existing Tru64 UNIX applications to HP-UX, and not for
development of new programs.
For more information on the ARM dialect, refer to the The Annotated C++ Reference Manual,
(Margaret A. Ellis and Bjarne Stroustrup, Addison-Wesley, ISBN 0-201-51459-1, 1990).

-AC89
-AC89

The -AC89 option invokes the compiler in ANSI C89 compilation mode. This option, when specified
with the -ext option, invokes a part of ANSI C99 features.

NOTE: This option will be removed in a future version of the compiler. Use the equivalent option
+std=c89 to ensure that your builds do not break in future.

-AC99
-AC99

The -AC99 option invokes the compiler in ANSI C99 compilation mode with its features. This is
the default C compilation mode, and the following commands are equivalent:
cc
cc -Ae
cc -AC99
aCC -Ae
aCC -AC99

NOTE: This option will be removed in a future version of the compiler. Use the equivalent option
+std=c99 to ensure that your builds do not break in future.

-Ae
-Ae

Setting the -Ae option invokes aC++ as an ANSI C compiler, with additional support for HP C
language extensions.
This option is a synonym for the -AC99 option.
For C++, if -Ae is anywhere on the command line, C-mode will be in effect. The options, -AA and
-AP, are ignored with warnings. If both -Ae and -Aa are present, C-mode will be in effect and
the right most option determines whether extended ANSI (-Ae) or strict ANSI (-Aa) is in effect. To
get strict ANSI, both -Ae and -Aa option are required.

NOTE: Some code that is a warning in C may be a fatal error in HP aC++.

-Ag++
This option enables GNU C++ dialect compatibility. Not all GNU features are available, for
instance, the asm mechanism. See also “-fshort-enums ” (page 35).

NOTE: This option will be removed in a future version of the compiler. Use the equivalent option
+std=g++ to ensure that your builds do not break in future.

-Agcc
This option enables GNU C dialect compatibility. Not all GNU features are available, for instance,
the asm mechanism. See also “-fshort-enums ” (page 35).

Standards Related Options 83

NOTE:
• For HP aC++, the -Ae option must also be used.

• This option will be removed in a future version of the compiler. Use the equivalent option
+std=gcc to ensure that your builds do not break in future.

-AOa and -AOe
-AOa

-AOe

See the following C mode options:

• “-Aa” (page 82)

• “-Ae” (page 83)
In addition to specifying the ANSI C language dialect, allows the optimizer to aggressively exploit
the assumption that the source code conforms to the ANSI programming language C standard ISO
9899:1990.
At present, the effect is to make +Otype_safety=ansi the default. As new
independently-controllable optimizations are developed that depend on the ANSI C standard, the
flags that enable those optimizations may also become the default under -AOa or -AOe.

-AP
-AP

NOTE: To enable future runtime library versions, this option was deprecated earlier and is
obsolete in this release. If there is a build using this option, migrate your source to comply with the
C++ ANSI standard.

The -AP option turns off -AA mode and uses the older C++ runtime libraries.

NOTE: This option is not supported in legacy HP C. This option is ignored with warnings in
C-mode.

-Ax
The -Ax option turns on support for several core language features introduced by the recently
published C++11 standard. The -Ax option is available only in C++ compilation mode and is
binary compatible with the -AA compilation mode. See the HP aC++/HP ANSI C Release Notes
for a description of extensions supported.

NOTE: This option will be removed in a future version of the compiler. Use the equivalent option
+std=c++11 to ensure that your build does not break in future.

+legacy_cpp
+legacy_cpp

The +legacy_cpp option enables the use of cpp.ansi ANSI C preprocessor. This option is
available in C-mode only.

NOTE: This option is not normally needed and may be deprecated in future.

+legacy_v5
+legacy_v5

This option enables the use of the A.05.60 compiler. The default compiler is the A.06.00 compiler.

84 Command-Line Options

+std=c89|c99|c++98|c++11|gcc|g++|gnu
+std=c89: This option invokes the compiler in ANSI C89 compilation mode. This option when
specified with the -ext option, it invokes a part of ANSI C99 feature. This is equivalent to the
'–AC89' option.
+std=c99: This option invokes the compiler in ANSI C99 compilation mode with its features. This
is the default C compilation mode. This is equivalent to the '–AC99' option.
+std=c++98: This option invokes the compiler in ISO C++98 standard mode. This is the default
C++ compilation mode and this is equivalent to the '–AA' option.
+std=c++11: This option turns on support for several core language features introduced by the ISO
C++11 language standard. It is available only in C++ compilation mode and is binary compatible
with the '+std=c++98' ('–AA') compilation mode.
+std=gcc: This option enables GNU C dialect compatibility. This option is equivalent to '–Agcc'
option.
+std=g++: This option enables GNU C++ dialect compatibility. This option is equivalent to '–Ag++'
option.
+std=gnu: This command line option is also used to enable gnu dialects. It switches between
'+std=gcc ' or '+std=g++' compilation, depending on whether the compilation mode is C or C++
respectively.

+stl=rw|none
+stl=rw: This option is used to specify RogueWave STL 2.0 implementation. This option is equivalent
to ‘–AA’ option. It includes C++98 compliant standard template library. This is the default STL.
This option causes standard C++ header files to be picked up from the directory
'/opt/aCC/include_std' and is linked with libstd_v2.so.
+stl=none: By eliminating references to the standard header files and libraries bundled with HP
C++ compiler, this option allows experienced users to have full control over the header files and
libraries used in compilation and linking of their applications. This is equivalent to ‘+nostl’ option.

Standards Related Options 85

+tru64
+tru64

This option causes return types of unprototyped functions to be treated as long, instead of int,
matching Tru64 C behavior. This can prevent segfaults in +DD64 mode, resulting from pointer
truncation, for instance:
long *a;
long sub() {
 a = malloc(sizeof(long)); /* no prototype! */
 a = 1234; / segfault if +DD64 and no +tru64 */
 return *a;
}

A preferable solution is to provide the appropriate function prototypes.

NOTE: This option is applicable to C language only.

-Wc,-ansi_for_scope,[on|off]
-Wc,-ansi_for_scope,[on|off]

The -Wc,-ansi_for_scope is option enables or disables the standard scoping rules for init
declarations in for statements; the scope of the declaration then ends with the scope of the loop
body. By default, the option is disabled.
Examples:
In the following example, if the option is not enabled (the current default), the scope of k extends
to the end of the body of main and statement (1) is valid (and will return zero). With the option
enabled, k is no longer in scope and (1) is an error.
#include <stdio.h>

int main() {
 for (int k = 0; k!=100; ++k) {
 printf(“%d\n”, k);
 }
 return 100-k; // (1)
}

In the next example, with the option disabled, the code is illegal, because it redefines k in (2)
when a previous definition (1) is considered to have occurred in the same scope.
With the option enabled (-Wc,-ansi_for_scope,on), the definition in (1) is no longer in scope
at (2) and thus the definition in (2) is legal.
int main() {
 int sum = 0;
 for (int k = 0; k!=100; ++k) // (1)
 sum += k;
 for (int k = 100; k!= 0; ++k) // (2)
 sum += k;
}

-Wc,-koenig_lookup,[on|off]
-Wc,-koenig_lookup,[on|off]

The -WC,-koenig_lookup option enables or disables standard argument-dependent lookup
rules (also known as Koenig lookup). It causes functions to be looked up in the namespaces and
classes associated with the types of the function-call argument. By default, the option is enabled.
Example:
In the following example, if the option is not enabled, the call in main does not consider declaration
(1) and selects (2). With the option enabled, both declarations are seen, and in this case overload
resolution will select (1).

86 Command-Line Options

namespace N {
 struct S {};
 void f(S const&, int); // (1)
}

void f(N::S const&, long); // (2)

int main() {
 N::S x;
 f(x, 1);
}

Subprocesses of the Compiler
These options allow you to substitute your own processes in place of the default HP aC++
subprocesses, or pass options to HP aC++ subprocesses.

-tx,name
-tx,name

The -tx,name option substitutes or inserts subprocess x, using name.
The parameter, x, is one or more identifiers indicating the subprocess or subprocesses. The value
of x can one or more of the following:

Table 8 Identifiers

Descriptionx

Assembler (standard suffix is as)a

Compiler (standard suffix is ctcom/ecom)c

Same as cC

Filter tool (standard suffix is c++filt)f

Linker (standard suffix is ld)l

Preprocessor (standard suffix is cpp.ansi).p

-tp must be used before any -Wp options can be passed to cpp.ansi. To enable the external
preprocessor, use:
-tp,/opt/langtools/lbin/cpp.ansi.

Stand-alone code generator (standard suffix is u2comp)u

All subprocessesx

The -tx,name option works in two modes:
1. If x is a single identifier, name represents the full path name of the new subprocess.
2. If x is a set of identifiers, name represents a prefix to which the standard suffixes are

concatenated to construct the full path names of the new subprocesses.
For example, the following command invokes the assembler /users/sjs/myasmb instead of the
default assembler /usr/ccs/bin/as to assemble and link file.s.
aCC -ta,/users/sjs/myasmb file.s

More Examples of -t
Following are some examples of -t option:

• Substituting for C++ file:
The following example compiles file.C and specifies that /new/bin/c++filt should be
used instead of the default /opt/aCC/bin/c++filt.

Subprocesses of the Compiler 87

aCC -tf,/new/bin/c++filt file.C

• Substituting for ecom:
The following example compiles file.C and specifies that /users/proj/ecom should be
used instead of the default /opt/aCC/lbin/ecom.
aCC -tC,/users/proj/ecom file.C

• Substituting for all Subprocesses:
The following example compiles file.C and specifies that the characters /new/aCC should
be used as a prefix to all the subprocesses of HP aC++. For example, /new/aCC/ecom runs
instead of the default /opt/aCC/lbin/ecom.
aCC -tx,/new/aCC file.C

-Wx,args
-Wx,arg1[,arg2,..,argn]

The -Wx,args option passes the arguments arg1 through argn to the subprocess x of the
compilation.
Each argument, arg1, arg2, through argn takes the form:
-argoption[,argvalue]

where:

• argoption is the name of an option recognized by the subprocess.

• argvalue is a separate argument to argoption, where necessary.
The parameter, x, is one or more identifiers indicating a subprocess or subprocesses. The value
of x can be one or more of the following:

Table 9 Identifiers

Descriptionx

Assembler (standard suffix is as)a

Compiler (standard suffix is ecom)c

Same as cC

Filter tool (standard suffix is c++filt)f

Linker (standard suffix is ld)l

Preprocessor (standard suffix is cpp.ansi).p

-tp must be used before any -Wp options can be passed to cpp.ansi. To enable the external
preprocessor, use:
-tp,/opt/langtools/lbin/cpp.ansi.

Stand-alone code generator (standard suffix is u2comp)u

All subprocessesx

Example:
The following example compiles file.C and passes the option -v to the linker.
aCC -Wl,-v file.C

88 Command-Line Options

Passing Options to the Linker with -W
The following example links file.o and passes the option -a archive to the linker, indicating
that the archive version of the math library (indicated by -lm) and all other driver-supplied libraries
should be used rather than the default shared library:
aCC file.o -Wl,-a,archive -lm

Passing Multiple Options to the Linker with -W
The following example links file.o and passes the options -a , archive, -m, and -v to the
linker:
aCC -Wl,-a,archive,-m,-v file.o -lm

This case is similar to the previous example, with additional options. -m indicates that a load map
should be produced. The -v option requests verbose messages from the linker.

Symbol Binding Options
The following -B options are recognized by the compiler to specify whether references to global
symbols may be resolved to symbols defined in the current load module, or whether they must be
assumed to be potentially resolved to symbols defined in another load module.
A global symbol is one that is visible by name across translation unit boundaries. A static symbol
is one that is visible by name only within a single translation unit but is not associated with a
particular procedure activation. A locally defined symbol is a global or static symbol with a
definition in the translation unit from which it is being referenced.

-Bdefault
-Bdefault

Global symbols are assigned the default export class. These symbols may be imported or exported
outside of the current load module. The compiler will access tentative and undefined symbols
through the linkage table. Any symbol that is not assigned to another export class through use of
another -B option will have the default export class. The -Bdefault option may also be used
on a per symbol basis to specify exceptions to global -Bprotected, -Bhidden, and -Bextern
options.
Usage:
-Bdefault=symbol[,symbol...]

The named symbols are assigned the default export class.
-Bdefault:filename

The file indicated by filename contains a list of symbols, separated by spaces or newlines. These
symbols are assigned the default export class.

-Bextern
-Bextern

The specified symbols, or all undefined symbols if no list is provided, are assigned to default export
class. Additionally, the compiler will inline the import stub for calls to these symbols. No compile
time binding of these symbols will be done. All references to these symbols will be through the
linkage table, so an unnecessary performance penalty will occur if -Bextern is applied to a listed
symbol that is resolved in the same load module.
Usage:
-Bextern=symbol[,symbol...]

The named symbols, or all symbols if no list is provided, are assigned the default export class. Use
of list form overrides the default binding of locally defined symbols.

Symbol Binding Options 89

-Bextern:filename

The file indicated by filename is expected to contain a list of symbols, separated by spaces or
newlines. These symbols are assigned the default export class.

-Bhidden
-Bhidden

The specified symbols, or all symbols if no symbols are specified, are assigned the hidden export
class. The hidden export class is similar to the protected export class. In addition, hidden symbols
will not be exported outside the current load module. The linker may eliminate them from a shared
library, but in an executable, they remain accessible to the debugger unless +Oprocelim is also
specified.
When used with no symbol list, -Bhidden implies -Wl,-aarchive_shared, causing the linker
to prefer an archive library over a shared library if one is available. This can be overridden by
following the -Bhidden option with a subsequent -Wl,-a option.
Usage:
-Bhidden=symbol[,symbol...]

The named symbols, or all symbols if no symbols are specified, are assigned the hidden export
class.
-Bhidden:filename

The file indicated by filename is expected to contain a list of symbols separated by spaces or
newlines. These symbols are assigned the hidden export class.

-Bhidden_def
-Bhidden_def

This option is the same as -Bhidden, but only locally defined (non-tentative) symbols, without
__declspec(dllexport), are assigned the hidden export class.

-Bprotected
-Bprotected[=symbol[,symbol...]]

The specified symbols, or all symbols if no symbols are specified, are assigned the protected export
class. That means these symbols will not be preempted by symbols from other load modules, so
the compiler may bypass the linkage table for both code and data references and bind them to
locally defined code and data symbols.
When used with no symbol list, -Bprotected implies -Wl,-aarchive_shared, causing the
linker to prefer an archive library over a shared library, if one is available. This can be overridden
by following the -Bprotected option with a subsequent -Wl,-a option.
Usage:
-Bprotected:filename

The file indicated by filename contains a list of symbols, separated by spaces or newlines. These
symbols are assigned the protected export class.

-Bprotected_data
-Bprotected_data

The -Bprotected_data option marks only data symbols as having the protected export class.

-Bprotected_def
-Bprotected_def

90 Command-Line Options

The -Bprotected_def option is the same as -Bprotected but only locally defined (non-tentative)
symbols are assigned the protected export class.

-Bsymbolic
-Bsymbolic

The -Bsymbolic option assigns protected export class to all symbols. This is equivalent to
-Bprotected with no symbol list.

NOTE: This option is deprecated as of version A.06.05 and if used, it issues a warning that
-Bprotected_defis almost always what should be used in its place.

Template Options
By using a template option on the aCC command line, you can:

• Close a library or set of link units, to satisfy all unsatisfied instantiations without creating
duplicate instantiations.

• Specify what templates to instantiate for a given translation unit.

• Name and use template files in the same way as for the cfront based HP C++ compiler.

• Request verbose information about template processing.

NOTE: All template options on an aCC command line apply to every file on the command line.
If you specify more than one incompatible option on a command line, only the last option takes
effect.

+[no]dep_name
The +[no]dep_name option enforces strict dependent-name lookup rules in templates. The default
is +dep_name.

+inst_compiletime
+inst_compiletime

The +inst_compiletime option causes the compiler to use the compile time (CTTI) instantiation
mechanism to instantiate templates. This occurs for every template used or explicitly instantiated
in this translation unit and for which a definition exists in the translation unit. This is the default.

NOTE: This option is supported in C++ only and ignored in C-mode.

+inst_directed
+inst_directed
The +inst_directed option indicates to the compiler that no templates are to be instantiated
(except explicit instantiations). If you are using only explicit instantiation, specify +inst_directed.
The following example compiles file.C with the resulting object file containing no template
instantiations, except for any explicit instantiations coded in your source file.
aCC +inst_directed prog.C

See Chapter 5: “Using HP aC++ Templates” (page 132) for more information.

NOTE: This option is supported in C++ only and ignored in C-mode.

+inst_implicit_include
+inst_implicit_include

Template Options 91

The +inst_implicit_include option specifies that the compiler use a process similar to that
of the cfront source rule for locating template definition files. For the cfront based HP C++
compiler, if you are using default instantiation (that is, if you are not using a map file), you must
have a template definition file for each template declaration file, and these must have the same
file name prefix.
This restriction does not apply in HP aC++. Therefore, if your code was written for HP C++ and
you wish to follow this rule when compiling with HP aC++, you need to specify the
+inst_implicit_include option.
This option is strongly discouraged and the sources should be modified to conform to the standard.
Example:
aCC +inst_implicit_include prog.C

If prog.C includes a template declaration file named template.h, the compiler assumes a
template definition file name determined by the +inst_include_suffixes option.
See Chapter 5: “Using HP aC++ Templates” (page 132) for more information.

NOTE: This option is supported in C++ only and ignored in C-mode.

+inst_include_suffixes
+inst_include_suffixes "list"

The +inst_include_suffixes option specifies the file name extensions that the compiler uses
to locate template definition files. This option must be used with the +inst_implicit_include
option.
list is a set of space separated file extensions or suffixes, enclosed in quotes, that template
definition files can have.
The default extensions in order of precedence are:

• .c

• .C

• .cxx

• .CXX

• .cc

• .CC

• .cpp

User-specified extensions must begin with a dot and must not exceed four characters in total. Any
extension that does not follow these rules causes a warning and is ignored.
These restrictions do not apply in HP aC++. Therefore, if your code was written for HP C++ and
you wish to follow the cfront-based HP C++ template definition file naming conventions when
compiling with HP aC++, you need to specify the +inst_include_suffixes option.
The following example specifies that template definition files can have extensions of .c or .C:
+inst_include_suffixes ".c .C"

The +inst_include_suffixes option is equivalent to the HP C++ -ptS option.
See Chapter 5: “Using HP aC++ Templates” (page 132) for more information.

NOTE: This option is supported in C++ only and ignored in C-mode.

Trigraph Processing Suppression Option
The -notrigraphoption suppresses trigraph processing.

92 Command-Line Options

-notrigraph
The-notrigraph option inhibits the processing of trigraphs. In previous versions,
[LINEBREAK]-notrigraph caused the legacy preprocessor to be invoked. Though this ignored
trigraphs, trigraphs were still interpreted by the compiler in the preprocessed source. The -notrigraph
option no longer invokes the legacy preprocessor, and also suppresses trigraphs from being
interpreted.
This option is not recommended. The proper portable solution is to quote the "?" as "\?".

Verbose Compile and Link Information
Use the following options to obtain additional information about:

• The HP compiler actions while compiling or linking your program.

• The subprocesses executed for a given command line, without running the compiler.

• The current compiler and linker version numbers.

• The Execution time.

-dumpversion
-dumpversion

The +dumpversion option displays the simple version number of the compiler, such as A.06.25.
Compare with the -V option, which displays more verbose product version information.

+dryrun
+dryrun

The +dryrun option generates subprocess information for a given command line without running
the subprocesses. It is useful in the development process to obtain command lines of compiler
subprocesses in order to run the commands manually or to use them with other tools.
Example:
The following command line gives the same kind of information as the -v option, but without
running the subprocesses.
aCC +dryrun app.C

+O[no]info
+O[no]info

The +Oinfo option displays informational messages about the optimization process. This option
may be helpful in understanding what optimizations are occurring. You can use the option at levels
0-4. The default is +Onoinfo at levels 0-4.

+wsecurity
+wsecurity[={1|2|3|4}]

The +wsecurity option can take an argument to control how verbosely the security messages
are emitted. The default level is 2.

+time
+time

The +time option generates timing information for compiler subprocesses. For each subprocess,
estimated time is generated in seconds for user processes, system calls, and total processing time.
This option is useful in the development process, for example, when tuning an application’s
compile-time performance.

Verbose Compile and Link Information 93

Examples:

• The aCC +time app.C command generates the following information:
process: compiler 0.94/u 0.65/s 4.35/r
process: ld 0.37/u 0.76/s 3.02/r

• The aCC -v +time app.C command generates the following information:
/opt/aCC/lbin/ctcom -inst compiletime -diags 523 -D __hppa -D __hpux
 -D __unix -D __hp9000s800 -D __STDCPP__ -D __hp9000s700 -D _PA_RISC1_1
 -I /opt/aCC/include -I /opt/aCC/include/iostream -I /usr -I
 /usr/include -I /usr/include -inline_power 0 app.C

file name: app.C
file size: app.o 444 + 16 + 1 = 461
process user sys real
--
process: compiler 0.93 0.13 1.17
--
line numbers: app.C 7
lines/minute: app.C 396

LPATH=/usr/lib:/usr/lib/hpux32/pa1.1 :/usr/lib:/opt/langtools/lib:/usr/lib
/opt/aCC/lbin/ld -o a.out /opt/aCC/lib/crt0.o -u ___exit -u main
 -L /opt/aCC/lib /opt/aCC/lib/cpprt0.o app.o -lstd -lstream -lCsup -lm
 /usr/lib/hpux32/libcl.a -lc /usr/lib/hpux32/libdld.so >/usr/tmp/AAAa28149 2>&1

file size: a.out 42475 + 1676 + 152 = 44303
process user sys real
--
process: ld 0.35 0.24 0.82
--
total link time(user+sys): 0.59
 removing /usr/tmp/AAAa28149
 removing app.o

-v
-v

The -v option enables verbose mode, sending a step-by-step description of the compilation process
to stderr. This option is especially useful for debugging or for learning the appropriate commands
for processing a C++ file.
Example:
The aCC -v file.C command compiles file.C and gives information about the process of
compiling.
/opt/aCC/lbin/ctcom -inst compiletime -diags 523 -D __hppa -D __hpux
-D __unix -D __hp9000s800 -D __STDCPP__ -D __hp9000s700 -D _PA_RISC1_1
-I /opt/aCC/include -I /opt/aCC/include/iostream -I /usr -I
/usr/ include
 -I /usr/include -inline_power 0 app.C
LPATH=/usr/lib:/usr/lib/hpux32/pa1.1
 :/usr/lib:/opt/langtools/lib:/usr/lib
/opt/aCC/lbin/ld -o a.out /opt/aCC/lib/crt0.o -u ___exit -u main
 -L /opt/aCC/lib /opt/aCC/lib/cpprt0.o app.o -lstd -lstream -lCsup
 -lm /usr/lib/hpux32/libcl.a -lc /usr/lib/hpux32/libdld.so >/usr/tmp/AAAa28149 2>&1
 removing /usr/tmp/AAAa28149

-V
-V

The -V option displays the version numbers of the current compiler and linker (if the linker is
executed). Use this option whenever you need to know the current compiler and linker version
numbers.
Example:

94 Command-Line Options

aCC -V app.C

aCC: HP aC++/ANSI C B3910B A.06.00 [Aug 25 2004]
ld: 92453-07 linker ld HP Itanium(R) B.12.24 PBO 040820 (IPF/IPF)

Concatenating Options
You can concatenate some options to the aCC command under a single prefix. The longest substring
that matches an option is used. Only the last option can take an argument. You can concatenate
option arguments with their options if the resulting string does not match a longer option.
Examples:
Suppose you want to compile my_file.C using the options -v and -g1. Below are equivalent
command lines you can use:

• aCC my_file.C -v -g1

• aCC my_file.C -vg1

• aCC my_file.C -vg1

• aCC -vg1 my_file.C

Concatenating Options 95

3 Pragma Directives and Attributes
A pragma directive is an instruction to the compiler. You use a #pragma directive to control the
actions of the compiler in a particular portion of a translation unit without affecting the translation
unit as a whole.
Put pragmas in your C++ source code where you want them to take effect. Unless otherwise
specified, a pragma is in effect from the point where it is included until the end of the translation
unit or until another pragma changes its status.
This chapter discusses the following pragma directives:

• “Initialization and Termination Pragmas” (page 96)

• “Copyright Notice and Identification Pragmas” (page 97)

• “Data Alignment Pragmas” (page 98)

• “Optimization Pragmas” (page 103)

• “Diagnostic Pragmas” (page 105)

• “Other Pragmas” (page 105)

• “OpenMP Clauses” (page 114)

• “Attributes” (page 116)

Initialization and Termination Pragmas
This section describes the INIT and FINI pragmas. These pragmas allow the user to set up
functions which are called when a load module (a shared library or executable) is loaded (initializer)
or unloaded (terminator).
For example, when a program begins execution, its initializers get called before any other user
code gets called. This allows some set up work to take place. In addition, when the user’s program
ends, the terminators can do some clean up. When a shared library is loaded or unloaded, its
initializers and terminators are also executed at the appropriate time.

INIT
#pragma INIT “string”

Use #pragma INIT to specify an initialization function. The function takes no arguments and
returns nothing. The function specified by the INIT pragma is called before the program starts or
when a shared library is loaded. For example,
#pragma INIT "my_init"

void my_init() { ... do some initializations ... }

FINI
#pragma FINI “string”

Use #pragma FINI to specify a termination function. The function specified by the FINI pragma
is called after the program terminates by either calling the libc exit function, returning from
the main or _start functions, or when the shared library, which contains the FINI is unloaded
from memory. Like the function called by the INIT pragma, the termination function takes no
arguments and returns nothing. For example,
#pragma FINI "my_fini"

void my_fini() { ... do some clean up ... }

96 Pragma Directives and Attributes

Copyright Notice and Identification Pragmas
The following pragmas can be used to insert strings in code.

COPYRIGHT
#pragma COPYRIGHT "string”

string is the set of characters included in the copyright message in the object file.
The COPYRIGHT pragma specifies a string to include in the copyright message and puts the
copyright message into the object file.
If no date is specified (using pragma COPYRIGHT_DATE), the current year is used in the copyright
message. For example, assuming the year is 1999, the directive #pragma COPYRIGHT "Acme
Software" places the following string in the object code:
(C) Copyright Acme Software, 1999. All rights reserved. No part of this
program may be photocopied, reproduced, or transmitted without prior
written consent of Acme Software.

The following pragmas
#pragma COPYRIGHT_DATE "1990-1999"

#pragma COPYRIGHT "Brand X Software"

place the following string in the object code:
(C) Copyright Brand X Software, 1990-1999. All rights reserved. No part
of this program may be photocopied, reproduced, or transmitted without
prior written consent of Brand X Software.

COPYRIGHT_DATE
#pragma COPYRIGHT_DATE "string"

string is a date string used by the COPYRIGHT pragma.
This pragma specifies a date string to be included in the copyright message.
Use the COPYRIGHT pragma to put the copyright message into the object file.
For example, #pragma COPYRIGHT_DATE "1988-1992" places the string "1988-1992" in
the copyright message.

LOCALITY
#pragma LOCALITY "string"

string specifies a name to be used for a code section.
The LOCALITY pragma specifies a name to be associated with the code written to a relocatable
object module. The string is forced to be uppercase in C.
All code following the LOCALITY pragma is associated with the name specified in string. Code
that is not headed by a LOCALITY pragma is associated with the name .text.
The smallest scope of a unique LOCALITY pragma is a function.
For example, the directive,
#pragma LOCALITY "MINE"

builds the name .text.MINE and associates all code following this pragma with this name, unless
another LOCALITY pragma is encountered.

LOCALITY_ALL
#pragma LOCALITY_ALL string

Copyright Notice and Identification Pragmas 97

The LOCALITY_ALL pragma specifies a name to be associated with the linker procedures and
global variables that should be grouped together at program binding or load time.
These are written to a relocatable object module. All procedures and global variables following
the LOCALITY_ALL pragma are associated with the name specified in the string.

VERSIONID
#pragma VERSIONID "string"

string is a string of characters that HP aC++ places in the object file.
The VERSIONID pragma specifies a version string to be associated with a particular piece of
code. The string is placed into the object file produced when the code is compiled.
For example, the directive
#pragma VERSIONID "Software Product, Version 12345.A.01.05"

places the characters Software Product, Version 12345.A.01.05 into the object file.

Data Alignment Pragmas
This section discusses the data alignment pragmas and their various arguments available on HP-UX
systems to control alignment across platforms.

ALIGN
#pragma align N

N is a number raised to the power of 2.
HP aC++ supports user-specified alignment for global data. The pragma takes effect on next
declaration. If the align pragma declaration is not in the global scope or if it is not a data
declaration, the compiler displays a warning message. If the specified alignment is less than the
original alignment of data, a warning message is displayed, and the pragma is ignored. Note
that for C code you must initialize the variables, otherwise the compiler will generate a warning.
#pragma align 2
char c; // "c" is at least aligned on 2 byte boundary.

#pragma align 64
int i, a[10]; // "i" and array "a" are at least aligned 64 byte boundary.
 // the size of "a" is still 10*sizeof(int)

PACK
#pragma PACK [n]|[push|pop]|[,<name>][,n]|show]

n can be 1, 2, 4, 8, or 16 bytes. If n is not specified, maximum alignment is set to the default
value.
This file-scoped pragma allows you to specify the maximum alignment of class fields. The alignment
of the whole class is then computed as usual, to the alignment of the most aligned field in the class.

NOTE: The result of applying #pragma pack n to constructs other than class definitions
(including struct definitions) is undefined and not supported. For example:
#pragma pack 1

int global_var; // Undefined behavior: not a class definition

void foo() { // Also undefined

}

Example:
struct S1 {
 char c1; // Offset 0, 3 bytes padding

98 Pragma Directives and Attributes

 int i; // Offset 4, no padding
 char c2; // Offset 8, 3 bytes padding
}; // sizeof(S1)==12, alignment 4

#pragma pack 1

struct S2 {
 char c1; // Offset 0, no padding
 int i; // Offset 1, no padding
 char c2; // Offset 5, no padding
}; // sizeof(S2)==6, alignment 1

// S3 and S4 show that the pragma does not affect class fields
// unless the class itself was defined under the pragma.
struct S3 {
 char c1; // Offset 0, no padding
 S1 s; // Offset 1, no padding
 char c2; // Offset 13, nopadding
}; // sizeof(S3)==14, alignment 1

struct S4 {
 char c1; // Offset 0, no padding
 S2 s; // Offset 1, no padding
 char c2; // Offset 7, no padding
}; // sizeof(S4)==8, alignment 1

#pragma pack

struct S5 { // Same as S1
 char c1; // Offset 0, 3 bytes padding
 int i; // Offset 4, no padding
 char c2; // Offset 8, 3 bytes padding
}; // sizeof(S5)==12, alignment 4

#pragma pack (push, my_new_align, 1)

struct S6 { // Same as S2
 char c1; // Offset 0, no padding
 int i; // Offset 1, no padding
 char c2; // Offset 5, no padding
}; // sizeof(S6)==6, alignment 1

#pragma pack 2
#pragma pack show // compiler diagnostic
 // that shows current
 // pragma pack setting

struct S7 {
 char c1; // Offset 0, 1 byte padding
 int i; // Offset 2, no padding
 char c2; // Offset 6, 1 byte padding
}; // sizeof(S7)==8, alignment 2

#pragma pack (pop, my_new_align)
 struct S8 { // Same as S1
 char c1; // Offset 0, 3 bytes padding
 int i; // Offset 4, no padding
 char c2; // Offset 8, 3 bytes padding
}; // sizeof(S8)==12, alignment 4

The pack pragma may be useful when porting code between different architectures where data
type alignment and storage differences are of concern. Refer to the following examples:

Data Alignment Pragmas 99

Basic Example
The following example illustrates the pack pragma and shows that it has no effect on class fields
unless the class itself was defined under the pragma:
struct S1 {
 char c1; // Offset 0, 3 bytes padding
 int i; // Offset 4, no padding
 char c2; // Offset 8, 3 bytes padding
}; // sizeof(S1)==12, alignment 4

#pragma pack 1

struct S2 {
 char c1; // Offset 0, no padding
 int i; // Offset 1, no padding
 char c2; // Offset 5, no padding
}; // sizeof(S2)==6, alignment 1

// S3 and S4 show that the pragma does not affect class fields
// unless the class itself was defined under the pragma.
struct S3 {
 char c1; // Offset 0, 3 bytes padding
 S1 s; // Offset 4, no padding
 char c2; // Offset 16, 3 bytes padding
}; // sizeof(S3)==20, alignment 4

struct S4 {
 char c1; // Offset 0, no padding
 S2 s; // Offset 1, no padding
 char c2; // Offset 7, no padding
}; // sizeof(S4)==8, alignment 1

#pragma pack

struct S5 { // Same as S1
 char c1; // Offset 0, 3 bytes padding
 int i; // Offset 4, no padding
 char c2; // Offset 8, 3 bytes padding
}; // sizeof(S5)==12, alignment 4

Template Example
If the pragma is applied to a class template, every instantiation of that class is influenced by the
pragma value in effect when the template was defined. For example:
#pragma pack 1

template<class T>
struct ST1 {
 char c1;
 T x;
 char c2;
};

#pragma pack

ST1<int> obj; // Same layout as S2 in the prior example

template <> // Explicit specialization
struct ST1<void> {
 char c1;
 char c2;
}; // Undefined (unsupported) behavior
 // ST1 was defined under a #pragma pack 1 directive

100 Pragma Directives and Attributes

NOTE: The alignment of specializations and partial specializations of templates is undefined
and unsupported if either the primary template or the specialization is under the influence of a
#pragma pack directive.

Handling Unaligned Data
Direct access to unaligned class fields is handled automatically by HP aC++. However, this results
in slower access times than for aligned data. Indirect access (through pointers and references) to
unaligned class fields is also handled automatically.
If you take the address of a data field and assign it to a pointer, it is not handled automatically
and is likely to result in premature termination of the program if not handled appropriately.
Example:
#include <stdio.h>
#pragma pack 1
struct S1 {
 char c1;
 int i;
 char c2;
};
#pragma pack
int main() {
 S1 s;
 S1 *p = &s;
 printf(“%d\n”, s.i); // OK
 printf(“%d\n”, p->i); // OK
 int *ip = &p->i; // Undefined behavior
 // Likely Abort unless compiled with +u1
 // The address of a reference (*ip) is
 // assigned to an int pointer.
 printf(“%d\n”, *ip);
}

To enable indirect access to unaligned data that has been assigned to another type, use the link
in the library, -lunalign and arm the appropriate signal handler with a call to
allow_unaligned_data_access. This causes every signal generated due to unaligned access
to be intercepted and handled as expected. It also creates significant run-time overhead for every
access to unaligned data, but does not impact access to aligned data.

Implicit Access to Unaligned Data
Calls to non-static member functions require that an implicit this pointer be passed to these
functions, which can then indirectly access data through this implicit parameter. If such an access
is to unaligned data, the situation in the prior example occurs.
Furthermore, virtual function calls often require indirect access to a hidden field of a class that
could be unaligned under the influence of the #pragma pack directive.
If you are passing the address of a field to other code, consider the following example. Unless
compiled with -DRECOVER on the command line and linked with -lunalign, the following
example is likely to prematurely terminate with a bus error:
#include <stdio.h>
#ifdef RECOVER
extern “C” void allow_unaligned_data_access();
#endif

#pragma pack 1

struct PS1 {
 PS1();
 ~PS1();
private:

Data Alignment Pragmas 101

 char c;
 int a;
};

#pragma pack

PS1::PS1(): a(1) { // There appears to be no pointer, but there
 // is an unaligned access, possibly through “this.”
 printf(“In constructor.\n”);
}

PS1::~PS1() {
 a = 0; // Misaligned access, possibly though “this”
 printf(“In destructor.\n”);
}

int main() {
#if defined(RECOVER)
 allow_unaligned_data_access();
#endif
 PS1 s;
}

UNALIGN
#pragma unalign [1|2|4|8|16]

typedef T1 T2;

T1 and T2 have the same size and layout, but with specified alignment requirements.
HP aCC supports misaligned data access using the unalign pragma. The unalign pragma can
be applied on typedef to define a type with special alignment. The unalign pragma takes
effect only on next declaration.
If the unalign pragma declaration is not in the global scope or if it is not a typedef, compiler
displays a warning message. If the specified alignment is greater than the original alignment of
the declaration, then an error message is displayed, and the pragma is ignored.
Example:
#pragma unalign 1
typedef int ua_int; // ua_int is of int type with 1 byte alignment
typedef ua_int *ua_intPtr; // this typedef is not affected by the above
 // unalign pragma. It defines a pointer type
 // which points to 1 byte aligned data

The interaction between pack and unalign pragmas is as follows:
#pragma pack 1
struct S {
 char c;
 int i;
};
#pragma pack 0

S s;
ua_int *ua_ip = &s.i; // ua_ip points to 1 byte
 // aligned int

*ua_ip = 2; // mis-aligned access to
 // 1 byte aligned int

NOTE: The HP_ALIGN pragma, which is supported by the HP ANSI C compiler, is not supported
by aCC. The pack and unalign pragmas can replace most of the HP_ALIGN functionality.

102 Pragma Directives and Attributes

Optimization Pragmas
Following are the optimization pragmas supported by the HP aC++ compiler:

OPT_LEVEL Pragma
#pragma OPT_LEVEL 0
#pragma OPT_LEVEL 1
#pragma OPT_LEVEL 2
#pragma OPT_LEVEL 3
#pragma OPT_LEVEL 4
#pragma OPT_LEVEL INITIAL

When used with a numeric argument, the OPT_LEVEL pragma sets the optimization level to 0, 1,
2, 3, or 4.
The INITIAL argument causes the optimization level in effect at the start of the compilation,
whether by default or specified on the command line, to be restored.
Example:
aCC -O prog.C

#pragma OPT_LEVEL 1
void A(){ // Optimize this function at level 1.
 ...
}
#pragma OPT_LEVEL 2
void B(){ // Restore optimization to level 2.
 ...
}

NOTE: This pragma cannot raise the optimization level above the level specified in the command
line.
This pragma cannot be used within a function.

OPTIMIZE Pragma
#pragma OPTIMIZE ON|OFF

NOTE: This pragma is deprecated as of HP C/C++ A.06.15. You should use: #pragma
OPT_LEVEL instead.

This pragma is used to toggle between optimization on and optimization off for different sections
of source code whenever they are encountered in a top-to-bottom read of a source file.
Example:
The following example toggles between optimization on and optimization off:
aCC +O2 prog.C
#pragma OPTIMIZE OFF
void A(){ // Turn off optimization
 ... // for this function
}

#pragma OPTIMIZE ON
void B(){ // Restore optimization
 ... // to level 2.
}

You must specify one of the optimization level options on the aCC command, otherwise this pragma
is ignored. This pragma cannot be used within a function.

FLOAT_TRAPS_ON Pragma
#pragma FLOAT_TRAPS_ON [function {,function}]

Optimization Pragmas 103

This pragma informs the compiler that the specified functions may enable floating-point trap
handling. When the compiler is so informed, it will not perform loop invariant code motion (LICM)
on floating-point operations in the functions named in the pragma. This pragma is required for
proper code generation when floating-point traps are enabled.

NOTE: This pragma is not supported in C++. It is deprecated for HP C and C++ C-mode. You
should use#pragma STDC FENV_ACCESS ON instead.

For example,
#pragma FLOAT_TRAPS_ON xyz,abc

informs the compiler and optimizer that xyz and abc have floating-point traps turned on and
therefore LICM optimization should not be performed. A dummy name _ALL represents all functions.

[NO]INLINE Pragma
#pragma [NO]INLINE sym[,sym]

The [NO]INLINE pragma enables[disables] inlining for all functions or specified function names.
For example, to specify inlining of the two subprograms checkstat and getinput, use:
#pragma INLINE checkstat, getinput

To specify that an infrequently called routine (opendb, for example) should not be inlined when
compiling at optimization level 3 or 4, use:
#pragma NOINLINE opendb

Usage Notes for C++:
• Use the unmangled name of the function.

• All overloaded versions of the function will be affected.

• The pragma can affect "inline functions"---class member functions defined in the class definition;
these have the same treatment as functions declared with the inline keyword.

Usage Notes for both C and C++:
• The pragma can be used without a function name, in which case it affects all functions until

the next instance of the pragma or the end of the module. Consider the following:
#pragma NOINLINE foo
#pragma INLINE

[foo will be inlined here]

• Inline functions (those declared with the inline keyword or as described above for C++),
can be affected by #pragma NOLINLINE, which overrides the keyword.

• The inline keyword indicates a recommendation to the compiler that the function be inlined;
the compiler can then make a profitability decision whether or not to perform the inlining.

• The [NO]INLINE pragma and +O[no]inlineoption are treated as directives to the compiler;
the compiler obeys the pragma or option without performing profitability analysis.

• There are some cases that are not valid to inline. In these cases, the pragma or option is
silently ignored.

NO_INLINE Pragma
#pragma NO_INLINE

This is equivalent to #pragma NOINLINE. The NO_INLINE pragma disables inlining for all
functions or specified function names.

104 Pragma Directives and Attributes

IVDEP Pragma
#pragma IVDEP

For the associated loop, this pragma directs the compiler to ignore any apparent loop dependencies
involving references to array-typed entities.

NODEPCHK Pragma
#pragma NODEPCHK

For the associated loop, this pragma directs the compiler to ignore all loop dependencies (regardless
of type) except for induction variables and some other scalar loop dependencies as determined
by the compiler implementation.

NO_RETURN Pragma
#pragma NO_RETURN function1, [function2, . . .]

The NO_RETURN pragma is anassertion to the optimizer that the named functions never return to
the call site.This allows the optimizer to delete any code after the function. A C++ function marked
with the NO_RETURN pragma may still throw an exception unless it has an emty throw list.

Diagnostic Pragmas
The following are the diagnostic pragmas supported by the HP aC++ compiler.

diag_xxx Pragmas
#pragma diag_suppress message1 message2 ...
#pragma diag_warning message1 message2 ...
#pragma diag_error message1 message2 ...
#pragma diag_default message1 message2 ...

Command-line options help you generate diagnostic messages for the entire build or for a specific
source file. The diag pragmas let you manage warnings for a specific region within a source file.
The use of #pragma diag_suppress within the source code disables generation of the specified
warning messages after the pragma in the source file. The pragma diag_defaultrestores the
default handling for the specified diagnostic messages. Similarly, diag_warning enables
generation of the specified diagnostic messages, and diag_error converts a warning to an
error.
Only diagnostics above 2000 are affected. This pragma will not affect the lower numbered
diagnostics issued by the compiler's driver program.
Refer to the HP Code Advisor documentation for additional information.
The following example disables warning #2549-D locally:
int i;
#pragma diag_suppress 2549
printf ("i = %d\n", i);
#pragma diag_default 2549

Other Pragmas
The following are additional pragmas supported on the HP aC++ compiler:

assert Pragma
#pragma assert non-zero(constant-expression)”string”

When the compiler encounters this directive, it evaluates the expression. If the expression is zero,
the compiler generates a message that contains the specified string and the compile-time constant
expression.
For example:

Diagnostic Pragmas 105

#pragma assert non_zero(sizeof(a) == 12) "a is the wrong size"

In this example, if the compiler determines that sizeof(a) is not 12, the following diagnostic
message is output:
"foo.c", line 10: error #2020: The assertion "(sizeof(a) == 12)" was not true.
a is the wrong size

Consider the following example that verifies both the size of a struct and the offset of one of its
elements:
#include <stddef.h>
typedef struct {
 int a;
 int b;
} s;
#pragma assert non_zero(sizeof(s) == 8) "sizeof assert failed"
#pragma assert non_zero(offsetof(s,b) == 4) "offsetof assert failed"

This pragma provides a similar behavior to that of the Tru64 C compiler.

BINDING Pragma
#pragma BINDING {hidden|protected|extern|default}

Global symbols that follow this pragma will be given a specific binding. Command-line options
and binding pragmas referring to specific symbols (for example, pragma hidden symbol)
override this pragma. This pragma will override command-line bindings that do not refer to a
specific symbol (for example, -Bprotected).

DEFAULT_BINDING Pragma
#pragma DEFAULT_BINDING [symbol{,symbol}]

Global symbols are assigned the default export class. These symbols may be imported or exported
outside of the current load module. The compiler will access tentative and undefined symbols
through the linkage table. Any symbol that is not assigned to another export class through use of
another -B option will have the default export class.

ESTIMATED_FREQUENCY Pragma
#pragma ESTIMATED_FREQUENCY f

This block-scoped pragma allows you to tell the compiler your estimate of how frequently the current
block is executed as compared to the immediately surrounding block. You can indicate the average
trip count in the body of a for loop or the fraction of time a then clause is executed. Frequency,
f can be expressed as a floating point or integer constant. The compiler accepts preprocessor
expressions that evaluate to a compile time constant.

EXTERN Pragma
#pragma EXTERN [symbol{,symbol}]

The specified symbols, or all undefined symbols if no list is provided, are assigned to the default
export class. Additionally, the compiler will inline the import stub for calls to these symbols. No
compile time binding of these symbols will be done. All references to these symbols will be through
the linkage table, so an unnecessary performance penalty will occur if extern is applied to a
listed symbol that is resolved in the same load module. This is the pragma equivalent of -Bextern
and is global in scope.

FREQUENTLY_CALLED Pragma
#pragma FREQUENTLY_CALLED [symbol{,symbol}]

This file-scoped pragma identifies functions that are frequently called within the application. The
pragma must be placed prior to any definition of or reference to the named function. If not, the

106 Pragma Directives and Attributes

behavior is undefined. FREQUENTLY_CALLED pragma is independent of +Oprofile=use in
that it overrides any dynamically obtained profile information.

HDR_STOP Pragma
#pragma HDR_STOP

This pragma instructs the compiler to stop precompiling headers.

HIDDEN Pragma
#pragma hidden [symbol{,symbol}]

The specified symbols, or all symbols (if no symbols are specified), are assigned the hidden export
class. The hidden export class is similar to the protected export class. These symbols will not be
preempted by symbols from other load modules, so the compiler may bypass the linkage table for
both code and data references and bind them to locally defined code and data symbols.
In addition, hidden symbols will not be exported outside the current load module. The linker may
eliminate them from a shared library, but in an executable, they remain accessible to the debugger
unless -Oprocelim is also specified. This is the pragma equivalent of -Bhidden and is global
in scope.

HP_DEFINED_EXTERNAL Pragma
#pragma HP_DEFINED_EXTERNAL name1[,name2,...nameN]

The specified symbols, or all undefined symbols (if no list is provided), are assigned to the default
export class. Additionally, the compiler will inline the import stub for calls to these symbols. No
compile time binding of these symbols will be done. All references to these symbols will be through
the linkage table, so an unnecessary performance penalty will occur if extern is applied to a listed
symbol that is resolved in the same load module. This is the pragma equivalent of -Bextern and
is global in scope.
This pragma is equivalent to #pragma EXTERN.

HP_DEFINED_INTERNAL Pragma
#pragma HP_DEFINED_INTERNAL name1[,name2,...nameN]

The specified symbols, or all symbols (if no symbols are specified), are assigned the protected
export class. That means these symbols will not be preempted by symbols from other load modules,
so the compiler may bypass the linkage table for both code and data references and bind them
to locally defined code and data symbols. This pragma is equivalent to -Bprotected and is
global in scope.
This pragma is equivalent to #pragma PROTECTED.

IF_CONVERT Pragma
#pragma IF_CONVERT

This block-scoped pragma instructs the compiler to If-Convert the current scope. There is no
command-line option equivalent.
If-Conversion is a compiler process that eliminates conditional branches by the use of predicates.
The compiler is instructed to If-Convert all non-loop control flow nested within the current block.
Without this pragma, the compiler would employ its own heuristics to determine whether to perform
If-Conversion. With this pragma, If-Conversion is always performed.
If-Convert can be specified in a loop containing conditional branches other than the loop-back
branch. This makes it more likely the compiler will modulo schedule the loop, as loops containing
conditional branches cannot be modulo scheduled. The pragma can also be used for non-looping
constructs.

Other Pragmas 107

POP Pragma
#pragma POP

The last pushed pragma is removed from the pragma stack and state is restored. The binding state
reverts to the binding state prior to the last push. Note that this pragma can only be used with the
blanket binding pragmas.

Pragma (once)
_Pragma ("once")

The _Pragma ("once") operator is equivalent to #pragma once. This operator ensures that
the source file is included only once during compilation.

PROTECTED Pragma
#pragma PROTECTED [symbol {,symbol}]

The specified symbols, or all symbols (if no symbols are specified), are assigned the PROTECTED
export class. That means these symbols will not be preempted by symbols from other load modules,
so the compiler may bypass the linkage table for both code and data references and bind them
to locally defined code and data symbols. This pragma is equivalent to -Bprotected and is
global in scope.

PTRS_STRONGLY_TYPED Pragma
#pragma [NO]PTRS_STRONGLY_TYPED {BEGIN | END}

This pragma turns strong pointer type testing on and off When turned on (BEGIN) if a pointer
typing error is detected, it will generate a warning if the typing error can be safely ignored. If the
typing error cannot be safely ignored, it will generate a warning and flag the compilation
appropriately, or if this is not possible, it will generate an error. This feature is disabled using the
END attribute..

PTRS_TO_GLOBALS Pragma
#pragma [NO]PTRS_TO_GLOBALS name

This pragma aids alias analysis. It must be specified at global scope and immediately precede the
declaration of the variable or entry named. The pragma tells the optimizer whether the global
variable or entry name is accessed [is not accessed] through pointers. If NOPTRS_TO_GOBALS is
specified, it is assumed that statically-allocated data (including file-scoped globals, file scoped
statics, and function-scoped static variables) will not be read or written through pointers. The default
is PTRS_TO_GLOBALS.

PUSH Pragma
#pragma PUSH pragma_name

This pragma will save the current state on the pragma stack for the named pragma. All subsequent
uses of the named binding pragma will be reverted when the “POP” is encountered. Note that this
pragma can only be used with the blanket binding pragmas.

RARELY_CALLED Pragma
#pragma RARELY_CALLED [symbol{,symbol}]

This file-scoped pragma identifies functions that are rarely called within the application. The pragma
must be placed prior to any definition of or reference to the named function. If not, the behavior
is undefined. RARELY_CALLED is independent of +Oprofile=use option. It overrides any
dynamically obtained profile information.

108 Pragma Directives and Attributes

STDC CX_LIMITED_RANGE Pragma
#pragma STDC CX_LIMITED_RANGE ON

#pragma STDC CX_LIMITED_RANGE OFF

This pragma enables limited range mathematical behavior for specific blocks of code. Note that,
this pragma applies to complex arithmetic only. Also see the ISO/IEC 9899 Standard.
This pragma can occur outside an external declaration or within a compound statement. When
outside external declarations, the pragma takes effect from its occurrence until another STDC
CX_LIMITED_RANGE pragma is encountered or until the end of the translation unit. When within
a compound statement, the pragma takes effect from its occurrence until another STDC
CX_LIMITED_RANGE pragma is encountered within a nested compound statement, or until the
end of the compound statement.
If this pragma is used in any other context, the behavior is undefined. The default state is off.

STDC FLOAT_CONST_DECIMAL64 Pragma
#pragma STDC FLOAT_CONST_DECIMAL64 [ON | OFF | DEFAULT]

With this pragma set to OFF, unsuffixed floating-point constants are treated as having type double.
With this pragma set to ON, unsuffixed floating-point constants are treated as having type
_Decimal64.
The pragma can occur in either of these two contexts:

• Outside external declarations
In this case, the pragma takes effect from its occurrence until another
FLOAT_CONST_DECIMAL64 pragma is encountered, or until the end of the translation unit.

• Preceding all explicit declarations and statements inside a compound statement.
In this case, the pragma takes effect from its occurrence until another
FLOAT_CONST_DECIMAL64 pragma is encountered (including within a nested compound
statement), or until the end of the compound statement; at the end of a compound statement,
the state for the pragma is restored to its condition just before the compound statement.

If this pragma is used in any other context, the behavior is undefined. The default state for the
pragma is OFF.
For more information on using Decimal FP, see the HP aC++/HP ANSI C Release Notes section
"Decimal floating-point arithmetic supported" under "New Features in the A.06.20 Release."

STDC FP_CONTRACT Pragma
#pragma STDC FP_CONTRACT ON

#pragma STDC FP_CONTRACT OFF

This pragma tells the compiler whether or not it is permitted to contract expressions. Also see
ISO/IEC 9899 Standard.
Each pragma can occur either outside external declarations or preceding all explicit declarations
and statements inside a compound statement. When outside external declarations, the pragma
takes effect from its occurrence until another FP_CONTRACT pragma is encountered, or until the
end of the translation unit. When inside a compound statement, the pragma takes effect from its
occurrence until another FP_CONTRACT pragma is encountered within a nested compound
statement, or until the end of the compound statement. At the end of a compound statement, the
state for the pragma is restored to its condition before the compound statement.
If this pragma is used in any other context, the behavior is undefined. The default state is ON.

Other Pragmas 109

STDC FENV_ACCESS Pragma
#pragma STDC FENV_ACCESS ON

#pragma STDC FENV_ACCESS OFF

This pragma provides a means to inform the compiler when a program might access the
floating-point environment to test flags or run under non-default modes. Use of the pragma allows
certain optimizations that could subvert flag tests and mode changes such as global common sub
expression elimination, code motion, and constant folding.
The pragma can be placed either outside external declarations or preceding all explicit declarations
and statements inside a compound statement. When outside external declarations, the pragma
takes effect from its occurrence until another FENV_ACCESS pragma is encountered or until the
end of the translation unit. When inside a compound statement, the pragma is in effect from its
occurrence until another FENV_ACCESS pragma is encountered within the nested compound
statement or until the end of the compound statement. At the end of a compound statement, the
state for the pragma is restored to its condition just before the compound statement.
If the pragma is used in any other context, the behavior is undefined. If part of a program tests
flags or runs under non-default mode settings but was translated with the state for the FENV_ACCESS
pragma off, then the behavior of the program is undefined.
Also see the ISO/IEC 9899 Standard.

UNROLL_FACTOR Pragma
#pragma UNROLL_FACTORn

#pragma UNROLLn

#pragma UNROLL (n)

This block-scoped pragma applies the unroll factor for a loop containing the current block. You
can apply an unroll factor that you think is best for the given loop or apply no unroll factor to the
loop. If this pragma is not specified, the compiler uses its own heuristics to determine the best unroll
factor for the inner loop.
A user specified unroll factor will override the default unroll factor applied by the compiler.
Specifying n=1 will prevent the compiler from unrolling the loop.
Specifying n=0 allows the compiler to use its own heuristics to apply the unroll factor.
Note that this option has no effect on loop unroll-and-jam.

NOTE: UNROLL_FACTOR pragma will be ignored if it is placed in a loop other than the innermost
loop. The UNROLL pragma must be immediately followed with a loop statement and will be ignored
if it is not an innermost loop.

OMP ATOMIC Pragma
#pragma omp atomic

expression-stmt

where expression-stmt must have one of the following forms:

• x binop = expr

• x++

• ++x

• x--

• --x

Here, x is an lvalue expression with scalar type and expr is an expression with scalar type that
does not reference the object designated by x.

110 Pragma Directives and Attributes

The atomic directive ensures that a specific memory location is updated atomically, rather than
exposing it to the possibility of multiple, simultaneous writing threads.

OMP BARRIER Pragma
#pragma omp barrier

The barrier pragma synchronizes all the threads in a team. When encountered, each thread
waits until all the threads in the team have reached that point.
The smallest statement to contain a barrier must be a block or a compound statement. barrier
is valid only inside a parallel region and outside the scope of for, section, sections,
critical, ordered, and master.

OMP CRITICAL Pragma
#pragma omp critical [(name)]

structured-block

The critical pragma identifies a construct that restricts the execution of the associated structured
block to one thread at a time.
The name parameter is optional. All unnamed critical sections map to the same name.

OMP FOR Pragma
#pragma omp for [clause1,clause2, ...]

for-loop

where [clause1, clause2, ...] indicates that the clauses are optional. There can be zero or
more clauses.
clause may be one of the following:

• private(list)

• firstprivate(list)

• lastprivate(list)

• ordered

• schedule(kind[,chunksize])

• nowait

See “OpenMP Clauses” (page 114) for more information.

OMP FLUSH Pragma
#pragma omp flush [(list)]

where (list) names the variables that will be synchronized.
The flush pragma, whether explicit or implied, specifies a cross-thread sequence point at which
the implementation is required to ensure that all the threads in a team have a consistent view of
certain objects in the memory. A flush directive without a list is implied for the following directives:

• barrier

• an entry to and exit from critical

• at entry to and exit from ordered

• at entry to and exit from parallel

• at entry to and exit from parallel for

• at entry to and exit from parallel sections

Other Pragmas 111

• at exit from single

• at exit from for

• at exit from sections

NOTE: The directive is not implied if a nowait clause is present.

OMP MASTER Pragma
#pragma omp master

structured-block

The master pragma directs that the structured-block following it should be executed by the
master thread (thread 0) of the team. Other threads in the team do not execute the associated
block.

OMP ORDERED Pragma
#pragma omp ordered

structured-block

The ordered pragma indicates that the following structured block should be executed in the same
order in which iterations will be executed in a sequential loop.
An ordered directive must be within the dynamic extent of a for or a parallel for construct
that has an ordered clause. When the ordered clause is used with schedule which has a
chunksize, then the chunksize is ignored by the compiler.

OMP PARALLEL Pragma
#pragma omp parallel [clause1, clause2,...]

structured-block

where [clause1, clause2, ...] indicates that the clauses are optional. There can be zero
or more clauses.
clause can be one or more of the following:

• private(list)

• firstprivate(list)

• default(shared|none)

• shared(list)

• reduction(op:list)

• if (scalar-expression)

• copyin (list)

• num_threads

The parallel pragma defines a parallel region, which is a region of the program that is executed
by multiple threads in parallel. This is the fundamental construct that starts parallel execution.

OMP PARALLEL FOR Pragma
#pragma omp parallel for [clause1, clause2, ...]

for-loop

where [clause1, clause2, ...] indicates that the clauses are optional. There can be zero or
more clauses.
The parallel for pragma is a shortcut for a parallel region that contains a single for pragma.
parallel for admits all the allowable clauses of the parallel pragma and the for pragma
except for the nowait caluse.

112 Pragma Directives and Attributes

OMP PARALLEL SECTIONS Pragma
#pragma omp parallel sections [clause1, clause2, ...]
{
 [#pragma omp section]

structured-block
 [#pragma omp section

structured-block]
. . .}

where [clause1, clause2, ...] indicates that the clauses are optional. There can be zero or
more clauses.
The parallel sections pragma is a shortcut for specifying a parallel clause containing a
single sections pragma. parallel sections admits all the allowable clauses of the
parallel pragma and the sections pragma except for the nowait clause.

OMP SECTIONS Pragma
#pragma omp sections [clause1, clause2, ...]
{
#pragma omp section
 [structured-block]
[#pragma omp section

structured-block]
. . .
}

where [clause1, clause2, ...] indicates that the clauses are optional. There can be zero
or more clauses. clause may be one of the following:
• private(list)

• firstprivate(list)

• lastprivate(list)

• reduction(op:list)

• nowait

The section or sections pragmas identify a construct that specifies a set of constructs to be
divided among threads in a team. Each section is executed by one of the threads in the team.

OMP SINGLE Pragma
#pragma omp single [clause1, clause2, . . .]
 [structured-block]

where [clause1, clause2, ...] indicates that the clauses are optional. There can be zero
or more clauses.
clause may be one of the following:

• private(list)

• firstprivate(list)

• copyprivate(list)

• nowait

The single directive identifies a construct that specifies the associated structured block that is
executed by only one thread in the team (not necessarily the master thread).

OMP TASK Pragma
#pragma omp task [clause1, clause2, . . .] new-line
 [structured-block]

Other Pragmas 113

where [clause1, clause2, ...] indicates that the clauses are optional. There can be zero
or more clauses.
clause may be one of the following:

• if (scalar-expression))

• untied

• default (shared | none)

• private (list)

• firstprivate (list)

• shared (list)

The TASK directive defines an explicit task.

OMP TASKWAIT Pragma
#pragma omp taskwait new-line

The TASKWAIT directive specifies a wait on the completion of child tasks generated since the
beginning of the current task.
Because the TASKWAIT construct does not have a C language statement as part of its syntax, there
are some restrictions on its placement within a program. The TASKWAIT directive may be placed
only at a point where a base language statement is allowed. The TASKWAIT directive may not be
used in place of the statement following an if, while, do, switch, or label.

OMP THREADPRIVATE Pragma
#pragma omp threadprivate (list)

where (list) is a comma-separated list of variables that do not have an incomplete type.
The threadprivate directive makes the named file-scope, namescope-scope, or static
block-scope variables private to a thread.

OpenMP Clauses
Clauses on directives may be repeated as needed, subject to the restrictions listed in the description
of each clause. The order in which clauses appear in directives is not significant. If variable-list
appears in a clause, it must specify only variables. The following is the list of clauses in OpenMP
directives:

private
private(list)

The private clause declares the variables in the list to be private to each thread in a team. A
new object with automatic storage duration is allocated within the associated structured block
for each thread in the stream.

firstprivate
firstprivate(list)

The firstprivate clause provides a superset of the functionality provided by the private
clause. Variables specified in the list have private clause semantics described earlier. The new
private object is initialized, as if there is an implied declaration inside the structured block and the
initializer is the value of the original object.

lastprivate
lastprivate(list)

114 Pragma Directives and Attributes

When lastprivate clause is specified in a loop or section, the value of the lastprivate variable
from either the sequentially last iteration of the associated loop, or the lexically last section directive
is assigned to the variable’s original object. The lastprivate clause provides a superset of the
functionality provided by the private clause. Variables specified in the list have private clause
semantics described earlier.

copyprivate
copyprivate(list)

The copyprivate clause can be used to broadcast values acquired by a single thread directly
to all instances of the private variables in the other threads.

NOTE: The copyprivate clause can only appear on the single directive.

if
if(scalar-expression)

The associated block of code will be executed in parallel if the scalar-expression evaluates
to a non-zero value. Otherwise no parallelization happens and it is executed sequentially.
Example:
#pragma omp parallel private(x) if (a>b) reduction(+:p)
{
 // code to be parallelized only when a is greater than b
}

default
default(shared|none)

Specifying default(shared) clause is equivalent to explicitly listing each currently visible
variable in a shared clause unless it is threadprivate or const-qualified. A variable
referenced in the scope of default(none) should be explicitly qualified by a private or
shared clause.

shared
shared(list)

The shared clause causes the variables that appear in the list to be shared among all threads
in a team. All threads within a team access the same storage area for the shared variables.

copyin
copyin(list)

The copyin clause copies the value of master thread’s copy of a threadprivate variable to all
other threads at the beginning of the parallel region. This clause can only be used with the
parallel directive.

reduction
reduction(op:list)

The reduction clause performs a reduction on the scalar variables that appear in the list,
with the operator op.

nowait
nowait

The nowait clause removes the implicit barrier synchronization at the end of a for or sections
construct.

OpenMP Clauses 115

ordered
ordered

The ordered clause must be present when ordered directives bind to the for construct.

schedule
schedule(kind[,chunksize])

The schedule clause specifies how iterations of the for loop are divided among threads of the
team. The kind of schedule can be: static, dynamic, guided, or runtime. chunksize
should be a loop invariant integer expression.

num_threads
num_threads(interger-expression)

The num_threads clause allows a user to request a specific number of threads for a parallel
construct. If the num_threads clause is present, then the value of the integer expression is the
number of threads requested.

Attributes
__attribute__ is a language feature that allows you to add attributes to functions (or with the
aligned attribute, to variables or structure fields). The capabilities are similar to those of #pragma.
It is more integrated into the language syntax than pragmas and its placement in the source code
depends on the construct to which the attribute is being applied.
The attributes supported are:

• aligned
• malloc
• non_exposing
• noreturn
• format
• visibility
• warn_unused_result

attribute aligned
__attribute__ (aligned (alignment))

The aligned attribute specifies the minimum alignment for a variable or structure field, measured
in bytes. For example, the following declaration causes the compiler to allocate the global variable
x on a 16-byte boundary:
int x __attribute__ ((aligned (16))) = 0;

You can also specify the alignment of structure fields. For example, the following causes the compiler
to allocate the field member "x" to be aligned on a 128-byte boundary:
struct foo { int x[2] __attribute__ ((aligned (128)));}

The maximum alignment that can be specified is 128. This feature is for compatibility with gcc.

attribute malloc
__attribute__ ((malloc))

The malloc attribute is used to improve optimization by telling the compiler that:

116 Pragma Directives and Attributes

1. The return value of a call to such a function points to a memory location or can be a null
pointer.

2. On return of such a call (before the return value is assigned to another variable in the caller),
the memory location mentioned in 1. can be referenced only through the function return value;
e.g., if the pointer value is saved into another global variable in the call, the function is not
qualified for the malloc attribute.

3. The lifetime of the memory location returned by such a function is defined as the period of
program execution between a) the point at which the call returns and b) the point at which
the memory pointer is passed to the corresponding deallocation function. Within the lifetime
of the memory object, no other calls to malloc routines should return the address of the same
object or any address pointing into that object.

Many wrappers around malloc() obey these rules. (The compiler already knows that malloc()
itself obeys these rules.)
Example:
void *foo(int i) __attribute__ ((malloc));

attribute non_exposing
__attribute__ ((non_exposing))

The non_exposing attribute is used to improve optimization by telling the compiler that this
function does not cause any address it can _derive_ from any of its formal parameters to become
visible after a call to the function returns.
An address becomes visible if the function returns a value from which it can be _directly
derived_ or if the function stores it in a memory location that is visible (can be referenced directly
or indirectly) after the call to the function returns.(Note that there is no such thing as a formal
parameter of array type. A formal parameter declared to be of type "array of T" is treated as
being of type "pointer to T"; and when an actual argument is of type "array of T", a pointer to the
first element of that array is passed.)Many wrappers around free() obey these rules. (The compiler
already knows that free() itself obeys these rules.) Many functions that have nothing to do with
memory allocation also obey these rules.For the purposes of the specification above, the definitions
of the terms _directly derived_ and _derived_ are as follows:The addresses that can be
directly derived from some value V are the following:
* If V is or can be converted to a pointer value (except by a C++ user-defined conversion), then
consider P to be a pointer object containing that value. The value of any expression _based on_
P (as defined in C99) can be _directly derived_ from V. For example, if P is a pointer object
containing the value V, then "P", "&P->f", "&P[i]", and "P+j" are expressions based on P,
and thus their values are _directly derived_ from V.* If V is an array, then any addresses
that can be _directly derived_ from V’s elements can be _directly derived_ from V.*
If V is a class, struct, or union, then any addresses that can be _directly derived_ from V’s
nonstatic data members can be _directly derived_ from V.* If V is a reference, then &V can
be _directly derived_ from V.The addresses that can be _derived_ from some value V
are the addresses that can be _directly derived_ from V and the addresses that can be
derived from the result of dereferencing those addresses. The function does not store addresses
passed to it as arguments to any memory location that is visible (can be referenced directly or
indirectly) after the call to this function returns.
Example:
void foo(int *pi) __attribute__ ((non_exposing));

attribute noreturn
__attribute__ ((noreturn))

Attributes 117

Similar to the NO_RETURN pragma, this attribute asserts to the optimizer that this function never
returns to the call site. This allows the optimizer to delete any code after the function call. A C++
function marked with this attribute may still throw an exception unless it has an empty throw list.
Example:
void foo(int i) __attribute__ ((noreturn));

attribute format
__attribute__ ((format(type, arg_format_string, arg_check_start)))

The format attribute specifies that a function takes printf, scanf, strftime or strfmon
style arguments which should be type-checked against a format string. In the example above, the
format string is the second argument of the function foo and the arguments to check start with the
third argument.
Example:
int foo(int i, const char *my_format, ...) __attribute__((format(printf, 2, 3)));

attribute visibility
__attribute__ ((visibility("default"|"protected"|"hidden")))

The visibility attributes "default", "protected", and "hidden", are equivalent to the
options -Bdefault, -Bprotected, and -Bhidden, and the pragmas DEFAULT_BINDING,
EXTERN, and HIDDEN, respectively.
Example:
void foo(int i) __attribute__ ((visibility("hidden"));

attribute warn_unused_result
__attribute__ ((warn_unused_result))

If a caller of a function with this attribute does not use its return value, the compiler emits a warning.
This is useful for functions where not checking the result can be a security problem or always a
program bug, as with realloc. The following example results in a warning on line 5:
int fn () __attribute__ ((warn_unused_result));
int test()
{
 if (fn () < 0) return -1;
 fn ();
 return 0;
}

118 Pragma Directives and Attributes

4 Preprocessing Directives
HP aC++ has its own, internal, preprocessor which is similar to the HP C preprocessor described
in the HP C/HP-UX Reference Manual. When you issue the aCC command, your source files are
automatically preprocessed.
This Chapter discusses the following topics:

• “Overview of the Preprocessor” (page 119)

• “Syntax” (page 119)

• “Usage Guidelines” (page 119)

• “Source File Inclusion (#include, #include_next)” (page 120)

• “Macro Replacement (#define, #undef)” (page 121)

• “Assertions (#assert, #unassert)” (page 125)

• “Conditional Compilation (#if, #ifdef, .. #endif)” (page 126)

• “Line Control (#line)” (page 128)

• “IOSTREAM Performance Improvement Pragma” (page 129)

• “Pragma Directive (#pragma) and _Pragma Operator” (page 129)

• “Error Directive (#error)” (page 130)

• “Warning Directive” (page 130)

• “Trigraph Sequences” (page 130)

Overview of the Preprocessor
A preprocessor is a text-processing program that manipulates the text within your source file. You
enter preprocessing directives into your source file to direct the preprocessor to perform certain
actions on the source file. For example, the preprocessor can replace tokens in the text, insert the
contents of other files into the source file, or suppress the compilation of part of the file by
conditionally removing sections of the text. It also expands preprocessor macros and conditionally
strips out comments.

Syntax
The general syntax for a preprocessor directive is:
preprocessor-directive ::=
 include-directive newline
 macro-directive newline
 conditional-directive newline
 line-directive newline
 pragma-directive newline
 error-directive newline
 trigraph-directive newline
 warning-directive newline

Usage Guidelines
Following are rules and guidelines for using preprocessor directives:

• A preprocessor directive must be preceeded by a pound sign (#). White-space characters
may precede the # character.

• The # character is followed by any number of spaces and horizontal tab characters and a
preprocessor directive.

Overview of the Preprocessor 119

• A preprocessor directive is terminated by a newline character.

• Preprocessor directives, as well as normal source lines, can be continued over several lines.
End the lines that are to be continued with a backslash (\).

• Some directives can take actual arguments or values.

• Comments in the source file that are not passed through the preprocessor are replaced with
a single white space character (ASCII character number decimal 32).

Preprocessor directives provide the following functionality:

• Source File Inclusion (#include, #include_next)

• Macro Replacement (#define, #undef)

• Assertions (#assert, #unassert)

• Conditional Compilation (#if, #ifdef, .. #endif)

• Line Control (#line)

• Pragma Directive (#pragma, _Pragma operator)

• Error Directive (#error)

• Trigraph Sequences

• Warning Directive

Source File Inclusion (#include, #include_next)
You can include the contents of other files within the source file using the #include or
#include_next directives.

Syntax
include-directive ::=
 #include <filename>
 #include "filename"
 #include identifier

include_next-directive ::=
 #include_next <filename>
 #include_next "filename"
 #include_next identifier

Description
The #include preprocessing directive causes HP aC++ to read source input from the file named
in the directive. Usually, include files are named filename.h.
If the file name is enclosed in angle brackets (< >), the default system directories are searched to
find the named file. If the file name is enclosed in double quotation marks (“ “), by default, the
directory of the file containing the #include line is searched first, then directories named in -I
options in left-to-right order, and last directories on a standard list.
The arguments to the #include directive are subject to macro replacement before being processed.
Thus, if you use a #include directive of the form #include identifier, identifier must
be a previously defined macro that when expanded produces one of the above defined forms of
the #include directive. Refer to Macro Replacement (#define, #undef) for more information
on macros.
Error messages produced by HP aC++ indicate the name of the #include file where the error
occurred, as well as the line number within the file.

120 Preprocessing Directives

Examples
#include <iostream.h>
#include "myheader.h"
#ifdef MINE
define filename "file1.h"
#else
define filename "file2.h"
#endif
#include filename

The #include_next preprocessor directive is similar to the #include directive, but tells the
preprocessor to continue the include-file search beyond the current directory, and include the
subsequent instance found in the file-search path.

Macro Replacement (#define, #undef)
You can define C++ macros to substitute text in your source file.

Syntax
macro-directive ::=
#define identifier [replacement-list]
#define identifier([identifier-list]) [replacement-list]
#undef identifier

replacement-list ::=
 token
 replacement-list token

Description
A #define preprocessing directive defines the identifier as a macro name that represents the
replacement-list. This is of the form:
#define identifier [replacement-list]
The macro name is then replaced by the list of tokens wherever it appears in the source file (except
inside of a string, character constant, or comment). A macro definition remains in force until it is
undefined through the use of the #undef directive or until the end of the compilation unit.
The replacement-list must fit on one line. If the line becomes too long, it can be broken up
into several lines provided that all lines but the last are terminated by a backslash (\) character.
The following is an example:
#define mac very very long\

replacement string

The \ must be the last character on the line. You cannot add any spaces or comments after it.
Macros can be redefined without an intervening #undef directive. Any parameter used must
agree in number and spelling with the original definition, and the replacement lists must be identical.
All white space within the replacement-list is treated as a single blank space regardless of the
number of white-space characters you use. For example, the following #define directives are
equivalent:
#define foo x + y

#define foo x + y

The replacement-list may be empty. If the token list is not provided, the macro name is
replaced with no characters.

Macros with Parameters
You can create macros that have parameters. The syntax of the #define directive that includes
formal parameters is as follows:

Overview of the Preprocessor 121

#define identifier([identifier-list]) [replacement-list]

The macro name is identifier. The formal parameters are provided by the identifier-list
enclosed in parentheses. The open parenthesis (‘(’) must immediately follow the identifier with no
intervening white space. If there is a space between the identifier and the parenthesis, the macro
is defined as if it were the first form and the replacement-list begins with the (character.
The formal parameters to the macro are separated with commas. They may or may not appear in
the replacement-list. When the macro is invoked, the actual arguments are placed in a
parenthesized list following the macro name. Commas enclosed in additional matching pairs of
parentheses do not separate arguments but are themselves components of arguments.
The actual arguments replace the formal parameters in the token string when the macro is invoked.

Specifying String Literals with the # Operator
If a formal parameter in the macro definition directive’s replacement string is preceded by a #
operator, it is replaced by the corresponding argument from the macro invocation, preceded and
followed by a double-quote character (") to create a string literal. This feature, available only with
the ANSI C preprocessor, may be used to turn macro arguments into strings. This feature is often
used with the fact that HP aC++ concatenates adjacent strings.
Example:
#include <iostream.h>
#define display(arg) cout << #arg << “\n” //define the macro
int main()
{
 display(any string you want to use); //use the macro
}

After HP aC++ expands the macro definition in the preceding program, the following code results:
 ...
main ()
{
 cout << “any string you want to use” << “\n”;
}

Concatenating Tokens with the ## Operator
Use the ## operator within macros to create a single token out of two other tokens. Usually, one
of these two tokens is the actual argument for a macro-parameter. Upon expansion of the macro,
each instance of the ## operator is deleted and the tokens preceding and following the ## are
concatenated into a single token.

Example 1
The following illustrates the ## operator:
 // define the macro; the ## operator
 // concatenates arg1 with arg2
#define concat(arg1,arg2) arg1 ## arg2
int main()
{
 int concat(fire,fly);
 concat(fire,fly) = 1;
 printf("%d \n",concat(fire,fly));
}

Preprocessing this program yields the following:
int main()
{
 int firefly;
 firefly = 1;
 printf("%d \n",firefly);
}

122 Preprocessing Directives

Example 2
You can use the # and ## operators together:
#include <iostream.h>
#define show_me(arg) int var##arg=arg;\
 cout << "var" #arg " is " << var##arg << "\n";
int main()
{
 show_me(1);
}

Preprocessing this example yields the following code for the main procedure:
int main()
{
 int var1=1; cout << "var" "1" " is " << var1 << "\n";
}

After compiling the code with aCC and running the resulting executable file, you get the following
results:
var1 is 1

Spaces around the # and ## are optional.
In both the # and ## operations, the arguments are substituted as is, without any intermediate
expansion. After these operations are completed, the entire replacement text is rescanned for
further macro expansions.

NOTE: The result of the preprocessor concatenation operator ## must be a _single_ token.
In particular, the use of ## to concatenate strings is redundant and not legal C or C++. For example:
#include

#define concat_token(a, b) a##b

#define concat_string(a, b) a b

int main() {

 // Wrong:

 printf("%s\n", concat_token("Hello,", " World!"));

 // Correct:

 printf("%s\n", concat_string("Hello,", " World!"));

 // Best: (macro not needed at all!):

 printf("%s\n", "Hello," " World!");

}

Using Macros to Define Constants
The most common use of the macro replacement is in defining a constant. In C++ you can also
declare constants using the keyword const. Rather than explicitly putting constant values in a
program, you can name the constants using macros, then use the names in place of the constants.
By changing the definition of the macro, you can more easily change the program:
#define ARRAY_SIZE 1000float x[ARRAY_SIZE];

In this example, the array x is dimensioned using the macro ARRAY_SIZE rather than the constant
1000. Note that expressions that may use the array can also use the macro instead of the actual
constant:
for (i=0; i<<ARRAY_SIZE; ++i) f+=x[i];

Changing the dimension of x means only changing the macro for ARRAY_SIZE. The dimension
changes and so do all of the expressions that make use of the dimension.

Other Macros
Some other common macros used by C programmers include:

Overview of the Preprocessor 123

#define FALSE 0

#define TRUE 1

The following macro is more complex. It has two parameters and produces an inline expression
which is equal to the maximum of its two parameters:
#define MAX(x,y) ((x) > (y) ? (x) : (y))

Parentheses surrounding each argument and the resulting expression ensure that the precedences
of the arguments and the result interact properly with any other operators that might be used with
the MAX macro.
Using a macro definition for MAX has some advantages over a function definition. First, it executes
faster because the macro generates in-line code, avoiding the overhead of a function call. Second,
the MAX macro accepts any argument types. A functional implementation of MAX would be restricted
to the types defined for the function.
Note that because each argument each argument to the MAX macro appears in the token string
more than once, the actual arguments to the MAX macro may have undesirable side effects.
The following example may not work as expected because the argument a is incremented two
times when a is the maximum:
i = MAX(a++, b);

This expression is expanded to:
i = ((a) > (b) ? (a) : (b))

Given this macro definition, the statement
i = MAX(a, b+2);

is expanded to:
i = ((a) > (b+2) ? (a) : (b+2));

Example 1
#define isodd(n) (((n % 2) == 1) ? (TRUE) : (FALSE))

This macro tests a number and returns TRUE if the number is odd. It returns FALSE otherwise.

Example 2
#define eatspace()while((c=getc(input))==c==’\n’c\ = ‘t’)

This macro skips white spaces.

Using Constants and Inline Functions Instead of Macros
In C++ you can use named constants and inline functions to achieve results similar to using macros.
You can use const variables in place of macros. You can also use inline functions in many C++
programs where you would have used a function-like macro in a C program. Using inline functions
reduces the likelihood of unintended side effects, since they have return types and generate their
own temporary variables where necessary.

Example
The following program illustrates the replacement of a macro with an inline function:
#include <stream.h>
#define distance1(rate,time) (rate * time)
// replaced by :
inline int distance2 (int rate, int time)
{
 return (rate * time);
}
int main()
{

124 Preprocessing Directives

 int i1 = 3, i2 = 3;

 printf("Distance from macro : %d\n",
 distance1(i1,i2))
; printf("Distance from inline function : %d\n",
 distance2(i1,i2));
}

Predefined Macros
In addition to __LINE__ and __FILE__, HP aC++ provides the following predefined macros.
The list describes the complete set of predefined macros that produce special information. They
cannot be undefined nor changed.

• __cplusplus produces the decimal constant 199707L, indicating that the implementation
supports ANSI/ISO C++ International Standard features. For example,
#if (__cplusplus >= 199711L)
#include
#else
#include

• __DATE__ produces the date of compilation in the form Mmm dd yyyy.

• __FILE__ produces the name of the file being compiled.

• __HP_aCC identifies the HP aC++ compiler driver version. It is represented as a 6-digit number
in the format mmnnxx, where mm is the major version number, nn is the minor version number,
and xx is any extension. For example, for version A.01.21, __HP_aCC=012100.

• __hpux is defined.

• __ia64 is defined.

• __LINE__ produces the current source line number.

• __LP64__ is defined for +DD64.

• _ILP32 is defined for +DD32.

• _LP64 is defined for +DD64.

• __STDCPP__ produces the decimal constant 1, indicating that the preprocessor is in ANSI
C/C++ mode.

• __TIME__ produces the time of compilation in the form hh:mm:ss.

• __unix is defined.
To use some HP-UX system functions you may need to define the symbol __HPUX_SOURCE.
See stdsyms(5) manpage or the HP-UX Reference Manual for more information.

Assertions (#assert, #unassert)
Use #assert and #unassert to set a predicate name or predicate name and token to be tested
with a #if directive. Note that you must also specify the -ext option at compile and link time.

Syntax
#assertpredicate-name[token-name]
#unassertpredicate-name[token-name]

Description
#assert sets the predicate-name [token-name] to true. #unassert sets the
predicate-name [token-name] to false.
Note that when testing a predicate, it must be preceded by the # character.

Overview of the Preprocessor 125

HP aC++ predefines the following predicates:

• #assert system(unix)

• #assert model(lp64) // when +DA2.0W is used

• #assert model(ilp32) // default

• #assert endian(big)

Example:
int main()
{
#assert dimensions(three) // Set predicate and token to true.
#if #dimensions(two)
#error "May not compile in 2 dimensions"
#endif

#if #dimensions(three)
int x, y, z;
#endif

#unassert dimensions // Set predicate and all tokens to false.
}

Conditional Compilation (#if, #ifdef, .. #endif)
Conditional compilation directives allow you to delimit portions of code that are compiled only if
a condition is true.

Syntax
conditional-directive ::=
#if constant-expression newline
#ifdef identifier newline [group]
#ifndef identifier newline [group]
#else newline [group]
#elif constant-expression newline [group]
#endif

Here, constant-expression may also contain the defined operator:
defined identifier

defined (identifier)

The constant-expression is like other C++ integral constant expressions except that all
arithmetic is carried out in long int precision. Also, the expressions cannot use the sizeof
operator, a cast, an enumeration constant, or a const object.

Description
You can use #if, #ifdef, or #ifndef to mark the beginning of the block of code that will only
be compiled conditionally. An #else directive optionally sets aside an alternative group of
statements. You mark the end of the block using an #endif directive.
The following #if directive illustrates the structure of conditional compilation:
#if constant-expression
 ...

(Code that compiles if the expression evaluates to a nonzero value.)
 ...
#else
 ...

(Code that compiles if the expression evaluates to zero.)

126 Preprocessing Directives

 ...
#endif

Using the defined Operator
You can use the defined operator in the #if directive to use expressions that evaluate to 0 or
1 within a preprocessor line. This saves you from using nested preprocessing directives.
The parentheses around the identifier are optional. Below is an example:
#if defined (MAX) && ! defined (MIN)
 ...

Without using the defined operator, you would have to include the following two directives to
perform the above example:
#ifdef max
#ifndef min

Using the #if Directive
The #if preprocessing directive has the form:
#ifconstant-expression

Use #if to test an expression. HP aC++ evaluates the expression in the directive. If the expression
evaluates to a non-zero value (TRUE), the code following the directive is included. Otherwise, the
expression evaluates to FALSE and HP aC++ ignores the code up to the next #else, #endif,
or #elif directive.
All macro identifiers that appear in the constant-expression are replaced by their current replacement
lists before the expression is evaluated. All defined expressions are replaced with either 1 or 0
depending on their operands.

The #endif Directive
Whichever directive you use to begin the condition (#if, #ifdef, or #ifndef), you must use
#endif to end the if section.

Using the #ifdef and #ifndef Directives
The following preprocessing directives test for a definition:
#ifdef identifier

#ifndef identifier

These preprocessing directives behave like the #if directive, but #ifdef is considered true if the
identifier was previously defined using a #define directive or the -D option. #ifndef is
considered TRUE if the identifier is not defined yet.

Nesting Conditional Compilation Directives
Use the #else directive to specify an alternative section of code to be compiled if the #if, #ifdef,
or #ifndef conditions fail. The code after the #else directive is included if the code following
any of the #if directives is not included.

Using the #else Directive
Use the #else directive to specify an alternative section of code to be compiled if the #if, #ifdef,
or #ifndef conditions fail. The code after the #else directive is included if the code following
any of the #if directives is not included.

Using the #elif Directive
The #elif constant-expression directive tests whether a condition of the previous #if, #ifdef,
or #ifndef was false. #elif has the same syntax as the #if directive and can be used in place
of an #else directive to specify an alternative set of conditions.

Overview of the Preprocessor 127

Examples
The following examples show valid combinations of conditional compilation directives:
#ifdef SWITCH // compiled if SWITCH is defined
#else // compiled if SWITCH is undefined
#endif // end of if

#if defined(THING) // compiled if THING is defined
#endif // end of if

#if A>47 // compiled if A is greater than 47
#else
#if A < 20 // compiled if A is less than 20
#else // compiled if A is greater than or equal
 // to 20 and less than or equal to 47
#endif // end of if, A is less than 20
#endif // end of if, A is greater than 47

Following are more examples showing conditional compilation directives:
#if (LARGE_MODEL)
#define INT_SIZE 32 // Defined to be 32 bits.
#elif defined (PC) && defined (SMALL_MODEL)
#define INT_SIZE 16 // Otherwise, if PC and SMALL_MODEL
 // are defined, INT_SIZE is defined
 // to be 16 bits.
#endif
#ifdef DEBUG // If DEBUG is defined, display
cout << "table element : \n"; // the table elements.
for (i=0; i << MAX_TABLE_SIZE; ++i)
 cout << i << " " << table[i] << ’\n’;
#endif

Line Control (#line)
You can cause HP aC++ to set line numbers during compilation from a number specified in a line
control directive. The resulting line numbers appear in error message references, but do not alter
the line numbers of the actual source code.

Syntax
line-directive ::=
 #line digit-sequence [filename]

Description
The #line preprocessing directive causes HP aC++ to treat lines following it in the program as
if the name of the source file were filename and the current line number were digit-sequence. This
serves to control the file name and line number that are given in diagnostic messages. This feature
is used primarily by preprocessor programs that generate C++ code. It enables them to force HP
aC++ to produce diagnostic messages with respect to the source code that is input to the
preprocessor rather than the C++ source code that is output.
HP aC++ defines two macros that you can use for error diagnostics. The first is __LINE__, an
integer constant equal to the value of the current line number. The second is __FILE__, a quoted
string literal equal to the name of the input source file. You can change __FILE__ and __LINE__
using #include or #line directives.

Example
#line 5 "myfile"

128 Preprocessing Directives

IOSTREAM Performance Improvement Pragma
The -AA -D_HP_NONSTD_FAST_IOSTREAM Performance Improvement macro can be used to
improve the -AA iostream performance.

Syntax:
#define _HP_NONSTD_FAST_IOSTREAM 1 (or)
aCC options -D_HP_NONSTD_FAST_IOSTREAM

This macro enables the following non-standard features:

• Sets std::ios_base::sync_with_stdio(false), which disables the default
synchronization with stdio

• Sets std::cin.tie(0). which unties the cin from other streams.

• Replaces all occurrences of “std::endl” with “\n”.
Enabling this macro can provide noticeable performance improvement if the application uses
iostreams often.

NOTE: Note: Do not enable the HP_NONSTD_FAST_IOSTREAM macro in any of the following
cases:.

• If the application assumes a C++ stream to be in sync with a C stream.

• If the application depends on stream flushing behavior with endl.

• If the user uses "std::cout.unsetf(ios::unitbuf)" to unit buffer the output stream.

Pragma Directive (#pragma) and _Pragma Operator
A #pragma directive is an instruction to the compiler. Use a pragma to control the actions of the
compiler in a particular portion of a program without affecting the program as a whole.

Syntax
pragma-directive ::=

#pragma [token-list]

Description
The #pragma directive is ignored by the preprocessor, and instead is passed on to the HP aC++
compiler. It provides implementation-dependent information to HP aC++. Any pragma that is not
recognized by HP aC++ will generate a warning from the compiler.
The _Pragma operator, supported in non-strict C++98/C++03 mode and in all C++0x modes,
has the effect of expanding the pragma specified in the string (in double-quotes) in just the way a
#pragma directive would. For example:
_Pragma ("pack 1");
struct Packed {
char c;
int i;
};
int main () {
int iPackedSize = sizeof(Packed);
}

See Chapter 3 (page 96) for more information on pragmas.

Example
#pragma OPTIMIZE ON

Overview of the Preprocessor 129

Error Directive (#error)
The #error directive causes a diagnostic message, along with any included token arguments, to
be produced by HP aC++.

Syntax
error-directive ::=

#error [preprocessor tokens]

Example
 // This directive will produce the diagnostic
 // message "FLAG not defined!".
#ifndef FLAG
#error "FLAG not defined!"
#endif

 // This directive will produce the diagnostic
 // message "TABLE_SIZE must be a multiple of 256!".
#if TABLE_SIZE % 256 != 0
#error "TABLE_SIZE must be a multiple of 256!"
#endif

Warning Directive
The #warning directive causes a diagnostic message, along with any included token arguments,
to be produced by HP aC++.

Syntax
warning-directive ::=

#warning [preprocessor tokens]

Trigraph Sequences
The C++ source code character set is a superset of the ISO 646-1983 Invariant Code Set. To
enable you to use only the reduced set, you can use trigraph sequences to represent those characters
not in the reduced set.
A trigraph sequence is a set of three characters that is replaced by a corresponding single character.
The preprocessor replaces all trigraph sequences with the corresponding character. The list below
gives the complete list of trigraph sequences and their replacement characters. The following are
all the trigraph sequences and their respective replacement characters:

• ??= is replaced by #

• ??/ is replaced by \

• ??’ is replaced by ^

• ??(is replaced by [

• ??) is replaced by]

• ??! is replaced by |

• ??< is replaced by {

• ??> is replaced by }

• ??- is replaced by ~

Examples
The line below contains the trigraph sequence ??=:

130 Preprocessing Directives

??=line 5 "myfile"

When this line is compiled it becomes:
#line 5 "myfile”

Overview of the Preprocessor 131

5 Using HP aC++ Templates
The following sections overview template processing and describe the instantiation coding methods
available to you.
• “Invoking Compile-Time Instantiation” (page 132)

• “Scope and Precedence” (page 132)

• “Template Processing” (page 132)

• “Explicit Instantiation” (page 133)

• “Command-Line Option Instantiation” (page 134)

• “Compile-Time Instantiation” (page 134)

• “Migrating from Automatic Instantiation to Compile-time Instantiation” (page 135)

• “C++ Template Tutorial” (page 136)

Invoking Compile-Time Instantiation
There are three methods of invoking compile-time instantiation:

• Explicit Instantiation (developer-directed)

• Command-Line Option Instantiation (developer-directed)

• Compile-Time Instantiation (default)

Scope and Precedence
Explicit instantiation provides instantiation for a particular template class or template function.
While command line options and the default compile-time instantiation provide instantiation at the
level of the translation unit.
If you use explicit instantiation in addition to command-line options or default instantiation, explicit
instantiation takes precedence.
For example, using the +inst_compiletime option requests instantiation of all used template
functions and all static data members and member functions of instantiated template classes within
a translation unit. Using explicit instantiation requests instantiation of all members of a particular
template class or a particular template function.

Template Processing
In HP aC++, compile-time instantiation is the default template instantiation mechanism. During
compile-time instantiation, the compiler instantiates every template entity it sees in a translation
unit provided it has the required template definition.
Following is the overview of template processing:During compile-time instantiation, the compiler
instantiates every template entity it sees in a translation unit provided it has the required template
definition

• The compiler places an instantiation in every .o file in which a template is used and its
definition is known. The linker arbitrarily chooses a .o file to satisfy an instantiation request.
Only the chosen instantiation appears in the a.out or .so file. Any redundant instantiations
in other .o files are ignored.

• No instantiation information is placed in object (.o) files. The linker is responsible for ignoring
duplicate instantiations.

• No .I files are created. All .o files are compiled only once.

132 Using HP aC++ Templates

Explicit Instantiation
You request explicit instantiation by using the explicit template instantiation syntax (as defined in
the ANSI/ISO C++ International Standard) in your source file.
You can request explicit instantiation of a particular template class or a particular template function.
In addition, member functions and static data members of class templates may be explicitly
instantiated.
Explicit instantiation of a class instantiates all member functions and static data members of that
class, regardless of whether or not they are used.
For example, following is a request to explicitly instantiate the Table template class with char*:
template class Table<char*>;

When you specify an explicit instantiation, you are asking the compiler to instantiate a template
at the point of the explicit instantiation in the translation unit in which it occurs.

Usage
This might be useful when you are building a library for distribution and want to create a set of
compiler-generated template specializations that you know will most commonly be used. Then
when an application is linked with this library, any of these commonly used specializations need
not be instantiated.
Another scenario might be a frequently used library that contains a repository of template
specializations for your development team. Instantiating all such specializations in one, known
translation unit would allow easy maintenance when changes are needed and eliminate cases of
duplicate definition.

Performance
Although time is required to analyze and design code for explicit instantiation, compilation may
be faster than for the equivalent implicit instantiation.

Examples
Following are the examples for explicit and implicit instantiation:

Class Template
Following are examples of explicit and implicit instantiation syntax for a class template:
template <class T> class Array; // forward
 // declaration
 // for the
 // Array class
 // template

template <class T> class Array {/*...*/}; // definition
 // of the Array
 // class
 // template

template class Array <int>; // request to
 // explicitly
 // instantiate
 // Array<int>
 // template class

Array <char> tc; // use of
 // Array<char>
 // template

Invoking Compile-Time Instantiation 133

 // class which
 // results in
 // implicit
 // instantiation

Function Template
Following are examples of explicit and implicit instantiation syntax for a function template:
template <class T> void sort(Array<T> &); // declaration
 // for the
 // sort()
 // function
 // template

template <class T> void sort(Array<T> &v) {/* ... */};
 // definition
 // of the
 // sort()
 // function
 // template

template void sort<char> (Array <char>&); // request to
 // explicitly
 // instantiate
 // the
 // sort<char> ()
 // template
 // function

 // NOTE <char> is not required if
 // the compiler can deduce this.

void foo() {
Array <int> ai;
sort(ai); // use of the sort<int> ()
} // template function which
 // results in implicit instantiation

NOTE: All template options on an aCC command-line apply to every file on the command line.
If you specify more than one option on a command-line, only the last option takes effect.

For More Information, refer to the ANSI/ISO C++ International Standard for additional details
including explicit specialization syntax.

Command-Line Option Instantiation
See “Template Options” (page 91) for more information on command-line instantiation.

Compile-Time Instantiation
By default, compile-time instantiation is in effect. Instantiation is attempted for any use of a template
in the translation unit where the instantiation is used. All used template functions, all static data
members and member functions of instantiated template classes, and all explicit instantiations are
instantiated in the resulting object file.
If there are duplicate instantiations at link-time, the linker arbitrarily selects an instantiation for
inclusion in the a.out or shared library.
The following command-lines are equivalent; each compiles a.C using compile-time instantiation.
aCC -c +inst_compiletime a.C

aCC -c a.C

134 Using HP aC++ Templates

Why Use Compile-Time Instantiation
Compile-time instantiation is the default. It is easy to use. Your code may compile faster when using
compile-time instantiation.
If your development environment uses a version control system that is sensitive to file modifications,
you may want to use the current default, compile-time instantiation, to avoid major code rebuilds.

NOTE: If you have used automatic instantiation with earlier versions of HP aC++ there may be
some migration issues. See “Migrating from Automatic Instantiation to Compile-time Instantiation”
(page 135) for more information.

Scope
If your source code contains templates and you do not specify any template command-line options
nor explicit instantiations, compile-time instantiation takes place for any use of a template. If you
specify a template command-line option, the option takes precedence for all translation units on
the command line. Any explicit instantiation takes precedence over either a command-line option
or compile-time instantiation.

Usage
Compared with developer-directed instantiation, compile-time instantiation involves less coding
time for the developer. However, the design of your application may require the use of some form
of directed instantiation.

Migrating from Automatic Instantiation to Compile-time Instantiation
If you have used automatic instantiation with earlier versions of HP aC++ there will be some known
migration problems. The following migration problems may occur:

• Creating object files

• Creating an executable

• Closing a set of object files prior to creating a library (.a or .so)

• Creating a shared library (.so)
The following sections describe specific migration scenarios and illustrate possible migration
problems and solutions:

Possible Duplicate Symbols in Shared Libraries
An existing compiler defect may be more apparent, if in HP aC++ A.02.00 or A.01.04 and prior
versions you built a shared library using automatic instantiation (the prior default using the assigner)
and now build that library using the current default (compile-time) instantiation. The defect relates
to template objects with constructors or other runtime initializers that have been globally defined
in more than one shared library on the link line. If such an object is defined in n shared libraries,
it will be initialized and destructed n times at runtime.
When building the same application with the current default, the libraries are not closed prior to
the final link, and the likelihood of a template symbol being defined in more than one shared
library will increase.

Possible Duplicate Symbols in Archive Libraries
If you have built an archive library using automatic instantiation in HP aC++ A.02.00 or A.01.04
and prior versions, and you rebuild that library using the current (compile-time) instantiation, it is
possible that duplicate symbol problems not apparent in the prior release will generate errors in
the current release.
This is because the current default uses the linker, rather than the assigner, to determine which
object file to pick to satisfy instantiation requests.

Invoking Compile-Time Instantiation 135

For example, when your archive library is linked with an application, library objects in the link
may be different than those used when linking the library in a prior release.
Following are two examples of building an archive library; one built with
+inst_auto/+inst_close (the prior default), and the other built with the current (compile-time)
default:

Building an Archive Library with +inst_auto/+inst_close
Suppose for lib.inst_auto.a, the linker chooses foo2.o to resolve symbol x, and foo3.o
to resolve symbol stack <int>, symbols x, y, and stack <int> are each resolved with no
duplicates.
lib.inst_auto.a

foo.o	foo2.o	foo3.o
		stack<int>
x	x	y
y		

Building an Archive Library with Compile-time Instantiation
Suppose for lib.default.a, the linker chooses foo2.o to resolve symbol x, and foo.o to
resolve symbol stack <int>, symbols x, y, and stack <int> are each resolved, but now
there’s a duplicate definition of symbol x. This will cause a linker duplicate symbol error. This is
really a user error, but was not visible before.
lib.default.a

foo.o	foo2.o	foo3.o
stack<int>	stack<int>	stack<int>
x	x	y
y		

NOTE: This example is not meant to account for all cases of changed behavior.

C++ Template Tutorial
You can create class templates and function templates. A template defines a group of classes or
functions. A template can have one or more types as parameters. When you use a template, you
provide the particular types or constant expressions as actual parameters thereby creating a
particular object or function.

Class Templates
A class template defines a family of classes. To declare a class template, you use the keyword
template followed by the template’s formal parameters. Class templates can take parameters
that are either types or expressions. You define a template class in terms of those parameters. For
example, the following is a class template for a simple stack class. The template has two parameters,
the type specifier T and the int parameter size. The keyword class in the < > brackets is
required to declare any template type parameters. The first parameter T is used for the stack element
type. The second parameter is used for the maximum size of the stack.
template<class T, int size>
class Stack
{
public:
 Stack(){top=-1;}
 void push(const T& item){thestack[++top]=item;}
 T& pop(){return thestack[top--];}
private:
 T thestack[size];

136 Using HP aC++ Templates

 int top;
};

Class template member functions and member data use the formal parameter type, T, and the
formal parameter expression, size. When you declare an instance of the class Stack, you
provide an actual type and a constant expression. The object created uses that type and value in
place of T and size, respectively.
For example, the following program uses the Stack class template to create a stack of 20 integers
by providing the type int and the value 20 in the object declaration.
int main()
{ Stack<int,20> myintstack;
 int i;

 myintstack.push(5);
 myintstack.push(56);
 myintstack.push(980);
 myintstack.push(1234);
 i = myintstack.pop();
}

The compiler automatically substitutes the parameters you specified, in this case int and 20, in
place of the template formal parameters. You can create other instances of this template using
other built-in types as well as user-defined types.

Function Templates
A function template defines a family of functions. To declare a function template, use the keyword
template to define the formal parameters, which are types, then define the function in terms of
those types. For example, the following is a function template for a swap function. It simply swaps
the values of its two arguments:
template<class T>
void swap(T& val1, T& val2)
{
 T temp=val1;
 val1=val2;
 val2=temp;
}

The argument types to the function template swap are not specified. Instead, the formal parameter,
T, is a placeholder for the types. To use the function template to create an actual function instance
(a template function), you simply call the function defined by the template and provide actual
parameters. A version of the function with those parameter types is created (instantiated).
For example, the following main program calls the function swap twice, passing int parameters
in the first case and float parameters in the second case. The compiler uses the swaptemplate
to automatically create two versions, or instances, of swap, one that takes int parameters and
one that takes float parameters.
int main()
{ int i=2, j=9;
 swap(i,j);

 float f=2.2, g=9.9;
 swap(f,g);
}

Other versions of swap can be created with other types to exchange the values of the given type.

Invoking Compile-Time Instantiation 137

6 Standardizing Your Code
HP aC++ largely conforms to the ISO/IEC 14882 Standard for the C++ Programming Language
(the international standard for C++). This chapter discusses the following topics:
• “HP aC++ Keywords” (page 138)

• “Overloading new[] and delete[] for Arrays” (page 150)

• “Standard Exception Classes” (page 152)

• “Exceptions Thrown by the Standard C++ Library” (page 153)

• “type_info Class” (page 153)

• “Unsupported Functionality” (page 154)

HP aC++ Keywords
HP aC++ supports the following list of keywords. Keywords cannot be abbreviated and must
always be entered in lowercase letters.

Table 10 HP aC++ Keywords

• static_cast• friend• and

• and_eq • template• inline

• mutable• bitand • this

• throw• namespace• bitor

• bool • true• new

• not• catch • try

• typeid• not_eq• class

• compl • typename• operator

• or• const (also an ANSI C keyword) • using

• virtual• or_eq• const_cast

• delete • volatile (also an ANSI C keyword)• private

• protected• dynamic_cast • wchar_t

• xor• public• explicit

• ••false xor_eqreinterpret_cast

bool Keyword
The keyword bool represents a data type. Variables and expressions of type bool can have a
value of either true or false. The value of true equals 1. The value of false equals 0.

Usage
The ANSI/ISO C++ International Standard states that values of type bool are either true or
false. There are no signed, unsigned, short, or long bool types or values. bool values behave
as integral types and participate in integral promotions. Types bool, char, wchar_t, and the
signed and unsigned integer types are collectively called integral types. A synonym for integral
type is integer type. The representations of integral types shall define values by use of a pure binary
numeration system.

Example
int main(){
bool b=true; // Declare a variable of type bool and set it to true.
if (b) // Test value of bool variable.

138 Standardizing Your Code

 b=false; // Set it to false.
}

dynamic_cast Keyword
The keyword dynamic_cast is used in expressions to check the safety of a type cast at runtime.
It is the simplest and most useful form of runtime type identification. You can use it to cast safely
within a class hierarchy based on the runtime type of objects that are polymorphic types (classes
including at least one virtual function). At runtime, the expression being cast is checked to verify
that it points to an instance of the type being cast to.

Usage
A dynamic cast is most often used to cast from a base class pointer to a derived class pointer in
order to invoke a function appearing only in the derived class. Virtual functions are preferred when
their mechanism is sufficient. Usually a dynamic cast is necessary because the base class is being
specialized, but cannot (or should not) be modified.

Example
class Base {
 virtual void f(); // Make Base a polymorphic type.
 // other class details omitted
};

class Derived : public Base {
 // class details omitted
};

void Base::f()
{
 // define Base function
}

int main()
{
 Base *p;
 Derived *q;

 Base b;
 Derived d;

 p = &b;
 q = dynamic_cast<Derived *> (p); // Yields zero.

 p = &d;
 q = dynamic_cast<Derived *> (p); // Yields p treated
 // as a derived pointer.
}

Static and dynamic casts are used to move within a class hierarchy. Static casts use only static
(compile-time) information to do the conversions. In the example above, if p is really pointing to
an object of type Derived, either a static or dynamic cast of p to q yields the same result. This
is also true if p were the null pointer. But, if p is not pointing to an object of type Derived, a
dynamic cast returns zero, and a static cast returns a stray pointer. Dynamic casts must be done
to a pointer or reference type. For example, if the cast above is written as:
q = dynamic_cast <Derived> (p);

The compile time error message is:
The result type of a dynamic cast must be a pointer or reference to a
complete class; the actual type was Derived.

HP aC++ Keywords 139

If you attempt a dynamic cast from a non-polymorphic type, you will also get a compile-time error.
For example:
class Base {
 // class details omitted
};

class Derived : public Base {
 // class details omitted
};

int main()
{
 Base *p;
 Derived *q;

 Base b;
 p = &b;
 q = dynamic_cast<Derived *> (p);
}

The above generates a compile-time error:
Dynamic down-casts and cross-casts must start from a polymorphic class
(one that contains or inherits a virtual function); but class Base is
not polymorphic.

The syntax of conditions allows declarations in them. For example:
class Base {
 virtual void f(); // Make Base a polymorphic type
 // other class details omitted
};

class Derived : public Base {
public:
 void derivedFunction();
 // other class details omitted
};

void Base::f()
{
 // Define Base function.
}

void Derived::derivedFunction()
{
}

int main()
{
 Base *p = new Derived;

 // details omitted

 if (Derived *q = dynamic_cast<Derived *> (p))
 q->derivedFunction(); // use derived function
}

You can use dynamic casts with references as well. Since a reference cannot be zero, when the
cast fails, it raises a Bad_cast exception. Before the implementation of the dynamic cast operator,
you could not cast from a virtual base class to one of its derived classes because there was not
enough information in the object at runtime to do this cast. Once runtime type identification was
added, however, the information stored in a polymorphic virtual base class is sufficient to allow
a dynamic cast from this base class to one of its derived classes. For example:

140 Standardizing Your Code

class Base1 {
 // Not a polymorphic type.
 // additional class details omitted
};

class Base2 {
 virtual void f(); // Make Base2 polymorphic.
 // additional class details
 // omitted
};

void Base2::f()
{
 // Define Base2 function.
}

class Derived : public virtual Base1, public virtual Base2 {
 // additional class details omitted
};

int main()
{
 Base1 *bp1;
 Base2 *bp2;
 Derived *dp;

 bp1 = new Derived;
 bp2 = new Derived;

 // dp = (Derived *) bp1;
 // Problem: compile time error
 // Can’t cast from virtual base.

 // dp = (Derived *) bp2;
 // Problem: compile time error
 // Can’t cast from virtual base.

 // dp = dynamic_cast<Derived *> bp1;

 // Problem: compile time error
 // Can’t cast from
 // non-polymorphic type.

 dp = dynamic_cast<Derived *> bp2; // OK
}

explicit Keyword
explicit Keyword
The explicit keyword is used for declaring constructor functions within class declarations. When
these functions are declared explicit, they cannot be used for implicit conversions.

Usage
While constructors taking one argument are often useful in the design of a class, they can allow
inadvertent conversion in expressions. This can introduce subtle bugs. The explicit keyword
allows a class designer to prohibit such implicit conversions. It is often used in the production of
class libraries.

Example
class C {
public:

HP aC++ Keywords 141

 explicit C(int);
};

C::C(int)
{
 // empty definition
}

int main()
{
 C c(5); // Legal
 c = C(10); // Legal
 // c = 15; // Produces a compile time error:
 // Message: Cannot assign ‘C’ with ‘int’.
 // c + 20; // Produces a compile time error
}

A classic example of this problem is an array class:
class Vector {
public:
 Vector(int n); // create a vector of n items

 // other class details omitted

};

int main()
{
 Vector operator + (Vector, Vector);

 Vector v1(10), v2(10); // create two 10 element vectors
 // details omitted
 v1 = v2 + 5; // Legal - converts int 5 to a 5
 // element vector and adds to v2.
 // Not something you want to be
 // legal
}

With the explicit keyword, the constructor can be made explicit and the declarations are legal,
but the addition is a compilation error:
class Vector {
public:
 explicit Vector(int n); // create a vector of n items

 // other class details omitted
};

int main()
{
 Vector operator + (Vector, Vector);

 Vector v1(10), v2(10); // create two 10 element vectors

 // details omitted

 // v1 = v2 + 5; // Not legal - generates compile-
 // time error
 // Message: Illegal typEs
 // associated with operator ‘+’:
 // ‘Vector’ and ‘int’.
}

142 Standardizing Your Code

mutable Keyword
The mutable keyword is used in declarations of class members. It allows certain members of
constant objects to be modified in spite of the const of the containing object.

Usage
Often some class members are part of the implementation of the object, not part of the actual
information stored by the object. Although the information in the object needs to stay unmodified
in a const object, the implementation members may need to change. These are declared mutable.
An example of this is use or reference count in an object that keeps track of the number of pointers
referring to it.

Example
class C {
public:
 C();
 int i;
 mutable int j;
};

C::C() : i(1), j(3)
{
 // Define constructor
}

int main()
{
 const C c1;
 C c2;

 // c1.i =0; // Problem: compilation error
 // Message: The left side of ‘=’
 // must be a modifiable lvalue.
 c1.j = 1; // OK
 c2.i = 2; // OK
 c2.j = 3; // OK
}

The mutable keyword can only be used on class data members. It cannot be used for const or static
data members. Notice the difference in the two pointer declarations below:
class C {
 C() { } // define constructor

 mutable const int *p; // OK
 // mutable pointer to int const
 // p in constant C object
 // can be modified

 mutable int *const q; // Compile time error
 // mutable const pointer to int
 // const data member can’t be
 // mutable
 // Message: ‘mutable’ may be
 // used only in non-static
 // and non-constant data
 // member declarations within
 // class declarations
};

HP aC++ Keywords 143

namespace and using Keywords
Namespaces were introduced into C++ primarily as a mechanism to avoid naming conflicts between
various libraries. The following example illustrates how this is achieved:Every namespace introduces
a new scope. By default, names inside a namespace are hidden from enclosing scopes. Selection
of a particular name can be achieved using the qualified-name syntax. Namespaces can be nested
very much like classes.
#include <stdio.h>

namespace N {
 struct Object {
 virtual char const* name() const { return “Object from N”; }
 };
}

namespace M {
 struct Object {
 virtual char const* name() const { return “Object from M”; }
 };

 namespace X { // a nested namespace
 struct Object: M::Object { // inherit from a class
 // in the outer space
 char const* name() const { return “Object from M::X”; }
 };
 }
}

int main() {
 N::Object o1;
 M::Object o2;
 M::X::Object o3;
 printf(“This object is: %s.\n”, o1.name());
 printf(“This object is: %s.\n”, o2.name());
 printf(“This object is: %s.\n”, o3.name());
 return 0;
}

Connections Across Translation Units
If a type, function, or object is declared inside of a namespace, then using that entity will require
naming this namespace in some explicit or implicit way; even if the use happens in another
translation unit (or source file).
A unique feature of namespaces is that they can be extended. The following example shows this;
as well as the connections between a namespace extending across different translation units.
The example also illustrates the concept of unnamed namespaces. These namespaces can only be
extended within a translation unit. Unnamed namespaces in different translation units are unrelated;
hence their names effectively have internal linkage. In fact, the ANSI/ISO C++ International
Standard specifies that using static to indicate internal linkage is deprecated in favor of using
namespaces.
#include <stdio.h>

namespace N {
 char const* f() { return “f()”; }
}

namespace { // An unnamed namespace
 char const* f(double);
} // Names in unnamed namespaces are visible in their surrounding scope.
 // They cannot be qualified since the space has no name.

144 Standardizing Your Code

namespace N { // An extension of the first part of namespace N
 char const* f(int); // Leave the implementation to another
} // translation unit.

int main() {
 printf(“Calling: %s.\n”, N::f()); // OK, declared and defined above
 printf(“Calling: %s.\n”, N::f(7)); // OK, declared above (defined elsewhere)
 printf(“Calling: %s.\n”, f(3.0)); // OK, declared above (defined below)
 return 0;
}

namespace { // An extension of the unnamed namespace in this translation unit
 char const* f(double) { return “f(double) in main() translation unit”; }
}

An Auxiliary Translation Unit
Following is an auxiliary translation unit that illustrates how namespaces interact across translation
units.
namespace { // An unnamed namespace unrelated to the
 // one in the other translation units.
 char const* f(double) { return “f(double) in auxiliary translation unit”; }
}

namespace N { // This namespace is the same as the
 // one in the main() translation unit.
 // We implement f(int) here.
 char const* f(int) { return “f(int) defined in auxiliary translation unit”; }
}

using- declarations and using- directives
C++ provides two alternatives to explicitly qualifying names in namespaces. These are the using-
declaration and the using- directive.

using- declaration
A using- declaration introduces a declaration in the current scope as follows:
using N::x; // Where N is a namespace, x is a name in N

After this declaration, all uses of x in this scope are taken to defer to N::x. (The N:: prefix is no
longer required.)
If another declaration of x were introduced in the same scope, for example:
int x;

then a compiler error occurs.

using- directive
The using- directive directs the lookup for names not declared in current scope, for example:
using namespace N; // If not found, lookup names in namespace N

If x is a name in namespace N, but another declaration of x is present in the current scope, for
example:
int x;

a compiler error is not necessarily emitted. Only if that name is used will an ambiguity occur.

NOTE: Using- directives are transitive. If you specify a using- directiveto one namespace
which itself specifies a directive to another namespace, then names used in your scope will also
be looked up in that other namespace.

HP aC++ Keywords 145

Using namespace directives can be a powerful means to migrate code to libraries that use
namespaces. Occasionally, however, they may silently make unwanted names visible. It is therefore
often suggested not to use using-directives unless the alternatives are very inconvenient.
#include <stdio.h>

namespace N {
 char const* f() { return “N::f()”; }
 char const* f(double) { return “N::f(double)”; }
 char const* g() { return “N::g()”; }
}

char const* g(double) {
 using N::f; // Declare all f’s in namespace N
 return f(2.0);
}

namespace M { // Illustrate how using-directives
 using namespace N; // are transitive
}

int main() {
 using namespace N;
 printf(“Calling: %s.\n”, f()); // calls N::f()
 printf(“Calling: %s.\n”, g(1.0)); // calls ::g(double)
 // which calls
 // N::f(double)
 printf(“Calling: %s.\n”, N::g()); // calls N::g()
 printf(“Calling: %s.\n”, M::f()); // calls N::f()
 return 0;
}

typeid Keyword
The typeid keyword is an operator, called the type identification operator, used to access type
information at runtime. The operator takes either a type name or an expression and returns a
reference to an instance of type_info, a standard library class.

Usage
You can use runtime type identification when you need to know the exact type of an object. This
might, for example, be necessary to find the name of the object class for diagnostic output. It also
might be used to perform some standard service on an object such as via a database or I/O
system.

typeid Example
Following is an example of the typeid keyword:
include <iostream.h>
include <typeinfo>

class Base {
 virtual void f(); // Must have a virtual function
 // to be a polymorphic type.
 // additional class details omitted
};

class Derived : public Base {

 // class details omitted
};

void Base::f()
{

146 Standardizing Your Code

 // Define function from Base.
}

int main ()
{
 Base *p;

 // Code which does either
 // p = new Base; or
 // p = new Derived;

 // Note that this is NOT a good design for this
 // functionality Virtual functions would be better.

 if (typeid(*p) == typeid(Base))
 cout << “Base Object\n”;
 else if (typeid(*p) == typeid(Derived))
 cout << “Derived Object\n”;
 else
 cout << “Another Kind of Object\n”;
}

If a typeid operation is performed on an expression that is not a polymorphic type (a class which
declares or inherits a virtual function), the operation returns the static (compile-time) type of the
expression. In the example above, if class Base did not include the virtual function f, typeid(p)
would always yield the type Base. The style of programming used in the above example is called
a typeid switch statement. It is not recommended. One alternative is to use a virtual function in a
base class specialized in each of its derived classes. In some cases, this may not be possible, for
example, when the base class is provided by a library for which source code is not available. In
other cases it may not be desirable, for example, some base class interfaces might be too big if
all derived class functionality is included.
You can rewrite the previous example, using virtual functions, as:
class Base {
 virtual void outputType() { cout << “Base Object\n”; }

 // additional class details omitted
};

class Derived : public Base {
 virtual void outputType() { cout << “Derived Object\n”; }
// additional class details omitted
};

int main ()
{
 Base *p;

 // code which does either
 // p = new Base; or
 // p = new Derived;

 p->outputType();
}

A second alternative is to use a dynamic cast. In many cases, this alternative is less desirable than
using virtual functions, but it is better than a typeid switch statement in nearly every case. There is
a subtle difference between this alternative and the typeid switch statement above. The typeid
operation allows access to the exact type of an object; a dynamic cast returns a non-zero result
for the target type or a type publicly derived from it.
You can rewrite the previous example as follows using dynamic casts:
class Base {
 virtual void f(); // Must have a virtual function to

HP aC++ Keywords 147

 // be a polymorphic type.
 // additional class details omitted
};

class Derived : public Base {

 // class details omitted
};

void Base::f()
{
 // Define function from Base.
}

int main ()
{
 Base *p;

 // code which does either
 // p = new Base; or
 // p = new Derived;

 if (dynamic_cast <Derived *> (p))
 cout << “Derived (or class derived from Derived) Object\n”;
 else
 cout << “Base Object\n”;
}

volatile Keyword
The volatile keyword is used in declarations. It tells the compiler not to do aggressive
optimization because a value might be changed in ways the compiler cannot detect.
This keyword is part of the ANSI C standard with the same syntax and semantics.

Usage
Objects that are hardware addresses or those used by concurrently executing pieces of code are
frequently declared volatile. Examples are an address used for the current clock time, objects used
by a signal handler, or objects used for memory mapped I/O.

NOTE: You can declare an identifier to be both const and volatile. This declares a value
that the program cannot change but which can be changed by some means external to the program
(such as by a piece of hardware like a clock).

Example
class C {
public: // public to make example simpler
volatile int i;
// other class details omitted
};

C someData[10];

int main ()
{
 int j = someData[5].i;
 j = someData[5].i; // Without the volatile specifier,
 // the compiler could optimize these
 // two statements into one. With it,
 // it must execute both in case the
 // i field of someData[5] has changed
 // by some other means.
}

148 Standardizing Your Code

wchar_t Keyword
Wide (or multi-byte) characters can be declared with the data type wchar_t. It is an integral type
that can represent all the codes of the largest character set among the supported locales defined
in the localization library. This keyword was a typedef of the ANSI C standard.

Usage
This type was added to maintain ANSI C compatibility and to accomodate foreign (principally
Oriental) character sets.

Example
In the following example, literals of type wchar_t consist of the character L followed by a character
constant in single quotes.
int main()
{
 wchar_t ch = L’a’;
}

wchar_t must be implemented the same as another integral type. In other words, it must have
the same size, signedness and alignment requirements. It promotes to the smallest integral type
when used in an expression and cannot have a signed or unsigned modifier.
The standard library includes a string of wide characters known as wstring. The IOStream library
supports I/O of wide characters.
In ANSI C, wchar_t is a synonym for another type, declared using a typedef in a standard
header file.

template Keyword
Use the template keyword when calling a member template to specify that a name is a member
template.

Usage
This construct is used for function calls to indicate that the name is a member template.

Example
struct S {
 template <class T> void foo() {}
};
template <class T>
void sam(T x, S y) { y.template foo<T>(); }

typename Keyword
Use the typename keyword in template declarations to specify that a qualified name is a type,
not a class member.

Usage
This construct is used to access a nested class in the template parameter class as a type in a
declaration within the template.

Example
template<class T>
class C1 {
 // class details omitted

 // T::C2 *p; // Problem: flagged as compile-time
 // error. T is a type, but T::C2 is not.

HP aC++ Keywords 149

 // Message: ‘C2’ is used as a type, but
 // has not been defined as a type.

typename T::C2 *p; // Solution: the keyword typename flags
 // the qualified name T::C2 as a type.
};

class C {
 // details omitted
 class C2 {
 //details omitted
 };
};

int main ()
{
 C1<C> c;
}

In a template, a name is not taken to be a type unless it is explicitly declared as one. Ways to
declare a name as a type include:

• Use it as the argument to the template (T below):
template<class T>
class C {
 // Additional details omitted
};

• Use it as the name of the template (C below):
template<class T>
class C {
 // Additional details omitted
};

• Declare a class as a member of the class template (C2 below):
template<class T>
class C1 {
 class C2;
 // Additional details omitted
};

• Declare a class in the context the template is declared within (C1 below):
class C1;
template<class T>
class C2 {
 // details omitted
};

Overloading new[] and delete[] for Arrays
HP aC++ defines new and delete operators for arrays that are different from those used for
single objects. These operators, operator new[] () and operator delete[] (), can be
overloaded both globally, and in a class. If you use operator new() to allocate memory for a
single object, you should use operator delete() to deallocate this memory. If you use operator
new[] () to allocate an array, you should use operator delete[] () to deallocate it.
Usually, the allocation and deallocation of operators is overloaded for a particular class, not
globally. This overloading allows you to put all instances of a particular class on a class-specific
heap. You can then take control of allocation either for efficiency or to accomplish other storage
management functions, for example garbage collection. If allocation and deallocation of single
objects is overloaded, you may or may not want to overload the operators for arrays. If the

150 Standardizing Your Code

overloading was done for efficiency, it may be that for arrays the default operator is the most
efficient.

Example
include <iostream.h>
class C {
 public:
 void* operator new[] (size_t); // new for arrays
 void operator delete[] (void*); // delete for arrays

 // additional class details omitted
};

void* C::operator new[] (size_t allocSize)
{
 cout << “Use operator new[] from class C\n”;

 // here, real usage would include allocation

return ::operator new[] (allocSize); // global operator
} // for this simple
 // example
void C::operator delete[] (void *p)
{
 cout << “Use operator delete[] from class C\n”;

 // here, real usage would include deallocation

 ::operator delete[] (p); // global operator
} // for this simple
 // example
int main()
{
 C *p;

 p = new C[10];
 delete[] p;
}

Notice that the new operator takes a class with an array specifier as an argument. The compiler
uses the class and array dimension to provide the size_t argument. In the example above, the
argument provided is ten times the size of a class C object. Also, the operator must return a void*
which the compiler converts to the class type. The void constructor for the class (if one exists) is
invoked to initialize the elements in the array.
Multidimensional arrays can be allocated and deallocated with these operators. The operator is
used with several array dimensions, and the compiler provides the size_t argument which is the
space required for the entire array. For example:
// call C::operator new[] () with
// an argument of 10 * 20 * sizeof(C)

p = new C [10] [20];

Additional arguments can be provided to this operator new just as for the operator for single
objects. In this way, the operator can be overloaded in a class. The additional arguments can be
used by the storage allocation scheme for additional storage management.
The global new and delete for both arrays and single objects are provided in the Standard C++
Library. This library also provides a version of new for arrays and single objects that takes a second
void* argument and constructs the object at that address.

Overloading new[] and delete[] for Arrays 151

Standard Exception Classes
Classes are provided in the Standard C++ Library to report program errors. These classes are
declared in the <stdexcept> header. All of these classes inherit from a common base class
named exception. The two classes logic_error and runtime_error inherit from exception
and serve as base classes for more specific errors.
These classes provide a common framework for the way errors are handled in a C++ program.
System-specific error handling can be provided by creating classes that inherit from these standard
exception classes.

Example
include <stdexcept>
include <iostream>
include <string>
void f()
{
 // details omitted

 throw range_error(string(“some info”));
}

int main()
{
 try {
 f();
 }
 catch (runtime_error& r) {
 // handle any kind of runtime error including range_error
 cout << r.what() << ‘\n’;
 }
}

The class logic_error defines objects thrown as exceptions to report errors due to the internal
logic of the program. The errors are presumably preventable and detectable before execution.
Examples are violations of logical preconditions or class invariants. The subclasses of logic_error
are:

• domain_error (the operation requested is inconsistent with the state of the object it is applied
to)

• invalid_argument

• length_error (an attempt to create an object whose size equals or exceeds allowed size)

• out_of_range (an argument value not in the expected range)
Runtime errors are due to events out of the scope of the program. They cannot be predicted before
they happen. The subclasses of runtime_error are:

• range_error

• overflow_error (arithmetic overflow)
The exception class includes a void constructor, a copy constructor, an assignment operator, a
virtual destructor, and a function what that returns an implementation-defined character string.
None of these functions throw any exceptions.
Each of the subclasses includes a constructor taking an instance of the Standard C++ Library string
class as an argument. They initialize an instance such that the function what, when applied to the
instance, returns a value equal to the argument to the constructor.

152 Standardizing Your Code

Exceptions Thrown by the Standard C++ Library
The following exceptions are thrown by the Standard C++ Library:

• operator new () and operator new [] throw a bad_alloc exception when they
cannot obtain a block of storage.

• A dynamic_cast expression throws a bad_cast exception when a cast to a reference type
fails.

• Operator typeid throws a bad_type exception when a pointer to a typeid expression is
zero.

• A bad_exception exception can be thrown when the unexpected handler function is invoked
by unexpected().

NOTE: If no catch clauses are available to catch these exceptions, the default action is program
termination with a call to abort(). (Using the +noeh option does not disable the exceptions
thrown by these library functions.)

type_info Class
type_info is a class in the standard header file <typeinfo>. A reference to an instance of this
class is returned by the typeid operation.
Implementations may differ in the exact details of this class, but in all cases it is a polymorphic
type (has virtual functions) that allows comparisons and a way to access the name of the type.
Usage:
This class is useful for diagnostic information and for implementing services on objects where it is
necessary to know the exact type of the object.
Example:
include <iostream.h>
include <typeinfo>

class Base {
 virtual void f(); // Must have a virtual
 // function to be a
 // polymorphic type

 // additional class details omitted

};

class Derived : public Base {
 // class details omitted
};

void Base::f()
{
// Define function from Base.
}

int main ()
{
 Base *p;

 // code which does either
 // p = new Base; or
 // p = new Derived;

 if (typeid(*p) == typeid(Base)) // Standard requires
 // comparison as part

Exceptions Thrown by the Standard C++ Library 153

 // of this class.
 cout << “Base Object\n”;

 cout << typeid(*p).name() << ‘\n’; // Standard requires
 // access to the name
 // of the type.
}

The standard requires the class type_info to be polymorphic. You cannot assign or copy instances
of the class (the copy constructor and assignment operators are private). The interface must include:
int operator == (const type_info&) const

int operator !=(const type_info&) const

const char * name() const

int before (const type_info&) const

The operators allow comparison of object types. The name function allows access to the character
string representing the name of the object. The before function allows types to be sorted. This
allows them to be accessed through hash tables. The before function is not a lexical ordering; it
might not yield the same results. The name function now returns the mangled name of a type as
per the C++ ABI.

Unsupported Functionality
Functionality defined in the ANSI/ISO C++ International Standard and not supported in this release
of HP aC++ is listed in Table 11. Library functionality is listed separately.

Table 11 Unsupported Functionality

libc **Rogue Wave Standard C++
Library 1.2.1

Rogue Wave
Standard C++ Library
2.2.1

Functionality
(HP-UX System Libraries)

Not ApplicableProvided as a class rather than a
template.

Yes<allocator>

Not ApplicableThe following C++ overloaded
functions are not provided.

Yes<cstring>

Instead, ANSI C signatures are
implemented.
memchr
strchr
strpbrk
strrchr
strstr

For missing functions, see wide
character support in this table.

The following C++ overloaded
functions are not provided,

Yes<cwchar>

instead, ANSI C signatures are
implemented.
wcschr
wcspbrk
wcsrchr

Missing Functions:
wcsstr
wmemchr

See wide character support in
this table.

Partial SupportPartial Support<cwctype>

Not ApplicableThe following types are not
provided:

Yes<functional>

mem_fun_t
mem_fun1_t

154 Standardizing Your Code

Table 11 Unsupported Functionality (continued)

libc **
(HP-UX System Libraries)

Rogue Wave Standard C++
Library 1.2.1

Rogue Wave
Standard C++ Library
2.2.1

Functionality

mem_fun1_ref_t
mem_fun_ref_t

Not ApplicableNot templatized and the
following headers are not
provided:

Yes<iostream>

<fstream>
<iostream>
<istream>
<ostream>
<streambuf>
<sstream>
<iomanip>
<ios>
<iosfwd>

Not applicableiterator template is not providedYes<iterator>

Not applicableNot providedYes<locale>

Not applicableNot providedYesprintf(3) formats

%ls and %lc are not providedNot applicableNot applicable<utility>

Not applicableNot providedYes<valarray>

The following functions are not
provided:

Not applicableNot applicablewide character support

btowc
fwide
fwprintf
fwscanf
mbrlen
mbrtowc
mbsinit
mbsrtowcs
swprintf
swscanf
towctrans
vfwprintf
vswprintf
vwprintf
wcrtomb
wcsrtombs
wcsstr
wctob
wctrans
wmemchr
wmemcmp
wmemcpy
wmemset
wprintf
wscanf

** Available when compiled with-D_XOPEN_SOURCE=500. Also, the application must be linked
with /usr/lib/hpux##/unix98.o, where ## is either 32 or 64.

Unsupported Functionality 155

7 Optimizing HP aC++ Programs
HP C/HP aC++ provides options to the aCC command and pragmas to control optimization. The
following sections introduce the basic concepts of optimizing your HP aC++ code for improved
efficiency:
• “Requesting Optimization” (page 156)

• “Setting Basic Optimization Levels” (page 156)

• “Additional Options for Finer Control” (page 157)

• “Profile-Based Optimization” (page 158)

• “Pragmas That Control Optimization” (page 160)

Requesting Optimization
By default, the compiler performs constant folding and simple register assignment. There are several
ways to increase and control the level of optimization performed on your program.

Setting Basic Optimization Levels
HP aC++ provides four basic levels of optimization, the higher the level the more optimization
performed and the longer the optimization takes.
You can specify an option on the aCC command line or in the CXXOPTS environment variable.
Example:
aCC -O prog.C

Compiles prog.C and optimizes the program at the default level 1.

Level 1 Optimization
Level 1 optimization includes branch optimization, dead code elimination, faster register allocation,
instruction scheduling, and peephole (statement-by-statement) optimization. Use +O1 to get level
1 optimization. Level 1 is the default.
Level 1 optimization produces faster programs than without optimization and compiles faster than
level 2 optimization. Programs compiled at level 1 can be used with the HP Distributed Debugging
Environment (DDE) debugger. Use the debugger option -g0 or -g1.

Level 2 Optimization
Level 2 optimization includes level 1 optimization, along with optimizations performed over entire
functions in a single file. Level 2 optimizes loops in order to reduce pipeline stalls and analyzes
data-flow, memory usage, loops, and expressions. Use -O or +O2 to get level 2 optimization.
Specifically, level 2 provides the following:

• Coloring register allocation.

• Induction variable elimination and strength reduction.

• Local and global common subexpression elimination.

• Advanced constant folding and propagation. (Simple constant folding is done by default.)

• Loop invariant code motion.

• Store/copy optimization.

• Unused definition elimination.

156 Optimizing HP aC++ Programs

• Software pipelining.

• Register reassociation.
Level 2 can produce faster runtime code than level 1 if programs use loops extensively. Loop-oriented
floating-point intensive applications may see run times reduced by 50%.
Operating system and interactive applications that use the already optimized system libraries can
achieve 30% to 50% additional improvement. Level 2 optimization produces faster programs than
level 1 and compiles faster than level 3 optimization.

Level 3 Optimization
Level 3 optimization includes level 2 optimizations, along with full optimization across all
subprograms within a single file. Level 3 also inlines certain subprograms within the input file. Use
+O3 to get level 3 optimization.
Level 3 optimization produces faster runtime code than level 2 on code that does many procedure
calls to small functions. Level 3 links faster than level 4. But level 3 does not work with the debugger
options -g0 and -g1.

Level 4 Optimization
Level 4 optimization includes level 3 optimizations, along with full optimizations across the entire
application program. Level 4 includes global and static variable optimization and inlining across
the entire program. Optimizations are performed at link time rather than at compile time. Use +O4
to get level 4 optimization.
Level 4 optimization produces faster runtime code than level 3 if programs use many global
variables or if there are many opportunities for inlining procedure calls. But level 4 does not work
with the debugger options -g0 and -g1.

Additional Options for Finer Control
In addition to basic optimization levels, optimization options are provided should you require a
more precise level of control.
Some introductory examples follow:

Enabling Aggressive Optimizations
To enable aggressive optimizations at the second, third, or fourth optimization levels, use the
+Ofast option as follows:
aCC +Ofast +O2 sourcefile.C

or:
aCC +Ofast +O3 sourcefile.C

or:
aCC +Ofast +O4 sourcefile.C

This option enables additional optimizations at each level.

NOTE: Use aggressive optimizations with stable, well-structured code. These types of optimizations
give you faster code, but may change the behavior of programs.

These optimizations may do any of the following:

• Relocate conditional floating-point instructions from within loops

• Convert certain library calls to millicode and inline instructions

• Alter error-handling requirements

Requesting Optimization 157

Enabling Only Conservative Optimizations
You can enable only conservative optimizations at the second, third, or fourth optimization levels
by using the +Ofltacc=strict +Ofenvaccess option, as follows:
aCC +O2 +Ofltacc=strict +Ofenvaccess sourcefile.C

or:
aCC +O3 +Ofltacc=strict +Ofenvaccess sourcefile.C

or:
aCC +O4 +Ofltacc=strict +Ofenvaccess sourcefile.C

This option disables all but the most conservative optimizations at each level. Conservative
optimizations do not change the behavior of code, in most cases, even if the code does not conform
to standards.
Use only conservative optimizations provided with level 2, 3, and 4 when your code is unstructured.

Removing Compilation Time Limits When Optimizing
You can remove optimization time restrictions at the second, third, or fourth optimization levels by
using the +Onolimit option as follows:
aCC +O2 +Onolimit sourcefile.C

or:
aCC +O3 +Onolimit sourcefile.C

or:
aCC +O4 +Onolimit sourcefile.C

By default, the optimizer limits the amount of time spent optimizing large programs at levels 2, 3,
and 4. Use this option if longer compile times are acceptable because you want additional
optimizations to be performed.

Limiting the Size of Optimized Code
You can disable optimizations that expand code size at the second, third, and fourth optimization
levels by using the +Osize suboption, as follows:
aCC +O2 +Osize sourcefile.C

or:
aCC +O3 +Osize sourcefile.C

or:
aCC +O4 +Osize sourcefile.C

Most optimizations improve execution speed and decrease executable code size. A few
optimizations significantly increase code size to gain execution speed. The +Osize option disables
these code-expanding optimizations.
Use this option if you have limited main memory, swap space, or disk space.

Combining Optimization Options
Optimization options that affect code size, (+Osize), compile-time (+Olimit), and the
aggressiveness of the optimizations performed can be combined at any of the optimization levels
2 through 4.

Profile-Based Optimization
Profile-based optimization (PBO) is a set of performance-improving code transformations based
on the runtime characteristics of your application.

158 Optimizing HP aC++ Programs

When using profile-based optimization, please note the following:

• Numerical applications that perform the same calculations independent of the input data will
only see a small performance boost.

• Profile-based optimization has the greatest impact on application performance when used
with level 2 or greater optimizations.

• Profile-based optimization benefits most applications, especially large applications with multiple
compilation units, such as compilers, editors, database managers, and user interface managers.

• Profile-based optimization should be enabled during the final stages of application development.
To obtain the best performance, reprofile and reoptimize your application after making source
code changes.

These steps are involved in performing profile-based optimization:
1. Instrumentation
2. Collecting Data for Profiling
3. Maintaining Profile Data Files
4. Performing Profile-Based Optimization

Instrumentation
To instrument your program, use the +Oprofile=collect option as follows:
aCC +Oprofile=collect -O -c sample.C

aCC +Oprofile=collect -O -o sample.exe sample.o

The first command line uses the +Oprofile=collect option to prepare the code for
instrumentation. The -c option in the first command line suppresses linking and creates an object
file called sample.o.
The second command line uses the -o option to link sample.o into sample.exe. The
+Oprofile=collect option instruments sample.exe with data collection code.

NOTE: Instrumented programs run slower than non-instrumented programs. Only use instrumented
code to collect statistics for profile-based optimization.

Collecting Data for Profiling
To collect execution profile statistics, run your instrumented program with representative data as
follows:
sample.exe < input.file1

sample.exe < input.file2

This step creates and logs the profile statistics to a file, by default called flow.data. The data
collection file is a structured file that may be used to store the statistics from multiple test runs of
different programs that you may have instrumented.

Maintaining Profile Data Files
Profile-based optimization stores execution profile data in a disk file. By default, this file is called
flow.data and is located in your current working directory.
You can override the default name of the profile data file. This is useful when working on large
programs or on projects with many different program files.
The FLOW_DATA environment variable can be used to specify the name of the profile data file with
either the +Oprofile=collect or +Oprofile=use options.
The +Oprofile=use:filename command line option can be used to specify the name of the
profile data file when used with the +Oprofile=use option.

Requesting Optimization 159

Example 1
In the following example, the FLOW_DATA environment variable is used to override the flow.data
file name. The profile data is stored instead in /users/profiles/prog.data.
export FLOW_DATA=/users/profiles/prog.data
aCC -c +Oprofile=collect sample.C
aCC -o sample.exe +Oprofile=collect sample.o
sample.exe < input.file1
aCC -o sample.exe +Oprofile=use +O3 sample.C

Example 2
In this example, the +Oprofile=use:filename option is used to override the flow.data file
name with the name /users/profiles/prog.data.
aCC -c +Oprofile=collect +O3 sample.C
aCC -o sample.exe +Oprofile=collect sample.o
sample.exe < input.file1
mv flow.data /users/profile/prog.data
aCC -o sample.exe +Oprofile=use:/users/profiles/prog.data +O3 sample.C

Performing Profile-Based Optimization
To optimize the program based on the previously collected runtime profile statistics, recompile the
program as follows:
aCC -o sample.exe +Oprofile=use +O3 sample.C

For more information on profile-based optimization, refer to the HP-UX Online Linker and Libraries
User’s Guide.

Pragmas That Control Optimization
Compiler options provide a high-level, global approach to optimization. To give you more refinement
in optimization, HP aC++ provides pragma OPT_LEVEL.
See “Optimization Pragmas” (page 103) for more information.

160 Optimizing HP aC++ Programs

8 Exception Handling
Exception handling provides a standard mechanism for coding responses to runtime errors or
exceptions.
This chapter discusses the following topics:

• “Exception Handling in C++” (page 161)

• “Exception Handling as Defined by the ANSI/ISO C++ International Standard” (page 162)

• “Basic Exception Handling Example” (page 162)

• “Function Try Block Examples” (page 162)

• “Debugging Exception Handling” (page 163)

• “Performance Considerations” (page 163)

Exception Handling
Exception handling provides a standard mechanism for coding responses to runtime errors or
exceptions. Exception handling is on by default. To turn it off, you must use the +noeh option.
If your executable throws no exceptions, object files compiled with and without the +noeh option
can be mixed freely. However, in an executable which throws exceptions (HP aC++ runtime
libraries throw exceptions), you must be certain that no exception is thrown in your application
which will unwind through a function compiled without the exception handling option turned on.
In order to prevent this, the call graph for the program must never have calls from functions compiled
without exception handling to functions compiled with exception handling (either direct calls or
calls made through a callback mechanism). If such calls do exist, and an exception is thrown, the
unwinding can cause:

• Non-destruction of local objects (including compiler generated temporaries).

• Memory leaks when destructors are not executed.

• Runtime errors when no catch clause is found.

Exception Handling in C++
Following is an overview of the elements of C++ exception handling:

• A try block encloses (logically) code that can cause an exception that you want to catch.

• A catch clause, which immediately follows the try block, handles an exception of the type that
can occur in the try block. The catch clause is the exception handler. You can have multiple
catch clauses associated with a try block.

• If an error occurs, code in the try block throws an exception to an appropriate catch clause.
The catch clause is ignored if an error does not occur.

• When an exception is thrown, control is transferred to the nearest handler defined to handle
that type of exception. Nearest means the handler whose try block was most recently entered
by the thread of control, and not yet exited.

Exception Handling 161

Exception Handling as Defined by the ANSI/ISO C++ International Standard
The Standard C++ Library provides classes that C++ programs can use for reporting errors. These
classes are defined in the header file <stdexcept> and described in the ANSI/ISO C++
International Standard.
• The class, exception, is the base class for object types thrown by the Standard C++ Library

components and certain expressions.
• The class, runtime_error, defines errors due to events beyond the scope of the program.

• The class, logic_error, defines errors in the internal logic of the program.

Basic Exception Handling Example
The simple program shown here illustrates exception handling concepts. This program contains a
try block (from which a range error is thrown) and a catch clause, which prints the operand of the
throw.
This program also uses the runtime_error class defined in the Standard C++ Library to report
a range error.
#include <stdexcept>
#include <iostream.h>
#include <string>
void fx ()
{
 // details omited
 throw range_error(string(“some info”));

}
int main ()
{
 try {
 fx ();
 } catch (runtime_error& r) {
 cout <<r.what() << ‘\n’;
 }
}

Function Try Block Examples
A function can catch exceptions thrown during its execution by associating catch handlers with its
body, using a function try block. Note the difference between the following example and the
previous exception handling example. In this case, the try keyword comes before the function
body’s opening brace, and the catch handler comes after the function body’s closing brace.
#include <stdexcept>
#include <iostream.h>
#include <string>
void fx ()
{
 //
 throw range_error(string(“some info”));
}
int main ()
try {
 fx ();
 }
catch (runtime_error& r) {
 cout <<r.what() << ‘\n’; }

Function try blocks are sometimes necessary with class constructor destruction. A function try block
is the only means of ensuring that all exceptions thrown during the construction of an object are
caught within the constructor. For example,

162 Exception Handling

A::A()
try
 : _member(fx())
{
 cout << _member << ‘\n’;
}
catch (runtime_error& r) {
 cout <<r.what() << ‘\n’;
}

Note that the function try block ensures the exception thrown from the member initializer is caught
within the constructor.

Debugging Exception Handling
The HP WDB Debugger supports C++ exception handling. For more information refer to HP WDB
documentation at http://www.hp.com/go/wdb.

Performance Considerations
HP aC++ exception handling has no significant performance impact at compile time or runtime.

Using Threads
The HP aC++ runtime environment supports multi-threaded applications. The following HP aC++
libraries are thread-safe with the limitations cited below:

Rogue Wave Standard C++ Library 2.2.1
For both 32-bit and 64-bit libraries:

• libstd_v2.so and libstd_v2.a

• libCsup.so and libCsup.a

• libCsup11.so — ISO C++11 standard compliant

Rogue Wave Standard C++ Library 1.2.1 and Tools.h++ 7.0.6
For both 32-bit and 64-bit libraries:

• libstd.so and libstd.a

• librwtool.so and librwtool.a

• libCsup.so and libCsup.a

• libCsup11.so — ISO C++11 standard compliant

• libstream.so and libstream.a

Using Locks
To guarantee that your I/O results from one thread are not intermingled with I/O results from other
threads, you must protect your I/O statements with locks. For example:
// create a mutex and initialize it
pthread_mutex_t the_mutex;
#ifdef _PTHREADS_DRAFT4 // for user threads
pthread_mutex_init(&the_mutex, pthread_mutexattr_default);
#else // for kernel threads
pthread_mutex_init(&the_mutex, (pthread_mutexattr_t *)NULL);
#endif

pthread_mutex_lock(&the_mutex);
cout << “something” ... ;
pthread_mutex_unlock(&the_mutex);

Using Threads 163

http://www.hp.com/go/wdb

Note that conditional compilation may be necessary to accommodate both the user threads and
the kernel threads interfaces, as in the above example. An alternative might be to compose a buffer
with an ostrstream and output with one write. The following example could be used with the
cfront compatiblelibstream:
ostrstream ostr;
ostr << “something” /*...*/ ;
ostr << “ or another” /*...*/ << endl;
cout.write(ostr.str(), ostr.pcount());
ostr.rdbuf()->freeze(0);

Note that the above example works with the new library, though with the deprecated ostrstream.
Or something similar can be done with the Rogue Wave Standard C++ Library 2.2.1 (libstd_v2)
with standard ostringstream, as in the following example:
ostringstream ostr;
ostr << “something” /*...*/ ;
ostr << “ or another” /*...*/ << endl;
cout.write(ostr.str().c_str(), ostr.str().length());

Note that cout.flush may be needed if sharing the file with stdio.

Required Command-line Options
To use the multi-thread safe capabilities of the Standard C++ Library, you need to specify the
following options at both compile and link time. Note that the options differ depending on which
set of libraries you are using.

Rogue Wave Standard C++ Library 2.2.1
For both 32-bit and 64-bit libraries:

• -D_RWSTD_MULTI_THREAD

• -D_REENTRANT

• -lpthread (This option applies only to kernel threads.)

• -mt

Rogue Wave Standard C++ Library 1.2.1 and Tools.h++ 7.0.6
For both 32-bit and 64-bit libraries:

• -D__HPACC_THREAD_SAFE_RB_TREE (Code compiled with this option is binary incompatible
with code that is not compiled with this option. Only HP aC++ version A.01.21 and subsequent
versions incorporate this option.)

• -DRWSTD_MULTI_THREAD

• -DRW_MULTI_THREAD (needed only for the Tools.h++ Library)

• -D_REENTRANT

• -lcma (This option applies only to user threads.)

• -lpthread (This option applies only to kernel threads.)

• -D_THREAD_SAFE (Unlike the other options in this table, this option is not required. You can
use it with the cout, cin, cerr, and clog objects, if you are not using locks.)

• -mt

NOTE: If you do not specify these options as described in both cases, a runtime error will be
generated or multi-thread behavior will be incorrect. If you use +Oopenmp in an application, you
must use -mt on files that are not compiled with +Oopenmp.

164 Exception Handling

Limitations
In most cases, thread safety does not imply that the same object can be shared between threads.
In particular, when objects have user visible state, it would not make sense to share them between
threads. Consider the following:
void f(ostream &out, int x, int y) {
 out << setw(3) << x << setw(10) << y;
}

This function would not be thread safe if called from multiple threads with the same object, since
the width in the shared object could be changed at any time. Therefore, such objects are not
protected from interactions between multiple threads, and the result of sharing such an object
between threads is undefined.
If the same object is shared between threads, a runtime crash, abort, or intermingled output may
occur. With the Rogue Wave Standard C++ Library 2.2.1, output may be intermingled but no
aborts will occur.

Using -D_THREAD_SAFE with the cfront Compatible libstream
There is an exception to the above rule for the cfront compatible libstream. For the frequently
used objects cout, cin, cerr, and clog, you can specify the -D_THREAD_SAFE compile time
flag for any file that includes <iostream.h>. In this case, a new instance of the object is
transparently created for each thread that uses it. All instances share the same file descriptor. The
f function in the above example will now work, because it receives one new out object per thread.
However, the results of two simultaneous executions of f will be mixed in any order in the output.
Using -D_THREAD_SAFE with the global scope operator is not supported for cout, cin, cerr,
and clog. For example, the following code would generate an error:
::cout << endl;

NOTE: If you use locks, you need not use the -D_THREAD_SAFE compile time flag since you
are now responsible for ensuring thread safety.

Differences between Standard iostreams and cfront Compatible libstream
The cfront compatible libstream supports locking for each insertion. Rogue Wave Standard C++
Library 1.2.1 and Tools.h++ 7.0.6 do not support locking but do provide a thread private buffer.
Visible differences would be as follows. In the case of standard iostreams, there is intermingling
of each component being inserted. With cfront compatible iostreams, there is intermingling of
complete buffers (depending on when endl or flush is called).

Using -D__HPACC_THREAD_SAFE_RB_TREE
The Rogue Wave Standard C++ Library 1.2.1 (libstd) and Tools.h++ 7.0.6 (librwtool) are
not thread safe if the underlying implementation rb_tree class is involved. In other words, if the
tree header file (which includes tree.cc) under /opt/aCC/include/ is used, these libraries
are not thread safe. Most likely, it is indirectly referenced by including the standard C++ library
container class map or set headers, or by including a RogueWave tools.h++ header like tvset.h,
tpmset.h, tpmset.h, tvset.h, tvmset.h, tvmset.h, tpmap.h, tpmmap.h, tpmmap.h,
tvmap.h, and tvmmap.h. Since changing the rb_tree implementation to make it thread safe
would break binary compatibility, the preprocessing macro, __HPACC_THREAD_SAFE_RB_TREE,
must be defined. The macro is automatically defined in the Itanium® based environment. A new
object file compiled with the macro defined should not be linked with older ones that were compiled
without the macro defined. Library providers whose library is built with the macro defined may
need to notify their users to also compile their source with the macro defined when the tree header
is included.

Using Threads 165

Exception Handling
It is illegal to throw out of a thread.
The following example illustrates that you cannot catch an object which has been thrown in a
different thread. To do so will result in a runtime abort since HP aC++ finds no available catch
handler and terminate is called.
#include <pthread.h>
void foo() {
 int i = 10;
 throw i;
}
int main() {
 pthread_t tid;
 try {
 ret=pthread_create(&tid, 0, (void*(*)(void*))foo, 0);
 }
 catch(int n) {}
}

Pthreads (POSIX Threads)
Pthreads (POSIX threads) refers to the Pthreads library of thread-management routines. For
information on Pthread routines see the pthread(3t) man page. To use the Pthread routines, your
program must include the <pthreads.h> header file and the Pthreads library must be explicitly
linked to your program.
Example:
aCC -mt prog.c

Limitations
When using STL containers as local objects, the destructor will not get called when pthread_exit
is called, which leads to a memory leak. Do not call pthread_exit from C++. Instead you must
throw or return back to the thread’s initial function. There you can do a return instead of
pthread_exit.
Pthread library has no knowledge of C++ stack unwinding. Calling pthread_exit for will
terminate the thread without doing proper C++ stack unwind. That is, destructors for local objects
will not be called. (This is analogous to calling exit for single threaded program.)
This can be fixed by calling destructors explicitly right before calling pthread_exit.
Example:
#include <pthread.h>
#include <stdlib.h>
#include <exception>

extern "C" int printf(const char*...);
struct A {
 A () { printf("ctor called\n"); }
 ~A () { printf("dtor called\n"); }
};
struct B {
 B () { printf("B ctor called\n"); }
 ~B () { printf("B dtor called\n"); }
};

__thread A* pA; // thread specific data.

void thread_specific_destroy(A *p) {
 delete p;
}
typedef void fp(void*);

166 Exception Handling

void* foo(void*) {
 pA = new A();
 B ob;
 pthread_cleanup_push(reinterpret_cast<fp*>(thread_specific_destroy),pA);
 pthread_cleanup_pop(1);
 ob.~B(); // potential problem when the thread is canceled.
 pthread_exit(0);
 return 0;
}
int main() {
 //A oa; exit(0);
 //dtor for oa won’t be called if line above is uncommented.
 pthread_t thread_id;
 for (int i = 0; i < 3; i++)
 pthread_create(&thread_id, 0, &foo, 0);
 pthread_join(thread_id, 0);
}

NOTE: vector::clear does not free all of the memory. The storage is put back into a free
pool for that one container.
This does not happen if a thread is canceled. In such cases, use thread specific data or thread
local storage support along with pthread_cleanup_[push|pop] utilities.
pthread_cancel is not supported.

Function Scoping
Theset_terminate, set_unexpected, and set_new_handler, functions apply to all threads
in the process. For information on specific functions, refer to the appropriate library documentation.

Performance Options
You can use the-D__HPACC_FIXED_REFCNT_MUTEX flag to reduce the amount of space used
for string mutexes and thereby increase performance when using either -AA or -AP strings. Instead
of having one mutex per string, there will be a fixed array of mutexes shared among all strings.
This feature requires C++ runtime version A.05.61 or newer. For additional information refer to
the -mt option.
The number of string mutexes defaults to 64 and can be configured by:
export aCC_MUTEX_ARRAY_SIZE=##

You can mix code compiled with and without -D__HPACC_FIXED_REFCNT_MUTEX.

Parallel Programming Using OpenMP
OpenMP is an industry-standard parallel programming model that implements a fork-join model
of parallel execution. The HP C++ OpenMP pragmas are based on the OpenMP Standard for
C/C++, version 2.5.
To view the details about the standard and details about usage, syntax and values, please go to
http://www.openmp.org/drupal/node/view/8.

OpenMP Implementation
This section summarizes some of the OpenMP directives behavior that are described as
implementation-dependent in the OpenMP v2.5 API. Each behavior is cross-referenced back to its
description in the OpenMP v2.5 main specification. HP, in conformance with the OpenMP v2.5
API, define and document the following behavior.
• Due to resource constraints, it is not possible for an implementation to document the maximum

number of threads that can be created successfully during a program’s execution. This number
is dependent upon the load on the system, the amount of memory allocated by the program,
and the amount of implementation dependent stack space allocated to each thread. For a 32

Function Scoping 167

http://www.openmp.org/drupal/node/view/8

bit process, the stack space for each thread is allocated from the heap. The heap defaults 1
gigabyte, and the default stack size is 8 megabytes. See the linker option-N for increasing
data area size to 2 gigabytes.
If the dynamic threads mechanism is disabled, requests for additional threads will result in no
additional threads being created. Programs should not assume that a request will result in
additional threads for all requests. If the dynamic threads mechanism is enabled, requests for
more threads than an implementation can support are satisfied by creating additional pthreads
which are then scheduled by the HP-UX scheduler using a smaller number of threads.

• Number of processors: The number of physical processors actually hosting the threads at any
time is the lesser of the number of threads or the number of physical processors on the system.

• Creating teams of threads: The number of threads in a team that executes a nested parallel
region is dependent on the number of threads created when the application is started and the
number of threads already in use. The number of threads created at application startup defaults
to the number of processors on the system, but may be increased or decreased using the
OMP_NUM_THREADS environment variable. If all threads are already in use when a nested
parallel region is encountered, the number of threads in the team that executes the parallel
region is one. If all threads are not already in use when a nested parallel region is encountered,
the number of threads in the team used to execute the parallel region will be the lesser of the
number of threads requested by a num_threads clause or the most omp_set_num_threads
call, if any, or the number of threads not already in use. (Section 2.3, page 10 of OpenMP
C/C++ specs).

• When schedule(runtime) clause is specified, the decision regarding scheduling is deferred
until run time. The schedule type and chunk size can be chosen at run time by setting the
OMP_SCHEDULE environment variable. If this environment variable is not set, the resulting
schedule defaults to static schedule with a chunk size of 1.

• In the absence of the schedule clause, the default schedule is static with chunksize computed
as iterations.

• An implementation can replace all ATOMIC directives by enclosing the statement in a critical
section. HP implements the ATOMIC clause using a slightly more efficient form of critical section
roughly 60-70% faster than critical, although there is still a runtime call.

• omp_get_num_threads: If the number of threads has not been explicitly set by the user,
the default is the number of physical processors on the system.

• omp_set_dynamic: The default for dynamic thread adjustment is 0 (disabled).

• omp_set_nested: When nested parallelism is enabled, the number of threads used to
execute nested parallel regions is determined at runtime by the underlying OpenMP parallel
library.

• OMP_SCHEDULE environment variable: The default value for this environment variable is
STATIC.

• OMP_NUM_THREADS environment variable: The default value is the number of physical
processors on the system.

• OMP_DYNAMIC environment variable: The default value is FALSE.

OpenMP Header File
Every C++ program that contains OpenMP pragmas is to be compiled for the current version of
HP-UX and must include the header file <omp.h>. If it does not, the OpenMP pragmas are ignored.
The default path for <omp.h> is /usr/include.

OpenMP Library
The OpenMP APIs are defined in the library libomp.

168 Exception Handling

+O[no]openmp Command Line Option
The +Oopenmp option is accepted at all optimization levels. The +Oopenmp option enables the
recognition of OpenMP pragmas. Using the +Onoopenmp option will ignore all OpenMP directives
silently.
See Chapter 3: “Pragma Directives and Attributes” (page 96) for more information on OpenMP
pragmas.

_OPENMP Macro
The _OPENMP macro name is defined by OpenMP compliant implementation as the decimal
constant 200203. This macro must not be the subject of #define or #undef preprocessing
directive. Following is an example of conditional compilation:
#ifdef _OPENMP
iam = omp_get_thread_num() + index;
#endif

Environment Variables in OpenMP
The OpenMP environment variables recognized by HP aC++ compiler control the execution of
parallel code. Note that the environment variable names are case sensitive and they must be in
uppercase.
The following environment variables are available in HP aC++ compiler:

• OMP_SCHEDULE

• OMP_NUM_THREADS

• OMP_DYNAMIC

• OMP_NESTED

OMP_SCHEDULE
export OMP_SCHEDULE="kind[,chunk_size]"

setenv OMP_SCHEDULE "kind[,chunk_size]"

where, kind is either of of static, dynamic, or guided.
This environment variable applies to for and parallel for directives that have the schedule
type as runtime. The schedule type and chunk size for all such loops can be set at runtime by setting
this environment variable to any of the recognized schedule types and to an optional chunk_size.
The default value of the environment variable is a static schedule with a chunk_size of 1. If
the optional chunk_size is set, the value must be positive. If chunk_size is not set, a value of
1 is assumed, except for static schedule. For a static schedule, the default chunk_size is
set to the loop iteration space divided by a number of threads applied to the loop.

NOTE: OMP_SCHEDULE is ignored for for and parallel for directives that have a schedule
type other than runtime.

OMP_NUM_THREADS
export OMP_NUM_THREADS=value

setenv OMP_NUM_THREADS value

The OMP_NUM_THREADS environment variable sets the default number of threads to use during
execution. The value of OMP_NUM_THREADS must be a positive integer. Its effect depends on
whether dynamic adjustment of the number of threads is enabled, and its interaction with the
omp_set_num_threads library routine and any num_threads clause on a parallel directive.
The default value is the number of physical processors on the system.

Parallel Programming Using OpenMP 169

OMP_DYNAMIC
export OMP_DYNAMIC=value

setenv OMP_DYNAMIC value

The OMP_DYNAMIC environment variable enables or disables dynamic adjustment of the number
of threads available for execution of parallel regions. The value must be either TRUE or FALSE.
The default value is FALSE.
If the value is set to FALSE, dynamic adjustment is disabled. If the value is set to TRUE, the number
of threads that are used for executing parallel regions may be adjusted by the runtime environment
to best utilize system resources.

OMP_NESTED
export OMP_NESTED=value

setenv OMP_NESTED value

The OMP_NESTED environment variable enables or disables nested parallelism. Its value must be
TRUE or FALSE.
If the value is set to TRUE, nested parallelism is enabled and if the value is set to FALSE, the nested
parallelism is disabled. The default value is FALSE.

Runtime Library Functions in OpenMP
The OpenMP library functions are external functions. The header <omp.h> declares three types
of functions:

• Several functions that can be used to control and query the parallel execution environment.

• Lock functions that can be used to synchronize access to data.

• Timing functions that support a wall-clock timer.
Description of library functions are divided into the following topics:

• Execution Environment Functions

• Lock Functions

• Timing Functions

Execution Environment Functions
The execution environment functions affect and monitor threads, processors, and the parallel
environment. This section discusses the following environment functions:

• omp_set_num_threads

• omp_get_num_threads

• omp_get_max_threads

• omp_get_thread_num

• omp_get_num_procs

• omp_in_parallel

• omp_set_dynamic

• omp_get_dynamic

• omp_set_nested

• omp_get_nested

170 Exception Handling

omp_set_num_threads
#include <omp.h>

void omp_set_num_threads(int num_threads);

The omp_set_num_threads function sets the number of threads to use for subsequent parallel
regions. The value of the parameter num_threads must be positive. Its effect depends upon
whether dynamic adjustment of the number of threads is enabled. If dynamic adjustment is disabled,
the value is used as the number of threads for all subsequent parallel regions prior to the next call
to this function; otherwise, the value is the maximum number of threads that will be used. This
function has effect only when called from serial portions of the program. If it is called from a portion
of the program where the omp_in_parallel function returns non-zero, the behavior of this
function is undefined.
For more information on this subject, see the omp_set_dynamic and omp_get_dynamic functions.
This call has precedence over the OMP_NUM_THREADS environment variable.

omp_get_num_threads
#include <omp.h>

int omp_get_num_threads(void);

The omp_get_num_threads function returns the number of threads currently in the team executing
the parallel region from which it is called. The omp_set_num_threads function and the
OMP_NUM_THREADS environment variable control the number of threads in a team. If the number
of threads has not been explicitly set by the user, the default is implementation dependent. This
function binds to the closest enclosing parallel directive. If called from a serial portion of a program,
or from a nested parallel region that is serialized, this function returns 1.

omp_get_max_threads
#include <omp.h>

int omp_get_max_threads(void);

The omp_get_max_threads function returns an integer that is guaranteed to be at least as large
as the number of threads that would be used to form a team if a parallel region without a
num_threads clause were to be encountered at that point in the code.

omp_get_thread_num
#include <omp.h>

int omp_get_thread_num(void);

The omp_get_thread_num function returns the thread number, within its team, of the thread
executing the function. The thread number lies between 0 and omp_get_num_threads -1,
inclusive. The master thread of the team is thread 0. If called from a serial region,
omp_get_thread_num returns 0. If called from within a nested parallel region that is serialized,
this function returns 0.

omp_get_num_procs
#include <omp.h>

int omp_get_num_procs(void);

The omp_get_num_procs function returns the number of processors that are available to the
program at the time the function is called.

omp_in_parallel
#include <omp.h>

int omp_in_parallel(void);

Parallel Programming Using OpenMP 171

The omp_in_parallel function returns non-zero if it is called within the dynamic extent of a
parallel region executing in parallel; otherwise, it returns 0. This function returns non-zero from
within a region executing in parallel, including nested regions that are serialized.

omp_set_dynamic
#include <omp.h>

void omp_set_dynamic(int dynamic_threads);

The omp_set_dynamic function enables or disables dynamic adjustment of the number of threads
available for execution of parallel regions. This function has effect only when called from serial
portions of the program. If it is called from a portion of the program where the omp_in_parallel
function returns non-zero, the behavior of the function is undefined. If dynamic_threads evaluates
to non-zero, the number of threads that are used for executing subsequent parallel regions may
be adjusted automatically by the runtime environment to best utilize system resources. As a
consequence, the number of threads specified by the user is the maximum thread count. The number
of threads always remains fixed over the duration of each parallel region and is reported by the
omp_get_num_threads function. If dynamic_threads evaluates to 0, dynamic adjustment is
disabled. A call to omp_set_dynamic has precedence over the OMP_DYNAMIC environment
variable.
The default for the dynamic adjustment of threads is 0.

omp_get_dynamic
#include <omp.h>

int omp_get_dynamic(void);

The omp_get_dynamic function returns non-zero if dynamic thread adjustment is enabled and
returns 0 otherwise.

omp_set_nested
#include <omp.h>

void omp_set_nested(int nested);

The omp_set_nested function enables or disables nested parallelism. If nested evaluates to 0,
which is the default, nested parallelism is disabled, and nested parallel regions are serialized and
executed by the current thread. If nested evaluates to non-zero, nested parallelism is enabled, and
parallel regions that are nested may deploy additional threads to form the team. This call has
precedence over the OMP_NESTED environment variable.

omp_get_nested
#include <omp.h>

int omp_get_nested(void);

The omp_get_nested function returns non-zero if nested parallelism is enabled and 0 if it is
disabled.

Lock Functions
The functions described in this section manipulate locks used for synchronization.
For the following functions, the lock variable must have type omp_lock_t. For nestable lock
functions, the lock variable must have type omp_nest_lock_t.

172 Exception Handling

This variable must only be accessed through these functions. All lock functions require an argument
that has a pointer to omp_lock_t type for lock functions and omp_nest_lock_t for nestable
lock functions.

• omp_init_lock and omp_init_nest_lock

• omp_destroy_lock and omp_destroy_nest_lock

• omp_set_lock and omp_set_nest_lock

• omp_unset_lock and omp_unset_nest_lock

• omp_test_lock and omp_test_nest_lock

omp_init_lock and omp_init_nest_lock
#include <omp.h>

void omp_init_lock(omp_lock_t *lock);

void omp_init_nest_lock(omp_nest_lock_t *lock);

These functions provide the only means of initializing a lock. Each function initializes the lock
associated with the parameter lock for use in subsequent calls. The initial state is unlocked (that is,
no thread owns the lock). For a nestable lock, the initial nesting count is zero

omp_destroy_lock and omp_destroy_nest_lock
#include <omp.h>

void omp_destroy_lock(omp_lock_t *lock);

void omp_destroy_nest_lock(omp_nest_lock_t *lock);

These functions ensure that the pointed to lock variable lock is uninitialized. The argument to these
functions must point to an initialized lock variable that is locked.

omp_set_lock and omp_set_nest_lock
#include <omp.h>

void omp_set_lock(omp_lock_t *lock);

void omp_set_nest_lock(omp_nest_lock_t *lock);

Each of these functions blocks the thread executing the function until the specified lock is available
and then sets the lock. A simple lock is available if it is unlocked. A nestable lock is available if it
is unlocked or if it is already owned by the thread executing the function. For a simple lock, the
argument to the omp_set_lock function must point to an initialized lock variable. Ownership of
the lock is granted to the thread executing the function.
For a nestable lock, the argument to the omp_set_nest_lock function must point to an initialized
lock variable. The nesting count is incremented, and the thread is granted, or retains, ownership
of the lock.

omp_unset_lock and omp_unset_nest_lock
#include <omp.h>

void omp_unset_lock(omp_lock_t *lock);

void omp_unset_nest_lock(omp_nest_lock_t *lock);

These functions provide the means of releasing ownership of a lock. The argument to each of these
functions must point to an initialized lock variable owned by the thread executing the function. The
behavior is undefined if the thread does not own that lock.
For a simple lock, the omp_unset_lock function releases the thread executing the function from
ownership of the lock.

Parallel Programming Using OpenMP 173

For a nestable lock, the omp_unset_nest_lock function decrements the nesting count, and
releases the thread executing the function from ownership of the lock if the resulting count is zero.

omp_test_lock and omp_test_nest_lock Functions
#include <omp.h>

int omp_test_lock(omp_lock_t *lock);

int omp_test_nest_lock(omp_nest_lock_t *lock);

These functions attempt to set a lock but do not block execution of the thread. The argument must
point to an initialized lock variable. These functions attempt to set a lock in the same manner as
omp_set_lock and omp_set_nest_lock, except that they do not block execution of the
thread.For a simple lock, the omp_test_lock function returns non-zero if the lock is successfully
set; otherwise, it returns zero.
For a nestable lock, the omp_test_nest_lock function returns the new nesting count if the lock
is successfully set; otherwise, it returns zero.

Timing Functions
The functions described in this section support a portable wall-clock timer:

• omp_get_wtime

• omp_get_wtick

omp_get_wtime
#include <omp.h>

double omp_get_wtime(void);

The omp_get_wtime function returns a double-precision floating-point value equal to the elapsed
wall clock time in seconds since some time in the past. The actual time in the past is arbitrary, but
it is guaranteed not to change during the execution of the application program.
The function may be used to measure elapsed times as shown in the following example:
double start;
double end;
start = omp_get_wtime();
... work to be timed ...
end = omp_get_wtime();
printf(“Work took %f sec. time.\n”, end-start);

The time returned is per-thread times. They are not required to be globally consistent across all the
threads participating in an application.

omp_get_wtick
#include <omp.h>

double omp_get_wtick(void);

The omp_get_wtick function returns a double-precision floating-point value equal to the number
of seconds between successive clock ticks.

174 Exception Handling

9 Tools and Libraries
This chapter discusses tools and libraries bundled with HP aC++. It discusses the following topics:
• “HP Specific Features of lex and yacc” (page 175)

• “Creating and Using Libraries” (page 175)

• “HP aC++ File Locations” (page 186)

HP Specific Features of lex and yacc
lex and yacc are bundled with HP aC++. The following is a list of HP specific features of lex
and yacc:

• LC_CTYPE and LC_MESSAGES environment variable support in lex:
Determines the size of the characters and language in which messages are displayed while
you use lex.

• -m command line option for lex:
Specifies that multibyte characters may be used anywhere single byte characters are allowed.
You can intermix both 8-bit and 16-bit multibyte characters in regular expressions if you enable
the -m command line option.

• -w command line option for lex:
Includes all features in -m and returns data in the form of the wchar_t data type.

• %l <locale> directive for lex:
Specifies the locale at the beginning of the definitions section. Any valid locale recognized
by the setlocale function can be used. This directive is similar to using the LC_CTYPE
environment variable. To receive wchar_t support with %l, use the -w command line option.

• LC_CTYPE environment variable support in yacc:
Determines the native language set used by yacc and enables multibyte character sets.
Multibyte characters can appear in token names, on terminal symbols, strings, comments, or
anywhere ASCII characters can appear, except as separators or special characters.

NOTE: When using lex and yacc:
• Programs generated by yacc or lex can have many unreachable break statements, causing

multiple aC++ warnings.
• If you want to call the yacc generated routines, yyerror, yylex and yyparse, your

program must include the yacc.h header file:
#include<yacc.h>

For more information on these tools, refer to the lex and yacc man pages or the HP-UX Reference
Manual. Another general source of information is lex and yacc by John R. Levine, Tony Mason,
and Doug Brown.

Creating and Using Libraries
This section gives an overview of libraries provided with HP aC++. It also discusses how you can
create and use your own libraries.
This section discusses the following topics:

• HP aC++ Libraries

• Creating and Using Shared Libraries

HP Specific Features of lex and yacc 175

• Advanced Shared Library Features

• Standard HP-UX Libraries and Header Files

• Allocation Policies for Containers
For more information, see HP-UX Online Linker and Libraries User’s Guide.

HP aC++ Libraries
In addition to standard HP-UX system libraries, HP aC++ provides the following C++ libraries:

• Standards Based Libraries

Standard C++ Library◦
◦ Tools.h++ Library

◦ HP aC++ Runtime Support Library

• HP C++ (cfront) Compatibility Library

◦ IOStream Library

Standard C++ Library
The International Standards Organization (ISO) and the American National Standards Institute
(ANSI) have standardized the C++ programming language. A result of this standardization process
is the Standard C++ Library, a large and comprehensive collection of classes and functions.

Introduction
HP aC++ provides the Rogue Wave implementation of the ANSI/ISO Standard C++ Library. This
implementation includes the following features:

• A subset of data structures and algorithms, updated from the original library developed at
Hewlett-Packard by Alex Stepanov and Meng Lee and known as the C++ Standard Template
Library (STL)

NOTE: The public domain C++ Standard Template Library is not supported by this Standard
C++ Library.
Technical Corrigenda 1 has changed the STL function make_pair to take their arguments
by value instead of const reference. This change brings the HP library into compliance if the
enabling macro -D__HP_TC1_MAKE_PAIR is specified at compile time. For binary
compatibility reasons, the default behavior is unchanged.

• A templatized string class

• A templatized class for representing complex numbers.

• A framework that describes the execution environment, using a template class,
numeric_limits, and specializations for each fundamental data type

• Memory management features

• Language support features

• Exception handling features

Introduction to Using the Standard C++ Library
Although the design of a large portion of the Standard C++ Library is, in many ways, not
object-oriented, C++ excels as a language for manipulating objects. How do you integrate the
non-object-oriented architecture of the library with the strengths of the language for manipulating
objects?

176 Tools and Libraries

The key is to use the right tool for each task. For a majority of programming tasks, object-oriented
techniques is the preferred approach. Products such as Rogue Wave’s Tools.h++ Library, which
encapsulate the Standard C++ Library with a familiar object-oriented interface, provide the power
and advantages of object-orientation.
Use Standard C++ Library components directly when you need flexibility or highly efficient code.
Use the more traditional approach to object-oriented design, such as encapsulation and inheritance,
to model larger problem domains and knit all the pieces into a complete solution. To devise an
architecture for your application, use encapsulation and inheritance to compartmentalize the
problem. For an efficient data structure or algorithm for a compact problem that often resolves to
a single class, use the Standard C++ Library. Use this library to create reusable classes when
low-level constructs are needed. Use traditional OOP techniques to combine classes to solve a
larger problem.
In future, most libraries will use the Standard C++ Library as their foundation. Using the Standard
C++ Library, either directly or through an encapsulation such as Tools.h++ Library, ensures
interoperability. This is important in large projects that may rely on communication among several
libraries. A good thumb rule is to use the highest encapsulation level available to you, but make
sure that the Standard C++ Library is available as the base for inter-library communication and
operation.
The C++ language supports a wide range of programming approaches. The language, and the
Standard C++ Library that supports it, are designed to give you the flexibility to approach each
unique problem from the best possible angle.
The Standard C++ Library, when combined with traditional OOP techniques, is a flexible tool to
build a collection of C++ classes. These classes can stand alone as a library or are tailored to a
specific task.

Differences between Standard C++ Library and Other Libraries
A major portion of the Standard C++ Library is comprises a collection of class definitions for
standard data structures, and a collection of algorithms commonly used to manipulate such structures.
This part of the library is derived from the Standard Template Library (STL). The organization and
design of this part of the library differs in almost all respects from the design of most other C++
class libraries, because it avoids encapsulation and uses almost no inheritance.
An emphasis on encapsulation is a key hallmark of object-oriented programming. The emphasis
on combining data and functionality into an object is a powerful organization principle in software
development; indeed it is the primary organizational technique.
Inheritance is a powerful technique to share code and reuse software. It is applicable when two
or more classes share a common set of basic features. For example, in a graphical user interface,
two types of windows may inherit from a common base window class, and the individual subclasses
provide any required unique features. In another use of inheritance, object-oriented container
classes may ensure common behavior and support code reuse by inheriting from a more general
class, and factoring out common member functions.
The designers of the STL decided against using an entirely object-oriented approach, and separated
the tasks to be performed using common data structures from the representation of the structures
themselves. The STL is designed as a collection of algorithms and a separate collection of data
structures that are manipulated using the algorithms.

The Non-Object-Oriented Design of the Standard C++ Library
The portion of the Standard C++ Library derived from the STL was purposely designed with an
architecture that is not object-oriented. This design has both advantages and disadvantages. Some
of them are mentioned below.

Creating and Using Libraries 177

Smaller Source Code
There are approximately 50 different algorithms and about a dozen major data structures. This
separation reduces the source code size, and decreases the risk of similar activities with dissimilar
interfaces. In the absense of this separation, each algorithm must be implemented in each data
structure. This requires additional member functions apart from those in the present scheme.

Flexibility
The algorithms that are separated from data structures can be used with conventional C++ pointers
and arrays. Algorithms encapsulated within a class hierarchy do not have this ability because C++
arrays are not objects.

Efficiency
The STL in particular, and the Standard C++ Library in general, provide a low-level approach to
develop C++ applications. This low-level approach is useful when specific programs require an
emphasis on efficient coding and execution speed.

Iterators: Mismatches and Invalidations
The Standard C++ Library data structures use pointer-like objects called iterators to describe the
contents of a container. Given the architecture of the library architecture, it is impossible to verify
whether the iterator elements are matched or derived from the same container. Using a beginning
iterator from one container with an ending iterator from another produces unexpected results. It is
very important to know that iterators are invalidated as a result of a subsequent insertion or deletion
from the underlying container class. The use of an invalid iterator produces unexpected results.
Familiarity with the Standard C++ Library reduces the number of errors related to iterators.

Templates: Errors and Code Bloat
The flexibility and power of templatized algorithms is, with most compilers, results in a loss of
precision in diagnostics. Errors in the parameter lists of generic algorithms is sometimes displayed
only as obscure compiler errors for internal functions. These errors are defined many levels deep
in template expansions. Familiarity with algorithms and their requirements is necessary to use the
standard library. Heavy reliance on templates causes programs to grow larger than expected. You
can minimize this problem by recognizing the cost of instantiating a particular template class, and
by making appropriate design decisions. As compilers become more fluent in templates, the
problem of size is reduced.

Multithreading Problems
When you use the Standard C++ Library in a multithreaded environment, the iterators cannot safely
pass between threads. This is because iterators are independent of the containers they operate
on. It is impossible to protect a container when it spawns iterators in multiple threads as iterators
are used to modify a non-const container. Use thread-safe wrappers, such as those provided by
Tools.h++ Library to access a container from multiple threads.

Standard C++ Library Reference
The Standard C++ Library Reference provides an alphabetical listing of all of the classes, algorithms,
and function objects in the prior Rogue Wave implementation of the Standard C++ Library.

Incompatibilities Between the Library and the Standard
The ANSI/ISO C++ International Standard is different from Standard C++ Library. For example,
the times function object in the functional header file. In the standard, times is renamed to
multiplies.
To use multiplies in your code and to be compatible with the ANSI/ISO C++ International
Standard, use a conditional compilation flag on the aCC command line.
Example:

178 Tools and Libraries

The following program uses the times function object:
// test.c
int times; //user defined variable
#include <functional>
 //multiplies can be used in

int main() {}
// end of test.c

Compile this program using the following command:
aCC -D__HPACC_USING_MULTIPLIES_IN_FUNCTIONAL test.c

Depending on the existence of the conditional compilation flag, functional defines either times,
or multiplies, not both.
If you have old source that uses times in header functional and a new source that uses
multiplies, the sources cannot be mixed. Mixing the two sources constitutes a non-conforming
program, and the old and new sources may or may not link.
If your code uses the old name times, and you want to continue to use the present non-standard
times function object, you need not to do anything to compile the old source.

Tools.h++ Library
The Tools.h++ Library is a foundation class library built on the Standard C++ Library. Use its
object-oriented capabilities to simplify coding and facilitate code reuseablility.
The Rogue Wave Software Tools.h++ Class Reference describes all classes and functions in the
Tools.h++ Library. It is intended for use with Rogue Wave Standard C++ Library. It is provided as
HTML formatted files. You can view these files with an HTML browser by opening the /opt/aCC/
html/librwtool/ref.htm file.

HP aC++ Runtime Support Library
The HP aC++ runtime support library is provided as a shared library (/usr/lib/hpux32/
libCsup.so,/usr/lib/hpux32/libCsup11.so,/usr/lib/hpux64/libCsup.so and
/usr/lib/hpux64/libCsup11.so).
The library supports the following functionality:

• Exception Handling

• Memory Management (operators new and delete)

• Start and termination of a C++ program

• Runtime type identification (type_info)

• Static object constructors and desctructors
See “HP aC++ Runtime Libraries and Header Files” (page 187) for more information.

IOStream Library
In this release of HP aC++, the standards based iostream capabilities of the Standard C++ Library
are still evolving. As a result, an HP C++ (cfront) compatible IOStream library is provided.

Standard Components Library Not Provided
The Standard Components Library is not provided with the HP aC++ compiler for Integrity servers.
HP recommends that you use the similar features of the Standard C++ Library in place of the
Standard Components Library.

Creating and Using Libraries 179

Linking to C++ Libraries
You can compile and link any C++ module to one or more libraries. HP aC++ automatically links
the following libraries with a C++ executable.

• /usr/lib/hpux##/libCsup.so (the HP aC++ runtime support library)

• /usr/lib/hpux##/libstd_v2.so (standard C++ library: -AA)

• /usr/lib/hpux##/libc.so (the HP-UX system library)

• /usr/lib/hpux##/libdl.so (routines to manage shared libraries)

• /usr/lib/hpux##/libunwind.so (routines to unwind exceptions)

• /usr/lib/hpux##/libm.so (math library)

NOTE:
• When you specify the -b option to create a shared library, these defaults do not apply.

• When you specify the +std=c++11 (or the currently deprecated -Ax) option during the link
time, libCsup11.so gets linked instead of libCsup.so.

Linking with Shared or Archive Libraries
If you want archive libraries instead of shared libraries, use the -a, archive linker option. To create
a completely archived executable, use the +A option. To maintain compatibility with future releases,
do not mix archive and shared libraries should not be mixed.
Refer to the HP-UX Linker and Libraries User’s Guide for more information.

Specifying Other Libraries
You can specify other libraries using the -l option. For example, to use the Tools.h++ library (-AA
version), specify -lrwtool_v2:
aCC myapp.C -lrwtool_v2

Creating and Using Shared Libraries
This section describes shared libraries that are specific to HP aC++. It discusses the following
topics:

• Compiling for Shared Libraries

• Creating a Shared Library

• Using a Shared Library

• Linking Archive or Shared Libraries

• Updating a Shared Library

Compiling for Shared Libraries
To create a C++ shared library, you must first compile your C++ source with either the +z or +Z
option. These options create object files containing position-independent code (PIC).

Example
The following example compiles util.C, generates position-independent code, and puts the code
into the object file util.o. util.This object file can later be put into a shared library.
aCC -c +z util.C

180 Tools and Libraries

Creating a Shared Library
To create a shared library from one or more object files, use the -b option at link time. (The object
files must have been compiled with +z or +Z.) The -b option creates a shared library rather than
an executable file.

NOTE: Use the aCC command to create a C++ shared library. This ensures that static constructors
and destructors are executed at appropriate times.

Example
The following example links util.o and creates the shared library util.so.
aCC -b -o util.so util.o

Using a Shared Library
To use a shared library, include the name of the library in the aCC command line or use the-l
option.
The linker links the shared library to the executable file it creates. Once you create an executable
file that uses a shared library, do not move the shared library as the dynamic loader (dld.so)
cannnot find it.

NOTE: Use the aCC command to link any program that uses a C++ shared library. This ensures
that static constructors and destructors in the shared library are executed at appropriate times.

Example
The following example compiles prog.C, links it with the shared library util.so, and creates
the executable file a.out.
aCC prog.C util.so

Example of Creating and Using a Shared Library
The following command compiles the two files, Strings.C and Arrays.C, and creates the two
object files, Strings.o and Arrays.o. These object files contain position-independent code
(PIC):
aCC -c +z Strings.C Arrays.C

The following command builds the shared library, libshape.so, from the object files
Strings.oand Arrays.o:
aCC -b -o libshape.so Strings.o Arrays.o

The following command compiles a program, draw_shapes.C, that uses the shared library,
libshape.so:
aCC draw_shapes.C libshape.so

Linking Archive or Shared Libraries
When an archive and shared version of a particular library reside in the same directory, the linker
links in the shared version by default. You can override this behavior with the -a linker option.

NOTE: Use the +A option when using only archive libraries to create a completely archived
executable.

The -a option identifies the library type for the linker. The -a option is positional and applies to
all subsequent libraries specified with the -l option until the end of the command line or until the
next -a option is encountered. Pass the -a option to the linker with the -Wx,args option.

Creating and Using Libraries 181

Syntax
-Wl,-a,{archive|shared|shared_archive|archive_shared|default}

where,
-Wl,-a,archive Selects archive libraries. If the archive library does not exist,

the linker generates a warning message and does not create the
output file.

-Wl,-a,archive_shared If archive_shared is active, the archive form is preferred,
but the shared form is allowed.

-Wl,-a,shared Selects shared libraries. If shared libraries do not exist, the
linker generates a warning message and does not create the
output file.

-Wl,-a,shared_archive If shared_archive is active, the shared form is preferred, but
the archive form is allowed.

-Wl,-a,default Selects the shared library. If the shared library does not exist,
the linker selects the archive library.

Example
The following example directs the linker to use the archive version of the library libshape, followed
by standard shared libraries if they exist; otherwise select archive versions.
aCC box.o sphere.o -Wl,-a,archive -lshape -Wl,-a,default

Updating a Shared Library
The aCC command cannot replace or delete object modules in a shared library. To update a C++
shared library, you must recreate the library with all the object files you want the library to include.
For example, when a module in an existing shared library requires a fix, recompile the fixed
module with the +z or +Z option, and recreate the shared library with the -b option.
Programs that use this library will now use the new versions of the routines. You do not have to
relink programs that use this shared library because they are attached at run time.

Advanced Shared Library Features
This section explains additional things you can perform with shared libraries. It discusses the
following topics:

• Forcing the Export of Symbols in main

• Binding Times

• Side Effects of C++ Shared Libraries

• Routines and Options to Manage C++ Shared Libraries

• Version Control for Shared Libraries

• Adding New Versions to a Shared Library

Forcing the Export of Symbols in main
By default, the linker exports from a program only those symbols that were imported by a shared
library. For example, if shared libraries of an executable does not reference the main routine of
the program, the linker does not include the main symbol in the export list of a.out.
Normally, this is a problem only when a program explicitly calls shared library management
routines. (See “Routines and Options to Manage C++ Shared Libraries” (page 183).)
To make the linker export all symbols from a program, use the -Wl,-E option, which passes the
-E option to the linker.

182 Tools and Libraries

Binding Times
Because shared library routines and data are not actually contained in the a.out file, the dynamic
loader must attach the routines and data to the program at run time. To accelerate program startup
time, routines in a shared library are not bound until referenced. (Data items are always bound at
program startup.) This deferred binding distributes binding overhead across the total execution
time of the program and is especially helpful for programs that contain many references that are
not likely to be executed.

Forcing Immediate Binding
You can force immediate binding, that forces all routines and data to be bound at startup time.
With immediate binding, the overhead of binding occurs only at program startup time, rather than
across the execution of the program. Immediate binding also detects unresolved symbols at startup
time, rather than during program execution. Immediate binding provides better interactive
performance, but the program startup time is longer. To force immediate binding, use the option
-Wl,-B,immediate.
Example:
aCC -Wl,-B,immediate draw_shapes.o -lshape

To specify default binding, use the -Wl,B,deferred option.
For more information, refer to the HP-UX Online Linker and Libraries User’s Guide.

Side Effects of C++ Shared Libraries
When you use a C++ shared library, all constructors and destructors of nonlocal static objects in
the library are executed. This differs from a C++ archive library where only the constructors and
destructors that are actually used in the application are executed.

Routines and Options to Manage C++ Shared Libraries
You can call any of several routines to explicitly load and unload shared libraries, and to obtain
information about shared libraries.
If an error occurs when calling shared library management routines, the system error variable,
errno, is set to an appropriate error value. Constants are defined for these error values in /usr/
include/errno.h. When a program checks for these values, it must include errno.h:
#include <errno.h>

Linker Options to Manage Shared Libraries
Use the linker options to specify shared library binding time, symbol export, and other shared
library management features.

NOTE: You must use the -Wx,args compiler option to specify any linker option on the compiler
command line.

Refer to HP-UX Online Linker and Libraries User’s Guide for more information about library
management routines and linker options.

Version Control for Shared Libraries
You can create different versions of a routine in a shared library with the HP_SHLIB_VERSION
pragma. HP_SHLIB_VERSION assigns a version number to a module in a shared library. The
version number applies to all global symbols defined in the source file. Use this pragma only if
incompatible changes are made to a source file. Refer to HP-UX Online Linker and Libraries User’s
Guide for more information about version control in shared libraries.

Creating and Using Libraries 183

Adding New Versions to a Shared Library
To rebuild a shared library with new versions of some of the object files, use the aCC command
and the -b option with the old object files and the newly compiled object files. The new source
files should use the HP_SHLIB_VERSION pragma. Refer to HP-UX Online Linker and Libraries
User’s Guide for more information.

Standard HP-UX Libraries and Header Files
HP-UX includes Several libraries that provide system services. You can access HP-UX standard
libraries by using header files that declare interfaces to those libraries. Refer to the HP-UX Reference
Manual for more information on library routines.

Location of Standard HP-UX Header Files
The standard HP-UX header files are located in /usr/include directory.

Using Header Files
To use a system library function, your HP aC++ source code must include the preprocessor directive
#include.
Example:
#include <filename.h>

where filename.h is the name of the C++ header file for the library function you want to use.
By enclosing filename.h in angle brackets, the HP aC++ compiler looks for that particular
header file in a standard location on the system. The compiler first looks for header files in /opt/
aCC/include directory. When no header files are found in this directory, it searches /usr/
includeUse header file options to modify the search path..

Example
To use the getenv function that is in the standard system libraries (/usr/lib/libc.so and
/usr/lib/libc.a), specify:#include <stdlib.h>
because the external declaration of getenv is found in the header file /usr/include/stdlib.h.

Allocation Policies for Containers
By default, allocating memory for STL containers is optimized for large applications. Defaults have
been tuned with speed efficiency as a primary concern. Space efficiency was considered, but was
secondary. Typically, therefore, memory is not allocated as required, because this method is slow
and inefficient. The containers obtain a block of memory to hold many elements, and when this
fills up, they get another block. The size of the block depends on the element size. As a result,
containers with only a few items might end up allocating too much memory. This default behavior
can be adjusted to individual application needs.

For -AP Standard Library
The inline template function__rw_allocation_size can be explicitly specialized to return the
number of units for each type’s use in any container:
template <>
inline size_t __rw-allocation_size(bar*,size_t) {
return 1;
}

This would initially allocate one unit when dealing with containers of type bar. Alternatively, if
RWSTD_STRICT_ANSI is not defined, then container member functionallocation_size can be
used to directly set buffer_size, the number of units to allocate.

184 Tools and Libraries

For -AA Standard Library
The following 4 defines can change the container initial allocation and growth ratio:
For an arbitrary container type:
define _RWSTD_MINIMUM_NEW_CAPACITY size_t(32)
define _RWSTD_NEW_CAPACITY_RATIO float(1.618)

For a string type:
define _RWSTD_MINIMUM_STRING_CAPACITY size_t(128)
define _RWSTD_STRING_CAPACITY_RATIO float(1.618)

For more precise control of containers, the following explicit specialization can be used.
The namespace scope functiontemplate __rw can be explicitly specialized to return the current
size in elements of any container.
template <>
inline size_t __rw_new_capacity (size_t __size, const _Container*)

The parameters passed in are the current size in elements and the container's pointer. The default
behavior results in an amortized constant time algorithm that dramatically increases rapidity while
retaining a regard for space efficiency.
The defaults have been tuned with speed versus space optimization of container performance with
regard to allocation of memory.
The ratio parameter must be above 1 for an amortized constant time algorithm. Lowering the ratio
will lower rapidity and improve space efficiency. This effect will be most noticable when working
with containers of few elements (less than 32).
The following is a container allocation example for both the -AP and -AA Standard library:
#include
namespace std {} using namespace std;
#include
#include
#define NUM 4
int printMallocInfo(const char*);
#ifndef DEFAULT
// specialize default size
// Default buffer size for containers.
#ifdef _HP_NAMESPACE_STD
namespace __rw {
template <>
inline size_t __rw_new_capacity(size_t __size, const list*) {
 printf("......\n");
 // if small grow by 5, else by 1/8 current size
 return __size < 100 ? 5 : __size / 8;
}
}
#else // -AP
template <>
inline size_t __rw_allocation_size(int*, size_t) {
 printf("......\n");
 return sizeof(int) >= 1024 ? 1 : 5;
}
#endif // -AA
#endif // DEFAULT
int main() {
 int count = 0;
 list *tryit; for (int i = 0;ipush_back(i);
 printMallocInfo("1st entry added");
 tryit->push_back(i + 1);
 printMallocInfo("2nd entry added");
 count++;
 }
 printMallocInfo("at end");

Creating and Using Libraries 185

 printf("%d\n", count);
}int printMallocInfo(const char* title) {
 static long lastValue;
 struct mallinfo info;
 info = mallinfo();
 printf("%s\n",title);
 printf("Memory allocation info:\n");
 printf(" total space in arena = %d\n", info.arena);
#ifdef DETAILS
 printf(" number of ordinary blocks = %d\n", info.ordblks);
 printf(" number of small blocks = %d\n", info.smblks);
 printf(" space in holding block headers = %d\n", info.hblkhd);
 printf(" number of holding blocks = %d\n", info.hblks);
 printf(" space in small blocks in use = %d\n", info.usmblks);
 printf(" space in free small blocks = %d\n", info.fsmblks);
 printf(" space in ordinary blocks in use = %d\n", info.uordblks);
 printf(" space in free ordinary blocks = %d\n", info.fordblks);
 printf(" keep option space penalty = %d\n", info.keepcost);
#else
 printf(" space in use = %d\n",
 info.usmblks + info.uordblks);
 printf(" space free = %d\n",
 info.fsmblks + info.fordblks);
#endif
//printf("\n\n size used is %d \n",(info.arena -lastValue)/NUM);
//lastValue = info.arena;
 return 0;
}

HP aC++ File Locations
This section gives you information on the HP aC++ file locations. It discusses the following topics:

• HP aC++ Executable Files

• HP aC++ Runtime Libraries and Header Files

HP aC++ Executable Files
Following are the HP aC++ executable files and their locations:

• /opt/aCC/bin/aCC (Driver)
This is the only supported interface to HP aC++ and to the linker for HP aC++ object files.

• /opt/aCC/lbin/ecom (A.06.* Compiler)
The compiler performs source compilation; preprocessing is incorporated into it.

• /opt/aCC/lbin/ctcom (A.05.* Compiler)
The compiler performs source compilation; preprocessing is incorporated into it.

• /opt/aCC/bin/c++filt (Name Demangler)
The name demangler implements the name demangling algorithm, which encodes function
name, class name, parameter number and name.

• /usr/ccs/bin/ld (Linker)
The linker links executables and builds shared libraries.

186 Tools and Libraries

HP aC++ Runtime Libraries and Header Files
Following lists the HP aC++ runtime libraries and locations:

• Standard C++ Library
/usr/lib/hpux32/libstd.so - 32-bit shared version—

— /usr/lib/hpux32/libstd.a - 32-bit archive version

— /usr/lib/hpux64/libstd.so - 64-bit shared version

— /usr/lib/hpux64/libstd.a - 64-bit archive version

• HP aC++ Runtime Support Library
/usr/lib/hpux##/libCsup.so—

— /usr/lib/hpux##/libCsup11.so — ISO C++11 standard compliant

— /usr/lib/hpux##/libstd.so and libstd_v2.so

— /usr/lib/hpux##/libstd_v2.so and librwtool_v2.so

— /usr/lib/hpux##/libstream.so

— Libraries in /usr/include/hpux## directory

• (## is 32 or 64 - provided as part of the HP-UX core system.)

• IOStream Library
— /usr/lib/hpux32/libstream.so - 32-bit shared version

— /usr/lib/hpux32/libstream.a - 32-bit archive version

— /usr/lib/hpux64/libstream.so - 64-bit shared version

— /usr/lib/hpux64/libstream.a - 64-bit archive version

HP aC++ File Locations 187

10 Mixing C++ with Other Languages
This chapter provides guidelines for linking HP aC++ modules with modules written in HP C and
HP FORTRAN 90 on HP 9000 Series 700/800 systems. It discusses the following topics:
• “Calling Other Languages” (page 188)

• “Data Compatibility between C and C++” (page 188)

• “HP aC++ Calling HP C” (page 189)

• “HP C Calling HP aC++” (page 191)

• “Calling HP FORTRAN 90 from HP aC++” (page 193)

Calling Other Languages
A module is a file that contains one or more variable or function declarations, one or more function
definitions, or similar items logically grouped together. Mixing modules written in C++ with modules
written in C is relatively straightforward since C++ is for the most part a superset of C. Mixing
C++ modules with modules in languages other than C is more complicated.
When creating an executable file from a group of programs of mixed languages, one of them
being C++, you must be aware of the following:

• In general, the overall control of the program must be written in C++. In other words, the main
function should appear in a C++ module and no other outer block should be present.

• You must pay attention to case sensitivity conventions for function names in the different
languages.

• You must make sure that the data types in the different languages correspond. Do not mismatch
data types for parameters and return values.

• Storage layouts for aggregates differ among languages.

• You must use the extern "C" linkage specification to declare modules that are not written
in C++; this is true whether or not the module is written in C.

• You must use the extern "C" linkage specification to declare modules that are written in
C++ and called from other languages.

• Do not use extern "C" when you include standard C header files because these header
files already contain extern "C" directives.

NOTE: HP aC++ classes are not accessible to non-C++ routines.

Data Compatibility between C and C++
Many of the data types between C and C++ are identical as C++ is, for most part, a superset of
C. Both languages support char, short, int, long, float, and double data types. ANSI C
and HP C++ also support a long double type. In addition, HP aC++ supports bool, wchar_t,
long long, and unsigned long long data types.
Pointers, structs, and unions that can be declared in C are also compatible. Arrays composed of
any of the above types are compatible.
C++ classes are generally incompatible with C structs. The following features of the C++ class
facility may cause the compiler to generate extra code, extra fields, or data tables:
• Multiple visibility of members (including both private and public data members in a class)

• Inheritance, either single or multiple

• Virtual functions

188 Mixing C++ with Other Languages

It is the use of these features, as opposed to whether the class keyword is used rather than
struct, that introduces incompatibilities with C structs.

HP aC++ Calling HP C
Calling between C and C++ is a normal operation, since C++ is for the most part a superset of
C. You should, however, be aware of the following:

• Using the extern "C" Linkage Specification

• Differences in Argument Passing Conventions

• The main() Function

Using the extern "C" Linkage Specification
To handle overloaded function names the HP aC++ compiler generates new, unique names for all
functions declared in a C++ program. To geneate these names, the compiler uses a function-name
encoding scheme that is implementation dependent. A linkage directive tells the compiler to inhibit
this default encoding of a function name for a particular function.
To call a C function from a C++ program, you must disable the usual encoding scheme when you
declare the C function. When you do not disable the usual encoding scheme, the function name
declared in your C++ program will not match the function name in your C module defining the
function.
When the names do not match, the linker cannot resolve them. To avoid these linkage problems,
use a linkage directive when you declare the C function in the C++ program.

Syntax of extern "C"
All HP aC++ linkage directives must have either of the following formats:
extern “C” function_declaration

extern “C”
 {
 function_declaration1
 function_declaration2
 ...
 function_declarationN
 }

Examples of extern "C"
The following declarations are equivalent:
extern “C” char* get_name(); // declare the external C module

and
extern “C”
{
 char* get_name(); // declare the external C module
}

You can also use a linkage directive with all the functions in a file, as shown in the following
example. This is useful when you use C library functions in a C++ program.
extern “C”
{
 #include “myclibrary.h”
}

NOTE: Do not use extern "C" when you include standard C header files. These header files
already contain extern "C" directives.

Data Compatibility between C and C++ 189

Although the string literal following the extern keyword in a linkage directive is
implementation-dependent, all implementations must support C and C++ string literals. Refer to
linkage specifications in The C++ Programming Language, Third Edition for more information.

Differences in Argument Passing Conventions
When your C++ code calls functions written in C, ensure that the called C functions do not use
function prototypes that suppress argument widening. If they do, your C++ code passes arguments
wider than the expectations of your C code.

The main() Function
When you mix C++ modules with C modules, the overall control of the program must be written
in C++. The main function should appear in a C++ module, rather than in a C module. There are
two exceptions:
1. C++ programs and libraries, including HP-supplied libraries, without any global class objects

containing constructors or destructors.
2. C++ programs and libraries, including HP-supplied libraries, without static objects.

Examples: HP aC++ Calling HP C
The following examples show a C++ program, calling_c.C that calls a C function, get_name.
The C++ program contains a main function.
//**
// This is a C++ program that illustrates calling a function *
// written in C. It calls the get_name() function, which is *
// in the “get_name.c” module. The object modules generated *
// by compiling the “calling_c.C” module and by compiling *
// the “get_name.c” module must be linked to create an *
// executable file. *
//**
#include <iostream.h>
#include “string.h”
//**
// declare the external C module
extern “C” char* get_name();
class account
{
private:
 char* name; // owner of the account
protected:
 double balance; // amount of money in the account
public:
 account(char* c) // constructor
 { name = new char [strlen(c) +1];
 strcpy(name,c);
 balance = 0; }
 void display()
 { cout << name << “ has a balance of “
 << balance << “\n”; }
};
int main()
{
 account* my_checking_acct = new account (get_name());
 // send a message to my_checking_account to display itself
 my_checking_acct->display();
}

The following example shows the module get_name.c. This function is called by the C++ program.
/**/
/* This is a C function that is called by main() in */
/* a C++ module, “calling_c.C”. The object */
/* modules generated by compiling this module and */

190 Mixing C++ with Other Languages

/* by compiling the “calling_c.C” module must be */
/* linked to create an executable file. */
/**/
#include <stdio.h>
#include “string.h”
char* get_name()
{
 static char name[80];
 printf(“Enter the name: “);
 scanf(“%s”,name);
 return name;
}
/**/

Running the Example
Following is a sample run of the executable file that results when you link the object modules
generated by compiling calling_c.C and get_name.c:
Enter the name:Joann

Joann has a balance of 0

HP C Calling HP aC++
If you mix C++ modules with C modules, refer to “Linking Your HP aC++ Libraries with Other
Languages” (page 196).
Since most C++ programs use the HP aC++ run-time libraries, you can call a C++ module from a
C module using the following procedure:

• To prevent a function name from being mangled, the function definition and all declarations
used by the C++ code must use extern "C".

• You cannot call member functions of classes in C++ from C. When a member function routine
is needed, call a non-member function in C++. This in turn calls the member function.

• Since the C program cannot directly create or destroy C++ objects, it is the responsibility of
the writer of the C++ class library to define interface routines that call constructors and
destructors, and it is the responsibility of the C user to call these interface routines to create
such objects before using them and to destroy them afterwards.

• The C user should not try to define an equivalent struct definition for the class definition in
C++. The class definition may contain bookkeeping information that is not guaranteed to work
on every architecture. All access to members must be done in the C++ module.

The following examples illustrate some of these points, as well as reference parameters in the
interface routine to the constructor.
//**
// C++ module that manipulates object obj. *
//**
#include <iostream.h>

typedef class obj* obj_ptr;

extern “C” void initialize_obj (obj_ptr& p);
extern “C” void delete_obj (obj_ptr p);
extern “C” void print_obj (obj_ptr p);

struct obj {
private:
 int x;
public:
 obj() {x = 7;}
 friend void print_obj(obj_ptr p);
};

Data Compatibility between C and C++ 191

// C interface routine to initialize an
// object by calling the constructor.
void initialize_obj(obj_ptr& p) {
 p = new obj;
}

// C interface routine to destroy an
// object by calling the destructor.
void delete_obj(obj_ptr p) {
 delete p;
}

// C interface routine to display
// manipulating the object.
void print_obj(obj_ptr p) {
cout << “the value of object->x is “ << p->x << “\n”;
}

Following is a C program that calls the C++ module to manipulate an object:
/***/
/* C program to demonstrate an interface to the */
/* C++ module. Note that the application needs */
/* to be linked with the aCC driver. */
/***/
typedef struct obj* obj_ptr;

int main () {
 /* C++ object. Notice that none of the
 routines should try to manipulate the fields.
 */
 obj_ptr f;

/* The first executable statement needs to be a call
 to _main so that static objects will be created in
 libraries that have constructors defined. In this
 application, the stream library contains data
 elements that match the conditions.
*/

/* NOTE: In 64-bit mode, you MUST NOT call _main. */

#if !defined(__LP64__) && !defined(__ia64)
 _main();
#endif

 /* Initialize the data object. Notice taking
 the address of f is compatible with the
 C++ reference construct.
 */
 initialize_obj(&f);

 /* Call the routine to manipulate the fields */
 print_obj(f);

 /* Destroy the data object */
 delete_obj(f);
}

Compiling and Running the Sample Programs
To compile the example, run the following commands:
cc -ccfilename.c

aCC -cC++filename.C

192 Mixing C++ with Other Languages

aCC -oexecutable cfilename.o C++filename.o

NOTE: During the linking phase, the aCC driver program performs several functions to support
the C++ class mechanism. Linking programs that use classes with the C compiler driver cc leads
to unpredictable results at run time.

Calling HP FORTRAN 90 from HP aC++
This section discusses the following topics:

• The main() Function

• Function Naming Conventions

• Using Reference Variables to Pass Arguments

• Using extern "C" Linkage

• Strings

• Arrays

• Files in FORTRAN

NOTE: As is the case with calling HP C from HP aC++, you must link your application using HP
aC++.

The main() Function
In general, when you mix C++ modules with modules in HP FORTRAN 90, the overall control of
the program must be written in C++. In other words, the main function must appear in a C++
module, and no other outer block should be present.

Function Naming Conventions
When you call an HP FORTRAN 90 function from HP aC++, keep in mind the differences in
handling case sensitivity. HP FORTRAN 90 is not case sensitive, while HP aC++ is case sensitive.
Therefore, all C++ global names accessed by FORTRAN 90 routines must be lowercase. All
FORTRAN 90 external names are downshifted by default.

Using Reference Variables to Pass Arguments
There are two methods of passing arguments, by reference or by value. Passing by reference
means that the routine passes the address of the argument rather than the value of the argument.
When calling HP FORTRAN 90 functions from HP aC++, ensure that the caller and called functions
use the same method of argument passing for each individual argument. Furthermore, when calling
external functions in HP FORTRAN 90, you must know the calling convention for the order of
arguments.
HP does not recommend passing structures or classes to HP FORTRAN 90. For maximum
compatibility and portability, pass simple data types to routines. All HP aC++ parameters are
passed by value, as in HP C, except arrays and functions which are passed as pointers.
HP FORTRAN 90 passes all arguments by reference. This means that all actual parameters in an
HP aC++ call to a FORTRAN routine must be pointers, or variables prefixed with the unary address
operator, &.
The simplest way to reconcile these differences in argument-passing conventions is to use reference
variables in your C++ code. Declaring a parameter as a reference variable in a prototype causes
the compiler to pass the argument by reference when the function is invoked.

Example of Reference Variables as Arguments
The following example illustrates a reference variable:

Data Compatibility between C and C++ 193

int main(void)
{
 // declare a reference variable
 extern void pas_func(short &);
 short x;
 ...
 pas_func(x); // pas_func should accept
 ... // its parameters by reference
}

Using extern "C" Linkage
To mix C++ modules with HP FORTRAN 90 modules, you must use extern "C" linkage to declare
any C++ functions that are called from a non-C++ module and to declare the FORTRAN routines.

Strings
HP aC++ strings are not the same as HP FORTRAN 90 strings. In FORTRAN 90, the strings are
not null terminated. Also, strings are passed as string descriptors in FORTRAN 90. This means that
the address of the character item is passed and a length by value follows.

NOTE: If you use the HP FORTRAN 90 +800 option, the length follows immediately after the
character pointer in the parameter list. If you do not use this option, HP FORTRAN 90 passes
character lengths by value at the end of the parameter list.
Refer the HP FORTRAN/9000 Programmer’s Reference Guide and HP FORTRAN/9000
Programmer’s Guide for information about the +800 option.

Arrays
HP aC++ stores arrays in row-major order, whereas HP FORTRAN 90 stores arrays in column-major
order. The lower bound for HP aC++ is 0. The default lower bound for HP FORTRAN 90 is 1.

Files in FORTRAN
HP FORTRAN I/O routines require a logical unit number to access a file, whereas HP aC++
accesses files using HP-UX I/O subroutines and intrinsics and requires a stream pointer.
A FORTRAN logical unit cannot be passed to a C++ routine to perform I/O on the associated file;
also a C++ file pointer cannot be used by a FORTRAN routine. However, a file created by a
program written in either language can be used by a program of the other language if the file is
declared open within the latter program. HP-UX I/O (stream I/O) can also be used from FORTRAN
instead of FORTRAN I/O.
Refer to your system FORTRAN manual on inter-language calls for more information.

194 Mixing C++ with Other Languages

11 Distributing Your C++ Products
Distribute your products in such a way that your customer does not need to use the HP aC++
compiler or driver. That is, only distribute executables and shared libraries.
If you write code in HP aC++ and distribute any of the following C++ files to your customers, read
the following sections for recommendations and legal requirements.

• Shared libraries containing C++ code with the exception of the following libraries:

/usr/lib/hpux##/libCsup.so◦
◦ /usr/lib/hpux##/libCsup11.so

◦ /usr/lib/hpux##/libstd.so (and libstd_v2.so)

◦ /usr/lib/hpux##/librwtool.so (and librwtool_v2.so)

◦ /usr/lib/hpux##/libstream.so

where ## is 32 or 64, which are provided as part of the HP-UX core system.

• Executable files produced by HP aC++ and applications that use shared libraries provided
with HP aC++.

• Object files produced by HP aC++.

• Archived libraries containing C++ code.

• Any combination of the above.

NOTE: If you choose to distribute archive libraries or object files, your customer must have
purchased HP aC++. Be sure your customer has read this distribution information.

This chapter discusses the following topics:

• “Applications that use HP aC++ Shared Libraries” (page 195)

• “Linking Your HP aC++ Libraries with Other Languages” (page 196)

• “Installing your Application” (page 196)

• “HP aC++ Files You May Distribute” (page 196)

• “Terms for Distribution of HP aC++ Files” (page 197)

Applications that use HP aC++ Shared Libraries
Following lists the HP aC++ runtime libraries that are shipped as part of the HP-UX 11.x core
system:

• /usr/lib/hpux##/libCsup.so

• /usr/lib/hpux##/libCsup11.so

• /usr/lib/hpux##/libstd.so and libstd_v2.so

• /usr/lib/hpux##/librwtool.so and librwtool_v2.so

• /usr/lib/hpux##/libstream.so

• Libraries in /usr/include/hpux##

where ## is 32 or 64, which are provided as part of the HP-UX core system.

Applications that use HP aC++ Shared Libraries 195

NOTE: If you distribute either executable files or shared libraries as part of your product, do not
ship these HP aC++ runtime libraries with your product in such a way that it results in overwriting
a newer library version with an older, incompatible version. Ensure that an older library version
is not installed over a newer one.

Linking Your HP aC++ Libraries with Other Languages
The C++ language requires that non-local static objects be initialized before any function or object
is used. HP aC++ automatically initializes non-local static objects in all object files, including shared
libraries, before the first statement in main() executes. No special files or link options are needed.
If the library is being dynamically loaded from pure C or Java as a plugin, the library should be
linked with the HP aC++ runtime libraries in the following order:
-AA: -lstd_v2 -lCsup -lunwind -lm

If tools.h++ is used, then add -lrwtool (or -lrwtool_v2) to the left.
In addition, your customers must review Chapter 10: “Mixing C++ with Other Languages” (page 188)
for information on linking HP aC++ modules with HP C, and HP FORTRAN 90.

Installing your Application
HP aC++ releases are usually forward compatible, but HP cannot guarantee that this will be true
for all releases. If you have questions about the compatibility of HP aC++ releases, you should
contact your HP support representative.
Normally your customer will already have the correct runtime installed. If your product requires a
newer version, it is recommended that the customer install the latest runtime patch.
Your application’s installation procedure should install the appropriate HP aC++ components in
the standard directories on your customer’s systems. This will ensure that the aCC command can
find them.

NOTE: If your customer already has HP aC++ installed and their version is newer than yours,
do not overwrite any of the existing HP aC++ components. Do not install your product on a system
that has a newer version of HP aC++ if that newer version is incompatible with your version.

Ensure that your customer does not install a version of HP aC++ after installing your product; if
that version of HP aC++ is incompatible with your version.

HP aC++ Files You May Distribute
You can package and redistribute the following HP aC++ components to your customers. The
following HP aC++ runtime libraries are provided as a patch to the HP-UX core system:

• /usr/lib/hpux##/libCsup.so

• /usr/lib/hpux##/libCsup11.so

• /usr/lib/hpux##/libstd.so and libstd_v2.so

• /usr/lib/hpux##/librwtool.so and librwtool_v2.so

• /usr/lib/hpux##/libstream.so

where ## is 32 or 64, which are provided as part of the HP-UX core system.

196 Distributing Your C++ Products

Terms for Distribution of HP aC++ Files
Permission to distribute the above mentioned HP aC++ runtime shared libraries is based on the
following terms and conditions:

• These HP aC++ components cannot be redistributed as part of a C++ compiler, linker, or
interpreter product.

• All copyright notices in the code must be retained.

• The HP aC++ executable components can only be redistributed by HP aC++ customers.

Terms for Distribution of HP aC++ Files 197

12 Migrating from HP C++ (cfront) to HP aC++
This chapter discusses differences in syntax and functionality that you need to consider when
migrating from HP C++ (cfront) to HP aC++.
It discusses the following topics:

• “General Guidelines for Migration” (page 198)

• “Command-Line Differences” (page 199)

• “Migration Considerations when Debugging” (page 202)

• “Migration Considerations when Using Exception Handling” (page 202)

• “Migration Considerations when Using Libraries” (page 206)

• “Migration Considerations Related to Standardization” (page 209)

• “Migration Considerations when Using Templates” (page 219)

NOTE: The HP C++ and HP aC++ compilers execute independently and can be installed on a
single system. HP C++ is located at /opt/CC. HP aC++ is located at /opt/aCC.

General Guidelines for Migration
Because of incompatibilities in areas such as name mangling, libraries, and object layout, all of
your C++ code for an application or library must be compiled and linked with either HP C++
(cfront) or with HP aC++. You cannot mix object files compiled with HP C++ (cfront) with those
compiled with HP aC++.
This section discusses the general guidelines when migrating from HP C++ (cfront) to HP aC++.

Getting Started with Migration
Complete the following procedure to migrate your code from HP C++ (cfront) to HP aC++:
1. Compile your code with the HP C++ (cfront) compiler using the +p option. This option requests

the compiler to treat anachronistic constructs as errors. Fix the anachronisms. For example:
CC +p cfrontfile.C

2. In your Makefiles:
• Change CC to aCC.

• Set the path to/opt/aCC/bin.

• Review command-line options and change when necessary.
3. Compile and fix syntax errors.

• Note that cfront-generated object code and libraries are not compatible with those
produced by aCC.

• If your program uses operator new, allow for memory allocation exceptions that may
occur. Modify your cfront code to handle memory allocation failures to avoid a program
abort.

4. Make library changes. Begin migration to the Standard C++ Library and Tools.h++ Library.
5. Make template changes.

• If a program or library uses templates, consider source code changes that may be required
to direct template instantiation.

• Use the +inst_directed option with the initial compilation to defer consideration of
compile-time errors due to template instantiation.

198 Migrating from HP C++ (cfront) to HP aC++

Writing Code for both Compilers
Use the __cplusplus macro (defined by the draft standard) to write code that can be compiled
by both HP C++ and HP aC++.
Example:
#if __cplusplus >= 199707L

 // HP aC++ code

#else

 // HP C++ code

#endif // __cplusplus >= 199707L

Explicit Loading and Unloading of Shared Libraries
HP aC++ uses system calls rather than C++ function calls to explicitly load and unload shared
libraries. When migrating to HP aC++, make the following source code changes:

• Change cxxshl_load() to shl_load().

• Change cxxshl_unload() to shl_unload().

• Change #include <cxxdl.h> to #include <dl.h>.

Memory Allocation
See “Memory Allocation Failure and operator new” (page 203) for more information.

Command-Line Differences
In HP aC++, you invoke the compiler with the aCC command instead of the CC command used to
invoke HP C++.
The following sections describe differences in command-line options:
• “New Command-Line Options” (page 199)

• “Obsolete Command-Line Options” (page 200)

• “Changed Command-Line Options” (page 201)

New Command-Line Options
Table 12 describes the new options for HP aC++. These options are not available for HP C++
(cfront). However, if a related option exists, it is noted here.
See Chapter 2: “Command-Line Options” (page 31) to for a complete list of HP aC++ command-line
options.

Table 12 New Command-Line Options

DescriptionOption

Replaces the -g debugger option. It generates complete debug information for the debugger.-g0

Invokes the HP aC++ Online Programmer’s Guide.+help

Disables exception handling. In HP aC++, exception handling is enabled by default.+noeh

In HP C++ (cfront), exception handling is disabled by default. To enable it, use the +eh option,
which is obsolete in HP aC++.

Command-Line Differences 199

Table 12 New Command-Line Options (continued)

DescriptionOption

Reduces compilation time and executable file size by precompiling common include (header)
files.

Precompiled
Header File
Options

There are new options and new functionality for template processing.Template Options
For more information about HP aC++ templates, see Chapter 5: “Using HP aC++ Templates”
(page 132).

Obsolete Command-Line Options
Table 13 describes obsolete command-line options for HP aC++.

Table 13 Obsolete Command-Line Options

DescriptionOption

Debugging Option

In HP C++ (cfront), the -y option generates a Static Analysis database if SoftBench is installed and
/opt/softbench/bin is at the beginning of your path. The option is not required in HP aC++.

-y

Exception Handling Option

Enables exception handling in HP C++.+eh

In HP aC++, exception handling is enabled by default. To disable exception handling off, compile
with the +noeh option.

Library Option

In HP C++, this option instructs runtime system to traverse the shared library list in a depth-first
manner when calling static constructors and when loading the libraries. The default is to traverse

-depth

the shared libraries in a left-to-right order when calling static constructors. The order of execution
of static constructors within each shared library is not affected by this option.
In HP aC++, -depth functionality is the default option.

Preprocessor Options

Requests the compatibility mode HP C++ preprocessor, cpp. This option is not available in HP
aC++.

-Ac

Prevents the preprocessor from stripping comments from your source file. In HP aC++ comments
are retained.

-C

The -W option no longer accepts p as a subprocess parameter. In HP aC++, there is no separate
subprocess for the preprocessor.

-Wp

Use the CC command (HP C++) as a workaround:
Example:
CC prog.C -I /opt/aCC/include -I /opt/aCC/include/iostream -I /usr -I /usr/include

See “Migration Considerations Related to Preprocessing” (page 208) for more information.

Template Options

Instantiates all members of used template classes and all needed template functions.-pta

Invokes ld instead of nm to do simulated linking.-ptb

Uses short file names for template instantiation files.-pth

Specifies file name extensions for template declaration files (header files).-ptH"list"

Instantiates at link time rather than at compile time.-ptn

Specifies an alternate location for the template repository.-ptrpath

200 Migrating from HP C++ (cfront) to HP aC++

Table 13 Obsolete Command-Line Options (continued)

DescriptionOption

Splits template instantiations into separate object files.-pts

Specifies file name extensions for template definition files.-ptS"list"

Provides verbose information about template processing. For HP aC++, use the +inst v option.-ptv

Translator Mode Options

Causes the translator to produce Classic C style declarations.+a0

Causes the translator to produce ANSI C style declarations.+a1

Runs only the preprocessor and translator, and sends the resulting source code to standard output
(stdout).

-F

Similar to the -F option, except that C source code is generated.-Fc

Generates an intermediate C language source file that has the file name suffix ..c in the current
directory.

+i

Provides maximum compatibility with the USL C++ implementation.+m

Promotes only first number register variables to the register class.+Rnumber

Requests translator mode.+T

Reads a file of data types, sizes, and alignments that the compiler uses when generating code.+xfile

Virtual Table Options

Causes virtual tables to be external and defined elsewhere, that is, uninitialized.+e0

Causes virtual tables to be declared externally and defined in a given module, that is initialized.+e1

Changed Command-Line Options
Functionality for the following options is different for HP C++ (cfront) than it is for HP aC++.
Table 14 lists and describes the obsolete command-line options for HP aC++.

Table 14 Changed Command-Line Options

DescriptionOption

Runs the preprocessor only on named C++ files, not on assembly files, and sends the result to
standard output (stdout).

-E

Generates minimal information for the debugger (as does the -g1 option). This is the default option.
The -g0 option replaces -g and generates complete debug information for the debugger.

-g

See “Debugging Options” (page 35) for more information.

The following values for x are related to translator mode and template subprocesses and are not
supported in HP aC++.

-tx,name

• 0 (zero) - C compiler

• c - C compiler

• i - Link-time template processor, c++ptlink

• m - merge tool, c++merge

• p - preprocessor

Command-Line Differences 201

Table 14 Changed Command-Line Options (continued)

DescriptionOption

• P - patch tool, c++patch

• r - Compile-time template processor, c++ptcomp

The following values for x are related to translator mode and template subprocesses and are not
supported in HP aC++.

-Wx,args

• 0 (zero) - C compiler

• c - C compiler

• i - Link-time template processor, c++ptlink

• m - merge tool, c++merge

• p - preprocessor

• P - patch tool, c++patch

• r - Compile-time template processor, c++ptcomp

Migration Considerations when Debugging
The HP/DDE Debugger supports HP aC++. The HP Symbolic Debugger, xdb, is not supported.
Functionality of the -g debugger option has changed. It now generates minimal information for
the debugger as does the -g1 option. This is the default.
The -g0 option replaces the -g option and generates full debug information for the debugger.
See “Debugging Options” (page 35) for complete information.

Migration Considerations when Using Exception Handling
When migrating exception handling code, the following characteristics of HP aC++ differ from
those of HP C++ (cfront):

• “Exception Handling is the Default” (page 202)

• “Memory Allocation Failure and operator new” (page 203)

• “Possible Differences when Exiting a Signal Handler” (page 203)

• “Differences in setjmp/longjmp Behavior” (page 204)

• “Calling unexpected” (page 204)

• “Unreachable catch Clauses” (page 205)

• “Throwing an Object having an Ambiguous Base Class” (page 205)

Exception Handling is the Default
In HP aC++ exception handling is enabled by default. Use the +noeh option to disable exception
handling.

NOTE: With exception handling disabled, the keywords throw and try generate a compiler
error. The HP C++ (cfront) compiler, behaves differently; the default is exception handling off. To
turn it on, you must use the +eh option.

If your executable throws no exceptions, object files compiled with and without the +noeh option
can be mixed freely. However, in an executable that throws exceptions (HP aC++ runtime libraries
throw exceptions), you must be certain that no exception is thrown in your application which will
unwind through a function compiled without the exception handling option turned on.
In order to prevent this, the call graph for the program must never have calls from functions compiled
without exception handling to functions compiled with exception handling (either direct calls or

202 Migrating from HP C++ (cfront) to HP aC++

calls made through a callback mechanism). If such calls do exist, and an exception is thrown, the
unwinding can cause:

• non-destruction of local objects (including compiler generated temporaries)

• memory leaks when destructors are not executed

• runtime errors when no catch clause is found

Memory Allocation Failure and operator new
In HP aC++ programs, when either operator new () or operator new [] cannot obtain
a block of storage, a bad_alloc exception results. This is required by the ANSI/ISO C++
International Standard.
In HP C++, memory allocation failures return a null pointer (zero) to the caller of operator new
().
To handle memory allocation failures in HP aC++ and to avoid a program abort, do one of the
following:

• Write try or catch clauses to handle the bad_alloc exception.

• Use the nothrow_t parameter to specify the type when calling operator new and check for
a null pointer.

Example:
operator new (size_t size, const nothrow_t &) throw();
operator new [] (size_t size, const nothrow_t &) throw();
 .
 .
 .
#include <new.h>
#include <stdexcept>

class X{};

void foo1() {
 X* xp1 = new(nothrow())X; // returns 0 when creating a nothrow
 // object, if space is not allocated
}

void foo2() {
 X* xp2 = newX: // may throw bad_alloc
}

int main() {
 try {
 foo1();
 foo2();
 }

 catch (bad_alloc) {
 // code to handle bad_alloc
 }
 catch(...) {
 // code to handle all other exceptions
 }
}

Possible Differences when Exiting a Signal Handler
Behavior when exiting a signal handler through a throw may differ between the two compilers.

Migration Considerations when Using Exception Handling 203

In HP aC++, a try block begins following the first call after the try keyword. This conforms to
the standard that a legal exception cannot be thrown prior to the first call. The current handlers of
try block are considered candidates to catch the exception.
In HP C++ the try keyword defines the beginning of a try block.
In this situation, when a signal is taken while executing between the try keyword and the return
point of the first call, a throw from the signal handler does not find the associated handlers as
candidates for catching the exception.

Differences in setjmp/longjmp Behavior
Interoperability with setjmp/longjmp is not implemented.
The standard specifies that an implementation need not clean up objects whose lifetimes are
shortened by a longjmp:
The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in
this International Standard. When automatic objects are destroyed by a thrown exception,
transferring control to a destination point in the program, a call to longjmp(jbuf, val) at the
throw point transfers control to the destination point results in undefined behavior.

Calling unexpected
Unlike HP C++, in HP aC++, when an unexpected handler wants to exit through a throw, it must
throw an exception that is legal according to the exception specification that calls unexpected(),
unless that exception specification includes the predefined type bad_exception. If it includes
bad_exception, and the type thrown from the unexpected handler is not in the exception
specification, then the thrown object is replaced by a bad_exception object and throw processing
continues.
The following example is legal in HP C++ but not in HP aC++. You can make the example legal
by including the exception header and adding bad_exception to foo’s throw specification.
The catch(...) in main will then catch a bad_exception object. This is the only legal way
an unexpected-handler can rethrow the original exception.
// #include <exception> Needed to make the example legal.

void my_unexpected_handler() { throw; }

void foo() throw() {

// void foo() throw(bad_exception) { To make the example legal,
// replace the previous line
// of code with this line.

throw 1000;
}

int main() {
set_unexpected(my_unexpected_handler);
try {
foo();
}
catch(...) {
printf(“fail - not legal in aCC\n”);
}
return 0;
}

Following is an example, illegal because my_unexpected_handler rethrows an int. A possible
conversion is to throw &x instead, as this is a pointer to int and therefore legal with respect to
the original throw specification. Alternatively, you can add bad_exception to the throw
specification, as in the prior example.

204 Migrating from HP C++ (cfront) to HP aC++

int x = 1000;

void my_unexpected_handler() { throw; }

void foo() throw(int *) {
throw 1000;
}

int main() {
set_unexpected(my_unexpected_handler);
try {
foo();
}
catch(...) {
printf(“fail - not legal in aCC\n”);
}
return 0;
}

Unreachable catch Clauses
Unreachable catch clauses are diagnosed by HP C++ but not by HP aC++. For example,
class C {
// ...
};

class D : public C {
// ...
};

...

catch(C) {
}
catch(D) { // Unreachable since previous catch masks this one.
 // Throw of D will be caught by catch for base class.
}

catch(C *) {
}
catch(D *) { // Unreachable since previous catch masks this one.
 // Throw of D * will be caught by catch for pointer
 // to base class.)
}

Throwing an Object having an Ambiguous Base Class
HP C++ generates an object throw error that has an ambiguous base class. In HP aC++, a
throw of an object having an ambiguous base class is not caught by a handler for that base,
since that would involve a prohibited derived-to-base conversion.
In the following example, the throws are caught by the handlers for D1 and D1*, respectively. The
handlers for C are disqualified because C is an ambiguous base class of E:
extern “C” int printf(char*,...);

class C {
public:
C() {};
};

class D1 : public C {
public:
D1() {};
};

Migration Considerations when Using Exception Handling 205

class D2 : public C {
public:
D2() {};
};

class E: public D1, public D2 {
public:
E() {};
};

int main() {
E e;
try {
throw e;
}
catch(C) {
printf(“caught a C object\n”);
}
catch(D1) {
printf(“caught a D1 object\n”);
}
catch(D2) {
printf(“caught a D2 object\n”);
}
catch(E) {
printf(“caught an E object\n”);
}

try {
throw & e;
}
catch(C*) {
printf(“caught ptr to C object\n”);
}
catch(D1*) {
printf(“caught ptr to D1 object\n”);
}
catch(D2*) {
printf(“caught ptr to D2 object\n”);
}
catch(E*) {
printf(“caught ptr to E object\n”);
}
return 0;
}

Migration Considerations when Using Libraries
The following sections contain information about library migration from HP C++ (cfront) to HP
aC++.

Standards Based Libraries
HP aC++ provides the following libraries that are not part of the HP C++ (cfront) compiler:

• Standard C++ Library

• Tools.h++ Library

• HP aC++ Runtime Support Library
HP recommends that you use these standards based libraries whenever possible, instead of the
cfront compatibility libraries. See Chapter 9: “Tools and Libraries” (page 175) for more information.

206 Migrating from HP C++ (cfront) to HP aC++

HP C++ (cfront) Compatibility Libraries
HP aC++ provides the following library, whose functionality is part of the HP C++ (cfront) compiler.
This library is not Standards based.

• IOStream Library

IOStream Library
The shared version of this library is located at /usr/lib/hpux##/libstream.so. The archive
version is at /usr/lib/hpux##/libstream.a. (## is 32 or 64 - provided as part of the HP-UX
core system).

Manpages
The following manpages are located in the /opt/aCC/share/man/man3.Z directory:

• IOS.INTRO(3C++) - Introduction to the C++ stream library

• filebuf(3C++) - Buffer for file input and output

• fstream(3C++) - iostream and streambuf specialized to files

• ios(3C++) - input/output formatting

• istream(3C++) - formatted and unformatted input

• manip(3C++) - iostream manipulators

• ostream(3C++) - insertion (storing) into a streambuf

• sbuf.prot(3C++) - interface for derived classes

• sbuf.pub(3C++) - public interface of character buffering class

• ssbuf(3C++) - streambuf specialized to arrays

• stdiobuf(3C++) - iostream specialized to stdio file

• strstream(3C++) - iostream specialized to arrays
To invoke a manpage from the command line, enter 3s after the man command and before the
manpage name.
Example:
Enter the following command to invoke the manpage for filebuf:
man 3s filebuf

Header Files
Use the following header files with the IOStream library.

• iostream.h - I/O streams classes ios, istream, ostream, and streambuf

• fstream.h

• strstream.h - streambuf specialized to arrays

• iomanip.h - predefined manipulators and macros

• stdiostream.h - specialized streams and streambufs for interaction with stdio

• stream.h - includes iostream.h, fstream.h, stdiostream.h and iomanip.h for
compatibility with AT&T USL C++ v 1.2

To direct the compiler to search these header files, enter the following command:
-I/opt/aCC/include/iostream.

Migration Considerations when Using Libraries 207

Standard Components Library Not Provided
The Standard Components Library is not provided with the HP aC++ compiler for Integrity servers.
HP recommends that you use the similar features of the Standard C++ Library in place of the
Standard Components Library.

HP C++ (cfront) Complex Library Not Supported
The Complex library which is part of the cfront based HP C++ compiler product is not included
with HP aC++. HP recommendeds that you use the similar features of the Standard C++ Library
in place of the Complex library.
Complete the following procedure to begin migration:
1. Replace #include with <complex>.
2. Remove -lcomplex from the command-line.

Manpages
The following manpages describe the complex library are not part of the HP aC++ product. These
manpages are no longer available.

• CPLX.INTRO(3C++) - Introduction to The C++ Complex Mathematics Library

• cartpol(3C++) - Partesian and Polar Functions

• cplxexp(3C++) - Exponential, Logarithm, Power, and Square Root Functions for Complex
Numbers

• cplxerr(3C++) - Error Handling Function

• cplxops(3C++) - Complex Number Operators

• cplxtrig(3C++) - Trigonometric and Hyperbolic Functions for Complex Numbers

Header File
The Complex library uses the complex.h header file.

HP C++ (cfront) Task Library Not Supported
The task library, that is part of the HP C++, is not included with HP aC++. To develop multi-threaded
applications with HP aC++, use the pthreadprogramming interface routines that are available
as part of HP DCE/9000.

Manpages
The following manpages describe task library features are not part of the HP aC++ product. These
manpages are no longer available.

• TASK.INTRO(3C++) - Introduction to the C++ Task Library

• interrupt(3C++) - Signal Handling

• queue(3C++) - Queue Routines for Message Passing and Data Buffering

• task(3C++) - the C++ task library

• tasksim(3C++) - Histograms and Random Numbers for Simulations with C++ Tasks

Migration Considerations Related to Preprocessing
The HP C++ (cfront) compiler provides ANSI mode (the default) and K&R compatibility mode
preprocessing. HP aC++ preprocessing complies with the ANSI/ISO C++ International Standard.
Therefore, if you are migrating from cfront ANSI mode preprocessing to HP aC++, in general, no
changes are required.
HP aC++ does not support K&R compatibility mode preprocessing.

208 Migrating from HP C++ (cfront) to HP aC++

Obsolete Preprocessor Options
HP aC++ provides support for ANSI/ISO C++ International Standard preprocessing. Since the
standard categorizes support of pre-ISO preprocessing as an anachronism, the ANSI preprocessing
options of HP C++ (cfront) are not supported. For a list of obsolete preprocessor options, see
Table 13: “Obsolete Command-Line Options” (page 200).

Migration Considerations Related to Standardization
The ANSI/ISO C++ International Standard redefines the rules, syntax, and features of C++
language. If your existing code contains any of the standards based keywords as variable names,
you must change the variable names when you convert your program to an HP aC++ program.
In addition to keyword changes, there are changes in C++ Semantics and C++ Syntax.

Changes in C++ Semantics
Following lists the differences in code behavior when you migrate from HP C++ to HP aC++:

• Implicit Typing of Character String Literals

• Overload Resolution Ambiguity of Subscripting Operator

• Execution Order of Static Constructors in Shared Libraries

• More Frequent Inlining of Inline Code

NOTE: These differences can occur inspite of compiling your code without errors.

Implicit Typing of Character String Literals
HP C++ implicitly types character string literals as char *. HP aC++, in accordance with the
ANSI/ISO C++ International Standard, types character string literals as const char *. This
difference affects function overloading resolution.
Example:
In the following code, HP aC++ calls the first function a; cfront calls the second.
void a(const char *);
void a(char *);

f() {
 a(“A_STRING”);
 }

To prevent existing code from breaking, assign a string literal to a non-const pointer.
Example:
char *p = “B_STRING”;

NOTE: This feature may not be a part of the Standard in future revisions.

Also, you cannot convert const char * to char *in a conditional expression in this context.
Example:
char *p = f() ? “A” : “B”;

In such a scenario, you must change the code.
Example:
const char *p = f() ? “A” : “B”;

or
char *p = const_cast(f() ? “A” : “B”);

Migration Considerations Related to Standardization 209

Overload Resolution Ambiguity of Subscripting Operator
HP C++ and HP aC++ have different overload resolution models. When you migrate to HP aC++,
you may see an overload resolution ambiguity for the subscripting operator. The following code
illustrates the problem:
struct String {
 char& operator[](unsigned);
 operator char*();
// ...
};

void f(String &s) {
 s[0] = ‘0’;
}

HP C++ accepts the above code, selecting String::operator[](unsigned) rather than the
user-defined conversion, String::operator char*(), followed by the built-in
operator[].
Compiling the code with HP aC++ produces the following error:
 Error 225: “c.C”, line 8 # Ambiguous overloaded function call;
 more than one acceptable function found. Two such functions
 that matched were “char &String::operator [](unsigned int)”
 [“c.C”, line 2] and “char &operator [](char *,int)”
 [Built-in operator].
 s[0] = ‘0’;

The error message appears because the compiler cannot choose between:
1. Not converting s, but converting 0 from type int to type unsigned int; this implies using

the user- provided subscript operator[]
2. Converting s to type char* (using the user-defined conversion operator), but not converting

0; this corresponds to using the built-in subscript operator[].
In order to disambiguate this situation in favor of the user-provided subscript operator[], make
the conversion of 0 in alternative (1.) no worse1 than the conversion of 0 in alternative (2.).
Because the subscript type for the built-in operator[] is ptrdiff_t (as defined in <stddef.h>),
this is also the type that should be used for user-defined subscript operators. Replace the previous
example by:
#include <stddef.h>

struct String {
 char& operator[](ptrdiff_t);
 operator char*();
 // ...
};

void f(String &s) {
 s[0] = ‘0’;
}

Execution Order of Static Constructors in Shared Libraries
In HP C++ (cfront), static constructors in shared libraries listed on the link-line are executed, by
default, in left-to-right order. HP aC++ executes static constructors in depth-first order; that is, shared
libraries on which other files depend are initialized first. Use the -depth command-line option on
the CC command line for enhanced compatibility with HP aC++.
In addition, HP aC++ reverses the initialization order of .o files on the link-line. To aid in migration,
you can group all .o files together and all .so files together.

1. worse is relative to a ranking of conversions as described in the ANSI/ISO C++ International Standard on overloading.
In general, a user-defined conversion is worse than a standard conversion, which in turn is worse than no conversion
at all. The complete rules are more fine grained.

210 Migrating from HP C++ (cfront) to HP aC++

Example:
aCC file1.o file2.o lib1.so lib2.so lib3.so

In this scenario, cfront would initialize file2.o first, and then file1.o, while HP aC++ initializes
file1.o and then file2.o. You must take this into account in your cfront code to avoid link
problems with HP aC++.

More Frequent Inlining of Inline Code
HP C++ does not inline some functions even when you request for it. This happens when the function
is too complex. If you use the +w option, the compiler displays a message whenever it does not
inline a requested function.
HP aC++ almost always inlines functions for which you have specified the inline keyword.

Changes in C++ Syntax
When you migrate from HP C++ to HP aC++, in addition to changes related to standards based
keywords, you may need to make changes to your source code in the following areas:

• “Explicit int Declaration” (page 211)

• “The for Statement, New Scoping Rules” (page 212)

• “struct as Template Type Parameter is Permitted” (page 212)

• “Base Template Class Reference Syntax Change” (page 213)

• “Tokens after #endif” (page 213)

• “overload not a Keyword” (page 213)

• “Dangling Comma in enum” (page 214)

• “Static Member Definition Required” (page 214)

• “Declaring friend Classes” (page 214)

• “Incorrect Syntax for Calls to operator new” (page 215)

• “Using :: in Class Definitions” (page 215)

• “Duplicate Formal Argument Names” (page 215)

• “Ambiguous Function or Object Declaration” (page 215)

• “Overloaded Operations ++ and --” (page 216)

• “Reference Initialization” (page 216)

• “Using operator new to Allocate Arrays” (page 217)

• “Parentheses in Static Member Initialization List” (page 217)

• “&qualified-id Required in Static Member Initialization List” (page 218)

• “Non-constant Reference Initialization” (page 218)

• “Digraph White Space Separators” (page 219)

Explicit int Declaration
In HP C++, you do not need to explicitly specify int types. In HP aC++, you must explicitly declare
int types. This change reduces ambiguity among expressions involving function-like casts and
declarations.
Example:
The following code is valid in HP C++:

Migration Considerations Related to Standardization 211

void f(const parm);
const n = 3;
main()

The equivalent, valid HP aC++ code follows:
void f(const int parm);
const int n = 3;
int main()

The for Statement, New Scoping Rules
In HP C++, variables declared in the initializer list are allowed after the for statement. In the
ANSI/ISO C++ International Standard, variables declared in the initializer list are not allowed
after the for statement. HP aC++ provides this functionality when you specify the following aCC
command-line option:
-WC,-ansi_for_scope,on

If you do not specify this option, (or you specify the -WC,-ansi_for_scope,off option), by
default, the new rules do not take effect.
In this scenario, HP aC++ provides this standard functionality as an option to ease conversion of
existing code to the standard. No code change is currently required.
Future plans are to make the ANSI/ISO C++ International Standard syntax the default. HP
recommends that you correct your code, by moving the declaration of the for loop variable to its
enclosing block.
Example:
The following code currently compiles without errors with HP C++ and HP aC++. In the future, HP
aC++, will generate an error.
int main(int argc) {
 for (int i = 1; i < argc; ++i) {
 }
 for (i = 0; i < argc; ++i) {
 }
}

Correct the code as follows:
int main(int argc) {
 int i;
 for (i = 1; i < argc; ++i) {
 }
 for (i = 0; i < argc; ++i) {
 }
}

This code complies with ANSI/ISO C++ International Standard syntax and compiles with both
compilers.

struct as Template Type Parameter is Permitted
In HP C++, an error is generated when a struct is used as a template type parameter. In HP
aC++, when a struct is used as a template type parameter, it is correctly compiled, in accordance
with draft standard syntax. This is a new feature.
Example:
template class A {
public:
struct T a;
};
struct B {};
A b;

The following error appears when you compile this code with HP C++:

212 Migrating from HP C++ (cfront) to HP aC++

CC: "DDB4325.C", line 3: error: T of type any redeclared as struct
(1479)

This code compiles without error with HP aC++.

Base Template Class Reference Syntax Change
In HP C++, you can reference a member of a base template class without qualifying the member.
In HP aC++, when you reference a member of a base template class, you must qualify the member
by adding this->.
Adding this-> defers name resolution until instantiation. This allows the compiler to find members
in template base classes. However, it prevents the compiler from finding names declared in enclosing
scopes.
Example:
template class BaseT {
public:
 T t;
 int i;
};
template class DerivedT : public BaseT {
public:
 void foo1 () { t = 1; i = 1; } // warning 721
 // t and i could be global.

 void foo2 () { this->t = 2; this->i = 2; } // Correct syntax, no warning.
};
DerivedT d; // Here is the point of instantiation.

Tokens after #endif
In HP C++, any character that follows the #endif preprocessor statement causes a warning and
is ignored. In HP aC++, characters following the #endif preprocessor statement cause an error
and the program does not compile. To change this, remove all characters following all #endif
preprocessor statements or put the token in comments.
Example:
Compiling the following code with HP C++ causes a warning. Compiling with HP aC++ generates
an error.
int main(){
#ifdef FLAG
int i;
i=1;
#endif FLAG
}

To compile with HP aC++, change the code to:
int main(){
#ifdef FLAG
int i;
i=1;
#endif //FLAG
}

overload not a Keyword
In HP C++, using the overload keyword to specify a function as an overloaded function causes
an anachronistic warning and is ignored. In HP aC++, using the overload keyword causes an
error and the program does not compile. To change this, remove all occurrences of the overload
keyword.
Example:

Migration Considerations Related to Standardization 213

Compiling the following code with HP C++ causes a warning. Compiling with HP aC++ generates
an error stating that overload is used as a type, but has not been defined as a type.
int f(int i);
overload int f(float f); // Remove the word overload.
int main () {
return 1;
}

Dangling Comma in enum
In HP C++, a comma following the last element in an enum list is ignored. In HP aC++, a comma
following the last element in an enum list generates an error. To avoid this error, remove the comma
after the last element.
Example:
HP C++ accepts the following code. HP aC++ generates an error stating that the comma (,) is
unexpected.
enum Colors { red,
 orange,
 yellow,
 green,
 blue,
 indigo,
 violet, // This comma is illegal.
};

Static Member Definition Required
In HP C++, you can declare a static member and not define it. However, in HP aC++, you cannot
do so. You must define the declared static data member.
Example:
Compiling and linking the following code on HP C++ gives no warning nor error. Compiling the
code on HP aC++ gives neither a warning nor an error. Linking the resulting object file generates
a linker (ld) error that states that there are unsatisfied symbols.
class A {
public:
 static int staticmember;
};
// int A::staticmember=0; // This would fix the problem.
int main ()
{
 A::staticmember=1;
}

Declaring friend Classes
In HP C++, you can declare friend classes without the class keyword. In HP aC++, declaring
friend classes without the class keyword generates an error. To change this, add the class
keyword to all friend class declarations.
Example:
Compiling the following code on HP C++ does not generate a warning or an error. Compiling
the code on HP aC++ generates an error stating that the friend declaration for B is not in the
right form for either a function or a class.
class foo{

public:
 friend bar; // Need to say: friend class B
};
int main (){

214 Migrating from HP C++ (cfront) to HP aC++

 return 1;
}

Incorrect Syntax for Calls to operator new
In HP C++, you can use incorrect syntax to call operator new. In HP aC++, an error is generated
when incorrect syntax for operator new is used. To change this, add parentheses around the
use of operator new. This code compiles correctly with both HP C++ and HP aC++.
Example:
Compiling the following code on HP C++ does not generate a warning or an error. Compiling
the code on HP aC++ generates errors stating operator expected instead of new and undeclared
variable operator S.
struct S {int f();};
int g() { return new S->f();}
// int g() { return (new S)->f();} // This will fix the problem.
int S:: f() { return 1;}
main() {
return 1; }

Using :: in Class Definitions
In HP C++, you can declare members of classes inside the class using the following incorrect
syntax:
class_name::member_name

In HP aC++, this incorrect syntax is considered an error. You must remove the class_name::
specification from the member definition.
Example:
Compiling the following code on HP C++ does not generate a warning or an error. Compiling
the code on HP aC++ generates an error stating that you cannot qualify members of class X in
the class definition.
class X{
 int X::f();
// int f(); // This will fix the problem and
 // run successfully on both compilers.
>
int main(){
}

Duplicate Formal Argument Names
In HP C++, duplicate formal argument names are allowed. In HP aC++, duplicate formal argument
names generate an error. To avoid this, use unique formal parameter names.
Example:
The following code compiles with HP C++. With HP aC++, an error is generated stating that
symbol aParameter has been redefined and where it was previously defined.
int a(int aParameter, int * aParameter);

Ambiguous Function or Object Declaration
In HP C++, an ambiguous function or object declaration compiles without warning, assuming an
object declaration. In HP aC++, an ambiguous function or object declaration generates an error.
To change this, change the code to remove the ambiguity.
Example:
struct A {A(int);};
struct B {B(const A &); void g();};
void f(int p) {
 B b(A(p)); // Declaration of function or object?

Migration Considerations Related to Standardization 215

 b.g(); // Error?
}

The ambiguity in the example code is whether b is declared as:

• A function with one argument (named p) returning an object of type B.

• An object of type B initialized with a temporary object of type A.
HP C++ compiles this code successfully and assumes b is an object. Compiling the code with HP
aC++ generates the following error:
Error: File “objDeclaration.c”, Line 5
Left side of ‘.’ requires a class object; type found was a function ‘B (A)’.
 Did you try to declare an object with a nested constructor call?
 Such a declaration is interpreted as a function declaration B b(A)
 [File “objDeclaration.c, Line 4].

Modify the code as shown below to successfully compile it with both compilers.
struct A {A(int);};
struct B {B(const A &); void g();};

void f(int p) {
 B b = A(p); // declaration of object
 b.g(); // method call
}

Overloaded Operations ++ and --
You must use the overloaded operations ++ and -- correctly. These operations require a member
function with one argument. If the function has no argument, a warning is issued and a postfic
is assumed in HP C++. In HP aC++, the inconsistency between the overloaded function usage and
definition is considered an error. To avoid this error, change the class definition so that each
overloaded function definition has the correct number of arguments.
Example:
class T {
 public:
 T();
 const T& operator++ ();
};
int main () {
T t;
t++;
}

Compiling the above code with HP C++ generates the following warning:
CC: "pre.C", Line 8: warning: prefix ++/-- used as postfix (anachronism)
(935)

Compiling the code with HP aC++ generates an error like the following:
Error 184: File “pre.C”, Line 8
Arithmetic or pointer type expected for operator ‘++’; type found was ‘T’.

To compile the code with HP C++ or HP aC++ use the following class definition:
class T {
 public:
 T();
 const T& operator++ (); // prefix old style postfix definition
 const T& operator++ (int); // postfix
};

Reference Initialization
Illegal reference initialization is no longer allowed. In HP C++, a warning is generated stating that
the initializer for a non-constant reference is not an lvalue (anachronism). In HP aC++, an illegal

216 Migrating from HP C++ (cfront) to HP aC++

initialization of a reference type generates an error and the program does not compile. To avoid
this error, use a constant reference.
Example:
void f() {
 char c = 1;
 int & r = c;
}

Compiling the above code with HP C++ generates the following warning:
C: “nonConstRef.C”, line 6: warning: initializer for non-const
reference not an lvalue (anachronism) (235)

Compiling the code with HP aC++ generates an error like the following:
Error: File “nonConstRef.C”, Line 6
Type mismatch; cannot initialize a ‘int &’ with a ‘char’.
Try changing ‘int &’ to ‘const int &’.

To successfully compile with both compilers, make the following changes to the code:
void f() {
 char c = 1;
 const int & r = c;
}

Using operator new to Allocate Arrays
In HP C++, operator new is called to allocate memory for an array. In HP aC++, operator
new [] is called to allocate memory for an array.
Example:
The following code compiles without error on HP C++.
typedef char CHAR;
typedef unsigned int size_t;
typedef const CHAR *LPCSTR, *PCSTR;
typedef unsigned char BYTE;

void* operator new (size_t nSize, LPCSTR lpszFileName, int nLine);
static char THIS_FILE[] = “mw2.C”;
int main() {
 BYTE *p;
 p = new(THIS_FILE, 498) BYTE[50];
}

On HP aC++, the following error is generated:
Error: File “DDB4269.C”, Line 10
Expected 1 argument(s) for void *operator new [](unsigned int); had 3 instead.

Parentheses in Static Member Initialization List
In HP C++, redundant parentheses are allowed in a static member initialization list. In HP aC++,
redundant parentheses in a static member initialization list generate an error and the program
does not compile. You must remove the redundant parentheses to compile the program with both
compilers.
Example:
class A {
public:
 int i;
 static int (A::*p);
};

int (A::*(A::p)) = &(A::i);

Compiling this code HP aC++ generates the following error:

Migration Considerations Related to Standardization 217

Error: File “DDB4270.C”, Line 7
A pointer to member cannot be created from a parenthesized or unqualified name.

To successfully compile the code, remove the parentheses from the last line.
Example:
class A {
public:
 int i;
 static int (A::*p);
};

int (A::*(A::p)) = &A::i;

&qualified-id Required in Static Member Initialization List
In HP C++, you can use an unqualified function name in a static member initialization list. In HP
aC++, an unqualified function name in a static member initialization list causes an error and the
program does not compile. Use the unary operator & followed by a qualified-id in the member
initialization list. The resulting code compiles correctly with HP C++ and HP aC++.
Example:
class A {
public:
 int i;
 int j();
static int (A::*p)();
};
int (A::*(A::p))() = j;

Compiling this code with HP aC++ generates the following error:
Error: File “DDB4270A.C”, Line 7
Cannot initialize ‘int (A::*)()’ with ‘int (*)()’.

To successfully compile with HP C++ and HP aC++, change the initialization list in line 7 to &A::j;
class A {
public:
 int i;
 int j();
static int (A::*p)();
};
int (A::*(A::p))() = &A::j;

Non-constant Reference Initialization
In HP C++, if you do not initialize a non-constant reference with an lvalue, an anachronistic
warning is issued and compilation continues. In HP aC++, an error is issued if you do not use an
lvalue for a non-constant reference initialization. Use an lvalue for the reference initialization,
or define the reference as a const type.
Example:
void f(int &);
int main () {
 f(3);
 return 0;
}

Compiling this code with HP C++ generates the following warning:
CC: “DDB04313A.C”, line 4: warning: temporary used for non-const int & argument;
 no changes will be propagated to actual argument (anachronism) (283)

Compiling the above code with HP aC++ generates the following error:
Future Error: File “DDB04313A.C”, Line 4
The initializer for a non-constant reference must be an lvalue.
 Try changing ‘int &’ to ‘const int &’.

218 Migrating from HP C++ (cfront) to HP aC++

To successfully compile the code with either compiler, use one of the two alternatives shown below:
void f(const int &); // Use a constant reference.
int main () {
 f(3);
 return 0;
}

Or
void f(int &);
int i;
int main () {
 i=3;
 f(i); // Use an lvalue for reference initialization.
 return 0;
}

Digraph White Space Separators
HP C++ does not support alternative tokens (digraphs). In HP aC++, digraphs are supported and
legal C++ syntax can be considered an error because of digraph substitution. Insert a blank
between two characters of the digraph.
Example:
C<::A> a;

The characters <: are one of the alternative tokens (digraphs) for which HP aC++ performs a
substitution. In this case, <: becomes [. The statement to be compiled becomes C[:A a;, which
produces many compilation errors.
To successfully compile this program with either compiler, insert a blank between < and :.
Example:
C< ::A> a;

Migration Considerations when Using Templates
In HP aC++, templates are processed differently than in HP C++ (cfront). HP aC++ does not have
a repository. All instantiations are placed in an object (.o) file (with additional information in a
.Ia file if you specify the +inst_auto command-line option). You cannot modify these files as
was possible with the files in a repository.
See Chapter 5: “Using HP aC++ Templates” (page 132) for more information.
To begin migrating code containing templates to HP aC++, try to compile and link using the default
compile-time instantiation. If this fails with compilation errors, you can compile using one of the
following:

• The +inst_all option to view all compile-time errors, including template instantiation errors.
This may generate errors that will not occur in your program, because the draft standard
allows template parameters that cannot instantiate all members. The +inst_all option forces
instantiation of such members.

• The +inst_directed option to mask compile-time template instantiation errors.
To reset after all translation units compile successfully:
1. Remove any .o and .I files. Using a clobber makefile target to remove .I files is similar to

removing the ptrepository directory in cfront.
2. Recompile and link using compile-time instantiation.

Verbose Template Processing Information
Use the +inst v option to replace the cfront -ptv option tp process verbose template information.

Migration Considerations when Using Templates 219

Common Template Migration Syntax Changes
You must use the keyword typname to distinguish types in template code in HP aC++. Also, use
the this-> notation to reference data members.

The cfront Implicit Include Convention
The preferred method for specifying template declarations and definitions in HP aC++ is to put
declarations and definitions in the same file.
In HP C++ (cfront), for any .h file that contains template declarations, there is a .c file that contains
definitions for those templates.
HP aC++ provides the following options to ease migration from HP C++ (cfront):

• +inst implicit_include: This option instructs the compiler to use the cfront default file,
name lookup, for template definition files.

• +inst include_suffixes: Use this option to replace the cfront -ptS"list" option.
This specifies file name extensions for template definition files.

Converting Directed Mode to Explicit Instantiation
If you use directed mode instantiation with the cfront based compiler, an awk script can be used
to convert your file to an instantiation file that uses the explicit instantiation syntax:
Example:
#!/usr/bin/ksh
For a Directed-Mode Instantiation file that is the parameter
to the script, create a file that can be compiled with the
aC++ compiler using the Explicit Instantiation Syntax.
(Note that this will only work for classes.)

closure_file=$1
closure_file_base_name=${1%\.*}
eis_file=$closure_file_base_name.eis.C

print “Output file: $eis_file”
Get all of the include directives.
grep “#include” $closure_file > /tmp/dmi2eis1.$$

Collect all of the Directed-Mode Instantiation directives.
grep -v “#include” $closure_file \
 | grep -e “>” -e “<“ \
 | grep -v “(“ \
 | awk ‘ {if ($1 != “//”) {print $0;} }’ >/tmp/dmi2eis2.$$

Print the line assuming that the last element is the variable
name followed immediately by a semi-colon.
awk ‘{ n=split($0,sp0);
 printf(“template class”);
 for (i=1; i<=(n-1); i++) {
 printf(“ %s”, sp0[i]);
 }
 printf(“;\n”);
 }’ < /tmp/dmi2eis2.$$ > /tmp/dmi2eis3.$$

 cat /tmp/dmi2eis1.$$ /tmp/dmi2eis3.$$ > $eis_file
 rm -f /tmp/dmi2eis*.$$

NOTE: You can use explicit instantiation to instantiate a template class and all its member
functions, an individual template function, or a member function of a template class.

220 Migrating from HP C++ (cfront) to HP aC++

13 Documentation feedback
HP is committed to providing documentation that meets your needs. To help us improve the
documentation, send any errors, suggestions, or comments to Documentation Feedback
(docsfeedback@hp.com). Include the document title and part number, version number, or the URL
when submitting your feedback.

221

docsfeedback@hp.com

A Diagnostic Messages
The aC++ compiler can issue a large variety of diagnostics in response to unexpected situations
or suspicious constructs. This appendix presents a summary of these diagnostics organized into
the following sections:
• “aC++ Message Catalog” (page 222)
• “Frequently Encountered Messages” (page 222)

aC++ Message Catalog
The aC++ message catalog is located in the following directory:
/opt/aCC/lib/nls/msg/C/ecc.msgs

Error and warning messages in the aC++ message catalog can be classified as shown below:

Command Errors
Command errors are issued when the command line is not correctly formed and the compiler
cannot proceed with compilation.

Command Warnings
Command warnings occur when code is compiled with an unrecognized option.

Fatal Errors
Fatal errors are issued for ill-formed programs that the compiler cannot recover. Syntax errors
usually fall into this category. Object files are not generated if such errors are encountered.

Future Errors
Future errors are serious warnings that indicate violation of a language rule. However, the compiler
continues to generate code. You must resolve these errors, as they may result in other cumulative
errors. Use the +p option (pedantic mode) to convert these warnings into hard errors.

Anachronisms
Anachronisms are warnings that diagnose ISO/ANSI C++ language violation. Code that triggers
anachronisms was previously considered legal.

Warnings
Warnings identify bugs in code, often because the code triggers behavior that is not precisely
defined by the C++ standard.

Suggestion/Information
You must use the +w option to view these diagnotics. Without the +w option, the compiler identifies
more suspicious constructs.

Tool Errors
Sometimes, HP aC++ fails in a component that is not specific to the C++ language. In such a case,
a tool error is emitted. This error indicates defect in the compiler.

Frequently Encountered Messages
For a list and description of frequently encountered diagnostic messages, use the HP Code Advisor
analysis tool (cadvise) or refer to the aC++ standard conformance and compatibility changes
document accessible from the list of “HP aC++ Resources” at the bottom of the following URL:
http://www.hp.com/go/aCC

222 Diagnostic Messages

http://h21007.www2.hp.com/portal/site/dspp/menuitem.863c3e4cbcdc3f3515b49c108973a801/?ciid=8b08a31f05f02110a31f05f02110275d6e10RCRD
http://h21007.www2.hp.com/portal/site/dspp/menuitem.863c3e4cbcdc3f3515b49c108973a801/?ciid=8b08a31f05f02110a31f05f02110275d6e10RCRD
http://h21007.www2.hp.com/portal/site/dspp/menuitem.863c3e4cbcdc3f3515b49c108973a801/?ciid=2708d7c682f02110d7c682f02110275d6e10RCRD
http://www.hp.com/go/aCC

Glossary
A

aggressive
optimization

Optimization that changes the behavior of structured code. This is a superset of basic optimizations.

anachronistic
constructs

Elements of the C++ language that are not supported in future releases.

archive library A collection of object files grouped using the ar command. At link time, only object files with
symbols are extracted from the library.

argument
declaration file

A file containing the declaration of a class, struct, union, or enum types for templates.

automatic
instantiation

An instantiation mechanism that uses an automatic instantiation algorithm to determine in which
object file instantiations are placed. Instantiation is attempted for any use of a template. Use the
+inst_auto command line option to request automatic instantiation.

B

base class A class from which another class, the derived class, inherits public and protected members. A
derived class inherits the nonprivate member data and nonprivate member functions from its base
class. Sometimes also called a parent class or superclass.

basename The part of a pathname after the last /.
basic block A sequence of instructions with a single entry point, single exit point, and no internal branches.
basic optimizations Any optimizations that does not generally change the behavior of structured code. Basic

optimization is performed by default when you specify a level of optimization. Basic optimizations
are a subset of aggressive optimizations and a superset of conservative optimizations.

C

class A user-defined type. A class can have member data and member functions and these can be
public, protected, or private members.

class template A template that defines an unbounded set of related classes.
closing The process of satisfying all template instantiations for a set of link units.
closing a library Satisfying all template instantiations needed by a library when building the library, not when

linking the library with an application.
compile-time
instantiation

In HP aC++, this is the default instantiation mechanism. Instantiation is attempted for every template
used in a translation unit in that translation unit.

conservative
optimizations

Any optimization that does not change the behavior of code, in most cases, even if the code is
unstructured or does not conform to standards. This is a subset of basic optimizations.

constructor An initialization function for the objects of a class. Constructors have the same name as their
class.

D

derived class A class that inherits the public and protected member data and the public and protected member
functions from its base class. It is also called a child class or subclass.

destructor A function that cleans up or deinitializes each object of a class immediately before the object is
destroyed. Destructors are executed when the program leaves the scope in which objects are
defined and when any object is destroyed by delete. Destructors have the same name as their
class, prefixed by a tilde, ~.

directed
instantiation

Template instantiation that is specified by the developer through an explicit instantiation or a
compiler command-line option.

223

E

exception An exception is a runtime error condition. Exception handling is a C++ mechanism that allows
the error detector to pass the error condition to the exception handler. An exception is raised by
a throw statement within a try block and handled by a catch clause. The ANSI/ISO C++
International Standard defines only synchronous exceptions.

explicit
instantiation

A method of instantiation that instantiates a template at the point of its use. You can code an
explicit template instantiation, as defined in the Final Draft International Standard, in your source
file.

external symbol A name of a function or data item in an object file that you can link with other object files.

F

friend A class or a function that has access to data of a class and member functions. Friend has access
to the public, protected, and private members of a class.

function template A template that defines an unbounded set of related functions.

H

header file A C++ source file typically containing class or function declarations. It is referenced by other
C++ source files using the #include preprocessor directive.

HP aC++ The latest C++ compiler from HP. It closely complies with most features of the ANSI/ISO C++
International Standard.

HP C++ An initial, pre-C++ draft proposed international standard C++ compiler from HP. It is based on
the cfront compiler and provides functionality for templates and exception handling.

I

include guards Preprocessor commands, such as, #ifndef, #define, and #endif, used in a header file to
prevent compiling that file more than once.

inline function A function whose code is copied in place of each function call.
instantiate To form an instantiation by binding a template to particular argument types.
instantiated class A class generated from a class template by instantiation.
instantiated
function

A function generated from a function template by instantiation.

instantiation A generated class or function (a definition) that is the result of binding a template to particular
argument types. Also known as a generation.

L

lex A program generator for lexical analysis of text.
link unit A single entity submitted to the linker. A link unit can be an object file (.o file, the output of a

translation unit), an archive library (.a file), or a shared library (.so file).
load compile Invoking the compiler using the +hdr_use option, and a manual precompiled header file.

M

member data Any data element declared to be part of a class.
member function Any function declared to be part of a class.
multiple
inheritance

The ability of a class to inherit from more than one base class. The derived class inherits all public
and protected members from all of its base classes. Also see single inheritence.

N

name demangling The process of changing the internal representation of identifiers back to their original C++ source
names. Also see name mangling.

224 Glossary

name mangling The process of generating unambiguous internal identifiers from C++ identifiers to resolve the
scope of variables, overloaded operators, and overloaded functions. Also see name demangling.

O

object An instance of a class

P

parameterized
type

See template.

position-independent code (PIC)
Object code that contains no absolute addresses. All addresses are relative to the program
counter. Position-independent code is used to create shared libraries.

pragma An instruction to the compiler to compile your program in a certain way. For example, you can
use pragmas to insert copyright information into your object files, to specify a particular template
instantiation, and to specify optimization levels.

precompiled
header file

A .C file that is compiled using either the +hdr_create option (for subsequent use in a load
compile) or the +hdr_cache option.

preprocessing
directive

A command entered into a source file to direct the preprocessor to perform certain actions on
the source file. For example, the preprocessor can replace tokens in the text, insert the contents
of other files into the source file, or suppress the compilation of part of the file by conditionally
removing sections of text. It also expands preprocessor macros and conditionally strips out
comments.

preprocessor A portion of the HP aC++ compiler that manipulates the contents of your source file according
to the preprocessing directives coded in the source file.

private member A private member of a class is a data member or member function that is only accessible from
within the class defining the member and from any friends of the class defining the private member.

profile-based
optimization

An optimization in which the compiler and linker work together to optimize an application based
on profile data obtained from running the application on a typical input data set.

protected member A protected member of a class is a data member or member function that is only accessible from
within the class defining the member, or from any class derived from that class, or from any
friends of the class defining the protected member.

public member A public member of a class is a data member or member function that is accessible from
everywhere outside the class defining the member as well as from inside the class and from any
derived classes.

S

shared library A collection of object files grouped using the aCC command. It comprises position-independent
code. At link time, all object files are made available.

single inheritance The ability of a derived class to inherit from its base class. Also see multiple inheritence.
software pipelining A code transformation that optimizes program loops. It is useful for loops that contain arithmetic

operations on floats and doubles.
source file An HP-UX file that contains C and/or C++ program code.
specialization An instantiation of a template class or template function that overrides the standard version.

T

template A skeleton or description for an infinite set of classes or functions. A class template is a specification
for a family or group of classes. A class template is also known as a parameterized type. A
function template is a specification for a family or group of functions.

template argument A type or constant specified to a template to distinguish a particular usage of the template.
template function An instantiated function template.
timestamp The date and time a file was last changed.

225

translation unit The standard term for a compilation unit. It refers to a single source file submitted to the compiler
along with all files included by the compilation of that single source file. A translation unit normally
results in a single object file. It is also a variable name explicitly declared static has the scope of
its translation unit and can be used as a name for other objects, functions, and so on in other
translation units in the same application.

trigraph sequences A set of three characters that is replaced by a corresponding single character by the preprocessor.

Y

yacc A programming tool to describe input to a computer program.

226 Glossary

Index

Symbols
operator, 122
operator, 122
.conf file, 26
__attribute__, 116
_Pragma operator, 129

A
aCC, 22
aCC_FULL_PATHNAMES, 27
aCC_MAXERR, 27
allocation policies for containers, 184
assertion, 125

#assert, 125
#unassert, 125

attribute, 116

C
CCLIBDIR, 27
class

type_info, 153
command-line options

+[no]dep_name, 91
+[no]nrv, 56
+[no]srcpos, 69
+annotate, 65
+check, 75
+d, 35
+DData_model, 32
+decfp, 43
+DOosname, 32
+driver, 71
+dryrun, 93
+DSmodel, 33, 69
+e, 42
+FP[flags], 43
+FPmode, 44
+hdr_create, 45
+hdr_use, 45
+help, 47
+ild, 52
+ildrelink, 52
+inline_level num, 48
+inst_compiletime, 91
+inst_directed, 91
+inst_implicit_include, 91
+inst_include_suffixes, 92
+legacy_cpp, 84
+legacy_v5, 84
+macro_debug, 36
+Make[d], 73
+make[d], 73
+noeh, 41
+nostl, 50
+O0, 54

+O1, 54
+O2, 54
+O3, 54
+O4, 55
+O[no]aggressive, 57
+O[no]autopar, 67
+O[no]cross_region_addressing, 58
+O[no]datalayout, 58
+O[no]dataprefetch, 58
+O[no]dynopt, 51
+O[no]failsafe, 56
+O[no]fenvaccess, 42
+O[no]fltacc, 58
+O[no]info, 65, 93
+O[no]initcheck, 59
+O[no]inline, 60
+O[no]libmerrno, 44
+O[no]limit, 57
+O[no]loop_transform, 61
+O[no]loop_unroll, 61
+O[no]openmp, 61
+O[no]parminit, 62
+O[no]parmsoverlap, 62
+O[no]preserved_fpregs, 44
+O[no]procelim, 62
+O[no]promote_indirect_calls, 62
+O[no]ptrs_to_global, 57
+O[no]rotating_fpregs, 45
+O[no]signedpointers, 63
+O[no]size, 57
+O[no]store_ordering, 64
+O[no]sumreduction, 45
+O[no]tls_calls_change_tp, 69
+Ocxlimitedrange, 42
+Ofast, 68
+Ofaster, 69
+Ofrequently_called, 59
+Ointeger_overflow, 60
+Olevel, 61
+Olit, 60
+Onolibcalls, 50
+Oprefetch_latency, 44
+Oprofile, 64
+opts, 62
+Orarely_called, 63
+Oshortdata, 63
+Otype_safety, 64
+Ounroll_factor, 64
+p, 38
+pathtrace, 37
+profilebucketsize, 74
+sb, 70
+std=c89|c99|c++98|c++11|gcc|g++|gnu, 85
+stl=rw|none, 85
+time, 93
+tls=[static|dynamic], 67

227

+tru64, 86
+ub, 70
+uc, 70
+unum, 35
+w, 39
+w64bit, 71
+Wargs, 39
+Wcontext_limit, 39
+We, 40
+Weargs, 40
+wendian, 71
+wlint, 40
+wlock, 68
+Wmacro, 40
+wn, 39
+wperfadvice, 40
+wsecurity, 41, 93
+Wv, 40
+Wwargs, 40
-.suffix, 52
-[no]fpwidetypes, 43
-AA, 82
-Aa, 82
-Aarm, 82
-AC89, 83
-AC99, 83
-Ae, 83
-Ag++, 83
-Agcc, 83
-AOa, 84
-AOe, 84
-AP, 84
-Ax, 84
-B, 89
-b, 49
-Bdefault, 89
-Bextern, 89
-Bhidden, 90
-Bhidden_def, 90
-Bprotected, 90
-Bprotected_data, 90
-Bprotected_def, 90
-Bsymbolic, 91
-C, 72
-c, 32
-dM, 72
-Dname, 72
-dumpversion, 93
-dynamic, 49
-E, 72
-e epsym, 50
-exec, 49
-fast, 68, 70
-fpeval, 43
-fpevaldec, 43
-fshort-enums, 35
-G, 74
-g, 35
-g0, 35

-g1, 36
-H, 45
-I directory, 45
-I-, 46
-ipo, 56
-L directory, 50
-lname, 49
-minshared, 50
-mt, 66
-N, 51
-n, 50
-notrigraph, 93
-O, 54
-o, 52
-O0, 54
-O1, 54
-O2, 54
-O3, 54
-P, 73
-p, 74
-Q, 51
-q, 51
-r, 51
-S, 33
-s, 51
-tx,name, 87
-Uname, 74
-usymbol, 51
-V, 94
-v, 94
-w, 38
-Wc,-ansi_for_scope,[on][off], 86
-Wc,-koenig_lookup,[on][off], 86
-Wx,args, 88
-Y, 52
-Z, 53
-z, 53

configuration file, 26
containers, 184
CROOTDIR, 28
CXX_MAP_File, 29
CXXOPTS, 27

D
#define, 121

E
#endif, 126
environment variable, 26
environment variables in OpenMP, 169
exception handling, 161

ANSI/ISO C++ Intl. Std., 162
in C++, 161

F
floating installation, 29
function try block, 162

228 Index

H
HP Code Advisor, 23
HP WDB, 23

I
#include, 120
instantiation, 132

command-line, 134
compile-time, 134
explicit, 133

K
keywords, 138

L
#line, 128
languages, 188
lex, 175
libraries, 175

containers, 184
HP aC++ Run-time Support Library, 179
IOStream, 179
shared libraries, 180
Standard Components Library, 179
standard HP-UX libraries, 184
Tools.h++, 179

lock functions, 172
locks, 163

M
macros, 121

__FILE__, 125
__LINE__, 125

migration, 198

O
OpenMP, 167
OpenMP clauses, 114

copyin, 115
copyprivate, 115
default, 115
firstprivate, 114
lastprivate, 115
nowait, 115
num_threads, 116
ordered, 116
private, 114
reduction, 115
schedule, 116
shared, 115

operator
#, 122
##, 122
defined, 127
delete[], 150
new[], 150

optimization, 156
combining options, 158
level 1, 156

level 2, 156
level 3, 157
level 4, 157
pragmas, 160
profile-based, 158

P
parallel programming, 167
pragma, 129

[NO]INLINE, 104
[NO]PTRS_TO_GLOBALS, 108
ALIGN, 98
assert, 105
BINDING, 106
COPYRIGHT, 97
COPYRIGHT_DATE, 97
DEFAULT_BINDING, 106
diag_xxx, 105
ESTIMATED_FREQUENCY, 106
EXTERN, 106
FINI, 96
FLOAT_TRAPS_ON, 103
FREQUENTLY_CALLED, 106
HDR_STOP, 107
HIDDEN, 107
HP_DEFINED_EXTERNAL, 107
HP_DEFINED_INTERNAL, 107
IF_CONVERT, 107
INIT, 96
IVDEP, 105
LOCALITY, 97
LOCALITY_ALL, 97
NO_INLINE, 104
NO_RETURN, 105
NODEPCHK, 105
OMP ATOMIC, 110
OMP BARRIER, 111
OMP CRITICAL, 111
OMP FLUSH, 111
OMP FOR, 111
OMP MASTER, 112
OMP ORDERED, 112
OMP PARALLEL, 112
OMP PARALLEL FOR, 112
OMP PARALLEL SECTIONS, 113
OMP SECTIONS, 113
OMP SINGLE, 113
OMP TASK, 113
OMP TASKWAIT, 114
OMP THREADPRIVATE, 114
once, 108
OPT_LEVEL, 103
OPTIMIZE, 103
PACK, 98
POP, 108
PROTECTED, 108
PTRS_STRONGLY_TYPED, 108
PUSH, 108
RARELY_CALLED, 108

229

STDC CX_LIMITED_RANGE, 109
STDC FENV_ACCESS, 110
STDC FLOAT_CONST_DECIMAL64, 109
STDC FP_CONTRACT, 109
UNALIGN, 102
UNROLL_FACTOR, 110
VERSION_ID, 98

predefined macros, 125
__cplusplus, 125
__DATE__, 125
__FILE__, 125
__HP_aCC, 125
__hpux, 125
__ia64__, 125
__LINE__, 125
__LP64__, 125
__STDCPP__, 125
__TIME__, 125
__unix, 125
_ILP32, 125
_LP64, 125

preprocessor, 119

S
standard exception classes, 152

T
threads, 163
timing functions, 174
TMPDIR, 29
trigraph sequences, 130

U
#undefine, 121

W
#warning, 130

Y
yacc, 175

230 Index

	HP aC++/HP C A.06.28 Programmer's Guide
	Contents
	HP secure development lifecycle
	About This Document
	Intended Audience
	What’s in This Document
	Typographical Conventions
	HP-UX Release Name and Release Identifier

	Publishing History
	Related Documents
	HP Encourages Your Comments

	1 Getting Started with HP aC++
	Components of the Compilation System
	Using the aCC Command
	Compiling a Simple Program
	Executing the Program
	Debugging Programs
	HP Code Advisor
	HP WDB Debugger
	Accessing Online Example Source Files

	Compiler Command Syntax and Environmental Variables
	Examples of the aCC Command
	Compiling and Renaming an Output File
	Compiling and Debugging
	Compiling Without Linking
	Linking Object Files
	Compiling, Optimizing, and Getting Verbose Information
	Compiling and Creating a Shared Library

	Files on the aCC Command Line
	C++ Source File (.C file)
	Preprocessed Source Files (.i Files)
	Assembly Language Source Files (.s Files)
	Object Files (.o Files)
	Library Files (.a and .so Files)
	Configuration Files (.conf Files)

	Environment Variables
	aCC_FULL_PATHNAMES Environment Variable
	aCC_MAXERR Environment Variable
	CXXOPTS Environment Variable
	CCLIBDIR Environment Variable
	CCROOTDIR Environment Variable
	CXX_MAP_FILE Environment Variable
	TMPDIR Environment Variable

	Floating Installation
	HP aC++
	HP C
	Setting up Floating Installation

	2 Command-Line Options
	Options to Control Code Generation
	-c
	+DOosname
	+DDdata_model
	+DSmodel
	Using +DS to Specify Instruction Scheduling
	Compiling in Networked Environments

	-S

	Data Alignment and Storage
	-fshort-enums
	+unum

	Debugging Options
	+d
	+expand_types_in_diag
	-g
	-g0
	-g1
	Differences Between -g, -g0, and -g1 Options
	When to use -g, -g0, and -g1
	-g, -g1 Algorithm
	+macro_debug
	+[no]objdebug
	+pathtrace

	Error Handling
	+p
	-w
	+w
	+wn
	+Wargs
	+Wcontext_limit
	+We
	+Weargs
	+Wv
	+Wwargs
	+wlint
	+Wmacro
	+wperfadvice
	+wsecurity

	Exception Handling
	+noeh

	Extensions to the Language
	-ext
	+e

	Floating-Point Processing Options
	+O[no]cxlimitedrange
	+O[no]fenvaccess
	-fpeval
	-fpevaldec
	-[no]fpwidetypes
	+decfp
	+FP
	+FPmode
	+O[no]libmerrno
	+Oprefetch_latency
	+O[no]preserved_fpregs
	+O[no]rotating_fpregs
	+O[no]sumreduction

	Header File Options
	-H
	+hdr_create
	+hdr_use
	-I directory
	-I-

	Online Help Option
	+help

	Inlining Options
	+inline_level num

	Library Options
	-b
	-dynamic
	-exec
	-lname
	-L directory
	-minshared
	+nostl
	+Onolibcalls=

	Linker Options
	-e epsym
	-n
	-N
	+O[no]dynopt
	-q
	-Q
	-r
	-s
	-usymbol
	+ild
	+ildrelink

	Options for Naming the Output File
	-o
	-.suffix

	Native Language Support Option
	-Y

	Handling Null Pointers Options
	-z
	-Z

	Code Optimizing Options
	Basic Optimization Level Options
	-O
	+O0
	+O1
	+O2
	+O3
	+O4
	Object Files Generated at Optimization Level 4

	Additional Optimization Options for Finer Control
	-ipo
	Object Files Generated with -ipo

	+[no]nrv
	+O[no]failsafe
	+O[no]aggressive
	+O[no]limit
	+O[no]ptrs_to_globals[=list]
	+O[no]size

	Advanced +Ooptimization Options
	+O[no]cross_region_addressing
	+O[no]datalayout
	+O[no]dataprefetch
	+O[no]fltacc
	+Ofrequently_called
	+O[no]initcheck
	+O[no]inline
	+Olit
	+Ointeger_overflow
	+Olevel
	+O[no]loop_transform
	+O[no]loop_unroll
	+O[no]openmp
	+opts
	+O[no]parminit
	+O[no]parmsoverlap
	+O[no]procelim
	+O[no]promote_indirect_calls
	+Orarely_called
	+O[no]signedpointers
	+Oshortdata
	+O[no]store_ordering
	+Otype_safety
	+Ounroll_factor

	Profile-Based Optimization Options
	+Oprofile

	Information Embedding Options
	-annotate=structs

	Displaying Optimization Information
	+O[no]info

	Parallel Processing Options
	-mt
	+O[no]autopar
	+tls=[static|dynamic]
	+wlock

	Performance Options
	-fast
	+Ofast
	+Ofaster
	+O[no]tls_calls_change_tp
	+[no]srcpos
	+DSmodel

	Porting Options
	-fast
	+sb
	+ub
	+uc
	+w64bit
	+wdriver
	+wendian

	Preprocessor Options
	-C
	-dM
	-Dname
	-E
	Redirecting Output From This Option

	make[d]
	+Make[d]
	-P
	-Uname

	Profiling Code Options
	-G
	-p
	+profilebucketsize

	Runtime Checking Options
	+check
	+check=all
	+check=none
	+check=bounds
	+check=globals
	+check=lock
	+check=malloc
	+check=stack[:frame|:variables|:none]
	+check=thread
	+check=truncate[:explicit|:implicit]
	+check=uninit

	Standards Related Options
	-Aa
	-AA
	-Aarm
	-AC89
	-AC99
	-Ae
	-Ag++
	-Agcc
	-AOa and -AOe
	-AP
	-Ax
	+legacy_cpp
	+legacy_v5
	+std=c89|c99|c++98|c++11|gcc|g++|gnu
	+stl=rw|none
	+tru64
	-Wc,-ansi_for_scope,[on|off]
	-Wc,-koenig_lookup,[on|off]

	Subprocesses of the Compiler
	-tx,name
	More Examples of -t

	-Wx,args
	Passing Options to the Linker with -W
	Passing Multiple Options to the Linker with -W

	Symbol Binding Options
	-Bdefault
	-Bextern
	-Bhidden
	-Bhidden_def
	-Bprotected
	-Bprotected_data
	-Bprotected_def
	-Bsymbolic

	Template Options
	+[no]dep_name
	+inst_compiletime
	+inst_directed
	+inst_implicit_include
	+inst_include_suffixes

	Trigraph Processing Suppression Option
	-notrigraph

	Verbose Compile and Link Information
	-dumpversion
	+dryrun
	+O[no]info
	+wsecurity
	+time
	-v
	-V

	Concatenating Options

	3 Pragma Directives and Attributes
	Initialization and Termination Pragmas
	INIT
	FINI

	Copyright Notice and Identification Pragmas
	COPYRIGHT
	COPYRIGHT_DATE
	LOCALITY
	LOCALITY_ALL
	VERSIONID

	Data Alignment Pragmas
	ALIGN
	PACK
	Basic Example
	Template Example
	Handling Unaligned Data
	Implicit Access to Unaligned Data

	UNALIGN

	Optimization Pragmas
	OPT_LEVEL Pragma
	OPTIMIZE Pragma
	FLOAT_TRAPS_ON Pragma
	[NO]INLINE Pragma
	NO_INLINE Pragma
	IVDEP Pragma
	NODEPCHK Pragma
	NO_RETURN Pragma

	Diagnostic Pragmas
	diag_xxx Pragmas

	Other Pragmas
	assert Pragma
	BINDING Pragma
	DEFAULT_BINDING Pragma
	ESTIMATED_FREQUENCY Pragma
	EXTERN Pragma
	FREQUENTLY_CALLED Pragma
	HDR_STOP Pragma
	HIDDEN Pragma
	HP_DEFINED_EXTERNAL Pragma
	HP_DEFINED_INTERNAL Pragma
	IF_CONVERT Pragma
	POP Pragma
	Pragma (once)
	PROTECTED Pragma
	PTRS_STRONGLY_TYPED Pragma
	PTRS_TO_GLOBALS Pragma
	PUSH Pragma
	RARELY_CALLED Pragma
	STDC CX_LIMITED_RANGE Pragma
	STDC FLOAT_CONST_DECIMAL64 Pragma
	STDC FP_CONTRACT Pragma
	STDC FENV_ACCESS Pragma
	UNROLL_FACTOR Pragma
	OMP ATOMIC Pragma
	OMP BARRIER Pragma
	OMP CRITICAL Pragma
	OMP FOR Pragma
	OMP FLUSH Pragma
	OMP MASTER Pragma
	OMP ORDERED Pragma
	OMP PARALLEL Pragma
	OMP PARALLEL FOR Pragma
	OMP PARALLEL SECTIONS Pragma
	OMP SECTIONS Pragma
	OMP SINGLE Pragma
	OMP TASK Pragma
	OMP TASKWAIT Pragma
	OMP THREADPRIVATE Pragma

	OpenMP Clauses
	private
	firstprivate
	lastprivate
	copyprivate
	if
	default
	shared
	copyin
	reduction
	nowait
	ordered
	schedule
	num_threads

	Attributes
	attribute aligned
	attribute malloc
	attribute non_exposing
	attribute noreturn
	attribute format
	attribute visibility
	attribute warn_unused_result

	4 Preprocessing Directives
	Overview of the Preprocessor
	Syntax
	Usage Guidelines
	Source File Inclusion (#include, #include_next)
	Syntax
	Description
	Examples

	Macro Replacement (#define, #undef)
	Syntax
	Description
	Macros with Parameters
	Specifying String Literals with the # Operator
	Concatenating Tokens with the ## Operator
	Example 1
	Example 2

	Using Macros to Define Constants
	Other Macros
	Example 1
	Example 2

	Using Constants and Inline Functions Instead of Macros
	Example

	Predefined Macros

	Assertions (#assert, #unassert)
	Syntax
	Description

	Conditional Compilation (#if, #ifdef, .. #endif)
	Syntax
	Description
	Using the defined Operator
	Using the #if Directive
	The #endif Directive
	Using the #ifdef and #ifndef Directives
	Nesting Conditional Compilation Directives
	Using the #else Directive
	Using the #elif Directive
	Examples

	Line Control (#line)
	Syntax
	Description
	Example

	IOSTREAM Performance Improvement Pragma
	Syntax:

	Pragma Directive (#pragma) and _Pragma Operator
	Syntax
	Description
	Example

	Error Directive (#error)
	Syntax
	Example

	Warning Directive
	Syntax

	Trigraph Sequences
	Examples

	5 Using HP aC++ Templates
	Invoking Compile-Time Instantiation
	Scope and Precedence
	Template Processing
	Explicit Instantiation
	Usage
	Performance
	Examples
	Class Template
	Function Template

	Command-Line Option Instantiation
	Compile-Time Instantiation
	Why Use Compile-Time Instantiation
	Scope
	Usage

	Migrating from Automatic Instantiation to Compile-time Instantiation
	Possible Duplicate Symbols in Shared Libraries
	Possible Duplicate Symbols in Archive Libraries
	Building an Archive Library with +inst_auto/+inst_close
	Building an Archive Library with Compile-time Instantiation

	C++ Template Tutorial
	Class Templates
	Function Templates

	6 Standardizing Your Code
	HP aC++ Keywords
	bool Keyword
	Usage
	Example

	dynamic_cast Keyword
	Usage
	Example

	explicit Keyword
	Usage
	Example

	mutable Keyword
	Usage
	Example

	namespace and using Keywords
	Connections Across Translation Units
	An Auxiliary Translation Unit
	using- declarations and using- directives
	using- declaration
	using- directive

	typeid Keyword
	Usage
	typeid Example

	volatile Keyword
	Usage
	Example

	wchar_t Keyword
	Usage
	Example

	template Keyword
	Usage
	Example

	typename Keyword
	Usage
	Example

	Overloading new[] and delete[] for Arrays
	Example

	Standard Exception Classes
	Example

	Exceptions Thrown by the Standard C++ Library
	type_info Class
	Unsupported Functionality

	7 Optimizing HP aC++ Programs
	Requesting Optimization
	Setting Basic Optimization Levels
	Level 1 Optimization
	Level 2 Optimization
	Level 3 Optimization
	Level 4 Optimization

	Additional Options for Finer Control
	Enabling Aggressive Optimizations
	Enabling Only Conservative Optimizations
	Removing Compilation Time Limits When Optimizing
	Limiting the Size of Optimized Code
	Combining Optimization Options

	Profile-Based Optimization
	Instrumentation
	Collecting Data for Profiling
	Maintaining Profile Data Files
	Example 1
	Example 2
	Performing Profile-Based Optimization

	Pragmas That Control Optimization

	8 Exception Handling
	Exception Handling
	Exception Handling in C++
	Exception Handling as Defined by the ANSI/ISO C++ International Standard
	Basic Exception Handling Example
	Function Try Block Examples
	Debugging Exception Handling
	Performance Considerations

	Using Threads
	Rogue Wave Standard C++ Library 2.2.1
	Rogue Wave Standard C++ Library 1.2.1 and Tools.h++ 7.0.6
	Using Locks
	Required Command-line Options
	Rogue Wave Standard C++ Library 2.2.1
	Rogue Wave Standard C++ Library 1.2.1 and Tools.h++ 7.0.6

	Limitations
	Using -D_THREAD_SAFE with the cfront Compatible libstream
	Differences between Standard iostreams and cfront Compatible libstream
	Using -D__HPACC_THREAD_SAFE_RB_TREE

	Exception Handling

	Pthreads (POSIX Threads)
	Limitations

	Function Scoping
	Performance Options
	Parallel Programming Using OpenMP
	OpenMP Implementation
	OpenMP Header File
	OpenMP Library
	+O[no]openmp Command Line Option
	_OPENMP Macro

	Environment Variables in OpenMP
	OMP_SCHEDULE
	OMP_NUM_THREADS
	OMP_DYNAMIC
	OMP_NESTED

	Runtime Library Functions in OpenMP
	Execution Environment Functions
	omp_set_num_threads
	omp_get_num_threads
	omp_get_max_threads
	omp_get_thread_num
	omp_get_num_procs
	omp_in_parallel
	omp_set_dynamic
	omp_get_dynamic
	omp_set_nested
	omp_get_nested

	Lock Functions
	omp_init_lock and omp_init_nest_lock
	omp_destroy_lock and omp_destroy_nest_lock
	omp_set_lock and omp_set_nest_lock
	omp_unset_lock and omp_unset_nest_lock
	omp_test_lock and omp_test_nest_lock Functions

	Timing Functions
	omp_get_wtime
	omp_get_wtick

	9 Tools and Libraries
	HP Specific Features of lex and yacc
	Creating and Using Libraries
	HP aC++ Libraries
	Standard C++ Library
	Introduction
	Introduction to Using the Standard C++ Library
	Differences between Standard C++ Library and Other Libraries
	The Non-Object-Oriented Design of the Standard C++ Library
	Smaller Source Code
	Flexibility
	Efficiency
	Iterators: Mismatches and Invalidations
	Templates: Errors and Code Bloat
	Multithreading Problems

	Standard C++ Library Reference
	Incompatibilities Between the Library and the Standard
	Tools.h++ Library
	HP aC++ Runtime Support Library
	IOStream Library
	Standard Components Library Not Provided
	Linking to C++ Libraries
	Linking with Shared or Archive Libraries
	Specifying Other Libraries

	Creating and Using Shared Libraries
	Compiling for Shared Libraries
	Example

	Creating a Shared Library
	Example

	Using a Shared Library
	Example

	Example of Creating and Using a Shared Library
	Linking Archive or Shared Libraries
	Syntax
	Example

	Updating a Shared Library

	Advanced Shared Library Features
	Forcing the Export of Symbols in main
	Binding Times
	Forcing Immediate Binding

	Side Effects of C++ Shared Libraries
	Routines and Options to Manage C++ Shared Libraries
	Linker Options to Manage Shared Libraries
	Version Control for Shared Libraries
	Adding New Versions to a Shared Library

	Standard HP-UX Libraries and Header Files
	Location of Standard HP-UX Header Files
	Using Header Files
	Example

	Allocation Policies for Containers
	For -AP Standard Library
	For -AA Standard Library

	HP aC++ File Locations
	HP aC++ Executable Files
	HP aC++ Runtime Libraries and Header Files

	10 Mixing C++ with Other Languages
	Calling Other Languages
	Data Compatibility between C and C++
	HP aC++ Calling HP C
	Using the extern "C" Linkage Specification
	Syntax of extern "C"
	Examples of extern "C"
	Differences in Argument Passing Conventions
	The main() Function
	Examples: HP aC++ Calling HP C
	Running the Example

	HP C Calling HP aC++
	Compiling and Running the Sample Programs

	Calling HP FORTRAN 90 from HP aC++
	The main() Function
	Function Naming Conventions
	Using Reference Variables to Pass Arguments
	Example of Reference Variables as Arguments

	Using extern "C" Linkage
	Strings
	Arrays
	Files in FORTRAN

	11 Distributing Your C++ Products
	Applications that use HP aC++ Shared Libraries
	Linking Your HP aC++ Libraries with Other Languages
	Installing your Application
	HP aC++ Files You May Distribute
	Terms for Distribution of HP aC++ Files

	12 Migrating from HP C++ (cfront) to HP aC++
	General Guidelines for Migration
	Getting Started with Migration
	Writing Code for both Compilers
	Explicit Loading and Unloading of Shared Libraries
	Memory Allocation

	Command-Line Differences
	New Command-Line Options
	Obsolete Command-Line Options
	Changed Command-Line Options

	Migration Considerations when Debugging
	Migration Considerations when Using Exception Handling
	Exception Handling is the Default
	Memory Allocation Failure and operator new
	Possible Differences when Exiting a Signal Handler
	Differences in setjmp/longjmp Behavior
	Calling unexpected
	Unreachable catch Clauses
	Throwing an Object having an Ambiguous Base Class

	Migration Considerations when Using Libraries
	Standards Based Libraries
	HP C++ (cfront) Compatibility Libraries
	IOStream Library
	Manpages
	Header Files

	Standard Components Library Not Provided
	HP C++ (cfront) Complex Library Not Supported
	Manpages
	Header File

	HP C++ (cfront) Task Library Not Supported
	Manpages

	Migration Considerations Related to Preprocessing
	Obsolete Preprocessor Options

	Migration Considerations Related to Standardization
	Changes in C++ Semantics
	Implicit Typing of Character String Literals
	Overload Resolution Ambiguity of Subscripting Operator
	Execution Order of Static Constructors in Shared Libraries
	More Frequent Inlining of Inline Code

	Changes in C++ Syntax
	Explicit int Declaration
	The for Statement, New Scoping Rules
	struct as Template Type Parameter is Permitted
	Base Template Class Reference Syntax Change
	Tokens after #endif
	overload not a Keyword
	Dangling Comma in enum
	Static Member Definition Required
	Declaring friend Classes
	Incorrect Syntax for Calls to operator new
	Using :: in Class Definitions
	Duplicate Formal Argument Names
	Ambiguous Function or Object Declaration
	Overloaded Operations ++ and --
	Reference Initialization
	Using operator new to Allocate Arrays
	Parentheses in Static Member Initialization List
	&qualified-id Required in Static Member Initialization List
	Non-constant Reference Initialization
	Digraph White Space Separators

	Migration Considerations when Using Templates
	Verbose Template Processing Information
	Common Template Migration Syntax Changes
	The cfront Implicit Include Convention
	Converting Directed Mode to Explicit Instantiation

	13 Documentation feedback
	A Diagnostic Messages
	aC++ Message Catalog
	Command Errors
	Command Warnings
	Fatal Errors
	Future Errors
	Anachronisms
	Warnings
	Suggestion/Information
	Tool Errors

	Frequently Encountered Messages

	Glossary
	Index

