c-trecSQ@L

ISQL and Tools Reference Guide

For use with c-treeSQL Server

This manual provides reference material for the ISQL interactive SQL utility
and other administrative tools provided in the c-treeSQL environment. It also
includes a tutorial describing how to use the ISQL utility.

<Pe,

o

FairCom

Copyright © 1992-2004 FairCom Corporation All rights reserved.
Portions © 1987-2004 Dharma Systems, Inc. All rights reserved.
Eleventh Edition, First printing: September 2003

Information in this document is subject to change without notice.

No part of this publication may be stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise without the prior written permission of FairCom Corporation.
Printed in the United States of America.

FairCom welcomes your comments on this document and the software it describes. Send comments to:
Documentation Comments
FairCom Corporation
2100 Forum Blvd., Suite C
Columbia, MO 65203
Phone: 573-445-6833
Fax: 573-445-9698
Electronic Mail: support@faircom.com
Web Page: http://www.faircom.com
c-tree, c-tree Plus, r-tree, the circular disk logo, and FairCom are registered trademarks of the FairCom Corporation.

c-treeSQL, c-treeSQL ODBC, c-treeSQL ODBC SDK, c-tree\VCL/CLX, c-tree ODBC Driver, c-tree Crystal Reports
Driver, and c-treeDBX are trademarks of FairCom Corporation.

The following are third-party trademarks:

DBstore is a trademark of Dharma Systems, Inc.

Microsoft, MS-DOS, Windows, Windows NT, and Windows XP are registered trademarks of Microsoft Corporation.
Java, Java Development Kit, Solaris, SPARC, SunOS, and SunSoft are trademarks of Sun Microsystems, Inc.
Macintosh and MacOS are trademarks licensed to Apple Computer Co.

IBM and AlX are registered trademarks of International Business Machines Corp.

HP-UX is a registered trademark of Hewlett-Packard Company.

All other trademarks, trade names, company names, product names, and registered trademarks are the property of their
respective holders

ISQL-V8.14-041015

Table of Contents

Documentation Overview

Purpose of ThisManual i e e v
AUAIENCE . . .o v
SHTUCTUIE o . e v
Syntax Diagram CONVENLIONSottt e e e v
Related DOCUMENEALION.t e Vi
1 Introduction
Ll OVEIVIBW. . . ottt et e e e 1-1
2 Quick Tour
2.1 Introductory Tutorial. e 2-1
0 10 | 2-1
2. L 2 DEfiNg . e 2-2
2.0 3 MaANAgE . . . 2-2
2. LA DO0NE . . 2-3
2.1.5 Complete Introductory Tutorial Code i, 2-3
2.2 Relational Model and Indexing Tutorial. i 2-4
2. 2. L NIt o 2-4
2.2, 2 DEfiNe . o 2-4
2.2 3 MANAgE 2-6
2. 2.4 D0NE . . 2-7
2.2.5 Complete Relational Model and Indexing Tutorial Source Code 2-8
2.3 Locking Tutorial o e 2-9
0 70 R 10 1 2-9
2.3 2 DEfiNe . 2-10
2.3 3 MaANAge 2-10
2.3.4 DONE. .o 2-11
2.3.5 Complete Locking Tutorial Source Code., 2-12
2.4 Transaction Processing Tutorial 2-13
o 10 | 2-13
2.4 2 DEfiNg . . 2-13
243 MaANAgE 2-15
244 DONE . . 2-16
2.4.5 Complete Transaction Processing Tutorial Source Code. 2-16
3 ISQL Statements
B L OVEIVIBW. oottt e 3-1
3.2 Starting Interactive SQLot 3-1
3.3 Statement HiStory SUPPOrto 3-2
3.4 Formatting Output of ISQL QUENIES.\t te 3-3
3.4.1 Formatting Column Display with the COLUMN Statement 3-6
3.4.2 Summarizing Data with DISPLAY, COMPUTE, and BREAK Statements 3-7
3.4.3 Adding Beginning and Concluding Titles with the TITLE Statement.......... 3-9

FairCom Corporation i

3.5 The HELP and TABLE Statementsttt e e 3-11

3.6 Transaction SUPPOITt eee 3-11
3.7 ISQL ReferenCe . ..ot 3-12
3T7.1@ (EXECULE) . .o e vttt e e e e e e 3-12
37 2 BREAK . . e 3-13
37 3 CLEAR . . . 3-15
3. 7.4 COLUMN e e e 3-16
37 5 COMPUTE. ... 3-21
376 DEFINE . ..o e e e 3-23
B 7.7 DISPLAY . 3-23
BT B EDIT . e e 3-25
BT O EXIT or QUIT .o e e e 3-26
BT L0 GET . . 3-27
BT L HELP o e e 3-29
37 L2 HISTORY . i 3-29
3703 HOST or SH Or L. oo 3-31
B LA LIST e e 3-32
37 5 QUIT or EXIT Lo e 3-33
37 B RUN L 3-33
3.7 SAVE .. e 3-34
BT B SET . i 3-34
37 L0 SHOW. o 3-37
3720 SPOOL . oot 3-38
37 2L START oo 3-39
37,22 TABLE 3-40
37 23 TITLE . . o e e e 3-42
4 Data Load Utility: dbload
4.1 INtrodUCHION. . . . oo 4-1
4.2 Prerequisites fordbload 4-2
4.3 dbload Command Line Syntaxot e 4-2
44 DataFile FOrmMatso o o 4-3
4.4.1 Variable Length ReCOrdst e 4-4
4.4.2 Fixed Length ReCOrds. v it e e 4-4
45The Commands File 4-4
451 The DEFINE RECORD Statement.ttt 4-5
452 The FOR EACH Statementt 4-6
4.6 EXamMPIeS. . .o 4-7
A.7.dDl0ad EITOTS. . . oot 4-8
4.7.1 Compilation EFTOrS . . . oot e 4-8
A7 2 Fatal ErrOrS . ..ottt 4-9
5 Data Unload Utility: dbdump
5.1INtrodUCtiON.o 5-1
5.2 Prerequisites for dbdump 5-1
5.3 dbdump Command Line Syntaxt e e e 5-2

FairCom Corporation

5.4 Data File FOrmMatso ot e e e e 5-2

55 TheCommands File o e 5-2
5.5.1 The DEFINE RECORD Statement.t 5-3
5.5.2 The FORRECORD Statement.ttt 5-4
BB EXaMPIES. . oo 5-4
6 Schema Export Utility: dbschema
B.1 INtrodUCLION. . .. oot 6-1
6.2 EXAMPIES. . . ot e 6-2
A Tutorial Source Code
A.l Introductory Tutorial o A-1
A.2 Relational Model and Indexing Tutorial oo, A-1
A3 Locking Tutorial i A-3
A.4 Transaction Processing Tutorial.t i e A-3
T aTo L= RO Index-i

List of Figures

Figure 4-1: dbload EXECULION PrOCESSccuiiviiiiiieieieeetsie ettt 4-2
Figure 5-1: dbdump EXECULION PrOCESScouiiiiriiriiiieiiesieieieee et 5-1
List of Tables
Table 3-1: ISQL Statements for Statement HiStory SUPPOrtccocoiereienenene e 3-2
Table 3-2: ISQL Statements for Query FOrmattingccoceveieinieiiiiiin e 3-4
Table 3-3: Numeric Format Strings for the COLUMN Statementcccccooeveneienecncinnne. 3-18
Table 3-4: Date-Time Format Strings for the COLUMN Statement..........cccccoceveienrnennne. 3-18
List of Examples
Example 3-1: Unformatted Query Display from ISQLcccovviiniiineiiniieneenee e 3-5
Example 3-2: Controlling Display Width of Character Columns..............ccocovenniinnienienne. 3-6
Example 3-3: Customizing Format of Numeric Column Displays.........cccorerrennenineninnen. 3-7
Example 3-4: Specifying Column Breaks and Values with DISPLAYc.ccccooeevnniennennnee. 3-8
Example 3-5: Calculating Statistics on Column Breaks with COMPUTE...........c.cccoovennen. 3-9
Example 3-6: Specifying a Query Header and Footer with TITLE.........c..ccocovcvvieierrniennne. 3-10
Example 3-7: Sample ISQL SCIIPLcoviiiiiriiiriesece e 3-12
Example 4-1: Sample dbload commands fileS..........ccoeiriiiiiiiin e 4-7

FairCom Corporation

FairCom Corporation

Documentation Overview

PURPOSE OF THIS MANUAL

This manual provides reference material for the ISQL interactive SQL utility as well as the
dbload, dbdump, and dbschema administrative tools provided in the c-treeSQL environment. It
also includes a tutorial describing how to use the ISQL utility.

AUDIENCE

The reader of this manual should be familiar with general SQL concepts.

STRUCTURE

The manual contains the following chapters:

Chapter 1 Describes the use of Interactive SQL (ISQL) for performing ad-hoc queries
and for report generation.

Chapter 2 Includes tutorials for getting started with ISQL.
Chapter 3 Includes reference information for ISQL statements.
Chapter 4 Describes the data load utility, dbload, which is used to load data from files

into existing tables of a database.

Chapter 5 Describes the data unload utility, dodump.
Chapter 6 Describes the data definition export utility, dbschema.
Appendix A Includes full source code for tutorials.

SYNTAX DIAGRAM CONVENTIONS

Syntax diagrams appear in Courier type and use the following conventions:

UPPERCASE Uppercase type denotes reserved words. You must include reserved
words in statements, but they can be upper or lower case.

FairCom Corporation v

ISQL and Tools

lowercase

Lowercase type denotes either user-supplied elements or names of other
syntax diagrams. User-supplied elements include names of tables, host-
language variables, expressions, and literals. Syntax diagrams can refer
to each other by name. If a diagram is named, the name appears in lower-
case type above and to the left of the diagram, followed by a double-colon
(for example, privilege ::). The name of that diagram appears in lowercase
in diagrams that refer to it.

{}

Braces denote a choice among mandatory elements. They enclose a set
of options, separated by vertical bars (|). You must choose at least one of
the options.

Brackets denote an optional element or a choice among optional ele-
ments.

Vertical bars separate a set of options.

A horizontal ellipsis denotes that the preceding element can optionally be

repeated any number of times.

(O Parentheses and other punctuation marks are required elements. Enter

them as shown in syntax diagrams.

RELATED DOCUMENTATION

Refer to the following documents for more information:

c-treeSQL Reference
Manual

Describes the syntax and semantics of statements and language
elements for the c-treeSQL interface.

c-treeSQL Embedded
SQL User’s Guide

Describes how to develop host language programs containing
embedded SQL statements that access c-treeSQL environments.

c-treeSQL ODBC Driver
Guide

Describes c-treeSQL support for the ODBC interface and how to
configure the c-treeSQL ODBC Driver.

c-treeSQL JDBC Driver
Guide

Describes c-treeSQL support for the JDBC interface, configuring
the c-treeSQL JDBC Driver, and how applications connect to
databases through the driver.

c-treeSQL Guide to
Java Stored Procedures
and Triggers

Describes how to write and use Java stored procedures and trig-
gers—Java routines which contain SQL statements and are
stored in a database. ODBC, JDBC, and SQL applications call
stored procedures, while triggers are invoked automatically by
database updates.

c-tree Plus Quick Start
and

Product Overview
Guide

Describes the installation process, how to get started, and rec-
ommendations for c-tree Plus ISAM/Low-Level, c-treeDB, c-
treeVCL/CLX, c-tree Server, and c-treeSQL Server.

Vi

FairCom Corporation

Chapter 1

Introduction

1.1 OVERVIEW

Interactive SQL (often referred to throughout this manual as ISQL) is a utility supplied with c-
treeSQL that lets you issue SQL statements directly from a terminal and see results displayed
at the terminal. You can use interactive SQL to:

» Learn how SQL statements work
« Test and prototype SQL statements to be embedded in programs
« Modify an existing database with data definition statements

« Perform ad-hoc queries and generate formatted reports with special ISQL formatting state-
ments

With few exceptions, you can issue any SQL statement in interactive SQL that can be embed-
ded in a program, including CREATE, SELECT, and GRANT statements. Interactive SQL
includes an online help facility with syntax and descriptions of the supported statements.

FairCom Corporation 1-1

ISQL and Tools

1-2

FairCom Corporation

2.1

211

Chapter 2
Quick Tour

INTRODUCTORY TUTORIAL
iSQL_Tutoriall.sql

This introductory tutorial will rapidly take you through the basic
use of the powerful interactive SQL (iSQL) database interface.
iSQL is a full featured command line client side query tool useful
for submitting ad hoc SQL statements to a Server. Likewise the
tool provides ample output formatting capabilities.

You're Done!

By no means does this introduction cover the full scope, detail, or
flexibility that iISQL offers. It does however provide a quick glimpse of the benefits a tool such
as this provides in a development environment.

This tutorial operates on the assumption that the database named 'myDatabase’, already exists.
Please refer to Section 3.6 “Introduction to the c-treeSQL ISQL Utility” in c-tree Plus Quick
Start and Product Overview Guide for details on how to set up the environment for the tutorial.

This example, like all others in this set of documentation, will take the creation and use of a
database and fit it into a simple four step flow of initialization, definition, management, and
completion. (Init, define, manage, and you're done!)

Now let's break into the four areas.

Init

The initialize step is as simple as launching the iSQL tool. The
syntax for this is as follows:

isql [-u user_name] [-a password] [connect_string]

At the command line prompt type:

isql -u ADMIN -a ADMIN myDatabase
iSQL responds with the following prompt:
1SQL>

At this point, any valid SQL statement terminated with a semi-colon may be submitted.

FairCom Corporation 2-1

ISQL and Tools

2.1.2

2.1.3

Define

In this case define consists of the CREATE TABLE statement.
This is done in a single iSQL statement in which specific fields
are defined. Upon successful creation of the table, the changes
made to the database by this transaction are made permanent by
executing the COMMIT WORK statement. The following SQL
syntax provides the functionality for the define phase:

» CREATE TABLE — Create a table.
« COMMIT WORK — Make changes permanent.

Below is the interactive SQL for DEFINE:

1SQL> CREATE TABLE CUSTMAST (

cm_custnum VARCHAR(5),
cm_custzip VARCHAR(10),
cm_custstate VARCHAR(3),
cm_custrating VARCHAR(2),
cm_custname VARCHAR(48),
cm_custaddrs VARCHAR(48),
cm_custcity VARCHAR(48));

1SQL> COMMIT WORK CUSTMAST;

Manage

This step provides data management functionality for the applica-
tion. We will simply add records to a table and then get and dis-
play those records. Then a simple record deletion is performed
and the records are displayed again. The following SQL state-
ments provide the functionality to manipulate the records in our
table.

» INSERT INTO - This will add a record by inserting it into the
table

e SELECT - Fetch records according to select criteria
» DELETE FROM - Delete records from a table.

*+ COMMIT WORK - Make changes permanent.
Below is the interactive SQL for MANAGE:

Add Records

ISQL> INSERT INTO CUSTMAST
VALUES ("10007", ®92867", "CA", "1", "Bryan Williams", "2999
Regency*®, "Orange®);

ISQL> INSERT INTO CUSTMAST

2-2

FairCom Corporation

Quick Tour

214

2.1.5

VALUES ("1001°, "61434", *CT", "1°, “Michael Jordan®, "13 Main®, "Harford®);

1SQL> INSERT INTO CUSTMAST
VALUES ("1002°, "73677", "GA", "1%, *Joshua Brown®, "4356
Cambridge®, "Atlanta®);

I1SQL> INSERT INTO CUSTMAST
VALUES ("1003", "10034", "MO", "1%, "Keyon Dooling®, "19771 Park
Avenue®, "Columbia®);

1SQL> COMMIT WORK;

Display Records
1SQL> SELECT * FROM CUSTMAST;

Delete Records
1SQL> DELETE FROM CUSTMAST;

1SQL> COMMIT WORK;

Done

When a client application has completed operations with the
server, it must release resources by disconnecting from the data-
base. iSQL isan application that provides an interactive interface
for SQL. It may not be explicit but a connection is made with the
server when the isql tool is launched. Likewise, a disconnect ——
occurs when the isqgl tool is exited. You're Done!

Below is the interactive SQL for DONE:
I1SQL> quit
This will return the process back to a regular command line prompt.

Complete Introductory Tutorial Code

Complete source code for the introductory tutorial can be found in
Appendix A "Tutorial Source Code".

FairCom Corporation 2-3

ISQL and Tools

2.2

221

22.2

RELATIONAL MODEL AND INDEXING
TUTORIAL

iSQL_Tutorial2_sqgl

This intermediate tutorial will advance the concepts introduced in
the first tutorial by expanding the number of tables and building a
relational model. This tutorial will walk you through defining an
index for each table, demonstrating the power of indexes in a rela-
tional model using a few simple API calls.

You're Done!

This tutorial operates on the assumption that the database named 'myDatabase’, already exists.
Please refer to Section 3.6 “Introduction to the c-treeSQL ISQL Utility” in c-tree Plus Quick
Start and Product Overview Guide for details on how to set up the environment for the tutorial.

This example, like all others in this set of documentation, will take the creation and use of a
database and fit it into a simple four step flow of initialization, definition, management, and
completion. (Init, define, manage, and you're done!)

Now let's break into the four areas.

Init
The initialize step is as simple as launching the iSQL tool. The
syntax for this is as follows:

isql [-u user_name] [-a password] [connect_string]

At the command line prompt type:

isql -u ADMIN -a ADMIN myDatabase

iSQL responds with the following prompt:

1SQL>

At this point, any valid SQL statement terminated with a semi-colon may be submitted.

Define

In this case define consists of the CREATE TABLE statement.
This is done in a single iISQL statement in which specific fields
are defined. Upon successful creation of the table, the changes
made to the database by this transaction are made permanent by
executing the COMMIT WORK statement.

Relational Database

This process of defining tables and indices is in actuality creating

a relational database. For the sake of simplicity, we will not be enforcing constraints use in this
tutorial. In this example there are 4 tables being defined as depicted in the drawing below. The
fields that make up the index are shown in bold italics.

2-4

FairCom Corporation

Quick Tour

OrderList - A table of records consisting of a list of orders.

Orderltem - A table of records consisting of specific items associated with an order.
ItemMaster - A table of records consisting of information about items.
CustomerMaster - A table of records consisting of specific info related to each customer.

Each order (ordernum) in the orderlist table will contain 1 or more items (itemnum) in the
orderitem table. Each item will have a corresponding definition (weight, price, description) in
the itemmast table. An order is related to a specific customer (custnum) in the custmast table
which contains information about each customer.

OrderList Orderltem ltemMaster CustMast
orderdate ordnum weight custnum
promdate seqnumber price zip
ordernum quantity itemnum state
custnum itemnum desc rating

name
address
city

The following SQL syntax provides the functionality for the define phase:
* CREATE TABLE - Create a table.

« COMMIT WORK - Make changes permanent.

Below is the interactive SQL for DEFINE:

1SQL> CREATE TABLE orderlist (
ol_orderdate DATE,
ol_promdate DATE,
ol_ordernum VARCHAR(7),
ol_custnum VARCHAR(4)):

1SQL> CREATE INDEX custorder ON orderlist (ol_ordernum, ol_custnum);

1SQL> CREATE TABLE orderitems (
oi_ordernum VARCHAR(7),
oi_segnumber SMALLINT,
oi_quantity SMALLINT,
oi_itemnum VARCHAR(6));

I1SQL> CREATE INDEX orderitem ON orderitems (oi_ordernum, oi_segnumber);

1SQL> CREATE TABLE itemmast (
im_weight |INTEGER,
im_price MONEY,
im_itemnum VARCHAR(6),
im_desc VARCHAR(48));

FairCom Corporation 2-5

ISQL and Tools

2.2.3

I1SQL> CREATE INDEX itemnum ON itemmast (im_itemnum);

I1SQL> CREATE TABLE custmast (
cm_custnum VARCHAR(5),
cm_zip VARCHAR(10),
cm_state VARCHAR(3),
cm_rating VARCHAR(2),
cm_name VARCHAR(48),
cm_address VARCHAR(48),
cm_city VARCHAR(48));

I1SQL> CREATE INDEX custnum ON custmast (cm_custnum);

1SQL> COMMIT WORK;

Manage

This step provides data management functionality for the applica-
tion. In this example we will simply add records to the tables, pro-
cess records in the form of a query, and finally display the results
of the query.

This process involves fetching from 'OrderList' table, and for each
record fetch related records from the 'Orderltems' table based on
the index ordernum. The result is a recordset that amounts to a
list of items associated with an order. The output of the manage
step is a list of items that comprise an order showing name, quantity and price.

The following SQL syntax provides the functionality for the manage phase:

» INSERT INTO - This will add a record by inserting it into the table

e SELECT - Fetch records according to select criteria

» DELETE FROM - Delete records from a table.

*+ COMMIT WORK - Make changes permanent.

The following SQL statements populate all the tables with data.

INSERT INTO orderlist VALUES ("9/1/2002%, "9/5/2002", "1, =1001%);
INSERT INTO orderlist VALUES ("9/2/2002%, "9/6/2002", "2, "1002");

INSERT INTO orderitems VALUES (17, 1, 2,
INSERT INTO orderitems VALUES (°1°, 2, 1,
INSERT INTO orderitems VALUES ("1°7, 3, 1,
INSERT INTO orderitems VALUES (27, 1, 3, "37);

INSERT INTO itemmast VALUES (10, 19.95, "1%, "Hammer®);
INSERT INTO itemmast VALUES (3, 9.99, "27, “"Wrench®);
INSERT INTO itemmast VALUES (4, 16.59, *"3", "Saw");

INSERT INTO itemmast VALUES (1, 3.98, "4%, "Plyers”);

2-6

FairCom Corporation

Quick Tour

2.2.4

INSERT INTO custmast VALUES ("1000", "92867", "CA", "17,
"Bryan Williams", "2999 Regency", "Orange");

INSERT INTO custmast VALUES ("10017, "61434°, *CT", "17,
"*Michael Jordan®, "13 Main®, “Harford");

INSERT INTO custmast VALUES ("1002°, "73677", "GA", "1°%,
"Joshua Brown®, "4356 Cambridge®, "Atlanta®);

INSERT INTO custmast VALUES ("1003", "10034", *MO", "1°7,
"Keyon Dooling®, "19771 Park Avenue®, "Columbia®);

COMMIT WORK;

The following SQL statement performs the query and displays a very small report. This query
uses a join of 3 tables to list quantity and price for each item of an order. A basic introduction
to the report generation capabilities provided by the iSQL Utility is shown in the form of the
Column, Format and Heading syntax.

COLUMN cm_name FORMAT "A15" heading "'NAME"

COLUMN oi_quantity FORMAT "A10" heading "QTY"

COLUMN im_price FORMAT "$A10" heading "PRICE"

SELECT custmast.cm_name, orderitems.oi_quantity, itemmast.im_price
FROM custmast, orderitems, itemmast, orderlist
WHERE orderlist.ol_custnum = custmast.cm_custnum AND
orderlist.ol_ordernum = orderitems.oi_ordernum AND
orderitems.oi_itemnum = itemmast.im_itemnum
ORDER BY orderlist.ol_custnum;

The report will appear as follows:

Name QTY PRICE

Michael Jordan 2
Michael Jordan 1
Michael Jordan 1 $16.59
Joshua Brown 3

Done

When a client application has completed operations with the
server, it must release resources by disconnecting from the data-
base. iSQL is an application that provides an interface for inter-
active SQL. It may not be explicit but a connection is made with
the server when the isgl tool is launched. Likewise, a disconnect S
occurs when the isgl tool is exited. You're Done!

Below is the interactive SQL for DONE:
I1SQL> quit
This will return the process back to a regular command line prompt.

FairCom Corporation 2-7

ISQL and Tools

2.2.5 Complete Relational Model and Indexing
Tutorial Source Code

Complete source code for the relational model and indexing tuto-
rial can be found in Appendix A "Tutorial Source Code".

You're Done!

2-8 FairCom Corporation

Quick Tour

2.3

231

LOCKING TUTORIAL
iSQL_Tutorial3.sqgl

This tutorial will introduce the concept of locking. The function-
ality for this tutorial focuses on adding records, then updating a
single record to the customer master table. From the iSQL utility
the script will be parsed and passed to the server. The script com-
pletes without “committing” the update. This leaves the updated ERE
record locked. The user will launch another instance of the Inter- You're Done!
active SQL utility in another window which will block, waiting on

the lock held by the first instance. Typing "COMMIT WORK;" from the first instance of the
iSQL utility will complete the update transaction and remove the lock. This will allow the sec-
ond instance to continue execution. Launching two processes provides a visual demonstration
of the effects of locking and a basis for experimentation on your own.

It is important to note that locking is inherent at the SQL level. This means that when one pro-
cess has a record selected for update, it is locked even though there is no explicit SQL syntax.

This tutorial operates on the assumption that the database named 'myDatabase’, already exists.
Please refer to Section 3.6 “Introduction to the c-treeSQL ISQL Utility” in c-tree Plus Quick
Start and Product Overview Guide for details on how to set up the environment for the tutorial.

This example, like all others in this set of documentation, will take the creation and use of a
database and fit it into a simple four step flow of initialization, definition, management, and
completion. (Init, define, manage, and you're done!)

Now let's break into the four areas.

Init
The initialize step is as simple as launching the iSQL tool. The
syntax for this is as follows:

isql [-u user_name] [-a password] [connect_string]

At the command line prompt type:

isql -u ADMIN -a ADMIN myDatabase

iSQL responds with the following prompt:

1SQL>

At this point, any valid SQL statement terminated with a semi-colon may be submitted.

FairCom Corporation 2-9

ISQL and Tools

2.3.2 Define

In this case define consists of the CREATE TABLE statement.
This is done in a single iSQL statement in which specific fields
are defined. Upon successful creation of the table, the changes
made to the database by this transaction are made permanent by
executing the COMMIT WORK statement. The following SQL
syntax provides the functionality for the define phase:

» CREATE TABLE - Create a table.
e« COMMIT WORK - Make changes permanent.

Below is the interactive SQL for DEFINE:

1SQL> CREATE TABLE CUSTMAST (
cm_custnum VARCHAR(5),
cm_custzip VARCHAR(10),
cm_custstate VARCHAR(3),
cm_custrating VARCHAR(2),
cm_custname VARCHAR(48),
cm_custaddrs VARCHAR(48),
cm_custcity VARCHAR(48));

1SQL> COMMIT WORK CUSTMAST;

2.3.3 Manage

This step provides data management functionality for the applica-
tion. In this example we will operate on the customer master table
by first deleting all records, then adding, updating, and finally dis-
playing the contents of the table. Deleting all records will ensure
a clean starting point. Adding records will populate the table
allowing subsequent record manipulation.

» INSERT INTO - This will add a record by inserting it into the
table

e SELECT - Fetch records according to select criteria
» DELETE FROM - Delete records from a table.

« COMMIT WORK - Make changes permanent.

In order to run this tutorial you should execute:

@ISQL> @iSQL_Tutorial3.sql

in the first ISQL instance. When the script is finished, start the same tutorial in a second
instance of ISQL.

The first execution will finish without committing the update. When the second process is
launched, it will encounter a lock on a record it is trying to delete and will block.

2-10 FairCom Corporation

Quick Tour

2.3.4

The first process has the record associated with customer number 1003 locked. Meanwhile the
second process has attempted to delete the contents of the customer master table and has been
blocked when attempting to lock the table. At this point both processes are effectively blocked.
The first process is holding the lock waiting on a keystroke and the second is waiting to grab
the lock.

Typing "COMMIT WORK;" from the utility in the first process will unlock the record and
allow execution to resume in the second process.

Below is the interactive SQL for MANAGE:

Delete Records
1SQL> DELETE FROM CUSTMAST;

Add Records

I1SQL> INSERT INTO CUSTMAST
VALUES (10007, "92867", "CA", "1, "Bryan Williams", "2999
Regency®, "Orange®);

I1SQL> INSERT INTO CUSTMAST
VALUES ("1001°, "61434", "CT", "1°, “Michael Jordan®, "13 Main®, “Harford®);

1SQL> INSERT INTO CUSTMAST
VALUES ("1002°, "73677", "GA", "1", "Joshua Brown®, "4356 Cam
bridge®, "Atlanta®);

I1SQL> INSERT INTO CUSTMAST
VALUES ("1003", "10034°, "MO", 1%, "Keyon Dooling®, 19771 Park
Avenue®, "Columbia®);

1SQL> COMMIT WORK;

Update Record

1SQL> UPDATE custmast SET cm_name = "KEYON DOOLING®" where cm_custnum = "1003";

Done

When a client application has completed operations with the
server, it must release resources by disconnecting from the data-
base. iSQL is an application that provides an interface for inter-
active SQL. It may not be explicit but a connection is made with
the server when the isgl tool is launched. Likewise, a disconnect S
occurs when the isgl tool is quit. You're Done!

Below is the interactive SQL for DONE:

I1SQL> quit

This will return the process back to a regular command line prompt.

FairCom Corporation 2-11

ISQL and Tools

2.3.5 Complete Locking Tutorial Source Code

Complete source code for the locking tutorial can be found in
Appendix A "Tutorial Source Code".

2-12 FairCom Corporation

Quick Tour

2.4

241

2.4.2

TRANSACTION PROCESSING TUTORIAL
iSQL_Tutorial4.sql

This tutorial will introduce the concept of transaction processing,
based on the relational model of the previous tutorial. Records
will be added to tables orderlist and orderitems as a single transac-
tion.

Transaction processing in iSQL is handled by two statements:

1. COMMIT WORK that makes the changes done during the
transaction permanent and starts a new transaction.

2. ROLLBACK WORK that undoes all the changes done during the transaction, reverts the
database to the status before the start of the transaction, and start a new transaction.

Notice that iISQL automatically starts a transaction when launched.

This example, like all others in this set of documentation, will take the creation and use of a
database and fit it into a simple four step flow of initialization, definition, management, and
completion. (Init, define, manage, and you're done!)

Now let's break into the four areas.

Init
The initialize step is as simple as launching the iSQL tool. The
syntax for this is as follows:

isql [-u user_name] [-a password] [connect_string]

At the command line prompt type:

isql -u ADMIN -a ADMIN myDatabase

iSQL responds with the following prompt:

1SQL>

At this point, any valid SQL statement terminated with a semi-colon may be submitted.

Define

In this case define consists of the CREATE TABLE statement.
This is done in a single iISQL statement in which specific fields
are defined. Upon successful creation of the tables, the changes
made to the database by this transaction are made permanent by
executing the COMMIT WORK statement.

FairCom Corporation 2-13

ISQL and Tools

Transaction

These tables consist of a Customer Master table and an Item Master table that support prima-
rily static information regarding a company's product line and customer demographics. The
orderlist and orderitems tables consist of dynamic information pertinent to day to day sales.
This dynamic data makes its way into the database as a transaction. If any part of the data is
invalid then the transaction is rolled back and none of the data will enter the database. In this
tutorial a transaction is comprised of the order and the items that make up an order.

The following SQL syntax provides the functionality for the define phase:
* CREATE TABLE - Create a table.

« COMMIT WORK - Make changes permanent.

Below is the interactive SQL for DEFINE:

1SQL> CREATE TABLE orderlist (
ol_orderdate DATE,
ol_promdate DATE,
ol_ordnum VARCHAR(7),
ol_custnum VARCHAR(4)):;

I1SQL> CREATE TABLE orderitems (
oi_ordernum VARCHAR(7),
oi_seqnumber SMALLINT,
oi_quantity SMALLINT,
oi_itemnum VARCHAR(6));

I1SQL> CREATE TABLE itemmast (
im_weight INTEGER,
im_price MONEY,
im_itemnum VARCHAR(6),
im_desc VARCHAR(48));

I1SQL> CREATE TABLE custmast (
cm_custnum VARCHAR(5),
cm_zip VARCHAR(10),
cm_state VARCHAR(3),
cm_rating VARCHAR(2),

cm_name VARCHAR(48),
cm_address VARCHAR(48),
cm_city VARCHAR(48));

1SQL> COMMIT WORK;

2-14

FairCom Corporation

Quick Tour

2.4.3

Manage

This step provides data management functionality for the applica-
tion. In this example we will add records to the itemmast and cust-
mast tables, intended as static data. Then, sales orders will be
processed as a transaction and "commited” or "rolled back"
depending on the validity of the data. The final step will be to dis-
play the result of the transaction processing by dumping the con-
tents of the orderlist and orderitems tables.

e INSERT INTO - This will add a record by inserting it into the
table

e SELECT - Fetch records according to select criteria
* DELETE FROM - Delete records from a table.
e COMMIT WORK - Make changes permanent.

The following excerpt from iSQL_Tutorial4 shows the SQL syntax that would be used to
implement the entry of an order and related items as a transaction. The items and the order are
inserted, then a select statement is used to verify the existence of the item and customer num-
ber. iSQL is a tool that requires the user to interact. This script automatically implements the
appropriate commit or rollback statement based on the results of the verification.

INSERT INTO orderitems VALUES ("1%, 1, 2, "1%);
INSERT INTO orderitems VALUES ("1%, 2, 1, "2%);
INSERT INTO orderlist VALUES ("9/1/2002°, "9/5/2002°, "1", "1001%);
SELECT orderitems.oi_itemnum, itemmast.im_itemnum
FROM orderitems, itemmast
WHERE orderitems.oi_itemnum = itemmast.im_itemnum;
SELECT orderlist.ol_custnum, custmast.cm_custnum
FROM orderlist, custmast
WHERE orderlist.ol_custnum = custmast.cm_custnum;
COMMIT WORK;

INSERT INTO orderitems VALUES ("27, 1, 1, "3%);
INSERT INTO orderitems VALUES ("27, 2, 3, "4%);
INSERT INTO orderlist VALUES ("9/2/20027, "9/6/20027, "27, "9999%);
SELECT orderitems.oi_itemnum, itemmast.im_itemnum
FROM orderitems, itemmast
WHERE orderitems.oi_itemnum = itemmast.im_itemnum;
SELECT orderlist.ol_custnum, custmast.cm_custnum
FROM orderlist, custmast
WHERE orderlist.ol_custnum = custmast.cm_custnum;
ROLLBACK WORK;

INSERT INTO orderitems VALUES ("3%, 1, 2, "3%);
INSERT INTO orderitems VALUES ("3", 2, 3, "997);
INSERT INTO orderlist VALUES ("9/22/20027, "9/26/20027, "3", "1002%);
SELECT orderitems.oi_itemnum, itemmast.im_itemnum
FROM orderitems, itemmast
WHERE orderitems.oi_itemnum = itemmast.im_itemnum;

FairCom Corporation 2-15

ISQL and Tools

SELECT orderlist.ol_custnum, custmast.cm_custnum
FROM orderlist, custmast
WHERE orderlist.ol_custnum = custmast.cm_custnum;
ROLLBACK WORK;

24.4 Done

When a client application has completed operations with the
server, it must release resources by disconnecting from the data-
base. iSQL is an application that provides an interface for interac-
tive SQL. It may not be explicit but a connection is made with the
server when the isgl tool is launched. Likewise, a disconnect —
occurs when the isql tool is exited. You're Done!

Below is the interactive SQL for DONE:
I1SQL> quit
This will return the process back to a regular command line prompt.

2.4.5 Complete Transaction Processing Tutorial
Source Code

Complete source code for the transaction processing tutorial can
be found in Appendix A "Tutorial Source Code".

2-16 FairCom Corporation

Chapter 3

ISQL Statements

3.1 OVERVIEW
This chapter describes only those statements that are specific to ISQL. See the c-treeSQL Ref-
erence Guide for detailed reference information on standard SQL statements that can be issued
in other environments.
3.2 STARTING INTERACTIVE SQL
Start ISQL by issuing the isql command at the shell prompt. c-treeSQL invokes ISQL and dis-
plays the ISQL prompt:
$ isql sampledb
c-treeSQL Interactive Interpreter
1SQL>
Issue c-treeSQL statements at the ISQL> prompt and terminate them with a semicolon. You
can continue statements on multiple lines. ISQL automatically prompts for continuation lines
until you terminate the statement with a semicolon.
To execute host operating system commands from the ISQL prompt, type HOST followed by
the operating system command. After completion of the HOST statement, the ISQL> prompt
returns. To execute SQL scripts from ISQL, type @ followed by the name of the file containing
SQL statements.
To exit from interactive SQL, type EXIT or QUIT.
You can supply optional switches and arguments to the isql command.
Syntax
isql [-s script_file] [-u user_name] [-a password] [connect_string]
Arguments

-s script_file
The name of an SQL script file that c-treeSQL executes when it invokes ISQL.

Note: For Windows platforms, if the file name has a space, such as:
test script.sql

FairCom Corporation 3-1

ISQL and Tools

The file name must be enclosed in doubles quotes, such as:
isql -s "test script.sql" testdb

-U user_name
The user name c-treeSQL uses to connect to the database specified in the connect_string. c-
treeSQL verifies the user name against a corresponding password before it connects to the
database. If omitted, the default value depends on the environment. (On UNIX, the value of the
DH_USER environment variable specifies the default user name. If DH_USER is not set, the
value of the USER environment variable specifies the default user name.)

-a password

The password c-treeSQL uses to connect to the database specified in the connect_string. c-
treeSQL verifies the password against a corresponding user name before it connects to the
database. If omitted, the default value depends on the environment. (On UNIX, the value of the
DH_PASSWD environment variable specifies the default password.)

connect_string

A string that specifies which database to connect to. The connect_string can be a simple data-
base name or a complete connect string. For example, to connect to a local database named
myDatabase, you would use the following syntax:

isql -u ADMIN -a ADMIN myDatabase

To connect to a remote database named c-treeSQL, you would use the 6597 @remotehost:data-
base syntax as follows:

isql -u ADMIN -a ADMIN 6597@hotdog.faircom.com:ctreeSQL

See the CONNECT statement in the c-treeSQL Reference Manual for details on how to spec-
ify a complete connect string. If omitted, the default value depends on the environment. (On
UNIX, the value of the DB_NAME environment variable specifies the default connect string.)

3.3 STATEMENT HISTORY SUPPORT
ISQL provides statements to simplify the process of executing statements you already typed.
ISQL implements a history mechanism similar to the one found in the csh (C-shell) supported
by UNIX.
The following table summarizes the ISQL statements that support retrieving, modifying, and
rerunning previously entered statements.
Table 3-1: ISQL Statements for Statement History Support
Statement Summary
HISTORY Displays a fixed number of statements (specified by the SET HIS-
TORY statement) which have been entered before this state-
ment, along with a statement number for each statement. Other
statements take the statement number as an argument. See Sec-
tion 3.7.12 "HISTORY" on page 3-29 for details.
3-2 FairCom Corporation

ISQL Statements

Table 3-1: ISQL Statements for Statement History Support

Statement

Summary

RUN [stmt_num]

Displays and executes the current statement or specified state-
ment in the history buffer. See Section 3.7.16 "RUN" on page 3-
33 details.

LIST [stmt_num]

Displays the current statement or specified statement in the his-
tory buffer, and makes that statement the current statement by
copying it to the end of the history list. See Section 3.7.14 "LIST"

on page 3-32 for details.

EDIT [stmt_num]

Edits the current statement or specified statement in the history

buffer, and makes the edited statement the current statement by
copying it to the end of the history list. The environment variable
EDITOR can be set to the editor of choice. See Section 3.7.8

'‘EDIT" on page 3-25 for details.

SAVE filename

Saves the current statement in the history buffer to the specified
file, which can then be retrieved through the GET or START
statements. See Section 3.7.17 "SAVE" on page 3-34 for details.

GET filename

Fetches the contents of the specified file, from the beginning of
the file to the first semicolon, and appends it to the history buffer.
The statement fetched by the GET can then be executed by
using the RUN statement. See Section 3.7.10 "GET" on page 3-
27 for details.

START filename
argument ...]

[

Fetches and executes a statement stored in the specified file.
Unlike the GET statement, START executes the statement and
accepts arguments that it substitutes for parameter references in
the statement stored in the file. START also appends the state-
ment to the history buffer. See Section 3.7.21 "START" on page
3-39 for details.

3.4 FORMATTING OUTPUT OF ISQL QUERIES

Formatting of database query results makes the output of a database query more presentable
and understandable. The formatted output of an ISQL database query can be either displayed
on the screen, written to a file, or spooled to a printer to produce a hardcopy of the report.

FairCom Corporation

3-3

ISQL and Tools

ISQL includes several statements that provide simple formatting of SQL queries. The follow-
ing table summarizes the ISQL query-formatting statements.

Table 3-2: ISQL Statements for Query Formatting

Statement

Summary

DISPLAY

Displays text, variable values, and/or column values after the
specified set of rows (called a break specification). See Section
3.7.7 "DISPLAY" on page 3-23 for details.

COMPUTE

Performs aggregate-function computations on column values for
the specified set of rows, and assigns the results to a variable.
DISPLAY statements can then refer to the variable to display its
value. See Section 3.7.5 "COMPUTE" on page 3-21 for details.

BREAK

Specifies at what point ISQL processes associated DISPLAY and
COMPUTE statements. BREAK statements can specify that pro-
cessing occurs after a change in a column's value, after each
row, after each page, or at the end of a query. DISPLAY and
COMPUTE statements have no effect until you issue a BREAK
statement with the same break specification. See Section 3.7.2
"BREAK" on page 3-13 for details.

DEFINE

Defines a variable and assigns a text value to it. When DISPLAY
statements refer to the variable, ISQL prints the value. See Sec-
tion 3.7.6 "DEFINE" on page 3-23 for detalils.

COLUMN

Controls how ISQL displays a column's values (the FORMAT
clause) and/or specifies alternative column-heading text (the
HEADING clause). See Section 3.7.4 "COLUMN" on page 3-16
for details.

TITLE

Specifies text and its positioning that ISQL displays before or
after it processes a query. See Section 3.7.23 "TITLE" on page
3-42 for details.

CLEAR

Removes settings made by the previous DISPLAY, COMPUTE,
COLUMN, BREAK, DEFINE, or TITLE statements. See Section
3.7.3 "CLEAR" on page 3-15 for details.

SET LINESIZE
SET PAGESIZE
SET REPORT
SET ECHO

Specifies various attributes that affect how ISQL displays queries
and results.

The rest of this section provides an extended example that illustrates how to use the statements
together to improve formatting.

3-4

FairCom Corporation

ISQL Statements

All the examples use the same ISQL query. The query retrieves data on outstanding customer
orders. The query joins two tables, customers and orders. The examples for the TABLE state-
ment on Section 3.7.13 "HOST or SH or !" on page 3-31 show the columns and data types for
these sample tables.

The following example shows the query and an excerpt of the results as ISQL displays them
without the benefit of any query-formatting statements:

Example 3-1: Unformatted Query Display from ISQL

I1SQL> select c.customer_name, c.customer_city, o.order_id, o.order_value
from customers c, orders o
where o.customer_id = c.customer_id
order by c.customer_name;

CUSTOMER_NAME CUSTOMER_CITY

Aerospace Enterprises Inc. Scottsdale
13 3000000

Aerospace Enterprises Inc. Scottsdale
14 1500000

Chemical Construction Inc. Joplin
11 3000000

Chemical Construction Inc. Joplin
12 7500000

Luxury Cars Inc. North Ridgeville
21 6000000

Luxury Cars Inc. North Ridgeville
20 5000000

Although this query retrieves the correct data, the formatting is inadequate:

« The display for each record wraps across two lines, primarily because of the column defini-
tions for the text columns customer_name and customer_city. ISQL displays the full col-
umn width (50 characters for each column) even though the contents don't use the entire
width.

e It's not clear that the values in the order_value column represent money amounts.
The next section shows how to use the COLUMN statement to address these formatting issues.

In addition, you can use DISPLAY, COMPUTE, and BREAK statements to present order sum-
maries for each customer. Section 3.4.2 "Summarizing Data with DISPLAY, COMPUTE, and
BREAK Statements" on page 3-7 shows how to do this. Finally, you can add text that ISQL
displays at the beginning and end of query results with the TITLE statement, as described in
Section 3.4.3 "Adding Beginning and Concluding Titles with the TITLE Statement" on page 3-
9.

All of these statements are independent of the actual query. You do not need to change the
query in any way to control how ISQL formats the results.

FairCom Corporation 3-5

ISQL and Tools

3.4.1 Formatting Column Display with the COLUMN Statement
You can specify the width of the display for character columns with the COLUMN statement's
"An" format string. Specify the format string in the FORMAT clause of the COLUMN state-
ment. You need to issue separate COLUMN statements for each column whose width you want
to control in this manner.
The following example shows COLUMN statements that limit the width of the
customer_name and customer_city columns, and re-issues the original query to show how they
affect the results.
Example 3-2: Controlling Display Width of Character Columns
1SQL> COLUMN CUSTOMER_NAME FORMAT "A19"
I1SQL> COLUMN CUSTOMER_CITY FORMAT "A19"
I1SQL> select c.customer_name, c.customer_city, o.order_id, o.order_value
from customers c, orders o
where o.customer_id = c.customer_id
order by c.customer_name;
CUSTOMER_NAME CUSTOMER_CITY ORDER_ID ORDER_VALUE
Aerospace Enterpris Scottsdale 13 3000000
Aerospace Enterpris Scottsdale 14 1500000
Chemical Constructi Joplin 11 3000000
Chemical Constructi Joplin 12 7500000
Luxury Cars Inc. North Ridgeville 21 6000000
Luxury Cars Inc. North Ridgeville 20 5000000
Note that ISQL truncates display at the specified width. This means you should specify a value
in the FORMAT clause that accommodates the widest column value that the query will display.
To improve the formatting of the order_value column, use the COLUMN statement's numeric
format strings. Issue another COLUMN statement, this one for order-_value, and specify a for-
mat string using the "$", "9", and "," format-string characters:
» The format-string character 9 indicates the width of the largest number. Specify enough 9
format-string characters to accommaodate the largest value in the column.
» The format-string character $ directs ISQL to precede column values with a dollar sign.
e The comma (,) format-string character inserts a comma at the specified position in the dis-
play.
For the order_value column, the format string "$99,999,999.99" displays values in a format
that clearly indicates that the values represent money. (For a complete list of the valid numeric
format characters, see Table 3-3: Numeric Format Strings for the COLUMN Statement on page
3-18))
The following example shows the complete COLUMN statement that formats the order_value
column. As shown by issuing the COLUMN statement without any arguments, this example
retains the formatting from the COLUMN statements in the previous example.
3-6 FairCom Corporation

ISQL Statements

3.4.2

Example 3-3: Customizing Format of Numeric Column Displays

1SQL> column order_value format ""$99,999,999.99"

1SQL> column; -- Show all the COLUMN statements now in effect:

column CUSTOMER_NAME format ""A19" heading 'CUSTOMER_NAME"

column CUSTOMER_CITY format ""A19" heading "CUSTOMER_CITY"

column ORDER_VALUE format ''$99,999,999.99" heading '"ORDER_VALUE"

I1SQL> select c.customer_name, c.customer_city, o.order_id, o.order_value
from customers c, orders o
where o.customer_id = c.customer_id
order by c.customer_name;

CUSTOMER_NAME CUSTOMER_CITY ORDER_ID ORDER_VALUE

Aerospace Enterpris Scottsdale 13 $3,000,000.00
Aerospace Enterpris Scottsdale 14 $1,500,000.00
Chemical Constructi Joplin 11 $3,000,000.00
Chemical Constructi Joplin 12 $7,500,000.00
Luxury Cars Inc. North Ridgeville 21 $6,000,000.00

Luxury Cars Inc. North Ridgeville 20 $5,000,000.00

Summarizing Data with DISPLAY, COMPUTE, and BREAK State-
ments

Now that the query displays the rows it returns in a more acceptable format, you can use DIS-
PLAY, COMPUTE, and BREAK statements to present order summaries for each customer.

All three statements rely on a break specification to indicate to ISQL when it should perform
associated processing. There are four types of breaks you can specify:

« Column breaks are processed whenever the column associated with the break changes in
value

* Row breaks are processed after display of each row returned by the query

» Page breaks are processed at the end of each page (as defined by the SET PAGESIZE state-
ment)

* Report breaks are processed after display of all the rows returned by the query

While DISPLAY and COMPUTE statements specify what actions ISQL takes for a particular
type of break, the BREAK statement itself controls which type of break is currently in effect. A
consequence of this behavior is that DISPLAY and COMPUTE statements don't take effect
until you issue the BREAK statement with the corresponding break specification.

Also, keep in mind that there can be only one type of break in effect at a time. This means you
can format a particular query for a single type of break.

In our example, we are interested in a column break, since we want to display an order sum-
mary for each customer. In particular, we want to display the name of the customer along with
the number and total value of orders for that customer. And, we want this summary displayed

FairCom Corporation 3-7

ISQL and Tools

whenever the value in the customer_name column changes. In other words, we need to specify
a column break on the customer_name column.

Approach this task in two steps. First, devise a DISPLAY statement to display the customer
name and confirm that it is displaying correctly. Then, issue COMPUTE statements to calcu-
late the statistics for each customer (namely, the count and sum of orders), and add DISPLAY
statement to include those statistics. All of the DISPLAY, COMPUTE and BREAK statements
have to specify the same break to get the desired results.

The following example shows the DISPLAY and BREAK statements that display the customer
name. The COL clause in the DISPLAY statement indents the display slightly to emphasize the
change in presentation.

The following example uses the column formatting from previous examples. Notice that the
column formatting also affects DISPLAY statements that specify the same column.

Example 3-4. Specifying Column Breaks and Values with DISPLAY

ISQL> display col 5 "Summary of activity for", customer_name on customer_name;
I1SQL> break on customer_name
ISQL> select c.customer_name, c.customer_city, o.order_id, o.order_value

from customers c, orders o

where o.customer_id = c.customer_id

order by c.customer_nhame;

CUSTOMER_NAME CUSTOMER_CITY ORDER_ID ORDER_VALUE

Aerospace Enterpris Scottsdale 13 $3,000,000.00

Aerospace Enterpris Scottsdale 14 $1,500,000.00
Summary of activity for Aerospace Enterpris

Chemical Constructi Joplin 11 $3,000,000.00

Chemical Constructi Joplin 12 $7,500,000.00
Summary of activity for Chemical Constructi

Luxury Cars Inc. North Ridgeville 21 $6,000,000.00

Luxury Cars Inc. North Ridgeville 20 $5,000,000.00

Summary of activity for Luxury Cars Inc.

Next, issue two COMPUTE statements to calculate the desired summary values.

COMPUTE statements specify an SQL aggregate function (AVG, MIN, MAX, SUM, or
COUNT), a column name, a variable name, and a break specification. ISQL applies the aggre-
gate function to all values of the column for the set of rows that corresponds to the break spec-
ification. It stores the result in the variable, which subsequent DISPLAY statements can use to
display the result.

For this example, you need two separate compute statements. One calculates the number of
orders (COUNT OF the order_id column) and the other calculates the total cost of orders
(SUM OF the order_value column). Both specify the same break, namely, customer_name.
The following example shows the COMPUTE statements, which store the resulting value in
the variables num_orders and tot_value.

3-8

FairCom Corporation

ISQL Statements

3.4.3

The following example also issues two more DISPLAY statements to display the variable val-
ues. As before, the DISPLAY statements must specify the customer_name break. They also
indent their display farther to indicate the relationship with the previously issued DISPLAY.

As before, this example uses the COLUMN and DISPLAY statements from previous exam-
ples. ISQL processes DISPLAY statements in the order they were issued. Use the DISPLAY
statement, without any arguments, to show the current set of DISPLAY statements in effect.
Also, in the query results, notice that the column formatting specified for the order_value col-
umn carries over to the tot_value variable, which is based on order_value.

Example 3-5: Calculating Statistics on Column Breaks with COMPUTE

1SQL> compute count of order_id in num_orders on customer_name
I1SQL> compute sum of order_value in tot_value on customer_name
I1SQL> display col 10 "Total number of orders:", num_orders on customer_nhame;
I1SQL> display col 10 "Total value of orders:', tot_value on customer_name;
I1SQL> display -- See all the DISPLAY statements currently active:
display col 5 "Summary of activity for" ,customer_name on customer_name
display col 10 "Total number of orders:" ,num_orders on customer_name
display col 10 "Total value of orders:*" ,tot _value on customer_name
I1SQL> select c.customer_name, c.customer_city, o.order_id, o.order_value
from customers c, orders o
where o.customer_id = c.customer_id
order by c.customer_name;

CUSTOMER_NAME CUSTOMER_CITY ORDER_ID ORDER_VALUE
Aerospace Enterpris Scottsdale 13 $3,000,000.00
Aerospace Enterpris Scottsdale 14 $1,500,000.00
Summary of activity for Aerospace Enterpris
Total number of orders: 2
Total value of orders: $4,500,000.00
Chemical Constructi Joplin 11 $3,000,000.00
Chemical Constructi Joplin 12 $7,500,000.00
Summary of activity for Chemical Constructi
Total number of orders: 2
Total value of orders: $10,500,000.00
Luxury Cars Inc. North Ridgeville 21 $6,000,000.00
Luxury Cars Inc. North Ridgeville 20 $5,000,000.00
Summary of activity for Luxury Cars Inc.
Total number of orders: 2

Total value of orders: $11,000,000.00

Adding Beginning and Concluding Titles with the TITLE Statement

You can add some finishing touches to the query display with the TITLE statement.

FairCom Corporation 3-9

ISQL and Tools

The TITLE statement lets you specify text that ISQL displays before (TITLE TOP) or after
(TITLE BOTTOM) the query results.

The title can also be horizontally positioned by specifying the keywords LEFT, CENTER, or
RIGHT; or by specifying the actual column number corresponding to the required positioning
of the title. Use the SKIP clause to skip lines after a top title or before a bottom title.

The following example uses two TITLE statements to display a query header and footer.

Example 3-6: Specifying a Query Header and Footer with TITLE

ISQL> TITLE TOP LEFT "Orders Summary'™ RIGHT *'September 29, 1998" SKIP 2;
I1SQL> SHOW LINESIZE -- RIGHT alignment of TITLE is relative to this value:
LINESIZE, - 78
ISQL> TITLE BOTTOM CENTER "End of Orders Summary Report' SKIP 2;
I1SQL> select c.customer_name, c.customer_city, o.order_id, o.order_value
from customers c, orders o
where o.customer_id = c.customer_id
order by c.customer_name;

Orders Summary September 29, 1998
CUSTOMER_NAME CUSTOMER_CITY ORDER_ID ORDER_VALUE
Aerospace Enterpris Scottsdale 13 $3,000,000.00
Aerospace Enterpris Scottsdale 14 $1,500,000.00
Summary of activity for Aerospace Enterpris
Total number of orders: 2
Total value of orders: $4,500,000.00
Chemical Constructi Joplin 11 $3,000,000.00
Chemical Constructi Joplin 12 $7,500,000.00
Summary of activity for Chemical Constructi
Total number of orders: 2
Total value of orders: $10,500,000.00
Luxury Cars Inc. North Ridgeville 21 $6,000,000.00
Luxury Cars Inc. North Ridgeville 20 $5,000,000.00

Summary of activity for Luxury Cars Inc.
Total number of orders: 2
Total value of orders: $11,000,000.00

Tower Construction Munising 8 $2,000,000.00

Tower Construction Munising 10 $6,000,000.00
Tower Construction Munising 9 $8,000,000.00

Summary of activity for Tower Construction
Total number of orders: 3
Total value of orders: $16,000,000.00

3-10

FairCom Corporation

ISQL Statements

3.5

3.6

End of Orders Summary Report
23 records selected
1SQL>

THE HELP AND TABLE STATEMENTS

ISQL supports an on-line help facility that can be invoked by using the HELP statement. Typ-
ing HELP at the ISQL prompt will display a help file which will list the options accepted by
the HELP statement. The various forms of the HELP statement are listed below:

« HELP - Displays the options that can be specified for HELP.
e HELP COMMANDS - Displays all the statements that ISQL accepts.
e HELP command_name - Displays help file corresponding to the specified statement.

TABLE is an ISQL statement that displays all the tables present in the database including any
system tables. TABLE can be used also to display the description of a single table by explicitly
giving the table name. Both forms of the TABLE statement are shown below:

TABLE;
TABLE table_name;

TRANSACTION SUPPORT

A transaction is started with the execution of the first SQL statement. A transaction is commit-
ted using the COMMIT WORK statement and rolled back using the ROLLBACK WORK
statement.

If the AUTOCOMMIT option is set to ON, then ISQL treats each SQL statement as a single
transaction. This prevents the user from holding locks on the database for an extended period
of time. This is very critical when the user is querying an on-line database in which a transac-
tion processing application is executing in real time.

A set of SQL statements can be executed as part of a transaction and committed using the
COMMIT WORK statement. This is shown below:

<SQL statement>
<SQL statement>
<SQL statement>

COMMIT WORK ;

Instead, a transaction can also be rolled back using the ROLLBACK WORK statement as
shown:

<SQL statement>

<SQL statement>

FairCom Corporation 3-11

ISQL and Tools

<SQL statement>

ROLLBACK WORK ;

An SQL statement starting immediately after a COMMIT WORK or ROLLBACK WORK
statement starts a new transaction.

3.7 ISQL REFERENCE
This section provides reference material for statements specific to 1ISQL.
This section does not include descriptions of standard SQL statements or statements specific to
embedded SQL. For details on the syntax and semantics of those other SQL statements, see the
c-treeSQL Reference Manual.

3.7.1 @ (Execute)

Syntax
@filename

Description
Executes the SQL statements stored in the specified SQL script file. The statements specified
in the file are not added to the history buffer.

Arguments
filename
The name of the script file.

Notes
The GET, START, and @ (execute) statements are similar in that they all read SQL script files.
Both GET and START read an SQL script file and append the first statement in it to the history
buffer. However, the START statement also executes the script statement and accepts argu-
ments that it substitutes for parameter references in the script statement. The @ (execute) state-
ment, on the other hand, executes all the statements in an SQL script file but does not add any
of the statements to the history buffer. The @ statement does not support argument substitu-
tion.

Example
The following example shows a simple ISQL script file.
Example 3-7: Sample ISQL script
connect to demodb;
set echo on ;
create table stores (item_no integer, item_name char(20));

3-12 FairCom Corporation

ISQL Statements

insert into stores values (1001,chassis);
insert into stores values (1002,chips);
select * from stores where item_no > 1001;
set echo off ;

To execute the above statements stored in a file named cmdfile, enter:
1SQL> @cmdfile

3.7.2 BREAK

Syntax
BREAK [ON break_spec [SKIP n]] ;
break_spec::
{ column_name [, .. 1 | ROW | PAGE | REPORT }
Description
The BREAK statement specifies at what point ISQL processes associated DISPLAY and
COMPUTE statements. DISPLAY and COMPUTE statements have no effect until you issue a
BREAK statement with the same break specification.
A break can be specified on any of the following events:
« Change in the value of a column
» Selection of each row
e End of a page
e End of a report
Only one BREAK statement can be in effect at a time. When a new BREAK statement is
entered, it replaces the previous BREAK statement. The BREAK statement can specify one or
more columns on which the break can occur.
The BREAK statement without any clauses displays the currently-set break, if any.
Arguments

break_spec
The events that cause an SQL query to be interrupted and the execution of the associated
COMPUTE and DISPLAY statements. break_spec can be any of the following values:

column_name Causes a break when the value of the column specified by
column_name changes.

ROW Causes a break on every row selected by a SELECT statement.

FairCom Corporation 3-13

ISQL and Tools

PAGE Causes a break at the end of each page. The end of a page is specified
in the SET PAGESIZE statement. See Section 3.7.18 "SET" on page 3-
34 for details on the SET statement.

REPORT Causes a break at the end of a report or query.

SKIP n
The optional SKIP clause can be used to skip the specified number of lines when the specified
break occurs and before processing of any associated DISPLAY statements.

Examples

The following examples illustrate how various break settings and corresponding DISPLAY
statements affect the display of the same query.

1SQL> break

no break specified

ISQL> select customer_name from customers; -- Default display
CUSTOMER_NAME

Sports Cars Inc.

Mighty Bulldozer Inc.

Ship Shapers Inc.

Tower Construction Inc.

Chemical Construction Inc.

Aerospace Enterprises Inc.

Medical Enterprises Inc.

Rail Builders Inc.

Luxury Cars Inc.

Office Furniture Inc.

10 records selected

ISQL> -- Set DISPLAY values for different breaks:

I1SQL> display "Break on change in value of customer_name!' on customer_name;
I1SQL> display "Break on every row!"™ on row;

ISQL> display "Break on page (page size set to 2 lines)" on page;
I1SQL> display "Break on end of report!*” on report;

ISQL> set pagesize 2

ISQL> break on customer_name

I1SQL> select customer_name from customers;

CUSTOMER_NAME

Sports Cars Inc.

Break on change in value of customer_name!

Mighty Bulldozer Inc.

Break on change in value of customer_name!

Ship Shapers Inc.

Break on change in value of customer_name!

I1SQL> break on row

3-14

FairCom Corporation

ISQL Statements

3.7.3

Syntax

1SQL> select customer_name from

CUSTOMER_NAME

Sports Cars Inc.
Break on every row!
Mighty Bulldozer Inc.
Break on every row!
Ship Shapers Inc.
Break on every row!

1SQL> break on page

I1SQL> select customer_name from

CUSTOMER_NAME

Break on page (page size set to

CUSTOMER_NAME

Sports Cars Inc.

Break on page (page size set to

CUSTOMER_NAME

Mighty Bulldozer Inc.

Break on page (page size set to

1SQL> break on report

I1SQL> select customer_name from

CUSTOMER_NAME

Sports Cars Inc.

Mighty Bulldozer Inc.

Ship Shapers Inc.

Tower Construction Inc.
Chemical Construction Inc.
Aerospace Enterprises Inc.
Medical Enterprises Inc.
Rail Builders Inc.

Luxury Cars Inc.

Office Furniture Inc.
Break on end of report!

10 records selected

1SQL>

CLEAR

CLEAR option ;
option::
HISTORY

customers;

customers;

2 lines)

2 lines)

2 lines)

customers;

FairCom Corporation

3-15

ISQL and Tools

BREAK
COLUMN
COMPUTE
DISPLAY
TITLE

Description

The CLEAR statement removes settings made by the ISQL statement corresponding to option.

Argument

option
Which ISQL statement's settings to clear:

* CLEAR HISTORY - Clears the ISQL statement history buffer.

* CLEAR BREAK - Clears the break set by the BREAK statement.

* CLEAR COLUMN - Clears formatting options set by any COLUMN statements in effect.
* CLEAR COMPUTE - Clears all the options set by the COMPUTE statement.

* CLEAR DISPLAY - Clears the displays set by the DISPLAY statement.

* CLEAR TITLE - Clears the titles set by the TITLE statement.

Examples

The following example illustrates clearing the DISPLAY and BREAK settings.

ISQL> DISPLAY -- See the DISPLAY settings currently in effect:
display "Break on change in value of customeer_name!" on customer_name
display "Break on every row!"™ on row

display "Break on page (page size set to 2 lines)" on page
display "Break on end of report!"™ on report

1SQL> CLEAR DISPLAY

1SQL> DISPLAY

No display specified.

1SQL> BREAK

break on report skip 0

1SQL> CLEAR BREAK

1SQL> BREAK
no break specified
1SQL>
3.74 COLUMN
Syntax
COLUMN [column_name
[FORMAT ** format_string "] | [HEADING " heading_text "]] ;
3-16 FairCom Corporation

ISQL Statements

Description

The COLUMN statement controls how ISQL displays a column's values (the FORMAT clause)
and specifies alternative column-heading text (the HEADING clause).

The COLUMN statement without any arguments displays the current column specifications.

Arguments

column_name

The name of the column affected by the COLUMN statement. If the COLUMN statement
includes column_name but omits both the FORMAT and HEADING clauses, ISQL clears any
formatting and headings in effect for that column. The formatting specified for column_name
also applies to DISPLAY statements that specify the same column.

FORMAT " format_string "'
Specifies a quoted string that formats the display of column values. Valid values for format
strings depend on the data type of the column.

Character The only valid format string for character data types is of the form "An",
where n specifies the width of the column display. The A character must
be upper case.

Numeric Table 3-3: Numeric Format Strings for the COLUMN Statement on page
3-18 shows valid format strings for numeric data types.

Date-time Table 3-4: Date-Time Format Strings for the COLUMN Statement on
page 3-18 shows valid format strings for date-time data types. The for-
mat strings consist of keywords that SQL interprets and replaces with
formatted values. Any other character in the format string are displayed
as literals. The format strings are case sensitive. For instance, SQL
replaces 'DAY" with all uppercase letters, but follows the case of 'Day'.
Note that the SQL scalar function TO_CHAR offers comparable func-
tionality and is not limited to SQL statements issued within ISQL. See
the c-treeSQL Reference Manual for details on TO_CHAR.

COLUMN format strings also affect display values in DISPLAY statements that specify the
same column or a COMPUTE value based on the column.

HEADING " heading_text "
Specifies an alternative heading for the column display. The default is the column name.

FairCom Corporation 3-17

ISQL and Tools

(a) Format String Details

Table 3-3: Numeric Format Strings for the COLUMN Statement

Character Example Description

9 99999 Number of 9's specifies width. If the column value is
too large to display in the specified format, ISQL
displays # characters in place of the value.

0 09999 Display leading zeroes.

$ $9999 Prefix the display with '$'.

B B9999 Display blanks if the value is zero.

, 99,999 Display a comma at position specified by the
comma.

99,999.99 Display a decimal point at the specified position.
Ml 99999MI Display '-' after a negative value.
PR 99999PR Display negative values between '<' and '>".

Table 3-4: Date-Time Format Strings for the COLUMN Statement

Character Description

CcC The century as a 2-digit number.

YYYY The year as a 4-digit number.

YYY The last 3 digits of the year.

YY The last 2 digits of the year.

Y The last digit of the year.

Y,YYY The year as a 4-digit number with a comma after the first digit.

Q The quarter of the year as 1-digit number (with values 1, 2, 3, or 4).

MM The month value as 2-digit number (in the range 01-12).

MONTH The name of the month as a string of 9 characters (JANUARY" to
'DECEMBER).

MON The first 3 characters of the name of the month (in the range 'JAN' to
'DEC).

ww The week of year as a 2-digit number (in the range 01-52).

3-18

FairCom Corporation

ISQL Statements

Table 3-4: Date-Time Format Strings for the COLUMN Statement

Character Description

W The week of month as a 1-digit number (in the range 1-5).

DDD The day of year as a 3-digit number (in the range 001-365).

DD The day of month as a 2-digit number (in the range 01-31).

D The day of week as a 1-digit number (in the range 1-7, 1 for Sunday and
7 for Saturday).

DAY The day of week as a 9 character string (in the range 'SUNDAY" to 'SAT-
URDAY .

DY The day of week as a 3 character string (in the range 'SUN' to 'SAT').

J The Julian day (number of days since DEC 31, 1899) as an 8 digit num-
ber.

TH When added to a format keyword that results in a number, this format
keyword ('TH') is replaced by the string 'ST', 'ND', 'RD' or 'TH' depending
on the last digit of the number.

AMPM The string 'AM' or 'PM' depending on whether time corresponds to fore-
noon or afternoon.

A.M.P.M. The string 'A.M." or 'P.M." depending on whether time corresponds to
forenoon or afternoon.

HH12 The hour value as a 2-digit number (in the range 00 to 11).

HHHH24 The hour value as a 2-digit number (in the range 00 to 23).

Ml The minute value as a 2-digit number (in the range 00 to 59).

SS The seconds value as a 2-digit number (in the range 00 to 59).

SSSSS The seconds from midnight as a 5-digit number (in the range 00000 to
86399).

MLS The milliseconds value as a 3-digit number (in the range 000 to 999).

Examples

The following examp

1SQL> table orders
COLNAME

order_id
customer_id
steel_type

les are based on a table, orders, with columns defined as follows:

NULL ? TYPE LENGTH
NOT NULL INT 4
INT 4
CHAR 20

FairCom Corporation

3-19

ISQL and Tools

order_info CHAR 200
order_weight INT 4
order_value INT 4
order_state CHAR 20

ISQL displays the order_info column, at 200 characters, with lots of blank space preceding the
values:

ISQL> select order_info from orders where order_value < 1000000
ORDER_INFO

Solid Rods 5 in. diameter

1 record selected

You can improve formatting by using the character format string to limit the width of the dis-
play:

I1SQL> column ORDER_INFO format '"A28" heading '"Details"
I1SQL> select order_info from orders where order_value < 1000000;
ORDER_INFO
Solid Rods 5 in. diameter
1 record selected
ISQL> -- l1llustrate some options with numeric format strings.
I1SQL> -- No column formatting:
I1SQL> select order_value from orders where order_value < 1000000;
ORDER_VALUE
110000
1 record selected
ISQL> -- Format to display as money, and use different heading:
I1SQL> column order_value format ""$999,999,999.99" heading "Amount"
ISQL> select order_value from orders where order_value < 1000000;
AMOUNT
$110,000.00
1 record selected

The following examples use the single-value system table, syscalctable, and the sysdate scalar
function, to illustrate some date-time formatting. The sysdate function returns today's date.

ISQL> select sysdate from syscalctable; -- No formatting
SYSDATE

05/07/1998

I1SQL> column sysdate format "Day"

I1SQL> select sysdate from syscalctable

SYSDATE

3-20

FairCom Corporation

ISQL Statements

3.7.5

Syntax

Thursday
1 record selected
I1SQL> column sysdate format "Month"
I1SQL> select sysdate from syscalctable
SYSDATE
May
1 record selected
I1SQL> column sysdate format "DDth"
I1SQL> select sysdate from syscalctable
SYSDATE
7th
1 record selected

Note: If the select-list of a query includes column titles, they override formatting specified in
COLUMN statements for those columns. The following example illustrates this behav-

10r.
I1SQL> select fld from syscalctable; -- No formatting
FLD
100
1 record selected
I1SQL> column fld heading “‘column title” -- Specify heading in COLUMN statement

I1SQL> select fld from syscalctable;
COLUMN TITLE
100
1 record selected
I1SQL> select fld "new title™ from syscalctable; -- Specify title in select list
NEW TITLE
100
1 record selected

COMPUTE

COMPUTE
[{ AVG | MAX | MIN] SUM | COUNT }
OF column_name
IN variable_name
ON break_spec] ;
break_spec::
{ column_name | ROW | PAGE | REPORT }

Description

Performs aggregate function computations on column values for the specified set of rows, and
assigns the results to a variable. DISPLAY statements can then refer to the variable to display
its value.

FairCom Corporation 3-21

ISQL and Tools

COMPUTE statements have no effect until you issue a BREAK statement with the same
break_spec.

Issuing the COMPUTE statement without any arguments displays the currently-set COM-
PUTE specifications, if any.

Arguments

AVG | MAX | MIN | SUM | COUNT

The function to apply to values of column_name. The functions AVG, MAX, MIN, and SUM
can be used only when the column is numeric. The function COUNT can be used for any col-
umn type.

column_name
The column whose value is to be computed. The column specified in column_name must also
be included in the select list of the query. If column_name is not also included in the select list,
it has no effect.

variable_name

Specifies the name of the variable where the computed value is stored. ISQL issues an implicit
DEFINE statement for variable_name and assigns the variable a value of zero. During query
processing, the value of variable_name changes as ISQL encounters the specified breaks.

break_spec

Specifies the set of rows after which ISQL processes the COMPUTE statement. A COMPUTE
statement has no effect until you issue a corresponding BREAK statement. See the description
of the BREAK statement in Section 3.7.2 "BREAK" on page 3-13 for details.

Examples

The following example computes the number of items ordered by each customer.

I1SQL> break on customer_name

ISQL> display col 5 "Number of orders placed by'", customer_name, "=", n_ord on
customer_name

I1SQL> compute count of order_id in n_ord on customer_nhame;

ISQL> select c.customer_name, o.order_id from customers c, orders o

where o.customer_id = c.customer_id;

CUSTOMER_NAME ORDER_ID
Sports Cars Inc. 1
Sports Cars Inc. 2

Number of orders placed by Sports Cars Inc.
= 2
Mighty Bulldozer Inc. 3
Mighty Bulldozer Inc. 4
Number of orders placed by Mighty Bulldozer Inc.
= 2

3-22

FairCom Corporation

ISQL Statements

3.7.6 DEFINE
Syntax
DEFINE [variable_name = value] ;
Description
The DEFINE statement defines a variable and assigns an ASCII string value to it. When you
refer to the defined variable in DISPLAY statements, ISQL prints the value.
The DEFINE statement is useful if you have scripts with many DISPLAY statements. You can
change a single DEFINE statement to change the value in all of the DISPLAY statements that
refer to the variable.
Issuing the DEFINE statement without any arguments displays any currently-defined vari-
ables, including those defined through the COMPUTE statement.
Arguments
variable_name
Specifies the name by which the variable can be referred to.
value
The ASCII string that is assigned to the variable. Enclose value in quotes if it contains any non-
numeric values.
Example
The following example defines a variable called nestate and assigns the value NH to it.
ISQL> DEFINE nestate = "NH" ;
3.7.7 DISPLAY
Syntax
DISPLAY { [col_position] display value } [, .. 1 ON break_spec ;
col_position::
{ COL column_number | @ column_name }
display_value::
{ "text string" | variable | column_name }
break_spec::
{ column_name | ROW | PAGE | REPORT }
Description

The DISPLAY statement displays the specified text, variable value, and/or column value after
the set of rows specified by break_spec. DISPLAY statements have no effect until you issue a
BREAK statement with the same break_spec.

FairCom Corporation 3-23

ISQL and Tools

Issuing the DISPLAY statement without any arguments displays the currently-set DISPLAY
specifications, if any.

Arguments

col_position
An optional argument that specifies the horizontal positioning of the associated display value.
There are two forms for the argument:

COL column_number Directly specifies the column position of the display value as an
integer(1 specifies column 1, 2 specifies column 2, and so on.).

@column_name Names a column in the select list of the SQL query. ISQL aligns
the display value with the specified column.

If the DISPLAY statement omits col_position, ISQL positions the display value at column 1.

display_value
The value to display when the associated break occurs:

"text string" If the display value is a text string, ISQL simply displays the text string.

variable If the display value is a variable, ISQL displays the value of the variable
when the associated break occurs. The variable argument refers to a vari-
able named in a COMPUTE or DEFINE statement that executes before
the query. If variable is undefined, ISQL ignores it.

column_name If the display value is a column name, ISQL displays the value of the col-
umn when the associated break occurs. The column specified in
column_name must also be included in the select list of the query. If
column_name is not also included in the select list, it has no effect. If a
COLUMN statement specifies a format for the same column, the format-
ting also affects the DISPLAY statement.

break_spec

Specifies the set of rows after which ISQL processes the DISPLAY statement. A DISPLAY
statement has no effect until you issue a corresponding BREAK statement. See the description
of the BREAK statement in Section 3.7.2 "BREAK" on page 3-13 for details of break specifi-
cations.

Examples

The following set of examples compute the number of orders placed by each customer and dis-
plays the message Number of orders placed by, followed by the customer name and the count
of orders.

I1SQL> break on customer_name

3-24

FairCom Corporation

ISQL Statements

I1SQL> display col 5 "Number of orders placed by", customer_name, =", n_ord on
customer_name

I1SQL> compute count of order_id in n_ord on customer_name;
I1SQL> select c.customer_name, o.order_id from customers c, orders o
where o.customer_id = c.customer_id;

CUSTOMER_NAME ORDER_ID
Sports Cars Inc. 1
Sports Cars Inc. 2
Number of orders placed by Sports Cars Inc.
= 2
Mighty Bulldozer Inc. 3
Mighty Bulldozer Inc. 4
Number of orders placed by Mighty Bulldozer Inc.
= 2
Ship Shapers Inc. 5
Ship Shapers Inc. 6
Ship Shapers Inc. 7
Number of orders placed by Ship Shapers Inc.
= 3
Tower Construction Inc. 8
Tower Construction Inc. 9
Tower Construction Inc. 10
Number of orders placed by Tower Construction Inc.
= 3

If the select-list of a query includes column titles, they override DISPLAY statements that
include variable or column_name display values for those columns:

I1SQL> display col 5 "test display. Sum of fld is", tmp on fld;
1SQL> compute sum of fld in tmp on fid;
1SQL> break on fld

I1SQL> select fld from syscalctable; -- This works:
FLD
100
test display. Sum of fld is 100
1 record selected
I1SQL> select fld "column title" from syscalctable; -- DISPLAY is disabled:

COLUMN TITLE

100
1 record selected
3.7.8 EDIT
Syntax
E[DIT] [stmt_num];
Description

The EDIT statement invokes a text editor to edit the specified statement from the statement his-
tory buffer. If the statement number is not specified, the last statement in the history buffer is

FairCom Corporation 3-25

ISQL and Tools

edited. When you exit the editor, ISQL writes the buffer contents as the last statement in the
history buffer.

By default, ISQL invokes the vi editor on UNIX and the MS-DOS editor on NT. You can
change the default by setting the EDITOR environment variable:

* On UNIX, set the environment variable at the operating system command level:
setenv EDITOR /usr/local/bin/gmacs

» On NT, set the environment variable in the initialization file DHSQL.INI in the windows
directory:
EDITOR = c:\msoffice\winword.exe

Examples

The following example uses the ! (shell) command to show the currently-set value of the EDI-
TOR environment variable in the UNIX environment (it shows that it is set to invoke the GNU
emacs editor). Then, the example uses the EDIT command to read in the fifth statement in the
history buffer into an editing buffer.

ISQL> ! printenv EDITOR

/usr/local/bin/gmacs

1SQL> EDIT 5;

The following example edits the last statement in the history buffer:
ISQL> select * from systable; -- bad table name!

*

error(-20005): Table/View/Synonym not found

ISQL> EDIT -- invoke an editor to correct the error
ISQL> list —- corrected statement is now the current statement:
select * from systables
ISQL> run -- run the corrected statement
3.7.9 EXIT or QUIT
Syntax
EXIT
Description

The EXIT statement terminates the ISQL session.

Related Statements

QUIT and EXIT are synonymous. There is no difference in their effect.

3-26

FairCom Corporation

ISQL Statements

3.710 GET

Syntax
GLET] filename;

Description

The GET statement reads the first SQL statement stored in the specified script file.

Arguments

filename
The name of the script file. ISQL reads the file until it encounters a semicolon (;) statement
terminator. It appends the statement to the history buffer as the most-recent statement.

Notes
« Execute the statement read by GET using the RUN statement.

e The GET, START, and @ (execute) statements are similar in that they all read SQL script
files. Both GET and START read an SQL script file and append the first statement in it to
the history buffer. However, the START statement also executes the script statement and
accepts arguments that it substitutes for parameter references in the script statement. The @
(execute) statement, on the other hand, executes all the statements in an SQL script file but
does not add any of the statements to the history buffer. The @ statement does not support
argument substitution.

Example

Once you refine a query to return the results you need, you can store it in an SQL script file.
For example, the file query.sql contains a complex query that joins several tables in a sample
database.

Use the GET and RUN statements to read and execute the first statement in query.sql:

1SQL> GET query.sql

SELECT customers.customer_name,
orders.order_info,
orders.order_state,
lot_staging.lot_location,
lot_staging.start_date

FROM customers,
orders,
lots,
lot_staging
WHERE (customers.customer_id = orders.customer_id) and

(lots.lot_id = lot_staging.lot_id) and

FairCom Corporation 3-27

ISQL and Tools

(orders.order_id = lots.order_id) and
((customers.customer_name = "Ship Shapers Inc.") AND
(lot_staging.start_date is not NULL) AND
(lot_staging.end_date is NULL))
1SQL> RUN
SELECT customers.customer_name,
orders.order_info,
orders.order_state,
lot_staging.lot_location,
lot_staging.start_date
FROM customers,
orders,
lots,
lot_staging
WHERE (customers.customer_id = orders.customer_id) and
(lots.lot_id = lot_staging.lot_id) and
(orders.order_id = lots.order_id) and
((customers.customer_name = "Ship Shapers Inc.") AND
(lot_staging.start_date is not NULL) AND
(lot_staging.end_date is NULL))

3-28 FairCom Corporation

ISQL Statements

CUSTOMER_NAME ORDER_INFO
ORDER_STATE LOT_LOCATION START_DATE

Ship Shapers Inc. 1 Beams Size 10
Processing Hot Rolling 12/26/1994

1 record selected

3.7.11 HELP

Syntax

HE[LP] {COMMANDS|CLAUSES};

HE[LP] ;
Description

The HELP statement displays the help information for the specified statement or clause.
Notes

 HELP COMMANDS displays a list of statements for which help text is available.

« HELP CLAUSES display a list of clauses for which help text is available.

« HELP statement with no clauses display the help text for the HELP statement.
Example

The following HELP statement will give a brief description of the SELECT statement.
ISQL> HELP SELECT;

3.7.12 HISTORY

Syntax
HI[STORY];

FairCom Corporation 3-29

ISQL and Tools

Description

The HISTORY statement lists the statements in the statement history buffer, along with an
identifying number.

Notes

» ISQL maintains a list of statements typed by the user in the statement history buffer. The
SET HISTORY statement sets the size of the history buffer.

» The statements LIST, EDIT, HISTORY, and RUN are not added to the history buffer.

» Use HISTORY to obtain the statement number for a particular statement in the history
buffer that you want to execute. Then, use the RUN statement with the statement number as
an argument to execute that statement. Or, use LIST statement with the statement number
as an argument to make the statement the current statement, which can then be executed
using RUN without an argument.

Example

The following example illustrates usage of the HISTORY statement.

ISQL> HISTORY -- Display statements in the history buffer
1 start start_ex.sql Ship
2 SELECT customer_name FROM customers
WHERE customer_name LIKE “Ship%*®
3 select tbl from systables where tbltype = *T*
ISQL> RUN 2 -- Run the query corresponding to statement 2
SELECT customer_name FROM customers
WHERE customer_name LIKE “Ship%*®
CUSTOMER_NAME
Ship Shapers Inc.
1 record selected
ISQL> HI -- In addition to executing, statement 2 is now the current statement
1 start start_ex.sqgl Ship
2 SELECT customer_name FROM customers
WHERE customer_name LIKE “Ship%*®
3 select tbl from systables where tbltype = *T*
4 SELECT customer_name FROM customers
WHERE customer_name LIKE “Ship%*®
ISQL> LIST 3 — Display statement 3 and copy it to the end of the history list
select tbl from systables where tbltype = *T*
ISQL> history -- Statement 3 is now also the current statement
1 start start_ex.sqgl Ship
2 SELECT customer_name FROM customers
WHERE customer_name LIKE “Ship%*®

3 select tbl from systables where tbltype = *T*
4 SELECT customer_name FROM customers

WHERE customer_name LIKE “Ship%*®
5 select tbl from systables where tbltype = *T*

3-30 FairCom Corporation

ISQL Statements

3.713 HOST or SHor!

Syntax

{ HOST | SH | ' } [host_command];

Description

The HOST statement executes a host operating system command without terminating the cur-
rent ISQL session.

Arguments

HOST |SH |!
Synonyms for directing ISQL to execute an operating system command.

host_command
The operating system command to execute. If host_command is not specified, ISQL spawns a

subshell from which you can issue multiple operating system commands. Use the exit com-
mand to return to the ISQL> prompt.

Example

Consider a file in the local directory named query.sql. It contains a complex query that joins
several tables in a sample database. From within ISQL You can display the contents of the file
with the ISQL ! (shell) statement:

ISQL> -- Check the syntax for the UNIX "more® command:
1SQL> host more

Usage: more [-dfIn] [+linenum | +/pattern] namel name2 ...
ISQL> -- Use "more” to display the query.sql script file:
ISQL> ! more query.sqgl

SELECT customers.customer_name,

FROM

orders.order_info,
orders.order_state,
lot_staging.lot_location,
lot_staging.start_date
customers,

orders,

lots,

lot_staging

WHERE(customers.customer_id = orders.customer_id) and

(lots.lot_id = lot_staging.lot_id) and

(orders.order_id = lots.order_id) and

((customers.customer_name = "Ship Shapers Inc.®) AND
(lot_staging.start_date is not NULL) AND

(lot_staging.end_date is NULL))

I1SQL> -- Spawn a subshell process to issue multiple 0S commands:

ISQL> sh

FairCom Corporation 3-31

ISQL and Tools

3.7.14 LIST
Syntax
LLIST] [stmt_num];
Description
The LIST statement displays the statement with the specified statement number from the state-
ment history buffer and makes it the current statement by adding it to the end of the history list.
If LIST omits stmt_num, it displays the last statement in the history buffer.
Example
The following example uses the LIST statement to display the 5th statement in the history
buffer (select customer_name from customers) and copy it to the end of the history list. It then
executes the now-current statement using the RUN statement:
I1SQL> history
1 title
2 title top "fred" skip 5
3 title
4 help title
5 select customer_name from customers
6 display "Display on page break!"
7 display "Test page break display'" on page
8 select customer_name from customers
9 select customer_name from customers
10 clear title
ISQL> list 5
select customer_name from customers
I1SQL> run
select customer_name from customers
CUSTOMER_NAME
Sports Cars Inc.
Mighty Bulldozer Inc.
Ship Shapers Inc.
Tower Construction Inc.
Chemical Construction Inc.
Aerospace Enterprises Inc.
Medical Enterprises Inc.
Rail Builders Inc.
Luxury Cars Inc.
Office Furniture Inc.
10 records selected
1SQL>
3-32 FairCom Corporation

ISQL Statements

3.7.15 QUIT or EXIT

Syntax
QLUIT]

Description

The QUIT statement terminates the current ISQL session.

Related Statements

QUIT and EXIT are synonymous. There is no difference in their effect.
3.7.16 RUN

Syntax
RLUN] [stmt_num];

Description

The RUN statement executes the statement with the specified statement number from the state-
ment history buffer and makes it the current statement by adding it to the end of the history list.

If RUN omits stmt_num, it runs the current statement.

Example

The following example runs the fifth statement in the history buffer.

1SQL> HISTORY

title

title top "TEST TITLE" skip 5
title

help title

select customer_name from customers
display "Display on page break!"
display ""Test page break display'™ on page
1SQL> RUN 5

select customer_name from customers
CUSTOMER_NAME

Sports Cars Inc.

Mighty Bulldozer Inc.

Ship Shapers Inc.

Tower Construction Inc.

Chemical Construction Inc.

Aerospace Enterprises Inc.

Medical Enterprises Inc.

Rail Builders Inc.

Luxury Cars Inc.

~NoO ok~ WNPRE

FairCom Corporation 3-33

ISQL and Tools

Office Furniture Inc.
10 records selected
1SQL>

3.7.17 SAVE
Syntax
S[AVE] filename;
Description
The SAVE statement saves the last statement in the history buffer in filename. The GET and
START statements can then be used to read and execute the statement from a file.
If filename does not exist, ISQL creates it. If filename does exist, ISQL overwrites it with the
contents of the last statement in the history buffer.
Example
ISQL> ! more test.SQL
test.sql: No such file or directory
ISQL> select customer_name, customer_city from customers;
CUSTOMER_NAME CUSTOMER_CITY
Sports Cars Inc. Sewickley
Mighty Bulldozer Inc. Baldwin Park
Ship Shapers Inc. South Miami
Tower Construction Inc. Munising
Chemical Construction Inc. Joplin
Aerospace Enterprises Inc. Scottsdale
Medical Enterprises Inc. Denver
Rail Builders Inc. Claymont
ISQL> save test.sql
ISQL> I Is -al test.sql
-rw-r--r-- 1 ADMIN 51 May 1 18:21 test.sql
ISQL> I more test.sql
select customer_name, customer_city from customers
1SQL>
3.7.18 SET
Syntax
SET set_option ;
set_option ::
HISTORY number_statements
| PAGESIZE number_lines
| LINESIZE number_characters
3-34 FairCom Corporation

ISQL Statements

COMMAND LINES number_lines

REPORT { ON | OFF }

ECHO { ON | OFF }

PAUSE { ON | OFF }

TIME { ON | OFF }

DISPLAY COST { ON | OFF }

AUTOCOMMIT { ON | OFF }

TRANSACTION ISOLATION LEVEL isolation_level
CONNECTION { database_name | DEFAULT }

Description

The SET statement changes various characteristics of an interactive SQL session.

Arguments

HISTORY
Sets the number of statements that ISQL will store in the history buffer. The default is 1 state-
ment and the maximum is 250 statements.

PAGESIZE number_lines

Sets the number of lines per page. The default is 24 lines. After each number_lines lines, ISQL
executes any DISPLAY ON PAGE statements in effect and re-displays column headings. The
PAGESIZE setting affects both standard output and the file opened through the SPOOL state-
ment.

LINESIZE
Sets the number of characters per line. The default is 80 characters. The LINESIZE setting
affects both standard output and the file opened through the SPOOL statement.

COMMAND LINES
Sets the number of lines to be displayed. The default is 1.

REPORT ON | OFF

SET REPORT ON copies only the results of SQL statements to the file opened by the SPOOL
filename ON statement. SET REPORT OFF copies both the SQL statement and the results to
the file. SET REPORT OFF is the default.

ECHO ON | OFF

SET ECHO ON displays SQL statements as well as results to standard output. SET ECHO
OFF suppresses the display of SQL statements, so that only results are displayed. SET ECHO
ON is the default.

PAUSE ON | OFF
SET PAUSE ON prompts the user after displaying one page of results on the screen. SET
PAUSE ON is the default.

TIME ON | OFF
SET TIME ON displays the time taken for executing a database query statement. SET TIME
OFF disables the display and is the default.

FairCom Corporation 3-35

ISQL and Tools

Notes

DISPLAY COST ON | OFF
SET DISPLAY COST ON displays the values the c-treeSQL optimizer uses to calculate the
least-costly query strategy for a particular SQL statement.

The UPDATE STATISTICS statement updates the values displayed by SET DISPLAY COST
ON. SET DISPLAY COST OFF suppresses the display and is the default.

AUTOCOMMIT ON | OFF

SET AUTOCOMMIT ON commits changes and starts a new transaction immediately after
each SQL statement is executed. SET AUTOCOMMIT OFF is the default. SET AUTOCOM-
MIT OFF requires that you end transactions explicitly witha COMMIT or ROLLBACK
WORK statement.

TRANSACTION ISOLATION LEVEL isolation_level

Specifies the isolation level. Isolation levels specify the degree to which one transaction can
modify data or database objects being used by another concurrent transaction. The default is 3.
See the SET TRANSACTION ISOLATION LEVEL statement in the c-treeSQL Reference
Manual for more information on isolation levels.

CONNECTION { database_name | DEFAULT}
Sets the active connection to database_name or to the default connection. See the description
of the CONNECT statement in the c-treeSQL Reference Manual for details on connections.

SET REPORT and SET ECHO are similar:

e SET REPORT affects the SPOOL file only, and ON suppresses statement display
e SET ECHO affects standard output only, and OFF suppresses statement display
Other statements control other characteristics of an interactive SQL session:

» The editor invoked by the EDIT statement is controlled by the value of the environment
variable EDITOR.

» The file to which interactive SQL writes output is controlled by the SPOOL filename ON
statement.

Examples

I1SQL> -- Illustrate PAGESIZE

I1SQL> DISPLAY "Here"s a page break!"™ ON PAGE
I1SQL> SET PAGESIZE 4

1SQL> BREAK ON PAGE;

I1SQL> SELECT TBL FROM SYSTABLES;

TBL

sys_chk_constrs

Here"s a page break!
TBL

3-36

FairCom Corporation

ISQL Statements

sys_chkcol_usage
sys_keycol_usage
Here"s a page break!

I1SQL> SET DISPLAY COST ON
ISQL> -- Select from the one-record SYSCALCTABLE table:
1SQL> SELECT * FROM SYSCALCTABLE;

Estimated Cost Values :

COST : 8080
CARDINALITY : 200
TREE SIZE : 3072
FLD
100

3.7.19 SHOW

Syntax

SHOW [show_option | SPOOL] ;
show_option ::

HISTORY

PAGESIZE

LINESIZE

COMMAND LINES

REPORT

ECHO

PAUSE

TIME

DISPLAY COST
AUTOCOMMIT
TRANSACTION ISOLATION LEVEL
CONNECTION

Description

The SHOW statement displays the values of the various settings controlled by corresponding
SET and SPOOL statements. If the SHOW statement omits show_option, it displays all the
ISQL settings currently in effect.

See Section 3.7.18 "SET" on page 3-34, Section 3.7.20 "SPOOL" on page 3-38, and Section
3.7.8 "EDIT" on page 3-25 for details on the settings displayed by the SHOW statement.

Example

1SQL> SHOW
ISQL ENVIRONMENT

FairCom Corporation 3-37

ISQL and Tools

EDITOR eeeeeeeeeeeeeeeee T Vi
HISTORY buffer size : 50 PAUSE : ON
COMMAND LINES : 10 TIMEing command execution.. : OFF
SPOOLING v e eeeeeeeeeaaaan T ON LINESIZE ..viviiiiiiiaannnn. 78
REPORTing Facility D ON PAGESIZE ..vuuiiiiimmaannnn. 72
Spool File spool_file
AUTOCOMMIT ... : OFF ECHO commands : ON
TRANSACTION ISOLATION LEVEL. : O (Snapshot)
DATABASE CONNECTIONS
DATABASE CONNECTION NAME IS DEFAULT ? IS CURRENT ?
salesdb conn_1 No Yes
3.7.20 SPOOL
Syntax
SPOOL filename [ON] ;
SPOOL OFF ;
SPOOL OUT ;
Description
The SPOOL statement writes output from interactive SQL statements to the specified file.
Arguments
filename ON
Opens the file specified by filename and writes the displayed output into that file. The filename
cannot include punctuation marks such as a period (.) or comma (,)
OFF
Closes the file opened by the SPOOL ON statement.
ouT
Closes the file opened by the SPOOL ON statement and prints the file. The SPOOL OUT
statement passes the file to the system utility statement pr and the output is piped to Ipr.
3-38 FairCom Corporation

ISQL Statements

Example

To record the displayed output into the file called STK, enter:
ISQL> SPOOL STK ON ;

1SQL> SELECT * FROM customer ;

I1SQL> SPOOL OFF ;

3.7.21 START

Syntax
ST[ART] filename [argument] [--..] ;

Description
The START statement executes the first SQL statement stored in the specified script file.

Arguments

filename
The name of the script file. ISQL reads the file until it encounters a semicolon (;) statement
terminator.

argument ...

ISQL substitutes the value of argument for parameter references in the script. Parameter refer-
ences in a script are of the form &n, where n is an integer. ISQL replaces all occurrences of &1
in the script with the first argument value, all occurrences of &2 with the second argument
value, and so on. The value of argument must not contain spaces or other special characters.

Notes

« In addition to executing the first statement in the script file, the START statement appends
the statement (after any argument substitution) to the history buffer.

» The GET, START, and @ (execute) statements are similar in that they all read SQL script
files. Both GET and START read an SQL script file and append the first statement in it to
the history buffer. However, the START statement also executes the script statement and
accepts arguments that it substitutes for parameter references in the script statement. The @
(execute) statement, on the other hand, executes all the statements in an SQL script file but
does not add any of the statements to the history buffer. The @ statement does not support
argument substitution.

Example

I1SQL> -- Nothing in history buffer:
1SQL> history
History queue is empty.

FairCom Corporation 3-39

ISQL and Tools

ISQL> -- Display a script file with the ! shell statement. The script®"s SQL
ISQL> -- statement uses the LIKE predicate to retrieve customer names

ISQL> -- beginning with the string passed as an argument in a START statement:
ISQL> I more start_ex.sql
SELECT customer_name FROM customers
WHERE customer_name LIKE "&1%";
ISQL> -- Use the START statement to execute the SQL statement in the script
ISQL> -- start_ex.sql. Supply the value "Ship" as a substitution argument:
ISQL> START start_ex.sql Ship
CUSTOMER_NAME
Ship Shapers Inc.
1 record selected
ISQL> -- ISQL puts the script statement, after argument substitution,
ISQL> -- in the history buffer:
I1SQL> history

1 I more start_ex.sql

3 START start_ex.sql Ship

4 SELECT customer_name FROM customers

WHERE customer_name LIKE “Ship%”

3.7.22 TABLE

Syntax
T[ABLE] [tablename] ;
Description

The TABLE statement with no argument displays a list of all the user tables in the database that
are owned by the current user.

With the tablename argument, the TABLE statement displays a brief description of the col-
umns in the specified table.

Examples

You can use the TABLE statement to see the structure of system tables. Unless you are logged
in as the c-treeSQL database administrator (the user ADMIN, by default), you need to qualify
the system table name with the administrator user name, as in the following example:

I1SQL> table ADMIN.systables

COLNAME NULL ? TYPE LENGTH
id NOT NULL INT 4
tbl NOT NULL VARCHAR 32
creator NOT NULL VARCHAR 32
owner NOT NULL VARCHAR 32
tbltype NOT NULL VARCHAR 1
tblpctfree NOT NULL INT 4
segid NOT NULL INT 4
has_pcnstrs NOT NULL VARCHAR 1
has_fcnstrs NOT NULL VARCHAR 1

3-40 FairCom Corporation

ISQL Statements

has_ccnstrs NOT NULL
has_ucnstrs NOT NULL
tbl_status NOT NULL
rssid NOT NULL

VARCHAR
VARCHAR
VARCHAR
INT

e

4

The following example uses the table command to detail the structure of the tables used in

examples throughout this chapter.

ISQL> table - List the sample tables
TABLENAME

customers

lot_staging

lots

orders

quality

samples

1SQL> table customers

COLNAME NULL ?
customer_id NOT NULL
customer_name

customer_street

customer_city

customer_state

customer_zip

1SQL> table orders

COLNAME NULL ?
order_id NOT NULL
customer_id

steel_type

order_info

order_weight

order_value

order_state

1SQL> table lots

COLNAME NULL ?
lot_id NOT NULL
order_id NOT NULL
lot_units

lot_info

I1SQL> table lot_staging

COLNAME NULL ?
lot_id

lot_location

start_date

end_date

issues

I1SQL> table quality

COLNAME NULL ?

TYPE
INT

CHAR
CHAR
CHAR
CHAR
CHAR

TYPE
INT
INT
CHAR
CHAR
INT
INT
CHAR

TYPE
INT
INT
INT
CHAR

TYPE
INT

CHAR
DATE
DATE
CHAR

TYPE

LENGTH

100

10
5

LENGTH

200

LENGTH

FairCom Corporation

3-41

ISQL and Tools

lot_id NOT NULL INT 4
purity DOUBLE 8
p_deviation DOUBLE 8
strength DOUBLE 8
s_deviation DOUBLE 8
comments CHAR 200
I1SQL> table samples

COLNAME NULL ? TYPE LENGTH
lot_id INT 4
samples INT 4
comments CHAR 200
1SQL>

3.7.23 TITLE

Syntax
TITLE [
[TOP | BOTTOM]
[[LEFT | CENTER | RIGHT J coLn] " text " 1 [.. 1
[SKIP n]
1:
Description
The TITLE statement specifies text that ISQL displays either before or after it processes a
query. TITLE with no arguments displays the titles currently set, if any.
Arguments

TOP | BOTTOM
Specifies whether the title is to be printed at the top or bottom of the page. The default is TOP.

LEFT | CENTER | RIGHT |COL n

Specifies the horizontal alignment of the title text: LEFT aligns the text to the left of the dis-
play; CENTER centers the text; RIGHT aligns the text to the right (with the right-most charac-
ter in the column specified by the SET LINESIZE statement). COL n displays the text starting
at the specified column (specifying COL 0 is the same as LEFT).

The default is LEFT.

"text "
The text to be displayed.

SKIP n
Skips the specified number of lines after a TOP title is printed and before a BOTTOM title is
printed. By default, ISQL does not skip any lines.

3-42 FairCom Corporation

ISQL Statements

Examples

The following example shows the effect of specifying a top title without a bottom title, then
both a top and bottom title.

1SQL> TITLE "fred"
I1SQL> select * from syscalctable;
fred

FLD

100
1 record selected
I1SQL> TITLE BOTTOM "flintstone"
I1SQL> select * from syscalctable;
fred

FLD

100
flintstone
1 record selected

The TITLE statement can specify separate positions for different text in the
same title:

1SQL> CLEAR TITLE

ISQL> TITLE TOP LEFT "Align on the left!"™ CENTER "Centered text'" RIGHT "Right
aligned text!"

I1SQL> select * from syscalctable;

Align on the left! Centered text Right aligned text!
FLD

100

1 record selected

FairCom Corporation 3-43

ISQL and Tools

3-44 FairCom Corporation

Chapter 4

Data Load Utility: dbload

4.1 INTRODUCTION

This chapter describes the c-treeSQL database load utility, dbload. This utility loads records
from an input data file into tables of a database. The format of the data file is specified by a
record description given in an input commands file to dbload.

Both dbload and dbdump commands files use DEFINE RECORD statements with similar syn-
tax to specify the format of loaded or exported data records. The commands file specifies the
data file, the format of data records, and the destination (or source) database columns and
tables for the data.

The dbload utility allows loading of variable- or fixed-length records, and lets the load opera-
tion specify the set of fields and records to be stored from an input file. Data files can use mul-
tiple-character record delimiters. dbload also allows control of other characteristics, such as
error handling and logging, in its command line. dbload generates a badfile that contains
records from the input file that failed to load in the database.

The following figure shows the dbload execution process.

FairCom Corporation 4-1

ISQL and Tools

Figure 4-1: dbload Execution Process

=N =N
Commands file dbload Log file
=D /v \ =D
Data files Bad file

c-treeSQL Engine

!

c-tree Plus
Database

4.2 PREREQUISITES FOR DBLOAD
Before running dbload, you need:
» Avalid, readable commands file
» INSERT privileges on the tables named in the commands file
4.3 DBLOAD COMMAND LINE SYNTAX
The dbload command does not directly specify an input file, but instead hames a commands
file that in turn specifies data input files. The dbload command accepts the commands file
name, the database name, and a list of command options.
Syntax
dbload -f commands_file [options] database_name
Options
-f commands_file
Specifies the file containing dbload commands.
4-2

FairCom Corporation

Data Load Utility: dbload

4.4

- logfile
Specifies the file into which the error logging is done. stderr is the default. dbload also writes
statistics to the file:

* Number of records read

* Number of records skipped
* Number of records loaded
* Number of records rejected

-b badfile
The file into which the bad rows that were not loaded, are written. By default badfile is put in
the current directory.

-c commit_frequency
Store the specified number of records before committing the transaction. The default frequency
is 100 records.

-e maxerrs
The maximum number of tolerable errors. The default number is 50 errors.

-s skipcount
Skip the specified number of rows in the first data file. If multiple files are specified, the rows
are skipped only in the first file. The default number is zero rows.

-m Maxrows
Stop storing rows at the specified number.

-n
Parse the commands file and display errors, if any, without doing the database load. If the pars-
ing is successful a message, No errors in the commands file. displays on stdout.

database
Name of the database.

DATA FILE FORMATS

Data files must be in one of the following record formats:
e Variable length records

« Fixed length records

For both these types of records an optional field delimiter and an optional record delimiter can
be specified. The field delimiter, when specified, should be a single character. By default,
comma is the field delimiter. The record delimiter can be specified in the commands file and it
can be more than one character. By default, the newline character, \n, is the record delimiter.

FairCom Corporation 4-3

ISQL and Tools

44.1 Variable Length Records
For variable length records, the fields in the data file can be of varying length. Unless the key-
word FIXED is used in the commands file, it is assumed that the dbload record processing will
be for variable length records.
4.4.2 Fixed Length Records
For fixed length records, the fields in the data file must be of fixed length. The length of the
record must be the same for all records and is specified in the commands file. In case of fixed
length records, the field and record delimiters are ignored. That is, the POSITION specification
must be such that the delimiters are ignored. For more information on the commands file refer
to Section 4.5 "The Commands File" on page 4-4.
The data files that contain fixed length records can either be ASCII or binary files.
4.5 THE COMMANDS FILE
The commands file specifies instructions for dbload to load the records into the table specified.
Thus the commands file defines what dbload will be performing for a particular loading pro-
cess.
There is no file naming convention for the commands file. For example, the commands file
name to load the orders table could be orders.cmd.
The commands file must contain the following parts:
» The DEFINE RECORD statement
* The FOR EACH statement
The syntax definition for the commands file is as shown:
dbload_commands:
define_record_statement
for_each_statement
The following is sample commands file showing load instructions.
DEFINE RECORD ord_rec AS
(ord_no, item_name, date, item qty) FIELD DELIMITER * * ;
FOR EACH RECORD ord_rec FROM ord_in
INSERT INTO ADMIN.orders (order_no, product, order_date, qty)
VALUES (ord_no, item_name, date, item_qty) ;
NEXT RECORD
The above commands specification instructs dbload to load records into the orders table. The
fields in the data file, ord_in, appear in the order listed in the DEFINE RECORD statement.
4-4 FairCom Corporation

Data Load Utility: dbload

45.1 The DEFINE RECORD Statement

The DEFINE RECORD statement is used to define the record that is to be loaded into the data-
base. It describes the data found in the data file. The following are the definitions that are made
known by the DEFINE RECORD statement:

Names the record to be loaded
Names the fields of the record to be loaded as found in the data file

Specifies whether the records in the data file are variable length records or fixed length
records

If fixed length records, specifies the position and data type of the field

The following is the syntax definition of the DEFINE RECORD statement:

DEFINE RECORD record_name
[OF FIXED LENGTH record_length
AS (
field_name position_specification type_specification, ...
)
1

AS (
field_name, ...

)

[FIELD DELIMITER delimiter_char]
[RECORD DELIMITER delimiter_string] ;

position_specification::
POSITION (start_position : end_position)

type_specification::
CHAR
| SHORT
| LONG
| FLOAT
| DOUBLE

The following are the variable descriptions of the DEFINE RECORD syntax:

record_name is the name used to refer to the records found in the data file.

record_length is the length of the fixed length record. This length should include the length
of field or record delimiters, if any.

field_name is the name used to refer to a field in the data file.

delimiter_char is the field delimiter and is a single character. It must be specified as a lit-
eral.

delimiter_string is the record delimiter and can be a single character or a string. It must be
specified as a literal.

FairCom Corporation 4-5

ISQL and Tools

» start_position is the position where the field starts. It must be an unsigned integer.
» end_position is the position where the field ends. It must be an unsigned integer.
The first position of each record is 1 and not 0.

If date and time types are to be inserted they can be specified as characters in the data file. If it
is a fixed length record then the type specification can be CHAR.

The following is an example of the DEFINE RECORD statement for fixed length records:

DEFINE RECORD rec_one OF FIXED LENGTH 20
AS (

fldl POSITION (1:4) SHORT,

fld2 POSITION (5:15) CHAR,
fId3 POSITION (16:20) CHAR

)
45.2 The FOR EACH Statement

The FOR EACH statement scans for each valid record in the data file and inserts the record

into the database. The syntax for the FOR EACH statement is shown below:

FOR EACH RECORD record_name FROM data_file_name, ...
INSERT INTO owner_name.target _table [(field_name, ...) 1]
VALUES (value, ...) ;

NEXT RECORD

The following are the variable descriptions of the FOR EACH statement:

» record_name is the record name that is specified in the DEFINE RECORD statement.

» data_file_name is the name of the input data file name.

e owner_name.target_table is the target table name identified along with the owner name of
the table. The target_table must already exist in the database and must have appropriate
permissions for inserting the records.

 field_name is the name of the field or column in the table.

» value is the value that must be inserted into the table.

The target_table can also be a synonym on another table with the INSERT access. The list of

values that are to be inserted must follow the VALUES keyword. The values that can be

inserted are:

* Name of the field in the input data file

» A constant (both numeric as well as character)

 NULL

The values specified in the VALUES list must correspond one to one with that in the target

table list. The list can be in any order compared to the list specified in the DEFINE RECORD

4-6 FairCom Corporation

Data Load Utility: dbload

statement. The following example shows the list interchanged with respect to the list in the
DEFINE RECORD statement.

DEFINE RECORD dept_rec AS
(dept_no, dept_name, location) FIELD DELIMITER * * ;

FOR EACH RECORD dept_rec FROM dept_in
INSERT INTO ADMIN.department (loc, no, name)
VALUES (location, dept_no, dept_name) ;

NEXT RECORD

Here the items no, name, and loc are interchanged in both the table list and the values list when
compared with the DEFINE RECORD list.

The keyword NEXT RECORD must be specified after the FOR EACH statement so that the
insert loop is terminated.

4.6 EXAMPLES

This section gives different types of examples for dbload, both for variable length records as
well as fixed length records. The data files can either be ASCII or binary files. If they are
binary files they must be in the fixed length record format.

The following example is the commands file to load records into the dept table. The input data
file name is deptrecs_in which is an ASCII file in the variable length record format.

Example 4-1: Sample dbload commands files

DEFINE RECORD dept_rec AS
(dept_no, dept_name, location) FIELD DELIMITER * * ;

FOR EACH RECORD dept_rec FROM deptrecs_in
INSERT INTO ADMIN.dept (no, name, loc)
VALUES (dept_no, dept_name, location) ;

NEXT RECORD

The following is the commands file to load records into the customer table. The input data file
is cust_in which is a binary file in the fixed length record format.

DEFINE RECORD cust_rec OF FIXED LENGTH 36
AS (
cust_no POSITION (1:4) LONG,
cust_name POSITION (5:15) CHAR,
cust_street POSITION (16:28) CHAR,
cust_city POSITION (29:34) CHAR,
cust_state POSITION (35:36) CHAR

)
FOR EACH RECORD cust_rec FROM cust_in

INSERT INTO ADMIN.customer (no, name, city, street, state)

VALUES (cust_no, cust_name, cust_city, cust_street, "CA") ;

NEXT RECORD

FairCom Corporation 4-7

ISQL and Tools

The following is the commands file to load records into the orders table. The input data file is
orders_in which is a binary file in the fixed length record format.

DEFINE RECORD orders_rec OF FIXED LENGTH 30

AS (
order_no POSITION (1:4) LONG,
order_date POSITION (6:16) CHAR,
product POSITION (18:25) CHAR,

gty POSITION (27:30) LONG

)

FOR EACH RECORD orders_rec FROM orders_in
INSERT INTO ADMIN.orders (no, date, prod, units)
VALUES (order_no, order_date, product, qty) ;

NEXT RECORD

4.7 DBLOAD ERRORS
This section discusses the different types of errors that can occur during the execution of
dbload.
There are three types of errors that can occur during the dbload execution process:
» Commands file errors
» dbload errors
e c-treeSQL database errors
The invalid records that are encountered during the processing of records from the data files
are flagged as bad records and are written to the badfile that is specified in the dbload com-
mand option. By default, the bad records are written to the file, badfile, in the current directory.
Any error in the input data file is messaged in the log file (if specified in the command line
option) along with the statistics. The following sections discuss the compilation errors and fatal
errors that could occur during the dbload process execution.

4.7.1 Compilation Errors
The compilation error messages are as follows:
Record name redefined.
The record name in the DEFINE RECORD statement was already defined. The record name
must be unique. dbload creates a new definition using the same name.
Error in record definition.
Too many fields in record definition.
The number of fields used in the record definition is more than the maximum allowed. Cur-
rently, the maximum number allowed is TPE_MAX_FIELDS in the header file sgl_lib.h.
Position not specified for fixed length record.

4-8 FairCom Corporation

Data Load Utility: dbload

4.7.2

Position for SHORT not specified correctly.
The size of the field (start position to end position) must be equal to the size of SHORT.

Position for LONG not specified correctly.
The size of the field (start position to end position) must be equal to the size of LONG.

Position for FLOAT not specified correctly.
The size of the field (start position to end position) must be equal to the size of FLOAT.

Position for DOUBLE not specified correctly.
The size of the field (start position to end position) must be equal to the size of DOUBLE.

Field delimiter must be a single character.
Invalid record delimiter.

Record not defined.
The FOR EACH statement is used with a record name that is not defined.

Mismatch in value list.
The number of values specified in the VALUES list does not match with that specified in the
DEFINE RECORD list.

Too many data files specified.
Currently, the maximum number of data files that can be specified in a FOR EACH statement
is 10.

Column not found in record definition.

Fatal Errors

The following are a list of nonrecoverable errors.
No memory

Table not found

No columns in the table

Column not found

Too many fields

More than the maximum number of fields allowed, is specified in the table list of the FOR
EACH statement.

Cannot open <bad file name>
Cannot open <data file name>
Cannot open log file <log file name>

The dbload execution process can also stop if the number of tolerable errors specified (-e
option) on the command option is exceeded. By default the number of tolerable errors is 50.

FairCom Corporation 4-9

ISQL and Tools

4-10 FairCom Corporation

Chapter 5

Data Unload Utility: dbdump

5.1 INTRODUCTION
This chapter describes the c-treeSQL database dump utility, dbdump.

dbdump writes the data in a database to a file. The format of the exported data is specified by
the record description given in an input command file to dbdump.

Both dbload and dbdump commands files use DEFINE RECORD statements with similar syn-
tax to specify the format of loaded or exported data records. The commands file specifies the

data file, the format of data records, and the destination (or source) database columns and
tables for the data.

The following figure shows the dbdump execution process.

Figure 5-1: dbdump Execution Process

dbdump —

Commands file i Data file

c-treeSQL Engine

!

c-tree Plus
Database

5.2 PREREQUISITES FOR DBDUMP
Before running dbdump, you need:

* Avalid, readable commands file

FairCom Corporation 5-1

ISQL and Tools

5.3

Syntax

Options

5.4

5.5

» SELECT privileges on the tables named in the commands file

DBDUMP COMMAND LINE SYNTAX

The dbdump command accepts the commands file name, the database name and a command
option.

dbdump -f commands_file [-n] database_name

-f commands_file
Specifies the file containing dbdump commands.

-n
Parse the commands file and display errors, if any, without exporting data. If the parsing is suc-
cessful a message, No errors in the commands file. displays on stdout.

database
Name of the database.

DATA FILE FORMATS

The output data file can be defined to be having one of the following record formats:
» \Variable length records

» Fixed length records

For both these types of records an optional field delimiter and an optional record delimiter can
be specified. The field delimiter, when specified, should be a single character. By default,
comma is the field delimiter. The record delimiter can be specified in the commands file and it
can be more than one character. By default, the newline character, \n, is the record delimiter.

THE COMMANDS FILE

The commands file specifies:

» Record format for the output file

» Query which is to be used for exporting data

There is no file naming convention for the commands file. For example, the commands file
name to load the orders table could be orders.cmd.

The commands file must contain the following parts:
» The DEFINE RECORD statement
» The FOR RECORD statement

5-2

FairCom Corporation

Data Unload Utility: dbdump

5.5.1

The syntax definition for the commands file is as shown:

dbdump_commands:
define_record_statement
for_record_statement

The following is sample commands file showing dump instructions.
DEFINE RECORD ord_rec AS
(ord_no, item_name, date, item_qty) FIELD DELIMITER " * ;

FOR RECORD ord_rec dump into ord_dat
USING SELECT order_no, product, order_date, qty
FROM items;

The DEFINE RECORD Statement

The DEFINE RECORD statement is used to define the record of the output file. The following
are the definitions that are made known by the DEFINE RECORD statement:

» Names the record of the output file
* Names the fields of the record

« Specifies whether the records in the data file are variable length records or fixed length
records

« If fixed length records, specifies the position and data type of the field

The following is the syntax definition of the DEFINE RECORD statement:

DEFINE RECORD record_name
[OF FIXED LENGTH record_length
AS (
field_name position_specification type_specification,

]

[FIELD DELIMITER delimiter_char]
[RECORD DELIMITER delimiter_string] ;

position_specification::
POSITION (start_position : end_position)

type_specification::
] CHAR
| SHORT
| LONG
| FLOAT
| DOUBLE

The following are the variable descriptions of the DEFINE RECORD syntax:

< record_name is the name used to refer to the records found in the data file.

FairCom Corporation 5-3

ISQL and Tools

5.5.2

5.6

» record_length is the length of the fixed length record. This length should include the length
of field or record delimiters, if any.

+ field_name is the name used to refer to a field in the data file.

» delimiter_char is the field delimiter and is a single character. delimiter_char must be spec-
ified as a literal.

» delimiter_string is the record delimiter and can be a single character or a string. It must be
specified as a literal.

» start_position is the position where the field starts. It must be an unsigned integer.
» end_position is the position where the field ends. It must be an unsigned integer.
The first position of each record is 1 and not 0.

If date, time, and timestamp types are to be dumped they can be specified as characters in the
commands file. If it is a fixed length record then the type specification can be CHAR.

The following is an example of the DEFINE RECORD statement for fixed length records:

DEFINE RECORD rec_one OF FIXED LENGTH 20
AS (
fldl POSITION (1:4) SHORT,
fld2 POSITION (5:15) CHAR,
f1d3 POSITION (16:20) CHAR
)

The FOR RECORD Statement

The FOR RECORD statement writes each valid record into the data file after selecting the
record from the database. The syntax for the FOR RECORD statement is shown below:

FOR RECORD record_name DUMP INTO data_file_name
USING select_statement ;

The following are the variable descriptions of the FOR RECORD statement:
» record_name specifies the same name used in the associated DEFINE RECORD statement.
» data_file_name is the name of the output data file name.

» select_statement is any valid SELECT statement.

EXAMPLES

This section gives different types of examples for dbdump, both for variable length records as
well as fixed length records. The data files can either be ASCII or binary files. If they are
binary files they must be in the fixed length record format.

The following is the commands file to write records from the dept table. The output data file
name is deptrecs_out which is an ASCII file in the variable length record format.

DEFINE RECORD dept_rec AS

5-4

FairCom Corporation

Data Unload Utility: dbdump

(no, name, loc) FIELD DELIMITER * * ;

FOR RECORD dept_rec DUMP INTO deptrecs_out
USING SELECT dept_no , dept_name , location
FROM ADMIN.dept ;

The following is the commands file to write records from the customer table. The output data
file is cust_out which is a binary file in the fixed length record format.

DEFINE RECORD cust_rec OF FIXED LENGTH 37
AS (
no POSITION (1:4) LONG,
name POSITION (5:15) CHAR,
street POSITION (16:28) CHAR,
city POSITION (29:34) CHAR,
state POSITION (35:36) CHAR
)

FOR RECORD cust_rec DUMP INTO cust_out
USING SELECT cust_no, cust_name, cust_city, cust _street, cust_state
FROM ADMIN.customer ;

The following is the commands file to dump records from the orders table. The output data file
is orders_out which is a binary file in the fixed length record format.

DEFINE RECORD orders_rec OF FIXED LENGTH 31
AS (
no POSITION (1:4) LONG,
date POSITION (6:16) CHAR,
prod POSITION (18:25) CHAR,
units POSITION (27:30) LONG
)

FOR RECORD orders_rec DUMP INTO orders_out
USING SELECT order_no, order_date, product, quantity
FROM ADMIN.orders ;

FairCom Corporation 5-5

ISQL and Tools

5-6

FairCom Corporation

Chapter 6

Schema Export Utility: dbschema

6.1 INTRODUCTION
This chapter describes the c-treeSQL utility, dbschema. This utility recreates specified data-
base elements and data.
Syntax
dbschema [-h] [-d] [-u user_name] [-a password] [-o outfile]
[-p [user_name.]procedure name [, --- 1 1]
[-t [user_name.]table_name [, ...] 1
[-T [user_name.]trigger name [, --- 11
[database_name]
Description
Generates SQL statements to recreate the specified database elements and data. If the
dbschema statement omits all arguments, it displays definitions for all elements (tables, views,
indexes, procedures, and triggers) for the default database on the screen.
Options

-h
Displays brief online help of dbschema syntax and options.

-d

In conjunction with the -t option, specifies that dbschema generates SQL INSERT statements
for data in the tables, in addition to CREATE statements. The output of the dbschema com-
mand invoked with the -d option can be directed to a command file and executed in interactive
SQL to duplicate and load table definitions.

-u user_name

The user name c-treeSQL uses to connect to the database. c-treeSQL verifies the user name
against a corresponding password before it connects to the database. If omitted, the default
value depends on the environment. (On UNIX, the value of the DH_USER environment vari-
able specifies the default user name. If DH_USER is not set, the value of the USER environ-
ment variable specifies the default user name.)

-a password
The password c-treeSQL uses to connect to the database. c-treeSQL verifies the password

FairCom Corporation 6-1

ISQL and Tools

against a corresponding user name before it connects to the database. If omitted, the default
value depends on the environment. (On UNIX, the value of the DH_PASSWD environment
variable specifies the default password.)

-0 outfile
Redirects the output to the specified file. The default is standard output.

-t [user_name.Jtable_name [, ...]

A comma-separated list of tables and views for which definitions should be generated. Specify
a list of specific tables, or use the % to generate definitions for all tables. (Note that, in the -t
option, the % character is not a true wildcard character. It substitutes for the entire table_name
argument and cannot be used for pattern matching within in a character string. This differs
from the behavior of the % in the -p and -T options.)

By default, dbschema generates definitions for tables owned by the current user. Use the
optional user_name qualifier to specify a table owned by a different user.

-p [user_name.]procedure_name [, ...]

A comma-separated list of stored procedures for which definitions should be generated. The
table names in the list can include the % and underscore (_) characters, which provide pattern-
matching semantics:

» The % matches zero or more characters in the procedure name
* The underscore (_) matches a single character in the procedure name

By default, dbschema generates definitions for procedures owned by the current user. Use the
optional user_name qualifier to specify a procedure owned by a different user.

-T [user_name.]trigger_name [, ...]

A comma-separated list of triggers for which definitions should be generated. The table names
in the list can include the % and underscore (_) characters, which provide pattern-matching
semantics:

» The % matches zero or more characters in the trigger name
» The underscore (_) character matches a single character in the trigger name

By default, dbschema generates definitions for triggers owned by the current user. Use the
optional user_name qualifier to specify a trigger owned by a different user.

database_name

The database for which dbschema should generate definitions. If you omit database_name,
dbschema uses the default database, if specified. (How you define the default database varies
between operating systems. On UNIX, the value of the DB_NAME environment variable
specifies the default database.)

6.2 EXAMPLES
The following example uses the -t option with a table list to generate the table definitions only
for the specified table in the rdsdb database:

6-2 FairCom Corporation

Schema Export Utility: dbschema

ADMIN@isis% dbschema -t dbpl,test_view rdsdb
DBSCHEMA

create table ADMIN.dbpl (
cl integer
) pctfree 20;

create view ADMIN.test_view (
fld

) as

select * from test_revokel ;

The following example uses the -p option with the % wildcard character to generate definitions
for all stored procedures whose names begin with the characters foo:

ADMIN@isis% dbschema -p foo% rdsdb

DBSCHEMA

CREATE PROCEDURE ADMIN.foobar(in sno character (5),
in sname character (20),
in sstatus smallint,
in scity character (15))

IMPORT

BEGIN
SQLIStatement stmt = new SQLIStatement(*insert into s values ("foo", "foo", 3, *
foo")"); stmt.execute();

END

The following example uses the -0 option to write all definitions for the rdsdb database to the
file schema.sql:

dbschema -o schema.sql rdsdb

DBSCHEMA

/vol1/v70_rel_jsp/bin/dhserver <SQL SERVER 29100> -d rdsdb -h 394408 sqlnw_ks
calling DDMJavaCache constructor

Creating loader object

loader object created

Server 29100 done: Fri Jun 19 17:06:35 1998

ADMIN@isis%

ADMIN@isis% more schema.sql

create table ADMIN.test_revokel (
fid integer
) pctfree 20;

FairCom Corporation 6-3

ISQL and Tools

6-4

FairCom Corporation

Al

A.2

Appendix A

Tutorial Source Code

INTRODUCTORY TUTORIAL

CREATE TABLE CUSTMAST (
cm_custnum VARCHAR(5),
cm_zip VARCHAR(10),
cm_state VARCHAR(3),
cm_rating VARCHAR(2),
cm_name VARCHAR(48),
cm_address VARCHAR(48),
cm_city VARCHAR(48));

COMMIT WORK;

INSERT INTO CUSTMAST VALUES ("1000", "92867°, "CA®", "1", "Bryan
Williams®, "2999 Regency®, "Orange®);

INSERT INTO CUSTMAST VALUES ("1001", "61434°, "CT", "1", "Michael
Jordan®, "13 Main®, “Harford");

INSERT INTO CUSTMAST VALUES ("1002%, "73677", "GA", "1%, "Joshua
Brown®, "4356 Cambridge®, “Atlanta®);

INSERT INTO CUSTMAST VALUES ("1003", "10034°, "MO®", "1", "Keyon
Dooling®, "19771 Park Avenue®, "Columbia®);

COMMIT WORK;
SELECT * FROM CUSTMAST;

DELETE FROM CUSTMAST;
COMMIT WORK;

SELECT * FROM CUSTMAST;

RELATIONAL MODEL AND INDEXING TUTORIAL

CREATE TABLE orderlist (
ol_orderdate DATE,
ol_promdate DATE,
ol_ordernum VARCHAR(7),
ol_custnum VARCHAR(4)):

CREATE INDEX custorder ON orderlist (ol_ordernum, ol_custnum);

CREATE TABLE orderitems (
oi_ordernum VARCHAR(7),
oi_segnumber SMALLINT,
oi_quantity SMALLINT,

FairCom Corporation A-1

ISQL and Tools

oi_itemnum VARCHAR(6));
CREATE INDEX orderitem ON orderitems (oi_ordernum, oi_segnumber);

CREATE TABLE itemmast (
im_weight INTEGER,
im_price MONEY,
im_itemnum VARCHAR(6),
im_desc VARCHAR(48));

CREATE INDEX itemnum ON itemmast (im_itemnum);

CREATE TABLE custmast (
cm_custnum VARCHAR(5),
cm_zip VARCHAR(10),
cm_state VARCHAR(3),
cm_rating VARCHAR(2),
cm_name VARCHAR(48),
cm_address VARCHAR(48),
cm_city VARCHAR(48));

CREATE INDEX custnum ON custmast (cm_custnum);
COMMIT WORK;

DELETE FROM ORDERLIST;
DELETE FROM ORDERITEMS;
DELETE FROM ITEMMAST;
DELETE FROM CUSTMAST;
COMMIT WORK;

INSERT INTO orderlist VALUES ("9/1/2002°, "9/5/2002°, "1, "1001%);
INSERT INTO orderlist VALUES ("9/2/2002°, "9/6/2002%, "2", "1002%);

INSERT INTO orderitems VALUES (17, 1, 2, "1%);
INSERT INTO orderitems VALUES (°1°, 2, 1, "2");
INSERT INTO orderitems VALUES ("1°, 3, 1, "3"):;
INSERT INTO orderitems VALUES (27, 1, 3, *37);

INSERT INTO itemmast VALUES (10, 19.95, "1%, "Hammer®);
INSERT INTO itemmast VALUES (3, 9.99, "27, “"Wrench®);
INSERT INTO itemmast VALUES (4, 16.59, *="3", "Saw");

INSERT INTO itemmast VALUES (1, 3.98, "47, "Pliers”);

INSERT INTO custmast VALUES ("1000°, "92867", "CA", "1%, "Bryan Williams", 2999
Regency®, "Orange®);

INSERT INTO custmast VALUES (°1001°, "61434°, *CT", "1%, “Michael Jordan®, "13
Main®, “Harford®);

INSERT INTO custmast VALUES (°1002°, "73677%, “"GA*, "1%, "Joshua Brown®", "4356
Cambridge®, “Atlanta®);

INSERT INTO custmast VALUES ("1003", "10034", *"MO", "1*, "Keyon Dooling","19771

Park Avenue®, "Columbia®);
COMMIT WORK;

COLUMN cm_name FORMAT *"A15" heading ""NAME"

A-2

FairCom Corporation

Tutorial Source Code

A.3

A4

COLUMN oi_quantity FORMAT "Al10" heading "QTY"
COLUMN im_price FORMAT "$99.99" heading "PRICE"
SELECT custmast.cm_name, orderitems.oi_quantity, itemmast.im_price

FROM custmast, orderitems, itemmast, orderlist
WHERE orderlist.ol_custnum = custmast.cm_custnum AND
orderlist.ol_ordernum = orderitems.oi_ordernum AND
orderitems.oi_itemnum = itemmast.im_itemnum

ORDER BY orderlist.ol_custnum;

LOCKING TUTORIAL

CREATE TABLE CUSTMAST (

cm_custnum VARCHAR(5),
cm_zip VARCHAR(10),
cm_state VARCHAR(3),
cm_rating VARCHAR(2),
cm_name VARCHAR(48),
cm_address VARCHAR(48),
cm_city VARCHAR(48));

COMMIT WORK;

DELETE FROM CUSTMAST;
COMMIT WORK;

INSERT INTO CUSTMAST VALUES ("10007°, "92867", "CA", "1", "Bryan

Williams®, "2999 Regency”, "Orange®);

INSERT INTO CUSTMAST VALUES ("1001°, "61434°, *CT", "17", "Michael

Jordan®, "13 Main®, “Harford");

INSERT INTO CUSTMAST VALUES ("1002°, "73677", "GA", "1", "Joshua

Brown®, "4356 Cambridge®, “Atlanta®);

INSERT INTO CUSTMAST VALUES ("1003", "10034°, *"MO", "1", "Keyon

Dooling®, "19771 Park Avenue®, "Columbia®);

COMMIT WORK;

UPDATE custmast SET cm_name = "KEYON DOOLING® where cm_custnum = "1003%;

TRANSACTION PROCESSING TUTORIAL

CREATE TABLE orderlist (

ol_orderdate DATE,
ol_promdate DATE,
ol_ordernum VARCHAR(7),
ol_custnum VARCHAR(4)):

CREATE TABLE orderitems (

oi_ordernum VARCHAR(7),
oi_segnumber SMALLINT,
oi_quantity SMALLINT,
oi_itemnum VARCHAR(6));

CREATE TABLE itemmast (

im_weight INTEGER,
im_price MONEY,
im_itemnum VARCHAR(6),

FairCom Corporation A-3

ISQL and Tools

im_desc VARCHAR(48));

CREATE TABLE custmast (
cm_custnum VARCHAR(5),
cm_zip VARCHAR(10),
cm_state VARCHAR(3),
cm_rating VARCHAR(2),
cm_name VARCHAR(48),
cm_address VARCHAR(48),
cm_city VARCHAR(48));

COMMIT WORK;

DELETE FROM orderlist;
DELETE FROM orderitems;
DELETE FROM itemmast;
DELETE FROM custmast;
COMMIT WORK;

INSERT INTO itemmast VALUES (10, 19.95, "1", “Hammer®);

INSERT INTO itemmast VALUES (3, 9.99, 27, “"Wrench®);
INSERT INTO itemmast VALUES (4, 16.59, 3", "Saw");
INSERT INTO itemmast VALUES (1, 3.98, <47, "Pliers");

INSERT INTO custmast VALUES ("1000°, "92867", "CA", "1, "Bryan

Williams®, "2999 Regency®, "Orange®);

INSERT INTO custmast VALUES ("1001%, "61434°, *CT", "1, “Michael

Jordan®, "13 Main®, "Harford®);

INSERT INTO custmast VALUES ("1002°, "73677, "GA", "1%, "Joshua

Brown®, "4356 Cambridge", "Atlanta®);

INSERT INTO custmast VALUES ("1003", "10034°, "MO®", "1%, "Keyon

Dooling®, "19771 Park Avenue®, "Columbia®);
COMMIT WORK;

INSERT INTO orderitems VALUES ("1, 1, 2, "1%);
INSERT INTO orderitems VALUES ("1°, 2, 1, "2%);
INSERT INTO orderlist VALUES ("9/1/2002°, "9/5/2002°,
SELECT orderitems.oi_itemnum, itemmast.im_itemnum

FROM orderitems, itemmast

WHERE orderitems.oi_itemnum = itemmast.im_itemnum;
SELECT orderlist.ol_custnum, custmast.cm_custnum

FROM orderlist, custmast

WHERE orderlist.ol_custnum = custmast.cm_custnum;
COMMIT WORK;

INSERT INTO orderitems VALUES ("27, 1, 1, "3%);
INSERT INTO orderitems VALUES ("27, 2, 3, "4%);
INSERT INTO orderlist VALUES ("9/2/2002°, "9/6/2002",
SELECT orderitems.oi_itemnum, itemmast.im_itemnum
FROM orderitems, itemmast
WHERE orderitems.oi_itemnum = itemmast.im_itemnum;
SELECT orderlist.ol_custnum, custmast.cm_custnum
FROM orderlist, custmast
WHERE orderlist.ol_custnum = custmast.cm_custnum;

"1%, "1001%);

2%, "99997);

FairCom Corporation

Tutorial Source Code

ROLLBACK WORK;

INSERT
INSERT
INSERT

SELECT orderitems.oi_itemnum,

INTO
INTO
INTO

orderitems VALUES ("3, 1, 2,
orderitems VALUES (3", 2, 3,
orderlist VALUES ("9/22/2002",

FROM orderitems, itemmast
WHERE orderitems.oi_itemnum = itemmast.im_itemnum;
SELECT orderlist.ol_custnum, custmast.cm_custnum
FROM orderlist, custmast
WHERE orderlist.ol_custnum = custmast.cm_custnum;
ROLLBACK WORK;

SELECT * FROM orderlist;
SELECT * FROM orderitems;

"3%);
"99°);
"9/26/2002",

itemmast. im_itemnum

"3", "1002%);

FairCom Corporation

ISQL and Tools

A-6

FairCom Corporation

Symbols FOR RECORD statement 5-4
OVEIVIEW . .ttt e 5-1
@EXECULE SYNEAX . v e e eoeeeeeee 3.12 prerequisites 5-1
syntax ... 5-2
A dbload
commandsfile 4-4
data fileformats 4-3
Adding titles 3-9 DEFINE RECORDS statement 4-5
BITONS i 4-8
B examples i, 4-7
execution process diagram 4-1
Beginning titles 3-9 fixed length records 4-4
BREAK statement 3-4 FOR EACH statement 4-6
BREAK statement syntax 3-13 OVEIVIBW ... 4-1
prerequisites 4-2
C syntax ... 4-2
variable lengthrecords 4-4
dbschema
CLEARStatement 3-4 EXAMPIES v\ 6-2
CLEAR statementsyntax 3-15 OVEIVIEW - o oo 6-1
Column display formatting 3-6 SYNAX .+ v v e e oo 6-1
COLUMN statement ... S EEEERRRERRREE 3-4 DEFINE RECORDS statement 4-5,5-3
COLUMN statement date—tlme formats3-18 DEFINE statement\ 34
COLUMN statement numeric formats 3-18 DEFINE statement syntax 3.23
COLUMN statement syntax ... 316 DISPLAY statement 3-4
SOOTAn;i;]gE f;::ltérﬁleﬁi """""""" 4-4, 2‘21 DISPLAY statementsyntax 3-23
COMPUTE statementsyntax 3-21 E
Concluding titles 3-9
D EDIT statement 3-3
EDIT statementsyntax 3-25
. Errors
Data file formats for dbdump 5-2 dbload 4-8
Baia file forrr_lats fordbload gf; EXIT Statement Syntax 3.26
atasummaries ... -
Date-time formats for COLUMN statement 3-18 E
dbdump
commandsfile 5-2)
data file formats 5-2 Fixed length records for dbload 4-4
DEFINE RECORDS statement 5-3 FOR EACH statement 4-6
EXAMPIES oo 5-4 FOR RECORD statement 5-4
execution process diagram 5-1 Formatting column displays 3-6
FairCom Corporation Index-i

ISQL and Tools

Formatting ISQL output 3-3

G

GET statement 3-3

GET statementsyntax 3-27

H

HELP statementsyntax 3-29

HISTORY statement 3-2

HISTORY statementsyntax 3-29

HOST statementsyntax 3-31

|

ISQL
definition, 1-1
outputformats 3-3
reference 3-12
starting 3-1
statements for query formatting 3-4
SYNEAX vt 3-1
USAGE v vttt 1-1

L

LIST statement 3-3

LIST statementsyntax 3-32

Load records using dbload 4-1

N

Numeric formats for COLUMN statement .3-18
O
Outputformats 3-3

P

Program source code

sample program source code A-1
Q
Queries, unformatted 3-5
QUIT statementsyntax 3-26
R
Recreate database elements and data using
dbschema 6-1
ReferencesforISQL 3-12
RUN statement 3-3
RUN statementsyntax 3-33
S
Sample application A-1
SAVEstatement 3-3
SAVE statementsyntax 3-34
SET ECHO statement 3-4
SET LINESIZE statement 3-4
SET PAGESIZE statement 3-4
SET REPORT statement 3-4
SET statementsyntax 3-34
SHOW statementsyntax 3-37
Source codeexample A-1
SPOOL statementsyntax 3-38
START statement 3-3
START statementsyntax 3-39
Starting ISQL 3-1
Statement history support 3-2
ISQL statements 3-2
Statements
@EXECUTE syntax 3-12
BREAK 3-4, 3-7, 3-13
BREAK syntax 3-13
CLEAR i 3-4, 3-15
CLEARsSyntax 3-15
COLUMN 3-4, 3-6, 3-16
COLUMN date-time formats 3-18
COLUMN numeric formats 3-18
COLUMN syntax 3-16

Index-ii

FairCom Corporation

COMPUTE 3-4, 3-7, 3-21 TITLES ... 3-9
COMPUTE syntax 3-21 Statements for query formatting 3-4
DEFINE 3-4, 3-23 Summarizingdata, 3-7
DEFINERECORD 4-5, 5-3 Syntax for ISQL, 3-1
DEFINEsyntax 3-23
DISPLAY 3-4,3-7, 3-23 T
DISPLAY syntax 3-23
EDIT ..o 3-3,3-25 TABLE statementsyntax 3-40
EDIT syntax 325 TITLE statement 3-4
EXIT oo 3-26 TITLE statementsyntax 3-42
EXITsyntax 3-26 Titles
FOREACH 4-6 adding 3-9
FORRECORD 5-4 beginningoooee 3-9
GET ..o 3-8, 8-21 concluding 39
GET syntaxocooe.oen 3-27 Transaction support 3-11
HELP 11,329 Tyorial 2.1, 2-4, 2-9, 2-13
HELPsyntax 3-29
HISTORY 3-2, 3-29 U
HISTORY syntax 3-29
HOST e 3-31
HOST Syntaxoovvveevnn... 3-31 Unformatted queries 3-5
LIST ...t 3-3,3-32
LISTsyntax ... 3-32 V
QUIT .. 3-26
QUIT syntax ...t 3-26 Variable length records for dbload 4-4
RUN 3-3,3-33
RUNsyntax 3-33
SAVE 3-3,3-34
SAVEsyntax 3-34
SET o 3-34
SETECHO, 3-4
SETLINESZIE 3-4
SETPAGESZIE 3-4
SETREPORT ...t 3-4
SETsyntaxooovin.. 3-34
SHOW 3-37
SHOWsyntax 3-37
SPOOL ... 3-38
SPOOL syntax 3-38
START i 3-3,3-39
START syntax 3-39
TABLE 3-11, 3-40
TABLEsyntax 3-40
TITLE ... 3-4, 3-42
TITLEsyntax 3-42

Index-iii FairCom Corporation

	ISQL and Tools Reference Guide
	Table of Contents
	Documentation Overview

	Chapter 1
	Introduction
	1.1 Overview

	Chapter 2
	Quick Tour
	2.1 Introductory Tutorial
	2.1.1 Init
	2.1.2 Define
	2.1.3 Manage
	2.1.4 Done
	2.1.5 Complete Introductory Tutorial Code

	2.2 Relational Model and Indexing Tutorial
	2.2.1 Init
	2.2.2 Define
	2.2.3 Manage
	2.2.4 Done
	2.2.5 Complete Relational Model and Indexing Tutorial Source Code

	2.3 Locking Tutorial
	2.3.1 Init
	2.3.2 Define
	2.3.3 Manage
	2.3.4 Done
	2.3.5 Complete Locking Tutorial Source Code

	2.4 Transaction Processing Tutorial
	2.4.1 Init
	2.4.2 Define
	2.4.3 Manage
	2.4.4 Done
	2.4.5 Complete Transaction Processing Tutorial Source Code

	Chapter 3
	ISQL Statements
	3.1 Overview
	3.2 Starting Interactive SQL
	3.3 Statement History Support
	3.4 Formatting Output of ISQL Queries
	3.4.1 Formatting Column Display with the COLUMN Statement
	3.4.2 Summarizing Data with DISPLAY, COMPUTE, and BREAK State ments
	3.4.3 Adding Beginning and Concluding Titles with the TITLE Statement

	3.5 The HELP and TABLE Statements
	3.6 Transaction Support
	3.7 ISQL Reference
	3.7.1 @ (Execute)
	3.7.2 BREAK
	3.7.3 CLEAR
	3.7.4 COLUMN
	3.7.5 COMPUTE
	3.7.6 DEFINE
	3.7.7 DISPLAY
	3.7.8 EDIT
	3.7.9 EXIT or QUIT
	3.7.10 GET
	3.7.11 HELP
	3.7.12 HISTORY
	3.7.13 HOST or SH or !
	3.7.14 LIST
	3.7.15 QUIT or EXIT
	3.7.16 RUN
	3.7.17 SAVE
	3.7.18 SET
	3.7.19 SHOW
	3.7.20 SPOOL
	3.7.21 START
	3.7.22 TABLE
	3.7.23 TITLE

	Chapter 4
	Data Load Utility: dbload
	4.1 Introduction
	4.2 Prerequisites for dbload
	4.3 dbload Command Line Syntax
	4.4 Data File Formats
	4.4.1 Variable Length Records
	4.4.2 Fixed Length Records

	4.5 The Commands File
	4.5.1 The DEFINE RECORD Statement
	4.5.2 The FOR EACH Statement

	4.6 Examples
	4.7 dbload Errors
	4.7.1 Compilation Errors
	4.7.2 Fatal Errors

	Chapter 5
	Data Unload Utility: dbdump
	5.1 Introduction
	5.2 Prerequisites for dbdump
	5.3 dbdump Command Line Syntax
	5.4 Data File Formats
	5.5 The Commands File
	5.5.1 The DEFINE RECORD Statement
	5.5.2 The FOR RECORD Statement

	5.6 Examples

	Chapter 6
	Schema Export Utility: dbschema
	6.1 Introduction
	6.2 Examples

	Appendix A
	Tutorial Source Code
	A.1 Introductory Tutorial
	A.2 Relational Model and Indexing Tutorial
	A.3 Locking Tutorial
	A.4 Transaction Processing Tutorial

	Index

