

OptiX RTN 360 Radio Transmission System V100R006C00

Product Description

Issue 01

Date 2016-01-15

Copyright © Huawei Technologies Co., Ltd. 2016. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base

Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://www.huawei.com
Email: support@huawei.com

About This Document

Related Versions

The following table lists the product versions related to this document.

Product Name	Version
OptiX RTN 360	V100R006C00
iManager U2000–T	V200R015C60
iManager U2000–M	V200R015C10

Intended Audience

This document is intended for:

- Network planning engineer
- Hardware installation engineer
- Installation and commissioning engineer
- Field maintenance engineer
- Data configuration engineer
- System maintenance engineer

Familiarity with the basic knowledge related to digital microwave communication technology will help you apply the information in this document.

Symbol Conventions

The symbols that may be found in this document are defined as follows.

Symbol	Description
DANGER	Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

Symbol	Description
MARNING	Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
A CAUTION	Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.
⚠ NOTICE	Indicates a potentially hazardous situation which, if not avoided, could result in equipment damage, data loss, performance deterioration, or unanticipated results. NOTICE is used to address practices not related to personal injury.
NOTE	Calls attention to important information, best practices and tips. NOTE is used to address information not related to personal injury, equipment damage, and environment deterioration.

General Conventions

The general conventions that may be found in this document are defined as follows.

Convention	Description	
Times New Roman	Normal paragraphs are in Times New Roman.	
Boldface	Names of files, directories, folders, and users are in boldface . For example, log in as user root .	
Italic	Book titles are in <i>italics</i> .	
Courier New	Examples of information displayed on the screen are in Courier New.	

Change History

Changes between document issues are cumulative. The latest document issue contains all the changes made in earlier issues.

Issue 01 (2016-01-15)

This issue is the first release for the product version V100R006C00.

Contents

About This Document	1i
1 Product Introduction	1
1.1 Network Application.	2
1.2 Product Specifications.	3
1.3 Site Configurations.	4
1.3.1 Sites Providing One-Direction Microwave Links	4
1.3.2 Sites Providing Two-Direction Microwave Links	5
1.3.3 Sites Providing Multi-direction Microwave Links.	6
2 Functions and Features	8
2.1 Integration.	10
2.2 TDD	10
2.3 Automatic Frequency Selection	11
2.4 Adaptive Modulation	12
2.5 Power over Ethernet.	14
2.6 Ethernet Service Processing Capability	15
2.7 QoS	17
2.8 Clock Features.	19
2.9 Network Management.	
2.10 Rapid Deployment	21
2.11 Easy Maintenance.	22
2.11.1 Contact-Free Maintenance.	22
2.11.2 Equipment-Level OAM	23
2.11.3 Packet OAM (TP-Assist)	
2.12 Security Management.	27
2.13 Energy Saving	30
2.14 Environmental Protection.	30
3 Product Structure	31
3.1 System Architecture	
3.2 Service Signal Processing Flow.	
3.3 Ports.	36
3.4 Indicators.	41
3.5 Labels	43

4 Network Management System	46
4.1 Network Management Solutions	47
4.2 Web LCT	48
4.3 Mobile LCT	48
4.4 U2000-T	49
4.5 U2000-M	51
5 Technical Specifications	52
5.1 Ethernet Service Specifications	53
5.2 RF Performance	54
5.3 Antenna Performance	55
5.4 Predicted Reliability	55
5.5 Integrated System Performance	56
6 Accessories	58
6.1 Power Injector	59
6.2 USB Flash Drives	59
6.3 Wi-Fi Module	62
7 Cables	64
7.1 Outdoor Network Cables	65
7.2 Outdoor Optical Fiber	66
7.3 RSSI Cables.	67
7.4 RTN 360 PGND Cables	68
A Appendix	69
A.1 Port Loopbacks	70
A.2 Component Photos.	70
A.3 Compliance Standards	71
A.3.1 ITU-R Standards	71
A.3.2 ITU-T Standards	73
A.3.3 ETSI Standards	74
A.3.4 CEPT Standards	76
A.3.5 IEC Standards	77
A.3.6 IETF Standards	78
A.3.7 IEEE Standards	79
A 3 8 Other Standards	80

1 Product Introduction

About This Chapter

The OptiX RTN 360 radio transmission system (RTN 360 for short) is a full-outdoor radio transmission product that operates at the V-band (a frequency band ranging from 59 GHz to 64 GHz).

1.1 Network Application

RTN 360 is tailored for service backhaul for small cell base stations that are deployed on buildings or at the street level. RTN 360 plays an important role in the Huawei radio backhaul solution for small cell base stations.

1.2 Product Specifications

RTN 360's specifications meet the requirements of service backhaul for small cell base stations. In addition, RTN 360 features excellent immunity to interference, and is easy to install and maintain.

1.3 Site Configurations

RTN 360s are usually powered by power injector (PI) or other standard power sourcing equipment (PSE). RTN 360s can form sites providing one-direction, two-direction, or multi-direction microwave links.

1.1 Network Application

RTN 360 is tailored for service backhaul for small cell base stations that are deployed on buildings or at the street level. RTN 360 plays an important role in the Huawei radio backhaul solution for small cell base stations.

As V-band full-outdoor radio equipment, RTN 360 has the following characteristics:

- RTN 360 operates at the frequency band ranging from 59 GH to 64 GHz. It requires unobstructed line of sight (LOS) and features low inter-site interference and rich idle frequency spectrum resources. A V-band link can span a maximum distance of 300 m, meeting the requirements of service backhaul for small cell base stations. RTN 360 can provide large-capacity microwave links for small cell base stations densely deployed in downtown areas.
- RTN 360 is a highly integrated full-outdoor radio transmission product. Its antenna, RF unit, and baseband unit are integrated into an outdoor unit that supports zero-footprint installation, providing carriers with cost-effective full-outdoor radio solutions.

RTN 360 provides backhaul links for small cell base stations on buildings or at the street level in downtown areas. See **Figure 1-1**.

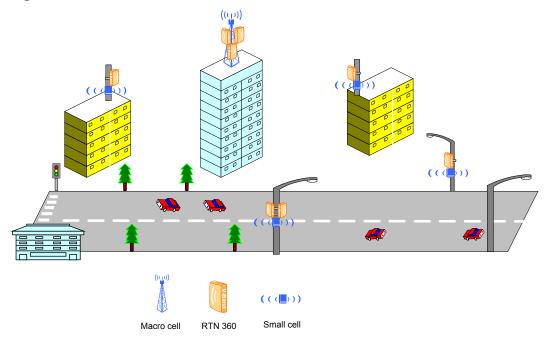


Figure 1-1 RTN 360 backhaul link solution for small cell base stations

RTN 360 can work with the small cell site gateway (SCSG) to provide a microwave channel solution for transparent transmission for small cells on the IP RAN. See Figure 1-2.

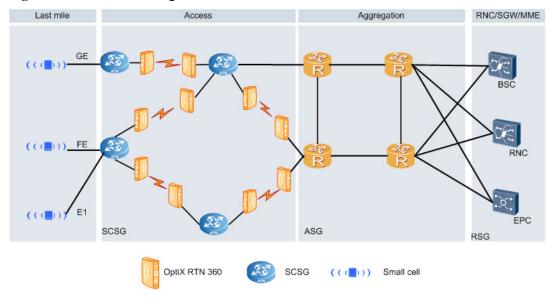


Figure 1-2 RTN 360 working with the SCSG

1.2 Product Specifications

RTN 360's specifications meet the requirements of service backhaul for small cell base stations. In addition, RTN 360 features excellent immunity to interference, and is easy to install and maintain.

Table 1-1 Product Specifications

Product Specifications		
Appearance	HILANNEI	
Dimensions (H x W x D)/Weight	192.5 mm x 192.5 mm x 70 mm/2.5 kg	
Antenna	Built-in panel antenna	
Operating frequency band	59 GHz to 64 GHz	
Duplex mode	TDD	

Product Specifications	
Radio working mode (modulation scheme/channel spacing)	Modulation scheme: QPSK, 16QAM, 32QAM Channel spacing: 200 MHz
AM	Supported
Air-interface throughput	≥ 800 Mbit/s
Maximum transmission distance	300 m
Service port	Two GE electrical service ports
RF configuration mode	1+0 configuration
Power supply mode	Power over Ethernet (PoE), supplied by the AC power injector (PI), DC power injector (PI), and other standard power sourcing equipment (PSE)
Basic Ethernet features	 E-Line/E-LAN QinQ QoS HQoS Synchronous Ethernet

1.3 Site Configurations

RTN 360s are usually powered by power injector (PI) or other standard power sourcing equipment (PSE). RTN 360s can form sites providing one-direction, two-direction, or multi-direction microwave links.

1.3.1 Sites Providing One-Direction Microwave Links

If a small cell base station is located at the end of a transmission link, an RTN 360 is required to provide a 1+0 unprotected microwave link. The RTN 360 receives power signals and service signals from power infector (PI).

Figure 1-3 illustrates configurations of a site providing a one-direction microwave link.

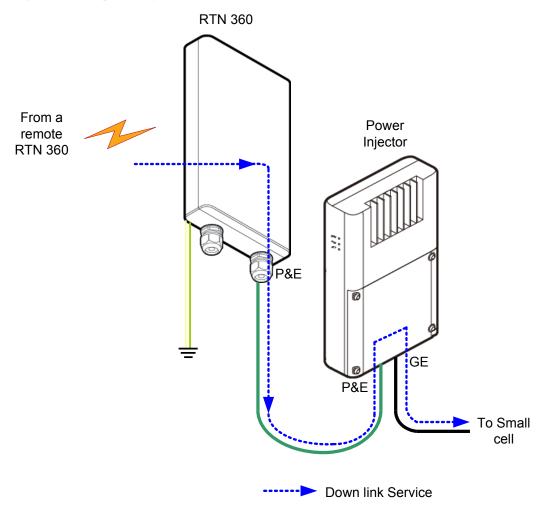


Figure 1-3 Site providing a one-direction microwave link

If a small cell base station can serve as standard PSE, RTN 360s can directly receive power signals and service signals from the small cell base station.

1.3.2 Sites Providing Two-Direction Microwave Links

If a small cell base station is an intermediate node on a transmission link, two RTN 360s are required to provide two 1+0 unprotected microwave links in different directions. RTN 360s receive power signals and service signals from the Dock of the small cell base station.

Figure 1-4 illustrates configurations of a site providing two microwave links in different directions.

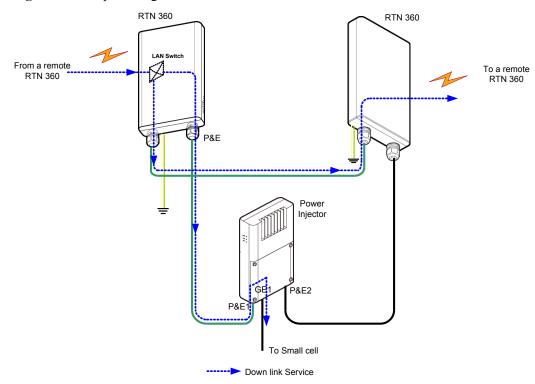


Figure 1-4 Site providing two microwave links in different directions

A site providing two-direction microwave links can work together with RTN B20 PIs to receive service signals from small cell base stations and power signals. Two RTN 360s are cascaded through GE(e) ports for service aggregation.

1.3.3 Sites Providing Multi-direction Microwave Links

If a macro base station connects to multiple small cell base stations in a star topology, in addition to multiple RTN 360s, an OptiX RTN 900 (IDU) (for example, an IDU 950A) or other power sourcing equipment (PSE) is required. The IDU supplies power to the RTN 360s through a PoE board (for example, an EG4P board) and aggregates services.

Figure 1-5 illustrates configurations of a site providing multi-direction microwave links.

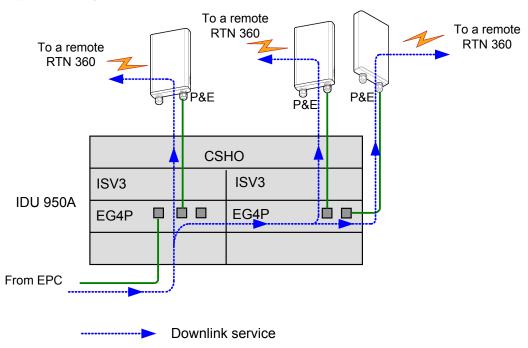


Figure 1-5 Site providing multi-direction microwave links

NOTE

In addition to RTN 360s, the OptiX RTN 900 IDU may connect to FOs or ODUs operating at other frequency bands to implement backhaul.

2 Functions and Features

About This Chapter

RTN 360 provides a variety of functions and features.

2.1 Integration

RTN 360 integrates a built-in antenna and uses a wide frequency band design, which allows a single chassis to cover the entire V-band.

2.2 TDD

Time division duplex (TDD) has unique advantages over frequency division duplex (FDD) in asymmetric transmission and high frequency spectrum resource utilization.

2.3 Automatic Frequency Selection

RTN 360 supports automatic frequency selection, which enables it to automatically select an interference-free channel as the working channel.

2.4 Adaptive Modulation

Adaptive modulation (AM) technology automatically adjusts the modulation scheme based on channel quality.

2.5 Power over Ethernet

The RTN 360 provides a P&E port through which the RTN 360 supports power over Ethernet (PoE) as a powered device (PD).

2.6 Ethernet Service Processing Capability

RTN 360 can process native Ethernet services.

2.7 QoS

RTN 360 supports quality of service (QoS) functions, including traffic classification, traffic policing, congestion avoidance, queue scheduling, and traffic shaping.

2.8 Clock Features

RTN 360's clock features meet clock transmission requirements of mobile communications networks and offer a wide selection of clock protection mechanisms.

2.9 Network Management

RTN 360 supports multiple network management modes and provides comprehensive management information exchange solutions.

2.10 Rapid Deployment

A variety of technologies are used to simplify RTN 360 installation so that wireless installation personnel can deploy an RTN 360 within 30 minutes.

2.11 Easy Maintenance

RTN 360 supports contact-free maintenance, powerful equipment-level OAM functions, and end-to-end TP-Assist.

2.12 Security Management

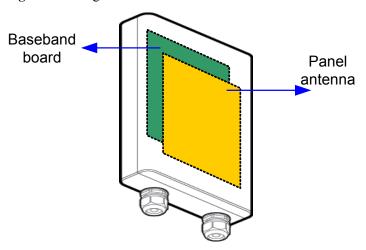
RTN 360 works with its network management system (NMS) to prevent unauthorized logins and operations, ensuring equipment management security.

2.13 Energy Saving

RTN 360 consumes less energy by using:

2.14 Environmental Protection

RTN 360 is designed to meet environmental protection requirements. The product complies with restriction of hazardous substances (RoHS) directives.


2.1 Integration

RTN 360 integrates a built-in antenna and uses a wide frequency band design, which allows a single chassis to cover the entire V-band.

Built-in Antenna

RTN 360 integrates its system control unit, clock unit, power unit, baseband unit, RF unit, and antenna into a single chassis. See **Figure 2-1**.

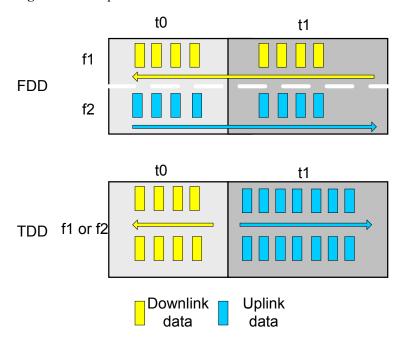
Figure 2-1 Integrated chassis with a built-in antenna

Such a highly integrated design facilitates quick and flexible installation of RTN 360s in full-outdoor scenarios.

Wide Frequency Band

RTN 360 uses a wide frequency band design, which enables a single chassis to cover the entire V-band from 59 GHz to 64 GHz. This eliminates the need to distinguish TX high and low sites, which means that spare parts need to be prepared for only one equipment model.

Both RTN 360 and Huawei small cell base stations can be installed on walls and poles. They are similar in appearance and look harmonious when installed together.


2.2 TDD

Time division duplex (TDD) has unique advantages over frequency division duplex (FDD) in asymmetric transmission and high frequency spectrum resource utilization.

In FDD mode, symmetric frequencies are required to function as the uplink and downlink channels. The V-band is license-free in most areas and may be used by multiple users, and it is difficult to obtain interference-free symmetric frequencies. Therefore, RTN 360 uses TDD mode.

In TDD mode, asymmetric frequencies are used. Uplink and downlink data is transmitted in different time periods. The ratio of timeslots for uplink data to those for downlink data can be configured based on service requirements, flexibly using frequency resources.

Figure 2-2 Comparison between FDD and TDD modes

Using TDD mode, RTN 360 has the following advantages:

- One RTN 360 can cover the operating frequency band (59 GHz to 64 GHz), eliminating the need to distinguish TX high and low sites.
- Timeslots for uplink and downlink data can be flexibly adjusted based on actual traffic. The ratio of timeslots for uplink data to those for downlink data can be configured to 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, or 1:5.

2.3 Automatic Frequency Selection

RTN 360 supports automatic frequency selection, which enables it to automatically select an interference-free channel as the working channel.

RTN 360 scans frequencies within a specified range to select interference-free channels. See **Figure 2-3**.

Automatic frequency selection applies to the following two scenarios:

- During commissioning in site deployment, this function is used to obtain interference-free channels, releasing engineers from planning microwave link frequencies.
- For an in-service RTN 360, this function is used to reselect and switch to an interferencefree channel if the current microwave link is interrupted or fails due to interference on the working channel, improving microwave links' immunity to interference.

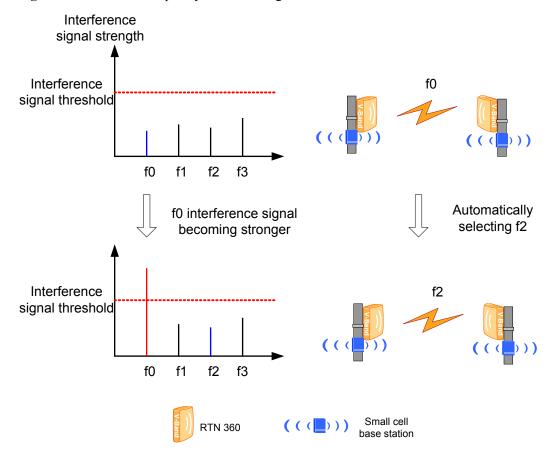


Figure 2-3 Automatic frequency selection diagram

2.4 Adaptive Modulation

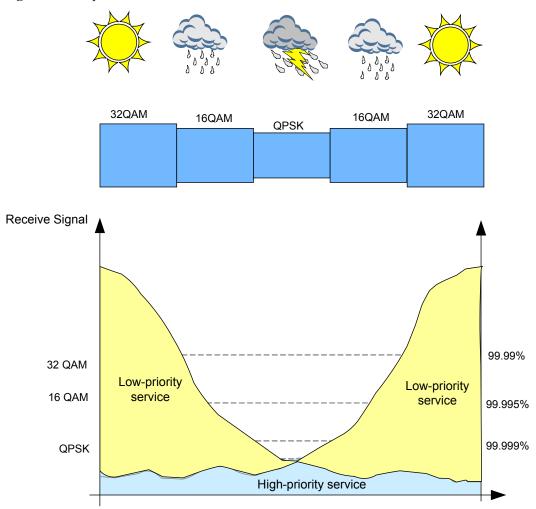
Adaptive modulation (AM) technology automatically adjusts the modulation scheme based on channel quality.

Modulation Scheme and Air-interface Capacity

When AM technology is enabled and the same channel spacing is used, the available radio service bandwidth varies according to the modulation scheme: the higher the modulation efficiency, the higher the bandwidth of the transmitted services.

- When channel conditions are favorable (such as on sunny days), the equipment uses a higher-order modulation scheme to transmit more user services. This improves transmission efficiency and spectrum utilization of the system.
- When channel conditions are unfavorable (such as on stormy or foggy days), the equipment uses a lower-order modulation scheme to ensure that higher-priority services are transmitted first. If some lower-priority queues become congested due to a lack of available bandwidth, some or all interfaces in these queues are discarded. This method improves the anti-interference capabilities of a microwave link and ensures link availability for high-priority services.

Modulation Scheme Shift and Service Priorities


For Ethernet services transmitted through IP microwave, priorities can be set based on the service bandwidth and QoS policies corresponding to the current modulation scheme, to control service transmission. The transmission of services with the highest priority is ensured.

With the QoS technology, ethernet services are scheduled to queues with different priorities. The services in different queues are transmitted to the microwave port after running the queue scheduling algorithm. When modulation scheme switching occurs, certain queues may be congested due to insufficient capacity at the air interface. As a result, certain services or all the services in these queues are discarded.

Adaptive Modulation

Figure 2-4 shows how the modulation scheme shifts step by step according to weather changes and how modulation schemes affect service throughput and reliability. In this example, the modulation scheme of guaranteed AM capacity is QPSK and the modulation scheme of full AM capacity is 32QAM.

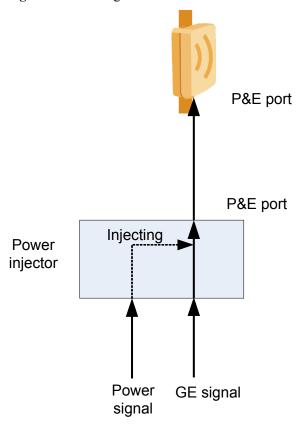
Figure 2-4 Adaptive modulation

Characteristics

The AM technology used by RTN 360 has the following characteristics:

- Supports the QPSK, 16QAM, and 32QAM modulation schemes.
- Can configure both the lowest-order modulation scheme (also called reference scheme or modulation scheme of guaranteed AM capacity) and the highest-order modulation scheme (also called nominal scheme or modulation scheme of full AM capacity).
- Can switch modulation schemes without changing the transmit frequency, receive frequency, or channel spacing.
- Switches modulation schemes step-by-step.
- Features hitless switching. When the modulation scheme is downshifted, high-priority services are not affected while low-priority services are discarded. Switching is successful even when 100 dB/s channel fast fading occurs.

2.5 Power over Ethernet


The RTN 360 provides a P&E port through which the RTN 360 supports power over Ethernet (PoE) as a powered device (PD).

In PoE mode, an outdoor network cable carries Ethernet service signals along with DC power signals. PoE has the following advantages:

Reduces the number of power cables and simplifies installation.

An RTN 360 can work with a power injector (PI) to implement power over Ethernet through its P&E port. See **Figure 2-5**.

Figure 2-5 Working with a PI

An RTN 360 can also work with other power sourcing equipment (PSE), such as an RTN 900 IDU, to implement power over Ethernet through its P&E port. For example, when an OptiX RTN 905 2E IDU is used, it provides two PoE ports, as shown in **Figure 2-6**.

P&E port
P&E port

GE and -48V signal

GE1/P1 GE2/P2

Figure 2-6 Working with an OptiX RTN 900

RTN 905 2E

2.6 Ethernet Service Processing Capability

RTN 360 can process native Ethernet services.

Table 2-1 Ethernet service processing capability

Item	Description
Service ports	 Two GE service ports The first GE port is a P&E port. The second GE port is a fixed electrical port.
Port attributes	The GE electrical port supports 10M full-duplex, 100M full-duplex, 1000M full-duplex, and auto-negotiation.
Ethernet service types	E-Line E-LAN

Item	Description
Range of maximum frame length	1518 bytes to 9600 bytes
VLAN	 Adds, deletes, and swaps VLAN tags that comply with IEEE 802.1Q/P, and forwards packets based on VLAN tags. Processes packets based on the port tag attribute (Tag/Hybrid/Access). The VLAN ID ranges from 1 to 4094.
QinQ	 Adds, deletes, and swaps S-TAG tags, and forwards packets based on S-VLAN tags. The S-VLAN ID ranges from 1 to 4094. The QinQ type domain is configurable. The default value is 88A8.
MAC address management	 Supports MAC address self-learning for E-LAN services in two learning modes: SVL and IVL. Filters blacklisted MAC addresses. Sets static MAC address entries. Supports a MAC address table with a maximum of 16K capacity (including static and blacklist entries).
Link-state pass through (LPT)	Supports simple LPT. When a microwave link is faulty, the related RTN 360 automatically disables the remote Ethernet port that is connected to a user-to-network interface (UNI) device.
QoS/HQoS	Supports QoS and HQoS. For details, see 2.7 QoS.
Traffic control	Supports IEEE 802.3x-compliant traffic control.
ETH OAM	 Supports IEEE 802.1ag- and IEEE 802.3ah-compliant ETH OAM. Supports ITU-T Y.1731-compliant packet loss measurement, delay measurement, and delay variation measurement.
Ethernet performance monitoring	 Supports IETF RFC 2819-compliant remote network monitoring (RMON). Supports measurement of real-time and historical traffic, bandwidth utilization, and packet loss for ports.
Synchronous Ethernet	Supported
Link Layer Discovery Protocol (LLDP)	Supported

NOTE

- RTN 360 supports a maximum of 64 E-Line services. The supported E-Line services fall into the following types:
 - Port-based E-Line services
 - Port+VLAN-based E-Line services
 - Port+QinQ-based E-Line services
- RTN 360 supports only one E-LAN service. The supported E-LAN services fall into the following types:
 - IEEE 802.1d bridge-based E-LAN services
 - IEEE 802.1Q bridge-based E-LAN services
 - IEEE 802.1ad bridge-based E-LAN services

2.7 QoS

RTN 360 supports quality of service (QoS) functions, including traffic classification, traffic policing, congestion avoidance, queue scheduling, and traffic shaping.

QoS provides different levels of service quality in certain aspects of services as required, such as bandwidth, delay, jitter, and packet loss ratio. This ensures that the request and response of a user or application reaches an expected quality level.

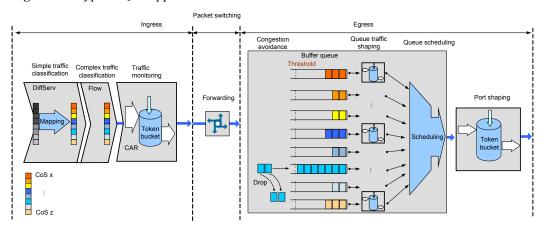

QoS Functions

Table 2-2 QoS functions

Function	Description
Simple traffic classification (DiffServ)	 Supports one DiffServ (DS) domain. Maps Ethernet services into different per-hop behaviors (PHBs) based on C-VLAN priorities, S-VLAN priorities, IP differentiated services code point (DSCP) values, or MPLS experimental bits (EXP) values.
Complex traffic classification	Supports traffic classification by MAC address, VLAN ID, VLAN priority, IP address, DSCP value, protocol type, port ID, or Internet Control Message Protocol (ICMP) type at ports.
ACL	Supports ACL based on complex traffic classification.
Traffic policing	Supports committed access rate (CAR) based on complex traffic classification at ports and supports the setting of the committed information rate (CIR), peak information rate (PIR), committed burst size (CBS), and peak burst size (PBS).

Function	Description
Congestion avoidance	Supports tail drop at both microwave ports and Ethernet ports.
	 Supports weighted random early detection (WRED) at both microwave ports and Ethernet ports.
Queue scheduling	Supports eight levels of priority scheduling at both Ethernet ports and microwave ports.
	• Flexibly sets the queue scheduling scheme for each Ethernet port and microwave port. The queue scheduling schemes include strict priority (SP), weighted round robin (WRR), and SP+WRR.
Traffic shaping	Supports traffic shaping for egress queues and egress ports.
	• Supports the setting of PIR in increments of 64 kbit/s and the setting of PBS.
HQoS	 For QinQ NNI ports, supports two levels of queue scheduling for QinQ queues and egress queues, and supports four levels of rate limiting for QinQ queues, QinQ, egress queues, and egress ports.
	• For UNI ports, supports three levels of queue scheduling for V-UNI egress queues, V-UNI egress groups, and egress queues, and supports five levels of rate limiting for V-UNI egress queues, V-UNI egress, VUNI egress groups, egress queues, and egress ports.

Figure 2-7 Typical QoS application

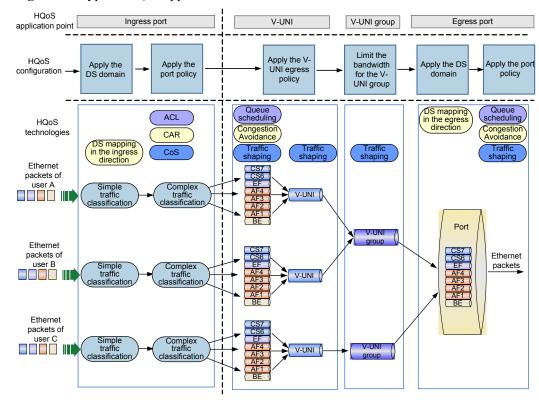


Figure 2-8 Typical HQoS application

2.8 Clock Features

RTN 360's clock features meet clock transmission requirements of mobile communications networks and offer a wide selection of clock protection mechanisms.

Item	Description
Clock working mode	TracingHoldoverFree-run
Clock source	 Microwave link clock Synchronous Ethernet clock NOTE When two RTN 360s form a hop of microwave link, one is the master NE tracing the Synchronous Ethernet clock, and the other is the slave NE tracing the microwave link clock.
Synchronization Status Message (SSM) protocol or extended SSM protocol	Supported. SSM information can be transmitted in the following modes: • Microwave link • Synchronous Ethernet

2.9 Network Management

RTN 360 supports multiple network management modes and provides comprehensive management information exchange solutions.

Network Management Modes

RTN 360 supports the following network management modes:

- Uses the iManager U2000 Web LCT to manage local and remote NEs on a per-NE basis.
- Uses the Mobile LCT to manage local NEs on a per-NE basis through Wi-Fi.
- Uses the iManager U2000-T to manage Huawei OptiX RTN NEs and Huawei optical transmission products in a unified manner. The iManager U2000-T is also able to manage transport networks in a unified manner.
- Uses the iManager U2000-M, which manages Huawei mobile communications network products in a unified manner, to manage RTN 360 using its NE Explore.
- Uses SNMP Get to query alarms, performance events, and RMON performance.

Network Management Information Exchange Solutions

Table 2-3 DCN information exchange solutions

Item			Specifications
DCN channel	Data communicatio ns channel (DCC) bytes Network management system (NMS) port		Three Huawei-defined DCC bytes in a microwave frame
			One NMS port
	In- band DCN	Micr owav e link	All in-band DCN channels are marked by one VLAN ID. The bandwidth of an in-band DCN channel is configurable.
		GE port	All in-band DCN channels are marked by one VLAN ID. The bandwidth of an in-band DCN channel is configurable.
Network management	HWECC protocol		Supported
protocol	IP protocol		Supported
L2DCN		1	Supported

2.10 Rapid Deployment

A variety of technologies are used to simplify RTN 360 installation so that wireless installation personnel can deploy an RTN 360 within 30 minutes.

So that it can be deployed rapidly, RTN 360:

- Uses TDD mode, in which signals are transmitted and received over the same frequency, eliminating the need to distinguish TX high and low sites and requiring spare parts for only one equipment model.
- Supports automatic frequency selection, simplifying microwave link frequency planning.
- Integrates panel antennas, simplifying installation.
- Uses an alignment scope to facilitate antenna alignment, improving installation efficiency.

Figure 2-9 Aligning antennas using an alignment scope

- Supports power over Ethernet. RTN 360 can work with power injector (PI), or other power sourcing equipment (PSE) to receive service signals and power signals, facilitating deployment.
- Supports configuration-free commissioning using a USB flash drive.
- Manages NEs on a per-NE basis using a Wi-Fi module.

2.11 Easy Maintenance

RTN 360 supports contact-free maintenance, powerful equipment-level OAM functions, and end-to-end TP-Assist.

2.11.1 Contact-Free Maintenance

RTN 360 supports contact-free maintenance with its Wi-Fi module.

The Mobile LCT, also called Mobile Deployment Terminal (MDT) or Web LCT can use Wi-Fi to connect to a local RTN 360 with a Wi-Fi module.

Figure 2-10 Contact-free maintenance

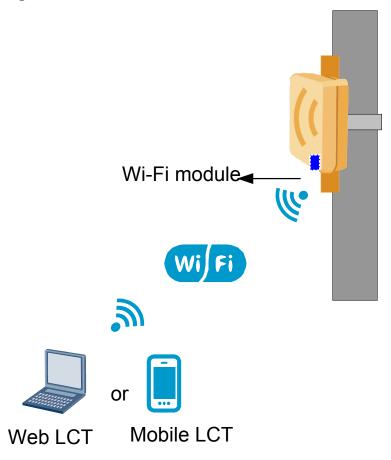
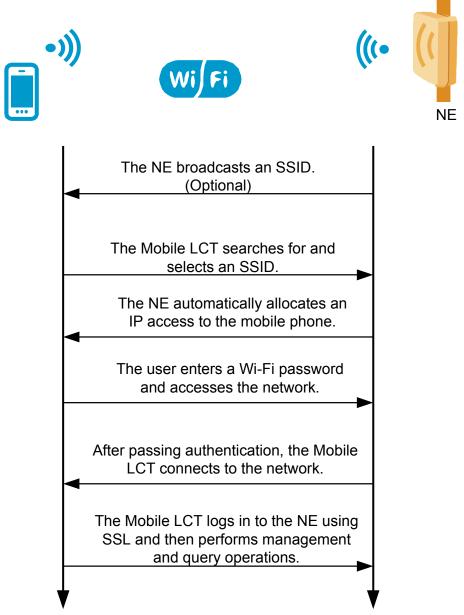



Figure 2-11 Access process through Wi-Fi

After connecting to a local NE through Wi-Fi, the Mobile LCT or Web LCT can be used to configure the NE, and query NE alarms, and the Web LCT can also be used to query performance and logs, facilitating commissioning and maintenance.

2.11.2 Equipment-Level OAM

RTN 360 provides various operation, administration and maintenance (OAM) functions that effectively reduce equipment maintenance costs.

Table 2-4 describes the OAM functions supported by RTN 360.

 Table 2-4 Equipment-level OAM functions

Function	Description
Management and monitoring	 Supports unified management of microwave transmission networks and optical transmission networks, and end-to-end service creation and management using the iManager U2000-T.
	 Supports creation, configuration, and operation management of an RTN 360 using the iManager U2000-M.
	Reports various alarms and performance events.
	Supports RMON performance events.
	Measures real-time and historical traffic and bandwidth utilization for ports.
	 Measures congestion-caused packet loss information by traffic class and egress queue for ports.
	 Allows users to observe and analyze Ethernet packets over a port through port mirroring.
	Captures headers of specified Ethernet packets.
	Queries equipment temperatures.
	• Monitors key radio transmission performance indicators, such as the microwave transmit power, receive power, signal-to-noise ratio (SNR), and air-interface bit error rate (BER), and displays them graphically.
	 Supports frequency scanning to help identify co-channel interference and adjacent-channel interference.
	Collects one-click fault diagnosis information.
	 Supports the connection of the Mobile LCT or Web LCT to the equipment using Wi-Fi during equipment commissioning or maintenance.
Diagnosis tests	Supports pseudo random binary sequence (PRBS) tests at microwave ports.
	• Simulates Ethernet meters to test the packet loss ratio, delay, and throughput.
	Supports various loopback functions at service ports and microwave ports.
ETH OAM	Supports IEEE 802.1ag- and IEEE 802.3ah-compliant ETH OAM.
	Supports ITU-T Y.1731-compliant packet loss measurement, delay
	measurement, and delay variation measurement.
	 Supports loopback tests for Ethernet services.
Database management	Backs up and restores NE databases remotely using the iManager U2000-T.
	Backs up and restores NE data using USB flash drives.
	Backs up and restores databases of peer NEs on microwave links.

Function	Description	
Software management	Supports remote loading of NE software and data using the iManager U2000-T and provides a complete NE upgrade solution, allowing rapid upgrades of the entire network.	
	Upgrades NE software using USB flash drives.	
	• Supports the not-stop forwarding (NSF) function, which prevents Ethernet services from being interrupted by warm NE software resets.	
	 Supports hot patches so that you can upgrade software without interrupting services. 	
	Supports software version rollback so that original system services are restored in case of software upgrade failures.	

2.11.3 Packet OAM (TP-Assist)

In compliance with the network-centered, service-centered, and intelligent packet network O&M trend, Huawei promotes a brand new O&M system based on the TP-Assist solution. The O&M system covers the entire O&M process from network planning to fault diagnosis.

Table 2-5 describes the packet OAM functions supported by RTN 360.

Table 2-5 Functions of the TP-Assist O&M system

Function	Description	Purpose
Professional planning service and planning tools	Experienced planning expert teams provide professional planning service.	Improves planning efficiency.
	Planning tool UniSTAR Designer, embedded with the common network HLD/LLD design templates and device/board/interface capacity parameter templates, is used. This tool is applicable to various network planning scenarios including new network construction, network expansion, network migration, and service adjustment.	Improves planning accuracy.
End-to-end service deployment	Deploys Native Ethernet (E-Line and E-LAN) services and hybrid services in an end-to-end manner. Deploys services across microwave and optical fibers in an end-to-end manner.	Quick service configuration Improves configuration accuracy.

Function		Description	Purpose
Automatic deployment of alarm management with service deployment		Deploying ETH-OAM when deploying Ethernet services in an end-to-end manner.	Avoids extra OAM deployment operations. Allows the NE to automatically report alarms when a service fault occurs.
One-click service connectivity test		Supports one-click service connectivity test for Ethernet services that are deployed in an end-to-end manner.	Quick commissioning Lowers project acceptance costs.
One-click service performance test		Supports one-click packet loss, delay, and delay jitter tests for Ethernet services that are deployed in an end-to-end manner.	
Automatic tests with no need for any instrument		Simulating the Smartbits function, supports delay, throughput, short-term packet loss ratio, and long-term packet loss ratio tests for VLAN-based E-Line services.	
IP packet marking an	d statistics collection	Supports packet loss measurement for point-to-point IP service flows.	
monitoring and measurement performant measurement system 360-distatist monit	Network-level performance monitoring and measurement system	The PMS embedded in the U2000 supports unified monitoring and measurement of any measurement object and performance indicator in the network. It supports 24-hour service status prewarning and monitoring, and provides equipment performance threshold-crossing alarms and network performance	Optimized monitoring points, rich service monitoring methods Visualized monitoring; network-level and service-centered
	360-degree traffic statistics and monitoring based on service paths	threshold-crossing alarms. Allows all-service-layer (port and VLAN) traffic statistics and monitoring in a service view. Supports QoS packet loss detection.	monitoring
Visualized O&M	Queries and display of service paths based on VLANs	For E-Line services, allows users to find the service working path and protection path views based VLANs. For E-LAN services, allows users to find the VLAN domain views based on VLANs.	Service visualization
	Queries and display of service paths based on MAC addresses	For E-LAN services, allows users to find the actual MAC address forwarding path views based on MAC addresses.	

Function	Description	Purpose
Intelligent fault diagnosis	Performs automatic fault diagnosis for Ethernet services by layer (service/port) and by level (connectivity/performance/configuration). Quickly outputs fault diagnosis reports on a one-click operation GUI.	Intelligent fault diagnosis Cross-product fault diagnosis
IP ping	Responds to IP ping packets sent from client equipment and then quickly narrows down the fault location to the client equipment or the transport network.	
	Support near-end or far-end IP ping responding.	
	Supports initiating an IP ping test to the near-end or far-end.	
Network-level E-LAN service loop detection	Quickly detects an E-LAN loop (if any) in the service view.	
	Automatically shuts down a looped service.	
	Displays the loopback path.	

2.12 Security Management

RTN 360 works with its network management system (NMS) to prevent unauthorized logins and operations, ensuring equipment management security.

Overview of Hardware Security

RTN 360 uses the following hardware security measures:

- Microwave ports: The forward error correction (FEC) encoding mode is adopted and the
 adaptive time-domain equalizer for baseband signals is used. This enables the microwave
 ports to withstand strong interference. An interceptor cannot restore the content in a data
 frame if coding details and service configurations are not obtained.
- Modular design: Control units are separated from service units, and service units are separated from each other. In this manner, a fault on any unit can be isolated, minimizing the impact of the fault on other units in the system.
- CPU flow control: The data flow sent to the CPU for processing is classified and controlled to prevent CPU resources from being exhausted by a large number of packets. This ensures that the CPU operates properly under attacks.
- Management port control: The protective cover for the maintenance compartment is kept closed when the management port is not being used, preventing unauthorized access.

Overview of Software Security

RTN 360 processes two types of data: O&M data and service data. The two types of data are transmitted over independent paths and do not affect each other. This enables services running on an RTN 360 to be processed on two planes:

Management plane

The management plane provides access to the required equipment and management functions, such as managing accounts and passwords, communication protocols, and alarm reporting. Security features on the management plane implement secure access, integrated security management, and all-round security audits.

Data plane

The data plane processes the service data flow entering the equipment and forwards service packets according to the forwarding table. Security features on the data plane ensure confidentiality and integration of user data by preventing malicious theft, modification, and removal of user service packets. These features ensure reliable data forwarding by protecting forwarding entries against malicious attacks and falsification.

Table 2-6 describes security functions provided by RTN 360.

Table 2-6 Security functions

Plane	Function	Description
Management plane	Account and password management	Manages and stores maintenance accounts and passwords.
	Local authentication and authorization	Authenticates and authorizes accounts.
	RADIUS authentication and authorization	Authenticates and authorizes remote accounts in a centralized manner to reduce maintenance costs.
	Security log	Records events related to account management.
	Operation log	Records non-query operations.
	Syslog management	Provides a standard solution to offline storage of logs, addressing insufficient storage space.
	TCP/IP attack defense	Provides defense against TCP/IP attacks, such as error IP packet attacks, Internet Control Message Protocol (ICMP) ping and Jolt attacks, and DoS attacks.

Plane	Function	Description
	Access control list	Provides access control lists based on IP addresses and port IDs.
	SSL/TLS encryption communication (SSL is the abbreviated form of Secure Sockets Layer, and TLS is the abbreviated form of Transport Layer Security.)	Uses the SSL3.0 and TLS1.0\1.1\1.2 protocols to establish an encryption channel based on a security certificate.
	Secure File Transfer Protocol (SFTP)	Provides SFTP services.
	Open Shortest Path First (OSPF)	Uses the OSPFv2 protocol for standard MD5 authentication.
	Network Time Protocol (NTP)	Uses the NTPv3 protocol for MD5 authentication and permission control.
	Simple Network Management Protocol (SNMP)	Uses the SNMPv3 protocol for authentication and data encryption.
	USB flash drive connection control	Supports connection of only authorized USB flash drives based on a certificate file.
	Wi-Fi connection control	 Supports access through a Wi-Fi password and Wi-Fi encryption. Supports the hiding of SSIDs. Supports the setting of Wi-Fi access periods.
Data plane	Flow control	Controls traffic at ports. Broadcast packets are suppressed. Unknown unicast packets and multicast packets are discarded. QoS is used to control service traffic.
	Discarding of incorrect packets	Discards incorrect packets, such as an Ethernet packet shorter than 64 bytes.
	Loop prevention	Detects self-loops at service ports and blocks self-looped ports.

Plane	Function	Description
	Access control of Layer 2 services	Filters static MAC addresses in the static MAC address table, provides a blacklist, enables and disables the MAC address learning function, and filters packets based on traffic classification.
	Service separation	Includes Layer 2 logical separation, split horizon, and physical path separation.

2.13 Energy Saving

RTN 360 consumes less energy by using:

- Streamlined design with minimum components
- High-efficient power modules
- Low-power components

2.14 Environmental Protection

RTN 360 is designed to meet environmental protection requirements. The product complies with restriction of hazardous substances (RoHS) directives.

- The product complies with RoHS, waste from electrical and electronic equipment (WEEE), and Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) directives.
- The product complies with compulsory packing restrictions that limit the size of the
 package containing the equipment and accessories to three times that of the equipment
 dimensions.
- All hazardous substances contained in the package can degrade quickly.
- Every plastic component that weighs over 25 g is labeled according to the ISO 11469 and ISO 1043-1 to ISO 1043-4 standards. All components and packaging come with standard recycling labels.
- Plugs and connectors are easy to find and are compatible with standard tools.
- All the attached materials, such as labels, are easy to remove. Certain types of identifying information, such as silkscreens, are printed on the chassis.

3 Product Structure

About This Chapter

This chapter describes RTN 360's system architecture, service signal processing flow, external ports, indicators, and labels.

3.1 System Architecture

RTN 360 integrates its functional units into a single chassis.

3.2 Service Signal Processing Flow

This section describes how the functional units of RTN 360 process power over Ethernet (PoE) signals.

3.3 Ports

An RTN 360 has one GE port, one P&E port, and one maintenance compartment.

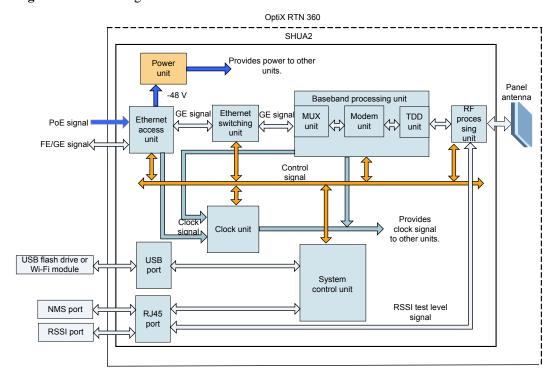
3.4 Indicators

RTN 360 has an STAT indicator and a USB port indicator.

3.5 Labels

A product nameplate label, electrostatic discharge (ESD) warning label, radiation warning label, grounding label, and high temperature warning label are affixed on a chassis. Adhere to any warnings on the labels when performing tasks to avoid personal injury and damage to equipment.

3.1 System Architecture


RTN 360 integrates its functional units into a single chassis.

An RTN 360 has a panel antenna and one physical board, the SLV1SHUA2 board. The SLV1SHUA2 board is displayed as SHUA2 on the network management system (NMS) and occupies logical slot 1.

The SHUA2 board is physically divided into multiple functional units based on logical functions.

Block Diagram

Figure 3-1 Block diagram of RTN 360

Functional Units

Table 3-1 Functional units

Functional Unit	Description
Ethernet access unit	Receives/Transmits one channel of Ethernet service signals and one channel of PoE signals.
	• Splits PoE signals into -48 V power signals and FE/GE signals.
	Transmits the power signals to the power unit.
	Converts serial Ethernet signals into parallel Ethernet signals.
	Performs frame delimitation, preamble stripping, and cyclic redundancy checks (CRCs).
Ethernet switching unit	Processes VLAN tags in Ethernet service signals.
	Performs quality of service (QoS) processing for Ethernet frames.
	 Grooms services and processes protocols.
Baseband processing unit	Maps and demaps service signals to/ from microwave frame signals.
	Processes overhead bytes in microwave frames.
	Performs forward error correction (FEC) coding and decoding.
	Modulates and demodulates digital signals.
	Converts between analog and digital signals.
	Uses the TDD unit to control signal receiving/transmitting according to the specified ratio of receive/transmit timeslots.
RF processing unit	Performs frequency conversion and power amplification, and sends RF signals to antennas in the transmit direction.
	 Performs isolation, filtering, down- conversion, and power amplification for RF signals, and converts RF signals into low-frequency analog signals in the receive direction.

Functional Unit	Description
Antenna	Performs conversion between RF signals and electromagnetic waves.
System control unit	 Configures and manages the system. Collects alarms and monitors performance. Processes signals to and from the USB port. Processes Wi-Fi connection signals.
Clock unit	 Traces the specified clock source signals. Provides clock signals required by the system.
Power unit	 Processes power over Ethernet signals. Performs DC/DC conversion and provides power signals to other units.

3.2 Service Signal Processing Flow

This section describes how the functional units of RTN 360 process power over Ethernet (PoE) signals.

Figure 3-2 Signal processing flow

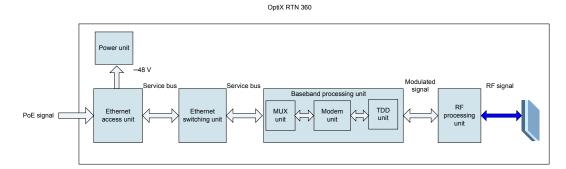
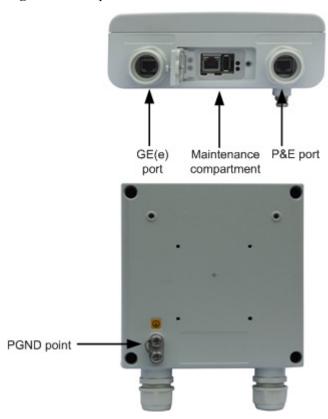


Table 3-2 Signal processing in the transmit direction

St ep	Functional Unit	Processing Flow	
1	Ethernet access unit	 Receives PoE signals. Splits PoE signals into Ethernet service signals and -48 V power signals. Transmits the power signals to the power unit. Extracts Ethernet frames from Ethernet service signals. 	
2	Ethernet switching unit	 Performs Layer 2 protocol processing and quality of service (QoS) processing for the Ethernet frames. Transmits processed Ethernet service signals to the baseband processing unit. 	
3	Baseband processing unit	 Receives Ethernet service signals from the Ethernet switching unit. Combines Ethernet service signals and microwave frame overheads into microwave frames. Performs forward error correction (FEC) coding. Selects a proper modulation scheme based on the current channel quality. Performs modulation and converts digital signals to analog signals. Transmits the modulated signals to the RF processing unit using the transmit timeslot specified by the TDD electronic switch. 	
4	RF processing unit	 Performs up-conversion and power amplification to convert the modulated signals into RF signals. Transmits the RF signals to the antenna through a flexible waveguide. 	

Table 3-3 Signal processing in the receive direction

St ep	Functional Unit	Processing Flow	
1	RF processing unit	Isolates and filters RF signals.	
		Performs down-conversion and power amplification.	
		Transmits the modulated signals to the baseband processing unit.	


St ep	Functional Unit	Processing Flow	
2	Baseband processing unit	 Receives modulated signals from the RF processing unit using the receive timeslot specified by the TDD electronic switch. 	
		 Converts analog signals to digital signals. 	
		Demodulates signals.	
		Performs FEC decoding.	
		 Extracts overhead signals and Ethernet frames from microwave frames. 	
		 Transmits the Ethernet frames to the Ethernet switching unit. 	
3	Ethernet switching unit	Receives Ethernet frames from the baseband processing unit.	
		 Processes the Ethernet frames based on service configurations and Layer 2 protocols. 	
		Transmits the Ethernet frames to the Ethernet access unit.	
4	Ethernet access unit	Converts parallel Ethernet signals to serial Ethernet signals and transmits them.	

3.3 Ports

An RTN 360 has one GE port, one P&E port, and one maintenance compartment.

Port Positions

Figure 3-3 Port positions

The maintenance compartment contains a USB port, RSSI port, and an NMS port. See **Figure 3-4**. When RTN 360 is running, the protective cover of the maintenance compartment must be closed.

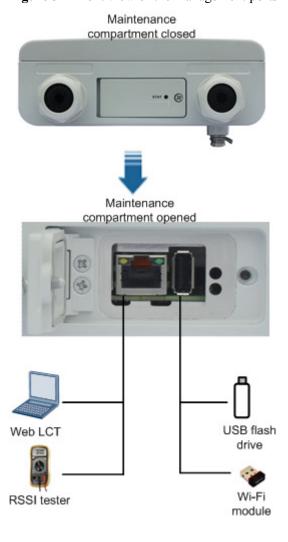


Figure 3-4 Front view of the management ports

Table 3-4 Ports

No ·	Port	Description	Connector Type
1	GE(e)	GE electrical port NOTE Do not remove the protective connector of a vacant GE electrical port.	RJ45 connector
2	P&E	Power over Ethernet port, which can concurrently receive FE/GE electrical signals and -48 V power signals	RJ45 connector
3	USB port	 A USB flash drive can connect to the USB port to import initial configuration data, back up NE data, or upgrade software. A Wi-Fi module can connect to the USB port to enable connection of the Mobile LCT or Web LCT to the equipment. 	USB connector

No	Port	Description	Connector Type
•			
4	RSSI port	You can obtain the received signal level (RSL) of an RTN 360 by testing the voltage at the RSSI port using a multimeter.	RJ45 connector NOTE RSSI port and NMS port share an
5	NMS port	The NMS port transmits network management signals.	RJ45 connector.
6	PGND point	-	M5 screw

P&E Port and GE(e) Port

The P&E port can simultaneously receive GE electrical signals and -48 V power signals. It connects to a power injector (PI), a Dock, or power sourcing equipment (PSE).

The GE(e) port is a common GE electrical port.

NOTE

On the NMS, the P&E port is displayed as GE1 and the GE(e) port is displayed as GE2.

Both the P&E and GE(e) ports use RJ45 connectors.

Figure 3-5 Front view of an RJ45 connector

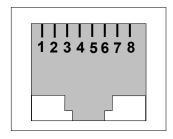


Table 3-5 Pin assignments for RJ45 connectors of the P&E and GE(e) ports

Pin No.	P&E Port		GE(e) Port	
	Signal	Function	Signal	Function
1	BIDA+/BGND	Bidirectional data wire A (+)/ BGND	BIDA+	Bidirectional data wire A (+)
2	BIDA-/BGND	Bidirectional data wire A (-)/ BGND	BIDA-	Bidirectional data wire A (-)

Pin No.	P&E Port		GE(e) Port	
	Signal	Function	Signal	Function
3	BIDB+/-48 V	Bidirectional data wire B (+)/-48 V	BIDB+	Bidirectional data wire B (+)
4	BIDB-/BGND	Bidirectional data wire B (-)/ BGND	BIDB-	Bidirectional data wire B (-)
5	BIDC+/BGND	Bidirectional data wire C (+)/BGND	BIDC+	Bidirectional data wire C (+)
6	BIDC-/-48 V	Bidirectional data wire C (-)/-48 V	BIDC-	Bidirectional data wire C (-)
7	BIDD+/-48 V	Bidirectional data wire D (+)/-48 V	BIDD+	Bidirectional data wire D (+)
8	BIDD-/-48 V	Bidirectional data wire D (-)/-48 V	BIDD-	Bidirectional data wire D (-)

USB Port

The USB port can either connect to a USB flash drive for importing configurations, upgrading software, or backing up data or to a Wi-Fi module for enabling connection of the Mobile LCT or Web LCT to the equipment.

RSSI Port/NMS Port

Table 3-6 provides the pin assignments for the RJ45 connector of the RSSI port/NMS port.

Table 3-6 Pin assignments for the RJ45 connector of the RSSI port/NMS port

Pin No.	Signal
1	Signal output (+)
2	Signal output (-)
3	Signal input (+)
4	Ground
5	Reserved
6	Signal input (-)

Pin No.	Signal
7	RSSI test level signal
8	Reserved

The RJ45 connector has two indicators that indicate the NMS port connection status. **Table 3-7** describes what the indicator statuses mean.

Table 3-7 Indicator status explanation

Indicator	Status	Meaning
LINK (yellow)	On	The NMS port connection is normal.
	Off	The NMS port connection is interrupted.
ACT (green)	On or blinks	The NMS port is receiving or transmitting data.
	Off	The NMS port is not receiving or transmitting data.

3.4 Indicators

RTN 360 has an STAT indicator and a USB port indicator.

The two indicators are in the maintenance compartment. You can observe the STAT indicator even when the protective cover of the maintenance compartment is closed, but you can observe the USB port indicator only if the protective cover of the maintenance compartment is open.

Figure 3-6 Indicator positions

 Table 3-8 Indicator status explanation

Indicator		Status	Meaning
1	Operating status	Steady green	The equipment is working properly and services at the air interface are normal.
		Steady red	The hardware is faulty (for example, the equipment fails to start, or a HARD_BAD alarm is reported).
		Off	The equipment is not powered on.
	Link status	Blinks red	The equipment is working properly but services at the air interface are interrupted.
		Steady green	The microwave link is available. No expected receive power is set according to the network plan.
			• The microwave link is available. The expected receive power is set according to the network plan. The difference between the actual receive power and the expected receive power is less than 3 dB.

Indicator		Status	Meaning
		Blinks green	The microwave link is available. The difference between the actual receive power and the expected receive power is greater than 3 dB.
USB port indicator	Wi-Fi module	Steady green	The Wi-Fi module has been identified and is working properly.
		Steady red	The Wi-Fi module is faulty.
		Off	 No Wi-Fi module is connected to the USB port. The Wi-Fi module connected to the USB port cannot be identified.
	USB flash drive	Steady green	Backing up or restoring data is complete.
		Blinks green	Data is being backed up or restored.
		Steady red	The USB flash drive is faulty.Backing up or restoring data fails.
		Blinks red	The hardware is faulty and fails to initialize the USB flash drive.
		Off	 No USB flash drive is connected to the USB port. The USB flash drive connected to the USB port cannot be identified.

∭NOTE

After you load data to an RTN 360 using a USB flash drive, the RTN 360 automatically resets. All the indicators are off during the reset. After the reset is complete, observe the STAT indicator to learn about the status of the RTN 360.

3.5 Labels

A product nameplate label, electrostatic discharge (ESD) warning label, radiation warning label, grounding label, and high temperature warning label are affixed on a chassis. Adhere to any warnings on the labels when performing tasks to avoid personal injury and damage to equipment.

Label Positions

Figure 3-7 Label positions

NOTE

High temperature warning label: Indicates that the equipment surface temperature may exceed 70°C when the ambient temperature is higher than 55°C. Wear protective gloves to handle the equipment.

Product Nameplate Label

Figure 3-8 Product nameplate label

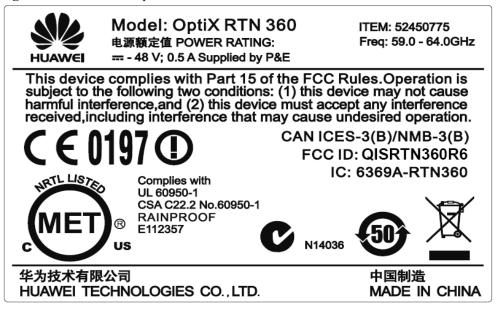


Table 3-9 Product nameplate label description

Label Information	Description
OptiX RTN 360	Indicates the product name.
ITEM: 52450775	Indicates the product item for identifying the product model.
-48V; 0.5A	Indicates the power supply rated value.
Supplied by P&E	Indicates that PoE is used.
Freq: 59.0 - 64.0 GHz	Indicates the frequency range.

4 Network Management System

About This Chapter

This chapter describes network management solutions and the network management system (NMS) software used in these solutions.

4.1 Network Management Solutions

Huawei provides complete transport network management solutions that satisfy the telecommunications management network (TMN) requirements for various function domains and customer groups of telecommunications networks.

4.2 Web LCT

The Web LCT is a local maintenance terminal running on a PC.

4.3 Mobile LCT

The Mobile LCT is a local maintenance terminal running on a smartphone.

4.4 U2000-T

The iManager U2000-T is a network-level management system (NMS) that manages Huawei fixed-line network products in a unified manner.

4.5 U2000-M

The U2000-M is a network-level management system that manages Huawei mobile communications products in a unified manner.

4.1 Network Management Solutions

Huawei provides complete transport network management solutions that satisfy the telecommunications management network (TMN) requirements for various function domains and customer groups of telecommunications networks.

The following network management solutions are available:

• iManager U2000 Web LCT local maintenance terminal

The Web LCT, a web-based local maintenance terminal, manages local and remote NEs on a per-NE/hop basis.

• iManager U2000 Mobile LCT local maintenance terminal

The Mobile LCT, a local maintenance terminal running on a smartphone, manages local and remote NEs on a per-NE/hop basis through Wi-Fi.

• iManager U2000-T unified network management system

The iManager U2000-T, a network-level management system, manages Huawei RTN, PTN, MSTP, and WDM products on transport networks in a unified manner.

• iManager U2000-M unified network management system

The iManager U2000-M, a network-level management system, manages Huawei mobile communications products in a unified manner.

U2000-M

WAN/LAN

WAN/LAN

Mobile LCT

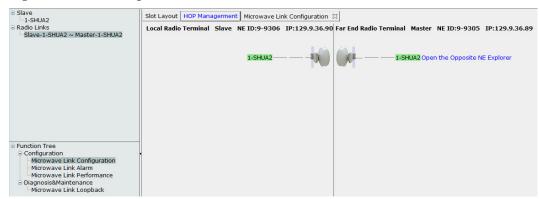
WebLCT

Figure 4-1 Network management solutions for transport networks

4.2 Web LCT

The Web LCT is a local maintenance terminal running on a PC.

The Web LCT provides the following management functions at the NE layer: NE management, alarm management, performance management, configuration management, communication management, and security management.

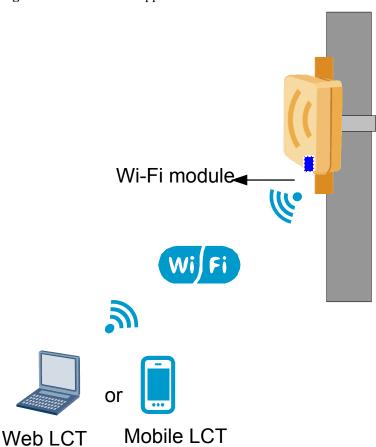

The Web LCT also provides hop management, which displays the information about the two ends of a microwave link hop graphically and enables a microwave link hop to be managed easily.

Slot Layout | Microwave Link Configuration 1-SHUA2
Radio Links Legend Slave-1-SHUA2 ~ -null Legend Description SHUA2 Not Installed Running Uninstalled 1 Running Installed Physical Board Critical Alarm Major Alarm Minor Alarm Warning Alarm Abnormal Event Tributary/Line Loopback Protection Board Status Function Tree Configuration Diagnosis&Maintenance Alarm
 Performance Communication

Figure 4-2 NE management window

Figure 4-3 HOP management window

Report



4.3 Mobile LCT

The Mobile LCT is a local maintenance terminal running on a smartphone.

The Mobile LCT manages an NE after connecting to the NE using Wi-Fi. **Figure 4-4** shows a typical application scenario.

The Mobile LCT can create NEs by searching NEs, configure NE attributes, microwave links, and DCN, and query alarms.

4.4 U2000-T

The iManager U2000-T is a network-level management system (NMS) that manages Huawei fixed-line network products in a unified manner.

The U2000-T provides topology management, which displays NE positions and connections between NEs. See Figure 4-5.

The U2000-T manages network-level alarms, performance, inventory, and security, and end-to-end service configurations. See **Figure 4-6**.

The U2000-T provides a built-in NE Explorer to manage all NEs on the topology. See **Figure 4-7**.

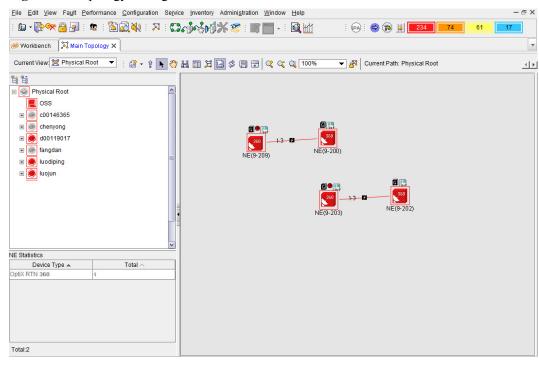
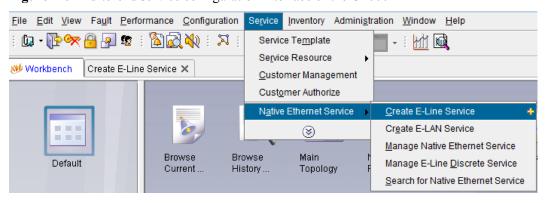



Figure 4-5 Topology management interface of the U2000-T

Figure 4-6 End-to-end service configuration interface of the U2000-T

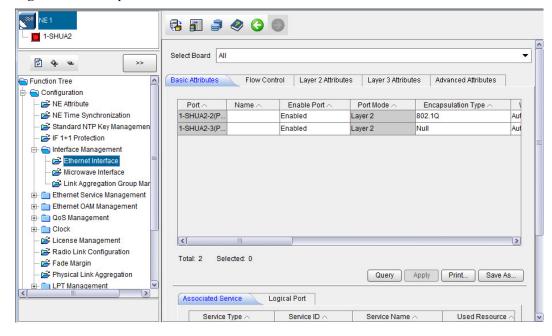


Figure 4-7 NE Explorer interface of the U2000-T

4.5 U2000-M

The U2000-M is a network-level management system that manages Huawei mobile communications products in a unified manner.

The U2000-M displays connections between RTN 360s and base stations.

The U2000-M can manage RTN 360s using its built-in NE Explorer.

5 Technical Specifications

About This Chapter

This chapter describes the technical specifications of OptiX RTN 360.

5.1 Ethernet Service Specifications

This section describes the service throughput for Native Ethernet services on a hop of microwave link.

5.2 RF Performance

This section describes major RF performance of RTN 360, including the frequency band, transmit power, and receiver sensitivity.

5.3 Antenna Performance

This section describes the major antenna performance of RTN 360, including the antenna gain, standing wave ratio (SWR), and cross polarization discrimination (XPD).

5.4 Predicted Reliability

This section describes the predicted equipment reliability of a single RTN 360 and the predicted link reliability of a hop of microwave link forming by two RTN 360s.

5.5 Integrated System Performance

Integrated system performance includes the dimensions, weight, power consumption, and power supply.

5.1 Ethernet Service Specifications

This section describes the service throughput for Native Ethernet services on a hop of microwave link.

The bit error performance of Ethernet services on RTN 360 complies with IETF RFC2544.

Throughput of Ethernet Services

Table 5-1 Throughput of Ethernet Services

Radio working modes (Modulation Scheme / Channel Spacing)	Ratio of Timeslots for Uplink Data to Those for Downlink Data (Uplink:Downlin k)	Uplink Throughput (Mbit/s)	Downlink Throughput (Mbit/s)
QPSK/200MHz	1:1	129 to 165	129 to 165
	1:2	85 to 109	176 to 225
	2:1	176 to 225	85 to 109
	1:3	62 to 80	198 to 254
	3:1	198 to 254	62 to 80
	1:4	46 to 59	214 to 274
	4:1	214 to 274	46 to 59
	1:5	39 to 50	221 to 284
	5:1	221 to 284	39 to 50
16QAM/200MHz	1:1	262 to 336	262 to 336
	1:2	173 to 221	355 to 455
	2:1	355 to 455	173 to 221
	1:3	126 to 162	403 to 516
	3:1	403 to 516	126 to 162
	1:4	97 to 125	430 to 550
	4:1	430 to 550	97 to 125
	1:5	79 to 101	449 to 576
	5:1	449 to 576	79 to 101
32QAM/200MHz	1:1	329 to 422	329 to 422
	1:2	216 to 277	445 to 570

Radio working modes (Modulation Scheme / Channel Spacing)	Ratio of Timeslots for Uplink Data to Those for Downlink Data (Uplink:Downlin k)	Uplink Throughput (Mbit/s)	Downlink Throughput (Mbit/s)
	2:1	445 to 570	216 to 277
	1:3	156 to 200	506 to 648
	3:1	506 to 648	156 to 200
	1:4	122 to 157	538 to 688
	4:1	538 to 688	122 to 157
	1:5	99 to 127	562 to 719
	5:1	562 to 719	99 to 127

NOTE

The throughput is measured assuming that untagged Ethernet frames with length ranging from 64 bytes to 9600 bytes are transmitted.

5.2 RF Performance

This section describes major RF performance of RTN 360, including the frequency band, transmit power, and receiver sensitivity.

Table 5-2 RF performance

Item	Performance
Working mode	• 200MHz/QPSK
	• 200MHz/16QAM
	• 200MHz/32QAM
Operating frequency band	59 GHz to 64 GHz
Transmit power	• QPSK: 5dBm
	• 16QAM: 3dBm
	• 32QAM: 1dBm
Receive power	-23 dBm
Receiver Sensitivity (BER = 10-6)	• 200MHz/QPSK: -68dBm
	• 200MHz/16QAM: -60dBm
	• 200MHz/32QAM: -57dBm

Item	Performance
Ratio of timeslots for uplink data to those for downlink data	5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4 and 1:5

5.3 Antenna Performance

This section describes the major antenna performance of RTN 360, including the antenna gain, standing wave ratio (SWR), and cross polarization discrimination (XPD).

Table 5-3 Antenna performance

Item	Performance
Antenna gain	34.5 dBi
SWR	10 dB
3 dB beamwidth	1.9°
XPD	21 dB
Front-to-back ratio (FBR)	> 48 dB
Regulatory compliance	ETSI class 2

5.4 Predicted Reliability

This section describes the predicted equipment reliability of a single RTN 360 and the predicted link reliability of a hop of microwave link forming by two RTN 360s.

Predicted Equipment Reliability

The equipment reliability shows the reliability of a single piece of equipment.

Table 5-4 Predicted equipment reliability

Item	Performance
MTBF (hour)	66.22 x 10 ⁴
MTBF (year)	75.59
MTTR (hour)	0.79
Availability	99.99985%

Predicted Link Reliability

The link reliability shows the reliability of a microwave link hop and all components involved.

Table 5-5 Predicted link reliability

Item	Performance
MTBF (hour)	33.11 x 10 ⁴
MTBF (year)	37.79
Availability	99.99970%

5.5 Integrated System Performance

Integrated system performance includes the dimensions, weight, power consumption, and power supply.

Mechanical Performance and Power Consumption

Item	Performance	
Dimensions (H x W x D)	192.5 mm x 192.5 mm x 70 mm	
Weight	2.5 kg	
Typical power consumption	20 W	
Power supply	 Supports power over Ethernet. The input PoE voltage ranges from - 38.4 V to - 57.6 V. 	

Electromagnetic Compatibility

- Passed CE authentication
- Compliant with ETSI EN 301 489-1
- Compliant with ETSI EN 301 489-4
- Compliant with EN 55022 class B

Lightning Protection

- Compliant with ITU-T K.20
- Compliant with ITU-T K.21
- Compliant with ITU-T K.27
- Compliant with ETSI EN 300 253.

Safety

- Passed CE authentication
- Compliant with IEC 60825
- Compliant with IEC 60215
- Compliant with IEC 60950-1
- Compliant with IEC 60950-22
- Compliant with K.20
- Compliant with K.21
- Compliant with GB 12638-1990
- Compliant with EN 41003

Environment

RTN 360 is used outdoors.

Table 5-6 Environment performance

Item		Performance
reference standards	Operating	Compliant with EN 300 019-2-4
	Transport ation	Compliant with EN 300 019-2-3 class 2.3
	Storage	Compliant with EN 300 019-2-4
Temperature	Operating	-33°C to +55°C
	Transport ation and storage	-40°C to +70°C
Protection class		IP65
Relative humidity		5% to 100%
Earthquake resistant design		Compliant with ETSI 300 019-2-4
Mechanical stres	S	Compliant with ETSI EN 300 019-2-1

6 Accessories

About This Chapter

This chapter describes all RTN 360 accessories.

6.1 Power Injector

A power injector (PI) uses DC or AC input power. It transmits both GE service signals and -48 V power signals to an RTN 360 through an Ethernet cable.

6.2 USB Flash Drives

Configuring, replacing, and upgrading RTN 360s is simple with USB flash drives, which store NE data and new software to be installed and are also used to back up configuration data.

6.3 Wi-Fi Module

A Wi-Fi module for an RTN 360 enables the Mobile LCT or Web LCT to connect to the RTN 360 using Wi-Fi, implementing contact-free configuration and maintenance.

6.1 Power Injector

A power injector (PI) uses DC or AC input power. It transmits both GE service signals and -48 V power signals to an RTN 360 through an Ethernet cable.

The RTN 360 can work with three models of Huawei PIs. **Table 6-1** lists the differences among the three models.

Table 6-1 PI differences

Model	OptiX RTN PI-DC A11	OptiX RTN PI-DC B20	OptiX RTN PI-AC B20
Appearance			
Application scenario	Equipment room or outdoor cabinet	Outdoor (A PI should not be installed at a high position on a tower.)	Outdoor (A PI should not be installed at a high position on a tower.)
Dimensions (H x W x D)	36 mm x 145.6 mm x 84 mm	250 mm x 180 mm x 52 mm	250 mm x 180 mm x 52 mm
Weight	0.5 kg	3.0 kg	3.0 kg
Power input	DC power: - 38.4 V to - 57.6 V	DC power: - 38.4 V to - 57.6 V	AC power: 90 V to 264 V, with the frequency ranging from 45 Hz to 65 Hz
P&E port count and mode	One P&E port, PSE- based power support or forcible power supply	Two P&E ports, PSE- based power support or forcible power supply	Two P&E ports, PSE- based power support or forcible power supply
DC output port	Not supported	One DC output port. Switching between DC output and PoE output is supported.	One DC output port. Switching between DC output and PoE output is supported.

For details about each model of PI, see the corresponding product description and installation guide.

6.2 USB Flash Drives

Configuring, replacing, and upgrading RTN 360s is simple with USB flash drives, which store NE data and new software to be installed and are also used to back up configuration data.

Functions and Features

USB flash drives prepared for RTN 360s store NE software and configuration data (including databases, system parameters, and scripts).

- Equipment software and scripts stored in USB flash drives are installed on RTN 360s for deployment and commissioning. With this system, users do not need to configure data onsite.
- Software, patch packages, NE databases, and system parameters are backed up to USB flash drives. This avoids the need to reconfigure data when replacing a RTN 360.
- Software of target versions stored in USB flash drives is imported to RTN 360s.
- Security features:
 - The administrator accounts and passwords (encrypted) in the RTN.CER or RTNEXTRA.CER file are used to authenticate USB flash drives.
 - Other files in USB flash drives can be encrypted.
 - The validity of files in USB flash drives can be verified.

Application Scenario

- For deployment and commissioning of an RTN 360, scripts, and software are stored on a USB flash drive. After the USB flash drive is plugged in and functioning, the RTN 360 downloads software, and scripts in sequence.
- For an upgrade or downgrade of an RTN 360, only the software of the target version is stored on a USB flash drive. After the USB flash drive is plugged in and functioning, the RTN 360 compares the versions of the running software and the software stored on the USB flash drive. If the versions are not the same, the RTN 360 automatically downloads the software from the USB flash drive for an upgrade or downgrade.
- During RTN 360 replacement, an empty USB flash drive is inserted into a faulty device, which automatically backs up its data to the drive. After the faulty device is replaced, the drive holding the backup data is inserted into the new device, which automatically downloads the backup NE data, software, and system parameters and restores the NE data.

Data uploading

A USB flash drive contains the following folders:

NOTE

The USB flash drive partition format is FAT32.

• The root directory stores an RTN.CER/RTNEXTRA.CER file and a USBSEC.CFG file (security policy file).

NOTE

- The RTN.CER/RTNEXTRA.CER file, which stores administrator-level account and password information (with password information encrypted), is used for authenticating the USB flash drive. The file is generated by a system administrator at the network management center (NMC) using a dedicated tool.
- The USBSEC.CFG file stores the list of available files in the USB flash drive and the verification information and encryption parameters of each file. When the files in the USB flash drive are being loaded to an NE, the NE verifies and decrypts the files based on the USBSEC.CFG file. If a file is not in the file list in the USBSEC.CFG file or a file fails to be verified or decrypted, the file cannot be used by the NE.
- pkg: stores the NE software.

Data is saved in the \pkg folder only when the NE software is upgraded. Otherwise, keep the folder empty.

- patch: stores the patch software.
- sysdata: stores system parameters.
- script: stores scripts.
- db: stores NE databases.
- license: stores a license.

NOTE

The license directory cannot be backed up or restored. It is usually empty.

• devicetype: stores device type parameters.

When a USB flash drive is connected to an RTN 360, the RTN 360 checks the folders on the USB flash drive in the following order:

- Checks for the RTN.CER or RTNEXTRA.CER file in the root directory. If the file
 exists, the USB flash drive is authenticated. Otherwise, the USB flash drive fails to be
 identified.
- 2. Checks the **USBSEC.CFG** file in the root directory, and verifies the integrity of files in the USB flash drive and decrypts the files based on the **USBSEC.CFG** file.
- 3. Checks the NE software folder **pkg**. If the NE software version is different from that of the local RTN 360, the RTN 360 upgrades its software.
- 4. Checks the patch software folder **patch**. If the patch software version is different from that of the local RTN 360, the RTN 360 loads the patch software from the folder.
- 5. Checks the system parameter folder **sysdata**. If the folder contains data, the RTN 360 imports system parameters from the folder.
- 6. Checks the script folder **script**. If the folder contains data, the RTN 360 imports script data from the folder.
- 7. Checks the database folder **db**. If the folder contains data and the device type under **Devicetype** is the same as the NE device type, the RTN 360 loads the database from the folder.
- 8. If any of the preceding folders contains no data or does not exist, the RTN 360 checks the next folder. If the RTN 360 finds none of the preceding folders, it exports its data to the USB flash drive.

Ensure that USB flash drives have only the preceding folders, as extra folders may lead to malfunctions.

NOTE

A device reads data from a USB flash drive at different rates in different scenarios. The user can check whether the device is reading data from a USB flash drive by observing the USB port or USB flash drive indicator.

Types of USB Flash Drives

Table 6-2 lists the types of USB flash drives supported by RTN 360. Not all USB flash drives are supported by RTN 360. If a USB flash drive of another model or capacity is required, confirm with the local Huawei office that the USB flash drive is supported by RTN 360.

Table 6-2 Types of USB flash drives

No.	Manufacturer	Model	Capacity
1	Netac	U208	4 GB

6.3 Wi-Fi Module

A Wi-Fi module for an RTN 360 enables the Mobile LCT or Web LCT to connect to the RTN 360 using Wi-Fi, implementing contact-free configuration and maintenance.

Appearance

Figure 6-1 Wi-Fi module

Specifications

Table 6-3 Wi-Fi module specifications

Item	Specifications	
Port	USB2.0 high-speed connector	
Dimensions (H x W x D)	20 mm x 14 mm x 6 mm	
Wireless mode	Compatible with IEEE 802.11b/g/n	
Maximum wireless rate	 IEEE 802.11n: 150 Mbit/s IEEE 802.11g: 54 Mbit/s IEEE 802.11b: 11 Mbit/s 	
Frequency range	2.4 GHz to 2.4835 GHz	

Item	Specifications		
Wireless transmit power	Maximum power: 20 dBm ■ IEEE 802.11b: 18±1 dBm ■ IEEE 802.11g: 15±1 dBm ■ IEEE 802.11n: 12±1 dBm		
Receiver sensitivity	 130 Mbit/s: -68 dBm@10% PER 108 Mbit/s: -68 dBm@10% PER 54 Mbit/s: -68 dBm@10% PER 11 Mbit/s: -85 dBm@8% PER 6 Mbit/s: -88 dBm@10% PER 1 Mbit/s: -90 dBm@8% PER 		
Wi-Fi encryption mode	WPA2-PSK		
Setting of the service set identifier (SSID)	Supported		
Setting whether to enable Wi-Fi	Supported		
Setting of Wi-Fi passwords	Supported		
Frequency hopping (FH)	Supported. The Wi-Fi module can automatically select a good-quality channel or be manually set to work at a fixed channel.		
Maximum transmission distance	 30 m (laptop/mobile phone) 70 m (laptop + external Wi-Fi network adapter) NOTE 30 m is obtained based on tests in which a laptop (such as Lenovo Thinkpad X230) or mobile phone (such as Huawei 8815) is used and there is no obstacle between the laptop/mobile phone and NE. The actual transmission distance may vary according to performance of the laptop or mobile phone used. 70 m is obtained based on tests in which a laptop works with an external Wi-Fi network adapter (such as Tenda W311U+) and there is no obstacle between the laptop and NE. It is recommended that an external Wi-Fi network adapter with 18 dBm transmit power, -86 dBm receiver sensitivity, and an antenna of more than 4.2 dBi gain be used or an external Wi-Fi network adapter with better performance be used. 		

 7_{Cables}

About This Chapter

This chapter describes the purpose, physical appearance, and connections of various cables used with OptiX RTN 360s.

7.1 Outdoor Network Cables

Fitted with RJ45 connectors at both ends, outdoor network cables connect to Ethernet ports.

7.2 Outdoor Optical Fiber

Outdoor optical fibers are used for transmitting optical signals, and they fit outdoor scenarios.

7.3 RSSI Cables

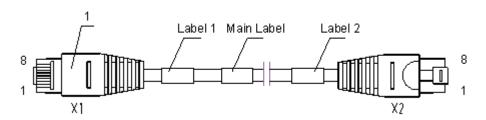
Received signal strength indicator (RSSI) cables connect RSSI ports of RTN 360s to multimeters.

7.4 RTN 360 PGND Cables

PGND cables are connected to ground screws and outdoor ground points (such as ground points on towers) so that RTN 360 is connected to the outdoor ground grid.

7.1 Outdoor Network Cables

Fitted with RJ45 connectors at both ends, outdoor network cables connect to Ethernet ports.


The GE electrical ports of PIs support the medium dependent interface (MDI), MDI crossover (MDI-X), and auto-MDI/MDI-X modes. Straight-through cables and crossover cables can be used to connect the NMS ports and GE electrical ports to MDIs or MDI-Xs. Straight-through cables are recommended if network cables are made onsite.

Cable Diagram

Figure 7-1 Network cable

Pin Assignments

Table 7-1 Pin assignments for straight-through cables

Connector X1	Connector X2	Color	Relationship	
X1.1	X2.1	White/Orange	Twisted pair	
X1.2	X2.2	Orange		
X1.3	X2.3	White/Green	Twisted pair	
X1.6	X2.6	Green		
X1.4	X2.4	Blue	Twisted pair	
X1.5	X2.5	White/Blue		
X1.7	X2.7	White/Brown	Twisted pair	
X1.8	X2.8	Brown		
Braided shield				

Connector X1 Connector X2 Color Relationship X1.1 X2.3 White/Green Twisted pair X1.2 X2.6 Green X1.3 X2.1 White/Orange Twisted pair X1.6 X2.2 Orange X1.4 X2.4 Blue Twisted pair X1.5 X2.5 White/Blue X1.7 X2.7 White/Brown Twisted pair X1.8 X2.8 Brown Braided shield

Table 7-2 Pin assignments for crossover cables

NOTE

 Straight-through cables are used between MDIs and MDI-Xs, and crossover cables are used between MDIs or between MDI-Xs. The only difference between straight-through cables and crossover cables is with regard to their pin assignments.

7.2 Outdoor Optical Fiber

Outdoor optical fibers are used for transmitting optical signals, and they fit outdoor scenarios.

Fiber Diagram

Figure 7-2 Optical fiber (Single-mode)

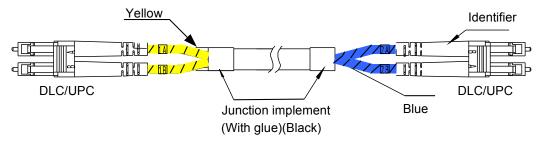
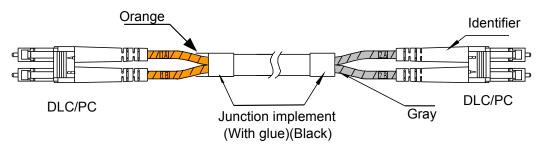



Figure 7-3 Optical fiber (Multi-mode)

NOTE

- Fiber connectors must be fit into outdoor protective tubes.
- Optical fibers already have correct receive/transmit connections at both ends.

Technical Specifications

Table 7-3 Technical specifications of optical fibers

Connector Type	Fiber Parameter
DLC/UPC	Single-mode, GYFJH 2B1.3 (low smoke and zero halogen), 7.0 mm, 2-core, 0.03 m/ 0.34 m, 2 mm, outdoor protected branch cable
DLC/PC	Multi-mode, GYFJH 2A1a (low smoke zero halogen), 7.0 mm, 2-core, 0.03 m/0.34 m, 2 mm, outdoor protected branch cable

7.3 RSSI Cables

Received signal strength indicator (RSSI) cables connect RSSI ports of RTN 360s to multimeters.

Cable Diagram

Figure 7-4 RSSI cable

Pin Assignments

An RSSI cable uses two cores to detect level signals.

Table 7-4 Pin assignments for RSSI cables

Pin	Signal
4	Ground signal
7	RSSI test level signal

7.4 RTN 360 PGND Cables

PGND cables are connected to ground screws and outdoor ground points (such as ground points on towers) so that RTN 360 is connected to the outdoor ground grid.

Cable Diagram

Figure 7-5 RTN 360 PGND cable

1. Bare crimp terminal, OT

A.1 Port Loopbacks

The loopback capabilities of ports on RTN 360 differ based on the port type.

A.2 Component Photos

This section provides photos of major components of an RTN 360.

A.3 Compliance Standards

A.1 Port Loopbacks

The loopback capabilities of ports on RTN 360 differ based on the port type.

Table A-1 Port loopbacks

Port Type	Loopback Capability
Microwave port	 Inloops at the IF port Inloops at the composite port
GE port	 Inloops at the MAC layer Inloops at the PHY layer

A.2 Component Photos

This section provides photos of major components of an RTN 360.

RTN 360

Figure A-1 Front view

Figure A-2 Rear view

Figure A-3 Ports

A.3 Compliance Standards

A.3.1 ITU-R Standards

OptiX RTN 360 complies with the ITU-R standards designed for radio equipment.

Table A-2 ITU-R standard

Standard	Description
ITU-R F.1093	Effects of multipath propagation on the design and operation of line-of-sight digital fixed wireless systems
ITU-R F.1094	Maximum allowable error performance and availability degradations to digital fixed wireless systems arising from radio interference from emissions and radiations from other sources
ITU-R F.1102	Characteristics of fixed wireless systems operating in frequency bands above about 17 GHz
ITU-R F.1191	Bandwidths and unwanted emissions of digital fixed service systems
ITU-R F.1565	Performance degradation due to interference from other services sharing the same frequency bands on a co-primary basis with real digital fixed wireless systems used in the international and national portions of a 27 500 km hypothetical reference path at or above the primary rate
ITU-R F.1605	Error performance and availability estimation for synchronous digital hierarchy terrestrial fixed wireless systems
ITU-R F.1668	Error performance objectives for real digital fixed wireless links used in 27 500 km hypothetical reference paths and connections
ITU-R F.1703	Availability objectives for real digital fixed wireless links used in 27 500 km hypothetical reference paths and connections
ITU-R F.592	Vocabulary of terms for the fixed service
ITU-R F.746	Radio-frequency arrangements for fixed service systems
ITU-R F.752	Diversity techniques for point-to-point fixed wireless systems
ITU-R F.758	Considerations in the development of criteria for sharing between the terrestrial fixed service and other services
ITU-R SM.329	Unwanted emissions in the spurious domain
ITU-R P.525	Calculation of free-space attenuation
ITU-R P.530	Propagation data and prediction methods required for the design of terrestrial line-of-sight systems
ITU-R P.676	Attenuation by atmospheric gases
ITU-R P.837	Characteristics of precipitation for propagation modelling
ITU-R P.838	Specific attenuation model for rain for use in prediction methods
ITU-R P.836	Information on water vapour density
ITU-R F.2107	characteristics and applications of fixed wireless systems operating in frequency ranges between 57 GHz and 134 GHz

Standard	Description
ITU-R SM.328	Spectra and bandwidth of emissions
ITU-R SM.1045	Frequency tolerance of transmitters
ITU-R SM.1539-1	Variation of the boundary between the out-of-band and spurious domains required for the application of Recommendations ITU-R SM.1541 and ITU-R SM.329
ITU-R SM.1541	Unwanted emissions in the out-of-band domain
ITU-R F.1519	Guidance on frequency arrangements based on frequency blocks for systems in the fixed service

A.3.2 ITU-T Standards

OptiX RTN 360 complies with the ITU-T standards.

Table A-3 ITU-T standard

Standard	Description
ITU-T G.8011	Ethernet over Transport - Ethernet services framework
ITU-T G.8011.1	Ethernet private line service
ITU-T G.8011.2	Ethernet virtual private line service
ITU-T G.8261	Timing and synchronization aspects in packet networks
ITU-T G.8262	Timing characteristics of synchronous ethernet equipment slave clock (EEC)
ITU-T G.8264	Timing distribution through packet networks
ITU-T G.8032	Ethernet ring protection switching
ITU-T G.8012	Ethernet UNI and Ethernet over transport NNI
ITU-T Y.1730	Requirements for OAM functions in Ethernet based networks and Ethernet services
ITU-T Y.1731	OAM functions and mechanisms for Ethernet based networks
ITU-T G.8031	Ethernet protection switching
ITU-T G.8010	Architecture of Ethernet layer networks

Standard	Description
ITU-T G.8021	Characteristics of Ethernet transport network equipment functional blocks
ITU-T Y.1291	An architectural framework for support of quality of service (QoS) in packet networks
ITU-T K.20	Resistibility of telecommunication equipment installed in a telecommunications centre to overvoltages and overcurrents
ITU-T K.21	Resistibility of telecommunication equipment installed in customer premises to overvoltages and overcurrents
ITU-T K.27	Bonding configurations and earthing inside a telecommunication building
ITU-T K.41	Resistibility of internal interfaces of telecommunication centres to surge overvoltages
ITU-T K.45	Resistibility of telecommunication equipment installed in the access and trunk networks to overvoltages and overcurrents

A.3.3 ETSI Standards

OptiX RTN 360 complies with the ETSI standards designed for radio equipment.

Table A-4 ETSI standard

Standard	Description
ETSI EN 301 489-1	Electromagnetic compatibility and Radio spectrum Matters(ERM); Electromagnetic Compatibility(EMC) standard for radio equipment and services; Part 1: Common technical requirements
ETSI EN 301 489-4	Electromagnetic compatibility and Radio spectrum Matters(ERM); Electromagnetic Compatibility(EMC) standard for radio equipment and services; Part 4: Specific conditions for fixed radio links and ancillary equipment and services
ETSI EN 301 390	Fixed Radio Systems; Point-to-point and Multipoint Systems; Spurious emissions and receiver immunity limits at equipment/ antenna port of Digital Fixed Radio Systems
ETSI TR 102 457	Transmission and Multiplexing (TM);Study on the electromagnetic radiated field in fixed radio systems for environmental issuesStudy on the electromagnetic radiated field in fixed radio systems for environmental issues

Standard	Description
ETSI EN 300 132-2	Environmental Engineering (EE); Power supply interface at the input to telecommunications equipment; Part 2: Operated by direct current (dc)
ETSI EN 300 019-1-1 (Class 1.2)	Environmental conditions and environmental tests for telecommunications equipment; Part 1-1: Classification of environmental conditions; Storage Class 1.2
ETSI EN 300 019-1-2 (Class 2.3)	Environmental conditions and environmental tests for telecommunications equipment; Part 1-2: Classification of environmental conditions; Transportation Class 2.3
ETSI EN 300 019-1-3 (Indoor Unit Class 3.2)	Environmental Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment; Part 1-3: Classification of environmental conditions; Stationary use at weatherprotected locations
ETSI EN 300 019-1-4 (Outdoor Unit Class 4.1)	Environmental Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment; Part 1-4: Classification of environmental conditions; Stationary use at non-weather protected locations
ETSI EN 300 019-2-1	Environmental Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment; Part 2-1: Specification of environmental tests; Storage
ETSI EN 300 019-2-2	Environmental Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment; Part 2-2: Specification of environmental tests; Transportation
ETSI EN 300 019-2-4	Environmental Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment; Part 2-4: Specification of environmental tests; Stationary use at non-weatherprotected locations
ETSI TR 102 489	Thermal Management Guidance for equipment and its deployment
ETSI EN 301 126-1	Fixed Radio Systems; Conformance testing; Part 1: Point-to-point equipment - Definitions, general requirements and test procedures
ETSI EN 301 126-3-1	Fixed Radio Systems; Conformance testing; Part 3-1: Point-to-Point antennas; Definitions, general requirements and test procedures
ETSI EN 302 217-1	Fixed Radio Systems; Characteristics and requirements for point-to- point equipment and antennas; Part 1: Overview and system- independent common characteristics
ETSI EN 302 217-2-1	Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas; Part 2-1: System-dependent requirements for digital systems operating in frequency bands where frequency co-ordination is applied

Standard	Description
ETSI EN 302 217-3	Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas; Part 3: Equipment operating in frequency bands where both frequency coordinated or uncoordinated deployment might be applied; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive
ETSI EN 302 217-4-1	Fixed Radio Systems; Characteristics and requirements for point-to- point equipment and antennas; Part 4-1: System-dependent requirements for antennas
ETSI EN 302 217-4-2	Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas; Part 4-2: Antennas; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive
ETSI TR 102 565	Fixed Radio Systems (FRS); Point-to-point systems; Requirements and bit rates of PtP Fixed Radio Systems with packet data interfaces, effects of flexible system parameters, use of mixed interfaces and implications on IP/ATM networksReq.s and bit rates of systems wit packet data interfaces applying RIC-rates not covered by PDH/SDH.
ETSI EN 300 253	Environmental Engineering (EE); Earthing and bonding of telecommunication equipment in telecommunication centres
ETSI EN 300 119	Environmental Engineering (EE); European telecommunication standard for equipment practice;
ETSI ES 201 468 Ver. 1.3.1	Electromagnetic compatibility and Radio spectrum Matters (ERM); Additional ElectroMagnetic Compatibility (EMC) requirements and resistibility requirements for telecommunications equipment for enhanced availability of service in specific applications
ETSI TR 103 820	Fixed Radio Systems; Energy efficiency metrics and test procedures for Point-to-point fixed radio systems
ETSI TR 103 053	Access, Terminals, Transmission and Multiplexing (ATTM)Fixed Radio Systems;Parameters affecting the Signal-to-Noise Ratio (SNR) and the Receiver Signal Level (RSL) threshold in point-to-point receivers; Theory and practice
ETSI TR 102 243-1	Fixed Radio Systems; Representative values for transmitter power and antenna gain to support inter- and intra-compatibility and sharing analysis; Part 1: Digital point-to-point systems

A.3.4 CEPT Standards

OptiX RTN 360 complies with the CEPT standards.

Table A-5 CEPT Standards

Standard	Description
ERC/REC 74-01	Unwanted Emissions in the Spurious Domain
ECC/REC/(02)05	Use of the 64-66 GHz frequency band for Fixed Service

A.3.5 IEC Standards

OptiX RTN 360 complies with the IEC standards related to the waveguide.

Table A-6 IEC standards

Standard	Description
IEC 60154-1	Flanges for waveguides. Part 1: General requirements
IEC 60154-2	Flanges for waveguides. Part 2: Relevant specifications for flanges for ordinary rectangular waveguides
IEC 60154-3	Flanges for waveguides. Part 3: Relevant specifications for flanges for flat rectangular waveguides
IEC 60154-4	Flanges for waveguides. Part 4: Relevant specifications for flanges for circular waveguides
IEC 60154-6	Flanges for waveguides. Part 6: Relevant specifications for flanges for medium flat rectangular waveguides
IEC 60154-7	Flanges for waveguides-Part 7: Relevant specifications for flanges for square waveguides
IEC 60153-1	Hollow metallic waveguides. Part 1 : General requirements and measuring methods
IEC 60153-2	Hollow metallic waveguides. Part 2 : Relevant specifications for ordinary rectangular waveguides
IEC 60153-3	Hollow metallic waveguides. Part 3: Relevant specifications for flat rectangular waveguides
IEC 60153-4	Hollow metallic waveguides. Part 4 : Relevant specifications for circular waveguides
IEC 60153-6	Hollow metallic waveguides. Part 6 : Relevant specifications for medium flat rectangular waveguides
IEC 60153-7	Hollow metallic waveguides. Part 7: Relevant specifications for square waveguides
IEC 60215	Safety requirements for radio transmitting equipment
IEC 60529	Degrees of protection provided by enclosures
IEC 60825	Safety of laser products

Standard	Description
IEC 60950-1	Information technology equipment — Safety — Part 1 General requirements
IEC 60950-22	Information technology equipment — Safety — Part 22 Equipment installed outdoors
IEC 60657	Non-ionizing radiation hazards in the frequency range from 10 MHz to 300 000 MHz
IEC 60297	Dimensions of mechanical structures of the 482.6 mm (19 in) series
IEC 60529	Degrees of protection provided by enclosures
IEC 721-3-4 Classes 4K2/4Z5/4Z7/4B1/4C 2(4C3)/4S2/4M5 (Outdoor Unit)	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 4: Stationary use at non-weather protected locations. Classes 4K2/4Z5/4Z7/4B1/4C2(4C3)/4S2/4M5
IEC 61000-4-2	Electromagnetic compatibility(EMC) Part 2:Testing and measurement techniques Section 2:Electrostatic discharge immunity test Basic EMC Publication
IEC 61000-4-3	Electromagnetic compatibility; Part 3:Testing and measurement techniques Section 3 radio frequency electromagnetic fields; immunity test.
IEC 61000-4-4	Electromagnetic compatibility(EMC) Part 4:Testing and measurement techniques Section 4:Electrical fast transient/burst immunity test Basic EMC publication
IEC 61000-4-5	Electromagnetic compatibility(EMC) Part 5:Testing and measurement techniques Section 5:Sruge immunity test
IEC 61000-4-6	Electromagnetic compatibility:Part 6:Testing and measurement techniques:Section 6 conducted disturbances induced by radio-frequency fields;immunity test
IEC 61000-4-29	Electromagnetic compatibility:Part 29:Testing and measurement techniques -Voltage dips,short interruptions and voltage variations on DC input power port immunity tests

A.3.6 IETF Standards

OptiX RTN 360 complies with IETF standards.

Table A-7 IETF standards

Standard	Description
RFC 791	Internet Protocol

Standard	Description
RFC 2819	Remote Network Monitoring Management Information Base
RFC 1661	The Point-to-Point Protocol(PPP)
RFC 1662	PPP in HDLC-like Framing
RFC 2615	PPP over SONET/SDH
draft-ietf-l2vpn-oam-req- frmk-05	L2VPN OAM requirements and framework
draft-ietf-l2vpn-signaling-08	Provisioning, autodiscovery, and signaling in L2VPNs
RFC 4664	Framework for layer 2 virtual private networks (L2VPNs)
RFC 3289	Management information base for the differentiated services architecture
RFC 3644	Policy quality of service (QoS) Information model
RFC 3670	Information model for describing network device QoS datapath mechanisms
RFC 2212	Specification of guaranteed quality of service
RFC 2474	Definition of the Differentiated Services Field(DS Field) in the IPv4 and IPv6 Headers
RFC 2475	An architecture for differentiated services
RFC 2597	Assured forwarding PHB group
RFC 3140	Per hop behavior identification codes
RFC 3246	An expedited forwarding PHB (Per-hop behavior)
STD 0062	An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks

A.3.7 IEEE Standards

OptiX RTN 360 complies with the IEEE standards designed for Ethernet networks.

Table A-8 IEEE standards

Standard	Description
IEEE 802.1D	Media Access Control (MAC) Bridges
IEEE 802.3	Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method and physical layer specifications

Standard	Description
IEEE 802.1Q	Virtual Bridged Local Area Networks
IEEE 802.1ag	Virtual Bridged Local Area Networks — Amendment 5: Connectivity Fault Management
IEEE 802.3ah	Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks
IEEE 802.3x	Supplements to Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications

A.3.8 Other Standards

This section describes other standards with which OptiX RTN 360 complies.

Table A-9 Other standards

Standard	Description
EN 50289	Communication cables - Specifications for test methods
EN 50392	Generic standard to demonstrate the compliance of electronic and electrical apparatus with the basic restrictions related to human exposure to electromagnetic fields (0 Hz - 300 GHz)
EN 62311	Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz - 300 GHz)
EN 50383	Basic standard for the calculation and measurement of electromagnetic field strength and SAR related to human exposure from radio base stations and fixed terminal stations for wireless telecommunications system (110 MHz - 40 GHz)
EN 50385	Product standard to demonstrate the compliances of radio base stations and fixed terminal stations for wireless telecommunication systems with the basic restrictions or the reference levels related to human exposure to ratio frequency electromagnetic fields(110MHz-40GHz)-General public
EN 55022	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement (IEC/CISPR 22:1997, modified + A1:2000); German version EN 55022:1998 + Corrigendum:2001 + A1:2000
EN 55024	Information technology equipment - Immunity characteristics - Limits and methods of measurement
EN 41003	Particular safety requirements for equipment to be connected to telecommunication networks;
EN 60215	safty requirements for radio transmitting equipment

Standard	Description
EN 60950-1	Information technology equipment — Safety — Part 1 General requirements
EN 60950-22	Information technology equipment — Safety — Part 22 Equipment installed outdoors
EN 60529	Degrees of protection provided by enclosures (IP code) (IEC 60529:1989 + A1:1999); German version EN 60529:1991 + A1:2000
EN 61000-3-2	Electromagnetic compatibility (EMC) — Part 3-2: Limits — Limits for harmonic current emissions (equipment input current< 16 A per phase)
EN 61000-3-3	Electromagnetic compatibility(EMC) - Part 3-3: Limits — Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current < - 16 A per phase and not subject toconditional connection
EN 61000-4-2	CENELEC. EMC Part 4: Testing and measurement techniques - Section 2: Electrostatic discharge immunity test
EN 61000-4-3	CENELEC. EMC Part 4: Testing and measurement techniques - Section 3: Radiated, radio-frequency, electromagnetic field immunity test.
EN 61000-4-4	CENELEC. EMC Part 4: Testing and measurement techniques - Section 4: Electrical fast transient/burst immunity test.
EN 61000-4-5	CENELEC. EMC Part 4: Testing and measurement techniques - Section 5: Surge Immunity test.
EN 61000-4-6	CENELEC. EMC Part 4: Testing and measurement techniques - Section 6: Immunity to conducted disturbances induced by radio frequency field.
AF-PHY-0086.001	AF-PHY-0086.001 Inverse Multiplexing for ATM Specification Version 1.1
AF-TM-0121.000	Traffic Management Specification
MEF2	Requirements and Framework for Ethernet Service Protection in Metro Ethernet Networks
MEF4	Metro Ethernet network architecture framework - Part 1: generic framework
MEF10	Ethernet services attributes phase 1
MEF9	Abstract Test Suite for Ethernet Services at the UNI
MEF14	Abstract Test Suite for Traffic Management Phase 1
CISPR 22(2010)	limits and methods of measurement of radio disturbance characteristics of information

Standard	Description
CISPR 24(2010)	Information Technology Equipment -Immunity characteristics - Limits and methods measurement