
IBML

VSE to OS/390 Migration Workbook

Cliff Bays ** Dave Greenough ** JohnHutchinson
Dan Janda ** Kevin Jones ** GilbertSaint-flour

International Technical Support Organization

http://www.redbooks.ibm.com

This book was printed at 240 dpi (dots per inch). The final production redbook with the RED cover will
be printed at 1200 dpi and will provide superior graphics resolution. Please see “How to Get ITSO
Redbooks” at the back of this book for ordering instructions.

SG24-2043-00

International Technical Support Organization

VSE to OS/390 Migration Workbook

October 1998

SG24-2043-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 553.

First Edition (October 1998)

This edition applies to Version 2 Release 3 of IBM Virtual Storage Extended/Enterprise Systems Architecture
(VSE/ESA), Program Number 5690-VSE, and to all subsequent releases and modifications until otherwise indicated
in new editions. It also applies to Version 2 Release 4 of OS/390 (5647-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . xvii

Tables . xix

Preface . xxi
The Team That Wrote This Redbook . xxi

Redbook Builders and Key Contributors . xxi
Authors and Significant Contributors . xxii

Comments Welcome . xxii

Part 1. Planning the Migration - An Introduction . 1

Chapter 1. Why Customers Migrate . 3
1.1 A Synopsis of This Book . 3
1.2 Traditional Reasons for Migrating . 4

1.2.1 Business Consolidation . 4
1.2.2 Mergers/Acquisit ions . 5
1.2.3 Capacity Constraints . 5
1.2.4 Image . 9

1.3 Functional Reasons for Migrating to OS/390 10
1.3.1 Applications Availability . 10
1.3.2 Systems Management . 10
1.3.3 Connectivity . 11
1.3.4 Systems Availability . 11
1.3.5 Staff Availability . 12

Chapter 2. Sizing the Effort . 13
2.1 Introduction to Sizing . 13

2.1.1 Defining the Migration Project Objectives 13
2.1.2 Areas of VSE and OS/390 Differences 14
2.1.3 Comparison of Basic VSE Functions & Components to OS/390 16

2.2 OS/390 Components/Products/Subsystems 18
2.2.1 The OS/390 Operating Environment . 19
2.2.2 Subsystem Level Comparison/Affinity 24

2.3 What Changes Between VSE and OS/390? 24
2.3.1 Philosophical Changes . 24

2.4 Who is Affected by This Migration? . 26
2.4.1 Job Roles and Normal Activities . 26

2.5 Approaches to Migration . 27
2.5.1 Disclaimer . 27
2.5.2 OS/390 Conversion and Production Implementation Strategies 27
2.5.3 VM/ESA Guest Support in Your VSE to OS/390 Migration 29
2.5.4 Staffing Strategies . 29
2.5.5 Conversion Tools . 30

2.6 Educational Requirements . 31
2.6.1 Introduction . 31

2.7 Scope of Work and Challenges . 32
2.7.1 Application Inventory . 32
2.7.2 Program Conversion . 33
2.7.3 JCL Conversion . 33
2.7.4 File Migration . 35

 Copyright IBM Corp. 1998 iii

2.7.5 Project Management . 37
2.7.6 Automated Operations . 37

2.8 Cost Considerations . 38
2.9 OS/390 Documentation Resources . 39

2.9.1 Introduction References . 39
2.9.2 Key Documents and Other References 40
2.9.3 Web URL . 40

Chapter 3. Developing the Plan . 41
3.1 Overview . 41

3.1.1 References . 41
3.1.2 Recommendations . 41

3.2 Plan Components . 45
3.2.1 Approach . 45
3.2.2 Team . 45
3.2.3 Tasks . 47
3.2.4 Milestone Events . 48
3.2.5 Education . 49

3.3 Progressive versus Mass Conversion . 49
3.3.1 Approach Differences . 49
3.3.2 Historical Perspective . 50
3.3.3 Shared Application Files and Databases 50
3.3.4 Shared Application Code . 50
3.3.5 Operations Support Staffing . 50
3.3.6 Automated Operations Tools . 50
3.3.7 Standardized Conversion Deliverables and Automation 51
3.3.8 Risk Management . 51
3.3.9 Complexity of Implementation . 51

3.4 Plan Examples . 53
3.4.1 Project Schedule . 54
3.4.2 Project Plan Example . 56

Part 2. Converting the VSE Operating System to the OS/390 Operating System . . 67

Chapter 4. Job Control Language (JCL) Differences and Considerations . . . 69
4.1 The Philosophy of JCL in System/390 . 69

4.1.1 VSE/ESA′s Job Control Language Philosophy 70
4.1.2 OS/390′s Job Control Philosophy . 70

4.2 High Level Similarities . 72
4.2.1 JCL Statement and Job Layout . 72
4.2.2 Spooling . 73

4.3 JCL Differences Between VSE and MVS . 73
4.3.1 Job Input . 73
4.3.2 JCL Expansion . 76
4.3.3 Operator Flexibility and Intervention . 76
4.3.4 Allocation of Resources . 78
4.3.5 Hidden JCL . 78
4.3.6 Device Address Specifications . 80
4.3.7 Catalogs . 81
4.3.8 Partition Dependent Codes in JCL . 81
4.3.9 Communication Region - DATE and UPSI 81
4.3.10 VSE Job Control Statements . 82
4.3.11 MVS Job Control Statements . 84
4.3.12 Comparison of VSE and MVS JCL - A Summary 86

iv VSE to OS/390 Migration Workbook

4.3.13 Summary of MVS JCL Statements . 88
4.4 JECL . 89

4.4.2 Comparison of POWER and JES2 JECL - A Summary 89
4.4.3 Summary of JES2 JECL - A Table . 90

4.5 VSE and MVS JCL Comparison Example . 91
4.5.1 Sample VSE JCL . 92
4.5.2 Sample MVS JCL . 93
4.5.3 Sample VSE plus Carry-Over . 94

Chapter 5. Disk and Tape Storage Considerations 97
5.1 Access Method Similarities and Differences 97

5.1.1 Access Methods . 97
5.1.2 Operating System Implementations . 98
5.1.3 Miscellaneous Functions . 99

5.2 Data Set Naming Considerations . 99
5.2.1 VSE Considerations . 99
5.2.2 OS/390 Considerations . 99

5.3 Storage and Space Management . 100
5.3.1 VSE Considerations . 100
5.3.2 OS/390 Considerations . 100
5.3.3 System Managed Storage . 100
5.3.4 Implementing DFSMS . 102

5.4 Tape Similarities and Differences . 103
5.4.1 Volume Interchangeability . 103
5.4.2 Standard Labels . 103
5.4.3 No Labels . 105
5.4.4 Nonstandard Labels . 106
5.4.5 Bypass Label Processing Facility in OS/390 106

5.5 DASD Similarities and Differences . 108
5.5.1 Volume Interchangeability . 108
5.5.2 DASD (VTOC) Processing . 108
5.5.3 Indexed VTOC Considerations (OS/390) 109

5.6 VSAM Differences . 110
5.6.1 Introduction . 110
5.6.2 OS/390 Catalogs . 110
5.6.3 OS/390 Catalog Management . 114
5.6.4 OS/390 - VSE/VSAM Catalog Compatibility 117
5.6.5 VSAM Functional Differences . 119
5.6.6 Data Sharing and Integrity . 125
5.6.7 Programming Languages and VSAM Support 131
5.6.8 VSAM Error and Reason Code Compatibility 131
5.6.9 DFSORT and VSAM Considerations 131

Chapter 6. CICS . 133
6.1 Introduction . 133

6.1.1 Overview CICS Transaction Server 133
6.1.2 Essential Supplemental Reading and Migration Support Material . 134
6.1.3 General Compatibility Comments . 135
6.1.4 Virtual Storage Considerations for MVS 135
6.1.5 CICS General System Considerations 136
6.1.6 CICS Macro Resource Definition Table Changes 140
6.1.7 CSD and RDO Considerations . 143
6.1.8 CICS System Data Sets Requirements 145
6.1.9 CICS System Program Interface and Exits 147
6.1.10 CICS Transaction Security . 149

Contents v

6.1.11 CICS UPSI . 149
6.1.12 Application Programming . 150
6.1.13 CICS/VSE and TS Coexistence Considerations 153
6.1.14 Testing and Problem Determination Considerations 153
6.1.15 Vendor Applications . 154

6.2 CICS with DL/I . 154

Chapter 7. ICCF and TSO . 155
7.1 Preparing to Use the System . 155

7.1.1 User Profiles . 155
7.1.2 LOGON Procedures . 157
7.1.3 Message Facilities . 157
7.1.4 Security . 157
7.1.5 Summary . 158

7.2 Using the System . 158
7.2.1 Accessing the System . 159
7.2.2 Entering and Manipulating Data . 159

7.3 Executing Programs at a Terminal . 161
7.4 Submitting Jobs for Batch Execution . 162

7.4.1 Using Command Procedures . 163
7.5 Migrating from VSE/ICCF to MVS and TSO/E 163

7.5.1 Converting ICCF Libraries . 163
7.5.2 ICCF Procedures and Macros . 167

Chapter 8. Databases . 169
8.1 DL/I and IMS/VS DB Differences . 169

8.1.1 Introduction . 169
8.1.2 MVS System Requirements . 170
8.1.3 Data Base Descriptor (DBD) . 170
8.1.4 Program Specification Block (PSB) 171
8.1.5 Batch Programming . 171
8.1.6 Utilities . 173
8.1.7 Operations . 173
8.1.8 Database Portability . 175
8.1.9 DL/I Multiple Partition Support . 178
8.1.10 Additional Information . 178

8.2 SQL/DS to DB2 for OS/390 Migration Consideration 178
8.2.1 Descriptions of Users . 178
8.2.2 Other Comparison Areas . 181
8.2.3 Summary of Migration Task . 182

Chapter 9. Telecommunications Subsystems 185
9.1 ACF/VTAM . 185

9.1.1 Product Installation . 186
9.1.2 Resource Definition and Operation . 187
9.1.3 Customization and Programming . 190
9.1.4 Network Configuration . 191

9.2 ACF/NCP . 192
9.2.1 Product Installation . 192
9.2.2 Program Generation . 192
9.2.3 Backlevel Hardware Support . 193

9.3 BTAM . 193
9.3.1 Product Installation . 193
9.3.2 Usage . 193

9.4 Migrating TCP/IP . 193

vi VSE to OS/390 Migration Workbook

9.4.1 Network Definitions . 194
9.4.2 TCP/IP Configuration . 195
9.4.3 TCP/IP Related User Data . 195
9.4.4 TCP/IP Batch Jobs . 195
9.4.5 User Written TCP/IP Applications . 195
9.4.6 Security . 196
9.4.7 Bibliography . 197

9.5 MQSeries . 197
9.5.1 MQSeries in Your Operating System Environment 198
9.5.2 Networking Definitions . 203
9.5.3 Defining MQSeries Object and Operating 203
9.5.4 MQSeries-based Applications . 205
9.5.5 Bibliography . 206

Chapter 10. POWER and JES2 . 207
10.1 JES2 Introduction . 207

10.1.1 Major Differences . 207
10.2 Implementing JES2 . 209

10.2.1 Setting Up the Required Resources 209
10.2.2 Starting JES2 . 210
10.2.3 Tailoring JES2 . 211

10.3 JES2-POWER Functional Comparison . 211
10.3.2 Input Service . 212
10.3.3 Job Scheduling . 213
10.3.4 Output Service . 215
10.3.5 Interactive User Interfaces (ICCF/CMS/TSO) 218
10.3.6 Remote Job Entry . 219
10.3.7 Network Job Entry . 220
10.3.8 Application Interfaces . 221
10.3.9 Accounting Comparisons . 223
10.3.10 RAS Characteristics . 224
10.3.11 JES2 Testing Techniques . 225

10.4 POWER/JES2 Detailed Comparisons . 225
10.4.1 Mapping POWER Parameters to JES2 Init Parms 225
10.4.2 Exit Comparisons . 230
10.4.3 POWER-JES2 Command Equivalences 231

Chapter 11. Advanced Function Printing and Print Services Facility/MVS . . 235
11.1 Introducing PSF/MVS . 235

11.1.1 Functional Comparison between PSF/VSE and PSF/MVS 235
11.1.2 Migration Effort . 235

11.2 Installing and Configuring PSF/MVS . 236
11.2.1 Defining Channel-attached Printers to MVS 236
11.2.2 Defining Network Printers . 236
11.2.3 The PSF Startup Procedures . 237
11.2.4 Defining Printers for PSF Printing . 237
11.2.5 FSS Procedure and PRINTDEV Statements 238

11.3 Setting up AFP Resources . 240
11.3.1 Migrating Resources from VSE to OS/390 240
11.3.2 Remote-Resident Resources . 240
11.3.3 Transferring Print Streams - VSE and OS/390 Coexistence 241
11.3.4 Migrating Print Applications . 241

11.4 Understanding Operational Differences 242
11.4.1 Starting and Stopping PSF . 242
11.4.2 Command Comparison . 242

Contents vii

11.5 Other Differences . 243
11.5.1 Performance . 243
11.5.2 Installation Exits . 243
11.5.3 Accounting . 244

11.6 References . 244
11.6.1 PSF/VSE Publications . 244
11.6.2 PSF/MVS Publications . 244
11.6.3 Redbooks . 244
11.6.4 Other Sources . 244
11.6.5 Tools . 244
11.6.6 Services . 245

Part 3. Converting VSE Languages to OS/390 Languages 247

Chapter 12. COBOL . 249
12.1 Introduction . 249

12.1.1 General Comments on COBOL for OS/390 and VM 249
12.1.2 Comparison of IBM COBOL Compilers 250

12.2 VSE to OS/390 Migration Considerations 250
12.2.1 Migrating Object Code . 251
12.2.2 Useful Publications . 251

12.3 Converting from DOS/VS COBOL . 252
12.3.1 DOS/VS COBOL CICS Programs . 252
12.3.2 DOS/VS COBOL Programs Containing REPORT WRITER

Statements . 253
12.4 DOS/VS COBOL and COBOL for OS/390 and VM Language Differences 253

12.4.1 Common COBOL Coding Problems 253
12.4.2 ENVIRONMENT DIVISION . 255
12.4.3 DATA DIVISION - FILE DESCRIPTION (FD) 256
12.4.4 PROCEDURE DIVISION - Input/Output 256
12.4.5 File Handling Considerations . 257

12.5 Converting from VS COBOL II . 258
12.5.1 VS COBOL II CICS Programs . 259

12.6 Converting from COBOL for VSE/ESA . 259
12.7 Some Conversion Considerations for all VSE COBOL Compilers 259

12.7.1 VSAM . 259
12.7.2 DISPLAY Statement . 259

12.8 Compiler Options . 260
12.8.1 RES/NORES . 260

12.9 Reserved Words . 263
12.9.1 Reserved Word Considerations for DOS/VS COBOL 263
12.9.2 Reserved Word Considerations for VS COBOL II and COBOL for

VSE/ESA . 265
12.10 Compiling and Running Your Converted COBOL Programs 265

Chapter 13. Assembler . 267
13.1 Assembler Products . 267
13.2 General Assembler Conversion Comments 267

13.2.1 System Interface and Macros . 268
13.2.2 Multitasking Macros . 283
13.2.3 Interrupt Handling Routines . 287
13.2.4 Virtual Storage Macros . 289
13.2.5 VSAM Macros . 290
13.2.6 Data Management Macros . 292

viii VSE to OS/390 Migration Workbook

Chapter 14. RPG II . 329
14.1 Migration from VSE to OS/390 . 329

14.1.1 Device Information . 329
14.1.2 Print Files . 329
14.1.3 Tape Labels . 330
14.1.4 Extent Exit . 330
14.1.5 Processing Options . 330
14.1.6 File Access Methods . 330
14.1.7 Calling COBOL Subprograms . 331
14.1.8 Calling PL/I Subprograms . 331

Chapter 15. PL/I . 333
15.1 Functional Differences . 333

15.1.1 EGCS (VSE) to DBCS (OS Version 2) Comments 333
15.1.2 Extended Precision . 334
15.1.3 Multitasking . 334
15.1.4 Dynamic Loading of Dependent Programs 334
15.1.5 File Organization . 334
15.1.6 Parameters Passed to a Main Program 335
15.1.7 %INCLUDE . 335

15.2 Compiler Options . 335
15.2.1 Options Specific to the DOS Compiler 335
15.2.2 Options Specific to the MVS Compiler 336
15.2.3 Execution Options . 337
15.2.4 The EXEC and PROCESS Cards . 338

15.3 Linkages Between Languages . 338
15.3.1 Linkages Supported . 338
15.3.2 Linkages not Supported . 338

15.4 ENVIRONMENT Attributes . 338
15.4.1 Not Supported in MVS . 339
15.4.2 Supported but to be Avoided . 340
15.4.3 The ″TOTAL″ Option . 340
15.4.4 The SIS Option (Sequential Insert Strategy) 340

15.5 Calling SORT from PL/I . 340
15.5.1 Interfaces Offered . 340
15.5.2 Parameters to be Passed . 340

15.6 Checkpoint-Restart in PL/I . 342
15.6.1 PLICKPT . 342
15.6.2 PLIREST . 342
15.6.3 PLICANC . 343

15.7 DUMP in PL/I Optimizer . 343
15.7.1 Output File . 343
15.7.2 Options Specific to DOS . 343
15.7.3 Options Specific to MVS . 344
15.7.4 Compatibil ity . 344

15.8 Return Codes in PL/I . 344
15.8.1 Setting Return Codes . 344
15.8.2 Return Code Values . 344

15.9 Forcing an ABEND . 344
15.9.1 Use of DISP in the JCL . 344
15.9.2 Automatic Restart . 345

15.10 Overlay Structures . 345
15.10.1 Conversion . 345
15.10.2 Overlay in MVS . 345

15.11 Storage Management in PL/I . 345

Contents ix

15.11.1 Storage Management in DOS . 345
15.11.2 Storage Management in MVS . 345

15.12 PL/I and CICS . 346
15.12.1 File Support . 346
15.12.2 Statements not Supported . 346
15.12.3 CALLing DUMP . 346
15.12.4 Execution Options . 346
15.12.5 Compatibil ity . 346
15.12.6 PL/I-CICS/VS Transaction ABEND Codes 346
15.12.7 PL/I Return from ON-units and CICS Transaction Backout 347

Chapter 16. FORTRAN . 349
16.1 VS FORTRAN in OS/390 . 349
16.2 FORTRAN Conversion Considerations . 349

Chapter 17. Language Environment (LE) . 351
17.1 Introduction . 351

17.1.1 General Comments on Language Environment 351
17.1.2 Conceptual Differences between LE/VSE and OS/390 Language

Environment . 352
17.2 VSE to OS/390 Migration Considerations 352

17.2.1 LE/VSE-conforming Languages . 352
17.2.2 Useful Publications . 353

17.3 Migrating from LE/VSE-Conforming Languages 353
17.3.1 C for VSE/ESA . 353
17.3.2 COBOL for VSE/ESA . 354
17.3.3 PL/I for VSE/ESA . 354

17.4 Migrating from Non-LE/VSE Run-time Environments 354
17.4.1 Options Mapping . 354
17.4.2 C/370 . 355
17.4.3 VS COBOL II . 355
17.4.4 DOS/VS COBOL . 356
17.4.5 DOS PL/I . 356
17.4.6 VS FORTRAN . 358
17.4.7 Migrating Interlanguage Communications Applications 358
17.4.8 Migrating Assembler Applications 359

17.5 Migrating from LE/VSE . 359
17.5.1 Run-time Options . 359
17.5.2 User Exits and Abnormal Termination Exits 364
17.5.3 Callable Services and Math Services 365
17.5.4 LE/VSE 1.4 Locales . 366

17.6 CICS . 366
17.6.1 COBOL and CICS . 366
17.6.2 Run-time Options . 366
17.6.3 User Exits and Abnormal Termination Exits 367

Chapter 18. Procedure Language REXX . 369
18.1 REXX and VM/ESA . 369
18.2 REXX and VSE/ESA . 369
18.3 REXX and TSO/E . 369
18.4 Environments . 370

18.4.1 VSE/ESA Environment . 370
18.4.2 VM/ESA Environment . 370
18.4.3 TSO/E Environment . 371
18.4.4 REXX Exec Sample for the OS/2, TSO and CMS Environments . . 371

x VSE to OS/390 Migration Workbook

18.5 Migration Issues . 371
18.5.1 REXX and SAA . 372

18.6 REXX Bibliography . 372

Part 4. Converting VSE Utilities to OS/390 Utilities . 373

Chapter 19. SORT . 375
19.1 JCL Statements . 375
19.2 Control Statements . 377
19.3 Additional DFSORT/VSE Migration Considerations 379

19.3.1 Control Statements . 379
19.3.2 ICETOOL . 380

Chapter 20. DITTO . 381
20.1 Compatibility with Previous Releases of DITTO 381
20.2 DITTO Functions that are No Longer Supported 382
20.3 DITTO Functions that are Not Recommended 383
20.4 DITTO Function Code Synonyms . 384
20.5 Batch Keywords that are No Longer Supported 384
20.6 Batch Keywords that are Not Recommended 385
20.7 DITTO/ESA Security . 385

Chapter 21. VSAM Backup/Restore . 387
21.1 VSAM Backup/Restore . 387

21.1.1 OS/390 VSAM Backup/Restore . 387
21.1.2 VSE/VSAM Backup/Restore . 387

Chapter 22. Librarian . 389
22.1 Overall Library Support . 389

22.1.1 OS/390 ISPF Overview . 390
22.1.2 OS/390 Library Management . 391

Chapter 23. LISTLOG/PRINTLOG - Printing Log Streams 393
23.1 VSE PRINTLOG Utility . 393
23.2 VSE LISTLOG Utility Program . 393
23.3 OS/390 Hardcopy Processing . 393

23.3.1 SYSLOG . 394
23.3.2 Printing SYSLOG . 394

23.4 OPERLOG . 394
23.4.1 Printing OPERLOG . 394

23.5 JES2 System Data Sets - Job Log and System Messages 395
23.6 Systems Management Recording . 395

23.6.1 Printing SMF Records . 395

Chapter 24. VSE/Fast Copy and OS/390 DFSMSdss 397
24.1 VSE/Fast Copy (Online and Stand-Alone) 397
24.2 DFSMSdss - OS/390 Component . 398

Part 5. Setting Up the Migration Environment . 399

Chapter 25. Prepare the Migration Environment 401
25.1 Introduction . 401
25.2 Install and Configure Required Hardware 402

Contents xi

25.2.1 Processor Requirements . 402
25.2.2 Devices Supported by OS/390 . 402
25.2.3 DASD Requirements . 402
25.2.4 Other Hardware Requirements . 403
25.2.5 Inter-Systems Connectivity . 404

25.3 Order and Install the OS/390 Software 405
25.3.1 Fee-based Methods of Installing OS/390 405
25.3.2 Entitled Methods of Installing OS/390 406

25.4 Set Up Standards, Procedures, and Documentation 407
25.4.1 Installation Standards . 407
25.4.2 Systems Management Procedures 409
25.4.3 Documentation . 412

25.5 Customize Your New OS/390 System . 413
25.5.2 MVS BCP Customization . 415
25.5.3 Other OS/390 Elements . 416

Chapter 26. Test Environments . 419
26.1 Introduction . 419

26.1.1 Differences in Testing ″Philosophy″ 419
26.1.2 Terminology . 419

26.2 Test Systems in the Life of the Migration 420
26.3 VM, LPAR, or Standalone Systems . 421

26.3.1 Logical Partitioning . 422
26.3.2 Software Partitioning . 423
26.3.3 Our Recommendation . 424
26.3.4 Summary . 430

26.4 Parallel Activities . 430
26.4.2 Synchronizing VSE Applications with OS/390 Versions 430

26.5 Building the Initial OS/390 Test System 430
26.5.1 OS/390 Maintenance Environment 431
26.5.2 OS/390 Test Logical Partition . 431
26.5.3 Maintaining Your OS/390 Libraries and SMP/E Zones 431

26.6 Shared DASD vs. Cloned DASD . 432
26.6.1 Shared DASD between OS/390 Test Systems (vs. Cloned DASD) . 432
26.6.2 Shared DASD between VSE and OS/390 (vs. Cloned DASD) 433

Part 6. Running Your OS/390 System . 435

Chapter 27. Orienting ICCF Users to TSO/ISPF 437
27.1 TSO/ISPF and SDSF . 437

27.1.1 Editing Data Sets . 438
27.1.2 Submitting Jobs . 439
27.1.3 Using ISPF Utilities . 439
27.1.4 Creating and Executing ISPF Applications 440
27.1.5 Managing Projects . 440
27.1.6 Tracking Jobs . 441
27.1.7 Retrieving Output . 441
27.1.8 Using SDSF for Operators . 441

Chapter 28. Orientation to OS/390 Console Operation 443
28.1 Introduction . 443

28.1.1 Operating Hardware Consoles . 443
28.2 Understanding the Operator Interfaces 443

28.2.1 Controlling Consoles . 444

xii VSE to OS/390 Migration Workbook

28.2.2 Managing Display Consoles . 444
28.2.3 Extended MCS Consoles . 445
28.2.4 Understanding Message Formats and Replies 446

28.3 Controlling the OS/390 System . 447
28.3.1 Starting the System . 447
28.3.2 Displaying System Status . 447
28.3.3 Stopping the System . 448

28.4 Controlling Devices . 448
28.4.1 Displaying the Status of Devices . 448
28.4.2 Understanding Device Allocation . 448
28.4.3 JES2 Devices . 449
28.4.4 SDSF Device Panels . 449

28.5 Controlling TSO Users, Jobs and Started Tasks 449
28.5.1 Displaying Work on Your System . 449
28.5.2 Controlling Time Sharing Users . 451
28.5.3 Controlling Batch Jobs . 451
28.5.4 Controlling Started Tasks . 451

28.6 Managing Remote Operations . 452
28.6.1 JES2 RJE Operations . 452
28.6.2 NJE Operations . 453

Chapter 29. Orientation for Utilities . 455
29.1 IEBxxx or IEHxxx . 455
29.2 IEBCOPY . 455
29.3 IDCAMS . 455
29.4 IEBGENER . 455
29.5 DFSMSdss . 456

Chapter 30. Systems Management Philosophy and Methodology 457
30.1 The Philosophy of Systems Management 457

30.1.1 Systems Management Overview . 457
30.1.2 Systems Management Scope - What Needs to be Managed? . . . 459
30.1.3 The Role of Automation . 460

30.2 Change Management . 460
30.2.1 Overview . 460
30.2.2 Tasks . 460
30.2.3 Methodology . 461

30.3 Problem Management . 461
30.3.1 Overview . 461
30.3.2 Tasks . 462
30.3.3 Methodology . 462

30.4 Performance Management . 463
30.4.1 Overview . 463
30.4.2 Tasks . 463
30.4.3 Methodology . 464

30.5 Operations Management . 465
30.5.1 Overview . 465
30.5.2 Tasks . 465
30.5.3 Methodology . 466

30.6 Security Management . 468
30.6.1 Overview . 468
30.6.2 Tasks . 468
30.6.3 Methodology . 469

30.7 Configuration Management . 469
30.7.1 Overview . 469

Contents xiii

30.7.2 Tasks . 469
30.7.3 Methodology . 470

30.8 Asset Management . 471
30.8.1 Overview . 471
30.8.2 Tasks . 471
30.8.3 Methodology . 471

30.9 Accounting Management . 471
30.9.1 Overview . 471
30.9.2 Tasks . 472
30.9.3 Methodology . 472

30.10 Summary . 472

Chapter 31. Diagnosing System Problems . 473
31.1 Problem Determination Tools . 473
31.2 Dumps . 473
31.3 IPCS . 473

31.3.1 Analyzing Dumps . 473
31.3.2 Traces . 474
31.3.3 Analyzing Traces . 474
31.3.4 Using IPCS . 474

31.4 JES2 Diagnosis . 475
31.5 SLIP . 475
31.6 Performance Tools . 475
31.7 LOGREC . 475
31.8 SYSLOG . 476
31.9 DFSMS/MVS Diagnosis . 476

31.9.1 DFSMSdfp . 476
31.9.2 DFSMShsm . 477
31.9.3 DFSMSrmm . 478
31.9.4 DFSMSdss . 478

31.10 Diagnostic Reference Publications . 478

Part 7. Converting your Applications . 479

Chapter 32. Conversion Process . 481
32.1 Conversion Process Introduction . 482

32.1.1 References . 483
32.1.2 Prerequisites . 484
32.1.3 Recommendations . 484
32.1.4 Assumptions . 486

32.2 Mass Conversion - Background, Benefits and Method 486
32.2.1 IBM MVS Migration System - Background 486
32.2.2 Mass Conversion Overview / Benefits 487
32.2.3 Mass Conversion Tools . 489
32.2.4 Automated Conversion Process . 490
32.2.5 CORTEX MS . 490

32.3 Mass Conversion Phase Overview . 493
32.4 Preparation Phases . 493

32.4.1 Phase 0: Project Management and Technical Leadership 494
32.4.2 Phase 1: Application Inventory . 495
32.4.3 OS/390 Standards and Naming Conventions 497
32.4.4 Phase 2: Conversion Specifications 499
32.4.5 Phase 3: Customization or Development of Conversion Tools . . . 501

32.5 Conversion Phases . 503

xiv VSE to OS/390 Migration Workbook

32.5.1 Program Conversion . 503
32.5.2 JCL Conversion . 504
32.5.3 Phase 4: Initial Trial Conversion . 505
32.5.4 Phase 5: OS/390 Regression Tests and Repeated Trial

Conversions . 506
32.5.5 Initialization Testing . 511
32.5.6 Unit Testing . 511
32.5.7 System Testing . 513
32.5.8 Parallel/Production Simulation Testing 514

32.6 Implementation Phases . 515
32.6.2 Phase 6: Actual Conversion and Switchover 516
32.6.3 Switchover . 517
32.6.4 Phase 7: Initial OS/390 Operations 518

Chapter 33. Conversion Services and Tools 519
33.1 Conversion Services . 519

33.1.1 IBM Global Services . 519
33.1.2 Automated Migration Services (AMS) 519

33.2 Conversion Tools . 520
33.2.1 VSE/ESA Facilities . 520
33.2.2 IBM OPTI-AUDIT for VSE . 520
33.2.3 IBM COBOL and CICS Command Level Conversion Aid (CCCA) . 522
33.2.4 SISRO - CORTEX-Migration System (CORTEX-MS) 524
33.2.5 Computer Associates . 525
33.2.6 The Source Recovery Company . 525

Part 8. Migration Experience . 527

Chapter 34. Customer Migration Example . 529
34.1 Background . 529
34.2 Environment . 529
34.3 Inventory . 530
34.4 Resources . 530
34.5 Duration . 531
34.6 Performance . 531
34.7 Benefits . 532

Part 9. Appendixes . 533

Appendix A. Education Information . 535
A.1 What Training is Needed and What Training Courses are Available . . 535

A.1.1 OS/390 Classes . 535
A.1.2 Custom Classes . 536
A.1.3 OEM Product Education . 536

A.2 When are Courses Scheduled and When are they Needed? 536
A.3 Who will Provide the Training? . 537
A.4 Where will the Training Take Place? . 537

Appendix B. Mapping ISV Products and Functions 539
B.1 The IBM Software Migration Project Office (SMPO) 539
B.2 VSE ISV System Management Products and OS/390 Compared 539

Appendix C. DFSMS Naming Conventions . 543

Contents xv

C.1 Data Set Naming Guidelines . 543
C.2 Components of a Data Set Name . 544

C.2.1 High-Level Qualifier (HLQ) . 544
C.2.2 Relative Importance . 546
C.2.3 File Contents . 546
C.2.4 User Name . 547
C.2.5 Data Set Level . 547

C.3 Things Not to Include in the Data Set Name 547
C.3.1 Department Number . 547
C.3.2 Application Location . 548
C.3.3 Management Criteria . 548
C.3.4 Output Device Type . 548
C.3.5 Expiration Date . 548
C.3.6 Access Method . 549
C.3.7 Job Name . 549

C.4 Common Applications - Naming Conventions 549
C.4.1 TSO Naming Conventions . 549
C.4.2 VSAM Data Set Naming Conventions 550
C.4.3 DB2 Naming Conventions . 550
C.4.4 Generation Data Sets . 551

Appendix D. Special Notices . 553

Appendix E. Related Publications . 557
E.1 International Technical Support Organization Publications 557

E.1.1 OS/390 and MVS Redbooks . 557
E.1.2 Other Redbooks . 557

E.2 OS/390 Product Publications . 557
E.2.1 Planning Books . 558
E.2.2 OS/390 Online Product Library . 558

E.3 Other Publications . 559
E.4 Other Sources . 559

E.4.1 Books on the Internet . 559
E.5 Redbooks on CD-ROMs . 559

How to Get ITSO Redbooks . 561
How IBM Employees Can Get ITSO Redbooks 561
How Customers Can Get ITSO Redbooks . 562
IBM Redbook Order Form . 563

Glossary . 565

List of Abbreviations . 583

Index . 591

ITSO Redbook Evaluation . 593

xvi VSE to OS/390 Migration Workbook

Figures

 1. VAE with Three Address Spaces . 6
 2. VAE with Four Address Spaces . 7
 3. VSE/ESA Storage Layout . 8
 4. OS/390 Storage Layout . 9
 5. Migration Team . 45
 6. Progressive versus Mass Conversion . 49
 7. Nonstandard Labels Supported by VSE 107
 8. Extract from WSC Flash 9741 . 113
 9. OS/390 Master and User Catalog Structure 116
10. OS/390 VSAM Integrity Provided by Cross-Region Shareoptions 126
11. Example of an MVS CICS/OS System using MRO 136
12. CICS Domains . 139
13. Log Stream Choices Resulting from Hardware and Software Used . . 146
14. MVS Data Sets used by CICS . 146
15. DL/I Functions Requiring Attention when Migrating to IMS/VS 169
16. Steps in Migrating DL/I Databases to IMS/ESA 177
17. VTAM Start Procedure . 187
18. Comparison of IBM COBOLs . 250
19. Compiler Options Comparison DOS/VS COBOL and COBOL for OS/390

and VM . 261
20. Recommended COBOL for OS/390 and VM Compiler Options for

Converted VS COBOL II Programs . 262
21. Compiler Options Comparison VS COBOL II and COBOL for OS/390

and VM . 263
22. Reserved Words in COBOL for OS/390 and VM and not in DOS/VS

COBOL . 264
23. Reserved Words in COBOL for OS/390 and VM for Unsupported

Features . 264
24. Compiler Directing Words in COBOL for OS/390 and VM 264
25. Reserved Words in COBOL for OS/390 and VM and not in VS COBOL II 265
26. Reserved Words in COBOL for OS/390 and VM for Object-Oriented

COBOL Extensions . 265
27. VSE Subroutine Linkage . 270
28. MVS Subroutine Linkage . 271
29. Sample Initiation Termination Coding . 274
30. VSE and MVS Time Degrees of Precision 279
31. Comparison of the DTFCD and DCB Macros 295
32. Card File Macros in VSE and MVS . 295
33. Card File Programs in VSE and MVS . 296
34. Comparison of the DTFPR and DCB Macros 297
35. Comparison of the DTFMT and DCB Macros 302
36. Tape File Programs in VSE and MVS . 303
37. Comparison of DTFDI and DCB macros 304
38. Comparison of the DTFSD and DCB Macros 310
39. Sequential DASD FILE Program in VSE and MVS 311
40. Comparison of DTFDA and DCB Macros 312
41. VSE Error Bytes and MVS Exception Code Bits 313
42. Record Reference by ID in VSE and MVS 317
43. Record Reference by KEY in VSE and MVS 318
44. Updating a DAM File under MVS . 318
45. Adding to a DAM File under MVS . 319

 Copyright IBM Corp. 1998 xvii

46. Loading a Sequential DAM File under VSE 319
47. Loading a Sequential DAM File under MVS 320
48. Loading a Random DAM File under MVS 320
49. Loading a DAM File of U. or V. Length Records under MVS 321
50. Processing a DAM file under VSE . 324
51. Loading a Random (Preformatted) DAM File under VSE 325
52. MVS Feedback Formats . 326
53. Relationship between CCB operands and MVS Equivalents 327
54. Relationship between DTFPH Macro and MVS equivalents 328
55. Comparison VSE and MVS Major Elements 328
56. Callable Services in LE/VSE 1.4 with Differing Names in OS/390

Language Environment . 366
57. Automated Conversion Process . 491
58. Project Phases . 493

xviii VSE to OS/390 Migration Workbook

Tables

 1. Comparison of VSE Functions & Components to OS/390 Replacements 16
 2. Who′s Normal Activities are Affected? . 26
 3. Nine Month Project . 54
 4. CNV Responsibilities . 54
 5. ABC Responsibilities . 55
 6. SER Responsibilities . 55
 7. VSE Job Control Statements Summary . 86
 8. MVS Job Control Statements . 88
 9. Overview of POWER JECL Statements . 89
10. JES2 Control Statements . 90
11. JES2 Input Sources (compared to POWER) 212
12. POWER/JES2 Job Scheduling Comparison 213
13. POWER/JES2 Output Service Comparison 215
14. FCB Name Prefixes . 217
15. POWER/ICCF, VM/CMS, and JES2/TSO Functional Comparison 219
16. Accounting Records for NJE Activities 224
17. POWER Macro to JES2 Parameter Mapping 226
18. PLINE MACRO to JES2 Parameter Mapping 228
19. PRMT MACRO to JES2 Parameter Mapping 228
20. PRMT MACRO to JES2 Parameter Mapping 229
21. PNODE MACRO to JES2 Parameter Mapping 230
22. PCPTAB MACRO to JES2 Parameter Mapping 230
23. POWER Exit to JES2 Exits . 231
24. Queue Management Commands . 232
25. Task Management Commands . 232
26. Control Commands . 233
27. Network Management Commands . 233
28. File Control Commands . 234
29. Sending Commands and Messages . 234
30. PRINTDEV Parameter Comparison . 239
31. VSE - OS/390 Command Comparison . 242
32. Useful COBOL Publications . 252
33. Action of COBOL Program Termination Statements 257
34. COBOL and PL/I: What Runs Where? . 351
35. Useful Publications . 353
36. REPORT and ISASIZE Options, C/370 and DOS PL/I 355
37. C/370 Migration Considerations . 355
38. VS COBOL II Migration Considerations 356
39. DOS/VS COBOL Migration Considerations 356
40. DOS PL/I Migration Considerations . 357
41. ILC Migration Considerations . 358
42. Option Recommendations Differing between LE/VSE 1.1 and OS/390

Language Environment . 363
43. Option Recommendations Differing between LE/VSE 1.4 and OS/390

Language Environment . 363
44. Option Recommendations for CICS Differing between LE/VSE and

OS/390 Language Environment . 367
45. OS/390 DASD Layout . 403
46. S/390 Software Product Mapping . 539

 Copyright IBM Corp. 1998 xix

xx VSE to OS/390 Migration Workbook

Preface

The purpose of this document is to provide information and guidance to
personnel involved in a VSE to OS/390 operating system change; that is, a VSE
to OS/390 migration.

The primary focus is on VSE program and file conversions, and on operational
differences between the two systems. Chapters on each of the source languages
are included. DB/DC conversions, and operational differences between POWER
and JES2 are also addressed.

Within each chapter, not only are the differences pointed out, but OS/390
implementation and suggested use recommendations are made wherever
possible. These recommendations can help the migrating customer ″better″
design their use of OS/390.

Throughout this document, the term MIGRATION refers to the entire process of
transition from a VSE environment to an OS/390 environment. The term
CONVERSION describes the process of translating and updating VSE applications
and data to meet the requirements of OS/390.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working with the International Technical Support Organization Poughkeepsie
Center.

Our thanks to Judith Jay for bringing a renewed focus to the issues, concerns
and effort required to migrate from VSE to OS/390.

Redbook Builders and Key Contributors
Cliff Bays IBM, Endicott
Bimshire Davis IBM, Chicago
Don Durand IBM, Poughkeepsie
Dan Ebaugh IBM, Gaithersburg
Patrick Fournier Managing Partner, Automated Migration Services, Walnut
Creek, CA
Dave Greenough IBM, Vermont
John Hutchinson IBM, Gaithersburg
Dan Janda IBM, Endicott
Judith Jay IBM, White Plains
Kevin Jones IBM, Endicott
Herbert Kratzer IBM, Germany
Tom Plunkett Senior Director of Systems Engineering, Automatic Data
Processing, Inc., Roseland, NJ
Gilbert Saint-flour Technical Manager, Automated Migration Services,
Livingston, NJ
John Sutera IBM, Endicott
Guenter Weigelt IBM, Germany

 Copyright IBM Corp. 1998 xxi

Authors and Significant Contributors
Riaz Ahmad IBM, Gaithersburg
Boris Barth IBM, Germany
Bette Brody IBM, Gaithersburg
Jerzy Buczak IBM, Cary
Charlie Burger IBM, San Jose
John Casey IBM, Dallas
Walt Farrell IBM, Poughkeepsie
Steve Gracin IBM, Endicott
Judson Howard IBM, Los Angeles
Stanley Jones IBM, Endicott
Bill Keene IBM, Dallas
Ulrich Kettner IBM, Germany
Bob Leicht IBM, Endicott
Richard Lewis IBM, Gaithersburg
Jim McCoy IBM, Gaithersburg
Tom Murphy IBM, Endicott
Karl Pesendorfer IBM, Vienna, Austria
Dave Pilcher IBM, Boulder
Linda Richter IBM, Poughkeepsie
Bernd Rueckert IBM, Germany
Liz Rushton IBM, Sydney, Australia
Roger Smith IBM, Poughkeepsie
Howard Turetzky IBM, Boulder
Jon vonWolfersdorf IBM, Endicott
Frank Yaeger IBM, San Jose
Holly Yamamoto-Smith IBM, San Jose

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 593 to
the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com/
For IBM Intranet users http://w3.itso.ibm.com/

• Send us a note at the following address:

redbook@us.ibm.com

xxii VSE to OS/390 Migration Workbook

Part 1. Planning the Migration - An Introduction

 Copyright IBM Corp. 1998 1

2 VSE to OS/390 Migration Workbook

Chapter 1. Why Customers Migrate

This chapter discusses the following topics:

1.2, Traditional Reasons for Migrating

1.3, Functional Reasons for Migrating to OS/390

1.1 A Synopsis of This Book
What do I need to read?

Executives: Read the following:

• Part 1, “Planning the Migration - An Introduction” on page 1
• Part 8, “Migration Experience” on page 527

System Programmers: Read the following:

• Part 1, “Planning the Migration - An Introduction” on page 1
• Part 2, “Converting the VSE Operating System to the OS/390 Operating

System” on page 67
• Part 4, “Converting VSE Utilities to OS/390 Utilities” on page 373
• Part 5, “Setting Up the Migration Environment” on page 399
• Part 6, “Running Your OS/390 System” on page 435

Operators: Read the following:

• Part 6, “Running Your OS/390 System” on page 435

Application Programmers: Read the following:

• Part 3, “Converting VSE Languages to OS/390 Languages” on page 247
• Part 7, “Converting your Applications” on page 479

This document is divided into nine parts:

• Part 1, Planning the Migration - An Introduction

The scope of effort required to migrate from VSE to OS/390 will vary from
one organization to another. Many factors must be considered when making
the decision of when and how to migrate. This part discusses the reasons
for migrating, factors to consider when sizing the effort, and developing a
migration plan.

• Part 2, Converting the VSE Operating System to the OS/390 Operating
System

In this part the conversion of the VSE system including JCL, data storage
methods, CICS, ICCF, telecommunications, spooling, and printing is
discussed. Additionally, a comparison of the use of CMS and TSO is
presented for those currently running VSE under VM.

• Part 3, Converting VSE Languages to OS/390 Languages

Conversion of the various language compilers to their equivalent OS/390
language is discussed in this part. Also, any execution time differences are
discussed.

 Copyright IBM Corp. 1998 3

• Part 4, Converting VSE Utilities to OS/390 Utilities

Conversion of the VSE utilities to their equivalent OS/390 utilities is
discussed in this part.

• Part 5, Setting Up the Migration Environment

No two Information Processing environments are alike. Hardware, software,
scheduling, personnel needs will be different in all cases. This part
discusses preparing for and tailoring the test environment, and various
hardware/software combinations and activities that can be performed in
parallel.

• Part 6, Running Your OS/390 System

The OS/390 environment is much different than the VSE environment. This
part provides an orientation to the use of TSO/ISPF, OS/390 console
operation, and OS/390 utilities. Additionally, the systems management
philosophy with OS/390 and diagnosing problems with OS/390 are discussed.

• Part 7, Converting your Applications

This part discusses the application program conversion process and some of
the conversion tools available.

• Part 8, Migration Experience

An example of a migration plan for the ABC company is discussed in this
part.

• Part 9, Appendixes

The appendixes provide useful information including a list of helpful
publications, education information, and a chart mapping Independent
Software Vendor products to OS/390 products.

1.2 Traditional Reasons for Migrating
Users migrating to MVS and OS/390 over the years have done so for a variety of
reasons. While the purpose of this document is to concentrate on the hows of
migrating and not so much the whys, it is interesting to note some of the more
typical or traditional reasons that customers migrate to OS/390.

1.2.1 Business Consolidation
Corporations, more recently, have found themselves involved in business
consolidation activities. Be it for economic and/or efficiency reasons companies
have been faced with the challenge of effectively addressing this type of change.
Consolidating the Information Technology infrastructure is just one of these
challenges. Many have found that combining the system workloads from various
parts of the newly consolidated organization has produced I/T system
requirements beyond the capacity of the VSE operating system. For example,
attempting to combine multiple VSE images into a single system image has often
created situations where multiple processor (n-way) capacity is needed. Prior to
the Turbo Dispatcher (n-way processor support) in VSE/ESA V2, OS/390 (or
MVS/ESA) provided the only solution. Another issue associated with combining
multiple images into a single system image has been the number of VSE
partitions. Similar to the case of the Turbo Dispatcher, prior to dynamic partitions
in VSE/ESA V1, OS/390 (or MVS/ESA) provided a solution to this issue.

4 VSE to OS/390 Migration Workbook

1.2.2 Mergers/Acquisitions
As with corporate consolidations, mergers and acquisitions present an equal
number of challenges when having to incorporate the I/S organizations of the
companies involved. A challenge that clearly presents itself is when the
organizations involved run different host based operating systems (such as
OS/390 and VSE/ESA). In cases where it has been decided to merge the I/S
organizations rather than run as autonomous entities, the issue of which
operating system should become the single production operating system arises.
It is often decided that because of its robust/enhanced functionality the operating
system be OS/390. This, then, requires that the VSE subsystems and applications
be converted to OS/390.

1.2.3 Capacity Constraints
Users running DOS/VSE and/or VSE/SP encountered system capacity constraints
due to the architectural design limits imposed by VSE. The need for additional
system capacity and resources due to things such as application and end user
growth found many VSE users coming up against these constraints. OS/390
provided the much needed relief for users who found themselves in this
situation. Fortunately, with the introduction of VSE/ESA V1 many of these
constraints were removed.

VSE users now find that many of the reasons, due to architectural limits, that
forced a conversion to OS/390 actually no longer exist. The following sections
describe some of these constraints in greater detail.

1.2.3.1 Virtual Storage
VSE/SP provided 24-bit addressing which supported 16 megabytes of virtual
storage. Users with the requirement for a large CICS partition, for example, were
forced to go to multiple CICS partitions when putting up a single large CICS
partition was not possible. This sometimes caused additional problems as it was
often difficult to split a single CICS application into multiple CICS partitions.
However, where possible, users chose to implement multiple CICS regions using
the CICS Multiple Region Option (MRO). Still, with the addition of multiple CICS
regions (MROs), comes the added expense of managing the MROs. And, as the
MROs numbers increase, you need system management tools, such as CICSPlex
System Manager for MVS/ESA (CICSPlex SM) to ease the system management
burden caused by multiple CICS systems.

MVS, or OS/390, provided users with virtual storage constraint relief through
31-bit addressing capabilities. However, some users found relief with virtual
address extensions (VAE) in VSE/SP V3. VSE/ESA V1 introduced 31-bit
addressing support. This now gives VSE users the ability to address up to 2GB of
virtual storage. Hence, it is now possible for VSE users with large CICS partition
requirements to have this requirement satisfied by VSE.

Chapter 1. Why Customers Migrate 5

┌─────────────────────────────┐ ─────
│ │ 	
│ SVA - 2,304K │ │
│ │ │
├─────────────────────────────┤ │
│ F1 - VSE/POWER - 832K │ 8,832K Shared Address
├─────────────────────────────┤ │ Space Area
│ F2 - ACF/VTAM - 3,648K │ │
├─────────────────────────────┤ │
│ F7 - DATABASE - 2,048K │ �
├─────────┬─────────┬─────────┤ ─────
│ │ UNUSED │ UNUSED │ 	
│ UNUSED │ 128K │ 64K │ │
│ 512K ├─────────┤ │ │
├─────────┤ ├─────────┤ │
│ F6 1.5M │F9 1,536K│ │ │
│ │ │ CICS │ │ Private Address
├─────────┼─────────┤ PROD │ 7,168K Space Area
│ F5 1.5M │ CICS │ │ │
├─────────┤ PRD1 │ │ │
│ F4 1.5M │ │ │ │
├─────────┤FA 5,504K│ F3 7.1M │ │
│ BG 1.5M │ │ │ �
├─────────┴─────────┴─────────┤ ─────
│ SUPERVISOR - 384K │
└─────────────────────────────┘ 0

Figure 1. VAE with Three Address Spaces

Figure 1 depicts a typical VSE virtual storage configuration using Virtual
Addressability Extension (VAE) introduced in VSE/SP V2. In this configuration the
largest possible address space is approximately 7MB. Therefore, a single
partition running in its own address space is limited to 7MB. Initially support was
for only three address spaces. This was later enhanced to nine.

6 VSE to OS/390 Migration Workbook

┌───────────────────────────────────────┐ ─────
│ │ 	
│ SVA - 2,304K │ │
│ │ │
├───────────────────────────────────────┤ 5,184 K
│ F1 - VSE/POWER - 832K │ │
├───────────────────────────────────────┤ │
│ F7 - DATABASE - 2,048K │ �
├─────────┬─────────┬─────────┬─────────┤ ─────
│ │ UNUSED │ UNUSED │ UNUSED │ 	
│ UNUSED │ 128K │ 64K │ 3,036K │ │
│ 512K ├─────────┤ ├─────────┤ │
├─────────┤ ├─────────┤ CICS │ │
│ F6 1.5M │F9 1,536K│ │FB 4,096K│ │
│ │ │ CICS │ TOR │ 10,816 K
├─────────┼─────────┤ PROD ├─────────┤ │
│ F5 1.5M │ CICS │ │ACF/VTAM │ │
├─────────┤ PRD1 │ │ │ │
│ F4 1.5M │ │ │ │ │
├─────────┤FA 5,504K│ F3 10.8M│F2 3,684K│ │
│ BG 1.5M │ │ │ │ �
├─────────┴─────────┴─────────┴─────────┤ ─────
│ SUPERVISOR - 384K │
└───────────────────────────────────────┘

Figure 2. VAE with Four Address Spaces

Figure 2 is an example of how a customer would relieve the limitation of a 7MB
private address space as depicted in the previous diagram. The 7MB limitation
results from cross-system functions (for example, POWER and VTAM) having to
reside in the shared area. Shared area requirements reduce the amount of
virtual storage available for private area address spaces. In the above example
ACF/VTAM is moved to a private address space from the shared area. This
results in an additional 3.5MB for the private area address spaces. When VTAM
is moved it was also necessary to move any VTAM applications into the same
address space as VTAM. In this instance customers would run a CICS Terminal
Owning Region (TOR) in the same address space with VTAM. The CICS TOR
would then communicate with one or multiple CICS Application Owning Regions
(AORs) running in another address space. The CICS AOR was often the reason
for additional private area virtual storage.

Chapter 1. Why Customers Migrate 7

│ Static │ Dynamic │
│ Partitions │ Partitions │
├──┴───────────────┤
│ │
│ SVA (31-Bit) │
├──────┬───────┬───────┬───────┬───────┬───────┬───────┬───────┤
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │

16MB │------│-------│-------│-------│-------│-------│-------│-------│
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ VSE/ │ CICS/ │ ACF/ │ │ │ │ │
│ │POWER │ VSE │ VTAM │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ BG │ F1 │ F2 │ F3 │ │ FB │ C1 │ Y1 │
├──────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┤
│ │
│ SVA (24- Bit) │
├──┤
│ │
│ SUPERVISOR │
└──┘

VSE/ESA V1 w/ 31-Bit Addressing

Figure 3. VSE/ESA Storage Layout

Figure 3 shows the virtual storage layout with VSE/ESA V1 or V2 exploiting
Enterprise Systems Architecture (ESA) and 31-bit addressing. VSE/ESA V1, with
31-bit virtual (and real) addressing support, provides virtual storage constraint
relief by extending the addressable area within a virtual address space from
16MB up to 2GB. This is a significant amount of constraint relief for both online
and batch applications running in either static or dynamic partitions.

8 VSE to OS/390 Migration Workbook

┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐ 2GB
│ │ │ │ │ │ │ │ │ │
│ J │ C │ D │ R │ T │ V │ U │ B │ B │
│ │ │ │ │ │ │ N │ │ │
│ E │ I │ F │ A │ S │ T │ I │ A │ A │
│ │ │ │ │ │ │ X │ │ │
│ S │ C │ S │ C │ O │ A │ │ T │ T │
│ │ │ │ │ │ │ S │ │ │
│ │ S │ M │ F │ │ M │ R │ C │ C │
│ │ │ │ │ │ │ V │ │ │
│ │ │ S │ │ │ │ C │ H │ H │
│ │ │ │ │ │ │ S │ │ │
├─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┤
│ │
│ MVS NUCLEUS │
└───┘ 0

Figure 4. OS/390 Storage Layout

Figure 4 depicts a typical OS/390 system including the various functional
subsystems, each running in its own address space. As in VSE/ESA, each
address space has the ability to address up to 2GB of virtual storage.

1.2.3.2 N-way Processor Support
VSE/SP did not provide support for multiple processors (that is, n-way
machines). Users, for a variety of reasons, exceeding the capacity of a single
engine (Uni-processor) found it necessary to convert to OS/390 for its
multiprocessor support. As was mentioned with virtual storage, typically these
were users with a requirement for multiple CICS and batch partitions. The Turbo
Dispatcher support in VSE/ESA V2 provided support for n-way processors.
However, in the current version of VSE/ESA V2.2 a practical limit of only being
able to support a 3-way processor exists. The number of parallel and
non-parallel tasks that exist within the system workload will determine the actual
number of processors that can be effectively utilized.

1.2.3.3 Task Quantity
As was mentioned in the case of business consolidations, task quantity relates to
the amount of concurrent work in the system. In the consolidations example
several system images (workloads) are combined into a single system image. As
was also mentioned, the previous VSE system limit of 12 partitions severely
limited the ability to run very large workloads; particularly those consolidated
workloads requiring more that 12 partitions. The solution was to run multiple VSE
images. This often created issues of managing multiple images, or deciding to
migrate to OS/390.

1.2.4 Image
One final reason that users have decided to make the conversion to OS/390 is
that of image. This particular reason is little talked about because it is used the
least. But, it is felt that it should at least be mentioned or acknowledged.

It has been felt by some users in the VSE community that VSE is the orphan of
the S/390 operating systems, ranking behind OS/390 and VM/ESA. These
concerns are partly justifiable and stem from the fact that VSE has often lacked
functionality provided in OS/390 and VM/ESA. Even when VSE has provided such
functionality it has not done so, at least from a user perspective, in a timely

Chapter 1. Why Customers Migrate 9

manner. That is, not concurrent with OS/390 and/or VM/ESA. This has lead users
to ponder whether VSE is a viable and strategic S/390 operating system. This
lack of confidence has forced these users to look at OS/390 as a more stable and
strategic operating system with a viable long term outlook. An outlook that often
catches the eye of upper I/S management and spurs the move toward OS/390.
The introduction of VSE/ESA′s exploitation of the ESA/390 platform however has
alleviated some of this doubt. It is fair to say that the focus for VSE/ESA is
support for the entry to medium sized enterprises. With this in mind, it is
reasonable to not expect the full array of functionality and support with VSE/ESA
that one would expect with OS/390. OS/390 will continue to focus on the
intermediate-large to very large ′ leading-edge′ environments.

1.3 Functional Reasons for Migrating to OS/390
Besides some of the traditional reasons discussed in the previous section, there
also exist some functional or other practical reasons for migrating to OS/390.
While there are probably other functional reasons for migrating, this section will
cover those that are typically the most common. Particularly, those that relate to
applications and systems management.

1.3.1 Applications Availability
The backbone and primary purpose of any information system is its applications.
This software, often considered mission critical, justifies the whole existence of
information systems. Mission critical applications are those applications that are
seen as most vital and crucial to the running of any business. The choice of
application software is driven by business requirements. The hardware and
software platforms required to support a given application is a secondary
decision. Thus VSE users may find that the choice of a particular application may
require the installation of another hardware and/or software platform. They may
also consider a complete migration to this other software platform. Some S/390
business applications may only support OS/390. These applications may take
advantage of some of the unique characteristics of OS/390 and/or its subsystems
such as CICS Transaction Server, DB/2 or CICSPlex System Manager. A set of
applications requiring a full function (level 2) message queuing manager, as
provided by MQSeries for OS/390, is another example of OS/390 unique
application capabilities.

With the announcement of Open Edition support in OS/390 a whole new set of
application functions are now available to the S/390 user. Specifically,
applications that were formally only available on UNIX type platforms are now
available to the S/390 user. Applications such as Lotus Domino, PeopleSoft, SAP
and full function Web serving bring additional application capability to the S/390
platform under OS/390.

1.3.2 Systems Management
Some of the traditional OS/390 strengths of high availability, systems
management, performance, scalability and capacity have also been great
attractions for the VSE user. OS/390 provides management capabilities that allow
the system to more effectively manage the workload over those capabilities
provided by VSE. Facilities such as OS/390 performance groups and the
Workload manager provide this greater workload management flexibility.

10 VSE to OS/390 Migration Workbook

OS/390 systems managed storage (DFSMS) provide enhanced system resource
allocation and management. The Hierarchical Storage Manager (HSM),
Removable Media Manager (RMM) and basic storage device allocation of
OS/390 provide functions not inherent in the VSE environment. However, some
of these functions are available from independent software vendor (ISV)
products.

1.3.3 Connectivity
Connectivity, that is the ability to connect to other systems, has been one of
those areas where VSE support has lagged behind OS/390 and VM. For example
ACF/VTAM support for channel-to-channel connections between host systems
was not introduced until VSE/AF 2.1.3. Lack of other connectivity support, that is
VTAM APPN, SNI gateway, full function TCP/IP and OSA-2, has only added to the
reasons why VSE users have decided to migrate to OS/390. However, as
mentioned, VSE/ESA has since provided support for some of these capabilities,
namely OSA-2 and VTAM APPN. VSE now enjoys virtually all of the same
communications and connectivity capabilities as OS/390 and VM.

1.3.4 Systems Availability
Systems availability has always been a strong requirement for many information
systems environments. Hardware and software technology enhancements in both
VSE and OS/390 have brought about increased system availability. OS/390,
however, has had at its core key design elements that give it premier system
availability characteristics. Advanced S/390 hardware features coupled with
OS/390 software functions give it this outstanding capability. VSE users have
found the attractiveness of this enhanced systems availability capability, along
with other features, yet another reason to embark on an OS/390 migration.

An example of OS/390 enhanced systems availability is the 3990 Concurrent
Copy function when used along with BWO (Backup-While-Open) by DFSMSdss
which allows backups to be taken with integrity even when control area and
control interval splits and data set additions (new extents or add-to-end) are
occurring for VSAM key sequenced data sets. Backup-while-open for CICS
VSAM files supports SMS managed data sets without the need to close a CICS
VSAM data set or to bring applications down to back up VSAM data sets. This
support for backing up VSAM files while open for update is provided in
conjunction with MVS Data Facility Product (MVS/DFP).

In the Parallel Sysplex environment concurrent coupling link maintenance allows
the replacement of a failing coupling link without powering the CEC down. With
DB2 for OS/390 copies of DB2 tablespaces can be made using DFSMS
concurrent copy, a process that significantly improves data availability by
reducing the time necessary to complete logically consistent copies of
mission-critical data.

Chapter 1. Why Customers Migrate 11

1.3.5 Staff Availability
In recent years S/390 application and system programming resources have
become increasingly more difficult to acquire. This is particularly true for the VSE
user. As the current information systems curriculums focus on the more current
technologies, the traditional VSE system programming, and to some degree
OS/390, skills are not being replenished. This coupled with the current high
demand for year 2000 programming resources has only added to the pile of
reasons that VSE users migrate to OS/390. While some amount of VSE skills are
transferable to OS/390, focus is placed on developing JCL and operational skills.

12 VSE to OS/390 Migration Workbook

Chapter 2. Sizing the Effort

This chapter discusses the following topics:

2.1, Introduction to Sizing

2.2, OS/390 Components/Products/Subsystems

2.3, What Changes Between VSE and OS/390?

2.4, Who is Affected by This Migration?

2.5, Approaches to Migration

2.6, Educational Requirements

2.7, Scope of Work and Challenges

2.8, Cost Considerations

2.1 Introduction to Sizing
When undertaking a project such as migrating from VSE to OS/390 attention
always turns to how much effort is really involved. The sizing effort attempts to
get a fairly reasonable handle on the amount of effort and resources needed for
such a project. It is desired to be able to estimate with some degree of
confidence the human, system and financial resource requirements. This chapter
will discuss some of the key migration activities and issues, highlighting the
considerations that will affect the scope and size of this project. We will first
define two terms that are often used throughout this publication, migration and
conversion.

Migration is the process which takes the data processing workload, and
operations from the VSE environment to the OS/390 environment. This includes a
planning phase, a preparation phase, a conversion phase and a production
implementation phase.

Conversion is the process within the migration where programs, data, and JCL
are converted, tested, and cut over to production in the OS/390 environment.

2.1.1 Defining the Migration Project Objectives
Typical migration project objectives for an OS/390 migration project include a
combination of operational needs and cost/benefit requirements.

• End-user transparency

• Minimal disruption of operations and applications support

• No overlap of dual VSE and OS/390 operations

• Standardized and automated OS/390 applications fit for automated OS/390
operations

 Copyright IBM Corp. 1998 13

2.1.2 Areas of VSE and OS/390 Differences
In order to properly assess and size the magnitude of the migration project, it is
first necessary to understand some of the basic differences between the two
operating systems. Once these differences are understood a realistic or more
reasonable project outlook can be determined. The purpose of this section is to
put into perspective these differences.

Even though both VSE and OS/390 support the IBM S/390 architecture, there are
differences that must be considered at both the subsystem and application
program level. When migrating or converting application programs from VSE to
OS/390 it is important to identify these differences. The primary differences can
be categorized as follows:

 1. Source Programs

 2. Job Control Language (JCL)

 3. Files

 4. Operations

2.1.2.1 Source Programs
The significance of the differences when dealing with program source code can
vary by many factors. The primary determining factors involved in converting
source programs have to do with the interfaces which provide services to the
application programs. These application interfaces and corresponding protocols
for requesting supervisor services are different in VSE than in OS/390.

The factors involved in converting batch programs that interface directly to the
control program and programs that interface with application subsystems are
different. Consequently, the effort and the techniques used will vary.

Source Program Inventory

The first step in assessing the scope of any application program conversion is
determining the whereabouts of all of the program source code. This task must
not be overlooked and needs to be done early in the conversion project. You will
need to determine that all executable modules have associated source code and
that all source code has associated executable modules. Executable modules
missing source code, for example, will have to somehow be recreated or
alternate plans developed to provide the program function. Conversion tools are
available to assist in this task and are discussed later in this publication.
Customers who have completed or are in the process of Year 2000 compliance
are most likely aware of this issue.

The impact of source program conversion can be reduced by positioning the VSE
production system with source programs compatible with both VSE and OS/390.
For example, moving to the Language Environment for VSE will provide language
compiler compatibility (for COBOL , PL/I and C for VSE/ESA) between VSE and
OS/390.

Batch and Online Program Conversion

The conversion of batch applications must take into account differences in the
application interfaces provided by VSE and OS/390. The significance of the
changes required in the source programs depends a great deal on the source
program language and to some extent the I/O access methods used. This

14 VSE to OS/390 Migration Workbook

document is organized by source language type and goes into great detail at
that level and includes the I/O considerations.

The conversion of the CICS applications consists of two steps. First, the VSE
version of the CICS application subsystem is replaced with an OS/390 version.
The two different versions of CICS contain the interfaces to the respective control
programs. The second step deals with the application source code itself.

In general, the interfaces provided to the applications by the two versions of
CICS are the same, the source programs do not change and need only to be
recompiled with a corresponding OS/390 compiler. However, consideration
should also be given to the fact that certain application level interfaces available
in VSE may not be available in OS/390. The macro level API is one example.
Applications written with this interface will have to be changed to use the
command level API. Any access to system level control blocks should also be
reviewed. Additional considerations will be required if the CICS application
programs are interfacing with more than the CICS subsystem. Also, there are
some source language restrictions. This document contains a section describing
the CICS, DB2 and DL/I subsystems in great detail.

In summary, when comparing online and batch programs, the effort required to
convert batch applications is much greater than online applications using
application subsystems such as CICS and DL/I. By using application subsystems
the differences in control program application interfaces become transparent to
the application programmer. The installation only needs to be concerned with
the common interface provided by the subsystem in situations where a VSE
version and an OS/390 version are both available.

2.1.2.2 Job Control Language
All VSE JCL must be converted to OS/390 JCL. Because VSE and OS/390 differ
significantly in JCL structure and syntax, this is normally one of the most
complex tasks of any migration. As in the case of batch and online source
programs, the considerations are more significant with the batch applications.
There are, however, aids available to reduce the effort required.

2.1.2.3 Files
The impact of file conversion can be reduced by positioning the VSE production
system with file formats and access methods that are compatible with both VSE
and OS/390.

VSAM files are generally compatible files. One section of this document is
dedicated exclusively to VSAM files and VSAM catalogs. Additional information
regarding VSAM file considerations can be found in the different source
language sections.

Direct Access Method (DAM) files require individual evaluation because each
can have unique characteristics. Each of the language sections has a description
on accessing DAM files. It is recommended that these file structures be
converted to relative record VSAM files where possible.

Sequential tape files are compatible between VSE and OS/390. There can be
differences in the format of the labels and how they are processed. There is a
chapter in this publication that deals exclusively with tape files.

Chapter 2. Sizing the Effort 15

Sequential DASD files are compatible between VSE and OS/390. However,
OS/390 does not support sequential (SAM) files located within VSAM managed
space. These files will have to be reloaded to different DASD areas before
OS/390 can process them.

DL/I databases are compatible with IMS databases 1 if the ″IMSCOMP″
parameter was specified during the DL/I DBD generation. If this parameter was
not specified, then reloading of the database will be necessary; that is, a VSE
positioning activity. Similarly, DB2 for OS/390 provides compatibility with DB2 for
VSE. A section on database differences is included in this publication.

Note: VSE DASD volumes can be read and processed by OS/390. VSE DASD
volumes, when first read by an OS/390 system, will have their free space areas
calculated and appropriate entries recorded in the volume′s VTOC. VSE systems
can later process these volumes as required. (Even though OS/390 has written
new records in the VTOC, VSE will ignore them.) Never, however, should both
systems have concurrent access to DASD volumes. Also, all volumes are required
by OS/390 to have unique volume serial numbers.

2.1.2.4 Operations
OS/390 operational procedures and operator commands differ significantly from
those used in VSE. The input/output spooling subsystems (VSE/POWER and
OS/390 JES) are quite different in function and operations also. Some of these
differences are addressed in this publication.

Changing operational procedures and training of operators in the operations of
OS/390 are very important tasks that must be performed during a VSE to OS/390
migration. Training courses are available to assist in this effort.

2.1.3 Comparison of Basic VSE Functions & Components to OS/390
Here is a list of some of the areas or programs that may be affected:

Table 1 (Page 1 of 3). Comparison of VSE Functions & Components to OS/390
Replacements

VSE OS/390 Comment and Reference

VSE Base Functions

IOCP
POWER (w/PNET, RJE)
EREP
MSHP
...

OS/390 Base Functions

IOCP, HCD *
JES2, JES3 (w/NJE, RJE) *
EREP *
SMP/E *
...

Application Generators

VisualAge
VisualLift
SDF/CICS & SDF II
CSP
DMS/CICS

Application Generators

VisualAge
VisualLift *
SDF II
CSP
DMS/CICS

1 IMS databases are the OS/390 equivalent of VSE DL/I databases.

16 VSE to OS/390 Migration Workbook

Table 1 (Page 2 of 3). Comparison of VSE Functions & Components to OS/390
Replacements

VSE OS/390 Comment and Reference

Languages

LE/VSE
HLASM
COBOL
PL/I
RPG II
REXX
FORTRAN
C

Languages

LE/MVS *
HLASM *
COBOL
PL/I
RPG II
REXX
FORTRAN
C / C + + *

See Part 3 page 247

Chapter 17 page 351
Chapter 13 page 267
Chapter 12 page 249
Chapter 15 page 333
Chapter 14 page 329
Chapter 18 page 369
Chapter 16 page 349

AFP Family

PSF/VSE
PPFA
OGL
Font Librar ies
...

AFP Family

PSF/MVS
PPFA
OGL
Font Librar ies
...

See Chapter 11 page 235

Network Management

VTAM (APPC, APPN)
NCP
BTAM/ES
TCP/IP
LANRES
MQSeries
NetView - CSF

eNetwork Comm. Server

VTAM (APPC, APPN) *
NCP *
BTAM/SP
TCP/IP *
LANRES *
MQSeries
NetView

See Chapter 9 page 185

CICS/VSE

CallPath
DISOSS
...

CICS Transaction Server

CallPath
DISOSS
...

See Chapter 6 page 133

Console Management

OCCF
Console Automation
(ISV)

Console Management

MCS & MPF*
SDSF *
NetView AOC
NetView

See Chapter 28 page 443

Systems Management

MSHP
DSNX
Interactive Interface
Explore (ISV)
VSE/PT
OMEGAMON (ISV)

Systems Management

SMP/E *
NetView DM
TSO/ISPF panels *
RMF *
RMF *
RMF *

See Chapter 30 page 457
TSO/ISPF Panels do not
provide the JCL
generation function of the
Interactive Interface

Development Environment

ICCF
CMS

Development Environment

TSO/E *
ISPF/PDF/SCLM *

See Chapter 7 page 155
and Chapter 27 page 437

Programming Library Mgmt:

VSE Librarian,
Panvalet (ISV)

ISPF Functions:

DM, PDF, LMF, SCLM *
DM, PDF, LMF, SCLM *

See Chapter 22 page 389

Security Manager

ACLR
ALERT (ISV)

Security Server

RACF *
RACF *

Disk Management

ICKDSF
VSAM
Dump/Restore/Fcopy
CA-Dynam/D (ISV)

DFSMS Family *

ICKDSF *
DFSMSdfp (VSAM) *
DFSMSdss *
DFSMShsm *

See Chapter 24 page 397

Tape Manager

CA-Dynam/T (ISV)

DFSMS Family *

DFSMSrmm *

Chapter 2. Sizing the Effort 17

Table 1 (Page 3 of 3). Comparison of VSE Functions & Components to OS/390
Replacements

VSE OS/390 Comment and Reference

ADSM/VSE ADSM/MVS

DITTO/ESA for VSE DITTO/ESA for OS/390 See Chapter 20 page 381

DFSORT/VSE DFSORT * See Chapter 19 page 375

Data Base Management

DL/I
DB2 (SQL/DS)
QMF

Data Base Management

IMS/DB
DB2
QMF

See Chapter 8 page 169

GDDM/VSE GDDM/MVS * See Chapter 7 page 155

Dump Analysis

Info/Analysis
(VP)

Dump Analysis

IPCS *

Job Scheduler (VP) OPC/ESA

Report Manager (VP) RMDS

NetView family

FTP

NetView family

FTP

Key: (*) = Package is an element of OS/390. (ISV) = VSE function provided by independent
Software Vendor

2.2 OS/390 Components/Products/Subsystems
Note: The terms OS/390 and MVS (including MVS/XA, MVS/SP, and MVS/ESA)
may be used interchangeably throughout this publication. OS/390, with its
integrated components, refers to the current version and all previous versions of
MVS unless otherwise noted.

Another important aspect to consider when sizing the migration is determining
which OS/390 components will be installed. This is basically determined by
assessing which OS/390 components and/or optional products provide functions
comparable to those in VSE. The previous table in this section provided a
comparison chart for this purpose. What follows is a brief description of some of
the key OS/390 components.

There was discussion about including that which is the same between the
operating systems. This can be a big item when customers are also entertaining
ideas of other operating systems. There is more closeness between VSE and
OS/390 than with RISC6000/UNIX to OS/390. The move to UNIX will require a new
start or complete rewrite.

This is a frequent consideration when customers are considering implementing
ERP Applications. They can put these core business integrated packages (for
example SAP R3, Bond, JDEdwards, Oracle) on either a UNIX or OS/390
platform.

18 VSE to OS/390 Migration Workbook

2.2.1 The OS/390 Operating Environment
This section introduces the OS/390 operating environment. A publication entitled
OS/390 Introduction and Release Guide, GC28-1725 is recommended for a better
understanding of OS/390. This book describes the information associated with
OS/390 including OS/390 books and books for participating elements.

2.2.1.1 OS/390 Product Content
The operating system environment that is called OS/390 consists of MVS/ESA SP
and its component products and functions.

Base Elements

As an example, OS/390 Version 2 Release 5 contains the base elements listed
below. Subsequent releases of OS/390 will contain similar components, their
replacements.

• System Services

− MVS/ESA SP
− Base Control Program (BCP)
− DFSMSdfp
− EREP
− ESCON Director Support
− IBM High Level Assembler for MVS
− ICKDSF
− ISPF
− JES2
− MICR/OCR Support
− MVS/Bulk Data Transfer (BDT Base)
− TSO/E
− 3270 PC File Transfer Program
− FFST
− TIOC

• Systems Management

− HCD
− ICSF
− SMP/E
− SystemView for MVS Base

• Application Enablement

− Language Environment
− DCE Application Support
− Encina Toolkit Executive
− GDDM/MVS (includes PCLK and OS/2 Link)
− OS/390 Application Enabling Technology
− SOMobjects Runtime Library
− VisualLift for OS/390 Runtime Library
− C/C++ IBM Open Class Library

Chapter 2. Sizing the Effort 19

• Distributed Computing

− UNIX Application Services (Shell, Utilities, and Debugger)
− UNIX System Services (included in the BCP)

• Distributed Computing Services

− DCE Base Services (OSF DCE level 1.1)
− DCE DFS (OSF DCE 1.2.1 level)
− DFSMS/MVS Network File System

• eNetwork Communications Server

− VTAM (includes the AnyNet function)
− IBM TCP/IP

- CICS Sockets
- Host on Demand
- IMS Sockets
- Domain Name Server and WLM support (DNS/WLM)

• Network Computing Services

− Domino Go Webserver for OS/390
- NetQuestion
- Internet Connection Secure Server

− IBM BookManager BookServer for World Wide Web

• UNIX System Services

− OS/390 UNIX System Services Application Services
− OS/390 UNIX System Services Shell & Utilities
− OS/390 UNIX System Services Debugger

• LAN Services

− LANRES
− LAN Server
− OSA Support Facility

• Softcopy Publications Support

− BookManager READ/MVS
− Softcopy Print (includes Softcopy Print for DBCS Languages)

Optional Features

These are priced as well as unpriced features included in OS/390
integration-testing. The host-based features are capable of being dynamically
enabled or disabled. As an example, here is a list of optional features for
OS/390 Version 2 Release 5:

• System Services

− JES3
− MVS/BDT File-to-File
− MVS/BDT JES3 SNA NJE

• Security Server

− OS/390 Security Server (RACF and DCE Security Server at OSF DCE level
1.1)

20 VSE to OS/390 Migration Workbook

• Systems Management Services

− DFSMS/MVS features (DFSMSdss, DFSMSrmm, DFSMShsm)
− HCM
− RMF
− SDSF

• Application Enablement Services

− DFSORT
− GDDM-PGF
− GDDM-REXX/MVS
− IBM C/C++ Compiler (with debug tool)
− IBM C/C++ Compiler (without debug tool)
− IBM High Level Assembler Toolkit
− Language Environment Data Decryption
− SOMobjects Application Development Environment
− VisualLift Application Development Environment for MVS, VSE, and VM.

• Distributed Computing Services

− DCE User Data Privacy (DES and CDMF) - OSF DCE 1.1 level
− DCE User Data Privacy (CDMF) - OSF DCE 1.1 level
− OS/390 Print Server (includes IP PrintWay/NetSpool)

• eNetwork Communications Server

− IBM TCP/IP Kerberos (DES)
− IBM TCP/IP Kerberos (non-DES)
− IBM TCP/IP Network Print Facility

• Network Computing Services

− Domino Go Webserver for OS/390 Export Security Feature
− Domino Go Webserver for OS/390 North America Secure Feature

• Softcopy Services

− BookManager BUILD/MVS

See the latest version of the OS/390 Introduction and Release Guide for an
up-to-date list of OS/390 features and complete descriptions.

2.2.1.2 MVS Subsystem and Component Terminology
The following are some of the major subsystem programs or functional support
facilities that are provided as integral components of an OS/390 system. They
can help an installation manage and control their MVS operating system
environment.

• Job Entry Subsystem/2 (JES2)

One of two MVS system facilities for spooling, job queueing, and managing
input and output. This publication will address VSE POWER to MVS JES2
migrations.

• Job Entry Subsystem/3 (JES3)

The second MVS system facility for spooling, job queueing, and managing
input and output. JES3 will not be addressed in this publication.

Chapter 2. Sizing the Effort 21

• Data Facility Storage Management Subsystem

Complementary functions of MVS/DFP and other individual products of the
Data Facility family which, together with RACF, provide a system-managed,
administrator-controlled storage environment.

• Systems Resources Manager (SRM)

A system function that determines which address spaces should be given
access to system resources (for example processor, storage, I/O), and the
rate at which each address space is allowed to consume resources. To a
large degree, an installation′s control over the system is exercised through
the SRM; that is, via SRM tuning parameters.

• Systems Management Facility (SMF)

A facility that gathers and records job accounting and other system-related
information. By creating analysis and report routines, the collected
information can be used for billing users, for analyzing workloads, and for
profiling system resource usage.

• Interactive Storage Management Facility (ISMF)

An interactive, online facility for defining and viewing the policy of how the
Storage Management Subsystem manages auxiliary storage.

• Time Sharing Option Extensions (TSO/E)

TSO/E provides interactive time sharing capabilities.

• Interactive System Productivity Facility (ISPF)

Dialog manager required for interactive applications; for example ISPF/PDF,
ISMF, and IPCS sessions.

• Interactive System Productivity Facility/Program Development Facility
(ISPF/PDF)

ISPF/PDF provides enhanced edit and browse facilities for aiding program
development and library management functions.

• Integrated Catalog Facility (ICF)

The name of the catalog in DFP that is a functional replacement for VSAM
catalogs.

• Interactive Problem Control System (IPCS)

An interactive, online facility used for diagnosing software failures; that is,
dump viewing.

• Message Processing Facility (MPF)

The facility that controls console message processing and message display.
Message processing refers to message suppression, message retention, and
the use of installation-supplied exits to control message processing.

• Global Resource Serialization (GRS)

A component of MVS designed to protect the integrity of resources,
particularly data sets on DASD volumes that are shared by two or more
systems.

22 VSE to OS/390 Migration Workbook

• System Modification Program Extended (SMP/E)

SMP/E controls software changes to modules and macros in the operating
system, using a standard format and method that help ensure system
integrity. SMP/E is required for installation and service functions.

2.2.1.3 Supporting Products
A typical OS/390 operating system environment also includes several other, both
required and optional, system-related products.

Some of these products are described in alphabetical order below.

• Data Facility Data Set Services (DFDSS)

DFDSS copies, moves, dumps, and restores data sets and volumes for
backup and recovery. It can be used to migrate data sets from one DASD
device to another. It is the product used to convert data to and from the
Storage Management Subsystem.

• Data Facility Hierarchical Storage Manager (DFHSM)

DFHSM backs up, recovers, and manages space on volumes.

• Data Facility Sort (DFSORT)

DFSORT sorts, merges, and copies data set records.

• MVS/Data Interfile Transfer, Testing, and Operations Utility (DITTO)

DITTO is a general-purpose utility program for tape, disk, and card
input/output devices. Can be used interactively under ISPF.

• Device Support Facilities (ICKDSF)

Device Support Facilities initializes DASD volumes and recovers data from
defective tracks. It can also be used to migrate to indexed VTOCs. (This is
included in the base OS/390 product.)

• Resources Access Control Facility (RACF)

RACF controls access to data processing resources.

• Resource Measurement Facility (RMF)

RMF measures and reports on the performance and availability of the
system.

• System Display and Search Facility (SDSF)

SDSF helps authorized users monitor and control the operation of an
MVS-JES2 system. SDSF consists of online panels that provide immediate
information about jobs, queues, initiators, and active tasks.

• TME 10 Information/Management

Implement, enforce, and automate administrative processes and policies in
your enterprise. TME 10 Information/Management offers you an integrated
platform of tools, services, and interfaces to accomplish this. In addition,
TME 10 Information/Management provides a centralized repository capable
of storing up to 400 Gigabyte of data per database on an MVS/ESA or OS/390
platform. It also integrates with many of Tivoli ′s TME 10 (Tivoli Management
Environment) software products.

There are of course more system-related products available to support OS/390
installations. The ones listed above are mentioned because of their broad
applicability in many environments. Not all of those listed may have applicability

Chapter 2. Sizing the Effort 23

in your environment. Each should be researched individually for installation
applicability.

2.2.2 Subsystem Level Comparison/Affinity
Various sections in this publication deal with the VSE and OS/390 subsystems
and detail their similarities and differences. Specifically, these subsystems are:

• DB2/VSE and DB2/MVS

• DL/I and IMS/DB

• CICS/VSE and CICS/ESA

• POWER and JES

• Telecommunications (VTAM, NCP, BTAM)

• ICCF and TSO

Refer to these sections for specific details of subsystem level comparison/affinity
and migration issues.

2.3 What Changes Between VSE and OS/390?
The particular items discussed in this section may have some significant impact
as you enter the OS/390 environment. How it is decided to implement the
changes in these key areas will effect the amount of effort and resources that
will be required for the migration and subsequent production environment.

2.3.1 Philosophical Changes
One of the most signification philosophical changes when going from VSE to
OS/390 is that of the design points of the two operating systems. OS/390 has at
its design point a strong focus on systems management, specifically systems
availability. Thousands of lines of operating system code is dedicated to
preventing and/or reducing IPLs, system and program ABENDs and unscheduled
downtime. This may mean a big change for those VSE environments where
frequently scheduled IPLs are a regular occurrence.

2.3.1.1 Security
Customers who have developed security policies and procedures within the VSE
environment will find developing similar policies and procedures under OS/390
fairly straightforward. However, as with many of the products providing
equivalent VSE function in the OS/390 environment actual product
implementation may be different. This applies also to the security product
chosen for OS/390. OS/390 focuses on system integrity, that is, security checking
is done prior to performing any function.

Customers who have chosen to implement little or no security with VSE may find
themselves doing so with OS/390. If this is the case then policies and procedures
will have to be developed and a security package, for example RACF, chosen to
implement these policies and procedures.

24 VSE to OS/390 Migration Workbook

2.3.1.2 Automation
VSE customers who use OCCF and/or ISV products to provide console
automation functions will find enhanced function in the OS/390 environment.
Because of the availability of functions such as DFSMSrmm and DFSMShsm
consideration will have to be given to how to best implement these functions,
starting with the development of storage and media policies. ISV products also
exist in the OS/390 environment to provide additional automation capabilities.

2.3.1.3 Console Operator Interface
VSE console operators tend to have a significant amount of interaction with the
system console. This can be referred as a ′chatty′ interface. Many batch
applications depend upon operator responses to function correctly. For example,
an operator may be required to enter date information and response verification
in order for a program to continue. Such facilities are not provided in OS/390
requiring these type of applications to be redesigned.

OS/390 provides the Message Processing Facility (MPF) which controls console
message processing and message display. MPF is similar in function to VSE
OCCF.

2.3.1.4 JCL Processing
VSE JCL syntax and structure is very forgiving and flexible. Users often exploit
this capability to enhance user productivity. For example, users often
intentionally code invalid JCL statements so that they may appear on the system
console for the correct information to be entered. This, then, provides a
somewhat crude way of creating dynamic JCL decks. This capability exists
because of the manner in which VSE POWER performs JCL processing. POWER
does JCL syntax checking at job execution time. When an invalid statement is
encountered the console operator is given the opportunity to enter the correct
statement. OS/390, however, does not provide such a capability because of the
way JES is designed. With JES, JCL syntax checking is performed at job
submission time. Jobs with invalid statements are rejected at this point and,
therefore, not executed. Consideration will need to be given to POWER
jobstreams that are designed in such a manner.

2.3.1.5 Management Disciplines
Because of OS/390′s enhanced systems management capabilities, thought needs
to be given to system management, and its various disciplines, and how it will
be implemented in the OS/390 environment. OS/390 provides functions and
capabilities in each of the systems management areas. Specifically these are:

• Change control
• Problem control
• Performance management
• Capacity planning
• Configuration management

Chapter 2. Sizing the Effort 25

2.4 Who is Affected by This Migration?

2.4.1 Job Roles and Normal Activities
The following table which lists job roles and activities is intended to link specific
activities to the appropriate job role. As such, it is also intended to act as an aid
in determining the impact of the migration project on the various I/S functions.
For example, assigning skills development to application program development
and data center operations is useful when developing the education plan for the
migration project. This will take into account the timing of who will get education
and when.

Activities

 1. Procedures
• Run Book

 2. Standards
• Coding
• New Programs
• Naming Conventions

 3. Skills Development
 4. New Tools - Application Development

Table 2. Who′s Normal Activities are Affected?

Roles Activities

1 2 3 4 5 6 7 8 9 10 11

Application Program
Development

* * * *

Applications End-Users *

Auditor *

Data Center Operations * * *

Help Desk *

Management * * *

Network Support Staff *

Performance Analyst *

Production Control * *

Quality and Testing *

RJE End-Users & Operations * *

Systems Programmers * * * * *

26 VSE to OS/390 Migration Workbook

 5. Security
 6. Performance
 7. Capacity Planning
 8. Testing
 9. Backup/Recovery
10. Disaster Planning
11. Project Plan Development

2.5 Approaches to Migration

2.5.1 Disclaimer
For the purpose of providing a more effective guide the mass migration method
was adopted as an approach or strategy in migrating. The reasons for the
choice are numerous, but they include:

• Mass migration provides a project duration that is definable. This allows for
a more accurate migration project cost estimation and sizing.

• In today′s integrated I/T environments it is more difficult to define discrete
kernels. For example, many applications currently have integrated facilities
that support the integrated nature of many business functions. This can be
found in applications such as Enterprise Resource Planning (ERP). The sales
forecasting function, for example, shares information with certain accounting
functions. This makes it difficult to separate or define discrete kernels to
migrate.

2.5.2 OS/390 Conversion and Production Implementation Strategies
There are two different strategies (or approaches) you can use in migrating
applications to OS/390. They are: (1.) the kernel/progressive approach, and (2.)
the single switchover - mass application migration approach. The decision as to
which approach to take will have a definite impact on the project, particularly on
the manner in which resources are deployed Additionally, the approach decision
will, in most cases, have the greatest impact on sizing the project. The following
discussion presents these two approaches.

2.5.2.1 Kernel/Progressive Approach
Here, an installation defines discrete application sets called kernels 2. The
conversion team uses progressive conversions of each defined kernel, placing a
converted kernel into OS/390 production on a ″when ready,″ serial basis. After a
kernel is cutover3 to OS/390 production, the next defined kernel is worked on,
converted, and implemented on OS/390. This process goes on until all
applications (kernels) are cutover to the OS/390 environment. Some points to
make about the ″kernel approach″:

2 A kernel is usually defined as all the programs and files that are needed to support a business application; for example, the
payrol l system.

3 ″Cutover″ is a term generally associated with the kernel approach. It is a word used to describe the completed conversion of
a kernel to OS/390; that is, the time when the kernel is placed in OS/390 production.

Chapter 2. Sizing the Effort 27

• OS/390 production is realized at an early time in the migration.

When the first kernel is completed it is cut over to OS/390 production. This
could be at a very early time in the migration thus providing early OS/390
feedback.

However, this may not be the advantage it appears to be. Dual OS/390 and
VSE production environments exist as VSE production (of unconverted
kernels) is required. This can be a disadvantage operationally as well as
cause problems in resource (I/O) scheduling.

Many times, because of the dual production environment, application bridges
must be built (special procedures) to allow data and catalogs to be
alternately processed by the OS/390 and then the VSE system. Also,
maintenance and development activities must be performed on both
systems, thus potentially slowing down the overall migration.

• Dedicated and rotating conversion teams are usually involved.

The system programmer contingent of the conversion team is mainly
dedicated to the migration effort. However, application programmers very
often are involved in converting their own applications with this approach.
Rotating application programmers in and out of migration efforts can be
detrimental to development activities. It can also slow down overall
effectiveness of the migration as additional time and training takes place
each time new personnel are assigned to the conversion team.

• No definite project-end date is likely to be associated with this approach.

Many times with the kernel approach, the conversion effort ″runs out of
steam″ before the project is completed. This happens after the important
bread-and-butter kernels are cutover. Then, priorities often change and the
lesser visible applications stay operational under VSE for long periods of
time. This becomes expensive to a company as additional resources are
involved in maintaining two operating systems and managing two production
environments. This is why the phrase ″it took us 18 months or two years″ is
many times muttered about a VSE to OS/390 migration.

2.5.2.2 Single Switchover - Mass Application Migration Approach
In the single switchover - mass application migration approach, all applications
are cutover to OS/390 production at the same time. (This time is often referred to
as the ″switchover″.) As applications are converted and successfully tested
under OS/390, they are ″shelved″ until switchover. 4 At switchover, VSE
operations stop in entirety and OS/390 operations commence. A comprehensive
conversion aid tool (that is, product) is almost always used with this approach.
Some of the advantages to the single switchover - mass application migration
approach are:

• OS/390 operations are deferred until project completion.

The advantage of this is that there is no dual operations. Operators run VSE
production until the conversion is over. Also, there are no special ″bridges″
that have to be built between the two systems since there is no need to
move production data back and forth between VSE and OS/390 systems.

• A dedicated conversion team is usually associated with this approach.

4 Maintenance updates can continue to be made to these ″converted″ VSE applications. The changes should be made to the VSE
source programs. Later these programs will have to be cycled back through the conversion process.

28 VSE to OS/390 Migration Workbook

A conversion team is normally chosen that will be dedicated to the project
until its end. Included with this team will be (perhaps) two application
programmers. Naturally, the number varies with the size and complexity of
the project. The team is responsible for converting all VSE applications. (As
previously mentioned a program conversion aid is normally used with this
approach.) Application programmers, not part of the project team, are not
disrupted during conversion work. They can continue to perform VSE
application development and maintenance activities.

• The migration project has a visible end.

Because the project is an important one (obviously it wouldn′ t have been
undertaken otherwise), and since no applications are cutover until all
applications are ready, the conversion effort will not lose steam. Priorities
will remain very high to complete application conversions, and to implement
OS/390 as the production system. Typically, the duration of realizing total
OS/390 production with this type of approach, is significantly less, (even up
to 50 percent less in duration), then with the kernel approach.

• Staff is better prepared, trained, and experienced with OS/390 prior to
production operations.

OS/390 skills are developed during all conversion activities; that is,
conversion activities are performed on the OS/390 system. All learning and
hands-on activities are accomplished on a non-production OS/390 system,
thereby lessening future production exposures. Since there is no dual
operations of both VSE and OS/390, operators don′ t get confused as to which
system they′re operating on.

2.5.3 VM/ESA Guest Support in Your VSE to OS/390 Migration
VM/ESA′s Guest Support has long been an important part of many VSE and
MVS(OS/390) customers operating environments. As you approach migrating
VSE to OS/390 you should consider the important roll VM/ESA plays in making
the job easier and more cost effective current and long term.

If you already have VM/ESA and you use VM/ESA′s Guest Support for running
your VSE system(s) then you already know the value VM/ESA delivers in this
environment. In migrating VSE to OS/390, VM/ESA continues to play an important
roll delivering as much or more value to your new OS/390 environment. If you
are not familiar with VM/ESA a more complete description of how to implement
multiple VSE and OS/390 images can be found in chapter 26 of this publication.
Chapter 26 also discusses the benefits and consequences of using VM/ESA and
LPAR to support multiple images both during and after the migration. For more
information on VM/ESA obtain a copy of VM/ESA V2R2.0 General Information,
GC24-5745 and VM/ESA V2R1.0 Running Guest Operations, SC24-5755.

2.5.4 Staffing Strategies

2.5.4.1 In-House Staff
There are two main strategies involved when deciding how to staff the migration
project. These typically are using existing in-house staff or hiring outside
consultants. Some considerations when using in-house staff are:

Chapter 2. Sizing the Effort 29

• Staff availability

Deciding to use in-house staff as part of the migration makes it difficult to
perform regular job responsibilities while they are involved with the
migration project. This is particularly true of applications staff as current
application development and maintenance has to be put on hold.

• Staff Skills

When using in-house staff basically the same education requirements exist
as those for outside consultants. These requirements are usually satisfied
through in-house or classroom education. However, using in-house staff for
the migration project also develops migration and conversion skills. These
skills, such as training on the migration method and use of any
migration/conversion tools, may not be of benefit after the migration project.
This may provide a reason to acquire them from an outside source.

2.5.4.2 Outside Consultants
The alternative to using in-house staff is outside consultants. As with in-house
staff, using outside consultants has its considerations. Chiefly this is the fact
that outside consultants already bring with them expert levels of skill and
experience. One of the main benefits of exploiting this skill and experience is
that it tends to shorten the duration of the project. Utilizing outside consultants
also frees existing in-house staff to perform their regular job duties. It may also
be desired to hire new system personnel that already possess OS/390 (MVS)
skills. Lastly, one of the big considerations is the amount of financial resources
that will be required to use outside consultants. The forecasted project length
and number of consultants needed are obviously the major factors. There are
consulting firms that specialize in migrations such as this. While IBM in no way
endorses or warrants their work performance, listed below are a few of the firms
that specialize in migrations:

• Automated Migration Services

• CAP-GEMINI

• IBM Global Services

• MHT Services

2.5.5 Conversion Tools
There are a number of conversion tools available to assist in the migration
project. Some of the considerations when selecting conversion tools are:

• Cost

• Education requirements

• Technical support

• Effectiveness

• Flexibility

Listed are a few of these tools. A chapter in this publication on conversion tools
provides detailed information about these tools.

• Program Translators (IBM CCCA)

• Emulation - (Computer Associates CA-DUO)

• Program Source Recovery - (Source Recovery)

30 VSE to OS/390 Migration Workbook

• Mass conversion - (Cortex-MS)

• Program inventory - (IBM OPTI-AUDIT)

2.6 Educational Requirements

2.6.1 Introduction
The educational requirements for the migration project will generally take the
form of developing OS/390 skills; that is, JCL and conversion techniques. With
the latter, strategies will have to be developed to convert things such as VSE
program source and JCL to OS/390. Education can take on the form of
classroom, self-study, on the job training, on-site, or feet to the fire. The latter
being the most undesirable. Consideration should be given to issues such as
the availability, cost, length and appropriateness of each. For example,
classroom course schedules need to be consulted to determine whether they
coincide with project timetables. Cost issues of travel and living expenses need
to be also considered. When considering outside consultants for in-house
training, they can often tailor classes to specific requirements allowing you to
get the most out of this type of education. A list of helpful courses and how to
get more course information has been included in Appendix A, “Education
Information” on page 535 in this publication.

Highlighted are some of the educational requirements for the key functional
areas.

2.6.1.1 System Programming
Education for systems programming personnel will generally include OS/390
installation and tailoring, problem determination and maintenance. Similar
education will be required for those with subsystem (for example, CICS or DB/2)
responsibility. Another source of education is the hands-on education that occurs
when OS/390 is initially installed and before it is put to any kind of productive
use. Such hands-on experience has often proven invaluable.

2.6.1.2 Application Programming
Application programming resources will most likely focus on JCL and program
development tools for the OS/390 environment. Although there is a high degree
of affinity/compatibility between the various programming languages in VSE and
OS/390, some education will be needed to understand the functional and
compatibility differences that do exist.

2.6.1.3 Operations
OS/390 console operations will be the main education requirement for the
operations staff. Courses on OS/390 and JES commands will be the most
crucial. Consideration should also be given to education on any scheduling,
console automation and/or systems management products that will be used.
Operations personnel will also need to be updated on any new procedural
and/or process changes.

Chapter 2. Sizing the Effort 31

2.7 Scope of Work and Challenges
When converting VSE applications to OS/390 several tasks have to be performed.
The following sections describe the most important work items involved and
some of the challenges which can be encountered during the execution of these
tasks:

• Application inventory

• Program conversion

• JCL conversion

• File migration

• Automated operations setup

• Project management

2.7.1 Application Inventory
For a VSE to OS/390 conversion, the application inventory is nearly always
underestimated in both duration and labor.

The main application inventory activities include:

• Determining what VSE applications must be converted to OS/390

• Retrieving and collecting the current production version of each application
item

• Transferring those items to the conversion input libraries on the OS/390
system

• Verifying that the transferred inventory has no missing or unused items

One of the challenges when establishing an application inventory for a VSE to
OS/390 conversion is that the application programs must be precisely matched
with the JCL streams (for batch applications) and CICS tables (for online
applications) to be converted. This is because of the considerable blending of
application code and VSE JCL streams (see JCL conversion below). Building
these ″work units″ adds work at project start, but it becomes a significant
deliverable at project completion, when the new OS/390 application inventory
used in production is perfectly defined and centrally stored, with no missing or
unused items.

Application inventory tools are used to identify missing and unused items.
Missing items must be retrieved or recoded (if possible from a previous version),
regression tested under VSE, and used in production under VSE before being
converted to OS/390. Unused items must be eliminated or the item using them
must be added to the application inventory. The identification, collection and
transfer of the application inventory are repeated until the verification identifies
no missing or unused items.

The application inventory often leads to a re-organization of the VSE storage.
Unique centralized libraries are defined, allocated and used to store the current
production version of any application item. Obsolete or duplicate versions are
moved to non-production archive libraries.

The application inventory may last two to four months and represent 10 to 15%
of the total application conversion effort.

32 VSE to OS/390 Migration Workbook

2.7.2 Program Conversion
The conversion of VSE application code to OS/390 is often (but falsely) believed
to be the center, most challenging, most labor consuming and most critical part
of the conversion, but it is not. With few exceptions (see VSE positioning), it is a
simple code modification which does not change program logic, and can nearly
always be applied with a simple two-pass translation tool.

VSE COBOL code must also be upgraded to the latest (COBOL for OS/390)
compiler level. But this upgrade too, requires no program logic change, and can
be applied with a simple two-pass translation tool.

In technical terms, these OS/390 and COBOL upgrade modifications are simple
code ″re-engineering″ which fall into one of the following categories:

• Syntax modification: replace a syntax pattern on one or several statements
by a similar OS/390 compatible syntax pattern.

• Device independence: eliminate block sizes and other device dependencies
from the converted code. Under OS/390, device dependent file attributes are
either coded in the JCL or determined by the system managed storage
(DFSMS) components of OS/390.

• Elimination of VSE-only features: features such as COMREG, UPSI, DATE and
USER can be replaced by calls to user-developed ad-hoc subroutines that
simulate the feature under OS/390. Some other VSE-only features, such as
the usage of VSE system macros and VSE supervisor calls from Assembler
may be more complex to convert.

The difficulty level when converting COBOL code to OS/390 is fairly similar from
one VSE installation to another, but it is not so with Assembler. The conversion
of Assembler code can be fairly easy, if VSE standard application coding was
used, or very complex, if system-dependent non-standard coding was used. In
some cases, the conversion of an Assembler program may start with a complete
redesign, in which one must identify what function or feature will still be
performed by the program, and what function or feature will be handled by the
OS/390 system software and utilities. This leads to partial or complete rewrite.
Fortunately, those situations are becoming rarer, as VSE installations
progressively eliminate their non-standard and system-dependent coding
practices.

The conversion of VSE code to OS/390 and COBOL code upgrade may last two to
four months and represent 10 to 15% of the total application conversion effort,
unless there is a significant inventory of technical non-standard Assembler
programming.

2.7.3 JCL Conversion
JCL conversion is nearly always underestimated in both duration and labor. It is
the central, most challenging, most labor consuming and most critical part of the
VSE to OS/390 conversion.

VSE JCL streams alone are not sufficient to define the flow of the associated job
streams. The sequence of steps is evident, but the file references are not always
visible. Some are hidden in the standard or partitioned labels. Some are passed
and reused from one step to the next. File reference statements (TLBL and
DLBL) coded in the JCL are not necessarily used in VSE; the program might not
open that file. It is accepted practice in VSE and doesn′ t trigger any syntax or
execution error. The file open mode (input, output) is not visible from the VSE

Chapter 2. Sizing the Effort 33

JCL: it is hidden inside the code (main or sub-program) associated with the step.
Some of the file attributes coded in the VSE JCL are superseded by the disk or
tape manager: the proper file attributes must be retrieved in the tape or disk
manager ′s catalog or in the VTOC listings. In short, it is not possible to
understand the flowchart of the job stream without retrieving and analyzing the
file opening inside programs and sub-programs, and without collecting in
formation from standard labels, partitioned labels, the VSE catalogs and VTOC
listings.

Contrary to VSE, OS/390 JCL streams generally reflect exactly the flowchart of
the job streams. All files opened within a step have a file reference (DD
statement) coded in the JCL. There are no unused file references. The mode of
open (input, output, extend) of the file is coded in the OS/390 JCL (disposition).

Therefore, when converting VSE JCL streams to OS/390, whether manually or
automatically, ″reverse engineering″ techniques are first used to rebuild the job
stream flowcharts from:

• VSE JCL streams

• program conversion (block sizes, device related information, open mode)

• standard and partitioned labels

• VSE catalogs and VTOC listings

This is the most complicated part of the JCL conversion, not only because it
requires you to collect and coordinate file reference information coming from
different origins, but also because understanding the application job stream
requires:

1 Understanding of application data flows (from enterprise-wide
cross-references between files and steps)

2 Classification of data flows (that is, files) according to data life cycles:

• Permanent
• Handoff
• Passed temporary file
• Work (step-level temporary file)
• Backup
• External input or output
• Edition or report

3 Definition and implementation of file management strategies based on the
file classification, for example:

• Usage of GDG for permanent, handoff or backup sequential files

• Cataloging of passed temporary files and their deletion after last usage

• Usage of OS/390 ″&&″ work files for step-level temporary files

• and so on

4 Generation of OS/390 JCL, DFSMS constructs and VSE to OS/390 file
migration procedures reflecting the understanding of data flows and their
classification.

To illustrate the complexity of VSE JCL conversion and its underlying
identification and understanding of data flows, many VSE labels and even
physical DASD locations are shared by ″VSE files″ which might (although not
always) have the same record length or record layout, but are true separate data

34 VSE to OS/390 Migration Workbook

flows. For example: You can have hundreds of files with the same name, for
example ″WORK1″. WORK1 can exist in different jobs. Most of the time the
WORK1 files will be different from and unrelated to each other. You can however
have JobA use a file named WORK1 and JobB running at the same time and
also using a file called WORK1. JobA WORK1 gets passed to Job3. Job3 runs
and uses WORK1 at a later time. WORK1 in JobB is local use only. The issue is
to distinguish the differences between the WORK1 file in JobA and JobC. If these
files become intermixed or used by the wrong Job it can be complicated to sort
out. There is no data exchanged through those file references. Only analyzing
the complete file/step cross-references with associated open modes and
attributes allows identifying these situations. When migrating to OS/390, it is
critical to identify those data flows as separate OS/390 files. In the worst case
scenario, it would create execution or JCL errors. In the best case, it would
create unwanted contentions, when concurrent jobs try to access the ″same″ file:
OS/390 will allow more job multi-threading than VSE, if contentions are not an
issue.

Once the steps above are completed, ″Forward engineering″ techniques are
used to generate OS/390 JCL streams that match the application job streams
while complying with new OS/390 standards and naming conventions. This is the
easiest part of the VSE to OS/390 JCL conversion.

The conversion of VSE JCL to OS/390 may last three to five months and
represent 40 to 50% of the total application conversion effort.

2.7.4 File Migration
File migration can only be as good as JCL conversion. This is because the most
challenging parts of the file migration, identifying and classifying all files
according to their life, and the tape to disk device migration, are for the most
part a by-product of JCL conversion.

VSE files and databases can either be migrated ″in-place″ or by copy. Both
techniques can be combined in the overall VSE to OS/390 file migration strategy.

In-place migration is by far the quickest, therefore the less disruptive (very short
operations outage). Entire VSE data centers with extremely large application
data pools have been migrated to OS/390 in an hour. But by altering the VSE
production environment, it prevents instant return to VSE. It also complicates,
limits or even prevents the implementation of DFSMS, at least at start: natural
production cycles may be used to replace the sequential files migrated in place
by new DFSMS-controlled versions.

File copy takes longer, but with appropriate configuration and planning, large
VSE installations are routinely migrated in mass in only four to eight hours. If the
VSE disk space is unaltered by the file migration, instant VSE fallback is
possible. This technique facilitates full size DFSMS implementation from the very
start of OS/390 operations.

Developing a file migration strategy and associated procedures (VSE and OS/390
file migration JCL streams) is not very difficult, technically speaking. Migrating
VSE production files to OS/390 for conversion regression tests allows rehearsing
and finalizing the procedures that will later on be used for the actual file
migration and operations switchover.

Chapter 2. Sizing the Effort 35

The main challenge is the identification and classification of files for the
migration. All files that will be used as input to a job after the switchover to
OS/390 operations must be migrated. Files recreated by the first OS/390
production cycles do not need to be migrated, and are better off not being
migrated (at least temporary files, cataloged or not).

The task of selecting files for the migration to OS/390 is easier for those files
accessed by online applications. This is because they are in relatively small
numbers (150 to 300), permanently allocated, often uniquely identified (for
example through standard labels), and because their list is fairly stable over
time. CICS tables list all those files, and more. The only challenge with online
applications is to identify and eliminate obsolete CICS table entries.

The real selection challenge is with batch applications. The list of all files
(separate data flows) accessed by batch applications is typically in the hundreds.
These files are usually not monitored or kept current. Identification of their use is
complicated by reuse of the same VSE file name or even disk space for
completely separate data flows. As explained in the JCL conversion section
above, it takes a global enterprise-wide view of the step/file cross references to:

• Truly understand the VSE data flows,

• Separate and identify each of them,

• Classify them according to their life cycle (permanent, handoff, backup,
work),

• Apply an appropriate OS/390 migration strategy to each one.

Device migration is the second file migration challenge. Many VSE installations
tend to be tape (not disk) oriented. OS/390 should be disk and DFSMS oriented,
not tape oriented. This means that:

• VSE disk files are migrated to OS/390 disk files

• Most VSE non-backup tape files are migrated to OS/390 disk files, with the
exception of external (shipped) input or output tapes

• VSE backup tape files created within application job streams may be
migrated to OS/390 tape files. But with DFSMS, they may be created under
OS/390 on disk by the OS/390 job stream and copied to tape ″out-of-sync″
with job execution by HSM in a technique called ″disk buffering″ (see OS/390
standards).

It takes a prolonged simulated production test to assess the match of the new
OS/390 JCL streams, HSM archival strategies and DFSMS constructs with the
available disk space. Hardware configuration constraints and on-going VSE
operations do not always allow getting a good feel for the performance of future
OS/390 native operations.

The differences in device utilization strategies between VSE and OS/390 greatly
influence the file migration. Those differences are defined by the OS/390
standards ′ decisions made while converting the JCL.

The VSE to OS/390 file migration is developed progressively over a period of
three to five months, while performing the regression tests, and assuming that
file identification and device migration are accounted for with JCL conversion, it
represents only 5 to 10% of the total application conversion effort.

36 VSE to OS/390 Migration Workbook

2.7.5 Project Management
As with application inventory or JCL conversion, the management of a VSE to
OS/390 conversion project is nearly always underestimated. The VSE to OS/390
conversion is one of the rare projects that require a coordinated effort from each
of the three data processing departments: applications, technical support and
operations. When it comes to taking inventory and understanding all the
individual items that make up a complete VSE data center, no one has all the
answers. Many global answers are obtained by consolidating smaller
complementary answers. In fact, in some instances, the participation of the
end-users themselves is required.

This is why a VSE to OS/390 conversion must be commissioned, sponsored, and
supported by executive management. The Project Manager must be given his
overall mission statement directly from the top management, and must be given
authority over applications, operations and technical support for this project.

One of the challenges of managing a VSE to OS/390 conversion is project
planning. The conversion of VSE applications (JCL, programs and files),
associated testing and implementation (switchover) are complex in themselves.
It may involve 10 to 20 people. The project plan averages 150 tasks and
sub-tasks, most of them linked through dependencies. It becomes even more
complex, when this plan must be coordinated with the detailed OS/390 software
installation and implementation plan, the staff education plan, the OEM (non IBM)
software installation and implementation plan, and the parallel application
maintenance and development plan. The data center doesn′ t come to a stand
still while the VSE to OS/390 migration takes place.

Finally, resource management, both human and configuration-wise, can be a real
challenge. Hiring conversion experts to handle parts of this one-time project can
be part of the solution for human resources constraints. The project still requires
a significant internal human resource investment to handle a number of activities
that are best left to the data center personnel itself. This is true for application
inventory (sorting out duplicate program versions and so on), OS/390 standards
decision that define the key operating processes (naming conventions, device
migration, and so on), and regression testing (test plan and scripts and so on).

Project management represents 10 to 15% of the total application conversion
effort.

2.7.6 Automated Operations
In recent years, the setup (population) and implementation of a job scheduler
and report manager have become a full part of the VSE to OS/390 migration.
Regardless of your VSE implementation of a job scheduler and report manager,
in OS/390 they will be used for the entire production, all jobs, all reports.

Identifying and carrying over the report management instructions from the VSE
JCL (destination, number of copies, FCB, and so on) to the OS/390 report
manager is not very challenging. Neither is carrying over existing job scheduling
or report management instructions from a VSE to an OS/390 product.

The real challenge is to learn not only how the OS/390 product works, but also
how to use it. The OS/390 basic education provided by vendors of OS/390 job
schedulers and report managers is just that: ″basic″. Even with hands-on
exercises, it doesn′ t prepare the production control staff who attend it to design
and define on their own how they will use the product to implement operation

Chapter 2. Sizing the Effort 37

procedures. Most will simply try to reproduce with the new OS/390 product what
they were doing in VSE with or without assistance of a product. The challenge is
to:

• Understand how OS/390 works,

• Understand how the OS/390 job scheduler or report manager is best used,

• Define specific local implementation rules and guidelines (standards), and
finally

• Convert the existing VSE instructions and ways of doing things from VSE to
OS/390.

An additional complication is that it is difficult to test the population of those
products (at least for the report manager) in simulated production mode without
disrupting or confusing the end-users. Test versions of application reports
created under OS/390 cannot be sent to their future recipients using the OS/390
report manager without risking that they be taken as current VSE generated
production versions. It is feasible to verify most of the automated daily job
scheduling by simply running the OS/390 job scheduler in simulated production
mode, although it is never easy to reproduce all actual production size
executions and event triggered executions. But it becomes a real challenge to
mimic lower frequencies such as weekly, biweekly, and monthly, especially when
they are integrated to daily production. In any case, if those products are to be
used in production under OS/390, they must be used when regression testing the
converted applications.

It is atypical that the OS/390 job scheduler and report manager will be:

• Populated once, just after the vendor′s basic education class

• Changed partly or totally a few months later, after regression testing has
identified a number of conceptual or implementation flaws

• Adjusted one more time after switchover, once in OS/390.

This is because production control personnel are often ill prepared to perform
this migration. Participation of hired consultants, experts with the OS/390 product
implementation or an application analyst or technical support staff may be part
of the solution.

The setup of a job scheduler and report manager may last three to four months
and represent 10 to 15% of the total application conversion effort.

2.8 Cost Considerations
It is often thought that OS/390 will require more hardware and staff resources.
While OS/390 may, in some cases, require more overhead and hence CPU, per
unit of work, typically greater system throughput is achieved over that of the VSE
environment. Due to enhanced systems management and automation
capabilities it has been found that OS/390 staff requirements actually do not
increase compared to VSE. In cases where staff increases have been seen, it
has usually resulted from growth in system requirements. That is, application
and end-user growth requirements has spawned the need for additional system
resources. This need for additional system resources, then, sometimes requires
additional human resource support.

While migration project cost projections will vary for each environment and
customer, there are some basic cost elements that are common to all projects.

38 VSE to OS/390 Migration Workbook

The purpose here is not to predict or estimate project costs but to identify major
cost elements and any relevant financial resource considerations.

• Cost/Benefit Requirements

� Reasonable and predictable timeframe

� Reduced internal staff participation focused on learning OS/390

� No delay/postponement of development and maintenance

� Controlled costs turned into investment

� Low risk

• Migration project cost elements

⇒ General

- Education
• Course fees
• Travel & living expenses

- Consultants
- Internal human resources (chargebacks)

• Project manager
• Team members

⇒ Hardware

- Incremental/interim configuration to support migration
• LPAR (CTCs, channels, device channel adapters, EMIF)
• Separate footprint (w/ additional software licenses)

- Final configuration

⇒ Software

- Incremental/interim configuration to support migration
• VM
• Conversion Tools
• VSE & OS/390 licenses

- Final OS/390 configuration (including optional products & ISV
products)

2.9 OS/390 Documentation Resources
OS/390 documentation resources should be consulted as early on in the project
as possible. This should be done in order to get an understanding of some of the
issues associated with installing and implementing the OS/390 environment. For
example, it will be necessary to understand the various OS/390 delivery
mechanisms (that is, CBIPO, ServerPAC, SystemPac) in order to determine the
one most appropriate based upon the given requirements/environment.

2.9.1 Introduction References
• Key CD-ROM Collections (Bookshelves) for OS/390

• General Information Manual (Introduction and Release Guide)

Chapter 2. Sizing the Effort 39

2.9.2 Key Documents and Other References
• OS/390 V2R5 Planning and Installation, SK2T-2484

• CBIPO (System Pak) Custom Built Offerings Planning

• CICS Up and Running

• DB2 Release Guide

2.9.3 Web URL
http://WWW.S390.IBM.COM/OS390/

40 VSE to OS/390 Migration Workbook

Chapter 3. Developing the Plan

This chapter discusses the following topics:

3.1, Overview

3.2, Plan Components

3.3, Progressive versus Mass Conversion

3.4, Plan Examples

3.1 Overview

3.1.1 References
These materials provide sources of supplemental information for this chapter.

• MVS Migration System - Planning Guide, SB11-8077 describes the planning
process for the MVS-MS. This guide is for the people who are responsible for
planning and scheduling the migration and fitting the conversion that
MVS-MS performs into the migration schedule. It is the basic book for the
project manager and every technical person involved in planning and
running both the migration and the conversion.

• MVS Migration System - General Information, GB11-8074 provides an
overview of the IBM MVS Migration System and is for the people at an
installation who will decide if MVS-MS will work for a particular environment.
It describes both the advantages and limitations of MVS-MS, presents
information on how MVS-MS works, and identifies some specific early
planning concerns.

• MVS Migration System - Planning Chart, SB11-8090 displays the standard
conversion tasks and subtasks relative to their duration and relationship to
each other.

3.1.2 Recommendations
The following are recommendations for your migration that are not project phase
specific or apply to all phases of migration.

3.1.2.1 Project Management
In some cases it may make sense to hire contractors, temporary personnel or a
service provider to perform tasks that will only be performed once and do not
provide long term payback to the installation. These one time tasks may include
project management, specific conversion activities and use of project specific
tools. There are many tasks to consider during a migration. Careful
consideration should be given to knowing the skills that are available to the
project, the requirements for systems programming, other projects that are
planned or in progress, and how augmenting these skills and personnel may or
may not make sense.

 Copyright IBM Corp. 1998 41

3.1.2.2 Take Advantage Of Conversion Tools and Automation
Executing a migration with a mass conversion tool and automated processes can
reduce both the time and people required to migrate from VSE to OS/390. Where
it is not a large task to convert three programs and two strings of JCL, it is a
large and difficult task to increase the scope by one thousand and perform the
same conversion.

The automation provided by the use of a mass conversion tool is unique. After
an extensive period of analysis, which includes running both pilot conversions
and dummy conversions, you can, in a final mass conversion, convert all of your
VSE applications to MVS in a single automated process.

3.1.2.3 Migration Plan - Guide and Outline
Creating a migration plan involves analyzing what a migration requires and
developing a plan to customize the general process to your particular
installation. Developing a comprehensive and detailed migration plan is
important to the success of a migration.

The type of conversion method directly affects the content of your plan. For this
guide we have chosen to follow a mass conversion method using the Cortex MS
processes. Chapter 3, Developing the Conversion Plan, of the MVS-MS Planning
Guide provides information on how to develop a migration plan where a mass
conversion method is used. Use it as a guide to develop a plan that is specific
to your site.

Appendix A of the MVS MS Planning Guide provides the outline of a sample
conversion workbook that you can use to write your conversion plan. The model
workbook contains a checklist and some questions to help you generate ideas
on what to include in your conversion plan.

3.4, “Plan Examples” on page 53 also provides a sample conversion project
plan.

3.1.2.4 Two Phase Approach
The migration project can be broken into a few logical pieces that may help its
execution. One method that has been successful is to begin with a mini project,
phase 1, to identify and resolve your inventory. Proceeding with a known
inventory will allow more precise pricing. The pricing for a conversion effort is
based on inventory. It also provides information about the effort that may be
required to recreate source materials. There are tools and service providers that
perform these services. The second phase is the actual implementation.

The Phase 1 output is also a standalone deliverable that can be very useful for
Year 2000 preparation.

3.1.2.5 Conversion Method
There are two basic approaches to the migration. One approach, referred to as
the kernel approach, converts a single application or subsystem at a time. The
other, called mass migration, converts all applications, the entire system, at the
same time. The method or approach used will dictate the elements of the project
plan. This chapter will explore the major considerations of using mass migration
as a conversion method and as a conversion tool.

Two tools support or implement the mass migration approach. One of these
tools, the IBM MVS-Migration System (MVS-MS), was previously licensed from

42 VSE to OS/390 Migration Workbook

SISRO and is no longer available, but deserves mentioning. The product
documentation is helpful in that it provides a very good project plan and
description of the mass migration approach. When sold through SISRO, this tool
is know as CORTEX-Migration System (CORTEX-MS) and currently is available.
Although there have been many changes to the MVS and VSE operating systems
and improvements to the conversion tool, the methodology of planning and
execution of the conversion has not changed significantly.

Choosing the appropriate conversion and production implementation strategy is
a very crucial decision. It is important to choose the right strategy and build a
corresponding plan. The mass migration method can provide a project that is
definable and allows for more accurate project cost estimation and sizing. It can
be the most effective strategy in light of today′s I/T structure where integrated
applications are closely tied to the integrated functions of business operations.

3.1.2.6 Project Staffing
It is recommended to use hired conversion specialists to handle the planning
and organization of the overall OS/390 migration, and the conversion of the VSE
applications to OS/390.

The VSE staff and hired conversion specialists work as a single project team.
Each bring their own skills to the project and share the project responsibilities as
follows:

3.1.2.7 Librarian
The librarian helps the project manager follow the migration by recording
events, collecting information about the progress of the migration, drawing up
checklists, and maintaining tables of problems, solutions, and programming
elements affected. The tasks and responsibilities of the librarian include:

• Controlling the production and updating of the migration workbook

• Collecting information on the VSE source material

• Recording migration events

• Collecting information on program and JCL conversion, and conversion
problems and solutions

3.1.2.8 Migration Responsibilities
The hired conversion specialists are typically skilled and experienced with:

• OS/390 applications and operations support

• OS/390 installation and implementation

• VSE to OS/390 conversion tools

• VSE to OS/390 conversion requirements and solutions

• OS/390 migration planning and project management

The VSE staff is experienced with:

• Existing VSE operations

• Existing VSE applications

• Existing OS/390 applications (in case of pre-existing dual VSE and OS/390
operations)

Chapter 3. Developing the Plan 43

The hired conversion specialists can be deployed for converting the in-house
developed applications, and leading the overall migration effort, including:

• Following the migration methodology and the project plan
• Identifying and addressing the conversion requirements
• Converting the VSE applications to OS/390
• Design and delivery of a state-of-the-art standardized OS/390 environment

The VSE staff is mainly responsible for:

• The new OS/390 HW/SW configuration
• The VSE application inventory
• Regression testing the converted applications
• OS/390 migration activity outside the conversion of VSE application code,

JCL or files

3.1.2.9 Migration Assignments
The hired conversion specialists are typically assigned the following application
conversion tasks:

• Manage the overall migration project
• Manage their own team and responsibilities
• Provide technical leadership, including project planning
• Receive and validate the application inventory
• Develop the conversion specifications
• Customize the conversion tools to local requirements
• Develop new conversion tools (if applicable)
• Perform manual conversion activities, when automation is not possible or not

cost efficient
• Perform automated mass conversions
• Assist with setup of OS/390 automated operations tools
• Participate in online applications tests
• Participate in batch applications tests
• Participate in applications switchover to OS/390
• Support initial OS/390 operations

The VSE staff can be assigned the following application conversion tasks:

• Manage their own team and responsibilities
• Provide office space and project support tools
• Participate in project planning
• Receive OS/390 basic education
• Provide and install OS/390 HW/SW resources
• Operate the OS/390 environment
• Design and implement security
• Migrate the CICS application tables, and the network
• Collect and supply the application inventory
• Assist with the conversion specifications
• Participate in VSE positioning activities, when automation is not possible or

not cost efficient
• Install, setup and operate OS/390 automated operations tools
• Provide, install and test the OS/390 version of purchased applications
• Modify all interfacing systems (PC-LANs, RJE, NJE, ...) to reflect the OS/390

migration
• Perform online applications tests
• Perform batch applications tests
• Participate in applications switchover to OS/390
• Run and support initial OS/390 operations

44 VSE to OS/390 Migration Workbook

3.2 Plan Components

3.2.1 Approach
For the purposes of providing more specific guidance for conversion projects, an
approach to the migration had to be determined. This is also true for the
migration effort itself, an approach must be adopted. In these discussions, we
will describe the environment associated with using the Mass Conversion
methods and tools.

3.2.2 Team
Before the actual project plan is developed, thought needs to be given to the
project/migration team and the functions, responsibilities and composition of this
team. There are many different ways to organize a migration team, the group of
people responsible for planning and executing the migration project. A
recommended organization for the migration team (see Figure 5) consists of the
following people:

• A project manager, who is responsible for the migration procedure as a
whole - general specifications, planning, coordination, and follow-up.

• Two systems or applications programmers, or one from each area, who draw
up detailed migration specifications, install and customize any mass
migration/conversion tools.

• Two operations people to take charge of conversion testing.

• A librarian to help control and track the migration activity.

┌───────────────────┐
│ Project Manager │
└─────────┬─────────┘

│
┌───────────────────────┼────────────────────┐
│ │ │
│ │ │

 ┌───────┴───────┐ ┌─────────┴─────┐ ┌───────┴───────┐
 │ Systems/Apps │ │ │ │ │
 │ programmers │ │ Operations │ │ Librarian │
 │ (2 people) │ │ (2 people) │ │ │
 └───────────────┘ └───────────────┘ └───────────────┘

Figure 5. Migration Team

The migration team should include people with the following knowledge or skills:

• Some knowledge of the concepts and facilities of the OS/390 system

• Knowledge of the current VSE environment and the applications to be
converted

• Development or systems skills to analyze special situations encountered
during the early phases of the migration

• Operations skills to test converted applications under OS/390 and to assess
the impact of converted operational procedures on the OS/390 productions
operations environment

Chapter 3. Developing the Plan 45

If a mass migration/conversion tool is used someone will need to become
familiar with the product and the mass migration method. The team members
should consult the product documentation related to their responsibilities and
run the sample conversion.

The functions and responsibilities of each member of the team depend to some
extent on local conditions. The following sections describe, in general terms, the
tasks each member may perform.

3.2.2.1 Project Manager
The project manager manages the project as a whole, selecting the key
resources, both technical and non-technical, required for the project. The project
manager should posses the appropriate project management skills and should
have current knowledge of project management techniques and tools. The
project manager could be a systems programmer or technical manager who is
knowledgeable in:

 1. OS/390

 2. The mass migration tool

 3. The applications to be converted

 4. VSE

The project manager′s tasks and responsibilities include:

• Managing and controlling the migration project

• Acting as a liaison between the migration team and others within the I/S
organization

• Drawing up migration specifications

• Designing migration procedures

• Tracking migration schedules and assigning necessary resources

• Determining any conversion tool customization

• Planning and preparing for the OS/390 production switchover

3.2.2.2 Systems Programmers
The systems programmers help the project manager to design migration
procedures. They must resolve technical problems related to the local
implementation of both VSE and OS/390; therefore, they must be familiar with
both VSE and OS/390. Their tasks and responsibilities include:

• Helping to design the specifications for the migration

• Helping the project manager design the migration procedures

• Installing and customizing any conversions tools

• Analyzing and solving conversion problems

• Preparing for the OS/390 production switchover

• Assisting with OS/390 operations

46 VSE to OS/390 Migration Workbook

3.2.2.3 Applications Programmers
The applications programmers help the project manager to develop migrations
procedures. They also test converted applications. They should be thoroughly
familiar with critical applications (both online and batch) and understand both
VSE and OS/390. Their tasks and responsibilities include:

• Helping to design the specifications for the migration

• Analyzing and preparing the VSE source material

• Developing any conversion tools or specific conversion procedures

• Manually converting some general purpose user routines and programs

• Analyzing and solving conversion problems

3.2.2.4 Operations
If a mass migration tool is used, operations personnel will submit and control the
mass migration jobs, complete and check the production database, and test the
converted applications under OS/390. They must understand the operating
procedures of VSE and OS/390, and know how to use the tool. Their tasks and
responsibilities include:

• Helping to design the specifications for the migration

• Designing jobstep preparation

• Preparing VSE files and JCL

• Implementing conversion and OS/390 operational procedures

• Testing the converted applications

• Completing and checking the mass migration tool output

• Assisting with OS/390 operations

3.2.3 Tasks

It cannot be stressed enough how absolutely important a well thought out and
well documented project plan is to the successful completion of the migration
project. Discussed here will be some of the key essentials in planning for such a
project and some thoughts on how the actual project plan should be developed.
Assistance with developing the conversion plan can be found in Chapter 3 of the
MVS MS Planning Guide named ″Developing the Conversion Plan″. The checklist
that was used to develop that plan can also be found in Appendix A , ″The
Conversion Workbook″ of that publication. An example of a project plan can be
found in 3.4.2, “Project Plan Example” on page 56.

Listed below are some of the main tasks that are involved in a migration.

1 Defining objectives.

2 Analyzing what the tasks required in a migration are and developing a
well-documented migration plan .

3 Assigning personnel to the conversion team.

4 Deciding on a conversion method and a conversion tool(s).

5 Analyzing the VSE workload and developing a comprehensive list of the
applications to be converted.

6 Planning for and upgrading hardware.

Chapter 3. Developing the Plan 47

7 Training personnel to work with the OS/390 system.

8 Planning and installing the OS/390 system products.

9 Developing standards for application conversion that reflect such things as
naming conventions to be used in the new OS/390 system environment.

 10 Collecting all VSE source materials and presenting same to the conversion
process.

 11 Translating VSE programs to OS/390 programs.

 12 Converting JCL.

 13 Transferring data files from VSE to OS/390.

 14 Testing each converted application under OS/390.

 15 Documenting and preparing run books and operational procedures.

 16 Implementing the production workload under OS/390.

3.2.4 Milestone Events
Within each migration, certain activities should be identified as key activities, the
attainment of which can signal significant progress (or the lack of attainment, a
schedule slippage). These activities are typically called milestone events or just
milestones. Each customer should identify the milestones most important in their
migration.

The following are some suggested VSE to OS/390 migration milestones:

� Migration Plan completed, reviewed, and approved.

� VSE software inventory completed.

� All vendor support committed.

� Essential education completed.

� Necessary hardware installed.

� Installation of OS/390 and related products completed.

� Initial OS/390 IPL performed.

� Pilot conversion completed.

� Each major application′s successful conversion.

� Stress/Production tests completed.

� Operator education and Run Books completed.

� Production criteria attained.

� Production implementation initiated.

Once milestones are defined, periodic ″checkpoints″ can be scheduled to
monitor successful milestone completion; that is, project progress.

48 VSE to OS/390 Migration Workbook

3.2.5 Education
OS/390, and to some degree migration/conversion skills are crucial factors to the
success of the migration project. Identification of skill requirements and how
these requirements will be satisfied is the main objective of the education plan.
Listed are the key elements to effective education planning:

• Identify personnel (who)
• Identify personal needs (what)
• Set schedules (when)
• Map a master plan (how)
• Identify resources/offering dates

3.3 Progressive versus Mass Conversion

3.3.1 Approach Differences
The difference between the progressive and mass conversion approaches is
illustrated on Figure 6.

Figure 6. Progressive versus Mass Conversion

In a progressive conversion, the VSE application portfolio is divided in smaller
application units (or kernels) which are migrated one by one to the target OS/390
environment. The production is divided between VSE and OS/390 operations for
an extended period of time. During that critical period, the OS/390 system
supports simultaneously the new production and the application conversion
including the conversion testing.

The main distinction with the mass conversion approach is that it results in a
single switchover of the entire VSE application portfolio to OS/390 over a
weekend, with no overlap of VSE and OS/390 production. Until the switchover
weekend, all converted applications run in production under VSE. By the end of
the switchover weekend, all converted applications run in production under
OS/390. An OS/390 system is used in parallel with ongoing VSE operations to
support the migration project, but it doesn ′ t support any OS/390 production until
the switchover weekend.

Chapter 3. Developing the Plan 49

3.3.2 Historical Perspective
The progressive conversion approach was the only solution available until the
early 80s.

More recently modern VSE operations have substantially grown in size,
complexity and integration, making it more difficult to implement a progressive
conversion.

It is also because the mass conversion approach, which was in a pioneer stage
in the early 80s, has matured to become safe and proven alternative. Hundreds
of mass conversions have been successfully completed worldwide in the past 15
years.

3.3.3 Shared Application Files and Databases
With today′s highly integrated VSE application portfolios, it becomes increasingly
difficult to define isolated application kernels for a progressive conversion. Most
applications share access to the same permanent files or databases. If some
files and databases need to be accessed at the same time by some application
kernels running in production under VSE and other application kernels running in
production under OS/390, those files and databases must be duplicated under
VSE and OS/390. The duplicate versions must then be kept in sync, which
requires developing complicated application bridges between VSE and OS/390.
The bridges must constantly be changed, as application kernels are
progressively migrated from VSE to OS/390.

3.3.4 Shared Application Code
A similar challenge exists for reusable code, such as JCL procedures,
subroutines, macros, copybooks and includes. Duplicate versions must be
maintained under VSE and OS/390 while application kernels sharing usage of
those code items run on different operating systems. Duplicate source storage
systems and change control procedures must be maintained during the overlap.

3.3.5 Operations Support Staffing
Supporting and operating dual VSE and OS/390 production environments
requires a larger staff and skill set than for a single production environment.

3.3.6 Automated Operations Tools
The complexity and sophistication of modern VSE operations shows in the
catalog of automated operations tools on which they rely. Those tools often
include a job scheduler, a report manager and a tape manager, which
complicates the organization and implementation of a progressive conversion.

It is very challenging to coordinate the overall job scheduling when two
synchronized and inter-dependent parts of the application portfolio run on two
separate operating systems under the automated control of two separate job
schedulers. Job schedulers are not designed or able to coordinate production
between two separate operating systems. In addition, as discussed above for
shared permanent data file and databases, the on-going progressive migration of
application kernels, forces to constantly change the automated job scheduling on
each side.

A similar challenge awaits progressive conversion teams with the division of
report management instructions between two report managers running on two

50 VSE to OS/390 Migration Workbook

separate operating systems, or the division of tape files and tape volumes
between two tape managers running on two separate operating systems.

3.3.7 Standardized Conversion Deliverables and Automation
A significant objective for today ′s VSE or OS/390 mainframe installation is the
standardization of their application components (JCL streams, application code
and data files), associated naming conventions and operation procedures. The
standardization of conversion deliverables is directly related to the degree of
automation used to perform the conversion. The more automation is used, the
more standardized the deliverables will be. Mass conversions are typically more
automated than progressive conversions.

It is also much easier to guarantee complete and consistent compliance with
standards and naming conventions when the entire inventory is converted and
switched from VSE to OS/390 over a single weekend using a single automated
conversion process, as in the mass conversion approach. Contrarily, it is difficult
to guarantee a good compliance with standards and naming conventions when
the conversion of application kernels spans over many months and may be
assigned to separate conversion teams, as in a progressive conversion. The
same conversion requirement may be addressed differently by different people
at different times.

3.3.8 Risk Management
The comparative risk of both conversion approaches has changed over the
years.

The risk of disrupting your production system, when dividing it into dual
operating environments, has increased in proportion with the VSE application
portfolios increase in size, complexity and integration.

With mass conversions, the regimen of performing multiple successful rehearsal
conversions has refined the mass conversion approach and its single switchover
weekend into a mature and predictable, therefore safer solution.

It is today safer to use the mass conversion approach than the progressive one
for large application portfolio, and in some cases of high integration, there is
simply no other way.

3.3.9 Complexity of Implementation
Still, the mass conversion approach requires more skills and experience than
the progressive conversion approach.

The conversion of one single application kernel requires less integrated
automation, therefore less complex (and less expensive) conversion tools. Due
to the reduced size of a kernel, it is fairly easy to recover manually from
automated conversion defects. The migration of a single kernel requires less
planning than the conversion of the entire portfolio. Consequently, the
progressive conversion approach has an easier learning curve, which makes it
easier to implement with internal non-conversion-expert staff only. They learn
while they do it.

Contrarily, the mass conversion approach requires highly integrated automation,
therefore complex and expensive conversion tools. Due to the size of the
conversion inventory, it is difficult or impossible to recover manually from

Chapter 3. Developing the Plan 51

automated conversion defects. The switchover of an entire VSE production to
OS/390 over a weekend cannot be improvised: it requires perfect precision and
planning by experienced conversion specialists. The complexity of powerful
mass conversion tools makes it difficult to staff with internal
non-conversion-expert staff exclusively, because of the learning curve. Hiring
conversion consultants experienced with mass conversions and single weekend
switchovers is highly recommended for users who want to migrate large
integrated VSE production environments to OS/390 over a single weekend.

3.3.9.1 Mass Migration as a Conversion Method
Mass migration uses the single switchover method of migrating a VSE
installation to OS/390. The various conversion tasks that need to be performed
using this methodology are described in the MVS-MS and CORTEX-MS
documentation. The conversion method, or process, consists of running three
conversions:

 1. The pilot conversion - a conversion of a small subset of the VSE applications,
usually involving all or part of the most important work. The pilot conversion
educates project team members, provides the time to define OS/390
standards, code any exits deemed necessary for customizing, and overall
prepares the team for the rest of the conversions.

 2. The dummy conversion - a conversion of all VSE applications; a process that
is normally repeated many times as changes are made to VSE source
materials over the life of the project. This is why ″freezing″ VSE application
maintenance is not necessary with this methodology.

 3. The actual mass conversion (or switchover) - a conversion of all VSE
applications, the switchover of the VSE files and catalogs, followed by OS/390
production operations.

Because MVS-MS and CORTEX-MS documentation guides you in the steps and
tasks to be performed, it helps you develop a comprehensive and detailed
migration plan for your own installation. The documentation also provides the
skeleton migration plan with staffing recommendations - you provide your
installation-specific details.

3.3.9.2 Mass Migration Used as a Conversion Tool
Used interactively, MVS-MS or CORTEX-MS is a set of subsystems that are panel
driven and use TSO terminals to direct all conversion tasks. The tool translates
VSE source programs written in the following languages:

• Assembler

• COBOL

• PL/I Optimizer

• RPG II

In addition to translating the above VSE programming language programs into
OS/390 source equivalents, MVS-MS or CORTEX-MS, herein after referred to as
the tool, also performs the following:

• ISAM programs are translated to VSAM; that is, ISAM I/O statements
translated into VSAM statements.

• COMREG, CNTRL, and PRTOV functions (VSE functions not directly supported
in OS/390) are simulated under OS/390 by the tool′s simulation routines.

52 VSE to OS/390 Migration Workbook

• Program clauses that restrict device independence are eliminated; that is,
I/O assignment clauses removed from programs, placed in JCL.

• Program console interactions (for example, COBOL DISPLAY/ACCEPTs) are
removed from being executed at program runtime; rather this input is
requested at job setup time via job preparation panels and prompts.

The tool converts VSE JCL (procedures, standard label definitions) and the
POWER Job Entry Control Language (JECL) - $$LST, $$PRT, $$PUN, $SLI - into
OS/390 JCL jobstreams. VSE uses of standard utilities are translated into OS/390
equivalents - SORT/MERGE, IDCAMS, and IEBGENER utilities.

The tool lists information in cross reference reports that enables the installation
to make sure that the VSE input libraries are complete. The information
provided includes lists of relationships:

• Between JCL and PROC/SLI books

• Between JCL (or PROC/SLI books) and programs, PSB, DBD, or FCB
definitions

• Between programs and called modules

• Between programs and copied members or macros

The above data can help the project team determine ″what ′s missing,″ ″what ′s
duplicated,″ and ″what ′s not used″ of the VSE source materials. (It can′ t help the
team find missing source, however.) Thus, the tool can assist in one of the most
crucial tasks of the migration; that is, reconciling the ″source VSE materials″
needed for the conversion process. This is sometimes referred to as the Data
Analysis Phase.

In addition to source program and JCL translation, the tool also provides:

• OS/390 standards naming convention assistance

• Testing facilities to help when testing converted programs

• Operator job preparation and submission panels

• Exits for the tool customizing purposes

• Operator job logging facilities

• Online terminal exercises to help in learning the tool operations

3.4 Plan Examples
The following is a sample plan for the migration of ABC Company from VSE to
OS/390. ABC Company will be contracting OS/390 services from SER company.
CNV Company has been contracted to provide professional migration services
and will be using CORTEX-MS.

Chapter 3. Developing the Plan 53

3.4.1 Project Schedule

3.4.1.1 Estimated Project Schedule
The following is an estimated schedule for Project 2 - VSE to MVS conversion.
The project may begin upon completion of the Inventory Determination task of
Project 1, estimated to be on or about June 1, 1996, and will last approximately
nine (9) months with a switchover to MVS after approximately eight (8) months.

Table 3. Nine Month Project

Month Number
Month Initial

1 2 3 4 5 6 7 8 9

J J A S O N D J F

Phase 1 - Specifications
**

** ** *

Phase 2 - Custom Modifications of CORTEX-MS * ** ** **

Phase 3 - First Trial Conversions: Online and
Batch Appl

* *

Phase 4a - MVS Tests & Repetitive
Conversions : Online
Phase 4b - MVS Tests & Repetitive
Conversions : Batch

* ** ** **

* ** ** ** *

Phase 5 - Actual Conversion and Switchover *

Phase 6 - Assisted MVS Operations **

3.4.1.2 Estimated Schedule for CNV Responsibilities
The following is an estimated schedule for CNV responsibilities. The actual
schedule will be determined at project start.

Table 4. CNV Responsibilities

Month Number
Month Initial

1 2 3 4 5 6 7 8 9

J J A S O N D J F

01 - Manage CNV Conversion Responsibilities ** ** ** ** ** ** ** ** **

02 - Provide Technical Leadership * * * * *

03 - Receive and Validate the Conversion
Inventory

* * * * * * * * *

04 - Develop the Conversion Specifications
**

** ** ** *

05 - Custom Modify CORTEX-MS and
Proprietary Tools *

** ** ** **

06 - Perform Manual Conversion Activities * * *

07 - Perform Automated Mass Conversions * * * * * * * *

08 - Assist with Setup of MVS Automated
Operations Tools

* * *

09 - Participate in Online Applications Testing ** ** ** *

10 - Perform Batch Applications Testing * ** ** ** *

11 - Participate in Applications Switchover to
MVS

* **

12 - Support Initial MVS Operations **

54 VSE to OS/390 Migration Workbook

3.4.1.3 Estimated Schedule for ABC Responsibilities
The following is an estimated schedule for the ABC responsibilities. The actual
schedule will be determined at project start.

Table 5. ABC Responsibilities

Month Number
Month Initial

1 2 3 4 5 6 7 8 9

J J A S O N D J F

01 - Manage ABC Conversion Responsibilities ** ** ** ** ** ** ** ** **

02 - Participate in Project Planning
* * * *

*

03 - Operate MVS Environment ** ** ** ** ** ** ** ** **

04 - Provide Office Space and Project Support
Tools

*

05 - Determine and Supply VSE Material to be
Converted

* * * * * * * *

06 - Assist with Conversion Specifications
**

** **
**

07 - Apply Manual Modifications to VSE
Material (If any)

* * *

08 - Set up MVS Operations Tools ** ** ** ** **

09 - Perform Online Application Tests ** ** ** **

10 - Perform Batch Application Tests * ** ** ** *

11 - Participate in Applications Switchover to
MVS

** *

12 - Support Initial MVS Operations **

3.4.1.4 Estimated Schedule for SER Responsibilities
The following is an estimated schedule for the SER responsibilities. The actual
schedule will be determined at project start.

Table 6. SER Responsibilities

Month Number
Month Initial

1 2 3 4 5 6 7 8 9

J J A S O N D J F

01 - Provide MVS Resources * * * *

02 - Install, Maintain, and Support MVS
Environment

** ** ** ** ** ** ** ** **

03 - Assist with Conversion Specifications
**

** **
**

04 - Participate in Applications Switchover to
MVS

** *

05 - Support Initial MVS Operations **

Chapter 3. Developing the Plan 55

3.4.2 Project Plan Example
The actual schedule will be determined at Project 2 start, based on the
completion of the Project 1 Inventory Determination completion date, the
expected switchover date, and any potential conflicts with ABC ′s processing.

3.4.2.1 Project Plan - Summary

Task Name ID Projected Actual

Start End Start End

Preparation Phases 01 01/09/98 05/10/98

Application Inventory 02 01/09/98 03/10/98

Specifications 03 02/01/98 05/03/98

Customization 04 02/15/98 05/10/98

Conversion Phases 05 04/26/98 09/21/98

Trial Conversion 06 04/26/98 09/21/98

Online Testing 07 04/26/98 07/26/98

Batch Testing 08 05/10/98 09/13/98

Production Testing 09 08/16/98 09/21/98

Implementation Phases 10 09/01/98 10/15/98

Actual Conversion & Switchover 11 09/01/98 10/23/98

Initial MVS Operations 12 09/20/98 10/23/98

Migration Completion 10/23/98 10/23/98

56 VSE to OS/390 Migration Workbook

1998

Jan
↓

Feb Mar Apr May Jun Jul Aug Sep Oct

Preparation Phases

Application Inventory

Specifications

Customization

Conversion Phases

Trial Conversion

Onlne Testing

Batch Testing

Production Testing

Implementation Phase

Actual Conversion & Switch

Initial MVS Operations

♦
Migrat ion Completion

ID

01

02

03

04

05

06

07

08

09

10

11

12

Task Name

Preparation Phases

Application Inventory

Specifications

Customization

Conversion Phases

Trial Conversion

Online Testing

Batch Testing

Production Testing

Implementation Phases

Actual Conversion &
Switchover

Initial MVS Operations

Migration Completion

C
h

a
p

te
r 3

.
D

e
ve

lo
p

in
g

 th
e

 P
la

n
57

3.4.2.2 Project Plan - Details

ID Task Name Projected Actual

Start End Start End

01 Project Approval 01/09/98 01/09/98

02 Application Inventory 01/09/98 08/24/98

03 Initial & Inventory Supplies 01/09/98 03/10/98

04 0 % Missing 03/10/98 03/10/98

05 General Inventory Supply Every 3 Weeks 03/10/98 08/24/98

06 Less than 2% Missing 02/01/98 02/01/98

07 Project Planning 01/09/98 09/21/98

08 Project Plan 01/09/98 02/13/98

09 Develop Project Plan 01/09/98 01/23/98

10 Present Project Plan 01/23/98 01/23/98

11 Review & Complete Project Plan 01/23/98 02/13/98

12 Online Test Plan & Scripts 02/14/98 04/26/98

13 Provide Online Test Orientation 02/14/98 02/14/98

14 Develop Online Test Plan & Scripts 02/15/98 04/26/98

15 Review Online Test Plan & Scripts 02/15/98 04/26/98

16 Batch Test Plan & Scripts 03/28/98 06/07/98

17 Provide Batch Test Orientation 03/28/98 03/28/98

18 Develop Batch Test Plan & Scripts 03/29/98 06/07/98

19 Review Batch Test Plan & Scripts 04/12/98 06/07/98

20 Switchover Plan 07/05/98 09/21/98

21 Develop Switchover Plan 07/05/98 07/18/98

22 Provide Switchover Test Orientation 07/19/98 07/19/98

23 Complete & Refine Switchover Plan 07/19/98 09/21/98

24 Online Application Conversion 02/01/98 04/26/98

25 COBOL Program Conversion 02/01/98 04/26/98

26 Develop COBOL Online Conversion
Specifications

02/01/98 04/26/98

27 Develop Automated COBOL Online
Conversion

02/15/98 04/26/98

28 Perform Manual COBOL Online
Conversion

04/12/98 04/26/98

29 Map, Table, Data Conversion 03/01/98 04/26/98

30 Migrate CICS Maps 03/01/98 04/26/98

31 Setup CICS Application Tables 03/29/98 04/26/98

32 Migrate CICS Application Files &
Databases

03/29/98 04/26/98

33 Online Tests Can Start 04/26/98 04/26/98

34 Online Application Tests & Corrections 04/26/98 08/30/98

35 Participate in Online Initialization Tests 04/26/98 05/10/98

36 Perform Online Sample Tests 05/10/98 06/07/98

37 Online Application Tests Can Start 06/07/98 06/07/98

58 VSE to OS/390 Migration Workbook

ID Task Name Projected Actual

Start End Start End

38 Perform Online Application Tests 06/07/98 08/16/98

39 Perform Online Network & Stress Tests 08/16/98 08/30/98

40 Refine & Repeat Online Application
Conversion

04/26/98 08/23/98

41 Batch Application Conversion 01/09/98 05/10/98

42 Install Conversion Tools 01/09/98 01/16/98

43 Install Conversion Software 01/09/98 01/16/98

44 Batch Program Conversion 02/01/98 04/26/98

45 Develop COBOL Batch Conversion
Specifications

02/01/98 04/12/98

46 Develop Automated COBOL Batch
Conversion

02/15/98 04/26/98

47 Perform Manual COBOL Batch Conversion 04/12/98 04/26/98

48 VSE JCL Conversion 02/01/98 05/10/98

49 Perform JCL Pilot Conversion 02/01/98 02/20/98

50 Develop VSE JCL Conversion
Specifications

02/01/98 04/26/98

51 Develop VSE JCL Automated Conversion 02/15/98 05/10/98

52 Perform Manual PCL and JCL Conversion 04/26/98 05/10/98

53 Perform Initial Mass Conversion (JCL +
PCL)

04/26/98 05/10/98

54 OS/390/DFSMS Standards Definition 02/01/98 04/26/98

55 Develop OS/390/DFSMS Standards
Recommendation

02/01/98 04/12/98

56 Present OS/390/DFSMS Standards
Recommendation

02/15/98 02/15/98

57 Explain Current VSE Standards 02/15/98 03/08/98

58 Define New OS/390/DFSMS Standards 02/15/98 04/26/98

59 OS/390 JCL Generation 03/01/98 05/10/98

60 Define OS/390 JCL Generation
Specifications

03/01/98 04/26/98

61 Develop OS/390 JCL Automated
Conversion

03/15/98 05/10/98

62 Batch File Migration 04/05/98 05/10/98

63 Develop Batch File Migration
Specifications

04/05/98 04/19/98

64 Develop Batch File Migration Procedures 04/19/98 05/10/98

65 Migrate Batch Files for Testing 04/26/98 05/10/98

66 COBOL VSE Positioning 04/26/98 08/16/98

67 Identify & Perform COBOL VSE Positioning 04/26/98 07/19/98

68 Perform, Test & Roll-out COBOL VSE
Positioning

05/24/98 08/16/98

69 Batch Test Can Start 05/10/98 05/10/98

70 Batch Application Tests & Corrections 05/10/98 09/21/98

71 Perform Sample Batch Tests 05/10/98 06/05/98

Chapter 3. Developing the Plan 59

ID Task Name Projected Actual

Start End Start End

72 Batch Application Tests Can Start 06/07/98 06/07/98

73 Perform Critical Application Batch Tests 06/07/98 08/16/98

74 Non-critical Application Batch Tests 08/16/98 09/21/98

75 Refine New OS/390/DFSMS Standards 05/10/98 08/16/98

76 Identify Application Interfaces 06/14/98 08/02/98

77 Refine & Repeat Batch Application
Conversion

05/10/98 08/16/98

78 Switchover Preparation 07/19/98 09/21/98

79 File Migration 07/19/98 08/16/98

80 Develop Switchover File Migration Specs 07/19/98 08/02/98

81 Develop Switchover File Migration
Procedures

08/02/98 08/16/98

82 Switch Rehearsal Can Start 08/16/98 08/16/98

83 Rehearse Switchover File Migration 08/16/98 08/17/98

84 Production Tests 08/17/98 09/21/98

85 Perform Production Tests 08/17/98 09/21/98

86 Actual Conversion 08/17/98 09/21/98

87 Convert Development Code 08/17/98 08/30/98

88 JCL Supply For Last Mass Conversion 08/22/98 08/23/98

89 Last Mass JCL Conversion 08/24/98 08/30/98

90 ″Fix & Freeze″ JCL 08/24/98 09/21/98

91 Program Supply for Last Mass Conversion 09/09/98 09/10/98

92 Last Mass Program Conversion 09/11/98 09/12/98

93 ″Freeze & Fix″ Programs 09/11/98 09/21/98

94 Switchover Can Start 09/21/98 09/21/98

95 OS/390 Switchover 09/21/98 10/23/98

96 Final Switchover Preparation 09/21/98 09/26/98

97 Actual Switchover Weekend 09/26/98 09/26/98

98 Assist OS/390 Operations 09/28/98 10/23/98

99 Project End 10/23/98 10/23/98

60 VSE to OS/390 Migration Workbook

1998

Jan
↓

Feb Mar Apr May Jun Jul Aug Sep Oct

♦
Project Approval

Appl icat ion Inventory

Appl icat ion Inventory

♦
0 % Miss ing

General Inventory Supply Every 3 Weeks

♦
Less than 2% Missing

Project Planning

Project Plan

Develop Project Plan

♦
Present Project Plan

Review & Complete Project Plan

Online Test Plan & Scripts

♦
Online Test Orientation

Develop Online Test Plan

Review Online Test Plan

Batch Test Plan & Scripts

♦
Batch Test Orientation

Develop Batch Test Plan

Review Batch Test Plan

Switchover Plan

Develop Switchover Plan

Task ID

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

C
h

a
p

te
r 3

.
D

e
ve

lo
p

in
g

 th
e

 P
la

n
61

1998

Jan
↓

Feb Mar Apr May Jun Jul Aug Sep Oct

♦
Switchover Test Orientation

Refine Switchover Plan

Online Appl icat ion Conversion

COBOL Program Conversion

COBOL Online Conversion Specif ications

Automated COBOL Online Conversion

Manual COBOL Online Conversion

Map, Table, Data Conversion

CICS Map Conversion

Setup CICS Tables

Migrate CICS Files & DB

♦
Online Tests Can Start

Online Application Tests & Corrections

Online Init ial izat ion Tests

Sample Tests

♦
Online Application Tests Can Start

Online Application Tests

Online Network & Stress Tests

Refine & Repeat Application Conversion

Batch Appl icat ion Conversion

Instal l Conversion Tools

Task ID

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

62
V

S
E

 to
 O

S
/3

9
0

 M
ig

ra
tio

n
 W

o
rkb

o
o

k

1998

Jan
↓

Feb Mar Apr May Jun Jul Aug Sep Oct

Instal l Conversion Software

Batch Program Conversion

COBOL Batch Conversion Specif ications

Automated COBOL Batch Conversion

Manual COBOL Batch Conversion

VSE JCL Conversion

JCL Pilot Conversion

VSE JCL Conversion Specif ications

VSE JCL Automated Conversion

Manual PCL and JCL Conversion

First Mass Conversion

OS/390/DFSMS Standards Definit ion

OS/390/DFSMS Standards Recommendation

♦
Present Standards Recommendation

Explain Existing VSE Standards

Define New Standards

OS/390 JCL Generation

OS/390 JCL Generation Specifications

OS/390 JCL Automated Conversion

Batch Fi le Migrat ion

Batch Fi le Migration Specif icat ions

Task ID

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

C
h

a
p

te
r 3

.
D

e
ve

lo
p

in
g

 th
e

 P
la

n
63

1998

Jan
↓

Feb Mar Apr May Jun Jul Aug Sep Oct

Batch File Migration Procedures

Migrate Batch Test Files

COBOL VSE Posit ioning

Identify COBOL VSE Posit ioning

Perform & Implement COBOL VSE Posit ioning

♦
Batch Test Can Start

Batch Application Tests & Corrections

Sample Batch Tests

♦
Batch Application Tests Can Start

Cri t ical Appl icat ion Batch Tests

Non-cri t ical Application Batch Tests

Refine MVS/DFSMS Standards

Identi fy Application Interfaces

Refine & Repeat Batch Conversion

Switchover Preparat ion

File Migrat ion

Switchover Fi le Migrat ion Specif icat ions

Switchover Fi le Migration Procedures

♦
Switch Rehearsal Can Start

Rehearse Switchover Fi le Migration

Product ion Tests

Task ID

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

64
V

S
E

 to
 O

S
/3

9
0

 M
ig

ra
tio

n
 W

o
rkb

o
o

k

1998

Jan
↓

Feb Mar Apr May Jun Jul Aug Sep Oct

Perform Production Tests

Actual Conversion

Convert Development Code

Mass Conversion JCL Supply

JCL Mass Conversion

″Fix & Freeze″ JCL

Last Program Supply

Last Mass Program Conversion

″Freeze & Fix″ Programs

♦
Switchover Can Start

OS/390 Switchover

Final Switchover Preparation

♦
Actual Switchover

OS/390 Operations

♦
Project End

Task ID

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

C
h

a
p

te
r 3

.
D

e
ve

lo
p

in
g

 th
e

 P
la

n
65

66 VSE to OS/390 Migration Workbook

Part 2. Converting the VSE Operating System to the OS/390
Operating System

 Copyright IBM Corp. 1998 67

68 VSE to OS/390 Migration Workbook

Chapter 4. Job Control Language (JCL) Differences and
Considerations

The following sections describe the major tasks and considerations involved in
converting VSE JCL to MVS JCL and the differences between them. These
sections are divided into the following categories:

• 4.1, The Philosophy of JCL in System/390

• 4.2, High Level Similarities

• 4.3, JCL Differences Between VSE and MVS

• 4.4, JECL

• 4.5, VSE and MVS JCL Comparison Example

While this chapter describes the differences and conversion tasks, we
recommend that you take a class on MVS JCL. See Appendix A, “Education
Information” on page 535.

4.1 The Philosophy of JCL in System/390
Often, before discussing JCL systems and schemes, it is valuable to understand
why the System/390 (originally the System/360) operating systems incorporated
Job Control.

In the era of the predecessor computer systems, for example the IBM 1400, 7080,
and 7090 systems, the concept of job control was just beginning. Application
program coding included explicit references to files and other system resources.
If a given program could be used with another file, the program often required
changes. Flexibility and the beginnings of resource reuse led to the concept of a
system facility that externalized the references from programs to other system
resources, whether they were other programs or data files.

Job Control Language was developed as part of the System/360 architecture, to
address the requirement for reuse. The ability to use one program with different
files, and with different predecessor and successor programs, makes computer
programs much more usable. This ability to create jobs and steps is crucial to
the development of today′s ″Industrial Strength″ information processing
technology.

As OS/390′s predecessors were being developed, it became obvious that the
smaller customers ′ needs required smaller systems. With the economics in the
information processing over 30 years ago, the smaller systems were too small in
terms of internal and external storage and processor power to provide the
minimum environment needed for OS/360.

VSE/ESA′s predecessors were developed to permit smaller customers′
requirements to be met with the smaller systems then available. BOS (Basic
Operating System), TOS (Tape Operating System), DOS (Disk Operating System),
DOS/VS, VSE, and now VSE/ESA are the progression of operating systems
designed to ″fill the hole″ left by small processor requirements that could not
meet the minimum resource requirements of the OS/390 predecessors.

 Copyright IBM Corp. 1998 69

OS/360 (PCP, MFT, MVT), the predecessors to MVS, and OS/390, specified Job
Control Language but when JCL was needed for BOS and TOS, a much smaller
implementation was required. Different JCL philosophies developed from this
background.

4.1.1 VSE/ESA ′s Job Control Language Philosophy
Within the VSE/ESA philosophy for Job Control Language, several concepts are
required:

• A Job Stream describes the concept of a single job or a sequence of jobs
which must follow each other in sequence. These will run in a single address
space or partition of the VSE/ESA system. They are delimited by ″Job Entry
Control Language″, or JECL, which is interpreted by the VSE job spooling
subsystem, POWER.

Generally, sequencing of job streams is performed by the operator or by a
job scheduling subsystem.

• A Job describes the concept of one or more job steps which relate the
sequence of programs to be executed, together with the files and other
system resources those job steps require for their successful execution. A
job can be composed of one or more steps.

Each job will have a known system initial state in terms of system resources,
and at the end of the job, those resource assignments will be reset to their
initial conditions. Thus, well-formed jobs can run independently with the
exception of any input or output data files that they use.

Execution of job steps is generally sequential, but the VSE conditional JCL
facilities permit status checking and conditional or absolute GOTO
capabilities, thus a given job will be able to modify its own processing
sequence depending on results from earlier steps in that job.

• A Job Step is the smallest unit of job control from a scheduling perspective.
Job steps receive the state as established by their predecessor steps, in
terms of system resource assignment. Job steps are, for practical purposes,
an instance of the execution of a single program, and specify the system
resources needed by that program. They can affect resource assignment
and state variables such as condition codes and parameter values for
successor job steps, as well.

VSE Job Control is processed as job steps are executed. That is, no VSE system
functions preprocess job control statements for syntax or resource availability
checking before the actual execution of the statements. In addition, VSE provides
for standard resource assignments and file definitions through the concepts
implemented as ″Permanent ASSGNs″ and ″Standard Labels″, which can be
used by any job or step without any specific inclusion in the JCL defining that job
or step. These capabilities make VSE JCL less complex to code, but more
complex to understand, as it is interpreted at step execution time in the context
of the permanent ASSGN and standard label environment in place at that time.

4.1.2 OS/390′s Job Control Philosophy
The concept of a job stream, that is a collection of related jobs, does not exist in
OS/390 and JES2. If a group of jobs is to flow in a particular sequence, you can
create a single new job with the same sequence of job steps. You can also use a
job scheduling product such as OPC which can control the flow and sequencing
of multiple jobs.

70 VSE to OS/390 Migration Workbook

Because there is no concept of permanent ASSGN or specification of standard
label facilities, all resource requirements for each job step must be included
explicitly in each job step. In OS/390, these definitions can be included as
procedures which can reduce the repetitive coding of JCL statements
(specifically DD statements).

To understand the structure and philosophy of MVS job control language, you
must first understand the workflow process for batch jobs. With OS/390, there
are separate phases for each of the following:

1 Input Service

The job′s JCL and any instream data sets are read by JES and stored on
spool as related spool files. No procedures or included JCL statements are
referenced or verified at this time.

JES control statements (JECL) are read, validated and attributes are
recorded for later processing. (These are converted to JCL comment cards
so the subsequent stages do not process them.)

2 JCL Conversion

The job control statements are “converted” into structured text units, and
most (but not all) syntax checking is performed. This step usually takes
place immediately after input service, and any JCL errors result in the job
being queued for output processing, bypassing execution, with a JCL error
message being sent to the submitter.

3 Job Scheduling

After conversion, the job is queued for initiation, and selected by either a
JES2 or WLM managed initiator on a priority, class, and first-come,
first-served basis.

4 Job and Step Initiation

When the job is selected for initiation, the converter-interpreter text units
are read and any data set references are resolved. Any errors such as
“data set not found” are determined at this point and the job is flushed -
queued for output processing - and the programmer is notified.

Once the interpreted control blocks are read into memory, each job step is
given control one at a time based on the conditional JCL processing
options. At step initiation time, all data sets referenced by JCL statements
are allocated. This is unlike VSE when data sets are allocated when they
are opened.

5 Output and Hardcopy Processing

There are actually two steps here with JES2. When the job finishes
execution, the output created on JES spool is grouped into output elements
according to destination and similar attributes, and queued for hardcopy
processing.

These output elements are then individually scheduled for printing,
punching, online viewing, or transmission to another node.

6 Purge Processing

After all the output for a job is disposed of, the job is deleted from the JES
queues and the spool space is freed up.

Chapter 4. Job Control Language (JCL) Differences and Considerations 71

Unlike VSE, the operator does not manipulate elements within a job stream, nor
is he given the opportunity to correct JCL errors. The processes are much more
automated in OS/390 under the theory that the system will be better utilized and
jobs run more efficiently without operator intervention.

4.2 High Level Similarities
A high level comparison of JCL in the VSE and OS/390 environments reveals
many similar functions and purposes. A comparison of the mechanics in both
environments reveals significant differences.

4.2.1 JCL Statement and Job Layout
VSE and MVS JCL are similar in the basic layout for the card images in that both
use 80 Column Card Images, and both use // in columns one and two. Both
operating systems also use the basic layout of a job with one or more steps per
job as described in the philosophical discussion above.

4.2.1.1 Continuation Cards
Both use ASM-type continuation, but the basic layout differs in that:

• VSE JCL statements are continued by placing a non-blank character in
column 72, and JCL continuation cards must start in column 16 with blanks in
columns 1 - 15.

• MVS JCL statements are continued by placing a trailing comma in the
parameter field, and JCL continuation cards may start in any column from 4
to 16, with ″//″ in columns 1 and 2, and a blank in column 3.

4.2.1.2 JOB Statement Starts a Job
In OS/390 there is only one JOB statement as opposed to the VSE POWER and
VSE JOB statements. Much of the time the POWER job will equate to the MVS
job.

4.2.1.3 EXEC Defines Job Step
The EXEC statement defines the job step in both VSE and MVS.

4.2.1.4 File Definitions
File definitions are required by both operating systems (TLBL, DLBL/EXTENT,
DD).

4.2.1.5 Imbedded JCL from Procedures and Libraries
Both operating systems support “canned JCL” and JCL procedures. In VSE, this
is done through procedures (using PROC=procname in the EXEC card) and with
the POWER * $$ SLI JECL statement (Source Library Inclusion). In OS/390, the
same thing can be done with the PROC or INCLUDE JCL statements,
respectively.

4.2.1.6 Nesting Procedures
Both operating systems allow for multiple levels of nested procedures. (MVS
allows up to 15 levels while VSE allows up to 16 levels.)

72 VSE to OS/390 Migration Workbook

4.2.1.7 Instream Data
Both operating systems allow Instream Data in the middle of the JCL. This is
data that will be processed by the executing program.

4.2.1.8 Variables
The JCL in both operating systems will accept variables. These variables are set
with the // SET statement in MVS, or SETPARM in VSE.

4.2.1.9 Conditional JCL
Conditional JCL exists in both environments and allows performing IF and GOTO
statements. Loops are prohibited. In MVS, the IF statements are all processed at
converter time. Although the mechanics are very different, functionally, the IFs
are the same in both environments.

4.2.1.10 Return Codes

Return codes from previous steps can also be tested during execution in both
environments. Program steps can be bypassed based on the result of testing for
a condition (a return code or a parameter value). For example, if in a statement,
the return code was more than zero, then bypass the next statement. In MVS,
this is handled by the COND parameter on the // EXEC statement.

See also 4.3.11.3, “MVS Conditional JCL” on page 84.

4.2.2 Spooling
Spooling exists in both environments. POWER for VSE and JES for OS/390.
POWER and JES provide similar input and output capabilities and a similar
system of classes and priorities.

4.2.2.1 Internal Reader
The internal reader facility exists in both environments. An application program
can pass jobs to the spool, right into the input queue, just by writing to a pseudo
punch device. RJE and NJE also exist in both environments.

Further discussion of spooling can be found in Chapter 10, “POWER and JES2”
on page 207.

4.3 JCL Differences Between VSE and MVS
In part because of the differences in philosophy discussed in 4.1, “The
Philosophy of JCL in System/390” on page 69, there are differences in the
processing of JCL that lead to Job Control Language differences between the
two environments.

4.3.1 Job Input
In VSE systems, job input consisting of JCL statements and instream data,
whether spooled through the POWER spooling system or directly read in a
partition, is processed in a strictly sequential process. That is, a program can
only read one input statement at any one time, and this is a sequential process.
A programming or JCL error in VSE can cause the VSE Job Control program to
read a user data statement, or a user program to read a JCL statement, with
unpredictable results.

Chapter 4. Job Control Language (JCL) Differences and Considerations 73

Instream data will always follow an EXEC statement, and it is the responsibility of
the executing program which is reading the instream data to recognize the end
of that data. By default, the instream data delimiter is the ″/*″ statement,
although an application program can choose its own delimiter. This allows
programs other than JCL to read and process JCL statements, for example,
when the librarian program stores JCL as library members or procedures.

This same capability was often used to control the flow of jobs -- for example, a
program could decide to skip the next job step, and then just read and ignore (or
″swallow″) the JCL statements for that step. With the advent of VSE conditional
JCL in the mid-1980s, the use of this technique has greatly declined, but its use
is found in perhaps 25% of shops converting from VSE to OS/390.

In MVS systems, in contrast, JCL statements and instream data are separated
during the JCL Conversion processing, so that user programs cannot ″see″ JCL
statements, and JCL processing is simplified.

Instream data sets in the OS/390 environment can be read in any sequence, and
can be read multiple times. Thus, an OS/390 job that reads the same instream
input at three different times could simply open and process that data set three
times.

4.3.1.1 Multiple Instream Data Set Input
A VSE job step that reads one input card file under two different program DTFs
requires that the input statements be properly sequenced, whereas in OS/390,
the two input files could appear as two separate instream files.

VSE Example OS/390 Example

// EXEC MYPROG... //FILE1 DD *
FILE 1 CARD 1 FILE 1 CARD 1
FILE 1 CARD 2 FILE 1 CARD 2
FILE 2 CARD 1 FILE 1 CARD 3
FILE 1 CARD 3 FILE 1 CARD 4
FILE 1 CARD 4 FILE 1 CARD 5
FILE 2 CARD 2 FILE 1 CARD 6
FILE 1 CARD 5 /*
FILE 1 CARD 6 //FILE2 DD *
FILE 2 CARD 3 FILE 2 CARD 1

/* FILE 2 CARD 2
FILE 2 CARD 3

/*
// EXEC PGM=MYPROG...

For this processing to work correctly in VSE, it is clearly dependent upon the
program logic and the setup of the instream data. This would be much simpler in
the OS/390 environment. If the MVS example attempts to use just one instream
data set, with two program files being read, each program file will find the same
input data. That is, the first read (from file 1) would read the first record, and the
second read (from file 2) would also read the same first record, as it is the first
read for that file.

74 VSE to OS/390 Migration Workbook

4.3.1.2 Data Driven Segmentation of Output
An artifact of this sequential processing in VSE is that the spooling system
extracts its control statements (JECL) from the input as it is being spooled. When
the input processing crosses the input stream position where the JECL statement
was located, the spooling system will take the action specified by the JECL
statement. The JECL statement can change the output destination of printed or
punched data, or other characteristics, such as special forms requirements.

VSE Example

* $$ JOB JNM=DJANDA,CLASS=A
* $$ LST CLASS=A,DEST=*
// JOB DJANDA
// EXEC MYPROG
INPUT DATA CARD 1
INPUT DATA CARD 2
INPUT DATA CARD 3
INPUT DATA CARD 4
INPUT DATA CARD 5
* $$ LST CLASS=J,DEST=DANJ,DISP=H
INPUT DATA CARD 6
INPUT DATA CARD 7
INPUT DATA CARD 8
INPUT DATA CARD 9
INPUT DATA CARD 10
INPUT DATA CARD 11
/*
/&

* $$ EOJ

The result would be that output printed by this job and program would be sent to
the default system printer, up to the point when the program read INPUT DATA
CARD 6. Output generated from that point forward (including that of cards 6
through 11) would be sent to a specific user ID, DANJ, rather than the default
printer, and it will be in the HOLD disposition state.

A second type of input segmentation appears when a given program will open
an instream data file, read some of its records and close the file. Later, it will
open the same instream data file and read additional records. In VSE, the
records read in the second group will follow the first group in the input stream. A
simple conversion to OS/390 will result in the second file open re-reading the
same records read by the first file!

A method to circumvent this problem is to change the program logic or to write
a subroutine which traps all the reads on the two input streams and which has
one single DCB, so there is only one DDNAME and then the behavior would be
similar to the VSE case.

4.3.1.3 JCL Parameter Handling
Another difference seen because of the philosophy and architecture changes
between VSE and OS/390 is the fact that VSE JCL parameters and JCL handling
can depend on values that are changed at execution time. VSE conditional JCL
can test return codes, as MVS JCL can, but in addition, VSE can test parameter
values as well.

Also, in VSE, procedure expansion and parameter substitution is done at
execution time, so the results of previous job step execution can affect the

Chapter 4. Job Control Language (JCL) Differences and Considerations 75

expansion for subsequent steps. In general, this is not possible in MVS JCL in
the OS/390 environment.

4.3.2 JCL Expansion
In VSE, JCL is expanded at execution time. The most current changes, even
those changed two seconds before the job begins execution are included. The
first step could change a procedure that is used by the third step.

In OS/390, JCL is expanded all at once when the job is submitted. This may be
hours or days before it is executed. All the procedures, all of the jobs, all of the
includes that are required are expanded at the same time. You can not change
variables during execution in OS/390 using symbolic names in JCL.

If a job is submitted today to be run tomorrow and overnight one of the included
members is changed and not reflected in the original JCL that was submitted,
the job will fail.

4.3.2.1 Early Error Detection
An advantage of expanding the JCL when the job is read in OS/390 is that many
of the JCL errors will be detected early and the job will fail. This removes the
ability to correct the job on the fly as in VSE. In OS/390 many errors are
detected before the job starts. In VSE a card has to be processed before errors
are found and the operator can act on it. However, because of this, you must
have a syntactically correct JOB statement to get JCL errors from OS/390.

4.3.2.2 Overrides
The OS/390 ′Overrides ′ occur at the step level. A procedure can only be
overridden in OS/390 through the addition of a DD Statement to a specified step.
This is different from VSE, where statements in PROCs and SLIs are overridden
using each statement′s sequence number in positions 73-80.

4.3.3 Operator Flexibility and Intervention
Another difference between VSE and MVS JCL is the flexibility created by
requiring operator intervention. For example, the operator may correct invalid
JCL syntax.

4.3.3.1 Correcting Invalid Syntax
A syntax error in a JCL statement will cause a message to be posted on the
operator console. The operator will respond to the message by typing in the
correct JCL statement and processing will continue. This facility is not available
with OS/390. The job will fail with a JCL error, and must be corrected and
resubmitted.

4.3.3.2 Operator Data Entry
From a VSE point of view this flexibility is a feature. Installations depend on this
flexibility to address situations where it is necessary to have the operator retype
the JCL or command. For example, a programmer may purposely put in a
syntax error in the JCL to ensure it comes to the operator′s attention. The
experienced operator retypes the string and allows the job to continue.

This technique is illustrated in the following example, where the syntax of the
ASSGN statement is invalid and causes the operator to be prompted for action:

76 VSE to OS/390 Migration Workbook

// PAUSE mount tape 123456 on an available drive.
// ASSGN SYS005,CUU

- or -
// ASSGN SYS005,Drive

The operator gets an error message and enters the correct tape assignment,
such as:

// ASSGN SYS005,481

Another example is TLBL without VOLSER or a known invalid VOLSER.

// TLBL 999999

Forcing error conditions in VSE JCL that require operator intervention becomes a
simple tape management method.

IGNORE, DELETE and NEWTAP are replies that the operator can use to answer
the messages.

IGNORE IGNORE can be used when the data set name in the JCL does not
match the data set name on the tape. IGNORE says go ahead and
read it anyway. It acts as a BLP (Bypass Label Processing) in
OS/390. This allows tapes with any labels or no labels to be
processed without label verification.

Another approach is to leave the data set name blank which allows
whatever is on the drive to be read.

DELETE DELETE is used to create a new file disk when files already exist in
these extents. Using DELETE will overlay the previous extents.
DELETE can also be used to overwrite extents when someone has
used your extent.

NEWTAP NEWTAP is used to unload the volume currently mounted on the
drive and allow the operator to mount another volume.

4.3.3.3 Comment Lines in the JCL
Comment lines can be inserted in the VSE JCL, wherever a valid JCL is allowed.
Comment lines that start with an asterisk are displayed on the console and, if
option LOG is set, the message is also written to SYSLST.

To have comments in the VSE JCL not written to the console use ′ / *′ instead of
′*′. Exercise caution as to where they are placed because ′ / *′ still means end of
data. Some people also accomplish this by using ′/.′. What is important is that
the first word must be a valid JCL label.

The MVS JCL offers no possibility to have the comments written to the console;
comment lines are only written to the job ′s output.

4.3.3.4 PAUSE Statement
The PAUSE statement provides the ability to halt job execution and wait for
operator intervention. VSE comment lines (with an asterisk in position 1) can be
used before a PAUSE statement to display multi-line messages to the operator.
See 4.5.1, “Sample VSE JCL” on page 92 where there is an example of a
multiple line message being sent to the console with a comment line and a
PAUSE to send a message to the operator and wait.

Chapter 4. Job Control Language (JCL) Differences and Considerations 77

There is no equivalent function in OS/390. Many users write their own routine to
replace the PAUSE function, if needed, or use the existing automation functions
of OS/390.

4.3.4 Allocation of Resources
The allocation of resources in OS/390 occurs at step initialization time. This is a
big difference from VSE where allocation of resources occurs at open time. In
OS/390, if the JCL contains DD statements that point to data sets, the data sets
are allocated even if they are not opened. This makes IEFBR14 useful in testing
out allocations or in allocating new data sets.

In MVS, IEFBR14 can be used to run a job with no program execution. This
causes all JCL to go through conversion and interpretation. Using IEFBR14 in
VSE would not cause a file to be opened, so no allocation of resources could
take place.

With MVS, the system allocates the resources when a job step is started. The
volumes have to be mounted, the devices have to be available, the system data
sets have to be there and the region has to be available. If there are data sets in
your JCL, they have to be cataloged and the volume information must be
specified. If more tape drives are required than are available to execute the job,
the job will wait until sufficient tape drives are made available.

With MVS, the scope of allocation is generally the current step. JCL statements,
such as the DD statement, affect only the current job step. This is very different
from VSE where the ASSGN statement can secure a tape drive for the duration
of the job. In OS/390, a tape drive deallocated at the end of a step may be
″stolen″ by another JOB before the beginning of the next step, causing the tape
to be dismounted and a mount message to be issued on another tape drive.

4.3.4.1 Resource Allocation at Open Time
With VSE JCL, allocation of resources is done at OPEN time. The JCL can
contain numerous DLBL or TLBL statements, even for files that do not exist; as
long as the application does not open them, they′re just ignored. This is
completely different in OS/390 where files specified in JCL are allocated at step
initiation time, whether the application opens them or not. See item 4 on
page 71.

4.3.5 Hidden JCL
Hidden JCL doesn′ t appear in the job stream but is used during the execution of
the job. It can be the permanent assignments, labels in the partition or system
standard label areas, or ″carryover″ (described below).

4.3.5.1 Partition and System Standard Labels
File definitions stored in the partition and standard label areas do not appear in
the VSE JCL. In OS/390 all file definitions are coded in the JCL.

System standard labels provide a set of labels that is common to the whole VSE
system.

Partition standard labels provide a set of partition specific file definitions. These
file definitions are different from one partition to another. This function can be
used for application, sort or compiler work files. This may have an impact on

78 VSE to OS/390 Migration Workbook

the conversion of the JCL which may have to be converted differently, depending
on in which partition the job normally runs.

There is no equivalent to standard labels in OS/390. Labels must be spelled out
in each step. One way to keep a common set of labels in OS/390 is to use the
JCL INCLUDE statement. In rare cases another possibility is to use dynamic
allocation to replace standard labels.

4.3.5.2 Permanent Assignments and POWER Defaults
Readers, punches, printers or disks can be permanently assigned in VSE. These
assignments do not appear in the individual job JCL. OS/390 does not use the
concept of a permanent assignment.

Spool devices can be started at POWER initialization time. They can also be
stopped or started by the operator from the Attention Routine. This also does
not appear in the JCL.

4.3.5.3 ″Carry-Over ″
Carry-Over is a user term for a phenomenon that exists in VSE JCL and is
otherwise undocumented. Carry-over occurs where a job step has tape or disk
file definitions with DLBL or TLBL and there are additional execute statements.
These execute statements will have access to these file definitions which are in
a previous step. This can occur as long as this is not a new job and there are no
intervening DLBL or TLBL (see 4.5.3, “Sample VSE plus Carry-Over” on
page 94).

One common method in VSE is to put all the file definitions at the top of the job
and then all that remains is the execute statements. The problem this creates is
with translation, as it is difficult to associate the program with the file it uses.

The conversion task is to translate the programs to identify what files are used.
The output is to produce a table or listing that has the file information and then
merge the information with the JCL. It is a process of submitting all job steps
and removing one level after the other to see which one is used and which one
is not.

The opposite is also true in that some of the JCL may never be used. TLBLs
and DLBLs may be present that are never used by that job or are used
infrequently.

4.3.5.4 Help for the Hidden JCL Problem
Recent releases of VSE/ESA (Version 2.2 and later, and Version 1.4 and 2.1 with
maintenance added) provide additional functions which can help with the Hidden
JCL problem. The availability of Opti-Audit for VSE (also available from Barnard
Software, Inc. as well as a part of the VSE/ESA Version 2.2 system) provides the
ability to track usage of VSE program resources by job and job step, and of files
by program or job step and by job. Opti-Audit can also collect inventory data
from a running VSE/ESA system including the resources allocated through
Standard Labels, Permanent Assignments, POWER defaults, and carry-over.

Another new function is called the VSE/ESA JCL Analyzer, which consists of a
group of programs and files which gather file usage information from a running
VSE/ESA system, and use that data to create an output file suitable for
processing by the VisualAge tools on a workstation. The Application

Chapter 4. Job Control Language (JCL) Differences and Considerations 79

Understanding tool provides a graphical analysis of your VSE/ESA JCL job
stream. You can find further details at the following World Wide Web sites:

http://www.software.ibm.com/ad/va2000
http://www.software.ibm.com/ad/cobol

The JCL Analyzer is shipped as part of VSE Central Functions in VSE/ICCF
library 59. It consists of a number of members, including ARDWREAD, which is a
detailed description of the JCL Analyzer and its functions. All the other related
library member names begin with the characters ARDW.

There is a brief description of this new function in the manual, VSE/ESA
Enhancements Version 2 Release 3, SC33-6629

4.3.6 Device Address Specifications
In VSE, the Logical Unit Address, is the symbolic link between the program and
the external units (tape drive, printer, and so on) it uses. The Logical Unit
Address is a name in the form of SYSnnn, such as SYS004 or SYSLST. The
Logical Unit Address is specified by the programmer on the DTF using the
DEVADDR=SYSnnn keyword; for this reason, it is often referred to as the
″Device Address″, a term easily confused with ″Unit Address″, which refers to
the external unit associated with the Logical Unit Address, such as the 3205
printer at address 00E.

In other words, the terms Logical Unit Address and Device Address both refer to
the SYSnnn name, where Unit Address refers to the hardware device at address
CUU.

In the VSE JCL, the ASSGN statement is used to associate a Device Address to a
Unit Address; for example:

// ASSGN SYS010,FEF

where SYS010 is the device address specified in the program, and FEF is the unit
address of a real or virtual printer device.

An ASSGN statement is normally required for every non-disk file used by the
program, although Tape Management Software products generally remove the
requirement for tapes.

There is no exact equivalent for the Device Address in MVS JCL. The association
between a file and a particular device is established by Device Allocation, a
system function invoked by the initiator. The equivalent of the above ASSGN card
depends on what DDNAME is used in MVS for a particular file, which could be,
for example:

//SYS010 DD SYSOUT=...
or
//REPORT1 DD SYSOUT=...

One may wonder, when converting VSE JCL to MVS, what to do with the Device
Addresses, ASSGN cards, and what DDname should be used for card and print
files. Here are some guidelines:

• For disk - the DEVADDR should be ignored, and the DTFname should be
used as MVS DDname.

• For labeled tape - the DEVADDR should be ignored, except when the ASSGN
statement specifies a tape density, or when assigning several files to the
same unit. The DTFname should be used as MVS DDname.

80 VSE to OS/390 Migration Workbook

• For unlabeled tapes - the DEVADDR is the only link between the program
and the JCL (there is no TLBL). Either the DEVADDR or the DTFname can be
used as DDNAME.

• For card devices - the DEVADDR links the DTF to a card reader or puncher;
Either the DEVADDR or the DTFname can be used as DDNAME.

• For print devices - the DEVADDR is the only link to a printer or a LST card.
Either the DEVADDR or the DTFname can be used as DDNAME.

4.3.7 Catalogs
With the exception of VSAM, in VSE JCL there are no catalogs to deal with. The
user must provide an extent for each read or write to a disk file.

For tape functions the correct tape must be mounted. Volume information must
be specified for disk files using an EXTENT card, except for files managed by
VSAM, which are managed in a VSAM catalog.

There are vendor products in the marketplace that provide these cataloging
functions, such as Dynam and EPIC. Many VSE installations use one of these
products for disk management, tape management, or both. Installations that do
not use a third-party disk manager often make extensive use of VSAM-managed
SAM files.

4.3.8 Partition Dependent Codes in JCL

4.3.8.1 Procedures
Partition-dependent codes in VSE JCL can ensure that a procedure runs in a
particular partition. Procedures may be cataloged names in the form of $xABC
(where x = 1, 2, 3,... B = representing BG, F1, F2, F3,... FB partitions). A job
may be built with an EXEC PROC=$$ABC and run in various partitions. When
run in BG, $0ABC.PROC will run; when run in F5, $5ABC.PROC will run; and so
on. MVS, which has no notion of ″partition″, has no equivalent function.

4.3.8.2 Data Set Names
Data set names can contain the condition dependent operands; ′ % % ′ . The first
′ % ′ is partition, the second ′ % ′ is the view.

This function is similar to the DSN=&&dsname function in MVS, which allows
use of the same JCL in concurrently running jobs without having conflicts with
the data set names.

4.3.9 Communication Region - DATE and UPSI

4.3.9.1 DATE
In VSE, the date is stored in the Job Date field of the partition ′s communication
region. There is only one facility in VSE from which to get the date. The date can
be entered in the JCL and is what the job will see whenever the application
queries the system date. The result will be the date that is specified in JCL.

The VSE DATE function allows a job to run with a date that is not the system
date. It can also ensure that when a job that takes an hour to run is started at
23:30, the steps that execute after midnight will maintain the same date.

Chapter 4. Job Control Language (JCL) Differences and Considerations 81

In OS/390 the DATE function can be replaced by a control card, a parameter on
the EXEC statement, or a date simulation tool.

4.3.9.2 UPSI
The UPSI switches that were on the 1401s got a second life in DOS with the
System/360. UPSI can be tested in RPG, Assembler and in COBOL. For more
information on the manipulation of UPSI with Assembler see Chapter 13,
“Assembler” on page 267. In OS/390, COBOL and RPG support UPSI through the
PARM= on the EXEC statement. There is no support for UPSI in Assembler or
PL/I. A feature of VSE UPSI statements is that they are carried over from one
step to the next until the end of the job.

Many VSE utility programs that use UPSI have an equivalent in MVS which,
obviously, does not use UPSI. For this reason, it is frequent that a large number
of UPSI cards in the VSE JCL do not need to be converted to MVS.

The VSE application can modify the value of the UPSI byte internally using the
MVCOM macro. This can be identified by inspecting the MVCOM macros in
Assembler subroutines.

4.3.10 VSE Job Control Statements

4.3.10.1 Job Statement
The job statement is mandatory in OS/390 (it could be omitted in VSE; some say
this makes it optional). Many times the VSE job card may be used to delineate a
step (that is, if there is only one EXEC statement in the VSE job being converted).

Accounting information from the VSE job card may be specified in the MVS JOB
or EXEC statement using the ACCT= keyword.

4.3.10.2 EXEC Statement
The EXEC statement in VSE is similar to MVS′ EXEC statement. It is used to
identify the program or procedure to be executed. It also specifies storage SIZE
requirements (similar to the MVS EXEC REGION parameter), and parameters to
be passed to the program or procedure to be executed.

There are differences in defaults and parameter specifications. In VSE, the
default for the name is a program module, while in MVS, the default is the name
of a procedure. Thus, in VSE, you find

// EXEC PROC=procname,.. to execute a procedure
// EXEC IDCAMS,... to execute a program
// EXEC REXX=rexxproc,.. to execute a REXX procedure

while in MVS you would find

//STEPNAME EXEC procname,... to execute a procedure
//STEPNAME EXEC PGM=IDCAMS,... to execute a program
//STEPNAME EXEC PGM=IRXJCL... to execute a REXX procedure

4.3.10.3 TLBL Statement
The TLBL in VSE is equivalent to the DD statement for a labeled tape file in
OS/390 (an unlabeled tape does not need a TLBL). The VSE filename (the DTF
name) which can be up to seven characters long, is equivalent to the MVS
DDname, which can be up to eight characters long.

82 VSE to OS/390 Migration Workbook

The VSE file-id (the label), which can be up to 17 characters long, is equivalent to
the MVS DSname, which can be up to 44 characters long.

4.3.10.4 MTC Statement
Magnetic Tape Control statements provide control over tape processing
including writing tape marks and unloading tapes. MTC has no direct equivalent
in MVS: OPEN automatically positions the tapes based on the LABEL parameter
of the DD statement and CLOSE rewinds or unloads volumes, depending on the
DISP parameter. Writing a tape-mark (MTC WTM) can be achieved with
IEBGENER, as follows:

//WTM EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DUMMY,RECFM=F,BLKSIZE=80
//SYSUT2 DD UNIT=TAPE,LABEL=(,NL)

4.3.10.5 ASSGN Statement
In VSE, the relationship between a logical unit (SYSxxx) used by a program, and
a physical device used to contain a file is established by the ASSGN JCL
statement. These assignments can be made temporarily -- that is, they will
revert to a standard value at the end of a VSE JOB or when a RESET statement
is processed, or they can be made permanent, where they will become the new
persistent value.

Often ASSGN standards are established during system initialization and JCL will
not explicitly repeat those ASSGN statements. Further, in the case of VSAM files,
ASSGN processing is handled automatically by VSAM without the need for any
ASSGN statements.

In MVS JCL, the closest analog is the use of the UNIT= parameter on a DD
statement.

4.3.10.6 RESET Statement
The RESET statement resets the current temporary ASSGN value and the
assignment of the logical unit will revert to its current permanent value.

There is no equivalent of this function in MVS JCL in OS/390, as there is no
persistence or ″carry-over″ of device allocations from one job step to another.

4.3.10.7 DLBL and EXTENT
The DLBL and EXTENT statements provide information for disk files. The DLBL
provides information such as the filename (7-character name), the file-id (1-44
character name), retention period, file type (VSAM, SD, DA) plus more. The
EXTENT provides volume information and extent information for new data sets.
VSAM files don′ t require EXTENT statements. The VSE filename is equivalent to
the MVS DDname and the VSE file-id is equivalent to the MVS DSname. The
filename (DSname) is the name written to the VTOC.

4.3.10.8 CAT=Catalog on DLBL
Another of the VSE differences is that the catalog is specified on the DLBL
statement. It is similar to having a //STEPCAT for every DD statement for VSAM.

Each disk file can have its own catalog pointer. This provides the ability to have
VSAM files that have the same name in different catalogs. When these files
having the same name are migrated, consideration must be given to the target

Chapter 4. Job Control Language (JCL) Differences and Considerations 83

location for these. In OS/390 these duplicate names need to be resolved
somehow. Refer to Chapter 5, “Disk and Tape Storage Considerations” on
page 97.

4.3.10.9 Conditional JCL
VSE/ESA added conditional JCL processing in the early 1980s, with VSE/SP
Version 2. This conditional JCL is characterized by several new JCL statements,
including // IF, // GOTO, // ON, and /. LABEL statements which allow the user to
make JCL decisions based on the results of conditions set by previous JCL
statements and program executions during the job.

The // IF statement can test the value of the last return code, the maximum
return code found so far during this job, or the value of parameters. Based on
the test, the subsequent statement can be skipped or executed. The // GOTO
statement, in conjunction with the /. LABEL statement, allows steps or groups of
steps to be skipped. A // GOTO statement will only skip in the forward direction
-- looping is not allowed.

4.3.11 MVS Job Control Statements

4.3.11.1 DD Statement
The main JCL statement in MVS is the DD statement. It replaces the VSE JCL
TLBL, DLBL, ASSIGN, RESET and EXTENT statements. Because it replaces so
many JCL commands in VSE it can become complex. One complaint from VSE
users is a DD statement must be coded for every step of every job where a file
is used. If a change is made to a data set name, the JCL must be changed
everywhere the file is used. In VSE these labels may be located in Standard
Labels where they can be changed in one place.

4.3.11.2 OUTPUT JCL Statement
The OUTPUT JCL statement was added to JES in release 2.1.3. This replaces the
′ /*OUTPUT′ JECL statement which provides various output attributes. With the
″DEFAULT=YES″ parameter, the OUTPUT JCL statement can provide step level
or job level default attributes, much like the JOBLIB, STEPLIB and STEPCAT
statements.

See 4.4, “JECL” on page 89 for more details.

4.3.11.3 MVS Conditional JCL
You can conditionally execute steps in a job by using the IF/THEN/ELSE/ENDIF
statement construct or the COND parameter.

IF THEN ELSE ENDIF Statements

Depending on the results of a job step, you might need to bypass or execute
later steps. For example, if a step terminates abnormally, you might want to
execute an error routine procedure; while if the step terminates normally, you
want to continue processing with the next step.

The conditions can be based on return codes, ABEND codes, or whether the job
step ran or not.

84 VSE to OS/390 Migration Workbook

COND Parameter on the EXEC Statement

To indicate the results of its execution, a program can issue a return code.
Using a COND parameter, you can test the return code and, based on the test,
either bypass or execute a step. The COND parameter can be specified on
either a JOB or EXEC statement. See the JCL User′s Guide for explanation and
examples.

Chapter 4. Job Control Language (JCL) Differences and Considerations 85

4.3.12 Comparison of VSE and MVS JCL - A Summary
Below is a summary of VSE JCL statements and possible equivalents in MVS.

Table 7 (Page 1 of 2). VSE Job Control Statements Summary

VSE
Statement

Function MVS Equivalent

ASSGN Used at execution time to assign a
specific device address to the
symbolic unit name used.

/ / DD UNIT=

CLOSE Closes either a system or a
programmer logical unit assigned to
tape, disk, or diskette.

No equivalent in OS/390.
Units closed automatically
at end-of-step, or by the
application program.

DATE Contains a date that is put in the
communications region.

No equivalent in OS/390.

DLBL Contains file label information for
disk or diskette label checking and
creation.

/ / DD DSName=

EXEC Indicates the end of job control
statements for a job step and that
the job step is to be executed.

/ / EXEC PGM= (Must
precede DD statements for
the step.)

EXEC PROC Calls a cataloged procedure and
defines values for symbolic
parameters.

/ / EXEC PROC= (″PROC= ″
is optional)

EXTENT Defines each area, or extent, of a
disk file or diskette volume.

/ / DD VOLUME= SPACE=
DATACLAS=

GOTO Causes JCL to skip all following
statements (except JOB, /&, /+) up
to the specified label statement.

No direct equivalent in
OS/390. Use CONDitional
step processing or
IF/THEN/ELSE/ENDIF

ID Used to specify user identification
and password.

/ / JOB U S E R =
PASSWORD=

IF Causes skipping or execution of the
following statement dependent on
the specified condition.

/ / IF

JCLEXIT Activates or deactivates one or
more JCL exit routines.

Not applicable in OS/390.

JOB Indicates the beginning of control
information for a job.

/ / JOB

LIBDEF Defines library chains. / / STEPLIB DD,
// STEPCAT DD, or
// JCLLIB

LIBDROP Drops library chain definitions. No equivalent in OS/390.

LIBLIST Lists library chain definitions. No equivalent in OS/390

LIBSERV Controls 3494 tape system. No equivalent in OS/390

LISTIO Used to get a listing of I/O
assignments on SYSLOG or SYSLST.

No equivalent in OS/390

MTC Controls operations on magnetic
tapes.

// DD LABEL

86 VSE to OS/390 Migration Workbook

Table 7 (Page 2 of 2). VSE Job Control Statements Summary

VSE
Statement

Function MVS Equivalent

ON Causes specified action to be done if
the specified condition is true after
any step in the following job stream.

// EXEC COND= or
//IF/ENDIF

OPTION Sets one or more of the job control
options.

// EXEC PARM=

PAUSE Causes a pause immediately after
processing this statement, or at the
end of the current job step.

No equivalent in OS/390.

PROC Defines and initializes symbolic
parameters in a procedure.

/ / PROC

PWR Passes a PRELEASE or PHOLD
command to POWER.

/*$command

QUERY Displays information on data spaces
and standard options.

No equivalent in OS/390.

RESET Resets I/O assignments to the
standard assignments.

No equivalent in OS/390.

RSTRT Restarts a checkpointed program. // JOB RESTART=

SETPARM Assigns a character string or return
code to the specified parameter.

/ / SET

SETPFIX Defines limits for PFIXing pages. No equivalent in OS/390.

SETPRT Loads the IBM 3800 buffers. // DD or
// OUTPUT

STDOPT Resets system defaults. No equivalent in OS/390.

SYSDEF Defines limits and defaults for data
spaces.

No equivalent in OS/390.

TLBL Contains file label information for
tape label checking and writing.

/ / DD dsname= , LABEL=

UPSI (User Program Switch Indicators)
Allows the user to set program
switches that can be tested.

No equivalent in OS/390.
(Use // EXEC PARM=)

VDISK Defines the layout of a virtual disk. No equivalent in OS/390.

ZONE Initializes the zone field in the
communications region.

No equivalent in OS/390.

/. Label statement. No equivalent in OS/390.

/* Indicates the end of a data file. /*

/& Indicates the end of a job. / /

* Job control comments. See JES2 control statements
below

/ + Indicates the end of a procedure or
librarian End-of-Data.

/ / PEND

Chapter 4. Job Control Language (JCL) Differences and Considerations 87

4.3.13 Summary of MVS JCL Statements

Table 8. MVS Job Control Statements

JCL Statement Purpose

/ / command Enters an MVS system operator command
through the input stream. The command
statement is used primarily by the operator. Use
the COMMAND statement instead of the JCL
command statement.

/ / COMMAND Specifies an MVS or JES command that the
system issues when the JCL is converted. Use
the COMMAND statement instead of the JCL
command statement.

//* comment Contains comments. The comment statement is
used primarily to document a program and its
resource requirements.

/ / CNTL Marks the beginning of one or more program
control statements.

/ / DD Identifies and describes a data set. Indicates the
end of data placed in the input stream. Note: Any
two characters can be designated by the user to
be the delimiter.

/ / ENDCNTL Marks the end of one or more program control
statements.

/ / EXEC Marks the beginning of a job step; assigns a
name to the step; identifies the program or the
cataloged or in-stream procedure to be executed
in this step.

/ / IF/THEN/ELSE/ENDIF Specifies conditional execution of job steps within
a job.

/ / INCLUDE Identifies a member of a partitioned data set
(PDS) or partitioned data set extended (PDSE)
that contains JCL statements to be included in
the job stream.

// JCLLIB Identifies the libraries that the system will search
for INCLUDE groups and Procedures named in
EXEC statements.

/ / JOB Marks the beginning of a job; assigns a name to
the job.

/ / Marks the end of a job.

/ / OUTPUT Specifies the processing options that the job
entry subsystem is to use for printing a SYSOUT
data set.

/ / PEND Marks the end of an in-stream or cataloged
procedure.

/ / PROC Marks the beginning of an in-stream procedure
and may mark the beginning of a cataloged
procedure; assigns default values to parameters
defined in the procedure.

/ / SET Defines and assigns initial values to symbolic
parameters used when processing JCL
statements. Changes or nullifies the values
assigned to symbolic parameters.

88 VSE to OS/390 Migration Workbook

4.4 JECL
JECL is very important in VSE and is commonly used. The difficulty from a
conversion standpoint is to determine where the job is due to having two
different job cards in JCL. The JECL statement is a POWER job, the DOS Job or
VSE Job is the // JOB. The POWER job is like the MVS JOB. This is where the
class and priority information is specified. It exists at the beginning of a job
stream.

JES control statements are not recommended for new applications. You should
use the new JCL statements such as // OUTPUT instead of the /*OUTPUT,
/*ROUTE JECL statements. Today most JECL functions can be accomplished
through standard JCL statements.

See Table 10 on page 90 for a list of recommendations.

4.4.1.1 LIST Card - * $$ LST
The LIST card in VSE is the equivalent of both // DD SYSOUT statement and
OUTPUT statement in MVS.

Defaults, list and punch destinations can be put on the VSE JOB card as well as
the LST card. Both are merged into the OUTPUT statement in MVS.

There is a difference between the scope of a LST statement and an equivalent
DD statement. In MVS a DD statement is only viable for one step. In VSE, a * $$
LST statement is in effect from the time it is processed by POWER until EOJ or
another LST statement for the same device address is processed. As soon as
the effect of a given LST statement ends then the output is available for printing.

4.4.1.2 Data Statement - * $$ DATA
The data statement in VSE is a way for an include in SLI to specify the point
where some data external to that include statement should be processed. It is
similar to sending overrides in JECL but not as cumbersome in the space with
the line number. The data statement allows you to pass data to a step. The step
could be in the middle of an include statement. This is a commonly used
method. The MVS equivalent is either a DD DATA override or a DD that points to
a PDS member or a sequential data set.

4.4.2 Comparison of POWER and JES2 JECL - A Summary

Table 9 (Page 1 of 2). Overview of POWER JECL Statements

POWER
Statement

Function JES2 or MVS Equivalent

* $$ CTL Assigns a new default input
class to VSE/POWER jobs.

$T RDR(nn),Class=class

* $$ DATA Inserts data from the reader
queue into a l ibrary member
after this member was
retrieved for inclusion into a
VSE/POWER job.

// DD * or
// DD DATA

* $$ EOJ Indicates the end of a
VSE/POWER job.

/ /

Chapter 4. Job Control Language (JCL) Differences and Considerations 89

Table 9 (Page 2 of 2). Overview of POWER JECL Statements

POWER
Statement

Function JES2 or MVS Equivalent

* $$ FLS Indicates that a VSE/POWER job
should be terminated by
internal flushing.

/*PURGE if INTRDR

* $$ JOB Indicates the beginning of a
VSE/POWER job and specifies
the routing of jobs, output, and
notify messages.

/ / JOB

* $$ LST Provides handling information
for printer output; routes list
output to a node.

// OUTPUT, /*OUTPUT, or // DD
SYSOUT=x, DEST=dest inat ion

* $$ PUN Provides handling information
for punched output; routes
punch output to a node.

// OUTPUT, /*OUTPUT, or // DD
SYSOUT=x, DEST=dest inat ion

* $$ RDR Inserts a diskette file into the
input stream.

No equivalent in OS/390.

* $$ SLI Inserts data from an accessible
l ibrary.

/ / INCLUDE

* $$ /* Indicates the end of a VSE job
step (used with the SLI
statement only).

No equivalent in OS/390.

* $$ /& Indicates the end of a VSE job
(used with the SLI statement
only).

No equivalent in OS/390.

/*$SLI Indicates end of input data for
an SLI member.

No equivalent in OS/390.

4.4.3 Summary of JES2 JECL - A Table

Table 10 (Page 1 of 2). JES2 Control Statements

Statement Purpose Comments

/*$command Enters JES2 operator
commands through the input
stream.

/*JOBPARM Specifies certain job-related
parameters at input time.

Use parameters on the // JOB
statement instead.

/*MESSAGE Sends messages to the
operator via the operator
console.

Seldom used.

/*NETACCT Specifies an account number
for a network job.

Seldom used.

/*NOTIFY Specifies the destination of
notification messages.

Use NOTIFY on the // JOB or //
OUTPUT statements.

/*OUTPUT Specifies processing options for
SYSOUT data set(s).

Use the // OUTPUT JCL
statement instead.

/*PRIORITY Assigns a job queue selection
priority.

Use PRTY= on the // JOB
statement instead.

/*ROUTE XEQ Specifies the execution node
for the job.

Use the /*XMIT statement as
an alternative.

90 VSE to OS/390 Migration Workbook

Table 10 (Page 2 of 2). JES2 Control Statements

Statement Purpose Comments

/*ROUTE PRT
or
/*ROUTE PUN

Specifies the default print or
punch destination for the job.

Use the // OUTPUT
DEFAULT=YES instead.

/*SETUP Requests mounting of volumes
needed for the job.

Seldom used. (Similar to VSE
PAUSE statement)

/*SIGNOFF Ends a remote job stream
processing session.

BSC RJE Workstation use only.

/*SIGNON Begins a remote job stream
processing session.

BSC RJE Workstation use only.

/*XEQ Specifies the execution node
for a job.

(Short form of /*ROUTE XEQ)

/*XMIT Indicates a job or data stream
to be transmitted to another
NJE node.

A // JOB card must precede
this, and a job statement for
the execution node must follow
this.

4.5 VSE and MVS JCL Comparison Example
The following example jobs (4.5.1, Sample VSE JCL, 4.5.2, Sample MVS JCL, and
4.5.3, Sample VSE plus Carry-Over) show different ways to code the JCL to
execute PROGRAM1, SORT, and PROGRAM2. Though these jobs appear to be
different, the output is exactly the same in each example.

• Step (Job) 1

PROGRAM1 reads data from TAPEIN (INPUT-TAPE in VSE and INPUT.TAPE in
OS/390) and writes data to DISKOUT (WORK-DISK in VSE and WORK.DISK in
OS/390).

• Step (Job) 2

SORT takes data from SORTIN (WORK-DISK in VSE and WORK.DISK in
OS/390) and writes sorted data to SORTOUT (WORK-DISK 2 in VSE and
WORK.DISK2 in OS/390).

• Step (Job) 3

PROGRAM2 reads data from DISKIN (WORK-DISK 2 in VSE and WORK.DISK2
in OS/390) and sends output to two different locations (Endicott and
Boeblingen).

By comparing the file definitions described above you can see which JCL
statements in VSE and MVS perform equivalent functions (TLBL or DLBL/EXTENT
equate to DD, EXEC equates to EXEC, and so on). Notice also the very slight
difference in syntax: VSE has a space after the ′// ′ , MVS does not unless it is a
continuation card, also VSE continuation starts on column 16. In VSE, the file
definitions precede the EXEC statement while in MVS they succeed the EXEC
statement.

The JCL in ″4.5.1, Sample VSE JCL″ and ″4.5.2, Sample MVS JCL ″ show an
equivalent relationship as to the placement of file definitions in the different
steps (that is, the file definitions are all in the step where they are used). By
contrast ″4.5.3, Sample VSE plus Carry-Over″ shows how file definitions can all
be located at the beginning of the VSE JCL and ″carried″ throughout the entire

Chapter 4. Job Control Language (JCL) Differences and Considerations 91

job (all definitions available to all steps). OS/390 operation does not perform this
″carry-over″ (unique to VSE).

4.5.1 Sample VSE JCL
This example shows one POWER job containing three VSE jobs.

* $$ JOB JNM=MYJOB,CLASS=F,USER=′ ITSO SAMPLE′
* $$ LST LST=SYSLST,JSEP=0,CLASS=W,COPIES=3
// JOB JOB1 extract records from tape
// ASSGN SYS005,480 input tape
// TLBL TAPEIN,′ INPUT-TAPE′
// DLBL DISKOUT,′ WORK-DISK′ , O,SD
// EXTENT DISK01,1,0,100,500
// EXEC PROGRAM1,SIZE=AUTO
// MTC SYS005,RUN unload tape
/*
* check previous job
// PAUSE in case it abended
/*
/&
// JOB JOB2 SORT WORK FILE BY PLANT NUMBER
* $$ LST LST=SYSLST,JSEP=0,CLASS=A
// DLBL SORTIN,′ WORK-DISK′ , 0 , SD
// EXTENT DISKO1,0
// DLBL SORTOUT,′ WORK-DISK 2′ , 0 , SD
// EXTENT DISK14,0,600,500
/ DLBL SORTWK1,′%%SORT.WORK1′ , 0 , VSAM,RECSIZE=100,RECORDS=50000, C

DISP=(NEW,DELETE)
// DLBL SORTWK2,′%%SORT.WORK2′ , 0 , VSAM,RECSIZE=100,RECORDS=50000, C

DISP=(NEW,DELETE)
// EXEC SORT,SIZE=200K
SORT FIELDS=(1,32,CH,A),WORK=2
RECORD TYPE=F,LENGTH=87
INPFIL BLKSIZE=4350
OUTFIL BLKSIZE=4350
/*
* SORT ENDED
/&
// JOB JOB3 PRINT REPORT
// DLBL DISKIN,′ WORK-DISK 2′ , 0 , SD
// EXTENT DISK14,0
// DLBL PRODCAT,′ PROD.USER.CATALOG′ , , VSAM
// DLBL MASTER,′ PLANT.MASTER.FILE′ , , VSAM,CAT=PRODCAT
// EXEC PROGRAM2,SIZE=300K
* $$ LST LST=SYS010,DEST=KCJONES
01 ENDICOTT
* $$ LST LST=SYS010,DEST=HERBERT
02 BOEBLINGEN
/*
/&
* $$ EOJ

92 VSE to OS/390 Migration Workbook

4.5.2 Sample MVS JCL
The task surrounding the conversion of JCL is more than mapping between VSE
JCL using this syntax and MVS JCL using that syntax. At the base of these two
JCLs are different philosophies. A parameter by parameter comparison is
insufficient. Comparing the VSE DLBL/EXTENT to a DD Statement is only part of
the story. These examples are meant to give the read only a ″flavor″ for what
changes have to take place. It is necessary to look at the two systems at a
higher level as well.

//MYJOB JOB ACCT#,′ REPORT BY PLANT′ , CLASS=F,REGION=4M
//*
//STEP1 EXEC PGM=PROGRAM1
//SYSLST DD SYSOUT=W COPIES=3
//TAPEIN DD DSN=INPUT.TAPE,DISP=OLD,
// UNIT=TAPE,VOL=SER=REEL22
//DISKOUT DD DSN=WORK.DISK,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(500,100),RLSE)
//*
//STEP2 EXEC PGM=SORT,COND=(0,NE)
//SORTIN DD DSN=WORK.DISK,DISP=(OLD,DELETE)
//SORTOUT DD DSN=WORK.DISK2,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(500,100),RLSE)
//SYSOUT DD SYSOUT=*
//SYSIN DD *
SORT FIELDS=(1,32,CH,A)
RECORD TYPE=F,LENGTH=87
/*
//SORTWK01 DD UNIT=SYSDA,SPACE=(TRK,(500,100))
//SORTWK02 DD UNIT=SYSDA,SPACE=(TRK,(500,100))
//*
//STEP3 EXEC PGM=PROGRAM2,COND=(O,NE)
//SYSLST DD SYSOUT=F,FCB=FK33
//DISKIN DD DSN=WORK.DISK2,DISP=(OLD,DELETE)
//DEST01 DD SYSOUT=A,DEST=KCJONES
//DEST02 DD SYSOUT=A,DEST=HERBERT
//SYSIN DD *
01 ENDICOTT
02 BOEBLINGEN

 1. Conditional OPENs

An example of the higher level differences between OS/390 and VSE is in the
area of allocation. In OS/390, allocation is at the beginning of the step. VSE
does not open a file until an OPEN is issued. This is a key concept and one
that requires more than a term by term comparison. Frequently in VSE there
are applications that open a file for output once a week on Friday. On other
days this VSE file won′ t be opened. In OS/390, a data set will be created
every day whether it is used or not. These high level type differences must
also be addressed and as early in the migration as possible.

 2. In-stream DD Card

There are three or four techniques to handle these situations.

One method is to convert the imbedded in-stream DD CARD by having the
JCL Batch of DD Names that somehow tie up the control cards and have
PROGRAM2 call some subroutine that would change the DD Name.

Chapter 4. Job Control Language (JCL) Differences and Considerations 93

A method that used two SYSOUT devices and output two DCBs in the
program could also work.

 3. PROGRAM2 Changes

PROGRAM2 has to change for OS/390 to simulate the imbedded LST cards in
the VSE job (for DEST=KCJONES and DEST=HERBERT). PROGRAM1 was
OK as far as file assignments.

4.5.3 Sample VSE plus Carry-Over
In this example the job cards for JOB2 and JOB3 have been commented out
making this a POWER job that contains one VSE job with three jobsteps. Also,
the file definitions have all been moved to the beginning of the job. This
demonstrates the ″carry-over″ effect where the file definitions are available
(″carry-over″) to all steps within the VSE job.

* $$ JOB JNM=MYJOB,CLASS=F,USER=′ ITSO SAMPLE′
* $$ LST LST=SYSLST,JSEP=0,CLASS=W,COPIES=3
// JOB JOB1 EXTRACT RECORDS FROM TAPE
// ASSIGN SYS005,480 INPUT TAPE
// TLBL TAPEIN,′ INPUT-TAPE′
// DLBL DISKOUT,′ WORK-DISK′ , 0 , SD
// EXTENT DISKO1,0,100,500
// DLBL SORTIN,′ WORK-DISK′ , 0 , SD
// EXTENT DISK01,0
// DLBL SORTOUT,′ WORK-DISK 2′ , 0 , SD
// EXTENT DISK14,0,600,500
// DLBL SORTWK1,′%%SORT.WORK1′ , 0 , VSAM,RECSIZE=100,RECORDS=50000, C

DISP=(NEW,DELETE)
// DLBL SORTWK2,′%%SORT.WORK2′ , 0 , VSAM,RECSIZE=100,RECORDS=50000, C

DISP=(NEW,DELETE)
// DLBL DISKIN,′ WORK-DISK 2′ , 0 , SD
// EXTENT DISK14,0
// DLBL PRODCAT,′ PROD.USER.CATALOG′ , , VSAM
// EXTENT PROD22,0
// DLBL MASTER,′ PLANT.MASTER.FILE′ , , VSAM,CAT=PRODCAT
/*
// EXEC PROGRAM1,SIZE=AUTO
// MTC SYS005,RUN UNLOAD TAPE
/*
* CHECK PREVIOUS JOB
// PAUSE IN CASE IT ABENDED
/*
** JOB JOB2 SORT WORK FILE BY PLANT NUMBER
* $$ LST LST=SYSLST,JSEP=0,CLASS=A
// EXEC SORT,SIZE=200K
SORT FIELDS=(1,32,CH,A),WORK=2
RECORD TYPE=F,LENGTH=87
INPFIL BLKSIZE=4350
OUTFIL BLKSIZE=4350
/*
* SORT ENDED

94 VSE to OS/390 Migration Workbook

** JOB JOB3 PRINT REPORT
// EXEC PROGRAM2,SIZE=300K
* $$ LST LST=SYS010,DEST=KCJONES
01 ENDICOTT
* $$ LST LST=SYS010,DEST=HERBERT
02 BOEBLINGEN
/*
/&
* $$ EOJ

Chapter 4. Job Control Language (JCL) Differences and Considerations 95

96 VSE to OS/390 Migration Workbook

Chapter 5. Disk and Tape Storage Considerations

The VSE/SP and VSE/ESA systems and MVS and OS/390 systems have some
conceptual similarities and data compatibilities for disk and tape files. This
chapter will discuss the similarities and differences between the VSE and OS/390
environments in the following areas:

• 5.1, Access Method Similarities and Differences

• 5.2, Data Set Naming Considerations

• 5.3, Storage and Space Management

• 5.4, Tape Similarities and Differences

• 5.5, DASD Similarities and Differences

• 5.6, VSAM Differences

These topics will be discussed in order within this chapter.

5.1 Access Method Similarities and Differences

5.1.1 Access Methods
An access method is a set of user application programming interfaces (APIs),
utility programs, other programming, and format standards which provide users
with the ability to readily store and retrieve data within a computer system.

The VSE/ESA and OS/390 operating systems each support a number of access
methods, with varying levels of compatibility. Further, details of the
implementation are different between the operating systems, even if the function
and the external format of the data are the same.

Access methods used for disk and tape storage in the VSE system include the
following:

SAM Sequential Access Method -- used for disk and tape devices. Records
are stored and/or retrieved in the order presented.

In OS/390, the most similar access methods are QSAM or SAM-E.

ISAM Indexed Sequential Access Method -- formerly used for disk devices,
when records were to be maintained (logically) in ascending key
sequence, but might need to be retrieved in arbitrary order (by key).
Obsolete, replaced by VSAM in most VSE environments over twenty
years ago.

In OS/390, may still be supported, but not recommended.

VSAM Virtual Storage Access Method -- used for disk devices. Records can
be stored and/or retrieved in the order presented, or in key or
address order.

In OS/390, DFP/VSAM is the most similar access method.

VSAM will be discussed in a separate sub-chapter below.

 Copyright IBM Corp. 1998 97

DAM (or BDAM)
Direct Access Method (or Basic Direct Access Method) -- used for
disk devices. Still in some use, but often replaced by VSAM functions
in many VSE shops. Generally requires complex application handling
for processing, and may be dependent upon physical device
characteristics. Not supported on Fixed-Block Architecture disks.

In OS/390, BDAM is the functional equivalent.

Libraries VSE Librarian should be considered an access method, as it meets all
the criteria specified above. The current VSE Librarian has been
available since VSE/SP Version 2, in 1984. The previous
implementation will not be discussed.

In OS/390, Partitioned Data Sets (PDS, PDS-E) provide the equivalent
functions, together with associated utilities.

5.1.2 Operating System Implementations
In the VSE/ESA system, programs define their intent to use an access method
and specify needed parameters through the APIs provided through a set of
Define The File macros. These include:

DTFCD Define The File CarD

DTFCN Define The File CoNsole

DTFDA Define The File Direct Access

DTFDI Define The File Device Independence

DTFDR Define The File Document Reader

DTFDU Define The File Diskette Unit

DTFIS Define The File Indexed Sequential access

DTFMR Define The File Magnetic ink character Reader

DTFMT Define The File Magnetic Tape

DTFOR Define The File Optical Reader

DTFPH Define The File for PHysical I/O

DTFPR Define The File for PRinter

DTFSD Define The File for Sequential Disk

In addition to these, additional macros are available for definition of VSAM,
Librarian, and some other access method objects or files, including
telecommunication terminals or lines.

In the OS/390 environment, most of these DTFs are replaced by an analogous
control block definition, the Data Control Block, or DCB. The DCB is not device
specific, as the VSE DTFs are, so there is more flexibility for using a single
OS/390 program to read data, for example, from the SYSIN stream, from tape or
from disk. Only the JCL would be changed to specify the device characteristics
at run time to switch from one input or output device type to another.

The VSE application program contains the DTF macro expansion, and at linkage
edit or execution time, an operating system component module (referred to as a
″Logic Module″) will be connected to the DTF and used by the application
program to handle the functions needed for GET, PUT, or other imperative macro
commands.

98 VSE to OS/390 Migration Workbook

In OS/390, the application program linkage is handled through the SVC interfaces
of the operating system.

In either case, the application program functional request (GET, PUT, and so on)
will cause the next logical record to be retrieved from a buffer or from external
media. Channel programs are created, and the operating system will cause the
channel programs to be scheduled to perform any physical I/O operations
required by the functional request.

5.1.3 Miscellaneous Functions
In VSE and OS/390 environments, access method OPEN logic is responsible to
ensure that the user is authorized to access the data in the file being OPENed.
This includes label (Data Set Control Block or DSCB) checking for input files, and
checking to ensure that the output file does not overlay existing files. In addition,
the access method (and operating system) is responsible for error handling and
recovery where possible only notifying the application program when
unrecoverable errors occur.

In OS/390, the access method will interface with the operating system Direct
Access Device Space Management (DADSM) component to manage allocation of
space as required. In VSE, this function may be done through VSE/VSAM Space
Management, an OEM vendor product, or manually through JCL specifications.

5.2 Data Set Naming Considerations

5.2.1 VSE Considerations
It is common in VSE shops to have loose data set naming standards. System
files may be named in a standard fashion, but application files will be named
depending on the programmer or implementer of the application. Identifying files
by application or subsystem from their name may be difficult, and knowledge of
how one installation has named their files will be of little use in another
installation.

For non-VSAM files, the format of file-ids (between the apostrophe characters) is
not defined by the system. One continuous string of up to 44 characters may be
defined as the file-id for a disk file using the VSE DLBL JCL statement.

In most VSE shops, this will provide little problem -- a rare case of aggravation,
at most, and then only rarely. This is not the case in OS/390 environments,
however.

5.2.2 OS/390 Considerations
In OS/390 environments, the connection identifying which user catalog contains
the management information for a given file or data set is dependent upon
OS/390′s ALIAS mechanism. Further, the specific requirement for at most eight
characters between periods in any data set name (DSN) is enforced. Each string
of characters (node) must start with an alphabetic or national character, and the
system uses the high order (left-most) node to identify which user catalog
contains the catalog information for the data set in question. The system′s
MASTER catalog contains the list of ALIAS definitions together with the user
catalog associations.

Chapter 5. Disk and Tape Storage Considerations 99

As it is desirable from both performance and integrity perspectives to separate
user data sets into several user catalogs, it is critical that data set names be
defined with the above information in mind. If, for example, all data set names
begin with CUSTOMER as the first node, then all the data sets will be defined in
only one user catalog. If the high order node for some data sets is PAYROLL,
and for others INVENTRY, then these data sets could be split between two user
catalogs if desired.

It is strongly recommended that data set naming conventions be defined
carefully and that they be enforced through training and review procedures
during conversion and after the system has been placed into production.

As data set naming conventions can greatly simplify the operation of your
OS/390 system, and can also make the migration process simpler, we have
included a separate chapter on recommendations for data set naming. See the
chapter, 25.4, “Set Up Standards, Procedures, and Documentation” on page 407,
for more information.

5.3 Storage and Space Management

5.3.1 VSE Considerations
Standard VSE system facilities provide for user management of DASD space
resources, or for VSAM management of DASD space for SAM files. Many VSE
users have OEM vendor disk space management packages, and/or tape library
management packages. User management requires manual procedures to
maintain catalogs of disk space in use or available, as well as tape volumes in
use, and the relationships between tape files and tape volumes. VSE users who
have not automated some or all of these functions find manual procedures error
prone and slow.

5.3.2 OS/390 Considerations
OS/390′s Direct Access Device Storage Manager (DADSM) and Data Facility --
System Managed Storage (DFSMS) components provide all the capabilities of
the VSE system, plus OEM vendor enhancements.

5.3.3 System Managed Storage
System-managed storage is the OS/390 automated approach to managing your
system ′s storage resources. It uses software programs to manage data security,
placement, migration, backup, recall, recovery, and deletion to ensure that
current data is available when needed, and obsolete data is removed from
storage. The combination of system-managed storage and related hardware and
software products is called the DFSMS environment.

With DFSMS, you tailor the system-managed storage environment to your needs.
You define the requirements for performance, security, and availability, along
with storage management policies used to automatically manage the direct
access, tape, and optical devices used by the OS/390 operating systems. The
Interactive Storage Management Facility (ISMF), a component of DFSMSdfp,
provides the user interface for defining and maintaining these policies and the
Storage Management Subsystem (SMS) governs these policies for the system. In
this environment, RACF and DFSORT compliment the functions of the base
operating system. The following are brief descriptions of the DFSMS/MVS

100 VSE to OS/390 Migration Workbook

functional components as well as RACF and DFSORT. For details, see section 1.3
in the DFSMS/MVS General Information, GC26-4900.

• DFSMSdfp is an OS/390 base element and functional component of
DFSMS/MVS. It provides the storage, program, data, and device
management functions of MVS. DFSMSdfp provides the foundation for
distributed data access, using the Distributed File Manager to support
remote access of MVS data and storage resources from workstations,
personal computers, or other authorized systems in an SNA LU 6.2 network.
DFSMSdfp also provides the Storage Management Subsystem component.
DFSMSdfp is the DFSMS component that provides OS/390′s VSAM functions.

• DFSMSdss is an OS/390 optional feature and functional component of
DFSMS/MVS. It is used for data movement and replication, space
management (defragmentation), data backup and recovery, and data set and
volume conversion to system managed storage.

• DFSMShsm is an OS/390 optional feature and functional component of
DFSMS/MVS. It provides the functions for:

− Storage management using a hierarchy of storage devices in its
automatic management of data, relieving end-users from manual storage
tasks.

− Space management by keeping only active data on fast-access storage
devices. It automatically frees space on user volumes by deleting eligible
data sets, releasing over-allocated space, and moving low-activity data to
lower-cost-per-byte devices.

− Tape mount management by writing multiple output data sets to a single
tape, making it a useful tool for implementing tape mount management
(TMM) under SMS. For more information on TMM, refer to Implementing
System-Managed Storage, SC26-3123.

− Availability management by backing up your data, either automatically or
by command, to ensure availability in the event of accidental loss of data
sets or physical loss of volumes. Disaster backup and recovery is also
provided for user-defined groups of data sets (aggregates), so that
critical applications can be restored at the same location or at an off-site
location. This capability is referred to as ABARS.

• DFSMSrmm is an OS/390 optional feature and functional component of
DFSMS/MVS. It provides the management functions for removable media,
including tape cartridges and reels. DFSMSrmm can be used to manage
system-managed tape libraries such as the 3494 or 3495 Automated Tape
Library Dataservers or the manual 3495 Tape Library Dataserver Model M10.
DFSMSrmm can also manage non-system-managed tape libraries.

• DFSORT is an OS/390 optional feature. It sorts, merges and copies data sets,
and also helps you to analyze data and produce detailed reports using the
ICETOOL utility or the OUTFIL function.

• RACF is an OS/390 optional feature. It controls access to data and other
resources in MVS.

Chapter 5. Disk and Tape Storage Considerations 101

For more information on the benefits of system-managed storage, refer to the
following publications:

DFSMS/MVS General Information, GC26-4900
Implementing System-Managed Storage, SC26-3123
DFSMS/MVS Planning for Installation, SC26-4919
RACF General Information, GC23-3723
Getting Started with DFSORT, SC26-4109

5.3.4 Implementing DFSMS
Implementation of DFSMS is not required for OS/390, but many of the newer
functions available with OS/390 and DFSMS/MVS require system-managed data
and the associated activation of the Storage Management Subsystem (SMS)
address space. The following is a small sampling of some of the functions
requiring data that is system-managed:

• Allocation of OpenEdition Hierarchical File System (HFS) data sets.

• Allocation of Extended Format data sets which provides:

− VSAM System-Managed-Buffering (SMB)
− VSAM Extended Addressability
− VSAM Compression
− SAM Tailored Compression

• Reduction of out-of-space failures

• VSAM Record Level Sharing (RLS)

A complete list of new functions available with DFSMS/MVS and considerations
for implementing them can be found in DFSMS/MVS Planning for Installation,
SC26-4919.

DFSMS implementation can be a phased migration using a milestone approach.
The five major milestones are:

 1. Enabling the software base

 2. Activating the storage management subsystem

 3. Managing temporary data

 4. Managing permanent data

 5. Managing tape data

Using the milestone approach allows you to begin with low-risk implementation
activities that establish a base for the staged migration of your data to storage
management. In later milestones, your early experience is used to achieve
greater data and storage automation. The milestone process is documented in
Implementing System-Managed Storage, SC26-3123. Please refer to the
publication for more detail.

In conjunction with the milestone approach to implement DFSMS, you can use
the DFSMS Fast Implementation Technique (FIT) to plan the implementation.
DFSMS FIT uses a question-and-answer approach to create a DFSMS design
tailored to your installation′s needs, and a data classification system that allows
you to use your data set naming standards already in place. It helps you quickly
identify the different types of data to which you want to assign specific
data-set-level, SMS-management policies.

102 VSE to OS/390 Migration Workbook

DFSMS FIT is documented in the following IBM International Technical Support
Organization publications (Redbooks):

Get DFSMS FIT: Fast Implementation Techniques, SG24-2568
DFSMS FIT: Fast Implementation Techniques Process Guide, SG24-4478
DFSMS FIT: Fast Implementation Techniques Installation Examples, SG24-2569

In conjunction with DFSMS FIT, you can use NaviQuest. NaviQuest is a
component of DFSMSdfp and is an option from the ISMF panels. With NaviQuest
you can:

• Automatically test your DFSMS configuration
• Automatically create test cases
• Automatically test your ACS routines
• Perform storage reporting, through ISMF and with DCOLLECT and VMA data
• Print ISMF lists
• Run ISMF functions in batch mode, using the REXX EXECs provided

For more information on NaviQuest, please refer to the NaviQuest User′s Guide,
SC26-7194.

There are DFSMS education courses available to learn more about DFSMS and
how it can be implemented. To find information concerning IBM Education and
Training ′s storage systems curricula for your area, contact your IBM
Representative or the IBM E&T Web site at:
http://www.training.ibm.com/ibmedu/roadmaps/mainframe/storsys/

In addition, many users have found the ADSTAR Distributed Storage Manager
(ADSM) to be of great value when LAN attached workstations are part of your
overall system solution.

DFSMS is a standard part of your OS/390 system. Use its facilities to ease your
migration and subsequent operations.

5.4 Tape Similarities and Differences

5.4.1 Volume Interchangeability
Tape label conventions, requirements, and handling techniques differ between
VSE and OS/390 systems. However, OS/390 should be able to read and process
all tapes that have been created on a VSE system. Similarly, VSE systems should
be able to read tape volumes created by OS/390 systems. The rest of this
chapter explains tape label differences and migration considerations.

5.4.2 Standard Labels
Tapes with standard labels written by VSE can be read by OS/390. Standard
labels are 80-character records recorded in EBCDIC and odd parity on 9-track
tape, BCD and even parity with translation, on 7-track tape. The first four
characters always identify the labels.

Chapter 5. Disk and Tape Storage Considerations 103

Note: UHL and UTL processing are user standard labels.

Under VSE, standard label write processing when FILABL=STD is specified in
the DTF includes:

┌──────┬──────┬─────┬────────────────┬─────┬──────┬─────┐
│ VOL1 │ HDR1 │ TM │ Data Records │ TM │ EOV1 │ TM │
└──────┴──────┴─────┴────────────────┴─────┴──────┴─────┘

for the first and intermediate volumes of a multivolume file, and

┌──────┬──────┬─────┬────────────────┬─────┬──────┬─────┬─────┐
│ VOL1 │ HDR1 │ TM │ Data Records │ TM │ EOF1 │ TM │ TM │
└──────┴──────┴─────┴────────────────┴─────┴──────┴─────┴─────┘

for the last volume of a multivolume file.

In addition to VSE formats, OS/390 standard labels, identified by the DD
parameter LABEL=(,SL), include HDR2, EOV2 and EOF2 labels. If these labels
are on input tapes under VSE, they are skipped; on output tapes, they are
overwritten. OS/390 accepts the absence of these labels when processing input
data sets.

OS/390 obtains information about the characteristics of a tape file (for example,
blocksize) from three different sources:

 1. The tape label (for labelled tapes)

 2. The DCB parameter of the DD job control statement (JCL) that identifies the
data set

 3. The DCB macro specification (assembler) or comparable high-level language
file specification within the source program. (Coding these in a program is
not recommended ; that is, recoding and relinking of the program is required
when device type, blocksizes or other data set changes are desired.)

For output tapes, specifying the file characteristics via JCL specifications is
recommended. It provides flexibility by allowing OS/390 to make final device (in
this case, tape drive) assignments at job execution time.

VSE file-ids can be up to 17 characters in length, and do not have to be qualified;
that is, the 17 characters do not have to have any periods in the string of
characters. In OS/390, file names (data set names) must have qualifiers if more
than eight characters are used in the name (that is, a period must be used in the
file name with no more than eight characters in a qualifier). If VSE created
file-ids are longer than eight characters and unqualified, the files can be read in
OS/390 only by specifying their file-id in apostrophes . This is done in the JCL
DSN= parameter; for example, DSN= ′payroll/datafile52134′.

If HDR2 tape labels are not present on data sets used as input to OS/390 (HDR2s
aren ′ t created by VSE systems), you must supply the

VOL1 volume label
HDR1 and HDR2 data set header label
EOV1 and EOV2 data set trailer labels (end of volume)
EOF1 and EOF2 data set trailer labels (end of data set)
UHL1 - UHL8 user header labels
UTL1 - UTL8 user trailer labels

104 VSE to OS/390 Migration Workbook

• block length
• record length
• tape recording technique (seven-track only)
• tape density
• record format

to the OS/390 system. This information was coded in VSE programs.
However, it is strongly recommended that this data be removed from VSE
programs as they are being converted to OS/390 versions. Place the above
data in the DCB subparameter of the DD JCL statement specifying the tape
file.

5.4.2.1 Standard User Labels
Differences between VSE and OS/390 in the area of standard user labels exist at
the application program level.

With VSE you must supply a routine to check or build standard user labels.
Specify the symbolic address of your label routine in the DTFMT, DTFSR, or
DTFPH entry in LABADDR=name. The storage address of this routine is
available in register 15. The IOCS OPEN and CLOSE routines branch to your
label routine after processing the standard labels for a file. At the end of the
routine, return to IOCS by issuing an LBRET instruction.

Under OS/390, you can specify the address of the standard user label processing
routines through the EXLST (exit list) parameter of the DCB associated with the
tape data set. An additional specification is made in the job control DD
statement.

Code the LABEL parameter of the DD statement associated with the data set as
LABEL=(,SUL) if the tape contains (or the tape is to be created with) both
standard and user labels. If either SUL or EXLST is omitted, user label
processing is bypassed. As under VSE, user labels are processed during OPEN
and CLOSE.

Processing of standard user labels on input tapes is skipped if you don′ t specify
the name of a user routine in the DTF or DCB. Standard user labels are optional
on output tapes and are created only if defined in your label exit logic.

5.4.3 No Labels
An unlabeled tape contains only data records and tapemarks. Unlabeled tapes
created by VSE generally have a tapemark preceding the first file;
OS/390-created unlabeled tapes do not. See Figure 7 on page 107 for a
representation of VSE and OS/390 unlabeled tapes.

Unlabeled output tapes produced by VSE assembler language programs do not
have a leading tapemark before the first file if the parameters TPMARK=NO and
FILLABL=NO are included in the DTFMT used to create the tape. Unlabeled
output tapes produced by VSE PL/I programs do not have a leading tapemark
before the first file if NOTAPEMARK and NOLABEL are included in the
ENVIRONMENT options list of the VSE PL/I file declaration. All output tapes
produced via VSE programs written in other source languages do have a
tapemark in the first record.

On OS/390 systems, to position a tape at the desired data set, you must specify
the correct data set sequence number in the LABEL parameter of the DD

Chapter 5. Disk and Tape Storage Considerations 105

statement. If a tapemark might precede the first data set and you specify the
LABEL subparameter LTM, OS/390 tests for and bypasses a leading tapemark, if
present. If a tapemark precedes the first data set and you do not specify LTM in
the LABEL parameter field, you must add one to the data set sequence number.

If a multivolume data set has a leading tapemark on one or more of the volumes,
OS/390 can process it as an unlabeled multivolume data set if the LABEL
subparameter LTM is specified. Otherwise, OS/390 cannot process it as an
unlabeled multivolume data set.

The presence of a leading tapemark makes each data set the second in
sequence on the tape. However, OS/390 always assumes that data sets are first
in sequence on the tape. Specify LTM in the LABEL parameter field, so the first
data set on a tape can be accessed whether or not it is preceded by a leading
tapemark , for example code LABEL=(1,LTM).

The specification of LTM in the LABEL parameter field does not make
allowances for any other tapemarks. You must make any such adjustments in
the data set sequence number.

5.4.4 Nonstandard Labels
Nonstandard labels do not conform to standard label formats. They are designed
by the installation, and are written and processed by routines provided by the
installation. There are no requirements as to the length, format, contents, and
number of nonstandard volume labels. When processing nonstandard labels, you
must perform many of the functions that control program or IOCS performs in
processing standard labels. All input/output operations, such as reading and
writing labels, are performed by using the EXCP macro.

When nonstandard labels are to be created or checked, a user routine is
required. Because of the basic differences between VSE and OS/390 in handling
nonstandard labels, this portion of VSE programs requires rewriting.

Under VSE, nonstandard label processing is included as part of the user
program when the DTFMT contains the parameters, FILABL=NSTD and
LABADDR=name. IOCS OPEN and CLOSE routines provide the entry point for
user processing of nonstandard labels according to the LABADDR parameter in
the DTFIMT. If you omit this parameter with nonstandard labels, IOCS bypasses
label processing. It is your responsibility to conform to standard register
conventions. Only one nonstandard label routine is supported for each file, but
multiple DTFs may share a common routine. No VSE job control language
statement is required to define a nonstandard label. Figure 7 on page 107
illustrates nonstandard labels supported under VSE.

5.4.5 Bypass Label Processing Facility in OS/390
Should you run across VSE labels that cannot be processed by OS/390, you can
use the OS/390 ″bypass label processing″ facility. Specifying BLP in the OS/390
JCL LABEL parameter (LABEL=(,BLP)) requests the system to bypass label
processing. When used, the operator must ensure that the correct tape volume is
mounted. The BLP parameter should only be used for unique situations, and its
use should be controlled.

106 VSE to OS/390 Migration Workbook

A. VSE: With Tapemark Before Data Records
┌─────┬───────────────────┬─────┬─────┐
│ TM │ Data Records 1-n │ TM │ TM │
└─────┴───────────────────┴─────┴─────┘

B. VSE: Without Tapemark Before Data Records
┌───────────────────┬─────┬─────┐
│ Data Records 1-n │ TM │ TM │
└───────────────────┴─────┴─────┘

1. On input, IOCS can handle files with or without a
tapemark preceding the data records.

2. For multivolume files, only one tapemark is written
at the end of each volume except the last. Two tapemarks
follow the data records on the last volume.

C. VSE: Multifile Volume
I----FILE A-----I I----FILE B-----I I----FILE C-----I

┌─────┬───────────────┬─────┬───────────────┬─────┬───────────────┬─────┬─────┐
│ TM │ Data Records │ TM │ Data Records │ TM │ Data Records │ TM │ TM │
└─────┴───────────────┴─────┴───────────────┴─────┴───────────────┴─────┴─────┘

D. OS/390: Single Data Set-Single Volume
┌────────────┬─────┬─────┐
│ Data Set A │ TM │ TM │
└────────────┴─────┴─────┘

E. OS/390: Single Data Set-Multiple Volumes
┌─────────────────────┬─────┐
│ Data Set A - Part 1 │ TM │
└─────────────────────┴─────┘

┌────────────────────────┬─────┐
│ Data Set A - Last Part │ TM │
└────────────────────────┴─────┘

Figure 7. Nonstandard Labels Supported by VSE

When analyzing VSE programs supporting nonstandard labeled tape files used
under OS/390, you must:

 1. Create nonstandard label processing routines for input header labels, input
trailer labels, output header labels and output trailer labels.

 2. Insert the installation′s routines into the system by including predefined
member names into SYS1.LPALIB as type4 SVC routines. (See Using
Magnetic Tapes, GC26-4923.)

 3. Code NSL in the job control LABEL parameter of the DD statement for the
tape data set at execution time.

The first two items define the programming effort to be considered in the design
and writing of the installation′s nonstandard label routines. Once these routines
have been made a part of the SVC library, they are used by all application
programs with tape data sets defined by LABEL=(,NSL).

The conventions, requirements, and techniques for writing OS/390 nonstandard
label routines differ from the individual label processing subroutines used under
VSE.

Chapter 5. Disk and Tape Storage Considerations 107

5.5 DASD Similarities and Differences

5.5.1 Volume Interchangeability
DASD file label conventions, requirements, and handling techniques differ
between VSE and OS/390 systems. However, OS/390 should be able to read and
process DASD volumes that have been created on a VSE system. Similarly, VSE
systems should be able to read volumes created by OS/390 systems. The
following exceptions to this are noted below.

• OS/390 doesn′ t support FBA (Fixed Block Architecture) DASD devices; for
example, 3310, 3370, 9332, 9335, 9336. Data files located on FBA devices will
have to be copied to an OS/390-supported device using a VSE
backup/restore program.

• Concurrent sharing of a volume between the two systems is not supported
and should not be attempted as data loss could result.

• OS/390 does not allow more than one volume with an identical volume serial
number (VOLID) to be online at any one time. VSE would allow this condition.
Thus, if you are used to operating with identical serial number volumes
(either tape or DASD) mounted concurrently, you will have to change to
unique volume serial number identifiers for OS/390 operations.

• It is not recommended that OS/390 volumes which contain Indexed VTOCs be
accessed by a VSE system. To do so requires special procedures - See 5.5.3,
“Indexed VTOC Considerations (OS/390)” on page 109.

5.5.2 DASD (VTOC) Processing
DASD volumes are managed by both VSE and OS/390 through a Volume Table of
Contents (VTOC) which is a type of file. There is always one VTOC per volume.
Each VTOC is composed of various records called Labels in VSE, but named
Data Set Control Blocks (DSCBs) in OS/390. DSCBs are used to store information
about the contents of the volume. DSCBs come in various record formats with
varying field layouts, and are customized by the type of information stored.
There can be up to six different DSCB types in a VTOC. They are appropriately
named: ″Format-1 DSCB ,..., Format-6 DSCB″. For a detailed description of a
VTOC layout, index VTOC and the various DSCBs, see the DFSMSdfp Advanced
Services. Also, see VSE/AF Data Management Concepts, GC33-6192. For
purposes of this publication, only the Format-1, Format-4, and Format-5 DSCB
need to be discussed.

Both VSE and OS/390 use the Format-1 DSCB. There is a Format-1 DSCB record
for each data set allocated on a volume. OS/390 stores information about each
data set in addition to the information which VSE stores. As such, VSE does not
maintain all fields in the Format-1 DSCB. For example, the record format, record
length, and block size are not maintained by VSE. Thus, to access VSE-created
files from an OS/390 system, the user must supply (preferably through JCL) file
information which otherwise would be obtained from the file′s Format-1 label or
DSCB.

Both VSE and OS/390 use a Format-4 DSCB -- there is one (and only one) per
VTOC. The Format-4 DSCB contains a 1-bit flag designator (called the ″DOS bit″)
which is used to indicate whether the Format-5 DSCB(s) are valid. Turning the bit
″on″ or ″off″ is the responsibility of the operating system. VSE when it first uses
a volume turns the ″DOS bit″ ″on″. The use of this bit is mainly for the purpose of

108 VSE to OS/390 Migration Workbook

maintaining the accuracy of the Format-5 DSCB. The Format-5 DSCB , sometimes
called the ″free space DSCB″, is used only by OS/390 . OS/390 keeps track of
unallocated space on a volume by creating one or more Format-5 DSCBs; that is,
each Format-5 contains up to 26 extents of free space information.

VSE, although it doesn′ t keep track of free space on a volume, will still be able to
process a volume created by OS/390 (and on which a Format-5 DSCB is located).
However, VSE does not update the Format-5 DSCB when new space is allocated,
or allocated space is freed. Although VSE ignores Format-5 DSCBs, it ″tells″
OS/390 that the Format-5 DSCBs may no longer be valid (for example, a new file
being allocated). This ″tell ing″ is accomplished through the ″DOS bit″ (previously
discussed). OS/390, when it first allocates to a volume, always checks the
Format-4 DSCB and the ″DOS bit.″ If it finds this bit ″on″, OS/390 creates (by
invoking a VTOC, conversion routine) new Format-5 DSCBs representing all
unallocated space it finds on the volume. Should there already be Format-5
DSCBs on a volume from prior OS/390 uses, OS/390 invalidates these and
creates new ones. (An appropriate OS/390 message is displayed on the operator
console whenever new Format-5 DSCBs are created as a result of VSE′s
previous use of the volume.)

You may obtain OS/390 dump, formatted, or abridged listings of a VTOC by using
the LISTVTOC command of the OS/390 IEHLIST utility program. The DFSMSdss
PRINT command can also be used to print all or part of the VTOC. A VTOC
listing can be obtained under VSE by executing the LVTOC utility program. In
both environments, DITTO/ESA′s DVT function may also be used.

5.5.3 Indexed VTOC Considerations (OS/390)
OS/390 has a facility for improved DASD VTOC performance called the Indexed
VTOC. Indexed VTOCs are optional but are strongly recommended in OS/390.
Their major benefit is improved VTOC performance by avoiding lengthy
hardware keyed searches of the VTOC, which tie up the channel and device, and
by managing free space information in such a way that the number of I/O
operations required to obtain or release space on the volume is reduced. We
recommend that you use indexed VTOCs. Details can be found in DFSMSdfp
Advanced Services, SC26-4921.

The VTOC index itself is a specialized data set which resides on the same
volume as the VTOC to which it refers. As such, it has a Format-1 DSCB in the
VTOC which contains the index′s data set name and extent information. The
index data set name must adhere to the naming convention
″SYS1.VTOCIX.xxxxxxxx″ where xxxxxxxx is user defined: It is recommended that
you include the volume′s serial number.

It is not recommended that OS/390 volumes with Indexed VTOCs be used on VSE
systems . If the need exists, care must be exercised - each volume has to be
converted from an Indexed VTOC to a non-indexed VTOC (that is, a VTOC with
no index) before transporting the volume to the VSE system. Otherwise, serious
errors may result when the volume is returned to the OS/390 system; that is,
VTOC changes made on the VSE system not causing reconstruction of the VTOC
are not recorded in the index and, in effect, invalidate the index.

For more information on the Indexed VTOC facility, see DFSMSdfp Advanced
Services, SC26-4921. For more information on creating Index VTOCs, see the
Device Support Facilities User′s Guide and Reference.

Chapter 5. Disk and Tape Storage Considerations 109

5.6 VSAM Differences

5.6.1 Introduction
This section covers the differences between OS/390 VSAM and VSE/VSAM. In
OS/390, the functions of VSAM and other OS/390 access methods are provided
by the OS/390 Data Facility Product (DFP). The term ICF refers to the Integrated
Catalog Facility. The term AMS refers to Access Method Services and/or the
program IDCAMS. All data set references are to VSAM data sets.

A complete set of DFSMS/MVS publications can be found in the DFSMS/MVS
Library Guide, GC26-4902 and DFSMS/MVS General Information, GC26-4900.

Planning information for Data Facility Systems Managed Storage (DFSMS) can
be found in the following manuals:

• DFSMS/MVS General Information, GC26-4900

• DFSMS/MVS Planning for Installation, SC26-4919

• Implementing System-Managed Storage, SC26-3123

• Get DFSMS FIT: Fast Implementation Techniques, SG24-2568

• DFSMS FIT: Fast Implementation Techniques Process Guide, SG24-4478

• DFSMS FIT: Fast Implementation Techniques Installation Examples, SG24-2569

• RACF General Information, GC23-3723

• Getting Started with DFSORT, SC26-4109

5.6.2 OS/390 Catalogs
At the time of writing, there are three catalog types supported in OS/390. After
the end of 1999, only ICF catalogs will be supported in the OS/390 environment.
The current catalog types are:

• ICF catalogs - are the recommended catalog structures for your OS/390
system.

• VSAM catalogs - these are similar and mostly compatible5 to VSE/VSAM
catalogs. They do not provide the performance and recoverability of ICF
catalogs. They are not recommended for normal OS/390 production
operations. However, they do provide catalog portability between VSE and
OS/390. If used, they should be converted to ICF catalogs when the migration
is completed. Details on converting to ICF catalogs can be found in Managing
Catalogs, SC26-4914, chapter 9.

The VSAM catalog stores dates with two-digit years. VSE/VSAM has
implemented a sliding window interpretation of those dates. OS/390 (DFP)
has not made similar changes, and thus dates in VSAM catalogs will not be
correctly interpreted in OS/390 systems. Because of this, OS/390 (DFP) has
announced that VSAM catalogs will not be supported after December 31st
1999.

5 Compatibility between VSE/VSAM catalogs and OS/390 VSAM catalogs is discussed in the section entitled 5.6.4, “OS/390 -
VSE/VSAM Catalog Compatibil ity” on page 117.

110 VSE to OS/390 Migration Workbook

• OS CVOL catalogs - these are a carry-over from the past (pre-OS/390) and
are non-VSAM in structure. It has also been announced that OS CVOL
catalogs will not be supported after December 31st 1999. For these reasons,
they should not be implemented in your OS/390 system.

5.6.2.1 Integrated Catalog Facility (ICF)
The architecture of an ICF catalog is quite different from that of a VSAM catalog.
An integrated catalog facility catalog consists of two separate kinds of data sets:
a basic catalog structure (BCS) and a VSAM volume data set (VVDS). The BCS
can be considered the catalog, whereas the VVDS can be considered an
extension of the VTOC.

The BCS is a VSAM key-sequenced data set that contains the following
information:

• VSAM data sets

− volume, security, ownership, and association information

• Non-VSAM data sets

− volume, ownership, and association information

The VVDS is a VSAM entry-sequenced data set. Its name must be
SYS1.VVDS.Vvolser. A VVDS resides on every volume that has VSAM or
SMS-managed data cataloged in an ICF catalog. It contains the data set
characteristics, extent information, and the volume-related information of the
VSAM data sets cataloged in the BCS. For SMS-managed non-VSAM data sets,
the VVDS also contains data set characteristics and volume-related information.

If you use a function such as DITTO/ESA′s DID command or the ICKDSF
REFORMAT command to change a volume serial number (or volser), only the
VOL1 label is changed. Since the REFORMAT command or DID command only
changes the volser, it does not change the VVDS name. If a REFORMAT or DID
command is used to change the volser, the VVDS name will no longer adhere to
the required data set name format of SYS1.VVDS.Vvolser. If the VVDS name does
not adhere to the required name format, access to VSAM data sets on that
volume has been lost. You won ′ t be able to RECATALOG these data sets. If your
VSE system procedures depend on the use of this capability, those procedures
will have to be redesigned.

In the OS/390 environment you should define all your catalogs to be ICF
catalogs. ICF catalogs are generally superior in performance, virtual storage
savings, recoverability, and space utilization when compared to VSAM catalogs.
In addition, many new functions, such as VSAM compression, are only available
for SMS managed data sets, which requires use of ICF catalogs. ICF catalogs are
not compatible with VSE. You cannot access an ICF catalog from a VSE system.

OS/390 ICF catalogs do not own volumes. Thus, it is possible to have OS/390
VSAM data sets on a given volume that are cataloged in different ICF catalogs.
This implies changes to backup and recovery procedures commonly used in
VSE/ESA installations.

If a catalog is damaged, restore a backup of the catalog and perform a forward
recovery to bring it back into sync. Tools are available for catalog forward
recovery such as the Integrated Catalog Facility Recovery Utility (ICFRU). If a
cluster is damaged, the old version can be deleted, uncataloged, restored from a
backup and then forward recovery can be used to make the cluster data current.

Chapter 5. Disk and Tape Storage Considerations 111

If access to a disk volume is lost, DFSMShsm can be used to perform a
full-volume restore with update.

You specify ICF catalog format by including the ICFCATALOG keyword in the
AMS DEFINE MASTERCATALOG or DEFINE USERCATALOG command.
ICFCATALOG is the default when defining a catalog in OS/390.

VSAM data sets cataloged in ICF catalogs have the UNIQUE attribute -- their
space is not owned nor managed by VSAM. Since OS/390 has an integrated
Direct Access Device Space Manager (DADSM), space allocation is done through
normal JCL and DADSM facilities.

Should your migration plan have a special requirement where a VSE program
(prior to its conversion) has to access data that is under control of OS/390, then
the data set containing this data should not be cataloged in an ICF catalog.
Rather, you should then have a VSAM catalog (described in the next section) for
cataloging this data set. Once the VSAM program is converted to OS/390, the
VSAM catalog should be converted to an ICF catalog.

5.6.2.2 VSAM Catalogs
VSAM catalogs are supported under OS/390 but are not recommended. These
catalogs can be defined to be identical in structure to VSE/VSAM catalogs.
(Although identical in structure, the OS/390 VSAM catalogs contain additional
information about the data sets that are defined in them; for example, data set
and device attributes, data set use statistics.) OS/390 VSAM user catalogs can
be accessed by a VSE system if proper measures are taken to assure catalog
integrity. See 5.6.4.1, “Accessing a VSE/VSAM Catalog from an OS/390 System”
on page 118.

Note that this ability of OS/390 (DFSMSdfp) VSAM to process VSAM catalogs will
not be available after December 31st 1999.

112 VSE to OS/390 Migration Workbook

Item G023729

Last updated....: 10/13/1997

Abstract........: WSC FLASH 9741

VSAM CATALOG AND CVOL SUPPORT ENDS IN YR2000

Access to an MVS or OS/390 non-ICF VSAM catalog or CVOL will
not be possible after 1999.
The following text was taken from the DFSMS/MVS 1.4 availability
announcement made on June 6, 1997 (297-192):

″NOTE: On October 31, 1995, IBM announced Year 2000 Support
which stated that, for any S/390 platform running MVS or OS/390 to be
considered as Year 2000 Ready, all data sets must use Integrated Catalog
Facility (ICF).

It will not be possible to access data via a VSAM Catalog or CVOL
when the system date changes past December 31, 1999.
This means that MVS customers who still have data sets cataloged
in OS/VS Control Volumes (CVOLs) or in the old VSAM catalogs
will need to migrate these to ICF catalogs before the end of 1999.
We look forward to all of our MVS customers taking advantage of the
better performance and integrity of ICF. Those VSE VSAM customers who
previously shared VSAM data sets between the MVS platform and VSE or VM
platforms will need to reevaluate methods for satisfying their data
sharing requirements. For further information, refer to Software
Announcement 295-464.″

APARs OW25632 and OW25988 and their associated PTFs have been written
to assist customers in determining whether or not they are accessing
VSAM catalogs. The APARs add two new reason codes to message IEC331I
return code 4:

″33 - Explanation: A VSAM catalog has been opened for use by the
catalog address space. The usage is accepted.

Programmer Response: VSAM catalogs may not be opened as catalogs
beginning 1/1/2000. This message is provided to simplify identifying
whether any VSAM catalogs are still in use. They should be converted to
ICF catalogs as soon as possible.″

Figure 8 (Part 1 of 2). Extract f rom WSC Flash 9741

Chapter 5. Disk and Tape Storage Considerations 113

When the system date is on or after 1/1/2000, the following reason
code will be issued:

″34 - Explanation: An attempt was made to open a VSAM catalog for use
as a catalog. The request was denied.

Programmer Response: VSAM catalogs may not be used beginning Jan 1,
2000.″

Please note that CVOL support will also be removed effective 1/1/2000
but as yet no way to provide warning messages has been identified.

Customers running operating environments prior to DFSMS/MVS 1.4 who
have not installed the appropriate maintenance will receive no warning
message when processing VSAM catalogs and its entries, but are still
subject to errors. Any customer failures resulting from attempts to
process VSAM catalogs or CVOLs on OS/390 and MVS systems after
December 31, 1999 will not be addressed by IBM service.

Information on how to convert VSAM catalogs and CVOLs to ICF catalogs
can be found in chapter 9 of the DFSMS/MVS Managing Catalogs,
SC26-4914.

Figure 8 (Part 2 of 2). Extract f rom WSC Flash 9741

5.6.3 OS/390 Catalog Management

5.6.3.1 OS/390 Master Catalog
OS/390 requires a master catalog in order to IPL. The master catalog cannot be
disconnected and should not normally be ported to another system environment.
The OS/390 master catalog should contain only:

• Alias definitions

• catalog entries for system data sets

• pointers to user catalogs

Certain system data sets must be cataloged in the master catalog in order to
IPL. System data sets normally have data set names which start with ″SYS1″ as
their high-level data set name qualifier. Examples are SYS1.LINKLIB and
SYS1.PROCLIB. See the OS/390 MVS System Data Set Definitions manual for the
names and uses of OS/390 system data sets.

At IPL time the system locates the master catalog via the LOADxx member of
the OS/390 system parameter data set, SYS1.PARMLIB. This member contains
the master catalog′s data set name, volume serial number, and device type.

If multiple LOADxx members exist (each with a unique ″xx″ suffix), it is possible
to choose an alternate master catalog at IPL time. Each LOADxx member would
point to a different catalog. This might be done for testing or for backup
purposes. The operator can specify the LOADxx member during IPL using the
information contained in the following figure:

114 VSE to OS/390 Migration Workbook

IPL unit_address LOADPARM
where LOADPARM bytes contain:

bytes 1--4 5--6 7 8
┌──────────────┬────────────┬─────────────┬─────────────┐
│ IODF DASD │ LOADxx │PROMPT FEAT. │ ALT NUCx │
└──────────────┴────────────┴─────────────┴─────────────┘

IODF LOADxx prompt nucleus
device suffix feature suffix
number

See Managing Catalogs, SC26-4914, chapter 2. You must ensure that all OS/390
data sets required for IPL are cataloged in all catalogs that might be used as an
alternate master catalog. Other than content, there is no difference between a
user catalog and the master catalog. A catalog is the OS/390 master catalog by
virtue of the fact that it was designated as such during IPL.

The master catalog must be on a volume that is mounted and available at all
times. The master catalog should be password protected or secured via RACF.
This is to insure that user data sets are not cataloged in the master catalog and
to insure that end users cannot uncatalog critical system data sets.

Formerly, a single catalog could not serve as the master catalog for more than
one system at a time. However, a master catalog could be accessed from
another system as a user catalog.

You can now share a master catalog between multiple systems. See Managing
Catalogs, SC26-4914, chapter 2.

With the introduction of MVS/SP 5.1.0, an installation that has multiple MVS
images can share a master catalog and share an IPL volume among multiple
MVS images. The system data sets, SYS1.LOGREC and SYS1.STGINDEX are no
longer fixed named and unable to be shared. They can now be shared and
specified by the installation. In addition, a system symbolic, &SYSNAME, was
introduced and can be used as part of data set name specifications for some
parameters in PARMLIB. When you use &SYSNAME, data set name specification
becomes flexible and you do not need a separate parameter specification for
each system in the sysplex.

For example, we can specify the following LOGREC=SYS1.LOGREC.&SYSNAME.
The symbolic name, &SYSNAME can also be used in other PARMLIB parameter
specifications. You can use &SYSNAME for IEASYSxx parameters VIODSN=,
PAGE=, SWAP=, DUPLEX=, and NONVIO=. You can use &SYSNAME for
SMFPRMxx parameters DSNAME= and SID=. Catalog if it has been connected
to the second system′s master catalog via the AMS ″IMPORT CONNECT″
command.

5.6.3.2 OS/390 User Catalogs
User catalogs contain data set information for user data sets. They should be
created as ICF catalogs. VSAM user catalogs may be accessed during the
migration period, but should only be used if VSE access is required. They should
be converted to ICF catalogs once the migration is over.

Chapter 5. Disk and Tape Storage Considerations 115

The data set names of the user catalogs are contained in the OS/390 master
catalog. Information necessary to locate the user catalogs is also defined in the
master catalog. The high-level-qualifiers of data sets that are to be cataloged in
each user catalog are also identified in the OS/390 master catalog.

OS/390 data set names are divided into qualifiers. The data set name consists of
up to 44 characters, grouped into qualifiers of up to eight characters each,
separated by periods. For example ″DEPT1.PAYROLL.YTD.DATA″ contains four
qualifiers. The high-level qualifier consists of the characters before the first
period in the data set name. It is also known as the catalog ″ALIAS″ name,
because it determines which user catalog OS/390 will search to find the data set
information. Thus the master catalog normally has many ALIAS name ″pointers″
to multiple user catalogs. An OS/390 user catalog may have many ALIAS names
associated with it. Each TSO user name will be associated with a particular user
catalog through an alias which must be defined for it.

The following diagram illustrates the master catalog to user catalog structure
relationship.

┌───────────┐ DEPT4 &
DEPT1 & JONES │ OS/390 │ PAYROLL

┌─────────────────┤ Master ├───────────────┐
│ │ Catalog │ │
│ └─┬───────┬─┘ │
│ DEPT2 │ │ DEPT3 │
│ │ │ │
� � � �

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ User │ │ User │ │ User │ │ User │
│ Catalog │ │ Catalog │ │ Catalog │ │ Catalog │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

DEPT1.DATA DEPT2.DATA DEPT3.JUNK DEPT4.DATA
DEPT1.CUST DEPT2.STATS PAYROLL.CURR
DEPT1.STORES PAYROLL.YTD
JONES.TSET.DATA

Figure 9. OS/390 Master and User Catalog Structure

The system searches for data sets by finding, via the master catalog, in which
user catalog the data set is cataloged. For example, for a data set named
DEPT1.PAYROLL.YTD.DATA, the master catalog would direct OS/390 catalog
management to the appropriate user catalog (identified by the DEPT1 ALIAS
name), and the data set information would then be retrieved from this user
catalog. The manual, Managing Catalogs, SC26-4914 contains more details about
the use of catalogs. It discusses aliases, catalog search order and so on, in
Chapter 2.

116 VSE to OS/390 Migration Workbook

Do not use JOBCAT or STEPCAT statements in OS/390

In predecessors of today′s OS/390 systems, it was not uncommon to use JCL
DD statements specifying user catalogs to be used for a job or a step
(JOBCAT or STEPCAT). This procedure was obsoleted with the advent of the
Integrated Catalog Facility and its ALIAS mechanism, and it should not be
used.

The OS/390 JOBCAT and STEPCAT DD statements when used in jobstreams,
bypass the normal catalog search technique via the ALIAS. Their use can
cause incorrect cataloging of duplicate ″new″ data sets. In addition, these
statements are not supported by Data Facility Systems Managed Storage
(DFSMS). JOBCAT and STEPCAT should not be used when migrating to
OS/390.

5.6.4 OS/390 - VSE/VSAM Catalog Compatibility
 Note

Even though (non-concurrent) sharing of VSAM between VSE and OS/390 is
described below, it is recommended that this practice not be extended past
the migration period. As VSAM changes are probable with new releases of
OS/390 DFP or VSE/VSAM, ″flip flopping″ of data sets and catalogs between
VSE and OS/390 should be limited to the migration period.

Note that VSAM catalog dates are stored with a two-digit year representation.
Although VSE/VSAM has been updated to interpret these dates using sliding
window technologies, DFP/VSAM has not been changed similarly. DFP/VSAM
use of VSAM catalogs will not function correctly after December 31st 1999.

See the WSC flash article Figure 8 on page 113.

A VSE/VSAM master or user catalog can be designed (DEFINEd) to be
compatible and therefore accessible by an OS/390 system. Only VSAM user
catalogs may be ported between environments . For a VSE/VSAM catalog to be
compatible (and used in an OS/390 system), the catalog has to have the
following characteristics:

 1. The catalog was defined with the IMBED option.

This is the VSE/VSAM default, but many users specify NOIMBED for space
savings within the catalog itself.

 2. The catalog is on a device supported by OS/390.

Generally, the disk devices not supported by OS/390 are FBA Direct Access
Storage Devices.

Note that non-VSAM data sets within VSAM data spaces, such as
VSE/VSAM-managed SAM files, cannot be accessed in OS/390.

Chapter 5. Disk and Tape Storage Considerations 117

5.6.4.1 Accessing a VSE/VSAM Catalog from an OS/390 System
Your migration plan might include the requirement to access VSE/VSAM
catalogs from the OS/390 system. Under no circumstances should you attempt to
share VSAM catalogs or data sets between OS/390 and VSE/VSAM concurrently.
There is no system data integrity provided for concurrent access sharing. Loss of
data may occur. If OS/390 access to a VSE/VSAM catalog is necessary, the
following procedures should be used:

 1. Execute the VSE AMS command EXPORT DISCONNECT to disconnect the
VSE user catalog from the VSE master catalog.

 2. Execute the OS/390 AMS command IMPORT CONNECT to connect the VSE
user catalog to the OS/390 master catalog.

 3. An OS/390 AMS DEFINE ALIAS command may be necessary to reestablish
OS/390 ALIAS name structures for that user catalog.

The catalog and data are now ready to use with OS/390 applications. (Note:
Suballocated VSAM space may be accessed through OS/390 VSAM catalogs.
However, OS/390 VSAM catalogs do not support non-VSAM data sets in VSAM
space; that is, a VSE facility usually used for VSE/VSAM-managed SAM files.)

″Reversing″ the above procedure allows VSE access to the catalog once again.
This is accomplished by:

 1. Execute the OS/390 AMS command EXPORT DISCONNECT.

 2. Execute the VSE AMS command IMPORT CONNECT.

The catalog and data are again ready to use with VSE applications.

DISCONNECT does not prevent access by VSE of OS/390 applications which
already have access to the catalog or data sets defined in the catalog. Care
must be taken in implementing procedures to make sure the catalog is properly
closed in OS/390. In VSE, catalogs are never actually closed, but can be
disconnected to prohibit access. In OS/390, you can find out which catalogs are
open by using the MODIFY CATLOG command. See the manual Managing
Catalogs, SC26-4914 for more information.

You may also access an OS/390 created VSAM user catalog from a VSE system
by disconnecting the catalog from the OS/390 system and then connecting it to
the VSE system. The procedure is the same as that described above.

Under no circumstances should you attempt to share VSAM catalogs or data sets
between OS/390 and VSE/VSAM such that more than one system can perform
updates concurrently . Read-only sharing may be permitted. See 5.6.6.3,
“Cross-System and DASD Sharing” on page 129 for more detail.

5.6.4.2 Converting VSE/VSAM Catalogs to OS/390 ICF Catalogs
The OS/390 AMS CNVTCAT command converts a VSAM catalog to an OS/390 ICF
catalog. After you are sure that VSE will not need to access the VSE catalog(s),
they may be converted to ICF format.

Non-VSAM files in VSAM managed space must be deleted before running
CNVTCAT. If the VSAM catalog has VSAM clusters defined in sub-allocated
space, they will be converted to UNIQUE space during the conversion. All
volumes owned by the catalog should be backed up before running CNVTCAT.
See Managing Catalogs, SC26-4914, chapter 9 for more detailed information.

118 VSE to OS/390 Migration Workbook

5.6.4.3 Moving a VSAM Catalog to a Different DASD Type
VSE/VSAM provided no facility for moving a catalog to a different device type or
volume serial number. OS/390 VSAM provides this facility for ICF catalogs via
the AMS REPRO and EXPORT/IMPORT commands. Using the REPRO function,
you may specify the old catalog as the input and the new catalog as output. The
new catalog must already have been defined but it may be a different DASD
device type and it must be a different volume serial number. Moving the catalog
does not move the data sets that exist on the old catalog volume.

REPRO has two options, MERGECAT and NOMERGECAT. MERGECAT will
transfer entries from one catalog to another, deleting the entries from the source
catalog. If there is a failure during MERGECAT, the target catalog contains the
only valid entries for some of your data sets. For this reason, do not delete the
target catalog simply because the MERGECAT failed. If the failure was caused by
errors external to catalog management and access method services, simply
rerun the REPRO MERGECAT job.

NOMERGECAT will transfer entries to the target catalog but not delete them from
the source catalog. Therefore, data set entries will exist in both catalogs. If there
is a failure during the process, you cannot simply resubmit the job because
REPRO NOMERGECAT copies the source catalog into an empty target catalog.
During the REPRO process, catalog pointers in VSAM VVR entries will be
changed to point to the target catalog. Before you restart the REPRO
NOMERGECAT, steps must be taken to remove the duplicate data set entries
that are now in the source catalog and change the VSAM VVR pointers back to
the source catalog. After a REPRO is run, the target catalog is meant to be used
as the active catalog.

You could also use EXPORT/IMPORT to move an ICF catalog to another device
but you cannot change the catalog name during the process. You can use
EXPORT/IMPORT or REPRO to move data sets. Before using REPRO on ICF
catalogs, you should refer to Managing Catalogs, SC26-4914, chapter 4 and
DFSMS/MVS Access Methods Services for ICF SC26-4906 for further details.

5.6.5 VSAM Functional Differences

5.6.5.1 Areas of Consideration
The following list summarizes VSE/VSAM functions that are either not supported
by OS/390 VSAM or are implemented in a significantly different fashion. Each
item is discussed in the text following this list.

• FBA DASD (a general change, not specific to VSAM)

• Catalog structures

− NOIMBED option
− Shared volume ownership

• AMS commands

− CANCEL command
− DELETE IGNOREERROR
− SYNCHK parameter
− XXL KSDS (new in VSE/ESA 2.3, greater than 4GB KSDS)
− COMPRESS (new in VSE/ESA 2.2, VSAM record compression)

• VSAM CISIZES and blocksizes

Chapter 5. Disk and Tape Storage Considerations 119

• VSE/VSAM-managed SAM files

− Default models
− NOALLOCATION data sets
− Implicit JCL DEFINE

• Reusable data sets

• Partition independent file names

• VSE/VSAM BACKUP/RESTORE and VSE FASTCOPY

• IKQVDU - volume cleanup

• IKQVCHK - catalog check

• Space classes

• VSAM SHAREOPTIONS (SHR(4) and SHR(4 4) differences)

5.6.5.2 FBA DASD
Fixed Block Architecture (FBA) DASD devices such as the 3370, 3310, 9332, 9335,
9336, and FBA virtual disks are not supported by OS/390. Any data sets on these
devices must be moved to an OS/390 supported Count Key Data (CKD) or
Extended CKD (ECKD) DASD device such as the 3390, 3380, 3350, or 3375. This is
generally done by copying the data sets to tape and loading them down with
appropriate OS/390 utilities. For VSAM data sets, AMS REPRO is recommended.

5.6.5.3 Catalog Structures

NOIMBED Option

VSE/VSAM catalogs may be defined with the NOIMBED option. This saves DASD
space by not replicating the sequence set in the data portions of the catalog. It
may make a catalog search take longer an a CKD device. These catalogs
cannot be accessed by OS/390 VSAM.

The procedures for converting these back to IMBED format are described in the
VSE/VSAM Programmer′s Reference, SC24-5145. Briefly, EXPORT all files, delete
all VSAM space, delete the catalog, redefine the catalog with the IMBED option,
re-define the VSAM space, and IMPORT the files. If VSE/VSAM BACKUP is used
instead of EXPORT, then RESTORE is used instead of IMPORT. BACKUP and
RESTORE should be both easier to use and faster than EXPORT and IMPORT.

The above paragraphs are talking about a VSAM catalog being accessed by both
VSE and OS/390 but when the catalog is converted, NOIMBED and NOREPLICATE
are recommended when behind cache. IMBED is not recommended for VSAM
data sets or ICF catalogs when these data sets are stored on DASD volumes
behind a cached control unit because IMBED implies replication and replicated
data can result in poor cache usage. If sufficient real and virtual storage is
available, and appropriate BUFNI values are specified to keep the index
components for VSAM clusters in storage, NOIMBED and NOREPLICATE is also
indicated, even with non-cached DASD hardware.

Shared Volume Ownership

VSE or OS/390 VSAM catalogs may own space on more than one DASD volume.
Only one VSAM catalog may reside on a volume. Both VSE and OS/390 VSAM

120 VSE to OS/390 Migration Workbook

maintain the ″VSAM Ownership Bit″ in the VTOC, and the list of volumes owned
by the catalog.

Under VSE, multiple VSAM catalogs can own space on the same DASD volume,
as long as only one recoverable catalog owns space on that volume. This
support has been provided by adding a VSE unique ″bit map″ in the VSAM
catalog, identifying the space that is owned by a particular catalog, on a
particular volume. This is not supported with OS/390 VSAM. Only one VSAM
catalog can own VSAM space on a volume. While OS/390 will prevent OS/390
jobs from creating this environment, it may not recognize shared volumes which
have been imported from VSE. This can lead to catalog or data set damage if
space is deleted, defined, or expanded under OS/390 . Refer to the VSE/VSAM
Programmer ′s Reference, SC24-5145, Chapter 10 for additional information.

OS/390 ICF catalogs do not ″own″ volumes. ICF uses Basic Catalog Structure
(BCS) data sets, one per catalog, to contain catalog information. It uses VSAM
Volume Data Sets (VVDS), one per DASD volume, to contain information about
the VSAM data sets on that volume. Thus it′s possible to have multiple VSAM
data sets on the same volume that are cataloged in different ICF catalogs. It is
also possible to have more than one ICF catalog on a volume.

5.6.5.4 AMS Commands

DELETE IGNOREERROR

VSE/VSAM provides the ″DELETE... IGNOREERROR″ command to DELETE a
cluster that had been only partially deleted previously. OS/390 VSAM provides
this function for ICF catalogs using the ″DELETE... TRUENAME″ command. Also,
the OS/390 DELETE VVR and DELETE NOSCRATCH commands can be used to
delete partial VSAM structures.

SYNCHK Parameter

OS/390 AMS does not support the SYNCHK parameter. This was used to test
VSE AMS commands by allowing IDCAMS to syntax check the commands
without executing them. VSE AMS also supports other test and debugging
parameters which may not be applicable in the OS/390 AMS environment.

XXL KSDS (New in VSE/ESA 2.3, greater than 4GB KSDS)

OS/390 VSAM has provided support for VSAM data sets larger than 4GB in size
only for SMS managed data sets in extended format with the extended
addressability attribute. These data sets must be cataloged in ICF catalogs
because they are SMS managed. VSE/ESA Version 2.3 includes new VSAM
support for KSDS files only which are larger than 4GB. The implementations of
the two VSAM systems are not compatible, due to the differences between
VSAM catalogs used by VSE, and ICF catalogs used by OS/390. XXL data sets
defined in VSE will have to be unloaded from VSE and reloaded in OS/390.

COMPRESS (New in VSE/ESA 2.2, VSAM Record Compression)

OS/390 VSAM has provided support for compression of VSAM data sets only for
SMS managed data sets in extended format and Compaction set to Yes. These
data sets must be cataloged in ICF catalogs because they are SMS managed.

Chapter 5. Disk and Tape Storage Considerations 121

VSE/ESA Version 2.2 included new VSAM support for compression of VSAM data
sets. The implementations of the two VSAM systems are not compatible, due to
the differences between VSAM catalogs used by VSE, and ICF catalogs used by
OS/390. COMPRESSED data sets defined in VSE will have to be unloaded from
VSE and reloaded in OS/390. REPRO or EXPORT/IMPORT can be used for this
unload/reload function.

VSAM CISIZEs and Record Sizes

Both VSE and OS/390 VSAM will select an acceptable CISIZE if none has been
specified. If an unacceptable CISIZE has been specified on the DEFINE, both
VSAMs will attempt to select an acceptable default. Refer to the manual
DFSMS/MVS Using Data Sets, SC26-4922, for more information regarding OS/390
VSAM CISIZEs.

You will not be able to directly read a VSE/VSAM KSDS that was created with
index CISIZEs that are invalid for OS/390 VSAM. You must EXPORT or REPRO
the cluster from the VSE system and IMPORT or REPRO it into the OS/390
system.

The physical record size is determined during the DEFINE or data set allocation
by an algorithm that includes CISIZE and DASD device characteristics. The
physical record size will always be equal to or less than the CISIZE. One or
more physical records will contain a control interval. Beyond that, VSE and
OS/390 use different algorithms.

OS/390 uses one algorithm for data sets that are cataloged in VSAM catalogs,
and another for data sets that are cataloged in ICF catalogs. The VSE and ICF
algorithms are similar until the CISIZE exceeds 8K. VSE will not create a physical
record size greater than 8K for VSE/VSAM releases prior to VSE/ESA 1.3.
VSE/VSAM in VSE/ESA 1.3 permits physical record sizes up to 30,720 (30K)
bytes, depending on device type and Control Interval size specified. The OS/390
algorithm used with VSAM catalogs will not create a physical record size greater
than 4K.

In summary, to be sure you obtain the CISIZE you want, you should explicitly
specify the size; that is, not take the default. For data sets where
incompatibilities exist, you will need to EXPORT or REPRO the data set from the
originator system and then IMPORT or REPRO it into the destination system .

VSE/VSAM-managed SAM Files

VSE SAM files in VSAM managed space (SAM/VSAM) are not supported by
OS/390. OS/390 cannot access them. They may be converted to VSE or OS/390
Sequential Access Method (SAM or QSAM) data sets. With OS/390, specific track
or cylinder addresses for allocation are not required as they are for VSE SAM.

The files may be ported to OS/390 by copying them to a sequential data set (tape
or DASD) using a VSE utility such as DITTO. The OS/390 utility, IEBGENER, may
be used to copy them under OS/390. Many VSE SAM/VSAM files are used for
temporary (work) data sets. These need not be converted as their contents will
not be ported to the OS/390 environment.

122 VSE to OS/390 Migration Workbook

VSE SAM/VSAM data sets may also be converted to VSAM ESDS data sets.
However, this is not recommended as it requires changes to the programs.

Default Models

Both VSE and OS/390 VSAM support the MODEL parameter of the DEFINE
command. This allows the attributes of an existing file to be used during the
define of a new file. VSE/VSAM also supports three types of model data sets
through the AMS DEFINE NOALLOCATION command. OS/390 VSAM does not
support the NOALLOCATION parameter. NOALLOCATION is usually used for:

• Through reserved entry names, installation defaults may be specified for one
or more VSAM file organizations. This is frequently used for SAM/VSAM
files.

• A specific model for a specific data set name. This is typically used to defer
allocation until the file is opened. Space is not automatically freed when the
file is closed.

NOALLOCATION Data Sets

Through the REUSE option, temporary VSAM data sets (dynamic files) may be
defined. No space is allocated until the file is opened and space may be freed
when the file is closed. OS/390 supports temporary VSAM data sets in the
DFSMS environment.

DFSMS (Data Facility Storage Management Services) is highly recommended
and its functions can greatly ease migration of several kinds of VSAM and
non-VSAM data sets from VSE to OS/390.

JCL Implicit DEFINE

The default models allow VSE SAM/VSAM files to be defined via JCL, without the
need for a specific AMS DEFINE. In OS/390, unless DFSMS is active, all VSAM
data sets must be defined using AMS. DFSMS provides new OS/390 JCL
keywords which allow some VSAM data sets to be implicitly defined in the JCL.

Reusable Data Sets

Both VSE and OS/390 VSAM support definition of reusable data sets. Usage of
reusable data sets differs. VSE allows the REUSE option to be specified in AMS
REPRO commands, in the ACB, or through the VSE JCL. OS/390 only supports
the options specified in the ACB or through the AMS REPRO command options.
OS/390 high level languages (for example, COBOL for OS/390 & VM) permit a
reusable data set to be extended if it is opened with the EXTEND attribute, and
for sequential access. For older language compilers, a method to extend a
reusable data set under OS/390 would be to have the application write to a
temporary file, then use an AMS REPRO with the REUSE option to copy it to the
intended reusable data set. In neither case can this be controlled by JCL options
in OS/390, as it can in VSE.

Two VSE examples are shown below:

To extend a reusable data set -
/ / DLBL,VSAM,DISP=OLD

Chapter 5. Disk and Tape Storage Considerations 123

• acts as an ACB without RESET (add new records to existing file)
• DISP=OLD overrides IDCAMS REPRO with REUSE

To rewrite a reusable data set -
/ / DLBL,VSAM,DISP=NEW

• acts as an ACB with RESET (delete old records, add new records)
• DISP=NEW overrides IDCAMS REPRO with NOREUSE

Partition Independent File Names

VSE/VSAM partition independent file names start with the character % or
characters %%, for example %MY.FILE. These special characters cause the
partition identifier (or cpuid and partition identifier) to be appended to the file
name when it is DEFINED or accessed. In the example shown, the file name
would be MY.FILE.BG if the job was running in the background partition. Access
to the file is actually dependent on the partition in which the job is running.
Again referring to the example, the same job running in the Foreground 4
partition would access file MY.FILE.F4.

OS/390 does not have partitions. It has address spaces. An address space does
not have an external identifier. Address space independence is automatically
provided for all temporary data sets.

VSE partition independent files are frequently used for ″temporary″ work files.
They should be converted to OS/390 temporary data sets. An OS/390 temporary
data set is specified by a data set name beginning with the character & or the
characters &&. OS/390 supports temporary VSAM data sets only with DFSMS.
VSE applications that use permanent partition independent files will require
another data set naming convention to operate correctly under OS/390.

VSE/VSAM BACKUP/RESTORE and VSE FASTCOPY

IDCAMS BACKUP/RESTORE is used only for VSE VSAM files, while FASTCOPY is
used for non-VSAM and full volume backups. FASTCOPY has a stand-alone
component. Equivalent functions are provided in OS/390 via Access Methods
Services (EXPORT/IMPORT) for VSAM, DFSMS/MVS utilities (IEBGENER,
IEBCOPY and so on) for non-VSAM, and the Data Set Services component of
DFSMS (DFSMSdss) for data sets (VSAM and non-VSAM) and full volume dumps.
Archive tapes created by VSE/VSAM BACKUP/RESTORE or VSE FASTCOPY
cannot be processed by DFSMSdss. Tapes produced by VSE/VSAM EXPORT or
REPRO may be processed by OS/390 VSAM. Any non-portable archive tapes
should be restored to DASD using the appropriate VSE utilities. Then the DASD
files should be dumped to tape using a backup technique compatible with
OS/390 backup/restore programs such as DFSMSdss. This needs to be done
during the OS/390 migration while both operating systems (VSE and OS/390) are
available.

IKQVDU - Volume Cleanup

This VSE/VSAM utility does not exist in OS/390 VSAM. The IKQVDU functions
″SCRATCH DSN″ and ″RESET OWNERSHIP″ were used to remove unwanted
VSE/VSAM data spaces from a volume and to turn off the VSAM ″Ownership Bit″

124 VSE to OS/390 Migration Workbook

in the VTOC. This equivalent function is performed in OS/390 VSAM by the AMS
command ALTER REMOVEVOLUMES.

The volume cleanup function of ″ALTER REMOVEVOLUMES″ should only be used
when the catalog is not accessible or totally unavailable. This command may
also be used to remove candidate volumes as in VSE/VSAM.

IKQVCHK - Catalog Check

This VSE/VSAM utility does not exist in OS/390 VSAM. The AMS DIAGNOSE and
EXAMINE commands provide an equivalent function.

Space Classes

Space classes of VSAM data spaces are not supported by OS/390 VSAM.
However, VSAM files, data spaces, or volumes established under VSE/VSAM
with space classes can be processed by OS/390 VSAM as long as the VSAM
catalog is supported (December 31st 1999).

VSAM SHAREOPTIONS

Since VSE and OS/390 use totally different implementations for data set sharing
and control, they provide no protection from each other through any of the VSAM
shareoptions. There are significant VSE and OS/390 differences in the access
and protection provided by shareoptions three and four.

Shareoptions one and two (SHR(1) or SHR(2)) function exactly the same in
VSE/VSAM and OS/390 VSAM. SHR(3) and SHR(4) provide cross-partition (or
cross-address space) and cross-system access to VSAM files. These will be
discussed in the next section of this chapter.

VSE/VSAM SHR(4) was used by CICS/VSE to allow CICS applications to update a
VSAM data set through both the base cluster path and alternate index (AIX) path,
prior to the availability of data set name sharing in VSE. Data set name sharing
became available in VSE/ESA 1.3. This is not necessary with CICS/OS/390.
CICS/OS 1.7 or later uses OS/390 VSAM data set name sharing to allow these
updates, with integrity. Note that both the base cluster and AIX(s) must be in the
same VSAM LSR buffer pool or use NSR buffer pools.

5.6.6 Data Sharing and Integrity
You should read this section very carefully. There are significant differences in
the cross-partition or cross-address space and cross-system protection provided
by VSE and OS/390 VSAM shareoptions. OS/390 VSAM SHR(4 x) or SHR(4 4)
provides less automatic protection than VSE/VSAM. Applications that use
VSE/VSAM SHR(4) or SHR(4 4) protection or VSE DASD sharing protection must
be carefully evaluated in light of the differences in protection provided by
OS/390 VSAM. For more details, refer to DFSMS/MVS Using Data Sets,
SC26-4922. In a parallel sysplex environment, Record Level Sharing (RLS) can be
used to access VSAM data sets instead of shareoptions. RLS provides complete
integrity.

Chapter 5. Disk and Tape Storage Considerations 125

5.6.6.1 Cross-Region Sharing - Single CPU Environment
Whenever a VSAM data set (ACB) is opened by more than one control block
structure concurrently, data integrity must be considered. OS/390 VSAM offers
two levels of protection and/or sharing within a single CPU.

 1. OS/390 will prevent concurrent update/update or update/read access to a
VSAM data set if DISP=OLD is coded on the JCL DD statement. If
DISP=OLD is specified, the shareoptions will be treated as (1 3). This can
potentially provide performance improvements for load jobs.

 2. VSAM wil l monitor access via the data set shareoptions if DISP=SHR has
been specified on the DD statement.

The purpose of the VSAM shareoptions is to permit the user to specify the
required level of integrity of the data set and prevent possible loss of records,
updates, or even total loss of access to the data set. There are actually two
types of integrity that can be of concern and the shareoptions vary in the type of
integrity provided:

• Write integrity - Assurance that, if an update or add is done, it will not be lost
and the data set will not be destroyed.

• Read integrity - Assurance that the record read is current (that is, no other
user has since updated it).

Now let us review the shareoptions with respect to the integrity provided.

Integrity
Read Write

SHR(1 x) | YES | YES
SHR(2 x) | NO | YES
SHR(3 x) | NO | NO
SHR(4 x) | NO* | NO**

Figure 10. OS/390 VSAM Integrity Provided by Cross-Region Shareoptions

* VSE/VSAM will refresh buffers if a data set is open for output. VSE/VSAM also
automatically enqueues on CIs and CAs to ensure integrity in the event of
concurrent requests. OS/390 buffer refresh is done only for random (direct)
reads. OS/390 VSAM does not automatically enqueue on records as VSE/VSAM
does.

** VSE/VSAM SHR(4 x) guarantees the write integrity of a VSAM data set. OS/390
VSAM SHR(4 x) does not guarantee the write integrity of a VSAM data set.

With SHR(1 x) a user can not open a file for input to read if another user has
opened it for output, so both read and write integrity are assured.

With SHR(2 x) read integrity is not assured because a program (user) may be
accessing a data record from a buffer while another user is updating it on disk.
Write integrity is assured since there can only be one update at a time.

With SHR(3 x) VSAM does not prevent any user′s open and does not monitor
their access. Yes, you can destroy the file!

126 VSE to OS/390 Migration Workbook

OS/390 VSAM Cross-Region SHR(4)

VSE VSAM SHR(4 x) will refresh buffers from disk for every read I/O, and will
also lock the record, CI, or CA as appropriate to protect the file and user data
from corruption by possible concurrent update activity. SHR(4) data sets can
have inserts or updates which may cause CI and CA splits, and secondary
allocations can also safely be handled by VSE/VSAM.

OS/390 VSAM SHR(4 x) works very differently than VSE/VSAM. When SHR(4 x) is
specified OS/390 VSAM takes only the following special actions:

OS/390 VSAM will refresh the buffers from DASD for random reads. OS/390
VSAM will write the CI to DASD following the CHECK for random writes. This
allows some read and write integrity protection. However, OS/390 VSAM does
not automatically enqueue on the record, CI, or CA as VSE/VSAM does. Hence
another user may simultaneously update the same record or control interval.
Also OS/390 VSAM does not refresh buffers during sequential processing.

When SHR(4 4) is specified, a change in the High-Used-RBA of any component
(data or index) is not allowed. For a KSDS, this means:

 1. no CA splits are allowed
 2. the high-key CI cannot be extended

For all types of data sets, no extensions or new extent allocations are allowed. If
a program causes any of the above conditions, it will receive a ″no space″ error
code.

These restrictions provide some protection since it is not possible for multiple
users to cause concurrent CA splits or extend the data set. However, without
user programming of Assembler ENQ/DEQ macros it is still possible to:

 1. lose updates
 2. read back-level records
 3. cause data set failures during concurrent CI splits

Of course, even with user ENQ/DEQ programming, it is possible for errors to
cause the same loss of data conditions.

Control Block Update Facility (CBUF) is used if SHR(3 3) or SHR(4 3) is used with
JCL DISP=SHR. This removes the programming restrictions related to updating
the High-Used-RBA, stated above. It does not assure full read or write integrity.
With SHR(4 3), buffers are refreshed for each direct request.

 Note

To provide equivalent VSE/VSAM SHR(4 x) protection, when multiple users
are updating the same data set from different address spaces, the OS/390
VSAM SHR(4) user should read the chapter entitled ″Sharing a VSAM Data
Set″ in the manual DFSMS/MVS Using Data Sets, SC26-4922.

In addition, partial to complete solutions for this functional difference between
VSE and OS/390 are available from software vendors which provide functions
similar to VSE/VSAM SHAREOPTION(4).

Chapter 5. Disk and Tape Storage Considerations 127

5.6.6.2 Single Region Data Set Sharing

Single ACB Open - Multiple String Processing

Full write integrity is provided within a single region provided the user uses a
single ACB to process the data set. In high level languages an ACB equates to:

 1. a SELECT statement in COBOL
 2. a file DECLARE in PL/I
 3. an ″F″ statement in RPG II

If multiple ACBs (or high level language equivalents) are used, the protection of
shareoptions must be relied upon unless DSNAME sharing is used (both COBOL
and PL/I always use it). See “Intra-Region Data Set Name Sharing” below.
Multiple positions may be maintained in the file via use of multiple strings (that
is, the ACB STRNO parameter). The strings may be used for multiple requests
from the main task or its subtask. VSAM will automatically provide exclusive
control protection for output requests and read integrity if ″GET for UPDATE″ is
used.

Within the same region the data set can be updated concurrently (even with
DISP=OLD) and VSAM ensures integrity because a single ACB control block
structure is used.

On a GET UPDATE or PUT request, VSAM acquires exclusive control of the CI,
after checking that no other string is accessing the CI. Any string which wants to
make an update or add to the same CI, will get an ERROR CODE = X ′ 14′ with
R15 = X ′08′. The exclusive control ends when the subtask possessing it issues a
GET UPDATE for a record in another CI or issues an ENDREQ or issues a PUT
UPDATE for a record read previously by a GET UPDATE. The exclusive control
does not impede simple READs for the other subtasks. The user requiring read
integrity must specify UPD intent on all RPLs.

Both CICS/OS and IMS/VS DC use multiple string processing with a single ACB
structure. They intercept the VSAM exclusive control error codes and suspend or
wait the task until the requested resource is available.

Intra-Region Data Set Name Sharing

If DSNAME sharing is specified in the ACB (that is, MACRF=(DSN...)), a data set
may be accessed from multiple ACBs within the same region. VSAM assures
integrity because there is only one control block structure. This protection is
provided because DSNAME sharing tells VSAM to tie the control block structure
of the second ACB to the first if the data set name matches.

If DSNAME sharing is not specified in the ACB, the default (DDNAME sharing)
applies and VSAM operates as if the data set is being shared by users in
different address spaces. The OS/VS COBOL and OS PL/I compilers always use
DSNAME sharing when multiple file statements are used.

For VSE users of CICS (since VSE/ESA 1.3), DSNAME sharing has been available
as well, so VSE users will have at least the same support in this specific area,
and for older VSE installations, OS/390 will provide a significant enhancement.

128 VSE to OS/390 Migration Workbook

5.6.6.3 Cross-System and DASD Sharing
You are in a cross-system sharing environment whenever you allow more than
one copy of any operating system to access the same DASD volume
concurrently. This includes multiple OS/390 guests running under VM or PR/SM.
You must not attempt to update via DASD sharing between VSE and OS/390
systems . The methods of DASD sharing protection are totally incompatible and
you risk contamination or loss of:

• data
• data sets
• catalogs
• VTOCs

Should you be planning to share ICF catalogs or VSAM data sets between two or
more OS/390 systems , you should read the chapter entitled ″Sharing a VSAM
Data Set″ in the Using Data Sets manual. How catalogs are shared is
documented in Managing Catalogs. The volume the catalogs are allocated on
must be defined as SHARED to all images and the shareoptions for the catalog
must be 3,4.

OS/390 Global Resource Serialization (GRS) and the new Record Level Sharing
feature (part of SYSPLEX support) can provide additional cross-system and
DASD sharing capabilities. For more information on GRS, refer to OS/390 V1R1.0
MVS Planning - Global Resource Serialization, GC28-1818, or OS/390 V1R3.0 MVS
Planning - Global Resource Serialization, GC28-1759.

OS/390 Definitions for DASD Sharing Support

In order to provide any protection in a DASD sharing environment you must let
OS/390 know that the device may be shared. This is done by specifying the
parameter ″SHARED″ in the Hardware Configuration Definition data set. Without
this parameter, OS/390 will provide no DASD sharing protection.

OS/390 VSAM Cross-System Shareoptions

Unlike VSE/VSAM, the cross-region shareoption has no meaning for
cross-system sharing with OS/390 VSAM unless OS/390 GRS is used to control
cross-region sharing of data sets. What is important is the second field of the
SHR parameter. This field can only be 3 or 4. In other words, only SHR(x 3) or
SHR(x 4) is valid for an AMS DEFINE or ALTER.

Record Level Sharing (RLS), available to users of OS/390 systems with Parallel
Sysplex capabilities (Coupling Facility, integrated or stand-alone), together with
DFSMS support included in DFSMS 1.3 or later provides a much higher level of
sharing with protection for OS/390 users. It is an alternative to using
shareoptions for accessing VSAM data sets.

RLS can be used in batch environments but there are restrictions. RLS is
designed primarily for VSAM data sets used by CICS applications. With VSAM
RLS, multiple CICS systems can directly access a shared VSAM data set,
eliminating the need for function shipping between AORs and file owning regions
(FORs).

Information on Record Level Sharing can be found in several manuals:

Chapter 5. Disk and Tape Storage Considerations 129

• Planning for Installation

• DFSMSdfp Storage Administration Reference

• Using Data Sets

SHAREOPTIONS (X 4)

Cross-system SHR(x 4) provides the same limited protection across systems as
cross-region SHR(4). Extensions of the data set′s high-used RBA are prohibited.
To provide complete integrity protection it is the user′s responsibility to write
Assembler routines using the RESERVE/RELEASE macros in addition to the
ENQ/DEQ macros required for cross-region. This is a complex undertaking. If it
was simple and/or if performance was acceptable, OS/390 VSAM would have
implemented it. Alternatives to complete DASD sharing of VSAM data sets
should be considered first. See DFSMS/MVS Using Data Sets, SC26-4922, for
greater detail on coding RESERVE/RELEASE routines and the alternatives.

SHAREOPTIONS (X 3)

If SHR(x 3) is used, all data set opens are allowed across systems. OS/390
VSAM provides no protection for the data set.

5.6.6.4 DASD Sharing Considerations
A second system opening a data set that is open for output on another system
will receive the OPEN return code 116 (X′74′) which indicates the data set was
not properly closed. VSAM will automatically issue the VERIFY macro for the
program.

Once the data set is open, a cross-system program must contend with the
possibility that the data, indexes, extents, the RBA of records, and the
High-Used-RBA of the data set may be changing due to updates in another
system. This may cause VSAM error codes and/or abends of the programs using
the data set.

Alternatives to VSAM Data Set Sharing

Probably the simplest way to avoid the problems of cross-system and
cross-region sharing is to schedule all data set access through a single system
and address space. This generally means that batch updates must be performed
while the files are unavailable to CICS systems.

CICS VSAM data sets can be accessed from multiple CICS address spaces via
the CICS Multiple Region Option (MRO) or across systems with Inter-Systems
Communication (ISC). However, there is no CICS support for cross-region or
cross-system sharing of VSAM data sets with batch jobs.

IMS/VS DC and DB offer methods of cross-system and cross-region sharing of
DL/I (IMS) data bases via the IMS Resource Lock Manager (IRLM) and Data
Base Resource Control (DBRC). See the appropriate IMS/VS manuals for details.

CICS/OS provides for cross address space sharing of IMS/VS data bases via the
CICS Shared Data Base facility.

The DB2 Transparency Feature allows some VSAM files to be loaded into DB2
table spaces and accessed with existing batch or CICS/OS VSAM applications.

130 VSE to OS/390 Migration Workbook

This provides cross address space sharing as well as journaling and recovery
for the batch applications. It also allows existing files to be accessed with new
application tools such as QMF without having to rewrite existing applications.

5.6.7 Programming Languages and VSAM Support
For additional information on program languages and VSAM considerations, see
the various language chapters in this publication. In addition, each of the
languages has its own publication library generally including migration guides as
well as reference manuals. These manuals should be consulted for additional
information if necessary.

5.6.7.1 COBOL for OS/390 & VM
IBM COBOL for OS/390 & VM is generally source-compatible (in terms of the
VSAM function provided) with IBM COBOL for VSE. Both compilers provide
similar support for VSAM KSDS, ESDS, RRDS, Alternate Index (AIX) path
processing, and reusable data sets. Chapter 12, “COBOL” on page 249 contains
more information.

5.6.7.2 OS/VS COBOL
See Chapter 12, “COBOL” on page 249, for details of DOS/VS COBOL and
OS/VS COBOL migration requirements.

5.6.7.3 RPG II
IBM OS/VS RPG II (5740-RG1) is generally compatible with VSE RPG II (5746-RGI)
Release 3. However, OS/VS RPG II is not supported with CICS/OS or IMS/VS
HLPI. OS/390 VSAM does not allow an empty cluster to be opened for input;
VSE/VSAM permits this operation for SAM-ESDS workfiles only.

5.6.7.4 PL/I
PL/I for OS/390 and PL/I for VSE are essentially compatible in terms of VSAM
function, and are generally considered source language compatible.

5.6.7.5 Assembler
For a discussion of Assembler programming considerations, see Chapter 13,
“Assembler” on page 267.

5.6.8 VSAM Error and Reason Code Compatibility
OS/390 VSAM Error codes and reason codes may have a slightly different
meaning than VSE/VSAM. In all cases, OS/390 documentation should be
consulted such as the DFSMS/MVS DFSMSdfp Diagnosis Reference, LY27-9606.
Especially in Assembler, the logic for specific error codes should be verified. In
some cases, OS/390 VSAM provides additional information.

5.6.9 DFSORT and VSAM Considerations
Sorting of VSAM files with DFSORT for VSE or VSE SORT/MERGE Version 2 and
with OS/390 DFSORT should be compatible with the following two exceptions:

 1. Sorting or merging FROM and TO the same (reusable) VSAM data set. (This
is often referred to as a suicide sort.)

This function is supported in VSE DFSORT and VSE Sort/Merge, but not
supported in OS/390 DFSORT. A suggested circumvention is to sort the
VSAM data set to a temporary data set (either VSAM or non-VSAM) and then

Chapter 5. Disk and Tape Storage Considerations 131

perform a DFSORT COPY function to copy the temporary data set back into
the original SORTIN VSAM data set.

 2. Sorting multiple VSAM data sets in the same step.

VSE SORTs allow multiple inputs through multiple SORTIN(n) DLBL or TLBL
statements. DFSORT allows only one input to sort, the SORTIN DD statement.
Through OS/390 JCL, multiple sequential data sets may be concatenated, but
VSAM data sets may not be concatenated. A circumvention would be to use
VSAM REPRO to copy the VSAM data sets to one or more temporary
sequential data sets. Another circumvention would be to perform multiple
sorts each using a single VSAM data set as input to each sort step and then
perform a single merge to merge the data sets to produce a single sorted
output file. Still another solution would be to write a sort exit that performs
the input processing and passes the records to DFSORT.

132 VSE to OS/390 Migration Workbook

Chapter 6. CICS

6.1 Introduction
This section is directed to individuals with a working knowledge of both CICS for
VSE/ESA and CICS Transaction Server. Without this knowledge, a reader may
find this section less fulfilling. Also, you should understand that the scope of this
section is to provide general migration tasks and considerations, and should not
be considered a replacement for the manuals referenced in this section and/or
an individual CICS migration experience.

In the context of this chapter, CICS for VSE/ESA 2.3 is the source subsystem, on
which the subject migration activities and consideration are based, although
some notes discuss parameters and/or illustrations of pre-CICS for VSE/ESA 2.3
subsystems. Also, references to CICS for VSE/ESA 2.3 may be used
interchangeably with CICS/VSE or CICS/DOS/VS.

CICS Transaction Server for OS/390 1.2 is the resultant migrated subsystem, in
which all activities/tasks should reside. Please note that references to CICS
Transaction Server 1.2 may be used interchangeably with CICS/ESA, and/or
CICS.

In the final section CICS with DL/I DOS/VS is discussed. References to DL/I
DOS/VS may be used interchangeably with DL/I.

6.1.1 Overview CICS Transaction Server
As an overview, the base CICS element of CICS Transaction Server is CICS 5.2.
This element, the CICS successor to CICS/ESA 4.1, is exclusive and includes
features and products available with prior CICS versions:

• CICS Web Interface
• Open Network Computing Remote Procedure Call (ONC RPC)
• CICS Transaction Affinities Utility
• CICS-DB2 attachment facility

The non-exclusive elements of the product, also available as separate products,
are:

• REXX Development System for CICS/ESA
• REXX Runtime Facility for CICS/ESA
• CICS Distributed Data Management (DDM)
• CICS Application Migration Aid Version 1.1
• CICSPlex SM Version 1.3
• CICS Clients Version 2.0.2
• Transaction Server for OS/2 Warp Version 4 (90-day evaluation copy)

New functions included in this release of the single package solution are:

• Support for single MVS (R) image systems using the DASD logging function
of OS/390, provided in OS/390 Version 2 Release 4. Supports single image in
sysplex configurations without a coupling facility (non-parallel sysplex) and
stand-alone OS/390 systems (single-system sysplex).

• New interface that allows 3270-based CICS transactions to run unchanged
without a 3270 terminal.

 Copyright IBM Corp. 1998 133

• Enhanced interface to the World Wide Web (WWW) adds support for
3270-based transactions.

• The CICS Gateway for Java has been ported for execution on OS/390 as an
OpenEdition (R) application with CICS TS as the CICS server in a two-tier
configuration.

• REXX for CICS (Development and Runtime) added as two new elements of
CICS TS.

• Support for S/390 (R) Parallel Sysplex extended with a new system
management facility for defining and installing CICS resources across
multiple CICS occurrences that are managed by the CICSPlex SM function on
S/390 systems.

• New DB2 resource definitions with resource definition online (RDO) as
alternative to resource control table (RCT) definitions allowing 7 day, 24 hour
availability.

• Added client/server capability, with support for client partner LU6.2
applications across a TCP/IP network.

Key Prerequisites

• OS/390 or MVS/ESA SP Version 5.2 or later
• Either OS/390 Version 2 Release 4 DASD-only logging for single-system

sysplex or a coupling facility for Parallel Sysplex

6.1.2 Essential Supplemental Reading and Migration Support Material
One of the critical components to a successful migration is access to all required
manuals. Therefore, you are advised to order all CICS Transaction Server for
OS/390 1.2 manuals as soon as possible.

For the latest information on what manuals are available with CICS, you should
review the Planning for Installation, GC33-1789 and Release Guide for CICS
Transaction Server, GC33-1570.

Pre-CICS for VSE/ESA subsystems migrating to CICS Transaction Server for
OS/390 must read prior CICS/VSE Release Guides for possible migration task(s)
that may not be addressed otherwise. CICS/VSE 2.3 customers should review the
CICS/ESA Migration Guide 3.1, CICS/ESA Migration Guide 3.2, CICS/ESA 3.3
Release Guide, CICS/ESA Migration Guide 4.1, and CICS Transaction Server
Migration Guide, GC33-1571. Also, your IBM service provider can access the
CA1B SupportPac package on the Hursley TXPPACS disk. This package is a
CICS/MVS 2.1.2 to CICS/ESA 4.1 migration cookbook, which should give you a
perspective of changes to CICS/ESA for MVS users, plus CICS/VSE differences.

For example: An installation migrating from CICS/DOS/VS 1.6 should read the
CICS/VSE Release Guides for 1.7, 2.1, 2.2, CICS/ESA Migration Guides 3.1, 3.2,
CICS/ESA 3.3 Release Guide, CICS/ESA Migration Guide 4.1, and CICS
Transaction Server Migration Guide, GC33-1571.

Note: IBM facilitates access to IBM manuals via the INTERNET. Using the
INTERNET location:′http://www.ibm.com/ ′, you can access IBM′s BookServer,
your electronic library of books on the World Wide Web.

BookServer allows you to easily manage and display electronic books grouped
into catalog collections and bookshelves. BookManager′s high-performance,
morphological searching capabilities let you search books and entire
bookshelves for the information you need.

134 VSE to OS/390 Migration Workbook

Please contact your local IBM Representative for more information on how to
access IBM manuals via the INTERNET.

Another useful INTERNET location ′http://www.hursley.ibm.com/cics′, is the CICS
home page.

The CICS Internet Home page provides a service/support segment that allows
easy access to a wide range of material that complements the CICS Family of
products. As part of the Service and Support segment, user forums are available
for CICS migration tidbits and Qs and As.

Also, the CD-ROM collect kits, can be a useful source for IBM manuals. The
Collection Kit for Transaction Processing and Data Products, SK2T-0730 includes
the unlicensed manuals except for:

• CICS Master Index, SC33-1704
• CICS Transaction Server for OS/390 Licensed Program Specifications,

GC33-1707.

6.1.3 General Compatibility Comments
One of the strengths of the CICS products is the portability of the Command
Level API between operating systems. However, applications that include Report
Controller API cannot be migrated and there is no printer and spool file
manipulation facilities available in the CICS TS environment. Thus, you should
prepare alternate solutions (such as, MVS LAN/RES, user written programs,
TCP/IP print daemons, vendor packages) if your users require the same or
similar functions or identify the service as no longer available (the sooner the
better) to the users.

CICS system facilities will differ between the two operating systems. Facilities
based upon the operating system architecture and product-unique (VSE, MVS)
functions will have to be re-worked during the conversion to OS/390. One
significant change will be the effects on performance and tuning. OS/390 will
accommodate additional resources and larger buffer pools resulting in I/O
reductions, improved response times, and higher transaction rates. It will also
introduce new tuning controls such as the MVS Systems Resource Manager
(SRM) that can provide more consistent response times. For these reasons, a
stress test of the CICS/MVS system should be a part of the overall MVS
migration plan. The major differences between VSE and MVS CICS application
programs can be attributed to unique facilities provided by the programming
languages or the operating systems. As long as CICS application programs have
adhered to standard CICS programming interfaces outlined in the CICS
Application Programmer′s Reference Manual(s) (APRM), the migration or
conversion effort should be minimal. In most cases only a CICS/MVS translation
and compilation will be required. If the applications are using non-CICS functions
such as GET/PUT or COMREG, they may require significant recoding.

6.1.4 Virtual Storage Considerations for MVS
To minimize change during the migration to MVS, the general recommendation
is to bring multiple CICS/VSE systems across to MVS the same as they are in
the VSE environment. That is, if you have two or more independent production
CICS systems under VSE, you would want multiple independent production CICS
systems under MVS. MVS/ESA provides considerable virtual storage constraint
relief for CICS systems. This is due to the ability to place almost all management
modules, and many control blocks above the 16 megabyte line. In addition,

Chapter 6. CICS 135

application programs may be placed above the 16 megabyte line if they are
written in VS COBOL II, PL/I, C++ or HLASM.

If you have a need to combine systems or you are adding new CICS applications
that could introduce additional virtual storage constraints, you should consider
the use of CICS Multiple Region Operation (MRO). In addition to providing virtual
storage constraint relief, MRO may provide better utilization of multiple
processors and improved availability and integrity for your CICS/MVS
applications. These benefits are accomplished by the separation of functions
into separate address spaces. Note that MRO path lengths will be longer than for
a single system image, and there are considerations for operations, recovery,
and application design.

A typical MRO system could have one address space for terminal activity (TOR),
one for data base activity (FOR), and one or more for application code (AOR). By
separating these functions, some problems may be isolated to a single address
space (application function). This means that other functions may continue to
operate and the time required to restore a lost function may be reduced.

An example of an MRO environment is depicted in Figure 11:

┌───┐
│ │
│ MVS COMMON AREA │
│ │
├──────────┬──────────┬──────────┬─────────┬──────────┤
│ │ │ │ │ │
│ │ │ │ │ │
│ │ │ │ │ │
│ │ │ │ │ │
│ │ CICS/OS │ CICS/OS │ CICS/OS │ CICS/OS │
│ ACF/VTAM │ │ │ │ │
│ │TERMINALS │ APPL. 1 │ APPL. 2 │ DATA │
│ │ │ │ │ BASES │
│ │ │ │ │ │
│ │ (TOR) │ (AOR1) │ (AOR2) │ (FOR) │
│ │ │ │ │ │
│ │ │ │ │ │
├──────────┴──────────┴──────────┴─────────┴──────────┤
│ │
│ MVS │
│ │
└───┘

Figure 11. Example of an MVS CICS/OS System using MRO

Note: CICS TS 1.2 also supports VSAM Record Level Sharing (RLS), which may
reduce the need for some FORs.

6.1.5 CICS General System Considerations
As part of the CICS/VSE to CICS TS migration there are release enhancements
you should know about before the migration; below are a few to consider.

CICS TS products no longer support: Macro-level programs, BTAM devices and
controllers, CICS internal security and signon table, Nucleus load table,
Application load table, system generation, journaling to tape, shutdown statistics

136 VSE to OS/390 Migration Workbook

to SYSLST, access to CICS system control blocks. You should consider what
impact each of the removed service or support will have on your migration.

Macro-level programs
You need to convert macro-level programs to command level. Please
account for and anticipate the additional CPU requirements for the
converted programs.

BTAM devices and controllers
As an alternative consider the supported devices of ACF/VTAM
and/or TCP/IP. TCP/IP communications are also supported using
either the ONC RPC function or the CICS Web interface. Please
review the CICS ONC RPC Guide, SC33-1778 and CICS Internet and
External Interface, SC33-1944 for more detail on the concepts and use
of ONC RPC.

CICS internal security and signon table
Since the internal security signon table is no longer supported, you
can migrate user data from an existing signon table (SNT) to the
RACF database.

If you are using CICS for VSE/ESA 2.3, you can use the security
migration aid to assist you with the migration of your CICS internal
security definitions to an environment where their resource(s) can be
defined with RACF.

Nucleus load table
CICS management modules are restructured into DOMAINS. In the
process, CICS removed this function.

Application load table
CICS management modules are restructured into DOMAINS. Thus,
CICS removed the possibility of you aligning application programs.
You can still specify program residency via the RDO. However, you
should review the Resource Definition Guide to get a better
understanding as to where this parameter is applicable.

Journaling to tape service
CICS TS Support for single MVS image systems is through DASD
logging. DASD logging is for single image in sysplex configurations
without a coupling facility (non-parallel sysplex) and stand-alone
OS/390 systems (single-system sysplex). Also, CICS TS supports
coupling facility logging. The point to remember is that you must
review your journaling requirements and operation procedure for
CICS TS journal support.

Shutdown statistics to SYSLST
There are numerous changes to CICS statistics records, generally as
a result of the new domains created in CICS/ESA, such as the
transaction manager domain. As a result, a number of statistics
DSECTs, previously supplied as copybooks, are obsolete and
withdrawn. Therefore, you should consider alternatives to printing
CICS shutdown statistics.

There is a PLT program in SDFSAMP called DFH$STED which can be
placed in the startup PLT to stagger writing shutdown or interval
statistic to SMF. You should note that without this staggering, you
could experience a significant performance problem if interval stats or
shutdown occurs in many regions at the same time.

Chapter 6. CICS 137

Access to CICS system control blocks
CICS management modules are provided as pregenerated systems
for MVS. All the functional areas in CICS are provided completely in
object-code only form (OCO), without licensed source materials. Thus,
you can not modify the CICS source as in your present releases.
Hence, if your present system includes source modification to
CICS/VSE management modules, you should evaluate whether the
target subsystem addresses your present requirements and/or can
CICS exit program interfaces be used to supplement your present
modifications.

Figure 12 on page 139 is a layout of CICS restructured management modules
called CICS domains. Basically each domain is a single major component of
CICS.

138 VSE to OS/390 Migration Workbook

┌────────────┐ ┌───────────────────┐
 ┌───────────────────┐ │ ├────┤ Parameter manager │
 │ Application ├────┤ │ │ domain (PA) │
 │ domain (AP) │ │ │ └───────────────────┘
 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ ├────┤ Program manager │

│ CICS catalog ├────┤ │ │ domain (PG) │
│ domains (GC/LC) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ Kernel ├────┤ Recovery manager │

│ Directory manager ├────┤ │ │ domain (RM) │
│ domain (DD) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ linkage ├────┤ Security manager │

│ Dispatcher domain ├────┤ │ │ domain (XS) │
│ (DS) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ routines ├────┤ Statistics domain │

│ Domain manager ├────┤ │ │ (ST) │
│ domain (DM) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ ├────┤ Storage manager │

│ Dump domain ├────┤ │ │ domain (SM) │
│ (DU) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ ├────┤ Timer domain │

│ Enqueue domain ├────┤ │ │ (TI) │
│ (NQ) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ ├────┤ Temporary storage │

│ Kernel domain ├────┤ │ │ domain (TS) │
│ (KE) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ ├────┤ Trace domain │

│ Loader domain ├────┤ │ │ (TR) │
│ (LD) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ ├────┤ Transient data │

│ Log manager ├────┤ │ │ domain (TD) │
│ domain (LG) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ ├────┤ Transaction mgr │

│ Lock manager ├────┤ │ │ domain (XM) │
│ domain (LM) │ │ │ └───────────────────┘

 └───────────────────┘ │ │ ┌───────────────────┐
 ┌───────────────────┐ │ ├────┤ User domain │

│ Message domain ├────┤ │ │ (US) │
│ (ME) │ │ │ └───────────────────┘

 └───────────────────┘ │ │
 ┌───────────────────┐ │ │

│ Monitoring domain ├────┤ │
│ (MN) │ │ │

 └───────────────────┘ └────────────┘

Figure 12. CICS Domains

Note: The application domain is mainly non-OCO, but it contains these OCO
components:

Chapter 6. CICS 139

CICS data table services
RDO for VSAM files and LSR pools
Some EXEC CICS system programming functions
Autoinstall terminal model manager
Partner resource manager
SAA Communications and Resource Recovery
Some of the file control functions
Recovery manager connectors interfaces.

Domains never communicate directly with each other. Calls between domains
are routed through kernel linkage routines. Calls can be made only to official
interfaces to the domains, and they must use the correct protocols.

Each domain manages its own data. No domain accesses another domain′s data
directly. If a domain needs data belonging to another domain, it must call that
domain, and that domain then passes the data back in the caller′s parameter
area.

Now with the CICS restructuring in mind, here are a few other general system
items to consider with your migration:

• CICS TS recovery manager facility uses the system log for recovery, thus an
intermediate data set, such as the restart data set (DFHRSD) is not required
for the CICS TS.

• CICS/ESA removed the assembly of a Process Program Table (PPT) and
Program Control Table (PCT) from the list of tasks to perform during the
migration and installation process of CICS. Now, program processing and
program control resource definitions must be defined and reside in the CSD.
Therefore, you must have a CSD defined in your CICS/ESA system, with all
the associated programs and transaction resources.

• The obsolete DFHPCT and DFHPPT macros are not shipped with CICS
Transaction Server. However, you are recommended not to migrate the PPT
entries to the CSD, but use the new autoinstall facility for programs and
MAPS instead.

• CICS no longer supports the use of the file control table for VSAM object
files, data tables, or shared resource pools. Resource definitions for these
VSAM objects can be defined in, and installed from, the CICS system
definition (CSD) data set only. CICS/ESA installs only BDAM file definitions
from the FCT.

6.1.6 CICS Macro Resource Definition Table Changes
Below are commonly identifiable changes required to migrate a CICS/VSE
system to CICS TS macro resource definition. These parameters listed below
should be viewed as a reminder of items to consider, and not as an inclusive list
of parameter changes and/or obsolescence. You should review the CICS Macro
Definition, SC33-1648 manual for full details of parameters required for the
different macro resources and the CICS System Definition Guide, SC33-1682 for
the System Initialization parameters.

ALT is obsolete, restructuring of CICS eliminates application load table.

DCT Migrate DCT entries to the CSD. It is imperative to use the new DCT
supplied definitions. There are some new entries, that if not chosen
could cause the disappearance of messages. One such queue is
CDUL, where dump information is written.

140 VSE to OS/390 Migration Workbook

Also, you should remove the parameters such as REUSE, RSL, and
DEVICE from the DCT specification; these parameter are obsolete.

Note: CICS TS provides a facility that allows an extrapartition data
set to be used to submit jobs to MVS.

FCT Remove the CSD entry from FCT (it is now in the SIT), plus all VSAM
entries (VSAM resource entries are autoinstall) from the FCT, then
re-assemble the FCT and migrate the table to the CSD.

JCT ″INPUT″ JOUROPT and BUFSUV parameters are obsolete. CICS
Transaction Server does not support tape logging. Also, note that log
format is SMF only.

MCT Additional control over what is monitored is available with CICS/ESA.
Measuring CPU time is no longer an option, CICS always measures
CPU time. Also, parameter CONV is replaced by SIT parameter
MNCONV. If your existing MCT specifies CONV=YES, you should
remove this and specify MNCONV as a system initialization
parameter (or you can set the option dynamically using a CEMT SET
MONITOR or EXEC CICS SET MONITOR command).

NLT is obsolete.

PCT is obsolete, you must use RDO. Be sure to migrate all PCT entries to
CSD on VSE before migrating to CICS/ESA.

PLT The sequence of events during initialization is changed in CICS/ESA.
In particular, there are now two phases of program list table (PLT)
processing during initialization. These two phases are separated in
the same way as the first and second quiesce PLT shutdown
programs, by the inclusion of DFHPLT
TYPE=ENTRY,PROGRAM=DFHDELIM at the appropriate point among
the DFHPLT TYPE=ENTRY macros for the programs. During the first
phase, you can run only the programs that enable your user exits for
restart processing. Another result of the change to PLT processing
during startup is in the way CICS loads the PLT. This change means
that you no longer need an RDO entry for the PLT itself. However, you
must continue to define to CICS the PLT programs listed in the table
by suitable program entries in the CSD. Please note that the
first-phase PLTPI programs must run in AMODE 31 mode, otherwise
they fail with an ABEND 0C4.

PPT is obsolete, you must use RDO. You are recommended not to migrate
the definitions, but use the new autoinstall facility for programs and
maps instead. Plus, you should review all resident programs on your
CICS/VSE system. If the only reason a program was made resident
was due to high usage, this reason is now eliminated (CICS/ESA uses
an LRU algorithm for compression).

SNT DFHSNT macro is obsolete and no longer supplied. To define user
attributes you must add them to the user profiles maintained by your
external security manager. If you are using RACF, you define user
attributes in the CICS segment of the user profiles in the RACF
database.

SRT review the default CICS/ESA table for additional entries, other than
the standard MVS error codes.

Chapter 6. CICS 141

TCT review the entire table, particularly for BTAM changes. Add
CONSLID=console designation for MVS Multiple Console Support
(MCS). You must remove any spool parameter associated with
CICS/VSE Report Controller Feature (RCF).

SIT review all the entries since there are VSE and MVS only parameters.
Plus, there are new and different suffixes for the pregenerated
CICS/MVS management modules. For example:

ABDUMP is removed because of CICS reconstructed dump facilities.

AIEXIT provides the user-replaceable autoinstall program name
(was the second value for CICS/VSE autoinstall SIT
parameter).

AILDELAY is the delete delay period for autoinst (was the fourth value
for CICS/VSE autoinstall SIT parameter).

AIQMAX maximum number of term queued for autoinst (was the
first value for CICS/VSE autoinstall SIT parameter).

AKPFREQ this parameter now represents the number of write
operations to the log stream buffer before an activity
keypoint is taken. The default value is now 4000 instead of
200.

AMXT is obsolete, with the new CICS dispatcher algorithms which
removed the need to limit the number of active tasks.

AUTINST is replaced by the AIEXIT parameter.

COBOL2 is obsolete, CICS will initialize it immediately if the
COBOL2 library is available.

CMXT is replaced by the MAXACTIVE parameter that is provided
on the new TRANCLASS resource definition.

DBP is obsolete, and all backout is now coordinated by the
recovery manager.

DBUFSZ is obsolete--all CICS system log output is written directly to
the system log stream.

DCT the COLD option is removed, and the default is changed
from YES to NO.

DLI is obsolete for both local and remote DL/I support.

FERS is obsolete.

ICVR 0 is the default if RUNAWAY(SYSTEM). You may have
found it necessary to specify an artificially high ICVR value,
to allow processor intensive transactions to run without
being abended as runaway tasks. In CICS/ESA you can
specify individual runaway timeout values on the
transaction resource definition. This means that you can
lower your ICVR value to a realistic limit for the average
transactions, and have the definition for these reference
the global ICVR limit by means of the RUNAWAY(SYSTEM)
attribute.

ICVS is obsolete.

142 VSE to OS/390 Migration Workbook

JCT The CICS log manager does not support journal data sets,
making the journal control table obsolete. The CICS
system log and journals are mapped to MVS system
logger log streams (or, for some journals, SMF data sets)
by means of JOURNALMODEL resource definitions.

JSTATUS CICS log manager does not support journal data sets, on
either disk or tape, making this initialization parameter
obsolete.

PLI removed because DOS PL/I is not supported.

SCS removed because the storage cushion size is determined
by CICS.

System initialization modifications (SIMODs) are obsolete.

START the INITIAL option is added to indicate that CICS is to
initialize as if this is a first-time start of the CICS region.
Unlike a normal cold start, the cold start resulting from
START=INITIAL causes CICS to purge the system log as
well as the catalog data sets. An INITIAL start is the same
as if you start CICS with a new system and newly defined
catalog data sets.

TLT is replaced by the CSD function.

TRACE is replaced by new trace parameters.

TSMGSET there is no need for dynamic storage for temporary
storage pointers as a result of the restructure of the
temporary storage domain.

ZCP is not modifiable, thus the parameter is removed.

Note: CICS/ESA provides a default source (DFHSIT$$) with which you may start
or use the default load module (DFHSIT) and override the defaults.

6.1.7 CSD and RDO Considerations
Below are commonly identifiable changes required to migrate a CICS/VSE
system to CICS TS CSD and online resource definition entries. These parameters
listed below should be viewed as a reminder of items to consider, and not as an
inclusive list of parameter changes and/or obsolescence. You should review the
CICS Resource Definition Guide, SC33-1684 for full details of parameters required
for the different online resource definitions.

6.1.7.1 CSD
To start with the CSD is mandatory in CICS/MVS, but does not require an entry
in the FCT.

You should define and initialize the CSD from the CICS/ESA system, as opposed
to attempting to upgrade the CICS/VSE CSD to CICS/ESA. The reason is you
want the space allocation of your CSD to accommodate the addition of VSAM
FCT and DCT entries plus entries for comment fields (that is, entries not
available to CICS/VSE). After the CSD is defined and initialized on the CICS/MVS
system, you can use the DFHCSDUP utility to EXTRACT your user definition from
CICS/VSE, then import it to CICS/MVS′s CSD. For details on using DFHCSDUP
refer to your CICS Resource Definition Online and CICS Customization Guide.

Chapter 6. CICS 143

Warning: When you migrate your CSD entries you must ensure that you do not
copy over IBM supplied definitions in groups that you have defined. The
reason is that some of the groups and resources were changed and/or
deleted. Thus, you should see that your user groups with IBM defined
resources are copied from the newly defined CSD. Once, you have
imported your defined resources into the CSD for MVS, be cognizant of
changes via the ALTER command, the default attributes and/or new
attributes may not be what you desire. To illustrate, the SESSION
resource definitions allows the send and receive prefixes to default. CICS
creates the last three characters of the session names from the
alphanumeric characters A through Z, and 1 through 9. These
three-character identifiers begin with the letters AAA, and continue in
ascending sequence until the number of session entries reaches the limit
set by the SENDCOUNT or RECEIVECOUNT value.

6.1.7.2 RDO
Here are items to consider with the use of RDO on your CICS/ESA system:

• Be sure that all user defined TRANSACTION resources specify the attribute
(SPURGE). SPURGE must be set to purge transaction from the system and to
detect loops.

• CICS-supplied transactions have changed (for example, CSSN and CSSF are
CESN/CESF). CICS TS removed transactions CSMT, CSOT, CSSF, CSSN, and
CSST. Please refer to your CICS Supplied Transaction, SC33-1686 for more
details.

Below are examples of resources and/or attributes changes:

TRANSACTION/TCLASS
is replaced by the TRANCLASS parameter, within the new
TRANCLASS resource definition.

CONNECTION/SECURITYNAME(MRO)
is obsolete on MRO connections. To specify bind-time and link
security for MRO connections, you must define appropriate RACF (or
another ESM) security profiles.

CONNECTION/PROTOCOL
the scope of this parameter is extended for the external CICS
interface (EXCI). This parameter allows client programs (batch
programs) the ability to access CICS services.

PROGRAM/EXECKEY
the effect of this parameter is extended for transaction isolation. With
transaction isolation active, a user-key program has read and write
access to the user-key task-lifetime storage of its own task only, and
to any shared DSA storage, if its transaction is defined with
ISOLATE(YES).

SESSIONS/RECOVOPTION
this parameter is extended to cover VTAM persistent sessions. In
earlier releases of CICS it was meaningful for CICS regions running
with XRF only.

SESSIONS/RECEIVEPFX/SENDFX
you no longer need to specify send and receive prefixes on MRO
session definitions.

144 VSE to OS/390 Migration Workbook

TRANSACTION/RESTART
this option now governs restart in two separate types of situation.

TYPETERM/RECOVNOTIFY
the scope of this parameter is extended to cover VTAM persistent
sessions. In CICS/VSE this parameter was meaningful for CICS
regions running with XRF only.

6.1.8 CICS System Data Sets Requirements
Before you install your CICS data sets you should determine the DASD
requirements for all CICS data sets and MVS data used by CICS.

Below are the data sets needed to implement CICS TS. You should review the
CICS System Definition Guide, SC33-1682 and the CICS Installation Guide,
GC33-1691 for full details on the facilities, functions and usage for each data set
listed below:

Temporary storage data set
Transient data destination data sets
CICS log streams
System definition data set
Catalog data sets
Auxiliary trace data sets
Dump data sets
Availability manager data sets
CMAC messages data set

After you have installed CICS, and applied any necessary service, you can run
the DFHCOMDS, DFHDEFDS, and DFHCMACI jobs to create the CICS data sets.
MVS storage management facility (SMS) should facilitate the placement, and
allocation of your data sets. Still, you should keep an eye on extent allocations
for the data sets used by CICS, for performance reasons (that is, is the single
extent allocation too small).

Be sure you note that CICS Log is unique to CICS TS, and requires special
consideration as opposed to journal files used in CICS/VSE. In OS/390 Version 2
Release 4, the CICS log manager supports the DASD-only option of the MVS
system logger. This means that individual CICS log streams can use either
Coupling Facility structures or DASD-only logging.

Figure 13 on page 146 shows the choices you have when defining individual log
streams, depending on the hardware and software you are using.

Chapter 6. CICS 145

┌───────────┬───────────┬───┐
 │ Coupling │ OS/390 │ Log stream possibilities │
│ facility? │ Version │ │
│ │ 2.4? │ │
├───────────┼───────────┼───┤
│ Yes │ No │ All must use CF. │
├───────────┼───────────┼───┤
│ No │ Yes │ All must use DASD-only. │
├───────────┼───────────┼───┤
│ Yes │ Yes │ Individual log streams can use either CF or │
│ │ │ DASD-only. │
├───────────┼───────────┼───┤
│ No │ No │ CICS TS Release 2 not supported. │
├───────────┴───────────┴───┤
│ Note: Without a coupling facility, you cannot share general log │
│ streams across MVS images. │
└───┘

Figure 13. Log Stream Choices Resulting from Hardware and Software Used

CICS system programmers need to consult with their MVS system programmers
to plan the storage required for the log streams needed by the CICS log
manager.

Figure 14 shows MVS data sets used by CICS.

┌──────────────────┬────────────────────┬────────────────────────────┐
 │ SDUMP data sets │ MVS SDUMP macro │ Used by CICS for system │
│ │ │ dumps via the MVS SDUMP │
│ │ │ macro. │
├──────────────────┼────────────────────┼────────────────────────────┤

 │ SMF data sets │ System management │ Used by CICS monitoring │
│ │ facility │ and statistics domains │
│ │ │ for monitoring and │
│ │ │ statistics records. │
├──────────────────┼────────────────────┼────────────────────────────┤

 │ GTF data sets │ Generalized trace │ Used by CICS trace │
│ │ facility │ domain for CICS trace │
│ │ │ entries. │
└──────────────────┴────────────────────┴────────────────────────────┘

Figure 14. MVS Data Sets used by CICS

Please refer to the OS/390 Initialization and Tuning Guide for information on
calculating the size of SDUMP. For background information about SMF and data
set considerations consult the OS/390 MVS System Management Facilities.
However, you must reference the CICS Customization Guide for information on
CICS monitor records and sizes and the CICS Performance Guide for information
on CICS statistics records and sizes. If you are to use CICS with GTF please
review the OS/390 MVS Diagnosis Tools and Service Aids.

146 VSE to OS/390 Migration Workbook

6.1.9 CICS System Program Interface and Exits

6.1.9.1 System Programming Commands
CICS system programming interface (SPI) commands provide you with the ability
to access and modify CICS system information. SPI should be considered for
CICS applications that presently modify and/or access CICS internal blocks.
Although, SPI commands will not grant access to all CICS blocks and addresses,
SPI commands either retrieve information about CICS resources or system
elements from:

INQUIRE commands
COLLECT STATISTICS

or commands that modify the status or definition of the system or a resource, or
invoke a system process:

SET commands
CREATE commands
DISCARD commands
PERFORM commands
ACQUIRE TERMINAL

or commands that modify or expand system execution by means of exits:

DISABLE PROGRAM
ENABLE PROGRAM
EXTRACT EXIT
RESYNC ENTRYNAME

CICS TS requires that all SPI commands specify an SP translator option and
security checking for transactions issuing SPI commands. Therefore, you should
review all SPI commands of CICS TS to determine what modifications and
reassemblies are required to your present SPI programs. Please refer to CICS
System Programming Reference, SC33-1689 for more details on SPI command
changes and the CICS Application Programming Guide, SC33-1687 for
information on the translator options.

6.1.9.2 Exits
Exits will require special attention and a significant amount of your conversion
work effort. All exits will require a rewrite.

CICS TS does not support changes to internal control blocks. The user exit
programming interface provides global user exit programs with access to some
CICS services. It consists of a set of macro function calls that you can use in
your user exit programs. It provides opportunities to extend CICS functions
beyond the facilities provided in the standard CICS system, but it should be used
with care. Any exit programs you write that use the interface must be written
following the specific guidance documented in the CICS Customization Guide,
SC33-1683, and you should carefully test to ensure that they cannot cause
system errors.

The user exit programs must be in Assembler; the XPI is not provided for other
languages. You should also note that programs containing XPI calls must be
written to 31-bit standards, and must be reentrant.

Chapter 6. CICS 147

Your program must be in primary-space translation mode when you invoke the
XPI. (For information about translation modes, see the IBM ESA/370 Principles of
Operation manual.)

Notes:

 1. You cannot use all of these calls at every global user exit point. You wil l find
an indication of when these calls cannot be used both with the description of
each function call, and in the list of exit points in the CICS Customization
Guide.

Warning: These XPI calls are used to invoke CICS services; using them in the
wrong exits causes unpredictable errors in your CICS system.

 2. There is a restriction on using the XPI early during initialization. Do not start
exit programs that use the XPI functions INQUIRE_MONITOR_DATA,
MONITOR, TRANSACTION_DUMP, and WRITE_JOURNAL_DATA until the
second phase of the PLTPI. For further information about the PLTPI, refer to
″Writing initialization and shutdown programs″ in the CICS Customization
Guide, SC33-1683.

 3. These XPI functions are likely to cause the task executing the user exit
program to lose control to another task while the XPI function is being
executed. Therefore, the use of XPI functions must be very carefully
considered as interrupting the flow of CICS functions could cause problems,
such as lockouts, to occur.

For more information on tailoring CICS global and user exits review your CICS
Customization Guide, SC33-1683.

Remember that CICS/ESA does not support macro-level programs. If you attempt
to invoke programs with macro-level code and/or internal CICS addresses the
following should result:

• CICS issues a warning message naming the offending program or
transaction

• CICS names the offending program or transaction and abends the offender
• CICS names the offending program or transaction and disables

Changes to the exit programming interface means that you will also need to
make changes to global user exit programs. Still, you must reassemble all global
exit programs. Plus, there are the following changes to be noted in your exit
programs.

CSA and TCA addresses are withdrawn from DFHUEPAR.

The following API commands are not supported in global user exits:

Command Exit points

EXEC CICS ABEND All exits

EXEC CICS RETURN All exits

All EXEC DLI XRMIIN and XRMIOUT

All EXEC SQL All exits

All CALL DLI Al l exits

148 VSE to OS/390 Migration Workbook

You must rewrite all user-replaceable modules except for DFHACEE, DFHUAKP,
DFHXSP and DFHXSE user-replaceable modules, which are obsolete. Also, the
DFHNTRY is replaced by a new user-replaceable module DFHREST.

Note: VSE/ESA System Package (SP) supplied a number of user exits and user
replaceable modules, that are part of the packaging of VSE/ESA. As such these
programs may be similar to other CICS supplied sample program, but are
unique in what they offer VSE/ESA users. If you were using any of the programs
below, you may want to convert the code and/or find similar solutions through
IBM packages and/or vendor programs.

IESZATDX - auto install program
IESZNEP - VTAM network error program
DFHXSE and IESEXIT1 - signon program
DFHPEP - program error program (invokes OLPD transaction for ABEND)
SKEXITDA - captures VSE/ESA system activity data from the II and stores the
resulting data in CICS/VSE temporary storage queues.

Note: The above programs are located in VSE/ESA ICCF library 59.

6.1.10 CICS Transaction Security
CICS/ESA security is provided through external security (that is, RACF). Hence
CICS/VSE internal security needs to be converted to an external security facility.

In the MVS environment, RACF provides an external security manager. RACF
controls access to data sets from CICS, TSO, and batch.

The recommendation is to migrate to RACF and CICS/ESA external security.

If you are using RACF as the external manager, consider:

• All CICS started task names must be defined as user IDs having the authority
to execute all transactions UACC(READ).

• All transactions must be defined to RACF (even previously unsecured
transactions).

• If using transient data initiated transactions or transactions started on a
terminal, you may need to add an XPCT profile, or allow the default user
UACC(READ).

New CICS command RACF resources: EXITPROGRAM, REQID, and STORAGE,
update authority is required to enable, disable, extract, or resync
EXITPROGRAM, and may be administered from the PLT process.

If you are using CICS for VSE/ESA 2.3, you can use the security migration aid to
assist you with your migration of your CICS internal security definitions to an
environment where the resources can be defined with RACF. You will need the
CICS/VSE Security Migration Aid (supported via APAR PN87442) and the
CICS/VSE Security Migration Aid, SC33-1406 manual.

6.1.11 CICS UPSI
There is no UPSI in MVS. Execution overrides are in the PARM field of the JCL
statement - EXEC PGM=DFHSIP. The following list identifies the CICS/MVS
equivalents:

Chapter 6. CICS 149

Bit 0 SYSIPT overrides yes or no. All overrides are passed as
execution parameters to DFHSIP.

Bit 1 This is no longer required for
CICS/OS or CICS/VSE 1.6 or later.

Bit 2 Operator prompt for overrides yes
or no.

The parameter ′CONSOLE′ as the
last PARM in the EXEC statement
indicates that the operator is to
be requested to enter overrides.

Bit 3 If Dump returns a nonzero return
code when writing to the
SYSDUMP data set and an IDUMP
will be produced on SYSLST.

CICS/MVS DUMP is directed to
MVS SYS1.DUMxx only.

Bits 4-5 Are not currently used.

Bits 6-7 Reserved for DL/I. Not required for IMS.

6.1.12 Application Programming
Command-level programs are upward compatible at both source and object
level, provided they conform to the interface as defined in the Application
Programmer ′s Reference manual. However, it is imperative that you understand
upward compatible does not constitute that your program will continue to run on
your CICS/VSE system (that is, programs reassembled and linkedited to CICS TS
are not guaranteed to run on CICS/VSE). Hence, you should be sure that your
System Management/Change Management and Roll-back plan accounts for this
situation.

Notes:

 1. CICS 1.7 applications can be relinkedited on MVS, but you should not expect
the programs to function (consider recompiling programs).

 2. DOS PL/I applications do not function on MVS, hence you should consider
rewriting DOS PL/I to a PL/I supported level.

Macro-level programs are not supported on MVS. You can convert your
macro-level programs to command-level using the CICS AMA conversion aid to
assist with the conversion.

CICS programs written with LE support are generally object module compatible
between VSE/ESA and OS/390. However, there are some commands where
CVDA/REP values are different, thus retranslation, recompile is necessary. CICS
command-level (non-LE) programs which have adhered to the CICS documented
Application Programming Interfaces (API) are generally source compatible
between VSE/ESA and OS/390.

Source programming conversion should be minimal with only language
differences to be resolved, such as COBOL reserved words. The presence of any
of the following conditions may substantially increase the effort:

• Programs that start a BROWSE operation, then read for UPDATE. For a file
accessed in non-RLS mode, CICS should return an INVREQ condition.
Updating and deleting records in a browse is only supported for VSAM files
opened in RLS mode.

• EXEC CICS ADDRESS CSA commands are no longer supported.

150 VSE to OS/390 Migration Workbook

• RPG II is not a supported language for CICS/OS. RPG II programs should be
converted to a supported application language (that is, COBOL, PL/I, C++,
and or Assembler).

• Programs that directly invoke operating system services.

• Programs that directly access operating system control blocks.

• Programs that access internal CICS control blocks (DSECTs).

• The CICS/VSE Report Controller Feature (RCF) is not supported by
CICS/MVS. This includes many suboperands of the EXEC CICS SPOOL
commands. The basic spool interface (open, close, read, and write) functions
are available in both CICS/VSE and CICS/MVS.

• The CICS provided programming interface to JES (the Job Entry Subsystem
component of MVS) allows CICS applications to create and retrieve spool
files. Spool files are managed by JES and are used to buffer output directed
to low-speed peripheral devices (printers, punches, and plotters) between
the job that creates them and actual processing by the device. Input files
from card readers are also spool files and serve as buffers between the
device and the jobs that use the data.

The interface consists of five commands:

SPOOLOPEN INPUT, which opens a file for input
SPOOLOPEN OUTPUT, which opens a file for output
SPOOLREAD, which retrieves the next record from an input file
SPOOLWRITE, which adds one record to an output file
SPOOLCLOSE, which closes the file and releases it for subsequent
processing by JES.

Spool Interface restrictions

There are internal limits in JES that you should consider when you are
designing applications. Some apply to JES2, some to JES3 and some to
both. In particular:

JES2 imposes an upper limit on the total number of spool files that a
single job (such as CICS) can create. If CICS exceeds this limit during its
execution, subsequent SPOOLOPEN OUTPUT commands fail with the
error condition.

JES3 does not impose such a limit explicitly, but for both JES2 and JES3,
some control information for each file created persists for the entire
execution of CICS. For this reason, creating very large numbers of spool
files can stress JES resources.

Spool files require other resources (buffers, queue elements, disk space)
until they are processed. Please review the CICS Application
Programming Guide for more details.

However, spool read is single thread in CICS/MVS. This may have
significant performance implications. Similar functions may be provided
in the MVS environment by the Report Management and Distribution
System (RMDS), 5665-310.

• If your CICS applications have exploited the menu services provided by the
VSE Interactive Interface (II) they may need some rework. The II selection
panels and II programs such as IESFPIP do not exist in CICS/ESA. The
functions may be provided by user written CICS programs and maps. Similar

Chapter 6. CICS 151

functions are provided by the Application Support Facility for MVS (ASF),
5685-043.

Some CICS programs written in assembler language may have to be reworked.
These applications are more prone to violate the CICS API restrictions.

Also, be sure to review all EXEC CICS commands for changes in VALUES.

The name of the CSECT within module DFHECI changed from DFHECI to DFHELII.
So, be sure that your LINKEDIT included DFHECI.

An application program that passes the address of a COMMAREA to another
application program can be above 16MB, below 16MB, or it can be a zero
address. A COMMAREA can be in CICS-key storage or USER-key storage (if
CICS is running with storage protection), or in read-only storage (possibly
obtained using an MVS GETMAIN call). The length of the COMMAREA can be a
positive value or zero, but a negative value always results in an error. Therefore,
the user must provide a condition check for a negative value in the user
programs.

Any Assembler programs which use the DFHEISTG copybook should be
reviewed. It increased by 136 bytes.

If you have any Distributed Transaction Processing (DTP) applications that use
CICS APPC commands, changes to the CICS implementation of the APPC
architecture could mean you need to change the APPC applications before you
can migrate them to CICS TS.

Please review the CICS/ESA Distributed Transaction Programming Guide,
SC33-1174 for more details.

CICS supports the following Assembler, COBOL, PL/I, and C/370 compilers:

• High Level Assembler/MVS & VM & VSE Version 1.1 (5696-234)
• IBM PL/I for MVS & VM (5688-235)
• OS PL/I Optimizing Compiler Version 2 Release 1 (5668-910)
• OS PL/I Optimizing Compiler Version 1 Release 5.1 (5734-PL1), or later
• IBM COBOL for MVS & VM (5688-197)
• VS COBOL II (5668-958 and 5688-023)
• IBM C/C++ for MVS/ESA (5655-121)
• C/370 (5688-040 and 5688-187).

CICS also supports IBM Language Environment for MVS run-time environment
(5688-198), with the following SAA AD/Cycle COBOL, C/370, and PL/1 SAA
AD/Cycle compilers:

• SAA AD/Cycle COBOL/370 (5688-197)
• SAA AD/Cycle C/370 (5688-216)
• SAA AD/Cycle PL/I (5688-235).

Below are recommended conversion aids available to assist you with the
conversion of your CICS application programs.

The DFHMSCAN utility program, which is available with CICS/VSE is
recommended for reviewing CICS application program libraries. This program
can be run against VSE application libraries to find out which application

152 VSE to OS/390 Migration Workbook

programs use CICS macros, which is very useful when you must determine your
scope-of-effort.

The CICS Application Migration Aid (5695-061), should be used to assist
customers migrating macro-level programs to command-level programs. Please
review the manual CICS/VSE Application Migration Aid Guide V2, SC33-1901 for
more detail.

COBOL and CICS Command Level Conversion Aid for VSE (CCCA) - CCCA
assists in the removal of BLL cell processing to ANSI 85 COBOL processing
(5785-CCC). Please review the manual CCCA/VSE Installation and User′s Guide,
SC26-8269 for more details.

During the planning and/or application conversion process you may find it
difficult to convert your macro programs. You may find other aids to help you
with the conversion and/or consider the coexistence of CICS/VSE and CICS TS
systems.

6.1.13 CICS/VSE and TS Coexistence Considerations
As part of the migration you may need to consider the coexistence of a
CICS/VSE system with a CICS TS system via an ISC connection. The reasons for
this may vary from parallel testing, migrating of data, to function shipping
requirements for DL/I and so on. Still, you should understand functions that will
help the cooperative systems.

If you allow the send and receive prefixes to default, CICS creates the last three
characters of the session names from the alphanumeric characters A through Z,
and 1 through 9. These three-character identifiers begin with the letters AAA,
and continue in ascending sequence until the number of session entries reaches
the limit set by the SEND- or RECEIVECOUNT value. This method is the same as
that for APPC sessions.

To maintain compatibility with earlier releases, this change is optional. You can
continue to define your own prefixes for the send and receive sessions, in which
case CICS generates the terminal control table entries (TCTTEs) for session
names in the same way as for earlier releases.

Please review the CICS Intercommunication Guide, SC33-1698 which provides
definitions and guidelines for intersystems connections.

6.1.14 Testing and Problem Determination Considerations
You should consider that due to the change in operating systems and CICS′s
preparation, education and training should be completed before your installation
and test begin. However, here are few items to consider with the process.

There are major differences in:

• initialization messages.

• system initialization parameters.

• initialization error recovery.

• messages and codes issued by different systems, and in the operator actions
they require.

• handling output from CICS monitoring.

Chapter 6. CICS 153

• handling output from CICS dumps.

• handling output from CICS trace.

• handling output from CICS statistics.

• problem determination.

• restart and recovery requirements.

• security administration.

• application of software services.

Identify and understand the different IBM and vendors support structures and
procedures. You should have available:

personal names of your contact points
telephone numbers

Therefore, you should see that your system management procedures are
updated. The following manuals CICS Operations and Utilities Guide, SC33-1167,
CICS User′s Handbook, SX33-6104, CICS Messages and Codes, GC33-1694, CICS
Glossary GC33-1705, and CICS Problem Determination Guide, GC33-1693 should
be used during these periods.

6.1.15 Vendor Applications
In CICS Transaction Server for OS/390, the autoinstall user program invoked for
installation and deletion of virtual terminals is used by the External Presentation
Interface (EPI) and terminal emulator functions of the CICS Clients products.
They are defined to CICS as remote 3270 devices. You should be sure your
vendor products will work with the supported autoinstall program.

For an introduction to the CICS Clients products, and detailed information about
OS/390 support for them, see the CICS/ESA Server Support for CICS Clients
manual.

Customers should be advised to contact the suppliers of any third-party software
used with CICS to ensure that the supplied packages will run with CICS
Transaction Server for OS/390.

6.2 CICS with DL/I
The CICS TS - IMS/VS interface is implemented differently than the CICS/VSE -
DL/I interface.

If you are a CICS local DL/I user you must plan to migrate your databases to
DBCTL. Alternatively, you can use CICS function shipping to CICS/VSE DL/I data
sets. These are the only two methods of DL/I database access that CICS
continues to support.

For information about migrating to DBCTL see the CICS IMS Database Control
Guide.

154 VSE to OS/390 Migration Workbook

Chapter 7. ICCF and TSO

DOS/VSE users of the Interactive Computing and Control Facility (ICCF) who
migrate to OS/390 will find a very powerful interactive system available via
OS/390′s Time Sharing Option (TSO/E) and related products, particularly the
Interactive System Productivity Facility (ISPF). This section addresses the TSO/E
and ISPF implementation of the common functions used in ICCF. It is not
intended to be a complete list of the functions available to the TSO/E user.

7.1 Preparing to Use the System
ICCF uses a single direct access data set, DTSFILE, to maintain the information
and data necessary for interactive execution. DTSFILE is logically divided to
contain user profiles, ICCF libraries, and interactive input, list, and punch areas.
TSO/E, on the other hand, maintains user profile information in either the
Resource Access Control Facility (RACF, or OS/390 Security Server) database or
(less commonly) in the TSO/E User Attribute Data Set (UADS). In addition, you
can tailor the interactive user ′s environment by assigning customized LOGON
procedures stored in a partitioned data set (PDS). The equivalent of an ICCF
library would be either a sequential data set or a PDS in the TSO/E environment.
TSO/E interfaces directly with the job entry subsystem, JES2 or JES3, to handle
interactive job input and list or punch output. In this section we will review the
requirements to allow access to your TSO/E system.

7.1.1 User Profiles
The ICCF System Administrator authorizes ICCF users by creating a user profile
and storing it in DTSFILE. The person responsible for TSO/E in an MVS
environment will normally authorize TSO/E access by creating user profiles in
the RACF data base and defining a TSO ″segment″ for those users. Alternatively,
though much less common since most OS/390 systems have RACF active, the
administrator could create entries in the TSO/E User Attribute Data Set (UADS).
This chapter will focus on using RACF to register TSO users. If you need
information on using the older TSO/E methods you can read about the ACCOUNT
command in the TSO/E Customization book.

As delivered, your OS/390 system with RACF will have one user defined,
IBMUSER. IBMUSER has a predefined password of SYS1, which you must
change the first time you logon, and has the SPECIAL attribute to allow full
administration of RACF. As one of your first tasks, you would create another
administrative ID and then ″revoke″ IBMUSER to make it unusable by any other
users who might attempt to take control of your system.

Each TSO/E user has, as a minimum, a user ID and an associated LOGON
procedure. LOGON procedures will be covered in the next section. The user ID
can be from 1-7 alphameric characters beginning with an alphabetic or a
national character. An ICCF user ID is always four characters.

Each user will also have a password, which you assign initially when creating
the user′s profile. RACF will mark this password as expired and require the user
to change it upon first logon. Each user may change the password periodically if
he or she desires, and through RACF′s options you may enforce such periodic
changes. For more information on this please refer to the OS/390 Security Server
(RACF) Security Administrator′s Guide.

 Copyright IBM Corp. 1998 155

You may choose to assign account numbers to your users for accounting or
other purposes. This account number can be from 1-40 alphameric characters,
not containing a blank, tab, quotation mark, apostrophe, comma, semicolon, or
line control character. You use the RACF ACCTNUM resource class to authorize
use of account numbers. Please refer to the TSO/E Customization book or the
RACF Security Administrator′s Guide for more details on account numbers.

TSO/E allows you to specify the authority to use or a restriction against using the
ACCOUNT, OPERATOR, SUBMIT, STATUS, CANCEL, and OUTPUT commands by
defining resource profiles in RACF′s TSOAUTH resource class. Again, TSO/E
Customization and the RACF Security Administrator′s Guide have more
information on this topic.

You use commands similar to the following to create a TSO/E user with roughly
the capabilities of the ICCF System Administrator. You issue the RDEFINE
command only once, and for subsequent users you add you do not need the
RDEFINE.

ADDUSER AAAA PASSWORD(secret) SPECIAL
ALTUSER AAAA TSO(PROC(LOGROUT))
RDEFINE TSOAUTH (ACCT JCL OPER MOUNT PARMLIB) UACC(NONE)
PERMIT ACCT CLASS(TSOAUTH) ID(AAAA) ACCESS(READ)
PERMIT JCL CLASS(TSOAUTH) ID(AAAA) ACCESS(READ)
PERMIT OPER CLASS(TSOAUTH) ID(AAAA) ACCESS(READ)
PERMIT MOUNT CLASS(TSOAUTH) ID(AAAA) ACCESS(READ)
PERMIT PARMLIB CLASS(TSOAUTH) ID(AAAA) ACCESS(READ)

Of course, AAAA will not normally need authority to use the ACCOUNT
command (ACCT resource in the TSOAUTH class) but it does not hurt for AAAA
to have this authority and it may prove helpful at some time. As an
administrator, though, AAAA could give himself this authority. You might also
wish to choose different ″universal access″ rules (UACC) for the JCL resource,
which gives the ability to submit batch jobs. Often all users can submit batch
jobs, and you would assign a UACC of READ to cover this situation.

In this example, TSO/E user AAAA with password ″secret″ uses a LOGON
procedure named LOGROUT. He has no default account number, and TSO/E
does not check authority to use account numbers until you configure the RACF
ACCTNUM class. AAAA has authority to use the ACCOUNT command (ACCT),
the OPERATOR command (OPER), and the SUBMIT, STATUS, CANCEL, and
OUTPUT commands (JCL). He is also able to request volume mounts as
necessary. In addition, AAAA has authority to tell TSO/E, via the PARMLIB
command, to change its configuration parameters. TSO/E will normally use the
parameters contained in member IKJTSO00 in partitioned data set
SYS1.PARMLIB. After a change to this member, the TSO/E PARMLIB command
will tell TSO/E to use the new parameters without requiring a system IPL.

A terminal user who will be using TSO/E for application development will also
have a user profile. However, such a user would probably not have authorization
to use the ACCOUNT or OPERATOR commands, nor would he be authorized to
request volume mounts.

The TSO/E Information Center Facility (ICF) provides an ENROLL facility for the
TSO/E administrator. This facility will add TSO/E users to RACF or UADS (the
administrator ′s choice) as well as performing other necessary tasks.

156 VSE to OS/390 Migration Workbook

7.1.2 LOGON Procedures
In ICCF, a logon procedure may be specified in the user profile. This entry
references an ICCF procedure or macro used to define the environment for this
logon. These optional procedures or macros are normally defined by the user if
they are present.

In TSO/E, the LOGON procedure is not optional. The LOGON procedure defines
the system resources available to a terminal user and defines or allows for
dynamic allocation of all data sets used by a terminal user. LOGON cataloged
procedures must reside in the data set defined in the procedure used to start the
primary job entry subsystem, JES2 or JES3. This data set may be either
SYS1.PROCLIB or a partitioned data set dedicated to LOGON procedures.

You may specify a user′s default logon procedure (for the user′s first logon) in
the user′s TSO segment using the PROC keyword. You may authorize or restrict
usage of logon procedures using RACF′s TSOPROC resource class. Again, see
TSO/E Customization and RACF Security Administrator′s Guide when you need
more details.

7.1.3 Message Facilities
The ICCF member A$MAIL normally resides in the ICCF common library of
DTSFILE and is used to broadcast messages to all ICCF users. The ICCF
command /MAIL is issued by an ICCF user to view any messages that have been
stored in member A$MAIL. If messages are sent to an individual ICCF user by
using the /SEND command, they are stored in an ICCF member unique to the
receiver that is created automatically by ICCF. Both of these ICCF facilities are
optional.

For the TSO/E environment, a Broadcast Data Set, SYS1.BRODCAST, is required.
Normally, though, you will use the broadcast data set only to hold notices,
messages intended for display to all users at logon time such as a message of
the day or a system status message. For messages directed to individual users
(single-line mail) you will normally want to configure TSO/E to use a separate
data set for each user. You do this using operands on the SEND statement in
SYS1.PARMLIB(IKJTSO00). Smaller installations may wish to use
SYS1.BRODCAST for mail messages, too, and can configure this using the SEND
options in IKJTSO00 if they desire.

TSO/E users can choose to view mail and notices at logon time, or to suppress
such viewing by specifying NONOTICES and/or NOMAIL. They may also view
mail and notices whenever they desire using TSO/E′s LISTBC command.

7.1.4 Security
ICCF provides facilities which protect ICCF libraries, ICCF library members, files,
and VSE library members against unauthorized access from interactive
partitions. The implementation of security in the ICCF environment is not related
to an overall DOS/VSE security implementation.

In the MVS TSO/E environment, security is an MVS system level requirement
and will normally be handled through RACF.

Both ICCF and TSO/E provide a first level of security in the requirement for
predefined user IDs before accessing the system. A password for the user ID is
required for access to the system.

Chapter 7. ICCF and TSO 157

ICCF provides another level of security by defining ICCF libraries within DTSFILE
as either PUBLIC, PRIVATE, or COMMON. All ICCF users have read access to
data stored in the single COMMON library supported by ICCF. However, only
ICCF users with a System Administrator level profile have write access to this
library. Multiple PUBLIC ICCF libraries are supported in DTSFILE and are
normally used to store data that can be read by any ICCF user, but updated only
by the originator. ICCF PRIVATE libraries are normally used to store data that
can be accessed by users authorized for access to that library.

With RACF you can specify system options (via the SETROPTS command) which
tell RACF how to protect data sets, and in particular whether to allow access to
unprotected data sets or not. If you choose to require protection for all data sets
(SETROPTS PROTECTALL) then you will have to define DATASET profiles before
anyone can access data sets. (Obviously you would want to create such profiles
before you specify PROTECTALL.) If you don′ t enforce protection of all data sets,
then you can identify those data sets which do require protection and define
DATASET profiles just to protect them. The RACF Security Administrator′s Guide
has information on protecting resources, both data sets and other kinds, using
the ADDSD, RDEFINE, and PERMIT commands.

In the TSO/E environment, you can use RACF to restrict or allow access to a
PDS to simulate the library access defined above. The TSO/E equivalent of the
ICCF COMMON library is a PDS with a universal access level of READ and an
access list with only a few users having UPDATE authority. Since TSO/E
command lists (CLISTs) and REXX execs, equivalent to ICCF procedures, are
stored in a PDS, you might define a single CLIST PDS for storing all common
CLISTs available to any TSO/E user. This PDS is similar in use to the ICCF
PUBLIC library. The TSO/E equivalent of an ICCF PUBLIC library is a PDS with,
again, a universal access of READ and an access list with a limited number of
users with UPDATE authority. For an ICCF PRIVATE library equivalent PDS under
TSO/E, you specify a universal access level of NONE and then permit the
necessary users with either READ or UPDATE authority, as appropriate, via the
access list of a DATASET profile.

Since protection is at the data set level in TSO/E, it is not possible to do member
level protection.

7.1.5 Summary
Although you can begin using TSO/E with a minimum amount of knowledge in
the areas of User Profiles and LOGON Procedures, there are many options
available in preparing TSO/E for your interactive users. You should review TSO/E
Customization for details on these subjects. Security is a very important aspect
of your new MVS system and should be reviewed at the system level not just for
your TSO/E system. For information on the OS/390 Security Server (RACF) you
can begin with the RACF General Information manual, though administrators will
also need to study the RACF Security Administrator′s Guide.

7.2 Using the System
Once a TSO/E user has access to his new interactive system, he will need to
know how he can accomplish what he used to do with ICCF. In this section we
will explain how to implement ICCF functions in a TSO/E environment.

158 VSE to OS/390 Migration Workbook

7.2.1 Accessing the System
Since LOGON to TSO/E is dependent on the telecommunications access method
used with TSO/E, the System Standards implemented by the Systems
Programmer, and the related program products installed, you should reference
the TSO/E Primer and your Systems Programmer for information on logging on
to TSO/E.

7.2.2 Entering and Manipulating Data
In ICCF, data is entered and stored as a member of an ICCF library. Data is
restricted to 80 byte records in an ICCF library. You may enter data into an ICCF
library member from Input, Edit, or Full Screen Edit mode. ICCF allows
modification of data stored in members of ICCF libraries only. Modifications are
made while in Edit or Full Screen Edit modes and physically change the data on
the DTSFILE.

In TSO/E, data is entered and stored in sequential data sets, or partitioned data
sets (PDS) using the Interactive System Productivity Facility/Program
Development Facility (ISPF/PDF) editor or the TSO/E EDIT command and its
subcommands. Most users use ISPF/PDF, rather than the older TSO/E EDIT
command, to gain increased usability and improve their productivity. Record
formats may be either fixed or variable with a logical record size less than or
equal to 255 and a block size less than or equal to track length. A PDS is a data
set partitioned into one or more independent groups called members. Each
member must have a unique name and can be referred to separately by
appending the member name, enclosed in parentheses, to the data set name.

The name you give a data set should follow the TSO/E naming conventions. A
TSO/E data set name normally has three fields.

Identification Qualifier - This is always the leftmost qualifier of the full data set
name. For TSO/E, this qualifier is the prefix selected in the PROFILE command. If
no prefix has been selected, your user ID will be used.

User-Supplied Name - You choose a name for the data sets that you want to
identify. It can be a simple name or several simple names separated by periods.

Descriptive Qualifier - The descriptive qualifier is always the rightmost qualifier
of the full data set name. It is one of a set of keywords that describe the contents
of the data set to the system (that is, ′data′ identifies the data set as uppercase
text). A list of standard descriptive qualifiers and the respective contents follows.

Descriptive Qualifier Data Set Contents

ASM Assembler input

CLIST TSO/E commands and subcommands

CNTL JCL and SYSIN for SUBMIT command

COBOL COBOL statements

DATA Uppercase text

FORT FORTRAN statements

LINKLIST Output listing from linkage editor

LIST Listings

LOAD Load module

Chapter 7. ICCF and TSO 159

Each field of a data set name consists of 1-8 alphameric characters and begins
with an alphabetic or national ($, @, and #) character. The fields must be
separated by periods. The total length of the name, including periods, must not
exceed 44 characters.

The data set naming conventions simplify the use of data set names. If the data
set name conforms to the conventions, you need specify only the user-supplied
name field (in most cases) when you refer to the data set. The system will add
the necessary qualifiers to the beginning and to the end of the name that you
specify.

For example, entering the TSO/E EDIT command

EDIT PAYROLL(PRTCHK) NEW COBOL

puts your terminal into the Input mode of EDIT on a new member (PRTCHK) of a
PDS with the name USERID.PAYROLL.COBOL where the USERID is the TSO/E
user ID from UADS. This does not work when using ISPF, however, but even in
this case you should use the descriptive qualifiers to provide a good indication of
the contents of your data sets, which will make it easier for you to work with
them.

In some cases, however, the system will prompt you for a descriptive qualifier.
Until you learn to anticipate these exceptions to the naming conventions, you
may wish to specify both the user-supplied name and the descriptive qualifier
when referring to a data set.

Using TSO/E, data sets can be created and edited by subcommands of EDIT
which reference line numbers or text within lines. The first method is called
line-number editing and the second, context editing. These two methods can be
used interchangeably. TSO/E does not offer a full screen edit capability. Again,
though, with the installation of the Interactive System Productivity Facility (ISPF)
program product a full screen editor is available to the TSO/E user and most
users would not choose to use the TSO/E EDIT command. In fact, most TSO/E
users will spend their entire session within ISPF using only its panels or
graphical user interface.

For detailed information on the TSO/E EDIT command see TSO Extensions
Command Reference. For information on ISPF see ISPF Getting Started.

Descriptive Qualifier Data Set Contents

LOADLIST Output listing from loader

OBJ Object module

OUTLIST Output listing from OUTPUT command

PLI PL/I statements

TESTLIST Output listing from TEST command

TEXT Uppercase and lowercase text

VSEBASIC VSBASIC statements

160 VSE to OS/390 Migration Workbook

7.3 Executing Programs at a Terminal
Both ICCF, TSO/E, and ISPF provide commands to compile, link-edit, and execute
(or compile and load) your source program at the terminal. They also allow you
to use other programs, such as utilities at the terminal.

Under ICCF programs that expect input from the console will read input from
your terminal. Card input is either entered from the terminal (/DATA INCON)
when requested from SYSIPT or SYS005 or can be included from an ICCF library
member (/DATA NOINCON followed by /INCLUDE). List output will be returned to
your terminal.

Under TSO/E, you define your input and output data sets via the ALLOCATE
subcommand of the EDIT command, or the ALLOCATE command. You may
allocate a data set to the terminal by using an asterisk (*) as the data set name.
The following example shows the use of the ALLOCATE command for allocating
the data sets required for an execution of the Assembler.

.

.
READY
allocate dataset(′ sys1.maclib′) file(syslib) shr
READY
allocate file(sysut1) new block(400) space(400,50)
READY
allocate file(sysut2) new block(400) space(400,50)
READY
allocate file(sysut3) new block(400) space(400,50)
READY
allocate dataset(*) file(sysprint)
READY
allocate file(syspunch) sysout
READY
allocate dataset(prog.obj) file(sysgo) new block(80) space(200,50)
READY
allocate dataset(input.asm) file(sysin) old
.
.

The ALLOCATE commands in the example would define the macro library to be
used by the assembler (SYSLIB), the assembler work data sets (SYSUT1,
SYSUT2, and SYSUT3), a data set for the punched deck of an object module
(SYSPUNCH), a data set for the link and go object deck (SYSGO), the input to the
assembler (SYSIN) which is a data set with the fully qualified name
′userid.INPUT.ASM′, and the output of the assembler (SYSPRINT) which is to be
directed back to the terminal.

Note that rather than using the commands shown above, your users will
probably wish to use ISPF′s facilities for invoking the assembler or compilers.
These facilities, commonly available from option 4 of the main ISPF panel,
automate much of the work of invoking compilers, assemblers and so on.

If you have to allocate the same data sets every time you log on, you can have
your installation allocate them in the form of fully defined data sets in the
LOGON procedure or you can build a command procedure containing your
ALLOCATE commands and execute that procedure as soon as you are logged
on.

Chapter 7. ICCF and TSO 161

7.4 Submitting Jobs for Batch Execution
ICCF allows users to submit jobs for batch execution through the SUBMIT
procedure and an ICCF supplied program, DTSSUBMT. Tailoring of the SUBMIT
procedure allows the ICCF System Administrator to provide system standards for
execution and list and punch output. Listed output from the batch execution may
be viewed at the terminal using the /LISTP command provided that the output is
dispatchable and is not presently being printed by VSE/POWER. ICCF also
provides three procedures, GETL, GETP, and GETR, to retrieve list, punch or
reader queue data and store this data as ICCF members. You may use the /DQ
command of ICCF to view the VSE/POWER reader, list, and punch queue
directories, and the ICCF supplied program, DTSDA, can be used to display the
status of the DOS/VSE partitions.

In TSO/E, you can submit jobs for batch processing if your installation authorizes
you to do so. This authorization, specified as JCL, is stored in RACF or UADS
with your user attributes. If you have this authorization, the system lets you use
the four commands (SUBMIT, STATUS, CANCEL, and OUTPUT) that control the
processing of batch jobs. You can use these commands to submit a batch job,
to display the status of a batch job, to cancel a batch job, and to control the
output of a batch job. You may also use ISPF facilities to perform this work
rather than the commands TSO/E supplies. Many JES2 customers also use the
facilities provided by the System Display and Search Facility (SDSF) to control
and work with the output from batch jobs. SDSF provides a more complete
full-screen interface to batch jobs, and gives functions similar to the /CTLP and
/DQ facilities of ICCF.

When you enter the SUBMIT command, you must give the name of a data set (or
data sets) containing the batch job (or jobs). Each job consists of job control
language (JCL) statements and of program instructions and data. If you do not
specify the NONOTIFY operand, you will be notified when your batch job
terminates. TSO/E provides for system standards on submitted jobs through the
coding of a SUBMIT command exit. Through this exit, an installation can
approve, reject, or modify the JCL statements being submitted.

Any time after you submit a background job you can use the STATUS command
to have its status displayed. The display will tell you whether the job is awaiting
execution, is currently executing, or has executed but is still on the output
queue. The display will also indicate whether a job is in hold status. The STATUS
command is similar to the /STATUSP command of ICCF.

The CANCEL command cancels execution of a batch job. This command can only
be used on jobs that follow the naming convention of job names beginning with
the TSO/E user ID. There is no equivalent to this command in ICCF.

The OUTPUT command may be used to manipulate all held output, regardless of
whether the output is produced during the current LOGON session, a previous
LOGON session, or by a batch job submitted from any source.

162 VSE to OS/390 Migration Workbook

7.4.1 Using Command Procedures
Both ICCF and TSO/E provide the capability of storing frequently executed
commands or lists of commands. In ICCF these stored commands are called
Procedures or Macros. They are stored as an ICCF library member. In TSO/E
they are called Command Lists (CLIST) or REXX execs.

Besides issuing TSO/E commands, CLISTs can perform more complex
programming tasks. The CLIST language includes the programming tools needed
to write extensive, structured applications. CLISTs can perform any number of
complex tasks, from displaying a series of full-screen panels to managing
programs written in other languages.

The CLIST language is an interpretive language. TSO/E also offers a second
interpretive language, REXX. REXX is a general purpose, high-level language not
unlike PL/I. REXX has the usual structured programming instructions and a
number of useful built-in functions.

The main difference between ICCF Procedures and Macros is that macros are
executed in the foreground as normal commands and may be invoked while in
edit mode, whereas procedures are executed only in command mode.
Procedures require that execution of the procedure processor program be
started in an interactive partition, which means that a macro is processed more
quickly than a procedure. Another difference is that a procedure has more
control over the flow and execution of commands than a macro.

In TSO/E, CLISTs and REXX programs are executable sequences of TSO/E
commands, subcommands, and CLIST or REXX statements. The entire TSO/E
command language is available to CLISTs and REXX programs.

To create a CLIST or REXX program, use the ISPF/PDF editor or the TSO/E EDIT
command to put the commands, subcommands, and command procedure
statements into a data set. The data set may be either sequential or partitioned.
A sequential CLIST or REXX data set consists of only one program, while a
partitioned data set may contain more than one program. When a PDS consists
entirely of CLISTs, it is called a CLIST library. Detailed information on writing
CLISTs can be found in TSO/E CLISTs.

7.5 Migrating from VSE/ICCF to MVS and TSO/E
As with any new system, TSO/E will require time to learn. Many of its functions
are similar to those in ICCF but others are either entirely new, or differ enough
that you will have to change your present methods in order to implement them.
In this section we will attempt to describe how you can begin the migration from
VSE/ICCF to MVS TSO/E.

7.5.1 Converting ICCF Libraries
Although there are many methods for moving members from your existing ICCF
libraries to data sets accessible to TSO/E, in this section we will discuss just
two. The first method is to write an ICCF procedure that will create a tape file
containing the JCL and data necessary to execute the MVS utility IEBUPDTE to
create a new PDS containing the members from an ICCF library. The second
method utilizes the ICCF utility DTSUTIL to punch ICCF library members to tape.
A program would then need to be written to reformat this tape to a format that
would be acceptable to the MVS utility IEBUPDTE. The advantage of the second

Chapter 7. ICCF and TSO 163

method over the first would be the total flexibility available in creating the tape
input to IEBUPDTE and the JCL necessary to execute this MVS utility. The
advantage of the first method is its ease of implementation.

In order to write an ICCF procedure to create a ″SYSIN″ format tape for the
execution of IEBUPDTE, you will need to answer questions such as the following:

• How much data will be moved on each execution of the procedure?

• How large will the new PDS have to be to hold this data?

• On what device type and volume serial will the PDS reside?

• What will the data set name be for the new PDS?

• What block size should be used on the new PDS?

The sample ICCF procedure which follows assumes that you will create a PDS
corresponding to each ICCF library. It therefore unloads a single ICCF library
each time it is invoked. When the procedure is executed you will be prompted for
the ICCF library number you wish to unload, the TSO/E user ID, user-supplied
name, and descriptive qualifier for the data set name of the new PDS, and the
device type and volume serial on which the new PDS will reside. The block size
for the new PDS will be 800 bytes, and 50 tracks with 10 directory blocks will be
used to define the new PDS. The procedure creates an ICCF member named
IEBUPDTE which is a DITTO card to tape job to be submitted to a batch partition
for execution. The tape created by this job will be used on an MVS system to
create a new PDS with the contents of the ICCF library.

Sample ICCF Procedure

**
*
* This is an example of an ICCF procedure which could be used to
* create an MVS IEBUPDTE jobstream on tape which will create a PDS
* containing the members from an ICCF library.
*
* It creates an ICCF member named IEBUPDTE which is a DITTO card to
* tape job to be submitted to batch for execution.
*
**
/LOAD DTSPROCS
/OPTION SAVE RESET
&&OPTIONS 00000000
&&LABEL TAG1
&&TYPE ENTER THE ICCF LIBRARY NUMBER YOU WISH TO UNLOAD
&&READ &&PARAMS
&&IF &&PARAM1 EQ ′′&&GOTO -TAG1
&&SET &&VARBL1 &&PARAM1
&&SET &&VARBL2 &&USERID
&&SET &&VARBL3 ′ LIB&&PARAM1′
&&SET &&VARBL4 ′ DATA′
&&TYPE ENTER THE TSO/E USER ID FOR THE PDS TO BE CREATED
&&TYPE THE DEFAULT WILL BE &&VARBL2
&&READ &&PARAMS
&&IF &&PARAM1 EQ ′′ &&GOTO TAG2
&&SET &&VARBL2 &&PARAM1
&&LABEL TAG2
&&TYPE ENTER THE USER-SUPPLIED NAME FOR THE PDS TO BE CREATED
&&TYPE THE DEFAULT WILL BE ICCF.&&VARBL3
&&READ &&PARAMS

164 VSE to OS/390 Migration Workbook

&&IF &&PARAM1 EQ ′′ &&GOTO TAG3
&&SET &&VARBL3 &&PARAM1
&&LABEL TAG3
&&TYPE ENTER THE DESCRIPTIVE QUALIFIER FOR THE PDS TO BE CREATED
&&TYPE THE DEFAULT WILL BE &&VARBL4
&&READ &&PARAMS
&&IF &&PARAM1 EQ ′′ &&GOTO TAG4
&&SET &&VARBL4 &&PARAM 1
&&LABEL TAG4
&&TYPE ENTER TME DISK TYPE (IE 3350, 3375, 3380) FOR THE PDS
&&READ &&PARAMS
&&IF &&PARAM1 EQ ′′ &&GOTO -TAG4
&&SET &&VARBL5 &&PARAM1
&&LABEL TAG5
&&TYPE ENTER THE VOLUME SERIAL NUMBER OF THE DISK FOR THE PDS
&&READ &&PARAMS
&&IF &&PARAM1 EQ ′′ &&GO′ TO -TAG5
&&SET &&VARBL6 &&PARAM1
&&LABEL TAG6
/SWITCH &&VARBL1
&&IF &&RETCOD EQ ′ *SWITCHE′ &&GOTO TAG7
&&IF &&RETCOD EQ ′ *LIB′ &&GOTO TAG7
&&TYPE USER MAY NOT SWITCH TO ICCF LIBRARY &&VARBL1
&&TYPE PROCEDURE TERMINATED
&&GOTO TAG9
&&LABEL TAG7
&&TYPE YOU HAVE REQUESTED ICCF LIBRARY &&VARBL1 TO BE UNLOADED
&&TYPE TO CREATE AN MVS JOB FOR CREATING A PDS WITH THE FOLLOWING
&&TYPE &&VARBL2.ICCF.&&VARBL3.&&VARBL4′ ON A &&VARBL5 WITH VOL
&&TYPE SERIAL &&VARBL6
&&LABEL TAG8
&&TYPE ENTER Y TO CONTINUE, C TO CANCEL, OR R TO RETRY.
&&READ &&PARAMS
&&IF &&PARAM1 EQ ′ Y′ &&GOTO TAG10
&&IF &&PARAm1 EQ ′ R′ &&GOTO -TAG1
&&IF &&PARAM1 EQ ′ Y′ &&GOTO TAG9
&&GOTO -TAG8
&&LABEL TAG9
&&TYPE END OF PROCEDURE ICCFTSO/E
&&EXIT
&&LABEL TAGIO
&&OPTIONS 0010001
/ED
I // JOB IEBUPDTE CREATE MVS IEBUPDTE TAPE USING DITTO CT
I // UPSI 1
I * PLEASE ASSIGN SYS020 TO A TAPE DRIVE WITH A SCRATCH TAPE MOUNTED
I // PAUSE
I // EXEC DITTO,SIZE=92K
I $$DITTO CT OUTPUT=SYS020,BLKFACTOR=10
I //UPDATE JOB &&VARBL2
I // EXEC PGM=IEBUPDTE,PARM=NEW
I //SYSPRINT DD SYSOUT=A
I //SYSUT2 DD DSNAME=&&VARBL2.ICCF.&&VARBL3.&&VARBL4,UNIT=&&
I // DISP=(NEW,KEEP),VOLUME=SER= &&VARBL6,SPACE=(TRK,(50,,10)),
I // DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
I //SYSIN DD DATA
TOP
STACK 13
QUIT

Chapter 7. ICCF and TSO 165

&&OPTIONS 1100001
/LIB FULL ALL
&&OPTIONS 0010001
/LOAD DTSPROCS
/OPTION NOPROMPT
&&OPTIONS 0010001
/LIST 1 1 IEBUPDTE
&&IF &&RETCOD NE *READY &&GOTO TAG11
/PURGE IEBUPDTE
&&LABEL TAG11
/INPUT NOPROMPT
DUMMY LINE
/END
/SAVE IEBUPDTE
/EDIT IEBUPDTE
NEXT
GET $$PUNCH
TOP
DEL 1
L SYSIN
NEXT
DEL 2
REPEAT *
O XXXXX YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
LUP SYSIN
NEXT
&&NOP C′ YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY′ , LEVEL=00,SOURCE=0,
LUP SYSIN
NEXT
&&NOP C′ XXXXX′ . / ADD NAME=′ *
LUP SYSIN
NEXT
ZONE 19 55
&&NOP C′ ″ * G
ZONE 1 72
LUP SYSIN
NEXT
&&LABEL ILOOP
DUP
&&NOP C ′ . / ADD NAME=′ INCLUDE′
&&NOP C ′ , LEVEL=00,SOURCE=0,LIST=ALL″
NEXT
&&IF &&RETCOD NE INVALID &&GOTO -ILOOP
I./ ENDUP
I $$DITTO EOJ
I /*
I /&
END
&&TYPE PLEASE SUBMIT IEBUPDTE FROM YOUR ICCF LIBRARY

The second method for migrating ICCF members to a PDS for TSO/E utilizes the
ICCF utility DTSUTIL and an assembler program to change the output from
DTSUTIL to a format acceptable to IEBUPDTE. Using the PUNCH command of the
ICCF utility DTSUTIL with the PUNCTL option and SYSPCH assigned to tape, you
can create a tape of selected ICCF members with imbedded ADD MEMBER and
END OF MEMBER statements. These unblocked 81 byte records will become
input to an assembler language program. This program will use the information
from the ADD MEMBER statement to create IEBUPDTE control statements, will

166 VSE to OS/390 Migration Workbook

delete the first character of each record, and will delete the END OF MEMBER
statements. The last statement placed on the output tape will be the IEBUPDTE
statement ./ ENDUP. This tape will then become the input to the IEBUPDTE utility
on an MVS system. Information about the PDS to be created will be contained in
the MVS JCL used to invoke IEBUPDTE.

No matter what method you choose for migrating ICCF members to data sets
accessible to TSO/E, you should not attempt to move ICCF Procedures or
Macros, or IPF panels and tables contained in ICCF libraries. For information on
the requirements for the MVS utility IEBUPDTE, see MVS/Extended Architecture
Data Administration: Utilities.

7.5.2 ICCF Procedures and Macros
ICCF procedures and macros cannot be used under TSO/E. It is therefore
necessary to determine what function is performed by an ICCF procedure or
macro and determine how this function can be implemented in TSO/E.

For example, the SUBMIT procedure of ICCF is used to submit jobs to a batch
partition for execution. TSO/E provides this facility through the SUBMIT
command. If you have modified the ICCF SUBMIT procedure to enforce JCL
standards, you will need to investigate the exit routine capability of the TSO/E
SUBMIT command processor.

Most of the function provided by IBM supplied ICCF procedures is available
either through TSO/E commands, or in services provided though MVS. An
example of function provided by ICCF procedures that is implemented in MVS
services would be the GETL and GETP procedures. These ICCF procedures allow
you to move list and punch output respectively from the VSE/POWER queues to
an ICCF member. Since MVS, through the job entry subsystems (JES2 or JES3),
allows you to direct your program output to a data set accessible to TSO/E, the
function of these two ICCF procedures is also available to you as a TSO/E user.

If you have written your own ICCF procedures or macros to perform frequently
executed sets of ICCF commands, you will find that you have the same capability
under TSO/E through CLISTs or COMMAND procedures.

Chapter 7. ICCF and TSO 167

168 VSE to OS/390 Migration Workbook

Chapter 8. Databases

8.1 DL/I and IMS/VS DB Differences

8.1.1 Introduction
This section addresses differences that exist between DL/I DOS/VS (Data
Language/One DOS/VS) Release 1.8 and IMS/ESA (Information Management
System/Enterprise Systems Architecture) Versions 5 and 6. In the context of this
chapter, references to DL/I may be used interchangeably with DL/I DOS/VS or
VSE DL/I.

The following matrix highlights the various functions of DL/I that will require
attention during conversion.

DL/I ────────────────� IMS/VS

┌─────────────────────────────────────┐
│ Areas Affected │

┌─────────────────────────────┼─────┬─────┬──────┬─────┬──────┬─────┤
│ Functional Capability │ DBD │ PSB │ PROG.│ OPR │ Util │ JCL │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Field-level Sensitivity │ X │ X │ X │ │ │ │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Access Statement │ X │ │ │ │ │ │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Automatic Field Start CALC │ X │ X │ │ │ │ │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Automatic Segment CALC │ X │ │ │ │ │ │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ RPG II │ │ │ X │ │ │ │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Command Level (HLPI) │ │ │ X │ │ │ │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Secondary Indexes │ │ │ │ X │ X │ X │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Selective Unload │ │ │ │ X │ X │ X │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Disk Logging │ │ │ │ X │ X │ X │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ UPSI │ │ │ X │ X │ │ X │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Buffer Specification │ │ │ │ X │ │ X │
├─────────────────────────────┼─────┼─────┼──────┼─────┼──────┼─────┤
│ Parameters │ │ │ X │ X │ │ X │
└─────────────────────────────┴─────┴─────┴──────┴─────┴──────┴─────┘

Figure 15. DL/I Functions Requiring Attention when Migrating to IMS/VS

 Copyright IBM Corp. 1998 169

8.1.2 MVS System Requirements
IMS/ESA requires a Type 2 SVC in the MVS nucleus and a Type 4 SVC in
LPALIB.

IMS/ESA Resource Clean-up Module and ABEND Dump Formatting Routine must
be link-edited into SYS1.LPALIB.

IMSESA.RESLIB must be APF authorized.

8.1.3 Data Base Descriptor (DBD)
1 Automatic field start calculation

Must code START= in the IMS/ESA DBD.

2 Automatic segment length calculation

Must code BYTES= in the IMS/ESA DBD.

3 FBA DASD Support

MVS does not support FBA (FIXed Block Architecture) DASD devices. This
requires changing the DEVICE= parameter of the DATASET statement to
the device type that will be used.

4 ACCESS Statement

The ACCESS statement is not supported in IMS/ESA. All parameters of the
ACCESS statement have equivalent function through parameters of the
DBD. This is provided in either DL/I or IMS/ESA DBDs. Therefore, the DBD
should be used for portability between DL/I IMS/ESA. The three types of
ACCESS statements and the required changes are:

� HDAM DB

Access Stmt. DBD equivalent (DL/I or IMS/ESA)
RMRTM= RMNAME= (module,
CIANPT # of root anchor points,
PRIMCI= # of CIs in root addressable area,
RILIM record insert limit in bytes)
SEGM= data base root implied
SEQFLD= SEQFIELD of root implied if PARENT=0 is coded
SEQVAL= third subfield of the NAME parameter in the FIELD

statement defining the sequence field

� Primary Index of HIDAM DB

Access Stmt. DBD equivalent (DL/I or IMS/ESA)
REF= separate DBD with ACCESS=INDEX needed
SEGM= NAME= of LCHILD in index DBD
SEQFLD= INDEX= of LCHILD in index DBD

In addition an LCHILD must be coded in the data DBD referencing an
index DBD.

� Secondary Index for HD DB

Access Stmt. DBD equivalent (DL/I or IMS/ESA)
REF= separate DBD with ACCESS=INDEX needed
SEGM=target seg determined by which SEGM the LCHILD and XDFLD

follow in data DBD
SEQSEG=source seg

SEGMENT= of XDFLD

170 VSE to OS/390 Migration Workbook

SEQFLD= SRCH= of XDFLD
SEQVAL= SUBSEQ= of XDFLD
SUPVAL= NULLVAL= of XDFLD
SUPRTN= EXTRTN= of XDFLD

The non-ACCESS statement approach consists of an LCHILD and XDFLD
following the target segment, SEGM statement, in the data portion of the
database. Associated FIELD statements are needed in data DBD if /sx
or /ck are used. An index DBD defining the index database with its
LCHILD statement referencing the target segment in the database is
also required.

8.1.4 Program Specification Block (PSB)
The following will require changes to the PSB.

• The PSB LANG= parameter must be COBOL, PL/I, PASCAL, ASSEM, or
blank for IMS/ESA

No trailing blanks are permitted. Alternative spellings of ′PL.I′ will have to be
changed.

Supported languages include ADA, C, OS/VS/COBOL, VS COBOL, C/370,
Pascal, PL/I, RPG/370, REXX, and Assembler.

• Automatic Field Start Calculation SENFLD

IMS/ESA requires coding of START= parameter in SENFLD of PCB.

• The following field level sensitivity extensions of DL/I are not available in
IMS/ESA. If you have used these functions, program changes may be
required.

 1. Virtual Fields
 2. Field Types Z,E,D,L
 3. Automatic Data Conversion
 4. Field Exit Routines

8.1.5 Batch Programming

8.1.5.1 RPG II
These applications will need to be converted to RPG/370 or some other IMS/ESA
supported language.

8.1.5.2 Interactive Macro Facility (IMF)
DL/I DOS/VS Interactive Resource Definition and Utilities (5746-XX1) provides the
Interactive Macro Facility (IMF) and Interactive Utility Generation (IUG) functions.
MVS ISPF/PDF may be used for these functions. The specific panels and
worksheets provided by IMF and IUG are not provided by MVS ISPF/PDF.

8.1.5.3 Command-Level Coding (HLPI)
Assembler, PL/I and COBOL are supported. CICS supplies the translator.

Chapter 8. Databases 171

8.1.5.4 Statement Compatibility
All batch programs using the calls, GU - GHU - GN - GHN - GNP - GHNP - ISRT -
DLET - REPL, are transportable to MVS with no modification to the DLI calls. Of
course, these programs may need changes for other reasons and they must be
recompiled on the MVS system. VSE JCL is changed to MVS JCL, and the DL/I
parameters external to the program (that is, HSBFR and HDBFR bufferpool) are
written differently even though they perform the same functions. They are
defined in the IMS/ESA control data set DFSVSAMP. This is described in the
IMS/ESA Installation Volume 2: System Definition and Tailoring manual.

The languages common to DL/I and IMS/ESA are PL/I, COBOL/VS and
Assembler. RPG II is not supported by IMS/ESA, but RPG/370 is.

The status codes tested with DL/I are valid with IMS/ESA and have the same
meanings with some exceptions which are covered below.

8.1.5.5 Field Level Sensitivity
Basic support is compatible between DL/I and IMS/ESA. If DL/I extensions are
used, changes may be required to application programs as well as to database
definitions. Status codes starting with ′K ′ will not be returned by IMS/ESA.

8.1.5.6 PCB after GE Status
There is a difference in the information returned with the GE status code
following a number of GNP calls. In DL/I the segment name returned is that of
the last successfully retrieved segment. In IMS/ESA, the segment name returned
with the GE status code is that of the parent segment.

8.1.5.7 NI Status Codes
DL/I requires a user to manually correct a database following an NI status code.
IMS/ESA automatically fixes this error condition.

8.1.5.8 CHKP Calls
While the written form of the CHKP call is the same, the PCB-name specified in
IMS/ESA must refer to the first PCB in the PCBLIST. This PCB is called the I/O
PCB and is generated with the CMPAT option in PSBGEN. Since this is a new
PCB, application programs will have to be changed to reflect the existence of
this PCB.

8.1.5.9 GSCD and/or GSTA Calls
These must be reviewed for the following reasons:

 1. GSCD has a common format and returns the address of the SCD area.
However, the SCD DSECT layout is not the same and label names may differ.

 2. DL/I supports the GSTA call for application programs running across
separate VSE/VAE address spaces. This allows access to DL/I statistics
when DL/I Multiple Partition Support (MPS) applications are running in
separate VAE address spaces. The IMS/ESA STAT call provides similar
functions.

172 VSE to OS/390 Migration Workbook

8.1.5.10 Assembler Language Calls
CALLDLI MF=E is not supported in IMS/ESA.

8.1.6 Utilities
Equivalents of all DL/I utility programs exist in IMS/ESA. Their functions are
similar, but it is necessary to change the JCL from VSE to MVS and utility control
statements from DL/I to IMS/ESA. There are variations in the utilities between
DL/I and IMS/ESA that will require procedural changes.

• Partial HD Reload is not supported in IMS/ESA.

• Selective HD Unload is not supported in IMS/ESA.

Similar function is provided by the IMS System Utilities/Data Base Tools
(5685-093).

8.1.6.1 Rewind Option for Reorganization Utilities
This is controlled by JCL in MVS. The VOLUME parameter on the tape DD
statement allows you to specify whether or not the tape is to be dismounted. The
LABEL parameter indicates how many data sets precede the required data set
on the tape volume.

8.1.6.2 Checkpoint Option with HD Reorganization Unload Utility
In IMS/ESA, checkpointing is requested through the DFSUCKPT DD JCL
statement. Restart requires the DFSURSRT DD statement as well. See the
IMS/ESA Utilities Reference: Database Manager manual for more information.

8.1.6.3 Secondary Index Creation
In DL/I the secondary indexes are created when the data portion of the database
is loaded. DL/I will create a secondary index during load, HD reload, or prefix
update. IMS/ESA uses the HISAM unload and reload utilities to create the
secondary indexes from a work data set created by the prefix resolution utility.
The Prefix Resolution and HISAM unload and reload utilities are run after the
data portions of the database have been created. Refer to the IMS/ESA
Administration Guide: Database Manager and the IMS/ESA Utilities Reference:
Database Manager manuals for the reorganization of databases with secondary
indexes or logical relationships.

8.1.7 Operations

8.1.7.1 RESTART with CHKP
If you are using CHKP in your DL/I batch jobs and have developed procedures
for restarting that are acceptable to MVS, do not make any unnecessary changes
at this time. If your existing procedures require more than minimal conversion
effort, you should consider the use of the IMS/ESA symbolic checkpoint and IMS
GSAM. All new IMS/ESA applications should use the symbolic form instead of
the basic form of CHKP. One exception would be applications using CICS/OS
Shared Database.

Chapter 8. Databases 173

8.1.7.2 Backout Utility/Disk Logging
IMS/ESA supports both DASD and tape logging in batch. The archive utility
DFSUARC0, is used to copy disk logs to tape. Disk is acceptable as input to all
IMS/ESA utilities including backout.

8.1.7.3 UPSI
The use of the UPSI byte is not supported by MVS. The equivalents for the
various bits are:

• Bit 0: Reading of parameter statement.

This function is replaced with parameters in the EXEC statement of the MVS
JCL.

• Bits 1-3: Available to the application programmer.

If these bits have been used, the application programs must be modified to
the MVS standard established for the installation.

• Bit 5: Storage dump request if STXIT active.

The presence of the SYSUDUMP DD statement determines if a dump is to be
taken in MVS.

• Bit 6: Log function active or inactive.

The IEFRDER DD statement being set to DD DUMMY is the only way to avoid
logging with IMS/ESA. If Data Base Recovery Control (DBRC) is used,
logging is forced for all batch problems using a PSB with update intent on
any DBRC registered database. Thus, you may not specify IEFRDER DD
DUMMY.

• Bit 7: Setting STXIT active or inactive.

There is no direct equivalent required in MVS. The SPIE= parameter in the
IMS/ESA EXEC statement relates to the handling of an application program
SPIE during a CALL. For more information see the IMS/ESA System
Programmers Guide, procedures DBBATCH and DLIBATCH.

8.1.7.4 DL/I Parameter Statement
The functional equivalents of this statement in IMS/ESA are implemented
through either EXEC statement PARMs or entries in the DFSVSMnn member of
IMSESA.PROCLIB. This is located through the DFSVSAMP DD statement. The
following applies only to VSAM databases. For OSAM options and more detail on
VSAM, see the IMS/ESA Installation Guide and the IMS/ESA System
Administration Guide.

DL/I Parameter IMS/ESA Equivalent
progname PARM on EXEC
psbname PARM on EXEC
buf # entries DFSVSMnn
HDBFR VSAM Subpool statement in DFSVSMnn
HSBFR Uses VSAM Subpool
TRACE = DFSVSMnn OPTIONS or/and DLITRACE
ASLOG = OPTIONS LTWA=
LOG = IEFRDR DD data set
RC= not supported

174 VSE to OS/390 Migration Workbook

8.1.8 Database Portability
There are two fundamental approaches to making your DL/I databases available
to IMS/ESA. One is to unload the database using DL/I utilities and reload it using
IMS/ESA utilities. The other is to ″position″ your DL/I databases using DL/I and
IMS/ESA compatibility options in the DBD during a normal database
reorganization under DL/I.

Since database reorganization involves considerable processing for large and
complex databases, ″positioning″ may offer some advantages. It can reduce the
time required to actually switch the production applications from VSE to MVS. It
can also allow alternate, not concurrent, access to the database by DL/I and
IMS/ESA applications. Both approaches are described below.

8.1.8.1 Alternate DL/I and IMS/ESA Access
A database may be alternately accessed by VSE and MVS if the physical
organization meets certain restrictions and compatibility options are specified in
the appropriate DBDs. This allows IMS/ESA to access and update a DL/I
database. However, the database must be initially unloaded and reloaded using
DL/I utilities. If any reorganization is desired, this must also be performed under
DL/I. IMS/ESA utilities may be used to make IMS image copies, merge IMS log
tapes and execute IMS backout or forward recovery operations. Note that the
image copy tapes, change accumulation tapes, or logs are not portable between
DL/I and IMS/ESA.

To establish this environment, compatibility options must be used.

 1. Unload the database using the VSE DL/I utility.

 2. Identify and resolve any VSE VSAM incompatibil it ies as described in 5.6,
“VSAM Differences” on page 110.

 3. Specify IMSCOMP=YES in the DL/I DBDs describing the data portions of the
database. Note that changes to the VSAM logical record sizes will be
required. These are identified during the DBD generation.

 4. Regenerate the DBDs and ACBs in VSE.

 5. Reload the database using the appropriate VSE DL/I utility. The database
may now be accessed by VSE applications again.

 6. Specify DOSCOMP in the IMS/ESA DBDs describing primary or secondary
index portions of the database.

 7. Generate the IMS/ESA DBDs under MVS. The database is now accessible by
IMS/ESA whenever the VSAM user catalog defining it has been disconnected
from VSE and connected to MVS.

The database must be on a compatible VSAM supported device such as 3380,
3350 or 3375. FBA devices such as 3310 and 3370 are not supported by MVS.

When running in compatibility mode make sure the IMS/ESA and DL/I DBD
definitions are kept in synchronization. Do this by explicitly defining parameters
rather than letting them default. For example, CI size and record length for
IMS/ESA should be defined to be the same as the DL/l values.

Once migration is complete the DOSCOMP parameter may be removed when the
database is reorganized using the IMS/ESA utilities. There is no need to unload
under DL/I and reload under IMS/ESA in this case.

Chapter 8. Databases 175

Recovery of DL/I - IMS/ESA compatible databases require special procedures .
Image copy, change accumulation, and log files are not compatible between DL/I
and IMS/ESA. The recovering of database changes performed under DL/I must
be performed using DL/I image copy, change accumulation, and log files with
DL/I utilities; and the recovering of database changes performed under IMS/ESA
must be performed using IMS/ESA image copy, change accumulation, and log
files with IMS/ESA utilities. As such, one would probably want to take an IMS
image copy prior to switching to IMS/ESA update access of the databases and a
DL/I image copy prior to switching to DL/I update access of the databases.

8.1.8.2 Unloading and Reloading the Database
Should the physical database need to be migrated to MVS, and there is no
requirement to access the database with DL/I after it has been converted to
IMS/ESA format, the following steps should be followed:

 1. Perform an unload using DL/I.

 2. Translate and compile the DBDs, PSBs, and ACBs using IMS/ESA.

 3. Perform a reload using IMS/ESA.

As there is no HDR2 label record on the standard tape label created by the DL/I
unload utility, the DD statement for tape input to the IMS/ESA reload utility must
specify blocksize and recordsize. See the DL/I Data Base Administration Guide
for recommended values.

Note that secondary index creation is different for IMS/ESA (see 8.1.6, “Utilities”
on page 173).

The HD unload/reload must be used for HDAM, HIDAM, and HISAM.

Tape files must be used across systems and not disk when unloading and
reloading. The DL/I HISAM unload cannot be used as input to the IMS/ESA
HISAM reload.

You should not attempt to unload from IMS/ESA and reload using DL/I.

The AMS recordsize parameter for IMS/ESA should be CI size-7 rather than CI
size-10 when you define the cluster to VSAM. The IMS/ESA DBD generation will
provide suggested parameters. The segment prefix for index databases is one
byte shorter for IMS/ESA.

The following flow chart depicts the steps to be taken in migrating your
databases, with or without compatibility, and in generating your IMS/ESA system.

176 VSE to OS/390 Migration Workbook

┌───────────┐
│ DL/I DBD │
└─────┬─────┘

┌───────────┐ │
│ MVS GEN │ │
└─────┬─────┘ �

│ ┌───────────┐
│ │ UNLOAD DB │
� └─────┬─────┘

┌───────────┐ │
│ IMS GEN │ │
└─────┬─────┘ �

� ┌───────────┐ yes ┌───────────┐
┌───────────┐ │ IMSCOMP ? ├───────────────�│ DL/I DBD │
│ MVS ADDS │ └─────┬─────┘ └─────┬─────┘
└─────┬─────┘ │ �

│ │no ┌───────────────┐
� │ │ VSAM CHANGES │

┌───────────┐ no │ └───────┬───────┘
│ IMSCOMP ? ├─────────────�│ �
└─────┬─────┘ � ┌───────────────┐

│ ┌───────────┐ │ RELOAD DL/I DB│
│yes │ IMS DBD │ └───────┬───────┘
│ └─────┬─────┘ �
│ │ ┌───────────┐
│ � │ IMS DBD │
│ ┌───────────┐ │ INDEXES │
│ │ IMS RELOAD│ │ DOSCOMP │
│ └─────┬─────┘ └─────┬─────┘
│ │ │
└───────────────────�│�───────────────────────────┘

�
┌───────────┐
│ IMS PSB │
└───────────┘
┌───────────┐
│ PROGRAM │
│ CHANGES │
└───────────┘
┌───────────┐
│ UTILITIES │
└───────────┘
┌───────────┐
│ OPERATIONS│
└───────────┘
┌───────────┐
│ TUNING │
└───────────┘

Figure 16. Steps in Migrating DL/I Databases to IMS/ESA

Chapter 8. Databases 177

8.1.9 DL/I Multiple Partition Support
Conversion to IMS/ESA BMPs (Batch Message Processing programs) running
under DBCTL should be considered as an alternative to CICS/OS Shared Data
Base or IMS/ESA Data Sharing support.

8.1.10 Additional Information
A recently announced Redbook, Interoperability between VSE DL/I and OS/390
IMS DBCTL, SG24-5249, can provide additional conversion information.

8.2 SQL/DS to DB2 for OS/390 Migration Consideration
Note: Although the formal name of the SQL/DS product has changed to DB2 for
VSE, this document will use the name SQL/DS. This document will also use the
term ′DB2′ to mean the full product name - ′DB2 for OS/390′.

8.2.1 Descriptions of Users
The differences and thus the migration considerations between SQL/DS and DB2
take on meaning only as they pertain to, or are perceived by, the users of the
products. In order to discuss this, we need to define who these users are. The
type of users we want to address are:

• End Users

• Application Developers

• Data Base Administrators (DBAs)

• System Administrators

• Security Administrators

It is important to point out at this time that the following is not meant to provide
an exhaustive list of differences between the two products. Instead, it is intended
to point out the most likely areas of difference you will encounter to give a
feeling for how significant or insignificant these differences may be. An
exhaustive treatment and explanation of the differences in the VSE and OS/390
platforms is given in the IBM SQL Reference, SC26-8416. This can be ordered
through standard IBM document ordering procedures.

As we will see later, the area of most concern is with the language of both
products - the Structured Query Language or SQL. SQL has the three following
′ flavors′:

 1. Data Manipulation Language (DML) that is used by End Users and
Applications Developers

 2. Data Definition Language (DDL) that is used by DBAs and Systems
Administrators

 3. Data Control Language (DCL) that is used by Security Administrators.

8.2.1.1 End Users
From the standpoint of end users, for DML, there are very few differences
between SQL in the two products. DML is what most end users use - the
issuance of SELECT, UPDATE, INSERT and DELETE statements to do work
against a database. End users rarely have a need to know or use DDL or DCL.
As we will see later, the latter two SQL ′ flavors′ are used mostly by DBAs,

178 VSE to OS/390 Migration Workbook

systems and security folks. This is not to say that differences do not exist, just
that they are minor and should not be perceived by most end users. QMF users
should see virtually no differences. The one possible exception is the
TRANSLATE scalar function which is not supported by DB2.

8.2.1.2 Application Developers
While end users will see little or no differences, application developers can
expect to see more differences between the two products. However, it is
important to realize that the basic job of developing an application is the same.

• Developers can use the same design process.

• The method of making an SQL call in a program is the same (through the
use of the EXEC SQL statement).

• The operators - DECLARE, OPEN, FETCH and CLOSE - are the same. These
are statements used in application programs to handle cursors.

• Application program preparation using precompile and bind is essentially the
same - very few differences.

Both products have facilities to enter one or more SQL statements at a terminal
for execution against a relational database. This could be done for testing or to
do some work without having to write a program, for example, a one time
requirement. In SQL/DS this facility is called ′ ISQL′ that runs under CICS/VSE
and in DB2 it is called ′SPUFI′ and runs under ISPF in TSO. SPUFI does not have
the limited answer set formatting and printing capability of ISQL.

Application developers should consider that while the program preparation
process is similar, some differences exist. For example, DB2 preparation occurs
in two phases - precompile and bind. For SQL/DS both phases are done in the
same step. Because of DB2′s separation of these functions, the database does
not need to be available during the precompile phase. SQL/DS does have the
ability via the DBSU to UNLOAD and LOAD packages. DB2 does not have a utility
capable of unloading and loading a package. If you are using this SQL/DS
capability, you will need to save the DB2 DBRM or preprocess the program
again to create the DB2 DBRM.

For application programming languages, DB2 supports all of the languages
supported by SQL/DS except RPG. It should be noted however, that SQL/DS
V3R5 was the last release which provided this support; it was dropped in V5.

There are some minor variations in the application programming interfaces for
the two products. For example, the meaning of SQLCODE values other than 100,
0, -803, and -911 is product specific. Thus, how an application program′s logic
handles SQLCODEs other than these will need to be examined and modified
appropriately. A major improvement was provided with the introduction of
DB2/VSE V5: SQLSTATEs are now at the SQL92 level as is DB2/OS390. That
means that an application can use the SQLSTATE to determine an error and that
the SQLSTATE is no longer platform specific.

Besides differences in SQL return codes, other differences exist in the SQLCA
(SQL Communications Area) following a negative SQL return code. The SQLCA
has a number of fields that indicate the condition of the most recently executed
SQL statement. You should update your program logic that processes, records,
and displays this information.

Chapter 8. Databases 179

8.2.1.3 Database Administrators (DBAs)
As with the previous two groups discussed, there are really more similarities
than differences between the two products for the DBA. The design methodology
is the same, whether you prefer normalization or some other technique. The
optimizer selects access paths basically the same way, relieving the DBA from
making this choice. Differences show up in some of the detail work of database
design. Differences exist in the areas of database object sizes, SQL limits,
locking levels, DRDA considerations, referential integrity definitions, and data
formats. SQL/DS is a subset of DB2 in these areas except an SQL/DS table
definition can contain one or more LONG VARCHAR columns that could
materialize an actual row length that exceeds the 32K limit of a DB2 row. If you
do have this situation, you will need to redesign this table to fit within the 32K
row limit of DB2 and modify the programs appropriately that use this data.

8.2.1.4 System Administrators
There are more differences in this area than in the previous areas. This is
primarily due to environmental differences in the VSE and the OS/390 platforms.
Both systems provide the entire complement of systems management, utilities
and integrity services expected of a robust RDBMS. However, implementation
may be different.

In both systems, normally all database changes caused by the execution of SQL
statements are logged. However, when running SQL/DS in a single user
environment this logging is optional and when you have an SQL/DS storage pool
with the NOLOG attribute this logging is not done. Both of these capabilities are
not available in DB2 and will have to be evaluated and mapped to a different
DB2 implementation.

Since recovery capabilities and procedures are very different between SQL/DS
and DB2, you must re-evaluate your needs and design a recovery procedure
using the DB2 facilities. This also applies to Utilities.

The following is provided to help you in mapping SQL/DS utility functions to DB2
utility functions:

• Reorganize a table

� SQL/DS - DBSU UNLOAD/RELOAD
� DB2 - REORG utility

• Update table statistics

� SQL/DS - UPDATE STATISTICS SQL statement
� DB2 - RUNSTAT utility

• Load data into a table

� SQL/DS - DBSU LOAD
� DB2 - LOAD utility

• Unload data to a user defined sequential file

� SQL/DS - DBSU DATAUNLOAD
� DB2 - not supported

While both SQL/DS and DB2 operate from the same relational basis of viewing
data as tables, the underlying storage structures used differ. At the logical level,
a DB2 database is composed of one or more tablespaces which in turn are
composed of one or more tables, and indexspaces, which contain one index. In
SQL/DS, both tables and indexes are stored together in dbspaces.

180 VSE to OS/390 Migration Workbook

At the physical level, in DB2 each tablespace is stored in a pageset, which
consists of one or multiple VSAM ESDS data sets or LDSs. In SQL/DS, data is
stored in storage pools that are composed of one or more dbextents. In VSE, a
dbextent consists of one VSAM ESDS data set. While this may seem similar, the
difference is that in DB2 one VSAM data set is used for only one tablespace. In
SQL/DS, one VSAM data set can be used to store data from any or all tables in
the system (within one storage group).

As a result of the different storage structures and names used, a new physical
data model must be developed for the DB2 environment and then the
parameters associated with storage structures in the data definition language
(DDL) SQL statements must be updated to implement the new physical data
model.

8.2.1.5 Security Administrators
Both products have the same set of table privileges (ALTER, DELETE, INDEX,
INSERT, REFERENCES, SELECT and UPDATE). Other privileges related to the use
of resources (such as using space by creating table) and operation (such as
executing programs) are granted in a similar manner, but the definition of user
types is different. Thus, there are different operands within the GRANT
command. DB2 allows group authorization (not in SQL/DS, but in the new
Control Center feature of DB2/VSE V5) so that fewer GRANT statements need to
be issued.

Implementation is different in how users are given certain authority and each
product has its own naming convention. Because the two products differ in how
databases are defined and organized, the levels of authorization are more robust
in DB2. In DB2, the highest level authority is called SYSADM and in SQL/DS, the
equivalent level is called DBA. Some noteworthy differences in the SQLs are:

• The VSE CONNECT statement can have ″user IDENTIFIED BY password″, but
the OS390 can not.

• Tables on VSE can specify CCSIDs at the column level. Current (for
DB2/OS390 V5) CCSIDs can only be specified at the table level. So if the VSE
customer is utilizing this, they will need to convert their data to use a
common CCSID in the table.

When DB2 is installed, only users with SYSADM authority have the SELECT
privilege on catalog tables. With SQL/DS, upon initial install all users have
SELECT privilege on catalog tables. In DB2, SYSADM and other users granted
the proper authority can update catalog statistics used by the optimizer in
access path selection. In SQL/DS, DBA authority includes all table privileges on
catalog tables. The tables in the catalog are organized differently in the two
products. Therefore, catalog queries will be incompatible between the two.

8.2.2 Other Comparison Areas

8.2.2.1 Year 2000
DB2 for OS/390 Version 5 is Year 2000 compliant. For DB2 for MVS/ESA Versions
3 and 4, you need to apply an APAR for Year 2000 compliance. For more details,
get the DB2 and the Year 2000 White Paper from the Web. Its URL is:

Chapter 8. Databases 181

• http://www.software.ibm.com/year2000/db2-html

SQL/DS Version 5 (proper name is DB2 for VSE Version 5) is Year 2000
compliant.

8.2.2.2 DRDA Considerations
DRDA level of functions in SQL/DS are upward compatible to DRDA functions in
DB2. DB2 has more DRDA functions than SQL/DS. For the DRDA Remote Unit of
Work (RUW) level, DB2 is compliant as an Application Requestor (AR) and
Application Server (AS). SQL/DS is only on the AS level for RUW. For the DRDA
Distributed Unit of Work (DUW), DB2 is AR and AS compliant, again SQL/DS is
only at the AS level. Stored Procedures in DB2 can be used to do DRDA AR and
AS level work, SQL/DS has no such support.

8.2.2.3 Data Replication and Data Access
DB2 has an Apply and Capture component for DataPropagation - both are
separate products. SQL/DS only has a Capture component as a feature of the
SQL/DS product. Both DBMSs can be accessed by DataJoiner. DB2 can interface
with DataPropagator NonRelational, SQL/DS has no interface to this product.
Both DBMSs have interfaces to the DataRefresher product to do data extractions.

8.2.2.4 Transaction Management
SQL/DS can interface to CICS/VSE and ICCF. DB2 can have the front-ends of
IMS/ESA, CICS/ESA or TSO.

8.2.2.5 Other Product Areas
Both products can be accessed from the internet using Net.Data. SQL/DS has a
VSAM Transparency product, DB2 does not. Both can be used with DataHub. In
the area of administration tools, SQL/DS has a tool called SQL Master. For DB2,
there is the Automated Utility Generator, and DB2 Administrative Tool. QMF can
be used to query both DBMSs.

8.2.3 Summary of Migration Task
It is difficult to be precise as to what are the specific tasks and their order for a
migration effort, but we can give you general ideas.

1 Acquire DB2 for OS/390 skills

2 Install DB2 and prerequisites products (at supported levels). Then install
other companion products of your choice (in the area of transaction
management, data replication, administration and so on). Next you need to
tailor your DB2 system by specifying DB2 parameters and execution
options.

3 Change SQL syntax where required. This will probably not be a big effort
for DML (programs and user queries). For DDL and DCL, this is a different
story and there is a bigger difference in these two areas of security
administration and data and DB2 object definition. The SQL Reference
document will be very helpful here.

4 Migrate object definitions to DB2

5 Move the data by unloading the data from SQL/DS and then doing a load
into DB2

6 Migrate the application programs

182 VSE to OS/390 Migration Workbook

7 Migrate the user queries

8 Migrate user profiles and authorizations

9 Change operational procedures to reflect new backup/recovery, problem
determination and startup/shutdown procedures

Chapter 8. Databases 183

184 VSE to OS/390 Migration Workbook

Chapter 9. Telecommunications Subsystems

VSE and OS/390 platforms rely on the same set of communications products and
protocols. Although the product sets are the same, some differences exist in
product implementation and usage. The differences are primarily related to the
operating systems and their file structures. This chapter will discuss the
similarities and differences between VSE and OS/390 environments for the
following telecommunications products:

• 9.1, ACF/VTAM

• 9.2, ACF/NCP

• 9.3, BTAM

• 9.4, Migrating TCP/IP

• 9.5, MQSeries

9.1 ACF/VTAM
The most recent release of VTAM for OS/390 is VTAM Version 4 Release 4.1.
However, this product is not available separately and is packaged together with
TCP/IP as the OS/390 eNetwork Communications Server Release 5. Previous
releases of VTAM up to Version 4 Release 4 were available as a stand-alone
product, 5695-117. At the time of writing, supported releases of VTAM for VSE
include Version 3 Release 4 and Version 4 Release 2.

The functions of VTAM for OS/390 are, with one major exception, a superset of
the functions of VTAM for VSE. The main differences are related to those
between the operating systems, rather than to any differences in the way that
SNA networks are defined and configured. However, OS/390 does not provide a
facility such as the VSE Interactive Interface (II) to guide you through SNA
resource definitions. You must code new network resource definitions from
scratch, although you should be able to use most of your existing VSE definitions
without change. The exception would be the definition of new resources required
for networking configuration changes associated with the migration project.

The following subsections summarize the tasks you will have to perform to
install and set up an OS/390 VTAM system. For further details we recommend
the following product manuals (those quoted are for Communications Server for
OS/390 Release 5):

• eNetwork Communications Server for OS/390 Installation and Migration
Guide, SC31-8622

• eNetwork Communications Server for OS/390 Network Implementation Guide,
SC31-8563

• eNetwork Communications Server for OS/390 Resource Definition Reference,
SC31-8565

• eNetwork Communications Server for OS/390 Resource Definition Samples,
SC31-8566

• eNetwork Communications Server for OS/390 Programming, SC31-8573

• eNetwork Communications Server for OS/390 Customization, LY43-0110

 Copyright IBM Corp. 1998 185

9.1.1 Product Installation
The VTAM installation procedures for OS/390 are very different from those for
VSE, since this is the area where the operating system differences are most
influential. To install OS/390 VTAM you must perform the following steps:

• Allocate data sets for VTAM. OS/390 VTAM can make use of a large number
of data sets, depending on the options selected. In 9.1.1.1, “VTAM Data Sets”
we describe the essential ones; for a complete description (including the
optional ones used for APPN, CMIP management and so on) please refer to
the VTAM Installation and Migration Guide.

• Define the channel-attached VTAM devices (37XX, 3174, 3172,
channel-to-channel connections and so on) in the OS/390 generation
procedure. Alternatively, OS/390 allows these devices to be defined
dynamically to its I/O configuration but you must make sure that this is done
every time OS/390 is restarted.

• Determine the CSA and ECSA storage to be used by VTAM, and make
appropriate changes to the OS/390 startup definitions. To work out how much
storage your VTAM address space will use, go to the Web site at
www.ibm.networking.com/vtaprod/vtastor.html where you will find an
interactive application that does it for you.

• Install VTAM from the product tapes using SMP. If you have received VTAM
as part of OS/390 or Communications Server/390 this may already have been
done. Note that some VTAM modules are linked into the OS/390 nucleus, so
a new VTAM installation requires an OS/390 restart. Subsequent updates
and fixes may not require a system restart, since most of the VTAM code is
now loaded from link and LPA libraries.

• Create a VTAM start procedure in SYS1.PROCLIB (or another procedure
library known to JES). Figure 17 on page 187 shows a sample working
procedure that contains all the essential data sets used by VTAM.

• Copy and modify your VTAM definitions and tables into the new OS/390
libraries.

9.1.1.1 VTAM Data Sets
The data sets that VTAM must have available in order to run are summarized
below. They may have any data set names you wish to assign to them, but VTAM
recognizes most of them by their data definition (DD) names so that is how we
identify them. Figure 17 on page 187 shows a VTAM start procedure that refers
to them.

1 The VTAM load modules are loaded from SYS1.LINKLIB (or an authorized
library concatenated to SYS1.LINKLIB), and from SYS1.LPALIB. These data
sets are not specific to VTAM, and do not need to be referenced in the
VTAM start procedure. The VTAM initialization module is read from
SYS1.LINKLIB and the rest of the VTAM product modules are read into the
link pack area from SYS1.LPALIB.

2 SISTCLIB contains the VTAM modules which are loaded into CSA and
ECSA. This data set is a PDS containing load modules, and must be
allocated with DCB=(RECFM=U,BLKSIZE= whatever optimum block size
your installation has decided upon). In our procedure we have used the
default name of SYS1.SISTCLIB.

3 STEPLIB contains those modules which are not part of VTAM, but which
VTAM uses to manage the network. Examples might include the NCP loader

186 VSE to OS/390 Migration Workbook

(from ACF/SSP) and user-written VTAM exits. In our example STEPLIB
points to the ACF/SSP library which contains the NCP loader. Any libraries
defined by STEPLIB are PDSs containing load modules, and have similar
DCB characteristics to SYS1.LINKLIB.

4 VTAMLIB contains VTAM tables which are assembled and linked, such as
the subarea Class of Service table and the various mode tables. Again,
VTAMLIB is a load module PDS with DCB=(RECFM=U) and an appropriate
block size. In our example four libraries are concatenated together; the
IBM-supplied VTAM tables are in SYS1.VTAMLIB and any user-defined
replacements are in the two other libraries defined in front of
SYS1.VTAMLIB.

5 VTAMLST contains VTAM tables which are not assembled and linked. Here
reside the definitions of the VTAM resources (major nodes), the NCP source
deck, VTAM start options and those tables which VTAM reads in source
form. VTAMLST is a PDS with DCB=(RECFM=FB,LRECL=80) and a
suitable block size. In the example three VTAMLST data sets are
concatenated together; all the VTAM definitions are in these libraries and
SYS1.VTAMLST is not used.

6 The NCPLOAD DD statement points to the data set(s) where NCP load
modules may be found. The DD name for this statement is user-defined,
and VTAM discovers it from the NCP source definitions (BUILD LOADLIB=).

7 In addition, VTAM requires a member IVTPRM00 to be present in the
SYS1.PARMLIB OS/390 data set. This member provides initialization
parameters for Communication Storage Manager (CSM), which is part of
VTAM from V4R4 onwards. CSM provides data storage facilities for both
VTAM and TCP/IP, as part of the high-performance data transfer function
implemented by those products on high-speed connections.

//NET PROC PERF=13
//NET EXEC PGM=ISTINM01,REGION=6000K,TIME=1440,DPRTY=(15,13), C
// PERFORM=&PERF
//STEPLIB DD DSN=SSP.V4R6.SSPLIB,DISP=SHR
//VTAMLIB DD DSN=SA39.VTAMLIB,DISP=SHR
// DD DSN=ITSC.VTAMLIB,DISP=SHR
// DD DSN=SYS1.VTAMLIB,DISP=SHR
// DD DSN=SYS1.NETVIEW.V3R1M0.SCNMLNK1,DISP=SHR
//VTAMLST DD DSN=ITSC.VTAMLST,DISP=SHR
// DD DSN=BUCZAK.VTAMLST,DISP=SHR
// DD DSN=RISC.VTAMLST,DISP=SHR
//SISTCLIB DD DSN=SYS1.SISTCLIB,DISP=SHR
//NCPLOAD DD DSN=ITSC.NCPLOAD,DISP=SHR
// DD DSN=RISC.NCPLOAD,DISP=SHR

Figure 17. VTAM Start Procedure

9.1.2 Resource Definition and Operation
The differences in the coding of VTAM definitions, tables and start options are
minor, but cannot be ignored. The VTAM Resource Definition Reference and the
VTAM Network Implementation Guide should be used to review operating system
differences.

Chapter 9. Telecommunications Subsystems 187

The current supported levels of VTAM on VSE are V3R4 and V4R2. VSE VTAM
V4R2 is available in three different functional level packages:

• Client/Server

• MultiDomain

• InterEnterprise

Packages are priced according to the amount of function provided and are
password enabled via the VTAM start procedure.

The eNetwork Communications Server for OS/390 is only available in a single
flavor, which is the functional equivalent of the high end VSE/VTAM package
(InterEnterprise). The four main differences between VSE/VTAM and OS/390
VTAM are as follows:

1 VSE/VTAM supports Integrated Communications Adapters (ICAs) on 9221,
937X and 43XX processors.

These adapters are not supported by OS/390 VTAM, and alternate methods
of connecting your network to a channel must be found. The various ICAs
and possible alternatives follow:

• Multi-Protocol Communication Subsystem (6251 - 6254)

� IBM eNetwork Communications Server for OS/2 (prod #4301114) or
Windows NT (prod #4231747) with a Wide Area Connector (WAC)
card or Multi-Protocol Adapter (MPA) card can provide support for
SDLC communication lines.

� The 3172 Interconnect Controller, in addition to LAN connectivity can
provide support for up to 32 SDLC communication lines.

� The 2210 and/or 2216 multi-protocol routers can be used to support
multiple line protocols including SDLC. These routers can be
attached to the host via a LAN gateway (such as the OSA-2
adapter). In addition, the 2216 can be channel attached much like
the 3172.

� A 37XX controller with NCP can provide support for SDLC line
protocols for installations required to support larger numbers of
remote devices.

• Asynchronous Communication Subsystem (6241 - 6244)

� A 37XX controller with NCP/PEP can provide connectivity for
asynchronous Start/Stop (TTC2) devices.

• ASCII Subsystem (6245 - 6248)

� Although MVS/VTAM supports this adapter, if the migration includes
a processor upgrade, a replacement for this adapter must be found.
Options include the 3174 with an Asynchronous Emulation Adapter
(AEA) providing support for ASCII devices in 3270 emulation mode.

� IBM eNetwork Communications Server for OS/2 (prod #4301114) or
Windows NT (prod #4231747) with a Multi-Protocol Adapter (MPA)
card can provide support for ASCII devices in 3270 emulation mode.

• Token-Ring Adapter (6139/6140)

• Ethernet Adapter (6135)

188 VSE to OS/390 Migration Workbook

� The 3174 with a Token-Ring or Ethernet adapter provides direct
connection to Token-Ring and Ethernet LANs.

� The Open Systems Adapter (OSA) on the CMOS processors
provides direct connection to Token-Ring, Ethernet and FDDI LANs.
It also supports native ATM connections for VTAM V4R4 and above.

� The 3172 Interconnect Controller provides direct attachment to
Token-Ring, Ethernet and FDDI LANs.

� A 37XX controller with NCP provides SNA connectivity for larger
networks over Token-Ring and Frame Relay attachments.

• Workstation Subsystem Controller (6120)

� This adapter is actually a 3174 on a card. Although MVS/VTAM
supports this adapter, if the migration includes a processor
upgrade, a replacement for this adapter must be found. Options
include the use of the integrated console facility of new generation
CMOS processors or a channel attached 3174 communications
controller.

2 OS/390 VTAM provides SNA Network Interconnection (SNI) capability which
is not available in VSE VTAM. SNI:

• Connects multiple independent subarea SNA networks together

• Isolates the topologies of the networks, thus making security easier to
enforce and administration simpler

• Permits sessions between any resources in the connected networks,
provided the installation has allowed them

SNI is particularly beneficial when you need to link your SNA network with
that of another organization such as a business partner or a value-added
network supplier.

3 OS/390 VTAM provides high-performance routing (HPR) over APPN
connections. HPR has the following benefits:

• More efficient transport over high-speed connections, due to the
improved routing and flow control algorithms.

• Nondisruptive session rerouting around failing nodes or links.

• Less processing power required for intermediate nodes on a session
path.

• For APPN and HPR networks, there is a range of multi-protocol routers
available: the 2210, 2216 and 3746 in increasing order of power and
complexity.

4 OS/390 VTAM running in a sysplex provides some functions that are only
available in that environment:

• VTAM to VTAM communication using the cross-system coupling facility
(XCF) of OS/390. XCF allows all the VTAMs in a sysplex to communicate
with each other without requiring any definitions, and without the need
to dedicate channel-to-channel connections to SNA traffic.

• Generic resources. This gives improved performance and availability by
balancing application load across sysplex images, in a manner
transparent to the user.

• Multi-node persistent sessions. This permits sessions to survive a
failure in application, VTAM, OS/390 or even a processor in a sysplex

Chapter 9. Telecommunications Subsystems 189

without disruption. Sessions are simply taken over by a new copy of the
application running in the same, or a different, processor.

9.1.2.1 Resource Definition
The OS/390 VTAM resource definitions are stored in the VTAMLST data set. Most
of the VSE/VTAM resource definitions (B-books), typically stored in the
PRD2.CONFIG VSE library, can be moved directly into the VTAMLST data set
without modification. There are several items worth noting here:

• If migrating from VSE/VTAM V3R4 or older, MVS and VSE will differ in their
use of VTAM buffers. VSE/VTAM V3R4 utilizes the LFBUF pool for I/O and two
unique fixed size buffer pools (VFBUF and VPBUF) for pool expansions.
VFBUF defines storage for expansion of fixed storage buffer pools and
VPBUF for expansion of pageable storage buffer pools. VSE/VTAM V4R2
storage pools and usage was designed to be similar to MVS/VTAM. VFBUF
and VPBUF buffer pools were eliminated and the IOBUF buffer pool was
added for I/O. IOBUF size should be matched to NCP (UNITSZ) buffer size
and tuned for your requirements. All the other OS/390 buffer pool definitions
have reasonable defaults and can usually be left alone until it is time for fine
tuning.

• If you are converting a Token-Ring ICA attachment to a 3172 or OSA
attachment, you will need to replace your Local Area Network (LAN) major
node with an External Communication Adapter (XCA) major node to define
the connection.

• Where the VTAM definitions refer to a data set, the coding often changes.
This mainly occurs in NCP definitions; please refer to 9.2, “ACF/NCP” on
page 192 for details.

9.1.2.2 Operation
Most of the OS/390 VTAM console commands will be familiar to the VSE
operator. One point of interest is that the DISPLAY, VARY and HALT commands
are VTAM commands so that they take the format D NET..., V NET... and so on.
On the other hand, START and MODIFY are OS/390 commands so they must
refer to the actual name of the VTAM start procedure. Thus if VTAM is started
using S NET28,,,(LIST=S0) then a subsequent MODIFY command will appear so
(for example) F NET28,TRACE,....

9.1.3 Customization and Programming
VTAM tuning can be quite different under VSE and OS/390. Matters such as
optimizing I/O across a channel and pacing the flow of traffic are very similar,
but OS/390 VTAM uses storage and buffer pools in a completely different fashion
than VSE, so this aspect of tuning needs to be reviewed in some detail. Please
see the chapter Tuning VTAM for Your Environment in the Network
Implementation Guide for advice on tuning OS/390 VTAM.

9.1.3.1 VTAM Tables
Most of the VTAM tables which are assembled and linked do not differ between
OS/390 and VSE, but the use of mode tables needs to be considered.

VSE provides a VTAM mode table called IESINCLM. It is a subset of the default
VTAM mode table (ISTINCLM) but also contains some unique entries. IESINCLM
is routinely used in VSE systems, but is not provided by OS/390 VTAM. Migration
of the table and/or unique entries may be required. Refer to the VSE/ESA
Networking Support manual for more information on IESINCLM.

190 VSE to OS/390 Migration Workbook

9.1.3.2 Programming
Any coding done under VSE, such as VTAM exits, will almost certainly need
rewriting (and will certainly need re-linking) for the OS/390 environment. Also,
some VTAM exit routines may be implemented differently under VSE and OS/390.
User-written VTAM programs and exits must be reviewed carefully for
compatibility. Please refer to the chapter Operating System Facilities in the
VTAM Programming manual.

9.1.4 Network Configuration
It is not unusual for a migrating customer to require multiple host access to the
SNA network. Multiple host configurations can serve to reduce or even eliminate
service disruptions during the migration process. Multiple host configurations
can provide for both interactive and batch traffic between all connected images.
This means that any terminal, regardless of to which host it is physically
connected, can access any VTAM application in the network, regardless of in
which host the application resides. In addition, SNANJE connections can be set
up between JES and PNET. For a migrating customer, these capabilities can be
particularly useful, providing simultaneous access to both old and new systems
as well as file transfer capability between them.

VTAM provides for two different multiple host networking architectures,
traditional SNA subarea (cross domain) and/or APPN (Advanced Peer-to-Peer
Networking). VSE/VTAM V3R4 is limited to SNA subarea because it does not
provide full APPN capability. The MultiDomain package of VSE/VTAM V4R2 is
required to support multiple host connectivity in an SNA subarea network. VSE
VTAM V4R2 provides APPN capability at all three functional levels, but with
some limitations in the Client/Server and MultiDomain packages. OS/390 VTAM
is full featured and provides both SNA subarea and APPN capabilities.
Implementation requires careful planning and solid networking skills. Some
points to consider in network design are:

• Number of hosts
• Number of applications
• Number of terminal resources
• Number of NCPs
• Traffic patterns
• Future growth
• Backup/redundancy requirements
• Bandwidth requirements
• Operation/management
• Security
• Cost

Concepts and technical explanations, as well as implementation techniques for
SNA networking in both subarea and APPN designs, can be found in the
following manuals:

• IBM Network Products Implementation Guide, GG24-3649
• VTAM Network Implementation Guide, GC31-8370

Chapter 9. Telecommunications Subsystems 191

9.2 ACF/NCP
ACF/NCP in a 37XX controller may itself be completely independent of the
operating system in the host, but the generation and loading of such an NCP is
very much dependent on the operating system.

9.2.1 Product Installation
Differences in the installation procedures of NCP for VSE and OS/390 are
basically the same as those for VTAM. The main steps required to implement an
NCP under OS/390 are:

• Allocate data sets for use by NCP and the generation process.

The generation process requires three input PDSs and a number of work
files in order to process the source statements. The three PDSs, into which
the SSP and NCP modules are installed, are:

− The data set containing the ACF/SSP modules, which includes the load
and dump utilities as well as the NDF generation programs. This is also
referred to in the VTAM start procedure (STEPLIB) because VTAM uses it
to load the NCP.

− The data set containing the ACF/NCP macro statements used to
assemble the NCP object modules which are created during the NDF
process. It is referred to as SYSLIB in the generation procedure. It is a
source l ibrary and therefore has DCB=(RECFM=FB,LRECL=80) with a
suitable block size.

− The data set containing the ACF/NCP modules used in link-editing the
NCP into its final home. As a load module library it has
DCB=(RECFM=U) .

You must also allocate the data set into which the finished NCP will go
(NCPLOAD in our example VTAM start procedure).

• Install the SSP and NCP products to the libraries, using SMP/E. Current
levels of ACF/NCP and ACF/SSP can be included in the OS/390 SystemPac
with the initial installation tasks already completed.

• Run the program generation procedure.

9.2.2 Program Generation
Generation under VSE and OS/390 is done using NDF. ACF/SSP beginning with
Version 3 includes the NCP/EP Definition Facility (NDF), a program used in
generating an NCP and/or EP load module. Compared to the old generation
processes, NDF can do a program generation four to eight times faster. There is
also a time-saving FASTRUN option in NDF which can be used to validate the
NCP/EP definition macro coding without invoking the generation process. The
control program generation using NDF under VSE is a six step process, while
under OS/390 it is a two step process. These steps are submitted as one single
job and no operator/programmer intervention is required between the steps.
More information on NDF (including samples) can be found in the NCP, SSP, and
EP Generation and Loading Guide.

There are differences in the actual coding of the NCP between VSE and OS/390,
because the definition statements refer to operating system-dependent facilities.
In particular:

192 VSE to OS/390 Migration Workbook

• On the PCCU statement there are DUMPDS, MDUMPDS and CDUMPDS
keywords which refer to various data sets which will contain NCP dumps.
Code the names of the DD statements in the VTAM procedure which will
point to the actual data sets.

• On the BUILD statement, the LOADLIB keyword specifies the DD name of the
data set which VTAM will use to find the NCP when the time comes to load
it. The name you code must be in the VTAM start procedure (NCPLOAD in
the example).

9.2.3 Backlevel Hardware Support
Current releases of NCP do not support older 37XX hardware. Many of these
boxes are still in service, so if back level 37XX hardware support is required the
following NCP versions remain orderable for both VSE and OS/390:

• NCP V4R3.1 (5668-854) - 3725 support

• NCP V5R4.0 (5668-738) - 3720 support

You should be aware, however, that if you are using NCP V4R2 (or below) on a
3725 or 3720, the upgrade to a supported version will use a lot more NCP
storage. NCP V4R3 introduced support for independent LUs for the first time, and
the resulting increase in module size (even if ILUs are not used) can add
hundreds of Kilobytes to your requirements.

You should also be aware that neither the 3725 nor the 3720 can support APPN
or HPR.

9.3 BTAM

9.3.1 Product Installation
Differences in the installation procedures of BTAM for VSE and OS/390 are
basically the same as those for VTAM and NCP. The VSE BTAM-ES product
(5746-RC5) and the OS/390 BTAM/SP product (5665-279) are very similar in the
MACRO names they use and the function they provide. The differences are in the
parameters they require on the MACROS. For further information refer to
BTAM-ES Programming Reference, SC38-0293 for VSE and BTAM/SP, SC27-0604
for OS/390.

9.3.2 Usage
CICS is the most common user of BTAM. Although BTAM continues to be
supported by both VSE and OS/390, note that there is no support for devices and
controllers accessed using BTAM in any CICS version after CICS/MVS Version 2
Release 1.2. The recommendation here is to migrate these devices to VTAM.

9.4 Migrating TCP/IP
TCP/IP provides the ability to merge differing physical networks while giving
users a common suite of functions. It allows interoperability between equipment
supplied by multiple vendors on multiple platforms. TCP/IP is the protocol in an
open networking world including the Internet.

Chapter 9. Telecommunications Subsystems 193

One of the reasons why TCP/IP is so popular is that there are many simple and
useful standard applications available. The TCP/IP on VSE/ESA for example
provides standard applications such as Telnet, FTP, LPR/LPD and the HTTP Web
server.

Using these standard TCP/IP applications and standard TCP/IP APIs for user
written applications also allows an easy migration from one TCP/IP platform to
another.

The VSE products on which the following migration discussion is based are
TCP/IP for VSE/ESA 1.3 (which comes with VSE/ESA 2.3) and TCP/IP for VSE 1.3
from Connectivity Systems Inc..

The migration target system is OS/390 R3 with TCP/IP OpenEdition, OS/390 V2R4
with TCP/IP UNIX Services or the soon to come OS/390 V2R5 with eNetwork
Communications Server for OS/390 V2R5 which includes TCP/IP.

All the standard TCP/IP applications such as Telnet, FTP, LPR/LPD or HTTP that
are available with TCP/IP on VSE are also part of TCP/IP on OS/390. Since,
generally speaking, TCP/IP functions on VSE are a subset of those on OS/390,
migration from TCP/IP for VSE to TCP/IP on OS/390 can be accomplished without
loss of functionality in most cases.

The topics you should look into if you want to migrate from a TCP/IP
for VSE environment to TCP/IP on OS/390 include:

• network attachments and definitions required to communicate with other
TCP/IP systems

• TCP/IP configuration

• TCP/IP related user data

• your TCP/IP batch jobs

• your own TCP/IP based application programs

• TCP/IP security.

In the next sections each of these topics will be addressed at a general level. No
detailed checklist or migration guidelines are provided. This would go beyond
the scope of this documentation. The purpose of this discussion is to make you
aware of the areas which need to be studied in detail when you intend to
migrate.

9.4.1 Network Definitions
The connectivity/network attachments supported by TCP/IP on OS/390 is a
superset of what is supported by TCP/IP for VSE. This is why your networking
environment basically does not have to be changed. However, since OS/390
TCP/IP supports more communication interfaces, your network can be changed
or extended for example by an IBM 3746 attachment.

As on VSE/ESA, all the network attachments to be used by TCP/IP have to be
defined to the OS/390 operating system first. The network attachments (for
example CTCA, IBM3172, OSA-2) need to be defined before they can be specified
in the TCP/IP configuration.

194 VSE to OS/390 Migration Workbook

9.4.2 TCP/IP Configuration
First of all, configure the UNIX System Services (part of the OS/390 base product)
in order to enable TCP/IP on OS/390. As a second step you will have to
customize TCP/IP on OS/390.

9.4.2.1 TCP/IP Customization
On VSE/ESA, almost all TCP/IP customization information is located in one file,
the IPINIT.L initialization file. It contains all the required TCP/IP definitions such
as the physical network, links, routing tables, user IDs, and TCP/IP daemons.

On OS/390, the TCP/IP definitions are located in several data sets. This is why
you have to customize several data sets in order to migrate your VSE/ESA
TCP/IP definitions. Mainly, you have to provide the:

• TCPIP.PROFILE (TCP/IP definitions for the physical network, network routing,
TCP/IP stack and so on)

• TCPIP.DATA (parameters for all TCP/IP server and client functions)

• depending on your requirement, some other configuration data sets such as
HOSTS.LOCAL (host name to IP address mapping) and other etc files have to
be set up.

9.4.2.2 TCP/IP Standard Applications
All TCP/IP for VSE standard applications such as Telnet, FTP or LPR/LPD, are
also available with TCP/IP on OS/390. The HTTP server on OS/390 is provided by
the Domino Go Web Server or the ICSS (Internet Connection Secure Server).
Therefore, migrating to OS/390 doesn′ t restrict the TCP/IP server and client
functionality and can be done with low effort. However, OS/390 users can make
use of additional TCP/IP functions such as REXEC, DCE or SMTP.

9.4.3 TCP/IP Related User Data
Don′ t forget to move your data files that are exclusively used/accessed through
TCP/IP. If you have, for example, set up VSE/ESA as a Web server, consider to
move the Web server data such as HTML documents, and graphics that are
stored in VSE library members or VSAM files. These files should be moved into
OS/390 HFS (Hierarchical Filesystem) data sets. Transferring the files could, for
example, be done using the FTP function.

9.4.4 TCP/IP Batch Jobs
If you are using batch jobs on VSE to automate TCP/IP client commands such as
LPR printing, FTP to automatically transfer files or the Telnet client to access
remote TCP/IP systems, take into account that you will have to migrate these
batch jobs as well. For the OS/390 system, you have to convert your batch jobs
to CLISTs, REXX EXECs or UNIX shell scripts.

9.4.5 User Written TCP/IP Applications
If you have many user written TCP/IP applications on your VSE/ESA system, the
migration effort can be considerably high depending on the TCP/IP interface that
has been used.

Chapter 9. Telecommunications Subsystems 195

9.4.5.1 TCP/IP Applications using the Sockets API for Assembler
VSE/ESA applications based on the SOCKET Assembler macro cannot be used
on an OS/390 system. They have to be recoded for the OS/390 TCP/IP.

9.4.5.2 TCP/IP Applications using the Preprocessor API
The HLL preprocessor API which is available on VSE/ESA for PL/I, Assembler
and COBOL is not compatible with the OS/390 TCP/IP interfaces. Therefore,
these programs have to be recoded for the OS/390 system as well.

9.4.5.3 TCP/IP Applications using the BSD/C Sockets
The BSD (″Berkeley″) C sockets interface on VSE/ESA is almost compatible to
the C socket API on OS/390. Only some additional (proprietary) functions or
parameters of the BSD/C interface are not supported by TCP/IP on OS/390. This
is why VSE/ESA TCP/IP applications based on the BSD/C sockets usually can be
migrated to OS/390 with only minor code changes.

9.4.5.4 TCP/IP Applications using the LE/VSE C Socket API
It is highly recommended to use the IBM C for VSE/ESA compiler, the IBM
Language Environment for VSE/ESA (LE/VSE) C run-time environment and the
LE/VSE C socket interface to write TCP/IP applications on VSE/ESA. These are
compatible with the OS/390 X/Open (XPG4.2) compliant socket interfaces. This
assures the maximum in compatibility and portability for cross platform
development. In this case, migrating the applications is just a matter of relinking
them on the OS/390 system. More information about sockets programming can
be found in the TCP/IP for VSE/ESA User′s Guide, SC33-6601.

The VSE applications don′ t have to be necessarily C program since you can use
the LE/VSE C socket API also from within other languages using the ILC
(InterLanguage Communication). This is described in the book Writing
Interlanguage Communication Applications, SC33-6686.

9.4.5.5 CGI Programs
If you are running VSE/ESA as a Web server and therefore have implemented
CGI (Common Gateway Interface) programs on the VSE system, all these
programs have to be rewritten on OS/390 since the CGI interface on OS/390 is
totally different to the one on VSE/ESA.

9.4.6 Security
Security is an important consideration for an OS/390 system, especially if it′s
connected to large TCP/IP networks or even the Internet. TCP/IP on OS/390 has
some built-in internal security mechanism and relies on the services of an
external security manager such as IBM Resource Access Control Facility (RACF).

Basic TCP/IP security definitions on VSE (such as user ID/password) can be
easily defined in RACF for the OS/390 system. If you have implemented your own
security exit on VSE, similar exits can be written for the FTP server function on
OS/390. Furthermore, RACF can be used to protect whole libraries or single
resources from unauthorized TCP/IP access.

Additionally, the OS/390 system can be run as a firewall to secure the system
against users coming through the TCP/IP network.

Generally, you can achieve a higher level of security on the OS/390 system
which, of course requires a little more effort to set it up.

196 VSE to OS/390 Migration Workbook

9.4.7 Bibliography
VSE/ESA

SC33-6601 TCP/IP for VSE/ESA User′s Guide
SG24-2041 The Native TCP/IP Solution for VSE
SG24-2040 VSE/ESA as a Web Server
SC33-6686 Writing Interlanguage Communication Applications

OS/390

SC28-1890 OS/390 OpenEdition MVS Planning
SC28-1906 OS/390 OpenEdition MVS Communications Server Guide
GC28-1920 OS/390 Security Server (RACF) Planning: Installation and

Migration
SC28-1915 OS/390 Security Server (RACF) Security Administrator

9.5 MQSeries
MQSeries represents a family of products which enable applications to use
message queuing to participate in message-driven processing. With
message-driven processing, applications can communicate across the same or
different platforms, by using the appropriate message queuing software
products. For example, VSE/ESA and OS/400 applications can communicate
through MQSeries for VSE/ESA and MQSeries for OS/400 respectively. With
MQSeries products, all applications use the same kinds of message headers.
Communications protocols are hidden from the application.

MQSeries products implement a common application programming interface, the
message queue interface (MQI), that is used on whatever platform the
applications run. The calls made by the applications and the messages they
exchange are common. This makes it much easier to write and maintain
applications than using traditional methods. It also makes it easier to migrate
message queuing applications from one platform to another.

The current releases on which the following migration discussion is based, are
MQSeries for VSE/ESA Version 1.4 and MQSeries for MVS/ESA Version 1.2.

MQSeries for VSE/ESA 1.4 is a so-called level 1 product whereas the OS/390
version is a level 2 product. Level 2 products offer functions and facilities which
extend those available in level 1 products. Since, generally speaking, level 1
functions are a subset of level 2 functions migration from MQSeries for VSE/ESA
to MQSeries for MVS/ESA can be accomplished without loss of functionality in
most cases.

The topics you should look into if you want to migrate from a VSE/ESA based
MQSeries environment to one based on an OS/390 system include:

• the setup for MQSeries within your operating system environment

• the networking definitions required to communicate with other MQSeries
systems

• the definition of your MQSeries objects such as queues and channels

• the operating facilities offered to monitor MQSeries activities and diagnose
and fix problems if they occur

Chapter 9. Telecommunications Subsystems 197

• your MQSeries based applications.

In the next sections each of these topics will be addressed at a general level. No
detailed checklists or migration guidelines are given. This would go beyond the
scope of this chapter. The purpose of this discussion is to make you aware of the
areas which need to be studied in detail when you intend to migrate.

Only straight forward migration is considered. MQSeries applications under
VSE/ESA always:

• run under CICS for VSE/ESA

• are coded in COBOL and compiled with COBOL for VSE

• communicate with other systems through SNA/LU6.2.

Under VSE/ESA you do not have any other options.

The basic assumption is that you migrate to MQSeries for MVS/ESA as directly
as possible:

• using CICS/ESA to run your migrated MQSeries applications

• staying with COBOL as the programming language

• still using SNA/LU 6.2 connections to communicate with other MQSeries
systems.

If you want to make use of the additional facilities of MQSeries for MVS/ESA,
such as IMS support or C language support or TCP/IP connectivity, this would
have to be done in a separate, second step not discussed here.

9.5.1 MQSeries in Your Operating System Environment
You will have to verify that you have the necessary software prerequisites on
your OS/390 system to run the migrated applications, install the MQSeries for
MVS/ESA product, verify that you have space for the required data sets and
define them on your OS/390 system. These points will be addressed below.

9.5.1.1 Prerequisites
MQSeries for VSE/ESA V1.4 (product number 5787-ECX) is an MSHP-installable
licensed program. It operates with CICS for VSE/ESA, providing coordination
between MQSeries and CICS resources by allowing CICS for VSE/ESA
transactions to issue MQSeries (MQI) calls.

MQSeries for VSE/ESA does not run in a VSE partition. It executes under control
of CICS for VSE/ESA.

It supports communication with other MQSeries products through SNA/LU 6.2.

198 VSE to OS/390 Migration Workbook

The following list shows the required products with product numbers:

• VSE/ESA Version 1.4 (5750-ACD) in ESA mode, with:

� CICS for VSE/ESA Version 2.3 (5686-026)
� IBM Language Environment (LE) for VSE Runtime Library (5686-067)
� ACF/VTAM for VSE/ESA V3.4 (5666-363)

or

• VSE/ESA Version 2.1 (5690-VSE), with:

� CICS for VSE/ESA Version 2.3 (5686-026)
� IBM Language Environment (LE) for VSE Runtime Library (5686-067)
� ACF/VTAM for VSE/ESA V4.2 (5686-065)

Applications using MQSeries must be written in COBOL using

• IBM COBOL for VSE (5686-068)

MQSeries for MVS/ESA V1.2 is a licensed program. It operates in the MVS/ESA
environment as a separate MVS subsystem. You need to have a separate
address space to run MQSeries with storage space allocated both above and
below the 16MB line.

MQSeries for MVS/ESA can be accessed from CICS/ESA, CICS/MVS, IMS/ESA,
batch MVS/ESA environments, and TSO/E.

To interoperate with other systems, the attachment can be via either TCP/IP or
SNA/LU 6.2 APPC protocols. A complete installation needs at least one other
MQSeries queue manager (on a similar or a different platform) to communicate
with MQSeries for MVS/ESA. In addition, MQSeries for MVS/ESA can support
MQSeries clients using the optional Client Attachment feature.

The following list show the required products with product numbers:

• MQSeries for MVS/ESA (5695-137)

• MVS/ESA 4.3, or later (5695-047 (JES2) or 5695-048 (JES3)) or
MVS/ESA 5.1, or later (5655-068 (JES2) or 5655-069 (JES3))

• SMP/E 1.8 (5668-949)

• DFSMS/MVS binder utility (5695-DF1)

• DFP 3.1, or later (5665-XA3)

• RACF 2.1 (5695-039)

• ISPF/PDF, or later (5685-054)

• TSO/E 2.0, or later (5685-025) for batch access

• CICS/MVS 2.1.2 (5665-403) or
CICS/ESA (R) 3.2.1, or later (5685-083) or
CICS/ESA 3.3, or later (5685-083) for CICS access

• IMS/ESA 3.1, or later (5665-409) or
IMS/ESA 5.1, or later (5695-176)

• SAA AD/Cycle LE/370 (5688-198)

• ACF/VTAM 3.4.1 (5685-085)

• IBM TCP/IP 3.1 (5655-HAL) or
IBM TCP/IP 3.2 (5655-HAL)

Chapter 9. Telecommunications Subsystems 199

The following languages and compilers are supported for MQSeries applications:

• Assembler

� Assembler H (5668-962)
� IBM High level assembler MVS (5696-234)

• COBOL

� VS COBOL II (5668-958)
� IBM COBOL for MVS & VM Release 2 (5688-197)

• C

� C/370 Release 2.1.0 (with APAR UN37741) (5688-187)
� IBM SAA AD/Cycle C/370 (5688-216)

• PL/I

� OS PL/I Optimizing Compiler (5668-910)
� SAA AD/Cycle PL/I Compiler (5688-235)

• Java

� OS/390 Java Development Kit 1.0.2 available at
http://ncc.hursley.ibm.com/javainfo/download/index.html

9.5.1.2 Installation and Customization
The most important prerequisite for migrating from VSE/ESA is that you have set
up a CICS/ESA and the COBOL compiler and runtime environment.

After you have verified that your OS/390 system fulfills the prerequisites you can
install the MQSeries for MVS/ESA code. Follow the instructions in the MQSeries
for MVS/ESA Program Directory. They include not only details of the installation
process but also information about any necessary prerequisite products and
their service or maintenance levels.

SMP/E, used for installation on the MVS/ESA platform, validates the service
levels, prerequisite and corequisite products, and maintains the SMP/E history
records to record the installation of MQSeries for MVS/ESA. It loads the
MQSeries for MVS/ESA libraries and checks that the loads have been
successful.

You now have to customize the product to your own requirements.
Customization tasks include:

• define the MQSeries for MVS/ESA subsystem to MVS

• authorize the MQSeries for MVS/ESA load libraries

• include the MQSeries for MVS/ESA load library in the link list

• include the MQSeries for MVS/ESA dump formatting member

• update the MVS/ESA Program Properties Table (PPT)

• create procedures for the MQSeries for MVS/ESA subsystem

• tailor your security procedures

• customize the initialization files

• create the bootstrap and log data sets

• define your page sets

• tailor your logging environment

200 VSE to OS/390 Migration Workbook

• install required CICS and IMS adapters

• define queues

• set up distributed queuing

Customization is described in detail in the MQSeries for MVS/ESA System
Management Guide. Only the steps which are related to migration are discussed
in some more detail in the following sections.

After the installation and customization has been completed, you can use an
installation verification program (IVP) supplied with the product to verify that the
installation has been completed successfully. Details of the IVP and
customization are given in the MQSeries for MVS/ESA System Management
Guide.

9.5.1.3 CICS Considerations
The CICS execution environment is the only environment for VSE/ESA based
MQSeries applications. Naturally it will, therefore, be the main migration target
environment.

There is a major difference between MQSeries under VSE/ESA and under
OS/390:

• Under VSE/ESA MQSeries itself and MQSeries applications run under CICS.
Therefore, MQSeries resources (such as programs, queues) must be defined
in CICS/VSE. Access to both MQSeries and CICS resources from an
application (which includes both CICS commands and MQI calls) does not
require additional installation or customization effort.

• Under OS/390 MQSeries runs in an address space independent of CICS. To
allow CICS applications to access MQSeries resources (through API calls)
the CICS adapter must be installed and customized in the respective CICS
region. The CICS adapter connects a CICS subsystem to an MQSeries
subsystem, enabling CICS application programs to participate in
message-driven processing.

The CICS adapter provides two main facilities:

− a set of control functions for use by system programmers and
administrators to manage the adapter.

Control functions let you manage the connections between CICS and
MQSeries dynamically. They may be invoked using the CICS adapter
panels, from the command line, or from a CICS application. You can use
the adapter′s control function to:

- start, stop and modify a connection to a queue manager
- display the current status and statistics of a connection
- start and stop an instance of the task initiator transaction, CKTI
- display details of the current instances of CKTI
- display details of the CICS tasks currently using the adapter.

− MQI support for CICS applications.

For performance, the CICS adapter can handle up to eight MQI calls
concurrently. For transaction integrity, the adapter fully supports
syncpointing under the control of the CICS syncpoint manager. The
adapter also supports security checking of MQSeries resources when
used with an appropriate security management product, such as RACF.
The adapter provides high availability with automatic reconnection after

Chapter 9. Telecommunications Subsystems 201

an MQSeries termination, and automatic resource resynchronization
after a restart.

The CICS adapter is supplied with MQSeries as the CICS transaction CKQC.

9.5.1.4 Data Sets
MQSeries for VSE/ESA uses the following data sets:

• the System Setup file: a VSAM ESDS file containing system setup
information. It is only used once to initialize the System Configuration file.

• the System Configuration file: a VSAM KSDS file. It initially contains system
definitions, messages, names of MQSeries maps and programs and so on. It
will be updated whenever the user defines additional MQSeries objects such
as queues and channels.

• Queue data sets: VSAM KSDS files to hold messages.

MQSeries for MVS/ESA uses the following data sets:

• Page sets to store messages and definitions.

A page set is a linear VSAM data set that has been formatted for use by
MQSeries for MVS/ESA. Each page set is identified by a page set ID (PSID),
an integer in the range 00 through 99. In particular, MQSeries for MVS/ESA
uses page set 00 to store queue definitions and other important information
relevant to the queue manager.

• Log data sets to log data and events.

MQSeries for MVS/ESA records all persistent messages in the active log.
When the active log is full, MQSeries for MVS/ESA switches to the next
available log data set. Each active log data set is a single-volume,
single-extent VSAM entry-sequenced data set (ESDS).

If archiving has been switched on during customization, MQSeries for
MVSE/ESA copies the contents of a full active log to an archive log when it
switches logs. The archive logs can be a data set on a direct access storage
device (DASD) or on magnetic tape. The archive log consists of up to 1000
sequential data sets. Each data set can be cataloged using the Integrated
Catalog Facility (ICF).

MQSeries for MVS/ESA allows you to have either single logging or dual
logging.

• The boot strap data set is a VSAM key-sequenced data set (KSDS) that holds
information needed by MQSeries for MVS/ESA. It contains an inventory of all
active and archived log data sets known to MQSeries for MVS/ESA.

No migration of the data sets used by MQSeries for VSE/ESA to those used by
MQSeries for MVS/ESA is supported.

To set up MQSeries for MVS/ESA you need to define and populate the required
data set from scratch.

You can use the information on the size of your VSE/ESA data sets to estimate
the space required under OS/390.

No facility exists to move messages from a VSE/ESA queue to a queue under
OS/390. Therefore, you should make sure that all your queue entries have been
processed under VSE/ESA before you switch to the OS/390 system.

202 VSE to OS/390 Migration Workbook

9.5.2 Networking Definitions
You will have some other systems with an MQSeries product installed which are
connected to your VSE/ESA to allow MQSeries applications to communicate.
When you migrate your VSE/ESA to OS/390 you will have to re-establish
connection to those systems.

In this section we will discuss the networking considerations. There are also
MQSeries definitions which refer to remote MQSeries systems. These are
discussed in the next section.

We assume again, that we only talk about straight forward migration. In this
context this means that we only need to re-establish the SNA/LU6.2 connections.
MQSeries for MVS/ESA also supports TCP/IP as a communications protocol. But
since this is not supported for MQSeries for VSE/ESA, it will not be part of the
direct migration effort.

There are two parts to consider:

 1. establish SNA connection between OS/390 and the other systems running
MQSeries

 2. check and, if necessary, modify the SNA definitions in the remote systems to
connect to OS/390 rather than to VSE/ESA.

On the OS/390 side you will have to set up VTAM definitions equivalent to the
definitions you made in VSE/ESA. You may be able to modify and use the
VSE/ESA B-books containing the equivalent definitions.

What you need to do on the remote systems depends on what has changed. In
an ideal case: If you could reuse the same communications hardware, such as
communications controllers and so on, and define the same names for VTAM
resources under OS/390 which you used under VSE/ESA, you would not have to
change anything. More realistically, however, you will probably at least have to
change remote addresses (such as MAC addresses) and remote names (such as
partner LU names) on all the systems you want to connect to OS/390.

9.5.3 Defining MQSeries Object and Operating
Under VSE/ESA you will have defined the following MQSeries system elements:

 1. the queue manager
 2. message queues
 3. channels.

These elements and their properties are defined through CICS panels. No
command interface exists for MQSeries for VSE/ESA.

The definitions are stored in the MQSeries configuration file.

In MQSeries for MVS/ESA, there are six different types of object:

 1. queue managers
 2. queues
 3. channels

Note: If you are using CICS for distributed queuing, channels are not
objects, and cannot be manipulated using MQSeries commands (see below).

Chapter 9. Telecommunications Subsystems 203

 4. namelists
 5. process definitions
 6. storage classes

These objects can be manipulated, that is, defined, deleted, changed, by the
MQSeries commands.

Commands can be issued from:

• the initialization input data sets

• the MVS console

• the system-command input queue

• the COMMAND function of the CSQUTIL utility

• the operations and control panels using ISPF.

When you migrate to a CICS/ESA environment, your channels are special. They
must be handled from the CICS region rather than through the MQSeries region:
You monitor and control the channels to remote queue managers with the DQM
(Distributed Queue Management) panels. Each MVS queue manager has a set of
DQM CICS transactions for controlling interconnections to compatible remote
queue managers using CICS ISC facilities.

The DQM channel control function (CCF) provides the administration and control
of message channels. The channel definition file (CDF):

• is a VSAM file
• is indexed on channel name
• holds channel definitions
• must be available to the CICS regions in which the channel control program

runs and where the MQSeries Channel adapters run.

You use channel definition panels to:

• create, copy, display, alter, find and delete channel definitions
• start channels, reset channel sequence numbers, stop channels and so on
• display status information about channels.

As you can see, the VSE/ESA related MQSeries objects (and more) exist also for
MQSeries for MVS/ESA. Similarly, most of the parameters used to define these
objects are identical or have an equivalent which allows you to reproduce or
extend the definition you used under MQSeries for VSE/ESA.

But you can also see that the way the objects are defined is different in the
OS/390 environment. There is no way to directly migrate the VSE/ESA definitions.

With the MQPUTIL program shipped with MQSeries for VSE.ESA V.1.4 you can
print a listing with the MQSeries system, queues, and channels defined under
VSE/ESA. You have to use this listing to recreate equivalent definitions for
MQSeries for MVS/ESA. You will have to:

• print the listing under VSE/ESA

• check the DEFINE commands in the MQSeries Command Reference,
SC33-1369 to find matching parameters to recreate the queue manager and
queue definitions

• decide on the environment from which you want to issue the commands

• run the commands

204 VSE to OS/390 Migration Workbook

• for channel definitions under CICS/ESA find matching channel attributes in
MQSeries Distributed Queuing Guide, SC33-1139

• define the channels using the CKMC CICS transaction.

Note: Make sure that you use the same queue names in your OS/390 related
definitions which you used under VSE/ESA whenever possible. This will minimize
application changes.

Operating MQSeries for VSE/ESA includes:

• initializing the MQSeries system and shutting it down
• starting and stopping queues
• opening, resetting and closing channels.

Monitoring offers functions to:

• monitor channel and queue activities
• browse queues.

Operating and monitoring facilities are provided through the MQSeries menu
under CICS for VSE/ESA.

For MQSeries for MVS/ESA similar functions are provided:

• for system and queue definitions through MQSeries commands
• for message channels under CICS through the DQM panels.

There is no direct migration support. You will have to make sure your
operational staff is trained to use the MQSeries for MVS/ESA facilities. You can
set up some procedures to automate these tasks.

9.5.4 MQSeries-based Applications
Applications using MQSeries for VSE/ESA are coded in COBOL for VSE and run
under CICS for VSE/ESA. They use the (MQSeries for VSE/ESA specific subset of)
MQI.

The first two application migration steps are independent of MQSeries:

 1. you have to migrate a program written in COBOL for VSE to OS/390. The
best choice is to migrate the application to IBM COBOL for MVS & VM
Release 2.

 2. you have to migrate a program written to run under CICS for VSE/ESA to run
under CICS/ESA.

For some details on these steps refer to the respective chapters in this book.

The next step is to consider the Message Queueing Interface (MQI). The effort
required for this step should be small since on a high level the MQI is identical
for all platforms.

You should use theMQSeries Application Programming Reference, SC33-1673.
This book gives a full description of the MQSeries programming interface for
MQSeries for MVS/ESA. You should check that the MQI elements you used in
your VSE/ESA based applications are identical with the ones under OS/390.
Minor adaptations may be required.

As a final step you need to compile and link your applications under OS/390.

Chapter 9. Telecommunications Subsystems 205

No special considerations apply to the compile and link step under VSE/ESA
except that the product library which contains MQSeries for VSE/ESA has to be
in the library chain during compilation.

You have to set up jobs to compile and link the program under OS/390. General
considerations how to do this for a CICS COBOL application are described in the
respective chapters in this book. In addition the following applies to MSQeries
applications:

• include in the SYSLIB statement of the compilation statements that make the
product data definition files available to the compiler. For COBOL the data
definitions are supplied in the library thlqual.SCSQCOBC.

• in your link-edit JCL, the MQSeries for MVS/ESA CICS stub program
(CSQCSTUB) must be included. The stub is language independent and is
supplied in library thlqual.SCSQLOAD.

 For details please refer to MQSeries Application Programming Guide,
SC33-0807.

9.5.5 Bibliography
For MQSeries for VSE/ESA:

• MQSeries for VSE/ESA Version 1 Release 4 Users Guide, SC33-1142

For MQSeries for MVS/ESA:

• MQSeries Application Programming Guide, SC33-0807
• MQSeries Planning Guide, GC33-1349
• MQSeries Application Programming Reference Summary, SX33-6095
• MQSeries Intercommunication, SC33-1872
• MQSeries Command Reference, SC33-1369
• MQSeries Programmable System Management, SC33-1482
• MQSeries Application Programming Reference, SC33-1673
• MQSeries for MVS/ESA Licensed Program Specifications, GC33-1350
• MQSeries for MVS/ESA System Management Guide, SC33-0806
• MQSeries for MVS/ESA Problem Determination Guide, GC33-0808
• MQSeries for MVS/ESA Messages and Codes, GC33-0819
• MQSeries Clients, GC33-1632

206 VSE to OS/390 Migration Workbook

Chapter 10. POWER and JES2

10.1 JES2 Introduction
VSE uses POWER as a spooling system. MVS uses either JES2 or JES3 as
spooling systems. This chapter only addresses migrations from POWER to JES2.

While POWER and JES2 are similar in their overall function, they are very
different in design and specific implementations. Because of these differences in
processing spool output, you may have to redesign some of your output
procedures when migrating to MVS.

No attempt is made here to discuss the many advanced functions available in
JES2. You should learn them from JES2 education classes and the JES2
publication library. What will be addressed will be a comparison of POWER
functions and their JES2 equivalents as appropriate.

The chapter is divided into four sections:

 1. The first section introduces the major POWER and JES2 functional
differences, including migration considerations.

 2. The second section describes significant tasks required to implement JES2.

 3. The third section compares the functions and capacity of POWER and JES2 in
more detail.

 4. The fourth section shows a detailed mapping of POWER parameters, exits
and commands to their JES2 counterparts.

10.1.1 Major Differences
There are some major POWER unique functions, which, if used, will have to be
accomplished in some other way in MVS. The following lists these functions and
possible MVS alternate suggestions.

10.1.1.1 KEEP Disposition for Pre-Execution Jobs
In POWER, the user can specify that an input job be kept. Thus after the job is
executed, it still remains in the POWER spool, for submission over and over.

In JES2 there is no KEEP disposition for spooled input jobs, as there is for
SYSOUT data sets. Possible solutions in MVS to accomplish retaining submitted
jobs include:

• Append a jobstep to the end of these jobs to resubmit themselves in
TYPRUN=HOLD condition.

• Use a standard automated job scheduling package, such as OPC/ESA.

• With SDSF and ISPF, you can edit the job′s JCL and resubmit the job, as long
as it has not been purged from the JES2 spool. (Keep some output around so
it is not purged.)

 Copyright IBM Corp. 1998 207

10.1.1.2 Time Event Scheduling for Jobs
POWER supports the scheduling of job submission based on a one-time or
repetitive schedule such as daily, weekly on a given day and time, and so on.

JES2 has a primitive ″automatic command scheduling″ facility, but you will
probably need an automated job scheduling package in OS/390 to do the same
things you were doing with POWER.

10.1.1.3 Tape Spooling
Spooling to tape is usually done for very large SYSOUT data sets where there is
limited spool space or where the data is to be archived. JES2 does not provide
direct spooling to tape.

For very large output files, or to archive critical output, you can use the JES2
Spool Offload facility or some spool archiving package such as RMDS or
R/DARS.

For data exchange to offline devices or programs, use the IBM supplied external
writer (XWTR procedure) to write spooled data to tape.

Another possible solution in MVS to accomplish tape spooling is instead of
allocating a file to SYSOUT, you can specify a unit on the DD statement to direct
it to tape (for example, UNIT = TAPE). Then use the MVS utility IEBGENER to
print the tape with the SYSUT2 DD statement specifying the address of the
desired printer (for example, UNIT=00E). Note: The printer has to be ″drained″
from JES2 before it can be allocated to the IEBGENER utility program.

Use of the above procedure retains (KEEPs) the output on tape as long as the
installation has a retention requirement.

10.1.1.4 Printer Forms Alignment via PSETUP
The POWER ″PSETUP″ function allowed the operator to print a couple of pages of
X′s in order for the operator to line up the form. JES2 does not provide this same
function. Here are some alternatives:

• With JES2, you can start the printing, and if an alignment adjustment is
needed, interrupt the printer, do the alignment, and then issue the JES2
Backspace command. ″$B PRTnnnn,D″ (where nnnn is the printer number)
will logically backspace to the beginning of the data set. Printing resumes at
the beginning of the data set. (This assumes the data set being restarted is
large enough not to be completely printed before it is backspaced.)

• Another technique is to have some dummy reports kept on spool for each
form that needs alignment. Release the dummy output group and cause it to
be selected first so you can line up the printer.

10.1.1.5 Separator Page Difference
Operators may be using the VSE separator pages to separate individual copies
of reports. JES2 handles separator pages differently than VSE. Under VSE, when
a printout has multiple copies, separator pages are printed between each copy.
With JES2, you can use “output group” separator pages (one at the beginning
and one at the end) “data set” separators, and “data set copy” separators
between each copy.

For output group separators, specify SEP=YES on the JES2 PRT(nnn)
initialization statement. You can use the IBM-supplied separator pages, or you

208 VSE to OS/390 Migration Workbook

can write your own using JES2 exit 1. (For PSF controlled printers, use PSF exits
APSUX01 and APSUX02.)

For separators between individual data sets or data set copies, you must specify
SEPDS=YES on the PRT(nnnn) statement and provide a JES2 Exit 15 for JES2
controlled printers. (For PSF controlled printers, use PSF exit APSUX03.)

10.1.1.6 End-of-page Sensing
POWER, by storing a carriage control tape image, allows a program to ″sense″
channel 12 or end-of-page. This is not supported in JES2. Line count logic must
be substituted. You can change the application to count lines under VSE prior to
the MVS conversion.

10.1.1.7 FCB Incompatibilities
POWER permits the ″channel one″ position to be on any line of the page. JES2
requires Channel 1 to be on Line 1 for all printers controlled by JES2.

This restriction is in place because JES2 uses a skip-to-channel-1 to reposition
the printer to the top of forms when it goes through device setup.

Also see 10.3.4.8, “FCB Naming Differences” on page 217.

10.1.1.8 Other Differences
Incompatibilities such as JCL and Operator Commands are covered in other
chapters:

• Chapter 4, “Job Control Language (JCL) Differences and Considerations” on
page 69

• Chapter 28, “Orientation to OS/390 Console Operation” on page 443

10.2 Implementing JES2
This section describes the significant migration and conversion activities to
implement JES2 for the first-time user.

10.2.1 Setting Up the Required Resources
Both POWER and JES2 require DASD files to spool the jobs and their output, and
queues to manage them. The following figure describes the various types of
spool and control files of VSE/POWER and their equivalent file types in JES2.

Chapter 10. POWER and JES2 209

POWER | JES2

┌──────────────┐ | ┌──────────────┐
│ │ │ Checkpoint │─┐
│ Queue file │ | │ Data set │ │
│ │ │ (Incl. Job & │ │
│ │ | │ Output Queue│ │

 └──────────────┘ └──────────────┘ │
| │ Duplex Copy │

└──────────────┘
|

┌──────────────┐ | ┌──────────────┐
│ Data file │ │ Spool files │
│ up to 15 │ | │ up to 253 │
│ extents │ │ data sets │

 └──────────────┘ └──────────────┘
|

┌──────────────┐ | ┌─────────────────┐
│ Accounting │ │ SMF data sets │
│ File │ | │ (part of MVS) │

 └──────────────┘ └─────────────────┘

Your starter OS/390 system has a small JES2 subsystem defined with a minimal
JES2 checkpoint and spool data sets. You will have to redefine them to support
your environment.

10.2.1.1 JES2 Checkpoint
Similar to the POWER Queue File (IJQFILE), JES2 uses the ″Checkpoint″ data
set(s) to manage its queues. Two JES2 checkpoint data sets should be allocated
on different volumes to contain a copy of the JES2 job and output queues and
information that must be retained across a JES2 restart. For details on the size,
placement, and specification, see Chapter 4 in the OS/390 JES2 Initialization and
Tuning Guide.

10.2.1.2 JES2 Spool Volumes
One or more JES2 spool data sets must also be allocated to contain a copy of
job input and output, along with spooled control blocks for JES2. All spool data
sets must have the same data set name and reside on DASD volumes with serial
numbers starting with the same four or five characters as specified on the
SPOOLDEF parameters. All spool data sets must have the same names, so there
can only be one per volume and the volumes can not be DFSMS managed. For
the specific size, placement, and attribute specification, see Chapter 3 in the
OS/390 JES2 Initialization and Tuning Guide.

10.2.2 Starting JES2
Similar to the startup options in VSE/POWER, you can start JES2 automatically at
IPL time, or the operator can enter the ″S JES2″ command.

There are also two types of startup: cold start, and warm start. As with POWER,
you must use the ″COLD″ option when bringing up JES2 for the very first time, or
when restarting JES2 with incompatible init parms. Otherwise a warm start is
required to preserve the jobs and spooled data from before. There are other

210 VSE to OS/390 Migration Workbook

JES2 initialization options described in Chapter 1 of the OS/390 JES2 Initialization
and Tuning Guide.

10.2.2.1 The JES2 Procedure
Similar to the POWSTRT procedure, the JES2 member of SYS1.PROCLIB is used
to initialize JES2. (It must be in SYS1.PROCLIB, not in any other procedure
library.) You must tailor the JES2 proc to include your JES2 load libraries,
parameter members, procedure libraries, and other options. For the specific
requirements of the JES2 procedure, see Chapter 1 in the JES2 Init & Tuning
Guide.

10.2.3 Tailoring JES2
You can customize JES2 for your installation by setting JES2 initialization
parameters, issuing JES2 operator commands, or using JES2 supplied exits.

10.2.3.1 JES2 Initialization Parameters
Similar to the VSE/POWER tables assembled with generation macros, JES2 uses
a series of initialization parameters to tailor the system. Whereas the POWER
macros are assembled and linked into the POWER phases, the JES2 initialization
parameters are placed in one or more sequential or partitioned data sets, and
pointed to by the JES2 procedure.

See Table 17 on page 226 for a comparison of POWER macros to JES2
initialization parameters.

10.2.3.2 JES2 Operator Commands
Practically everything you can specify in JES2 initialization parameters can also
be specified or changed through JES2 operator commands.

See JES2 Commands for details.

See 10.4.3, “POWER-JES2 Command Equivalences” on page 231 for a
comparison of POWER exits to JES2 exits.

10.2.3.3 JES2 Installation Exits
You can also customize JES2 through any of 49 supplied IBM exits, or modify the
JES2 code directly through source modifications or VER/REP statements in the
JES2 init deck.

See JES2 Exits and JES2 Job Related Exits for details.

See 10.4.2, “Exit Comparisons” on page 230 for a comparison of POWER exits to
JES2 exits.

10.3 JES2-POWER Functional Comparison
Charts follow which compare differences between POWER and JES2 in the
following areas:

• Input Services
• Job Scheduling
• Output Services
• Interface to VSE/ICCF or TSO
• Remote Job Entry (RJE)

Chapter 10. POWER and JES2 211

• Network Job Entry (NJE)
• Application Programming Interfaces
• Accounting
• RAS Characteristics
• Testing Techniques

Note: The comparison is based on the functions provided within VSE/POWER.
Therefore, it is not a complete overview of all functions available in JES2.

10.3.1.1 Multiple System Support
In POWER, the Spool File can be shared between multiple VSE/POWER systems
using the “Shared Spool” feature. Multi-access spool or MAS is a standard
feature of JES2. Even in a single system environment, JES2 assumes there are
multiple systems (called members) sharing spool and checkpoint.

JES2 allows a maximum of 32 members in an MAS, compared with POWER
which allows only four. The JES2 members usually correspond to an MVS
system, but you can have multiple JES2 subsystems (members) on the same
MVS system.

Both VSE/POWER and OS/390 support the sharing of user files between multiple
systems with integrity. This is supported by Global Resource Serialization (GRS)
with OS/390. See OS/390 V1R3.0 MVS Planning - Global Resource Serialization,
GC28-1759 for details.

10.3.2 Input Service
As with POWER, jobs may be submitted to JES2 from many sources. Here are
some comparisons:

Table 11. JES2 Input Sources (compared to POWER)

Input From: POWER JES2 JES2 Comments

Local Card Reader Y Y JES2 supports 2501, 2540,
3505 & 3525

Disk Y (SLI) Y Use IEBGENER or IEBEDIT
(RDRxx proc)

Tape Y Y Use IEBGENER or IEBEDIT
or RDRxx proc

3540 Diskette
Reader

Y N 3540 Reader Utility no
longer supported

Remote BSC & SNA
Terminal

Y Y See 10.3.6.2, “Remote
Workstation Definitions” on
page 219

Submit Function Y (ICCF) Y TSO/E See 7.4, “Submitting
Jobs for Batch Execution”
on page 162

Internal Reader Y Y // DD SYSOUT=
(x,INTRDR)

NJE Nodes Y Y See 10.3.7.1, “NJE
Definitions” on page 221

212 VSE to OS/390 Migration Workbook

10.3.3 Job Scheduling
POWER and JES2 both manage the job input queue and manage the job
selection for execution according to job classes, priority and in the order they
were submitted. In addition, OS/390 V2R4 provides additional capability with the
workload management of batch jobs according to installation specified
performance objectives.

Table 12. POWER/JES2 Job Scheduling Comparison

Job Scheduling
Function

VSE/POWER MVS/JES2 MVS/JES2 Comments

Job Selection Priority
(Ranges)

Y
 (0 - 9)

Y
 (0 - 15)

Job Classes A-Z, 0-n

n = number
of part i t ion

A-Z, 0-9 0-9 are treated just
like letters

System Affinity Y (via SYSID) Y (SYSAFF) Also see WLM
Resource Affinity
Scheduling
Environments

Job Disposition
(D/H/K/L)

Y HOLD=YES See 10.3.3.1, “Job
Stream Disposit ion”

Schedule on a specific
system

Y Y (SYSAFF) Also see Resource
affinity scheduling with
WLM in OS/390 V2R4

Time Event Scheduling Y N Use a job scheduling
package like OPC.

10.3.3.1 Job Stream Disposition
The VSE/POWER job dispositions are as follows:

D DELETE after processing.

H HOLD job. The job remains in the reader queue, it is not dispatched by
VSE/POWER until the operator changes the disposition to D or K.

K KEEP after processing. The job will be automatically scheduled by
VSE/POWER according to its class and priority. After job execution, the
read queue entry is not deleted from the read queue, but the disposition
becomes L.

L LEAVE in queue. The job remains in the read queue; it is not dispatched by
VSE/POWER until the operator changes the disposition (LEAVE = HOLD +
KEEP).

OS/390 Solution

Equivalent functions for disposition KEEP/LEAVE can be obtained via procedures
causing an automatic resubmit, for example new read-in of the job as the last
step using the internal reader function.

See 10.1.1.1, “KEEP Disposition for Pre-Execution Jobs” on page 207.

Chapter 10. POWER and JES2 213

10.3.3.2 Serializing Job Execution
JES2 does not guarantee that jobs will run in the order they are submitted. If you
need to make certain jobs run in order or you need dependent job control, you
should submit them one at a time or use an automated job scheduling product
such as OPC/A.

10.3.3.3 Time Event Scheduling
POWER supports the scheduling of job submission based on a one-time or
repetitive schedule such as daily, weekly on a given day and time, and so on.

JES2 has a primitive automatic command scheduling facility, but you will
probably need an automated scheduling package in OS/390 to do the same
thing.

10.3.3.4 Additional Job Scheduling Functions with MVS/JES2
The following functions are not available in VSE/POWER, but may be exploited in
OS/390 JES2:

Priority Aging When ′Priority aging′ is on, JES2 will periodically increase a jobs
priority for execution or printing, based on the length of time the job
has been in the queue. For example, JES2 can be instructed to
raise a job′s priority by 1 every hour that it′s been on the queue.

Time Limits A job′s priority can be based upon its estimated elapsed time which
can be specified on JECL statement or through JES2 exits. See the
JOBPRTY JES2 initialization statement. (The installation can choose
to cancel jobs exceeding their estimated time through initialization
parameters or exits.)

The CPU time of a job can also be specified on the JOB or EXEC
JCL statement, and controlled by SMF exits.

Output Limits The output priority can be based upon its actual output size
according to the OUTPRTY JES2 initialization statement.

Job limits are based on JES2 estimated counts, JECL statements
and JES2 exits, and can be extended or controlled by JES2 Exit 9.

Data set limits are based on the OUTLIM parameter of the DD
statement. They can be extended or controlled by the IEFUSO SMF
exit.

JCL Conversion This happens much earlier in the job′s processing in OS/390
than in VSE. JECL (JES2 control cards) are processed at reader
time. JCL is converted soon after reader time, then interpreted
during step initialization.

Resource Affinity With OS/390 Version 2 Release 4, jobs can be selected
according to the scheduling environment specified on the JOB card,
and based on the availability or abstract resources as controlled by
the workload manager.

Workload Managed Batch Initiators With OS/390 Rel.4, jobs can be selected
based on installation defined performance objectives when running
in ″Goal″ mode.

214 VSE to OS/390 Migration Workbook

10.3.4 Output Service
As with POWER, JES2 supports line-mode printers, whereas PSF controls AFP
Printers. (See Chapter 11, “Advanced Function Printing and Print Services
Facility/MVS” on page 235 for AFP printing.)

Table 13 (Page 1 of 2). POWER/JES2 Output Service Comparison

Output Service
Function

POWER JES2 JES2 Comments

Local Line Printer
(3211, 4245, 4248)

Y Y See 10.3.4.1, “Printers
Supported” on
page 216

Page Mode Printer
(3900, 3820, etc.)

Y Y via PSF/MVS

Local Diskette Y N (no longer supported
in OS/390)

Remote BSC & SNA
Printers & Punches

Y Y

Tape Spooling Y N See 10.1.1.3, “Tape
Spooling” on
page 208

Interactive User Y ICCF Y TSO/E Output or SDSF

Other NJE Node Y Y

Output Classes A - Z, 0 - 9 A - Z, 0 - 9

Output Priority Ranges 0 - 9 0 - 15

Output Disposition
(D/H/K/L)

Y Y See 10.3.4.7, “Output
Disposit ion” on
page 217

Segmentation via
JCL/JECL

Y (RBS
Parm.)

Y // DD SEGMENT=
(line mode only)

Segmentation via
Program Control

Y (SEGMENT
macro or

LFCB
dynalloc)

Y FREE=CLOSE or
SPIN=UNALLOC
dynalloc parm or
SETPRT

Output Separation
between Jobs

Y Y See 10.1.1.5,
“Separator Page
Difference” on
page 208

User Info on Sep. Page Y Y Use Exit 1 and/or 15
or JESNEWS

Forms Number Y (1-4 chars) Y (1-8 chars)

Forms Control Buffer
(FCB)

Y (1-8 chars) Y (1-4 chars) See 10.3.4.8, “FCB
Naming Differences”
on page 217

Universal Character
Set (UCS)

Y (1-8 chars) Y (1-4 chars) See 10.3.4.9, “UCS
Naming Conventions”
on page 218

Mult iple Destinations
(RJE, NJE) via JCL

N Y

Printer Forms
Alignment

Y (PSETUP
cmd)

Y See 10.1.1.4, “Printer
Forms Alignment via
PSETUP” on page 208

Chapter 10. POWER and JES2 215

Table 13 (Page 2 of 2). POWER/JES2 Output Service Comparison

Output Service
Function

POWER JES2 JES2 Comments

End-of-Page sensing Y N See 10.1.1.6,
“End-of-page Sensing”
on page 209

Counting Line Mode
Output

Y (Pages =
skip to Ch.1)

Y (Lines) Set PRINTDEF
NEWPAGE=1

Counting Page Mode
Output

Y (Pages) Y (Pages)

Restart capability for
interrupted output

Y
(PRESTART)

Y Automatic checkpoint
restart

10.3.4.1 Printers Supported
POWER and JES2 support the same set of channel-attached printers:

• 1403, 3211, 3203, 4245, and 4248 impact printers

• 3262-5 and 6262 as a 3211

• 3800-1 for line mode printing

• 3800-3, 3900, and other AFP printers through PSF

10.3.4.2 Output Segmentation
With POWER, the VSE installation has the ability to segment job output; this
provides POWER the ability to print or punch output before a job is finished. It
also allows the operator to have operational control over each segment created.

VSE/POWER supports output segmentation by record count thresholds, by
specification in the input stream, and by specification in the program. Output
segmentation can be used to improve turnaround time for jobs that have large
volumes of output.

JES2 supports output segmentation with the SEGMENT= parameter on the
SYSOUT DD statement (or on the dynamic allocation request). To support it at
the installation level, use a JES2 Exit (6 or 31).

With JES2, job output processing (printing and punching) normally starts when
the job completes. The MVS JCL parameter FREE=CLOSE or SPIN=UNALLOC
on SYSOUT DD statements can be used to make these files available for printing
or NJE transmission as soon as they are closed or unallocated. Then, the output
produced for these SYSOUT files is processed when the files are CLOSEd by the
application using them. Additionally, the application program can use MVS
dynamic allocation services to spin off sections of output for immediate printing.

You can also use the SETPRT macro to schedule the data already written to
spool for immediate printing.

10.3.4.3 Tape Spooling
Tape spooling is not supported in JES2. See 10.1.1.3, “Tape Spooling” on
page 208 for some alternatives.

216 VSE to OS/390 Migration Workbook

10.3.4.4 Printer Forms Alignment via PSETUP
The PSETUP function is not supported in JES2. See 10.1.1.4, “Printer Forms
Alignment via PSETUP” on page 208 for some alternatives.

10.3.4.5 Separator Page Differences
The IBM provided separator pages are different with JES2. See 10.1.1.5,
“Separator Page Difference” on page 208 for more information.

10.3.4.6 End-of-page Sensing
JES2 does not support end-of-page sensing. See 10.1.1.6, “End-of-page Sensing”
on page 209 for more information.

10.3.4.7 Output Disposition
Conditional processing of output groups can be specified separately for normal
and abnormal job termination. Use the // OUTPUT OUTDISP= statement with the
same terms familiar to the VSE user (WRITE, HOLD, KEEP, LEAVE, PURGE). It
can also be specified in JES2 initialization parameters on a job class or output
class basis.

10.3.4.8 FCB Naming Differences
Both POWER and JES2 use eight-character FCB (Forms Control Buffer) names.
Both also use four-character prefixes dependent on the printer device type.
However, the prefixes are not similar, and the way they are specified is different.

FCB Prefixes

The four-character prefix of the FCB name is based on the device type and
differs between POWER and OS/390.

Table 14. FCB Name Prefixes

Printer Device VSE/POWER OS/390

3203-1 FCB3 FCB2

3203-5 FCB2 FCB2

3211 FCB2 FCB2

3262-5 FCB2 FCB4

3800 FCB1 FCB3

4245 FCB2 FCB2

4248 FCB5 FCB4

5203 FCB4 FCB2

6262-14 FCB2 FCB4

PRT1 FCB2 FCB2

Device
independent

$$$$ n/a

Note: The IBM 3262-5 and 4248 printers can also be run in
3211 compatibility mode, and use the FCB2 prefix.

Chapter 10. POWER and JES2 217

FCB Specification

POWER users specify the full eight-character FCB name, whereas OS/390 users
only specify the last four characters. POWER supports device-independent
specification of FCB-image phases in the * $$ LST statement by allowing ″$$$$″
as the first four characters. POWER then replaces the dollar signs by a character
string depending on the printer:

 FCB1 For a 3800 printer
 FCB2 For a PRT1 printer (3211, 3203-5, 3289-4, 3262)
 FCB3 For a 3203-1 printer
 FCB4 For a 5203 printer
 FCB5 For a 4248 printer
 $$$$ For any other printer type

In OS/390, users specify the four-character name of the FCB and JES2 uses the
four-character prefix based on the device type. The FCB and UCS images are
stored in SYS1.IMAGELIB with device-dependent prefixes.

See DFSMSdfp Advanced Services, SC26-4921 and DFSMS/MVS Utilities,
SC26-4926 for OS/390 details.

10.3.4.9 UCS Naming Conventions
In OS/390, Universal Character Set (UCS) images are stored in SYS1.IMAGELIB
with device-dependent prefixes. POWER does not have any particular naming
convention that must be followed.

JES2 supports four-character UCS names on JCL statements submitted by the
user. Depending on the printer device type, the following ′UCSn′ name is
prefixed to the name which is then retrieved from IMAGELIB:

• 1403 - UCS1xxxx

• 3203 - UCS2

• 3211 - UCS3

• 4245 - UCS5

• 4248 - UCS6

• 3262 - UCS6

The IBM 3800, when driven by JES2, uses character arrangement tables
beginning with XTB1.

For details, see DFSMS/MVS Utilities, SC26-4926, and DFSMSdfp Advanced
Services, SC26-4921

10.3.5 Interactive User Interfaces (ICCF/CMS/TSO)
Both VSE/POWER and OS/390 JES2 support interactive user interfaces for job
submission and output retrieval, as well as other command functions. In addition,
many VSE/POWER installations use VM/CMS as their interactive terminal
system.

218 VSE to OS/390 Migration Workbook

Jobs can be submitted with the TSO/E SUBMIT command, any ISPF EDIT panel,
or SDSF using the SJ command on any job display.

Output can be browsed with the TSO/E OUTPUT command, the ISPF 3.8 panel, or
SDSF using the O (output) or H (Held output) panels. The preferred interface is
through SDSF.

Table 15. POWER/ICCF, VM/CMS, and JES2/TSO Functional Comparison

Interactive
Interfaces

POWER -
ICCF

VM - CMS JES2 - TSO/E

Submit Jobs Y Y (Spool,
Tag, Punch)

Y (TSO Submit)

Authorization
Control

ICCF
Administrator

- RACF or Exits

Operating System
Console Commands

Y Y (SMSG) Y (Extended Consoles, or
SDSF)

Read Access to
Spoolfile
RDR/LIST/PUNCH

Y Y Y (TSO Output, or SDSF)

Inquire on Status of
Jobs and Output

Y Y Y (TSO Status, or SDSF)

Cancel Jobs and
Output

Y Y Y (TSO Cancel, or SDSF)

10.3.6 Remote Job Entry
Both VSE/POWER and OS/390 JES2 support ″non-programmable″ Binary
Synchronous Communication (BSC) remote workstations such as the IBM 2770,
2780, and 3780. Both support SNA single and multiple logical unit remote
workstations such as the IBM 3770, and 3790.

Only POWER supports the IBM 3741 Data Station.

Only JES2 supports the multi-leaving BSC remote workstation such as the IBM
S/360 Model 20 or 3773-2.

10.3.6.1 Functional RJE Differences
Both POWER and JES2 support remote and line passwords for remote
workstation verification at sign-on time. Both support compression and SNA
compaction.

10.3.6.2 Remote Workstation Definitions
Use the following JES2 initialization statements to define your RJE workstations
and environment:

TPDEF Global definitions for RJE (and NJE) BSC & SNA buffer sizes, and
number of SNA sessions supported simultaneously

LINE BSC and SNA TP Lines - these can be used for either RJE or NJE.
See Table 18 on page 228 for a comparison of PLINE macros to
JES2 LINE parameters.

Chapter 10. POWER and JES2 219

RMT BSC and SNA RJE Workstations

R(nn).RD(n) RJE Workstation Readers

R(nn).PR(n) RJE Workstation Printers

R(nn).PU(n) RJE Workstation Punches

See Table 19 on page 228, and Table 20 on page 229 for a comparison of
POWER PRMT macros and JES2 RMT parameters.

10.3.6.3 RJE Operations
See 28.6.1, “JES2 RJE Operations” on page 452 and JES2 Commands for a
description of RJE commands for the host and remote operators.

10.3.6.4 RJE Exits
JES2 exits 17 or 18 can be used to control RJE remote sessions when they sign
on. Exits 1 and 15 can be used for separators on remote printers. See Table 23
on page 231 for a comparison of POWER exits and JES2 exits.

10.3.7 Network Job Entry
 Note

For a complete discussion of NJE differences, please see NJE Installation,
Operation and Use with JES2 and Other Systems, GG22-9339.

NJE is supported by VSE/POWER, MVS/JES2, JES3, VM/RSCS, and some
non-IBM program offerings. In general, all levels of VSE/POWER and JES2 are
NJE-compatible with one another.

Both POWER and JES2 support SNA, BSC and CTC communications, although
POWER only supports Virtual CTCs (using VM). Both systems support multiple
streams, spanned headers, and AFP mode print files. JES2 also supports the
following features which help manage NJE networks:

Path Manager This is exclusive to JES2 and dynamically keeps track of
all connections, manages the best path and alternate
paths to all nodes in the network.

Parallel Links You can have multiple parallel BSC lines, CTC
connections and SNA sessions with adjacent NJE nodes
for better availability and performance.

Multiple Paths Alternate path routing and multiple concurrent paths are
supported by JES2 to adjacent and non-adjacent nodes.

Subnets You can define subsets of the NJE nodes as ″Subnets″
for routing purposes to simplify routing tables and path
management.

Formatted Commands The JES2 $G commands allow you display and control
jobs at other nodes in a system-independent format.
(You don′ t have to know the syntax of the target
system.)

See Chapter 5 in the JES2 Initialization and Tuning Guide for more details.

220 VSE to OS/390 Migration Workbook

10.3.7.1 NJE Definitions
Use the following JES2 initialization statements to define your NJE network and
networking options:

TPDEF BSC & SNA Buffer Sizes, and Number of SNA Sessions

NJEDEF Number of Nodes, Transmitters, Receivers, and other NJE options

NODE Individual NJE node definitions

APPLID VTAM Applid of NJE nodes (if not the same as Node Name)

LOGON VTAM Applids of this node

LINE BSC, CTC, and SNA communication lines. These are defined in the
same way RJE lines are defined. Lines can be used interchangeably
between RJE and NJE. See the comparison of PLINE macro
parameters and JES2 parameters in Table 18 on page 228.

CONNECT Predefined NJE Node Connections

See Table 21 on page 230 for a comparison of PNODE macros to JES2 NODE
parameters.

In addition to the JES2 Init & Tuning Guide (Chapter 5), also see NJE Installation,
Operation and Use with JES2 and Other Systems, GG22-9339.

10.3.7.2 NJE Operations
See 28.6.2, “NJE Operations” on page 453 and JES2 Commands for a description
of NJE commands.

10.3.7.3 NJE Exits
JES2 exits 46 and 47 can be used to scan NJE headers when being sent or
received, and the contents of the headers can be changed. JES2 does not have
any exit to examine the spooled data records being sent with NJE. See Table 23
on page 231 for a comparison of POWER exits and JES2 exits.

10.3.7.4 NJE Management
See 10.3.7.1, “NJE Definitions” for detailed parameter comparisons.

10.3.8 Application Interfaces

10.3.8.1 Spool Space Allocation
POWER allocates spool space for jobs and spool files in units of DBLK groups
which is usually about 4000 bytes. JES2 allocates space in units of track groups
which are usually about three tracks each, as determined by the SPOOLDEF
TGSIZE parameter.

10.3.8.2 Programmable Spool Interfaces
VSE/POWER supports macros to access spool data from user partitions:
CTLSPOOL, GETSPOOL, PUTSPOOL, PWRSPL, MAPXPCCB, and XPCC.

There is not a one-for-one mapping of these macros, but the following APIs are
useful for accessing JES2 spooled jobs.

Chapter 10. POWER and JES2 221

Job Information Services

Current Job Identification
If you have code that is called by an MVS application,
you can obtain information about the job currently
running in an address space with the IAZXJSAB macro.
You can retrieve information such as:

• Name of the subsystem that scheduled the job
• Job identifier
• Job name
• User ID associated with the job
• Time when the job started running
• JES status of the job

See OS/390 MVS Auth Assm Services Reference
ENF-ITT, GC28-1765 for details.

Checkpoint Versions Subsystem Interface (SSI) function code 71 - the ″job
information service″ provides an interface to acquire
data from a copy of the checkpoint data. This allows
you to find out about any job in the system known to
JES2. See Appendix D in JES2 Multi-Access Spool in a
Sysplex Environment, GG66-3263 for details.

Extended Status 6 Subsystem Interface (SSI) function code 80. This is an
improved form of the STATUS SSI (function code 3).
See Using the Subsystem Interface.

Output Retrieval

SYSOUT API 6 Use the SYSOUT Application Programming Interface (SSI
function code 79) to retrieve output from JES2. This is an
improved version of the PSO SSI (function code 1). See
Using the Subsystem Interface.

Spool Data Set Browse Use this to dynamically allocate a spool data set and
use standard I/O macros to read the file. See OS/390
MVS Auth Assembler Services Guide, GC28-1763.

Sample FSS 6 Use this as a model when writing your own Functional
SubSystem, or as a tool for testing JES2 FSS printing.
See OS/390 Using the Functional Subsystem Interface,
SC28-1911.

Other Interfaces

Cancel Job You can cancel a job with SSI function code 2. See the
″SSCS″ mapping DSECT in the OS/390 MVS Data Areas,
Vol 5 (SSAG-XTLST), SY28-1168.

6 Available in OS/390 Release 3.

222 VSE to OS/390 Migration Workbook

Subsystem Version ID You can obtain version-specific information about a
subsystem with SSI function code 54. See Using the
Subsystem Interface.

Command Interface You can also use the MGCR service to submit JES2 or
MVS operator commands to control jobs. See OS/390
MVS Auth Assembler Services Guide, GC28-1763.

10.3.9 Accounting Comparisons

10.3.9.1 Job Accounting

JES2 records the following accounting information:

• Job Purge - SMF Type 26 - This is the primary source of information about a
job ′s use of JES2 resources and history.

• Output - SMF Type 6 - Cut by JES2, XWTR, PSF and others

• NJE SYSOUT Transmit - SMF Type 57

• JES2 Subsystem Start/Stop - SMF Types 43, 45

• JES2 Spool Offload - SMF Type 24

• RJE/NJE Line Start/Stop - SMF Types 47, 48, 52, 53

• RJE Signon/Signoff - SMF Types 47, 48, 52, 53

• NJE Signon/Signoff - SMF Types 55, 58

• RJE/NJE Signon Password Violations - SMF Types 49, 56

JES2 SMF Accounting Records

SMF (System Management Facilities) is a function of OS/390 that collects and
records various system and job data related to the use of resources. This
information is recorded in the form of a number of different records, which are
numbered. Installations can process the SMF records with any number of
application programs to analyze the data, produce reports and so on.

JES2 uses SMF Type 26 (job purge) records to collect all successful SYSIN job
transmissions, and SMF Type 57 records to collect all successful SYSOUT
transmissions. Since multiple SYSOUT data sets may be transmitted within a job
header and trailer, this record may represent multiple SYSOUT data sets.

Note that none of these record the node name of the local node. This can be a
problem when combining records from multiple sites.

Job Purge Records Type 26 Records are cut when a job is purged from
the system. The execution node name (and other
execution-related fields) are not recorded in the type
26 record when the job executes on the origin node.

SYSOUT Transmission Records Type 57 Records are cut for each group of
SYSOUT files sent to another NJE node, but do not
contain the Jobname, or Time and Date on the
reader at the original node.

Chapter 10. POWER and JES2 223

NJE Network Management Records JES2 records the following information
reflecting network events:

• SMF 55 Network Signon
• SMF 56 Network Integrity (invalid password)
• SMF 58 Network Signoff

See System Management Facilities for details.

NJE Accounting

Most NJE related information is carried in the NJE headers as the job is routed
from node to node. Here is a summary of the differences between POWER and
JES2 accounting records for NJE:

KEY: - N/R - Not Recorded

Table 16. Accounting Records for NJE Activities

NJE Activity VSE/POWER Account
Record

MVS/JES2 SMF Record

Job Transmission Transmit/Receive
Account Record

SMF26

SYSOUT Transmission Transmit/Receive
Account Record

SMF57

Job & SYSOUT Receipt Transmit/Receive
Account Record

- N/R -

Signons - N/R - SMF55

Signoffs Network Account Record SMF58

Start BSC Line - N/R - SMF47

Start SNA Line - N/R - SMF52

Stop BSC Line - N/R - SMF48

Stop SNA Line - N/R - SMF53

Line PW Violation - N/R - SMF49

Node PW Violation - N/R - SMF56

10.3.10 RAS Characteristics
JES2 has extensive recovery routines in the event of a failure within the spooling
subsystem; many more than VSE/POWER. Here are some examples:

• Program check within the JES2 code

• Hardware Problem: Defective Track on Spool Disk Error Recovery and the
JES2 “BADTRACK” initialization statement.

• Defective Spool Volume - Work continues without defective spool volume,
replace if required

• Defective Track/Volume in Checkpoint - Checkpoint reconfiguration dialog

• Tape I/O Error - Error Recovery (not JES)

• Start JES2 without IPL with a Hot Start

• Spool Filling Warning Message

224 VSE to OS/390 Migration Workbook

• Operator Monitor Spool Utilization

• Spool Full Condition - $S SPL upon warning (Output limits minimize this)

• An external message-based automation product can also delete, offload or
reroute spool files.

10.3.11 JES2 Testing Techniques
Just as it is important to test new levels of OS/390 in your environment before
using them in production, you should also test any JES2 exits or modifications
before using them in production.

10.3.11.1 Poly-JES

Secondary JES2 subsystems, or “Poly-JES,” provide you with the ability to test
new releases of JES2, and isolate JES2 work from the primary or production
copy of JES2. Many installations find this convenient because it does not require
a separate OS/390 test system.

There are two basic configurations for poly-JES:

 1. Sharing the spool and checkpoint with the primary JES

 2. Dedicating a unique spool and checkpoint to the secondary JES

See “Poly-JES” in Chapter 1 of the JES2 Initialization and Tuning Guide for
detailed guidance. This section is only an addendum to that material. You must
use a different character for the CONDEF CONCHAR parameter than the one
used by the primary JES, or the secondary JES2 will not initialize.

The number of secondary JES2 subsystems that can be active is limited only by
the number of different CONCHAR characters (22).

10.4 POWER/JES2 Detailed Comparisons
The remaining part of this chapter shows detailed comparisons between POWER
and JES2 parameters and commands.

10.4.1 Mapping POWER Parameters to JES2 Init Parms
The following tables can help you transfer most of the parameters you have
specified for POWER to their equivalent JES2 parameters.

10.4.1.1 Equivalent JES2 Parms for POWER Macro
In general, most of the JES2 initialization parameters have default values so you
do not need to specify them. Many installations start with the sample deck in
samplib - SHASSAMP - and modify those parameters as necessary.

You should review each of the parameters you specify that is different from the
default value using the JES2 Init & Tuning Reference manual. Here is a short
table to show you what POWER parameters can be specified in JES2:

Chapter 10. POWER and JES2 225

Table 17 (Page 1 of 2). POWER Macro to JES2 Parameter Mapping

POWER
Parm

Description JES2 Parm Comment or
Recommendation

ACCOUNT Job Accounting Information
to be collected/recorded.

JOBCLASS
TYPE6,
TYPE26

SMF records are collected
based on SYS(TYPE(nn:nn))
parm in
PARMLIB(SMFPRMxx)

CLRPRT Clear 3800 page buffer at
EOJ

N/A Option not supported by
JES2.

COPYSEP Produce separator pages (or
cards) between data sets
and copies.

PRT
SEPDS

JES2 exit 15 required to
write the separator pages
(or cards).

DBLK Size of data block
transferred to tape and disk

SPOOLDEF
BUFSIZE

Use the maximum (3992)

DBLKGP Number of DBLKs allocated
as a group.

SPOOLDEF
TGSIZE

Default is 30

FEED Eject and feed a new
diskette at EOF

N/A Not supported in JES2

JLOG Display job-related
messages on the console.

N/A Use MPF exits to suppress
specific JES2 messages

JOBEXIT User-written exit for JCL &
JECL

EXIT(2)
EXIT(4)

For the JOB (2) other JCL &
JECL (4) statements

JSEP Extra separator pages or
cards between job output

N/A Use JES2 Exits 1 & 15 to
insert extra pages or cards.

LTAB Logical Carriage Control
Tape (FCB)

N/A Function not in JES2

MEMTYPE Support SLI N/A Function not in JES2

MRKFRM Use mark-form on 3800s
between job output

PRT
COPYMARK

(Only supported for FSS
printers)

MPWD Master password N/A

MULT12 Multiple channel 12 postings
on FCBs

N/A Function not in JES2

NETEXIT User-written exit for input
from NJE node

EXIT(47) Scan the NJE headers (not
for data records)

NTFYMSG Maximum number of
messages held for ICCF
notification

N/A No limits in JES2

OUTEXIT User-written exit for output
to printer or punch

EXIT(1)
EXIT(15)

Job output group separator
(1), or data set separator
(15) (No exit is available for
processing SYSOUT data
records.)

PAUSE Pause between each job
output to a punch

PUN(nn)
PAUSE

Use $S command to
continue.

PNET Include networking function
(phasename)

N/A Automatically included with
JES2

PRI Default job priority JOBPRTY(n)
PRIORITY

Job Priority based on
estimated execution time.
(See also RDR PRIOINC
parameter and priori ty
aging.)

RBS Automatic output
segmentation

N/A Control led by SEGMENT=
on the application′s DD
Statement

RJEBSC Support BSC RJE N/A JES2 always supports BSC
RJE

226 VSE to OS/390 Migration Workbook

Table 17 (Page 2 of 2). POWER Macro to JES2 Parameter Mapping

POWER
Parm

Description JES2 Parm Comment or
Recommendation

SECNODE VSE Security ″Zone″ N/A (Use RACF NODES class
profi les for security.)

SHARED Shared systems and
accounting file

N/A JES2 always assumes
shared systems. Accounting
files cannot be shared.

S N A =
wscount,
password,
appl-id

Max number of SNA RJE
stations
VTAM ACB password
VTAM APPLID

TPDEF
RMTNUM

LOGON P =
LOGON A =

Max # of BSC and SNA
Remotes
Password
Application ID for local JES2

SPLIM Spool space util ization alert SPOOLDEF
TGSPACE=

(W A R N =

$HASP050 message issued
at limit

SPOOL Support XECB spool macros N/A

STDCARD Punch card output limit ESTPUN
N U M =

Cancel job or allow based on
OPT= and Exit 9

STDLINE Print line output limit before
warning message 1Q52I

ESTLINE
N U M =

Use ESTPAGE NUM= for
page-mode output

SUBLIB For compatibil i ty with
previous releases of POWER

N/A

SYSID System ID for shared
spooling

MASDEF
O W N M E M B =

Let it default to SMFPRMxx
SID()

TIME Active, idle, polling times for
shared queues

MASDEF
H O L D =
D O R M A N C Y =

Only use the defaults for
single systems.

TRACESZ Memory reserved for TP
traces

TRACEDEF
P A G E S =
T A B L E S =

Memory in extended storage
(above 16MB)

XMTEXIT User-written exit for output
to an NJE node

EXIT(46) Scan NJE Headers (not data)

10.4.1.2 PLINE Mapping to JES2 LINE Parameters for RJE and NJE
SNA lines are defined by specifying UNIT=SNA. BSC EP or CTC lines have
several options:

Chapter 10. POWER and JES2 227

Table 18. PLINE MACRO to JES2 Parameter Mapping

PLINE
Parameter

Description JES2 LINE
Parameter

Comment

A D D R = Unit address of the BSC
emulator port or CTC adapter

U N I T = ″SNA″ or unit address
(4-digit addresses
supported)

CODE EBCDIC is the only value
allowed. (ASCII is not supported)

L INECCHR= EBCDIC or USASCII
supported

INTRPT Selector channel mode N/A Option not in JES2

MODSET BSC (2701) Adaptor
characterist ics

INTERFACE=
C O D E =

BSC adapter interface &
code

PSWRD Line password PASSWORD= BSC or dedicated SNA line

SWITCH Switched line or leased N/A Don ′ t specify LINE= on RMT
statement for switched lines

TIMEOUT Number of idle minutes before
forced off

(not on LINE
parm)

Specify DISCINTV= on the
RMT(nnnn) statement.

TRNSP Transparency feature TRANSPAR= Text transparency required
for NJE

10.4.1.3 Define BSC Remotes
This table shows the conversion of POWER PRMT parameters to JES2 RMT
remotes.

Table 19 (Page 1 of 2). PRMT MACRO to JES2 Parameter Mapping

PRMT
Parameter

Description JES2 RMT
Parameter

Comment

REMOTE remote ID number RMT(nnn) ′nnn ′ is the remote ID
number

TYPE 2770, 2780, 3741, or 3780 for
BSC

TYPE 2770, 2780, or 3780/3781 for
BSC (3741 not supported)

ABE Additional buffer expansion
on 2770 and 3741

BUFEXPAN=2 (3741 not supported)

BE Buffer expansion on 2770 BUFEXPAN=1

CS Component selection TYPE=3781
or 2770

CSALST Component select for LST
output

N/A Not specified at this level -
based on device type (2770,
3781)

CSAMSG Component selection for
messages sent to remote

N/A Use MSGPRT=Y to route
messages to a printer

CSAPUN Component select for punch
output.

N/A Not specified at this level -
based on device type (2770,
3781)

HFC Horizontal Tabs HTABS

LIST Number of characters in
print l ine

N/A (not nec.)

LSTROUT Default print routing ROUTECDE Same for LST and PUN

MRF 2780 multi-record feature MRF2780

MSG width of message lines N/A (not nec.)

MSEEJCT Suppress skip-to-1 after
output before messages

N/A

228 VSE to OS/390 Migration Workbook

Table 19 (Page 2 of 2). PRMT MACRO to JES2 Parameter Mapping

PRMT
Parameter

Description JES2 RMT
Parameter

Comment

MSGSPCE Suppress four space-3
commands after messages

N/A

PUN Width of card punch records N/A (always 80)

PUNROUT default punch routing ROUTECDE Same for print and punch in
JES2

REF Short form for replication N/A Use ranges: RMT(m-n) •

SCE Space
Compression/Expansion
(2770, 3780)

COMPRESS

TRNSP Punch transparency TRANSPAR

TURNEOJ Line turnaround required (Based on
device
TYPE)

Note: • JES2 does not support the ″Short Form″ of RJE definitions, but ranges may be used to
define the same characteristics on many remotes: RMT(20-27) WAITIME=1,MFORM=J

10.4.1.4 Define SNA Remote Workstations
This table shows the conversion of POWER PRMT parameters to JES2 RMT
remotes.

Table 20. PRMT MACRO to JES2 Parameter Mapping

PRMT
Parameter

Description JES2 RMT
Parameter

Comment

R E M O T E = remote ID number RMT(nnn) ′nnn ′ is the remote ID
number

LUT1 for
SNA

TYPE=LUTYPE1 for SNA

CMPACT Compaction table name C O M P A C T =
YES|NO

Compaction table number
specified on individual
remote printer or punch

CONSOLE Separate console device for
messages

CONS

LSTROUT Default routing for LST
output

Route Applies to both PRT and
PUN routing

LU Logical Unit (LU) name LUNAME

MAXLRECL Maximum logical record
length

N/A (not necessary)

PSWRD Logon remote workstation
password

Password (use RACF)

PUNROUT Default routing for PUN
output

Route Applies to both PRT and
PUN routing

REF Short form for replication N/A Use ranges: RMT(m-n) •

SESSLIM Maximum number of
sessions (devices)

N/A Based on number of devices
specified in JES2.

XLATE Translate Printed output from
X′00′ - X′3 F′ to X′40′

N/A Specify TRANS on the
R(nn).PR(m) statement.

Note: • See note in previous table.

Chapter 10. POWER and JES2 229

10.4.1.5 Define NJE Nodes
This table shows the conversion of POWER PNODE parameters to JES2
parameters.

Table 21. PNODE MACRO to JES2 Parameter Mapping

PNODE
Parm

Description JES2 Parm Comment

N O D E = Name of the NJE node NODE
N A M E =

LOCAL This is the local node. NJEDEF
O W N N O D E =

APPLID VTAM Appl-ID APPL(name)
N O D E =

Defaults to node name. (Use
LOGONn for local node)

AUTH Command authorization level NODE
A U T H =

BUFSIZE Transmission buffer size TPDEF
x x x B U F =
(S I Z E =

BELOWBUF for BSC or CTC
EXTBUF for SNA

MAXBUF Number of buffers for
transmitters & Receivers

TPDEF
x x x B U F =
(L I M I T =

(shared between RJE & NJE)

PWD Send or Receive signon
password

NODE
PASSWORD

Send=pwd for local node
Ver i fy=pwd for other nodes

ROUTE1 Indirect link if using
store-and-forward (BSC, CTC
only)

NODE
S U B N E T =

-or-
CONNECT

(use dynamic path
management, or CONNECT
statements and operator
cmds)

10.4.1.6 Define Compaction Tables
Up to 99 different compaction tables can be defined in JES2. They can be used
by SNA RJE or NJE. For RJE, these can be referenced by individual OUTPUT JCL
statement, specified on an individual Remote or Remote Printer or Punch
statement. For NJE, they can only be specified on a NODE or APPL basis. (Use
these with caution; they may take more cycles than they are worth.)

Table 22. PCPTAB MACRO to JES2 Parameter Mapping

PCPTAB
Parameter

Description JES2
COMPACT
Parameter

Comment

name Name of the Compaction
Table

NAME Compaction tables can be
referenced by name or
number.

MASTER 3 to 16 master characters C H A R =
(nm,m1,m2,

...mn,

Number of master chars and
n master chars

NOMASTn Non-master characters C H A R =
(...nm1,

...nmx)

Remainder are non-master
chars

10.4.2 Exit Comparisons
Here are the VSE/POWER exits and their equivalent exits in JES2. The major
difference between the two subsystems, is that POWER allows you to scan and
alter the source data, whereas JES2 only gives you access to the header
information.

230 VSE to OS/390 Migration Workbook

Table 23. POWER Exit to JES2 Exits

POWER
Exit

Description JES2 Exit Comment

JOBEXIT Job input - Scan JCL & JECL
(POWER exits allow access to
SYSOUT data.)

EXIT(2)
EXIT(3)
EXIT(4)

JOB statement scan
JOB accounting field
Other JCL & JECL
(No access to SYSIN data.)

NETEXIT Input from NJE node EXIT(47) NJE Headers Received
(No access to SYSIN or
SYSOUT data.)

OUTEXIT Output to printer or punch
(POWER exits allow access to
SYSOUT data.)

EXIT(1)
EXIT(15)

Job Separator
Data Set Separator
(No access to SYSIN or
SYSOUT data.)

XMTEXIT Output to an NJE node EXIT(46) NJE Headers Transmitted
(No access to SYSIN or
SYSOUT data.)

10.4.2.1 Source Code Modifications
Most JES2 modules are distributed in source form and can be modified to meet
specific customer needs, though this is not recommended by IBM. It is
sometimes easier to modify the JES2 source code than accomplish the same
thing through exits.

10.4.2.2 The JES2 Patching Facility
Patch and AMASPZAP statements can be used to make minor and temporary
modifications to the JES2 object code until JES2 is restarted by directly replacing
the changed code. The JES2 Patching Facility changes only the memory copy of
data; the copy residing on DASD (for example, LPA) cannot be replaced.

For details and precautions, see the section entitled ″The JES2 Patching Facility″
in Chapter 1 of the JES2 Initialization and Tuning Guide.

10.4.3 POWER-JES2 Command Equivalences
There are major differences between JES2 and POWER. This section will
compare the products from a different perspective, that of the central operator.
Through the migration, the functional role of the operator will remain the same.
Therefore the most often asked questions by the central operator will be the
following,

 1. How do I do a certain function?
 2. In POWER, I used ′xyz′ command. What command do I use in JES2?

The following figure gives an overview of POWER commands and the JES2
equivalent. See OS/390 JES2 Commands and VSE/POWER Administration and
Operation for details.

Chapter 10. POWER and JES2 231

10.4.3.1 Queue Management Commands
Table 24. Queue Management Commands

POWER
Command
Code

PWR
Short
Form

Function JES2
Command
Verb

PALTER A Alter processing attributes of a POWER job or a
POWER controlled partition

$T

PDELETE L Delete queue entries $P

PDISPLAY D Display the status of jobs, messages, resources,
and the network

$D

PHOLD H Put a job of a queue in hold/leave state $H

POFFLOAD O Save or restore entries of a queue. $S OFF

PRELEASE R Release a POWER job for further processing $A

10.4.3.2 Task Management Commands
Table 25. Task Management Commands

POWER
Command
Code

PWR
Short
Form

Function JES2
Command
Verb

PACT Activate a transmitter or a receiver. $S

PCANCEL C Cancel a POWER status report or a job in
execution.

$C

PDRAIN N Discontinue transmission or reception of jobs and
or output by a given task.

$P

PEND Terminate POWER option. $P

PFLUSH F Terminate the work currently in process for a
task and allow the task to continue with
subsequent work

$C

PGO G Reactivate a task or partition. $S

PRESTART T Restart a writer task. $B, $N

PSTART S Place a partition under control of POWER, start a
task, or initiate a session between two nodes.

$S

PSTOP P Release a partition from POWER, stop a task, or
end a link or session between two nodes.

$P

232 VSE to OS/390 Migration Workbook

10.4.3.3 Control Commands

Note: There is no equivalent function in JES2. See 10.1.1.4, “Printer Forms
Alignment via PSETUP” on page 208.

Table 26. Control Commands

POWER
Command
Code

PWR
Short
Form

Function JES2
Command
Verb

PACCOUNT J Save account file records. (SMF)

PBRDCST B Transmit a message. $DM, $M

PINQUIRE I Display the status of a BSC line, SNA logical unit,
or a node.

$D U,...
$D Node

PLOAD Load a network definition table. $T Node

PRESET Reset active jobs in a shared spooling
environment.

$E

PSETUP U Print a page layout. (see
Note)

PXMIT X Route commands to another node. $G $N

10.4.3.4 NJE Operator Commands
This section is a summary of NJE operator commands.

Network Management

The following tables provide a general reference of the operator commands
available on the various systems. Because of fundamental differences between
the systems, commands in the same row may not be identical. Refer to the
specific product operations guides listed above for details.

Table 27 (Page 1 of 2). Network Management Commands

Function POWER JES2

Start Lines N/A $SLNEnnn

Start Networking (BSC) S PNET,node,,line $SN,N=node

Enable VTAM ACB N/A $SLGNn

Start Networking (SNA) S PNET,node $SN,N=node

Start Transmitters PACT PNET,node,TRn $SLn.JTm,Ln.STm

Start Receivers PACT PNET,node,RVn $SLn.JRm,Ln.SRm

Drain Transmitters N PNET,node,TRn $PLn.JTm,Ln.STm

Drain Receivers N PNET,node,RVn $PLn.JRm,Ln.SRm

Drain Lines N/A $PLNEnnn

Stop Lines Immediately N/A $ELNEnnn

Cancel Line Activity F PNET,node $CLNEnn

Reset Lines N/A $ELNEn,LNEm,...

Stop Networking PPNET,node,EOJ $PLNEn,LNEm,...

Stop Networking
Immediately

PPNET,node $ELNEn,LNEm,...

Chapter 10. POWER and JES2 233

N/A = No available operator command

File Control

The following table shows the various operator commands that control jobs
(SYSIN or SYSOUT, ″files″ to RSCS) on the various systems. Note that there are
also global ($G..) commands for JES2 which can be used to control jobs on other
nodes.

Sending Commands and Messages

The following commands are available to system operators to send commands
and messages to other nodes.

Table 27 (Page 2 of 2). Network Management Commands

Function POWER JES2

Display Network
Connections

I ALL $DCONNECT, $DPATH

Display Nodal Attributes I NODE = node $DNODE

Alter Nodal Attributes PLOAD PNET,ndt $TNODE

Alter Route Tables PLOAD PNET,ndt $TNODE,SUBNET=,
$TCONNECT

Define Nodes DEFINE node $ADD NODE

Trace Line Problems S PNET,node,,,, TRACE $TR,ON,ID= + 4 + 5

Table 28. File Control Commands

Function POWER JES2

Display Network Queues PDISPLAY XMT $DQ,Q=XMT [node]
$DQ,R=

Reorder network Queues A XMT,job,PRI= $TJnnn,P= $TOJnnn,P=

Display Job Routing D RDR,job D LST,job $DJnnn $TOJnnn

Re-Route Jobs A XMT,job,NODE= $RXEQ,D=

Re-Route Output A XMT,job,NODE = $RALL,D=node
$TOJnn,D=

Hold Jobs and Output H XMT [,job] $HJnnn

Release Jobs and Output CH splid NOHOLD $AJnnn

Cancel Jobs and Output C XMIT [,job] $CJnnn, $PJnnn

Table 29. Sending Commands and Messages

Function POWER JES2

Send Message to Another
Node

B node,′msg ′ $DMNn,′msg ′

Send Message to
Interactive User

B node,user,′msg ′ N/A

Send Command to
Another System

X node,cmd $Nnnn;cmd

234 VSE to OS/390 Migration Workbook

Chapter 11. Advanced Function Printing and Print Services
Facility/MVS

11.1 Introducing PSF/MVS
Print Services Facility (PSF) is the Advanced Function printing (AFP)
printer-driver program for VSE and OS/390, as well as AIX, OS/2, VM and
OS/400.

PSF has similar capabilities in all environments, plus differences unique to the
operating system on which it is running. This chapter describes the differences
between the VSE and OS/390 environments.

11.1.1 Functional Comparison between PSF/VSE and PSF/MVS
PSF/MVS supports all the printers and functions supported by PSF/VSE. In fact,
you can regard PSF/MVS as a “super-set” of PSF/VSE. See AFP: Printer
Information, G544-3290 for details.

11.1.1.1 Printers Supported
Both PSF/VSE and PSF/MVS support the same channel-attached printers, and
SNA-attached network printers. In addition, PSF/MVS supports TCP/IP connected
printers. (These are not supported by VSE/PSF.)

11.1.1.2 Printer Features
All features supported by PSF/VSE, such as “N-up” printing and ACIF (AFP
Conversion and Indexing Facility) are also supported by PSF/MVS.

11.1.1.3 PSF/MVS Exclusives
The following features of PSF/MVS provide additional function:

• MVS Download to distribute output through PSF/6000 and AIX InfoPrint
Manager

• NetSpool to capture output from VTAM print applications

• Installation Exits for separator pages, record transmission, and resource
management

• Microfilm Printing7

• PSF-Direct printing to bypass JES spooling

11.1.2 Migration Effort
PSF/VSE and PSF/MVS have many common components and externals.
Therefore, the effort to migrate is minimal and consists of the following major
tasks:

7 Microfilm printing is enabled for Anacomp fi lm printing systems.

 Copyright IBM Corp. 1998 235

• 11.2, “Installing and Configuring PSF/MVS”

• 11.3, “Setting up AFP Resources” on page 240

• 11.3.4, “Migrating Print Applications” on page 241

• 11.4, “Understanding Operational Differences” on page 242

• 11.5, “Other Differences” on page 243

Other tasks are similar between the two platforms.

11.2 Installing and Configuring PSF/MVS
PSF/MVS is an optional feature of OS/390, and is already installed on your
SystemPac or part of your ServerPac. If you are already licensed for Print
Services Facility/MVS (PSF/MVS), 5695-040, you must explicitly enable it.

If you order the product with OS/390, the tailored IFAPRD00 member that IBM
ships with your order contains the required PRODUCT statements. Otherwise,
you must explicitly enable the licensed program when you run it with OS/390.

The following example shows the entry that you must include in the IFAPRDxx
parmlib member to enable PSF/MVS:

PRODUCT OWNER(′ IBM CORP′)
NAME(PSF/MVS)
ID(5695-040)
VERSION(*) RELEASE(*) MOD(*)
FEATURENAME(PSF/MVS)
STATE(ENABLED)

This should already be enabled with your ServerPac or SystemPac.

11.2.1 Defining Channel-attached Printers to MVS
This is similar to VSE. Use IOCP as described in Chapter 2 of the PSF/MVS
Systems Programmers Guide to define parallel or ESCON channel-attached
printers.

11.2.1.1 Attachment Options
PSF/MVS supports printers as system output devices for deferred printing
through JES2, or for direct printing under Direct Printer Services Subsystem
(DPSS). This way, the application program sends records directly to an attached
printer (or directly to PSF), bypassing the JES spool. See Chapter 8 in the
PSF/MVS Systems Programmers Guide for details.

11.2.2 Defining Network Printers

11.2.2.1 SNA-Attached Printers
This is similar to VSE. See Chapter 3 in the PSF/MVS Systems Programmers
Guide for details.

236 VSE to OS/390 Migration Workbook

11.2.2.2 TCP/IP Attached Printers
Unlike VSE, OS/390 also supports printing to TCP/IP connected printers.

There are several ways to print from PSF to LAN connected printers through
TCP/IP:

• IP PrintWay
• MVS/Download and PSF/6000 and InfoPrint Manager
• MVS/LANRES
• TCP/IP for MVS Network Print Facility
• Directly attach Network IPDS printers with IPDS cards, IP 4000 systems with

TCP/IP attachments

The IBM recommended method is through IP PrintWay, which is an optional
feature of OS/390 or feature of PSF/MVS.

See the IBM IP PrintWay Guide, S544-5379.

11.2.3 The PSF Startup Procedures
PSF/MVS runs partially within the JES2 address space (when using deferred
printing), and partly as a Functional Subsystem Application (FSA) in one or more
separate MVS address spaces.

See Chapter 7 ″Using Deferred-Printing Mode″ in the PSF/MVS Systems
Programmers Guide for sample initialization statements and startup procedures.

11.2.4 Defining Printers for PSF Printing
PSF driven printers, whether locally attached or network attached, must be
defined by JES2 PRT(nnnn) statements in the JES2 initialization deck. They can
also be added dynamically with the $ADD PRT(nnnn) command. See Chapter 7
“Using Deferred-Printing Mode” in the PSF/MVS Systems Programming Guide
and the JES2 Initialization and Tuning Reference for detailed descriptions of the
JES2 parameters.

Below is a simple example of the JES2 FSS and PRT statements from the
PSF/MVS Systems Programming Guide:

 FSS(FSS1) PROC=SAMPPROC, /* Procedure name to start FSA */
HASPFSSM=HASPFSSM /* Standard JES2 FSI Support Mod */

 PRT1 FSS=FSS1, /* Name of above FSS definition */
MODE=FSS,
PRMODE=(LINE,PAGE),
UNIT=20E,
CLASS=A,
UCS=0,
SEP=YES,
SEPDS=YES,
CKPTPAGE=100,
START=NO,
MARK=YES,
NPRO=99,
TRKCELL=YES

Chapter 11. Advanced Function Printing and Print Services Facility/MVS 237

11.2.5 FSS Procedure and PRINTDEV Statements
Below is the sample FSS proc shown in the PSF/MVS Systems Programming
Guide.

 //SAMPPROC PROC
 //STEP01 EXEC PGM=APSPPIEP,REGION=4096K,TIME=1440
 //STEPLIB DD DSN=PSF.LINKLIB,DISP=SHR
 //JOBHDR OUTPUT PAGEDEF=V06483, /* JOB HEADER PAGE */
 // FORMDEF=A10120,CHARS=GT12 /* FORMDEF: ALTERNATIVE BIN*/
 //JOBTLR OUTPUT PAGEDEF=V06483, /* JOB TRAILER PAGE */
 // FORMDEF=A10110,CHARS=GT12 /* FORMDEF: MAIN BIN */
 //DSHDR OUTPUT PAGEDEF=V06483, /* DATA SET SEPARATOR */
 // FORMDEF=A10110,CHARS=GT12 /* FORMDEF: MAIN BIN */
 //MSGDS OUTPUT PAGEDEF=A08682, /* MESSAGE DATA SET */
 // FORMDEF=A10110,CHARS=GT15 /* */
 //FONT01 DD DSN=SYS1.FONTLIB,DISP=SHR /* SYSTEM FONTS */
 // DD DSN=INST.FONTLIB,DISP=SHR /* INSTALLATION USER FONTS */
 //PSEG01 DD DSN=INST.PSEGLIB,DISP=SHR /* INSTALLATION PAGE SEGMENTS*/
 // DD DSN=SPEC.PSEGLIB,DISP=SHR /* SPECIAL PAGE SEGMENTS */
 //PSEG02 DD DSN=INST.PSEGLIB,DISP=SHR /* INSTALLATION PAGE SEGMENTS*/
 //OLAY01 DD DSN=INST.OVERLIB,DISP=SHR /* INSTALLATION OVERLAYS */
 //PDEF01 DD DSN=SYS1.PDEFLIB,DISP=SHR /* SYSTEM PAGE DEFINITIONS */
 // DD DSN=INST.PDEFLIB,DISP=SHR /* INSTALLATION PAGE DEFS */
 //FDEF01 DD DSN=SYS1.FDEFLIB,DISP=SHR /* SYSTEM FORM DEFINITIONS */
 // DD DSN=INST.FDEFLIB,DISP=SHR /* INSTALLATION FORM DEFS */
 //PRT1 CNTL
 //PRT1 PRINTDEV FONTDD=*.FONT01, /* FONT LIBRARY DD */
 // OVLYDD=*.OLAY01, /* OVERLAY LIBRARY DD */
 // PSEGDD=*.PSEG01, /* SEGMENT LIBRARY DD */
 // PDEFDD=*.PDEF01, /* PAGEDEF LIBRARY DD */
 // FDEFDD=*.FDEF01, /* FORMDEF LIBRARY DD */
 // JOBHDR=*.JOBHDR, /* JOB HEADER SEPARATOR OUTPUT */
 // JOBTRLR=*.JOBTLR, /* JOB TRAILER SEPARATOR OUTPUT */
 // DSHDR=*.DSHDR, /* DATA SET HEADER SEPARATOR */
 // MESSAGE=*.MSGDS, /* MESSAGE DATA SET OUTPUT */
 // BUFNO=5, /* NUMBER OF WRITE DATA BUFFERS */
// PAGEDEF=A08682, /* DEVICE PAGEDEF DEFAULT */
// FORMDEF=A10110, /* DEVICE FORMDEF DEFAULT */
 // CHARS=GT12, /* DEFAULT FONT */
// PIMSG=(YES,16), /* ACCUMULATE DATA SET MESSAGES */
// DATACK=UNBLOCK, /* UNBLOCK DATA CHECKS */
 // TRACE=NO, /* BUILD INTERNAL TRACE */
 // SETUP=FORMS /* SETUP MESSAGE */
 //PRT1 ENDCNTL

11.2.5.1 Comparison of PRINTDEV Statement Parameters
In PSF/VSE and PSF/MVS, the PRINTDEV statement is part of the PSF startup job
which defines the AFP printing environment and default print attributes. (In
OS/390, the PRINTDEV statement is actually a JCL statement with ″//″ in columns
1 and 2.) Many of these parameters can also be specified or overridden on the
JES2 PRT(nnnnn) initialization statement or on the user′s // OUTPUT statement.

Most PRINTDEV parameters are supported identically between PSF/VSE and
PSF/MVS. Exceptions are listed in the table below.

238 VSE to OS/390 Migration Workbook

Table 30. PRINTDEV Parameter Comparison

PSF/VSE
PRINTDEF
Parameter

OS/390 Equivalent Parameter Description and Comment

ASA (not necessary) ASA control records do not need
conversion

CKPTPAGE JES2 parm:
 PRT(nnnn) CKPTPAGE

Number of pages to be printed before
a checkpoint is taken.

FONTPR PSF APSUX07 Exit
 (Resource management exit)

Whether font pruning will occur.

JSEPS JES2 parm:
 PRT(nnnn) SEP=

Use PSF exits APSUX01, -02, -03 for
additional controls

LOGDEST JES2 parm:
 PRT(nnnn) Routecde=

One to four logical destination names
used to select output from spool

MESSAGE
=(pagede f ,

formdef)

PSF PRINTDEV statement:
 MESSAGE=*.name

Name points to an // OUTPUT
statement for Page and Form
definit ions for Messages

MRKFRM JES2 parm:
 PRT(nnnn) MARK=

Marking of the separator pages.

NOTIFY (No equivalent) Whether PSF notifies the operator of
pr int errors

N P R O = n n n JES2 parm:
 PRT(nnnn) NPRO=ssss

Number of seconds before a
nonprocess runout

OUTFONTS (no parameter) Use PSF exit APSUX07 to activate
outline fonts.

RESCBUFS (not necessary) PSF/MVS loads resources a buffer at
a time.

RESOURCE (no parameter) Use PSF exit APSUX07 to keep or
delete resources.

SEPPAGE PSF PRINTDEV statement:
 JOBHDR=, and JOBTRLR=

Names of the page and form definition
for separator pages are specified on
an // OUTPUT statement in the PSF
startup proc.

UNIT JES2 parm:
 PRT(nnnn) UNIT=/ccua

Physical unit address for locally
attached printer.

Chapter 11. Advanced Function Printing and Print Services Facility/MVS 239

11.3 Setting up AFP Resources
PSF/MVS supports resources in the system libraries defined in the PRINTDEV
statement, and dynamically on a per-job basis via the USERLIB JCL statement.

11.3.1 Migrating Resources from VSE to OS/390

11.3.1.1 Defining Resources
If you have the source definition files for these resources, you can use the same
process to define them on OS/390.

The same utilities are used on OS/390 as on VSE to define resources: PPFA for
PAGEDEFs and FORMDEFs, and OGL for Overlays. Page Segments (PSEGs) can
be created by GDDM or other licensed programs. See AFP Application
Programming Interface: Programming Guide and Reference, S544-3872 for more
information.

DCF (Script) is also supported in both environments.

11.3.1.2 Without the Source
If you don′ t have the source definition files (and can′ t recreate them) then you
will have to use a tool to migrate them (″Mass Migration″).

There are some tools available from the IBM Printing Systems on their FTP site
to help you convert VSE resources to MVS:

VSERES REXX exec to convert multiple VSE LIBR PUNCH phases to AFP
resources

RESPUNCH Assembly program to extract an AFP resource from VSE and create
an input file and JCL for RESMAKE

RESMAKE Assembly program to create an AFP resource in the MVS system
from RESPUNCH

VSEREBLK PC and VSE tools for editing/creating resources on workstations
and transferring them to VSE

APTRCONV Convert MVS resource back to VSE (shipped as part of PSF/MVS)

All of the resources for a specific print job can be extracted into a sequential
(RECFM=VBM) Resource Object file using ACIF in VSE. ACIF will also create a
printable MO:DCA (LIST3820) file from linedata using a PAGEDEF, exactly as PSF
would do.

The Resource Object can also be concatenated to the front of a print job for any
PSF or converted to a PDS (or sequential files in VM) using the FLAT2PDS exec.
See 11.6.5, “Tools” on page 244 for the Internet location.

11.3.2 Remote-Resident Resources
APTRMARK (VSE) and APSRMARK (MVS) differ in a subtle, but important way:
Resources such as fonts that are shipped with PSF/VSE are ″marked″ with an
″object origin identifier triplet″ for VSE. Use the APSRMARK utility to mark
resources that will be printer-resident.

If you move resources marked with the VSE program APTRMARK to an MVS
system, PSF/MVS will not accept them for printer-residency. You must run the

240 VSE to OS/390 Migration Workbook

PSF/MVS utility APSRMARK against these ported VSE resources in order for
PSF/MVS to consider these resources ′marked ′ for printer residency. (Printer
resident fonts shipped with PSF/MVS are already ′marked ′ with the APSRMARK
program.)

11.3.3 Transferring Print Streams - VSE and OS/390 Coexistence
You can use NJE to transmit AFPDS (also known as LIST3820 or MO:DCA) files
from VSE to OS/390 or vice versa. Print files created on VSE should print on
PSF/MVS, and vice versa. See some of above for exchanging files between VSE
and MVS.

Sequential print files can also be downloaded to a workstation from POWER
using the IND$FILE protocol. MO:DCA (AFP) files should be transferred as binary
files. Mixed-mode and line data should usually be transferred BINARY CRLF
because record lengths are not appended. Note that POWER will change ANSI
carriage control to machine.

PSF/VSE, PSF/MVS and PSF/VM include the AFP Toolkit, an API used to create
AFP documents. A more advanced version is available for OS/2, AIX and MVS
called ″AFP ToolBox.″

11.3.4 Migrating Print Applications
In general, the OS/390 Application Programmer has an easier job defining and
using AFP resources than his VSE counterpart. See the PSF/MVS: Application
Programming Guide, S544-3673 for details.

11.3.4.1 JCL and JECL Differences
All the AFP parameters on the VSE * $$ LST statement are fully supported on the
OS/390 // DD or // OUTPUT statements.

11.3.4.2 Printing from TSO
The OUTDES (TSO/E) statement also has all the parameters available on the VSE
APTZPARM macro.

11.3.4.3 Assembler Programming Interfaces
In OS/390, it is a lot easier to specify AFP attributes. Much of the VSE coding for
print file attributes, while easily done in MVS, is also unnecessary. JCL SYSOUT
and OUTPUT statements provide all the functions. Features such as FREE and
SPIN may eliminate much of the need for special coding.

VSE Printer PARM Macro

In VSE, the APTZPARM macro is used to create library members for a specific
set of attributes. These members ′ names are referenced in the $$ LST
statement. All parameters on the APTZPARM macro are available on the
OUTDES macro in OS/390:

CHARS CKPTPAG
DATACK FORMDEF
FORMS PAGEDEF
PIMSG PRMODE
TRC

In OS/390, you can use the PSF writer procedure to provide the defaults.

Chapter 11. Advanced Function Printing and Print Services Facility/MVS 241

OS/390 Dynamic Allocation and Output Descriptor Macros

Traditional SYSOUT attributes can be specified on the DYNALLOC macro. AFP
attributes can be specified on the OUTDES macro.

11.3.4.4 High Level Language Programming Interfaces

COBOL Applications

Creating AFP in COBOL is essentially the same between MVS and VSE. VSE
code will run in MVS unchanged. MVS coding will require changes to FDs and
File-Control moving to VSE due to the lack of the ability to specify DCB attributes
in VSE JCL. See the AFPREBLK program in vsereblk on the Web site for an
example of COBOL that runs in both environments. See also above the AFP
Toolkit API, which supports COBOL and PL/I.

PL/I

Subject to the same cautions as COBOL, PL/I can also be used for manipulating
AFP output.

REXX

In OS/390, REXX does not have the I/O limitations it does in VSE. There are
many REXX examples on the Web site.

11.4 Understanding Operational Differences
Similar to the POWER commands in VSE, JES2 commands are used to control
PSF printing in OS/390.

11.4.1 Starting and Stopping PSF
There are no PSF/MVS-specific commands. PSF/MVS is automatically started
and stopped as a result of JES2 $S PRT and $P PRT commands. Changes to the
printer setup attributes and selection criteria are also controlled through the
JES2 $TPTR commands.

11.4.2 Command Comparison
Note that VSE/POWER command objects (“devname”) are the names on the
PRINTDEV statement in the PSF startup JOB, whereas MVS/JES2 command
objects (“nnnn”) are printer numbers defined to JES2 via the PRT(nnnn)
statements.

Table 31 (Page 1 of 2). VSE - OS/390 Command Comparison

VSE or POWER Command JES2 Command Comment

POWER Command

PSTART devname
[,classes]
[,PARM=. .]

$S PRTnnnn
$T PRTnnnn,CL=q
$T PRTnnnn,R=dest

Start the printer
 - Change SYSOUT Class selected
 - Change destinations selected

242 VSE to OS/390 Migration Workbook

Table 31 (Page 2 of 2). VSE - OS/390 Command Comparison

VSE or POWER Command JES2 Command Comment

PSTOP devname
[,EOJ |

 RESTART |
 FORCE.]

$P PRTnnnn
$I PRTnnnn
F FSSx,FORCE,PRTnnnn

Drain the printer
 - wait for current job to finish
 - interrupt current job, restart from ckpt
 - Only use if nothing else works

PXMIT devname
[, C L A S S =]
[,LOGDEST=.]

$T PRTnnnn
[,CLass=]
[,Routecde=]

Change printer selection criteria
 - SYSOUT Classes
 - Route codes (Logical destinations)

PFLUSH devname
[,HOLD]

$C PRTnnnn
$E PRTnnnn

Cancel output on printer
 - Restart output on printer

PRESTART devname
[,count]

$B PRTnnnn,pages
$F PRTnnnn,pages

Backspace printer
Forward-space printer

PGO devname $S PRTnnnn Restart printer after setup or interruption

VSE Partition Command

TRACE devname $T PRTnnnn,TRace=Y
$S TRACE(nn)

Enable printer for tracing
Activate tracing: nn = 11, 12, 14 & 15

TERM devname $P PRTnnnn
$C PRTnnnn

Drain printer and then
 Cancel output on printer

TRAP devname (Use MVS SLIP)

IGNORE devname $T PRTnnnn,TRace=N Turn off tracing.

SET F O R M D E F =
PAGEDEF=

- Use PSF Exit APSUX07

SET J S E P S = $T PRTnnnn,SEP= (must restart FSA after $T)
or use PSF Exit APSUX01, -02, -03

11.5 Other Differences

11.5.1 Performance
The same factors affecting performance in VSE also apply in OS/390. The speed
of the printer, complexity of the output stream, transmission speeds, VTAM and
NCP parameters, host and printer resources all figure into the performance of
the printing.

11.5.2 Installation Exits
PSF/VSE has no installation exits. PSF/MVS provides installation exits for your
use in coding and installing modifications to PSF functions. For example, with
these exits, you can:

• Create your own separator pages, or modify separator-page formats
supplied by PSF

• Modify, add, or suppress output records

• Modify system management facilities (SMF) type 6 records

• Inspect, redirect, or suppress PSF messages

• Manage resources

See Chapter 17 ″Using Installation Exits″ in the PSF/MVS Systems Programmers
Guide, especially the section “Do′s and Don′ ts” at the front of that chapter.

Chapter 11. Advanced Function Printing and Print Services Facility/MVS 243

11.5.3 Accounting
PSF/VSE uses the POWER ACCOUNT=AFP (or =ALL) parameter to capture
accounting information about printing through PSF.

In OS/390, this data is recorded by SMF in the Type 6 records written by PSF.

11.6 References

11.6.1 PSF/VSE Publications
• VSE/ESA Program and Workstation Guide, SC33-6509 (moving VSE files)

11.6.2 PSF/MVS Publications
• PSF/MVS: Messages and Codes, S544-3675

• PSF/MVS: Diagnosis Guide and Reference, G544-5462

• PSF/MVS: Application Programming Guide, S544-3673

• PSF/MVS: MVS Download Guide, G544-5294

• PSF/MVS: System Programming Guide, S544-3672

• AFP: Printer Information, G544-3290

11.6.3 Redbooks
• PSF/VSE Application Programming Guide, S544-3666

• AFP Printing in a Cross-System Environment, GG24-3765

11.6.4 Other Sources
See the IBM Printing Systems Company Web Site at
http://www.printers.ibm.com/ . The “Software Solutions” directory contains many
documents including the following PSF product descriptions:

• PSF/VSE 2.2 New Functions and Enhancements by Dave Pilcher

• PSF/MVS 2.2 New Functions and Enhancements by Randy Deaver

11.6.5 Tools

11.6.5.1 PSF Supplied Utilities
APTRCONV can be used to transmit resources from MVS and VM to VSE.
(Shipped with PSF/MVS and PSF/VM.)

11.6.5.2 DITTO
See Chapter 20, “DITTO” on page 381.

11.6.5.3 Other Utilities
See Chapter 29, “Orientation for Utilities” on page 455.

244 VSE to OS/390 Migration Workbook

11.6.5.4 Internet Locations
The IBM Printing Systems Company Web Site at http://www.printers.ibm.com/
contains a “Tools” directory along with product support, software solutions and
so on.

Specifically, the following tools are available from the

http://www.printers.ibm.com/tools.html site or FTP from
ftp://ftp.software.ibm.com/printers/tools/vseres/ .

• resmake.assemble

− MVS program to create an AFP resource from the RESPUNCH program.

• respunch.assemble

− VSE program to send AFP resource to MVS system via NJE as a punch
file

• vseres.exec

− REXX EXEC to convert VSE LIBR PUNCH phases to AFP resources

• vseres.txt

− file describing these tools

• vseres.zip

− IP package of all the above files for downloading to your PC.

11.6.6 Services
There are many services available to help you migrate your AFP applications
from VSE to OS/390. See the IBM Printing Company Services Web page at

http://www.printers.ibm.com/asg.html/ .

Chapter 11. Advanced Function Printing and Print Services Facility/MVS 245

246 VSE to OS/390 Migration Workbook

Part 3. Converting VSE Languages to OS/390 Languages

 Copyright IBM Corp. 1998 247

248 VSE to OS/390 Migration Workbook

Chapter 12. COBOL

12.1 Introduction
This chapter introduces IBM COBOL for OS/390 and VM (program number
5648-A25), which is the COBOL compiler available with OS/390. It also outlines
the differences between the three COBOL compilers that are available on VSE
and COBOL for OS/390 and VM.

Various strategies for converting your VSE COBOL applications to OS/390 are
considered. These strategies depend on the COBOL compiler you use on your
VSE system.

The three COBOL compilers available on VSE are:

DOS/VS COBOL program number 5746-CB1

VS COBOL II program number 5668-958

COBOL for VSE/ESA program number 5686-068

In addition, methods of solving problems, which can arise during a VSE to
OS/390 conversion of COBOL programs, are considered.

The information presented in this chapter is not sufficient by itself to carry out a
successful conversion from COBOL under VSE to COBOL for OS/390 and VM.
You should study carefully the publications referred to in Table 32 on page 252
for more information. This chapter is intended to draw attention to the more
obvious problems that can arise in such a conversion.

For information on which COBOL runs on which host operating system, see
Table 34 on page 351.

12.1.1 General Comments on COBOL for OS/390 and VM
COBOL for OS/390 and VM is the COBOL compiler for your OS/390 system.
COBOL for OS/390 and VM enhances the COBOL object-oriented support for
OS/390 that was introduced in IBM COBOL for MVS & VM. COBOL for OS/390
and VM is based on IBM COBOL for MVS & VM, and includes such features as
COBOL ANSI 85 Standard Language Support, intrinsic functions, Year 2000
Support, interlanguage communications, and the mainframe interactive debug
tool full-function offering.

COBOL for OS/390 and VM uses Language Environment as its run-time
environment. Language Environment provides common services and
language-specific routines in a single run-time environment for C, C++,
COBOL, FORTRAN, and PL/I.

If you order the Full-Function feature of COBOL for OS/390 and VM, you receive
the IBM Debug Tool along with the compiler. This debugging component
provides both interactive and batch debugging capabilities on the host.

 Copyright IBM Corp. 1998 249

12.1.2 Comparison of IBM COBOL Compilers

Figure 18. Comparison of IBM COBOLs

DLL Support
Extensions for:

Object-Oriented COBOL
C Interoperabi l i ty

Intrinsic Functions
Amendments to ′85 Std

Support for:
Language Environment
Debug Tool

Intrinsic Functions
Amendments to ′85 Std

Support for:
Language Environment
Debug Tool

COBOL 85 Standard
No Intrinsic Functions

Structured Programming
DBCS Support
National Language
Improved CICS Interface
31-bit Addressing
Reentrancy, Fast Sort
Optimizer, SAA Flagging
Interactive Debugging

(Full-screen mode)

COBOL 85 Standard

Structured Programming
DBCS Support
National Language
Improved CICS Interface
31-bit Addressing
Reentrancy, Fast Sort
Optimizer, SAA Flagging
Interactive Debugging

(Full-screen mode)

COBOL 85 Standard

Structured Programming
DBCS Support
National Language
Improved CICS Interface
31-bit Addressing
Reentrancy, Fast Sort
Optimizer, SAA Flagging
Interactive Debugging

(Full-screen mode)

COBOL 74 Standard
74 Std FIPS Flagging

Batch Debugging

COBOL 74 Compatibility
85 STD FIPS Flagging
Dynamic Loading
Batch Debugging

COBOL 74 Compatibility
85 STD FIPS Flagging
Dynamic Loading
Batch Debugging
Interactive Debugging

(Line Mode)

COBOL 74 Compatibility
85 STD FIPS Flagging
Dynamic Loading
Batch Debugging
Interactive Debugging

(Line Mode)

DOS/VS COBOL VS COBOL II COBOL for VSE/ESA COBOL for OS/390 & VM

COBOL for VSE/ESA is source-compatible with COBOL for OS/390 and VM. Your
COBOL for VSE/ESA programs should compile successfully without change
under COBOL for OS/390 and VM.

VS COBOL II programs may require some changes to enable them to compile
under COBOL for OS/390 and VM, but the changes will probably not be
extensive.

DOS/VS COBOL programs will require modification before they will compile
under COBOL for OS/390 and VM.

12.2 VSE to OS/390 Migration Considerations
The strategy you follow to migrate your COBOL applications to OS/390 depends
on the COBOL compiler you are using in VSE, and the version of VSE you are
running.

Up to and including VSE/ESA version 1 release 1, the only COBOL compiler
available was DOS/VS COBOL. The conversion aid, COBOL and CICS Command
Level Conversion Aid for VSE (CCCA/VSE) will not execute in this environment,
but CCCA/MVS can be used.

Under VSE/ESA version 1 releases 2 and 3, the COBOL compilers available are
DOS/VS COBOL and VS COBOL II; CCCA/VSE is available to aid the conversion
process.

250 VSE to OS/390 Migration Workbook

Under VSE/ESA version 1 release 4, and VSE/ESA version 2 and above, the
COBOL compilers available were DOS/VS COBOL, VS COBOL II, and COBOL for
VSE/ESA; CCCA/VSE is available to aid the conversion process. Now, only the
COBOL for VSE/ESA product is available.

If you are running DOS/VS COBOL, you will have to convert your code to a new
COBOL compiler level. Section 12.3, “Converting from DOS/VS COBOL” on
page 252 outlines the various options open to you, to convert from DOS/VS
COBOL.

Section 12.5, “Converting from VS COBOL II” on page 258 outlines some
differences between VS COBOL II and COBOL for OS/390 and VM that you need
to consider when migrating to COBOL for OS/390 and VM.

12.2.1 Migrating Object Code
If you are running VS COBOL II or COBOL for VSE/ESA, it is possible to transfer
your compiled object code from VSE to your OS/390 system, linkedit with OS/390
Language Environment and run it there.

If you intend to do this, there are two compiler options to consider that affect the
way your program runs under OS/390. These options are DECK and OUTDD.

DECK Use the DECK compiler option to produce an object program in a
format that is suitable for migration to OS/390. The object program
produced when the OBJECT compiler option is specified is not
suitable for migration from VSE to OS/390.

OUTDD When you run a COBOL for VSE/ESA program under OS/390, the
OUTDD compiler option is used to specify the name of the file for
run-time DISPLAY output.

If you do not specify the OUTDD compiler option, the default is
SYSOUT.

You should also check that there are no migration issues that you need to
consider, between Language Environment for VSE/ESA Version 1 Release 4, and
the release of Language Environment running in your OS/390 system. Language
Environment for VSE/ESA 1.4, is functionally equivalent to Language Environment
release 1.4 under OS/390. However, the release of Language Environment
running in your OS/390 system will probably be much higher than 1.4.

Appendix C of the COBOL for VSE/ESA Programming Guide has more
information on migrating COBOL for VSE/ESA object programs to OS/390.

12.2.2 Useful Publications
Table 32 on page 252 lists some publications that you may find useful when
planning your conversion. Even if you are planning to convert directly to COBOL
for OS/390 and VM, you may still find the COBOL for VSE/ESA Migration Guide
useful. Also, Taking Advantage of IBM Language Environment for VSE/ESA has
some useful tips on converting DOS/VS COBOL programs that also apply when
converting to COBOL for OS/390 and VM.

Chapter 12. COBOL 251

Table 32. Useful COBOL Publications

Publication Title
Form
Number

COBOL for OS/390 and VM Compiler and Run-Time Migration Guide GC26-4764

COBOL for OS/390 and VM Language Reference SC26-9046

COBOL for OS/390 and VM Programming Guide SC26-9049

COBOL for VSE/ESA Migration Guide GC26-8070

COBOL for VSE/ESA Programming Guide SC26-8072

OS/390 Language Environment Migration Guide SC28-1944

Taking Advantage of IBM Language Environment for VSE/ESA SG24-4798

12.3 Converting from DOS/VS COBOL
If you are converting from VSE/SP or VSE/ESA 1.1, then you are running DOS/VS
COBOL. In this case your source programs will have to be converted to COBOL
for OS/390 and VM. Consider using a conversion aid such as COBOL and CICS
Command Level Conversion Aid, running under OS/390, to help you.

If you are converting from VSE/ESA 1.2 or 1.3, then the conversion aid,
CCCA/VSE, is available. CCCA/VSE converts your source code from DOS/VS
COBOL to COBOL for VSE/ESA. COBOL for VSE/ESA source code is compatible
with COBOL for OS/390 and VM, so you can then transfer your code to OS/390
for compilation and linkediting.

If you are converting from VSE/ESA 1.4 or VSE/ESA 2, then you also have the
option to do a staged conversion. If you have COBOL for VSE/ESA and Language
Environment for VSE/ESA installed on your system, you can convert your
DOS/VS COBOL applications to COBOL for VSE/ESA and LE/VSE, and run them
in your VSE system. When you are satisfied that they are running correctly, you
can transfer the compiled object code to OS/390 for linkediting.

12.3.1 DOS/VS COBOL CICS Programs
OS/390 and COBOL for OS/390 and VM do not support CICS macro-level code. If
you have any programs written in macro-level CICS you must convert them to
command-level CICS.

COBOL for OS/390 and VM does not support BLL cells. If you use BLL cells in
your CICS programs, you must modify the programs to remove them. CCCA will
assist in making these changes.

When compiling DOS/VS COBOL CICS programs, the CICS translator did not
require any particular option to indicate that the program being translated was
DOS/VS COBOL. If you recompile your DOS/VS COBOL programs with COBOL
for VSE/ESA, you must specify the CICS translator option COBOL2. If you
recompile your DOS/VS COBOL programs under COBOL for OS/390 and VM, you
must supply one of the CICS translator options COBOL3 or OOCOBOL.

252 VSE to OS/390 Migration Workbook

12.3.2 DOS/VS COBOL Programs Containing REPORT WRITER Statements
COBOL for OS/390 and VM does not support the REPORT WRITER statements.
However, you can keep your REPORT WRITER statements by using the COBOL
Report Writer Precompiler prior to the new compiler. Alternatively, you can use
the COBOL Report Writer Precompiler to convert your REPORT WRITER
statements to COBOL code.

12.4 DOS/VS COBOL and COBOL for OS/390 and VM Language Differences
 Note

The following discussion on programming differences is relevant only to
differences between DOS/VS COBOL and COBOL for OS/390 and VM.

12.4.1 Common COBOL Coding Problems
The following are some common DOS/VS COBOL coding ′ mistakes′ that will not
work in OS/390. They may be logic errors or ′ invalid′ coding that DOS/VS
COBOL nevertheless allowed. They will probably not be converted or notated by
a conversion tool.

This is not meant to be an exhaustive list, but only some of the more common
problems that can arise. You should read carefully the relevant chapters of
either the COBOL for VSE/ESA Migration Guide or the COBOL for OS/390 and
VM Compiler and Run-Time Migration Guide to determine the DOS/VS COBOL
language elements that have changed or are no longer supported in COBOL for
OS/390 and VM.

• Referencing a file′s (or printer′s) I/O area before the file (or printer) is
OPENed will result in a system 0C4 abend in OS/390.

• Referencing a file′s (or printer′s) I/O area after the file (or printer) is CLOSEd
will result in a system 0C4 abend in OS/390.

• A ′ STOP RUN′ statement should not be embedded within a SORT procedure.
In OS/390, sorts must end before a STOP RUN can be requested.

• Level-88 statements that define non-numeric literals, when the literals are
not enclosed in quotes, are invalid.

For example:

05 PRIMARY-FIELD PIC XX.
88 FIELD1 VALUES ARE 60 61 62.
88 FIELD2 VALUES ARE 50 51 52.

Using COBOL for OS/390 and VM you will receive message:

IGYGR1239-S Level-88 ″VALUE″ literal ″61″ was not compatible with the
data category of the conditional variable. The literal was discarded.

The literal values (60 61 62 50 51 52) must be enclosed in quotes. DOS/VS
COBOL ignored the requirement for the quotes and processed the literals as
the programmer intended.

• Redefinitions of level-01 entries in the File Section are not allowed. When
more than one level-01 entry follows a file description entry, the redefinition
is implicit.

Chapter 12. COBOL 253

For example:

01 RECORD-A PIC X(4).
01 FILLER REDEFINES RECORD-A.

10 RECA-FIRST PIC 9(2).
10 RECA-SECND PIC 9(2).

Using COBOL for OS/390 and VM you will receive the message:

IGYDS1064-E A ″REDEFINES″ clause was found in the definition of a
level-01 item in the ″FILE SECTION″ . The clause was discarded.

This coding practice is documented as invalid in DOS/VS COBOL, but
DOS/VS COBOL did not flag the error.

• With DOS/VS COBOL you can specify the SELECT OPTIONAL clause, for an input
file that is to be accessed sequentially, and that may not be present each
time the program is executed. However, if you do specify OPTIONAL, it is
treated as a comment, since for DOS/VS COBOL this function is performed
by the ASSGN job control statement with the IGN parameter.

In COBOL for OS/390 and VM SELECT OPTIONAL is required for a file that may
not be present each time the program is executed, and which is opened in
input, I/O or extend mode.

Therefore, if you have made use of the OPTIONAL key word only as a
comment, you should remove it, as your program may produce unpredictable
results.

• DOS/VS COBOL will accept the ACCEPT identifier FROM SYSIPT statement
without the keyword FROM. COBOL for OS/390 and VM does not. It will
generate the message:

IGYPS2072-S ″SYSIPT″ was invalid. Skipped to the next verb, period or
procedure-name definition.

• The program name supplied in the PROGRAM-ID paragraph is a user-defined
word that identifies the program. If this name contains a ′ − ′ COBOL for
OS/390 and VM will converted it to 0. This was true of DOS/VS COBOL also,
but COBOL for OS/390 and VM generates a warning message, IGYDS0020-W,
for example,

IGYDS0020-W Name ″C2NAC-30″ was processed as ″C2NAC030″ .

• On returning to a COBOL calling program from an Assembler or other
language subroutine, data is left in register 15. In DOS/VS COBOL it did not
matter what this data was. In COBOL for OS/390 and VM the value in register
15 is passed to the RETURN-CODE special register. At the end of the program
the value in the RETURN-CODE special register is returned to OS/390 as a user
return code. If there was invalid data in register 15 on the return to the
calling program, (and therefore also in the RETURN-CODE special register), the
application may produce an unexpected return code from OS/390, or even a
dump.

This problem may be circumvented by adding the following statement to your
converted source code:

MOVE 0 TO RETURN-CODE

You cannot make this change in advance of your conversion as the
RETURN-CODE special register does not exist in DOS/VS COBOL.

254 VSE to OS/390 Migration Workbook

12.4.2 ENVIRONMENT DIVISION

12.4.2.1 CONFIGURATION SECTION - SPECIAL-NAMES Paragraph
UPSI Switch Processing

In DOS/VS COBOL and COBOL for OS/390 and VM, program switches can be
tested by use of a one-byte switch in the SPECIAL-NAMES paragraph, specified
as UPSI-0 through UPSI-7.

In VSE, the setting of these program switches at execution time is achieved by
the // UPSI job control statement.

In OS/390 the // UPSI job control statement is not available. Passing information
at execution time is achieved by the PARM field of the EXEC statement.

You set your program switches at execution time by using
PARM=′ / UPSI(nnnnnnnn)′ on your OS/390 EXEC statement.

The following example shows an implementation of program switch processing
using COBOL for OS/390 and VM in OS/390.

SPECIAL-NAMES.
SYSIN is ACCEPT-SYSIN
UPSI-0 IS CBL232B ON STATUS IS CBL232-BASE
UPSI-1 IS CBL232C ON STATUS IS CBL232-CURRENT.

//TEST EXEC PGM=PROG1,PARM=′ / UPSI(10000000)′

12.4.2.2 INPUT-OUTPUT SECTION - I-O-CONTROL
MULTIPLE-FILE Clause (Tapes)

In DOS/VS COBOL this clause allows the specification of the relative positions of
files on a multi-file unlabeled tape volume. In COBOL for OS/390 and VM it is
syntax checked but has no effect on the execution of the program. The function
is performed by the system through the LABEL parameter of the DD job control
statement.

APPLY Clauses

In DOS/VS COBOL, there are seven formats for the APPLY clause:

APPLY WRITE-ONLY
APPLY EXTENDED-SEARCH
APPLY WRITE-VERIFY
APPLY CYL-OVERFLOW
APPLY MASTER-INDEX
APPLY CYL-INDEX
APPLY CORE-INDEX

In COBOL for OS/390 and VM only APPLY WRITE-ONLY is available. However the
restrictions that applied to APPLY WRITE-ONLY in DOS/VS COBOL do not apply in
COBOL for OS/390 and VM.

Chapter 12. COBOL 255

ASSIGN Clause

The format of the ASSIGN clause has become simpler. COBOL for OS/390 and VM
may sometimes allow the DOS/VS COBOL format but may produce unexpected
results at run-time. Refer to the COBOL for OS/390 and VM Compiler and
Run-Time Migration Guide for more information.

12.4.3 DATA DIVISION - FILE DESCRIPTION (FD)
BLOCK CONTAINS

In OS/390 it is recommended that you specify BLOCK CONTAINS 0 RECORDS or BLOCK
CONTAINS 0 CHARACTERS in your program. For an output file, you specify the
required information on the DD statement. If you omit the blocking information for
an output file OS/390 will supply a System Determined Blocksize (SDB). For an
input file, the information is obtained from information in the catalog and VTOC.

If you specify BLOCK CONTAINS n RECORDS and also supply the information on the
DD statement, for an output file, the BLOCK CONTAINS n RECORDS takes precedence
over the DD statement information.

If you specify BLOCK CONTAINS n RECORDS for an input file, and the VTOC
information does not match, your program may ABEND or return a file status
code of 39.

LABEL RECORDS

DOS/VS COBOL accepts the LABEL RECORD IS data-name for non-sequential files.
COBOL for OS/390 and VM does not, therefore you must change your program to
remove LABEL RECORD IS data-name for these files.

LINAGE Clause and END-OF-PAGE Phrase

Under DOS/VS COBOL the END-OF-PAGE phrase may be specified without a
corresponding LINAGE clause in the file description entry.

Under COBOL for OS/390 and VM if the END-OF-PAGE phrase is specified then the
FD entry for the file must contain a LINAGE clause. Even then, you may find that
your printed page layout is not as you expect. You should use your own line
count logic in your program, making use of the LINAGE-COUNTER special register.

12.4.4 PROCEDURE DIVISION - Input/Output
CLOSE Statement for Tapes

Under DOS/VS COBOL the CLOSE file-name WITH LOCK statement closed and
locked the file, and UNLOADed the tape reel or cartridge. Under COBOL for
OS/390 and VM the file is closed and locked, but only rewound, not onloaded.

Similarly, for multi-volume tape files, DOS/VS COBOL rewinds and unloads each
volume at end-of-volume. COBOL for OS/390 and VM only rewinds the tape, it
does not unload it.

Note that this behavior may be different if you use a tape management system.

256 VSE to OS/390 Migration Workbook

12.4.4.1 Program Termination
There are three COBOL program termination statements:

• EXIT PROGRAM
• GOBACK
• STOP RUN

There are some differences in the effect of these statements between DOS/VS
COBOL and COBOL for OS/390 and VM. Table 33 gives a comparison of the
behavior of these COBOL program termination statements, for DOS/VS COBOL
and COBOL for OS/390 and VM.

Table 33. Action of COBOL Program Termination Statements

Statement DOS/VS COBOL COBOL for OS/390
and VM

EXIT PROGRAM Main
Program

No effect No effect

Subprogram Return to calling
program

Return to calling
program

GOBACK Main
program

Abnormal job
termination

Return to calling
program (may be
system and cause the
application to end)

Subprogram Return to calling
program

Return to calling
program

STOP RUN Main
program

Return to system and
cause end of job step
(EOJ)

Return to calling
program (may be
system and cause the
application to end)

Subprogram Return to system and
cause end of job step
(EOJ)

Return directly to
call ing program (may
be system and cause
the application to end)

12.4.5 File Handling Considerations

This section discusses some of the differences in file processing between
DOS/VS COBOL and COBOL for OS/390 and VM.

12.4.5.1 File Status Codes
Many of the file status codes returned from file processing differ between
DOS/VS COBOL and COBOL for OS/390 and VM. These differences and changes
are summarized in the COBOL for VSE/ESA Migration Guide and the COBOL for
OS/390 and VM Compiler and Run-Time Migration Guide. You should review the
relevant sections of these publications carefully.

In particular, in the case of VSAM files, you will now need to refer to the VSAM
feedback codes as well as the file status code, to determine the exact nature of
the reported condition.

Chapter 12. COBOL 257

12.4.5.2 File Attribute Mismatches
DOS/VS COBOL file open processing does not always check that the attributes of
the file definition in your program exactly match the file attributes of the physical
file (for example, as defined for a VSAM file in the LISTCAT). To conform with
ANSI 85 requirements, COBOL for OS/390 and VM open processing carries out
many detailed checks for consistency between the program and actual file
definition before opening the file. This can result in file open failures in COBOL
for OS/390 and VM for files that were opened successfully in DOS/VS COBOL.
You should add a file status check to your code following each OPEN statement.
If these subsequently indicate problems you can amend your program
accordingly.

12.4.5.3 ISAM
DOS/VS COBOL supports the processing of ISAM files, however COBOL for
OS/390 and VM does not. Any ISAM files should be converted to VSAM Keyed
Sequential Data Sets (VSAM/KSDS). CCCA/VSE can automatically convert the
file definition and I/O statements from ISAM to VSAM/KSDS.

12.5 Converting from VS COBOL II
If your VS COBOL II source is VS COBOL II Release 4 and has been compiled
with the NOCMPR2 option, then it is upward-compatible with COBOL for
VSE/ESA, which, as we said earlier, is compatible with COBOL for OS/390 and
VM. You can transfer your source code to your OS/390 system and recompile
and linkedit it.

If you prefer, you can transfer the compiled object code to OS/390 for linkediting.
See 12.2, “VSE to OS/390 Migration Considerations” on page 250.

However, if you are using LE/VSE callable services, you may need to change
their names. Callable services which have names in LE/VSE beginning with
CEE5.... are named CEE3.... in OS/390 Language Environment. These names will
require changing and these programs will have to be recompiled in OS/390. You
will not be able to transfer the compiled object code for these programs to
OS/390. Refer to Chapter 17, “Language Environment (LE)” on page 351 for
more information about migrating your run-time to Language Environment.

There are two new reserved words in COBOL for VSE/ESA, which you may need
to consider in your conversion. They are:

• PROCEDURE-POINTER
• FUNCTION

If your VS COBOL II source is VS COBOL II Release 3.2, then, as well as the two
reserved words mentioned above, there are three minor COBOL ANSI 85
Standard interpretation changes. These Standard interpretation changes affect
the following language elements:

• REPLACE and Comment Lines
• Precedence of USE Procedures
• Reference Modification of a Variable-Length Group

258 VSE to OS/390 Migration Workbook

12.5.1 VS COBOL II CICS Programs
COBOL for OS/390 and VM and OS/390 do not support CICS macro-level
programs. If you have any programs written in macro-level CICS you must
convert them to command-level CICS.

If you need to change your programs to cater for these differences, you can do
so before you migrate them to OS/390. Then, if you prefer, you can transfer the
compiled object code to OS/390 for linkediting. See 12.2, “VSE to OS/390
Migration Considerations” on page 250.

12.6 Converting from COBOL for VSE/ESA
If you are converting from COBOL for VSE/ESA then, with one exception, your
source will be compatible with COBOL for OS/390 and VM. You can transfer your
source code to your OS/390 system, recompile, and linkedit.

If you prefer, you can transfer the compiled object code to OS/390 for linkediting.
See 12.2, “VSE to OS/390 Migration Considerations” on page 250.

The exception is that if you are using LE/VSE callable services you may need to
change their names. Callable services which have names in LE/VSE beginning
with CEE5.... are named CEE3.... in OS/390 Language Environment. These names
will require changing and these programs will have to be recompiled in OS/390.
You will not be able to transfer the compiled object code for these programs to
OS/390. Refer to Chapter 17, “Language Environment (LE)” on page 351 for
more information about migrating your run-time to Language Environment.

12.7 Some Conversion Considerations for all VSE COBOL Compilers
This section discusses some differences in the behavior of COBOL programs
under VSE and COBOL for OS/390 and VM.

12.7.1 VSAM
Under VSE, if a VSAM file is not closed at the end of a program for any reason,
(for example, no CLOSE statement in the program, or the program ABENDs), VSE
will attempt an automatic close of the file. In this case, when the file is next
OPENed, the file status code will be 0.

Under OS/390, if a file is not closed at the end of a program, the next time it is
OPENed, OS/390 will perform an implicit VERIFY on the file, and successfully
open the file. However, the file status code returned in this situation will not be 0,
but 97.

Therefore, if your programs check for a successful OPEN, based on a file status
code of 0, you should also check for a file status code of 97.

12.7.2 DISPLAY Statement
Under VSE, output from DISPLAY statements is interspersed with output from
WRITE statements, and your programs may be coded to take account of this.

This does not happen in OS/390, as OS/390 has the ability to produce multiple
print files and you should make use of this facility.

Chapter 12. COBOL 259

12.8 Compiler Options
This section discusses some of the compiler option considerations when
converting from the various VSE COBOL compilers to COBOL for OS/390 and
VM.

DOS/VS COBOL has many compiler options that are not available with COBOL
for OS/390 and VM. Compiler options with VS COBOL II or COBOL for VSE/ESA
are generally the same as COBOL for OS/390 and VM. If you are converting VS
COBOL II programs, the most important difference to be aware of is the
RES/NORES option.

12.8.1 RES/NORES
One compiler option is provided with VS COBOL II that is not available with
either DOS/VS COBOL or COBOL for OS/390 and VM. This is RES/NORES.

Specifying RES in a VS COBOL II program causes the COBOL run-time
subroutines to be loaded dynamically at run-time. NORES causes the run-time
subroutines to be link-edited with the program.

DOS/VS COBOL behaves in a manner equivalent to specifying NORES with VS
COBOL II. All run-time subroutines are link-edited with the program.

COBOL for OS/390 and VM behaves in a manner equivalent to specifying RES
with VS COBOL II. The run-time is provided by Language Environment, and
run-time subroutines are loaded dynamically at run-time.

In your conversion you should be aware of this different behavior.

12.8.1.1 DOS/VS COBOL Compiler Options not Available with
COBOL for OS/390 and VM
Figure 19 on page 261 lists DOS/VS COBOL compiler options that are not
available with COBOL for OS/390 and VM, and gives the COBOL for OS/390 and
VM option you should use instead, if there is one. If you have used any of these
options in your DOS/VS COBOL program, you should remove or change them.

260 VSE to OS/390 Migration Workbook

Figure 19. Compiler Options Comparison DOS/VS COBOL and COBOL for OS/390 and
VM

DOS/VS COBOL Option COBOL for OS/390 and VM Equivalent (If Any)

B U F = n n n BUFSIZE(nnn)

CATALR/NOCATALR NAME/NONAME

CLIST/NOCLIST OFFSET/NOOFFSET

COUNT/NOCOUNT None

FLAGE/FLAGW FLAG(E)/FLAG(W)

FLOW/NOFLOW None

LANGLVL(1/2) None. COBOL for OS/390 and VM supports only the
COBOL 85 Standard and COBOL 74 Standard (if
using CMPR2 option) as implemented by VS COBOL
II release 2.

LVL=A|B |C |D |NOLVL None. COBOL ANSI 74 FIPS is not supported by
COBOL for OS/390 and VM.

MIGR/NOMIGR None. Not required by COBOL for OS/390 and VM.

P M A P = h None. Obsolete option.

SPACEn SPACE(n)

STATE/NOSTATE TEST

SUPMAP/NOSUPMAP COMPILE/NOCOMPILE

STXIT/NOSTXIT None. Function not required.

SXREF/NOSXREF XREF(SHORT)

SYMDMP/NOSYMDMP ABEND dumps and dynamic dumps are available
through Language Environment services. Symbolic
dumps are available using the TEST compiler option.

SYNTAX/CSYNTAX/NOSYNTAX COMPILE/NOCOMPILE

VERB/NOVERB LIST/NOLIST

VERBREF/NOVERBREF VBREF/NOVBREF

VERBSUM/NOVERBSUM VBREF/NOVBREF

DECK/NODECK(LISTER) None. The LISTER feature is not supported.

COPYPCH/NOCOPYPCH None. The LISTER feature is not supported.

LSTONLY/NOLSTONLY None. The LISTER feature is not supported.

PROC=1|2co l None. The LISTER feature is not supported.

12.8.1.2 Compiler Option Considerations for VS COBOL II
The VS COBOL II and COBOL for OS/390 and VM compile-time environments are
very similar. If you use the same compiler options that are specified in your
current VS COBOL II applications, some internal changes may take effect, but
basically the behavior is unchanged.

If you recompile your VS COBOL II applications with COBOL for OS/390 and VM
and change compiler option settings, you should understand the possible effects
on your applications. For information on compiler options with COBOL for OS/390
and VM see the COBOL for OS/390 and VM Programming Guide.

Figure 20 on page 262 lists the COBOL for OS/390 and VM compiler options that
have special relevance to programs converted from VS COBOL II.

Chapter 12. COBOL 261

Figure 20. Recommended COBOL for OS/390 and VM Compiler Options for Converted VS
COBOL II Programs

COBOL for OS/390 and
VM Option

Comments

PGMNAME(COMPAT) If compiling with COBOL for OS/390 and VM use this option to
ensure that COBOL for OS/390 and VM processes program
names in a similar manner as VS COBOL II.

RMODE(AUTO) Use RMODE(AUTO) or RMODE(24) for COBOL for OS/390 and
VM NORENT programs that pass data to programs running in
AMODE(24).

TEST The syntax of the TEST option is different in COBOL for OS/390
and VM than in VS COBOL II. The TEST option now has two
suboptions; instead of specifying TEST, you now can specify a
hook location and symbol-table location.
TEST without any suboptions gives TEST(ALL,SYM). For more
information on the TEST option, see COBOL for OS/390 and VM
Programming Guide.

WORD(NOOO) Use WORD(NOOO) if your existing programs use any of the
object-oriented reserved words. For a list of these words, see
Figure 26 on page 265.

Figure 21 on page 263 lists VS COBOL II compiler options that are not available
in COBOL for OS/390 and VM. In some cases the function of the VS COBOL II
option is mapped to a COBOL for OS/390 and VM option. This is described in the
comments column.

262 VSE to OS/390 Migration Workbook

Figure 21. Compiler Options Comparison VS COBOL II and COBOL for OS/390 and VM

VS COBOL II Option Comments

FDUMP/NOFDUMP COBOL for OS/390 and VM does not provide the FDUMP compiler
option. For existing applications, FDUMP is mapped to the COBOL
for OS/390 and VM compiler option TEST(SYM). This provides
equivalent function and more.
Language Environment generates a better formatted dump than VS
COBOL II, regardless of the FDUMP option. But the presence of
FDUMP enables Language Environment to include the symbolic
dump of information about data items in the formatted dump.
For information on how to obtain the Language Environment
formatted dump at abnormal termination, see Language Environment
Debugging Guide and Run-Time Messages.
If FDUMP is used, COBOL for OS/390 and VM issues the warning
message:

IGYOS4045-W The ″FDUMP″ option is not supported.
This specification was interpreted as ″TEST(NONE,SYM)″ .

If NOFDUMP is used, COBOL for OS/390 and VM issues the
message:

IGYOS4003-E Invalid option ″NOFDUMP″ was found and
discarded.

FLAGSAA COBOL for OS/390 and VM does not support the FLAGSAA option. If
FLAGSAA is specified, COBOL for OS/390 and VM issues the
message:

IGYOS4008-W The ″FLAGSAA″ compiler option was specified, but
is not supported. The option was discarded.

RES/NORES COBOL for OS/390 and VM does not provide the RES/NORES
compiler option. If RES is used, COBOL for OS/390 and VM issues
the message:

IGYOS4046-I The ″RESIDENT″ option specification is no longer
required. The resident runtime library support is always used.

If NORES is used, COBOL for OS/390 and VM issues the message:

IGYOS4047-W The ″NORESIDENT″ option is not supported.
The resident runtime library support is always used.

12.9 Reserved Words
This section discusses some of the reserved word considerations when
converting from the various VSE COBOL compilers to COBOL for OS/390 and
VM.

COBOL for OS/390 and VM has many reserved words that are not reserved with
DOS/VS COBOL. There are two additional reserved words that are not reserved
with VS COBOL II. There are additional reserved words in COBOL for OS/390
and VM for object-oriented COBOL that are not reserved in any VSE COBOL
compiler.

12.9.1 Reserved Word Considerations for DOS/VS COBOL
COBOL for OS/390 and VM has reserved words that are not reserved in DOS/VS
COBOL. They are listed in Figure 22 on page 264. If you used any of these
words in your DOS/VS COBOL programs, you will need to replace them.

Chapter 12. COBOL 263

ALPHABET END-COMPUTE FALSE OVERRIDE
ALPHABETIC-LOWER END-DELETE FUNCTION PACKED-DECIMAL
ALPHABETIC-UPPER END-DIVIDE GLOBAL PADDING
ALPHANUMERIC END-EVALUATE INHERITS PROCEDURE-POINTER
ALPHANUMERIC-EDITED END-IF INITIALIZE RECURSIVE
ANY END-INVOKE INVOKE REFERENCE
BINARY END-MULTIPLY KANJI REPLACE
CANCEL END-PERFORM LENGTH REPOSITORY
CLASS END-READ LINAGE-COUNTER RETURNING
CLASS-ID END-RETURN LOCAL-STORAGE SELF
COMMON END-REWRITE METACLASS SHIFT-IN
CONTENT END-SEARCH METHOD SHIFT-OUT
CONTINUE END-START METHOD-ID SORT-CONTROL
CONVERTING END-STRING NULL SORT-MESSAGE
DAY-OF-WEEK END-SUBTRACT NULLS STANDARD-2
DBCS END-UNSTRING NUMERIC-EDITED SUM
DISPLAY-1 END-WRITE OBJECT SUPER
EGCS EVALUATE ORDER TEST
END-ADD EXTERNAL OTHER TRUE
END-CALL

Figure 22. Reserved Words in COBOL for OS/390 and VM and not in DOS/VS COBOL

Some words which are not reserved in DOS/VS COBOL are COBOL ANSI 85
standard reserved words for a feature not supported by COBOL for OS/390 and
VM. If used in a program, it is recognized as a reserved word and flagged with a
severe message. These words are listed in Figure 23.

If you used any of these words in your DOS/VS COBOL programs, you will need
to replace them.

CD EMI PRINTING SUB-QUEUE-3
COMMUNICATION ENABLE PURGE TABLE
DESTINATION END-RECEIVE QUEUE TERMINAL
DISABLE ESI SUB-QUEUE-1 TEXT
EGI MESSAGE SUB-QUEUE-2

Figure 23. Reserved Words in COBOL for OS/390 and VM for Unsupported Features

The words listed in Figure 24 are COBOL for OS/390 and VM compiler directing
words. If they are used as a user-defined word, they will be flagged with a
severe message.

If you used these words in your DOS/VS COBOL programs, you will need to
replace them.

CBL TITLE

Figure 24. Compiler Directing Words in COBOL for OS/390 and VM

264 VSE to OS/390 Migration Workbook

12.9.2 Reserved Word Considerations for VS COBOL II and COBOL for
VSE/ESA

There are two reserved words in COBOL for OS/390 and VM that are not
reserved in VS COBOL II. These are shown in Figure 25. They are reserved in
COBOL for VSE/ESA.

FUNCTION PROCEDURE-POINTER

Figure 25. Reserved Words in COBOL for OS/390 and VM and not in VS COBOL II

The following words are reserved in COBOL for OS/390 and VM for the
object-oriented COBOL extensions. They are not reserved in VS COBOL II or
COBOL for VSE/ESA. Use the compiler option WORD(NOOO) if you are
recompiling VS COBOL II or COBOL for VSE/ESA programs under COBOL for
OS/390 and VM that use any of these words.

CLASS-ID LOCAL-STORAGE OBJECT RETURNING
END-INVOKE METACLASS OVERRIDE SELF
INHERITS METHOD RECURSIVE SUPER
INVOKE METHOD-ID REPOSITORY

Figure 26. Reserved Words in COBOL for OS/390 and VM for Object-Oriented COBOL
Extensions

12.10 Compiling and Running Your Converted COBOL Programs
Typically, job control procedures are used to compile, linkedit and run COBOL
for OS/390 and VM programs under OS/390. Eight procedures are supplied with
COBOL for OS/390 and VM to do this.

IGYWC Compile only.

IGYWCG Compile, load, and run. This is equivalent to the process of
′ compile, link and go′ in VSE.

IGYWCL Compile and linkedit.

IGYWCLG Compile, linkedit, and run.

IGYWCPL Compile, prelink, and linkedit.

IGYWCPLG Compile, prelink, linkedit and run.

IGYWPL Prelink and linkedit.

IGYWCPG Compile, prelink, load, and run.

The use of these procedures is described fully in the COBOL for OS/390 and VM
Programming Guide.

Chapter 12. COBOL 265

266 VSE to OS/390 Migration Workbook

Chapter 13. Assembler

13.1 Assembler Products
In OS/390, the High-Level Assembler for MVS and VM Program Product
(5696-234) is required for system generation (SYSGEN) and maintenance
activities. It can also be used for application programming projects, and must be
used when assembler routines are designed for 31-bit addressing facilities. See
High-Level Assembler for MVS and VM General Information, GC26-4943 and
OS/390 MVS Extended Addressability Guide, GC28-1769 for more information on
this subject.

A Guide to Using MVS/XA Interface Facilities, SR21-1468 and SR21-1469, is
recommended for installations that wish to extend or customize system functions
provided by OS/390. The ″interface facilities″ described will use either exit or
macro instructions to provide customization.

 Recommendation

In converting assembler programs from VSE to MVS no attempt should be
made initially to use 31-bit programming techniques. The main objective
should be to get the programs ″converted to MVS programs as expediently
as possible″; that is, don′ t add new facilities (31-bit) at the outset. Once the
programs are converted and operate successfully in MVS, they could then be
reworked for 31-bit addressing if the need exists; for example, to address a
VSCR problem.

13.2 General Assembler Conversion Comments
One of the most challenging tasks in moving from VSE to MVS may be the
modification of application programs at the assembler language level. Coding at
the assembler level includes control program macros and user-written machine
language instructions. The machine language instructions are identical in both
systems. The control program (or supervisor) macros and input/output macros of
the systems are different, even though some have the same name. All base
register usage, supervisor macros, and input/output logic of VSE assembler
language programs must be checked for conformity to MVS conventions. A
one-for-one mechanical replacement is possible in many cases. The complexity
of the program and its use of supervisor functions is proportionate to the effort
required to convert the programs. Simple programs are usually easy to convert.

Registers are an important factor in performance. When a VSE program is to be
used under MVS, there may be mandatory changes in the use of registers
because of macro expansions. One way to handle this problem is to add
additional instructions to shift the MVS register contents to make them
correspond to the VSE register contents. However, this approach may cause
MVS to run slower because of unnecessary loading and storing of registers. The
alternative is to change the register usage within the program to conform to MVS
requirements, using the symbolic register notation through equates. Correct
register usage in complex programs prevents problems requiring extensive
programmer debugging effort.

 Copyright IBM Corp. 1998 267

The selection of a particular option of MVS may require redesigning the
application programs. In addition, a program logic change may also be forced by
attempting to simulate a VSE function under MVS. Examples of these possibilities
include multitasking, interrupt handling, and communication region accessing.

The input and output components of the linkage editors, the job control
language, and linkage edit control statements necessary to build program
structures are discussed in the publication DFSMS/MVS Program Management,
SC26-4916.

VSE assembler language programs that are changed to MVS must add an
initialization routine to meet MVS requirements. You should establish a standard
for the entire installation that can be simply inserted into the assembler
language source member before it is recompiled under MVS. For additional
information on the MVS services and macro coding details, refer to the following
publication:

• OS/390 MVS Programming: Assembler Services Reference, GC28-1910.

For Data Management programming macro information, refer to:

• DFSMS/MVS Using Data Sets, SC26-4922.

• DFSMS/MVS Macro Instructions For Data Sets, SC26-4913.

 Important

The macro functions and parameters described in this text may not be totally
up-to-date. Macro facilities change over time. New macros and macro
parameters become available with new releases of products. Therefore, you
should always reference the appropriate macro manuals (listed above) for
exact macro functions and applicable parameters. (Even though some
macros may not be up-to-date, the techniques illustrated here should still be
applicable.)

The next section highlights the services provided by the MVS supervisor and
relates them to comparable ones provided by VSE. Information on VSAM
macros is found in the section 13.2.5, “VSAM Macros” on page 290. Data
Management macro comparisons are addressed in the section 13.2.6, “Data
Management Macros” on page 292.

13.2.1 System Interface and Macros
The functions of the VSE system interfaces and macros and their MVS
equivalents are discussed in the following text.

MVS Register Conventions

Application program use of general purpose registers in MVS is restricted to
registers 2 through 12. (Registers 0, 1, 13, 14 and 15 are used for special
purposes by MVS - see next sections.) If VSE programs use other than
registers 2-12 for application purposes, program register assignments may
have to be changed.

268 VSE to OS/390 Migration Workbook

13.2.1.1 Initiation
Under VSE, main programs (those programs that are invoked by the operating
system directly) are not required to save any registers upon entry. VSE assembly
programs are not required to provide a save area unless that program invokes
(calls) another program. In MVS, all programs are executed as subroutines
including the program that is given control by the operating system. Therefore,
all programs that are changed to MVS must ensure the presence of an
initialization routine meeting MVS requirements. This initialization routine must
do the following:

• Store all registers, except register 13, in the system or calling program save
area (STM 14,12,12(13))

• Establish a base register - it must not be register 13 - to point to the start of
this program.

• Provide a new save area in this program.

• Store the address of the calling (may be MVS) program′s save area in the
called program ′s save area (R13 + 4 - backward chain)

• Set up register 13 to point to this program′s save area if this program is to
call subsequent subroutines or issue any system macros.

• Store register 13 in the calling program ′s save area + 8 (forward chain)

This routine can be standard code established for the entire installation; it can
then easily be inserted in the front of each program.

Note: Register 13 should not be used for any function other than pointing to a
save area. For more information, refer to Figure 27 on page 270 and Figure 28
on page 271 for examples of this routine.

13.2.1.2 Termination
At job termination, VSE uses the EOJ macro which generates a supervisor call.
The VSE supervisor, which maintains control of its own registers, then branches
to the appropriate routine. Because this macro facility is not available under
MVS you must return to the control program at the end of job as follows:

 1. Restore the control program ′s registers to their status upon entering this
routine.

 2. Branch to the return address stored in register 14.

You may also accomplish this function by using the MVS ″RETURN″ macro. The
RETURN macro requires that Register 13 contains the address of the save area
in the program that you are returning to.

Register Conventions

MVS linkage register conventions, upon entry to a routine, are compatible to
those of VSE:

Reg. 13 Points to the calling program′s save area.
Reg. 14 Points to the return address in the calling program.
Reg. 15 Points to the entry point of this called program.
Reg. 0 and 1 Points to parameters or lists of parameters passed from the calling

program to this called program.

Chapter 13. Assembler 269

 PROGA START PROGB CSECT PROGC CSECT
BALR (VSE) (VSE)
USING . .
. . .
. ST 13,SAVEB+4 ST 13,SAVEC+4
. . .

Application Application Application
Program Program Program
Logic Logic Logic
. . .

LA 13,SAVEA LA 13,SAVEB .
CALL PROGB CALL PROGC .
EOJ(Return) Return(PROGA) Return(PROGB)

SAVEA DC 18F′ 0 ′ SAVEB DC 18F′ 0 ′ SAVEC DC 18F′ 0 ′
END END END

Figure 27. VSE Subroutine Linkage

These registers have additional meaning under MVS:

• If any unused registers are available, one of these should be substituted as a
base register or,

• The save area may be placed in front of the program code that is to be
based on register 13. Register 13 is then both pointing to a save area and
acting as the base register.

Save Areas

Under both operating systems, all programs must provide a save area before
calling another program. By convention, this save area should be 18 fullwords
and contain the general purpose registers, as well as save area chaining
pointers. The called program performs the storing of registers into the calling
program ′s save area. The first program to receive control from MVS is
responsible for saving the registers in the system-provided save area (address
passed in register 13).

In MVS, the called program should provide a save area regardless of whether it
calls additional subroutines. MVS Data Management functions, in certain
instances, store the calling routine′s registers into a save area whose address is

Register 1 The PARM field of the EXEC statement provides an external facility for
providing information to the program at job step execution time.
When control is passed to your program, register 1 contains the
address of a fullword on a fullword boundary. This fullword is the
starting address of a 102 byte area on a halfword boundary where 100
bytes of information can be entered in the PARM field. This is one
approach you can use to replace the VSE user communication region
routines; for example, setting the UPSI byte externally.

Register 15 Before returning to the calling program, you can load register 15 with
a return code. You can analyze this code by MVS job control
statements of a subsequent step to determine if the step is to be
executed or bypassed. You can substitute return code processing for
VSE logic which tests indicators set in the communication region by a
previous step of the job.

Register 13 Must point to a save area if any I/O or calls to subordinate programs
are performed. If, in the VSE version of the program, register 13 is
used as a base register, consider one of the following alternatives:

270 VSE to OS/390 Migration Workbook

contained in register 13. Therefore, you must specify a save area to receive the
registers.

PROGA START PROGB CSECT PROGC CSECT
(MVS) (MVS) (MVS)
. . .
. . .
STM 14,12,12(13) STM 14,12,12(13) STM 14,12,12(13)
ST 13,SAVEA+4 ST 13,SAVEB+4 ST 13,SAVEC+4
LA 11,SAVEA LA 11,SAVEB LA 11,SAVEC
ST 11,8(13) ST 11,8(13) ST 11,8(13)
LR 13,11 LR 13,11 LR 13,11
. . .
. . .

Application Application Application
Program Program Program
Logic Logic Logic

. . .

. . .
CALL PROGB CALL PROGC
L 13,4(,13) L 13,4(,13) L 13,4(,13)
Return (MVS) Return (PROGA) Return (PROGB)

SAVEA DC 18F′ 0 ′ SAVEB DC 18F′ 0 ′ SAVEC DC 18F′ 0 ′
. . .
END END END

Figure 28. MVS Subroutine Linkage

If a standard save area of 18 fullwords is reserved in the calling program, the
save area contains the following information at completion of the called
program ′s initialization logic.

Consider three programs using the concept of forward and backward chains with
standard linkage conventions. Under VSE, these could be three application
programs, while under MVS, the highest-level program that must be considered
is the MVS control program because it calls the MVS highest-level application
program.

Linkage Macros

CALL, SAVE, and RETURN macros are available under VSE and MVS. This set of
macros performs the general housekeeping required to maintain subroutine
conventions within the CSECTs of a simple program structure. In general, these
MVS macros provide additional functions not available in VSE. You can use the
VSE versions of these macros under MVS without any modification.

Word 1 Used by LE-compliant languages
Word 2 Address of the caller′s save area (the backward chain).
Word 3 Address of the save area of the called program (the forward chain).
Word 4 Register 14. Return address within the calling module.
Word 5 Register 15. Entry point address of called module.
Words 6-18 Registers 0 through 12, respectively, of the calling program.

Chapter 13. Assembler 271

VSE CALL Entrypoint ,(PARAMETER LIST)
(15)

MVS CALL Entrypoint ,(ADDRESS),VL
(15) ,ID=number

Call is used the same way in MVS as it is in VSE, except when it is used with the
LOAD macro. For a discussion of this difference, see the topic “LOAD Macro” on
page 277 in this section. In addition, if a variable number of parameters may be
passed, the VL keyword operand must be added. The parameters of the called
module should be checked for VSE and MVS differences. If differences are found,
make the necessary changes. See the following example.

VSE MVS

CALL SUBRTN1 CALL SUBRTN1
CALL SUBRIN2,(TAB,BK) CALL SUBRTN2,(TAB,BK),VL

 VSE SAVE (r1 ,r2)
 MVS SAVE (regl ,reg2) ,T ,identifier name

Under MVS, the SAVE macro causes the contents of the specified registers to be
stored in the save area at the address contained in register 13 (within the calling
program). Use the SAVE, macro only at the entry point of a program. Do not use
the SAVE macro in a program interruption exit routine. When you use the T and
identifier name parameters, the code resulting from the macro expansion
requires that register 15 contain the address of the SAVE macro.

The T operand specifies that registers 14 and 15 are to be stored in words 3 and
5 of the save area. It thus permits you to save two noncontiguous sets of
registers. The identifier name operand is an identifier that aids in locating a
program ′s save area in a dump. It can be a complex name of up to 70
characters. Coding an identifier name causes the SAVE macro expansion to
include:

• A count byte containing the number of characters in the identifier name. This
byte is assembled four bytes following the address contained in register 15.

• The character string containing the identifier name. This string is assembled
following the count byte.

• An instruction to branch around the count and identifier name fields.

Sample MVS SAVE:

LAREX CSECT
USING *,11 Establish Addressability
LA 15,SAVEIT Address of SAVE macro

 SAVEIT SAVE (14,12),,*
+SAVEIT B 10(8,15) Branch around ID
+ DC AL1(6)
+ DC CL6′ SAVEIT′ Identifier
+ STM 14,12,12(13) Save registers

VSE RETURN (r1,r2)

MVS RETURN (reg1 ,reg2) ,T ,RC = number
,RC =(15)

272 VSE to OS/390 Migration Workbook

Under MVS, the RETURN macro returns control to the calling program and
signals normal termination of the returning program. Control returns after
restoring the address of the calling program′s save area into register 13. The
return is made by executing a branch instruction using the address in register
14. You can write the RETURN macro to restore a designated range of registers,
provide the proper return code in register 15, and flag the save area used by the
returning program.

Sample MVS RETURN - using ′T′ Operand:

L 13,4(13) Get backward chain pointer
 RETURN (3,6),T (caller′ s save area)
+ LM 3,6,12(13) Restore the registers
+ MVI 12(13),X′ FF′ Set return indicators
+ BR 14 Return

Sample MVS RETURN - Using ′Return Code′ Operand:

LA 15,0 Set return code zero in R15
L 13,4(13) Get backward chain pointer

 RETURN (14,12),RC=(15)
+ L 14,12(13,0) Restore register 14
+ LM 0,12,20(13) Restore registers 0 - 12
+ BR 14 Return

Note: You should have previously loaded a return code value into register 15.

Figure 29 on page 274 shows an example of MVS coding for initiation and
termination procedures.

Chapter 13. Assembler 273

When this program received control from MVS
Reg. 13 contained address of MVS save area.
Reg. 14 contained address of MVS return.
Reg. 15 contained address of this program′s entry point.

PROGA START
SAVE (14,12),,* Store Regs in MVS save area

+ B 10(,15)
+ DC AL1(5)
+ DC CL5′ PROGA′
+ STM 14,12,12(13)

LR 12,15 Load start address in Reg 12
USING PROGA,12 Define Reg 12 as base reg
ST 13,SAVEIT+4 Store address of MVS save

 * area in PROGA′ s save area
LA 11,SAVEIT Load address of this Program

 * save area into Reg 11
ST 11,8(13) Store address of PROGA′ s save

 * area in MVS save area
LR 13,11 Load Reg 13 to point to this
.

APPLICATION PROGRAMMER LOGIC
.
L 13,SAVEIT+4 Load address of MVS save area

 * into Reg 13
RETURN (14,12),RC=0 Restore registers and branch

 * to MVS Return Address
+ L 14,12(,13) Restore Register 14
+ LA 15,0 Load Return Code
+ LM 0,12,20(13) Restore the registers
+ BR 14 Return
 SAVEIT DC 18F′ 0 ′

Figure 29. Sample Init iation Termination Coding

13.2.1.3 Communication Region
VSE has a communication region, a storage area within the supervisor, that
contains:

• The date

• The job name

• User program communication bytes

• User program switch indicators (UPSI)

• Problem program area addresses.

MVS does not provide a similar fixed area in the control program. Some of the
VSE communication region facilities are available in MVS as explained in the
following text.

Date

The VSE macro instruction COMRG provides the address of the communication

274 VSE to OS/390 Migration Workbook

region in register 1. The first eight bytes of the communication region is the date
in the form MM/DD//YY (month/day/year) or DD/MM/YY (day/month/year).

Job Name

The VSE communication region contains the job name that appears in the JOB
control statement. This name remains for the duration of the job and can be
used in a job by using the COMRG macro to get the address of the
communication region and a displacement of 24 to get the job name.

User Program Communication Bytes

In VSE, the problem program can modify the communication region. You can use
bytes 12 to 22 to communicate results of one job step to succeeding job steps.

MVS can transfer a return code at job completion time. The initiator/terminator,
via JCL (the COND parameter), examines the code but does not pass it to the
next job step. You can communicate data from one job step to the next in the
same job by passing a data set from one step to another or by including a
user-written SVC routine.

UPSI (User Program Switch Indicators)

UPSI consists of one byte set to binary zero when the JOB control statement is
encountered. You can modify the VSE UPSI byte in two ways.

 1. Through an UPSI job control statement.

 2. By the problem program.

In MVS, the PARM field of the EXEC statement or a control card can be used to
pass information from the JCL to the assembler program.

Problem Program Area Addresses

The VSE communication region has five fields that relate to the problem program
area:

 1. The address of the first byte of background problem program area.

 2. The address of the uppermost byte of problem program area.

 3. The address of the uppermost byte of current problem program phase.

 4. The address of the uppermost byte used in loading any phase of the problem
program.

 5. Length of the problem program label area.

This information is generally used for two main reasons by VSE programs:

 1. To dynamically expand a phase at execution time into available storage for
maximum program efficiency.

 2. To dynamically load phases into available storage locations and avoid
overlays where possible.

Although MVS does not provide similar fields, both techniques of dynamic virtual
storage utilization are available to you: an explicit request for virtual storage,
and an implicit request. Using virtual storage directly by the requesting module

Chapter 13. Assembler 275

is an explicit request. If a separate module is requested, then the additional
virtual storage requirement is implicit in that request.

The MVS GETMAIN macro is an explicit request for additional virtual storage.
You can use GETMAIN to obtain a single block or multiple blocks of virtual
storage. You can specify either a fixed or variable amount of virtual storage. At
execution time, the macro provides information to indicate whether the virtual
storage is obtained, and also to pass the address of the beginning of the block
and its size (where variable block sizes are specified). Further points should be
mentioned relating to explicit virtual storage requests.

 1. Under MVS, you cannot take available virtual storage within an address
space. MVS must allocate the virtual storage through the GETMAIN macro to
the load module, even though the unused virtual storage is within the
boundaries of the address space. The task will abnormally terminate if you
attempt to reference unallocated virtual storage.

 2. Although the allocation of blocks of virtual storage must be from within the
address space, they are not necessarily contiguous.

To dynamically call modules into available virtual storage (make an implicit
request), you should use the set of macros associated with dynamic program
structure. When you use these macros, MVS automatically examines available
virtual storage and loads the module into an open area.

13.2.1.4 Communications Region Simulation
A COMRG macro can be written to build an area similar to the VSE
communication region and return the address of this area in register 1.

If your program is not going to use this information immediately, you should load
the address from register 1 into another register (2-12), or store the address into
a fullword in your program. This macro can obtain variable data to simulate the
communications region layout in some of the following ways:

• MVS data can be communicated to a program by means of the PARM field of
the EXEC statement. When control passes to your program from MVS,
register 1 contains the address of a fullword on a fullword boundary in your
area of virtual storage. The high order bit (bit 0) of this word is set to one.
The low-order three bytes of the fullword contain the address of a two-byte
length field on a halfword boundary. The length field contains a binary count
of the number of bytes in the PARM field, which immediately follows the
length field. If you omitted the PARM field in the EXEC statement, the count is
set to zero.

• Note that if you specify numbers in the PARM parameter, they are translated
into decimal digits. If you specify PARM=101, the PARM field is x ′F1F0F1′.

• Data supplied in this manner is available for the duration of a single job step.
If multiple job steps within a job require the data, the PARM field must be
specified in each EXEC card or propagated through all EXEC cards in a job
through procedure variables.

• A routine is needed to return a bit string to the byte associated with the
external name UPSI. If an assembler program uses the COMRG macro and
references only date, UPSI and job name as data, then no logic changes are
required with this approach.

• If you use the COND parameter of the EXEC card (instead of UPSI switches)
to control job flow, then the UPSI tests can be simply removed from your

276 VSE to OS/390 Migration Workbook

programs. You can also leave the tests in your program and provide an UPSI
constant in your COMRG macro that would always satisfy the tests.

• The MVS macro instruction TIME provides the system date (Julian or
Gregorian) in a user work area. The date is in packed decimal digits, such as
X′19980323′. For details, see the section “GETIME Macro” on page 278. If
you modify the partition date with a //DATE card in the VSE JCL, you may
have to simulate this option under MVS because only a single date is
maintained for the entire MVS system.

• In MVS, you can obtain the job name by using the EXTRACT macro and
coding the parameter FIELDS=TIOT. You obtain the address of the TIOT
(task input,output table) through this macro. This job name is located in the
first eight bytes of the TIOT.

• A less desirable technique would read the variable data from the operator
console upon request.

If any other data is required from the COMRG macro, solutions will then have to
be approached through manual procedures on an individual basis.

COMRG and MVCOM Macros

The VSE COMRG macro places the address of the communication region in
register 1. The MVCOM macro modifies the user program communication bytes
and the UPSI byte in the communication region. MVS does not have similar
macros because it does not have a communication region (refer to the section
13.2.1.3, “Communication Region” on page 274).

LOAD Macro

The VSE LOAD macro causes the control program to bring in the phase specified
in the first parameter and returns control to the calling phase. After execution of
the macro, the entry-point address of the called phase is returned in register 1.
The MVS LOAD macro causes the control program to bring the load module
containing the specified entry point into virtual storage if a usable copy is not
available in virtual storage. The entry-point address of the load module is
returned in register 0.

If the application program invokes the loaded program only once, you may
substitute the MVS LINK macro for the VSE LOAD and CALL macros. The LINK
macro must be used to invoke the SORT utility program.

If you do not want the application program to invoke the loaded program (a
table, for example), you should use the MVS LOAD macro. In addition, the
application program must reconcile the fact that the VSE LOAD will return the
address in register 1 and MVS LOAD in register 0.

In either case, if the VSE program used the COMRG macro to determine the load
point, it is not required because MVS automatically manages load module
placement in storage.

Example:

(VSE)
LOAD PROGB LOAD the phase
LR 15,1 pass address
CALL (15),parm1,parm2 invoke PROGB

Chapter 13. Assembler 277

(MVS)
LOAD EP=PROGB LOAD the load-module
LR 15,0 pass address
CALL (15),parm1,parm2 invoke PROGB

FETCH Macro

The VSE FETCH macro loads the phase specified in the first parameter and
passes control to the address specified by the second. The MVS LINK and XCTL
macros pass control to a specified entry point. When modifying programs from
VSE to MVS, use LINK when the called phase does not overlay the calling phase.
Use XCTL when the called phase does overlay the calling phase. When using
XCTL, ensure that all DCBs and ACBs in the calling programs have been closed
prior to issuing XCTL.

CDLOAD and CDDELETE Macros

The MVS LOAD and DELETE macros have functions similar to the VSE CDLOAD
and CDDELETE macros. The CDLOAD macro can be used repetitively against
the same module, first to load it, then to retrieve its address. In this case, to
achieve the same result in MVS with the LOAD macro, the loaded module must
be link-edited with the REUS attribute.

Example:

(VSE)
LA 1,PHASENM address of the phase name
CDLOAD (1) LOAD the phase
LR 15,1 pass address
CALL (15),parm1,parm2 invoke PROGB

 (MVS)
LOAD EPLOC=PHASENM LOAD the load-module
LR 15,0 pass address
CALL (15),parm1,parm2 invoke PROGB

WTO and WTOR Macros

The MVS WTO and WTOR macros have functions similar to the VSE/ESA WTO
and WTOR macros.

GETIME Macro

The VSE GETIME macro provides the time of day, (local or Greenwich Mean
Time) based on a 24-hour clock, in register 1 in a form dependent upon the
operand(s).

The MVS TIME macro has the same basic function as the VSE GETIME LOCAL
macro. The main differences between the two macros is in register usage and
degree of precision (Figure 30 on page 279). For the DEC, BIN, and TU
operands, the TIME macro returns the time in register 0 and the Julian date in
register 1. The date is returned in register 1 as packed decimal digits in the form
0C YY DD DF, where 0C is the century indicator, YY is the last two digits of the
year, DDD is the day of the year and F is a sign character that allows the date to
be unpacked and printed. If the date is needed as day/month or month/day, you
must provide a routine to convert the data.

278 VSE to OS/390 Migration Workbook

The MVS TIME macro has an additional operand MIC,address that causes the
time of day to be returned in the eight-byte area specified by the address. The
time of day is in microseconds, with bit 51 equivalent to one microsecond.
Register 0 contains 0, and register 1 contains the date.

System Operand Register Content
VSE STANDARD H HM MS S
MVS DEC HH MM SS th
VSE BINARY seconds
MVS BIN hundredths of a second
VSE TU 1/306 of a second units
MVS TU 26 micro second units
H = hours M = minutes S = seconds
t = 0.1 seconds h = 0.01 seconds

Figure 30. VSE and MVS Time Degrees of Precision

The MVS TIME macro returns the date and time into a work area when
LINKAGE=SYSTEM is specified. The date (Julian or Gregorian) and the time are
returned in packed decimal digits.

Example:

TIME DEC,OUTAREA,DATETYPE=YYYYMMDD,LINKAGE=SYSTEM
. . . .

OUTAREA DS 0XL16
 HHMMSSHH DS X′12305919′ TIME OF DAY

DS XL4 filler
 YYYYMMDD DS X′19980323′ DATE

DS XL4 filler

PDUMP Macro

The VSE PDUMP macro provides a hexadecimal dump of the general registers
and of the main/virtual storage area contained between the two address
parameters. The output is automatically written on the device assigned to
SYSLST with 121-byte records.

The MVS SNAP macro provides you with the same dump facility. However, you
must supply the data set (via the DD statement) on which the output is written
and a DCB for the data set must be opened before the SNAP macro is used.

Chapter 13. Assembler 279

┌─────┬──────┬──┐
│ VSE │ PDUMP│ address1 , address 2 ,MFG=area │
│ │ │ r1 r2 (S,area) │
│ │ │ r3 │
├─────┼──────┼──┤
│ │ │ DCB = dcbaddress ,TCB = address │
│ │ │ (2-12) (2-12) │
│ │ │ ,ID= number ,SDATA = (sysda─a) │
│ │ │ (2-12) │
│ MVS │ SNAP │,PDATA = (probda─a) │
│ │ │,STORAGE = (s─ar─ address,end address) │
│ │ │ (2-12) (2-12) │
│ │ │,STRHDR = (hdr addr) │
│ │ │ hdr lis─ addr │
│ │ │,LIST = address of lis─ │
│ │ │ (2-12) │
├─────┴──────┴──┤
│ │
│No─e: TCB = address is used wi─h sub─asking │
│ (2-12) │
└───┘

DUMP Macro

┌───────┬───────────────┬────────────────────────────────┐
│ VSE │ JDUMP │ RC= │
│ │ DUMP │ │
├───────┼───────────────┼────────────────────────────────┤
│ │ │ comple─ion code │
│ MVS │ ABEND │ (1-12) ,DUMP ,STEP │
├───────┴───────────────┴────────────────────────────────┤
│ │
│ No─e: Use ,STEP wi─h sub─asking. │
└──┘

The VSE DUMP macro and the VSE JDUMP macro terminate the job step and
give a hexadecimal dump of the general registers, supervisor and the partition
that issued the macro if the main program or task made the request. If a subtask
issues the macro, the subtask is detached, but the partition is not terminated.
The dump is directed to SYSLST.

The MVS ABEND macro causes the termination of the current job step. A dump
of all virtual storage areas, control blocks, and the trace table is recorded if you
provide a //SYSUDUMP DD statement. In a multitasking environment, the task
that issues the macro with its subtasks is terminated. If the parameter STEP is
included, the entire job step is terminated. The remaining job steps are either
skipped or executed, depending on the parameters in the COND entry in the JOB
and EXEC statements.

280 VSE to OS/390 Migration Workbook

CANCEL Macro

┌───────┬───────────┬────────────────────────────────┐
│ VSE │ CANCEL │ ALL │
├───────┼───────────┼────────────────────────────────┤
│ MVS │ ABEND │ comple─ion code │
│ │ │ (1-12) ,DUMP ,STEP │
├───────┴───────────┴────────────────────────────────┤
│ No─e: Use .STEP wi─h sub─asking. │
└──┘

The VSE CANCEL macro causes the termination of the job. All succeeding job
steps within this job are automatically bypassed by job control.

The MVS ABEND macro provides this same facility. Refer to the section “DUMP
Macro” on page 280.

EOJ Macro

┌───────┬─────────┬─────────────────────────────┐
│ VSE │ EOJ │ RC= │
├───────┼─────────┼─────────────────────────────┤
│ MVS │ RETURN │ (reg1 ,reg2) ,T ,RC=number │
│ │ │ ,RC=(15) │
└───────┴─────────┴─────────────────────────────┘

The VSE EOJ macro allows you to terminate a problem program step. Any
routine of this problem program can issue it.

The MVS RETURN macro returns control to the calling program and signals
normal termination of the returning program. To terminate a job step, you must
issue this macro by a routine at the same level as the one originally called to
begin execution of the job step. See 13.2.1.2, “Termination” on page 269 and
note Register 13 load requirements.

LOCK and UNLOCK Macros

The MVS ENQ and DEQ macros have functions similar to the VSE LOCK and
UNLOCK macros.

Example:

(VSE)
LOCK DTL1 Get the lock
. . . .
UNLOCK DTL1 Free the lock
. . . .

DTL1 DTL NAME=L20,CONTROL=E,LOCKOPT=1,SCOPE=EXT

(MVS)
ENQ MF=(E,DTL1) Get the lock
. . . .
DEQ MF=(E,DTL1) Free the lock
. . . .

DTL1 ENQ (QNAME1,RNAME1,E,,SYSTEM),MF=L
QNAME1 DC CL8′ VSELOCK′
RNAME1 DC CL12′ L20′

Chapter 13. Assembler 281

CHKPT Macro

┌─────┬────────┬────────────────────────────────┐
│ │ │ res─ar─ address │
│ │ │ SYSnnn, (r1) │
│ │ │ , end address , ─poin─er │
│ VSE │ CHKPT │ (r2) (r3) │
│ │ │ dpoin─er , filename │
│ │ │ (r4) (r5) │
├─────┼────────┼────────────────────────────────┤
│ │ │ dcbaddress ,checkid address │
│ │ │ ,checkid leng─h │
│ MVS │ CHKPT │ ,′ S′ │
│ │ │ CANCEL │
└─────┴────────┴────────────────────────────────┘

The MVS CHKPT macro is similar to the VSE CHKPT macro with two minor
differences in the checkpoint logic. One difference is in the use of registers when
control returns to you after the CHKPT macro. In VSE, register 0 indicates
successful or unsuccessful checkpointing. In MVS, register 15 indicates not only
successful or unsuccessful checkpointing, but also successful restart. Another
difference is in the restart logic. In VSE, you specify a restart address as one of
the parameters in the CHKPT macro. MVS automatically restarts with the
instruction following the CHKPT macro.

Many VSE parameters are not necessary in MVS:.

• The SYSnnn parameter in VSE specifies the logical unit on which the
checkpoint is stored. The dcbaddress parameter of the MVS CHKPT macro
gives the address of the user-coded data control block (equivalent to a DTF)
for the checkpoint data set, which must be a magnetic tape or direct access
volume.

• A restart address is not given in MVS.

• An end address used in VSE to specify the highest storage address to be
dumped during CHKPT is not needed, because MVS automatically dumps the
entire contents of the program′s virtual storage data areas.

• tpointer in VSE provides a list to the CHKPT macro of the tape files used in
the program. If this parameter was not specified, repositioning of tape files
would not be performed at restart. MVS automatically repositions tape files
without the use of a similar parameter.

• dpointer in VSE permits operator volume verification at restart time. The
facility is provided by MVS when it allocates devices for a particular job step.

• Filename in VSE points to the DTF describing the disk CHKPT file. This file
must be opened prior to use, and label checking is performed at that time.
The MVS DCB is roughly equivalent. The data set may be opened by you or
by the checkpoint routine when the CHKPT macro is executed. It is
recommended that the user issue the OPEN rather than default to the
system, because the system opens every time a CHKPT is issued.

282 VSE to OS/390 Migration Workbook

13.2.2 Multitasking Macros
Under VSE, when you specify asynchronous processing at system generation
time, the multitasking group of macros is supported to permit more than one
task to execute within each partition. Each subtask must be initiated by the main
task: control then passes to the subtask.

The storage protection key and priority of the partition remain the same, but the
priority of a task within a partition is determined by the sequence of subtasks it
attached. Thus, if subtask 1 through subtask n are attached in ascending order,
the priority of execution within the partition would be from subtask 1 to subtaskn,
then to the main task.

Under MVS, asynchronous processing is supported. This dynamic parallel
structure differs from VSE in that:

• Subtasks may be created by job step tasks or other subtasks.

• No absolute rules exist for assigning priorities to tasks and subtasks. When
created, subtasks are assigned a priority by the originating task. Within
limits, this priority may be higher, lower, or the same as the originating task.

• Any time during execution, the originating task may modify the priority of an
attached subtask (as long as it has the task control block (TCB) address of
the subtask).

The VSE multitasking macros can be divided into three general categories:

• Subtask initiation and normal termination macros ATTACH/DETACH.

• Resource protection macros RCB/ENQ/DEQ.

• Intertask communication macros WAITM/POST.

The MVS counterparts and their comparable features follow.

13.2.2.1 ATTACH/DETACH Macros
VSE ATTACH entrypoint |(S,entrypoint) |(r1)

,SAVE=savearea|(S,savearea)|(r2)
,ABSAVE=savearea1
(S,savearea)&vbar,(r3)
,ECB=ecbname|(S,ecbname)|(r4)
,MFG=area|(S,area)|(r5)
,RETURN=NO|YES
,NAME=(name(S,name|(r8))

MVS ATTACH EP=symbol ,DCB=dcb address
 EPLOC=address of name (2-12)

(2-12)
 DE=address of list entry

(2-12)
 ,LPMOD=number ,DPMOD=number

(2-12) (2-12)
 ,PARAM=(address ,...) ,VL=1

(2-12)
 ,ECB=ecb address ,ETXR=exit routine
 (2-12) (2-12)

Chapter 13. Assembler 283

ENTRYPOINT

In VSE, it defines the storage address of the entry point of the subtask. The entry
point must be in storage before the subtask can be successfully attached. The
EP, EPLOC or DE parameter in MVS causes the required module to be loaded
into storage (if it is not already in storage) and begins execution at the entry
specified.

The entry-point name must be a member name or an alias in a directory of a
partitioned data set, or it must have been specified in the IDENTIFY macro. If the
specified entry point cannot be located, the new subtask is abnormally
terminated. MVS requires the subtask to perform normal initialization and
termination coding. Therefore, the MVS subtasks are generally separate load
modules rather than interspersed coding that commonly is found in VSE
subtasks.

SAVE: Defines the address of a formatted user save area for the subtask
containing the general purpose (and floating point) registers while the VSE task
is not active. MVS assumes the responsibility for providing areas to save
registers.

ECB: Defines a task event control block used in intertask communications and
task synchronization. Both operating systems use a fullword ECB, but individual
bits have different meanings.

ABSAVE: Used if the subtask is to execute the main task′s abnormal termination
STXIT AB routine under VSE. When an ABEND is issued in MVS for a task that
has previously issued an STAE macro, the ABEND is intercepted and control is
given at the STAE exit routine address.

An additional facility available under MVS is the ability to specify an end-of-task
exit routine (ETXR) to be given control after the new task is normally or
abnormally terminated. This is true even if the originating task was active and
must be in virtual storage when required. In a sense, this facility functions
something like an STXIT routine. When a termination interrupt occurs, the routine
is given control. This is a useful facility that you should examine when converting
the ATTACH macro.

┌─────┬────────┬───────────────────────┐
│ VSE │ DETACH │ SAVE=savearea │
│ │ │ (1) │
├─────┼────────┼───────────────────────┤
│ MVS │ DETACH │ ─cb loca─ion address │
│ │ │ (1-12) │
└─────┴────────┴───────────────────────┘

The VSE DETACH macro, issued by the main task or the subtask itself, causes
the subtask to terminate. An EOJ or CANCEL macro can also perform this
function.

Under MVS, the DETACH macro is used to remove the task control block of the
subtask from the system and to terminate the subtask and all its subtasks.
DETACH is required when either ECB or ETXR was specified in the ATTACH for
this subtask. Both of these parameters signal to the initiating task that the
subtask has terminated normally or abnormally. The task control blocks for all
subtasks must be removed by the originating task before the originating task can

284 VSE to OS/390 Migration Workbook

terminate normally. MVS does not permit the subtask to issue its own DETACH. If
neither ECB nor ETXR is specified in the ATTACH, the subtask is removed from
the system automatically at normal termination. In this case, no DETACH should
be issued.

13.2.2.2 WAIT/POST Macros
The two operating systems provide macros that synchronize task execution if
one task or subtask depends upon the completion of another subtask.

Under VSE and MVS, the WAITM and WAIT macros, respectively, inform the
control program that the execution of an active task cannot continue until one or
more specific events, each represented by a different control block, have
occurred.

The POST macro signals completion of an event. A POST issued to an (ECB)
removes from the wait state a task waiting for the event to complete.

┌─────┬──────┬─────────────────────────────┐
│ VSE │ POST │ecbname ,SAVE= savearea │
│ │ │(1) (0) │
├─────┼──────┼─────────────────────────────┤
│ MVS │ POST │ecbaddress ,comple─ion code │
│ │ │(1-12) (2-12) │
│ │ │ (0) │
└─────┴──────┴─────────────────────────────┘

ECBNAME: Provides the address of the particular event control block (ECB)
representing the event posted as complete. The MVS ecbaddress parameter is
the equivalent.

SAVE: If this operand is present, only the task identified by the address of its
save area is taken out of the wait state. Although time is saved when specifying
this operand, other tasks waiting for this ECB are not taken out of the wait state
for this event until another POST is issued.

When a POST is issued without the SAVE operand, all tasks waiting for the ECB
are taken out of the wait state, and the highest-priority task regains control. You
can use the completion code parameter of the MVS POST macro to pass
information to the waiting subtask or tasks. These tasks can then interrogate the
code set in the ECB to determine a continuation of the wait or a return to
execution.

┌─────┬──────┬────────────────────────────────────┐
│ │ │ ecb1,ecb2,... │
│ VSE │ WAIT │ lis─name │
│ │ │ (1) │
├─────┼──────┼────────────────────────────────────┤
│ MVS │ WAIT │ number of even─s,ECB = address │
│ │ │ (2-12) (1-12) │
│ │ │ (0) ECBLIST=address │
│ │ │ (1-12) │
└─────┴──────┴────────────────────────────────────┘

The systems provide different facilities. Because of the use of ECB bits under
MVS, only one WAIT macro can refer to an ECB at one time. An additional MVS
facility, specified through the number of events parameter, permits the task to be
taken out of the wait state after the specified number of events has been posted

Chapter 13. Assembler 285

as complete. This number may be less than or equal to the number of ECBs
specified in the macro.

13.2.2.3 RCB/ENQ/DEQ Macros
This set of macros enables you to protect data files or other resources when
processing a multitasking environment.

The VSE RCB macro generates an aligned doubleword resource control block
that functions much like an ECB. The VSE ENQ and DEQ macros test the status
of the resource through the RCB name.

MVS does not require or use an RCB macro. MVS generates an entry, within the
supervisor, which is used in a control area by the ENQ and DEQ macros to test
the resource status. Because the MVS entries are stored, tested, and modified
within the supervisor, you can protect resources across address spaces. VSE
can only protect resources within a partition because the area used to contain
the resource status is within the application program area.

┌─────┬─────┬───────────────────────────────────────┐
│ VSE │ ENQ │rcbname │
│ │ │ (0) │
├─────┼─────┼───────────────────────────────────────┤
│ │ │qname address , rname address, E │
│ │ │ (2-12) (2-12) S │
│ │ │rname leng─h , SYSTEM ,... │
│ MVS │ ENQ │(2-12) STEP │
│ │ │ SYSTEMS │
└─────┴─────┴───────────────────────────────────────┘

Under VSE you can specify only one resource in each ENQ.

The MVS ENQ macro offers many additional facilities. The ENQ macro requests
the control program to assign control of one or more serially reusable resources
to the active task. If any of the resources are not available, the active task is
placed in the wait state until all of the requested resources are available. The
qname and rname parameters, roughly equivalent to the VSE rcb name,
represent names of a common resource to the control program. These names
may or may not have any relation to the actual name of the resources.

The control program does not associate the name with the actual resource. It
merely processes requests having the same qname and rname on a first-in,
first-out basis. It is your responsibility to associate these names with the actual
resource. These parameters may define a resource name pertaining to this step
only, or a resource name that may be denoted throughout the entire system.

┌─────┬─────┬──────────────────────────────────┐
│ VSE │ DEQ │ rcbname │
│ │ │ (0) │
├─────┼─────┼──────────────────────────────────┤
│ │ │ qname address , rname address │
│ │ │ (2-12) (2-12) │
│ MVS │ DEQ │ rname leng─h , STEP ,... │
│ │ │ (2-12) SYSTEM │
│ │ │ SYSTEMS │
└─────┴─────┴──────────────────────────────────┘

The parameters and additional facilities available under MVS are similar to
those explained under the ENQ macro.

286 VSE to OS/390 Migration Workbook

13.2.3 Interrupt Handling Routines
Interrupt routines take care of the interval timer, abnormal conditions, and
operator communication interrupts. Abnormal condition interrupts will not be
addressed in this publication.

13.2.3.1 Interval Timer Interrupts
Basically, the two ways of utilizing the interval timer in your programs are
routine handling and wait handling.

Routine Handling

This method allows a branch to your own routine when the interval timer
interrupt occurs. The following illustrates the VSE macros and corresponding
MVS macro needed to perform this operation:

┌─────┬──────────┬──┐
│ │STXIT │IT, rou─ine address , save area │
│ │ │ (0) (1) │
│ VSE │SETIME │seconds │
│ │ │ (1) │
│ │EXIT │IT │
├─────┼──────────┼──┤
│ │ │REAL , ─imer comple─ion exi─ address │
│ │ │TASK (2-12) │
│ │ │WAIT │
│ │ │ ,DINTVL = address │
│ │ │ (2-12) │
│ MVS │STIMER │ ,BINTVL = address │
│ │ │ (2-12) │
│ │ │ ,TUNINTVL=address │
│ │ │ (2-12) │
│ │ │ ,TOD = address │
│ │ │ (2-12) │
└─────┴──────────┴──┘

The VSE macro instructions allow you to execute a routine when a timer
interrupt occurs and then to return to the program that was being executed prior
to the interruption. The STXIT macro provides the address of the routine to be
executed. A register save area must also be specified in the STXIT macro. The
saving and restoring of the registers are performed automatically by the
supervisor. The SETIME macro sets the interval timer. The EXIT macro returns
from the specified routine (STXIT macro) to the point in the interrupted program
where the interruption occurred.

The single MVS macro (STIMER) also allows you to execute a routine when the
timer interrupt occurs. The REAL parameter indicates that time is to be
decreased continually, while TASK means that the timer is stopped or adjusted
only when the task is active. WAIT means that the job step is to be placed in a
wait state until the interval expires. The timer completion exit address parameter
is the same as the routine address used in the VSE STXIT macro.

The DINTVL parameter indicates that the time interval requested is in decimal
units and is stored in the address specified. The MVS timer routine must follow
the standard conventions for handling registers.

You must save the registers on initiation and restore them at routine termination.

Chapter 13. Assembler 287

Wait Handling

This method of using the interval timer allows you to set the timer and wait for
the time to elapse. The job or task is prevented from executing until the interrupt
occurs.

┌─────┬──────────┬──────────────────────────┐
│ │ TECB │ │
│ │ SETIME │ seconds , ─ecbname │
│ VSE │ │ (1) (2-12) │
│ │ WAIT │ ─ecbname │
│ │ │ (1) │
├─────┼──────────┼──────────────────────────┤
│ │ │ WAIT ,DINTVL = address │
│ │ │ (2-12) │
│ │ │ ,BINTVL = address │
│ MVS │ STIMER │ (2-12) │
│ │ │ ,TUINTVL= address │
│ │ │ (2-12) │
│ │ │ ,TOD = address │
│ │ │ (2-12) │
└─────┴──────────┴──────────────────────────┘

The VSE TECB is an event control block that records the status of the timer.
When the interrupt is received, this condition is posted in the specified TECB.
The WAIT macro tests the TECB status and determines if the interrupt has
occurred.

The MVS STIMER macro provides basically the same facility. The difference is
that, under VSE, you can insert code between the point where the timer is
initiated (SETIME) and where the test for the interrupt is performed (WAIT). The
wait is automatically built into the MVS STIMER macro. The WAIT parameter
indicates that you do not want the coding below the macro to be executed during
the time period. The DINTVL parameter is explained under “Routine Handling”
on page 287.

TTIMER Macro

The VSE and MVS TTIMER macros are compatible with each other:

┌─────────┬───────────┬─────────────┐
│ VSE │ TTIMER │ CANCEL │
├─────────┼───────────┼─────────────┤
│ MVS │ TTIMER │ CANCEL ,TU │
└─────────┴───────────┴─────────────┘

The VSE time interval is expressed in binary in hundredths of a second, while
under MVS, the interval is expressed in binary in timer units (one timer unit
equals 26.04166 microseconds).

13.2.3.2 Operator Communication Interrupts
┌─────┬───────────┬───────────────────────────────────┐
│ │ STXIT │ OC, rou─ine address , savearea │
│ VSE │ │ (0) (1) │
│ │ EXIT │ OC │
└─────┴───────────┴───────────────────────────────────┘

288 VSE to OS/390 Migration Workbook

The preceding combination of VSE macro instructions allows you to execute a
routine when an operator attention interrupt occurs and to return to the program
that was being executed before the interruption.

MVS has no equivalent function. It is possible, however, to simulate this function
by using the WTOR macro. This MVS macro writes a message requiring a reply
on the operator console and provides the information required by the control
program to relay the reply to the issuing program. You must wait for the reply.

This macro could also be executed without a following WAIT macro and coding
inserted in the program loop to test the completion of the event. Upon
completion, it is possible to execute the communication routine and later resume
normal processing. Another solution is to include the communication routine as
a subtask with the WTOR macro instruction followed by a WAIT instruction.

Alternately, you can use the Job Control PARM Field (see Register 1 in “Register
Conventions” on page 269) to pass information to the program. You may realize
throughput improvements because there is no wait for operator′s reply.

Under VSE, you can initiate communication with the background partition using
the interrupt key on the console. You can use the MSG (message) command to
initiate communication with a foreground partition.

Under MVS, the operator interfaces with job management to provide
operator-to-system communication via commands entered on the operator
console. This allows the operator to respond to requests from processing
programs. However, operator-to-processing program communication must be
initiated internally by the processing program. There is no support of the
external interrupt key for operator-to-program communication; it switches from
the primary to the alternate console.

13.2.4 Virtual Storage Macros

13.2.4.1 GETVIS and FREEVIS Macros
The MVS GETMAIN, FREEMAIN and STORAGE macros have functions similar to
the VSE GETVIS and FREEVIS macros. Example:

(VSE)
GETVIS LENGTH=1000,ADDRESS=PTR1
LTR R15,R15 GETVIS OK?
BNZ ERROR1 NO, CANCEL
. . . .
FREEVIS LENGTH=1000,ADDRESS=PTR1
. . . .

PTR1 DS A

(MVS)
GETMAIN RC,LV=1000
LTR R15,R15 GETVIS OK?
BNZ ERROR1 NO, ABEND
ST R1,PTR1 save storage address
. . . .
L R1,PTR1 pick up storage address
FREEMAIN RC,LV=1000,ADDRESS=(1)
. . . .

PTR1 DS A

Chapter 13. Assembler 289

13.2.4.2 RELPAG Macro
The MVS PGRLSE and PGSER RELEASE macros have functions similar to the
VSE RELPAG macro.

┌─────┬────────┬─────────────────────────────┐
│ VSE │ RELPAG │begin addr , end addr,777 │
│ │ │ (2-12) (2-12) │
│ │ │lis─name │
│ │ │ (1) │
├─────┼────────┼─────────────────────────────┤
│ MVS │ PGRLSE │ LA=addrl ,HA=addr2 │
│ │ │ (2-12) (2-12) │
│ │ │ (0) (1) │
└─────┴────────┴─────────────────────────────┘

When you issue the PGRLSE macro, all complete pages of virtual storage
between the low and high addresses specified are released. You can help
reduce system overhead by releasing virtual storage when you no longer need
it.

Unlike VSE, you must issue a separate instruction for each area of storage you
want to release.

13.2.4.3 PFIX and PFREE Macros
The MVS PGFIX and PGFREE macros correspond to VSE PFIX and PFREE. Use of
the MVS instructions is restricted, however, to system functions and authorized
users (key-0 and supervisor state). Further information about PFIX and PFREE
appears in MVS SRL library publications.

13.2.4.4 SETPFA Macro
In MVS, only system functions and authorized users (key-0 and supervisor state)
are permitted to handle their own page faults.

13.2.4.5 PAGEIN Macro
The MVS PGLOAD macro is similar to PAGEIN, but its use is restricted to system
functions and authorized users (key-0 and supervisor state).

13.2.4.6 FCEPGOUT, RUNMODE, VIRTAD and REALAD Macros
These instructions have no equivalent in MVS.

13.2.5 VSAM Macros
Detailed information on the coding of MVS VSAM macros can be found in the
publication DFSMS/MVS Macro Instructions For Data Sets, SC26-4913.

13.2.5.1 ACB Macro
The ACB macro is source-compatible except for the parameter ″P A R M S = ″
which was introduced by VSE VSAM Release 2 to support VSE VSAM Space
Managed files. MVS VSAM does not support this type of file. Programs using this
VSE feature should be converted to use MVS Sequential Access Method (SAM),
or VSAM ESDS files.

Additional MVS VSAM ACB Parameters

290 VSE to OS/390 Migration Workbook

• CATALOG=YES/NO - NO is used if the catalog is to be processed as a
normal cluster with normal GET/PUT macros. Programs must be
APF-authorized to process a catalog as a data set.

• MACRF=(

− ICI - Improved-Control-Internal-Processing (ICIP) is to be used. ICIP is a
VSAM ″fast-path″ that reduces CPU utilization. However, the functions
that can be used are severely restricted. See the VSAM Administration
Guide for more details.

− CFX - Control blocks and buffers are fixed in real storage. ICI must also
be specified.

− DSN - Data Set Name sharing specifies that the basis for sharing control
blocks and buffers is by matching VSAM NAMEs when the files are
opened by the SAME task. Unless this option is used, a separate ACB
that opens the same data set can have the same integrity problems as a
program within another region. This includes potential destruction of the
file if concurrent updates are allowed. DSN is most commonly used to tie
buffers of a base ACB to the control blocks of the base ACB associated
with a path.

− SIS - Sequential Insert Strategy is used to override the default control
interval or area split algorithm for direct processing. SIS will cause the
splits to occur at the insert point rather than at midpoint when direct
PUTs are done. Although positioning is lost and writes are done after
each direct PUT request, SIS allows more efficient space usage when
direct PUTs are done against ascending keys in a KSDS.

− GSR - Global Shared Resources specifies that the data set is to be tied
to a common VSAM resource pool of control blocks, strings and buffers
that is allocated in the MVS Common System Area (CSA). This provides
for VSCR.

− LSR - Local Shared Resources is similar to GSR except the resource
pool is built in a single address space and integrity is limited to that
region.

• BSTRNO = n - The number of strings allocated to the base cluster
associated with a Path ACB. For a Path ACB, the default is STRNO; however,
if you are using DSN sharing to tie a separate base ACB control block
structure to the path, you can specify additional base strings for that
purpose. Refer back to ″DSN″ for why you want to use DSNAME sharing.

13.2.5.2 EXLST Macro and EXCPAD Routines
A VSE VSAM EXLST macro that has a EXCPAD routine address coded will have
to be converted. There is not an equivalent exit routine in MVS VSAM. The
closest equivalent is the MVS VSAM UPAD exit routine which allows user
processing during a VSAM request. However, the GENCB, MODCB, SHOWCB,
and TESTCB macros do not support the UPAD exit routine. Great care should be
taken in converting and testing a converted EXCPAD routine, since it is,
generally, very complicated code.

13.2.5.3 RPL Macro (Additional MVS Parameters)
• ECB=address - Request to VSAM to post the specified ECB at the

completion of the RPL request.

• MSGAREA=address - In the case of a physical error, VSAM will place a
message in the area address specified.

Chapter 13. Assembler 291

• MSGLEN=length - The length of the MSGAREA specified above. The size of
a message is 128 bytes.

• OPTCD=(

� ASY - Asynchronous access; VSAM returns control to the program after
scheduling the request so the program can do other processing while the
request is earned out. SYN is the default and specifies that VSAM will
return to the processing program when the request is complete.

� WAITX - If ″OPTCD=(..,SYN..)″ and the specifics ″MACRF=(..,LSR or
GSR..)″, and ″EXLST ...,UPAD=″, then VSAM branches to the UPAD
routine address when VSAM would otherwise have issued a WAIT. The
most common use of UPAD routines is by IMS/VS or it may be used as a
replacement for the VSE VSAM EXCPAD routines.

13.2.5.4 SHOWCB Macro
The VSE VSAM SHOWCB macro may not be source compatible depending on the
fields requested. The use of the macro and the results should be carefully
examined.

MVS VSAM Additional SHOWCB Fields

• BFRFND - Number of successful GETs without physical reads required. (LSR
or GSR only)

• BUFRDS - Number of GETs requiring physical reads. (LSR or GSR only)

• ENDRBA - Ending RBA of the space used by the data or index components
(that is, the last byte used in the component).

• HALCRBA - The High-Allocated-RBA of the specified component.

• NUIV - Number of physical WRITEs not issued by the user. (LSR or GSR
only)

• UIW - Number of WRITEs issued by the user. (LSR or GSR only)

13.2.5.5 MVS VSAM CHECK Macro
The MVS VSAM CHECK macro is used to suspend processing until VSAM has
completed the request associated with the RPL. This macro is used for
asynchronous processing (that is, OPTCD=(ASY..).

13.2.5.6 VSE VSAM TCLOSE Macro
The TCLOSE macro of VSE is coded in MVS: ″CLOSE ...,TYPE=T″

13.2.5.7 VSAM Error and Reason Code Compatibility
MVS VSAM error codes and reason codes may have a slightly different meaning
than VSE VSAM. In all cases, MVS documentation should be consulted.
Especially in Assembler, the logic for specific error codes should be verified. In
some cases, MVS VSAM provides additional information.

13.2.6 Data Management Macros
This section compares the VSE and MVS data management macro instructions.
Detailed information on the coding of MVS data management macro operands
can be found in the publication DFSMS/MVS Macro Instructions For Data Sets,
SC26-4913.

Note: As a VSE user, you are familiar with the term filename. In MVS, filename
is referred to as dcbaddress.

292 VSE to OS/390 Migration Workbook

13.2.6.1 List and Execute Macro Forms
The list and execute forms of data management macro instructions, used
together provide the same services available from the standard form of the
macro. The list form of the macro provides a parameter list to be passed to
either the control program or another problem program, depending on the micro
instruction.

Use the execute form with one or two parameter lists established by the list
form. The execute form provides the executable instructions required to modify
the parameter lists and pass control to the required program. The advantages of
the list and execute forms of a macro are:

• Any operands that remain constant in every use of the macro can be coded
in the list form. You can omit these operands in each of the execute forms of
the macro that uses the list. This saves coding time and virtual storage area
when you use a macro many times.

• The execute form of the macro can modify any of the operands previously
designated. There are some exceptions.

• The list used by the execute form of the macro can be located in a portion of
virtual storage assigned to the task through the use of the GETMAIN macro.
This ensures that the program remains reentrant.

13.2.6.2 Definition of BLKSIZE
In VSE, the keyword BLKSIZE is defined as the length of one input/output area.
The value specified in BLKSIZE depends on the type of processing intended.
Depending on the selected options in the DTF, the value specified in BLKSIZE for
the VSE file can be:

• Data length (for direct access and all sequential files)

• Data length, plus key length (for direct access files)

• Data length, plus eight bytes for count (for direct access and sequential
DASD files)

• Data length, plus count, plus key length (for direct access files). In all cases
MVS uses the keyword BLKSIZE to mean only data length.

Note: In MVS, the maximum value for BLKSIZE (that is, length of data blocks) is
32760. In VSE, the length of data blocks on DASD or tape can be greater than
32760.

13.2.6.3 IOREG
In VSE, specification of the IOREG parameter on a DTF allows blocked records to
be processed directly in the buffer. In MVS, the equivalent technique is called
Locate Mode. There are two major differences between IOREG and Locate Mode:

• Locate Mode always returns the record address in R1; consequently, an
LR ioreg,R1 instruction must be inserted after each GET instruction when
converting to MVS.

• The combination IOREG=(reg),TYPEFLE=OUTPUT has no exact equivalent
in MVS. The easiest way to convert this type of file is to use Move Mode
(MACRF=PM) instead of Locate Mode (MACRF=PL).

Chapter 13. Assembler 293

13.2.6.4 I/O Error Checking
When an input/output error occurs under MVS, a user-written synchronous error
routine (SYNAD) can be given control. You can use this routine to analyze
exceptional conditions or uncorrectable errors. The error can be skipped or
accepted, or processing can be terminated.

If an input/output error occurs during data transmission, standard error recovery
procedures, provided by the operating system, attempt to correct the error
before returning control to your program. An uncorrectable error usually causes
an abnormal termination of the task. However, if you specify in the DCB macro
the address of an error analysis routine, the routine receives control in the event
of an uncorrectable error.

You can write an SYNAD routine to determine the cause and type of error that
occurred by examining:

• The contents of the general registers.

• The data event control block.

• The exceptional conditional code.

• The standard status and sense indicators.

Use a special macro instruction, SYNADAF, to perform these functions
automatically. SYNADAF produces a descriptive error message that can be
printed by a subsequent PUT or WRITE macro.

Having completed the analysis, you can return control to the operating system or
close the erroneous data set and terminate processing. In no case can you
attempt to reread or rewrite the record because the system has already
attempted to recover from the error.

When you use GET/PUT macro instructions to process a sequential data set, the
operating system provides three automatic error options (EROPT) to be used if
there is no SYNAD routine, or if you want to return control to your program from
the SYNAD routine:

• ACC - accept the erroneous block.
• SKP - skip the erroneous block.
• ABE - abnormally terminate the task.

These options are applicable only to data errors, because control errors result in
abnormal termination of the task. Data errors affect only the validity of a block of
data. Control errors affect information or operations necessary for continued
processing of the data set. These options are not applicable to output errors,
except printer output errors. When chained scheduling is used, the SKP option is
not available. If it is coded, it defaults to the ACC option. If you do not complete
the EROPT and SYNAD fields, the system assumes ABE.

13.2.6.5 LIOCS Card File Definition
The methods of processing cards files are the same in VSE and MVS. Figure 31
on page 295 compares the VSE DTFCD and the MVS DCB operands. Figure 32
on page 295 gives an example of the macros that process a card file under both
operating systems. Figure 33 on page 296 shows a short sample program.

294 VSE to OS/390 Migration Workbook

VSE DTFCD MVS DCB DSORG=PS

 DEVADDR = SYSxxx DDname (in DD statement)
 IOAREA1 = xxxxxxxx BUFNO = 1

or
 IOAREA1 = xxxxxxxx BUFNO = 2 or more
 IOAREA2 = xxxxxxxx
 ASOCFLE = xxxxxxxx UNIT=AFF=ddname (in DD statement)
 BLKSIZE = nnn BLKSIZE = nn
 CONTROL = YES MACRF = (..C..) for input only
 CTLCHR = YES RECFM = (...M)

ASA (...A)
 SSELECT = n DEVD = ..,..,STACK=1

 DEVICE = nnnn UNIT = nnnn (in DD statement)
 EOFADDR = xxxxxxxx EODAD = xxxxxxxx
 EAROPI = xxxxxxxx SYNAD = xxxxxxxx
 FUNC = xxx DEVD = (..,..,..,FUNC=xxxxxxxx)
 IOREG =(r) MACRF -(...L..)
 MODE = E O DEVD = (..,MODE=E O

C R C R
 RECFORM = xxxxxx RECFM = xxx
 RECSIZE = (r) LRECL = nn
 SEPASMB = YES User must code the DCB
 TYPEFLE = INPUT MACRF = (G..)

OUTPUT (P..)
CMBND

 WORKA = YES MACRF = (...M..)

Figure 31. Comparison of the DTFCD and DCB Macros

OPEN CARD
VSE GET CARD,WORK

.
CLOSE CARD

CARD DTFCD DEVADDR=SYSIPT,IOAREA1=CARDIN1, C
IOAREA2=CARDIN2,EOFADDR=END, C
WORKA=YES

CDMOD WORKA=YES

OPEN CARD
MVS GET CARD,WORK

.
CLOSE CARD

CARD DCB DSORG=PS,MACRF=(GM), C
DDNAME=SYSIPT,EODAD=END, C
RECFM=FB,LRECL=80

Figure 32. Card File Macros in VSE and MVS

Chapter 13. Assembler 295

OPEN CARD
VSE GET CARD,WORK

.
CLOSE CARD

CARD DTFCD DEVADDR=SYSIPT,IOAREA1=CARDIN1, C
IOAREA2=CARDIN2,EOFADDR=END, C
WORKA=YES

CDMOD WORKA=YES

OPEN CARD
MVS GET CARD,WORK

.
CLOSE CARD

CARD DCB DSORG=PS,MACRF=(GM), C
DDNAME=SYSIPT,EODAD=END, C
RECFM=FB,LRECL=80

Figure 33. Card File Programs in VSE and MVS

13.2.6.6 LIOCS Printer File Definition
The methods of processing printer files are the same in VSE and MVS.
Differences exist only in the CNTRL and PRTOV macros.

CNTRL Macro

Notes:

 1. MVS does not support delayed printer control.

 2. The MVS Job Entry Sub-system supports machine and ASCII control
characters.

PRTOV Macro

The PRTOV macro results in the same action in VSE and MVS. However, if you
use CNTRL, you cannot use SYSOUT=A and must specify the printer in the UNIT
parameter of the output data set DD statement. Since this is rarely a viable
option, programs that use the PRTOV macro should be converted to use a line
counter instead.

Figure 34 on page 297 shows a comparison of the DTFPR and DCB operands.

VSE CNTRL filename ,code ,nl ,n2
(1)

MVS CNTRL dcbaddress, SP ,nl
SK

VSE PRTOV filename , 12 , routine name
(1) 9 (0)

MVS PRTOV dcbaddress , 12 , overflow exit address
(2-12) 9 (2-12)

296 VSE to OS/390 Migration Workbook

VSE DTFPR MVS DCB DSORG=PS

DEVADDR = SYSxxx DDname (in DD statement)
IOAREA1 = xxxxxxxx BUFNO = 1,MACRF =(..M..)
or

IOAREA1 = xxxxxxxx BUFNO = 2 or more
1OAREA2 = xxxxxxxx
ASOCFLE = xxxxxxxx UNIT=AFF=ddname (in DD statement)
BIKSIZE = nnn BLKSIZE = nnn
CONTROL = YES MACRF = (PC)
CTLCHR = YES RECFM = (..A)

ASA (...M)
DEVICE = nnnn UNIT = (in DD statement) (1)
ERROPT = xxxxxxxx SYNAD = xxxxxxxx
FUNC = xxxx DEVD=(..,..,..,FUNC = xxxxxx)
IOREG =(r) MACRF= (..L..)
PRINTOV = YES Use PRTOV
RECFORM = xxxxxx RECFM = xxx
RECSIZE = (r) LRECL = nn (2)
SEPASMB = YES User must code the DCB
WORKA = YES MACRF = (..M..)

 1. By specifying U N I T = you are using dedicated I/O. A preferable
alternative is to use SYSOUT=A.

 2. For output of undefined records, you must provide the length
of the records in a two-byte field (DCBLRECL) within the DCB.
LRECL must be provided for fixed-length and variable-length
records.

Figure 34. Comparison of the DTFPR and DCB Macros

13.2.6.7 LIOCS Tape File Definition
In VSE and MVS, you process sequential tape files in the same way.

OPEN Macro

Options

Option 1 Option 2
QSAM INPUT ,REREAD

OUTPUT ,LEAVE
RDBACK ,DISP
INPUT ,REREAD
OUTPUT ,LEAVE

BSAM RDBACK ,DISP
INOUT
OUTIN

VSE OPEN(R) filename ,...
(rl)

MVS OPEN dcbaddress , (options)
(2-12)

Chapter 13. Assembler 297

Note: You can specify any number of dcbaddresses and associated options in
the OPEN macro instruction.

CLOSE Macro

 1. Options

REREAD
LEAVE
REWIND
DISP

 2. If you omit the option, the following positioning occurs:

If TYPE=T is coded, LEAVE is assumed (BSAM only).
If TYPE=T is not coded, DISP Is assumed (BSAM only).

 3. You can code CLOSE with TYPE=T to temporari ly close sequential data sets
on magnetic tape volumes processed with BSAM. When you use TYPE=T,
the DCB used to process the data set maintains its open status, and you
don ′ t have to issue another OPEN macro to continue processing the same
data set. A request to temporarily close a data set causes MVS to process
labels, modify some of the fields in the system control blocks for that data
set, and reposition the volume (or current volume in the case of multivolume
data sets) in much the same way that the normal CLOSE macro does. When
you code TYPE=T, you can specify that the volume either be positioned at
the end of data (the LEAVE option) or be repositioned at the beginning of
data (the REREAD option). Magnetic tape volumes are repositioned either
immediately before the first data record or immediately after the last data
record; the presence of tape labels has no effect on repositioning. When a
DCB is shared among multiple tasks, the task that opened the data set must
also close it; however, a subtask of the task that opened the DCB can issue
the CLOSE macro with the TYPE=T option.

 4. When using QSAM, close all output data sets before ending the program to
ensure that all records have been written.

CNTRL Macro

VSE CLOSE(R) filename
,...

(r1)

MVS CLOSE dcbaddress
,option ,... ,TYPE=T

 (2-12)

VSE CNTRL filename ,code
(1)

MVS CNTRL dcbaddress,code ,number of blocks

298 VSE to OS/390 Migration Workbook

Notes:

 1. The codes are as follows:

┌──────┬──┐
│ VSE │ MVS (BSAM only) │
├──────┼──┤
│ REW │ No equivalen─. The op─ion specified in ─he DISP │
│ RUN │ parame─er of ─he DD s─a─emen─ is ─aken. Refer │
│ │ also ─o ─he OPEN/CLOSE op─ions. │
│ BSR │ BSR, number of blocks │
│ FSR │ FSR, number of blocks │
│ BSF │ BSM Bo─h of ─hese codes cause spacing pas─ ─apemark, │
│ FSF │ FSM ─hen, spacing in ─he opposi─e direc─ion over ─apemark.│
│ WTM │ No equivalen─ │
│ ERG │ │
│ BSL │ No equivalen─ │
│ FSL │ │
└──────┴──┘

 2. Under MVS, if the forward or backspace operation does not complete
successfully, control is passed to the error analysis routine (SYSAD). If you
do not specify a SYNAD routine, the task terminates abnormally.

 3. If a tapemark is encountered for DSR or FSR, control is returned to the
processing program, and register 15 contains a count of the uncompleted
forward spaces or backspaces. If the operation completes normally, register
15 contains zero.

 4. If you specify OPTCD=H in the data control block, the CNTRL macro
instruction can perform record positioning on VSE tapes that contain
embedded checkpoint records. Imbedded checkpoint records encountered
during the record positioning are bypassed and are not counted as blocks
spaced over. You must also specify OPTCD=H in a JCL DD statement. The
CNTRL macro instruction cannot be used to backspace VSE 7-track tapes
that are written in data convert mode that contain embedded checkpoint
records (BSAM).

NOTE Macro

The result of the NOTE macro is the same in VSE and MVS. Information is
returned in register 1 in the format 0bbb. If you use NOTE under MVS, the tape
on which the data set resides must have standard labels if the OPEN option
RDBACK or DISP=MOD has been specified. The MVS NOTE macro is valid only
for BSAM and BPAM.

POINTW / POINTR Macros

VSE NOTE filename
(1)

MVS NOTE dcbaddress
(1-12)

VSE POINTW
POINTR

filename
(1)

MVS POINT dcbaddress , blockaddress
 (1-12) (2-12)

(0)

Chapter 13. Assembler 299

Notes:

 1. VSE: The address is that of a four-byte storage location containing the
required record identification in the same form as it is obtained from the
NOTE macro.

 2. MVS: The blockaddrcss is the address of a fullword on a fullword boundary
containing the required record identification in the same form as it is
obtained from the NOTE macro.

 3. The MVS POINT macro is valid only for BSAM and BPAM.

 4. If you specify OPTCD=H in the data control block, the POINT macro
instruction can perform record positioning on VSE tapes that contain
embedded checkpoint records. Any embedded checkpoint records that are
encountered during the record positioning are bypassed and are not counted
as blocks spaced over. You must specify OPTCD=H in a JCL DD statement.
Do not use the POINT macro instruction to backspace VSE 7-track tapes that
are written in data convert mode and which contain embedded checkpoint
records.

POINTS Macro

The POINTS macro in VSE causes tapes to be rewound and positioned to the
first record following the label set. To achieve this in MVS, you must specify the
hexadecimal value 00000001 in the blockaddress field.

RELSE Macro

The function of the RELSE macro is the same under VSE and MVS. The MVS
RELSE macro is valid only for QSAM and QISAM.

TRUNC Macro

The function of the TRUNC macro is the same under VSE and MVS. The MVS
TRUNC macro is valid only for QSAM.

VSE POINTS filename
(1)

MVS POINT dcbaddress , blockaddress
(1-12) (2-12)

(0)

VSE RELSE filename
(1)

MVS RELSE dcbaddress
(1-12)

VSE TRUNC filename
 (1)

MVS TRUNC dcbaddress
(1-12)

300 VSE to OS/390 Migration Workbook

FEOV Macro

The basic functions of the VSE and MVS FEOV macros are the same. In MVS,
volume positioning can be specified by the option operand; if no option is coded,
the positioning specified in the OPEN macro is used. The MVS FEOV macro is
valid for BSAM and QSAM.

GET / PUT Macros

The functions of the VSE and MVS GET/PUT macros are the same.

Figure 35 on page 302 shows a comparison of the MVS DCB and VSE DTFMT
macros. Figure 36 on page 303 shows an example of using some of the
preceding macros in a program.

VSE FEOV filename
(1)

MVS FEOV dcbaddress , REWIND
(1-12) LEAVE

VSE GET
PUT

 filename , workname
(1) (0)

MVS GET
PUT

dcbaddress , area address
(1-12) (2-12)

(0)

Chapter 13. Assembler 301

 VSE DTFMT MVS DCB DSORG=PS

 BLKSIZE = nnnnn BLKSIZE = nnnn
 DEVADDR = SYSxxx N/A
 EOFADDR = xxxxxxxx EODAD = xxxxxxxx
 FILABL = xxxx LABEL = (in DD statement)
 IOAREA1 = xxxxxxxx BUFNO = 1

or
 IOAREA1 = xxxxxxxx BUFNO = 2 or more
 IOAREA2 = xxxxxxxx
 ASCII = YES OPTCD = Q
 BUFOFF = nn BUFOFF = (n)
 ERREXT = YES SYNAD = xxxxxxxx
 ERROPT = IGNORE EROPT = ACC

SKIP SKP
ABE

 ERROPT = xxxxxxxx SYNAD = xxxxxxxx
 IOREG =(r) MACRF= (..L..)
 LABADDR = xxxxxxxx EXLST = xxxxxxxx
(standard labels) LABEL = (,SUL) (in DD statement)

 NOTEPNT = YES MACRF=(RP,WP)
POINTS

 READ = xxxxxxxx OPEN Clacro option
 RECFORM = xxxxxx RECFM= xxx
 RECSIZE = nnnn LRECL = nnnn

= (r)
 REWIND = xxxxxx OPEN macro option
 SEPASMB = YES User must code the DCB
 TPMARK = NO Standard in MVS
 TYPEFLE = INPUT MACRF = (G...)

OUTPUT (P...)
INPUT/OUTPUT are also specified in OPEN macro.

 TYPEFLE =WORK MACRF= (R...,W...)
 VARBLD = (nn) User must supply length of logical record +4

in LRECL field before issuing a PUT.
 WLRERR = xxxxxxxx SYNAD = xxxxxxxx
 WORKA = YES MACRF = (..M..)

Figure 35. Comparison of the DTFMT and DCB Macros

302 VSE to OS/390 Migration Workbook

OPEN TAPE
VSE PUT TAPE

.
CLOSE TAPE

RECORD1 DS 2000C
TAPE DTFMT DEVADDR=SYS005,TYPEFLE=OUTPUT, C

FILABL=STD,IOAREA1=RECORD1, C
HDRINFO=YES,IOREG=(5), C
RECFORM=FIXBLK,BLKSIZE=2000, C
RECSIZE=100,REWIND=NORWD

MTMOD RECFORM=FIXBLK

OPEN (TAPE,(OUTPUT,LEAVE))
LA 5,RECORD1

MVS PUT TAPE,(5)
.

CLOSE (TAPE,(LEAVE))
RECORD1 DS CL100
TAPE DCB DDNAME=TAPEDD,DSORG=PS,MACRF=(PM), C

RECFM=FB,BLKSIZE=2000,LRECL=100

Figure 36. Tape File Programs in VSE and MVS

13.2.6.8 LIOCS Device-independent File Definition
Under VSE, when using the DTFDI macro to define your file, your entire program
should be device-independent. Under MVS, every program should also be
device-independent for optimum use from the operating system. In revising a
VSE program with a DTFDI to run under MVS:

• Code RECFM=F in the MVS DCB macro. DTFDI does not need the RECFORM
parameter because only fixed, unblocked records are supported. If you omit
RECFM in MVS, undefined is assumed.

• If the DTFDI specified DEVADDR=SYSLST or DEVADDR=SYSPCH, the MVS
DCB must specify RECFM=FM because the first byte of the VSE output area
contains a control character. For increased flexibility, supply the RECFM and
DEVADDR parameters, and all other parameters describing data set
characteristics in the DD statement instead of in the problem program.

Figure 37 on page 304 shows a comparison between the VSE DTFDI and the
MVS DCB macros.

Chapter 13. Assembler 303

 VSE DTFDI MVS DCB DSORG=PS

 DEVADDR = SYSxxx DDname (in DD statement)
 IOAREA1 = xxxxxxxx BUFNO = 1

or
 IOAREA! = xxxxxxxx BUFNO = 2 or more
 IOAREA2 = xxxxxxxx
 EOFADDR = xxxxxxxx EODAD = xxxxxxxx
 ERROPT = xxxxxxxx SYNAD = xxxxxxxx
 ERROPI = IGNORE EROPI = ACC

SKIP SKP
ABE

MACRF =(G...)
= (p...)

RECFM = FA
= FM

BLKSIZE = nnnn
 IOREG = (r) MACRF = (..L..)
 RECSIZE = nnn LRECL = nn
 SEPASMB = YES User must code the DCB
 WLERR = xxxxxxxx SYNAD = xxxxxxxx

Figure 37. Comparison of DTFDI and DCB macros

13.2.6.9 LIOCS Console File Definition
The DTFCN has no equivalent in MVS because reading and writing via the
console is not handled at the GET/PUT level. MVS provides the WTO macro for
writing on the console and the WTOR macro for writing a message and reading a
reply. Therefore, you must replace a PUT macro for the console by either a WTO
macro to display a message or a WTOR macro for displaying a message and
reading a reply.

Do not display messages on the console unless they are necessary. The system
writes many messages to the operator, and extra messages could lead to
confusion and hinder the performance of the installation.

MVS WTO
WTOR

′ message′
′ message′ , reply address, reply length, ecbaddress

(2-12) (2-12) (2-12)

13.2.6.10 LIOCS Sequential File Definition on Direct Access
Devices
Devices In VSE and MVS, sequential DASD files are processed in the same way.

OPEN Macro

VSE OPEN(R) filename ,...
(r1)

MVS OPEN dcbaddress , option1, option2 ,...
(2-12)

304 VSE to OS/390 Migration Workbook

Options

Option 1 Option 2

QSAM INPUT ,REREAD
OUTPUT ,LEAVE
UPDAT ,DISP
EXTEND
INPUT
EXTEND
OUTPUT ,REREAD

BSAM INOUT ,DISP
UPDAT ,LEAVE
OUTIN
OUTINX

Note: Any number of dcbaddresses and associated options may be specified in
the OPEN macro instruction.

CLOSE Macro

 1. Options

REREAD
LEAVE
FREE
DISP

 2. If you omit the option, the following positioning occurs:

If you code TYPE=T, LEAVE is assumed (BSAM only).
If you don′ t code TYPE=T, DISP is assumed (BSAM only).

 3. You can code CLOSE with TYPE=T to temporari ly close sequential data sets
on direct access volumes processed with BSAM. When you use TYPE=T, the
DCB used to process the data set maintains its open status, and you don′ t
have to issue another OPEN macro to continue processing the same data
set. A request to temporarily close a data set causes MVS to process labels,
modify some of the fields in the system control blocks for that data set, and
reposition the volume (or current volume in the case of multivolume data
sets) in much the same way that the normal CLOSE macro does. When you
code TYPE=T, you can specify that the volume either be positioned at the
end of data (the LEAVE option) or be repositioned at the beginning of data
(the REREAD option). When a DCB is shared among multiple tasks, the task
that opened the data set must also close it; however, a subtask of the task
that opened the DCB can issue the CLOSE macro with the TYPE=T option.

GET / PUT Macros

VSE CLOSE(R) filename ,777
(r1)

MVS CLOSE dcbaddress option ,... ,TYPE=T
(2-12)

VSE GET
PUT

filename ,workname
(1) (0)

Chapter 13. Assembler 305

CNTRL Macro

There is no equivalent for the VSE CNTRL macro. The MVS CNTRL does not
support DASD devices.

RELSE Macro

The VSE and MVS functions of this macro are the same. RELSE causes the
remaining records in a buffer to be ignored.

TRUNC Macro

The VSE and MVS functions of this macro are the same. TRUNC causes the next
logical record to be written as the first record of the next block.

ERET Macro

The VSE ERET macro enables a problem program ERROPT or WLRERR routine
to return to IOCS and specify an action to be taken. In MVS, this is
approximated by the SYNAD routine, which is an optional error analysis routine
that is given control when an uncorrectable I/O error occurs. The error analysis
routine must not use the save area pointed to by register 13, because this area
is used by the system. The system does not restore registers when it regains
control from the error analysis routine. The error analysis routine can issue a
RETURN macro instruction that uses the address in register 14 to return control
to the system.

For BSAM, if control is returned to the system, the system returns control to the
problem program and proceeds as though no error had occurred. If you omit the
SYNAD operand, the task is abnormally terminated when an uncorrectable I/O
error occurs.

For QSAM, if the error condition was the result of a data validity error, the
control program takes the action specified in the EROPT operand; otherwise, the
task is abnormally terminated. The control program takes these actions when
you omit the SYNAD operand or when the 2.spr analysis routine returns control.
Uncorrectable I/O errors resulting from channel operations or direct access
operations that make the next record inaccessible cause the task to be
abnormally terminated regardless of the action specified in the EROPT operand.
The action specified by EROPT is one of these three:

MVS GET
PUT

dcbaddress area address
(2-12) (2-12)
(1) (0)

VSE RELSE filename
(1)

MVS RELSE dcbaddress
(1-12)

VSE TRUNC filename
(1)

MVS TRUNC dcbaddress
(1-12)

306 VSE to OS/390 Migration Workbook

ACC Specifies that the problem program accepts the block causing the error.
This action can be specified when a data set is opened for INPUT,
RDBACK, UPDAT, or OUTPUT (OUTPUT applies to printer data sets
only).

SKP Specifies that the block that caused the error is skipped. Specifying
SKP also causes the buffer associated with the data block to be
released. This function can be specified when a data set is opened for
INPUT, RDBACK, or UPDAT.

ABE Specifies that the error results in the abnormal termination of the task.
This action can be specified when the data set is opened for INPUT,
OUTPUT, RDBACK, or UPDAT.

If you omit the EROPT operand, the ABE action is assumed.

READ Macro

Notes:

 1. If the OPEN macro specifies UPDAT, you must use the execute form of the
READ macro.

 2. You must test the input operation for completion by using the CHECK macro
instruction.

WRITE Macro

Notes:

 1. If the OPEN macro specifies UPDAT, you must use the execute form of
WRITE.

 2. You must test the output operation for completion by using the CHECK
macro.

CHECK Macro

VSE READ
filename ,SQ, area length
(1) (0) (r1)

S

MVS READ
decbname,SF, dcbaddress , area address ,

(2-12) (2-12)
length
(2-12)
′ S′

VSE WRITE filename , UPDATE , area , length
(1) SQ (0) (r)

MVS WRITE decbname,SF, dcbaddress area address length
(2-12) , (2-12) , (2-12)

′ S′

VSE CHECK filename control-address
 (1) , (0)

MVS CHECK decbaddress ,DSORG= IS
(1-12) ALL

Chapter 13. Assembler 307

Notes:

 1. The decbaddress must be the same as used in the READ or WRITE macro
(decbname).

 2. If the I/O operation did not complete successfully, the error analysis routine
(SYNAD) is given control if you have provided one.

 3. The following conditions are also handled:

• When the system is reading, volume switching is automatic. The
end-of-data-set (EODAD) routine is given control if an input request is
made after all the records have been retrieved.

• When the system is writing, additional space on the device is obtained
when the current space is filled and more WRITE macros have been
issued.

POINTW / POINTR Macros

Notes:

 1. Blockaddress is the address of a fullword on a fullword boundary containing
the required record identification in the same form as it is obtained from the
NOTE macro.

 2. If you use WRITE SQ after POINTR in VSE, set the 0 of TTR0 to 1 in MVS for
the same result.

POINTS Macro

Notes:

 1. The POINTS macro in VSE causes repositioning of the file to the lower l imit
of its first extent.

 2. The POINT macro in MVS positions the data set to the block indicated in the
blockaddress field, which contains TTRz where:

• TT is the relative track number.
• R is the block number on that track.
• z is zero or one, if it is one, the block following the TTR block is

referenced.

You can specify the first block of a direct access device data set by either
hexadecimal 00000001 or 00000100.

 3. The MVS POINT macro is valid only for BSAM and BPAM.

VSE POINTW
POINTR

 filename , address
(1) (0)

MVS POINT dcbaddress , blockaddress
(2-12) (2-12)
(1) (0)

VSE POINTS filename
(1)

MVS POINT dcbaddress , blockaddress
(2-12) (2-12)
(1) (0)

308 VSE to OS/390 Migration Workbook

NOTE Macro

The MVS NOTE macro is valid only for BSAM and BPAM.

NOTE returns the following information:

VSE-register 0: 00nn
VSE-register 1: CCHR
MVS-register 1: TTR0

where

nn = Unused space remaining on the track following the end of the
identified record.

 C = Cylinder number.
 H = Track number.
 T = Relative track number.
 R = Block number of that track.

FEOVD Macro

The functions of the VSE FEOVD and MVS FEOV macros are the same.

Figure 38 on page 310 shows a comparison of the operands of the DTFSD and
DCB macros. Figure 39 on page 311 shows a sample of the I/O macros used
with sequential direct access files in VSE and MVS.

VSE NOTE filename
(1)

MVS NOTE dcbaddress
(1-12)

VSE FEOVD filename
(1)

MVS FEOV dcbaddress
(1-12)

Chapter 13. Assembler 309

 VSE DTFSD MVS DCB DSORG=PS

 BLKSIZE = nnnn BLKSIZE = nnnn
 EOFADDR = xxxxxxxx EODAD = xxxxxxxx
 DELETFL = NO DISP = (in DD statement)
 DEVADDR = SYSxxx N/A
 DEVICE = nnnn UNIT = (in DD statement)
 ERROPT = IGNORE EROPT = ACC

SKIP SKP (QSAM only) (in DD stmt)
ABE

 ERROPT = xxxxxxxxx SYNAD = xxxxxxxx
 ERREXT = YES SYNAD = xxxxxxxx
 FEOVD = YES Not required
 HOLD = YES This function can be implemented using

the ENQ/DEQ logic of MVS for a specific
resource. DISP=SHR in DD statement.

 IOAREA1 = xxxxxxxx BUFNO = 1
or

 IOAREA1 = xxxxxxxx BUFNO = 2 or more
 IOAREA2 = xxxxxxxx
 IOREG = (r) MACRF = (..L..)
 LABADDR = xxxxxxxx EXLST = xxxxxxxx
 RECFORM= xxxxxx RECFM = xxx
 RECSIZE = nnnn LRECL = nnnn

(r)
 SEPASMB = YES User must code the DCB
 TRUNCS = YES MVS assumes truncated blocks unless

RECFM=(...S) is specified.
 TYPEFLE = INPUT MACRF = (G...)

OUTPUT (P...)
INPUT/OUTPUT are also specified in OPEN

 TYPEFLE = WORK MACRF = (R...,W...)
 UPDATE = YES (for INPUT MACRF = (R...,W...)

files only) UPDAT is specified in OPEN macro
 UPDATE = YES (for WORK MACRF = (R...,W...)

files only)
 VARBLD = (r) Not required
 VERIFY = YES OPTCD = W
 WLRERR= xxxxxxxx SYNAD= xxxxxxxx
 WORKA= YES MACRF= (..M..)

Figure 38. Comparison of the DTFSD and DCB Macros

310 VSE to OS/390 Migration Workbook

OPEN SAMFILE
.

WRITE SAMFILE,SQ,DATA
VSE CHECK SAM FILE

.
CLOSE SAMFILE

SAMFILE DTFSD DEVADDR=SYS005,DELETFL=NO, C
DEVICE=3340,RECFORM=FIXUNB, C
BLKSIZE=8O,TYPEFLE=WORK,VERIFY=YES

SDMODW

OPEN SAMFILE,(OUTPUT))
.

WRITE DECB,SF,SAMFILE,DATA
MVS CHECK DECB

.
CLOSE SAMFILE

SAMFILE DCB DDNAME=SAMDD,RECFM=F,DSORG=PS, C
BLKSIZE=80,MACRF=(W)

Figure 39. Sequential DASD FILE Program in VSE and MVS

13.2.6.11 LIOCS Direct Access File Definition
The following text discusses modifying DASD direct access files for use under
MVS.

General Considerations

File definition is accomplished under VSE by a DTFDA macro and by a DCB
macro under MVS. Equivalents of certain DTFDA parameters are not specified in
the DCB. You must specify some of these in a DD statement or in the imperative
macro instructions. Figure 40 on page 312 shows a comparison of the operands
of the DTFDA and DCB macros.

Chapter 13. Assembler 311

 VSE DTFDA MVS DCB DSORG=DA

 BLKSIZE = nnnn BLKSIZE = nnnn
 DEVICE = nnnn UNIT = (in DD statement)
 ERRBYTE = xxxxxxxx (See description of SYNAD routine)
 IOAREA1 = xxxxxxxx Area address (READ/WRITE macro)
 SEEKADR = xxxxxxxx Not required (READ/WRITE macro)
 TYPEFLE = xxxxxx OPEN macro option
 AFTER = YES MACRF = (..WA..)
 DEVADDR = SYSnnn UNIT = (in DD statement)
 ERREXT = YES SYNAD = xxxxxxxx
 HOLD = YES This function can be implemented by using

the ENQ/DEQ logic of MVS for a specific
resource or by requesting exclusive con-
trol of a data block thru MACRF = (..X..)

 IDLOC = xxxxxxxx (See description of updating the file)
 KEYARG = xxxxxx Keyaddress (READ/WRITE macro)
 KEYLEN = nnn KEYLEN = nnn
 LABADDR = xxxxxxxx EXLST = xxxxxxxx
 READID = YES MACRF = (..RI..)
 READKEY = YES MACRF = (..RK..)
 WRITEID= YES MACRF = (..WI..)
 WRITEKY = YES MACRF = (..WK..)
 RECFORM= xxxxxx RECFM = xxx
 RECSIZE = (nn) Length (READ/WRITE macro)

or DCB LRECL = nnnnn
 RELTYPE = xxx OPTCD = (...,R...).No equivalent for DEC
 SEPASMB = YES User must code the DCB
 SRCHM = YES LIMCT= n,OPTCD = E
 TRLBL = YES EXLST = xxxxxxxx
 VERIFY = YES OPTCD = W
 XTNTXIT = xxxxxxxx EXLST= xxxxxxxx

Figure 40. Comparison of DTFDA and DCB Macros

Error Bytes

The error bytes used in VSE to test for successful completion of an I/O operation
are equivalent to a two-byte exception code in MVS. The two-byte exception
code is placed in the DECB (DECB+1) of the corresponding READ/WRITE macro
after a WAIT or CHECK macro has been issued.

If you issue a WAIT macro (WAITF in VSE), test for successful I/O completion
provide the appropriate actions.

In MVS, if you issue the CHECK macro, the system performs the test. If an
unusual condition occurs, the system branches to your SYSNAD routine if you
have provided one, or it abnormally terminates the job step.

The information provided in the two bytes is different in VSE and MVS. Therefore
change any parts of your programs that refer to these error bytes. Figure 41 on
page 313 gives a comparison of the VSE and MVS exception codes.

312 VSE to OS/390 Migration Workbook

ERROR VSE MVS
Byte Bit Byte Bit

 Wrong-length record 0 1 2 1
 Nondata transfer error 0 2 2 6
 Space not found on track 0 4 2 2
 Reference outside extents of data set or file 0 7 3 3
 Data check in count area 1 0 2 4
 Track overrun 1 1 ** **
 End-of-cylinder 1 2 ** **
 Data check when reading key or data 1 3 2 4
 Record not found 1 4 2 B
End-of-file 1 5 2 5
End-of-volume 1 6
 Invalid request * 2 3
 Uncorrectable error other that I/O * 2 6
 Read with exclusive control not preceded by
 write with exclusive control * 2 7
 WRITE macro used when DCB specified input * 3 1
 Extended search specified with DCB IIMCT = 8 * 3 2
 WRITE Mith ID addressed RO * 3 4
 Key was specified as search argument when
 KEYLEM = 8 or no key address was given * 3 5
 Request for options not in the DCB * 3 6
 Attempt to add fixed-length record with key
 beginning with hex ′ FF′ . * 3 7
 * These errors are not included in the VSE exception codes.

 ** These conditions do not occur under MVS.

Figure 41. VSE Error Bytes and MVS Exception Code Bits

READ Macro

Notes:

 1. TYPE - DI, DIF, DIX, DK, DKF, or DKX. R or RU can be suffixed to the type
code only if spanned records are being processed. R signifies that the
system is to return the relative track address of the next data record in the
area specified by the next address operand. RU signifies that the system is
to return the relative track address of either the next capacity record (R0) or
data record, whichever occurs first. If R or RU is used, you must code the
length operand as ′S′.

 2. ′S′ - system will supply the operand if you specify ′S′.

VSE READ filename , KEY
(1) ID

MVS READ

ecbname,type, R , dcbaddress ,
RU (2-12)

area address , length
(2-12) (2-12)
′ S′ ′ S′

 keyaddress , blockaddress , next address
(2-12) (2-12) (2-12)
′ S′
0

Chapter 13. Assembler 313

WRITE Macro

Notes:

 1. TYPE = DA, DAF, DI, DIF, DIX, DK, DKF, or DKX.

 2. ′S′ - system supplies the operand if you specify ′S′.

 3. If the key is not written or used as a search argument, zero is specified
instead of keyaddress.

CNTRL Macro

There is no equivalent in MVS BDAM to the VSE CNTRL macro. The MVS CNTRL
macro does not support DASD devices.

WAITF, OPEN and CLOSE Macros

Notes:

 1. DISP is assumed when no positioning option is specified in the CLOSE
macro. The volume is then positioned according to the position implied by
the DISP parameter of the DD statement.

 2. Any number of dcbaddresses may be specified in the OPEN and CLOSE
macros.

VSE WRITE
KEY

filename , ID
(1) RZERO

AFTER
AFTER,EOF

MVS WRITE decbname,type, dcbaddress , area address,
(2-12) (2-12)

′ S′
length key address
(2-12) , (2-12) , block address
′ S′ ′ S′ (2-12)

0

VSE WAITF filename
(r1)

MVS WAIT

CHECK

number of events, ECB = address
ECBLIST = address

dcbaddress ,DSORG = IS
 (1-12) ALL

VSE OPEN(R) filename ,...
(r1)

MVS OPEN dcbaddress INPUT
(2-12) , OUTPUT

UPDAT

VSE CLOSE(R) filename
(r1l)

MVS CLOSE dcbaddress , FREE ,...
(2-12) DISP

314 VSE to OS/390 Migration Workbook

13.2.6.12 Track and Record Addressing

Track Addressing

In VSE and MVS, you can make track references by using either the actual or
relative addressing technique. The track reference field for actual addressing in
VSE and MVS is of the form MBBCCHHR. The contents of the M byte is different
in VSE and MVS. In VSE, M represents volume number, starting with zero for the
first volume. This must be increased by one for each subsequent volume.

In the MVS data set control block (label), M contains the extent sequence
number, which always starts with zero, on each volume. This must be increased
only for extents within the same volume. In the MVS data extent block, M is a
pointer to extent information. Therefore, if actual addressing is required, you
must change your calculation routine to meet the MVS requirements. However,
you should use relative addressing instead of actual addressing because of the
simplicity in calculating the proper track number.

In the case of relative track addressing, the correct disk addresses are
generated by the control program. If you use actual addressing, you must check
the extents on that volume to make sure nothing else is written there. Actual
addressing does not allow you to take advantage of some of the MVS facilities
and may impair the performance of the system. Relative addressing allows the
control program to place the data set where it is most convenient. It does all the
necessary checking of extents. With relative addressing, the system keeps track
of each data set, thus making programming easier and system use more
efficient.

Record Addressing

Within a track, records may be addressed either by their record number (ID) or
by key.

Record Addressing by ID

Provide the record number in the R byte of the track reference field.

Blockaddress points to a field containing the complete identification of the
record.

VSE READ filename,ID

MVS READ ecbname,DI,...,blockaddress

Chapter 13. Assembler 315

Record Addressing by KEY

Supply the key as follows:

Keyaddress points to a field containing the key of the record for which you are
searching. Blockaddress points to a field containing sufficient information to
identify the track on which the search is to begin.

Reference Methods

The following paragraphs describe record reference by ID and record reference
by key. In each method, relative track addressing and actual physical addressing
are applicable to VSE and MVS; relative block addressing is applicable only to
MVS. The relative block addressing technique locates a block by its position
relative to the first block of the data set.

Record Reference by ID

Under VSE, records can be referenced by ID when you specify READID and/or
WRITEID in the DTFDA. You must also supply both the track information and the
record number in the field specified by SEEKADDR.

Under MVS, records can be referenced by ID when you specify MACRF=(...I...) in
the DCB and the type parameter of the READ/WRITE macro contains I (see
Figure 42 on page 317).

VSE READ filename,KEY

KEYARG and KEYLEN operands are required in the DTFDA macro.

MVS READ decbname, DK,...,keyaddress,blockaddress

316 VSE to OS/390 Migration Workbook

Figure 42. Record Reference by ID in VSE and MVS

Reference Method VSE MVS

Relative Track
Addressing

 Assumed if DSKXTNT is
specified. RELTYPE=HEX
(the default) requires the
hexadecimal form TTTR.
RELTYPE=DEC requires the
zoned decimal for
TTTTTTTTRR. In both cases,
the R byte(s) must contain
the actual record number of
the record on the track.

 Assumed if OPTCD does not
contain R or A. The field
pointed to by blockaddress
must contain TTR. There is
no equivalent to RELTYPE
=DEC in MVS. The form
must be converted to
hexadecimal.

Relative Block
Addressing

No equivalent. Assumed if MACRF contains
I and OPTCD contains R. The
field pointed to by
blockaddress must contain
BBB (binary). The address of
the first record is 000.

Actual Physical
Addressing

Assumed if DSKXTNT is not
specified. The address must
be in the form MBBCCHHR.
The R is ignored.

Assumed if OPTCD contains
an A. The field specified by
blockaddress must contain
MBBCCHHR. The M byte is
different in VSE and MVS.
See the description of the M
byte under Track and Record
Addressing.

Record Reference by KEY

Under VSE, records can be referenced by key when you specify READKEY and/or
WRITEKEY in the DTFDA. Before the WRITE macro is executed, the field specified
by KEYARG in the DTFDA must contain the key of the record for which you
search. The field specified by SEEKADDR must contain the track address. If you
specify KEYARG, a record with that must already exist on the track or else a no
record found condition occurs.

Under MVS, records can be referenced by key when you specify MACRF=(...K...)
in the DCB and the type parameter of the READ,WRITE macro contains K. The
field specified by keyaddress in the READ/WRITE macro must contain the actual
key of the record for which you search. Blockaddress contains the search start
address (see Figure 43 on page 318).

Chapter 13. Assembler 317

Figure 43. Record Reference by KEY in VSE and MVS

Reference
Method:

VSE MVS

Relative Track
Addressing

Assumed if DSKXTNT is
specified. RELTYPE=HEX
(the default) requires the
hexadecimal form TTTR.
RELTYPE=DEC requires the
zoned decimal form
TTITTTTTRR. RR must be 00.

Assumed if OPTCD does not
contain A. The field specified
by blockaddress must contain
TT in binary. There is no
equivalent to RELTYPE=DEC
in MVS. The form must be
converted to hexadecimal.

Relative Block
Addressing

No equivalent. OPTCD=R must be specified
in the DCB parameter. The
field specified by block-
address must contain BB in
binary. The address of the
first record is 000.

Actual Physical
Addressing

Assumed if DSKXTNT is not
specified. The address must
be in the form MBBCCHHR.
The R must be 0. The field
specified by KEYARG must
contain the key of the record.

Assumed if OPTCD contains
an A. The field specified by
blockaddress must contain
MBBCCHHR. The M byte is
different in VSE and MVS.
See the description of the M
byte under Track and Record
Addressing.

Direct Access File Processing

In VSE, parameters required for creating or processing a DAM file are supplied
or made known through the DTFDA macro instruction operands and using the
READ/WRITE macros. For MVS, this information is in the DSCB, DCB, and
READ/WRITE macros. Some information is also supplied in optional fields of the
DD statement.

Figure 44, Figure 45 on page 319, Figure 46 on page 319, Figure 47 on
page 320, Figure 51 on page 325, Figure 48 on page 320, Figure 49 on
page 321 and Figure 50 on page 324 show parts of VSE programs with their
MVS counterparts for loading and processing DAM files.

OPEN (DAMFILE,(UPDAT))
.
.

READ DECBUPOT,DI,,,,OLDKEY,,MF=E
CHECK DECBUPDT
.
.

READ DECBUPDT,DI,DAMFILE,′ S′ , ′ S′ , , C
BLOCKADDR,MF=L

.

.
DAMFILE DCB ...DSORG=DA,MACRF=(RISC,WIC), C

...OPTCD=R,BUFL=58...
.
.

Figure 44. Updating a DAM File under MVS

318 VSE to OS/390 Migration Workbook

OPEN (DAMFILE,(OUTPUT))
.
.

WRITE DECBADD,DI,DAMFILE,DATA,′ S′ , KEY,BLOCKADDRESS
CHECK DECBADD
.
.

DAMFILE DCB ..MACRF=(WICS),DSORG=DA,OPTCD=R...
.
.

Figure 45. Adding to a DAM File under MVS

Loading a DAM File (Fixed-Length Records with keys)

Figure 46 and Figure 47 on page 320 illustrate an example of sequentially
loading a DAM file consisting of fixed-length records with keys. A direct
addressing technique is used, which provides unique correspondence between
each key and its relative or actual position on the disk (VSE) or within the data
set (MVS), similar to a sequential data set. The input file resides on tape and is a
set of records sorted into ascending order by keys. Each record consists of 50
bytes (a three-byte key field followed by 47 bytes of data).

OPEN DAMFILE,TAPE
WRITER0 WRITE DAMFILE,RZERO

WAITF DAFMFILE
.

GET GET TAPE
.

WRITE DAMFILE,AFTER
WAITF DAMFILE
.

EOF WRITE DAMFILE,AFTER,EOF
WAITF DAMFILE
CLOSE DAMFILE,TAPE
.

DAMFILE DTFDA BLKSIZE=58,ERRBYTE=ERROR, C
IOAREA1=OUTPUT,SEEKADDR=ADDR, C
TYPEFLE=OUTPUT,AFTER=YES, C
DSKXTNT=3,KEYLEN=3,RELTYPE=HEX, C
VERIFY=YES,DEVICE=3340

DAMOD AFTER=YES,ERREXT=YES,RELTRK=YES
.

TAPE DTFMT
MTMOD

Figure 46. Loading a Sequential DAM File under VSE

The VSE program writes the capacity record (R0) and uses WRITE AFTER to
sequentially write each record, so that the capacity record is checked for
available space on that track before each record is written. In VSE, the total
amount of space allocated to the file is indicated by the extents allocated to it,
but it can be extended in a later run.

Chapter 13. Assembler 319

OPEN (DAMFILE,(OUTPUT),TAPE,(INPUT))
GET GET TAPE

.
WRITE DECB1,SF,DAMFILE,(10)
CHECK DECB1

.
WRITE DECB2,SD,DAMFILE,DUMMYREC
CHECK DECB2

.
TAPE DCB

.
DAMFILE DCB DDNAME=OSDAMDD,DSORG=PS, C

MACRF=(WL),SYNAD=DATRTST, C
RECFM=F,KEYLEN=3,BLKSIZE=47

Note: DSORG=PS must be specified in the DCB. However, DSORG=DA must be
specified in the DD statement.

Figure 47. Loading a Sequential DAM File under MVS

Under MVS, you can create a like data set by using the WRITE SF macro. You
can also use the WRITE SD macro to fill any tracks remaining to the end of the
data set with dummy records (if desired for future additions).

Figure 48 and Figure 49 on page 321 illustrate an example of loading a
preformatted direct access file by record ID.

OPEN (DAMFILE,(UPDAT),TAPE,(INPUT))
GETTAPE GET TAPE,INPUT

.
WRITE DECBADD,DA,DAMFILE,DATA,′ S′ , KEY, C

BLOCKADDR
CHECK DECBAOD

EOF CLOSE (DAMFILE,, TAPE)
.

TAPE DCB ...
DAMFILE DCB DDNAME=OSDAMDD,DSORG=DA, C

MACRF=(WAC),OPTCD=E,LIMCT=5, C
SYNAD=DATRTST

W WRITE macro is used.
A Records are to be added.
C CHECK macro is used.

Figure 48. Loading a Random DAM File under MVS

320 VSE to OS/390 Migration Workbook

Notes
.

OPEN (R0FILE,(OUTPUT),TAPE)
WRITER0 WRITE DECBR0,SZ,R0FILE

STC 15,RC (1)
CHECK DECBR0
CLI RC,X′00 ′
BE WRITER0 (2)

OPENDAM OPEN (DAMFILE,(OUTPUT))
CLI WC,X′10 ′ (3,8)
BE WRITE

GET GET TAPE,WORK
PACK PKEY(2),KEY
CVB 9,CVBKEY
SR 8,8 (4)
D 8,=F′37 ′
LTR 8,8
BNZ *+10
BCTR 9,0
IC 8,=C′37 ′
STH 9,TT
STC 8,R

WRITE WRITE DECBLOAD,DAF,DAMFILE,DATA,47,KEY,TTR (5)
WAIT ECB=DECBLOAD
MVC WC,DECBLOAD+2
TM WC,X′1O′ (6)
BO CLOSEDAM (7)
CHECK DECBLOAD
B GET

CLOSEDA AH 7,COUNT
LA 7,0(7)
STH 7,COUNT
CH 7,THREE
BH BYPASS
CLOSE (DAMFILE)
B WRITER0

BYPASS NOTE RECORD
B GET

EOF CLOSE (DAMFILE)
CLOSE (R0FILE,,TAPE)
.

WORK DS 0CL50
KEY DS CL3
DATA DS CL47

DS CL30
CVBKEY DC D′ 0 ′
PKEY EQU *-2
TTR DS 0F
TT DS CL2
R DS CL1

DS CL5
*

Figure 49 (Part 1 of 3). Loading a DAM File of U. or V. Length Records under MVS

Chapter 13. Assembler 321

Notes
RC DS CL1
WC DC CLI′ 0 ′
COUNT DC H′ 0 ′
THREE DC H′ 3 ′
*

R0FILE DCB DDNAME=R0DD, (9) C
DSORG=PS, C
MACRF=(WL), C
SYNAD=OSDAERR1, C
BLKSIZE=47, C
KEYLEN=3, C
RECFM=U

*
DAMFILE DCB DDNAME=DAMDD, (9) C

DSORG=DA, C
MACRF=(WAC), C
OPTCD=F, C
SYNAD=OSDAERR2

*
TAPE DCB DDNAME=TAPEDD, C

DSORG=PS, C
MACRF=(GM), C
EODAD=EOF

*
//GO.TAPEDD DD DSN=OSSAMFIL,
// UNIT=3420,VOL=SER=NONE,
// LABEL=(5,NL),
// DISP=OLD, -
// DCB=(BLKSIZE=50,RECFM=F)
//GO.R0DD DD DSN=UDAM, (9)
// UNIT=3340,VOL=SER=WORK12,
// SPACE=(47,(1000,100)),
// DCB=(DSORG=DA),
// DISP=(,KEEP)
//GO.DAMDD DD DSN=UDAM, (9)
// UNIT=3340,VOL=SER=WORK12,
// DISP=OLD

Notes:

 1. One track, in sequential order, is erased and a capacity record is
written. On return, register 15 contains a return code which is zero if
another available within the initial extents, and is 8 if the next track
will require secondary space allocation.

 2. If the return code was 0, a new track is initialized, otherwise the
second DCB is opened and actual loading may commence for the area just
cleared.

 3. Initially this byte is set to zero and no branch will occur.

Figure 49 (Part 2 of 3). Loading a DAM File of U. or V. Length Records under MVS

322 VSE to OS/390 Migration Workbook

 4. Since 37 records (blocks) wil l fit on one 3340 track, the three-byte
key (ranging from 001-999) is divided by 37 to get the relative track
number and the remainder will be the number of the record on this track.
If a remainder of O is computed, this record will still fit on the
previous track; therefore TT = n, R = 0 will be reset to TT = n-1, R =
37 since a remainder of 37 may not be evaluated otherwise. A key may not
consist of all zeros in this case, as a TT of -1 will result. It is, in
fact, not necessary to maintain the R-byte, since the system does not
use it if WRITE DA is specified.

 5. A block is added to the data set. Type DA must be used
and the data length must be stated since RECFM=U was assumed.

 6. A second error byte in the DECB is saved (which might not be
necessary) and inspected for the ″Out of Extents″ condition.

 7. If the condition was satisfied, the load DCB must be temporari ly
closed. Control is then given to the WRITER0 routine which requests
secondary space allocation and, after getting the new extent, writes the
capacity records for this area.

 8. If any extents except the initial one(s) have been cleared, loading
may resume after reopening the load DCB, however, the WRITE macro (5)
has to be successfully executed before the load loop is reentered.

 9. Note the different DD names and status of the data sets.

Figure 49 (Part 3 of 3). Loading a DAM File of U. or V. Length Records under MVS

In both figures, the file being loaded consists of 50-byte records. Each record
has a three-byte key field followed by 47 bytes of data. The converted key field
becomes the relative track address. Under VSE, the record is written in the first
available space within the file extents on that track. Under MVS you must code
the type field in the WRITE macro as DA. Then, each record you write replaces
the first dummy record found (indicated in the key field) on the specified track. If
the track is already filled but you have requested an extended search (DCB
parameters LIMCT and OPTCD), the search is continued.

Loading a DAM File (Fixed-Length Records without keys)

Loading a file of fixed-length records without keys is similar to loading one when
the records have keys, except that you cannot use the MVS WRITE SD) macro to
write dummy records. You must define what a dummy record looks like when
you create the file.

The DA type WRITE is not applicable in this case. You must retrieve a record,
test it for indications of a dummy record, and after updating, rewrite the record.

Loading a DAM File (Undefined or Variable-Length Records)

For undefined or variable-length records, relative track addressing using keys is
the best method. Before using any track when creating the file, write a capacity
record (R0) and erase the rest of the track by issuing an SZ type WRITE
instruction. If the total space needed for the data set is initially allocated, you
must first write capacity records for all tracks. Then loading the data records
consists of making additions to the initially empty file by using the MVS WRITE
DA macro (similar to the VSE WRITE AFTER macro).

Chapter 13. Assembler 323

To create a file using this method under MVS, you would normally initialize each
track by writing a capacity record (R0) and erasing the 2.sp of the track. In VSE,
you would do this by using the WRITE RZERO macro; in MVS you use the WRITE
SZ macro. However, in MVS, you need not update the track address because
this is done automatically by the WRITE SZ macro. By testing register 15 for a
non-zero value after each WRITE, you can determine when MVS has initialized
all the tracks. Also, you need a second sequential DCB (DSORG=PS) for the
WRITE SZ macro. An example of this procedure is shown in Figure 49 on
page 321. The example also shows how secondary space allocation can be
obtained if an out-of-extent condition occurs while you are creating the data set.

Processing a DAM File under VSE

Figure 50 illustrates how a DA file that has been loaded sequentially under VSE
may be processed. Records are retrieved for updating purposes by key and the
relative track number. When the record-not-found condition occurs, the
transaction record whose key was used for the search is added to the disk file
by a WRITE AFTER.

OPEN DAMFILE
.

READ DAMFILE,KEY
WAITF DAMFILE
.
.

WRITE DAMFILE,KEY
WAITF DAMFILE
.
.

ADDITION WRITE DAMFILE,AFTER
WAITF DAMFILE
.

CLOSE DAMFILE
.

DAMFILE DTFDA BLKSIZE=58,ERRBYTE=ERROR, C
IOAREA1=OUTPUT,SEEKADR=ADDR, C
TYPEFLE=INPUT,AFTER=YES,DSKXTNT=3, C
KEYARG=KEY,KEYLEN=3,VERIFY=YES, C
READKEY=YES,RELTYPE=HEX, C
WRITEKY=YES,DEVICE=3340

DAMOD AFTER=YES,ERREXT=YES,RELTRK=YES

Figure 50. Processing a DAM file under VSE

To process a randomly loaded file, use a similar process, but use READ ID for
retrieving records and WRITE ID for updating and adding records.

Processing a DAM File under MVS

The procedure for adding records to a BDAM data set is similar to the one
illustrated in Figure 50. The computation of the block address field varies
according to the reference method used. For example, if the data set had been
created sequentially, as in Figure 47 on page 320, record reference by block
address only can be used. In this case, the coding might be as illustrated in
Figure 42 on page 317.

324 VSE to OS/390 Migration Workbook

When updating records, it is convenient to use the list and execute forms of
READ/WRITE macros rather than the standard forms and to request dynamic
buffering. To update a direct access file that was created sequentially, as in
Figure 51 on page 325, use coding similar to that of the example in Figure 44 on
page 318, which uses the list and execute forms of the READ and WRITE macros.
The key does not need to be rewritten after a record has been retrieved and
updated, so the key address field is specified as zero. You must specify BUFL
because dynamic buffering was requested.

.

.
OPEN DAMFILE,TAPE

GETTAPE GET TAPE
.
.

WRITE DAMFILE,ID
WAITF DAMFILE

.

.
CLOSE DAMFILE,TAPE

TAPE DTFMT
MTMOD

DAMFILE DTFDA BLKSIZE=50,DEVICE=3340,DSKXTNT=3, C
ERRBYTE=ERROR,IOAREA1=OUTPUT, C
SEEKADDR=ADDR,TYPEFLE=OUTPUT, C
RELTYPE=HEX,VERIFY=YES,WRITEID=YES

DAMOD ERREXT=YES,RELTRK=YES

Figure 51. Loading a Random (Preformatted) DAM File under VSE

Multiple Search / Feedback

Under VSE, if you have specified SRCHM=YES, READ or WRITE KEY and
IDLOC=xxxxxxxx, the system returns to you the address of the record currently
being read or written. This address is placed in the field specified by IDLOC. VSE
supplies the ID in the same form used in the SEEKADR location, except when
physical IDs are involved. In that case, only the last five bytes of the physical ID,
cchhr, are supplied instead of the complete relative ID including zeros.

If you use READ or WRITE ID (or READ or WRITE KEY without SRCHM), VSE
returns the address of the next record. This address is placed in the field
specified by IDLOC. When using relative addressing with IDLOC, all your extents,
except the last extent for each file, should end on cylinder boundaries.

Under MVS, if the data set was created using relative track, key,. and extended
search, you may request feedback to increase the speed of an update run.
Feedback means that after the execution of a READ/WRITE macro, the address of
the retrieved record is supplied by the system in the field specified by
blockaddress.

Thus, if a READ requires an extended search over several tracks to locate a
specific record by its key, the subsequent update WRITE may use the address
supplied by the feedback option rather than repeat the entire search.

Chapter 13. Assembler 325

In MVS, to make a request for feedback, insert the letter F in the type code of a
READ/WRITE macro (DIF, DAF and so on). The format of the blockaddress field
after feedback, however, is determined by the OPTCD parameter. If the OPTCD
parameter does not contain an F, feedback will be in the form of MBBCCHHR. If
you code an F in the OPTCD parameter, the format of the feedback depends on
the reference method used. Figure 52 provides details on reference methods
and feedback formats.

Figure 52. MVS Feedback Formats

Type or
Reference

Character-
istics

Relative
block
number
within the
data set.
You supply
key

Relative
track
number
and block
identifi-
cation.

Relative
track
number.
You supply
key in key
field.

Actual
device
address.

BBB TTR TT MBBCCHHR

Feedback
Format

Feedback
Format

Binary
value left
justif ied in
block
address
field.

TT=Track
number
(2-byte
binary
value)

R = R e c o r d
on track
(1-byte
binary
value)

Relative
track
number
(2-byte
binary
value)

Minimum
length
(bytes) of
Block-
address
field

3 3 2 8

OPTCD
= F

Relative
Address
Bytes

BBB

3

BBB

3

TTR

8

TTR

3

OPTCD
NOT
= F

Actual
Address
Bytes

MBBCCHHR

8

MBBCCHHR

8

MBBCCHHR

8

13.2.6.13 LIOCS Indexed Sequential Definition
Indexed sequential (ISAM) files should be converted to VSAM; that is, ISAM files
should not be used in MVS. VSE ISAM files should either be converted prior to
the migration to MVS (recommended) or during the conversion process.

326 VSE to OS/390 Migration Workbook

13.2.6.14 PIOCS
EXCP is often used in VSE in association with card files (for example, SYSIPT),
print files (for example, SYSLST) or the operator console (for example, SYSLOG).
In MVS, EXCP can not be used for spool files or to dialog with the operator. VSE
programs that use EXCP should be converted to use standard access method
such as QSAM or the WTO/WTOR macros.

If IBM-supplied access methods are used in MVS, provide a DCB, issue an OPEN
macro for the data set, and then process it by appropriate I/O macros. It is the
function of the access routines to:

• Provide for CCWs.
• Construct the IOB (input/output block).
• Construct the ECB (event control block).
• Issue an EXCP (execute channel program) macro.

Subsequently, the I/O supervisor schedules the request, issues the START I/O
instruction, handles interrupts, posts results in the form of completion codes,
and, if necessary, executes error recovery routines. Therefore, if the usual
access methods do not apply to a specific problem, you must include in your
program the coding necessary to provide for the preceding access method
functions.

Under VSE, only one control block, the CCB, is needed and this control block
may be built by a macro. Under MVS, however, you must allocate and partially
fill the input/output control block and the DECB through the use of DCs.

Overview of Programming Elements

In VSE, certain job control statements, system macros, and control blocks are
used. For each of these major programming elements (except SEOV), there is a
corresponding major MVS element. (See Figure 47 on page 320)

CCB Macro

Figure 53 shows the relationship between the VSE CCB macro operands and
their MVS equivalents:

Figure 53. Relationship between CCB operands and MVS Equivalents

CCB OPERAND MVS EQUIVALENT

SYSnnn DDNAME field of DCB macro. After the OPEN macro has been
executed, the unit control block address for the actual device
is in the DEB.

Command-list-name
X′nnnn ′
(transmission
bytes)

CCW address field of IOB. See discussion on CCB Fields.

Sense Address No corresponding element. The system normally provides the
first two bytes in the IOB.

Chapter 13. Assembler 327

DTFPH Macro

Figure 54 shows the correspondence between the operands of the DTFPH macro
and their MVS equivalents:

Figure 54. Relationship between DTFPH Macro and MVS equivalents

DTFPH OPERAND MVS EQUIVALENT

TYPEFLE
ASCII
CCWADDR
DEVICE
DEVADDR
LABADRR
HDRINFO
MOUNTED
XTNTXIT

OPEN macro
OPTCD=Q
Channel program address field of
IOB
UNIT parameter of DD statement
UNIT parameter of DD statement
EXLST parameter in DCB allows for
label checking exits
No corresponding element
DD statement
DEB

You can also use the file name of the DTFPH file as the ddname of the
corresponding MVS data set.

13.2.6.15 Comparison of Physical IOCS Elements

Figure 55. Comparison VSE and MVS Major Elements

VSE Major Elements MVS Major Elements

Define the file for physical IOCS (DTFPH)
macro and control block

Data Control Block (DCB) macro and
control block

TLBL statement DD statement

DLBL statement DD statement

EXTENT statement DD statement

ASSGN statement DD statement

OPEN macro OPEN macro

XTNTXIT routine Data Extent Block (DEB)

LABADDR routine EXLST in Data Control Block (DCB)

Command Control Block (CCB)
macro and control block

Data Control Block (DCB)
Input/Output Block (IOB)
Event Control Block (ECB)
Data Extent Block (DEB)

EXCP macro EXCP macro

WAIT macro WAIT macro

CLOSE macro CLOSE macro

FEOV macro FEOV macro

SECTVAL macro TRKCALC

SEOV macro Not applicable

LBRET macro RETURN macro

328 VSE to OS/390 Migration Workbook

Chapter 14. RPG II

14.1 Migration from VSE to OS/390
The aim has been to make it easy to convert programs running under VSE to run
under OS/390, with the minimum of changes to the source code. In fact, the
source programs will run unmodified, except for the following:

• The command level interfaces with CICS/VS and DL/I VSE are not supported
by OS/390 RPG II. They must not be specified on the Header Specifications
form, and calculations that refer to CICS/VS and DL/I must not be entered on
the Calculation Specifications form.

• Combined files do not exist in OS/390 RPG II. Such files must not be
specified on the File Description Specifications form.

As explained below, many entries that are necessary for an RPG II program to
run under VSE are ignored by OS/390. The compiler will issue a warning
message, but will still produce object code.

When using spooled print files (JES2/JES3) with overflow printing you must use
line counter specification, because channel 12 is not sensed.

 Note

As an application development tool, you should consider adopting other
application language enabling facilities which tend to take better advantage
of S/370 architecture and MVS/XA, MVS/ESA environments; for example,
COBOL, PL/I, CSP, FORTRAN.

14.1.1 Device Information
OS/390 allows data management information to be provided at object time by
means of DD statements. Parameters such as record and block size, label
information, or definition of disk space, can thus be changed without affecting the
source code. The entry of these parameters on the File Description
Specifications form is optional; JCL specifications are recommended.

Also optional under OS/390 is the definition of physical and logical device; the
only device types that must be specified are CONSOLE and SPECIAL.

14.1.2 Print Files
 1. For print files controlled by a line counter, without block length specification,

RECFM must be specified in the JCL. LRECL is the record length specified in
the file description specification plus 1 (for the machine control character).

 2. For print files controlled by a line counter with block length specification, the
RECFM in the DCB is the file format specified in the file description
specification with machine control characters; it cannot be overwritten by
JCL.

 3. For print files without line control specifications and with block length
specified in file descriptions:

 Copyright IBM Corp. 1998 329

• With the device type PRINTER or with a blank entry for device type and
symbolic device SYSLST (DOS/VS RPG II only)

− LRECL is the record length specified in the file description
specification plus 1 (for the machine control character)

− The first position of each record contains the machine control
character. The RECFM in the DCB is the file format specified in the
file description with machine control characters. It cannot be
overwritten by JCL.

• With a blank entry for device type or with a device type other than print
or punch device, the RECFM in the DCB is the file format specified in the
file description and cannot be overwritten by JCL. Such files can be
printed using an IBM utility program, for example, IEBGENER.

 4. For print files without line control specifications and without block length
specified in the file descriptions:

• LRECL is the record length specified in the file description plus 1 (for the
machine control character)

• RECFM and BLKSIZE must be specified in the JCL.

14.1.3 Tape Labels
Whereas in DOS/VS RPG II an exit may be entered on the File Description
Specifications form for handling non-standard tape labels, under OS/390 such
labels must be handled by a system-wide routine; the entry on the form is
ignored. In DOS/VS RPG II, multivolume unlabeled tapes may be specified in the
same way. With OS/390, this information is given in JCL statements.

14.1.4 Extent Exit
Exits for DAM files, to check whether the computed track address lies within the
extents of the file, are unnecessary under OS/390. Such an extent exit will be
ignored.

14.1.5 Processing Options
The options DECK/NODECK, LIST/NOLIST, TERM/NOTERM, and ERRS/NOERRS
are conveyed to OS/390 by means of the PARM field in the EXEC statement of
the JCL. The default values are DECK, LIST, ERRS, and NOTERM (see OS/VS
RPG II Installation Reference, SC33-6122. The other permitted options, NOLINK,
CATAL, and LINK, are realized by means of the procedures for compile, for
compile and link, or for compile, link, and go.

14.1.6 File Access Methods
The file organizations are supported as in DOS/VS RPG II. The following list
correlates the file type and the file processing.

Sequential files are supported as device-independent QSAM files, unless
device-dependent features are used. This allows the user to decide at object
time where his sequential data items are to reside.

Indexed sequential files are processed with QISAM or BISAM (or both). The
OS/390 RPG II compiler chooses the appropriate file access method, according
to the entries made on the File Description Specifications form.

330 VSE to OS/390 Migration Workbook

Direct access method files are processed with BDAM.

VSAM files are handled in the same way as under VSE.

14.1.7 Calling COBOL Subprograms
In OS/390 RPG II, a CALL statement for a COBOL subprogram must not be
preceded by a CALL ′ ILBDSET0′.

14.1.8 Calling PL/I Subprograms
It is not possible to call PL/I subprograms from an OS/390 RPG II program.

Year 2000

For VSE see PTF UN95321 (APAR PN88472).

For OS/390 see PTF UN97731 (APAR PN90587).

Chapter 14. RPG II 331

332 VSE to OS/390 Migration Workbook

Chapter 15. PL/I

The PL/I language compiler implemented on VSE is the DOS PL/I Optimizing
Compiler (5736-PL3). In MVS, the PL/I language is implemented by the OS PL/I
Optimizing Compiler Version 1 (5734-PL3), and OS PL/I Version 2 Optimizing
Compiler (5668-910).

As the OS PL/I Version 2 Optimizing Compiler implements more of the PL/I
language than Version 1 does, most source programs compiled on the VSE
compiler can be compiled on either of the two MVS compilers with a minimum
amount of change.

Note: The most current version of PL/I is PL/I for MVS & VM Version 1, Release
1. This compiler produces object code designed to run under Language
Environment, a common run-time environment for several languages on this
platform. Please refer to the IBM PL/I for MVS & VM Compiler and Run-Time
Migration Guide Release 1.1, SC26-3118 for assistance with your migration to
Language Environment.

For a comparison of VSE PL/I and MVS PL/I language elements, see the
publication entitled Developing Portable VSE Applications, GC33-6367.

15.1 Functional Differences

15.1.1 EGCS (VSE) to DBCS (OS Version 2) Comments
The following information is provided to those PL/I users who are currently using
DOS PL/I Optimizing Compiler′s Extended Graphic Character Set (EGCS)
support. The Version 1 OS PL/I compiler also has the EGCS support. The Version
2 OS PL/I compiler made enhancements to EGCS support and renamed the
support, Double Byte Character Set (DBCS).

EGCS support is limited to support for the GRAPHIC string constant and
GRAPHIC data type. It introduced the GRAPHIC compiler option, which allows
the installation (but not the user) to define the graphic control characters. These
control characters consist of the shift-in, shift-out, graphic blank, graphic quote
and graphic letter ′G′. The format of the graphic string constant (with a graphic
′G′ suffix) is fixed.

DBCS support provides for additional new function (including free-format input)
over that provided with EGCS. For a comprehensive list of the DBCS support
items, see OS PL/I Version 2 Language Reference, SC26-4308 and the OS PL/I
Version 2 Programming Guide, SC26-4307.

VSE migrations to the OS PL/I Version 2 product, should not experience any
code problems given that they didn′ t modify EGCS code points; that is, upward
compatibility is provided.

 Copyright IBM Corp. 1998 333

15.1.2 Extended Precision
Available with the MVS version of the PL/I compiler, extended precision floating
point allows working with variables of two double-words. This extended precision
is requested by specifying a precision greater than 16 for decimal float variables
and 53 for binary float variables. DOS PL/I does not support extended precision
floating point arithmetic.

15.1.3 Multitasking
Multitasking support in MVS introduces in PL/I a number of new statements. It is
worth noting that these new functions are only invoked if the program calls them
explicitly. For example, it is possible in a CALL macro to associate an
EVENT-type control variable. It is then possible, at the end of the program, to test
the termination of the associated task with a procedure invoked by a WAIT or
with the function COMPLETION. Similarly, it is possible to modify with a single
statement the relative priority of a sub-task:

PRIORITY(T1) = PRIORITY(TI) + 2;

These new functions are additions to the DOS version and do not affect the
compatibility of the compilers.

15.1.4 Dynamic Loading of Dependent Programs
It is possible to dynamically load sub-programs written in PL/I separately from a
main PL/I program. This is done by using the FETCH statement. This statement,
as the RELEASE statement with which it is associated, is only available on MVS.
FETCH causes loading of a LOAD module from LINKLIB or an execution library,
while RELEASE frees the space occupied by the module. It is necessary to pass
control to the sub-program by a CALL statement. Certain restrictions exist in its
use due to the fact that there must not be any external references between the
main program and the sub-program loaded dynamically. Particular attention
must be paid to the use in the sub-program of files and controlled variables
declared in the main program. Since FETCH and RELEASE statements do not
occur in DOS PL/I programs, their presence in the MVS implementation is purely
additive and has no impact on DOS-to-MVS conversion.

15.1.5 File Organization
The file organizations supported in DOS by the PL/I Optimizer are:

REGIONAL (1) and REGIONAL (3)
CONSECUTIVE
VSAM
INDEXED

In MVS, these are all supported and so are REGIONAL(2) and TCAM
(TRANSIENT). A new feature in the use of REGIONAL or INDEXED files is the
capability of requesting a lock at the record level to control simultaneous
updating of the same file by several programs or tasks. This is the attribute
EXCLUSIVE. If this attribute is applied to a PL/I file, then at the time of a READ,
the record will be locked until a REWRITE or UNLOCK has been issued. It is
equally possible to request the reading of a record without locking it: READ
NOLOCK. This support uses the ENQ and DEQ facilities of MVS, and implies that
all the programs sharing the file be written in PL/I such that the RNAME and
QNAE generated are identical for the same record. This function is not available
for VSAM.

334 VSE to OS/390 Migration Workbook

15.1.6 Parameters Passed to a Main Program
It is possible to pass parameters to a PL/I program having the option MAIN by
declaring the entry point as follows:

P:PROCEDURE(PARAM) OPTIONS(MAIN);
DCL PARAM CHAR(100) VARYING;

When control is passed to the program, the character string PARAM will contain
the parameter passed from the PARM field of the EXEC statement. The length of
the character string will be set to the number of characters passed to the
program.

Note: A main PL/I program always expects to receive parameters for the PL/I
environment (COUNT or REPORT or ISASIZE). It is therefore necessary to
separate these parameters from those required by the program by the character
′/′. For example:

EXEC PGM=MAINPLI;PARM=′ REPORT,ISA(60K)/RESTART′

The character string RESTART is allocated to the field PARAM and its length will
be set to seven bytes. If the PL/I Checkout Compiler is used, this parm string
may have three fields (Checkout Compiler translation parms (for example,
SOURCE), PL/I interpret time parms, and user data).

15.1.7 %INCLUDE
It is possible to specify in a %INCLUDE macro the DDname of the library which
is to be searched for the text to be copied. By default, PL/I will search the library
defined by the DDname SYSLIB.

%INCLUDE DCLFIC; the library to be searched is defined by:
//SYSLIB DD DSN=...

%INCLUDE MYLIB (DCLFIC); the library to be searched is defined by:
//MYLIB DD DSN=...

In DOS PL/I, this syntax existed with single-letter library identifiers for DOS
source sublibraries, (for example, %INCLUDE Q(memb);), so the user may have
to supply DD cards for DDNAMES ″P″, ″Q″, and so on. It is much more efficient to
include only from the default data set SYSLIB, since the MVS PL/I compilers will
OPEN and CLOSE other ″include″ l ibraries at every reference.

15.2 Compiler Options

15.2.1 Options Specific to the DOS Compiler

15.2.1.1 CATALOG
This option is produced by the compiler from a CATALR statement. It is not valid
in MVS PL/I. It is replaced by a control statement in the file specified by
//SYSLIN DD DSN=.

Chapter 15. PL/I 335

15.2.1.2 DYNBUF
In MVS the buffers are always acquired dynamically by the compiler. This option
is therefore suppressed.

15.2.1.3 LIMSCONV
An option of DOS PL/I to generate strong external references to PL/I conversion
library modules only for those conversions deemed ″reasonable″ for the data
types of variables that appear in GET DATA and GET LIST statements. Without
LIMSCONV the whole PL/I conversion is of much less importance in virtual
storage systems. MVS PL/I does not support it.

15.2.1.4 LINK
This option is replaced by the conditional execution function offered by MVS JCL.
It therefore no longer exists in MVS.

15.2.1.5 NAME
This option is functionally equivalent in the two compilers. The control statement
generated for the link edit has of course a different format. It allows, among
other compiler possibilities, several independent PL/I programs to be compiled
in a single pass and to link-edit these programs in one pass (batched
compilations).

15.2.1.6 WORKFILE
This option was used to define the type of compiler workfiles, but has no use in
MVS and is suppressed. (The access method modules being loaded dynamically
at OPEN, the workfiles are independent of physical units.)

15.2.2 Options Specific to the MVS Compiler

15.2.2.1 GONUMBER
Analogous to the GOSTMT option, it gives the line number in the case of an
abnormal termination, for example a conversion error, instead of the number of
the instruction. It requires the NUMBER option. This option is used under TSO
and CMS, the editors of these two time-sharing systems numbering the lines of
the source program.

15.2.2.2 NUMBER
This option informs the compiler that the input is numbered.

15.2.2.3 SEQUENCE
This option indicates to the compiler where to find the line numbers in the
source program.

15.2.2.4 STATEMENT
This option requests the compiler to number the instructions of the source
program.

336 VSE to OS/390 Migration Workbook

15.2.2.5 SMESSAGE or LMESSAGE
This option requests the compiler to supply messages in short or long format.
This is particularly useful for interactive users using only slow terminals
(printers).

15.2.2.6 IMPRECISE
This is used for 360/91 and 360/195 only.

15.2.2.7 INTERRUPT
This option requests that control be given to an ATTENTION type of ON- UNIT in
case of attention at the terminal. It is only of interest for conversational programs
written to execute under TSO or CMS, or when tuning a batch program written
interactively under TSO or CMS when the PL/I CHECKOUT compiler is not
available.

15.2.2.8 TERMINAL
This option is used only in an interactive environment. It allows the specification
of additional options controlling the display of results at the terminal. The
following options can be specified with the option TERM: AGGREGATE
ATTRIBUTES ESD INSOURCE LIST MAP OPTIONS SOURCE STORAGE and XREF.

15.2.3 Execution Options
These are not unique to MVS!! For DOS, however, they apply only to CICS/VS
transactions!

15.2.3.1 ISASIZE
This option allows control of the management of storage used by PL/I during the
execution of the program. By default, PL/I obtains an ISA (Initial Storage Area) of
half the available storage after the load module is loaded, unless a user
installation established some other default when the PL/I Transient Library was
installed. Setting the proper ISASIZE for every projection MVS PL/I program and
every DOS/VS PL/I CICS/VS transaction is the most important single thing one
can do to optimize PL/I program performance!

15.2.3.2 REPORT
This option allows you to obtain statistics on the memory usage by PL/I during
execution of the program. Refer to 15.11, “Storage Management in PL/I” on
page 345. Use the output of the REPORT option to set ISASIZE correctly. Do not
run programs in production with this option turned on. It is expensive.

15.2.3.3 COUNT FLOW
It is possible at execution to suppress the COUNT and FLOW options requested
at compilation. This is useful as it is possible to have a program in production,
compiled with these options, but turn them off at execution time. If a problem
arises, it will then be possible to repeat the execution of the program without
having to recompile it. Normally, however, these options are ″compiled out″ of
production programs, since they add overhead in the executable code.

Chapter 15. PL/I 337

15.2.3.4 SPIE STAE
As user-program execution options they authorize PL/I to issue SPIE and STAE
macros to intercept program checks and abends. It is possible with NOSPIE and
NOSTAE to prevent this and in this case it is no longer certain that the
management of errors will be handled by system ABEND or by an interruption
handling program. This, therefore, allows an error routine to call PL/I modules
and to continue to secure to itself the management of errors.

15.2.4 The EXEC and PROCESS Cards
It is possible to pass information to the PL/I compiler either by the EXEC or
PROCESS statement. The PROCESS statement has the advantage of being
processed by the PL/I compiler and therefore does not follow the OS JCL
conventions. It can, as for all PL/I statements, be contained in more than one
source program line and is not therefore limited in length. The parameter of the
EXEC statement, on the other hand, is limited to a maximum of 100 characters.
The format of the PROCESS statement is the same in MVS and DOS.

15.3 Linkages Between Languages

15.3.1 Linkages Supported
The linkages supported in MVS PL/I are those with COBOL, FORTRAN and
Assembler. The support is obtained by specifying the necessary information in
the PROC and ENTRY statements, refer to the respective Programmers′ Guides.
In the case of Assembler, it is necessary to guard against modifying the contents
of register 12 if PL/I is to intercept ABENDs or program checks. Modification of
register 12 can cause relatively distracting messages such as:

ERROR IN PL/I ERROR HANDLER

This will occur if a program check or ABEND occurs in the Assembler subroutine
at a time when R12 does not point to the PL/I control block expected by the PL/I
error handler.

15.3.2 Linkages not Supported
The linkage with RPG II is supported in DOS PL/I. The MVS PL/I compiler does
not support linkage with RPG II.

15.4 ENVIRONMENT Attributes
Most of the ENVIRONMENT options are no longer necessary in MVS, as they are
required only at execution time and are therefore specified in the DCB
parameter of the DD statement.

338 VSE to OS/390 Migration Workbook

15.4.1 Not Supported in MVS

15.4.1.1 MEDIUM
Physical and logical unit type. This option is ignored by the MVS compiler. The
error severity is 8 and gives correct execution. In MVS PL/I the name of the DD
statement (DDname) is the name of the file as specified in the DCL. If some
other name must be used, it can be supplied via the TITLE option on the OPEN
statement.

15.4.1.2 FUNCTION
This option defines the type of operation to be carried out on a 3525, 2560 or
5425. It is ignored in MVS. The error severity is 8 and gives correct execution. If
the function exists in MVS, it will be specified in the sub-parameter FUNC of the
DCB parameter of the DD statement.

15.4.1.3 ASSOCIATE
This option corresponds to the multiple functions on the 3525. The functions
required will be specified in the JCL by the sub-parameters FUNC and AFF of the
DCB parameter in the DD statement.

Note: The use of this parameter in MVS PL/I causes an error of severity 12
(serious). Use of this option prohibits the use of spooling.

15.4.1.4 RCE (Read Column Eliminate)
This option is specified in the DCB by the parameter MODE=ER or MODE=CR.
A statement FORMAT (nl,n2),(n3,n4) must precede the data in the input stream.
Use of this option prohibits the use of spooling.

15.4.1.5 OMR (Optical Mark Read)
This option disappears and re-appears in the DCB: MODE= EO or MODE=CO. It
is used for reading optical marks on the 3525, and prohibits the use of spooling.

15.4.1.6 COLBIN
This option is suppressed in MVS PL/I and the equivalent function is supplied to
MVS by the sub-parameter MODE=C in the DCB.

15.4.1.7 STACKER
This option is withdrawn from the MVS compiler and supplied by using ASA or
machine control characters: CTLASA or CTL360 in PL/I, or equally well
RECFM=FBA or RECFM=FBM in the DCB.

15.4.1.8 CMDCHN WTRPROT FILESEC NOFEED VOLSEQ
Options for handling 3540 diskettes, which are not supported by MVS PL/I.

15.4.1.9 UNLOAD
This option does not exist in MVS. The unloading of tapes after a CLOSE is
determined by the DISP= parameter of the DD statement.

Chapter 15. PL/I 339

15.4.1.10 NOTAPEMK NOLABEL
These are specified in the JCL in the LABEL parameter of the DD statement.

15.4.2 Supported but to be Avoided
In OS most of the environment parameters can be specified in the DCB. At
OPEN, MVS merges the information from the program, from the label if the file
exists already, and from the DCB parameters in the DD statement. It is therefore
damaging to specify the physical blocksize in the program, because a
re-compilation is involved if the blocking factor is to be changed. The following
options should therefore be omitted:

BLKSIZE
KEYLENGTH
KEYLOC

15.4.3 The ″TOTAL″ Option
A new option can be specified: TOTAL. This option, which is effective only with
CONSECUTIVE files, allows PL/I to branch directly to MVS access method
routines without using the TRANSIENT library modules; there is therefore a
performance improvement. This requires that the file be declared as completely
as possible. Only the blocking factor may be specified in the DD statement, and
no options may be specified at OPEN. Users must weigh the benefits of improved
performance (via the TOTAL option) against the advantages of complete MVS
DCB merge.

15.4.4 The SIS Option (Sequential Insert Strategy)
This option applies to (and only to) processing of a VSAM KSDS using a PL/I file
with the DIRECT attribute. It causes VSAM to insert new records using SIS
(Sequential Insert Strategy) rather than direct insert strategy. All other
environment options, in the case of VSAM files, are identical in MVS PL/I and
DOS PL/I.

15.5 Calling SORT from PL/I

15.5.1 Interfaces Offered
The DOS PL/I Optimizer provides, through PLISRTx, an interface to DOS/VS
SORT/MERGE Version 2 (5746-SM2) and other VSE supported sorts.

The MVS PL/I Optimizer offers, through an interface of the same name, access to
DFSORT (5740-SM1).

The four sort entry points offered by PL/I are the same in MVS and VSE:
PLISRTA, PLISRTB, PLISRTC and PLISRTD. The only exits supported by PL/I are
E15 and E35.

15.5.2 Parameters to be Passed
The parameters for calling sort are fortunately the same. The number of these
parameters depends on the entry point used. Let us take the most general case
(PLISRTD) which invokes exits E15 and E35. The parameters to be passed are
described in the following sections.

340 VSE to OS/390 Migration Workbook

15.5.2.1 SORT FIELDS
SORT data: a character string containing an image of the SORT statement. This
card image must begin and end with a blank. It will contain the sort criteria and
the description of these criteria.

15.5.2.2 RECORD
RECORD information: A character string containing a card image of the RECORD
control statement. It too must begin and end with a blank. It describes the length
and format of the records.

15.5.2.3 STORAGE
STORAGE information: This will be a FIXED DECIMAL expression indicating the
amount of storage available to the sort.

15.5.2.4 RETURN CODE
This will be a FIXED BINARY variable where the sort will place a return code
equal to 0 or 16 according to the correct or incorrect result of its execution.

15.5.2.5 E15 EXIT PROCEDURE
The name of the PL/I function procedure to be executed at the sort input exit
point is E15. It will pass to the sort one-by-one the records to be sorted. Note
that when the sort is called from PL/I, it does not allow merging of records read
from SYSIN with records passed from the E15 exit procedure.

15.5.2.6 EXIT E35
Name of the entry point is F35, and name of the PL/I procedure (internal or
external) which will receive control after the sort phase.

15.5.2.7 DDNAME PREFIXES
The names of the sort files are defined by default by the sort. The first four
characters can be defined by the user:

SORTIN XXXXIN
SORTOUT XXXXOUT
SORTWK01 XXXXWK0I
SORTWK0n XXXXWK0n
SORTCKPT XXXXCKPT

The other files must remain as SYSLIB and SYSOUT. This parameter therefore
allows the user to define DDnames convenient to him.

15.5.2.8 SORT MESSAGES
The user can ask for sort messages to be directed to the console operator or to
the SYSOUT file, and to specify the severity of the messages:

NO No messages on SYSOUT
AP All messages on SYSOUT
AC All messages to the console
CP Critical messages on SYSOUT
CC Critical messages on the console

Chapter 15. PL/I 341

15.5.2.9 SORT TECHNIQUES
The user can specify a particular sort technique:

PEER Peerage sort
BALN Balanced
CRCX Criss-cross
OSCL Oscillating
POLY Polyphase

The sort call is, therefore, little different to that of DOS PL/I. In all cases, reading
the Programmers ′ Guide for the appropriate version of the sort is recommended.

15.6 Checkpoint-Restart in PL/I

15.6.1 PLICKPT
Whereas the DOS checkpoint authorizes only manual restart with operator
intervention, in MVS it is possible to request it by means of JCL and if the
program lends itself to automatic restart, it will restart at the last step or the last
checkpoint.

There are always four parameters to be supplied:

CALL PLICKPT (pl,p2,p3,p4); (DOS and MVS)

but the third has functional differences. In DOS the parameter defines the
physical and logical unit on which the checkpoints will be written (SYS00x..,33xx).
In MVS this defines the checkpoint organization (sequential or partitioned). For
the other parameters, there is little or no difference:

P1: DLBL in DOS, DDNAME in MVS.
P2: Name to be given to the checkpoint by the operating system. This

name will be specified in control statement on a deferred restart.
P4: Return code returned by the checkpoint routines after execution.

The values of these return codes are compatible between the two
compilers.

15.6.2 PLIREST
An additional function offered by MVS is available in PL/I; automatic restart. This
is possible thanks to a new function of the MVS PL/I optimizer: PLIREST. This
includes use of ABEND U4092. As long as this code is in the list of eligible
ABEND codes specified at system generation, an automatic restart will be
possible. If there is to be automatic restart, the operating system must be able to
recognize an abnormal end. With PL/I intercepting program checks, the end of
execution appears to the system as ′normal ′. Thus the function of PLIREST is to
induce an ABEND. It is, therefore. necessary to code some instructions of the
type:

IF ONCODE= xxx THEN DO;
...........:
...........:

CALL PLIREST;
END;

On restart, control will be returned to PL/I after the instruction CALL PLICKPT
(.......). On testing the return code, the programmer will be able to tell if he has a
restart or after writing a checkpoint.

342 VSE to OS/390 Migration Workbook

15.6.3 PLICANC
Another possibility offered in the MVS PL/I optimizer is the ability to annul a
request for an automatic restart. The function PLICANC provides this service.

In checkpoint-restart MVS PL/I offers more facilities than DOS PL/I. The
conversion of PL/I programs poses few syntax problems. On the other hand, to
take advantage of automatic restart, some additional work will be necessary in
the logic of the program.

15.7 DUMP in PL/I Optimizer

15.7.1 Output File
The PL/I optimizer possesses its own dump routines. They present a number of
advantages over the dumps provided by the operating system. Among others,
they trace the PL/I control blocks (TCA, DSA and so on). In MVS PL/I optimizer,
the dump is edited on a particular file whose DDNAME is PLIDUMP. In DOS this
dump is produced on SYSLST. It is therefore necessary to provide a //PLIDUMP
DD control statement in the JCL. If this is absent, the dump is not produced and
a message is produced by MVS indicating that

″FILE PLIDUMP COULD NOT BE OPENED - DDNAME MISSING″ .

Note that the PLIDUMP file is also used for data requested by the COUNT and
REPORT options. Do not suppress the storage report produced by the REPORT
option by omitting the PLIDUMP DD card; use NOREPORT to suppress this
report.

15.7.2 Options Specific to DOS
The option D (and ND), which asks for information on the opened files and on the
modules associated with them, does not exist in MVS. Only the option F (and NF)
exists. In practice this trace of called modules is necessary in DOS, because the
loading of modules from the TRANSIENT LIBRARY is done by PL/I, which implies
that only PL/I knows which modules are loaded. In MVS, the load list keeps track
of loaded modules and the option PLIDUMP (TRACE) produces a list of these
modules.

The options 48 and 60 request the PL/I dump routines to use different translation
tables; there is no equivalent in MVS.

The option R (and NR), which in DOS allows the collection of data on the
management of storage, is not required in MVS while calling DUMP, but is
replaced by the execution option REPORT (and NOREPORT).

The option Q does not exist and has no equivalent in MVS. In DOS it allows a
more succinct dump, consisting of a DOS PDUMP of all of PL/I ′s storage. It is
used when the 10K or so of storage needed by normal PL/I DUMP is not
available.

Chapter 15. PL/I 343

15.7.3 Options Specific to MVS
The options A, E and 0 are used only in a multitasking environment:

 A Dump all tasks
 O Dump only the task requesting the dump
 E Use of an exit

15.7.4 Compatibility
Parameters unsupported by the PL/I dump routines are ignored if they are used
when calling dump facilities.

15.8 Return Codes in PL/I

15.8.1 Setting Return Codes
It is possible to set return codes in PL/I. This capability, which already existed in
DOS when returning from a sub-program or a function, is now extended to main
programs. The function PLIRETC allows the setting of a return code. For
example, CALL PLIRETC (16); will set the return code to 16, thus allowing JCL to
test it by COND parameters in succeeding STEP statements.

15.8.2 Return Code Values
Note nevertheless the fact that the code returned from a PL/I program is the
SUM of the return codes provided by the user in the call to the function PLIRETC
(0 by default) and a code determined by the PL/I termination routines indicating
how the job terminated:

0000 Normal end
1000 STOP, EXIT, PLIDUMP(′ S′) , PLIDUMP(′ E′) , insufficient storage.
2000 ERROR condition and no ON ERROR or ON FINISH block.
4000 ERROR in PL/I management routines.

15.9 Forcing an ABEND
It can be useful to force PL/I to end in ABEND in certain cases. In practice, while
a user′s program may end abnormally, a PL/I program nevertheless ends quite
normally as far as the operating system is concerned. This can be accomplished
by executing the program with the NOSTAE option, writing an IBMBEERA routine
(see Programmer′s Guide and Execution Logic), or writing an assembler routine
to cancel PL/I′s STAE macro and issue the ABEND macro.

15.9.1 Use of DISP in the JCL
It is possible in the DISP parameter of the JCL statement to specify for example:
DISP=(NEW,CATLG,DELETE). The third parameter of DISP is used to indicate to
the operating system which route to follow in case of an ABEND. If PL/I
intercepts and handles errors, the system does not see an ABEND condition and
the file will be cataloged (second parameter) and not destroyed. It is therefore
necessary to force an ABEND. There are two possibilities:

• Reassemble the module IBMBEERA to load register 15 with a non-zero
value.

• Use the PLIREST function to cause a user ABEND.

344 VSE to OS/390 Migration Workbook

15.9.2 Automatic Restart
An automatic restart in the case of an ABEND can only take place if an ABEND is
actually detected; it must therefore be forced. This is the role of PLIREST.

15.10 Overlay Structures
Overlay structures defined in DOS PL/I optimizer programs can remain valid in
MVS PL/I optimizer programs. However, the CALL PLIOVLY statements must be
removed. MVS linkage editor facilities (PARM=OVLY, INSERT, and OVERLAY)
are used to build the overlay structure as discussed below.

15.10.1 Conversion
When converting a DOS PL/I program to MVS, if the former used an overlay
structure, it will be necessary to suppress all calls to PLIOVLY, which do not
make sense in MVS. The overlay structure will therefore disappear, and in the
majority of cases will no longer be necessary in MVS, each user having his own
independent address space. Programs which rely on REFETCH of overlays to
re-initialize static storage will have to remain as overlay programs or be
modified.

15.10.2 Overlay in MVS
If it is still necessary to retain an overlay structure, it will be necessary to
link-edit the program specifying PARM.LKED= OVLY and providing the linkage
editor with INSERT and OVERLAY control statements. This is completely
independent of the PL/I source code but not of the logic of the program.

15.11 Storage Management in PL/I

15.11.1 Storage Management in DOS
In DOS, PL/I considers that all the storage available in the partition is dedicated
to it. It separates storage requests into LIFO and non-LIFO. DSA allocations are
LIFO requests, in particular for AUTOMATIC variables. These requests are
considered as LIFO because storage is de-allocated in the reverse order to
allocation. Non-LIFO requests include, among others, the allocation of
CONTROLLED and BASED variables, as are requests for space for loading
transient modules, and for SORT if PLISRTx is used.

15.11.2 Storage Management in MVS
In MVS, PL/I acquires an Initial Storage Area (ISA). Its size is set by default
when the user installs the PL/I Transient Library. The IBM-supplied default is half
the storage outside the load module. The rest is left for the operating system.
The distinction between LIFO and non-LIFO remains, but note that loading of
modules from the transient library is done by MVS, and this will use the storage
left free by PL/I. If the storage allocated to PL/I is not enough at the start of
execution, it will issue GETMAINs for that part left for the operating system.
These GETMAINs can slow down the execution of the program. The amount of
storage allocated by PL/I at the start of execution and the number of GETMAINs
and FREEMAINs can be found by use of the REPORT option. The amount of
storage space allocated by PL/I at the start of execution can be specified by the
parameter ISASIZE. It is almost always worthwhile to give a PL/I program a

Chapter 15. PL/I 345

large enough ISA to reduce subsequent GETMAINs and FREEMAINs to zero (or
some very small number). This is one of the most important things a user can
do to improve the performance of a PL/I program.

15.12 PL/I and CICS

15.12.1 File Support
The only PL/I file supported by PL/I under CICS is SYSPRINT, and its usage must
be limited. The functions LINENO and COUNT are supported under MVS, but give
a null value if they are used under DOS. Other file access facilities are provided
by CICS/VS file access macros and/or EXEC commands.

15.12.2 Statements not Supported
DISPLAY and DELAY are not supported. The functions PLIREST, PLICANC,
PLICKPT and PLISRTx are not supported. MULTITASKING is not supported.
Inter-language linkages are limited to Assembler (with some restrictions).

15.12.3 CALLing DUMP
The only options permitted in calling DUMP are T and NT, S and C, B and NB, K
and NK. The dump is not written to the PLIDUMP file, but is sent by transient
files to a destination of CPLD. K and NK are special CICS/VS-only options on
PLIDUMP.

15.12.4 Execution Options
The execution options can only be communicated to PL/I by means of a PLIXOPT
string:

DCL PLIXOPT CHAR(nn) VAR EXT INIT(′ xuxuxx′) ;

The options permitted are COUNT and NOCOUNT, FLOW and NOFLOW, ISASIZE,
REPORT and NOREPORT, STAE and NOSTAE. The option SPIE will be ignored if
it is specified. If a PLIXOPT string is not specified, defaults will be supplied. If
they are wrong, the mistake can be very costly in CICS/VS transaction execution
time. Every PL/I-CICS/VS transaction program should have a PLIXOPT string,
especially to set ISASIZE. Note that the STAE option causes PL/I to issue a CICS
DFHPC SETEXIT macro. It uses CICS error handling. It does not override it.

15.12.5 Compatibility
All these restrictions already exist in DOS. No differences exist at the PL/I level.
The compatibility of CICS transactions written in PL/I appears therefore to be
total.

15.12.6 PL/I-CICS/VS Transaction ABEND Codes
These are documented in the PL/I Programmer′s Guide, not the CICS manuals.
The only one which tends to puzzle users is ″APLS″, which means that the PL/I
ERROR condition was raised, but not by a program check or a transaction abend.
For example, CONVERSION might have been raised by the PL/I library.

346 VSE to OS/390 Migration Workbook

15.12.7 PL/I Return from ON-units and CICS Transaction Backout
If a CICS transaction ABEND begins but is intercepted in a PL/I ON-unit, and the
program takes ″normal return″ from the ERROR ON-unit (that is, quits) PL/I will
reissue the CICS ABEND. If ERROR was raised without a CICS ABEND and the
program takes ″normal return″ from the ERROR ON-unit, PL/I issues the APLS
ABEND. (See previous paragraph.) In either case, the ABEND can drive CICS
Dynamic Backout, or it can raise ERROR (with ONCODE 8090, ″An ABEND has
occurred.″) in an earlier PL/I program that invoked the failing one via a CICS
LINK.

Chapter 15. PL/I 347

348 VSE to OS/390 Migration Workbook

Chapter 16. FORTRAN

16.1 VS FORTRAN in OS/390
VS FORTRAN is the compiler and library to use on OS/390. VS FORTRAN
expands greatly on what you can do with FORTRAN in accessing system
services and/or hardware features. If you have used VS FORTRAN on VSE, you
may be aware of the extensions that VS FORTRAN provides over DOS FORTRAN,
such as execution time dynamic commons, compile-time included source files,
asynchronous I/O, and level 66 language compatibility. VS FORTRAN has
multitasking on OS/390, and the Version 2 product offers programming
enhancements such as structured programming constructs, long variable names,
an Intercompilation Analyzer, and an interactive full screen debugger. In Version
2 Release 3, data-in-virtual support and dynamic file allocation are available. The
Version 2 product also supports the IBM 3090 vector hardware, and it also
conforms to the SAA Common Programming Interface (CPI).

16.2 FORTRAN Conversion Considerations
The conversion to OS/390 means that some changes are needed to certain DOS
FORTRAN programs. First, the OPSYS routine is no longer supported. The I/O
services and more are supplied in Version 2 Release 3 with dynamic file support.
The overlay support provided by OPSYS is no longer needed, because now
larger programs are supported in the 2 Gigabyte address spaces supported by
OS/390. Options that were used before to control compilation are now handled in
part by cataloged procedures and in part by the compiler options VS FORTRAN
now recognizes. VS FORTRAN also now allows execution time options to control
the running of your production programs.

Although recoding of programs is not necessary except for routines using
OPSYS, the benefits to your programs can be measured in increased
performance due to the many optimization levels the compiler provides.
Exploitation is available to recompiled programs so that they may now run above
the 16MB line. Access to the vector hardware is available through recompilation
as is access to new operating system features.

 Copyright IBM Corp. 1998 349

350 VSE to OS/390 Migration Workbook

Chapter 17. Language Environment (LE)

17.1 Introduction
This chapter introduces OS/390 Language Environment (program number
5645-001). OS/390 Language Environment is the language run-time environment
distributed with OS/390.

Various strategies for migrating your applications to the Language Environment
run-time are considered. These strategies depend on the programming
language, the version of VSE you use, and whether you already use LE/VSE.

The information presented in this chapter is not sufficient by itself to carry out a
successful migration to OS/390 Language Environment. You should study
carefully the publications referred to in Table 35 on page 353 for more
information. This chapter is intended to draw attention to the more obvious
problems that can arise in such a migration.

17.1.1 General Comments on Language Environment
OS/390 Language Environment is the run-time environment you receive when
you order your OS/390 system software.

OS/390 Language Environment provides common services and language-specific
routines in a single run-time environment for C, C++, COBOL, FORTRAN, PL/I,
and Assembler applications. It offers consistent and predictable results for
language applications, independent of the language in which they are written.

If you are migrating to OS/390 Language Environment from a non-Language
Environment run-time environment, you should read the OS/390 Language
Environment Concepts Guide to understand the concept of Language
Environment.

17.1.1.1 A Few Words about COBOL and PL/I
With the many different environments and language products (COBOL and PL/I)
here is a table to help you understand where you can run your COBOL and PL/I
products.

Table 34. COBOL and PL/I: What Runs Where?

Host Operating System Host COBOL and PL/I
Products

Run-Time Library Support

MVS 4.3 through MVS 5.2.2 COBOL for MVS & VM
PL/I for MVS & VM

Language Environment for
MVS & VM Rel 5

OS/390 Ver 1 Rel 1,2 COBOL for MVS & VM
PL/I for MVS & VM

Language Environment
element of OS/390

OS/390 Ver 1 Rel 3
OS/390 Ver 2 Rel 4,5

COBOL for OS/390 & VM
COBOL for MVS & VM
PL/I for MVS & VM

Language Environment
element of OS/390

VSE/ESA Ver 1 Rel 4
VSE/ESA Ver 2 Rel 1,2,3

COBOL for VSE/ESA
PL/I FOR VSE/ESA

Language Environment for
VSE/ESA Rel 4

 Copyright IBM Corp. 1998 351

17.1.2 Conceptual Differences between LE/VSE and OS/390 Language
Environment

There are some conceptual differences between LE/VSE and OS/390 Language
Environment. These differences do not affect the running of your migrated
LE/VSE applications in an OS/390 Language Environment but you may want to
take advantage of the extra facilities offered by the OS/390 Language
Environment. For more information, refer to the LE/VSE Concepts Guide Release
4, or LE/VSE Concepts Guide Release 1, and the OS/390 Language Environment
Concepts Guide.

• OS/390 Language Environment supports multithreading. LE/VSE supports
only single threading.

• OS/390 Language Environment supports applications consisting of one or
more processes. LE/VSE supports only a single process for each application
that runs in the common run-time environment.

• OS/390 Language Environment supports multiple threads within an enclave.
LE/VSE supports only a single thread within an enclave.

17.2 VSE to OS/390 Migration Considerations
The strategy you follow to migrate your run-time environment to OS/390 depends
on the programming language, the run-time environment you are using in VSE,
and the version of VSE you are running.

If you are using an LE/VSE-conforming language, you may be able to transfer
your compiled object code to OS/390 from your VSE system, link-edit it with
OS/390 Language Environment and run it there without further change. See
below for a list of LE/VSE-conforming languages.

Whatever language, run-time environment or version of VSE you are running,
you will at least have to relink your object code in OS/390. It is not possible to
transfer phases from your VSE libraries to OS/390.

17.2.1 LE/VSE-conforming Languages
An LE/VSE-conforming language is any high-level language (HLL) that adheres to
the LE/VSE common interface.

There are three LE/VSE-conforming languages:

C for VSE/ESA program number 5686-A01
COBOL for VSE/ESA program number 5686-068
PL/I for VSE/ESA program number 5686-069

These languages require LE/VSE to be available at compile-time, as well as
link-edit and run-time. LE/VSE requires VSE/ESA version 1 release 4, or VSE/ESA
version 2 or later. C for VSE/ESA requires LE/VSE 1.4. You cannot compile or run
C for VSE/ESA programs under LE/VSE 1.1.

Any HLL not listed above, is known as a non-LE/VSE-conforming language.
These include C/370, DOS/VS COBOL, VS COBOL II, DOS PL/I and VS FORTRAN.

352 VSE to OS/390 Migration Workbook

17.2.2 Useful Publications
Table 35 lists some publications that you may find useful when planning your
conversion.

Table 35. Useful Publications

Publication Title
Form
Number

OS/390 Language Environment Migration Guide SC28-1944

OS/390 Language Environment Programming Reference SC28-1940

OS/390 Language Environment Programming Guide SC28-1939

OS/390 Language Environment Concepts Guide GC28-1945

OS/390 Language Environment Customization SC28-1941

OS/390 C/C++ V2R4.0 Programming Guide SC09-2362

Language Environment V1R5 FORTRAN Migration Guide SC26-8499

LE/VSE Programming Guide Release 4 SC33-6684

LE/VSE Programming Guide Release 1 SC26-8065

LE/VSE Programming Reference Release 4 SC33-6685

LE/VSE Run-Time Migration Guide Release 4 SC33-6687

LE/VSE Concepts Guide Release 4 GC33-6680

LE/VSE Concepts Guide Release 1 GC26-8063

VSE/ESA Enhancements SC33-6629

Taking Advantage of IBM Language Environment for VSE/ESA SG24-4798

COBOL for OS/390 & VM Complier and Run-Time Migration Guide GC26-4764

IBM PL/I for MVS & VM Compiler and Run-Time Migration Guide
Release 1.1

SC26-3118

OS/390 C++ Compiler and Run-Time Migrat ion Guide SC09-2359

17.3 Migrating from LE/VSE-Conforming Languages
This section discusses briefly how you can migrate LE/VSE-conforming language
applications to OS/390 Language Environment. You should also read 17.5,
“Migrating from LE/VSE” on page 359 for more information.

17.3.1 C for VSE/ESA
Even though C for VSE/ESA is an LE/VSE-conforming language, you cannot
transfer your C/VSE compiled object code to OS/390, link-edit it and expect it to
run. You must recompile it with OS/390 C/C++. However, C/VSE source code is
generally compatible with OS/390 C/C++, so your C/VSE programs should
compile under OS/390 C/C++ with minimal changes. Refer to 17.4.2, “C/370” on
page 355 for information on migrating your C/VSE applications to OS/390.

Chapter 17. Language Environment (LE) 353

17.3.2 COBOL for VSE/ESA
COBOL for VSE/ESA is an LE/VSE-conforming language. If your COBOL
applications are written in COBOL/VSE, they can (subject to certain restrictions)
be migrated to OS/390 without change. You can transfer the compiled object
code from VSE to OS/390, link-edit it with OS/390 Language Environment and run
it there. This is discussed in 12.2, “VSE to OS/390 Migration Considerations” on
page 250.

17.3.3 PL/I for VSE/ESA
Even though PL/I for VSE/ESA is an LE/VSE-conforming language, you cannot
transfer your PL/I VSE compiled object code to OS/390, link-edit it and expect it
to run. You must recompile it with PL/I for MVS and VM. However, PL/I VSE
source code is compatible with PL/I for MVS and VM, so your PL/I VSE programs
should compile under PL/I for MVS and VM without change. Refer to Chapter 15,
“PL/I” on page 333 for information on migrating your PL/I VSE applications to
OS/390.

17.4 Migrating from Non-LE/VSE Run-time Environments
This section discusses some of the considerations of which you should be
aware, if you are migrating to OS/390, and therefore OS/390 Language
Environment, from a non-LE/VSE run-time environment.

If you are running VSE/ESA version 1 release 4 or VSE/ESA version 2, but you
are not using LE/VSE, you should consider implementing LE/VSE in your VSE
system, before migrating your run-time to OS/390. This may require that you
also implement a new version of your language compiler. However, it may be
easier to convert to a new version of compiler and run-time in the VSE
environment, which is familiar to you, than to convert to a new compiler,
run-time and operating system, all at the same time. Refer to the relevant
chapters in this book on migrating COBOL, C and PL/I applications to OS/390.

17.4.1 Options Mapping
Details of the mapping of options in OS/390 Language Environment, are to be
found in the OS/390 Language Environment Migration Guide. Mapping of options
for LE/VSE 1.4 are described in the LE/VSE Programming Reference Release 4.
You can also find tables comparing the use of options in DOS PL/I, C/370,
DOS/VS COBOL, or VS COBOL II, and in LE/VSE 1.4, in the LE/VSE Run-Time
Migration Guide Release 4.

In general the mapping of options from these non-LE/VSE-conforming languages,
as described in these tables, is the same for OS/390 Language Environment as
for LE/VSE. However, if you are migrating from DOS PL/I or C/370 with LE/VSE
you should also consider the information about the REPORT and ISASIZE options
in Table 36 on page 355.

354 VSE to OS/390 Migration Workbook

Table 36. REPORT and ISASIZE Options, C/370 and DOS PL/I

REPORT option, C/370
and DOS PL/I

The information supplied by the REPORT option in C/370
and DOS PL/I is supplied in LE/VSE by the RPTSTG option.
The RPTOPTS option may also be of use in determining
storage use.

ISASIZE option, DOS
PL/I

In LE/VSE 1.4 the ISASIZE option maps to the STACK
option. In OS/390 Language Environment ISASIZE maps
to STACK, NONIPTSTACK and PLITASKCOUNT.

17.4.2 C/370
C/370 is not an LE/VSE-conforming language. If your applications are written in
C/370, you must convert them to another version of C before you can run them
under OS/390. A well-coded C/370 application should generally recompile
successfully with OS/390 C/C++, and run successfully with OS/390 Language
Environment without modification.

Table 37 lists some migration considerations you should be aware of when
migrating from C/370.

Table 37. C/370 Migration Considerations

Migration Consideration Comments

Standard Streams In C/370, you could override the destination of
error messages by redirecting stderr. OS/390
Language Environment determines the
destination of all messages from the MSGFILE
run-time option.

Passing Command Line
Parameters

In C/370 if an error was detected with the
parameters being passed to the main program,
the program terminated with a return code of 8
and a message indicating the reason the
program terminated. Under OS/390 Language
Environment the same message is displayed,
but the program also terminates with a 4093
abend, reason code 52 (hexadecimal 34).

Prefix of perror() and strerror()
Messages in C

With OS/390 Language Environment all
perror() and strerror() messages in C
contain a prefix. With C/370, there was no
prefix on these messages. The prefix is
EDCxxxxa where xxxx is a number (always
5xxx) and a is either I, W, or E.

Storage Report The format of the run-time storage report
generated by the OS/390 Language
Environment RPTSTG run-time option is
different from the format of the storage reports
produced by the C/370 REPORT run-time
option.

17.4.3 VS COBOL II
VS COBOL II is not an LE/VSE-conforming language. However, VS COBOL II
applications may run with OS/390 Language Environment with minimal changes.
Subject to certain restrictions, you can transfer your VS COBOL II compiled
object code from VSE to OS/390, link-edit with OS/390 Language Environment
and run it there. This is discussed in Chapter 12, “COBOL” on page 249.

Chapter 17. Language Environment (LE) 355

Table 38 on page 356 lists some migration considerations you should be aware
of when migrating from VS COBOL II.

Table 38. VS COBOL II Migration Considerations

Migration Consideration Comments

Abends In VS COBOL II, a severe unhandled error condition
always resulted in an abend. With OS/390 Language
Environment, you use the ABTERMENC run-time option
to specify whether a severe unhandled condition
results in an abend or a normal termination with a
return code and reason code. The IBM-supplied
installation value for the ABTERMENC run-time option
is ABTERMENC(RETCODE). To ensure that your
application ends with an abend when there is a severe
unhandled condition, specify ABTERMENC(ABEND).

Storage Report The format of the run-time storage report generated
by the OS/390 Language Environment RPTSTG
run-time option is different from the format of the
storage reports produced by the VS COBOL II SPOUT
run-time option.

17.4.4 DOS/VS COBOL
DOS/VS COBOL is not an LE/VSE-conforming language. If your applications are
written in DOS/VS COBOL, you must update the source and compile with COBOL
for MVS & VM or COBOL for OS/390 & VM before you can run them under
OS/390. Refer to Chapter 12, “COBOL” on page 249 for further information.

Table 39 lists some migration considerations you should be aware of when
migrating from DOS/VS COBOL.

Table 39. DOS/VS COBOL Migration Considerations

Migration Consideration Comments

Abends In DOS/VS COBOL, a severe unhandled error condition
always resulted in an abend. With OS/390 Language
Environment, you use the ABTERMENC run-time option
to specify whether a severe unhandled condition
results in an abend or a normal termination with a
return code and reason code. The IBM-supplied
installation value for the ABTERMENC run-time option
is ABTERMENC(RETCODE). To ensure that your
application ends with an abend when there is a severe
unhandled condition, specify ABTERMENC(ABEND).

17.4.5 DOS PL/I
DOS PL/I is not an LE/VSE-conforming language. If your applications are written
in DOS PL/I, you must update the source and compile with PL/I for MVS & VM
before you can run them under OS/390. Refer to Chapter 15, “PL/I” on page 333
for further information.

Table 40 on page 357 lists some migration considerations you should be aware
of when migrating from DOS PL/I.

356 VSE to OS/390 Migration Workbook

Table 40. DOS PL/I Migration Considerations

Migration
Consideration

Comments

Dumps The output produced by PLIDUMP is different when running
under OS/390 Language Environment.

Condition Handling In general, PL/I condition handling continues to function in
the same way when running under OS/390 Language
Environment; however, you should consider the following:

• The ERRCOUNT run-time option specifies how many
conditions of severity 2, 3, and 4 can occur before the
enclave terminates abnormally. The IBM-supplied
installation value for the ERRCOUNT run-time option is
ERRCOUNT(20). This value is not suitable for all PL/I
applications. To ensure that your application behaves
correctly, and is compatible with DOS PL/I behavior,
specify ERRCOUNT(0).

• The diagnostic message for an ERROR condition is
issued only if there is no ERROR ON-unit established,
or if the ERROR ON-unit does not recover from the
condition by using a GOTO out of block. However, for
other PL/I conditions whose implicit action includes
printing a message and raising the ERROR condition,
the message is issued before control is given to an
established ERROR ON-unit.

Run-Time Message
Output - SYSPRINT

OS/390 Language Environment directs run-time message
output from PL/I programs to the file specified by the
OS/390 Language Environment MSGFILE run-time option,
instead of to the PL/I SYSPRINT file. User-specified output
is still directed to the PL/I SYSPRINT file. If you want
OS/390 Language Environment to handle this output,
specify the run-time option MSGFILE(SYSPRINT). When you
specify MSGFILE(SYSPRINT), SYSPRINT contains both
run-time messages and user-specified output.

Format and Content
of Messages in PL/I

The format and content of run-time messages is different
for PL/I applications running with OS/390 Language
Environment. If you have applications that analyze run-time
output, you should change them. Differences include:

• The message number in the message prefix is now four
digits instead of three digits.

• The message severity in the message prefix can now
be I, W, E, S, or C.

• The message text of some mixed-case English and
Japanese messages has been enhanced.

DEPTHCONDLMT
Option

The default setting for the DEPTHCONDLMT option, both for
CICS and non-CICS, is DEPTHCONDLMT(10). The
recommended setting for PL/I applications, for compatibility
with DOS PL/I, is DEPTHCONDLMT(0).

Storage Report The format of the run-time storage report generated by the
OS/390 Language Environment RPTSTG run-time option is
different than the format of the storage reports produced
by the DOS PL/I REPORT run-time option.

Chapter 17. Language Environment (LE) 357

17.4.6 VS FORTRAN
If your VSE applications are currently written in VS FORTRAN, you must convert
them to another version of the FORTRAN compiler before you can run them
under OS/390. There is currently no LE/VSE-conforming FORTRAN compiler, so
you must convert your VS FORTRAN applications to the OS/390 version of VS
FORTRAN. You should read the Language Environment V1R5 FORTRAN
Migration Guide for information about migrating to Language
Environment-enabled FORTRAN.

17.4.7 Migrating Interlanguage Communications Applications
Interlanguage communications (ILC) applications are applications built of two or
more high-level languages (HLLs), and, frequently, Assembler. ILC applications
run outside the realm of a single language′s environment, which creates special
conditions, such as how each language maps data, how conditions are handled,
or how data can be called and received by each language.

If your ILC applications are built only of two or more LE/VSE-conforming HLLs,
then migrating them to OS/390 Language Environment is the same as migrating
applications in one LE/VSE-conforming language. This section considers the
migration of ILC applications with two or more non-LE/VSE-conforming language.

Table 41 gives information about the migration of ILC applications with various
combinations of non-LE/VSE-conforming languages.

Table 41 (Page 1 of 2). ILC Migration Considerations

To Migrate: You Need To:

A phase containing one or more DOS/VS
COBOL programs, with calls to or from
DOS PL/I

 1. Upgrade the DOS/VS COBOL source
code, and compile with COBOL for
OS/390 and VM or COBOL for MVS
& VM.

 2. Upgrade the DOS PL/I source code,
and compile with PL/I for MVS and
VM.

 3. Link-edit the load module with
OS/390 Language Environment.

A phase containing one or more VS
COBOL II programs, with calls to or from
DOS PL/I

 1. Upgrade the DOS PL/I source code,
and compile with PL/I for MVS and
VM.

 2. Transfer the VS COBOL II object
code to OS/390.

 3. Link-edit the load module with
OS/390 Language Environment.

A phase containing one or more DOS/VS
COBOL programs, with calls to or from
C/370

 1. Upgrade the DOS/VS COBOL source
code, and compile with COBOL for
OS/390 and VM or COBOL for MVS
& VM

 2. Upgrade the C/370 source code, and
compi le wi th OS/390 C/C++.

 3. Link-edit the load module with
OS/390 Language Environment.

358 VSE to OS/390 Migration Workbook

Table 41 (Page 2 of 2). ILC Migration Considerations

To Migrate: You Need To:

A phase containing one or more VS
COBOL II programs, with calls to or from
C/370

 1. Upgrade the C/370 source code, and
compi le wi th OS/390 C/C++.

 2. Transfer the VS COBOL II object
code to OS/390.

 3. Link-edit the load module with
OS/390 Language Environment.

17.4.8 Migrating Assembler Applications
The Assembler distributed with OS/390 is the High Level Assembler for MVS &
VM & VSE (HLASM). Therefore, this is the same product as the high level
Assembler distributed with VSE/ESA. If you are using the old VSE Assembler,
you will first have to convert your assembler programs to HLASM. You can use
HLASM on VSE/ESA version 1 release 2 or later.

To use HLASM with LE/VSE or OS/390 Language Environment, you need to code
the applications with the assembler macros provided with LE/VSE or OS/390
Language Environment. You must also ensure that the assembler programs
adhere to certain conventions for register and storage usage, for condition
handling and accessing input parameters. For example, you should avoid using
register 12 because Language Environment uses that register when establishing
the execution environment for the application.

For more information see the chapter on assembler considerations and
Language Environment macros in the OS/390 Language Environment
Programming Guide. You should also read Chapter 13, “Assembler” on
page 267.

17.5 Migrating from LE/VSE
This section discusses some issues you should consider when migrating from
LE/VSE-conforming languages and LE/VSE.

The items discussed here are only some of those you should consider; they are
items for which the behavior in OS/390 Language Environment is different from
their behavior in LE/VSE. You should also read the migration guides for OS/390
Language Environment, and for your release of LE/VSE.

17.5.1 Run-time Options
In general the run-time options with OS/390 Language Environment have the
same usage and the same default values as the corresponding options in
LE/VSE.

However, there are some considerations of which you should be aware when
planning your migration.

The following options have different behavior in OS/390 Language Environment
to their behavior in LE/VSE.

Chapter 17. Language Environment (LE) 359

ABPERC In LE/VSE you can specify the abend code to the option ABPERC
in one of three formats. These formats are:

• Shh
• Ihh
• Udddd

In OS/390 Language Environment you can only specify Shh or
Udddd . Ihh is not allowed, and if you specify it you will receive
an error message similar to:

CEE3616I The string ′ I12′ was not a valid suboption of the
run-time option ABPERC.

You should review your use of the ABPERC option carefully
before migrating to OS/390 Language Environment as the
meaning of the OS/390 system abend codes specified by Shhh
are different to the VSE/ESA cancel codes specified by Shh .

NATLANG The default setting for the NATLANG option in LE/VSE is
NATLANG(UEN). The default setting for the NATLANG option in
OS/390 Language Environment is NATLANG(ENU). UEN is
upper-case U.S. English. ENU is mixed-case U.S. English.

The NATLANG option specifies the initial language to be used for
the run-time environment, including error messages, month
names and day-of-the-week names. If you specify an unknown
national language, the error messages and so on, are displayed
in the default national language.

MSGFILE The MSGFILE option has different suboptions and default values
in OS/390 Language Environment to its LE/VSE counterpart. You
should read the description of MSGFILE in the OS/390 Language
Environment Programming Reference.

In LE/VSE, MSGFILE has only one suboption, filename. The
default is SYSLST. If you specify or default to SYSLST for
MSGFILE, all output from CEEMSG and CEEMOUT callable
services, and RPTOPTS and RPTSTG options is written to
SYSLST.

In OS/390 Language Environment there are four suboptions,
ddname, recfm, lrecl, blksize. The defaults for these suboptions
are (SYSOUT,FBA,121,0). However, if you continue to use
SYSLST this is accepted by OS/390 Language Environment and
the output is written to SYSOUT. If SYSOUT is specified in your
OS/390 job control //SYSOUT DD SYSOUT=* then the output
from CEEMSG, CEEMOUT, RPTOPTS and RPTSTG will appear in
your listing.

TERMTHDACT TERMTHDACT in LE/VSE has only four suboptions, TRACE,
QUIET, MSG and DUMP. TERMTHDACT in OS/390 Language
Environment also has the UADUMP suboption. If specified, on an
abnormal termination, the UADUMP suboption generates a
system dump of the user address space. TERMTHDACT in
OS/390 Language Environment is described in the OS/390
Language Environment Programming Reference.

Note: The UADUMP option is available in LE/VSE releases later
than 1.4, and also in LE/VSE 1.4 via APAR PQ08538. Its usage is
the same as for OS/390 Language Environment.

360 VSE to OS/390 Migration Workbook

TEST The IBM defaults for the TEST option differ between LE/VSE 1.1,
LE/VSE 1.4 and OS/390 Language Environment. They are:

LE/VSE 1.1 NOTEST(NONE,*,NOPROMPT,*)

LE/VSE 1.4 NOTEST(ALL,*,NOPROMPT,′′)

OS/390 Language Environment
NOTEST(ALL,*,NOPROMPT,INSPPREF)

You should read the OS/390 Language Environment Programming
Reference for information about the TEST option in OS/390
Language Environment.

Note: If you are migrating from LE/VSE 1.1, you should check
your use of the TEST option carefully. In LE/VSE 1.1 the TEST
option is syntax-checked only, and has no effect on the
application. In OS/390 Language Environment this is not the
case.

The RPTOPTS and RPTSTG options produce different reports in OS/390
Language Environment to the reports produced in LE/VSE.

RPTOPTS There are more options in OS/390 Language Environment than in
LE/VSE. Therefore the options report produced by the RPTOPTS in
OS/390 Language Environment will be larger than the
corresponding report from LE/VSE.

RPTSTG The report produced by the RPTSTG option in OS/390 Language
Environment has more information than the corresponding report
produced in LE/VSE. This extra information is due to:

• Two more storage-type options in OS/390 Language
Environment, NONIPTSTACK and THREADHEAP. The storage
reports have information for these options.

• OS/390 Language Environment support for multithreading and
multiple enclaves (see 17.1.2, “Conceptual Differences
between LE/VSE and OS/390 Language Environment” on
page 352). The storage report from OS/390 Language
Environment has extra information for these facilities.

17.5.1.1 Run-time Options and LE/VSE 1.1
The following options were available in LE/VSE 1.1 to provide compatibility with
OS/390 Language Environment. They were syntax-checked and had no effect on
the application. They were removed in later releases of LE/VSE but are available
in the current release of OS/390 Language Environment. If you used them in your
LE/VSE 1.1 applications you should remove them or review their usage carefully.
They are:

• CBLQDA
• FLOW
• INTERRUPT
• SIMVRD
• VCTRSAVE

Chapter 17. Language Environment (LE) 361

17.5.1.2 Run-time Options and LE/VSE 1.4 and Later Releases
The following options were introduced in LE/VSE 1.4, but their usage in OS/390
Language Environment is sometimes different. They were not available in
LE/VSE 1.1.

ARGPARSE This option only applies to C and can only be specified with the
C #pragma runopts directive. #pragma runopts is not available with
C++ so you should change your appl icat ion to use the C++
ARGPARSE compiler option.

EXECOPS This option only applies to C and can only be specified with the
C #pragma runopts directive. #pragma runopts is not available with
C++ so you should change your appl icat ion to use the C++
EXECOPS compiler option.

ENV This option only applies to C and can only be specified with the
C #pragma runopts directive. #pragma runopts is not available with
C++ so you should change your appl icat ion to use the C++
TARGET(IMS) compiler option.

HEAPCHK HEAPCHK was not available in LE/VSE 1.1. It is available in
LE/VSE releases later than 1.4, and in LE/VSE 1.4 via APAR
PQ08538. HEAPCHK has the same behaviour in OS/390
Language Environment as in LE/VSE, and is described in
VSE/ESA Enhancements, and in the OS/390 Language
Environment Programming Reference.

PLIST This option only applies to C and can only be specified with the
C #pragma runopts directive. #pragma runopts is not available with
C++. The behavior of C applications with PLIST(HOST) in effect
is the same for C++.

REDIR This option only applies to C and can only be specified with the
C #pragma runopts directive. #pragma runopts is not available with
C++ so you should change your appl icat ion to use the C++
REDIR compiler option.

RETZERO The RETZERO option is a VSE-only option and not available in
OS/390 Language Environment. It applies only to COBOL
applications. If you are using it in your applications you should
remove it. This may mean you need to make coding changes to
accommodate invalid values in the RETURN-CODE special
register.

If you include the RETZERO option in your OS/390 application,
you will receive message:

CEE3611I The run-time option RETZERO was an invalid run-time option

Note: RETZERO is available in LE/VSE releases later than 1.4,
and in LE/VSE 1.4 via APAR PQ04876.

TRACE With OS/390 Language Environment there are two more values
for the sub-option LE. They are LE=2 and LE=3.

362 VSE to OS/390 Migration Workbook

17.5.1.3 Recommended Settings for Options
The recommended settings for options for OS/390 Language Environment are
described in the OS/390 Language Environment Migration Guide. The
recommended settings for options for LE/VSE 1.4 are described in the LE/VSE
Run-Time Migration Guide Release 4. For LE/VSE 1.1, where IBM made
recommendations for the setting of options, they are described in the LE/VSE
Programming Guide Release 1, under the description of the option.

Note: In LE/VSE 1.1, the recommended setting for most options is the default
setting.

Generally, the recommendations for option settings are the same for LE/VSE and
OS/390 Language Environment. Exceptions for LE/VSE 1.1 are shown in Table 42.
Exceptions for LE/VSE 1.4 are shown in Table 43. Refer to the OS/390 Language
Environment Migration Guide for further information about the recommendations
for these options.

Table 42. Option Recommendations Differing between LE/VSE 1.1 and OS/390
Language Environment

Language Option Recommendation

COBOL ANYHEAP 16K,8K,ANYWHERE,FREE

BELOWHEAP 8K,4K,FREE

DEPTHCONDLMT 10

HEAP 32K,32K,ANYWHERE,KEEP,8K,4K

LIBSTACK 8K,4K,FREE

STACK 64K,64K,BELOW,KEEP

TERMTHDACT UADUMP

PL/I ANYHEAP 16K,8K,ANYWHERE,FREE

BELOWHEAP 8K,4K,FREE

DEPTHCONDLMT 0

HEAP 32K,32K,ANYWHERE,KEEP,8K,4K

LIBSTACK 8K,4K,FREE

STACK 128K,128K,BELOW,KEEP

TERMTHDACT TRACE

Table 43 (Page 1 of 2). Option Recommendations Differing between
LE/VSE 1.4 and OS/390 Language Environment

Language Option Recommendation

C ABTERMENC ABEND

STACK 128K,128K,BELOW,KEEP

TERMTHDACT TRACE

COBOL LIBSTACK 8K,4K,FREE

STACK 64K,64K,BELOW,KEEP

TERMTHDACT UADUMP

Chapter 17. Language Environment (LE) 363

Table 43 (Page 2 of 2). Option Recommendations Differing between
LE/VSE 1.4 and OS/390 Language Environment

Language Option Recommendation

PL/I ABTERMENC RETCODE

DEPTHCONDLMT 0

STACK 128K,128K,BELOW,KEEP

TERMTHDACT TRACE

17.5.2 User Exits and Abnormal Termination Exits
This section discusses migration considerations for user and abnormal
termination exits, and the similarities and differences between the exits for
OS/390 Language Environment and LE/VSE.

17.5.2.1 Assembler User Exits
Three default assembler user exits are provided with LE/VSE. They are:

• CEEBXITA (batch)
• CEECXITA (CICS)
• CEEBX05A (VS COBOL II compatibility)

The default CEEBXITA is linked into the distributed batch
initialization/termination phases (CEEBINIT and CEEPIPI); the default CEECXITA
is linked into the distributed CICS library support routines phase, CEECCICS.

You can customize these exits to suit your requirements and link them directly to
applications for use on an application-specific basis.

OS/390 Language Environment provides default assembler exits with the same
names as these, and they also are linked into the batch and CICS initialization
and termination load modules, and the CICS support routine load module.

However, these assembler exits may not perform exactly the same functions
when invoked in OS/390 Language Environment as in LE/VSE. If you rely on the
function of the default assembler exits, you should examine the OS/390
Language Environment versions to ensure they do what you require.

If you have customized your own assembler exits in LE/VSE, you can make the
same customization in OS/390 Language Environment.

OS/390 Language Environment also provides a default assembler user exit for
TSO, CEEBXITC, which you may find useful.

17.5.2.2 High-Level Language Exits
A sample High-Level Language (HLL) exit is provided in both LE/VSE and OS/390
Language Environment. This is CEEBINT. In both cases, it does nothing except
return to the caller.

You can compile as many of your own HLL exits as you wish, in LE/VSE and in
OS/390 Language Environment. In OS/390 Language Environment as in LE/VSE,
you can write an HLL exit in C, PL/I or Language Environment-conforming
Assembler language, but not in COBOL.

Note: You cannot write an HLL exit in C, for use in LE/VSE 1.1.

364 VSE to OS/390 Migration Workbook

In OS/390 Language Environment a sample job, CEEWHLLX, is provided that
contains an SMP/E USERMOD to replace the IBM-supplied HLL user exit with
your HLL user exit.

17.5.2.3 Abnormal Termination Exits
Language Environment provides the ability to invoke an abnormal termination
exit before it terminates a thread due to an unhandled condition of severity 2 or
greater. This allows an abnormal termination exit to collect problem
determination data before Language Environment frees the resources it has
acquired.

Abnormal termination exits can be invoked in CICS or non-CICS. You can code
your own abnormal termination exits. In LE/VSE this is described in the LE/VSE
Installation and Customization Guide. In OS/390 Language Environment this is
described in OS/390 Language Environment Customization.

In OS/390 Language Environment (as with LE/VSE 1.1) no default or sample
abnormal termination exits are supplied.

17.5.2.4 Abnormal Termination Exits and LE/VSE 1.4 and Later
Releases
In LE/VSE 1.4 and later releases, default abnormal termination exits are
supplied. These are CEEBDATX for batch and CEECDATX for CICS. CEEBDATX
is a null module that immediately returns to the caller when invoked. CEECDATX
issues abend 4039 when an unhandled condition occurs of severity 2 or greater.

In LE/VSE 1.4 and later releases, sample source programs are supplied that can
be used as examples of how to write an abnormal termination exit. These are
CEEBBATX.A and CEEBNATX.A. CEEBBATX.A is a batch abnormal termination
exit that produces a system dump when invoked. CEEBNATX.A is a batch or
CICS exit that does nothing but return to the caller when invoked.

17.5.3 Callable Services and Math Services
All LE/VSE callable services and math services are also provided in OS/390. The
use of callable and math services in OS/390 Language Environment is described
in the OS/390 Language Environment Programming Reference.

If you use LE/VSE callable services, there is one important fact of which you
should be aware. Some LE/VSE callable services have names beginning with
CEE5. The corresponding OS/390 Language Environment callable services have
names beginning with CEE3. For example, the callable service in LE/VSE, to set
the heading displayed at the top of the options report, is CEE5RPH. The
corresponding OS/390 Language Environment callable service is CEE3RPH.

There are 14 such callable services. They are listed in Figure 56 on page 366. If
you have used any of these callable services in your programs, you must change
their names in your source code when you transfer the code to OS/390, and you
must recompile your source code there. You cannot use the OS/390 Language
Environment names in your VSE/ESA code, you cannot use the LE/VSE names in
your OS/390 Language Environment code, and you cannot ship the compiled
object code from VSE/ESA to OS/390 for link-editing there.

Chapter 17. Language Environment (LE) 365

CEE5ABD CEE5GRN CEE5MDS CEE5SPM
CEE5CIB CEE5GRO CEE5MTS CEE5SRC
CEE5CTY CEE5LNG CEE5PRM CEE5SRP
CEE5DMP CEE5MCS CEE5RPH CEE5USR
CEE5GRC

Figure 56. Callable Services in LE/VSE 1.4 with Differing Names in OS/390 Language
Environment

Note: Three further callable services are available in LE/VSE releases later than
1.4, and in LE/VSE 1.4 via APAR PQ08538. They are also available in OS/390
Language Environment. They are:

• CEEMRCE
• CEE4SRP
• CEE5GRO

17.5.3.1 CEETDLI
The CEETDLI callable service in LE/VSE provides an interface to DL/I DOS/VS
facilities. The OS/390 Language Environment callable service CEETDLI provides
an interface to DL/I facilities that operate in IBM and CICS. You should read
Chapter 8, “Databases” on page 169 and the appropriate DL/I and IMS
publications, for more information.

17.5.4 LE/VSE 1.4 Locales
All locales provided in LE/VSE 1.4 are also provided in OS/390. This includes a
number of locales and charmaps available in LE/VSE releases later than 1.4, and
in LE/VSE 1.4 via APARs PQ08543 and PQ08547. Locales and the localedef utility,
for OS/390 Language Environment, are described in the OS/390 C/C++ V2R4.0
Programming Guide.

17.6 CICS
This section discusses migration issues relating specifically to CICS.

17.6.1 COBOL and CICS
In OS/390 Language Environment, as in LE/VSE, some Language Environment
COBOL run-time routines have the same names as their non-CICS counterparts.
Therefore, if you plan to run COBOL programs in CICS, you must concatenate
the library containing the Language Environment COBOL run-time routines in
front of the library containing non-CICS routines, in the DFHRPL DD
concatenation in your CICS startup job stream. Generally, the name of the
Language Environment COBOL library is SCEECICS and the name of the
non-CICS library is SCEERUN.

17.6.2 Run-time Options
The default settings for run-time options, for CICS, are the same for OS/390
Language Environment and for LE/VSE. Refer to the OS/390 Language
Environment Programming Reference for the OS/390 Language Environment
default settings.

366 VSE to OS/390 Migration Workbook

The recommended settings for run-time options for CICS, are the same for
OS/390 Language Environment and for LE/VSE, with the following exceptions,
listed in Table 44 on page 367.

Table 44. Option Recommendations for CICS Differing
between LE/VSE and OS/390 Language Environment

Language Option Recommendation

COBOL LIBSTACK 1K,1K,FREE

TERMTHDACT UADUMP

PL/I DEPTHCONDLMT 0

ERRCOUNT 0

17.6.3 User Exits and Abnormal Termination Exits
These are discussed in 17.5.2, “User Exits and Abnormal Termination Exits” on
page 364.

Chapter 17. Language Environment (LE) 367

368 VSE to OS/390 Migration Workbook

Chapter 18. Procedure Language REXX

The REstructured eXtended eXecutor language, or REXX language, is a versatile,
easy to use structured procedure language that is part of:

• VM/ESA
• VSE/ESA
• TSO/E

REXX was designed as a replacement for the EXEC and EXEC2 languages that
provided a way to bundle Conversational Monitor System (CMS) commands
together. REXX is an extremely versatile programming language in that it can be
intermixed with commands to host environments, it provides powerful functions,
and it has extensive mathematical capabilities.

18.1 REXX and VM/ESA
By far, the most vital role REXX plays is as a procedural language for VM/ESA.
That means a REXX procedure can be a kind of script for VM/ESA to follow. By
using REXX, you can reduce long and complex or repetitious tasks to a single
command or procedure that can be run from CMS.

REXX is a built-in feature of VM/ESA, so there is no installation process or
separate environment. Any REXX procedure can call CMS commands, XEDIT
macros, other subcommand environments, GCS and so on.

18.2 REXX and VSE/ESA
REXX programs can do many tasks, including the automation of VSE/Operations.
For example, if you use the JCL EXEC command to call a REXX program, you
can leave JCL statements on the stack for VSE/ESA to process. This enables you
to insert JCL statements or data into the current job stream. REXX programs can
run in any partition. They can communicate with POWER through the Spool
Access Support interface.

REXX/VSE is available for all VSE/ESA 2.1 and higher and is integrated closely
into the VSE/ESA central functions. It is implemented through:

• The REXX/VSE interpreter
• The Library for REXX/370 in REXX/VSE

18.3 REXX and TSO/E
The TSO/E implementation of the REXX language allows REXX execs to run in
any MVS address space. You can write a REXX exec that includes TSO/E
services and run it in a TSO/E address space, or you can write an application in
REXX to run outside of a TSO/E address space. REXX runs in an OS/390 system
in different environments: MVS, NetView, OE shell scripts,

 Copyright IBM Corp. 1998 369

18.4 Environments
The system under which REXX procedures run is assumed to include at least
one environment for processing commands. An environment is selected by
default on entry to a REXX procedure.

You can change the environment by using the ADDRESS instruction:

address cms /* VM/ESA CMS environment */
address POWER /* VSE/ESA POWER host command environment */
address TSO ″ALLOC F(SYSOUT) DSN(my.dsn) SHR″
address DOS ′ DIR MDV1.ALL′

TSO ISPF dialog invocation:

address ISPEXEC ″SELECT CMD(%myexec) ″

You can find out the name of the current environment by using the ADDRESS
built-in function. ADDRESS() returns the name of the environment to which
commands are currently being submitted.

if address() = ′ CMD′ then /* OS/2 environment */

The underlying operating system defines environments external to the REXX
procedure.

The environment selected depends on the caller. For example if a procedure is
called from CMS, the default environment is CMS. If called from an editor that
accepts subcommands from the language processor, the default environment
may be that editor.

ADDRESS temporarily or permanently changes the destination of commands.
Commands are strings, not interpreted by REXX itself but sent to an external
environment.

18.4.1 VSE/ESA Environment
REXX/VSE provides the following host command environments:

• VSE for the REXX/VSE commands.
• POWER for VSE/POWER spool-access service requests.
• JCL to issue JCL commands via a REXX program.
• CONSOLE lets you manage console sessions.
• LINK and LINKPGM for linking to a program.

18.4.2 VM/ESA Environment
VM/ESA provides among others the following host command environments:

• CMS implies full command resolution just as provided in usual interactive
command (terminal) mode.

• COMMAND implies basic CMS CMSCALL command resolution.
• CPICOMM can be used to call program-to-program communications routines.
• OPENVM can be used to call OPENVM-type CSL routines, such as

OpenEdition for VM/ESA callable services.

370 VSE to OS/390 Migration Workbook

18.4.3 TSO/E Environment
TSO/E provides among others the following host command environments:

• TSO allows you to invoke TSO/E commands and services.
• CONSOLE allows you to invoke MVS system and subsystem commands

during an extended MCS console session.
• ISPEXEC and ISAREDIT allows you to invoke ISPF commands and services,

and ISPF edit macros.
• CPICOMM, LU62, and APPCMVS allows you to use the SAA common

programming interface (CPI) Communications calls.
• MVS gives you a host environment which is available in any MVS address

space.

18.4.4 REXX Exec Sample for the OS/2, TSO and CMS Environments
/* REXX */
say ′ REXX Exec is executed in the′ address() ′ environment′
if address() = ′ CMD′ then /* OS/2 environment */
do
infile = ′ my.data′
do until lines(infile) = 0

say linein(infile)
end
end

else
do
if address() = ′ TSO′ address() = ′ CMS′ then
do
io_op = ″EXECIO * DISKR″ /* common used EXECIO part */
if address() = ′ TSO′ then /* TSO environment */
do
e1 = ″ALLOC FI(DATAIN) DA(my.data) SHR″
e2 = io_op ″DATAIN (FINIS″
end
if address() = ′ CMS′ then /* CMS environment */
do
e1 = io_op ″my data A″
e2 = ″FINIS my data A″
end
e1;e2 /* execute I/O */
do i = 1 to queued()
parse pull line
say line
end
end

end

18.5 Migration Issues
″The REXX language is independent of both system and hardware. REXX
procedures, though, must be able to interact with their environment. Such
interactions necessarily have system dependent attributes. However, these
system dependencies are clearly bounded and the rest of the language has no
such dependencies.″ (M. F. Cowlishaw: The REXX Language)

REXX is compatible with the VM, VSE, MVS, AIX, OS/400, and OS/2 operating
systems, among others, and allows system independent coding.

Chapter 18. Procedure Language REXX 371

18.5.1 REXX and SAA
Issuing commands to the surrounding environment is an integral part of REXX.
REXX is the only procedure language supported by the SAA to help provide
cross-system consistency. Procedures written in REXX according to the SAA
specifications can be transported to other SAA environments. For example, a
REXX exec in CMS can also run in a TSO/E environment if the exec does not use
system-specific functions or commands.

Only the ADDRESS command/instruction affects the host command environment
of the exec that uses the command/instruction.

18.6 REXX Bibliography
VSE/ESA

VSE/REXX Reference, SC33-6642
VSE/REXX User′s Guide, SC33-6641
VSE/REXX Console Automation, SC33-6598

VM/ESA

VM/ESA REXX/VM User′s Guide, SC24-5465
VM/ESA REXX/VM Reference, SC24-5770

TSO/E

OS/390 V1R2.0 TSO/E REXX Reference, ST01-2613
OS/390 OPENEDITION MVS using REXX and OPENEDITION MVS, ST01-2695

372 VSE to OS/390 Migration Workbook

Part 4. Converting VSE Utilities to OS/390 Utilities

In addition to this part of the book on converting utilities, also see Chapter 29,
“Orientation for Utilit ies” on page 455 which discusses more OS/390 Utilities that
you can use.

 Copyright IBM Corp. 1998 373

374 VSE to OS/390 Migration Workbook

Chapter 19. SORT

This chapter addresses considerations for migrating to the OS/390 Sort product,
DFSORT (5740-SM1) from the VSE Sort products:

• DOS/VS SORT/MERGE V2 (5746-SM2), referred to as Sort/Merge

• DFSORT/VSE V3 (5746-SM3), referred to as DFSORT/VSE

DFSORT/VSE is based on and replaces Sort/Merge. It offers additional features
not available with Sort/Merge. The migration considerations for Sort/Merge will
be discussed first. These considerations also apply to DFSORT/VSE. Migration
considerations for additional features of DFSORT/VSE are discussed separately
at the end of the chapter.

The interfaces for calling DFSORT from a program and for DFSORT user exit
routines are significantly different from the corresponding interfaces for
Sort/Merge. Your calling programs and user exits thus require careful
consideration and redesign, as appropriate. These interfaces are described fully
in the DFSORT Application Programming Guide, SC33-4035 and will not be
discussed here.

Sort/Merge, DFSORT/VSE and DFSORT were designed to be functionally
compatible at the control statement level, and for the most part, the control
statement syntax of the three products is compatible. However, differences in
JCL, data set usage and control statement syntax must be addressed when
migrating to DFSORT. These differences are summarized in this chapter.

DFSORT has many features that are not available with Sort/Merge and some
features that are not available with DFSORT/VSE. These additional DFSORT
features are only discussed here when they relate to migration considerations.
However, you may want to familiarize yourself with these additional features
since they can be useful for your DFSORT applications.

For complete details on DFSORT, see the DFSORT Application Programming
Guide, SC33-4035.

The following topics are discussed:

• 19.1, JCL Statements

• 19.2, Control Statements

• 19.3, Additional DFSORT/VSE Migration Considerations

19.1 JCL Statements
As discussed in Chapter 4, “Job Control Language (JCL) Differences and
Considerations” on page 69, the JCL for OS/390 is quite different from that for
VSE. You will need to replace your VSE JCL statements with appropriate OS/390
JCL statements. Every DFSORT job requires a JOB statement and an EXEC
statement. DFSORT jobs also require specific DD statements which depend on
the type of application being run (sort, merge or copy) as well as specific
features you want to use for the job.

A basic DFSORT job might look as follows:

 Copyright IBM Corp. 1998 375

//MYJOB JOB ...
//SORTIT EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=...
//SORTOUT DD DSN=...
//SYSIN DD *
SORT FIELDS=(5,4,CH,A)

/*

The JCL statements you will commonly need when migrating are:

JOB: Must be the first statement for a job.

EXEC: Must be the first statement for a step. Specifies the program to be
executed. For DFSORT steps, use PGM=SORT or PGM=ICEMAN.

SYSOUT DD: Defines DFSORT′s message data set. DFSORT can write
informational, error and diagnostic messages to this data set as directed.

SORTIN DD: Defines one or more input data sets for a sort or copy application.
Multiple input data sets can be specified using OS/390′s data set concatenation
facility.

SORTINnn DD: Defines a data set for a merge application. SORTIN01 through
SORTIN99 can each be used to specify a data set to be merged.

SORTOUT DD: Defines the output data set for a sort, merge or copy application.

SYSIN DD: Contains DFSORT control statements, comment statements and blank
statements.

Other JCL statements you may need when migrating are:

JOBLIB DD: Defines the library containing the DFSORT program. Used for all
steps in the job. The JOBLIB DD is only needed if the DFSORT library is not
known to the operating system.

STEPLIB DD: Defines the library containing the DFSORT program. Used for a
particular step in the job. The STEPLIB DD is only needed if the DFSORT library
is not known to the operating system.

SORTWKnn DD: Defines a work data set for a sort application. It is
recommended that you use DFSORT ′s dynamic allocation facility instead of
specifying SORTWKnn DD statements. DFSORT′s shipped defaults result in the
automatic use of dynamic allocation when appropriate.

SORTDIAG DD: Forces DFSORT to print all messages and control statements in
the message data set. Only needed for diagnosing problems.

SYSUDUMP DD: Defines the data set for a dump. Only needed for diagnosing
problems.

376 VSE to OS/390 Migration Workbook

19.2 Control Statements
DFSORT was designed to be functionally compatible with Sort/Merge at the
control statement level, and for the most part, the control statement syntax of the
two products is compatible. However, there are differences in some of the
control statements that you will need to address. Here are the actions, if any,
you should consider taking for each Sort/Merge control statement.

ALTSEQ: Can be used with no changes.

ANALYZE: Must be removed. DFSORT terminates if an ANALYZE statement is
specified. Use DFSORT′s dynamic allocation feature to allow DFSORT to
automatically use the work space needed. Use SORTDIAG DD to produce
diagnostic messages.

END: Can be used with no changes.

INCLUDE: Can be used with no changes.

INPFIL: Must be removed if the INPFIL statement is continued because DFSORT
control statement errors can result. If the INPFIL statement is not continued, it
can be used with no changes. DFSORT ignores all INPFIL operands. The
equivalent information must be available from the input DD statements, input
data set control blocks (DSCB) or catalog.

INREC: Can be used with no changes.

MERGE: Can be used with no changes.

MODS: Must be changed to use DFSORT syntax. User exit routines must be
changed to use the DFSORT interfaces. See the DFSORT Application
Programming Guide, SC33-4035 for complete details on the MODS statement and
the interfaces for user exit routines.

OMIT: Can be used with no changes.

OPTION: Here are the actions, if any, you should consider taking for each
Sort/Merge OPTION operand:

• ADDROUT: Must be removed. DFSORT terminates if this operand is
specified. DFSORT does not support the use of direct-access addresses in
output records. If you want to continue to include such addresses, you must
write an E15 user exit to handle this.

• CHALT: Can be used with no changes.

• NOCHALT: Can be used with no changes.

• DIAG: Can be used with no changes. DFSORT ignores DIAG. Use the
SORTDIAG DD statement to obtain diagnostic messages.

• NODIAG: Can be used with no changes. DFSORT ignores NODIAG.

• DUMP: Must be removed. DFSORT terminates if this operand is specified.
Specify a SYSUDUMP DD statement to obtain a dump.

• NODUMP: Must be removed. DFSORT terminates if this operand is specified.
Do not specify a SYSUDUMP DD statement to suppress a dump.

Chapter 19. SORT 377

• ERASE: Can be used with no changes. DFSORT ignores ERASE. Use a
security product, such as RACF, to erase the work data sets.

• NOERASE: Can be used with no changes. DFSORT ignores NOERASE.
DFSORT does not erase work data sets.

• FILNM: Must be removed. DFSORT terminates if this operand is specified.
Use DFSORT′s SORTIN, SORTOUT or SORTDD operands to change the input
and output ddnames.

• LABEL: Must be removed. DFSORT terminates if this operand is specified.
Use the LABEL option of the DD statement to specify the type of label.

• PRINT: Must be removed. DFSORT terminates if this operand is specified. If
the default message level is inappropriate for a particular job, use DFSORT ′s
MSGPRT operand to control which messages are printed.

• ROUTE: Must be removed. DFSORT terminates if this operand is specified.
By default, DFSORT directs its messages to the message data set. However,
DFSORT′s MSGCON installation operand can be used to direct messages to
the master console.

• SORTIN: Must be removed. DFSORT terminates if this operand is specified.
Use DD statements to identify the input data sets.

• SORTOUT: Must be removed. DFSORT terminates if this operand is specified.
Use a DD statement to identify the output data set.

• SORTWK: Must be removed. DFSORT terminates if this operand is specified.
Use DFSORT′s DYNALLOC operand or SORTWKdd DD statements to identify
the work data sets.

• STORAGE: Must be removed. DFSORT terminates if this operand is specified.
By default, DFSORT uses virtual storage (above and below 16MB virtual),
dataspace sorting, hipersorting and work data sets, as appropriate. If the
default storage values at your site are inappropriate for a particular job, use
DFSORT′s MAINSIZE operand to control storage.

• VERIFY: Is accepted, but performs a different function for DFSORT than for
Sort/Merge. Use the OPTCD=W option on the SORTOUT DD statement to
perform the equivalent of Sort/Merge ′s VERIFY function.

• NOVERIFY: Can be used with no changes. DFSORT will not perform its
VERIFY function.

• WORKNM: Must be removed. DFSORT terminates if this operand is specified.
Use DFSORT′s SORTDD operand to change the work ddnames.

OUTFIL: Can be used with no changes. DFSORT ignores all Sort/Merge OUTFIL
operands. The equivalent information must be available from the output DD
statement, output data set control block (DSCB) or catalog.

OUTREC: Can be used with no changes.

RECORD: Can be used with no changes.

SORT: Can be used with no changes. DFSORT ignores operands that are not
meaningful for its processing.

SUM: Can be used with no changes.

378 VSE to OS/390 Migration Workbook

19.3 Additional DFSORT/VSE Migration Considerations
DFSORT/VSE is based on and replaces Sort/Merge. It offers additional features
not available in Sort/Merge. All of the migration considerations discussed
previously for Sort/Merge apply to DFSORT/VSE as well. Migration
considerations for additional features of DFSORT/VSE are discussed below.

19.3.1 Control Statements
OPTION: DFSORT/VSE has additional OPTION statement operands not found in
Sort/Merge. Here are the actions, if any, you should consider taking for each
such OPTION operand:

• DSPSIZE: Can be used with no changes. However, since the OS/390
environment is considerably different from the VSE environment, you should
determine if the DSPSIZE value specified is still appropriate as the maximum
amount of data space to be used for dataspace sorting.

• EQUALS: Can be used with no changes.

• NOEQUALS: Can be used with no changes.

• GVSIZE: Must be removed. DFSORT terminates if this operand is specified.
GVSIZE has no meaning for DFSORT since OS/390 does not support GETVIS
areas. By default, DFSORT uses virtual storage (above and below 16M
virtual), dataspace sorting, hipersorting and work data sets, as appropriate.

• GVSRANY: Must be removed. DFSORT terminates if this operand is
specified. GVSRANY has no meaning for DFSORT since OS/390 does not
support GETVIS areas.

• GVSRLOW: Must be removed. DFSORT terminates if this operand is
specified. GVSRLOW has no meaning for DFSORT since OS/390 does not
support GETVIS areas.

• LOCALE: Can be used with no changes.

• SKIPREC: Can be used with no changes.

• STOPAFT: Can be used with no changes.

• STXIT: Must be removed. DFSORT terminates if this operand is specified. By
default, DFSORT uses an ESTAE routine for abend recovery.

• NOSTXIT: Must be removed. DFSORT terminates if this operand is specified.
Use the NOESTAE operand of the DEBUG control statement to suppress
DFSORT′s ESTAE routine for abend recovery.

• WRKSEC: Must be removed. DFSORT terminates if this operand is specified.
By default, DFSORT uses automatic secondary allocation for temporary JCL
SORTWKnn data sets for which a secondary allocation amount is not
specified.

• NOWRKSEC: Can be used with no changes. However, since NOWRKSEC
applies to SAM ESDS work files for Sort/Merge, but to temporary work files
for DFSORT, you should determine if this operand should be kept or
removed.

• Y2PAST: Can be used with no changes.

OUTREC: DFSORT/VSE has additional OUTREC statement operands not found in
Sort/Merge. Here are the actions, if any, you should consider taking for each
such OUTREC operand:

Chapter 19. SORT 379

• p,m,Y2x: Must be removed. DFSORT terminates if this operand is specified.
p,m,Y2x can be specified in the OUTREC operand of DFSORT′s OUTFIL
statement.

• p,m,PZ: Must be removed. DFSORT terminates if this operand is specified.
p,m,PZ can be replaced by p,m,PD0,M11 in the OUTREC operand of
DFSORT′s OUTFIL statement.

• p,m,PSI: Must be removed. DFSORT terminates if this operand is specified.
p,m,PSI can be replaced by p,m,PD,M11 in the OUTREC operand of
DFSORT′s OUTFIL statement.

• p,m,ZSI: Must be removed. DFSORT terminates if this operand is specified.
p,m,ZSI can be replaced by p,m,ZD,M11 in the OUTREC operand of
DFSORT′s OUTFIL statement.

19.3.2 ICETOOL
DFSORT/VSE′s ICETOOL and DFSORT′s ICETOOL were designed to be
functionally and syntactically compatible. However, differences between the VSE
and OS/390 operating systems require the following changes when migrating:

• JCL Statements: The VSE JCL statements describing the files used by
ICETOOL must be changed to DD statements as described in the DFSORT
Application Programming Guide, SC33-4035.

• DEFINE operator: Must be removed. ICETOOL terminates if this operator is
specified. ICETOOL obtains information about each input data set from the
DD statement, data set control block (DSCB) or catalog.

• FROM operand: Each FROM operand that specifies more than one filename
must be changed to specify one ddname that identifies the input data sets
using concatenation.

• LIST operand: Each LIST operand must be changed to specify a ddname that
identifies the list data set.

• USE operand: Each USE operand must be replaced by a USING(xxxx)
operand where xxxx is a unique four-character identifier. The control
statements between (but not including) the USTART and UEND statements
must be placed in a data set defined by an appropriate xxxxCNTL DD
statement.

380 VSE to OS/390 Migration Workbook

Chapter 20. DITTO

Data Interfile Transfer, Testing, and Operations Utility (DITTO) is IBM′s best
known storage media and data maintenance utility program for the OS/390, MVS,
VSE, and VM environments.

DITTO is a key resource for data processing professionals due to many versatile
functions working with tapes, disks, VTOCs and catalogs, VSAM data, VSE library
members, sequential data sets and files, MVS Object Access Method (OAM)
objects, and card images.

DITTO/ESA introduced an all in one User′s Guide to let users of OS/390,
MVS/ESA, VSE/ESA, and VM/ESA compare the functions and parameters
supported in each one of these S/390 environments.

DITTO/ESA Release 2 is the latest release of the well known DITTO family of
products. It supersedes DITTO/ESA Release 1 (which superseded MVS/DITTO
Version 2.1, the DITTO 3.2 Productivity Features for VSE and VM, and DITTO for
VSE and VM 3.2 base product).

It provides a consistent package of functions for the MVS, VSE, and VM user with
a common user interface supporting the following operating system
environments:

• OS/390
• MVS/ESA
• VSE/ESA
• VM/ESA

The following topics will be discussed:

• 20.1, Compatibility with Previous Releases of DITTO

• 20.2, DITTO Functions that are No Longer Supported

• 20.3, DITTO Functions that are Not Recommended

• 20.4, DITTO Function Code Synonyms

• 20.5, Batch Keywords that are No Longer Supported

• 20.6, Batch Keywords that are Not Recommended

• 20.7, DITTO/ESA Security

20.1 Compatibility with Previous Releases of DITTO
This section describes the differences between DITTO/ESA and previous
versions of DITTO:

• MVS/DITTO Version 2 Release 1 (Program Number 5695-100)

• DITTO Version 3 Release 2 for VSE and VM (Program Number 5688-052)

• DITTO Version 3 Release 2 Productivity Features for VSE and VM

Under VSE and CMS, the DVT and VDL functions have been changed.
Previously, an asterisk (*) within a file ID represented any number of characters.
Now, one asterisk represents any number of characters within a qualifier and a

 Copyright IBM Corp. 1998 381

double asterisk (**) represents any number of characters in any number of
qualifiers.

Under VSE and CMS, an implicit rewind was previously performed by each
function that works with labeled tapes. Labeled tape functions could only work
with the first file on a tape. The implicit rewind is no longer performed. This lets
you work with multifile standard labeled tapes.

20.2 DITTO Functions that are No Longer Supported
The following table lists function codes that were allowed in previous releases of
DITTO but are not recognized by DITTO/ESA. You can use the indicated
replacement, if any.

Function Description Replacement

BDU Buffer to Diskette -

BIS, BI Buffer to ISAM -

CDU Card to Diskette -

DDD Disk Dump with Deblocking DP

DPD Disk to Printer with Deblocking DP

DKB Diskette Browse -

DKE Diskette Eject and Feed -

DKH, DKP Diskette to Printer -

DKI Display Diskette Index -

DKL Diskette Record Load -

DKN Diskette to Console -

DKS Diskette Record Scan -

DKV Diskette Identification Change -

DUC, DUI Diskette File to Card -

DUD Diskette File to Diskette File -

DUF Diskette File to CMS File -

DUH, DUP Diskette File to Printer -

DUS Diskette File to SAM File -

DUT Diskette File to Tape -

DUV Diskette File to VSAM -

FDD CMS File Dump Deblocked FP

FDU CMS File to Diskette File -

IDK Initialize Diskette -

IDP, ID ISAM File Dump -

IIS ISAM File to ISAM File -

IPR, IP ISAM File Print -

ISQ, IS ISAM File to SAM File -

ITP, IT ISAM File to Tape -

IVS, IV ISAM File to VSAM -

LE Library Member Erase LDEL

382 VSE to OS/390 Migration Workbook

Function Description Replacement

SD, SDD Split-Cylinder Disk Dump -

SDU SAM to Diskette -

SIS SAM File to ISAM File -

SP, SPD Split-Cylinder Disk Print -

SRS Split-Cylinder Disk Record Scan -

TDD Tape Dump Deblocked TP

TDU Tape to Diskette -

TDV Tape Dump Variable TP

TIS Tape to ISAM File -

TPD Tape Print Deblocked TP

TPV Tape Print Variable TP

VDU VSAM to Diskette File -

VIS VSAM to ISAM File -

20.3 DITTO Functions that are Not Recommended
The following table lists obsolete function codes from previous releases of DITTO
that are still recognized by DITTO/ESA in batch mode. It is recommended that
you use the indicated replacement.

Function Description Replacement

CD Card Dump CP

CI Card to Card Interpreted CC

DD Disk Dump DP

FD CMS File Dump FP

LD Library Member Dump LP

LI Library Member to Card Interpreted LC

OD Object Dump OP

QD, SDP Sequential Data Dump SP

QI, SI Sequential Data to Card Interpreted SC

TD Tape Dump TP

TI Tape to Card Interpreted TC

VD, VDP VSAM Dump VP

VI VSAM to Card Interpreted VC

Chapter 20. DITTO 383

20.4 DITTO Function Code Synonyms
The following table lists supported synonyms for DITTO function codes.

Function Synonym(s) Description

BS BQ, BSQ Create Sequential Data

BT BTP Create Tape File

BV BVS Create VSAM File

CS CQ, CSQ Card to Sequential Data

CV CVS Card to VSAM

DUMP DUM Dump CMS File to Tape

FP FPR CMS File Print

FT FTP CMS File to Tape

FV FVS CMS File to VSAM

LOAD LOA Load CMS File from Tape

MB TST Memory Browse

NEW NEWS News Command

OS OQ, OTL Object to Sequential Data

SC QC Sequential Data to Card

SO QO, TLO Sequential Data to Object

SP QP, SPR Sequential Data Print

SS QQ, SSQ Sequential Data to Sequential Data

ST QT, STP Sequential Data to Tape

SV QV, SVS Sequential Data to VSAM

TS TQ, TSQ Tape to Sequential Data

TV TVS Tape to VSAM

VP VPR VSAM Print

VRU VRL VSAM Record Update

VS VQ, VSQ VSAM to Sequential Data

VT VTP VSAM to Tape

VV VVS VSAM to VSAM

20.5 Batch Keywords that are No Longer Supported
The following table lists keywords that were allowed in previous releases of
DITTO but are not recognized by DITTO/ESA. You can use the indicated
replacement, if any.

Function(s) Keyword Description Replacement

BV BLKFACTOR= Output blocking factor -

TMP TYPE=CHAR Tape map in character format FORMAT=CHAR

384 VSE to OS/390 Migration Workbook

20.6 Batch Keywords that are Not Recommended
The following table lists obsolete keywords from previous releases of DITTO that
are still recognized by DITTO/ESA in batch mode. It is recommended that you
use the indicated replacement, if any.

Function(s) Keyword Description Replacement

BS, BT, CS, CT, FT, SS, ST, TFT,
TS, TTR, VS, VT

BLKFACTOR= Output blocking factor RECFMOUT=
BLKSIZE=

TF BLKFACTOR= Output blocking factor -

BS, CS, SS, TS, VS CISIZE= FBA control interval size BLKSIZE=

FT M O D E = Input record format -

SP (VSE, CMS), SS, ST (VSE,
CMS), SV, TC, TF, TFT, TRS, TS,
TTR, TV

M O D E = Input record format RECFMIN=

BT, CT, ST (MVS), VS, VT M O D E = Output record format RECFMOUT=

TTR OUTMODE= Output record format RECFMOUT=

TP, TRS N B L K S = Number of blocks NLRECS=

FT RECSIZE= Record length for deblocking -

VC, VL, VP, VRU, VS, VT, VV S T A R T = K
POSITION=key

VSAM start positioning by key
value

KEY=key

SET TSOPRINT= Print output destination PRINTOUT=

SET ASCII=YES Translate from ASCII to EBCDIC ASCI I= IN

Notes:

 1. For the SP function, the MODE keyword is obsolete under VSE and CMS but sti l l applies under MVS.
 2. For the ST function, the MODE keyword is obsolete. Under VSE and CMS, use RECFMIN; under MVS, use

RECFMOUT.

20.7 DITTO/ESA Security
DITTO provides secure control of function authorization, either through RACF (or
an equivalent security product) or through the DITSECUR exit.

DITSECUR is a customizable exit. It provides a DITS macro, which lets you define
a table of user names or job names, DITTO-protectable resources (called
profiles), and access levels.

OS/390, MVS, or CMS: If OS/390 Security Server, RACF 1.9 or later (or
equivalent) is active, the System Authorization Facility (SAF) with the DITTO
enhanced security facility is used for access control and authorization
verification. Authorization is controlled by DITTO-specific profiles in the FACILITY
class. If SAF with RACF 1.9 is not active at DITTO initialization time, all DITTO
special security checks during that DITTO session are passed to the DITSECUR
user exit (if any) instead of to SAF; if the DITSECUR module cannot be found, no
security checks are done.

VSE: All DITTO special security checks during a DITTO session are passed to the
DITSECUR user exit. If the DITSECUR module cannot be found, no security
checks are done.

Chapter 20. DITTO 385

386 VSE to OS/390 Migration Workbook

Chapter 21. VSAM Backup/Restore

21.1 VSAM Backup/Restore
The following describes the methods and utilities used in OS/390 as compared to
VSE VSAM Backup/Restore procedures.

21.1.1 OS/390 VSAM Backup/Restore
There are several tools that can be used in an OS/390 system to back up and
restore VSAM files. Considerations for which tool you may want to use can be
found in Chapter 4 of DFSMS/MVS Using Data Sets, SC26-4922. A brief
description of these tools follows:

• DFSMSdfp

DFSMSdfp provides the IDCAMS commands, EXPORT/IMPORT, for backup
and restore of VSAM files. These commands are documented in the
DFSMS/MVS Access Methods Services for ICF SC26-4906.

• DFSMShsm

DFSMShsm can be used to back up and restore VSAM files. For more
information see DFSMShsm Managing Your Own Data. In addition, backup of
data can be done automatically with DFSMShsm in a non-SMS or SMS
environment.

• DFSMSdss

DFSMSdss can be used for VSAM backup/restore. See the manual
DFSMSdss Storage Administration Reference, SC26-4929, for command
syntax as well as hints and tips.

• RVA/SnapShot V1R2

With RVA and SnapShot V1R2, you can SNAP a VSAM data set to disk and
offload it to tape at a later time.

21.1.2 VSE/VSAM Backup/Restore
You can use the VSE/VSAM Backup/Restore feature to back up VSE/VSAM files
to magnetic tape or disk devices, and restore the files again to VSE/VSAM data
sets. You can use the two IDCAMS commands BACKUP and RESTORE.

Use this feature to write and read data sets as follows:

• Copy VSAM disk files to magnetic tape or disk (BACKUP).

• Copy from magnetic tape or disk to VSAM disk files (RESTORE).

The operations listed below can be done for the following VSE/VSAM objects:

• KSDS files
• ESDS files
• RRDS files
• VRDS files
• Alternate indexes
• SAM ESDS files in CI format

 Copyright IBM Corp. 1998 387

Operations:

 1. Handle several VSE/VSAM files with a single command, either with a generic
name or as files of one catalog.

 2. Restore VSE/VSAM files to locations, volumes, and device types that are
different from those where the files were before.

 3. Exclude files from a collective backup or restore operation.

 4. Tune the performance of VSE/VSAM by specifying the size of the buffer in the
BACKUP command, and the number of buffers in both the BACKUP and
RESTORE commands.

In addition, the VSE/VSAM Backup/Restore Feature allows you to:

• Back up and restore empty objects, where an empty object may be either a:

− VSE/VSAM object defined with NOALLOCATION (such as a default model
or a dynamic file), or

− VSE/VSAM cluster that has not been loaded since being defined or reset.

• Change the allocation size for the data component of a file at restoration.
You can specify allocation size in device-independent units by using the
RECORDS parameter when the cluster is defined to facilitate restoration of
objects.

• Change the index CI-size at restoration.

388 VSE to OS/390 Migration Workbook

Chapter 22. Librarian

Both VSE and OS/390 have facilities to help you define, organize, and manage
libraries of system data. In VSE these system facilities are called the Librarian.

In OS/390, the equivalent function is provided by Partitioned Data Sets (PDS) and
the newer Partitioned Data Set-Extended (PDSE), and the group of utilities used
for their management, including the Partitioned Access Method (PAM) and the
Interactive System Productivity Facility (ISPF).

The following briefly describes VSE and OS/390 library support.

22.1 Overall Library Support
One of the most important utilities in VSE is the VSE Librarian which allows you
to back up, restore and re-organize VSE libraries. In OS/390, there are a group of
utilities which provide similar functions and capabilities.

Generally, a librarian is a program or a group of programs which serve to
organize and maintain the libraries of a system including both system and user
program source, object, and load modules. It also contains service functions to
display and punch parts of them or display their directories and to set up and
change the library concatenation chains and their control tables.

The concept of a librarian is based on the following aspects:

• Logical library structure

A VSE library is logically divided into sublibraries. Each sublibrary may
contain members of any type (procedures, source books, object modules,
phases, user-defined types). This makes a library common for all types of
members. Therefore, a component consisting of procedures, source books,
object modules, and phases may be put into one library and even into one
sublibrary.

In OS/390, a partitioned data set contains a directory and a collection of
members. A single PDS (or PDSE) logically corresponds to a sublibrary in
the VSE paradigm. It is usual, however, to place members of different types
(source, object or load members) into different PDSs in OS/390
environments.

• Library data format

VSE library data is blocked, resulting in good utilization of DASD space. The
VSE library data format allows space to be reused. Space freed due to
deletion of a member is available for reuse without requiring a condense
run. The member directories are sorted, improving retrieval times.

Partitioned Data Sets in OS/390 need to be compressed periodically. Use of
PDSE structures reduces (or eliminates) this need. Also, PDSE data sets
maintain the order of entries in their directories to improve performance
compared to PDS structures.

• Librarian command language

The VSE Librarian consists of a single program, and its commands follow a
consistent pattern. They are powerful and easy to use. They reflect the

 Copyright IBM Corp. 1998 389

functional enhancements of the VSE Librarian. The Librarian functions can be
invoked through a console or through job streams (JCL).

In OS/390, each of the different utilities used to create and maintain PDS (or
PDSE) data sets and their members has a different set of commands and
somewhat different syntactical requirements. Combined with OS/390 JCL, the
overall functions available are similar to the functions provided for VSE
libraries.

• Interactive usage

The VSE Librarian runs in batch or interactive mode in static or dynamic
batch partitions or interactive partitions of VSE/ICCF; it can attach VSE
libraries/sublibraries dynamically through the VSE Librarian commands. This
allows the user to move members from any VSE library/sublibraries into the
ICCF library and vice versa. All Librarian services can be invoked from VSE
consoles or ICCF terminals for all libraries.

The interactive capabilities of the OS/390 Interactive System Productivity
Facility (ISPF) are frequently used in OS/390 environments to perform many
of the functions provided by VSE′s LIBR, such as creating and maintaining
PDSs and their members. For example, it is common in VSE to edit a VTAM
startup member (″B-Book″) in ICCF or CMS, and then submit a LIBR job to
replace the system cataloged library member. In OS/390, ISPF facilities
permit direct view, edit and replace functions for members in PDSs, so ISPF
could be used to directly update the corresponding VTAMLIST member.

22.1.1 OS/390 ISPF Overview
ISPF also can be used in the following ways:

• As a general source code or document preparation and editing facility.

• To monitor and control program libraries.

• To communicate with MVS through TSO commands, CLISTs, or REXX EXECs.

• To develop a batch, interactive, or any other type of program and its
documentation.

• To call dialogs that use Dialog Manager (DM) component and Program
Development Facility (PDF) component dialog services to do the work of the
application.

There are several functions in ISPF to view, browse, and edit partitioned data set
members, as well as create and manage data sets. An even more powerful set
of tools also exists in the Library Management Facility and Software
Configuration Library Manager to manage multiple library levels.

Since ISPF usage is a key to productive use of your OS/390 system, we strongly
recommend formal training in its features and the use of its functions. See the
following ISPF books for orientation:

• SC28-1294 - OS/390 ISPF Getting Started
• SC28-1239 - OS/390 ISPF User′s Guide

390 VSE to OS/390 Migration Workbook

22.1.2 OS/390 Library Management
The Software Configuration Library Manager (SCLM), a component of ISPF,
introduces an object-oriented approach to library management and software
development. The objects SCLM can control are members in partitioned data
sets. SCLM keeps track of objects by means of multiple distinct VSAM files
containing the accounting information of a member for a specific group.

The library management functions of SCLM are intertwined with SCLM′s
configuration management functions. The movements to and from the various
partitioned data sets are examples of library management. The control over
movements to and from the various partitioned data sets are examples of
configuration management.

Chapter 22. Librarian 391

392 VSE to OS/390 Migration Workbook

Chapter 23. LISTLOG/PRINTLOG - Printing Log Streams

Both VSE and OS/390 provide facilities to capture system log data in a hardcopy
file, and means to display, print and archive it.

There are two utilities in VSE that help you print copies of your system hard-copy
file and information about jobs that run in your system: PRINTLOG and LISTLOG.

In OS/390, the system hardcopy log can be saved on JES spool or in a log
stream managed by the system logger, and printed by JES.

23.1 VSE PRINTLOG Utility
The IBM utility program PRINTLOG prints the hardcopy file from disk to SYSLST.
Each line that appears on the screen of the display console is written to the
hardcopy file, which resides on SYSREC. It may become necessary to print all or
part of the hardcopy file. You may need to print the hardcopy log in order to
review system events, or to determine which messages were issued for a certain
partition. You should also print its contents before it is overwritten (see
″Hardcopy File Full Condition″ in the VSE/ESA Guide for Solving Problems).

23.2 VSE LISTLOG Utility Program
The LISTLOG utility program is used to gather information about how a particular
job has run on the system. LISTLOG derives the information to be printed from
the hardcopy file. It prints all messages and commands relevant to the partition
in which the job ran. LISTLOG will provide a listing of the following items on
SYSLST:

• job control statements which are written to the console
• console messages for the job
• operator responses for the job
• attention routine messages and commands issued while the job was running.

See IBM VSE/ESA System Utilities for additional information on LISTLOG.

23.3 OS/390 Hardcopy Processing
Hardcopy processing provides a permanent record of your OS/390 system
activity and helps you audit the use of operator commands. You can record
system messages and, optionally, commands, by using either the system log
(SYSLOG), the operations log (OPERLOG), or an MCS printer. The group of
messages and commands that are recorded is called the hardcopy message set.
The system log, operations log, or MCS printer that receives messages is called
the hardcopy medium. You can specify a group of console devices that can serve
as backup devices for the hardcopy medium. You can also allow an extended
MCS console to receive hardcopy messages from one or more systems in a
sysplex.

The following describes the SYSLOG and OPERLOG and how to print them. See
OS/390 MVS Planning: Operations, GC28-1760 for details.

 Copyright IBM Corp. 1998 393

23.3.1 SYSLOG
The system log (SYSLOG) is a data set residing in the primary job entry
subsystem ′s spool space. It can be used by application and system
programmers to record communications about problem programs and system
functions. The operator can use the LOG command to add an entry to the system
log.

SYSLOG is queued for printing when the number of messages recorded reaches
a threshold specified at system initialization. The operator can force the system
log data set to be queued for printing before the threshold is reached by issuing
the WRITELOG command. As part of the WRITELOG command, pick a SYSOUT
class that is not used for normal printing so it is not printed unintentionally.

23.3.2 Printing SYSLOG
SYSLOG is so voluminous that you would not want to print the entire data set.
Use SDSF to browse it and print portions by allocating SYSOUT data sets
through JES.

Archive it using a spool archiving mechanism to save it for future problem
determination and auditing purposes.

23.4 OPERLOG
The operations log (OPERLOG) is an MVS system logger application that records
and merges messages about programs and system functions (the hardcopy
message set) from each system in a sysplex that activates OPERLOG. Use
OPERLOG rather than the system log (SYSLOG) as your hardcopy medium when
you need a permanent log about operating conditions and maintenance for all
systems in a sysplex. Only the systems in a sysplex that have specified and
activated the operations log will have their records sent to OPERLOG.

The operations log is operationally independent of the system log. An installation
can choose to run with either or both of the logs. If you choose to use the
operations log as a replacement for SYSLOG, you can prevent the future use of
SYSLOG; once the operations log is started with the SYSLOG not active, enter
the WRITELOG CLOSE command.

In a single system environment, OPERLOG can reside on DASD, otherwise it is
written to a coupling facility structure. When installation defined thresholds are
reached, the system logger stores log data on DASD log data sets. You should
use System Managed Storage (SMS) and DFHSM to manage the DASD log data
sets. See OS/390 MVS Setting Up a Sysplex, GC28-1779 for details.

23.4.1 Printing OPERLOG
OPERLOG is so huge that you would not want to print the entire log stream. Use
SDSF to browse it and print portions by allocating SYSOUT data sets for JES to
print.

394 VSE to OS/390 Migration Workbook

23.5 JES2 System Data Sets - Job Log and System Messages
The job′s hardcopy log and any system messages related to the job are
managed by JES2 as the ″System Messages″ for each job. Based on installation
specifications and overridden on the job′s JCL, they can also be saved or not
based on the normal or abnormal termination of the job. These can be sent to a
SYSOUT class that is held for viewing only and archived for permanent records.

23.6 Systems Management Recording
SMF formats the information that it gathers into system-related records and
job-related records. System-related SMF records include information about the
configuration, paging activity, and workload. Job-related records include
information on the CPU time, SYSOUT activity, and data set activity of each job
step, job, APPC/MVS transaction program, and TSO/E session.

23.6.1 Printing SMF Records
IBM does not provide any utility to print SMF records, but there are plenty of ISV
products that can be used to manage and format this information.

Chapter 23. LISTLOG/PRINTLOG - Printing Log Streams 395

396 VSE to OS/390 Migration Workbook

Chapter 24. VSE/Fast Copy and OS/390 DFSMSdss

The following briefly describes VSE/Fast Copy and the comparable OS/390
component, DFSMSdss.

24.1 VSE/Fast Copy (Online and Stand-Alone)
In VSE/ESA Version 1, VSE/Fast Copy runs stand-alone only. The on-line
functions of VSE/Fast Copy have been incorporated into the program ″VSE/Fast
Copy Data Set (VSE/Fast Copy).″ In VSE/ESA Version 2, VSE/Fast Copy (Online
and Stand-Alone), was incorporated into the base code, VSE Central Functions.
For information on VSE/Fast Copy see the IBM VSE/ESA System Utilities.

VSE/Fast Copy operates on volume-specific entities (IPL record, volume label,
VTOC) and the set of files stored on the volume, taking the necessary
information from the VTOC. A special Volume function is included for exceptional
situations when the VTOC is no longer valid; this function processes an entire
volume physically rather than being VTOC-driven (see ″Volume Functions″ in
IBM VSE/ESA System Utilities).

With VSE/Fast Copy you can either move data directly from one disk to another
or you may write it on intermediate tape to be restored later. The tape may
either be unlabeled or have standard labels. When you restore the tape to disk
you must also give the label option specified at the time of the tape creation.
Alternate tape drives are supported.

VSE/Fast Copy stand-alone program can restore volume dumps, complete or
partial, that were produced by the VSE/Fast Copy Data Set online program. To
decrease the number of tapes, the VSE/Fast Copy dump and the stand-alone
utilities may be on the same tape as the VSE/Fast Copy tape.

For disk volume identification, VSE/Fast Copy provides the following options:

• The volume identification of the input and/or output disk volume may be
checked against the value specified in the utility control statement. This
option checks whether you have mounted the correct disk pack. If not, you
may proceed with the mounted disk pack, replace disk packs, or cancel the
job.

• The volume identification written on an output disk volume may be:

− copied from the original input disk

− changed as specified in the utility control statement.

 Copyright IBM Corp. 1998 397

24.2 DFSMSdss - OS/390 Component
DFSMSdss has four functions to help you manage your DASD space:

• COMPRESS

Compresses your partitioned data sets by taking unused space and
consolidating it at the end of the data set. To make the unused space
available for other data sets, you must use the RELEASE command. This
does not apply to PDSEs.

• RELEASE

Releases the unused space in sequential and partitioned data sets for use by
other data sets.

• DEFRAG

Consolidates the free space on a volume to help prevent out-of-space
abends on new allocations.

• DUMP/RESTORE

Deletes unwanted data sets and combines data set extents. (The COPY
command can also be used to combine data set extents.)

398 VSE to OS/390 Migration Workbook

Part 5. Setting Up the Migration Environment

 Copyright IBM Corp. 1998 399

400 VSE to OS/390 Migration Workbook

Chapter 25. Prepare the Migration Environment

25.1 Introduction
Setting up the OS/390 environment, similar to setting up the VSE environment,
involves installing the prerequisite hardware and software, and tailoring the
system for your environment. As an example, we can describe it with the
following steps:

 1. Install and configure the required hardware.

 2. Order and receive the OS/390 software along with all desired features,
corequisite products, publications and so on.

 3. Install the OS/390 software. For first t ime users of OS/390, we recommend
that you install using SystemPac along with on-site services or other
installation offerings. There are several services that provide more
assistance such as SoftwareXcel Installation Express (SIE) in the United
States.

 4. Establish an inter-systems communication mechanism between your existing
VSE system and the new OS/390 system for migrating and sharing data,
programs and resources.

 5. Set up your documentation, standards, operating procedures, training, and
systems management mechanisms to manage and maintain the system.

 6. Customize the OS/390 operating system, and necessary subsystems such as
DFSMS, JES2, VTAM, RACF, and CICS. (Much of this may be done as part of
the SIE installation.)

The following OS/390 documentation will help you get started:

• OS/390 Introduction and Release Guide, GC28-1725
• OS/390 Planning for Installation, GC28-1726
• OS/390 MVS Hardware Configuration Definition (HCD) Planning, GC28-1750
• OS/390 Software Management Cookbook, SG24-4775
• SystemPac, SIE, or ServerPac documentation.

In addition, here′s a list of DFSMS manuals that can be used for implementing
SMS:

• DFSMS/MVS General Information, GC26-4900
• DFSMS/MVS Planning for Installation, SC26-4919
• Implementing System-Managed Storage, SC26-3123

See OS/390 Information Roadmap, GC28-1727, and Appendix E, “Related
Publications” on page 557 for a list of other documents.

OS/390 education for the systems programming staff is critical to the success of
this installation. See IBM Education and Training′s OS/390 course curricula for
your area. Contact your IBM Representative or their Web site at the following
URL:
http://www.training.ibm.com/ibmedu/roadmaps/mainframe/os390/.

 Copyright IBM Corp. 1998 401

25.2 Install and Configure Required Hardware
VSE and OS/390 operating systems both use the same basic S/390 hardware
platform, although you will find that OS/390 may require more processor power,
storage and DASD resources. On the other hand, OS/390 also provides more
function, supports more devices, and is easier to manage as your applications
and workload grow.

25.2.1 Processor Requirements
You will need a separate S/390 system such as a Multiprise 2000, or add another
LPAR and supporting hardware to your existing processor. Customers with
VM/ESA might want to add a virtual machine instead. If you add a migration and
test load to your existing processor, you should add additional engines and
memory to support the extra work.

Contact your IBM Representative to use one of the following capacity planning
tools to size the processor requirements for your workload:

• LPAR/CE
• CP2000

Appendix B in OS/390 Planning for Installation describes the minimum processor
requirements.

25.2.2 Devices Supported by OS/390
In general, all devices supported by VSE are supported by OS/390, except Fixed
Block Architecture (FBA) DASD and most integrated communications adapters.
See FBA to ECKD Migration Aid - Internal Disk for the Multiprise 2000 which is a
S/390 White Paper in the SG242000 PACKAGE on MKTTOOLS. Contact your local
IBM representative for a copy.

See Appendix B in OS/390 MVS Hardware Configuration Definition (HCD)
Planning, GC28-1750 for a complete list of supported devices.

25.2.3 DASD Requirements
Direct Access Storage Devices (DASD) are required for your OS/390 System
Libraries, Page, Spool, Programs, Data, and Work/Public/Storage volumes. If
you are configuring your own system, see Chapter 4 and Appendix E in OS/390
Planning for Installation for a thorough description and recommended pack
layout. If you are using SystemPac or SIE to build your system, the volumes will
be configured slightly differently for you.

While it is technically possible to create a one or two-pack OS/390 system, you
will need a lot more DASD for productive use. The initial number of volumes
required for system data sets with a SystemPac may be two RES, two DLIB, one
SMP, and one CAT volume. Even though these contain paging and spool data
sets, you will very quickly run out of space if you try to do any work.

Most installations require more spool space on OS/390 than they did with
POWER because of the allocation units (track-groups) and space reclamation
differences. (You will want to automate some method for purging old spool data
sets.)

402 VSE to OS/390 Migration Workbook

A beginning rule of thumb shows 12 volumes of 3390-3 (or equivalent) DASD,
allocated as follows: (Your mileage will vary!)

These numbers are very dependent on the installation, and will increase
dramatically at the end of a ″mass migration″ in order to duplicate user data
files.

Table 45. OS/390 DASD Layout

Volume Use Number

System Libraries (RES) 2

Distribution Libraries (DLIB) 2

SMP/E Work (SMP) 1

Catalogs (CAT) 1

Paging Data Sets (PAG) 1

Spool & Checkpoint (SPL) 1

Softcopy Library (BKM) 1

DFSMShsm ML1 1

Storage/Work/DFSMS Volumes 1 or more

User Program/Data Libraries 1 or more

ISV Products 0 or more

TOTALS 12 or more

25.2.4 Other Hardware Requirements
For the most minimal testing, you will need at least the following devices,
depending on the number of users, and the size of your applications and
databases.

Tapes Tape drives will be required for system dumps, backups and restores,
application testing, and DFSMShsm ML2 migrations. These can be
switched between the production VSE system and the OS/390 system,
but you should plan on at least two dedicated tape drives for the
OS/390 system.

Console You should have at least one console connected through non-SNA
control units for system operation and a second console for backup
and operator training.

Printers You will occasionally need to print. Printers can either be dedicated
to the OS/390 system, switchable from the VSE system, shared on a
LAN, or accessed on the VSE system via NJE. RJE printers are also
an option if you already plan to have remote workstation printers.

Remote Workstations
If you are migrating remote workstations to JES2 RJE, it may be very
helpful to have additional workstations dedicated for testing.

Communication Controllers
You need to provide for remote access of TSO, RJE, NJE and
application (for example, CICS) users. With multiple channel adapters,
you can also allow terminals connected to your VSE system to access

Chapter 25. Prepare the Migration Environment 403

OS/390 through cross-domain resource definitions. They are also
useful for data transfer via NetView FTP or NJE. OSA (Open System
Adapters) are often the most economical solution.

You will want access to other devices in your installation. They can be
switchable or connected via a common local area network (LAN). See the
OS/390 MVS Recovery and Reconfiguration Guide, GC28-1777 for more
configuration planning information.

25.2.5 Inter-Systems Connectivity
You will need to share files and I/O devices between your VSE system and the
new OS/390 system. Users on the new OS/390 system need access to data and
resources such as printers and interactive terminals on your existing VSE
system, and VSE users need to send programs and data over to the new system
for migration and testing.

25.2.5.1 Shared DASD
It is both difficult and dangerous to share DASD between VSE and OS/390
systems. Difficult because they don′ t support the same file organizations.
Dangerous because there is no serialization mechanism to prevent multiple
updates or data corruption from occurring.

However, under strict manual controls (for example, vary online/offline) you can
set up some common DASD for sharing data and programs between your VSE
and OS/390 systems. This way, you can avoid an intermediate transfer of the
data to tape or sending it via communication mechanisms such as NetView FTP.

Since VSE doesn′ t support indexed VTOCs, a volume with an indexed VTOC
must be converted to a non-indexed VTOC (OS VTOC) before transporting it to
the VSE system. Chapter 5, “Disk and Tape Storage Considerations” on page 97
chapter has more information about DASD sharing.

25.2.5.2 Tape Drives
You will need some tape drives to transfer large amounts of data between the
two systems. They can be switched between the two systems, although you
probably will want to dedicate at least two tape drives to the OS/390 system.

25.2.5.3 Terminal Access
You will need to provide terminal access for TSO users on your new system.
This can be done in several different ways:

• Dedicate terminal controller to the OS/390 system.

• SNA cross-domain logon from your existing terminals on your VSE system
using VTAM-controlled CTCs

• SNA cross-domain logon through a Communications Controllers (for
example, 3745) shared with your VSE system using multiple channel
adapters or EMIF.

• Use a Token-Ring network shared with the VSE system, and an OSA (Open
System Adapter) on the new processor.

See 25.5.1.3, “Providing Terminal Access to the OS/390 System” on page 414.

404 VSE to OS/390 Migration Workbook

25.2.5.4 Data Transfer and NJE
You will want to set up an NJE connection between the two systems for remote
job submission and for routing print files or bulk data between the two systems.
Use the same communication controllers, real Channel to Channel adapter (CTC)
controlled by VTAM or virtual CTCs. You have several choices with ESCON
CTCs, virtual CTCs under VM, and 3088s.

See 25.5.1.5, “Providing NJE Connection to the OS/390 System” on page 415.

We recommend NJE for job submission, spool file and printer transfer, and
disk/tape for file transfer and VTAM cross domain for terminal access.

25.3 Order and Install the OS/390 Software
As with VSE, there are several options available for you to order your OS/390
system and install it. Some assume that you already have a running OS/390
system, while others provide a ″starter system.″ Some are ″entitled″ or included
with the price of the OS/390 software, while others are ″fee-based″, and include
on-site IBM assistance, and integrate ISV (Independent Software Vendor)
products on your system.

In general, we recommend the SoftwareXcel Installation Express (SIE) for the US
customers migrating to OS/390, and full volume dump format SystemPac for the
non-US customers.

OS/390 Planning for Installation, GC28-1726 is your primary reference book for
this. Although it is oriented towards ServerPac, Chapter F ″Checklist of
Installation Procedures″ provides an excellent list of planning activities. Each of
the following installation options includes its own planning materials. You can
obtain on-site assistance with some of the offerings, or separately.

Note: Not all options are available in all countries! Refer to the most recent IBM
Announcement Letters or your IBM representative for details.

25.3.1 Fee-based Methods of Installing OS/390
For the first-time OS/390 user, you should consider one of the following
fee-based IBM services.

25.3.1.1 SoftwareXcel Installation Express (SIE)
This is an IBM US offering which provides pre-built OS/390 system packages in
full volume dump format, tailored to customer hardware and software
configurations. SIE includes on-site planning, installation, and package testing by
an experienced IBM Technical Representative. You can also obtain a
compatibility research report and selected non-IBM software products integrated
into the system package.

Contact your local IBM Representative for more information.

Chapter 25. Prepare the Migration Environment 405

25.3.1.2 SoftwareXcel SystemPac/MVS
The SystemPac installation offering is a world-wide offering similar to SIE, but
without on-site assistance by IBM. You can use this to tailor OS/390 to your
environment (such as DASD layout, migration of MVSCP/IOCP to IODF, and
naming conventions) based on information provided to IBM. With this offering,
selected non-IBM products can be integrated. This offering can be delivered in
IEBCOPY dump-by-data-set format or in full volume dump format.

Use this in conjunction with IBM services to set up and tailor your OS/390
system. See Custom-Built Offerings Planning, SC23-0352 and CustomPac
Installation Dialogs, SA22-7240 for more information.

25.3.1.3 Other Offerings
There are many other fee-based offerings based on SystemPac available in
specific countries or geographies. Many are packaged with on-site assistance to
help install and tailor the system, provide services, maintenance, and financing
to help customers get to current technology.

Other fee-based help includes Washington System Center services, customized
solutions, hardware services, and software services. Contact your IBM
Representative for details about additional installation services.

25.3.2 Entitled Methods of Installing OS/390
These are only recommended for installations which have a running OS/390
system and want to make incremental upgrades to it. There is no FunctionPac,
ProductPac, Custom Built Installation Process Offering (CBIPO), or stand-alone
product tape for OS/390.

If your OS/390 was not tailored to your hardware configuration, you will need to
use the Hardware Configuration Definition (HCD) to define I/O configurations to
both the software and hardware. HCD can be used as part of the initial ordering
procedure for many of the above offerings to create an input/output definition file
(IODF). If starting with your VSE configuration, you can add the necessary MVS
control statements to your IOCP and convert them to HCD.

Both of the following methods require OS/390 or MVS as the driving system.

25.3.2.1 ServerPac
This software delivery package consists of installed products and integrated
service for a ready-to-IPL system. To install, you use the CustomPac Installation
Dialog -- the same dialog that is used for all the CustomPac offerings, including
SystemPac and ProductPac. You can use ServerPac to install a new OS/390
system, replace an entire existing system, or replace an existing system except
for its operational data sets (SYS1.PARMLIB, SYS1.PROCLIB, and the like).

You can order other IBM products and subsystems in a single ServerPac order.
However, CICS, IMS, DB2, and NCP products will be delivered in separate
ServerPacs.

See ServerPac: Using the Installation Dialog, SC28-1244.

406 VSE to OS/390 Migration Workbook

25.3.2.2 CBPDO
Custom-Built Product Delivery Option is a software delivery package consisting
of uninstalled products without integrated service. You must use SMP/E to install
the individual OS/390 elements and features, and their service, before you can
IPL.

This method is not recommended for the new OS/390 installation.

25.4 Set Up Standards, Procedures, and Documentation
You now have a running system that is tailored to your environment and users.
Your next step is to set up and document standards and procedures for all those
people that will be using and operating it.

25.4.1 Installation Standards
As you develop your new OS/390 environment and your applications and user
community grow, it is very important to develop good standards for all your
resources and users. It is much easier to do this from the beginning than to go
in later and impose standards and procedures were there were little or none
beforehand.

25.4.1.1 Data Management Standards
DFSMS naming standards are not trivial, but there is a lot of guidance. This is
really part of the DFSMS implementation process, which is a whole study in
itself. The DFSMS FIT Redbooks have suggestions for naming the constructs and
worksheets to assist with the migration. A good rule, as always, is to keep it
fairly simple. Here are some suggestions for name-significant characters:

• Data Classes - Start the name with D or DC, and include DSORG, RECFM,
LRECL, or Space requirements.

• Storage Classes - Start it with an S or SC. Examples are SCSTAND, SCPREF,
SCFAST, and SCNOSMS. Distinguish service but don′ t use parameter values.

• Management Classes - Start the name with M or MC. Use the remaining
characters for indicating which service elements separate it from the other
classes. For example, MCNOMIG for data sets that you don′ t want to have
migrate/recalled. Other attributes could include Backup, Archive, Migration,
and Space attributes.

• Storage Groups - Start the name with G or SG. The name should identify the
type of data associated with the pool. For example, use things such as
SGWORK (for temp), SGPRIME (for batch production), or define storage
groups according to size, for example SGLARGE for large and SGSMALL for
small data sets. The advantage to this is reducing fragmentation on the
volumes and reducing out-space abends for new allocations and extents.

Storage systems education is available for your systems programming staff. See
IBM Education and Training′s storage systems course curricula for your area.
Contact your IBM Representative or their web site at:
http://www.training.ibm.com/ibmedu/roadmaps/mainframe/storsys/

Chapter 25. Prepare the Migration Environment 407

Related Redbooks

Here is a list of DFSMS ″Fast Implementation Techniques″ (FIT) Redbooks:

• DFSMS FIT: Fast Implementation Techniques Process Guide, SG24-4478
• Get DFSMS FIT: Fast Implementation Techniques, SG24-2568
• DFSMS FIT Forms and Foils, SG24-2570
• DFSMS FIT: Fast Implementation Techniques Installation Examples, SG24-2569
• DFSMS/MVS V1R4 Technical Guide, SG24-4892

25.4.1.2 MVS Naming Standards
The following OS/390 resources are all identified by names. Some names are
seven or eight characters, others can be up to 16 or 44 characters in length. By
using significant positions of the name, you can more easily manage and control
them for registration, security, and general systems management purposes.

Most installations use the first character of the name to identify the resource
type or production application, such as P (Production), T (Test), S (Systems
Programming), and I (Inventory Applications).

There are lots of entities to name in MVS. It is a good idea (if not required) to
start these names with an alphabetic character (A-Z). This is not a complete list,
but below are some resources that need names.

Data Sets

Names can be up to 44 characters long and start with a high-level qualifier that
identifies both who owns the data set (such as a user ID, project, application, or
group), along with an indication of production, test, or systems. Use these long
names, with specific levels of the DSName to indicate the following:

• System vs. Production vs. Test; Temporary vs. Permanent
• Application Name or ID
• Version Level

The data set name doesn′ t need to identify the access method being used. (The
main reason people used to do this was because of the old VSAM catalog
volume ′ownership ′. Since this is no longer an issue with ICF catalogs, there is
no need to include this.) Some other things not to include in the data set name
because they will probably change: department, location management criteria,
device type, or expiration date.

Generation Data Groups

The only difference here is that the data set name loses one level of
qualification, the lowest level. Don′ t use the generation to indicate a different
type of data. For example, don′ t use ′ (+ 1) ′ for reports and ′ (+ 2) ′ for
intermediate files. Have separately named GDGs instead.

DASD and Tape Volume Serials

DASD and tape volumes are typically labeled so that they can be logically
related to an application, geometry, storage group, or purpose, for example
TSOxxx or PAYxxx. Keep in mind how you are going to list volumes from ISMF.
For example, if I want to list all of my work or TSO packs, it would be nice to
simply enter WRK* or TSO*.

408 VSE to OS/390 Migration Workbook

Other MVS Names

There are many other objects which require naming in OS/390. Here is just a
sample:

• Users (TSO, online, batch, operators)
• Job names
• Job step names
• JCL procedure names and proclibs
• Application program names
• WLM service classes
• WLM resource environments

25.4.1.3 JCL Standards
You should set up JCL (job control language) standards for your batch jobs, as
well as started tasks and TSO logon procedures. Here is a partial list of some of
the attributes to include in your JCL rules:

• Job Attributes

� Job names
� Accounting information
� Job classes
� MSGCLASS and MSGLEVEL
� Specification of USER, GROUP, SECLABEL, and PASSWORD
� Use of JOBCATs, JOBLIBs
� Estimated lines, bytes, pages, and cards
� Use of PRTY, PERFORM, REGION, TIME parameters
� Job restart options
� Use of commands in the jobstream

• Step Attributes

� Job step names
� Use of ACCT, DPRTY, PERFORM, REGION, TIME parameters
� Use of STEPLIBs and STEPCATs

• Data Set Attributes

� Unit names
� GDGs
� Tape standard labels
� DASD space units and parameters
� Output classes and printer attributes
� Output routing destinations

25.4.2 Systems Management Procedures
In general, you can use many of the same processes that you are currently
using. There are tools and products specific to OS/390 such as SystemView, TME
10, and INFO/MAN. Many products that work with VSE also work on OS/390.

This section addresses some of the basic elements associated with good
management practices of running a system. See Chapter 30, “Systems
Management Philosophy and Methodology” on page 457 for a more complete
discussion.

Chapter 25. Prepare the Migration Environment 409

25.4.2.1 Enforcing Installation Standards
You will continue to refine the standards developed above, and should use RACF
to protect critical resources. You can also use installation exits to enforce
standards not controlled by RACF, but keep in mind that it is often easier to
enforce them through other procedures.

25.4.2.2 Implementing System Security
OS/390 users have access to all data sets in the system unless specifically
restricted via the security product. Intentional or unintentional modification of
system data sets can compromise system availability.

You should use RACF (now called the OS/390 Security Server) to protect critical
resources such as system data sets, catalogs, and access to valuable, sensitive
or confidential data. You should identify all users of the system, whether they are
TSO, on-line, batch job owners, or console operators.

Security (RACF) can also be used to enforce the installation standards. See
Appendix D “Security for System Data Sets” in OS/390 Security Server (RACF)
Security Administrator, SC28-1915.

See the following RACF books for more information:

• OS/390 Security Server (RACF) Introduction, GC28-1912

• OS/390 Security Server (RACF) Planning: Installation and Migration,
GC28-1920

• OS/390 Security Server (RACF) General User′s Guide, SC28-1917

• MVS 3.1.3 and RACF 1.9 Security Implementation Guide, GG24-3585

• RACF V2.2 Installation and Implementation Guide, SG24-4580

25.4.2.3 Backing Up Your System
Periodic system backups are critical to maintaining access to critical resources
and protecting your investments in systems programming and migration efforts.
You should take full-volume dumps of all system packs except paging data sets,
and JES2 spool and checkpoint volumes. This should be part of your SMS
strategy, and developed early in the project along with your disaster recovery
goals and requirements.

25.4.2.4 Creating an Emergency Backup System
As careful as you are, there may be a time that you can not IPL your OS/390
system because the IPL text in the SYSRES is damaged, the master catalog is
deleted, or the JES2 procedure has a JCL error. (There are many other reasons
why you may not be able to IPL.)

In any case, you should have a backup OS/390 system that you can IPL to
diagnose and fix the problem. Many installations have a simple one or two-pack
MVS system that can support a TSO user and a few batch jobs. Another
strategy is to use your system maintenance environment to provide a simple but
usable backup system. There are also vendor products such as SAE, which
provide ″rescue″ systems.

410 VSE to OS/390 Migration Workbook

25.4.2.5 Setting Up Critical Operations Procedures
You should set up, test, and document procedures that are critical to the smooth
operation of your system. Here is a sampling:

• System IPL, JES2 warm-start

• JES2 checkpoint reconfiguration

• JES2 ABEND and hot-start

• System shutdown

• VTAM startup and shutdown

• VTAM vary node active and inactive

• Switching devices between systems

• System recovery, restart, and first-failure data capture

• Stand-alone dumps

• Managing spool space and spool full conditions

• System backup (full and partial)

• Emergency system restore

See Chapter 28, “Orientation to OS/390 Console Operation” on page 443 for
some examples of OS/390 console operation.

25.4.2.6 Managing Change
As you apply maintenance and make changes to your configuration, follow these
simple rules:

• Make changes incrementally, not many at once.

• Test the effects of each change to make sure you do not regress your
system.

• Make sure you can back out changes in the event of a problem.

• Document all changes, don′ t rely on your memory.

• Adhere to the age-old ″Keep it Simple (KISS)″ philosophy to minimize
unnecessary complexity in your system.

These guidelines are critical to the migration project, especially as you approach
the switch-over time.

25.4.2.7 Managing Problems
Staying on top of problems is important, especially with a project as massive as
converting from VSE to OS/390. Use a process and tools with which you are
familiar, perhaps what you are currently using with your VSE system. In addition,
you might want to set up a “strategy room” and large marker boards for
managing problems at switch-over time.

In addition, we recommend you keep your software service at a current level to
minimize the possibility of rediscovering old problems. See 25.5.1.2, “Applying
Preventive Service” on page 414.

Chapter 25. Prepare the Migration Environment 411

25.4.3 Documentation
You should already have the following planning publications which are available
as part of the OS/390 Installation Planning Kit, GK2T-6710:

• OS/390 Planning for Installation, GC28-1726

• OS/390 Introduction and Release Guide, GC28-1725

• OS/390 Information Roadmap, GC28-1727

The Information Roadmap will then list the other publications you may need.

25.4.3.1 Your Hardcopy Library
Some books you will need to keep as hardcopy versions available, such as:

• Planning Books listed frequently in this bulletin.

• Other OS/390 books you will need to review frequently, or take home to read.

• MVS and JES2 Operator Command books should be kept at the system
console, as well as all the Messages books.

25.4.3.2 Your Softcopy Library
There are so many books in the OS/390 library that you will want to get familiar
with the softcopy library and the BookManager/Read tools for viewing
information. This is extremely useful for searching for and finding the right book.

The OS/390 Online Collection, SK2T-6700 is available on CD-ROM and updated
quarterly. (It is also available on tape as a feature of OS/390.)

The CD-ROM can be used on a PC workstation with OS/2 or Windows, and
uploaded to DASD and used with BookManager READ/MVS. In general, we
recommend the MVS platform for normal softcopy viewing, but you should have
a set of OS/390 CD-ROMs available for viewing on a PC workstation in the case
of an emergency or system outage.

Printing Softcopy Books

Use the Softcopy Print facility in OS/390 to print softcopy BOOKs from
BookManager READ/MVS. With the BookMaster GML option you get the nicest
looking printout, and it is the easiest to implement. OS/390 has included enough
code from DCF, PSF, BookMaster, and the required AFP fonts.

See OS/390 V2R4.0 Printing Softcopy BOOKs, S544-5354 for more information.

Redbooks

You should have the S/390 Redbooks Collection, SK2T-2177 which has over 300
technical bulletins in BookManager format related to S/390. They are written by
the ITSO and Advanced Technical Support Systems Centers.

412 VSE to OS/390 Migration Workbook

25.5 Customize Your New OS/390 System
Before you start using your new OS/390 system, you must complete the
installation and tailoring process by customizing the system for your use.
Depending on what method you used to install the software, some of the items
listed below may already have been completed for you or you may have
contracted for some additional service assistance to perform these items. The
following items are not a complete list, but can be used as a general checklist:

Install remaining IBM Service

Exercise IVPs

Back up system, and test recovery by restoring it

Update VTAM and NCP definitions, generate the NCPs and test them

Update MVS SYS1.PARMLIB definitions and test them

Tailor SYS1.PROCLIB procedures and test them

Update JES2 parameters and test them

Update DFSMS parameters and test them

Update RACF security environment and test it

Update LE, language options and procedures and test them

Define TSO/E user IDs and test them

Define user catalogs and test them

Set up SMP/E maintenance environment and test it

Set up IPCS service aids and test them

Set up CICS and other application subsystems and test them

Set up application development environment and test it

Develop operations procedures for common and critical tasks

Test operations procedures and train operators

Set up installation standards, test and document them

Set up hardcopy and softcopy documentation libraries

Set up accounting and billing procedures

Once more, exercise IVPs, and back up system

If you need additional assistance to complete your production ready system, you
may want to contract for some services work to perform these items. The fees
for these items would be based on exactly what work was required. You should
ensure that all items performed as part of the services are documented so that
you can make any needed adjustments in the future.

25.5.1.1 Verifying the New OS/390 System
Before you begin tailoring the new system, and at each stage of the tailoring
process, you should verify that the system is in good shape before you take the
next step. If your system was installed as part of a packaged offering, it was
probably verified before you received it.

Chapter 25. Prepare the Migration Environment 413

IBM ′s comprehensive testing does not replace the need for this testing in your
own environment. Here are some sample steps copied from the OS/390
Checklist:

 1. Initialize the system (IPL)

 2. Initialize JES2

 3. Log on to TSO/E

 4. Run the installation verification programs (IVPs)

 5. Submit a job and check its output

 6. Sign on to a terminal with CICS or IMS and initialize a region

 7. Submit a CICS or IMS transaction and look at the results

 8. Run a complex application with known data and measure its elapsed
time and resources

 9. Check for completeness of accounting records

10. Test non-IBM product functions

IVP jobs are listed in your CustomPac documentation, or in OS/390 Planning for
Installation. This list is not complete and should be tailored for each installation
based on the importance of each function, likelihood of errors, and expanded as
experience dictates.

25.5.1.2 Applying Preventive Service
You should update your OS/390 service level to a fairly current level and run
through one more verification test before you switch your production over to it.
This is especially true if the migration project was long, and you have not been
applying maintenance on a regular schedule.

MVS Recommended Service Upgrade (MVS/RSU) is a preventive service
philosophy for all OS/390 and MVS products. MVS/RSU reduces the volume of
PTFs you must apply for preventive maintenance and reduces the chance of
encountering a PTF in error (PE), resulting in a more stable system.

IBM recommends that you APPLY all MVS/RSU PTFs on your OS/390 system.
However, the customer must make the final decision as to what service will be
installed.

CustomPac offerings (that is, SystemPac, FunctionPac, ProductPac, and
ServicePac) will continue to follow the current CustomPac Service philosophy
based on PUT levels combined with RSU levels.

See the OS/390 Software Management Cookbook, SG24-4775.

25.5.1.3 Providing Terminal Access to the OS/390 System
You can connect the VTAM subareas in the VSE and OS/390 systems together
and use cross domain resource sharing to access OS/390 applications from
terminals connected to your VSE system (or vice versa). See Chapter 16
″Implementing a Subarea Network″ in VTAM Network Implementation Guide,
GC31-8370 for details.

See also the samples provided in IBM Network Products Implementation Guide,
GG24-3649.

414 VSE to OS/390 Migration Workbook

25.5.1.4 NetView FTP Access
You can also use the same VTAM connections to send bulk data between the
two systems with NetView FTP.

See NetView FTP V2 MVS Installation, Operation, and Administration, SH12-5657.

25.5.1.5 Providing NJE Connection to the OS/390 System
You can connect VSE/POWER and OS/390 JES2 systems together via NJE to
route jobs and output from one system to the other. In addition to the POWER
and JES2 books, see NJE Installation, Operation and Use with JES2 and Other
Systems, GG22-9339 for guidance and examples.

25.5.2 MVS BCP Customization
There are many parameters and installation exit points which you can use to
further customize your OS/390 system. The following information is not a
complete list, but a short overview of the members in Parmlib and exit points
which may be used.

See the OS/390 MVS Initialization and Tuning Guide, GC28-1751 for storage
considerations, paging, and SRM guidance.

See Chapter 1 of OS/390 MVS Initialization and Tuning Reference, GC28-1752 for
general information called ″System Tailoring″:

• MVS Hardware Configuration Definition

• System Tailoring at Initialization Time

• Understanding the Master Scheduler Job Control Language

• Overview of Parmlib Members

• Implicit System Parameters

• Managing System Security -- APF-Authorized Library List

• Specifying Installation Exits

• Specifying LNKLST Concatenations

25.5.2.1 SYS1.PARMLIB Parameters
There are dozens of ″named″ members of SYS1.PARMLIB for OS/390 Release 4
customization. They are described in the OS/390 MVS Initialization and Tuning
Reference.

There are also many other members that can be used to tailor base elements of
OS/390, optional features, other IBM products, and ISV products. See the
appropriate product documentation for specifics.

25.5.2.2 MVS Exits
There are many installation defined exit points in OS/390 components where
installations can insert their own code to affect normal processing. There are
exits for SMF, DFSMS, IPCS, JES2, RACF, TSO/E, MPF, and many other functions.
However, these are not usually necessary and can be more trouble than they are
worth. (Exits often need to be re-assembled or re-worked with future system
upgrades.)

Chapter 25. Prepare the Migration Environment 415

25.5.2.3 Tailoring Other Components
Other features of OS/390, such as JES2 are described in other chapters of this
book. The elements of OS/390 are listed below and each has its own set of
books on installation and customization.

25.5.3 Other OS/390 Elements
OS/390 is made up of base elements and optional features. Here is a list of the
pieces you may have with OS/390 Version 2 Release 4. Check the latest OS/390
announcement letter, or one of the following books for a complete list:

• GC28-1725, OS/390 Introduction and Release Guide
• GC28-1726, OS/390 Planning for Installation
• GC28-1963, OS/390 Parallel Sysplex Test Report

There is also a list in 2.2, “OS/390 Components/Products/Subsystems” on
page 18.

25.5.3.1 Base Elements for Release 4
These components all come with your OS/390 system and are enabled, ready to
use:

• System Services - DFSMSdfp, JES2, ISPF, ICKDSF, HLASM, TSO/E and so on
• Systems Management Services - HCD, ICSF, SMP/E, and SystemView base
• Application Enablement Services - DCE AS, Encina Toolkit Executive,

GDDM/MVS (PCLK & OS/2 Link), LE, OS/390 AET, SOMobjects RTL, &
VisualLift RTL

• UNIX Services (X/Open UNIX 95 functions)
• Distributed Computing Services - DCE base, DCE DFS, and DFSMS/MVS NFS
• Communications Server - FFST, IBM TCP/IP, TIOC, and VTAM
• LAN Services - LANRES, LAN Server, and OSA Support Facility
• Network Computing Services - BookServer, and Lotus Go Webserver
• Softcopy Services - BookManager READ/MVS, and Softcopy Print

25.5.3.2 Optional Features for Release 4
Also included in your OS/390 system are the following optionally priced features.
You can use them by registering them according to the OS/390 Program
Licensed Specifications, GC28-1728. See the OS/390 Announcement letter, and
OS/390 Planning for Installation, GC28-1726 for details.

• System Services - JES3, MVS/BDT NJE & File-to-File
• Security Server - RACF, and DCE Security Server
• Systems Management - DFSMSdss, DFSMSrmm, DFSMShsm, HCM, RMF,

and SDSF
• Application Enablement Services - DFSORT, GDDM-PGF & REXX/MVS, IBM

C/C++ Compiler, IBM HLASM Toolkit, LE DES, SOMobjects, and VisualLift
• Distributed Computing Services - DCE User Data Privacy, and IP

PrintWay/NetSpool
• Communications Server - IBM TCP/IP Kerberos, NPF, and OS/2 Offload
• Network Computing Services - Lotus Go Webserver
• Softcopy Services - BookManager BUILD/MVS

416 VSE to OS/390 Migration Workbook

25.5.3.3 Independent Software Vendor Products
If you chose to use ISV (non-IBM) products, you should recognize the additional
implementation, customization, maintenance and tuning requirements that
accompany them.

Chapter 25. Prepare the Migration Environment 417

418 VSE to OS/390 Migration Workbook

Chapter 26. Test Environments

This chapter describes the different needs for test systems during and after the
migration to OS/390. There are many valid test configurations which vary
according to your installation′s testing and maintenance philosophies, as well as
your environment.

Here are some of the discussion points:

• VM, LPAR, or stand-alone test systems

• Number and availability of test systems

• Inter-connectivity and isolation of test systems

• Shared DASD or cloned data between production and test systems

References for additional information: See the OS/390 Software Management
Cookbook, SG24-4775 for some more detailed advice on how to manage software
levels.

26.1 Introduction
Just as you need a test VSE system to test out maintenance and new releases,
you will need a test OS/390 system when you go to OS/390. As part of this
conversion, you will also need test OS/390 systems for systems programmer
tailoring and testing (a ″sand-box″), application conversion and testing, and
fallback or rescue situations.

26.1.1 Differences in Testing ″Philosophy ″
As your production system′s availability requirements get more demanding, so
will your need for a separate test system.

You also will want to apply maintenance and upgrade your system more
frequently with OS/390 than you did with VSE.

26.1.2 Terminology
The term ″Test System″ means different things to different people. Any system
that is not a ″Production System″ required for supporting the primary business of
the company is a ″Test System.″

There are different test system requirements and many ways to set them up.
Here is a sample set of three different test OS/390 systems during the life of the
conversion project. They will also be the basis after you go into production on
OS/390.

Backup System A system that is usually not running, but available to IPL
should one of your systems become inoperable. (Also
called the Rescue or Fall-Back system.)

This system should have a minimum number of volumes,
and can be saved to tape and restored by stand-alone
DSS.

 Copyright IBM Corp. 1998 419

Application Development & Test System
A system that is expected to stay up without disruption at
least during ″normal working hours″. Understand that any
outages to this system will affect your applications
conversion and testing activities. This logical image may
eventually become your production OS/390 system when
you cut-over.

Maintenance System The next version of operating system software, or next
round of maintenance that will be rolled forward into
production. (It is very important to use SMP/E to maintain
your OS/390 system.)

This can double as your “Systems Programmer Sandbox”
for testing new operating functions or options that can be
brought up and down as desired without worrying about
disrupting other users.

This can also be your system on which operators can be
trained without fear of reprisal should they do something
wrong. This system can be re-IPLed during scheduled
times to train operators on startup and shutdown
procedures.

After your production cut-over to OS/390, you will also need a “Fall-Back
System” for backup should the primary production system have too many
problems to keep it up. This is different from a “Backup system” mentioned
above, and may just be a copy of the SYSRES volumes and program libraries at
the previous level of maintenance.

26.2 Test Systems in the Life of the Migration
You will need at least three S/390 images during this migration. Here is a simple
example of how they can be used at different stages of the migration:

1 Initial OS/390 System Installation, Tailoring, and Verification

During this phase, the test system is undergoing frequent changes and may
have to be restarted often.

 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
 │ VSE │ │ OS/390 │ │ VSE │

│ Production │ │ Maintenance │ │ Backup │
│ │ │ (Sand-box) │ │ │

 └──────────────┘ └──────────────┘ └──────────────┘

2 Application Program, JCL, and Data Conversion

During this phase, the test system must be readily available for the
programmers and others to make and test changes to the applications. You
will also need a systems programming system for applying maintenance,
and testing new or modified systems.

 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
 │ VSE │ │ OS/390 │ │OS/390 Maint. │

│ Production │ │ Application │ │----- or -----│
│ │ │Conver′ n, Test│ │ VSE Backup │

 └──────────────┘ └──────────────┘ └──────────────┘

420 VSE to OS/390 Migration Workbook

3 Final System Test on OS/390

Just before you migrate to OS/390, you should run all your important
applications in parallel, using the same environment as above. Compare
the results of both systems to make certain there are as few surprises as
possible.

4 Final Production Cut-Over to OS/390 (″D″ Day?)

When you finally migrate your production applications to OS/390, you will
need a backup VSE system standing by for emergency rerun of applications
that uncover any conversion problems after you go live.

 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
 │ OS/390 │ │ VSE │ │ OS/390 │

│ Production │ │ Stand-By │ │ Maintenance │
│ │ │ │ │ │

 └──────────────┘ └──────────────┘ └──────────────┘

5 After Production Cut-Over to OS/390

Once you are in production, you still need an on-going test system
environment for applying maintenance, and testing new releases of OS/390
and subsystems.

Even after the migration is complete, you will still want to keep a backup
VSE system around for emergency, but this requirement will fade over time.

 ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
 │ OS/390 │ │ OS/390 │ │ VSE Backup │

│ Production │ │ Maintenance │ │ │
│ │ │ │ │ │

 └──────────────┘ └──────────────┘ └──────────────┘

26.3 VM, LPAR, or Standalone Systems
Now that we have sketched briefly the number and types of operating system
images that will be involved in this migration, we need to consider a very
important question. What is the best way to implement these multiple system
images for the migration period, and perhaps into the future given the need for
test and backup OS/390 systems? When considering implementation of multiple
system images the following set of choices exist:

• Separate hardware platform for each system image (included here would be
consideration of using P/390s to support single system images)

• Physical partitioning of a single or multiple hardware platforms

• Logical partitioning of a single or multiple hardware platforms

• Software partitioning of a single or multiple hardware platforms

• Some combination of the above choices

The choice you make from the above set depends on many variables such as:
your current hardware environment, the hardware environment you may be
migrating to, your current and future software environment, the physical space
you have available for hardware, your hardware and software budget, the skill
set of your I/T staff, and so on. Each of the choices listed above has positive and
negative aspects depending upon how your environment maps to the variables
described. It would be possible to enter into a lengthy discussion of how to

Chapter 26. Test Environments 421

evaluate each of the alternatives mentioned, but that would be beyond the scope
of this book, and not necessarily relevant to the task at hand.

Since this document is directed toward migration of VSE systems to OS/390
primarily on CMOS processors, we will not consider the choices of physically
partitioning one or more processors, since this option is not available on CMOS
processors. In addition, we will not consider the choice of using separate
hardware platforms for each system image since it is very often not a very
practical alternative. Although, with the P/390 platform it is a much more
attractive possibility than it ever used to be. Rather, we will limit our
consideration to the choices of logical partitioning, software partitioning, or a
combination of both.

An excellent comparison of the relative merits of logical partitioning and
software partitioning with VM/ESA is contained in the IBM Redbook ES/9000
Multi-Image Processing from a VM/ESA Perspective Volume 1, GG24-3920. The
reader is directed to this reference for a comprehensive comparison of LPAR
and VM/ESA. The comparison provided is neutral in the sense that it is not
considering any particular task other than running and supporting guest
operating systems. In other words, the added consideration of which solution
best supports a migration environment is not included. Thus we will attempt to
add to that discussion from the perspective of migrating VSE systems to OS/390.
It should be noted that this Redbook was written in late 1993, and as such is out
of date in terms of hardware platforms discussed. However, the bulk of
comparison items, and conclusions drawn are still very relevant to today ′s
hardware platforms. Details such as the number of partitions supported on a
particular hardware platform have changed, however, the basic notion that a
finite number is supported through logical partitioning, and a substantially larger
number of images is supported through software partitioning still holds true.

Before presenting a recommendation for the migration environment, it would be
good to review briefly the characteristics of logical and software partitioning.
This review will serve as a basis for the recommendations that follow.

26.3.1 Logical Partitioning
Logical partitioning is achieved through the use of Processor Resource System
Manager (PR/SM) licensed internal code (LIC). Processors since the 3090 series
have had this LIC available. However, in the 3090 days, it was most commonly a
priced feature added on to the processor. With the general availability of the
ES/9000 series processors, PR/SM has become a standard feature on S/390
processors. Multiple system images are supported by defining logical partitions,
and assigning resources (CPU, Central Storage, Peripherals) to the partitions.
This is accomplished through specifications made in the IOCP, and commands
entered through the hardware system management console.

It is possible to define more partitions than the available physical resources can
support, however, the number of partitions that can be active at any time is
limited to what the physical resources can support. For example, if your Central
Electronic Complex (CEC) has 1GB of central storage available, and you have
defined five logical partitions each specifying 500MB of central storage, you are
limited to activating two of the partitions at any one time. The remaining three
partitions are defined, but cannot be activated until one of the currently activated
partitions is deactivated.

422 VSE to OS/390 Migration Workbook

Recent advances in the PR/SM LIC have solved some of the real storage
management difficulties encountered in the past concerning assigning
contiguous storage chunks to LPARs. In addition, ESCON Multi Image Facility
(EMIF) channels have reduced the number of physical channels that must be
installed to support multiple partitions by allowing for the sharing of physical
channels between partitions. However, notwithstanding these recent
advancements, the definition of partitions still requires the dedication of real
hardware resource. As a consequence, logically partitioning a CEC will typically
involve the purchase of more hardware than would be required to run the CEC in
single image mode.

26.3.2 Software Partitioning
Software partitioning is accomplished through the installation and use of the
VM/ESA operating system. VM/ESA manages the real hardware resources of a
CEC, and makes it available to software defined virtual machines. The user of
the VM/ESA operating system is provided with a virtual machine at logon time,
and accesses all real hardware resources through that virtual machine. VM/ESA
provides each virtual machine with storage, CPU resources, and peripheral
devices. Often these resources are virtual (hence the name of the operating
system). This means that peripheral devices, for example, are software
constructs that emulate the real peripheral devices, and provide access to real
underlying devices without dedicating that device to a particular virtual machine.
The VM/ESA operating system manages the real devices such that the integrity
of the devices is maintained, and individual virtual machines are prevented from
accessing or destroying resources being used by another virtual machine.

Virtual machines are defined in a flat file known as the VM Directory. Each
virtual machine is represented by a stanza within this file. A virtual machine
definition consists of a name for the virtual machine (user ID) along with
statements that define how many virtual CPUs are allocated, how much virtual
storage is allocated, what virtual devices are allocated and their characteristics,
along with privileges given to the virtual machine. Since the resources of a
virtual machine are not real, the number of virtual machines that can be defined
and active at any one time is not limited to the physical resources available.
Using the example presented above for logical partitioning, it would be possible
to log on all five of the virtual machines defined (each with 500MB of storage
defined), even though the real CEC only has 1GB of central storage available.
VM/ESA manages the use of real memory by paging real frames of central
storage to slots on DASD based upon the use and reference patterns of the
virtual machines.

Since software partitioning involves an operating system, some real hardware
resources will need to be allocated to support this operating system. Thus the
real resources of the CEC will now be distributed among three operating
systems in our migration scenario instead of just two. It is possible however, to
minimize the impact that VM/ESA has upon use of the real hardware resources.
For example, instead of having VM/ESA create virtual DASD devices for a
particular virtual machine, it is possible to dedicate certain real DASD devices to
a virtual machine. This removes the simulation overhead incurred by having
VM/ESA maintain a virtual device, and allows the virtual machine complete
control over the particular DASD device. While the DASD device is dedicated to
a particular virtual machine it is unavailable for use by any other virtual
machine. It is also possible to dedicate central storage to a particular virtual
machine. When this is done, it avoids the overhead of having VM/ESA perform
paging operations, and allows the guest to occupy and manage a portion of real

Chapter 26. Test Environments 423

central storage as if it were running natively on the processor. While storage is
dedicated to a particular virtual machine, it is unavailable to other virtual
machines, and also VM/ESA itself.

VM/ESA however, provides much more than simply hypervisor, and virtualization
functions. It also provides a full function, interactive, virtual machine operating
system, CMS. CMS provides an unmatched interactive environment for program
execution, and program development. In addition, VM/ESA provides
communication methods that allow virtual machines to communicate with one
another, as well as a shared spool for use by virtual machines. These
capabilities go far beyond the hypervisor and hardware management functions
provided by PR/SM, setting VM/ESA apart among operating systems.

Since the migration from VSE to OS/390 will involve the creation of many
operating system images to support various facets of the migration process,
speed and flexibility in defining these images is essential. In addition, for these
operating system images to be useful, they cannot operate as islands, but rather
must be interconnected in as many ways as possible. For example, the images
may need to share DASD (even though this is very difficult for VSE and OS/390 to
accomplish), may need to have VTAM connections to support NJE, file transfer,
and logon sessions, and may need shared access to printing or tape resources.
Spending a lot of time on these details diminishes the focus that can be applied
to the task at hand, namely migrating from VSE to OS/390. Therefore, it is
essential to be able to quickly and effectively bind images together without
extensive disruption to the entire operating environment.

26.3.3 Our Recommendation
With these characteristics of the migration in mind, and based upon the very
brief introduction to the two partitioning environments, it is the recommendation
of this document that customers use software partitioning with VM/ESA
whenever possible. VM/ESA will provide the partitioning flexibility, and speed of
implementation necessary to support the migration process. In addition, CMS
and other products such as RSCS, TCP/IP, and VTAM that are available to run
natively on VM/ESA can further enhance the migration process beyond what
would be possible in a PR/SM only environment.

Many VSE customers today have VM/ESA installed, and are using it as a
production hypervisor, or a hypervisor for test virtual machines. For these
customers, this recommendation is business as usual. For VSE customers who
are not currently using VM/ESA, this recommendation may seem to pose more
of a problem. However, before rejecting this idea out of hand as too costly or
difficult to implement, consider that recent pricing actions make ownership of
VM/ESA along with another S/390 operating system very attractive and
affordable. In addition, improvements in VM/ESA installation automation make it
very easy to install, typically taking no more than a couple of hours. Factor in
also the potential savings associated with not having to buy some additional
hardware to support more LPARs (such as channels, control units for consoles
and so on), and this suggestion becomes very attractive. In addition, consider
that the introduction of VM/ESA can be useful to your enterprise far beyond the
migration process. VM/ESA can continue to be used to provide a test
environment for OS/390 guests used in the maintenance and test process. As
your enterprise grows, and you begin to explore functions such as parallel
sysplex in the OS/390 environment, VM/ESA′s virtual coupling facility support
can enable you to define and run a sysplex under a single VM image without any
real coupling facilities being defined, or coupling links being purchased and

424 VSE to OS/390 Migration Workbook

installed. This support exists in VM/ESA Version 2 Release 3 on Multiprise 2000,
9672 G3, and G4 processors.

If you are currently using VM/ESA as a hypervisor for your production VSE
guest(s), as well as for test VSE guests, then proceeding with the migration
process involves nothing more than defining additional guest virtual machines
for OS/390 images. In this environment, you no doubt have already developed
expertise in making sure that your production VSE images are not impacted by
the performance characteristics of your test VSE images. You will want to apply
that discipline also to the OS/390 guests that are installed, and begin execution
on your system. If you want to limit the resource consumption of your OS/390
guests, you can do so through the SHARE CP command, or SHARE directory
entry along with the HARDLIMIT operand. In addition, you will want to ensure
that your physical system has the resources to support the additional guest
workload. For example, you will want to review your current utilization of central
storage (what is the paging load on the VM system), CPU resources (what is the
CPU busy percent), and available DASD. You will also want to look at the
utilization of paging areas on DASD, and spool space.

26.3.3.1 Shared DASD
To provide the most flexibility in sharing DASD, you may want to consider
defining the OS/390 DASD devices as full pack minidisks rather than dedicated
devices. This would allow for sharing among OS/390 images with VM/ESA′s
virtual reserve/release support, as well as for controlled sharing with VSE
images. In fact, when sharing with VSE images, VM/ESA provides more
protection that could easily be achieved in a native environment, by allowing for
R/O links to be defined. One image can have a link defined to the minidisk as a
R/O link, and the other can have the minidisk in R/W mode. For the image with
the R/O link, the device appears to have the read inhibit switch set. There is no
need to perform any manual activity within the guests, since if the guest having
the R/O link attempts to write to the device it will be prevented by CP from doing
so. Later, when the amount of sharing diminishes, and the need for better
performance arises in the OS/390 guest, the devices can be dedicated to the
OS/390 guest instead of accessed as full pack minidisks.

26.3.3.2 New Users of VM
If you do not currently use VM/ESA in your VSE environment, the introduction of
VM/ESA will take more planning. Most likely you are currently running your VSE
production images in separate LPARs, and have one or more test LPARs
defined. The first choice you have to make is whether to continue running your
CEC in LPAR mode, or run it in native mode with VM/ESA acting as the
hypervisor for all of your VSE and OS/390 guests. The other choice you have is
to continue to run your production workload in LPARs, and run VM/ESA along
with the test VSE guests, and OS/390 guests in another partition. Given that the
production environment is most likely well established in an LPAR mode, this
latter suggestion would be the least disruptive to implement. The only caveat to
be aware of with this approach is that it is not possible to run high performance
preferred guests under VM/ESA when it is running in an LPAR. This however
should not be a big impact since the use of guests under VM/ESA in this
scenario is simply for testing. With this approach you would plan to run your
production OS/390 image in an LPAR as is done currently with the production
VSE image.

To be most effective, you would want to establish communication connections
between the production VSE LPAR(s) and the VM/ESA LPAR, and then let

Chapter 26. Test Environments 425

VM/ESA distribute that communication capability among the guest images using
virtual channel to channel devices. Similarly, any DASD that is shared between
the VSE LPAR(s) and the VM/ESA LPAR can be defined through R/O minidisk
definitions owned by a place holder virtual machine, and accessed through R/O
links from the OS/390 guests.

26.3.3.3 The Advantages of Guest Support in VM/ESA
You can use Guest Support in VM/ESA to develop, maintain, manage, and
migrate other operating systems that make use of one of IBM′s 370, 370-XA, or
ESA architectures. System programmers and application programmers often
solve the problems they encounter by using the solutions already integrated or
implicit in VM/ESA. Some of the reasons customers use VM/ESA Guest Support
to run their VSE and/or MVS(OS/390) systems are:

• System Simulation
• Performance benefits
• Reduced hardware and migration cost
• Operations management
• Recovery management
• Interactive Computing, Application Development and Support
• Interactive program development tools
• Debug and trace tools
• Interactive data analysis and reduction
• Access to VM/ESA CMS applications
• Server consolidation
• DB2 guest sharing
• 3990 models 3 and 6 Fast Write Transparency
• Multiple 3270 Session Support

System Simulation

Every computer user has a requirement for a spare system to migrate/upgrade
to a new release, try out a new idea or to isolate, debug and test fixes or
develop and test new production applications. VM/ESA makes virtually unlimited
“spare systems” available in virtual machines, each simulating a real machine
with very high fidelity. The advantages of making one system look like many
need hardly be explained here, but in the present context it is worth mentioning
some of them:

• With VM/ESA′s Guest Support Virtual Machine(s) you can create an exact
replica of your production system on which you can test your new programs,
services, and procedures. VM/ESA ′s Guest Support Virtual Machine is an
extremely cost effective way to have your own test system (or as many as
you′d like). It is also a safe way to test new function because with VM/ESA′s
Guest Support, your test system(s) are contained within a guest virtual
machine and securely isolated from your real production system,
applications, and data.

• Guest Support gives you the flexibility to create a migration plan that fits the
needs and schedules of your business. This allows your production systems
to remain up during normal business hours, eliminates the work required to
schedule, bring down and restore the production system when off-shift work
is required. Also, the need to schedule and pay for off-shift programming is
eliminated.

• You can create a multiple production system environment. For example, your
installation might run VSE applications, be migrating to OS/390, and have a

426 VSE to OS/390 Migration Workbook

new vendor package that runs under AIX. As guests of VM/ESA, all three can
run efficiently while sharing one processor.

• You have production applications that need to be reworked to comply with
Year 2000. With VM/ESA′s Guest Support you can bring up a duplicate of
your production system, set the clock to a date and time beyond the year
2000 then perform test and application debugging without disrupting your
current production system.

• You have production applications that need to be reworked to comply with
changes required by the European Common Currency. With VM/ESA ′s Guest
Support you can bring up a duplicate of your production system, set the
specific elements that affect currency and/or exchange rates, then perform
test and application debugging without disrupting your current production
system.

• If you are considering using Parallel Sysplex. VM/ESA supports guest
coupling simulation on the IBM 9672 Parallel Enterprise Servers Generation 3
and Generation 4 and on the IBM Multiprise 2000 Servers (at the appropriate
engineering change levels). VM/ESA Guest Coupling Simulation provides for
the simulation of one or more complete parallel sysplexes within a single
VM/ESA system image. The intent is to provide a pre-production testing
platform for a coupled-system installation. Other than the processors
required, there is no special hardware needed: no coupling links and no
external coupling facilities. All guest operating systems coupled within a
simulated sysplex can only be coupled (through simulated coupling links) to
coupling facilities also running as guests of the same VM/ESA system. Up to
32 virtual machines can be coupled within a simulated sysplex, with each
such virtual machine coupled to up to eight coupling facility virtual machines.

Performance Benefits

Guest systems may see performance improvements by exploiting VM/ESA
features. For example, both virtual disk in storage and minidisk cache allow
guests to avoid real I/Os by using data in storage and caching techniques.

Reduced Hardware and Migration Cost

Guest systems such as OS/390, MVS, TPF, VSE, VM and others can share
devices such as channels, printers, and DASD, which VM/ESA efficiently
manages. VM/ESA adds value to such devices merely by the way it manages
them. A good example is VM/ESA′s minidisk support, which allows one real disk
to function as if it were several smaller disks (such as multiple IPL-able
minidisks). VM/ESA also simulates some hardware devices (such as unit record
devices and CTC adapters).

For migrating to a new release from an older VM, VSE, MVS, OS/390, or TPF,
VM/ESA gives you the ability to bring up the new system on the same physical
processor saving you the cost of a separate processor or LPAR hardware. This
new system can share the devices and resources of your existing VM/ESA
system thus eliminating the cost of separate hardware for new system migration
testing. When testing is complete switching over to your new production system
is only a matter of configuration/table changes and can be accomplished in
minutes. These technical and cost saving advantages provided by VM/ESA and
VM ′s Guest Support are fundamental requirements upon which the VM/ESA
product was built and have been carefully refined over the years. This gives

Chapter 26. Test Environments 427

VM/ESA and its customers exclusive technical advantages not available in any
other operating system platform.

Operations Management

With PROP (VM/ESA′s PRogrammable OPerator) you can cut your console traffic
substantially. This saves time and reduces errors.

Recovery Management

You can build guest virtual machines to simulate systems at your organization ′s
other sites. So, VM/ESA can become a disaster-recovery backup site.

Interactive Computing, Application Development and Support

Although it is not normally considered a guest function, VM/ESA′s CMS is the
development and interactive platform-of-choice for many IBM customers both
S/390 and non-S/390. One reason for this is VM/ESA offers many practical
application development and support tools that make the job easy.

Interactive Program Development Tools

CMS, XEDIT, and REXX, NetREXX, Pipelines and others provide elegant,
powerful, and convenient services to help you write programs.

Debug and Trace Tools

Debugging under CMS is much easier than in a batch environment, because you
can see the results right away and make changes easily. With the advent of
INSPECT and its truly interactive symbolic debugging, you can examine your
code, executing one instruction at a time, making any necessary changes.

VM/ESA supports IBM′s Language Environment (LE), VisualAge, VisualLift and a
host of others products related to S/390 based application development and
support. These tools supported by VM/ESA speed up application development
and support and are a strong complement to your overall business.

Interactive Data Analysis and Reduction

CMS Pipelines, REXX, XEDIT, and DB2 constitute a powerful toolbox for reducing,
distributing, and analyzing data originating from the VSE, OS/390, TPF, and other
systems running as a guest on VM/ESA.

Access to VM/ESA CMS Applications

VM/ESA supports many applications, such as several Web Server Products,
OfficeVision, CMS OpenEdition, DB2, TCP/IP with a wide variety of the TCP/IP
applications, TCP/IP Sockets APIs available in products such as REXX and CMS
Pipelines. These products and others are attractive to customers running
production and/or test OS/390, VSE, TPF systems on VM/ESA.

Server Consolidation

VM/ESA tools and functions and VM/ESA′s Guest Support give customers the
ability to consolidate many diverse distributed systems into a single image.
VM/ESA does this at a fraction of the cost required to maintain and service many

428 VSE to OS/390 Migration Workbook

distributed servers. VSE, OS/390, TPF, AIX and others are discovering the
enormous value VM/ESA brings to the table.

DB2 Guest Sharing

With DB2, VM, VSE and OS/390 users can now share a DB2 database among
several VSE and/or OS/390 guests. For most customers, consolidating several
guest databases into one DB2 database reduces administrative work, simplifies
operation, increases data integrity, and improves performance. DB2 guest
sharing also streamlines access to operational data by decision support
personnel, who often use CMS-based tools. Furthermore, sharing one DB2
database gives VSE, OS/390 and VM applications access to remote data by way
of Distributed Relational Database Architecture (DRDA) support. Finally, the DB2
VM Data Spaces Support Feature offers even higher performance for users of
DB2 Version 3 Release 3 through ESA/390 architecture and VM/ESA Data
Spaces.

3990 Models 3 and 6 Fast Write Transparency

VM/ESA makes 3990 models 3 and 6 DASD Fast Write and Cache Fast Write
functions available to guests, such as some VSE releases which support
3380/3390s but not the 3990 models 3 and 6 Extended Functions. This allows
customers to benefit immediately from moving to the newer storage controllers.

Multiple 3270 Session Support

VM/VSE users often do several things simultaneously on different operating
systems. Operators can manage consoles for multiple guest virtual machines,
while programmers can move between CMS sessions and virtual test systems.
Not surprisingly, users want to be able to run several sessions at each terminal
simultaneously to simplify their work. VM/ESA Pass-Through Facility (PVM)
supports several concurrent sessions per user with the ability to switch from
session to session using a command or hot-key. This function is also available
for VM/OS/390 users.

26.3.3.4 Use of CMS
Lastly, it is worth considering the roll of CMS in the migration environment. CMS
along with XEDIT and the Shared File System (SFS) provide an excellent
environment for managing and modifying the many objects that will need to be
moved between the VSE system and OS/390 system. JCL members and other
source objects can be moved from the VSE environment and placed into a
hierarchical directory structure within SFS. These directories can be accessed by
multiple CMS users with complete data integrity ensured. Copies of directories
and their contents can easily be made to freeze modification levels for easy
backout. Modified objects can then be moved into the OS/390 environment and
placed into appropriate partitioned data sets. The CMS environment then
becomes the location where modifications are being made. This ensures that
nothing in the VSE environment is inadvertently changed wiping out the original
contents. In addition it provides a clearing house to quickly see what has been
moved to the OS/390 environment if it appears as though critical elements are
missing. Lastly, it provides a central location where both old and new copies can
be compared side-by-side for problem determination, and tools such as REXX
and CMS Pipelines to automate the management and comparison tasks.

Chapter 26. Test Environments 429

26.3.3.5 OS/390 Guest Considerations
The considerations for defining OS/390 guests are no different from those
associated with defining VSE guests. From the VM/ESA point of view, the actions
taken to maximize the performance of a VSE guest, would be the same as those
taken to maximize an OS/390 guest. For example, specifying resource goals is
done through the SHARE directory statement. Best performance is achieved by
making the guest a preferred guest (V=R, or V=F), along with dedicating as
many devices as possible. Other VM level scheduler controls such as setting
STORBUF, or the DSPSLICE would be modified in a similar manner for both VSE
and OS/390, since from the VM point of view both are virtual machines with long
running units of work.

26.3.4 Summary
In summary, use of VM/ESA as a migration tool will enable you to focus more on
the migration tasks, and less on tasks associated with creating a migration
environment. Since this document is concerned with migrating from VSE to
OS/390, we will now turn to more specifics concerning that task.

26.4 Parallel Activities
Throughout the above stages of migration, there will be many activities
overlapping with one another, not the least of which are your daily production
computing workload and conversion activities. The following considerations
should also be factored into your choice and design of test system, including
their configuration, availability and performance characteristics.

26.4.1.1 Overlapped Activities
The number of ″test″ OS/390 systems will determine what can be done
simultaneously by different people, or by the same people without having to
restore volumes or re-IPL.

For example, you can schedule times for the maintenance system to be used
alternately by systems programmers for applying and testing maintenance, for
operator training, and for testing different operating system configurations or
options.

26.4.2 Synchronizing VSE Applications with OS/390 Versions
After you convert your applications to OS/390, you cannot freeze them on VSE.
Any changes to the programs, JCL, data, and operating procedures in the VSE
production environment must be replicated to OS/390. You need to schedule a
replication or re-conversion of these applications to the OS/390 libraries after
they are converted.

26.5 Building the Initial OS/390 Test System
Once you turn your initial OS/390 system over to application programmers for
the real conversion activities, you need to create a second OS/390 system for
testing. As part of this, you should give careful consideration to what is shared
between the two OS/390 systems, and how isolated they are.

430 VSE to OS/390 Migration Workbook

26.5.1 OS/390 Maintenance Environment
Early in the project a test SMP/E environment needs to be designed and built.
This process involves ″cloning″ the OS/390 system libraries to provide a new
target to apply OS/390 maintenance without compromising the OS/390 production
environment. Since OS/390 was installed at the beginning of the project, the
maintenance level could be well over a year old by switch-over time. It is highly
recommended that a maintenance cycle be performed before switch-over.
(Testing timeliness, and so on will dictate the best time for this.) The
maintenance environment can be designed simply to provide for alternate
resident volumes and be IPLed and tested in the production environment or
preferably built in a test logical partition (LP) or virtual machine. (This will most
likely be the implementation after switch-over.)

Once application testing starts on the OS/390 system, it becomes a “production”
system to many. Any disruption to their testing environment will impact their
conversion efforts.

There are many variations and considerations of maintenance environments and
most are okay as long as the availability requirements are understood and met.
The important criteria is that the test system provides for a simple process to
apply maintenance in an emergency situation and during regular preventative
maintenance cycles without causing a system outage. The Redbook OS/390
Software Management Cookbook SG24-4775, although somewhat out-dated,
provides some excellent discussion on this topic.

26.5.2 OS/390 Test Logical Partition
There are many things to consider when building a test logical partition (LP) for
the maintenance environment. For example, will you be sharing DASD, catalogs,
system parameters, subsystems and so on, or will this be completely isolated
and serve as a rescue system? Many things such as communications between
the two environments will have already been addressed by the work done
connecting VSE to OS/390. The more subsystems available to test in the test LP,
the less likely of a system outage when IPLing the new maintenance into
production. Or, put another way, the closer your test system is to your
production environment and workload, the less likely you will be surprised by
problems in production.

26.5.3 Maintaining Your OS/390 Libraries and SMP/E Zones
You must keep your OS/390 target libraries and SMP/E target zones
synchronized to preserve the integrity of your system. When the target libraries
are backed up, the associated target zones must be backed up as well. You
should create a procedure where the first step backs up the volumes, and the
second step backs up the SMP/E target zone.

The reverse is true for restore. Whenever you restore your target libraries, you
should simultaneously restore your SMP/E target zone.

Chapter 26. Test Environments 431

26.6 Shared DASD vs. Cloned DASD
The issue of whether to share DASD volumes and data sets between systems is
decided on the basis of DASD space availability, need for multiple versions of a
file, and the ability to manage updates between the two systems.

26.6.1 Shared DASD between OS/390 Test Systems (vs. Cloned DASD)
The decision to share data sets and volumes or to make copies of them for each
OS/390 system should be thought out carefully. Many OS/390 data sets and some
volumes can be shared between multiple systems as long as updates are
serialized and good change control procedures are followed. The recommended
approach is to put multiple OS/390 systems in the same sysplex and use GRS to
guarantee serialization of these resources. The alternative is to ″clone″ or make
copies of the volumes or data sets, but this obviously takes more DASD space.

Referring to Table 45 on page 403, there are some volumes that can be shared
between active OS/390 systems, and others that should never be shared:

System Libraries Separate SYSRES volumes should be maintained for each
logical OS/390 system.

Distribution Libraries Share, but only update from the maintenance system.

Catalogs The master catalog should be fairly static, contain only
the necessary entries, with the rest in user catalogs. The
master catalog can be shared but highly controlled as to
who can update it. User catalogs can be shared between
systems, use GRS or manual procedures to serialize
updates.

Paging Data Sets Use by only one system at a time (re-use by different test
system as long as they are not both active at once.)

Spool & Checkpoint JES2 can share the spool and checkpoint between
multiple members if you are comfortable with
multi-access spool. Otherwise, they should be dedicated
to each OS/390 system. The backup OS/390 system
should have its own spool and checkpoint.

Softcopy Library Share these between all OS/390 systems.

DFSMShsm ML1 Share if using HSM on both systems.

Storage/Work Share or isolate depending on how much space you want
to reserve for the ″production″ system.

User Libraries You can share the user program and data libraries, but
you must keep track of separate version levels with
different data set names or different user catalogs and
volumes.

A lot of these decisions whether to share volumes, data sets and work space
depends on how much you want to isolate the systems and manage change
control.

432 VSE to OS/390 Migration Workbook

26.6.2 Shared DASD between VSE and OS/390 (vs. Cloned DASD)
As mentioned in the previous section, it is risky to share DASD between VSE and
OS/390 because there is no mechanism such as GRS to guarantee serialization
between the two systems. If you decide to share, you must strictly control
updates from the two systems, or be prepared to restore volumes, files and
catalogs should they become corrupted.

Chapter 26. Test Environments 433

434 VSE to OS/390 Migration Workbook

Part 6. Running Your OS/390 System

 Copyright IBM Corp. 1998 435

436 VSE to OS/390 Migration Workbook

Chapter 27. Orienting ICCF Users to TSO/ISPF

There are many facets of VSE/ICCF that are done differently in OS/390. TSO
along with ISPF and SDSF provide functions that were previously done using
VSE/ICCF.

27.1 TSO/ISPF and SDSF
ISPF is a dialog manager and runs under TSO on OS/390. ISPF provides a
powerful environment that can be used for both development activities along
with job submission. SDSF extends this environment by providing facilities that
allow for both job monitoring and job output viewing. These tools are normally
used by system programmers, application programmers and production control
personnel.

ISPF is actually several distinct ″features″ integrated together:

• Dialog Manager (DM) provides services for application developers to easily
create and display applications, including Display Services, Variable
Services, Table Services, and File Tailoring Services.

• Program Development Facility (PDF) provides utilities and services for
application developers to create and maintain applications, including Edit,
View, and Browse, a wide range of data set utilities, and foreground and
batch compilers.

• Software Configuration and Library Manager (SCLM) provides a robust
environment for controlling a software development environment and tools to
manage the environment.

• ISPF Client/Server provides application developers with the ability to both
incorporate the workstation into the development process and use it to run
applications. Existing ISPF applications will run ′ in GUI mode′ with no
changes, and a set of distributed services are available to edit and build
using workstation tools.

• VisualAge ISPF, a visual development solution utilizing the composition
editor of IBM′s VisualAge technology, can be used to create new ISPF panels
and modify existing ISPF panels for use on 3270 and GUI screens.

• An ISPF Application Server and ISPF Workstation Agent Applet allows legacy
(and new) ISPF applications to be accessible from the World Wide Web.

Other functions provided by ISPF include:

• Ability to communicate with OS/390 through TSO commands, CLISTs or REXX
EXECs.

• Ability to split the physical display screen into two or more logical screens
(ISPF enables a maximum of 32). The logical screens are treated as though
they are independent ISPF sessions. For example, one could edit two
members of a partitioned data set, or view error messages in the output of a
compile job while editing the source.

• Ability to use referral lists for data set selection from the View Entry, Edit
Entry, and most of the Utilities panels. Reference lists are active lists of data
sets and libraries that you have referenced in your ISPF session. You can

 Copyright IBM Corp. 1998 437

also build lists of personal data sets. Personal data set lists are a good way
to group (by project, for example) those data sets that you use frequently.

• Ability to run foreground and batch processors such as Assembler H, VS
COBOL, VS FORTRAN, PL/I optimizing compiler, Binder/Linkage editor,
C/370, REXX/370, and C/C++ for MVS/ESA.

• Ability to test individual dialog elements and complete dialogs using ISPF′s
Dialog Test option.

• Ability to keep statistics about each data set member including which user
updated it, date it was created, date and time it was changed.

• Ability to see and work with the data sets which are allocated to your TSO
user ID using the ISPF ISRDDN program. Although ISRDDN is considered a
diagnostic tool, you may find it very useful in many situations, such as:

− viewing allocations including data set characteristics,

− editing, viewing, browsing allocated data sets,

− freeing allocations,

− compressing allocated partitioned data sets,

− querying ENQs against a data set,

− locating where a member exists in a concatenation.

For more information about these features and functions see the OS/390 ISPF
User′s Guide and SDSF Guide and Reference.

For the latest ISPF release features, hints and tips, free software, ISPF
newsletters, and information on how to access ISPF forums, visit the ISPF Web
site http://booksrv2.raleigh.ibm.com/ispf/

27.1.1 Editing Data Sets
While TSO provides an editor, it is rarely used; most editing of data sets is done
using the ISPF editor. The ISPF editor edits both sequential and partitioned data
sets, with the majority of activities centered around partitioned data sets. The
system programmer can easily edit system data sets such as SYS1.PARMLIB,
while development programmers can edit program source. Production control
personnel can edit job and PROCedure data sets. The ISPF editor has a program
interface so that the edit function is available from any ISPF dialog with a custom
look.

Edit provides functions such as:

• locating a particular line in the data,

• submitting edit data as a job stream for background execution,

• setting RECOVERY mode on so that edit keeps track of any changes that you
make while editing data and if a system crash occurs, you will be able to
recover and continue editing from the last interaction,

• saving the data without ending the edit session,

• canceling edit without saving the data,

• using the COMPARE command to compare, display, and merge differences
between the data being edited and another file,

438 VSE to OS/390 Migration Workbook

• finding specific character strings in the data, changing them to other
character strings or to exclude the lines that contain strings,

• setting HEX mode on to allow you to display data in hexadecimal format,

• using language sensitive coloring, which highlights program constructs
based on the programming language, improving readability,

• using the HILITE command to change the enhanced coloring and language
sensitive coloring options of the editor.

For situations where some type of repetitive change may be required, users can
write their own edit macros to perform the needed changes. ISPF provides a
macro language which allows users to perform editing functions from a REXX
exec, CLIST, or program.

ISPF also provides online models that can be inserted into the dialog. A model is
an example of a service call, panel format, table format, or message that
contains the proper syntax and all the available parameters for the programming
language being used. Since these models are online, they can be called directly
into the member being edited.

Distributed edit provides a seamless interface to edit a host file using a
workstation editor or a workstation file using the ISPF editor. Distributed edit
offers a significant opportunity for offloading host CPU cycles.

For more information see OS/390 ISPF Edit and Edit Macros.

27.1.2 Submitting Jobs
TSO provides a SUBmit command that can be used from the TSO command line
interface for submitting jobs. In addition one can submit jobs while editing a data
set using the ISPF editor. If the first line of the data set is not a jobcard, then a
jobcard will be automatically built using parameters from the TSO logon. In that
case the job name would be the TSO user ID suffixed by a user supplied
character. The RACF user ID for the job is normally the same RACF user ID as
was used by the TSO logon.

27.1.3 Using ISPF Utilities
In addition to editing of data sets, ISPF utilities are available to allocate, delete,
catalog, uncatalog, and compress data sets, and display statistics about an
entire data set or volume. ISPF also allows you to copy, move, rename, print,
delete, and display information about members in a partitioned data set.

Note: In some situations such as copying or compressing large partitioned data
sets, it may be better to use a batch utility such as IEBCOPY run as part of a job,
than to perform the function under TSO/ISPF.

ISPF provides a utility option to create the IDCAMS commands to define, delete,
and list catalog information for VSAM data sets.

ISPF provides a SuperC utility to compare data sets of unlimited size and record
length at the file, line, word, or byte level. There is also a Search-For utility that
can be used to search your data sets or PDS members for one or more
character strings.

Chapter 27. Orienting ICCF Users to TSO/ISPF 439

27.1.4 Creating and Executing ISPF Applications
Since ISPF is a dialog manager, many other products have written dialogs,
connect themselves through the main menu and run as additional ISPF functions.
Products such as SDSF, IPCS, RACF, SMP/E and QMF all provide dialogs that
run with ISPF.

Users or system programmers can also write their own dialogs for specific
applications using ISPF′s DM services. They can use the display services to
display information on a 3270 or GUI screen, variable services to share program
variables between screen and program, table services to store persistent data
across invocations of an application, and file tailoring services to format program
data for output. ISPF screens can be built for the applications using the ISPF
panel language syntax. If you are more familiar with an SGML type language you
can create ISPF panel source using the ISPF Dialog Tag Language (DTL) and
DTL compiler. ISPF for OS/390 R5 provides VisualAge ISPF which is a visual
builder for ISPF panel source. This allows users the flexibility of creating or
modifying ISPF panels without needing to know the syntax of the ISPF panel
language or ISPF DTL.

In addition to display, table, variable, and file tailoring services, ISPF provides
library services to perform tasks such as opening a data set, reading records,
writing records, moving members, finding members, and retrieving member
statistics.

The ISPF Client/Server provides the ability to run ISPF on a workstation and
display the panels using the display function of the workstation operating
system. ISPF clients are available for OS/2, Win 3.1, Win NT, AIX, HP/UX, and
Solaris. When running in ISPF ′GUI mode′, the user has the option to display all
non-fullscreen TSO data in an ISPF/TSO GUI window. This window is scrollable
and it contains an input field for entering required user responses. The data in
the window can be selected and copied to a file of his choice.

For more information see OS/390 ISPF Dialog Developer′s Guide and Reference,
OS/390 ISPF Services Guide, OS/390 ISPF Dialog Tag Language Guide and
Reference, and OS/390 V2R5.0 ISPF Parts for VisualAge.

Continuing with the strategy of extending ISPF′s capabilities to allow its
customers to make use of emerging technologies, ISPF for OS/390 R5 added the
ability to access ISPF applications from the Web. The ISPF Workstation Agent
Applet starts automatically from a Web page, and the ISPF Application Server
receives requests from the ISPF WSA Applet to start and run the application.
This provides GUI display as the ISPF Client/Server; however, it uses standard
Java display services and uses the ISPF Application Server to communicate with
ISPF.

For more information see the OS/390 V2R5.0 ISPF Application Server User′s
Guide and Reference.

27.1.5 Managing Projects
The SCLM component of ISPF provides source control for development and
maintenance projects. The functions include locking a member when a user is
editing it, promoting from one level to another, tracking who is changing it, and
keeping copies of the changes. SCLM also provides configuration management,
such as tracking included source, and compiling only the members that have
changed or that have included members that have changed.

440 VSE to OS/390 Migration Workbook

For more information see the OS/390 ISPF Software Configuration and Library
Manager Developer′s Guide, OS/390 ISPF Software Configuration and Library
Manager Project Manager ′s Guide, and OS/390 ISPF Software Configuration and
Library Manager Reference.

27.1.6 Tracking Jobs
SDSF allows you to monitor any job in the system or sysplex. Values such as
CPU time and I/Os per second are displayed for all of the jobs running in the
system. Sophisticated and easy-to-use sort and filter functions let users
customize SDSF′s display of jobs. In addition the TSO user who submitted a job
can generally view any of the JES spool data sets for that job as they are being
created. This includes any of the SYSOUT spool data sets in addition to the
message spool data sets. SDSF allows users to control jobs with short
commands. These ″action characters″ can be used, for example, to hold,
release, or cancel one or more jobs. In addition if you are properly authorized
you can view the SYSLOG and see the messages for all jobs. For more
information see the OS/390 SDSF Guide and Reference.

27.1.7 Retrieving Output
SDSF provides the ability to view any JES spool data set that you are authorized
to view. In most cases this would be the output from a job you submitted. Most
of the output will be queued to a held output class such that it does not get sent
to a printer. If after viewing the output the user determines that it does need to
be printed, then the output can be re-queued using SDSF commands. JES spool
data sets awaiting a printer can also be viewed. Using ISPF split screen for
example, you could view a job message spool data set on one part of the split
screen and view a SYSOUT spool data set on the other part.

ISPF also provides an option to directly retrieve (or view) JES spool data and
store it in a sequential or partitioned data set, however this option is rarely used
if SDSF is available.

27.1.8 Using SDSF for Operators
Some data centers may choose to use SDSF to run the OS/390 system since
given the proper authority, all OS/390 operator commands can be entered
through SDSF. This makes it very convenient since the operator using SDSF
does not physically need to be located near the CPU. In this scenario, the
operator would use SDSF to view the SYSLOG, entering commands, replying to
WTORs as required. Other SDSF panels are available to show jobs awaiting
execution, job executing, to allow display and control of such things as jobs
awaiting execution, devices (printers, initiators, lines, and so on) and system
resources (members of the MAS, nodes, and so on). It′s important to give proper
consideration to the security and levels of commands available through SDSF,
such that application programmers are not allowed to enter normal operator
commands. For more information see the OS/390 SDSF Customization and
Security manual.

Chapter 27. Orienting ICCF Users to TSO/ISPF 441

442 VSE to OS/390 Migration Workbook

Chapter 28. Orientation to OS/390 Console Operation

28.1 Introduction
There are enough differences between VSE and OS/390 operations to warrant
each operator and systems programmer attending a class on the subject.

This chapter is intended only to provide the reader with an overview of OS/390
console operations on a single system. (Multi-system or sysplex operation are
not covered here.) It is not intended to replace more formal training which
should be given to all OS/390 operators and system programmers. It is also not
intended to replace the standard OS/390 Operations publications listed herein.

The OS/390 system can be operated without a lot of manual intervention if set up
correctly, and various automation products are used.

28.1.1 Operating Hardware Consoles
Before you can operate the system, you must be able to configure the hardware
elements, and initialize the processor using the hardware console which is
usually integrated into the service processor of the CPU. These consoles vary
from processor to processor, and most should be familiar to the VSE operator
using the same hardware:

• Hardware Management Console (HMC)

The IBM S/390 CMOS (9672) and Multiprise processors have hardware
consoles which are used to power on, IPL, reset, configure, and power off
the processor. (The HMC is not required for an S/390 Multiprise.)

• S/390 Multiprise Stand-Alone Support Element (SASE)

This an external console running OS/2 Warp which can be used for hardware
management and has a look and feel similar to the HMC.

• Other S/390 System Consoles

The IBM ES/9000 9021, 9121, and 9221 processors have integrated system
consoles using the Service Processor or Processor Control Element (PCE) to
power on, IPL, reset, configure, and power off the processor.

All of these hardware system consoles have interfaces for operating the OS/390
software, but are not usually used except for emergency or test.

28.2 Understanding the Operator Interfaces
Operator commands come in many flavors (MVS, JES2, SDSF, other subsystem),
and can be entered through many different interfaces, such as:

• The System Console
• Hardware Management Console (HMC)
• MCS (Multiple Console Support) Consoles
• Subsystem Consoles
• Extended MCS Consoles
• TSO Operator Consoles
• SDSF (System Display and Control Facility)

 Copyright IBM Corp. 1998 443

• NetView Consoles
• TSCF Consoles
• Programmed Operator Subsystems

This chapter will only deal with MCS and SDSF consoles.

28.2.1 Controlling Consoles
There is more to operating an OS/390 system than just entering commands and
reading the messages. You should also be familiar with various console
configuration options. See Chapters 2 and 3 in MVS Commands for a description
of these console operations:

• Defining and Changing Console Characteristics
• Potential Effects of Altering Console Attributes
• Changing Console Characteristics
• Controlling System Messages and Commands
• Defining Program Function Keys (PFKs)
• Hardcopy Processing

28.2.2 Managing Display Consoles
For MCS consoles (those attached to non-SNA control units), you will need to
understand how to use some of the basic CONTROL (alias K) command
parameters when you first start operating an OS/390 system. Otherwise, you
can easily get your console ″locked up″ by non-deletable messages or not
scrollable.

Here are some examples of the basic ″K″ commands:

K - clear the screen.
K S - show the current settings so they can be over-typed.
K E,4 - delete the message on line 4.
K E,4,10 - delete the non-action messages on lines 4-10.
K E,D - delete a status display from a display area.
K A,NONE - get rid of display areas on this console.

Use the ″D C,K″ command to display the CONTROL command functions and ″D
C,A″ to display the status of active consoles.

See Chapters 2 and 3 and Section 4.7 in MVS Commands for details. (Most of
these do not apply to Extended MCS consoles.)

28.2.2.1 Console Modes
There are several ″modes″ by which MCS consoles can operate and by which
messages are cleared from the screen. Type ″K S″ to see the current setting of
the console you are sitting at, and then you can over-type what parameter
values you want to change. Here is an example of ″Roll″ mode which is
recommended for unattended console operation:

 K S,DEL=R,SEG=28,CON=N,RNUM=14,RTME=001,MFORM=(T,J)

If there is always an operator present, you can use ″DEL=RD ″ which rolls the
deletable messages, but not those messages requiring action.

444 VSE to OS/390 Migration Workbook

28.2.2.2 Display Areas
These may be handy for operating a console with a lot of traffic, when you want
to see a multi-line display without having it roll off the screen. However,
operators need to be able to manipulate these display areas for efficient
operation.

Enter ″K A,NONE″ to get rid of display areas, or ″K A,nn″ to create an area of
size ″nn″.

An alternative is to use the SDSF ULOG panel which limits the display to just
those commands and messages issued for the specific user. It can also be
scrolled back and forth to review past messages.

28.2.2.3 PFKeys
Program Function Keys (PFKs) can be set with the CONTROL command ″K
n,PFK″ or by activating a PFK Table. You can display the definitions with ″D
PFK″.

28.2.3 Extended MCS Consoles
Extended MCS consoles are sort of like ″virtual″ MCS (Multiple Console Support)
consoles that are implemented through software.

You can define a TSO/E user to operate an extended MCS console from a TSO/E
terminal. The user can issue the TSO/E CONSOLE command to activate the
extended MCS console or use SDSF.

An installation can also write an application program to act as an extended MCS
console. An authorized program issues the MVS authorized macro MCSOPER to
activate and control the extended MCS console and uses other MVS macros and
services to receive messages and send commands.

See OS/390 MVS Planning: Operations, GC28-1760 for details.

28.2.3.1 Using the TSO/E Functions
Use the CONSOLE command to establish a full extended MCS console mode in
“Command” mode or “Conversational” mode. (The OPERATOR command can
also be used for operator commands, but is limited to the OPERATOR
subcommands.) See OS/390 TSO/E System Programming Command Reference,
SC28-1972 for details.

Chapter 28. Orientation to OS/390 Console Operation 445

28.2.3.2 Using SDSF for System Operation
Below is the Primary Option Menu for SDSF showing you the basic panels you
can use as a full-screen system operator.

� �
 HQX1800 ----------------- SDSF PRIMARY OPTION MENU -------------------------
 COMMAND INPUT ===> SCROLL ===> CSR

LOG - Display the system log
DA - Display active users in the sysplex
I - Display jobs in the JES2 input queue
O - Display jobs in the JES2 output queue
H - Display jobs in the JES2 held output queue
ST - Display status of jobs in the JES2 queues
PR - Display JES2 printers on this system
PUN - Display JES2 punches on this system
RDR - Display JES2 readers on this system
INIT - Display JES2 initiators on this system
MAS - Display JES2 members in the MAS
LINE - Display JES2 lines on this system
NODE - Display JES2 nodes on this system
SO - Display JES2 spool offload for this system
ULOG - Display user session log
END - Exit SDSF� �

Displaying the system log is handy because you can scroll back and forth and
search for text strings. There are several panels to display jobs and output,
which can show you the backlog of work for initiators, printers, and transmitters.
There are also panels for JES2 devices such as printers, punches, readers, lines,
nodes, members, spool offload devices, and other JES2 resources.

You can issue MVS and JES2 operator commands from the command line, and
many panels support simple action characters and over-typeable fields for JES2
devices and parameters.

Each of these panels provide simple action commands (modeled after the JES2
command verbs) to control the work such as: B-Backspace, C-Cancel, D-Display,
E-Restart, F-Forward, I-Interrupt, N-Repeat, P-Stop, S-Start, and Z-Halt.

SDSF has online HELP panels, a Tutorial, and can link to online (softcopy) books
on BookManager READ/MVS for Messages.

28.2.4 Understanding Message Formats and Replies
See OS/390 MVS System Messages, Volumes 1 to 5, GC28-1784 thru GC28-1788
for detail message descriptions. The front of each book also describes the
general format of MVS messages.

To reply to a WTOR (Write To Operator with Reply), you can either enter
R nn,′reply′ or use the short form and type the one or two-digit reply ID followed
by the reply. For example, to reply ″U″ to a WTOR with the ID=07, you can either
enter ″R 07,′U′″, or you can enter ″7u″.

The short form is not available when JES2 is not up unless you specify
CON=NOJES3 in the IEASYSnn member of parmlib.

446 VSE to OS/390 Migration Workbook

28.3 Controlling the OS/390 System
The OS/390 System commands are only a subset of the commands necessary to
operate the system. JES2, VTAM, and many other OS/390 components also have
a command language which is used to operate their subsystems. We
recommend that systems programmers and operators attend a class on basic
OS/390 (MVS) and JES2 facilities. In addition, there are more advanced classes
such as the ″CMOS Complex Systems Availability and Recovery″ (five days).

This section is for a new operator controlling a single OS/390 system using MCS
consoles with JES2 and SDSF.

28.3.1 Starting the System
Here is an overview of the steps to start OS/390:

 1. Prepare the System Hardware (power on, IML, and configure)

 2. Load the System Software (IPL-ing MVS)

 3. Specify the System Parameters

 4. Set the Time and Date (if required)

 5. Start JES2 - ″S JES2,PARM=NOREQ″

 6. Start VTAM - ″S NET,,,LIST=xxx″

 7. Start TSO - ″S TSO″

 8. Start RMF - ″S RMF″

 9. Start other subsystems, such as Automation, CICS and so on

These commands can be automated in the COMMANDxx member of parmlib, or
through some other automation product, so they do not have to be entered by a
human operator.

28.3.2 Displaying System Status
Depending what you want to display, you can either enter an MVS command, a
JES2 command, use SDSF, or use another subsystem display.

The MVS ″DISPLAY″ command (abbreviated ″D″) has many different objects and
parameters. Here are some basic ″D″ commands:

D R,L - List all outstanding WTOR messages awaiting reply
D R,U - List all outstanding Mount Requests (for example, tape mounts)
D A,L - List Active Jobs, TSO users, and Started Tasks
D D,S - Display the Dump Options
D SMF - Display the SMF status
D LOGREC - Display the status of LOGREC
D TRACE - Display the status of TRACE
D C - Display Console configuration

There are many other Display commands and parameters. See section 4.9 in
MVS Commands for the details.

Chapter 28. Orientation to OS/390 Console Operation 447

28.3.3 Stopping the System
There are several ways to stop or halt the system, and important subsystems.
Here is a simple example of commands to stop the system:

$Pxxx Drain all active JES2 printers, initiators and so on

P TSO Stop Time-sharing

Z NET,QUICK Stop VTAM

C APPC Stop APPC (if active)

D A,L Display active jobs to see what else needs to be stopped

P RMF Stop RMF (and any other active subsystems)

$PJES2 Stop JES2 (see options below)

Z EOD Flush all SMF buffers, LOGREC, Caches and so on to external
DASD

Now you can safely power the processor off or re-IPL.

Stopping JES2

There are various flavors of the $PJES2 (stop JES2) command:

$P JES2 Stop JES2 after ″all available functions are complete.″ This
usually takes forever to drain all the devices, processes, jobs
and started tasks, that were started under JES.

$P JES2,TERM This is quick and the recommended way to stop JES2 if you
know you are going to re-IPL.

$P JES2,ABEND Stop JES2 immediately so you can ″hot-start″ it without an
intervening IPL.

28.4 Controlling Devices
Some devices such as the system volumes or work packs are permanently
resident, always mounted, and shared amongst users. Devices such as tape
drives are allocated to one job at a time as they are needed. Others, like
printers are managed by JES2 so they can be used by all jobs.

28.4.1 Displaying the Status of Devices
Use the ″D U″ command to see the status of various devices by device address
or device type. For example, enter ″D U,DASD,ONLINE″ to display online DASD
units and their volume serial numbers.

Use the ″D M″ command to see the paths to devices.

28.4.2 Understanding Device Allocation
Batch jobs and other users allocate devices for their work, and operators may be
prompted to mount or otherwise respond to these requests.

See section 1.8 ″Interacting with System Functions″ in MVS Commands for a
description of Device allocation, Hot I/O detection, and Device ″boxing″. Section
1.9 describes the SWAP command to respond to Failing Devices.

448 VSE to OS/390 Migration Workbook

28.4.3 JES2 Devices
Devices such as printers, punches, TP lines, and spool offload tapes can be
allocated by JES2 dynamically. The following JES2 command verbs are used to
control JES2 devices and are followed by the device name such as PRT1,
PUN(12), LINE(5).

$D Display the device
$S Start the device
$P Stop the device when it is through with the current job
$Z Halt the device immediately
$C Cancel the job currently being processed on the device
$T Change the device setup characteristics
$I Interrupt printer or punch
$N Repeat printer or punch
$E Restart the device (interrupt and re-queue)
$B Backspace printer or punch
$F Forward space printer or punch

PSF printers are defined as JES2 printers and controlled through the same
commands used for JES2-controlled printers.

28.4.4 SDSF Device Panels
There are separate SDSF panels for JES2 devices such as printers, punches,
readers, lines, remote workstations, and NJE nodes. These may be more
convenient than the JES2 commands, because you can:

• Display many devices in a tabular format,
• Issue any operator command in a simpler form (complete with ″Help″),
• Change the characteristics of a device by over-typing fields,
• Manage input and output queues for these devices.

28.5 Controlling TSO Users, Jobs and Started Tasks
Time-sharing users, batch jobs, and started tasks all represent work being
performed on the system and reside in their own address space. They are
initiated in different ways, but all can be displayed and controlled in similar ways
with MVS commands, JES2 commands and SDSF panels. However, there are
subtle differences that make some better than others.

28.5.1 Displaying Work on Your System
TSO users, batch jobs, and started tasks each run in their own address space,
and represent work by one or more users on your system. There are MVS and
JES2 commands to display and control them. SDSF, RMF, and other monitors
also have operator interfaces to monitor and control.

Each of these has different information and presentation. Try each of them and
use what seems best for your purposes.

Chapter 28. Orientation to OS/390 Console Operation 449

28.5.1.1 MVS Commands
Use the DISPLAY JOBS, J, A, or TS command to display information about
current system activity, including time-sharing users, batch jobs, and started
tasks. The MVS ″TRACK″ and ″MONITOR″ commands also provide assistance
with periodic updated displays in a display area.

28.5.1.2 JES2 Commands
There are many JES2 commands to display the work on your system:

$DA Use the $DA command to display information about active jobs,
started tasks, and time-sharing users. This also shows jobs active on
JES2 devices such as printers.

$DN Use the $DN command with various fi lters (Q=, V=, R=) to display
jobs in specific phases of JES2 processing, on specific spool volumes,
or with specified route-codes.

$DJ Use the $DJ, $DS, or $DT commands to display information about jobs,
started tasks, or time-sharing users, known to JES2 on any queue,
active or not.

$DJQ The $DJOBQ command is even more powerful with many different
filters including wild-card characters to display information about jobs
known to JES2.

There are many JES2 commands to control this work such as $C (cancel), $H
(hold), $T (modify), $P (purge), and $E (restart).

28.5.1.3 SDSF Panels
There are four basic panels in SDSF to show active jobs:

ST Status of all jobs known to JES2, along with many characteristics such
as amount of spool space being used.

DA Display of all Active jobs, started tasks and time sharing users, along
with ASID, and RMF information about CPU, storage, and I/O rates.

I Input queue display of all jobs waiting for execution. This a good way
to see what your backlog is for initiators.

O Output queue display to show all job output elements waiting to be
printed or punched, or transmitted to another or remote node.

H Held output display to show all output elements that are held waiting
for TSO output.

Each of these panels provide simple action commands to control the work such
as A=Release, C=Cancel , D=Display, E=Restar t , H=Hold, I=Info, J=Star t ,
L=Lis t , O=Release, P=Purge, Q=Outdesc, S=Browse, and X=Pr int .

28.5.1.4 RMF and Other Monitors
There are other facilities to monitor your work in the system such as the RMF
Monitor II Address Space Reports.

450 VSE to OS/390 Migration Workbook

28.5.2 Controlling Time Sharing Users
TSO/E users logon through terminals controlled by VTAM. You can use MVS or
JES2 commands to control TSO users and their output:

• Send a Message to a TSO User with the MVS
″SEND ′message_text′,U=use r i d ″ command. Be careful not to omit the
″,U = ()″ operand, or your message will be sent to all TSO users and they
will get aggravated with this if it happens repeatedly.

• Cancel the TSO session with the MVS ″CANCEL U=userid″ command, or the
JES2 $C command.

There may also be times when you cannot cancel a TSO user with the $C
command, so you will have to force the address space down with the
″FORCE″ command. This may be necessary for a TSO user to get out of a
″hung″ condition, and log back on again.

• Release, Cancel, or Modify TSO held output with the JES2 $O or $TO
command.

The SDSF DA, ST, O and H panels can also be used to control TSO users or their
queued output. (Any JES2 command can be issued through these panels.)

28.5.3 Controlling Batch Jobs
Batch jobs are submitted by TSO users, or by other programs such as batch job
scheduling systems like OPC/A. They are queued on the ″Job Queue″ by JES2
and selected by batch initiators according to your installation′s job scheduling
criteria. (WLM or JES can manage the initiators.)

Jobs can also be started by the operator from the console with the MVS START
command, but then they behave very much like ″started tasks″. (See the next
topic below.)

Jobs can be canceled by the operator with either an MVS Cancel command, or
the JES2 $C command.

The SDSF DA, ST, O and H panels can also be used to control batch jobs or their
queued output.

28.5.4 Controlling Started Tasks
Started Tasks (or ″STCs″) are like batch jobs, but started by the MVS ″START″
command (abbreviated ″S″) from an operator console instead of submitted by a
TSO user or another job. You can override many parameters on the START
command, including the name that shows up on a display.

Other commands used to control started tasks are described in OS/390 MVS
System Commands, GC28-1781.

• Display status about the started task with the MVS ″DISPLAY″ command or
JES2 $D command.

• Modify the started task with the MVS ″MODIFY″ command.

• Stop the started task with the MVS ″STOP″ command.

• Cancel the started task with the MVS ″CANCEL″ or JES2 $C command.

If they fail to stop or cannot be canceled, they can be ″Forced″ with the MVS
″FORCE″ command.

Chapter 28. Orientation to OS/390 Console Operation 451

28.6 Managing Remote Operations
As with VSE, remote systems and workstations can communicate through NJE or
RJE via commands and messages. Some remote workstations and systems have
console operators, while others may not. The remainder of this chapter
describes how to communicate via JES2 commands.

28.6.1 JES2 RJE Operations
There are many kinds of remote workstations: BSC and SNA, ones with just a
reader and printer, and others with consoles, disks and spooling capability.
Some have human operators, others do not. Some must be managed by the
central host operators, others by a remote operator.

28.6.1.1 Host Operations
Usually, the remote operator controls the RJE session once the lines and
interfaces are enabled. However, the host OS/390 operator can also initiate
some sessions and may become involved with recovery operations if problems
arise. Here are some JES2 commands to support RJE:

$S LGNn Start the JES2/VTAM ACB (for SNA remotes)

$S LINE(nn) Start the line

$S RMT(nn) Start the RJE session (SNA only)

$E LINE(nn) Re-start the line

$P LINE(nn) Drain the line

$D Mnn, ′Please drain your printer ′
Send a message to the remote operator.

28.6.1.2 Remote Workstation Operations
You should set up an RJE workstation (of each type) to orient your remote
operators to the JES2 environment, show them how to submit jobs, retrieve
output, and enter commands.

Here are some JES2 RJE statements to sign on and off:

• For BSC Remotes, use /*SIGNON to sign on, and /*SIGNOFF to sign off.

• For SNA Remotes, use LOGON - sign on to JES2, and LOGOFF - sign off
(these are actually VTAM commands).

See Chapter 6 in the JES2 Initialization and Tuning Guide for more details.

The most common commands for RJE are for printers:

$S PRn Start the printer initially or after a setup message

$DF Display forms queued to this remote

$D JOBQ,CMDAUTH=R3
Display jobs that can be affected by Remote 3

$DO JOBQ,DEST=R3
Display output that is destined for Remote 3

$T PRn,F=xxxx,C=...
Set up printer n for other forms, classes and so on

452 VSE to OS/390 Migration Workbook

$D MMn, ′Please restart my printer ′
Send a message to the operator on member n

See JES2 Commands for details. The “Remote Job Entry” section in Chapter 2
has good guidance information for RJE operations, and Chapter 5 has detailed
command syntax descriptions.

Remotes Without Consoles

If you don′ t have a console on your remote workstation, you can still submit
commands and JES2 control cards through the logical (or physical) card reader.

JES2 Control Cards

The following JES2 control cards can be placed within a jobstream to
communicate with the host system or central operator. (They can also be used
by anyone submitting a job, subject to installation restrictions.)

/*$command Enter a JES2 operator command (for example, /*$SPRT1)

/*MESSAGE Send the message to the operator console

/*NOTIFY Send notification messages to specified users

/*SETUP Hold the job for specified volumes to be mounted

Other JES2 control cards such as /*JOBPARM, /*ROUTE, and /*PRIORITY can
also be used to control specific jobs. See OS/390 MVS JCL Reference, GC28-1757
for details.

Command Authority for Remote Operators

In general, a remote operator can only display and control jobs which are
submitted or “owned” by that remote system, and devices that are attached to
that remote system.

The table titled “Remote Entry Restrictions” in Chapter 2 of JES2 Commands
describes the RJE and NJE authority required for all JES2 commands.

28.6.1.3 Using SDSF Panels for RJE
The Line panel in SDSF allow you to monitor and manage RJE lines and devices.
The Printer, Punch, and Reader panels also show remote (RJE) devices and can
be configured for remote operators.

28.6.2 NJE Operations
Host operators on each node can display and manage NJE lines, sessions,
connections and paths to other nodes. They can also send commands to display
the configuration on other nodes. Here are some JES2 commands to support
NJE:

$S LGNn Start the JES2/VTAM ACB (for SNA remotes)

$S LINE(nn) Start the line

$S N,NODE=node_name
Start the NJE session

$D NODE(node_name)
Display the status of a node

Chapter 28. Orientation to OS/390 Console Operation 453

$D PATH(node_name)
Display the path(s) to another node

$D Nxx. ′$D NODE(yy) ′
Send a command to node xx to display the status of node yy

$D MNn, ′Please drain your session ′
Send a message to an operator on another node

See JES2 Commands for details. Chapter 4 has good guidance information for
NJE operations, and Chapter 5 has detailed command syntax descriptions.

Command Authority for Remote Operators

An operator on one node can send commands to another node, subject to the
authorization established by that remote node. In general, an operator is limited
to a subset of commands that display and control jobs which are submitted or
“owned” by that node, and devices that are attached to that node. In JES2, this
is controlled by the AUTH parameter on the NODE initialization statement.

See the table titled “Remote Entry Restrictions” in Chapter 2 of JES2 Commands
which describes the authority required for all JES2 commands.

28.6.2.1 Using SDSF Panels for NJE
The Line and Node panels of SDSF allow you to monitor and manage NJE
activity.

See the SDSF Guide and Reference and SDSF Customization and Security for
details.

454 VSE to OS/390 Migration Workbook

Chapter 29. Orientation for Utilities

29.1 IEBxxx or IEHxxx
There are many utilities in OS/390 provided by DFSMS/MVS to assist you in
organizing and maintaining data (most of them start with ″IEB″ or ″IEH″). These
are simple programs which perform commonly needed functions. See ″Guide to
Utility Program Functions″ in Chapter 1 of DFSMS/MVS Utilities, SC26-4926.

29.2 IEBCOPY
IEBCOPY is a utility program used to make copies of, and to maintain,
partitioned data sets. In addition to the copy function, IEBCOPY performs the
following maintenance operations:

• Compression - the members of a partitioned data set are moved together
(compressed) to eliminate the unused space that results from changing
existing members.

• Merge - two or more partitioned data sets are merged into a third data set.

Information on IEBCOPY is provided in DFSMS/MVS Utilities, SC26-4926.

29.3 IDCAMS
IDCAMS (Access Method Services) is a utility program that is used to manipulate
all access methods except partitioned. IDCAMS is recommended for use with
SMS managed data sets. This utility reads control statements and performs data
set functions such as creation, deletion, cataloging, and uncataloging. In
addition, IDCAMS performs the backup and restore functions for VSAM data sets.
Information on IDCAMS is provided in the following publications:

• DFSMS/MVS Access Methods Services for ICF SC26-4906

Describes IDCAMS commands for using integrated catalog facility catalogs.
• DFSMS/MVS Access Method Services for VSAM, SC26-4905

Describes IDCAMS commands for using VSAM catalogs.
• DFSMS/MVS Summary of Access Method Services for ICF, SX26-3807.

Provides a summary of IDCAMS commands for integrated catalog facility
catalogs.

29.4 IEBGENER
The main use of this utility is for moving data. You can use IEBGENER to:

• Create a backup copy of a sequential data set, or a member of a partitioned
data set or PDSE.

• Produce a partitioned data set or PDSE, or a member of a partitioned data
set or PDSE, from a sequential data set.

• Expand an existing partitioned data set or PDSE by creating partitioned
members and merging them into the existing data set.

• Manipulate data sets containing double-byte character set data.
• Print sequential data sets or members of partitioned data sets or PDSEs.

 Copyright IBM Corp. 1998 455

• Reblock or change the logical record length of a data set.
• Copy user labels on sequential output data sets.
• Supply editing facilities and exits for your routines that process labels,

manipulate input data, create keys, and handle permanent input/output
errors.

Information on IEBGENER is provided in DFSMS/MVS Utilities, SC26-4926.

29.5 DFSMSdss
DFSMSdss is a direct access storage device (DASD) data and space
management tool. DFSMSdss works on DASD volumes only in the MVS
environment. You can use DFSMSdss to:

• Copy and move data sets between volumes of like and unlike device types
• Dump and restore data sets, entire volumes, or specific tracks
• Convert data sets and volumes to and from SMS management
• Compress partitioned data sets
• Release unused space in data sets
• Reduce or eliminate DASD free-space fragmentation by consolidating free

space on a volume

Information on DFSMSdss is provided in the following publications:

• DFSMS/MVS DFSMSdss Storage Administration Guide, SC26-4930.

Describes DFSMSdss tasks for copying, dumping, and restoring data sets
and DASD volumes.

• DFSMSdss Storage Administration Reference, SC26-4929.

Describes DFSMSdss commands, including syntax and coding examples.

456 VSE to OS/390 Migration Workbook

Chapter 30. Systems Management Philosophy and Methodology

Many VSE installations have small staff and have mature systems which are
changed relatively infrequently. As a user migrates from VSE to OS/390, their
entire system -- hardware, software, and connections -- will be subject to more
frequent changes. The workloads supported by their system will grow in
complexity and criticality to their business. At the same time, many of the tools
and methods for managing the VSE environment will become obsolete, and new
techniques and tools will have to be learned and implemented. In this chapter,
we will discuss the opportunities to implement more formal system management
procedures, the IBM products that can support these procedures, and the
benefits that OS/390 users receive from the implementation of these procedures.

It is not the intent of this chapter to describe specific tools, methodologies, or
services in great technical detail. The practice of system management
disciplines can provide great benefits of productivity and time savings during a
migration, especially as all personnel involved are working with new tools and in
new environments.

The VSE/SP and VSE/ESA systems and MVS and OS/390 systems have some
conceptual similarities, but due to the scope of changes that must be made
during a migration, the migration project is an ideal opportunity to introduce
more formal system management disciplines. The following specific disciplines
will be discussed below:

 1. 30.1, The Philosophy of Systems Management

 2. 30.2, Change Management

 3. 30.3, Problem Management

 4. 30.4, Performance Management

 5. 30.5, Operations Management

 6. 30.6, Security Management

 7. 30.7, Configuration Management

 8. 30.8, Asset Management

 9. 30.9, Accounting Management

These topics will be discussed in order within this chapter.

30.1 The Philosophy of Systems Management

30.1.1 Systems Management Overview
System management is responsible for delivering effective and efficient
information technology services, and becomes more critical as the number of
components, workloads, changes, and overall complexity increases.

Systems Management disciplines are aptly named -- through exercise of these
disciplines, we learn to manage our system in a better manner -- with the result
being a system better able to service the needs of all the different classes of
users of the computer system.

 Copyright IBM Corp. 1998 457

In many smaller computer installations, where at most a few people are involved
in system changes, ad-hoc and informal techniques have often proved adequate.
All or us have seen a case where the complaint is lodged: ″It doesn′ t work
right.″ Oh, what seems to be the problem? ″Payroll doesn′ t work right.″ ″What
did you change?″ Nothing...

As systems become more complex, the staff working with the systems becomes
larger, the number of components becomes greater, the location of the
components becomes more dispersed, and the complexity of the connectivity
between components increases. It becomes increasingly difficult to know what is
really causing problems, what changes have been made and where, even what
components are in use and what their state is at any given time.

A structured or organized approach to systems management activities is
required. Over the past 15 years, several groups, including IBM, have defined
the systems management tasks in terms of disciplines. Examples of these efforts
include:

• IBM ′s Information Systems Management Architecture (ISMA)

• Guide/Share User Group definitions

• OSI′s System Management Functional Areas (SMFA)

• IBM ′s SystemView

• IBM ′s Information Technology Process Model (ITPM), which updates ISMA

• IBM ′s TME 10, which is an update to SystemView

In practice, the objective is not to adhere to a defined set of disciplines, but
rather to follow a structured approach in defining the tasks to be achieved and
the disciplines required to achieve them.

As one example, when major changes in the OS/390 environment and
infrastructure are made, it will be very difficult to actually know what changes
have been made and their impact since something last worked correctly, unless
a change management discipline has been adopted. This is especially critical
during the migration, since a large volume of changes is occurring.

Change management provides a standard way of introducing changes into the
computer system with much less risk or system outage on one hand and with
quicker resolution of system outages should they occur on the other. To achieve
these benefits, those who have the skills and the authority to make changes to
the system configuration, whether hardware or software, systems or application
programming, give up the freedom to make changes whenever they desire and
however they desire in order to improve the stability of the overall system.

The discussions justifying other systems management disciplines follow similar
logic, and will not be explicitly stated in the sections below where the disciplines
are described. The benefits of this approach are that it:

• Ensures that the wide range of activities required are covered.

• Ensures a complete solution.

• Allows a common process to cross physical and logical resource boundaries:
that is, to have one problem management system, one change management
system, and so on.

458 VSE to OS/390 Migration Workbook

• Places a stronger emphasis on service, as it promotes keeping one ′s ″eye
on the ball.″

• Provides more effective and productive processes.

Challenges in this approach are not just to segment the activities, but also to
recognize how the disciplines interrelate and how they cross functional
boundaries. Also, all responsibilities must be assigned and understood, and
disciplines documented.

30.1.2 Systems Management Scope - What Needs to be Managed?
In almost all systems, hardware (at the mainframe site, anyway) is reasonably
controlled. As our systems become networks of autonomous users who can
control their own configuration and setup, it is possible for an end user to
destroy his or her own ability to interact with the host and other server systems.
In some cases, they can also impact the connections and services to other
users.

Host operating system and subsystem software (0S/390, ACF/VTAM, CICS/ESA,
DB2) similarly have a relatively small group of people who control and manage
their attributes and status. In the new OS/390 environment, however, it is likely
that the number of people responsible for these components could be larger
than is typical in computer systems running VSE/ESA or VM/VSE. In addition,
problems and changes in one component may affect other components and
workloads. Because of the increase in number of people who control these
components, it is recommended to implement Systems Management in a way
that all the systems support personnel will be aware of planned and completed
management activities. In addition, this process permits the implementation of
peer review of planned activities, which both catches errors and educates other
staff members in the various Systems Management disciplines.

Application program software is likely to be impacted with higher volumes during
an 0S/390 migration in several areas. For one example, it is likely that
application source programs will be changed (from DOS/VS COBOL to COBOL
for MVS, and VSE assembler macros to OS/390 macros). Much of this will be
automated, but because of new language nuances, program maintenance and
development will require more effort, at least to begin with. Systems
Management disciplines such as change and operations management can help
reduce this extra effort by avoiding rediscovery, identifying reasons for failure,
and more. Change management will help control JCL changes, application setup
and run instructions, and more. Operations management will invoke and
monitor the applications, provide for problem bypass, and provide feedback for
any further changes to be made.

Overall, then, you should realize more benefits by extending the scope of your
implementation of systems management disciplines all the way from hardware
configuration and setup on one end to application programming and JCL on the
other end. Whether the discipline being applied is Change Management,
Problem Management, Performance Management, Operations Management,
Security Management, or others, the most benefit can be derived when the
scope for the discipline covers the system.

The disciplines should also include the network elements (we will define network
as anything on the non-mainframe side of a communications controller); the
availability of the workloads to the users will depend upon those elements as

Chapter 30. Systems Management Philosophy and Methodology 459

well, and the disciplines should include those to avoid ″the hole in the boat isn′ t
on my side of the ship, so all is well″ syndrome that can develop.

30.1.3 The Role of Automation
Automation involves the ability to correct, bypass, or circumvent failed system
and network elements and applications, based on defined policies and using
hardware or software functions without human intervention. Automation
improves availability and reduces operational costs.

To put it bluntly, as your environment grows, it will be impossible to manage it
without automation. The number of systems, subsystems, applications,
connections, files, databases and so on that have to be monitored and controlled
will simply be overwhelming for any size staff (if you can afford and even find a
large enough staff). Automation can be applied to all of the disciplines to make
them more efficient; to do this it must follow prescribed management policies,
which can be developed directly from a structured approach.

The following sections describe a set of the typical categories or grouping of
management functions or tasks required, and will identify some of the key
products that support the tasks. The degree to which you implement each
function will vary based on your organization and systems management
objectives; this is just to show you the tasks that should be considered when
looking at Systems Management in the OS/390 environment.

30.2 Change Management

30.2.1 Overview
The change management discipline was discussed above as the example
showing the effects of the environmental changes and the opportunities to
exploit systems management disciplines to derive benefits from those changes.
For a migration it is probably the most active discipline initially, simply because
of the differences between the VSE and OS/390 environments - you have to
change things for them to still work. After the migration, change management is
still important - it will be driven by other disciplines such as problems (making
changes to address/eliminate problem situations), performance management
(making changes to improve the performance of applications, or allowing a
resource to provide better performance to applications), and configuration
(making changes to implement or meet the requirements of new levels of
hardware and software), to name a few.

30.2.2 Tasks
The change management process includes the following:

• Collection - recognizing and gathering the changes, so that the focus is on
changes as a whole, and not just on individual changes.

• Assessment - evaluation and approval of a change from both a technical and
business standpoint.

• Planning - creating a plan that defines the steps in the change installation
process. This also requires information regarding the current levels of
hardware (including microcode) and software for system and network
components, which is best met with a common repository for configuration
data.

460 VSE to OS/390 Migration Workbook

• Scheduling - occurs during the planning process, and aids in identifying
conflicts and impacts, and determines target dates for changes.

• Distributing - this depends on the type of change, for example rolling out new
levels of software across several systems.

• Installing - the actual installation of changes. Installation should be able to
be scheduled for a particular date and time of day.

• Backout - reversing a change if it does not meet the installation or test
criteria. The process to do this should be understood and planned for before
the change is implemented.

• Tracking - transmitting the state of the change to the change management
system. This provides a common view to everyone involved in the process.

• Post-installation analysis - reviewing completed changes to ensure they met
the desired objectives, and to identify improvements that could be made to
the change process.

30.2.3 Methodology
Change management is effectively implemented in several simple steps. First, a
log of system changes should be kept. The simplest method is simply recording
the information in a data set or PDS member. This can be improved by using a
table (as provided by TSO/ISPF) or database management system (such as DB2)
where change information can be formatted into fields for easier querying,
searching, and updating. Ultimately one should investigate a change
management product, which will also add the ability to support the more formal
process activities, such as assessment, planning, and tracking, in an efficient,
automated fashion. IBM ′s TME 10 Information Management includes such
functions, and allows change information to be updated and reviewed from a
wide choices of platforms besides TSO - even via an automation product such as
TME 10 NetView for OS/390.

One clear recommendation is that every system change, from system hardware
to application software, be recorded and retained for a reasonable period of time
-- at least a year. This will allow analysis of changes and discovery of any trends
that are occurring (for example, are their certain changes that always lead to
problems? If so, perhaps a better way to introduce those changes should be
investigated). In addition, peer review of planned changes to the system should
include review of the change control entries that document the change(s).

30.3 Problem Management

30.3.1 Overview
The Problem Management discipline is very closely related to Change
Management. When problems occur, either a change may be needed to fix the
problem and keep it from re-occurring, or a change was what caused the
problem in the first place. Managing problems is critical to achieve high levels of
application availability (which depends upon system and component availability).

Problem resolution is often assisted because of the existence of change
management and problem management databases, showing previous instances
of the same or similar problems in one case, and changes that took place in the
system just before the problem occurred.

Chapter 30. Systems Management Philosophy and Methodology 461

30.3.2 Tasks
The problem management process includes the following:

• Problem determination - the detection of the loss or impending loss of
availability of a system resource to its users, and the isolation of the
detected problem to the failing hardware, software, or microcode component.

• Problem diagnosis - the determination of the specific cause of a problem and
the action required to resolve it. Diagnostic data gathered during problem
determination provides input to this step. It may be necessary to gather and
analyze additional information to complete problem diagnosis.

• Problem reporting - logging or calling the appropriate group (for example, a
help desk) to have a problem logged for follow-up and solution.

• Problem bypass and recovery - the bypass of a failure, if necessary, until a
problem can be resolved. The decision to bypass a failure is determined by
the criticality of the lost resource and the cost of providing the bypass. If
continuous operation is a requirement, recovery from a problem must take
place immediately following problem determination and diagnosis. Bypass
and recovery procedures should be automated whenever possible.

• Problem assignment - directing the problem to the proper resolver, as
defined by enterprise policy.

• Problem resolution - the action taken to correct a problem. Once a problem
is resolved, any steps taken to bypass it may be undone and the original
resources placed back in service

• Problem tracking and control - tracking of problems from detection until their
final resolution. Many symptoms may result from the same problem, and
different problems may be related. Problem tracking allows the correlation of
related symptoms and problems and helps to ensure timely recovery.
Escalation of problems that exceed the established policies is a critical part
of this step.

• Problem closing - specific notation that the problem has been solved to the
satisfaction of the reporter. Problem cause and type must be noted for
management analysis.

• Problem analysis - analyzing problem trends to reduce the number and
impact of problems is a required management activity.

30.3.3 Methodology
As with change management, problem management depends upon the keeping
of records about previous activities - in this case, problems that have been
reported or discovered. The problems can be reported by end users who find
anomalous behavior, system operations personnel, application programmers, or
systems programmers. Automation can also be used to report problems - for
example, if a critical job abends, NetView can detect this and create a problem
record in TME 10 Information Management, and can also monitor and update the
problem record as other detectable events occur, or at defined time intervals.

It is important that all problems be recorded in a file or database. This will
serve as a repository for all reported problems, their current status, and their
ultimate resolution, whether resolved by application change, system software
change, vendor provided maintenance, or other. As the problems are worked
toward resolution, the problem management database must be kept up-to-date.
Many smaller OS/390 installations simply use TSO/ISPF′s editor to create,

462 VSE to OS/390 Migration Workbook

update and manage problem management records, but use of a searchable
database technology, such as DB2 or a custom problem management package
such as TME 10 Information Management will be very helpful.

30.4 Performance Management

30.4.1 Overview
Performance management addresses the effectiveness with which information
system components work together in order to achieve the optimum throughput
and responsiveness with a given hardware/software configuration.

All too often, systems are designed, implemented and tested without careful
consideration of performance factors. Fixing performance problems after the fact
is much more difficult and costly than considering these factors during the
design. In critical applications which are forecast to be heavily used, modeling
the performance characteristics before the design is finalized can be very
profitable. It is necessary to record performance data on a regular basis. The
OS/390 system provides Resource Measurement Facility (RMF) which will record
system resource (CPU, DASD or tape I/O, and so on) utilization for every job and
job step in your system, or for any defined subset of it. In addition to the RMF
data, it is valuable to have references to business volumes (orders, total number
of order line items, number of paychecks processed) which can serve as an
independent variable for estimating future requirements.

Performance management includes both real-time performance monitoring and
long term capacity planning and reporting. Capacity planning relies on data from
real-time performance monitoring, and uses it to determine trends that will
influence future resource and application performance planning. Specifically, the
long term growth in system resource consumption for various classes of system
resources is monitored and future requirements are projected and used to
identify usability end-points for system components. CPU, DASD, tape, printer,
and similar subsystems can be studied and system capacity needs can be
managed on a scientific and business management basis.

Reporting also includes comparing performance and availability achieved
against agreed to service levels. Working with the problem management process
can identify the reasons reported attainment did not meet service levels.

30.4.2 Tasks
The performance management process includes:

• Capacity planning

⇒ Defining and managing the availability of system resources required to
meet anticipated service demand.

⇒ Modelling systems to determine and validate their ability to provide
needed service.

⇒ Validating user requirements against trends in current service levels.

⇒ Collecting workload requirements and merging them into service
requirements for all resources, such as hosts, network, servers.

• Performance policy definition

Chapter 30. Systems Management Philosophy and Methodology 463

⇒ Establishing performance specifications and policies.

• Performance execution and measurement

⇒ Response time monitoring - what is the response time as seen by the
user?

⇒ Availability monitoring - what′s broken?

⇒ Utilization monitoring - who are the biggest users? What is the service
times and queue lengths for key components and resources?

⇒ Component delay monitoring - what are the bottlenecks?

⇒ Performance tuning - how can the resources be used effectively?

⇒ Tracking and control - what are the short term trends? alerts? long term
trends? how can I tailor the volumes and data flow to the needs and
resources of the system?

30.4.3 Methodology
Performance information must be available to view in real-time to get a snapshot
of system status, and to quickly address any problem or potential problem
situations. It must also be archived so that long term analysis can be carried out.
It is best to save this information to DASD or tape - printing and saving stacks of
performance information is a waste of time. It takes up too much space, you will
never find the information you need in a timely manner, and the information you
probably need at a given point of time will likely be in a report that has just been
discarded.

OS/390′s RMF subsystem will record system resource utilization information.
OS/390 SMF (Systems Management Facility) records contain RMF data and data
from other sources (JES, VTAM, NetView, NetView Performance Monitor) that
contains performance information. Many IBM and non-IBM performance products
that monitor specific resources can place their data into SMF records.

While users, I/O control clerks, operators or specialized jobs can capture the
business volume information, the use of performance and automation products
can help make this task less labor intensive. Understanding the relationship
between user transactions or batch jobs and business units of work will allow
business volumes to be directly derived from performance monitors, and
automation can be used to collect and format the data as needed.

Tracking performance data must also include online transaction response time,
DASD I/O service times, batch program elapsed times, and batch window start
and completion times. NetView Performance Monitor can measure and report
online transaction response time. RMF and SMF can provide data on DASD I/O
and batch performance. TME 10 Operations Planning and Control (TME 10 OPC)
schedules batch workloads and can provide data on batch program and batch
window elapsed times.

Using a PC and a spreadsheet application to download and capture and report in
tables and graphs the critical performance variables over time is a very practical
way to start; junior systems programming personnel, senior operations
personnel, or help desk personnel can keep this information. A more robust
solution will be a performance reporting product such as IBM′s TME 10
Performance Reporter; it can directly read many of the sources that contain
performance data, such as SMF, and produce short term and long term analysis
reports for use in capacity planning.

464 VSE to OS/390 Migration Workbook

Projected trends recorded in this way represent accurate growth measurements.
These projections can be used to identify needed changes in system
configuration with sufficient lead time to permit orderly procurement and
installation of new resources. This will provide the capacity required over time
as your system grows.

30.5 Operations Management

30.5.1 Overview
Operations management includes tasks for planning distributing, evaluating, and
controlling workloads. It also addresses the resource availability needed to
support the workloads.

The daily tasks required to activate system components, start workloads, and
monitor activities to discover any discrepancies are the heart of supporting the
system users. In a small environment these tasks may be carried out by a small
number of people; in many cases the systems programming and daily operations
functions are carried out by the same people. In the OS/390 environment, the
opportunity for greater growth leads to the separation of operational tasks from
systems programming tasks. Operations becomes the ″first line of defense″
when a deviation from the norm occurs.

The operations management discipline is oriented towards defined workloads. It
covers the activities of starting and stopping systems and resources (including,
but not limited to, host systems, workstations, networks and databases) and
receiving and responding to operational notifications. However, it encompasses
more than the traditional operator ′s console commands, messages, and
responses. The objective is to allow management to set policies to manage
workloads and resource availability, and to automate the interactions required to
implement these policies.

Operations management should provide the flexibility to centralize control of
some functions and distribute others. This ability, together with other enhanced
operator functions, will reduce the cost of operations.

The requirements for operations management may include:

• Lights-out operation - automated operations, ranging from simple command
lists to automate a trivial or repetitive operator function to applying Artificial
Intelligence (AI) to automate operator decisions.

• Data protection - automated backup and archiving of data files.

• Monitoring - consistent, easy to use, graphical operations interface(s), that
display system and network topology and resources.

30.5.2 Tasks
The operations process includes:

• Workload planning - definitions, analyses, and reports of the enterprise′s
workloads, both actual and anticipated.

• Operations planning - determines the structure needed to support the
availability of systems and resources for the defined workloads.

Chapter 30. Systems Management Philosophy and Methodology 465

• Automated Operations - handles the complex operations job scheduling
procedures to ensure that work is completed in a timely manner.

⇒ Verifying that the resources needed for a scheduled workload are
available; for example, that the required disk or tape volumes are
available for a backup operation.

⇒ Planning to ensure the availability of day-to-day operations items, such
as printer paper, tapes, and control center equipment.

⇒ Specifying operations policies and procedures, preventive maintenance
schedules and procedures, and operations recovery procedures.

⇒ Supporting output delivery as defined by service-level agreements.

• Workload control - distributes work-handling and work-processing
responsibilities across systems. It includes monitoring, analyzing, and
adjusting of work in those systems. Examples of these functions include:

⇒ Translating workload policies into system specifics.

⇒ Distributing workload policies to systems.

⇒ Receiving work requests and distributing them to systems, based on
needs and policies.

⇒ Managing resources needed for a workload for example, ensuring a tape
volume needed by a batch job is mounted and ready for use on a tape
drive.

⇒ Monitoring systems and resources to determine work progress.

⇒ Responding to queries about the status and progress of work.

⇒ Accepting, and responding to, notification requests for work-related
events, such as job termination.

⇒ Taking action on workload-related events, such as restarting or rerouting
work.

⇒ Managing the printing and delivery of hard copy output.

• Operations control - applying operations policies for exception conditions,
resource shortages, and other situations.

30.5.3 Methodology
Operators must have documentation and tools to understand how the system
and workloads are supposed to be set up and run, the instructions to carry out
setup/execution tasks, information on what to monitor and look for, instructions
on what to do when something goes wrong, and a callout list of who should be
contacted for various situations. This information can be kept in a set of files or
in a PDS for starters; while it is popular to have hard copy ″run″ books, these
are much more vulnerable to becoming out of date. In either case, a strong
maintenance process that is tied into the problem, change, and configuration
process is required to ensure accurate and up-to-date information.

Automating operational tasks is one of the most productive activities to carry out
in the OS/390 environment. Automation will reduce problem detection and
bypass time, eliminate human error, and support higher availability by carrying
out quicker recovery actions. Automation can also make operators more
productive by carrying out more mundane and repetitive tasks, monitoring for
situations, and doing initial recovery. One of the simplest tasks to automate is
message suppression, so that only critical messages are displayed at consoles;

466 VSE to OS/390 Migration Workbook

the MPF list can be customized to carry this out. For other automation tasks, IBM
provides several products to support workload and operational planning and
control:

• TME 10 NetView, while many think of it as a network management product, is
also a robust automated operations product for detecting and reacting to
messages and alerts (for a wide variety of platforms), and carrying out
automated and monitoring actions. NetView can also provide an automated
interface with products such as TME 10 Information Management and
Performance Reporter for MVS, to integrate operations management data
with data from other systems management disciplines.

TME 10 NetView also provides a central point of monitoring and automation
from/to other operating system platforms; for example, it can monitor and
detect a problem in a LAN Server or UNIX workstation that is required to
allow users to access OS/390 resident applications.

• System Automation for OS/390 (SA for OS/390) is a NetView application for
automating scheduling, monitoring and recovery of various OS/390
workloads, ESCON I/O configurations, and local or remote OS/390 hardware
platforms. For example, it can be used to IML and IPL another OS/390
system, start in proper sequence a set of CICS and DB2 regions, alter an
ESCON director configuration, and provide a central workstation to monitor
what is running across one or more OS/390 systems.

30.5.3.1 Automating Operational Procedures
You should look at automating as many operational procedures as you can.
Automation will reduce human error and provide consistency to the procedure.
All of the operational procedures identified in the preceding section can be
automated to some degree by using things such as:

• MVS facilities, such as exits, the Message Processing Facility (MPF) list and
Automated Restart Management.

• An automated operation product, such as TME 10 NetView, System
Automation for OS/390, or a third party automation product.

• Specialized products with automation interfaces, such as TME 10 OPC/ESA,
DFSMS, and TME 10 Information Management.

Automation should be planned and added in stages as your OS/390 environment
evolves. Both systems programming and operations personnel should be
involved. Procedures should be tested thoroughly before being put into
production. General types of activities you should consider automating include:

• Console operations, such as suppressing messages and replying to WTORs.

• Workload scheduling, such as starting up and shutting down online
subsystems and batch jobstreams.

• Event detection, to quickly discover problems or potential problems that will
affect system availability (for example, the JES2 spool filling up.)

• Monitoring performance and availability.

• Distributing software - both system software and application output, such as
reports.

• Data backup and restore for both system and application datasets.

Chapter 30. Systems Management Philosophy and Methodology 467

The following books contain planning information for automation and illustrate
sample automated operational scenarios using IBM Systems Management
products:

• TME 10 NetView Automation Guide, SC31-8225

• Integrated Centralized Automation/Advanced Operation, GG24-2599

Using the products below to support operational tasks will allow you to support
growing workloads, as well as growing numbers of OS/390 images, in an efficient
manner.

• TME 10 Operations Planning and Control (TME 10 OPC) automates the
scheduling and (if required) rerun of batch workloads. TME 10 OPC allows
you to define your batch scheduling requirements and will develop a
schedule of when batch applications will run, and where. It will also monitor
the real-time environment and notify you of deviations from the schedule. It
can schedule work across multiple OS/390 images, as well as other
platforms such as AIX, UNIX, Windows NT, and OS/400.

• Data Facility Systems Managed Storage/MVS (DFSMS) allows the definition
of data classes and associating data sets with those classes, and will carry
automate data set allocation, migration, and backup actions specified in the
class definitions.

• Adstar Distributed Storage Manager (ADSM) allows using OS/390 as a
repository to contain backup and archived data from other operating system
platforms, and to carry out the required backup/archiving actions without
manual intervention.

30.6 Security Management

30.6.1 Overview
Who the valid users of a system are, and what resources they are permitted to
use, are the foundation of security management.

Implementation of an overall system security philosophy requires identification of
system users and the resources they have access to, and what should happen (if
anything) when an unauthorized user attempts access to a secured resource. If
this design is done as the system is being installed and implemented, it is a
series of small increments rather than a major undertaking.

Remember that even in a highly secure system, some users must be trusted.
The security administration processes should be established with adequate
controls and backups.

30.6.2 Tasks
Security management involves the application of security policies through
functions such as:

• Policy definition - creation, deletion, and control of security services and
mechanisms.

• Monitoring - distribution of security relevant information.

• Event or exception reporting - reporting security-relevant events.

468 VSE to OS/390 Migration Workbook

30.6.3 Methodology
In VSE, users with security needs frequently use one or another vendor security
package, as IBM provides only simple access control and logging security. In the
OS/390 environment, in addition to vendor program offerings, IBM provides the
OS/390 Security Server (a follow on to the highly regarded RACF product).

The Security Server provides system security services to ensure secure access
from batch and online user programs to flat files, VSAM files, and databases.
Printout, job submission and other system facilities such as program source and
load modules, TSO/ISPF functions, CICS Transaction Server, IMS, DB2 and other
OS/390 subsystems all integrate with the OS/390 Security Server protection for
their resources. A System Authorization (SAF) API interface is provided so that
user application programs can use the Security Server to protect
application-specific resources.

30.7 Configuration Management

30.7.1 Overview
Configuration management is concerned with the generation and maintenance of
a configuration database that contains information of all physical and logical
resources and their relationships. Configuration is not concerned with
implementing or managing changes to the information system resources, but
rather with data on the location of components (current topology), their
identifying attributes, their status (for example, active, online), future planning,
and the process for gathering the configuration data.

For OS/390 accurate knowledge of the hardware physical configuration
(connections of systems to I/O devices, systems to other systems), logical
configuration (system and subsystem names, cross system connection
definitions), and software configurations (product releases, libraries, and where
they execute) becomes increasingly important as the environment grows.
Inaccurate or obsolete configuration data can impact system availability and
waste manual time hunting down and finding the proper information. This data is
used within other disciplines, so the tasks for managing and maintaining it are
important to carry out.

Configuration management data requirements include the following:

• Standard data usage - a single definition of configuration data for each type
of resource.

• Shared, common data - ability to share configuration data among people,
application, and subsystems. Sharing with the asset management discipline
is particularly important.

• Reliable data - the ability to dynamically update the configuration database.

30.7.2 Tasks
The configuration management process includes the following:

• Configuration design - designing logical or physical, hardware, software, and
applications configurations.

• Environmental planning - determination of the physical specifications
required to support a configuration.

Chapter 30. Systems Management Philosophy and Methodology 469

• Configuration creation - building and maintaining a configuration description
that is resource-specific.

• Updating configuration information - providing vital product data, topology
data, and other configuration data when a change is made to the
configuration.

• Accessing configuration information - providing information on the actual or
planned resources, specific resource attributes, paths to or from a target
resource, version information for software, and similar data.

30.7.3 Methodology
Configuring the OS/390 hardware, logical connection, and subsystem
environment is straightforward and documented in this book. For example,
products such as HCD and System Automation for OS/390 (which includes the
functions of ESCON manager) can be used to define the hardware configuration
and access paths. The critical element is ensuring that related definitions for
hardware and software components are kept together somewhere. For example,
a DASD volume has a UCB address, I/O device address, and volume name. It is
located in a particular hardware device. It is accessible through one or more
control units (and associated ESCON ports). It may be dedicated to a particular
workload or business organization. It is part of a pool used by a particular
storage class. Managing the configuration means pulling this information
together so that these relationships are known and understood, and so that
systems management activities can be carried out properly using this
information. The scope of a problem or change involving that DASD volume is
much better known when one can see all the ″pieces″ of the system where the
volume is defined in some fashion. This applies to all components in the
environment.

Centralizing configuration information is best done using a set of files, which
may contain both text tables and diagrams. Maintaining this information across
these files is important so that the other disciplines have access to accurate
information. In fact, if the ″attributes″ of a component - the different ways it can
be identified or connected within the system - are documented, part of the
change management process can verify that all of the attributes are properly
accounted for in any changes that affect that component.

TME 10 Information Management provides support for combining configuration
definitions for components within its repository; it can be customized to support
any attributes for a component that the installation desires. This allows not only
direct access to configuration information, but indirect access through change
and problem activities; for example, if a problem occurs with a component, TME
10 Information Management can automatically look up the component′s
configuration record and show what other aspects of the system may be
impacted by the problem.

As the environment grows to multiple MVS images it becomes even more
important to identify and maintain multiple configurations consistently. Where
possible system definitions should be consistent; when they cannot be, a
consistent naming convention should be used.

470 VSE to OS/390 Migration Workbook

30.8 Asset Management

30.8.1 Overview
Asset management provides for managing the information technology inventory
of resources, including both physical and intellectual assets. The components
that you will use to support your workloads in the OS/390 environment all have
business attributes - just like any asset in your company - that have to be
accurately known and tracked.

30.8.2 Tasks
The required activities for asset management include:

• Administrative data - inserting into the central configuration database
information such as the cost of components, their contracted maintenance
expiration date, the eligible suppliers, and so on.

• Ownership assigned - controlling who is assigned as the owner of the
assets, to ensure reliable and up-to-date data.

• Life cycle control - following a resource from identification as a requirement
through purchase, installation, depreciation, and finally, disposal.

• Integration with the change process - this data is typically not captured
automatically, and must be gained through administrative applications. Any
means possible to ensure consistent data by interaction with other manual
or automated processes is required.

30.8.3 Methodology
This process is not as critical during a migration, since the emphasis is on
ensuring the components are defined and working properly together to support
the migrated workload. In the long run the asset information can help identify
some of the costs of running the installation, and when from a financial
standpoint it makes sense to change or upgrade components. Asset
management information can be kept in files, a database system, or a product
like TME 10 Information Management; it should be kept where it can be easily
related to the configuration data and activities mentioned earlier.

30.9 Accounting Management

30.9.1 Overview
Accounting management allows the managers of the enterprise information
system to account accurately and efficiently for system and resource usage
against the registered users of the systems. This is commonly known as
″chargeback″. If you were doing this in the VSE environment you will likely want
to continue this, so knowing where OS/390 produces accounting data and how to
get to it will be important. What is accounted for and charged back varies widely
by company.

Chapter 30. Systems Management Philosophy and Methodology 471

30.9.2 Tasks
Accounting management activities include the following:

• Measurement - collection of actual usage and service-level data.

• Cost allocation - creation of billing and charge-back transactions, including
interfaces to other administrative applications or processes.

• Allocating and tracking project and other support costs.

• Creating and managing billing systems.

30.9.3 Methodology
The majority of OS/390 resource accounting information is produced in SMF
records, either by OS/390 itself or other products (IBM and non-IBM) that will
write data to SMF. Products such as TME 10 Performance Reporter or third party
products can read SMF data and produce reports useful for billing resource
usage.

30.10 Summary
OS/390 is best managed using a structured approach to Systems Management.
This chapter highlighted some (not all) of the processes important to ensuring
well managed environment. There are various process methodologies that will
help identify all the tasks, and products available to support those processes. As
your environment grows, automation will be required to reduce the increasingly
complex management effort. Using a task approach, as opposed to a technology
approach, helps centralize the process activities to minimize duplication and
miscommunication, and form the base for this structured approach.

There are many IBM publications that can provide systems management process
and product information, and implementation examples. The IBM Networking and
Systems Management Redbooks Collection, SK2T-6022 is a softcopy collection of
hundreds of publications that will provide useful information and guidance on
managing the OS/390 environment.

472 VSE to OS/390 Migration Workbook

Chapter 31. Diagnosing System Problems

31.1 Problem Determination Tools
Several tools are available under OS/390 to help the system programmer
diagnose problems. The majority of these tools are intended for system
problems rather than application problems and are often activated under the
guidance of the IBM or ISV support center.

31.2 Dumps
There are many different types of dumps available in OS/390 for various
situations. SYSUDUMP and SYSABEND dumps are for application debugging and
are generally formatted and written to a JES spool data set. These dumps are
similar in function to that of a VSE dump obtained via an OPTION DUMP
statement. SYSMDUMPS normally contain similar information for application
debugging but are stored on DASD and formatted with IPCS. SDUMPS (often
called SVC dumps) are used mostly by OS/390 and various subsystems and are
written to a system dump data set and formatted by IPCS. Stand-alone dumps
are taken when OS/390 no longer responds to commands from the operator
console and has most likely entered a wait state or is in a loop. The system
activity display (SAD) may be useful to help determine if the system is in a loop
or wait state. A stand-alone dump is normally written to tape (or sometimes to
disk) and later formatted with IPCS once OS/390 has been re-IPLed.

31.3 IPCS
The interactive Problem Control System (IPCS) is a tool provided in the OS/390
system to aid in diagnosing software failures. IPCS provides formatting and
analysis support for dumps and traces produced by OS/390, other program
products, and applications that run on OS/390.

31.3.1 Analyzing Dumps
When you submit unformatted dump data sets to IPCS, it simulates dynamic
address translation (DAT) and other storage management functions to recreate
the system environment at the time of the dump. IPCS reads the unformatted
dump data and translates it into a more readable format. IPCS can identify the
following:

• Jobs with error return codes
• Resource contention in the system
• Control block overlays.

IPCS also helps your own dump analysis. For example, you can:

• Format control blocks. IPCS inserts field names into the output and displays
the data in columns by field.

• Browse unformatted dump storage. IPCS allows you to easily follow pointers
to other locations in the dump. It also retains addresses of certain locations
in the dump.

 Copyright IBM Corp. 1998 473

• Reduce the size of a stand-alone dump. You can reduce the size of a
stand-alone dump as you transfer it from tape to a direct access storage
device (DASD) for IPCS processing.

31.3.2 Traces
There are a number of traces available in the OS/390 environment:

• OS/390 System Trace. A low overhead trace that uses a System 390
architected instruction. The trace provides a summary of system processing
and is normally running continuously. This trace is present in all dumps.

• Master Trace. Provides a log of the most recently issued console messages
at the time of a dump. This trace is formatted by IPCS when analyzing a
SDUMP or stand-alone dump.

• Component Trace. Shows processing within single OS/390 components and
almost always used under the guidance of the IBM support center.

• Generalized Trace Facility (GTF). OS/390 provides GTF to record trace data
to DASD, tape or in storage. Many OS/390 components and subsystems write
trace records to GTF with the most common being VTAM. GTF needs to be
started in order for the trace records to be recorded. In addition the system
programmer can issue SLIP commands to write trace records to GTF. GTF
trace records can be formatted by IPCS, in addition VTAM trace records that
are written to GTF can be formatted by ACFTAP.

31.3.3 Analyzing Traces
Using IPCS you can format the entries of any trace in a dump or trace data set.
You can also do the following with GTF and component trace records:

• Selectively format records without deleting the unformatted data from the
buffer or dump.

• Find the system and time stamp for each record.

• Mix formatted GTF and component trace records without combining the
unformatted data.

• Reduce the number of records in a trace data set.

• Extract trace buffers from dumps.

• Combine GTF or component trace records into a single data set from
multiple trace data sets.

31.3.4 Using IPCS
IPCS is a TSO command and is normally invoked while a system programmer is
logged on to TSO, however in some cases it may be preferable to execute IPCS
as a job through a batch invocation of TSO. Since the IPCS command must be
executed before ISPF is invoked, there would normally be a separate logon
procedure for users of IPCS.

An IPCS dump directory needs to be allocated for each IPCS user. Each dump
directory can manage multiple dump data sets.

474 VSE to OS/390 Migration Workbook

31.4 JES2 Diagnosis
There are some JES2 mechanisms that can be used for problem determination.

• $TRACE: JES2 internal tracing can be activated via $S TRACE; $T TRACEDEF;
$P TRACE commands. These are typically requested by IBM service
personnel.

• SYMREC: Symptom records are recorded in the LOGREC file for some JES2
internally discovered problems. Use EREP to format these entries.

• HASP088 message: When JES2 terminated abnormally, a HASP088 message
is generated. This multi-line WTO has registers at ABEND, a traceback of
program linkage leading up to the error, and of course the reason for the
termination.

• Analysis of maintenance level: The maintenance level of a given module as
well as its memory address can be determined via $D MODULE(name). This
typically will be requested by IBM service personnel.

31.5 SLIP
SLIP commands are a powerful tool that can be used to either take an SDUMP or
write trace records to GTF. Some of the SLIP commands are PER (program event
recording) such as instruction fetch and successful branch and may cause CPU
degradation depending upon how they are used. SLIP provides additional
functionality beyond what the VSE SDAIDS does. SLIP commands are generally
entered by a system programmer at an operator console. If the SLIP command
causes trace data to be written, then GTF needs to be started for the trace data
to be recorded.

31.6 Performance Tools
RMF is provided with OS/390, in addition there are several vendor performance
monitors.

RMF provides three levels of performance monitoring:

• MONITOR I - records data to SMF that is used for performance and capacity
analysis. Data is formatted via an RMF batch program or by other products
such as SLR or SAS.

• MONITOR II - runs under TSO and provides an interactive view of the OS/390
system (CPU, paging, storage, dispatching).

• MONITOR III - a powerful interactive tool that monitors the OS/390 system for
bottlenecks in system throughput and provides a point and shoot view of
overall and subsystem performance. Current interval and historical interval
data is provided.

31.7 LOGREC
The LOGREC data set is functionally equivalent to the VSE recorder file. In
addition to hardware errors OS/390 records software errors to this data set. This
provides valuable information in the initial problem determination phase of
diagnosing a problem. EREP is normally used to extract the required records. In

Chapter 31. Diagnosing System Problems 475

addition, IPCS can be used to format the in-storage LOGREC buffers while
analyzing a dump.

31.8 SYSLOG
All system and job related messages along with all operator commands are
written to the SYSLOG JES spool data set. SDSF (under TSO) can be used to
view the SYSLOG to aid in problem determination.

31.9 DFSMS/MVS Diagnosis
DFSMS/MVS provides many tools to assist a system programmer diagnose
problems. Each component provides its own diagnosis documentation.

31.9.1 DFSMSdfp
DFSMSdfp provides many diagnostic aids that can be used by a system
programmer when diagnosing problems. The DFSMS/MVS DFSMSdfp Diagnosis
Reference, LY27-9606 provides information on reading dumps, running GTF
traces, SMS traces, error codes, and more for each DFSMSdfp component. The
DFSMS/MVS DFSMSrmm Diagnosis Guide, SY27-9615 provides instructions for
diagnosing errors such as building keyword strings to search for known
component failures.

31.9.1.1 Analyzing Catalogs for Errors and Synchronization
Catalog entries might become unsynchronized, so that the information about the
attributes and characteristics of a data set are different in the BCS, VVDS, and
VTOC. These differences may make a data set inaccessible or otherwise
unusable.

To analyze a catalog for synchronization errors, you can use the Access
Methods Services (AMS) DIAGNOSE command. This command will analyze the
content of catalog records in the BCS and VVDS, and compare VVDS information
with the DSCB information in the VTOC. DIAGNOSE will also check for invalid
data or invalid relationships between entries. For more information concerning
the DIAGNOSE command, refer to DFSMS/MVS Access Methods Services for ICF,
SC26-4906. For more information on backup and recovering catalogs, catalog
diagnostic information, using DIAGNOSE output for analysis, refer to Managing
Catalogs, SC26-4914.

31.9.1.2 Catalog Recovery
The following is from Flash 9741 ICF Catalog Recovery

There is a dependency on catalog availability for continued operation of online
systems, batch processing, and time sharing. A catalog outage can be extremely
disruptive.

There are several utilities available from IBM that can be used to back up and
reload a catalog. The user could choose from:

• IDCAMS EXPORT/IMPORT

• DFSMSdss logical DUMP/RESTORE

• DFSMShsm BACKDS/RECOVER

476 VSE to OS/390 Migration Workbook

No matter what utility is used to perform the backup and recovery of a catalog,
the process isn′ t complete until the catalog is resynchronized with the data sets
as they currently exist. Between the time the catalog was backed up and
restored, data sets have been deleted and defined and the catalog has to be
updated to reflect these changes. These changes to catalogs, or catalog events,
are recorded in SMF records. The SMF record types for catalog events are:

• 61 - When records are added to the BCS during DEFINE

• 65 - When records are deleted or updated in the BCS

• 66 - When changes are made to the BCS during ALTER processing

With these records, the information for catalog re-synchonization is available, but
there is still a need for a facility that can use this information to update the
catalog quickly. Using these records without a tool designed to process them is
possible, but is time consuming and laborious.

There are products available such as the Integrated Catalog Facility Recovery
Utility or ICFRU - (5798-DXQ) that provide this capability. Combined with a
regular program of catalog diagnostics and backups, proper recording, dumping
and tracking of data from SMF, it is possible to shorten the time of a catalog
outage.

31.9.1.3 Checking a VSAM KSDS for Structural Errors
AMS provides the EXAMINE command which can be used to analyze and report
on the structural integrity of the index and data components of VSAM KSDS
clusters and the basic catalog structure (BCS) of an ICF catalog.

• EXAMINE INDEXTEST examines the index component of a KSDS by
cross-checking vertical and horizontal pointers contained within the index
control intervals.

• EXAMINE DATATEST evaluates the data component of a KSDS by
sequentially reading all data control intervals, including free space control
intervals.

Messages describing errors or inconsistencies are generated during EXAMINE
processing as that condition is detected. For more information concerning the
EXAMINE command, refer to DFSMS/MVS Access Methods Services for ICF,
SC26-4906.

31.9.2 DFSMShsm
DFSMShsm has its own set of diagnostic aids that can be used by a system
programmer when diagnosing problems. The DFSMS/MVS DFSMShsm Diagnosis
Reference, LY27-9608 provides information about DFSMShsm control blocks and
data areas used during diagnostic and maintenance procedures. The DFSMShsm
Diagnosis Guide, LY27-9607 provides instructions for diagnosing errors such as
building keyword strings.

The DFSMS/MVS Managing Data Availability, SC26-4928 provides information
about disaster prevention and the recovery of DFSMShsm data based on real
experiences.

Chapter 31. Diagnosing System Problems 477

31.9.3 DFSMSrmm
The diagnosis document for DFSMSrmm is the DFSMS/MVS DFSMSrmm
Diagnosis Guide, SY27-9615. It documents how to obtain diagnostic information,
eliminate common sources of errors, using the DFSMShsm Problem
Determination Aid (PDA) trace formatter program, and building keyword search
strings.

Maintaining the DFSMSrmm control data sets and report creation is documented
in the DFSMSrmm Implementation and Customization Guide, SC26-4932.

31.9.4 DFSMSdss
The diagnosis publication for DFSMSdss is the DFSMS/MVS DFSMSdss
Diagnosis Guide, LY27-9609. It provides information for building keyword search
strings, format of the DFSMSdss dump data set, and the DFSMSdss patch area.

31.10 Diagnostic Reference Publications
The following books provide more detailed diagnostic information, and are useful
for diagnosing specific problems:

SY28-1082 OS/390 MVS Diagnosis: Procedures
SY28-1084 OS/390 MVS Diagnosis: Reference
SY28-1085 OS/390 MVS Diagnosis: Tools and Service Aids

SY27-9605 DFSMS/MVS DFSMSdfp Diagnosis Guide
LY27-9606 DFSMS/MVS DFSMSdfp Diagnosis Reference
LY27-9609 DFSMS/MVS DFSMSdss Diagnosis Guide
LY27-9607 DFSMShsm Diagnosis Guide
LY27-9608 DFSMS/MVS DFSMShsm Diagnosis Reference

SC28-1737 OS/390 SMP/E Diagnosis Guide
SY27-2639 OS/390 Security Server (RACF) Diagnosis Guide
SY28-1086 OS/390 JES2 Diagnosis
GC28-1790 OS/390 JES2 Commands
SC33-6592 OS/390 RMF Diagnosis Guide
LY43-0078 VTAM Diagnosis
LY43-0105 TCP/IP for MVS: Diagnosis Guide
G544-5462 PSF/MVS: Diagnosis Guide and Reference

478 VSE to OS/390 Migration Workbook

Part 7. Converting your Applications

 Copyright IBM Corp. 1998 479

480 VSE to OS/390 Migration Workbook

Chapter 32. Conversion Process

Converting a data processing installation from VSE/ESA to OS/390 is a complex
process that affects all areas of an installation. Personnel must learn different
procedures; operations work changes in many ways and applications that run
under VSE require conversion before they run under OS/390. Even managing the
migration project, which includes planning, allocating people and resources and
tracking the migration process, is a complex job.

Migration includes the entire process of moving your installation from VSE to
MVS. Conversion deals with the changes that an application running under VSE
requires to enable it to run under MVS.

This chapter:

• provides high level information about the conversion process
• directs the reader to resources for additional high level information
• summarizes the information of the preceding chapters

Major migration tasks and where task information resides in this book:

1 Planning and installing the MVS system.

• Refer to Chapter 25, “Prepare the Migration Environment” on page 401.

2 Training personnel to work on the OS/390 system.

• Refer to 2.6, “Educational Requirements” on page 31.
• Refer to Chapter 27, “Orienting ICCF Users to TSO/ISPF” on page 437.
• Refer to Chapter 28, “Orientation to OS/390 Console Operation” on

page 443.
• Refer to Chapter 29, “Orientation for Utilities” on page 455.
• Refer to Appendix A, “Education Information” on page 535.

Each chapter contains information on personnel, training or OS/390 system
use.

3 Analyzing migration requirements and developing a migration plan that is
specific for this site.

• Refer to 2.7, “Scope of Work and Challenges” on page 32.
• Refer to Chapter 3, “Developing the Plan” on page 41.
• Refer to Chapter 3, “Developing the Plan” on page 41 and Appendix A

of the MVS Migration System - Planning Guide, SB11-8077.

4 Analyzing the VSE workload and developing a complete list of the
applications to be converted.

• Refer to 2.7, “Scope of Work and Challenges” on page 32.
• Refer to 32.4, “Preparation Phases” on page 493.

5 Developing standards for application conversion that reflect your standards
for the new OS/390 system.

• Refer to 3.3.7, “Standardized Conversion Deliverables and Automation”
on page 51.

• Refer to 5.2, “Data Set Naming Considerations” on page 99.
• Refer to 25.4, “Set Up Standards, Procedures, and Documentation” on

page 407.
• Refer to Appendix C, “DFSMS Naming Conventions” on page 543.

 Copyright IBM Corp. 1998 481

• Refer to MVS MS - Production Standards, LB11-8080.

6 Translating the programs, taking into account the differences between VSE
and MVS for each programming language.

• Refer to Part 3, “Converting VSE Languages to OS/390 Languages” on
page 247.

• Refer to the specific program, utility or database section in this book.
• Refer to 2.7, “Scope of Work and Challenges” on page 32.

7 Converting the job control language. Because VSE and OS/390 differ
significantly in JCL structure and syntax, methods of data distribution and
production methods, JCL conversion is normally the most complex task of
any migration.

• Refer to Chapter 4, “Job Control Language (JCL) Differences and
Considerations” on page 69.

• Refer to 2.7.3, “JCL Conversion” on page 33.

8 Transferring data files from VSE to MVS.

• Refer to Chapter 25, “Prepare the Migration Environment” on page 401
for information on system connectivity.

• Refer to 32.5, “Conversion Phases” on page 503.
• Refer 2.7.4, “File Migration” on page 35.

9 Testing converted applications under OS/390.

• Refer to Chapter 26, “Test Environments” on page 419.
• Refer to 32.5, “Conversion Phases” on page 503.
• Refer to Chapter 31, “Diagnosing System Problems” on page 473.

 10 Handling the production workload under OS/390, ensuring the jobs are
submitted smoothly while staff is still learning about MVS operations.

• Refer to Part 6, “Running Your OS/390 System” on page 435.
• Refer to 32.6, “Implementation Phases” on page 515.

For a migration process time line that shows the relationship between the
various conversion tasks refer to 3.4.2, “Project Plan Example” on page 56.

32.1 Conversion Process Introduction
The following discussions follow the methodology used in the Cortex Migration
System (Cortex MS). Migrations using this methodology are implemented
through a phased project approach. The methodology has proven to be
successful, is well documented, and provides for an orderly discussion of topics.

The conversion process of the migration project can be divided into the following
major phases and phase groups:

1 Preparation Phases
• Project Management
• Application Inventory
• Conversion Specifications
• Tool Customization

482 VSE to OS/390 Migration Workbook

2 Conversion Phases
• Initial Trial Conversion
• Regression Testing and Repeated Trial Conversions

3 Implementation Phases
• Actual Conversion and Switchover
• Initial OS/390 Operations

This chapter will address these phases along with the key tasks to be completed
in those phases. This chapter has been sectioned as follows:

32.1, “Conversion Process Introduction” on page 482

32.2, “Mass Conversion - Background, Benefits and Method” on page 486

32.3, “Mass Conversion Phase Overview” on page 493

32.4, “Preparation Phases” on page 493

32.5, “Conversion Phases” on page 503

32.6, “Implementation Phases” on page 515

32.1.1 References
These materials provide sources of supplemental information for this chapter.

• MVS Migration System - Planning Guide, SB11-8077 describes the planning
process for the MVS-MS. This guide is for the people who are responsible for
planning and scheduling the migration and fitting the conversion that
MVS-MS performs into the migration schedule. It is the basic book for the
project manager and every technical person involved in planning and
running both the migration and the conversion.

• MVS Migration System - General Information, GB11-8074 provides an
overview of the IBM MVS Migration System and is for the people at an
installation who will decide if MVS-MS will work for a particular environment.
It describes both the advantages and limitations of MVS-MS, presents
information on how MVS-MS works, and identifies some specific early
planning concerns.

• MVS Migration System - Planning Chart, SB11-8090 displays the standard
conversion tasks and subtasks relative to their duration and relationship to
each other.

• MVS MS - Production Standards, LB11-8080, is for the migration team
members most concerned with defining the target MVS environment. It
presents general information on MVS and detailed information on the areas
in which your installation must establish production standards.

• Chapter 34, “Customer Migration Example” on page 529 provides an
overview of a customer migration. It also includes discussion on the use of a
two phased approach to a migration project and migration services
providers.

• IBM White Paper Appendix C, “DFSMS Naming Conventions” on page 543
provides information on OS/390 data set naming conventions.

• IBM Washington System Center Flash # 9741, which can be accessed through
IBMLINK, provides information on VSAM catalog limitations in OS/390 after
Year 2000.

• 33.2, “Conversion Tools” on page 520 provides information about conversion
service providers and conversion tools

Chapter 32. Conversion Process 483

32.1.2 Prerequisites
There are two key requirements that need to be satisfied before embarking on a
migration:

 1. The source code must be available for your applications. If the source code
does not exist then it must be rebuilt.

 2. A method to transfer the source code to the OS/390 system.

32.1.3 Recommendations
The following are recommendations that either apply to all phases of your
migration or are not specific to any phase.

32.1.3.1 Project Management
In some cases it may make sense to hire contractors, temporary personnel or a
service provider to perform tasks that will only be performed once and do not
provide long term payback to the installation. These one time tasks may include
project management, specific conversion activities and use of project specific
tools. There are many tasks to consider during a migration. Careful
consideration should be given to knowing the skills that are available to the
project, the requirements for systems programming, other projects that are
planned or in progress, and how augmenting these skills and personnel may or
may not make sense.

32.1.3.2 Take Advantage of Conversion Tools and Automation
Executing a migration with a mass conversion tool and automated processes can
reduce both the time and people required to migrate from VSE to OS/390. Where
it is not a large task to convert three programs and two strings of JCL, it is a
large and difficult task to increase the scope by one thousand and perform the
same conversion.

The automation provided by the use of a mass conversion tool is unique. After
an extensive period of analysis, which includes running both pilot conversions
and dummy conversions, you can, in a final mass conversion, convert all of your
VSE applications to MVS in a single automated process.

32.1.3.3 Manuals
The MVS Migration System - Planning Guide and the MVS Migration System -
General Information Manual are key publications and should be among the first
manuals ordered when planning or investigating a migration.

32.1.3.4 Secure OS/390 Skills
The key benefits of having experienced production or systems programmer skills
are with the installation of and running the new system. It takes time to learn
and become comfortable in the OS/390 environment. An additional benefit of
having an experienced OS/390 systems programmer on site, whether permanent
or temporary, is through determining what the new system will look like by
defining standards and naming conventions.

484 VSE to OS/390 Migration Workbook

32.1.3.5 Migrate the SNA Network Early
If the migration plan includes converting an SNA communications network, then
consider migrating ownership of the network from VSE to OS/390 within the two
months that precede operating system switchover. At this time, switchover
minus two months, the OS/390 system should be positioned for and nearly
production ready. Assuming there is connectivity between the systems, the
testing phase path has been from VSE to OS/390. After the ownership change of
the network the path is from OS/390 to VSE.

This is a good task to perform as early as possible before switchover. Switching
ownership of the network early provides some important benefits, including:

• Reduces the size and complexity of the conversion tasks on switchover day
through dividing the conversion into smaller subtasks.

• Eliminates having to fix network problems on switchover day.
• The operations staff get experience on the OS/390 console.
• If new products such as NetView are installed the staff also gets experience

with these.
• Builds migration team confidence through the successful subtask conversion.

32.1.3.6 24x7 Installations
The major conversion challenge in a 24x7 installation is the limited window of
allowable time for testing and switchover. Typically the biggest consumer of time
during testing and switchover is the data or file migration. Therefore this is the
area to focus on to achieve time reductions during conversion. Methods to
shorten the window need to be found and exploited. In a 24x7 installation the
impact comes from having to stop the VSE production operations during the
window in which you are moving data. You can′ t copy data while VSE production
is running.

One additional element that increases the duration of the data transfer, is that
backups should be run in case a fallback to VSE is necessary. If you migrate
using tapes, then these tapes can be used. The use of tapes can be quite
lengthy. One way to shorten the window where tapes are used is to orchestrate
the process right down to a drill to maximize the use of the tape drives, tapes
and people.

Additional testing and switchover timing considerations are:

• Time must be allotted for recovery and backout in the case of problems.

• Changes to hardware configurations and JCL can increase the duration of
conversion. Examples include RJE stations where you have to change the
JCL in them and the configurations of the PCs that are doing file transfers.

• Screen scraper applications are also affected. End users will be accustomed
to seeing PC screens that are in ICCF format. After the switchover the
screens will be in CICS or TSO formats. These need to be reconfigured
within the window for switchover.

• For large databases it may make more sense to copy disk to disk for backup
and then convert the new volumes in place rather than use database utilities
to move the data.

One method to expedite the data migration has been the use of extra DASD
to handle the bubble associated with copying the database for switchover.

Chapter 32. Conversion Process 485

32.1.3.7 Two Phase Approach
The migration project can be broken into a few logical pieces that may help its
execution. One method that has been successful is to begin with a mini project,
phase 1, to identify and resolve your inventory. Proceeding with a known
inventory will allow more precise cost analysis (time, people resources and so
on). The cost of a conversion is based on inventory. It also provides information
about the effort that may be required to recreate source materials. There are
tools and service providers that perform these services. The second phase is the
actual implementation.

The Phase 1 output is also a standalone deliverable that can be very useful for
Year 2000 preparation.

32.1.4 Assumptions
For the purposes of providing more specific guidance for conversion projects, an
approach to the migration had to be determined. This is also true for the
migration effort itself, an approach must be adopted. The topics discussed in the
Conversion and Implementation Phases of this chapter required that a choice
was made. In these discussions, we will describe the environment associated
with using Mass Conversion methods and tools. More specifically, the Cortex
Migration System (MS) methods and tools will be used.

32.2 Mass Conversion - Background, Benefits and Method

32.2.1 IBM MVS Migration System - Background
The IBM MVS Migration System (MVS-MS) was a conversion aid IBM licensed
and sold in the mid 1980s through the mid 1990s that consisted of both a
conversion method and a conversion tool.

IBM licensed this conversion aid from SISRO and sold it as the IBM MVS
Migration System. When sold through SISRO the aid was, and is known as the
Cortex Migration System (Cortex MS). Remote support (via telephone) for MVS
MS and Cortex MS was and is performed by SISRO for the Americas and by
SISRO SA for the rest of the world.

IBM stopped licensing the Cortex tool in the mid 1990s. Although there have
been many changes to the MVS and VSE operating systems and improvements
to the conversion tool, the methodology of planning and execution of the
conversion has not changed significantly. Today, the Cortex MS tool remains
available from Sisro Inc..

A collection of documents including the MVS-MS Planning Guide and the
MVS-MS General Information Manual was produced by IBM to facilitate the
planning and execution of migrating from VSE to MVS. These manuals are
available through IBM.

486 VSE to OS/390 Migration Workbook

32.2.2 Mass Conversion Overview / Benefits
Mass conversion is the major distinction of the CORTEX-MS process. It results in
a single switchover of the entire VSE application portfolio to OS/390 over a
weekend. Until the switchover weekend, all converted applications run in
production under VSE. By the end of the switchover weekend, all converted
applications run in production under OS/390. In the mass conversion, there is no
overlap of VSE and OS/390 production.

Cortex MS simplifies migration by automating the conversion of programs and
JCL, and the transfer of files from VSE to MVS. It recognizes the differences
between VSE and MVS and builds an MVS version of the VSE material.

In the mass conversion, all applications items are converted together, one
conversion step at a time. It is the opposite of a traditional progressive
conversion, in which all conversion steps are applied to the same application
item, one item at a time.

For example, in an item-by-item conversion, each program would go individually
through the successive steps of inventory, conversion, compilation/link-edit and
regression testing. Instead, in a mass conversion, the entire code inventory (all
programs, sub-programs, macros, copybooks, and include books) will first be
verified for consistency and completeness. Then it will be converted together in
one step, compiled/link-edited together in another step, and finally regression
tested.

After each mass conversion step, results are reviewed and validated not just one
at a time, but hundreds or thousands of application items at a time. Result
validation too, is performed in mass, using summary statistics to classify all
messages by occurrence and by severity. Individual manual verifications are
conducted on a sample of items that have the same message, to identify by
sampling the cause of the message and decide on a global resolution.

The first mass conversion is a pilot conversion. It is used for analysis, rather
than for obtaining MVS material. The following mass conversions will be trial
mass conversions, which will deliver MVS test material with an increasing
quality, as the project and CORTEX-MS custom modification progress. Batch and
online may be converted together or separately, as both will progress at a
different pace. The final and actual mass conversion will be started after MVS
tests have been successfully completed. It will deliver the actual MVS production
material. The actual JCL conversion may be scheduled one or two weeks before
the actual program conversion, in order to apply final manual JCL modifications.
There will also be a special one-time translation of all application development
source code, but without any compilation or JCL generation. Every three to four
weeks, the mass conversion will start from a fresh copy of the entire conversion
inventory, in order to take into account the last VSE maintenance modifications.
Between two supplies, additional mass conversions may be executed from the
same supply, in whole or in part, in order to take advantage of the latest custom
modification improvements.

Key elements of the Cortex-MS mass conversion methodology are:

 1. Automated Conversion
 2. Repetitive Conversion
 3. Mass Conversion (Switchover)

Chapter 32. Conversion Process 487

32.2.2.1 Automated Conversion
There are several ways to automate some or all of the conversion. The
automation that Cortex-MS provides is unique in that it is a mass conversion.
After an extensive period of analysis, which includes running both pilot
conversions and dummy conversions, you can, in a final mass conversion,
convert all of your VSE applications to MVS in a single automated process.

Mass conversion is more conducive to automation than progressive conversion,
due to the fact that it addresses the same conversion requirement for all
converted elements at a time, instead of addressing all conversion requirements
for one converted element at a time as in the progressive conversion.

When converting one element at a time it may appear faster to do it manually
than to invest in an automated solution. Until you see how many occurrences of
the same conversion requirement must be addressed, you cannot properly
assess the value of investing in an automated solution.

Because of the automated conversion procedures, all of the Cortex-MS
conversion steps can be iterative; in other words, you can proceed by trial and
error and then refine the Cortex-MS customization. A major step in implementing
and customizing Cortex-MS is to automate the conversion procedures to support
as many iterations as necessary before switching over to MVS. With this support,
Cortex-MS enables a small conversion team to handle the conversion process in
a relatively short time with minimum disruption to operations and development.
This automation results in workload and time frame reductions. The methodology
ensures consistent and reliable results, therefore reducing the scope of
conversion tests.

A high degree of automation is required to convert and switch an entire VSE
application portfolio to OS/390 over a short period of time, as done in the
single-switchover-weekend mass conversion approach.

32.2.2.2 Repetitive Conversion
The repetitive conversion is an iterative method in which the conversion is
improved by refining the automated conversion process and the associated
software instead of the generated MVS material. After a trial mass conversion,
the generated MVS material is function tested in MVS. In the event that the
conversion reports or MVS tests indicate conversion errors, the CORTEX-MS
software is custom modified to perform the conversion without errors, and a new
trial mass conversion is run again starting from a fresh copy of VSE source
material. This procedure is repeated until all conversion errors are eliminated.
The actual and final conversion, and the switchover to MVS do not start until trial
mass conversions are error free.

This approach allows assessing the progress made with the customization of the
conversion tools and the automation of the conversion process. Carefully
monitoring that progress is key to the project management, progress tracking
and foremost to understanding when the automated conversion process is ready
for the final mass conversion and weekend switchover. The repetitive conversion
allows greatly reducing the risk inherent to a single mass conversion and
weekend switchover.

By using a fresh copy of VSE source material for each mass conversion, all
changes and modifications applied under VSE are automatically taken into
account without having to follow up the VSE maintenance and to duplicate it in

488 VSE to OS/390 Migration Workbook

OS/390. Therefore, it is not required to freeze or follow up development,
enhancement, or maintenance of applications during the conversion.

32.2.2.3 Mass Conversion (Switchover)
The actual mass conversion, called the switchover, often takes place over a
single weekend. Before switchover, the production workload runs under VSE.
After switchover, the production workload runs under MVS.

The switchover is the key advantage of using Cortex-MS as a conversion tool. It
eliminates the migration problems related to running some applications under
VSE and some under MVS for an extended period of time. It eliminates the need
to maintain both MVS and VSE versions of files. It allows maintenance and
development work to be done on the VSE versions of programs right up until the
actual mass conversion, and the program converted is the latest working VSE
version.

32.2.2.4 Automation Limits
Some non-standard source code modifications must be performed manually,
either because they are too complicated to automate, or because they are in
very low occurrences. In both cases, automating the process would not be cost
effective when compared to a manual modification. Manual modifications
complement the automated conversion (before or after). They can be applied as
VSE positioning, or manual OS/390 conversion.

Modifications applied to the VSE version of the source code, which is then tested
and installed in production under VSE is known as ″VSE Positioning″. This
technique is consistent with the repetitive conversion approach because it does
not require freezing any source code. For example, VSE COBOL programs must
be manually positioned to:

• Move STOP RUN statements outside INPUT (or OUTPUT) SORT PROCEDURE,

• Remove any access to I/O buffers before the file is opened or after the file is
closed,

• Remove some undocumented features of COBOL Report Writer,

• Remove the use of the DISPLAY verb to imbed lines into a report written
with the WRITE verb.

Modifications applied to the OS/390 version after automated conversion are
known as ″OS/390 Freeze″. Here a procedure is defined to automatically identify
and manually duplicate the VSE maintenance to the OS/390 ″frozen″ source code
throughout the project. Manual OS/390 conversion is limited to exceptions
because it is incompatible with the repetitive conversion approach.

After switchover, all production is done with the MVS versions of your
applications. The programs that Cortex-MS translates become genuine MVS
programs and are not emulated.

32.2.3 Mass Conversion Tools
Software tools suitable for mass conversion must automate most of the
conversion of VSE JCL, programs and files to native OS/390 without any custom
modification.

In addition, to accommodate the large diversity of coding patterns between VSE
sites, the mass conversion tools must be flexible. Run-time options and exit

Chapter 32. Conversion Process 489

routines must allow users to custom adapt the tools to specific local conversion
requirements. These requirements, not addressed by standard processing, are
always identified. The conversion tools must be custom modified by positioning
execution options, coding exit routines, and possibly developing some ad-hoc
pre- or post-processors.

Finally, tools specifically designed for mass conversion must simplify and
accelerate the review and verification of mass conversion results by producing
summary statistical reports, which allow identifying and assessing at a glance
the conversion of hundreds or thousands of items.

32.2.4 Automated Conversion Process
Assembling and customizing the mass conversion tools result in an automated
conversion process, which converts the entire VSE application portfolio to
OS/390 in only a few hours, including:

• Collection and verification of the application inventory

• Translation of application programs and associated macros, copybooks or
subprograms

• Generation of OS/390 load modules

• Migration of the CICS maps

• Conversion of other production source items such as FCBs or PSBs and
DBDs

• Conversion of VSE and POWER JCL streams including application and utility
steps and associated SYSIN cards

• Generation of new OS/390 JCL complying with the selected OS/390
production standards

• Migration of VSE production files to OS/390

32.2.5 CORTEX MS
CORTEX Migration System (CORTEX MS distributed by Sisro Inc.) is the primary
tool for mass conversions from VSE to OS/390. It consists of seven software
components for converting VSE systems to OS/390. All of the CORTEX MS
components are menu-driven through TSO/ISPF panels. CORTEX MS is installed
either on the future OS/390 production system or on a temporary OS/390
conversion system. All seven CORTEX MS components are necessary to
automate the mass conversion. Listed below is a description of the CORTEX MS
software components:

DMT (DOS/OS/390 Translator)
A translator for VSE JCL and programs written in COBOL,
Assembler, PL/1, and RPG II.

INT (File Integration)
Consolidates the results of JCL translation, classifies files
according to their life cycle, and loads the Production Database
(PDB).

PDB (Production Database)
A batch application change control system that automatically
generates OS/390 JCL to custom defined OS/390 standards.
PDB uses an internal Production Control Language (PCL) for

490 VSE to OS/390 Migration Workbook

functional descriptions of batch applications (standards and
system independent).

EZ-PCL (Easy PCL)
A PC/MS-Windows based graphic user interface (GUI) to the
PDB, which enables definition or modification of batch
applications in their flowchart representation.

PREP (Preparation)
An interactive system of preparation, submission, backout, and
restart of OS/390 jobs.

SWITCH (Switchover)
Transfers VSE files to OS/390 and DFSMS using VSE and
OS/390 file information stored in the PDB.

ENV (Environment)
A set of subroutines supplied in source format that may be
required to simulate VSE functions without an OS/390
equivalent: ISAM, COMREG, UPSI, and so on.

Some of the CORTEX MS/ENV simulation subroutines may be used for execution
of the converted applications. Otherwise, no other CORTEX MS components are
required for OS/390 operations.

Figure 57 illustrates the automated conversion process that can be developed,
using the CORTEX Migration System, to convert VSE applications to OS/390.

Figure 57. Automated Conversion Process

The discussions that follow address the functions provided by mass migration
tools. The tool and process being referred to is the CORTEX MS aid developed
by SISRO and licensed to IBM as the MVS-MS (Migration System).

The key functions provided by the mass conversion tool are:

Chapter 32. Conversion Process 491

• Inventory Validation

• Translate the Languages/Programs

• Translate the JCL

• File Transfer

32.2.5.1 Inventory Validation
The Cortex tool cross references the run JCL, the procs, the FCBs and various
includes. Then it cross references the source programs, copy books, macros,
subroutines, PSBs, the CICS tables and maps for CICS; basically all the JCL
elements. In CICS the CICS PPT and transaction programs and applications are
cross referenced. The tool cross references these against the base Processing
Program Table (PPT). From these each element is linked to what the element
includes to determine what is referenced, what is missing and which is
unreferenced. The benefit of the tool is that when you run the Cortex scan utility
the results are available in a few minutes versus a few days if cross referenced
manually.

32.2.5.2 Translate the Languages/Programs
The Cortex MS tool can translate most syntax that is acceptable to VSE
compilers, and most of the clauses that VSE and MVS compilers interpret
differently.

COBOL Conversion Tools

The main support the Cortex MS tool provides regarding COBOL conversion is
with Reserved Words.

Assembler Conversion Tools

The main task the Cortex MS tool provides regarding Assembler conversion is
with Macros.

32.2.5.3 JCL Conversion Tools
Cortex MS converts most VSE JCL and job entry control language (JECL)
statements and operands, and their different formats.

The main tasks the Cortex MS tool provides regarding JCL conversion are:

• Expand the JCL and convert it in association with the file information that
comes from the programs

• Provide guidance on file handling
• Provide the capability for exception handling

32.2.5.4 File Transfer
The Cortex MS tool automatically handles the transfer of most files from VSE to
MVS by building the REPRO jobs to copy the correct files to OS/390. The tool
builds a listing, to be used for data migration, from reading VTOCs and
LISTCATs. It also reads JCL, the programs and the source code from which to
build cross references.

The tool does not provide any utility to transfer the data, only the utilities to
prepare jobs to use IDCAMS. The IDCAMS REPRO standard utilities that exist in
both VSE and OS/390 can provide this function.

492 VSE to OS/390 Migration Workbook

32.3 Mass Conversion Phase Overview
Built on the principles of mass, automated, and repetitive conversion, a mass
conversion project is organized in phases, as shown on Figure 58. The figure
shows the specific phases and includes an approximate schedule with durations.

Figure 58. Project Phases

32.4 Preparation Phases
The project phases included in preparation activities are:

• Project Management
• Application Inventory
• Conversion Specifications
• Tool Customization or Tailoring

The main activities of the preparation phases includes:

• Analyzing the VSE workload to be converted
• Developing the migration workbook
• Planning the conversion implementation

References you can consult for additional information about the preparation
phase include:

Chapter 32. Conversion Process 493

• Refer to Chapter 3, “Developing the Plan” on page 41 for information on
project staffing, assignments and responsibilities.

• Refer to Appendix C, “DFSMS Naming Conventions” on page 543 for
information on data set naming conventions.

• Refer to Appendix A of the MVS-MS Planning Guide for help developing the
Migration Plan.

• Refer to Appendix B of the MVS-MS Planning Guide for help developing the
Conversion Plan.

• Implement System Managed Storage (DFSMS)

It is strongly recommended that DFSMS be planned for and implemented from
day one of the migration. The key benefit of implementing DFSMS is how it helps
the installation be positioned for future growth. Implementing DFSMS also helps
the conversion by providing structure for standards and naming conventions.
Other benefits of installing DFSMS from the outset are:

 1. No future conversion of the configuration is required.
 2. Positioning for new software function and hardware support where most new

functions in OS/390 have SMS as a prerequisite. Examples include data
compression and extended data sets.

 3. Provides DASD management.
 4. Supports cataloging all your data sets from the beginning.
 5. Less complicated JCL from a VSE user perspective through the use of data

classes.

32.4.1 Phase 0: Project Management and Technical Leadership
A Project Manager/Technical Leader is assigned the responsibility for
administration and technical direction of the conversion efforts. Project
management activities consist of:

• Developing detailed work plans and schedules

• Evaluating the progress made against work plans and schedules

• Conducting weekly progress review meetings

• Conducting monthly project status reports

• Providing liaison and coordination between all personnel involved

32.4.1.1 Project Planning and Orientation
The objective of this task is to develop detailed project plans and orient the
conversion team and all personnel involved to the conversion approach and to
the project plans. The project plans include:

• Overall project plan

• Online application test plan

• Batch application test plan

• Switchover plan

It is recommended to use a project management software tool to develop and
update the project plans. An example of a project plan is provided in Chapter 3,
“Developing the Plan” on page 41.

The project education sessions are scheduled:

494 VSE to OS/390 Migration Workbook

• At project start

• Before the start of online application tests

• Before the start of batch application tests

• Before switchover

During those sessions, the Project Manager and perhaps, hired conversion
specialists, provide the conversion team with instructions and guidelines for
planning, organization, and implementation of the activities to come.

32.4.2 Phase 1: Application Inventory
Before you start any work on a migration you need an inventory. Start the
inventory process as soon as you have made the decision to pursue migration.
The work that results in a clean inventory is about determining what is in
production and what is not in production on your system.

Taking inventory of your applications is a basic migration task. It does not
require tremendous skill but can prove to be very laborious to complete. It is a
necessary prerequisite for estimating the costs of the conversion tasks.

The objective of this repetitive task is to identify and collect the conversion
inventory, transfer it to the OS/390 system, and verify that it is complete and
consistent. The conversion inventory includes:

• Source code: programs, subprograms, macros, copy or include books, and
so on

• JCL: VSE and POWER JCL streams, standard labels, SLI and other JCL
include books

• Additional information such as job scheduling, CICS tables, VSE catalogs and
VTOC listings

As a first step for the VSE to OS/390 conversion, the application inventory must
be collected and verified for completeness and consistency. This allows the
conversion process to begin with clean libraries, resulting in a smooth and
efficient project. An iterative process, this validation is completed in two to three
months. Up to four iterations of the following application inventory tasks are
typically required:

• Developing/refining an inventory transfer procedure

• Loading the conversion inventory into the conversion libraries

• Executing the inventory validation software

• Identifying any missing or unreferenced elements in the conversion inventory

• Resolving the missing and unreferenced elements in the conversion
inventory

It is recommended that job schedulers be taken advantage of as they can be
very helpful in keeping track of what is current on the system. From the
scheduler, lists of production jobs can be extracted. They can provide a good
starting place from which to begin inventory validation. In CICS for example it is
common to have CICS tables that are full of obsolete material.

The Application Inventory phase is complete when the application inventory
contains only a small percentage of missing or unreferenced elements.

Chapter 32. Conversion Process 495

The key terms associated with determining your application inventory are:

 1. Determination
 2. Collection
 3. Supply
 4. Analysis and resolution of exceptions

32.4.2.1 Determination
Determination is the task of understanding what runs in production on the VSE
side. It includes finding out all the places where the production JCL is stored and
determining what is production and what is not production.

32.4.2.2 Collection
Collection is about building a procedure using standard utilities or ad hoc
programs to transfer all the source (JCL, source programs and copy books) to
the OS/390 side.

32.4.2.3 Supply
Supply is the procedure where you transfer the source code and JCL, from the
source environment, VSE or VM, to the OS/390 system. The determination,
collection and supply happen on the VSE side.

Only the version of source code or JCL currently used in production under VSE
is supplied to the conversion. Duplicate or obsolete versions are eliminated
(moved away) from the VSE production libraries. VSE executable code (phases)
is discarded: new OS/390 executable code (load-modules) will be generated from
the converted source code. Lost source code is either retrieved or rewritten: it is
then regression tested and installed in production under VSE before being
transferred to the OS/390 system for conversion.

The device, content, and format of the files used to transfer the conversion
inventory from the VSE to the OS/390 system are defined. An automated
application transfer procedure (VSE JCL streams and OS/390 JCL streams) is
developed. The conversion inventory is collected from the VSE production
libraries, copied to transfer files and downloaded into the conversion libraries on
the OS/390 system.

In the mass method the supply is renewed each month. This helps synchronize
both sides by keeping the VSE portion more current and ensuring the MVS side
has access to a recent VSE copy.

32.4.2.4 Analysis and Resolution of Exceptions
This is also known as Inventory Validation. It involves analyzing the relationships
in the inventory and uncovering and resolving exceptions. Validation is the
process of determining to what each element is linked, what those elements
include and to follow the chain to see what is referenced, what is missing and
what is unreferenced. Missing elements can be identified where a piece of JCL
calls for program ABC but the source ABC is missing or the piece of JCL is not
production JCL. The same is true with unreferenced elements. When you have
unreferenced elements there are two causes. It could be an obsolete item or the
piece of JCL that referred to it is missing.

The end result of resolving these exceptions is a clean and accurate inventory.

In the Cortex environment this is arrived at through the running of validation
tools against the conversion libraries on the OS/390 side. Validation could also

496 VSE to OS/390 Migration Workbook

be performed on the VSE side and then sent to OS/390. The determination and
collection procedures are developed once and then repeated. The supply is done
once per month. Also unique to the Cortex MS environment is that the analysis
and resolution work is on going throughout the project.

The Cortex tool produces reports listing missing and unreferenced elements to
assist with resolving exception conditions. Those exceptions are reviewed and
addressed by VSE production support personnel. There should be no missing
elements in the supply of the conversion inventory by the middle of the
specifications phase.

Sometimes grouping the exceptions by names provides a clue to their condition.
The next step is to analyze why these conditions exist and then resolve the way
the supply is produced by adding or deleting members or by changing the supply
procedure to pick members or code from other places or edit it. This is an
iterative process that is repeated every three weeks during the conversion. The
schedule ensures that the supply comes clean and remains clean.

The most common mistake made during inventory validation is to casually delete
unreferenced elements. Unreferenced often indicate that something has been
missed upstream.

Another common problem is to have production jobs where the JCL resides in
someone ′s desk. These can provide ad-hoc jobs that even the scheduler was
unaware of. This is also true of jobs that are submitted from remote locations
through RJE.

The first task is to validate and correct the procedure for supplying the VSE
source material and the design that is included in the conversion plan. A second
important task is to validate the VSAM user catalog file definitions regarding
VSE/MVS compatibility.

The key point here is that the quality of the final product of the validation is only
as good as what is fed to it.

The conversion inventory is mass collected-transferred-verified-converted every
two to three weeks from project start to switchover, in order to automatically
take into account the VSE application changes. Because it will be repeated many
times, this mass processing procedure must be automated to reduce or
eliminate the manual effort and to ensure repeatable, reliable and improving
quality from a capture to the next one (less or no missing elements).

The application inventory is collected for a final mass conversion a few weeks
before switchover. Between this final mass conversion and the switchover,
several captures are scheduled to identify (source compare) and carry-over the
last VSE application changes. But the changed elements are converted (or their
changes are duplicated) one at a time, to eliminate the risk of massive last
minute regression with the automated conversion.

32.4.3 OS/390 Standards and Naming Conventions
The objective of this task is to define a set of OS/390 standards and naming
conventions for the converted applications.

It is recommended that you define the new OS/390 standards and operating
procedures first, at least at a high level, before defining new JCL-referenced

Chapter 32. Conversion Process 497

names. This is because naming conventions can facilitate or impair the
implementation of OS/390 system components (such as DFSMS) and other
automated operations tools. It is recommended that you understand how a
production item will be stored, used and managed under OS/390 before giving it
a name.

Because new OS/390 JCL streams will be generated, new rules are developed to
define the structure of those streams, and how repetitive JCL statements will be
regrouped into procedures or includes in order to facilitate future JCL
maintenance. For example, a dedicated JCL procedure may be used for each of
the highly repetitive utility steps (SORT, IDCAMS, and so on), and compiler or
debug related DD statements (SYSOUT, SYSUDUMP, and so on) may be
regrouped into a single JCL include. The storage and management of control
cards and their reference from the JCL is another set of rules associated with
the structure of JCL streams, as is the usage of execution parameters and their
transfer from production control clerk to executing program through job
scheduler and JCL symbolic parameters. It is recommended that you not
redefine the division of batch applications into job streams, because this would
impact the job scheduling rules and confuse operations personnel.

As part of the OS/390 migration, the usage of utility steps can be redefined. It is
typical to find half a dozen ways of performing the same file copy in the VSE
JCL. Only a couple of ways may be needed and retained in the OS/390 JCL. The
same standardization applies to other file utility steps, such as external sorts
and backups. Database application steps and database utility steps are also
standardized, and some of the associated JCL may be isolated in JCL includes
or procedures for easier maintenance. Service steps of all kinds may be inserted
automatically by the mass conversion JCL generation tools, for example to
delete catalogued temporary files.

System managed storage is very strongly recommended when it comes to file
management under OS/390. One of the great combined advantages of DFSMS
and DFP is that they allow drastically simplified DD statements, which makes
JCL very easy to read or maintain, and be configuration independent. Typical
OS/390 migration standards include the elimination of VOLSER, RECL, BLKSIZE,
RECFM, ORG, DSCB, SPACE and UNIT attributes (with the exception of RECL in
IDCAMS/REPRO output and UNIT for tape file output).

Many VSE sites tend to be tape oriented. The OS/390 migration is an excellent
opportunity to migrate from tape intensive to disk intensive operations,
eliminating many manual interventions (for tape volume mounts) and boosting
job throughput as a result. DFSMS′s automated free space release and HSM′s
archival features can be combined to implement disk space ″buffering″
techniques, in which files that will end up on tape are created on disk by the
executing job. The copy of the file to tape, as well as the accumulation of many
files on the same tape volume is left to HSM. It takes place after the job
execution is completed. Once again, the effect is a drastic reduction of manual
interventions for tape mounts, as well as an acceleration of the job throughput.
Such file and device management policies are part of the standards and
operations procedures definition in an OS/390 migration. They have an
enormous effect on the structure and content of JCL streams.

New names must be defined under OS/390 for all items referenced in the new
OS/390 JCL, including data sets, jobs, procedures, includes, steps, execution
parameters, libraries of any kind (from source or executable code to procedures

498 VSE to OS/390 Migration Workbook

and parameters), and library members for control cards. This is because many
of the VSE names are syntactically incorrect under OS/390. But the conversion of
in-house developed applications doesn′ t require changing any of the names
associated with the source code. In fact, it is recommended to leave the
program, entry-point, copybook, code include and DD names unchanged to avoid
confusing application support personnel.

The process of developing standards includes striking a balance between the
conventions and familiarity of the VSE system and adopting durable and usable
standards for the future OS/390 system. Follow local conventions wherever
possible. Operators are used to particular names of data sets. Maintaining these
wherever possible will make the transition easier.

32.4.4 Phase 2: Conversion Specifications
The project-specific conversion requirements are determined and documented
during the specifications phase. The specifications phase, which begins with a
″clean″ supply of the conversion inventory (source code and JCL), is typically
completed in two to four months. The specification tasks include:

• Developing a project plan

• Educating the conversion project team to the conversion approach and to the
project plan

• Installing the conversion tools and performing a preliminary tailoring to local
conditions

• Studying the VSE source production environment

• Defining the OS/390 target production environment, including OS/390
standards and naming conventions

• Performing a pilot conversion of a subset of the conversion inventory before
custom modifying the conversion tools

• Identifying conversion issues and source code positioning activities

• Designing automated conversion solutions, based on custom modification of
the conversion tools, or development of additional ad-hoc conversion
software

• Conducting specifications meetings with technical representatives of VSE and
OS/390 operations, technical support, and applications development

The site′s specific conversion requirements are determined and documented by
analyzing the VSE source material, designing OS/390 target material that
complies with the selected OS/390 production standards, and designing the
conversion paths (program translation, JCL conversion, and file migration).

This process comprises knowing what software will be replaced and what
standards will be used in OS/390. It is recommended that DFSMS based naming
standards be used in the design of the MVS target system. These must comply
with the installation′s standards and operations procedures for the MVS target
production.

The Specifications phase is complete when the conversion specifications have
been developed and approved by operations, technical support and applications
development.

Chapter 32. Conversion Process 499

References you can consult for additional information about the conversion
specification phases include:

• Refer to Appendix C, “DFSMS Naming Conventions” on page 543 for
information on data set naming conventions that relate to an DFSMS
environment.

• Refer to Appendix A of the MVS-MS Planning Guide for help developing the
Migration Plan.

• Refer to Chapter 3 of the MVS-MS Planning Guide named ″Developing the
Conversion Plan″.

• Refer to specific product, program or utility migration guides. Examples
include COBOL or DB2 migration guides.

• Refer to MVS-MS Production Standards document for information on JCL
standards. It does not provide guidance on programs. It does provide a
model of how to structure your jobs, job names, job step names and data set
names.

Recommendations for the specifications phase include taking a training class on
the installation of System Managed Storage (SMS).

The major elements of the Specification phase are:

 1. Analyze the VSE source material
 2. Design the MVS target output
 3. Determine the method to get from source to target

32.4.4.1 Analyze the VSE Source Material
This task is a process of looking at the source material and referring to the
checklist of specification considerations. Your specification document can be
based on the checklist in the MVS MS Planning Guide - Appendix A . From this
comparison you can identify the problems or exceptions needing to be resolved
by the conversion team. You may find you are lacking a key utility, or have not
identified a plan to deal with a unique operation or that you have odd JCL.

The analysis of the VSE material is both qualitative and quantitative. Qualitative
analysis consists of listing the types of syntax that are being used in VSE, and
defining the types of replacement syntax that will be used in OS/390. Quantitative
analysis consists of determining the number of times that each type of syntax
occurs within the VSE material.

Quantitative analysis is performed with scan utilities. It is essential in
determining the conversion approach to be used. While conversion issues that
occur numerous times are addressed with automated solutions (if technically
possible), low occurrence conversion issues may be addressed with manual
positioning of the VSE material (when possible) or even manual modification of
the OS/390 version.

The resolution can come during meetings with the services provider and/or site
team where explanations can be presented of why certain things are done the
way they are or why things are where they are.

500 VSE to OS/390 Migration Workbook

32.4.4.2 Design the MVS Target Output
All the material in this book, including the charts that show functional
comparisons of products, is for aiding the analysis of the VSE system to help
determine the target OS/390 system. It is during conversion team meetings that
these items are presented, challenged and designed.

For project organization and planning, the effort is normally divided per type of
application item (JCL, code and files), per type of application (batch or online),
and per language (COBOL, Assembler, RPG II, and so on). The design of the
OS/390 target material complies with the selected standards and operations
procedures for the OS/390 target production.

The conversion specifications are documented in a Conversion Specifications
Document that becomes the guideline for custom-modifying the conversion tools
and developing or custom-modifying additional conversion tools.

32.4.4.3 Determine the Method to Get from Source to Target
Determining the method to get from source to target is the outcome of these
discussions with the conversion team. The outcome becomes the basis for your
conversion plan.

There are also implications on OEM products that perform functions such as
Report Manager, schedulers and backup utilities. Include these topics in your
discussions.

32.4.5 Phase 3: Customization or Development of Conversion Tools
This section is specific to the conversion tool. Customizing the tool is unique to
the mass migration method and is a cornerstone of the Cortex tool. In the Cortex
method customization is how you deal with exceptions or what you do when you
don ′ t like the tool′s output. In Cortex, you modify the tool and rerun your input.

The objective of this task is to adapt the conversion software or develop
additional conversion tools to be able to automatically convert all or most of the
VSE material to OS/390, and deliver OS/390 material that complies with the
selected OS/390 standards and operations procedures.

The custom modification of the automated conversion process follows the
specifications documented in the conversion specifications developed above. It is
implemented through the positioning of conversion tools options, design and
coding of exit routines, design and coding of ad-hoc pre- or post-processors
which are then added to the automated conversion process.

Similar to the definition of specifications, this effort can be divided for better
project planning and organization per type of application item, between batch
and online and per language.

The customization is validated by converting representative samples of VSE
programs and JCL and verifying that the local VSE syntax has been replaced by
the appropriate OS/390 syntax.

The Custom Modification phase, which begins simultaneously with the second
third of the specifications phase, is typically completed in two to four months.
The Custom Modifications tasks include:

Chapter 32. Conversion Process 501

• tailoring and custom modifying the conversion tools through installation
options and exit routines according to the conversion specifications

• performing a pilot conversion of a subset of the conversion inventory after
having custom modified the conversion tools

• auditing the messages and OS/390 material (source code and JCL) produced
by the pilot conversion

• performing technical tests on a representative sample

The Custom Modification phase is complete when the conversion process
automatically handles the conversion requirements as defined during the
Specifications phase.

Two additional items are associated with the objective of Custom Modifications.
They are:

• Manually modifying some code for the areas where the tool will not be used

• Positioning the VSE source to remove incompatibilities

VSE Positioning

VSE Positioning is about modifying the VSE code to eliminate VSE to OS/390
conversion requirements that cannot be automated.

The positioning which doesn′ t impact the logic of the code, can be applied by
hired consultants. The positioning which impacts the logic of the code
(misplaced stop runs, access to file buffers before open or after close, and so
on), is best left to application support personnel familiar with the code.

In any case, the positioned VSE code is then regression tested under VSE by
application support personnel and rolled back into production under VSE. It is
collected later on for conversion, together with the rest of the application
inventory.

Manual OS/390 Conversion

The objective of manual conversion is to complete the automated conversion
process by applying manual modifications to the OS/390 version of the code,
when fully automating the conversion is too complex or is not cost effective, and
when VSE positioning is also impossible.

Manual conversion activities may be required for the conversion of
VSE-dependent Assembler programs, part of the COBOL to COBOL for OS/390
conversion, and a few low occurrence JCL conversion issues.

Manually converted elements are subjected to a one time automatic conversion
to take into account all the conversion requirements that can be automated.
Then they are set apart from the automated conversion process. They are
repetitively supplied with the rest of the application inventory for mass
conversion. Instead of being re-converted each time, they are only source
compared (source compare utility program) to the version manually modified, in
order to identify the latest VSE version changes, if any, and duplicate them
manually in the OS/390 version.

Because such activity is in contradiction with the mass, automated and repetitive
conversion approach, it is kept to a minimum number of application items that

502 VSE to OS/390 Migration Workbook

cannot be converted entirely automatically, and for which the unresolved
conversion requirement cannot be addressed through VSE positioning.

32.5 Conversion Phases
The specific phases included in the Conversion Activities are:

• Initial Trial Conversions
• OS/390 Regression Tests and Repeated Trial Conversions

The objective of the conversion phases is to automatically mass convert the
inventory of production source code and JCL to OS/390, to deliver functionally
equivalent OS/390 material (source code, load modules, run JCL, and JCL
procedures), and to generate VSE to OS/390 file migration JCL procedures.

The phases end when the quality of the conversion is deemed satisfactory and
all critical applications such as daily, weekly, and online applications have been
successfully tested under OS/390.

32.5.1 Program Conversion
The mass conversion key steps relative to program conversion are:

Program Conversion Generates OS/390 source code and extract some
information required for VSE JCL conversion, such as:
files opened, their device types, assignments, block sizes,
and open mode (input, output); entry-points; referenced
macros, copybooks, includes or sub-programs.

Compilation/Link-Edit Starts from the OS/390 version of the source code to
generate executable code (load modules).

32.5.1.1 Program Conversion Considerations
The following considerations are recommended to be performed during (or prior
to) your migration to OS/390.

• After all VSE programs are identified and collected for the conversion
process, they must be compiled in VSE to detect if there are any
source/object discrepancies with VSE production. This ensures that the
correct level of the program (source) is used.

• To be as compatible as possible to OS/390 requirements, VSE programs
should be compiled using the latest levels of the VSE compilers. Migration
to the Language Environment for VSE and the Language Environment
enabled language compilers is strongly recommended.

• Any VSE program without source code must be rewritten. Products are
currently available that will allow source to be recovered (or reconstructed)
from executable modules.

• RPG CICS programs, if any exist, must be rewritten in another high-level
language.

• All ISAM programs must be converted to VSAM.

• BDAM programs must be converted to relative record VSAM where possible.

• VSE programs using the UPSI and/or the DATE statement facility will have to
have this function simulated in another fashion. In OS/390 either use the
EXEC card ″PARM″ facility (similar to the VSE PARM parameter introduced in

Chapter 32. Conversion Process 503

VSE 2.1 for the EXEC statement), or change the program′s logic to read and
process a ″control record″ which would supply any variable information to
the program.

Additional programming changes and considerations can be found in their
respective programming chapters and in the POWER-JES2 differences chapter.
The Cortex Migration System can provide conversion assistance in many of the
areas where VSE-OS/390 incompatibilities exist.

32.5.1.2 Common VSE Coding Practices Causing Conversion
Problems
The following are some common VSE program coding ″practices″ that won′ t
work in OS/390, and since they are mostly logic errors, won′ t be ″picked-up″ nor
notated by a conversion tool.

• In COBOL, referencing a file′s (or printer′s) I/O area before the file (or
printer) is OPENed. This will result in a system 0C4 abend in OS/390.

• In COBOL, referencing a file′s (or printer′s) I/O area after the file (or printer)
is CLOSEd. This will result in a system 0C4 abend in OS/390.

• In COBOL, ″STOP RUN″ statements should not be embedded within SORT
procedures. These should be removed from all SORT procedures; that is,
sorts must end before a STOP RUN can be requested.

• Not OPENing a unit record file will work in VSE, but abend in OS/390.

• In Assembler, using other than registers 2 through 12 for application
purposes. (Registers 0, 1, 13, 14, and 15 are used for special purposes by
OS/390.)

32.5.2 JCL Conversion
Mass conversions use the following steps for JCL conversion.

• Conversion

The file information extracted during program conversion and associated
data such as VSE disk and tape catalog data, is used by the conversion tool
to generate individual job stream flow charts. This is done on a job by job
basis.

• Integration

The job stream flow charts are consolidated enterprise-wide to separate the
application data flows (several independent data flows may use the same
VSE label and even the same VSE disk space, but they become separate
data sets in OS/390).

In the Cortex tool a function called file integration automates the
classification of files and jobs. It also prepares reports that help determine if
a file requires manual intervention. The information needing to be
understood for these files and jobs includes:

− Where does the file or job reside?
− Is it permanent or temporary?
− Where does it come from?
− Where does it go to?

• File classification

Based on data flow patterns and other functional attributes (organization,
record length, and so on) files are classified according to their life cycle:

504 VSE to OS/390 Migration Workbook

work, cataloged temporary, handoff, backup, transmit, master sequential,
master VSAM, and so on. File classification is a large JCL-related task done
to define the life cycle of all of the data sets. This task does not have a high
degree of difficulty but typically involves thousands of files. Each file must be
classified and this can be very time consuming.

• OS/390 JCL Generation

JCL includes, JCL procedures and inline JCL streams are generated
according to standards defined for the new OS/390 environment:

• File Migration

VSE data file attributes (record length, label, and so on) collected during VSE
JCL conversion are combined with OS/390 data file attributes determined
during OS/390 JCL generation, to generate VSE and OS/390 JCL streams
used to migrate VSE files to OS/390.

Each step produces a number of error and warning messages which are
systematically reviewed using specific CORTEX MS statistical analysis tools.

32.5.3 Phase 4: Initial Trial Conversion
The first mass conversion is the Initial Trial Conversion and occurs before
custom modification of the mass conversion tools. It is used for analysis, rather
than for generating OS/390 application material. The following mass conversions
are trial mass conversions, which deliver OS/390 test application material with
an increasing quality, as project and conversion tool customization progress.
The first trial conversion, and all following trial conversions, simulate the actual,
that is, the final, mass conversion.

The initial conversion is a conversion of a small, but representative, subset of
your VSE applications, usually involving at least part of your most important
work. This trial conversion lets the conversion team practice a conversion and
verify their understanding of the conversion tool. The first test is different and
takes longer than all the others. It may take two weeks. The last conversion may
take a day. The first is the longest because more problems are discovered.
Problems encountered during the first trial conversion are used to identify and
document additional conversion tool′s modification requirements. The conversion
tool′s custom modification is refined accordingly.

The subsequent conversions, called trial conversions go on for approximately six
months with a conversion being performed every three weeks. It is an iterative
process throughout the six months. Trial conversions deliver OS/390 programs,
load modules, JCL streams, and files for regression test in the OS/390
environment.

In trial conversions the conversion tool has been customized, the first supply is
taken and the JCL and the programs are converted. The next step is to look at it
and see if it worked. Is the outcome what was expected? This is initial testing.
This is the testing that occurs before the teams are brought in. Many problems
can be expected at this stage.

Mass conversions require several JES2 initiators and are CPU intensive. They
are submitted, as much as possible, at night or during weekends in order to
avoid conflicting with daily operations if any other operations are sharing the
same OS/390 system.

Chapter 32. Conversion Process 505

The first trial conversion starts with a complete fresh supply of the VSE
conversion inventory. Every three to four weeks, the mass conversion starts from
a fresh copy of the entire conversion inventory, in order to take into account the
last VSE maintenance modifications. Between two supplies, additional mass
conversions may be executed from the same supply, in whole or in part, in order
to take advantage of the latest custom modification improvements.

The first trial conversion is complete when all OS/390 programs, load modules,
and JCL are available for OS/390 tests.

32.5.4 Phase 5: OS/390 Regression Tests and Repeated Trial Conversions
The goal of these tasks is executing the converted jobs in MVS to verify that they
function as they did in VSE, and to correct software conversion errors or file
migration errors that generate test exceptions. Also during this phase full size
copies of the VSE production will be migrated to MVS, and in the process will
test the file migration procedure that will be used later on for switchover
rehearsal and actual switchover.

Objectives of testing

 1. To develop a broad base of knowledge as soon as possible.

A major resulting benefit of the testing phase is the experience and training
that is gained in the OS/390 environment. This is an excellent source of
hands on training in a soon to be real life environment. The testing
environment needs to include the use of the job scheduler, SMS, tape
manager and Report Manager.

Problems need to be identified as early as possible in order to provide the
proper lead time for their resolution. The by-products of thorough testing are
education, training, confidence, and success.

 2. To make the applications fail.

Testing is the process of working through execution time errors using the
applications, jobs and data you have converted and moved into the new
environment. Thorough testing and the elimination of problems are crucial to
a successful conversion.

Failure is good in the test environment; failure is not good in the production
environment. Therefore, the better the design and execution of the test
cases, the less chance for production failures.

Phases of testing

There are typically three phases of testing associated with the test cycle for
applications. They are:

• Unit Testing
• System Testing
• Parallel/Simulated Production Testing

OS/390 online application tests include:

• Initialization tests which start each transaction to verify that the initial screen
comes up

• Unit (or technical) tests are tests on a representative sample of transactions

• System (or Functional) tests are scenarios of chained transactions
corresponding to application flows

506 VSE to OS/390 Migration Workbook

• Simulated production (or acceptance) tests: in conjunction with batch
production tests

• Network and performance tests with actual connection to future end users

OS/390 batch application tests include:

• Unit (or technical) tests: on a representative sample of jobs

• System (or Functional) tests are scenarios of chained job executions
corresponding to application flows

• Simulated Production/Parallel (or acceptance) tests: replicate one day of VSE
operations in MVS

Batch and online tests are coordinated to test the integration of batch and online
applications.

The three phases of testing are building blocks. Each uses the output and
successes of its predecessor to build on. Although they build on each other in a
sequential manner, the boundaries between each in practice are blurred by
overlapping test start dates and durations. Testing activity increases through
this incremental building process from unit to system to parallel testing. The
testing process is completed through a series of test switchovers which end with
the final switchover/cutover. This last switchover converts your entire production
system to OS/390.

32.5.4.1 Responsibilities
In a migration project it is the responsibility of the customer to do and resolve
the testing of their converted applications. It is not realistic to expect that a
contractor or service provider can come into the customer environment and
understand the applications and application flow. It is the customer who
understands how all these elements work individually and together.

32.5.4.2 Recommendations
Testing Priorities

All ″critical″ applications should be targeted for testing with daily applications
tested first, followed by weekly, then monthly. Testing of quarterly and other
periodically scheduled programs and applications can be scheduled after the
production cutover, if necessary.

Test the most critical, or hardest to fix, applications first (that is, those programs,
applications most subject to failure or degraded performance) thereby allowing
more time to modify or tune these applications, if necessary.

Personnel Involvement in Testing

For each test implementation task (scheduling, setup, submission, execution
control, result review and validation, debug) it is critical to use the exact same
personnel who will be responsible for that task under OS/390 after switchover.
Testing is not only to identify and correct conversion created regressions. It is
the primary method to train and prepare the staff for OS/390 operations.

Chapter 32. Conversion Process 507

• Application personnel should be made responsible for providing test data,
and for evaluating, and approving application test results. (Obtaining test
data can be a problem - early plans should be made to define and obtain
test data.).

Involvement of applications to some degree in the test process can prove
beneficial at OS/390 switchover and initial OS/390 production.

• Operations personnel should do the operating during testing . This is a vital
part of their training. Operations personnel should be pointing out
ease-of-use changes that can be made thereby improving OS/390 production
jobstreams; that is, their feedback is important. They should also be
preparing application ″Run Books″ during this time.

• Systems programmer personnel should only monitor system activity (for
example, performance) and assist in problem resolution during tests; that is,
they should not be running the tests.

• Online applications should be stress and performance tested prior to
production.

This type of testing involves bringing in (if on a weekend) as many users as
possible to ″bang away″ at the terminals with as many different transaction
types as possible. CPU-intensive batch, dump/restores, and other jobs that
heavily load the system should be running during these tests, thereby better
insuring good performance of online systems during peak system usage.

MVS Tools Testing

The tools selected for MVS operations (for example, tape manager, job
scheduler, job preparation and report manager) should be used for the batch
functional and parallel production tests in order to validate their installation and
setup. If a job scheduler will be used in OS/390 production then use the same
job scheduler during parallel testing.

DASD Requirements

Data migration during the testing phase creates a need for extra DASD. It is a
far better scenario to overestimate your needs than struggle with insufficient
DASD. Securing ample DASD can also be very helpful in reducing the time
required for migration of databases. If the installation is growing in size it will
generally not take long to make use of this capacity anyway.

Subsystem Storage Protect

It is recommended the implementation of SSP be delayed until after testing. The
problem that can occur is that once implemented it can be difficult to identify the
source of some problems and attribute them to testing old applications, to the
SSP install or to a conversion issue.

32.5.4.3 Test Plan
Before any testing begins for any phase of testing the test group/team need to
assemble and a test plan developed. Determinations need to be made about
what actions will take place in each of the phases. Typical test plans turn out to
be checklists that will be worked against. One team member will have the
responsibility to sign off on each checklist item and signify whether the task was
successfully completed or not. For those tasks that were not successfully
completed this person would have the responsibility for the remedial plan. Each

508 VSE to OS/390 Migration Workbook

test phase will have its own test plan. The key application development people at
the installation must be involved when the test team is assembled.

Testing should not be something that just happens. Testing activities are an
integral part of any migration plan and must be designed and controlled. When
some plans are drafted, all too often, the word ″testing″ is all that appears on the
task list or PERT chart. More thought and design should be devoted toward
testing activities, so that proper resources and schedules can be allocated at the
outset. Relative to testing, DP management has the responsibility to determine:

• What applications are to be tested.

• What constitutes a test (for example, parallels, data to be used, and so on).

• What audit information is necessary (SMF accounting information, operator
logs, and so on).

• What acceptance criteria is required to show proof of success (timings,
output compared magnetically, and so on).

• Who has the completion sign-off responsibility.

Jobs selected during the specifications phase, typically those scheduled to run
within four weeks after the actual conversion and switchover, are regression
tested in the OS/390 environment. OS/390 regression tests require careful
planning and organization, OS/390 machine time and disk space, full access to
VSE production procedures and documentation, availability of data and criteria to
validate test results and direct participation of the customer. Problems
discovered during the OS/390 regression tests are analyzed both in nature and
in frequency. Typical solutions for problems with multiple occurrences involve
improvements to the automated mass conversion process (conversion tool′s
custom modification) followed by new trial mass conversions.

The OS/390 regression tests and repetitive trial conversions are organized into
an interactive loop of tasks including:

• Orientation to the regression test phase

• Defining a regression test plan with scenarios for batch job scheduling and
for execution of online transactions

• Defining a procedure to verify batch and online test results

• Executing online transactions

• Preparing and executing batch jobs

• Verifying and validating test results

• Identifying and analyzing test exceptions

• Applying short-term solutions to promptly resume the tests in progress

• Reviewing the nature and frequency of test exceptions

• Designing and developing permanent solutions based on the improvement of
the automated mass conversion process

• Refining the conversion tools custom modification

• Supplying fresh copies of the conversion inventory for each new trial
conversion

• Performing trial mass conversions

• Supplying new OS/390 JCL and programs for test in OS/390

Chapter 32. Conversion Process 509

• Migrating copies of VSE production files, needed for regression tests, to
OS/390

• Migrating copies of VSE production databases, needed for regression tests,
to OS/390

The conversion project team meets regularly to review the progress and status
of the OS/390 tests. OS/390 tests typically take three to five months. The OS/390
test phase is complete when scheduled tests have been successfully performed.

32.5.4.4 OS/390 Automated Operations Tools
The objective of this task is to populate the OS/390 job scheduler, report/output
manager and tape manager with job scheduling instructions, report/output
management instructions and cataloged data coming from VSE.

Batch and online tests are coordinated to verify the integration of batch and
online applications. The tools selected for OS/390 operations (for example, tape
manager, job scheduler, job preparation and restart systems, EDI, and report
manager) are used for the batch functional and production tests in order to
validate their installation and setup.

If a report manager was used under VSE, the VSE report manager rules are
migrated to the OS/390 report manager either from the VSE job scheduler (if
applicable) or from operations manuals. During JCL conversion, the
JCL-managed reports are retrieved and identified with unique report-ids. Their
attributes (form number, number of copies, FCB, remote destination, output
class, and so on) are collected into a file used to load the OS/390 report
manager. The OS/390 JCL is generated free of report management attributes but
containing the report-ids instead.

Active VSE tape files are the files that will be read after switchover by the
generated OS/390 JCL. Inactive VSE tape files are all the other files cataloged to
the VSE tape manager.

Once identified through JCL conversion, active tape files are either:

• Copied with reformatting (new OS/390 data set name and attributes) during
switchover, if time allows, to an OS/390 tape volume, and cataloged to the
OS/390 catalog and OS/390 tape manager, or

• Cataloged with a ″marking″ (for example by using a dedicated generic UNIT
name like ″VSETAPE″) to the OS/390 catalog and OS/390 tape manager. A
job service step is inserted at the start of each job to identify marked input
tape file, if any, to modify the OS/390 JCL so that it can read the VSE-created
file with its old VSE attributes and name. It takes only a few OS/390
production cycles for all VSE-created tape files to become obsolete and be
replaced by a new OS/390-created version. Most VSE-created tape files have
disappeared within a month after switchover, after daily, weekly, biweekly
and monthly jobs have read the last VSE-created version of the file.

The list of inactive tape files (files not connected to the JCL converted to OS/390)
is manually reviewed to identify, long before switchover, the legal archive and
other files that do need to be migrated to OS/390. Those files can be copied to
OS/390 tapes during the weeks and days before switchover, or left on VSE tapes
and cataloged as is to the OS/390 catalog.

510 VSE to OS/390 Migration Workbook

The large number of inactive and non-critical or obsolete tape files is not
migrated. They are either eliminated, or the VSE volumes are set aside together
with a last copy of the VSE tape file catalog at switchover time.

Any automated operations product, which will be used for actual production after
switchover, must be installed, loaded with data used in production mode during
regression testing, not for sample unit testing, but starting with full-size
application functional testing and definitely throughout simulated production
testing (see regression testing below).

Designing implementation standards for an OS/390 job scheduler or report
manager, and loading them with job scheduling or report management
instructions, is best performed with the on-site assistance of a specialist acting
as a mentor and a tutor. Such a specialist may either be provided by the vendor
(part of the product licensing agreement) or hired outside for a couple of months.
The basic education included in the license agreement brings some
understanding of the product features and limited hands-on practice, but it
doesn ′ t replace the experience of a true specialist when it comes to full size
implementation as experienced in a mass conversion from VSE to OS/390.

32.5.5 Initialization Testing
Initialization tests are performed to verify that online applications (tables,
transaction programs, screens, and files) have been properly defined to CICS.
Transactions are started to verify that the screens come up as expected.
Initialization test scripts identify the minimum input required to get from a screen
to the next one. At this level of testing, results and file updates are not verified.

This is a time to ensure the basics work. Many problems can surface here
including mistakes in setting up the CICS environment. Frequently terminal
definitions or file definitions need to be changed. During this process you are
testing both your applications and CICS itself.

32.5.6 Unit Testing
Unit testing is the first phase of testing. Early unit testing is done using a
sampling of jobs and applications. These should be a representative sample, a
good mix of your jobs and applications used to expose problems. The idea
behind the approach is that you will discover some problems. These early
problems will be global problems that affect all your jobs and applications. You
will go in and fix these problems and not rediscover these as you test other
areas. If you tested everything at once, you would discover and rediscover the
same errors over and over again.

An approach for testing that works in most migrations is to separate the test
environments into two distinct areas. These two areas are online CICS and batch
applications. Typically the online portion is tested first. The online testing is
easiest because there is limited JCL conversion involved. Online testing is also
unique because it is converted once and you are through with it.

Chapter 32. Conversion Process 511

32.5.6.1 Online Unit Testing
Prior to this task, an online test plan, and possibly detailed test scripts, have
been developed with and presented to the test team, together with
organizational instructions, during a pre-test orientation session.

CICS testing is an ideal place to begin the testing process. At least in theory,
CICS transactions are fairly transparent between OS/390 and VSE/ESA.
Assuming that the migration environment has been set up per the instructions in
Chapter 25, “Prepare the Migration Environment” on page 401 in this book,
CICS is the first area to be scheduled for testing and can occur very early in the
project.

The online unit testing results that are sought during this early testing are:

• Get a screen to come up
• Travel within the screen
• Query a customer record

The testing continues with thorough sample unit testing of 30 to 50
representative transactions. The idea is to use limited resources (small test team
and DASD) to verify that the conversion specifications and the automated
conversion process generate sound OS/390 application material (programs,
screens and files), which execute without ending abnormally. Results and file
updates are verified. The conversion specifications and automated conversion
process usually need some adjustment before full-size resource-consuming
functional testing can start.

32.5.6.2 Batch Unit Testing
Prior to this task, a batch test plan has been developed with and presented to
the test team, together with organizational instructions, during a pre-test
orientation session.

Batch application tests start with sample unit testing of 30 to 50 representative
daily jobs. The idea is to use limited resources (small test team and DASD) to
verify that the conversion specifications and the automated conversion process
generate sound OS/390 application material (JCL, code and files), which execute
without JCL error, abends or abnormal return codes. Report contents and file
updates are not verified at this stage. The conversion specifications and
automated conversion process usually need some adjustment before full-size
resource-consuming functional testing can start.

32.5.6.3 Data Migration in Unit Testing
The topic of data migration is implied throughout all the phases of testing. In unit
testing transferring a couple of tapes of CICS data sets to MVS is sufficient for
testing. By the time you are performing test switchover dress rehearsals you are
copying data so that it matches exactly on both systems. In this way, data
migration and the testing phases are synchronized events. Discussions on data
migration will be included in each of the testing sections.

32.5.6.4 Timing between Online and Batch Testing
Normally online unit testing will be completed early in the project. From a
project perspective, the focus frequently remains on the online workload and the
system testing phase of on-ine is started right after the unit testing ends. This is
because it is frequently too early in the project to begin batch unit testing. The
batch testing is more complicated than online due to the JCL conversion. This is

512 VSE to OS/390 Migration Workbook

the beginning of staggered and overlapping testing. Online system testing may
overlap batch unit testing.

32.5.7 System Testing
In system testing the goal is to go through the online applications and verify that
the outputs from each operating system are similar. In the systems test phase
each application is tested in more detail and each application′s output is verified
as being close to the production system.

Online

Online application tests continue with full-size application functional testing
involving a joint effort of the conversion team, applications support staff and a
few selected end users willing to cooperate. User exceptions are filtered and
corrected by applications support. Test exceptions created by improper
conversion are identified and passed over to the conversion team for resolution.
Temporary manual by-pass corrections are applied to the OS/390 application, in
order to quickly resume testing. But each conversion error is also fully analyzed
(qualitative and quantitative analysis), and a permanent and global (all
occurrences) solution is developed by refining the custom modification of the
conversion tools, or by developing additional conversion tools. Additional mass
or partial conversions generate new and correct OS/390 application material. Per
design, the test of online transactions often requires the execution of batch jobs.
Both batch and online tests are integrated at this point.

Batch

The objective of this task in batch is to execute the converted jobs in MVS to
verify that they function as they did in VSE, and to correct software conversion
errors or file migration errors that generate test exceptions.

Full size copies of the VSE production files are migrated to MVS, and in the
process, the file migration procedure to be used later on at switchover, is tested.

In system testing you are testing the code more as an application. This is where
JOB A feeds JOB B which feeds JOB C and so on. It may be general ledger or
accounts payable. At this time a key task is ensuring that all the input and output
are correct.

Batch application tests continue with full-size application functional testing
involving a joint effort of the conversion team, production control and
applications support staff. User exceptions are filtered and corrected by the
production control or applications support. Test exceptions created by improper
conversion are identified and passed over to the conversion team for resolution.
Temporary manual by-pass corrections are applied to the OS/390 application, in
order to quickly resume testing. But each conversion error is also fully analyzed
(qualitative and quantitative analysis), and a permanent and global (all
occurrences) solution is developed by refining the custom modification of the
conversion tools, or by developing additional conversion tools. Additional mass
or partial conversions generate new and correct OS/390 application material. Per
design, the test of batch applications often requires the execution of online
transactions. Both batch and online tests are integrated at this point.

One problem that can surface in this phase of testing is with data set definitions
and the use of temporary data sets. A problem can surface when the data from

Chapter 32. Conversion Process 513

the third job in the sequence is missing due to being treated as a temporary
data set.

The management of transition files is very different between VSE and OS/390. In
OS/390 there are only a couple of possibilities. In VSE it depends on the type of
organization, the products used and the traditions followed.

These problems don′ t show up until the applications are tested together. This is
the right time for these to surface. If these all occurred during parallel testing it
would take a very long time to complete.

32.5.7.1 Data Migration in System Testing
The system test phase may or may not require that more data is available but
frequently requires that more accurate data is needed. An example is working
with databases that are two or three months old. In some cases these
applications will not run because they have been written to work only on recent
data. Recent data may be required. Another hurdle can be that these
applications have dependencies on batch data feeds to them.

32.5.8 Parallel/Production Simulation Testing
Parallel testing is more representative of what the system will be like in OS/390.
In parallel testing you start with a day, typically a Sunday, and then do one day
at a time. The data from each day is scrutinized. Here the end user community
will get involved in testing. Output reports are reviewed and verified that they
are what they should be. This depth of review and comparison also requires that
in parallel testing you start to synchronize the data between systems.

At this point your network should provide access to this environment from any
terminal. This is an important consideration in allowing quantities of end users
on the system who should not be restricted to a small number of terminals with
access to MVS.

Parallel (batch) production tests will include all jobs executed for a period-end
day. Duplicating VSE execution will not always be possible, due to the integration
between online and batch applications and some side effects of job execution
date.

The final phase of parallel testing is ensuring the output is the same from both
systems, where actual production is compared to the test output. In this phase
there are two systems running in parallel. Monday is run on the OS/390 system
and compared to Monday′s output and reports from the VSE production system.
For week ending, month ending and year ending scenarios that actual date
change becomes the test.

32.5.8.1 Data Migration in Parallel Testing
In parallel testing the data in the systems needs to be synchronized as you will
be comparing production runs under VSE with test runs under OS/390. Typically
by this time you have done switchover rehearsals a couple times. Now just
before parallel testing begins you will synchronize the data for a particular day,
for example, Monday or Tuesday.

514 VSE to OS/390 Migration Workbook

Job Simulation

The goal is to get through as many days as possible. It is a comfort to know at
switchover, that a week′s jobs can be processed. There are significantly fewer
monthly jobs than weekly jobs. There are significantly fewer yearly jobs than
monthly jobs. Plan the cutover to not occur at month end.

The final phase of parallel testing is ensuring the output is the same from both
systems, where actual production is compared to the test output.

Date Concerns during Parallel Testing

Date concerns at this stage should not be as large a concern because of
synchronizing data for particular day. Be certain that if the output reports run
clean it is not due to them being empty as a result of not finding any date
specific data. Also results can be a bit unpredictable when jobs are run with
dates that are unexpected. Be aware of the age of the dates. If necessary the
dates can be set externally through the JCL.

32.6 Implementation Phases
The implementation phases are typically the two weeks that precede the actual
switchover. Once testing indicates that the conversion process is working, your
installation is ready for switchover. After the final mass conversion, switchover
typically requires only a single weekend. The switchover process consists of
backing up the current VSE environment, switching files to OS/390, priming the
MVS catalogs, and initial MVS production operations. This is the period when the
VSE system is frozen. You do not want to be making changes to the VSE system
during these two weeks.

The project phases during the Implementation Phases are:

• Actual Conversion and Switchover
• Initial OS/390 Operations

The final and actual mass conversion will be started after MVS tests have been
successfully completed. It will deliver the actual MVS production material. The
actual JCL conversion may be scheduled one or two weeks before the actual
program conversion, in order to apply final manual JCL modifications. There will
also be a special one-time translation of all applications′ development source
code, but without any compilation or JCL generation.

These phases include the following key tasks:

• Mass Conversion of Development Source Code

• Final JCL Mass Conversion

• Final Program Mass Conversion

• Initial OS/390 Operations

References for additional conversion information can be found in:

• Appendix B of the MVS-MS Planning Guide named ″Sample Switchover
Plan″.

Chapter 32. Conversion Process 515

32.6.1.1 Converting the Development Material
This is the code that the systems programmers are working on. It is
recommended that the conversion of these materials take place as early as
possible. This conversion is not normally done at switchover time. It is not
production material.

This task generally coincides with the transfer of a significant number of
application developers to the OS/390 platform. Development under CMS or VSE
can continue to a point. Convert the work in progress and then move the people
to OS/390. This can occur three months before switchover all at once or be
moved in a staged approach each week. How these are moved depends on the
amount of development activity in progress, what stage of development it is in,
how much growth is happening and what machine resources are available.
Converting these materials and personnel to OS/390 before switchover also
provides extra experience in the environment.

32.6.2 Phase 6: Actual Conversion and Switchover
The actual conversion is the final mass conversion, starting with a final fresh
supply of the entire conversion inventory. Both actual conversion and switchover
are performed within two to four weeks, with the actual conversion starting on a
Monday, and the switchover being completed on a Sunday. Production testing is
used to validate the actual conversion before switchover. A final supply of
conversion inventory, a few days before switchover, is used to identify any late
VSE change control and to carry it over to the converted OS/390 application.

As opposed to trial conversions, the actual conversion is followed by a mass
migration of all permanent VSE production data files and databases to OS/390,
which requires a short production outage during the weekend (typically on early
Saturday morning). After the file migration, some (mostly weekend) jobs are
executed and some online applications are started and verified in actual
production mode.

During the month preceding the switchover, all parties participate in planning
and preparation activities. These activities produce the final file and database
migration JCL streams and switchover task lists.

The actual conversion and switchover are complete when the scheduled
production jobs and online applications have run successfully in the OS/390
environment.

The key elements of preparing for the actual conversion are:

• Final JCL Conversion
• Final Program Conversion

32.6.2.1 Final JCL Conversion
A key task associated with the final JCL conversion is freezing the production
database. The actual JCL conversion should be done as late as possible before
the switchover, but before the final program conversion.

Another key task is performing the known manual changes to the production
database. At this point, the production database is established in a final form, so
further modifications made to jobsets during VSE production must also be made
to the conversion tool production database. Implement a change control

516 VSE to OS/390 Migration Workbook

procedure in order to apply jobset maintenance concurrently with maintenance
to VSE production.

32.6.2.2 Final Program Conversion
There are two key tasks associated with the translation and compilation of all the
VSE source materials for the final program conversion. First is the final mass
translation with the objective to translate all of the source modules in their
current state, overnight, automatically, and without errors. Second is the mass
compilation for the final conversion. The objective of this task is to compile and
link-edit all of the translated source modules overnight, automatically, and
without errors.

32.6.3 Switchover
The switchover weekend may not be a typical weekend, because it is a period
when operations are interrupted for the switchover. This interruption may be for
as little as a few hours or for as much as one or two days. Before switchover,
the production workload runs under VSE. After switchover, the production
workload runs under MVS.

The objective here is to switch VSE production over to MVS and continue
operations under MVS.

This transfer must be:

• sufficiently fast to allow mass switchover to take place within the allotted
time

• in conformity with the generated MVS JCL to avoid modification during the
initial runs

• complete, because you should avoid coexistence of VSE and MVS systems.

In addition, backup operations on the VSE side are necessary before file transfer
to provide for a possible return to VSE in an emergency or for a recovery of
overlooked files. Backup operations on the MVS side are necessary to permit
recovery, if required, during initial MVS operations.

Switchover weekend activities include terminating VSE operations, backing up
the VSE and OS/390 environments, switching the network, executing file
migration and cataloging procedures, starting OS/390 operations with CICS
transactions and jobs according to normal weekend schedule, and supporting
OS/390 operations through review and resolution of exceptions. On Sunday, the
switchover is validated (stay under OS/390) or VSE fall back procedures are
implemented (return to VSE in case of unexpected difficulties).

32.6.3.1 Data/File Migration
On switchover day you have to have all of your data available to your new
system. This process of multiple dress rehearsals of switchover gives the whole
team confidence about the final switchover. At that time the team has been
through it many times.

Chapter 32. Conversion Process 517

32.6.3.2 Additional Switchover Tasks
These tasks may also need to be addressed during switchover:

• RJE workstation configurations

• NJE end users must change their JCL for job submission

• Configuration of PC workstations

• Migrate the tape manager to MVS

• Migrate the database manager to MVS

• Migrate the Report Manager database to MVS

• Secure on-site assistance from major vendors

Preparing for switchover takes about a month. A detailed and timed switchover
plan is developed. Final switchover file migration and backup procedures (VSE
and OS/390 JCL streams) are developed, starting from similar procedures used
during testing. The OS/390 environment (catalogs, tape manager, disk space) is
cleaned up from any trace of testing. A final supply of programs and JCL is
compared to the supply used for the final mass conversion. Modified VSE
elements are identified and converted to OS/390 (or the VSE changes are
manually applied to the OS/390 version) to bring the OS/390 applications to
current VSE production level.

32.6.4 Phase 7: Initial OS/390 Operations
The objective of this task is to support initial OS/390 operations with
conversion-related issues. The conversion team works with the operations team
to analyze and resolve any operations exception created by the conversion of
programs and JCL, or by the file migration. In particular, the conversion team
systematically verifies if the exception is isolated, or if similar cases can be
identified and corrected before they create new operations exceptions. Initial
OS/390 operations typically require 24-hour on-site assistance during the first
week. It tapers down to 12-hour on-site plus 12-hour on call during the second
week, and 8-hour on-site plus 16-hour on call during the third week. The need for
operations assistance by the conversion team ends three to five weeks after
switchover.

After conversion, start your OS/390 system slowly. Ease into it and segment it
where possible. Don′ t let the job scheduler run free. Bring up one CICS region at
a time. Run the first batch job and check the results before proceeding. If it is
bad you can still back out. Always allow for a way to return to VSE if you have to.

The assisted MVS operations phase typically lasts three to five weeks. This
phase is complete when all daily, weekly and monthly production jobs have
executed successfully within the MVS environment. This also marks the end of
the VSE to OS/390 migration project.

518 VSE to OS/390 Migration Workbook

Chapter 33. Conversion Services and Tools

The actual process of converting JCL and programs from VSE to OS/390 can be
a very tedious, time-consuming and labor intensive set of tasks. Fortunately,
there are tools available from both IBM and non-IBM sources to help automate
most, if not all, of the conversion process. The purpose of this chapter is to
discuss some of the more popular conversion tools. It should be noted that the
tools discussed in this chapter only represent a portion of those currently
available and in no way constitute a blanket endorsement simply by their mere
inclusion in the chapter. Users are strongly encouraged to investigate all
available tools and determine that particular tools ′ applicability based upon
specific user requirements.

Users are also encouraged to contact as many of these types of firms as is
possible and practical. At the time of publication it is our desire to publish a
listing of service providers on the VSE/ESA home page. Therefore, the VSE/ESA
home page should be consulted for the most current list of IBM business
partners providing VSE to OS/390 migration

Also, visit the VSE/ESA Home Page for VSE to OS/390 migration information at:

http://www.s390.ibm.com/vseservices

for contact information.

This chapter discusses the following topics:

33.1, Conversion Services

33.2, Conversion Tools

33.1 Conversion Services

33.1.1 IBM Global Services
IBM Global Services provides project management and migration services for
migration projects.

• Call 1-800-IBM-4YOU
• Contact your IBM Marketing Representative or IBM Business Partner
• Visit the IBM Global Services Home Page at

http://www.ibm.com/services/
http://www.s390.ibm.com/vse/

33.1.2 Automated Migration Services (AMS)
AMS provides complete migration services using mass migration methodologies
based on the Cortex MS tool. AMS provides on-site migration and conversion
services primarily in the United States. AMS personnel were involved in the
original development of the Cortex tool and have continued to develop its
capabilities. AMS will also perform the phase one project as a standalone
service.

 Copyright IBM Corp. 1998 519

AMS is an IBM Business Partner

• Call 1-800-482-6267 or,
• Contact AMS through IBM

33.2 Conversion Tools

33.2.1 VSE/ESA Facilities
VSE/ESA 2.3 added a new function useful for developing an inventory of a
VSE/ESA system′s jobs, including the so-called hidden JCL found in standard
label areas and in standard assignments. The VSE/ESA JCL Analyzer is included
in ICCF library 59 as a sample source program that can be tailored to extend its
functions.

Output from the JCL Analyzer is a Comma Delimited Text file, in a format
suitable for processing by programs on PCs, such as Lotus′ 1-2-3 spreadsheet or
the VisualAge Application Understanding tools running on OS/2 or Windows NT.
The Application Understanding tool can display a graphical analysis of the JCL
job stream.

You can find further details at the following Web sites:

http://www.software.ibm.com/ad/va2000
http://www.software.ibm.com/ad/cobol

For an overview, see VSE/ESA Enhancements Version 2 Release 3, SC33-6629.
Note that this facility is available via PTF for VSE/ESA 1.4, 2.1, and 2.2, as well as
2.3. Member ARDWREAD in ICCF library 59 is a detailed description of the JCL
Analyzer. Sample jobstreams are provided along with the programs required.

33.2.2 IBM OPTI-AUDIT for VSE
While the IBM OPTI-AUDIT product was originally developed for performing an
assessment of Year 2000 readiness, it is also an excellent tool to use when
performing the similar set of activities associated with a VSE to OS/390
conversion; that is, taking an inventory and assessment of the programs, data
sets and JCL that will be converted.

IBM OPTI-AUDIT for VSE Version 1.1.0 is a new program offering that enables
you to perform a static analysis of VSE libraries and build an inventory of all
programs contained on your VSE system. This is a vital first step in your year
2000-readiness planning. IBM OPTI-AUDIT is a powerful tool designed to assist
you with your migration from an earlier VSE SP or ESA system to a current
VSE/ESA Version 2 system. It can also be used when converting from VSE/SP or
VSE/ESA system to OS/390.

IBM OPTI-AUDIT for VSE monitors the execution of batch jobs extracting
job/program/file cross-referencing information. Use IBM OPTI-AUDIT as a source
scanning facility on COBOL source code.

IBM OPTI-AUDIT for VSE produces a variety of reports to manage the year-2000
conversion process, including:

520 VSE to OS/390 Migration Workbook

• Program status

• Program usage

• File cross-referencing

• Job cross-referencing

33.2.2.1 Product Highlights
IBM OPTI-AUDIT for VSE Version 1.1.0:

• Captures and builds an inventory of all programs running on your VSE
system

• Monitors the execution of batch jobs extracting job/program/file
cross-referencing information

• Provides a source scanning facility for COBOL

• Produces a variety of reports for the year-2000 conversion

33.2.2.2 Product Details
• Performs a static analysis of VSE libraries.

− Libraries not required can be excluded

− Creates a central repository (database) of PHASE related information,
such as, phase name and usage tally.

• Monitors the execution of batch jobs marking the phases as ′active′ and
logging phase, job and file (for example, data set) cross-referencing
information.

• Functions available through batch job submission:

− Flag phases as ′Y2K READY′, including the facility to remove this setting.

− Scanning of COBOL source code for date related information

- Output is divided into four reports:

• REPORT 1 - Suspect Verb analysis (looks for date suspect
COBOL verbs, for example ceedate..)

• REPORT 2 - Suspect Variable Analysis (looks for common
variables used as date fields, for example, 9(6), and X(6))

• REPORT 3 - Suspect Variable Scan (scan for USAGE of variables
identified in reports 1 and 2)

• REPORT 4 - Generic Search Results (uses a software supplied
table of character strings and returns matching lines of code)
User-supplied variable names can be included or excluded from
the reports as required.

- Opti-analyzer -- generates an analysis of a batch phase. It identifies
each module called, providing a statistical break-down of all
supervisor calls. Specific date-related calls such as GETIME (SVC 34)
can be identified.

- Reports

Database (phase) - four reports are available:

Chapter 33. Conversion Services and Tools 521

• REPORT 1 - ACTIVE phases (lists all ′executed′ phases by
library).

• REPORT 2 - INACTIVE phases (lists all ′dormant or yet to be
activated′ phases by library).

• REPORT 3 - Y2KREADY phases (lists all phases flagged as Y2K
ready by library).

• REPORT 4 - DUPLICATE phases (lists all ′duplicate′ phases by
library).

Log File - four reports are provided which detail PHASE usage:

• REPORT 1 - File Report by Phase (lists all ′active′ phases
sequenced from most active (using a tally of the number of times
the phase was invoked) to least active).

• REPORT 2 - File Report by Library (phase/library cross-reference
by library).

• REPORT 3 - File Report by Jobname (phase/job cross-reference
by job name).

• REPORT 4 - File Report by Program (phase/program
cross-reference by program).

Log File - three reports are available which provide details on FILES
(for example, data sets) used:

• REPORT 1 - File Report by Program (program/data set
cross-reference by program).

• REPORT 2 - File Report by Data Set (data set/phase
cross-reference by data set).

• REPORT 3 - File Report by Jobname (job/data set cross-reference
by job name).

33.2.3 IBM COBOL and CICS Command Level Conversion Aid (CCCA)
The tedious process of COBOL migration can be easier than you think with the
IBM COBOL and CICS Command Level Conversion Aid (CCCA) for VSE Release
1. CCCA for VSE, a Program Offering, helps you easily convert old COBOL
source code and copy books to the new COBOL standard.

CCCA for VSE converts OS/VS COBOL, DOS/VS COBOL, and COBOL 74
Standard VS COBOL II (either VS COBOL II Release 3, or VS COBOL II Release 4
(CMPR2)) source code to COBOL 85 Standard VS COBOL II Release 3 or 4
(NOCMPR2), or to IBM COBOL for VSE. You can customize this conversion
process to meet your unique requirements.

CCCA simplifies the migration process by:

• Identifying and converting source code

• Reducing the effort to convert programs

• Minimizing conversion errors

522 VSE to OS/390 Migration Workbook

33.2.3.1 Product Positioning
COBOL and CICS Command Level Conversion Aid for VSE Release 1 is
positioned as a COBOL migration aid designed to provide:

• Automated conversion of most COBOL syntax differences.

• Programmer productivity for the migration process.

• Reduction of manual conversion errors.

• Flexibility through an open converter design.

• Generation of conversion management reports.

CCCA eases the migration process, allowing customers to upgrade their old
COBOL technology, to the new COBOL technology (as in VS COBOL II) quickly.
Once on the new VS COBOL II product, customers are positioned for upcoming
technological advancements, such as object-oriented technology and client
server.

33.2.3.2 Technical Description
As in CCCA Release 2 for MVS and VM, COBOL and CICS Command Level
Conversion Aid for VSE Release 1 contains the following components:

• Language Conversion Programs (LCPs)
• LCP Compiler
• Driver
• Report Programs
• Front-end Panels
• Tables

Language Conversion Programs (LCPs): The LCPs are written in a COBOL-like
language used to describe the process of converting the differences between the
old COBOL language (that is, OS/VS COBOL, DOS/VS COBOL or ANSI 74 VS
COBOL II), and the new COBOL language (that is, VS COBOL II ANSI 85
Standard or IBM COBOL for VSE).

A set of LCP modules describing how each old COBOL language element is to
be converted into the new COBOL language is provided with this tool. The set
also provides CICS command level-related statements conversion. The basic set
enables users to convert most differences, and can be very easily customized for
specific conversion requirements.

By adding new LCPs, the user can:

• Change COBOL source syntax.

• Add, replace or remove a word, clause or statement.

• Indicate where the newly generated COBOL source needs to be reviewed for
possible manual action.

A set of panels is provided to help the user with LCP development within CICS.

LCP Compiler: Each LCP module is processed once by the LCP compiler
component and is then used by the driver component to convert each
statement requiring conversion. The basic set of LCP modules included in
the product is already processed by the LCP compiler.

Chapter 33. Conversion Services and Tools 523

Driver: This component reads the COBOL source program, extracts copy
members from the input source file, and executes the conversion process
according to the corresponding compiled LCPs.

The driver produces four types of output:

• New COBOL source code in new source library (optional).

• New COBOL copy module in new copy library (optional).

• COBOL source statement diagnostic listing.

• Conversion management report data.

The diagnostic listing is a statement-by-statement log showing the result of the
conversion process.

An analysis is made to ensure that user-defined names do not conflict with
words newly reserved for the new COBOL language. Where conflicts appear, a
two-character suffix is appended to the user name. This suffix can be modified by
the user.

Conversion management report programs can be executed on request to provide
the status of each converted program, and tell when it was converted, and
whether user involvement is required. A ″where-used″ list of copy modules, files,
and CALL statements can also provided. These reports provide an excellent
cross reference.

33.2.4 SISRO - CORTEX-Migration System (CORTEX-MS)
SISRO designs, develops and commercializes computer automation software
products which make it possible to drive and monitor computer systems, while
planning processing and managing data.

The CORTEX and JobServe products (for mainframes and distributed
environments, respectively) provide solutions that are modular, user-friendly and
based on innovative technology, which is a guarantee of openness.

SISRO has nurtured close partnerships with many leading actors in the computer
market, notably with Microsoft (Solution Provider since 1992), IBM (S390/PID and
SDP Associate), DEC (Member of ASAP program), and Oracle (Member of Oracle
Value Service Program).

SISRO′s software packages are marketed worldwide via a network of distributors
and integrators, and through subsidiaries in Europe and the United States.

The CORTEX-MS product uses the mass migration method. Mass conversion
automation is the result of six software components designed for conversion of
VSE production applications to OS/390. All the components are menu driven
through TSO/ISPF panels.

For more information contact SISRO at

 1. website www.sisro.com, or
 2. by phone in the US at 919-460-9870.

524 VSE to OS/390 Migration Workbook

33.2.5 Computer Associates

33.2.5.1 CA-Convertor
CA-Convertor is a comprehensive system to manage and implement the
conversion from VSE to MVS operating systems. CA-Convertor converts VSE
COBOL and Assembler language programs and VSE JCL to true MVS programs
and JCL, while automatically creating applicable documentation. It performs the
burdensome conversion tasks that, under manual control, would be error-prone,
tedious and repetitious. With CA-Convertor, the entire process is automated,
eliminating redundant data manipulation and unnecessary manual procedures.
Programmer productivity levels are not affected by constantly monitoring the
conversion and, as CA-Convertor can execute on both VSE and MVS, you can
start the conversion without requiring a production MVS environment.

Available for: MVS, VSE

33.2.5.2 CA-DUO
CA-DUO is VSE under MVS transition system software designed to simplify the
conversion from the IBM VSE environment to MVS. CA-DUO provides the
interface that allows existing VSE application programs to run directly under
MVS without source program alterations. This unique approach conserves
considerable data center resources, and facilitates a true MVS production
environment in the least possible time.

CA-DUO allows all MVS facilities and most VSE facilities to be utilized. It uses
standard MVS JCL, which may be generated by CA-Convertor. CA-DUO supports
the following programming languages, access methods and data management
system: Assembler, COBOL, FORTRAN, PL/I, RPG, RPG-II, DAM, ISAM, VSAM,
EXCP, QSAM, BSAM, BISAM, QISAM, DL/I, BOMP, DBOMP, TOTAL,
ADABAS/DB, CA-IDMS/DB and CA-Datacom/DB.

Available for: MVS

33.2.6 The Source Recovery Company
The Source Recovery Company recovers missing COBOL or Assembler source
code from MVS, VM or VSE executable modules.

The recovered source is guaranteed to produce an executable module that is
100% functionally equivalent to the original executable module that you send
them.

The Source Recovery Company can help save a great deal of time, effort, cost
and minimize your overall Year 2000 and conversion project risk. You can avoid
an expensive rewrite of a program, or even more expensive replacement of an
application.

Listed is a brief summary of the services provided by The Source Recovery
Company:

Chapter 33. Conversion Services and Tools 525

33.2.6.1 Recovery/SRC
This is the basic service provided by SRC. The basic recovery utilizes a
proprietary technology that generates the source code from the load module
supplied by the client. Data names and labels within the programs recovered are
generic.

33.2.6.2 Rename/SRC
This is a service that is sold in addition to the basic recovery service
(Recovery/SRC). The renaming service matches client-provided copybooks to the
data definitions generated by the recovery technology. The source returned to
the client will contain the original data names as defined in the copybook where
appropriate.

33.2.6.3 Reconcile/SRC
This service is sold in addition to the basic recovery service (Recovery/SRC).
The reconciling service blends client provided versions of the source program
with the program generated by the recovery technology. The source returned to
the client will contain appropriately matched data names, labels and original
comments based on the client provided version of the source program.

33.2.6.4 VersionMatch/SRC
This service is offered separately from the other recovery services. The purpose
of VersionMatch/SRC is to match source code to load modules. SRC will
respond with a written report that identifies which version of source matches the
load module. If no match is found, the client is afforded the option of requesting
SRC to provide additional recovery or reconciliation services as defined above.

The Source Recovery Company can recover code written in any version of IBM
Assembler or COBOL. Part of the process allows for discovering in just which
version of these languages the source code was originally written, and they will
return it to you in the original ″flavor″ of that language. In fact they are always
looking for older versions of compilers, and if you have one, they′d like to hear
from you.

33.2.6.5 A COBOL Recovery Example
Since the compiler does not store any of the original data or paragraph names in
the object module, Recovery/SRC must build generic names. The names
generated are based upon where the item is located in the program (such as,
″WS″ for an item in Working Storage, followed by a hexadecimal number
representing the item ′s displacement from the beginning of the record).
Rename/SRC and Reconcile/SRC are additional and optional services offered to
enhance the actual datanames in the recovered source code.

33.2.6.6 Original Program Source Code Example
For information about source code recovery and an example of a program
recovered by The Source Recovery Company in COBOL, see the Internet at:

www.source-recovery.com

526 VSE to OS/390 Migration Workbook

Part 8. Migration Experience

 Copyright IBM Corp. 1998 527

528 VSE to OS/390 Migration Workbook

Chapter 34. Customer Migration Example

This chapter describes an actual user experience with migration. Since every
customer environment is unique, care should be taken when drawing
comparisons, especially in areas of resource and capacity.

34.1 Background
Cust1 is a relatively fast growing company that evolved from a small 4341 to a
3-way 9672 in a little more than a decade. The I/S organization was constantly
challenged to support new business with very little lead time. Their VSE
operating system was always being pushed to its limits supporting the growing
workload. The computer operations had grown to a near 21 shift operation (only
a two to four hour window early Sunday morning for maintenance). For five or
six years before the final decision to migrate to MVS, serious consideration was
given to an MVS migration because of the constraints of the VSE architecture on
their business, but new enhancements to VSE relieved the urgency. All of the
measures to improve VSE performance were taken, for example, multiple VSE
guests for parallelism, faster engines, faster DASD, VSE ESA features and so on.
Each time a new piece of business was taken on, the I/S organization was
concerned if they would be able to contain the workload, and usually suffered a
lot of pain balancing resources. Finally it was decided that the move to MVS
would be the only recourse to support the future business growth.

34.2 Environment

34.2.1.1 Hardware
• Bipolar air cooled 3-way processor

• The customer changed to a 9672 3-way in the middle of the project. This
change was made primarily because of an IBM marketing package that
actually provided more resource for a lower lease cost. This occurred at a
time in the project when the extra capacity (mostly central storage) was very
welcome (systems tests).

� 256MB storage
� 1GB on the 9672

• RAMAC DASD

� Two racks of RAMAC I each 2/3 full (3380)
� One rack of RAMAC II 1/3 full (3390)
� All racks filled by switchover for testing bubble

34.2.1.2 Software
• VM/ESA
• VSE/ESA (three guests)
• The VSE level with turbo was installed before the project, but the turbo

dispatcher was not enabled because of poor performance and availability
issues.

 Copyright IBM Corp. 1998 529

34.3 Inventory
• 1500 COBOL programs - mix of DOS/VS COBOL and COBOL II

• 2600 RPG programs

• 80 Assembler programs

• 8000 JCL steps

34.4 Resources
In this project it was sometimes hard to get the various groups to focus on the
migration when needed. This was because of other priorities with day to day
problems and projects. This is not all that uncommon, especially in a growing
organization. This however, needs to be monitored closely or delays in the
project will result.

• Systems programmers

� Three systems programmers on VSE. An experienced MVS systems
programmer was hired at project start. One VSE/VM systems
programmer worked almost exclusively on VM/VSE until near switchover
(normal ongoing VM/VSE support). One other programmer split time
between VSE and MVS. The new MVS systems programmer spent full
time on MVS.

� Two database administrators/programmers. Both split time between VSE
and MVS.

• Application programmers

� Two applications programmers were used with primary focus on the MVS
project in the early stages of the project. These people would draw on
other resources in their group as needed (for example, during testing).
As the levels of testing progressed so did the number of application
programmers required.

• Operations

� Early in the project there was not much involvement from the operations
group as the systems support group performed many of those functions.
There was some involvement from some of the key operations people
during planning phases. As the project progressed there was more
involvement from operations.

• Management

� A second line manager took the responsibilities of project manager.
Although much of his time was spent on normal day to day
responsibilities, the majority of his time was devoted to managing this
project.

• Consultants

� IBM Global Services teamed with Automated Migration Services for
overall project management and to actually perform the migration. IBM
also performed various systems programming tasks as required. In
addition, ISV vendors were contracted during various phases of the
project to perform customization/education of their products.

530 VSE to OS/390 Migration Workbook

34.5 Duration
Due to the data sharing requirements, the availability requirements, and, in
general, the dynamic environment of the business, it was decided the mass
conversion method was the way to migrate to MVS. In the past years of rapid
growth not much time was spent defining and enforcing systems management
disciplines which resulted in uncertainty of what source code, phases, JCL and
so on, were production and which were obsolete or test. Since these elements
are the key indicators in determining the scope of a project like this it was
decided to break the project into two phases. Phase one, the application
inventory which through the use of software tools identified and helped
segregate the elements that were used in production and the elements required
for test. Phase two, which was basically the conversion of the programs and JCL,
testing and switchover to MVS. As stated in earlier sections, the mass
conversion method is the most common method to migrate to MVS. Also, the two
phased approach is becoming more popular because of its many benefits, most
importantly a much more accurate prediction of the actual cost of the project.

34.5.1.1 Phase One
About eight weeks was spent in this phase. First the MVS software required to
run the tools was installed as a VM guest. This part can be eliminated by buying
time on an existing MVS system to run the tools. Next, all of the VSE libraries
required were imported to the MVS system and the tools run which resulted in a
series of reports that showed exceptions (missing, unreferenced and so on).
Representatives from systems support, operations and applications development
departments reviewed the reports, made changes (move, delete, find elements)
and resubmitted the new data to the MVS tools. This is an iterative process with
the end result a fairly clean inventory.

34.5.1.2 Phase Two
This is comprised of multiple phases as described in earlier chapters. It took
approximately thirteen months until switchover to MVS. This time was a couple
of months longer than originally planned primarily for two reasons, inadequate
testing in the final phases of testing and finding a weekend where the normal
weekly four hour window could be increased to eight hours to accommodate the
switchover to MVS.

34.6 Performance
As mentioned earlier VSE was run as multiple guests under VM/ESA. Once MVS
was switched to production, it remained as a VM guest for a couple of months.
After this MVS was run under an LPAR. VMPRF was installed on VM and was
run daily to create summary history reports. The reports were not granular
enough to break out CPU utilization by virtual machine, therefore, the numbers
reflected the sum of the VSE and MVS guest while testing applications under
MVS. There was a time when there was little or no activity on MVS while VSE
production was running, mainly third shift. By comparing the third shift before
switchover (VSE production) and third shift after switchover (MVS production)
fairly comparable numbers could be obtained. One problem with this was that
the time in the project when there was only VSE workload during third shift was
when the 9121 was installed and after switchover the workload was on a 9672.
The other variable was that there was no way to prove that there was an equal
workload at the two times. However, using these rough comparisons and
normalizing the CPU times using the LSPR ratios, the CPU utilization stayed

Chapter 34. Customer Migration Example 531

about the same after switchover, with MVS showing a couple of percentage
points higher.

Since the workload at this installation is not the typical online on prime shift and
batch on second and third, it was not as easy to make comparisons on a batch
window length. Overall it appeared that throughput was much better. There were
other performance benefits realized. A good example was a large database that
affected VSE performance could only be reorganized (to improve performance)
on holiday weekends because of the many hours it took to perform the
reorganization. Under MVS this reorganization time was cut by two thirds
allowing this function to be performed on a more regular basis. This reduction in
time was attributed to the better throughput of MVS and in the internal design of
the MVS version of the ISV database manager.

34.7 Benefits
Other than the performance benefits mentioned above there were many other
benefits realized by going to MVS. As new business comes along MVS is able to
absorb the workload without many of the problems previously encountered by
the I/S staff when they had to try to ″fit″ this into the VSE environment. Examples
of this are the ability to connect new NJE customers to one line using SNI as
opposed to multidrop lines for 3270 access and a point to point bisync NJE line.
When new business dictated more DASD, there was flexibility to go with the
latest RVA DASD and not worry about operating system support issues. There is
also the flexibility to grow the processor horizontally or vertically, which ever is
more cost effective or quickest in order to take on new business. Even more
important in this high availability environment where unscheduled VSE IPLs were
frequent, MVS has run over a year without an unscheduled IPL.

532 VSE to OS/390 Migration Workbook

Part 9. Appendixes

 Copyright IBM Corp. 1998 533

534 VSE to OS/390 Migration Workbook

Appendix A. Education Information

The task of providing the right training, to the right people, at the right time, at
the right location is a small project of its own. There are many variables to
consider, including costs, not the smallest of which is simply determining if a
particular course is available. A good training plan will be the right balance of
these elements based on the needs of the installation.

The one thing that holds true for all migrating installations is that each
installation has unique training needs. In addition to unique products and
programs, the training and experience of operations, application development
and systems programming personnel are different. The training plan will be
different for a new hire than for a seasoned veteran or journeyman skill.

The major elements to be considered in planning for the education needed for
your installation during a migration are:

• What training is needed and what courses are available

• When are courses scheduled and when are they needed during the migration

• Who will provide the training

• Where the training will take place

A.1 What Training is Needed and What Training Courses are Available

A.1.1 OS/390 Classes
Here are some of the key OS/390 classes from the IBM E&T Web page
(http://www.training.ibm.com/ibmedu/roadmaps/mainframe/os390/):

• Introduction

Introduction to OS/390
OS/390 Facilities
Fundamental System Skills in OS/390

• Operations

System Operations for OS/390
CMOS Complex Systems Availability and Recovery
S/390 Hardware Management Console (HMC) Operations
S/390 Multiprise 2000 External Support Element (SE) Operations

• Installation

OS/390 Installation
Using ServerPac to Install OS/390

• Other

MVS Job Control Language and Utilities
MVS VSAM and Access Method Services
Transition from MVS/ESA to OS/390
Automation Using System Automation for OS/390
Measurement and Tuning for MVS/ESA Version 5 and OS/390

 Copyright IBM Corp. 1998 535

It is recommended that a class on TSO and ISPF, to help navigate through
panels, be taken prior to the MVS Installation and SMPE class. The IBM SMPE
class is a good and necessary prerequisite to the MVS install class. SMPE is
similar to VSE MSHP. It provides key information on installing products and
applying PTFs and is good for VSE systems programmers.

The focus of the MVS Installation class is for MVS customers installing a new
version of MVS. There may be additional considerations for first time users.
These needs may be addressed in customized training.

A.1.2 Custom Classes
IBM Education and Training (E&T) can help you with your training challenge by
providing customized training. E&T specializes in presenting a common basic
curriculum to a mixed audience of operators, applications programmers and
system programmers (OS/390 basics, how to use ISPF, JCL basics) and then
splitting each audience to learn those topics specific to their job performance.

The following training on MVS fundamentals is intended for individuals skilled
and experienced with the VSE environment, but new to the MVS environment.
After this series of courses, the MVS professional should understand the basics
required for MVS.

A customized base VSE to OS/390 training plan would include the following:

• an overview of the components of OS/390

• a hands-on ISPF primer

• basic JCL and utilities preceded by a TSO primer

• OS/390 commands

• JES2 commands

• DIM (Data In Memory) techniques for applications programmers

• advanced OS/390 training for systems programmers

A.1.3 OEM Product Education
OEM product education must also be coordinated during the migration. Training
on OEM job schedulers and report managers have become increasingly
important over the last few years.

A.2 When are Courses Scheduled and When are they Needed?
It is best to schedule training close to the time the new skill is needed. Some
OS/390 training is required early in the migration. An example is the
specification phase, when some knowledge about OS/390 is required early in the
project, to help define the target system.

It can be a waste to have the application programmers trained on TSO early in
the migration. The skill is typically not needed until the system testing phase of
the migration.

536 VSE to OS/390 Migration Workbook

A.3 Who will Provide the Training?
Hiring a skilled MVS person for the migration, whether temporary or permanent,
helps with the skill level of that one person. Don′ t assume that the person is a
skilled educator or will have time to teach a curriculum to other team members
in his/her spare time. It is likely that this person will have a list of
responsibilities that may not include being a trainer and may not know VSE at
all.

Benefits of on-site training

• Curricula can be customized to suit your specific needs

• Blocks of training (for example, one week) can be tailored to deliver the
training when it is needed for the migration

IBM Education and Training (E&T) can help you with your training challenge by
providing customized training. E&T specializes in presenting a common basic
curriculum to a mixed audience of operators, applications programmers and
system programmers (OS/390 basics, how to use ISPF, JCL basics) and then
splitting each audience to learn those topics specific to their job performance.

For more information and for assistance in designing a custom roadmap of
training, contact us at www.training.ibm.com/ibmedu/custom.

A.4 Where will the Training Take Place?
There are a number of items to consider regarding where training takes place.
Among them are cost, how the time the class is offered fits with the project
needs and the availability of the students.

One consideration is that if you choose to bring in a trainer for a particular class,
consider delivering the class somewhere other than the normal work location
such as across town at a hotel. This can provide just enough distance to keep
the students from being drawn into daily problems at the office.

Having training delivered on site versus go away schools provides significant
advantage in class scheduling. The on-site class can be scheduled for the time
the skill is ready to be used. For go away classes you are normally limited to the
specific times the class is offered.

Appendix A. Education Information 537

538 VSE to OS/390 Migration Workbook

Appendix B. Mapping ISV Products and Functions

This is a frequent topic of discussion with customers considering migrating. How
a customer ′s ISV products map to those contained in base OS/390 is always
discussed.

It is a common migration task to ensure there is equality. This equivalent
function mapping will grow in importance as coexistence is established.

It is also a way customers can reduce their ISV SW stack charges. Also if
customers are not familiar with the comparable functions of each operating
system it provides a good guide and helps when it is time to configure the
OS/390 system.

This mapping information also fits in with the description of system management
products listed in 2.2, “OS/390 Components/Products/Subsystems” on page 18.

B.1 The IBM Software Migration Project Office (SMPO)
The SMPO is part of IBM′s North America Software Group and has been in
business since 1993 providing solutions that help solve customers′ business
problems. We do that by helping companies, like yours, migrate to the industry′s
leading systems management and database: DB2 and IBM/Tivoli products.

Many of our customers have made substantial investments in platforms which no
longer support their growing business requirements. They have turned to us for
help because the SMPO has the experience, the skills and the tools to assist
them in executing a successful migration project.

IBM/Tivoli product offerings include a full suite of S/390 system and network
management products for: system automation, enterprise job scheduling,
security management, storage management, performance management and
report management. These products and service offerings can provide
alternatives to ISV products.

If you have any questions or need more information about the SMPO, feel free to
navigate about our home page, or you can contact any one of our IBM/Tivoli
Migration Team or Database Team personnel. The SMPO home page can be
found at:

• http://www.ibm.com/Solutions/softwaremigration/

B.2 VSE ISV System Management Products and OS/390 Compared

Table 46 (Page 1 of 3). S/390 Software Product Mapping

Vendor Vendor Produc t I B M Produc t P I D # Pr ima ry Funct ion(s) M i g r a t i o n
Serv ices

B M C DB2 Recovery Plus DB2 5695-DB2 DB uti l i ty stand func of
DB2; perf considerat ion

B M C DB2 Reorg Plus DB2 5695-DB2 D B ut i l i ty

B M C DB2 Unload Plus DB2 5695-DB2 D B ut i l i ty

B M C Delta IMS-DB/DD IMS Ut i l i t ies 5685-093 IMS ut i l i ty IGS

B M C Fast Reorg Plus IMS Ut i l i t ies 5685-093 IMS ut i l i ty IGS

B M C Image Copy Plus IMS Ut i l i t ies 5685-093 IMS ut i l i ty IGS

B M C Load Plus IMS Ut i l i t ies 5685-093 IMS ut i l i ty IGS

 Copyright IBM Corp. 1998 539

Table 46 (Page 2 of 3). S/390 Software Product Mapping

Vendor Vendor Produc t I B M Produc t P I D # Pr ima ry Funct ion(s) M i g r a t i o n
Serv ices

B M C Unload Plus IMS Ut i l i t ies 5685-093 IMS ut i l i ty IGS

C A CA-ADS/On l ine CSP/AD CSP/AE High Level Language
(IDMS)

C A CA-A le r t /C ICS RACF 5645-001 CICS Secur i ty T ivo l i M igra t ion
Team

C A CA-ASM2 DFSMS/hsm 5645-001 Host backup, archival for
DASD

Tivo l i M igra t ion
Team

C A C A - D A T A C O M / D B DB2 5695-DB2 Database SMPO/DB

C A CA-Dr ive r OPC 5697-OPC Job schedul ing T ivo l i M igra t ion
Team

C A CA-Dynam/TMLS DFSMS/ rmm 5645-001 Tape management T ivo l i M igra t ion
Team

C A CA-EARL PR/MVS 5695-101 Repor t w r i t e r T ivo l i M igra t ion
Team

C A CA-EASYTRIEVE QMF 5706-254 SQL queries and reports SMPO/DB

C A CA-EASYTRIEVE + QMF 5706-254 SQL Quer ies SMPO/DB

C A CA-Explore RMF 5645-001 Per formance mon i to r T ivo l i M igra t ion
Team

C A CA-Express Del ivery RMDS 5648-048 Repor t d is t r ibut ion Electronic
Arch ive
Solut ions

C A CA-Extended/DASD Compress VSAM c lusters

C A CA-FAQS/XP Netview6000 5696-731 Console, message
management

IGS

C A CA-FAVER Backup and restore
performance enhancer

C A CA-HYPER-BUF VSAM buffer manager

C A CA-IDEAL C S P / A D + C S P / A E 4G Appl Development
System

C A CA- IDMS-Culpr i t DB2 or IMS/DB Database SMPO/DB

C A CA-IDMS-UCF None no IBM product needed;
CICS inherent ly supports

C A CA- IDMS/DC IMS, CICS, DB2 Database and transaction
mon i to r

SMPO/DB

C A CA-INTERTEST CICS ExtDiag Interact ive Program Test ing

C A CA-JARS PR/MVS 5688-101 Accounting and chargeback T ivo l i M igra t ion
Team

C A CA-JARS/CICS PR/MVS 5688-101 CICS performance moni tor T ivo l i M igra t ion
Team

C A CA-Librar ian ISPF/SCLM 5645-001 Source Code Control IGS - Tom
Hart r ick

C A CA-LOOK RMF 5645-001 Per formance mon i to r T ivo l i M igra t ion
Team

C A CA-MasterCAT Opt imizes MVS buf fer
spaces

C A C A - M e t a C O B O L + C S P / A D + C S P / A E High Level COBOL
Development

C A CA-Netman INFO-MGMT 5695-171 Data Center administrat ion T ivo l i M igra t ion
Team

C A CA-Opera SA/390 5645-005 Automated operat ions T ivo l i M igra t ion
Team

C A CA-Opt im izer COBOL II 5688-023 COBOL opt im izer IGS

C A CA-Panvalet ISPF/SCLM 5645-001 Source Code Control IGS - Tom
Hart r ick

C A CA-Scheduler OPC 5697-OPC Job schedul ing T ivo l i M igra t ion
Team

C A CA-Sor t DFSORT 5645-001 Host sor t ing IGS

C A CA-SRAM DFSORT 5645-001 Host sor t ing IGS

C A CA-Top Secret RACF, OS390 SS 5645-001 Secur i ty T ivo l i M igra t ion
Team

C A CA-Ver i fy CICS (MVS) 5655-147 CICS quali ty assurance IGS

C A CA-VSAMAID VSAM cluster stats & tuning

Candle Omegamon I I for
SMS

DFSMS/opt im izer 5695-DF1 DASD performance tool T ivo l i M igra t ion
Team

Gener ic
Sys

DR.D DFSMS/dss 5645-001 Fast dump restore T ivo l i M igra t ion
Team

McKinney CICS/Hotpr in t CICS ut i l i ty

McK inney CICS/Message CICS ut i l i ty

540 VSE to OS/390 Migration Workbook

Note: PID #s and Product Functions should be checked by the user prior to
ordering any software.

Table 46 (Page 3 of 3). S/390 Software Product Mapping

Vendor Vendor Produc t I B M Produc t P I D # Pr ima ry Funct ion(s) M i g r a t i o n
Serv ices

Mobius Infopac repor t RMDS 5648-048 Repor t d is t r ibut ion Electronic
Arch ive
Solut ions

Mob ius Infpopac Schedule OPC 5697-OPC Job schedul ing T ivo l i M igra t ion
Team

Oracle Oracle DB2 5695-DB2 Relat ional database SMPO/DB

Soft
A G

A D A B A S DB2 5695-DB2 Database SMPO/DB

Syncsort Syncsort DFSORT 5645-001 Host sor t ing IGS

Appendix B. Mapping ISV Products and Functions 541

542 VSE to OS/390 Migration Workbook

Appendix C. DFSMS Naming Conventions

This chapter was written by John Tyrrell of IBM′s Storage Systems Division.
John is one of the original senior architects of DFSMS. He also invented TMM
(Tape Management Methodology) and is the author of the Volume Mount
Analyzer program which is part of DFSMSdfp. He is the senior architect/inventor
of the DFSMS Optimizer product, one of the major components of DFSMS. John
interacts with a wide variety of IBM customers, and has personally been to over
600 customer data centers and participated in over 350 tape and DASD studies to
better understand and address IBM customer needs.

John spent 10 years in application development of a system with six million lines
of code which ran in over 60 IBM data centers. Many of the data set naming
techniques in this document were developed based on both John′s application
experience as well as working with IBM customers.

This chapter offers suggestions on the naming of data sets such that you would
be able to fully exploit the technology of both DFSMS and MVS/ESA. It does not
imply that you must rename all of your data, nor does it imply that these are the
only conventions that will work under DFSMS and MVS/ESA.

These naming conventions are suggestions resulting from many visits and
interactions with IBM internal and IBM customer application areas. These
suggestions reflect both the opinion and the experience of the author, and as
such, do not necessarily represent the view of the IBM Corporation.

As with all standards, they should act as a guide for the reader. The reader, in
this case, should really be the application designer. This is the person who will
set up all of the JCL, CLISTs, ISPF panels, JCL skeletons, JOB networks and so
on in order to run the major application. He or she is usually the person who
sets up the standards to be applied to all procedures involved with running a
major application.

It is recommended that the reader go through the entire chapter, and then build
his or her own set of rules based on the suggestions offered here as applied to
the particular application in question.

C.1 Data Set Naming Guidelines
The purpose of this chapter is to offer some guidelines as to what constitutes
proper data set naming conventions. This would allow customers to easily
exploit the functions of DFSMS for the proper assignment of System Managed
Storage (SMS) policies to manage the data. Although the ACS (Automatic Class
Selection) Routines will allow the Storage Administrator to filter on more than
just data set name, the name of the data set is fundamentally important. Some of
these advantages are listed below:

• It allows more flexibility for the assignment of levels of service to data sets

• It is easier to write/maintain ACS Routines

• The ACS Routines are more durable (that is, meaningful over time)

• Data set filters can be useful for other storage management techniques (for
example, ISMF, DFDSS)

 Copyright IBM Corp. 1998 543

There are two basic pieces of information that one should be able to obtain from
the data set name:

 1. Who owns it?
 2. What is it?

The following section will highlight all of the basic components that could
potentially be used in a data set naming standard.

C.2 Components of a Data Set Name
Not all of the following levels of qualification are necessary for naming data sets.
Instead, these represent some common levels of qualification that one tends to
find in a good and meaningful data set naming convention. Some of the
qualifications make sense for certain types of data while other levels don′ t. This
list is intended to be a superset of all possible types of qualification levels.

Also, not all of these levels have to be coded as a separate level of qualification
(that is, separated by periods). Other possibilities are via positional characters
within a given qualifier. The one exception to this is the High-Level Qualifier
(HLQ). You should not create unnecessary numbers of these due to positional
characters. This is explained in more detail in the next section.

C.2.1 High-Level Qualifier (HLQ)
The HLQ should identify who ″owns″ the data. This could be for things such as
billing purposes, or simply for locating the owner in case of a problem. It may
represent a user ID, a project, an application, a business unit or a group. It may
also represent a sharing of the same set of data by a set of individuals from a
security standpoint (for example, as the notion of RACF userid and groupid).

There should be no other levels of qualification imbedded in this portion that
would tend to artificially multiply the number of HLQs in an installation. The goal
should always be to minimize the number of HLQs to the point that they serve
the management purpose (that is, billing, identification and so on).

It may be important to even have a standard convention within the HLQ. For
example, all TSO user IDs begin with a ″$″ as the first character -- this would
allow the Storage Administrator to easily avoid filter collisions in ACS Routines.
Again, the goal of doing this would be to allow the Storage Administrator to do
his job more easily in that all TSO data could be simply filtered out. The trade-off
here, of course, would be with the usability of the TSO LOGON IDs.

Another trade-off would be the intent of managing groups of application data. It
may be more important, for example, to associate certain TSO LOGONs with the
particular application area so that large applications could easily be identified
and moved by filtering on the first character of the HLQ. There is also a usability
problem here in that the TSO user would have to keep changing his ID if his job
changed from one large application to another. This also means that electronic
mail might be a problem if individual users have a lot of LOGON ID changes --
this also has some security implications as well (electronic mail being sent to
the wrong ID).

Note: As a personal recommendation from the author, it has been found that
one tends to cause more problems by choosing user IDs that will definitely
change due to such things as career changes. A better way is to have

544 VSE to OS/390 Migration Workbook

individuals keep a standard LOGON ID, and change the set of filters instead of
the IDs.

As an example of this set of conventions, consider a common problem of
constantly shifting workloads. If the Storage Administrator was always faced with
getting the data for a given application and moving it to another system, then it
would make good sense to have a naming convention for the HLQ that would
allow him to easily accomplish this via filtering techniques. Other reasons are for
data portability to other installations for disaster/recovery situations that would
cause an application to be brought up on an alien system.

One example of a naming convention for HLQs might be the following:

• First Character:

− A - Accounting Support

− D - Documentation

− E - Engineering

− F - Field Support

− M - Marketing Support

− P - Programming

− $ - TSO user ID

An alternative here is to use one of the characters above as the first
character of the TSO user ID to allow movement of all data within an
application (including the TSO data). This is not the way recommended
by the author -- the preference would be a standard code for TSO, such
as ″$″.

The above list does not represent all of the possibilities. For example, a
bank might have separation of HLQs by major application such as
checking, savings, mortgage loans, investments or ATM. An insurance
company might have applications such as life, auto, personal insurance,
major medical and corporate accounts.

− Remaining Characters = Project Name or Code Number

Note: This might have been chosen because a project code might exist
for programming, engineering, documentation, and accounting, but it
does not imply that one must do it that way. It has been the experience
of the author that similar project codes would not be common.

A more natural idea is to have the actual project name following the first
character. For example, the remaining portion of the ″E″ project could be the
code name of the machine being designed, while a ″P″ project could be the
name of the programming application or product name.

Some examples might be:

− E3090M150
− E3090M200
− E3090M300
− E3090M400
− E3090M500
− E3090M600
− E3380K
− E3380J

Appendix C. DFSMS Naming Conventions 545

− E3380D
− E3380S
− E3990M3
− E3990M2

The above example would allow various filtering techniques the flexibility of
recognizing different sets of data easily. Some examples of this follow:

• HLQ = E* -- All of the Engineering Data

• HLQ = E3090* -- All of the 3090 CPU Family of Designs

• HLQ = E3380* -- All of the 3380 DASD Family of Designs

C.2.2 Relative Importance
This level of qualification might indicate things such as:

• Production Data

• Development Data

• Test Data

In general, it would be important to be able to recognize the distinction between
production data and test data. Other types of levels could be:

• Master Data

• Update Data

• Work Data

C.2.3 File Contents
This level of qualification should state what the data is. For example, an
application strips some information out of the master database and builds a work
file for subsequent processing. This file contains the employee id number and
his job code. One might then call this file the ″employee- job code file″. Other
examples might include such things as:

• Telephone call log (TELPHLOG)
• Parts inventory file (PRTINVEN)
• Parts unit cost file (PRTUCOST)
• Payroll file (PAYROLL)
• Checking account transaction file (CHKXACTN)
• CADAM circuit design file (CKTDESGN)
• Heat dissipation statistics file (HEATSTAT)
• Simulation result file (SIMRSLTS)
• Program source (PGMSRCE)
• Life insurance account file (LIFEACCT)
• User′s Manual script file (USMANUAL)
• Input manufacturing file (INPMANUF)
• Transportation bill of lading file (XPRTBILL)

All of the above examples describe what the data is. There should be a unique
character code for each data set type within a given application. This concept is
demonstrated with each of the examples above.

Note: Eight characters have been used as the standard for the data set type in
all of the above examples. This is probably a reasonable number of characters,
although not mandatory. It may not even be a good idea to make file names too

546 VSE to OS/390 Migration Workbook

readable, such as, a file called MASTER.PAYROLL.WEEKLY . This might be just
too tempting to your average system hacker. A better choice might be
MR.PY.WK.

C.2.4 User Name
This qualifier should allow the end creator to assign their own unique name to
identify the particular set of a certain type of data; for example, with a master
circuit file, there would be a distinction between MYPART and YOURPART, or
MYPART1 versus MYPART2. Some other examples of these are:

• Part number (#0135678)

• Print program (PRTPROGM)

• New York Area (NEWYORK)

• X15 Model (X15MODEL)

• Geological site #458 (GEO#458)

• Branch office #57 (BROFC057)

The intent of this level of qualification is to uniquely identify one piece of a type
of data from another piece of the same type of data. Examples of this show the
distinction between ″TELPHLOG.NEWYORK″ and ″TELPHLOG.CALIF″ or between
″PGMSRCE.MYPGM1″ and ″PGMSRCE.MYPGM2″. This should use the entire
qualifier (that is, all of the eight characters).

C.2.5 Data Set Level
Another level of qualification that is sometimes useful in application areas is the
level of the piece of data. Some examples of this are listed below:

• Design level or version or release level (for example, for engineering,
programming, documentation)

• Change number, an arbitrary number to indicate a constantly increasing
number for subsequent improvements on a piece of data

• Cyclic level (for example, yearly, monthly, weekly, daily)

C.3 Things Not to Include in the Data Set Name
There are certain pieces of information that should never be part of the data set
name. The general category of this data is that information which is very likely
subject to change. This type of qualification usually doesn′ t add anything
meaningful in terms of identifying the data for storage management reasons.
Some examples of this are shown in subsequent sections.

C.3.1 Department Number
This is a piece of information that is sure to change either due to
re-organization, or movement of projects or individuals.

Appendix C. DFSMS Naming Conventions 547

C.3.2 Application Location
If this application ever got moved to another site, then all of the data sets would
have to be renamed. In some cases, it could be important to name the data by a
location name, for example, CHICAGO. This could be perfectly acceptable in
certain cases. Suppose there were two telephone directory files,
″TELPHDIR.CHICAGO″ and ″TELPHDIR.PODUNK″. This would be okay. That′s
because it is very unlikely that either Chicago or Podunk would ever move.

Application workload is another story. For example, if an application currently
runs in Chicago, or Podunk, one might be tempted to include this as part of the
data set name for disaster/recovery purposes. If there is a chance of moving
these applications to run in a different location, then it would be a bad idea to
imbed it into a name.

C.3.3 Management Criteria
This type of generic criteria that some people recommend is the notion of
identifying disaster/recovery data, or vital records, for example within the data
set name. In general, it is not a good idea to imbed management criteria within
the data set name, since it is mainly driven by the technology at hand. They may
also change for business reasons (for example, a change in the state laws).

If either the technology or the business reason changes, then the data set would
have to be renamed to match it. One should simply name the data for what it is
and keep its management policy separate.

Therefore, it is not a good idea to specify qualifiers such as ″DR″ or ″VITALREC″.
By always naming the data for what it is, the policy for managing it can be kept
separately without ever needing to rename the data.

C.3.4 Output Device Type
This is a general class of information that is also based on a certain level of
technology. As technology improves, you may very well decide to change the
way it is managed. For example, you might put a data set qualifier of MICROFIC
to indicate that this data set should be put out to microfiche -- whereas
somewhere in the future, one could envision this same piece of data being put to
a high-speed link which is connected to some automated high-capacity storage
device.

Qualifiers such as ″TAPE″ or ″DISK″ or ″T3480″ or ″T3490″ should never be
coded in data set names. This type of qualifier is destined for change as newer
device technologies are created.

C.3.5 Expiration Date
The EXPDT and RETPD allocation keywords associated with the data set are
another form of management criteria in that they specify the purge date for data.
These keywords clearly put storage management in the hands of the end users.

To change the policy, you must change the date associated with the data set.
This is just as bad as forcing the application to go back and re-figure the new
management criteria. It represents a policy of sorts and therefore, should be
separated from the name itself. This type of information should be allowed to
change without actually changing the name of the data.

548 VSE to OS/390 Migration Workbook

C.3.6 Access Method
At one point in time, many installations adopted a policy of distinguishing VSAM
data from non-VSAM data. The reality behind this standard was that there were
many functions that were not supported for VSAM and this was an easy way to
recognize that data.

The main reason for this distinction was because of old VSAM catalogs and the
″ownership″ of the volume and data by VSAM. In order to avoid these problems,
you had to separate the VSAM data from the non-VSAM data by catalog. We
have come a long way since then and this notion is no longer needed with the
use of ICF catalogs. There should be no distinction because of access method.

C.3.7 Job Name
Some installations have used the name of the job which created this data set.
This is certainly a piece of information which is very likely to change. It usually
says very little about what this piece of data actually is, since the job usually
creates all sorts of data set types. It is not a good practice to include this
information as a part of the data set name.

C.4 Common Applications - Naming Conventions
This section will focus on some of the common MVS applications that tend to put
out a fair amount of data on the system and the suggestions for an associated
naming convention.

C.4.1 TSO Naming Conventions
TSO certainly has a very recognizable data set naming convention. The rules are
fairly simple and easy to understand:

• Three levels of qualification: userid.dsname.dstype

• Standard set of data set types (for example, CLIST, FORT, PLI, CNTL, and so
on)

All of the TSO functions, commands and also the ISPF/PDF functions tend to
complement this naming convention. Therefore, for ease of use and
transportability, it is generally a good idea to maintain this convention.

Some applications run with production-type data under TSO using the standard
JCL PROCs, CLISTs, and PANELS that would be used for the normal production
data. For example, consider a programming application that had a naming
convention of:

library.dstype.project.version.release

where:

library: (PROD, DEVL, or TEST)
dstype: (SOURCE, MACRO, LOAD, OBJ, JCL, and so on)
project: (APPLIC1, APPLIC2, . . .)
version: (V1, V2, . . .)
release: (R1, R2, . . .)

It would certainly be acceptable for unit testing on certain data to be done under
a TSO user ID such that the user ID would be substituted for the ″l ibrary″ and all
of the remaining qualifiers would stay the same. The key point here is the

Appendix C. DFSMS Naming Conventions 549

usability of the system and the need to manage it differently based on what set
of data this actually is.

C.4.2 VSAM Data Set Naming Conventions
Many companies have decided that it is a good idea to associate all of the VSAM
components with the base cluster by some recognition pattern. Some of the
reasons behind this have to do with billing, and also with the usability of doing
catalog locates and so on, to find all of the associated components easily with
available software technology.

The normal standard that has been adopted in most cases is the first portion of
the name being the cluster name and the component name of DATA, INDEX, or
AIX name. For example, consider a VSAM cluster of X.Y.Z that was a KSDS with
two AIXs which were also keyed data sets. Also, assume that there were two
path names defined over the alternate indexes. The set of names would be:

X.Y.Z
X.Y.Z.DATA
X.Y.Z.INDEX
X.Y.Z.PATH1
X.Y.Z.AIX1
X.Y.Z.AIX1.DATA
X.Y.Z.AIX1.INDEX
X.Y.Z.PATH2
X.Y.Z.AIX2
X.Y.Z.AIX2.DATA
X.Y.Z.AIX2.INDEX

C.4.3 DB2 Naming Conventions
The standard data set naming convention for all DB2 data sets is the following:

hlq.DSNDBx.dbname.tblspacename.I0001.A00n

where:

DSNDBx is

• DSNDBC -- cluster

• DSNDBD -- data component

• DSNDBI -- index component

dbname -- database name (user selected)

tblspacename -- table space name (user selected)

I0001 -- hard-coded constant

A00n -- where ″n″ is system generated for extensions to the table space

Although the DB2 naming convention is certainly distinguishable, it is difficult to
associate different management policies for different sets of data within a
particular database. For example, in a programming application, one can easily
imagine different management policies for things such as SOURCE, MACRO,
SCRIPT and so on, versus things such as OUTLIST, LISTING, TESTLIST, LIST,
ASMLIST and so on.

Not all data within an application has the same management criteria --in the
case of DB2 applications, it is difficult to place distinguishable characteristics

550 VSE to OS/390 Migration Workbook

within the data set name so that ACS Routines can easily ascertain one piece of
data from another. The only alternative to this is to place a very restrictive
convention on the qualifiers that can be specified.

For example, you could break down the table space name by having positional
characters represent different levels of qualification for the data. The following is
one possibility:

• first character: P -- production, T -- test

• second character: R -- report, I -- intermediate file, M -- master DB

• third character: W -- weekly, D -- daily, M -- monthly

• fourth-eighth characters: table space name

Until this restrictive naming convention is lifted, the only other alternative is to
use the available free characters to distinguish the data within the database
application.

C.4.4 Generation Data Sets
The notion of a GDG (Generation Data Group) is that for a given name, say
″A.B.C″ there could be many generations. Each generation data set (GDS) would
have the following name form:

A.B.C.GnnnnV00

where:

nnnn = next number in sequence (may wrap around)

The only naming convention difference here is that the application loses one
level of qualification, mainly the lowest level. Other than that, there is no real
distinction between GDSs and other data set names. It is generally not a good
idea, however, to use the generation to indicate a different type of data; for
example, the idea of the ″ + 1 ″ version being a report, the ″ + 2 ″ version being an
intermediate file. The first portion of the name should state what the data is and
the generation should represent a later level or generation of that data. A better
idea would be to have a separate GDG for reports, intermediate files and so on.

Appendix C. DFSMS Naming Conventions 551

552 VSE to OS/390 Migration Workbook

Appendix D. Special Notices

This publication is intended to help customers and IBM technical personnel to
migrate from VSE to OS/390.

The information in this publication is not intended as the specification of any
programming interfaces that are provided by VSE or OS/390. See the
PUBLICATIONS section of the IBM Programming Announcement for VSE/ESA
and OS/390 for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of

 Copyright IBM Corp. 1998 553

including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

3090 ACF/VTAM
AD/Cycle ADSTAR
Advanced Function Presentation Advanced Function Printing
Advanced Peer-to-Peer Networking AFP
AIX AnyNet
APPN AS/400
BookManager BookMaster
C/370 CallPath
CBIPO CBPDO
CICS CICS/ESA
CICS/MVS CICS/VSE
CICSPlex COBOL/370
Common User Access CT
CUA Current
DataHub DataJoiner
DataPropagator DataRefresher
DB2 DFSMS
DFSMS/MVS DFSMSdfp
DFSMSdss DFSMShsm
DFSMSrmm DFSORT
Distributed Relational Database
Architecture

DRDA

ECKD eNetwork
ES/9000 ESA/370
ESA/390 ESCON
FFST FunctionPac
GDDM Hardware Configuration Definition
Hiperbatch IBM
ImagePlus IMS
IMS/ESA InfoPrint
Intelligent Printer Data Stream IP PrintWay
IPDS MO:DCA
MQSeries Mult iprise
MVS MVS/DFP
MVS/ESA MVS/SP
MVS/XA Net.Data
NetSpool NetView
OfficeVision OPC
Open Class OpenEdition
Operating System/2 OS/2
OS/390 OS/400
Parallel Sysplex PR/SM
Print Services Facility Processor Resource/Systems Manager
ProductPac PSF
PSF/6000 QMF
RACF RAMAC
Resource Measurement Facil ity RETAIN
RMF RS/6000
S/370 S/390
SAA ServicePac
SOMobjects SP
SQL Master SQL/DS

554 VSE to OS/390 Migration Workbook

The following terms are trademarks of other companies:

1-2-3 is a trademark of Lotus Development Corporation

ADE is a trademark of Loral/Rolm Mil-Spec

ATM is a trademark of Adobe Systems, Incorporated

C-bus is a trademark of Corollary, Inc.

C++ is a trademark of American Telephone and Telegraph Company,
Incorporated

CA is a trademark of Computer Associates

CADAM is a trademark of Cadam Incorporated

CORTEX-MS is a registered trademark of SISRO Inc

CSS is a trademark of CSS Laboratories, Incorporated

DCE is a trademark of The Open Software Foundation

Domino is a trademark of Lotus Development Corporation

Encina is a trademark of Transarc Corporation

Express is a trademark of Parasoft Corporation

HP/UX is a trademark of Hewlett-Packard Company

Intel is a trademark of Intel Corporation

Lotus is a trademark of Lotus Development Corporation

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

MS is a trademark of Microsoft Corporation

Network File System is a trademark of Sun Microsystems, Incorporated

NFS is a trademark of Sun Microsystems Incorporated

SupportPac System/360
System/370 System/390
SystemPac Systems Application Architecture
SystemView Virtual Machine/Enterprise Systems

Architecture
VisualAge VisualLift
VM/ESA VM/XA
VSE/ESA VTAM

Appendix D. Special Notices 555

OMEGAMON is a trademark of Candle Corporation

ONC is a trademark of Sun Microsystems, Incorporated

Open Software Foundation is a trademark of The Open Software Foundation,
Incorporated

Oracle is a trademark of Oracle Corporation

OSF is a trademark of Open Software Foundation, Incorporated

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

PKZIP is a trademark of PKWARE, Incorporated

POSIX is a trademark of Institute of Electrical and Electronic Engineers

PostScript is a trademark of Adobe Systems, Incorporated

Report Manager is a trademark of Image Products, Incorporated

SMS is a trademark of Standard Microsystems Corporation

Solaris is a trademark of Sun Microsystems, Incorporated

Sun Microsystems is a trademark of Sun Microsystems, Incorporated

Tivoli, TME, and TME 10 are trademarks of Tivoli

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited

Other company, product, and service names may be trademarks or
service marks of others.

556 VSE to OS/390 Migration Workbook

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 561.

E.1.1 OS/390 and MVS Redbooks

Book Title Publication
Number

ESCON MVS Operator Problem Determination GG66-3239
OS/390 Software Management Cookbook SG24-4775
Parallel Sysplex Configuration Cookbook SG24-4706
MVS Multisystem Consoles in a Sysplex SG24-4626
Planning for CA-ACF2 Migration to OS/390 Security Server SG24-4663
MVS 3.1.3 and RACF 1.9 Security Implementation Guide GG24-3585
RACF V2.2 Installation and Implementation Guide SG24-4580
OS/390 Parallel Sysplex Capacity Planning SG24-4680
JES3 in a Parallel Sysplex SG24-4776

E.1.2 Other Redbooks

Book Title Publication
Number

IBM Network Products Implementation Guide GG24-3649
R/390 (P/390) New User Cookbook * SG24-4757
Automation for S/390 Parallel Sysplex SG24-4549
ES/9000 Operating Your System, Volume 1 SA24-4350
ES/9000 Operating Your System, Volume 2 SA24-4351
9221 Cookbook GG24-3935
HCD Primer SG24-4037
ESA/390 Microprocessor (C, E, P, and R1 Models) GG24-4497
Continuous Availability with PTS SG24-4503
ESA/390 Microprocessor (R2 and R3 Models) SG24-4575
ESCON Implementation Guide SG24-4662
OSA-2 Implementation Guide SG24-4770
HMC with S/390 CMOS Processors SG24-4832
S/390 G3 Enterprise Server: CSAR Presentation Guide SG24-4911
Interoperability between VSE DL/I and OS/390 IMS DBCTL SG24-5249
PSF/VSE Application Programming Guide S544-3666
AFP Printing in a Cross-System Environment GG24-3765

E.2 OS/390 Product Publications
See GC28-1727, OS/390 Information Roadmap for a complete list of OS/390
books.

 Copyright IBM Corp. 1998 557

E.2.1 Planning Books
The following hard-copy books are part of the OS/390 Installation Planning Kit
which can be ordered by publication number GK2T-6710:

Other OS/390 Books: There are many other introductory and planning books
available in the OS/390 library. Here are some of the most important ones you
should be familiar with:

Book Title Publication
Number

OS/390 Introduction and Release Guide GC28-1725
OS/390 Information Roadmap GC28-1727
OS/390 Planning for Installation GC28-1726
SystemView for MVS Up and Running! GC28-1241
The Year 2000 and 2-Digit Dates: Guide GC28-1251
OS/390 BookManager Hints and Tips GC28-1987

Book Title Publication
Number

Custom-Built Offerings Planning SC23-0352
ServerPac: Using the Installation Dialog SC28-1244
OS/390 MVS Planning: Operations GC28-1760
OS/390 MVS Planning: Global Resource Serialization GC28-1759
OS/390 MVS System Data Set Definition GC28-1782
OS/390 MVS Device Validation Support GC28-1748
DFSMS/MVS General Information GC26-4900
DFSMS/MVS Library Guide GC26-4902
DFSMS/MVS Planning for Installation SC26-4919
OS/390 TSO/E General Information GC28-1964
OS/390 JES2 Introduction GC28-1794
IBM BookManager READ/MVS and BUILD/MVS: General Information GC38-2032
IBM BookManager READ/MVS: Getting Started SC38-2033
OS/390 Printing Softcopy BOOKs S544-5354
OS/390 HCD Planning GC28-1750
OS/390 HCM User′s Guide SC33-6595
OSA Planning GC23-3870
MVS Planning: Security GC28-1439
OS/390 Security Server (RACF) Introduction GC28-1912
OS/390 ISPF Getting Started SC28-1294
OS/390 SDSF Guide and Reference SC28-1622
HLASM General Information GC26-4943
GDDM General Information GC33-0866
OS/390 Parallel Sysplex Overview GC28-1860
OS/390 MVS Planning: Workload Management GC28-1761
CustomPac Installation Dialogs SA22-7240
OS/390 MVS Recovery and Reconfiguration Guide GC28-1777

E.2.2 OS/390 Online Product Library

Book Title Publication
Number

OS/390 Online Collection SK2T-6700

558 VSE to OS/390 Migration Workbook

E.3 Other Publications

Book Title Publication
Number

RACF General Information GC23-3723
Getting Started with DFSORT SC26-4109
Get DFSMS FIT: Fast Implementation Techniques SG24-2568
DFSMS FIT: Fast Implementation Techniques Process Guide SG24-4478
DFSMS FIT: Fast Implementation Techniques Installation Examples SG24-2569

E.4 Other Sources

E.4.1 Books on the Internet
There are several IBM world-wide web sites available with more information:

E.4.1.1 Redbooks
See http://www.redbooks.ibm.com/ . for OS/390 Publications on the Internet.

E.4.1.2 OS/390 Books
See http://www.s390.ibm.com/os390 and click on ″THE LIBRARY″.

E.4.1.3 IBM Printing Systems
See the IBM Printing Systems Company Web Site at
http://www.printers.ibm.com/ .

E.5 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037

Appendix E. Related Publications 559

560 VSE to OS/390 Migration Workbook

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

• PUBORDER — to order hardcopies in the United States

• Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLCAT REDPRINT
TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

• REDBOOKS Category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1998 561

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone Orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

• On the World Wide Web

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

I B M M A I L Internet
In United States: usib6fpl at ibmmail us ib6fp l@ibmmai l .com

In Canada: caibmbkz at ibmmai l lmannix@vnet . ibm.com

Outside North America: dk ibmbsh at ibmmai l bookshop@dk. ibm.com

United States (toll free) 1-800-879-2755

Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)

(+45) 4810-1320 - Danish

(+45) 4810-1420 - Dutch

(+45) 4810-1540 - English

(+45) 4810-1670 - Finnish

(+45) 4810-1220 - French

(+45) 4810-1020 - German

(+45) 4810-1620 - Ital ian

(+45) 4810-1270 - Norwegian

(+45) 4810-1120 - Spanish

(+45) 4810-1170 - Swedish

I B M Publ icat ions

Publications Customer Support

P.O. Box 29570

Raleigh, NC 27626-0570

USA

I B M Publ icat ions

144-4th Avenue, S.W.

Calgary, Alberta T2P 3N5

Canada

IBM Direct Services

Sortemosevej 21

DK-3450 Allerød

Denmark

United States (toll free) 1-800-445-9269

Canada 1-403-267-4455

Outside North America (+45) 48 14 2207 (long distance charge)

Index # 4421 Abstracts of new redbooks

Index # 4422 IBM redbooks

Index # 4420 Redbooks for last six months

Redbooks Web Site ht tp : / /www.redbooks. ibm.com/

IBM Direct Publ icat ions Catalog ht tp : / /www.e l ink . ibml ink . ibm.com/pbl /pb l

562 VSE to OS/390 Migration Workbook

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 563

564 VSE to OS/390 Migration Workbook

Glossary

Numerics
2-digit-year format . A format that provides a year
date as two digits only to represent a year within a
specific century. The two high-order digits of the year
are truncated; for example 1995 is represented as 95.

4-digit-year format . A format that provides a year
date as four digits: the two high-order digits represent
the century and the two low-order digits represent the
year within the century. For example, 1995 represents
the year 1995; 2095 represents the year 2095.

20th century . The period of time 0000.00 hrs
1901-January-1 through 2400.00 hrs
2000-December-31.

21st century . The period of time 0000.00 hrs
2001-January-1 through 2400.00 hrs
2100-December-31.

24-hour clock . A clock that keeps time from 0000
(midnight) to 1200 (noon) and from 1200 (noon) to
2400 (midnight). Compare with 12-hour clock.

3270 emulation . The use of a program that allows a
device or system such as a personal computer to
operate in conjunction with a host system as if it were
a 3270- series display station or control unit.

A
abend code . A system code that identifies the
system message number and type of error condition
causing the abend.

abnormal termination . (1) The cessation of
processing prior to planned termination. (2) A system
failure or operator action that causes a job to end
unsuccessfully.

access control . In computer security, ensuring that
the resources of a computer system can be accessed
only by authorized users in authorized ways.

access level . In computer security, the level of
authority a subject has when using a protected
resource; for example, authority to access a particular
security level of information.

access method . A technique to obtain the use of
data, storage, or the use of an input/output channel to
transfer data; for example, random access method,
sequential access method.

access method routines . Routines that move data
between main storage and input/output devices.

Access Method Services (AMS) . A uti l i ty program
(named IDCAMS) that defines VSAM data sets (or
files), allocates space for them, modifies attributes,
and manipulates data sets and catalog entries.

access mode . The way a file is used within a job
step, a program, or a module. Most access modes
correspond to OPEN modes specified in OPEN
statements (such as input, output, or update).

access path . A sequence of data items used by a
database management system to access records or
other data items stored in a database. There may
simultaneously exist more than one access path for
one data item.

account file . A direct access file maintained by
VSE/POWER to hold the accounting information it
generates and the programs that it controls.

actual conversion . The conversion of source material
done at the end of migration, in order to switch over
from VSE to MVS. (Contrast with dummy mass
conversion.)

AD/Cycle . An IBM product that offers an enterprise
modeling approach supported by tools that will assist
in the creation of an enterprise model to be validated,
analyzed, and then used to generate applications. It
consists of a framework for, and a set of, application
development tools provided by an Application
Development (AD) platform, designed to support the
integration of tools through a consistent user
interface, workstation services, an AD information
model, tool services, Repository Services, and Library
Services. It provides control for defining and sharing
application development data.

address space . (1) The range of addresses available
to a computer program. (2) The complete range of
addresses that are available to a programmer. See
also virtual address space. (3) In VSE, a subdivision of
the total of virtual storage if the computer system
operates in 370 mode.

address translation . In virtual storage systems, the
process of changing the address of an item of data or
an instruction from its virtual storage address to its
real storage address.

AFP . Advanced Function Presentation. A set of
licensed programs, together with user applications,
that use the all-points-addressable concept to print on
presentation devices. AFP includes creating,
formatting, archiving, retrieving, viewing, distributing,
and printing information.

AFPDS . AFP data stream. A presentation data
stream that is processed in AFP environments.

 Copyright IBM Corp. 1998 565

MO:DCA-P is the strategic AFP interchange data
stream, and IPDS is the strategic AFP printer data
stream.

alphabetic character . Any one of the letters A
through Z (uppercase and lowercase). Some licensed
programs include as alphabet characters the special
characters #, $, and @.

alphanumeric . Pertaining to data that consist of
letters, digits, and usually other characters, such as
punctuation marks.

alternate COPY . A source library management
feature that provides text inclusion within source
modules, JCL streams or any other card-image data,
in contrast to the standard source text inclusion
features that various compilers provide.

alternate index . In systems with VSAM, a collection
of index entries related to a given base cluster and
organized by an alternate key, that is, a key other
than the prime key of the associated base cluster
data records; it gives an alternate directory for finding
records in the data component of a base cluster.

AMS . See Access Method Services.

analysis routine . A routine that analyzes error
records, provided by an error handler, to isolate
failures to one or more field replaceable units (FRUs).

APA . all points addressable. The ability to address,
reference, and position text, overlays, and images at
any defined position or pel on the printable area of
the paper. This capability depends on the ability of
the hardware to address and to display each picture
element.

APF . authorized program facility. The authorized
program facility (APF) is a facility that an installation
manager uses to protect the system. In MVS, certain
system functions, such as all or part of some SVCs,
are sensitive; their use must be restricted to users
who are authorized. An authorized program is one
that executes in supervisor state, or with APF
authorization.

application . A set of programs, JCL jobstreams, and
other programming elements written for or by users
for their own data processing production.

application program . (1) A program that is specific to
the solution of an application problem. Synonymous
with application software. (2) A program written for or
by a user that applies to the user ′s work, such as a
program that does inventory control or payroll. (3) In
SDF/CICS, the program using the physical maps and
symbolic description maps generated from a source
map set.

application program interface (API) . A functional
interface supplied by the operating system or by a

separately orderable licensed program that allows an
application program written in a high-level language
to use specific data or functions of the operating
system or the licensed program.

application software . (1) Software that is specific to
the solution of an application problem. (2) Software
coded by or for an end user that performs a service
or relates to the user′s work. See also system
software.

application step . A job step that executes a user
program directly related to data processing
production. Contrast with utility step.

archive . A copy of one or more files or a copy of a
database that is saved for future reference or for
recovery purposes in case the original data is
damaged or lost.

array . In programming languages, an aggregate that
consists of data objects, with identical attributes, each
of which may be uniquely referenced by subscripting.

ascending sequence . The arrangement of data in
order from the lowest value to the highest value,
according to the rules for comparing data. Contrast
with descending sequence.

assembler language . A source language that
includes symbolic machine language statements in
which there is a one-to-one correspondence with the
instruction formats and data formats of the computer.

asynchronous processing . A series of operations
performed separately from job in which they were
requested; for example, submitting a batch job from
an interactive job at a workstation. Contrast with
synchronous processing.

audit . To review and examine the activities of a data
processing system mainly to test the adequacy and
effectiveness of procedures for data security and data
accuracy. See computer-system audit. See also audit
review file, audit trail.

authorization . (1) In computer security, the right
granted to a user to communicate with or make use of
a computer system. (2) The process of granting a user
either complete or restricted access to an object,
resource, or function.

authorized library . A library that may contain
authorized programs.

authorized program . A system program or user
program that is allowed to use restricted functions.

automatic restart . A restart that takes place during
the current run, that is, without resubmitting the job.
An automatic restart can occur within a job step or at
the beginning of a job step. Contrast with deferred
restart.

566 VSE to OS/390 Migration Workbook

B
background partition . In VSE, a space of virtual
storage in which programs are executed under control
of the system. By default, the partition has a
processing priority lower than any of the existing
foreground partit ions.

backout . See file and catalog backout.

backup copy . A copy of information or data that is
kept in case the original is changed or destroyed.

base cluster . In systems with VSAM, a
key-sequenced or entry-sequenced file over which
one or more alternate indexes are built. See also
cluster.

base register . (1) A register that holds a base
address. (2) A general-purpose register that a
programmer chooses to contain a base address.

batch application . In VSE, a set of programs that
normally processes data without user interaction; for
example, an application to print a company payroll.
Such an application uses a device, a data file, or the
processor intensively for a longer time than online
applications.

batch execution . Execution of programs and data
that have been submitted or accumulated as batched
input.

batch processing . (1) Loosely, the execution of
computer programs serially. (2) Pertaining to the
technique of executing a set of computer programs
such that each is completed before the next program
of the set is started.

BCP . Base Control Program. This refers to the
″heart″ of the OS/390 operating system without the
JES, RACF, VTAM and other subsystems.

bind . (1) To relate an identifier to another object in a
program; for example, to relate an identifier to a
value, an address or another identifier, or to
associate formal parameters and actual parameters.
(2) To associate a variable with an absolute address,
identifier, or virtual address, or with a symbolic
address or label in a program.

binder . The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program (load module or program object).
It replaces the linkage editor and batch loader in the
MVS/ESA operating system.

bit string . A string consisting solely of bits.

blocking factor . The number of records in a block. A
blocking factor is calculated by dividing the size of the
block by the size of the record. Synonymous with
grouping factor.

bootstrap . A sequence of instructions whose
execution causes additional instructions to be loaded
and executed until the complete computer program is
in storage.

buffer pool . (1) An area of storage in which all
buffers of a program are kept. (2) In ACF/VTAM, a
group of buffers having the same size. A buffer pool
is established at initialization time in the message
control program; the buffers are built in extents
chained together.

built-in function . (1) A function that is supplied by a
language. (2) In PL/I, a predefined function, such as a
commonly used arithmetic function or a function
necessary to high-level language compilers; for
example, a function for manipulating character strings
or converting data. It is automatically called by a
built-in function reference.

business partner . Any non-IBM organization, with
whom IBM has a written contract defining a
complementary marketing relationship, that provides
end users with information-handling solutions that use
or rely upon an IBM offering.

C
C language . A language used to develop software
applications in compact, efficient code that can be run
on different types of computers with minimal change.

cache . (1) A special-purpose buffer storage, smaller
and faster than main storage, used to hold a copy of
instructions and data obtained from main storage and
likely to be needed next by the processor. (2) A buffer
storage that contains frequently accessed instructions
and data; it is used to reduce access time.

cancel . To end a task before it is completed.

catalog . A collection of all data set information, like
device type and volume serial number, that MVS
needs to locate a specific data set. Using the catalog
simplifies developing MVS JCL that does not change
from one run to the next.

catalog backout . See file and catalog backout.

cataloged procedure . A set of control statements
placed in a library and retrievable by name.

category (of programming elements) . A main
classification of programming elements that groups
elements of a single type, such as source modules,
copied members, and macros.

CBPDO . Custom-Built Product Delivery Offering. A
CBPDO is a tape that has been specially prepared for
installing a particular product and the related service
requested by the customer. A CBPDO simplifies
installing a product and the service for it.

Glossary 567

CCYY format . A 4-digit-year format that uses two
century digits (CC) to indicate the century and two
year digits (YY) to indicate the year within the
century. The CC representation is provided as either
the actual century digits (for example, 18, 19, or 20) or
as an encoded value (for example, as 00 to represent
19, 01 to represent 20 as in, 0095 represents the year
1995 and 0195 represents the year 2095.)

century . Although IBM recognizes that the 21st
century begins at 0000 hrs, 2001-January-01, for
purposes of this document, we are defining the
20th—21st century boundary to be between 2400 hrs,
1999-December-31 and 0000 hrs, 2000-January-1. This
allows a discussion of the 21st century to include all
dates with a 20yy format inclusive of the year 2000.
Hence, the year 2100 is likewise relegated to the 22nd
century.

century byte . The high order byte of a field used to
contain the two high order digits of a 4-digit year. (For
example, 19 in 1995, 20 in 2000 and 2001).

channel-to-channel (CTC) . A method of connecting
two computing devices.

character set . (1) An ordered set of unique
representations called characters; for example, the 26
letters of the English alphabet, Boolean 0 and 1, the
set of symbols in the Morse code, and the 128 ASCII
characters. (2) A defined collection of characters. (3)
All the valid characters for a programming language
or for a computer system.

checkpoint data set . A data set that contains
checkpoint records.

CICS. See Customer Information Control System.

CICS region . The CICS area of the computer system
in which an application is running.

close . (1) A data manipulation function that ends the
connection between a file and a program. Contrast
with open. (2) To end the processing of a file.

cluster . In systems with VSAM, a named structure
consisting of a group of related components; for
example, a data component with its index component.

coexistence . The ability of different types of systems
to support a program.

command language . A set of procedural operators
with a related syntax, used to indicate the functions to
be performed by an operating system. Synonymous
with control language.

Common Programming Interface . Definitions of those
application development languages and services that
have, or are intended to have, implementations on
and a high degree of commonality across the SAA

environments. One of the three SAA architectural
areas.

communication region . In VSE, an area of the
supervisor that is set aside for transfer of information
within and between programs.

compilation . Translation of a source program into an
executable program (an object program).

configuration file . A file that specifies the
characteristics of a system or subsystem.

console . A part of a computer used for
communication between the operator or maintenance
engineer and the computer.

context editing . A method of editing a line without
using line numbers. To refer to a particular line, all or
part of the contents of that line is specified.

control block . A storage area used by a computer
program to hold control information. Synonymous with
control area.

control language (CL) . The set of all commands with
which a user requests functions. Synonym for
command language. See job control language.

control program . (1) A computer program designed
to schedule and to supervise the execution of
programs of a computer system. (2) See VM/370
control program, resident control program, IMS/VS
control program, VM/XA Migration Aid control
program.

conversational . Pertaining to a program or a system
that carries on a dialog with a terminal user,
alternately accepting input and then responding to the
input quickly enough for the user to maintain a train
of thought. See also interactive.

conversion (VSE/MVS) . A process that modifies VSE
applications and data to meet MVS requirements.

copied member . A source text member that can be
included in a flow of source data by means of
COPY-like statements (COPY statements in
Assembler, COBOL, or RPG II; %INCLUDE statements
in PL/I; or any other alternate-COPY statements for
nonstandard text inclusion).

cosmetic . Referring to a 2-digit-year date that is
viewed by human eyes only, such as a print date on
hardcopy output or a date on a selection panel.
Because it is neither read nor further processed by a
program you might be able to exclude its modification
from your Year2000 work effort.

Customer Information Control System (CICS) . An
IBM-licensed program that enables transactions
entered at remote terminals to be processed
concurrently by user-written application programs.

568 VSE to OS/390 Migration Workbook

CP command . In VM, a command by which a
terminal user controls his virtual machine. The
VM/370 control program commands are called CP
commands. The CP commands that perform console
simulation are called console functions.

cross-domain resource . (1) Deprecated term for
other-domain resource. (2) In VTAM programs,
synonym for other-domain resource.

Custom-Built Installation Process Offering . A product
that simplifies the ordering, installation, and service
of MVS system control programs and licensed
programs by providing them with current updates and
corrections to the software that is already integrated.

customization . The process of designing a data
processing installation or network to meet the
requirements of particular users.

CustomPac . A series of offerings (that is, SystemPac,
FunctionPac, ProductPac, and ServicePac) based on
PUT levels combined with RSU levels.

cutover . The transfer of functions of a system to its
successor at a given moment.

D
DASD . See direct access storage device.

data base description (DBD) . In IMS/VS, the
collection of macro parameter statements that
describes an IMS/VS data base.

data definition language (DDL) . A language for
describing data and their relationships in a database.
Synonymous with data description language.

data exchange . The use of data by more than one
program or system. Data recorded or transmitted in a
format is referred to as exchange data.

Data Facility Data Set Services (DFDSS) . A backup
and restore program product.

Data Facility Product (DFP) . A program that isolates
applications from storage devices, storage
management, and storage device hierarchy
management.

Data Facility Storage Management Subsystem . An
operating environment that helps automate and
centralize the management of storage. To manage
storage, SMS provides the storage administrator with
control over data class, storage class, management
class, storage group, and automatic class selection
routine definitions.

data integrity . The condition that exists as long as
accidental or intentional destruction, alteration, or
loss of data does not occur.

Data Language One (DL/I) . 1. In IMS/VS, the data
manipulation language that provides a common
high-level interface between a user application and
IMS/VS. 2. A data base access language used under
VSE and CICS/VS.

data management . (1) In an operating system, the
computer programs that provide access to data,
perform or monitor storage of data, and control
input/output devices. (2) In VSE, a major function of
the operating system. It involves organizing, storing,
locating, and retrieving data.

data migration . The moving of data from an online
device to an offline or low-priority device, as
determined by the system or as requested by the
user. Contrast with staging.

data portability . The ability to use data sets or files
with different operating systems. Volumes whose data
sets or files are cataloged in a user catalog can be
demounted from storage devices of one system,
moved to another system, and mounted on storage
devices of that system.

data set . Under MVS, a named collection of related
data records that is stored and retrieved by an
assigned name. Equivalent to a CMS file.

data set control block (DSCB) . A data set label for a
data set in direct access storage.

data set name . The term or phrase used to identify a
data set. See also qualified name.

data space . In VSAM, a storage area defined in the
volume table of contents of a direct-access volume to
store files, indexes, and catalogs.

data transfer . The movement, or copying, of data
from one location and the storage of the data at
another location.

database management system (DBMS) . A
computer-based system for defining, creating,
manipulating, controlling, managing, and using
databases. The software for using a database may be
part of the database management system or may be
a stand-alone database system.

DBD . See data base description.

DD statement . Data definition statement.

DDNAME . data definition name. The logical name of
a file within an application. The DDNAME provides the
means for the logical file to be connected to the
physical file.

Device Support Facilities (ICKDSF) . A program used
for initialization of DASD volumes and track recovery.

default value . A value assumed when no value has
been specified. Synonymous with assumed value.

Glossary 569

Device Support Facilities (DSF) . An IBM-supplied
system control program for performing operations on
disk volumes so that they can be accessed by IBM
and user programs. Note: Examples of these
operations are initializing a disk volume and assigning
an alternate track.

device-independent . Pertaining to a program that
can be executed successfully without regard for the
characteristics of particular types of devices. Contrast
with device-dependent.

DFSMS environment . An environment that helps
automate and centralize the management of storage.
This is achieved through a combination of hardware,
software, and policies. In the DFSMS environment for
MVS, this function is provided by MVS/ESA SP and
DFSMS/MVS, DFSORT, and RACF. See also
system-managed storage.

DFSMSdfp . A DFSMS/MVS functional component that
provides functions for storage management, data
management, program management, device
management, and distributed data access.

DFSMSdss . A DFSMS/MVS functional component
used to copy, move, dump, and restore data sets and
volumes.

DFSMShsm . A DFSMS/MVS functional component
used for backing up and recovering data, and
managing space on volumes in the storage hierarchy.

DFSMShsm-managed volume . (1) A primary storage
volume, which is defined to DFSMShsm but which
does not belong to a storage group. (2) A volume in a
storage group, which is using DFSMShsm automatic
dump, migration, or backup services. Contrast with
system-managed volume and DFSMSrmm-managed
volume.

DFSMShsm-owned volume . A storage volume on
which DFSMShsm stores backup versions, dump
copies, or migrated data sets.

DFSMS/MVS. An IBM licensed program that together
with MVS/ESA SP compose the base MVS/ESA
operating environment. DFSMS/MVS consists of
DFSMSdfp, DFSMSdss, DFSMShsm, and DFSMSrmm.

direct access . (1) The capability to obtain data from
a storage device, or to enter data into a storage
device, in a sequence independent from their relative
position, by means of addresses indicating the
physical position of the data. (2) Contrast with serial
access.

direct access storage device (DASD) . A device in
which access time is effectively independent of the
location of the data. Usually disk storage.

directory . (1) A type of file containing the names and
controll ing information for other fi les or other

directories. (2) An index that is used by a control
program to locate one or more blocks of data that are
stored in separate areas of a data set in direct access
storage.

disk file . A set of related records on disk that are
treated as a unit.

distributed data . In SAA usage, data that is split
across two or more linked systems but which can be
accessed and processed as if it resided on one.

Distributed Data Management (DDM) . A feature of
the System Support Program Product that allows an
application program to work on files that reside in a
remote system.

DL/I . See Data Language One.

DLIB . Distribution library. IBM-supplied partit ioned
data sets on tape containing one or more components
that the user restores to disk for subsequent inclusion
in a new system.

double-byte character set (DBCS) . A set of
characters in which each character is represented by
2 bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets. Because each character requires 2
bytes, the typing, display, and printing of DBCS
characters requires hardware and programs that
support DBCS. Contrast with single-byte character
set.

DSCB . See data set control block.

dsname . data set name. The name of a data set (1 -
40 characters) on the DD statement in the JCL or the
dsname operand of the TSO ALLOC command.

dynamic address translation (DAT) . In System/390
virtual storage systems, the change of a virtual
storage address to a real storage address during
execution of an instruction.

dynamic storage . A device that stores data in a
manner that permits the data to move or vary with
time such that the specified data are not always
available for recovery. Magnetic drum and disk
storage are dynamic nonvolatile storage. An acoustic
delay line is a dynamic volatile storage.

E
emulation . (1) The use of a data processing system
to imitate another data processing system, so that the
imitating system accepts the same data, executes the
same programs, and achieves the same results as the
imitated system. Emulation is usually achieved by
means of hardware or firmware. (2) The use of
programming techniques and special machine

570 VSE to OS/390 Migration Workbook

features to permit a computing system to execute
programs written for another system.

emulator . A combination of programming techniques
and special machine features that permits a
computing system to execute programs written for a
different system. See also integrated emulator,
terminal emulator.

entry-sequenced data set . In OS/390 programs with
VSAM, a data set whose records are loaded without
respect to their contents, and whose relative byte
addresses cannot change. Records are retrieved and
stored by addressed access, and new records are
added at the end of the data set.

error recovery procedures (ERP) . Procedures
designed to help isolate and, where possible, to
recover from errors in equipment. The procedures are
often used in conjunction with programs that record
information on machine malfunctions.

ESCON. Enterprise Systems Connection - A set of
products and services that provides a dynamically
connected environment using optical cables as a
transmission medium.

ESCON Director . A device that provides connectivity
capability and control for attaching any two links to
each other.

Ethernet . A 10-megabit baseband local area network
that allows multiple stations to access the
transmission medium at wil l without prior
coordination, avoids contention by using carrier sense
and deference, and resolves contention by using
collision detection and transmission. Ethernet uses
carrier sense multiple access with collision detection
(CSMA/CD).

event control block (ECB) . A control block used to
represent the status of an event.

exit routine . Either of two types of routines:
installation exit routines or user exit routines.
Synonymous with exit program.

expiration date . The date at which a file is no longer
protected against automatic deletion by the system.

extent . Continuous space on a disk or diskette that is
occupied by or reserved for a particular data set, data
space, or file.

external side . The receiver of a data entity. A
module or routine that accepts a 2- or 4-digit-date
format entity for further processing from another
module or routine.

F
file .

• In PSF/MVS, a member of a partitioned data set
or a sequential data set

• In PSF/VSE, a member in a library.sublibrary

file control table (FCT) . A table containing the
characteristics of files processed by CICS file
management.

file name . (1) A name assigned or declared for a file.
(2) The name used by a program to identify a file.

fixed window . A technique to determine the century
(high-order digits) of a year when represented by two
digits. The 2-digit year is compared against a
hardcoded threshold. The century designation is
limited to a 100-year range spanning only two
centuries. For example, assume the threshold is 60,
then if the 2-digit year is ≥ 60, the year is in the 20th
century; if the 2-digit year is <60, the year is in the
21st century.

fixed-length record . A record having the same length
as all other records with which it is logically or
physically associated. Contrast with variable-length
record.

foreground partition . In VSE, a space in virtual
storage in which programs are executed under control
of the system. By default, a foreground partition has a
higher processing priority than the background
partit ion.

formatted dump . A dump in which certain data areas
are isolated and identified.

forward recovery . (1) The reconstruction of a file by
updating an earlier version with data recorded in a
journal. (2) The process of reconstructing a file from a
particular point by restoring a saved version of the
file and then applying changes to that file in the same
order in which they were originally made.

G
GDG. See generation data group.

generation data group (GDG) . A feature of the MVS
catalog that allows a collection of data sets to be kept
in chronological order: each data set is called a
generation data set.

generation data set . One generation of a generation
data group.

Gregorian calendar . Today′s general-use calendar of
12 months and 365 days that employs the current
leap year algorithm (refer to Leap year below).

Glossary 571

GRS. global resource serialization. A component of
MVS/ESA SP used for sharing system resources and
for converting DASD reserve volumes to data set
enqueues.

Guest Operating System (GOS) . A second operating
system that runs on the primary operating system.
An example the second operating system is VSE
and/or OS/390 and/or TPF etc. running on VM/ESA. In
this example VSE, OS/390, TPF, etc. are referred to as
a second level system or a VSE guest, OS/390 guest,
TPF guest and so on.

Guest Support . A set of functions and services
available on the VM/ESA product that allow other
operating systems such as OS/390, VSE, TPF, VM, and
others to run on the primary host VM/ESA system.
This is also sometimes referred to as ″using VM as a
hypervisor for running other operating systems″.

H
hardcopy log . In systems with multiple console
support or a graphic console, a permanent record of
system activity.

HCD. Hardware Configuration Definition. An
interactive interface in MVS and OS/390 that enables
an installation to define hardware configurations from
a single point of control.

HFS data set . hierarchical file system data set. A
data set that contains a POSIX-compliant hierarchical
file system, which is a collection of files and
directories organized in a hierarchical structure, that
can be accessed using the OpenEdition MVS facilities.

high-level language (HLL) . A programming language
whose concepts and structures are convenient for
human reasoning; for example, Pascal. High-level
languages are independent of the structures of
computers and operating systems.

HMC . Hardware Management Console A console
used to monitor and control hardware such as the
System/390 microprocessors.

host system . (1) A data processing system used to
prepare programs and operating environments for
use on another computer or controller. (2) The data
processing system to which a network is connected
and with which the system can communicate.

I
I/O area . An area of storage that contains data which
is used in input/output operations; for example, an I/O
buffer.

ICCF. See Interactive Computing Control Facility.

ICKDSF . See Device Support Facilities.

IDCAMS . Util ity program name for Access Method
Services (AMS).

IMS/VS . See Information Management
System/Virtual Storage.

Information Management System/Virtual Storage
(IMS/VS). A data base/data communication (DB/DC)
system capable of managing complex data bases and
networks

information processing . The systematic performance
of operations on information in conjunction with a
computer system to obtain, manipulate, duplicate,
exchange, or communicate its meaning; for example,
fi le management, word processing, document
interchange, facsimile, videotext.

Information/Management . A feature of the
Information/System licensed program that provides
interactive systems management applications for
problem, change, and configuration management.

Information/System . In the NetView program, an
interactive retrieval program with related uti l i t ies
designed to provide systems programmers with
keyword access to selected technical information
contained in either of its companion products,
Information/MVS or Information/VM-VSE.

initiator/terminator . The job scheduler function that
selects jobs and job steps to be executed, allocates
input/output devices for them, places them under task
control, and at completion of the job, supplies control
information for writing job output on a system output
unit.

input data set . A data set that contains data to be
processed.

input file . A file that has been opened in order to
allow records to be read. Contrast with output file.

input/output (I/O) . Pertaining to a device, process, or
channel involved in data input, data output, or both.

installation . (1) In system development, preparing
and placing a functional unit in position for use. (2) A
particular computing system, including the work it
does and the people who manage it, operate it, apply
it to problems, service it, and use the results it
produces.

installation exit . The means specifically described in
an IBM software product ′s documentation by which an
IBM software product may be modified by a
customer ′s system programmers to change or extend
the functions of the IBM software product. Such
modifications consist of exit routines written to
replace one or more existing modules of an IBM
software product, or to add one or more modules or
subroutines to an IBM software product, for the

572 VSE to OS/390 Migration Workbook

purpose of modifying or extending the functions of the
IBM software product.

integer date . A count of days since a specified date.
Various IBM software products have defined integer
dates as follows:

Language/Product Days Since

C 1969-Dec-31

COBOL 1600-Dec-31

Language Environment 1582-Oct-14

MVS/CICS/DB2 1899-Dec-31

integrity . The protection of systems, programs, and
data from inadvertent or malicious destruction or
alteration. See application integrity, data integrity,
system integrity.

Interactive Computing and Control Facility (ICCF) . An
IBM licensed program that makes the services of a
VSE-controlled computing system available to
authorized display station users.

interactive partition . In VSE, an area of virtual
storage dynamically allocated for the purpose of
processing a job that was submitted interactively from
a terminal.

Interactive Problem Control System (IPCS) . A
component of VM that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident CP abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility . An IBM
licensed program that serves as a full-screen editor
and dialogue manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user.

internal side . The creator or manipulator of a data
entity. Used in this document to mean a module or
routine that externalizes a 2- or 4-digit-year format
entity to another module or routine.

Internet . A wide area network connecting thousands
of disparate networks in industry, education,
government, and research. The Internet network uses
TCP/IP as the standard for transmitting information.

interoperability . The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to
have little or no knowledge of the unique
characteristics of those units.

IOCDS. An input/output configuration data set
(IOCDS) contains different configuration definitions for
the selected processor. Only one IOCDS is used at a
time. The IOCDS contains I/O configuration data on
the files associated with the processor controller on

the host processor, as it is used by the channel
subsystem. The CSS uses the configuration data to
control I/O requests. The IOCDS is built from the
production IODF.

IOCP. An IOCP (I/O configuration program) is the
hardware util ity that defines the hardware I/O
configuration to the channel subsystem. For this
definition IOCP retrieves information about the
following: the channel paths in the processor complex,
control units attached to the channel paths, and I/O
devices assigned to the control unit.

IODF. An IODF (input/output definition file) is a
VSAM linear data set that contains I/O definition
information. This information includes processor I/O
definitions (formerly specified by IOCP input streams)
and operating system I/O definitions (formerly
specified by MVSCP input streams). A single IODF can
contain several processor and several operating
system I/O definitions.

IPDS. Intelligent Printer Data Stream. An architected
host-to-printer data stream that contains both data
and controls defining how the data is to be presented.

IPL . Initial Program Load. (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage, as at the
beginning of a work day or after a system malfunction
or as a means to access updated parts of the system.
(3) The process of loading system programs and
preparing a system to run jobs.

J
JCL . Job Control Language. A sequence of
commands used to identify a job to an operating
system and to describe a job′s requirements.

JECL . Job Entry Control Language - also referred to
as JES2 or JES3 control statements that are
submitted with a job ′s JCL.

JES . Job Entry Subsystem. A system facility for
spooling, job queueing, and managing the scheduler
work area.

job accounting . A function that collects information
pertaining to how a job uses system resources.

job control . In VSE, a program called into storage to
prepare each job or job step to be run. Some of its
functions are to assign I/O devices to symbolic
names, set switches for program use, log (or print)
job control statements, and fetch the first phase of
each job step.

job control language (JCL) . A control language used
to identify a job to an operating system and to
describe the job′s requirements.

Glossary 573

Job Entry Subsystem . An MVS subsystem that
receives jobs into the system, converts them to
internal format, selects them for execution, processes
their output, and purges them from the system. In an
installation with more than one processor, each JES2
processor independently controls its job input,
scheduling, and output processing.

job step . You enter a program into the operating
system as a job step. A job step consists of the job
control statements that request and control execution
of a program and request the resources needed to
run the program. A job step is identified by an EXEC
statement. The job step can also contain data needed
by the program. The operating system distinguishes
job control statements from data by the contents of
the record.

job stream . The sequence of representation of jobs
or parts of jobs to be performed, as submitted to an
operating system. Synonymous with input stream, run
stream.

journaling . The process of recording changes made
in a physical file member in a journal. Journaling
allows the programmer to reconstruct a physical
member by applying the changes in the journal to a
saved version of the physical fi le member.

Julian date . As a general term used widely in
computer programming and this document: A date in
the format YYDDD. A date format that contains the
year in positions 1 and 2, and the day in positions 3
through 5. The day is represented as 1 through 366,
right adjusted, padded with zeroes on the left. For
example, 1996-August-29 is 96242.

However, the above definition is accurately referred
to as the Ordinal Day of Year date, and an accurate
definition of Julian Day Number is as follows:

The astronomical system that counts the days since
the First of January in the year 4713 BCE (the year
− 4712 before the common era). This scheme was
invented by the astronomer Joseph Scaliger in the
16th century and named by him for his father Julius.
The leap year reforms implicit in the new scheme
were adopted at the command of Pope Gregory XIII in
the year 1582 - hence the Gregorian Calendar. The
Gregorian, or New Style, calendar was adopted in
Britain and their colonies in September of 1752.
(September of that year was missing 11 days. The
14th followed the 2nd.)

The remainder left when dividing the Julian Day
Number by 7 indicates the day of week of the
specified date. Zero corresponds to Monday, 1 to
Tuesday, up through 6 for Sunday.

For example, 1996-Aug-29 is equivalent to Julian Day
2450325. Further, the hour of the day is expressed as
a decimal such that 2450325.5 is midnight
1996-Aug-29, based on the fact that a Julian Day
begins at midday (noon).

K
key field . (1) In VSAM, a field, located in the same
position in each record of a file or data set, whose
content is used for the key of a record. (2) In IMS/VS,
the field in a database segment used to store
segment occurrences in sequential ascending order. A
key field is also a search field. Synonymous with
sequence field.

key-sequenced data set (KSDS) . A VSAM file or data
set whose records are loaded in key sequence and
controlled by an index.

L
label area . Synonym for label information area

label information area . In VSE, an area on a direct
access storage device that stores label information
read from job control statements or commands.
Synonymous with label area.

Leap year . A year either evenly divisible by 400 or
evenly divisible by 4 and not evenly divisible by 100.
For example, the years 1700, 1800, 1900, and 1995 are
not leap years, but the years 1600, 1996, and 2000 are
leap years.

librarian . In VSE, the set of programs that maintains,
services, and organizes the system and private
libraries.

library member . In VSE, the smallest unit of data
that can be stored into and retrieved from a
sublibrary.

licensed program (LP) . A separately priced program
and its associated materials that bear an IBM
copyright and are offered to customers under the
terms and conditions of either the Agreement for IBM
Licensed Programs (ALP) or the IBM Program License
Agreement (PLA).

Lilian date . The number of days since
1582-October-14. 1582-October-15 is Lilian day 1,
1582-October-16 is Lilian day 2, and so on. (Named for
Aloysius Lilius (an advisor to Pope Gregory XIII) who,
together with his brother, constructed the current
Gregorian calendar.)

link pack area (LPA) . In OS/390, an area of main
storage containing reenterable routines from system
libraries. Their presence in main storage saves
loading time.

linkage editor . A program that resolves
cross-references between separately assembled
object modules and then assigns final addresses to
create a single relocatable load module. The linkage
editor then stores the load module in a program
library in main storage.

574 VSE to OS/390 Migration Workbook

link-edit . To create a loadable computer program by
means of a linkage editor.

load module . An application or routine in a form
suitable for execution. The application or routine has
been compiled and link-edited; that is, address
constants have been resolved.

load module library . A partitioned data set used to
store and retrieve load modules. See also object
module library, source module library.

local area network (LAN) . (1) A computer network
located on a user′s premises within a limited
geographical area. Communication within a local area
network is not subject to external regulations;
however, communication across the LAN boundary
may be subject to some form of regulation. See also
wide area network. See figure 88. ñNote: A LAN does
not use store and forward techniques. (2) A network
in which a set of devices are connected to one
another for communication and that can be connected
to a larger network. See also token ring.

lock . (1) A serialization mechanism by means of
which a resource is restricted for use by the holder of
the lock. See exclusive lock, shared lock. (2) The
means by which integrity of data is ensured by
preventing more than one user from accessing or
changing the same data or object at the same time.

log data set . A data set consisting of the messages
or message segments recorded on auxiliary storage
by the ACF/TCAM logging facility.

logical device . (1) A file for conducting input or
output with a physical device. (2) A file for mapping
user I/O between virtual and real devices.

logical record . (1) A set of related data or words
considered to be a record from a logical viewpoint. (2)
A record from the standpoint of its content, function,
and use rather than its physical attributes, that is, a
record defined in terms of the information it contains.
(3) In CICS/VS, a data record sent by one transaction
program to another. The length of the record is
contained in a two-byte field immediately preceding
the record. (4) In VSAM, a unit of information
normally pertaining to a single subject; a logical
record is the user record requested of or given to the
data management function. (5) In COBOL, the most
inclusive data item.

M
main task . In VSE, the main program within a
partit ion in a multiprogramming environment.

maintenance . Any activity intended to retain a
functional unit in, or to restore it to, a state in which it
can perform its required function. Maintenance

includes keeping a functional unit in a specified state
by performing activities such as tests, measurements,
replacements, adjustments, and repairs.

MAS . Multi-Access Spool facility. A loosely
connected complex of JES2 members.

mass conversion . An automated process that
includes program translation, JCL conversion, and file
transfer. This process is what makes possible the
rapid switchover from VSE to MVS.

master console . In a system with multiple consoles,
the basic console used for communication between
the operator and the system.

MCS . (1) Multiple Console Support. A feature of MVS
that permits selective message routing to up to 32
operator ′s consoles. (2) modification control
statement. An SMP/E control statement used to
package a SYSMOD. These statements describe the
elements of a program and the relationships that
program has with other programs that may be
installed on the same system.

menu . A list of options displayed to the user by a
data processing system, from which the user can
select an action to be initiated.

message data set . A data set on disk storage that
contains queues of messages awaiting transmission
to particular terminal operators or to the host system.

migrate . To move to a changed operating
environment, usually to a new release or version of a
system.

migration (VSE/MVS) . The entire process of
transition from a VSE environment to an MVS
environment. Migration includes training, project
planning and management, system and configuration
setup, conversion design, and the conversion itself.

minidisk . Synonym for virtual disk

module . A program unit that is discrete and
identifiable with respect to compiling, combining with
other units, and loading; for example, the input to or
output from an assembler, compiler, l inkage editor, or
executive routine.

multiprocessor . (1) A computer including two or
more processors that have common access to a main
storage. (2) A system of two or more processing units,
ALUs, or processors that can communicate without
manual intervention.

multitasking . A mode of operation that provides for
concurrent performance, or interleaved execution of
two or more tasks.

multithreading . Pertaining to concurrent operation of
more than one path of execution within a computer.

Glossary 575

multivolume file . A file contained on more than one
storage medium.

N
NetView DM . IBM NetView Distribution Manager.

network definition . In VTAM, the process of defining
the identities and characteristics of each node in the
network and the arrangement of the nodes in that
system.

network management . The process of planning,
organizing, and controll ing a communications-oriented
system.

network resource . In ACF/VTAM, a network
component such as a local network control program,
SDLC data link, or peripheral node. In multiple-domain
networking, cross-domain resource managers
(CDRMs) and logical units (LUs) in other domains are
also network resources.

network topology . The schematic arrangement of the
links and nodes of a network.

node . An endpoint of a link or a junction common to
two or more links in a network. Nodes can be
processors, communication controllers, cluster
controllers, or terminals. Nodes can vary in routing
and other functional capabilities. (6) In VTAM, a point
in a network defined by a symbolic name. See major
node, minor node.

nonstandard labels . Labels that do not conform to
American National Standard or IBM standard label
conventions.

O
Object Access Method (OAM) . In the IBM ImagePlus
system, a program that provides object storage,
object retrieval, and object storage hierarchy
management. The Object Access Method isolates
applications from storage devices, storage
management, and storage device hierarchy
management.

object code . Output from a compiler or assembler
which is itself executable machine code or is suitable
for processing to produce executable machine code.

object module . (1) All or part of an object program
sufficiently complete for linking. Assemblers and
compilers usually produce object modules. (2) A set of
instructions in machine language produced by a
compiler from a source program.

object program . (1) A target program suitable for
execution. An object program may or may not require
linking. (2) Contrast with source program.

open . The function that connects a file to a program
for processing.

operating system (OS) . Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible.

operator console . A display console used for
communication between the operator and the system,
used primarily to specify information concerning
application programs and I/O operations and to
monitor system operation.

option . A specification in a statement that may be
used to influence the execution of the statement.

Ordinal Day of Year . See Julian Date

output area . An area of storage reserved for output.

output class . In OS/390, one of up to 36 different
categories, defined at an installation, to which output
data produced during a job step can be assigned.
When an output writer is started, it can be directed to
process from one to eight different output data
classes.

output data set . A data set that contains data that is
to be printed or displayed.

output file . (1) A file that has been opened in order
to allow records to be written. (2) Contrast with input
file.

overlay structure . A graphic representation showing
the relationships of segments of an overlay program
and how the segments are arranged to use the same
main storage area at different times.

P
parameter list . A list of values that provides a
means of associating addressability of data defined in
a called program with data in the calling program. It
contains parameter names and the order in which
they are to be associated in the calling and called
program.

partition . In VSE, a division of the virtual address
area that is available for program execution.

partitioned data set (PDS) . A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part
of a program, or data. Synonymous with program
library.

Pascal . A high-level, general-purpose programming
language, related to ALGOL. Programs written in
Pascal are block structured, consisting of independent

576 VSE to OS/390 Migration Workbook

routines. They can run on different computers with
little or no modification.

PDS. partitioned data set. A data set in direct access
storage that is divided into partitions, called
members, each of which can contain a program, part
of a program, or data. Contrast with sequential data
set.

PDSE. partitioned data set extended. A
system-managed data set that contains an indexed
directory and members that are similar to the
directory and members of partitioned data sets. A
PDSE can be used instead of a partitioned data set.

peer . (1) In network architecture, any functional unit
that is in the same layer as another entity. (2) A
corresponding node or entity.

physical IOCS (PIOCS) . Supervisory routines that
schedule and supervise the execution of channel
programs. Physical IOCS controls the actual transfer
of records between external storage and main
storage, and provides I/O device error recovery.

physical record . (1) A record whose characteristics
depend on the manner or form in which it is stored,
retrieved, or moved. A physical record may contain
all or part of one or more logical records. (2) The
amount of data transferred to or from auxiliary
storage. Synonymous with block.

portability . (1) The capability of a program to be
executed on various types of data processing systems
without converting it to a different language and with
little or no modification. (2) The ability to run a
program on more than one computer without
modifying it. (3) Synonymous with transportability.

POWER. A VSE program used to spool input and
output. It also allows exchange of files with, or job
runs on, a remote processor Originally an acronym
for Priority Output Writer Execution and Reader.

procedure . A named block of code that can be
invoked, usually via a call.

PR/SM. Processor Resource / Systems Manager

precompile . To process programs containing SQL
statements before they are compiled. SQL statements
are replaced with statements that will be recognized
by the host language compiler. The output from this
precompile includes source code that can be
submitted to the compiler and used in the bind
process.

preventive maintenance . (1) Maintenance performed
specifically to prevent faults from occurring. (2)
Contrast with corrective maintenance.

private address space . An address space assigned to
a particular user.

problem determination . The process of determining
the source of a problem; for example, a program
component, machine failure, telecommunication
facilit ies, user or contractor-installed programs or
equipment, environmental failure such as a power
loss, or user error.

procedural language . A programming language in
which computations are expressed in terms of
statement sequences; for example, Pascal. Synonym
for procedure-oriented language.

procedure . In a programming language, a block, with
or without formal parameters, whose execution is
invoked by means of a procedure call.

procedure library . A program library in direct access
storage with job definitions. The reader/interpreter
can be directed to read and interpret a particular job
definition by an execute statement in the input
stream.

processor storage . (1) The storage provided by one
or more processing units. (2) In virtual storage
systems, synonymous with real storage.

PROCLIB . procedure library. A program library in
direct access storage with job definitions. The
reader/interpreter can be directed to read and
interpret a particular job definition by an execute
statement in the input stream.

program . A sequence of instructions suitable for
processing by a computer. Processing may include
the use of an assembler, a compiler, an interpreter, or
a translator to prepare the program for execution, as
well as to execute it.

program offering . An unwarranted licensed program.
See also vendor-logo product.

program product . Deprecated term for licensed
program.

programmer logical unit . In VSE, a logical unit
available primarily for user-written programs.

programming language . An artificial language for
expressing computer programs.

programming system . (1) In a programming
environment, the software required for the
development and use of computer programs. (2) In a
data processing system, the software needed to use
one or more programming languages.

PSF. Print Services Facility. A licensed program that
manages and controls the input data stream and
output data stream required by supported IBM page
printers. PSF combines print data with other
resources and printing controls to produce AFP
output. There are PSF products for MVS (OS/390),
VSE, RS/6000 and OS2 platforms.

Glossary 577

Q
qualified name . (1) A data name explicitly
accompanied by a specification of the class to which it
belongs in a specified classification system. (2) A
name that has been made unique by the addition of
one or more qualifiers.

R
RACF . Resource Access Control Facility. An
IBM-licensed program that provides for access control
by identifying and verifying the users to the system,
authorizing access to protected resources, logging the
detected unauthorized attempts to enter the system,
and logging the detected accesses to protected
resources.

read access . In computer security, permission to
read information.

real storage . The main storage in a virtual storage
system. Physically, real storage and main storage are
identical. Conceptually however, real storage
represents only part of the range of addresses
available to the user of a virtual storage system.
Traditionally, the total range of addresses available to
the user was provided by the main storage.

real storage management (RSM) . Routines that
control allocation of pages in real storage.

reason code . A code that identifies the reason for a
detected error.

record format . The definition of how data are
structured in the records contained in a file. The
definition includes record name, field names, and field
descriptions, such as length and data type. The record
formats used in a file are contained in the file
description.

record type . The classification of records in a file.

recorder file . Synonym for system recorder file.

recovery procedure . (1) A process in which a
specified data station attempts to resolve conflicting
or erroneous conditions arising during the transfer of
data. (2) An action performed by the operator when
an error occurs to permit processing to continue.

reserved word . (1) In programming languages, a
keyword that may not be used as an identifier. (2) A
word used in a source program to describe an action
to be taken by the program or the compiler. It must
not appear in the program as a user-defined name or
a system name.

Resource Access Control Facility (RACF) . An
IBM-licensed program that provides for access control

by identifying and by verifying the users to the
system, authorizing access to protected resources,
logging the detected unauthorized attempts to enter
the system, and logging the detected accesses to
protected resources.

resource definition online (RDO) . A CICS interactive
facility to create and modify system resources.

response time . The elapsed time between the end of
an inquiry or demand on a computer system and the
beginning of the response; for example, the length of
time between an indication of the end of an inquiry
and the display of the first character of the response
at a user terminal.

retention period . (1) The length of time for which
data on a data medium is to be preserved.

return code . A value returned to a program to
indicate the results of an operation requested by that
program.

RMF . Resource Measurement Facility. An IBM
licensed program that measures selected areas of
system activity and presents the data collected in the
format of printed reports, system management
facilities (SMF) records, or display reports. Use RMF
to evaluate system performance and identify reasons
for performance problems.

RJE . Remote Job Entry. Submission of job control
statements and data from a remote terminal, causing
the jobs described to be scheduled and executed as
though encountered in the input stream.

rolling window . Synonymous with sliding window .

S
SAA environments . Those environments in which
IBM intends to provide full implementation of
applicable SAA architectural elements.

SAM-VSAM . SAM files in VSAM-managed space.

save area . Area of main storage in which contents of
registers are saved.

scheduler . A computer program designed to perform
functions such as scheduling, initiation, and
termination of jobs.

SDSF. System Display and Search Facility. An IBM
licensed program that or element of OS/390 that
allows TSO/E users to browse JES2 spooled data sets,
and view and manipulate JES2 job queues, and
devices.

secondary space allocation . In systems with VSAM,
area of direct access storage space allocated after
primary space originally allocated is exhausted.

578 VSE to OS/390 Migration Workbook

sequential data set . A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. Contrast with
direct data set.

sequential file . A file in which records are processed
in the order in which they are entered and stored in
the file. Contrast with direct file, indexed file.

sequential processing . (1) The processing of logical
records in the order in which they are accessed. (2)
The processing of records in the order in which they
exist in a file. Synonymous with consecutive
processing.

ServerPac . A software delivery package consisting of
installed products and integrated service for a
ready-to-IPL system. To install, you use the
CustomPac Installation Dialog -- the same dialog that
is used for all the CustomPac offerings, including
SystemPac and ProductPac.

shared spooling . A function that permits the
VSE/POWER account file, data file, and queue file to
be shared among several computer systems with
VSE/POWER.

SIE. SoftwareXcel Installation Express. A service
offering in the USA built on SystemPac with IBM
assistance included for installation and
implementation.

simulation . (1) The use of a data processing system
to represent selected behavioral characteristics of a
physical or abstract system; for example, the
representation of air streams around airfoils at
various velocities, temperatures, and air pressures.
(2) Contrast with emulation.

sliding window . A technique to determine the
century (high-order digits) of a year when represented
by two digits. The user specifies the number of years
(both past and future) within a 100-year window
spanning two centuries. For example, assume the
window is set at 19 future years (1996-2014) and 80
past years (1915-1994). Dates in the range 00-14
(inclusive) are designated 21st century dates because
they fall into the future window. Dates in the range
15-99 (inclusive) fall into the 20th century.

SMF. system management facilit ies. A component of
MVS and OS/390 that collects input/output (I/O)
statistics, provided at the data set and storage class
levels, which helps you monitor the performance of
the direct access storage subsystem.

SMP/E. System Modification Program Extended.
SMP/E is the IBM product designed to install new
function and subsequent service into target libraries
and distribution libraries.

SMS . Storage Management Subsystem. A
DFSMS/MVS or MVS/DFP facility used to automate
and centralize the management of storage.

SNA network . The part of a user-application network
that conforms to the formats and protocols of
Systems Network Architecture. It enables reliable
transfer of data among end users and provides
protocols for controlling the resources of various
network configurations. The SNA network consists of
network accessible units (NAUs), boundary function,
gateway function, and intermediate session routing
function components; and the transport network.

software . All or part of the programs, procedures,
rules, and associated documentation of a data
processing system. Software is an intellectual
creation that is independent of the medium on which
it is recorded.

source code . The input to a compiler or assembler,
written in a source language. Contrast with object
code.

source language . The programming language for
expressing source programs that a particular
translator can accept.

source program . (1) A set of instructions written in a
programming language that must be translated to
machine language before the program can be run. (2)
Contrast with object program.

source statement . A statement written in symbols of
a programming language; for example, RPG, COBOL,
BASIC, and PL/I specifications are source statements.

spool file . (1) A file that contains output data that
has been saved for later processing. (2) One of three
VSE/POWER files on disk: queue file, data file, and
account file.

spreadsheet . A worksheet arranged in rows and
columns, in which a change in the contents of one cell
can cause electronic recomputation of one or more
cells, based on user defined relations among the
cells.

stand-alone . Pertaining to operation that is
independent of any other device, program, or system.

standard label . A fixed-format record that identifies a
volume of data such as a tape reel or a file that is
part of a volume of data.

statement . In programming languages, a language
construct that represents a step in a sequence of
actions or a set of declarations.

storage location . A position in a storage device that
is uniquely specified by means of an address.

Glossary 579

Storage Management Subsystem (SMS) . A
component of MVS/DFP that is used to automate and
centralize the management of storage by providing
the storage administrator with control over data class,
storage class, management class, storage group, and
ACS routine definitions.

structured programming . A method for constructing
programs using only hierarchically nested constructs
each having a single entry and a single exit point.
Three types of control flow are used in structured
programming: sequential, conditional, and iterative.

sublibrary . In VSE, a subdivision of a library. See
also library.

subprogram . A program invoked by another
program. Contrast with main program.

subroutine . A sequenced set of instructions or
statements that may be used in one or more
computer programs and at one or more points in a
computer program. (3) A group of instructions that
can be part of another routine or can be called by
another program or routine.

subsystem . A secondary or subordinate system,
usually capable of operating independently of, or
asynchronously with, a controlling system.

supervisor . The part of a control program that
coordinates the use of resources and maintains the
flow of processing unit operations. See also system
supervisor.

symbolic name . In a programming language, a
unique name used to represent an entity such as a
field, file, data structure, or label.

syntax . (1) The relationship among characters or
groups of characters, independent of their meanings
or the manner of their interpretation and use. (2) The
rules governing the structure of a language.

syntax error . A compile-time error caused by
incorrect syntax. See also semantic error.

sysplex . A multiple-MVS system environment that
allows MCS consoles or extended MCS consoles to
receive messages and send commands across
systems.

system console . A console, usually equipped with a
keyboard and display screen, that is used by an
operator to control and communicate with a system.

system date . The date established for the system
when it is started.

system generation (SYSGEN) . The process of
selecting optional parts of an operating system and of
creating a particular operating system tailored to the
requirements of a data processing installation.

system maintenance . The modification of a system to
correct faults, to improve performance, or to adapt
the system to a changed environment or changed
requirements.

system management facilities (SMF) . See SMF.

system-managed storage . Storage managed by the
Storage Management Subsystem. SMS attempts to
deliver required services for availabil ity, performance,
space, and security to applications. See also DFSMS
environment.

system-managed volume . A DASD, optical, or tape
volume that belongs to a storage group. Contrast
with DFSMShsm-managed volume and
DFSMSrmm-managed volume.

System Modification Program (SMP) . A program
used to install software and software changes on MVS
systems.

system operator . An operator responsible for
performing system- oriented procedures.

system programmer . A programmer who plans,
generates, maintains, extends, and controls the use of
an operating system with the aim of improving overall
productivity of an installation.

system resources . Those resources controlled by the
system, such as programs, devices, and storage
areas that are assigned for use in jobs.

system software . Software that is part of or made
available with a computer system and that
determines how application programs are run; for
example, an operating system. Contrast with
application software.

system support . The continued provision of services
and material necessary for the use and improvement
of an implemented system.

SystemPac . A software package consisting of
installed products for a ready-to-IPL system. Some of
the products have been customized in response to
information provided to IBM. A SystemPac can be
used to install an MVS system for the first time or to
replace an existing MVS system.

systems management . Functions in the application
layer related to the management of Open Systems
Interconnection resources and their status across all
layers of the OSI architecture.

580 VSE to OS/390 Migration Workbook

T
task . (1) In a multiprogramming or multiprocessing
environment, one or more sequences of instructions
treated by a control program as an element of work
to be accomplished by a computer. (2) In VSE, the
basic unit of synchronous program execution. A task
competes with other tasks for computer system
resources such as processing time and I/O channels.

Telnet . In TCP/IP, an application protocol that allows
a user at one site to access a remote system as if the
user ′s display station were locally attached. Telnet
uses the Transmission Control Protocol as the
underlying protocol.

temporary data set . A data set that is created and
deleted in the same job. Contrast with nontemporary
data set.

temporary storage . In computer programming,
storage locations reserved for intermediate results.
Synonymous with working storage.

test plan . A plan that establishes detailed
requirements, criteria, general methodology,
responsibilities, and general planning for test and
evaluation of a system.

Time Sharing Option (TSO) . An operating system
option; for the System/370 system, the option
provides interactive time sharing from remote
terminals.

token-ring network . A network that uses a ring
topology, in which tokens are passed in a circuit from
node to node. A node that is ready to send can
capture the token and insert data for transmission.

transaction processing . A sequence of operations on
a database that is viewed by the user as a single,
individual operation.

transient . Pertaining to a program or subroutine that
does not reside in main storage or to a temporary
storage area for such a program.

transparent . (1) Pertaining to operations or data that
are of no significance to the user. (2) In data
transmission, pertaining to information not recognized
by the receiving program or device as transmission
control characters.

transportability . Synonym for portability.

TSCF. Target System Control Facility. Part of System
Automation OS/390 which uses NetView to allow a
host OS/390 system to automate operations at target
systems.

TSO/E. time sharing option/extended. An option on
the operating system; for System/370, the option
provides interactive time sharing from remote
terminals.

U
unit address . The three-character address of a
device, specified at the time a system is installed; for
example, 191 or 293.

unit of work . In advanced program-to-program
communications, the amount of processing that is
started directly or indirectly by a program on the
source system.

update authority . The ability to add, change, or
cancel items.

upward compatibility . The capability of a computer to
execute programs written for another computer
without major alteration, but not vice versa.

user catalog . See VSAM user catalog.

user exit . A programming service provided by an
IBM software product that may be requested during
the execution of an application program for the
service of transferring control back to the application
program upon the later occurrence of a user-specified
event.

user identification (user ID) . (1) A string of
characters that uniquely identifies a user to a system.
(2) The name used to associate the user profile with a
user when a user signs on the system.

user interface . (1) Hardware, software, or both that
allows a user to interact with and perform operations
on a system, program, or device. (2) In SAA usage,
any of the actions or items defined by Common User
Access (CUA) architecture that allow a user to
interact with and perform operations on a computer.

user profile . In computer security, a description of a
user that includes such information as user ID, user
name, password, access authority, and other
attributes obtained at logon.

user program . A user-written program.

user-defined word . In COBOL, a word that must be
supplied by the user to satisfy the format of a clause
or statement.

utility program . A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.
Synonymous with service program.

Glossary 581

V
verification test . A test of a system to prove that it
meets all its specified requirements at a particular
stage of its development.

virtual address . The address of a location in virtual
storage. A virtual address must be translated into a
real address in order to process the data in processor
storage.

virtual address space . (1) In virtual storage systems,
the virtual storage assigned to a batched or terminal
job, a system task, or a task initiated by a command.
(2) In VSE, a subdivision of the virtual address area
available to the user for the allocation of private,
nonshared partit ions.

virtual device . A device that appears to the user as a
separate entity, but is actually a shared portion of a
real device; for example, several virtual terminals can
exist simultaneously, but only one is active at any
given time.

virtual disk . (1) Main storage used as if it were a disk
device. (2) In VM, a physical disk storage device, or a
logical subdivision of a physical disk storage device,
that has its own address, consecutive storage space
for data, and index or description of stored data so
that the data can be accessed.

virtual machine (VM) . A virtual data processing
system that appears to be at the exclusive disposal of
a particular user, but whose functions are
accomplished by sharing the resources of a real data
processing system.

virtual storage . The storage space that may be
regarded as addressable main storage by the user of
a computer system in which virtual addresses are
mapped into real addresses. The size of virtual
storage is limited by the addressing scheme of the
computer system and by the amount of auxiliary
storage available, not by the actual number of main
storage locations.

Virtual Storage Access Method (VSAM) . An access
method for indexed or sequential processing of fixed
and variable-length records on direct access devices.

volume label . An area on a standard label tape used
to identify the tape volume and its owner. This area is
the first 80 bytes and contains VOL 1 in the first four
positions.

volume serial number . A number in a volume label
assigned when a volume is prepared for use in a
system.

VSAM managed space . A user-defined space on disk
that is under the control of VSAM.

VSE (Virtual Storage Extended) . Any of the VSE
operating systems and environments.

W
warm start . (1) A restart that allows reuse of
previously initialized input and output work queues.
(2) In VM, the result of an initial program load (IPL)
that does not erase previous system data.

work file . (1) A file used for temporary storage of
data being processed. (2) In sorting, an intermediate
file used for temporary storage of data between
phases.

work space . That portion of main storage that is
used by a computer program for temporary storage of
data. Synonymous with working space.

write access . In computer security, permission to
write to an object.

Y
Year2000 challenge . The potential problems and its
variations that might be encountered in any level of
computer hardware or software from microcode to
application programs, files, and databases that need
to correctly interpret year-date data represented in
2-digit-year format caused by the transition to the
year 2000.

Year2000 ready . The capability of a Product, when
used in accordance with its associated
documentation, to correctly process, provide and/or
receive date data within and between the 20th and
21st centuries, provided that all products (for
example, hardware, software, and firmware) used with
the Product properly exchange accurate date data
with it.

Year2000 support . The ability to provide Year2000
readiness .

Year2000 transition . The process of revising systems
and databases) to correctly process date data both
within and between the 20th and 21st centuries.

YY format . Synonymous with 2-digit-year format .

YYYY format . Synonymous with 4-digit-year format
and a subset of CCYY format .

582 VSE to OS/390 Migration Workbook

List of Abbreviations

ABEND ABnormal END

ACB Access Control Block

ACF/NCP Advanced Communications
Facility/Network Control
Program

ACF/SSP Advanced Communications
Facility/???

ACIF AFP Conversion and Indexing
Facility

ACS Automatic Class Selection

ADSTAR ADvanced STorage And
Retrieval

AFF AFFinity

AFP Advanced Function
Presentation

AFPDS Advanced Function Printing
Data Stream

AIX Advanced Interactive
eXecutive

AMA Automatic Message
Accounting

AMODE Addressing MODE

AMS Access Method Services

ANSI American National Standards
Institute

AOR Application Owning Region

APAR Authorized Program Analysis
Report

APF Authorized Program Facility

API Application Program Interface

APPC Advanced
Program-to-Program
Communication

APPL APPLication

APPLID APPLication IDentifier

APPN Advanced Peer-to-Peer
Networking

AR Application Requester

ASCII American National Standard
Code for Information
Interchange

ASID Address Space IDentifier

ATM Asynchronous Transfer Mode

BCD Binary Coded Decimal

BCP Basic Control Program

BCS Basic Catalog Structure

BDAM Basic Direct Access Method

BDT Batch Data Interface

BG BackGround

BISAM Basic index Sequential
Access Method

BLL Base Locator for Linkage

BLP Bypass Label Processing

BOS Basic Operating System

BPAM Basic Partitioned Access
Method

BSAM Basic Sequential Access
Method

BSC Binary Synchronous
Communication

BSD Berkeley Software
Distribution

BSF Back Space File

BSL Basic Systems Language

BSR Back Space Record

BTAM Basic Telecommunications
Access Method

BTAM-ES BTAM-Extended Support

BWO Backup-While-Open

C + + A programming language, a
preprocessor to C

CA Control Area

CAT CATalog

CBIPO Custom Built Initial Program
Offering

CBPDO Custom-Built Product Delivery
Option

CCB Channel Command Block

CCH Channel Check Handler

CCCA Cobol CICS Conversion Aid

CCW Channel Command Word

CD Compact Disc

CD-ROM Compact Disk - Read Only
Memory

CEC Central Electronics Complex

CEE Common Execution
Environment

CEMT CICS Master Terminal
Transaction

 Copyright IBM Corp. 1998 583

CGI Common Gateway Interface

CHKPT CHecKPoinT

CI Control Interval

CICS Customer Information Control
System

CICS/DOS/VS Customer Information Control
System/Disk Operating
System/Virtual Storage

CICS/VS Customer Information Control
System/Virtual Storage

CLIST Command LIST

CMIP Common Management
Information Protocol

CMOS Complementary Metal Oxide
Semiconductor

CMS Conversational Monitor
System

COBOL COmmon Business Oriented
Language

CP Control Program

CPU Central Processing Unit

CRLF Carriage Return/Line Feed

CSA Common System Area

CSAR Complex System Availabil ity
and Recovery

CSD CICS System Definition

CSECT Control SECTion

CSF Crypto Support Facility

CSL Callable Services Library

CSM Communication Storage
Manager

CSP Cross System Product

CSSF Customer Software Support
Facility

CTC Channel To Channel

CTCA Channel To Channel Adapter

CVOL Control Volume

DA Direct Access

DADSM Direct Access Device Space
Management

DAM Direct Access Method

DASD Direct Access Storage Device

DB Data Base

DB/DC Data Base/Data
Communications

DB2 Data Base 2

DBA Data Base Administrator

DBCS Double Byte Character Set

DBD Data Base Directory

DBRC Data Base Recovery Control

DBSU Data Base Services Util ity

DC Data Communication

DCB Data Control Block

DCE Distributed Computing
Environment

DCF Document Composition
Facility

DCT Destination Control Table

DD Data Definition, Data
Dictionary

DDL Data Definition Language

DDNAME Data Definition NAME

DEB Data Extent Block

DECB Data Event Control Block

DEQ DEQueue

DES Data Encryption Standard

DFDSS Data Facility Data Set
Services

DFHSM Data Facility Hierarchical
Storage Manager

DFP Data Facility Product

DFS Distributed File System

DFSMS Data Facility Storage
Management Subsystem

DISOSS DIStributed Office Support
System

DITS Data Information Transfer Set

DITTO Data Interfile Transfer,
Testing & Operations util ity

DL/I Data Language 1

DLBL Disk LaBeL

DLIB Distribution LIBrary

DML Data Manipulation Language

DOS Disk Operating System

DOS/VS Disk Operating System/Virtual
Storage

DP Data Processing

DQM Distributed Queue
Management

DRDA Distributed Relational
Database Architecture

DS Define Storage

DSA Dynamic Storage Area

584 VSE to OS/390 Migration Workbook

DSCB Data Set Control Block

DSECT Dummy Control SECTion

DSN Data Set Name

DSNAME Data Set NAME

DSNX Distributed Systems Node
eXecutive

DSS Data Set Services

DTF Define The File

DTL Define The Lock

EBCDIC Extended Binary Coded
Decimal Interchange Code

ECB Event Control Block

ECSA Extended Common Service
Area

EMIF ESCON Multiple Image
Facility

ENDREQ END REQuest

ENQ ENQueue

EOD End Of Data

EOF End Of File

EOJ End Of Job

EOP End Of Page

EP Emulation Program

EQU EQUate

EREP Environmental error Record
Editing and Printing program

ERP Enterprise Resource Planning

ESA Enterprise Systems
Architecture

ESCON Enterprise Systems
CONnection

ESD External Symbol Dictionary

ESDS Entry Sequenced Data Set

ESTAE Extended Specify Task
Abnormal Exit

ETXR End-of-Task eXit Routine

EXCP EXecute Channel Program

EXLST EXit LiST

FB Fixed Block

FBA Fixed Block Architecture

FCB Forms Control Buffer

FCT File Control Table

FD File Definition

FDDI Fiber Distributed Data
Interface

FEOV Force End of Volume

FILESEC FILE SECurity

FIPS Federal Information
Processing Standard

FIT Fast Implementation
Techniques

FM File Mode

FORMDEF FORMat DEFinition

FORTRAN FORmula TRANslation

FSA Functional Subsystem
Application

FSF Forward Space File

FSI Full Screen Interface

FSR Forward Space Record

FSS Functional SubSystem

FTP File Transfer Program

GB GigaByte

GCS Group Control System

GDDM Graphical Data Display
Manager

GDG Generation Data Group

GFS Get File Storage

GHN Get Hold Next

GHU Get Hold Unique

GML Generalized Markup
Language

GN Get Next

GRS Global Resource Serialization

GSAM Global Shared Access Method

GSR Global Shared Resources

GTF Generalized Trace Facility

GU Get Unique

GUI Graphical User Interface

HCD Hardware Configuration
Definition

HD Hierarchic Direct

HDAM Hierarchic Direct Access
Method

HEX HEXadecimal

HFS Hierarchical File System

HIDAM Hierarchic Indexed Direct
Access Method

HISAM Hierarchic Indexed Sequential
Access Method

HLL High Level Language

HMC Hardware Management
Console

List of Abbreviations 585

HPR High Performance Routing

HSM Hierarchical Storage Manager

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

I/O Input/Output

I/S Information Systems

I/T Information Technology

IBM International Business
Machines

ICA Integrated Communications
Adapter

ICCF Interactive Computing and
Control Facility

ICF Interactive Command Facil ity

ICI Improved Control Interval

ICIP Improved Control Interval
Processing

ICKDSF Device Support Facilities

ICSF Integrated Cryptographic
Service Facility

ICSS Internet Connection Secure
Server

ID IDentif ication/IDentif ier

IDCAMS The Program Name for
Access Method Services

IEBCOPY Util i ty Program

IEBGENER Util i ty Program

IGS Interactive Graphics System

II Interactive Interface

ILC Instruction Length Code

IMF Information Management
Facility

IML Init ial Microprogram Load

IMS Information Management
System

IMS/DB Information Management
System/Data Base

IMS/VS Information Management
System/Virtual Storage

IOB Input/Output Block

IOCP I/O Channel Program

IOCS Input/Output Control System

IOS Input/Output System

IP Internet Protocol

IPCS Interactive Problem Control
System

IPDS Intelligent Printer Data
Stream

IPF Interactive Productivity
Facility

IPL Initial Program Load

ISA Initial Storage Area

ISAM Indexed Sequential Access
Method

ISC Integrated Storage Control

ISMA Information Systems
Management Architecture

ISMF Interactive Storage
Management Facil i ty

ISPF Interactive System
Productivity Facility

ISV Independent Software Vendor

ITSO International Technical
Support Organization

IUG Interactive Util i ty Generation

IVP Implementation Verif ication
Program

JCL Job Control Language

JECL Job Entry Control Language

JES Job Entry Subsystem

JES2 A functional Extension of the
HASP II Program

JES3 A functional Extension of the
ASP Program

KANJI A character set of symbols
used in Japanese Ideographic
Alpha

KSDS Key Sequenced Data Set

LAN Local Area Network

LANRES Local Area Network Resource
Extension and Services

LCHILD Logical CHILD

LCP Language Conversion
Program

LE Linkage Editor

LIBR LIBRarian

LIC Licensed Internal Code

LIFO Last In First Out

LIOCS Logical Input/output Control
System

LNKLST Link Library Concatenation

LOGON Log On

LP Logical Partition

LPA Link Pack Area

586 VSE to OS/390 Migration Workbook

LPAR Logically PARtitioned mode

LRECL Logical RECord Length

LRU Least Recently Used, Line
Replaceable Unit

LSPR Large Systems Performance
Reference

LSR Local Shared Resources

LTM Local Transport Mechanism

LU Logical Unit

LUP Logical User Profile

MAPS SNA Network Interconnecting
Package

MAS Multi-Access Spool

MB MegaByte

MCS Multiple Console Support

MCSOPER MVS Console Support
OPERator

MCT Master Control Table

MGCR Master Get Command
Routine

MIH Missing Interruption Handler

MPF Message Processing Facility

MQI Message Queue Interface

MQSERIES Messaging and Queuing
SERIES

MRO Multi-Region Operation

MS Migration System

MSHP Maintain System History
Program

MVS Multiple Virtual Storage

MVS/BDT Multiple Virtual Storage/Bulk
Data Transfer

MVS/DFP Multiple Virtual Storage/Bulk
Data Transfer

MVS/ESA Multiple Virtual
Storage/Enterprise Systems
Architecture

MVS/RSU MVS Recommended Service
Upgrade

NCP Network Control Program

NDF Network Definition Facility

NFS Network File System

NJE Network Job Entry

NSR Network Service Request

OC Operator Communication

OCCF Operator Communications
Control Facility

OCO Object Code Only

OE Order Entry

OEM Original Equipment
Manufacturer

OGL Overlay Generation Language

OLPD On-Line Problem
Determination

ONC Open Network Computing

OPC Operations, Planning &
Control

OPR OPeRations

OPTCD OPtional Control Program
Service

OS Operating System

OS/2 Operating System/2

OS/390 Operating System/390

OS/VS Operating System/Virtual
Storage

OSA Multi-Access Spool

OSA Open Systems Adapter

OSF Operational Support Facility

OUTLIM OUTput LIMiting facility

PARMLIB PARaMeter LIBrary

PC Personal Computer

PCB Program Control Block

PCCU Primary Communication
Control Unit

PCLK Personal Computer Link
Feature

PCT Program Control Table

PDB Page Description Block

PDF Process Control Block

PDS Partitioned Data Set

PEND POWER END

PER Program Event Recording

PERT Program Evaluation and
Review Techniques

PIOCS Physical Input Output Control
System

PKZIP A data Compression Program

PL/1 Programming Language 1

PL/I Programming Language 1

PLT Program List Table

POWER Priority Output Writers,
Execution processor, and
input Readers

List of Abbreviations 587

PPFA Page Printer Formatting Aid

PPT Processing Program Table

PR/SM Processor Resource/Systems
Manager

PROC PROCedure

PROP PRogrammable OPerator

PS Personal System

PSB Program Specification Block

PSF Print Service Facility

PSF/6000 Print Service Facility/6000

PTF Program Temporary Fix

PW PassWord

QISAM Queued Indexed Sequential
Access Method

QMF Query Management Facil ity

QSAM Queued Sequential Access
Method

R/O Read/Only

R/W Read/Write

RACF Resource Access Control
Facility

RAMAC Brand name and trademark of
IBM DASD family

RAS Reliabil ity, Availabil ity,
Serviceabil i ty

RBA Relative Byte Address

RC Reason Code

RCB Request Control Block

RDO Resource Definition On-line

RECFM RECord ForMat

RES RESident

RETAIN Remote Technical Assistance
Information Network

REXX REstructured eXtended
eXecutor language

RJE Remote Job Entry

RLS Record Level Sharing

RMDS Remote Management and
Distribution System

RMF Resource Measurement
Facility

RPC Remote Procedure Call

RPG Report Program Generator

RPG II A commercially Oriented
Programming Language

RPL Request Parameter List

RPM Remote Print Manager

RRDS Relative Record Data Set

RSCS Remote Spooling
Communications Subsystem

RSU Recommended Service
Upgrade

RTE Remote Terminal Emulator

RU Replaceable Unit

S/360 System/360

S/390 System/390

SAA Systems Application
Architecture

SAE Strategic Applications
Enabling

SAF System Authorization Facil ity

SAM Segmented Access Method

SCD System Contents Directory

SCLM Software Configuration &
Library Manager

SCS Spooling Communications
System

SDF Screen Definition Facility

SDF/CICS Screen Definition
Facil i ty/Customer Information
Control System

SDLC Synchronous Data Link
Control

SDSF System Display and Search
Facility

SGML Standard Generalized
Mark-up Language

SIE Software Installation Express

SIS Sequential Insert Strategy

SIT System Initialization Table

SLI Source Library Inclusion

SLIP Serial Line Internet Protocol

SMF System Management Facil ity

SMP System Modification Program

SMP/E System Modification
Program/Extended

SMS Stores Management System

SMTP Spooling Communications
System

SNA Systems Network
Architecture

SNI SNA Network Interconnect

SP System Product

588 VSE to OS/390 Migration Workbook

SPG Service Planning Guide

SPI System Programming
Interface

SPIE Specify Program Interruption
Exit

SPOOL Simultaneous Peripheral
Operation On-Line

SPUFI SQL Processor Using File
Input

SQL Structured Query Language

SQL/DS Structured Query
Language/Data System

SQLCA SQL Communication Area

SRL Systems Reference Library

SRM Systems Resources Manager

SSI SubSystem Interface

SSP System Services Program

STAE Specify Task Abnormal Exit

STC Started Task Control

SVA Shared Virtual Area

SVC SuperVisor Call instruction

SVS Single Virtual Storage

SYSADM SYStem ADMinistrator

SYSDEF SYStem DEFinition

SYSIN SYStem INput stream

SYSLOG SYStem LOG

SYSOUT SYStem OUTput stream

SYSREC SYStem RECorder file

SYSRES SYStem RESidence file

TCAM TeleCommunications Access
Method

TCB Task Control Block

TCP/IP Transmission Control
Protocol/Internet Protocol

TCT Terminal Control Table

TECB Timer Event Control Block

TM TradeMark

TME Tivoli Management
Environment

TMM Tape Management
Methodology

TOD Time Of Day

TOR Terminal Owning Region

TOS Tape Operating System

TP TeleProcessing

TPF Transaction Processing
Facility

TRS Time Recording System

TSO Time Sharing Option

TSO/E Time Sharing Option
Extensions

TSO/VTAM Time Sharing Option/Virtual
Telecommunications Access
Method

UACC User ACCess

UCB Universal Character Buffer

UCS Universal Character Set

UCS2 ISO 10646 16-bit Character
Encoding Standard

UPSI Use Program Switch Indicator

URL Uniform Resource Locator

USASCII Deprecated Term for ASCII

VAE Virtual Addressabil i ty
Extension

VM Virtual Machine

VM/CMS Virtual
Machine/Conversational
Monitor System

VM/ESA Virtual Machine/Enterprise
Systems Architecture

VMA Virtual Machine Assist

VMPRF VM Performance Reporting
Facility

VS Virtual Storage

VSAM Virtual Storage Access
Method

VSCR Virtual Storage Constraint
Relief

VSE Virtual Storage Extended

VSE/ESA Virtual Storage
Extended/Enterprise Systems
Architecture

VSE/ICCF Virtual Storage
Extended/Interactive
Computing and Control
Facility

VSE/POWER Virtual Storage
Extended/Priority Output
Writers, Execution Peocessors

VSE/SP Virtual Storage
Extended/System Package

VSE/VSAM Virtual Storage
Extended/Virtual Storage
Access Method

List of Abbreviations 589

VTAM Virtual Telecommunications
Access Method

VTOC Volume Table of Contents

VVDS VSAM Volume Data Set

VVR VSAM Volume Record

WS Work Station

WSC Washington Systems Center

WTM Write Tape Mark

WTO Write To Operator

WTOR Write To Operator with Reply

WWW World Wide Web

XCF Cross-system Coupling
Facility

XCTL Transfer ConTroL

XEDIT eXtended EDITor

XMT Transmit

XRF eXtended Recovery Facility

590 VSE to OS/390 Migration Workbook

Index

Special Characters
* $$ DATA 89
* $$ LST 89
&SYSNAME 115
%INCLUDE 335

Numerics
2-digit-year format definition 565
20th century definition 565
21st century definition 565
24x7 installations 485
4-digit-year format definition 565

A
abbreviations 583
ABEND forcing 344
ABEND macro 280
abnormal termination exits 364, 365, 367
ACB

additional MVS VSAM parameters 290
macro 290
multiple string processing 128
MVS VSAM parameters 290
single Open 128

access method 97, 549
differences 97
IDCAMS 455
implementations 98
miscellaneous functions 99
operating system implementations 98
similarit ies 97

ACCESS statement 170
access to NetView FTP 415
accessing the system 159
accounting 244

comparisons 223
JES2 SMF records 223
management 471
methodology 472
NJE 224
overview 471
tasks 472

ACF/NCP 192
backlevel hardware support 193
product installation 192
program generation 192

ACF/VTAM 185
customization and programming

programming 191
VTAM tables 190

network configuration 191
product installation

VTAM data sets 186

ACF/VTAM (continued)
resource definition and operation

operation 190
resource definition 190

acronyms 583
actual conversion 516
additional switchover tasks 518
Advanced Function Printing (AFP) 235

migration effort 235
programming interfaces 242
resource definition 240
resource migration 240
resources setup 240

allocation of resources 78
allocation spool space 221
ALTER REMOVEVOLUMES function 125
alternate DL/I & IMS/ESA access 175
AMS CNVCAT command 118
AMS commands 121
analysis & resolution of exceptions 496
analyzing

catalogs 476
dumps 473
traces 474
VSE source material 500

application
availabi l i ty 10
developer 179
interfaces 221
interlanguage communications 358
inventory 32, 495
ISPF 440
load table 137
location 548
programmers 47
programming 150
shared files and code 50
synchronization 430
TCP/IP 196

APPLY clause 255
applying preventive service 414
approach differences 49
approaches to migration

conversion & production implementation
strategies 27

conversion tools 30
disclaimer 27
in-house staff 29
kernel/progressive approach 27
outside consultants 30
single switchover - mass application migration 28
staffing strategies 29
VM/ESA guest support 29

 Copyright IBM Corp. 1998 591

APSRMARK (MVS) 240
APTRMARK (VSE) 240
APTZPARM macro 241
ASCII subsystem 188
Assembler

CALLDLI 173
conversion comments 267
conversion tools 492
general conversion comments 267
init iation 269
migrating applications 359
migrat ion 359
products 267
programming interfaces 241
TCP/IP applications using sockets API 196
termination 269
user exits 364
VSAM support 131

Assembler macros
ABEND 280
ACB 290
ATTACH 283
CANCEL 281
CCB 327
CDLOAD 278
CHECK 307
CHKPT 282
CLOSE 298, 305, 314
CNTRL 296, 298, 306, 314
COMRG 277
DEQ 286
DETACH 283
DTFPH 328
DUMP 280
ENQ 286
EOJ 281
ERET 306
EXLST 291
FCEPGOUT 290
FEOV 301
FEOVD 309
FETCH 278
FREEVIS 289
GET 301, 305
GETIME 278
GETMAIN 276
GETVIS 289
LOAD 277
LOCK 281
MVCOM 277
NOTE 299, 309
OPEN 297, 304, 314
PDUMP 279
PFIX 290
PFREE 290
POINTR 299, 308
POINTS 300, 308
POINTW 299, 308

Assembler macros (continued)
POST 285
PRTOV 296
PUT 301, 305
RCB 286
READ 307, 313
REALAD 290
RELPAG 290
RELSE 300, 306
RETURN 273, 281
RPL (additional MVS parameters) 291
SAVE 272
SETPFA 290
SHOWCB 292
SNAP 279
TRUNC 300, 306
TTIMER 288
UNLOCK 281
VSAM CHECK 292
VSAM TCLOSE 292
WAIT 285
WAITF CLOSE 314
WRITE 307, 314
WTO 278
WTOR 278

Assembler Products
data management macros

CCB macro 327
CHECK macro 307
CLOSE macro 298, 305
CNTRL macro 296, 298, 306, 314
comparison of physical IOCS elements 328
definition of BLKSIZE 293
Direct Access file processing 318
DTFPH macro 328
ERET macro 306
error bytes 312
FEOV macro 301
FEOVD macro 309
general considerations 311
GET / PUT macros 301, 305
I/O error checking 294
IOREG 293
LIOCS Card File definition 294
LIOCS Console file definition 304
LIOCS Device-independent file definition 303
LIOCS Direct Access file definition 311
LIOCS Indexed Sequential definition 326
LIOCS Printer File definition 296
LIOCS Sequential file definition on DASD

devices 304
LIOCS Tape File definition 297
List & Execute macro forms 293
loading a DAM file (fixed-length records with

keys) 319
loading a DAM file (fixed-length records without

keys) 323
loading a DAM file (undefined or variable-length

records) 323

592 VSE to OS/390 Migration Workbook

Assembler Products (continued)
data management macros (continued)

multiple search / feedback 325
NOTE macro 299, 309
OPEN macro 297, 304
overview of programming elements 327
PIOCS 327
POINTS macro 300, 308
POINTW / POINTR macros 299, 308
processing a DAM File under MVS 324
processing a DAM File under VSE 324
PRTOV macro 296
READ macro 307, 313
record addressing 315
record addressing by ID 315
record addressing by KEY 316
record reference by ID 316
record reference by KEY 317
reference methods 316
RELSE macro 300, 306
track & record addressing 315
track addressing 315
TRUNC macro 300, 306
WAITF, OPEN & CLOSE macros 314
WRITE macro 307, 314

interrupt handling routines
interval t imer interrupts 287
operator communication interrupts 288
routine handling 287
TTIMER macro 288
wait handling 288

multitasking macros
ATTACH/DETACH macros 283
ENTRYPOINT 284
RCB/ENQ/DEQ macros 286
WAIT/POST macros 285

system interface & macros
CANCEL macro 281
CDLOAD & CDDELETE macros 278
CHKPT macro 282
communication region 274
communication region simulation 276
COMRG & MVCOM macros 277
date 274
DUMP macro 280
EOJ macro 281
FETCH macro 278
GETIME macro 278
init iation 269
job name 275
linkage macros 271
LOAD macro 277
LOCK & UNLOCK macros 281
PDUMP macro 279
problem program area addresses 275
register conventions 269
save areas 270
termination 269
UPSI (User Program Switch Indicators) 275

Assembler Products (continued)
system interface & macros (continued)

user program communication bytes 275
WTO & WTOR macros 278

virtual storage macros
FCEPGOUT, RUNMODE, VIRTAD & REALAD

macros 290
GETVIS & FREEVIS macros 289
PAGEIN macro 290
PFIX & PFREE macros 290
RELPAG macro 290
SETPFA macro 290

VSAM macros
ACB macro 290
additional MVS VSAM ACB parameters 290
EXLST macro & EXCPAD routines 291
MVS VSAM additional SHOWCB fields 292
MVS VSAM CHECK macro 292
RPL macro (additional MVS parameters) 291
SHOWCB macro 292
VSAM error & reason code compatibil ity 292
VSE VSAM TCLOSE macro 292

asset management 471
methodology 471
overview 471
tasks 471

ASSGN statement 80, 83
ASSIGN clause 256
assignments 79
ASSOCIATE 339
asynchronous communication subsystem 188
ATTACH/DETACH macros 283
attachment options 236
automated

conversion 488
conversion process 490
migration services (AMS) 519
operations 37
operations tools 50

automatic restart 345
automating operational procedures 467
automation 25, 460
automation l imits 489
availability of staff 12
availabil ity of system 11

B
background customer migration example 529
backing up your system 410
backlevel hardware support 193
backout util ity 174
BACKUP/RESTORE 124, 387
base elements for release 4 416
batch

& online program conversion 14
execution submission 162
job control 451
programming 171

Index 593

batch (continued)
TCP/IP 195
unit testing 512

BCP customization 415
BDAM 98
benefits customer migration 532
bibliographies

COBOL 251
diagnostic reference 478
Language Environment 353
MQSeries 206
PSF/MVS 244
PSF/VSE 244
REXX 372

bibliography 557
BLKSIZE definition 293
BLL cells 252
book synopsis 3
broadcast data set 157
BSC remotes definition 228
BTAM 137, 193

product installation 193
usage 193

building the initial OS/390 test system 430
maintenance environment 431
test logical partit ion 431
user libraries and SMP/E zones 431

business consolidation 4
bypass label processing facility in OS/390 106

C
C for VSE/ESA 353
C/370 355
CA-Convertor 525
CA-DUO 525
callable services 365
calling COBOL subprograms 331
CALLing DUMP 346
CANCEL macro 281
capacity constraints 5
card file definition 294
carry-over 79
CAT on DLBL 83
catalog 81, 112, 335

compatibi l i ty 117
conversion 118
forward recovery 111
IKQVCHK check 125
management 114
master 114
OS VOL 110
OS/390 110
recovery 476
shared volume ownership 120
sharing 432
structures 120
user 115
VSAM 110

CBPDO 407
CCB macro 327
CCCA 522
CCCA positioning 523
CCCA technical description 523
CCYY format definition 567
CDDELETE macro 278
CDLOAD macro 278
CEETDLI 366
century byte definition 568
century definit ion 568
CGI programs 196
change management 411, 460

methodology 461
overview 460
tasks 460

changes between VSE and OS/390
automation 25
console operator interface 25
JCL processing 25
management disciplines 25
philosophical changes 24
security 24

channel-attached printers 236
CHECK macro 307
checking VSAM KSDS files 477
checkpoint JES2 210
Checkpoint-Restart in PL/I 342

PLICANC 343
PLICKPT 342
PLIREST 342

CHKP calls 172
CHKPT macro 282
CICS

adapter 201
application programming 150
CCCA 522
CICS/VSE & TS coexistence 153
COBOL and CICS 366
Command Level Conversion Aid (CCCA) 522
COMMAREA 152
considerations - MQSeries 201
CSD & RDO considerations 143
DL/I 154
domains 138
DOS/VS COBOL programs 252
essential supplemental migration support

material 134
exits 147
general compatibil i ty comments 135
general system considerations 136
internal security 137
introduction 133
log manager 145
Macro Resource Definition Table changes 140
menu service 151
MQSeries considerations 201
MRDT changes 140

594 VSE to OS/390 Migration Workbook

CICS (continued)
MRO 136
MVS management modules 142
PL/I 346
problem determination considerations 153
programs 252
run-time options 366
shutdown statistics 137
system

control blocks 138
data sets requirements 145
init ial ization parameters 140
program interface 147
programming commands 147

testing considerations 153
transaction

attr ibutes 144
backout 347
security 149
server 133

translator option 252
unsupported products 136
UPSI 149
user exits & abnormal termination exits 367
vendor applications 154
virtual storage considerations for MVS 135

CISIZE 122
CLIST language 163
cloned DASD 432
CLOSE macro 298, 305, 314
CMDCHN 339
CMS usage 429
CNTRL macro 296, 298, 306, 314
COBOL

applications 242
CICS considerations 366
CICS programs 252, 366
COBOL for OS/390 and VM general

comments 249
COBOL for VSE/ESA 354
coding problems 253
comparison of IBM COBOL compilers 250
compiler comparison 250
compiler options 260
compil ing converted programs 265
CONFIGURATION SECTION - SPECIAL-NAMES

paragraph 255
conversion tools 492
DATA DIVISION 256
DOS/VS COBOL 356
DOS/VS COBOL CICS programs 252
DOS/VS COBOL conversion 252
DOS/VS COBOL using REPORT WRITER 253
ENVIRONMENT DIVISION 255
file attribute mismatches 258
file handling 257
file status codes 257
from COBOL for VSE/ESA 259

COBOL (continued)
from VS COBOL II 258
general comments on COBOL for OS/390 and

VM 249
IBM COBOL & CICS CCCA 522
INPUT-OUTPUT SECTION 255
introduction 249
ISAM support 258
language differences DOS/VS COBOL and COBOL

for OS/390 and VM 253
migrating object code 251
migrating VSE to OS/390 250
migration considerations 250
OS/390 131
OS/VS 131
overall conversion 259
PL/I comparison 351
PROCEDURE DIVISION 256
program termination 257
recovery example 526
reserved words 263, 265
running converted programs 265
subprograms 331
subprograms called by RPG II 331
unavailable compiler options 260
useful publications 252
VM 131
VS COBOL II 355
VS COBOL II CICS programs 259
VS COBOL II compiler options 261
VSAM support 259
VSE compiler conversion 259
VSE/ESA 354

coding problems in COBOL 253
coexistence CICS/VSE & TS 153
COLBIN 339
command

authority for remote operators 453, 454
comparison 242
equivalences POWER-JES2 231
level coding (HLPI) 171
procedures 163

COMMAREA 152
common applications - naming conventions 549

DB2 naming conventions 550
generation data sets 551
TSO naming conventions 549
VSAM data set naming conventions 550

communication bytes 275
Communication Region 81, 274
communication region simulation 276
compaction tables 230
comparing

areas 181
IBM COBOL compilers 250
physical IOCS elements 328
POWER and JES2 JECL 89
PRINTDEV statement parameters 238

Index 595

comparing (continued)
PSF commands 242
VSE & MVS JCL 86, 91

compatibi l i ty 344, 346
compiler option considerations for VS COBOL II 261
compiler options 260, 335
compiler options unavailable with COBOL for OS/390

and VM 260
compiling converted COBOL programs 265
complexity of implementation 51
component terminology for MVS 21
COMPRESS 121
Computer Associates 525
COMREG (DATE and UPSI) 81
COMRG 277
conceptual differences between LE/VSE & OS/390

Language Environment 352
COND parameter 85
conditional JCL 73, 84
conditional JCL - MVS 84
configuration management 469

methodology 470
overview 469
tasks 469

CONFIGURATION SECTION - SPECIAL-NAMES
paragraph 255

configuring hardware 402
connectivity 11
considerations for DASD sharing 130
console control 444
console modes 444
console operator interface 25
continuation cards 72
control commands 233
control statements 377, 379
controll ing

batch jobs 451
consoles 444
devices 448
displaying the status of devices 448
JES2 commands 450
JES2 devices 449
jobs 449
MVS commands 450
OS/390 system 447
RMF and other monitors 450
SDSF device panels 449
SDSF panels 450
started tasks 449, 451
starting the system 447
stopping JES2 448
time sharing users 451
TSO users 449
understanding device allocation 448

conversion
actual 516
all VSE COBOL compilers 259
Assembler comments 267

conversion (continued)
CA-Convertor 525
CICS Command Level Conversion Aid 522
compiling converted COBOL programs 265
DISPLAY statement 259
dummy 52
final JCL 516
final program 517
FORTRAN considerations 349
from COBOL for VSE/ESA 259
from DOS/VS COBOL 252
from VS COBOL II 258
ICCF libraries 163
method 42
phases 503
pilot 52
PL/I programs 345
running converted COBOL programs 265
services and tools 519
specifications 499
tr ial 505
VSAM 259
VSE COBOL compilers 259
VSE/ESA facilities 520
VSE/VSAM catalog 118

conversion considerations for all VSE COBOL
compilers 259

conversion phases
initialization testing 511
JCL conversion 504
parallel/production simulation testing

data migration 514
date concerns during parallel testing 515
job simulation 515

Phase 4: initial trial conversion 505
Phase 5: OS/390 regression tests & repeated trial

conversions
DASD requirements 508
MVS tools testing 508
OS/390 automated operations tools 510
personnel involvement in testing 507
recommendations 507
responsibil i t ies 507
Subsystem Storage Protect 508
test plan 508
testing priorit ies 507

program conversion
considerations 503
VSE coding practices causing conversion

problems 504
system testing

batch 513
data migration 514
online 513

testing converted applications 506
unit testing

batch 512
data migration 512
online 512

596 VSE to OS/390 Migration Workbook

conversion phases (continued)
unit testing (continued)

timing between on-line & batch testing 512
conversion process

assumptions 486
introduction 482
prerequisites 484
recommendations

24x7 installations 485
manuals 484
migrate SNA network 485
project management 484
secure OS/390 skills 484
tools & automation 484
two phase approach 486

references 483
conversion services

Automated Migration Services (AMS) 519
IBM global services 519

conversion tools 30
Computer Associates

CA-Convertor 525
CA-DUO 525

CORTEX-MS 43, 52, 486, 490
IBM COBOL and CICS CCCA

product positioning 523
technical description 523

IBM OPTI-AUDIT for VSE
product details 521
product highlights 521

SISRO - CORTEX-Migration System
(CORTEX-MS) 524

The Source Recovery Company
COBOL recovery example 526
program source code example 526
Reconcile/SRC 526
Recovery/SRC 526
Rename/SRC 526
VersionMatch/SRC 526

VSE/ESA facilities 520
convert ing

development material 516
DOS/VS COBOL CICS programs 252
from COBOL for VSE/ESA 259
from DOS/VS COBOL 252
from VS COBOL II 258
ICCF libraries 163
PL/I programs 345
REPORT WRITER statements 253
VS COBOL II CICS programs 259

correcting invalid syntax 76
CORTEX-MS 43, 486, 490
cosmetic definition 568
cost considerations 38
COUNT FLOW 337
courses

available 535
instructors 537

courses (continued)
locations 537
schedules 536
when needed 536

creating emergency backup system 410
creating ISPF applications 440
critical operations procedures 411
cross-region sharing - single CPU environment 126
cross-system coupling facility 189
cross-system sharing 129
CSD considerations 143
custom classes 536
customer migration example

background 529
duration

phase one 531
phase two 531

environment
hardware 529
inventory 530
resources 530
software 529

customer migration rationale
business consolidation 4
capacity constraints

n-way processor support 9
task quantity 9
virtual storage 5

image 9
mergers/acquisit ions 5
traditional reasons for migrating 4

customization and programming 190
customize MVS BCP 415
customize OS/390 system 413

D
DADSM 99
DASD

and tape volume serials 408
concurrent access 16
cross-system sharing 129
differences 108
FBA 108, 120
indexed VTOC considerations (OS/390) 109
OS/390 sharing definitions 129
requirements 402, 508
sequential fi le definition 304
shared 404, 425
shared between VSE & OS/390 (vs. cloned

DASD) 433
shared vs. cloned 432
sharing between OS/390 test systems 432
sharing between VSE & OS/390 433
sharing considerations 130
similarit ies 108
volume interchangeabil i ty 108
volume serials 408
VTOC processing 108

Index 597

data
access 182
driven output segmentation 75
entry 76
integri ty 125
management macros 292
management standards 407
manipulation 159
replication 182
sharing 125
TCP/IP related 195
transfer and NJE 405

Data Base Descriptor (DBD) 170
Data Control Block (DCB) 98
DATA DIVISION - FILE DESCRIPTION (FD) 256
data set

CICS system requirements 145
editing 438
generation 551
intra-region name sharing 128
level 547
MQSeries 202
names 81, 116
naming considerations 99
naming guidelines 543
naming standards 408
NOALLOCATION 123
reusable 123
single region sharing 128
sorting multiple 132
TSO names 159
VSAM sharing alternatives 130
VSE naming 99
VTAM 186

data set name components
data set level 547
file contents 546
High-Level Qualifier (HLQ) 544
relative importance 546
user name 547

data set name exclusions
access method 549
application location 548
department number 547
expiration date 548
job name 549
management cri teria 548
output device type 548

DATA statement - * $$ DATA 89
database 169

administrator (DBA) 180
portabil i ty 175
reloading 176
unloading 176

DATE 81, 274
date concerns during parallel testing 515
DB2 guest sharing 429

DB2 naming conventions 550
DB2 transparency feature 130
DBA 180
DBD 170
DD statement 84
DDNAME PREFIXES 341
default models 123
defaults - POWER 79
DEFINE 123
defining

a file 72
AFP resources 240
BLKSIZE 293
BSC remotes 228
channel-attached printers to MVS 236
compaction tables 230
MQSeries object and operating 203
network printers 236
NJE 221
NJE nodes 230
SNA remote workstations 229

definit ion
2-digit-year format 565
20th century 565
21st century 565
4-digit-year format 565
CCYY format 567
century 568
century byte 568
cosmetic 568
external side 571
fixed window 571
Gregorian calendar 571
integer date 573
internal side 573
Julian date 574
leap year 574
Lilian date 574
ordinal day of year 576
roll ing window 578
sliding window 579
year2000 challenge 582
year2000 ready 582
year2000 support 582
year2000 transition 582
YY format 582
YYYY format 582

DELETE IGNOREERROR 121
department number 547
dependent programs dynamic loading 334
descriptions of users 178
design MVS target output 501
detailed comparisons POWER/JES2 225
developer 179
developing the plan 41
device

address specifications 80
allocation 448

598 VSE to OS/390 Migration Workbook

device (continued)
control 448
information 329
migrat ion 36
status display 448
supported by OS/390 402

DFDSS 23
DFHMSCAN utility 152
DFHSM 23
DFSDSdss 101
DFSMS FIT 102
DFSMS implementation 102
DFSMS naming conventions 543
DFSMS/MVS diagnosis 476

DFSMSdfp
analyzing catalogs for errors and

synchronization 476
catalog recovery 476
checking VSAM KSDS for structural errors 477

DFSMSdss 478
DFSMShsm 477
DFSMSrmm 478

DFSMSdfp 101, 387, 476
DFSMSdss 387, 397, 456, 478
DFSMSdss - OS/390 functions 398
DFSMShsm 101, 387, 477
DFSMSrmm 101, 478
DFSORT/VSE control statements 379
DFSORT/VSE migration considerations 379
diagnosing system problems 473
diagnostic reference publications 478
differences

DL/I & IMS/VS DB 169
in testing philosophy 419
JCL and JECL 241
POWER-JES2 209

direct access file definition 311
direct access file processing 318
direct access method (DAM) 15
disk logging 174
disk storage considerations 97
DISP in JCL 344
display

areas 445
console management 444
consoles 444
statement 259
status of devices 448
system status 447
work on system 449

DISPLAY statement 259, 447
Distributed Queue Management (DQM) 204
DITSECUR exit 385
DITTO 244

batch keywords not recommended 385
code synonyms 384
compatibi l i ty 381
ESA security 385

DITTO (continued)
function code synonyms 384
functions not recommended 383
obsolete batch keywords 384
obsolete functions 382
release compatibil i ty 381
security 385

DL/I
access alternatives 175
ACCESS statement 170
calls 172
CEETDLI 366
CICS 154
DL/I parameter statement 174
IMS/ESA access alternatives 175
IMS/VS DB differences 169
IMSCOMP parameter 16
introduction 169
Multiple Partit ion Support 178
PSB 171

DL/I & IMS/VS DB differences 169
batch programming

assembler language calls 173
CHKP calls 172
command-level coding (HLPI) 171
field level sensitivity 172
GSCD and/or GSTA calls 172
Interactive Macro Facility (IMF) 171
NI status codes 172
PCB after GE status 172
RPG II 171
statement compatibi l i ty 172

Data Base Descriptor (DBD) 170
database portabil i ty

alternate DL/I and IMS/ESA access 175
unloading and reloading the database 176

DL/I Multiple Partition Support (MPS) 178
introduction 169
MVS system requirements 170
operations

backout util ity/disk logging 174
DL/I parameter statement 174
RESTART with CHKP 173
UPSI 174

Program Specification Block (PSB) 171
util i t ies

REWIND option for reorganization utilities 173
secondary index creation 173

DLBL statement 83
documentation 40, 407, 412
DOS

compiler specific options 335
PL/I 356
specific options 343
storage management 345

DOS/VS COBOL 356
CICS programs 252
compiler options not available 260

Index 599

DOS/VS COBOL (continued)
REPORT WRITER statements 253
reserved word considerations 263

DOS/VS COBOL & COBOL for OS/390 and VM
language differences

Common COBOL Coding Problems 253
DATA DIVISION - FILE DESCRIPTION (FD) 256
ENVIRONMENT DIVISION 255
file handling considerations

fi le attribute mismatches 258
file status codes 257
ISAM 258

PROCEDURE DIVISION - Input/Output
program termination 257

DRDA considerations 182
DSCB 108
DSNAME sharing 128
DTFCD operands 294
DTFCN 304
DTFDA operands 311
DTFDI operands 303
DTFMT operands 301
DTFPH macro 328
DTFPR operands 296
DTFSD operands 309
dual production environment 28
dummy conversion 52
dump analysis 473
DUMP in PL/I Optimizer 343

compatibi l i ty 344
options specific to DOS 343
options specific to MVS 344
output fi le 343

DUMP macro 280
dumps 473
duration customer migration 531
dynamic allocation macro 242
dynamic loading of dependent programs 334
DYNBUF 336

E
E15 EXIT PROCEDURE 341
early error detection 76
editing data sets 438
education 49

application programming 31
introduction 31
operations 31
requirements 31
system programming 31

EGCS (VSE) to DBCS (OS Version 2) 333
ELSE statement 84
emergency backup system 410
end user 178
end-of-page sensing 209, 217
ENDIF statement 84
eNetwork Communications Server 188

enforcing installation standards 410
entering and manipulating data 159
entitled methods of installing OS/390 406
ENTRYPOINT 284
ENVIRONMENT attributes 338

SIS option (Sequential Insert Strategy) 340
supported but to be avoided 340
TOTAL option 340
unsupported in MVS

ASSOCIATE 339
CMDCHN WTRPROT FILESEC NOFEED

VOLSEQ 339
COLBIN 339
FUNCTION 339
MEDIUM 339
NOTAPEMK NOLABEL 340
OMR (Optical Mark Read) 339
RCE (Read Column Eliminate) 339
STACKER 339
UNLOAD 339

environment customer migration example 529
ENVIRONMENT DIVISION 255
environments 370
EOJ macro 281
equivalent JES2 - POWER parameters 225
ERET macro 306
error & reason code compatibil ity 131
Error bytes 312
error detection 76
essential supplemental reading 134
estimated project schedule 54
EXAMINE command 477
exclusives PSF/MVS 235
EXCPAD routines 291
EXEC & PROCESS cards 338
EXEC statement 72, 82
EXEC statement - COND parameter 85
Execute macro forms 293
executing ISPF applications 440
executing programs at a terminal 161
execution options 337, 346
EXIT E35 341
exits

abnormal termination 365
Assembler user 364
CICS 147
comparisons 230
DITSECUR 385
global 148
high-level language 364
installation 243
JES2 installation 211
LE user 364
MVS 415
NJE 221
RJE 220
VTAM 191

600 VSE to OS/390 Migration Workbook

EXLST macro 291
expanded JCL 76
expiration date 548
extended MCS consoles 445
extended precision 334
extent exit 330
EXTENT statement 83
external side definition 571

F
Fast Copy 124, 397
FBA DASD 108, 120
FCB

incompatibil i t ies 209
naming differences 217
prefixes 217
specification 218

FCEPGOUT macro 290
FDUMP compiler option 263
fee-based installation 405
FEOV macro 301
FEOVD macro 309
FETCH macro 278
field level sensitivity 172
file

access methods 330
attr ibute mismatches 258
contents 546
control 234
copy 35
definitions 72
handling considerations 257
migrat ion 35
names 124
organization 334
shared 50
status codes 257
support 346
transfer 492

FILESEC 339
final JCL conversion 516
final program conversion 517
fixed window definition 571
forcing an ABEND 344
Format-1 DSCB 108
Format-4 DSCB 108
Format-5 DSCB 109
FORTRAN

conversion considerations 349
Language Environment-enabled 358
VS FORTRAN in OS/390 349
VS FORTRAN migration 358

FSS procedure 238
FUNCTION 339
functional comparison PSF/VSE and PSF/MVS 235
functional reasons for migrating 10
functional reasons for migrating to OS/390

applications availabil ity 10

functional reasons for migrating to OS/390 (continued)
connectivity 11
staff availabil ity 12
systems availabil i ty 11
systems management 10

functional RJE differences 219

G
GDG naming standards 408
general

Assembler considerations 311
comments on Language Environment 351
compatibi l i ty 135
system considerations for CICS 136

generation data groups 408
generation data sets 551
GET/PUT macros 301, 305
GETIME macro 278
GETMAIN macro 276
GETVIS & FREEVIS macros 289
Global Services 519
glossary 565
GONUMBER 336
Gregorian calendar definition 571
GRS 22
GSCD calls 172
GSTA calls 172
guest considerations 430
guest support 29, 426

H
hardcopy l ibrary 412
hardcopy processing 393
hardware configuration 402
hardware consoles 443
hardware install and configure

DASD requirements 402
inter-systems connectivity

data transfer and NJE 405
shared DASD 404
tape drives 404
terminal access 404

OS/390 device support 402
other hardware requirements 403
processor requirements 402

hardware support 193
help for hidden JCL problems 79
hidden JCL 78
hidden JCL problems 79
high level

language exits 364
language programming interfaces 242
Qualifier (HLQ) 544
similarit ies 72

high-performance routing (HPR) 189
historical perspective 50

Index 601

HLL programming interfaces 242
host operations 452

I
I/O error checking 294
IBM

COBOL & CICS CCCA 522
COBOL compilers - comparison 250
Global Services 519
OPTI-AUDIT for VSE 520

ICCF 155
/CMS/TSO 218
& TSO 155
command procedures 163
library conversion 163
LOGON procedures 157
macros 167
procedures 167
program execution 161
security 157
users ′ orientation 437

ICETOOL 380
ICFCATALOG 112
ICKDSF 23
ICVR 142
IDCAMS 455
IEBCOPY 455
IEBGENER 455
IEBxxx or IEHxxx 455
IEFBR14 78
IF statement 84
IF THEN ELSE ENDIF statements 84
IKQVCHK - catalog check 125
IKQVDU - volume cleanup 124
image 9
imbedding JCL 72
IMF 171
implementation phases 515

converting development material 516
Phase 6: actual conversion & switchover

final JCL conversion 516
final program conversion 517

Phase 7: initial OS/390 operations 518
switchover

additional tasks 518
data/f i le migration 517

implementing DFSMS 102
implementing JES2 209

setting up required resources
JES2 checkpoint 210
JES2 spool volumes 210

starting JES2
JES2 Procedure 211

tailoring JES2
JES2 initialization parameters 211
JES2 installation exits 211
JES2 operator commands 211
multiple system support 211

implementing system security 410
implicit DEFINE 123
IMPRECISE 337
IMS/VS DB & DL/I differences 169
IMSCOMP parameter 16
in-house staff 29
in-place migration 35
Independent Software Vendor products 417
index creation 173
indexed sequential fi le definition 326
indexed VTOC considerations (OS/390) 109
initial OS/390 operations 518
initialization parameters JES2 211
initialization testing 511
input service 212
INPUT-OUTPUT SECTION - I-O-CONTROL 255
installation

and customization - MQSeries 200
enforcing standards 410
exits 243
exits JES2 211
hardware 402
OS/390 fee-based 405
standards 407

installing & configuring PSF/MVS 236
defining channel-attached printers to MVS

attachment options 236
defining network printers

SNA-attached printers 236
TCP/IP attached printers 237

defining PSF printers 237
FSS procedure and PRINTDEV statements

comparison of PRINTDEV statement
parameters 238

PSF startup procedures 237
instream data 73
instream data set input 74
integer date definition 573
Integrated Catalog Facility (ICF) 111
Integrated Communications Adapter (ICA) 188
inter-systems connectivity 404
Interactive Interface 151
Interactive Macro Facility (IMF) 171
interactive user interfaces (ICCF/CMS/TSO) 218
interchangeabil ity of volumes 103, 108
interlanguage communications applications 358
interlanguage linkages 338
internal reader 73
internal side definition 573
Internet locations 245
INTERRUPT 337
interrupt handling routines 287
interval t imer interrupts 287
intervention, operator 76
intra-region data set name sharing 128
introducing PSF/MVS

functional comparison
printer features 235
printers supported 235

602 VSE to OS/390 Migration Workbook

introducing PSF/MVS (continued)
functional comparison (continued)

PSF/MVS exclusives 235
migration effort 235

introduction
to console operation 443
to DL/I and IMS/VS 169
to sizing 13
to test environments 419
to VSAM differences 110

introductory documentation 39
inventory validation 492
IOREG 293
IPCS

analyzing dumps 473
analyzing traces 474
traces 474
using IPCS 474

ISAM 52, 97, 258, 326
ISASIZE 337
ISMF 22
ISPF 22, 161, 390

creating applications 440
executing applications 440
orienting ICCF 437
overview 390
SCLM 440
SDSF 437
util i t ies 439

ISQL 179
ISV products 417, 539
ISV system management products

OS/390 539
VSE 539

J
JC statements (MVS) 84
JCL

See also Job Control Language
comment l ines 77
comparing VSE & MVS 91
comparing VSE and MVS 86
conditional 73, 84
conditional MVS JCL 84
conversion 33
conversion tools 492
differences and considerations 69
differences with JECL 241
DISP parameter 344
expansion 76
final conversion 516
help for hidden JCL problems 79
hidden 78
imbedding 72
JECL differences 241
job layout 72
OUTPUT statement 84
overr ides 76

JCL (continued)
parameter handling 75
partition dependent codes 81
problems 79
procedure/l ibrary imbedding 72
procedures 81
processing 25
return codes 73
sample MVS 93
sample VSE 92
similarit ies 72
SORT statements 375
standards 409
statement 72
statement continuation 72
summary of MVS statements 88
variables 73
via procedures and libraries 72
VSE - MVS differences 73
VSE statements 82
VSE versus MVS 73
VSE/ESA philosophy 70

JCL differences (VSE and MVS)
catalogs (VSAM only) 81
communication region

DATE 81
UPSI 82

comparison VSE - MVS JCL 86
device address specifications 80
hidden JCL

carry-over 79
help for hidden JCL problems 79
permanent assignments & POWER defaults 79
standard labels 78

JCL expansion
early error detection 76
overr ides 76

JCL partition dependent codes
data set names 81
procedures 81

job input
data driven Output segmentation 75
JCL parameter handling 75
multiple instream dataset input 74

MVS JCL summary 88
MVS Job Control statements

COND parameter 85
DD statement 84
IF THEN ELSE ENDIF statements 84
MVS conditional JCL 84
OUTPUT JCL statement 84

operator intervention
comment l ines 77
correcting invalid syntax 76
data entry 76
PAUSE statement 77

resource allocation
allocation at OPEN time 78

Index 603

JCL differences (VSE and MVS) (continued)
VSE Job Control statements

ASSGN statement 83
CAT= on DLBL 83
conditional JCL 84
DLBL and EXTENT 83
EXEC statement 82
JOB statement 82
MTC statement 83
RESET statement 83
TLBL statement 82

JCL high level similarities
JCL statement & job layout

conditional JCL 73
continuation cards 72
EXEC (job step) 72
file definitions 72
imbedded JCL 72
instream data 73
JOB statement (job) 72
nesting procedures 72
return codes 73
variables 73

spooling
internal reader 73

JECL 89
Data statement - * $$ DATA 89
LIST card - * $$ LST 89
POWER versus JES2 JECL 89
summary of JES2 JECL 90

JES2 21
additional job scheduling functions 214
checkpoint 210
CICS interface 151
command equivalences 231
commands 450
control cards 453
detailed comparisons with POWER 225
devices 449
diagnosis 475
equivalent POWER parameters 225
functional comparison with POWER 211
implementat ion 209
init ial ization parameters 211
installation exits 211
introduction 207
JECL summary 90
JES2 procedure 211
job log 395
job scheduling 213
major differences

end-of-page sensing 209
FCB incompatibilit ies 209
KEEP disposition for pre-execution jobs 207
other differences 209
printer forms alignment via PSETUP 208
separator page difference 208
tape spooling 208
time event scheduling for jobs 208

JES2 (continued)
major JES2-POWER differences 207
NJE 221
operator commands 211
operator commands JES2 211
other differences JES2-POWER 209
output service 215
patching facility 231
PLINE mapping to LINE parameters 227
POWER command equivalences 231
POWER JECL comparison 89
POWER parameter mapping 225
procedure 211
resource setup 209
RJE operations 220, 452
SMF accounting records 223
spool volumes 210
start 210
start ing 210
stopping 448
system data sets 395
system messages 395
tailoring 211
testing techniques 225

JES2/POWER functional comparison 211
accounting comparisons

JES2 SMF accounting records 223
job accounting 223
NJE accounting 224

application interfaces
job information services 222
other Interfaces 222
output retr ieval 222
programmable spool interfaces 221
spool space allocation 221

input service
interactive user interfaces (ICCF/CMS/TSO)
JES2 testing techniques

Poly-JES 225
job scheduling

additional job scheduling functions with
MVS/JES2 214

job stream disposition 213
OS/390 solution 213
serializing job execution 214
time event scheduling 214

network job entry
NJE definitions 221
NJE exits 221
NJE management 221
NJE operations 221

output service
end-of-page sensing 217
FCB naming differences 217
FCB prefixes 217
FCB specification 218
output disposition 217
output segmentation 216
printer forms alignment via PSETUP 217

604 VSE to OS/390 Migration Workbook

JES2/POWER functional comparison (continued)
output service (continued)

printers supported 216
separator page differences 217
tape spooling 216
UCS naming conventions 218

RAS characteristics
remote job entry

functional RJE differences 219
remote workstation definit ions 219
RJE exits 220
RJE operations 220

JES3 21, 151
job 70

accounting 223
execution serialization 214
information services 222
input 73
layout 72
log JES2 395
name 275, 549
roles & normal activit ies 26
schedulers 50
scheduling 213
scheduling functions with MVS/JES2 214
simulation 515
step 70
step definition 72
stream 70
stream disposition 213
submission 439
time event scheduling 208
tracking 441

Job Control Language 15
See also JCL
batch job control 451
MVS JC statements 84
philosophy of OS/390 job control 70
VSE JC statements 82

Job Entry Control Language 89
JOB statement 82
JOB statement starts a job 72
JOBCAT statement 117
journaling to tape 137
Julian date definition 574

K
KEEP disposition for pre-execution jobs 207
kernel/progressive approach 27

L
label processing bypass 106
labels 103, 105, 106
language differences DOS/VS COBOL and COBOL for

OS/390 and VM 253
Language Environment (LE) 351

abnormal termination exits 365

Language Environment (LE) (continued)
conceptual differences between LE/VSE and OS/390

Language Environment 352
differences between LE/VSE & OS/390 Language

Environment 352
general comments on Language Environment

about COBOL and PL/I 351
introduction 351
LE/VSE-conforming languages 353
locales 366
migrating from LE/VSE 359
migrating from LE/VSE-conforming languages 353
migrating from non-LE/VSE run-time

environments 354
migrat ion 359
migration considerations VSE to OS/390 352
publications 353
using C socket API for TCP/IP 196

LE/VSE
1.4 locales 366
conforming languages 352, 353
migrat ion 359
user exits 364

leap year definition 574
Librarian 43, 98, 389
l ibrary

command language 389
data format 389
interactive usage 390
logical structure 389
management 391
OS/390 ISPF overview 390
sharing 432
support 389

Lilian date definition 574
LIMSCONV 336
LINK 336
linkage macros 271
linkages between languages 338

linkages not supported 338
linkages supported 338

LIOCS
card file definition 294
Console File Definition 304
Device-independent File Definition 303
direct access file definition 311
indexed sequential fi le definition 326
printer fi le definition 296
sequential file definition on Direct Access 304
tape file definition 297

List & Execute macro forms 293
LIST card - * $$ LST 89
LISTLOG utility 393
LMESSAGE 337
LOAD macro 277
loading a DAM File (fixed-length records with

keys) 319

Index 605

loading a DAM File (Fixed-Length Records without
keys) 323

loading a DAM File (Undefined or Variable-Length
Records) 323

LOCK & UNLOCK macros 281
log manager 145
logical l ibrary structure 389
logical partit ioning 422
LOGON procedures 157
LOGREC 475
LPAR systems 421
LTM subparameter 105

M
macro level programs 137, 148
Macro Resource Definition Table changes 140
macros

call 272
data management 292
Define The File (DFT) 98
ICCF 167
linkage 271
multi tasking 283
system 268
virtual storage 289
VSAM 290

main program parameter passing 335
maintaining your OS/390 libraries and SMP/E

zones 431
maintenance environment 431
major POWER-JES2 differences 207
managed SAM files 122
managed storage 100
management cri teria 548
management disciplines 25
managing

change 411
display consoles 444
problems 411
projects 440

managing remote operations 452
JES2 RJE operations

command authority for remote operators 453
host operations 452
remote workstation operations 452
remotes without consoles 453
using SDSF panels for RJE 453

NJE operations
command authority for remote operators 454
using SDSF panels for NJE 454

manipulating data 159
manual OS/390 conversion 502
mapping

ISV products and functions 539
options 354
PLINE to LINE 227
POWER parameters to JES2 init parms 225

mass conversion - background, benefits &
method 486

automated conversion process 490
CORTEX MS

Assembler conversion tools 492
COBOL conversion tools 492
file transfer 492
inventory validation 492
JCL conversion tools 492
translate languages/programs 492

IBM MVS-MS - background 486
mass conversion tools 489
overview/benefi ts

automated conversion 488
automation l imits 489
mass conversion (switchover) 489
repetit ive conversion 488

mass conversion overview/benefits 487
mass conversion phase overview 493
mass conversion tools 489
mass migration 27, 52
master catalog 114
math services 365
MCS consoles 445
MEDIUM 339
MERGECAT option 119
mergers/acquisit ions 5
message facilit ies 157
message formats 446
message replies 446
methodology accounting management 472
methodology of change management 461
methodology of systems management 457
migrat ing

AFP resources 240
interlanguage communications applications 358
object code 251
print applications 241
reasons 3
run-t ime environments 354
support material 134
VSE to OS/390 250

migrating from LE/VSE 359
callable services & math services

CEETDLI 366
LE/VSE 1.4 locales 366
run-time options

recommended settings for options 363
run-time options & LE/VSE 1.4 and later

releases 362
run-time options and LE/VSE 1.1 361

user exits & abnormal termination exits
abnormal termination exits 365
abnormal termination exits & LE/VSE 1.4 and

later releases 365
Assembler user exits 364
high-level language exits 364

606 VSE to OS/390 Migration Workbook

migrating from LE/VSE-conforming languages 353
C for VSE/ESA 353
COBOL for VSE/ESA 354
PL/I for VSE/ESA 354

migrating from non-LE/VSE run-time
environments 354

C/370 355
DOS PL/I 356
DOS/VS COBOL 356
migrating Assembler applications 359
migrating interlanguage communications

applications 358
options mapping 354
VS COBOL II 355
VS FORTRAN 358

migrating from VSE/ICCF to MVS and TSO/E 163
converting ICCF libraries 163
ICCF procedures and macros 167

migrating TCP/IP 193
bibliography 197
network definitions 194
security 196
TCP/IP batch jobs 195
TCP/IP configuration

TCP/IP customization 195
TCP/IP standard applications 195

TCP/IP related user data 195
user written TCP/IP applications

CGI programs 196
using the BSD/C Sockets 196
using the LE/VSE C Socket API 196
using the Preprocessor API 196
using the Sockets API for Assembler 196

migrat ion
assignments 44
benefits customer migration 532
cost elements 39
customer background 529
customer environment 529
device 36
duration customer migration 531
effort for AFP 235
file 35
file copy 35
from LE/VSE 359
from LE/VSE-conforming languages 353
from non-LE/VSE run-time environments 354
functional reasons 10
in-place 35
interlanguage communications applications 358
kernel approach 27
mass application approach 28
MQSeries 205
object code 251
performance customer migration 531
plan - guide and outline 42
prepare environment 401
print applications 241

migrat ion (continued)
project objectives 13
reasons 3, 4, 10
responsibil i t ies 43
REXX issues 371
sizing 18
SNA network 485
support material 134
task summary 182
TCP/IP 193
test systems 420
traditional reasons 4
VM/ESA guest support 29
VSE RPG II to OS/390 329
VSE to OS/390 considerations 250, 352
VSE/ICCF to MVS TSO/E 163
why 3

milestone events 48
miscellaneous functions 99
mismatches of fi le attributes 258
MPF 22, 25
MPS for DL/I 178
MQPUTIL program 204
MQSeries 197

bibliography 206
defining MQSeries object & operating 203
in your operating system environment 198
migrat ion 205
MQSeries based applications 205
MQSeries in operating system environment

CICS considerations 201
data sets 202
installation & customization 200
prerequisites 198

networking definitions 203
object 203
operating 203

MTC statement 83
multi-protocol communication subsystem 188
mult iple

3270 sessions 429
file clause 255
instream data set input 74
search/feedback 325
string processing 128
system support 212

Multiple Region Operation (MRO) 136
multi tasking 334
multitasking macros 283
MVCOM 277
MVS

BCP customization 415
CICS management modules 142
commands 450
compiler specific options 336
component terminology 21
conditional JCL 84
data management macros 292

Index 607

MVS (continued)
device addresses 80
DFP 21
DISPLAY command 447
execution overr ides 149
exits 415
IEFBR14 78
init ial ization routine 269
JCL - a summary 88
JCL - sample 93
JCL versus VSE JCL 73
JES2 additional job scheduling functions 214
Job Control statements 84
linkage macros 271
Migration System 486
multitasking macros 283
naming standards 408
overlay 345
RACF 149
register conventions 269
specific options 344
storage management 345
system requirements 170
tools testing 508
virtual storage considerations 135
virtual storage macros 289
VSAM macros 290

N
n-way processor support 9
NAME 336
naming

considerations 99
conventions - common applications 549
differences 217
guidelines 543

NaviQuest 103
NCP 192
NCP/EP Definition Facility (NDF) 192
nesting procedures 72
NetView FTP access 415
network

configuration 191
definitions 194, 203
management 233
printer definit ion 236

Network Job Entry 220
new VM users 425
NI status codes 172
NJE

accounting 224
connection to OS/390 415
data transfer 405
definitions 221
exits 221
management 221
nodes definition 230
operations 221, 453

NJE (continued)
operator commands 233
PLINE mapping to JES2 LINE 227
SDSF panels 454
using SDSF panels 454

no labels 105
NOALLOCATION data sets 123
NOFEED 339
NOIMBED option 120
non-LE/VSE run-time environments 354
nonstandard labels 106
not recommended DITTO batch keywords 385
not recommended DITTO functions 383
not supported in MVS 339
NOTAPEMK NOLABEL 340
NOTE macro 299, 309
nucleus load table 137
NUMBER 336

O
object code migration 251
obsolete DITTO batch keywords 384
obsolete DITTO functions 382
OEM product education 536
OMR (Optical Mark Read) 339
online Fast Copy 397
online program conversion 14
online unit testing 512
OPEN allocation 78
OPEN macro 297, 304, 314
operating hardware consoles 443
operating system implementations 98
operational differences 242
operations 16, 173, 190

automated 37
automated tools 50
NJE 221
procedures 411
RJE 220
support staffing 50

operations management 465
automating operational procedures 467
methodology 466
overview 465
tasks 465

operator
commands JES2 211
commands NJE 233
communication interrupts 288
data entry 76
flexibil ity 76
interfaces 443
intervention 76

OPERLOG 394
printing OPERLOG 394

OPSYS routine 349
OPTI-AUDIT 79, 520

608 VSE to OS/390 Migration Workbook

OPTI-AUDIT highlights 521
OPTI-AUDIT product details 521
option setting recommendations 363
optional features for release 4 416
options

mapping 354
specific to DOS 343
specific to DOS compiler 335
specific to MVS 344
specific to MVS compiler 336

order and install the OS/390 software 405
ordinal day of year definition 576
orientation for uti l i t ies

DFSMSdss 456
IDCAMS 455
IEBCOPY 455
IEBGENER 455
IEBxxx or IEHxxx 455

orienting ICCF users to TSO/ISPF 437
OS/390

automated operations tools 510
base elements 19
building initial test system 430
bypass label processing facility 106
catalog management 114
catalogs 110
classes 535
COBOL 131
console operation 443
controll ing the system 447
cross-system shareoptions 129
DASD sharing definitions 129
data set naming 99
devices supported 402
DFSMSdss 397
DFSMSdss functions 398
documentation resources 39
entit led installation methods 406
fee-based installation 405
guest considerations 430
hardcopy processing 393
indexed VTOC considerations 109
initial operations 518
installation methods 406
ISPF overview 390
Job Control philosophy 70
job stream disposition 213
label processing bypass 106
Language Environment migration

considerations 352
library maintenance 431
library management 391
maintaining libraries and SMP/E zones 431
maintenance environment 431
master catalog 114
migrating VSE RPG II 329
migration considerations 250
MPF 25

OS/390 (continued)
NCP 192
NJE connection 415
operat ing environment 19
operating hardware consoles 443
optional features 20
order and install software 405
other elements 416
output descriptor macro 242
printing SYSLOG 394
product content 19
shared DASD between test systems 432
shared DASD between VSE and OS/390 433
shareoptions 129
SQL/DS to DB2 migration 178
staff requirements 38
standards and naming conventions 497
storage management 100
synchronizing VSE applications 430
SYSLOG 394
System Automation 467
system control 447
system-related products 23
terminal access 414
test logical partit ion 431
test system building 430
test systems (vs. cloned DASD) 432
user catalogs 115
verifying new system 413
VS FORTRAN 349
VSAM backup/restore 387
VTAM 189
VTAMLST 190
XCF 189

OS/390 components/products/subsystems
operating environment

base elements 19
MVS subsystem & component terminology 21
optional features 20
product content 19
supporting products 23

subsystem level comparison/affinity 24
OS/390 customization

MVS BCP
MVS exits 415
SYS1.PARMLIB Parameters 415
tailoring other components 416

new OS/390 system
applying preventive service 414
NetView FTP access 415
NJE connection to OS/390 415
terminal access to OS/390 414
verifying new OS/390 system 413

other OS/390 elements
Independent Software Vendor products 417
Release 4 base elements 416
Release 4 optional features 416

Index 609

OS/390 documentation resources
introduction references 39
key documents & other references 40
Web URL 40

OS/390 hardcopy processing 393
OS/390 software - order and install

entitled methods of installing OS/390
CBPDO 407
ServerPac 406

fee-based installation methods 405
installing OS/390 fee-based 405

other offerings 406
SoftwareXcel Installation Express (SIE) 405
SoftwareXcel SystemPac/MVS 406

OS/VS COBOL 131
other

components - tailoring 416
differences 243
differences POWER-JES2 209
hardware requirements 403
monitors 450
MVS names 409
offerings 406
OS/390 elements 416
sources 244
spool interfaces 222
util i t ies 244

our recommendation 424
OUTDES macro 241
output

device type 548
disposition 217
file 343
retr ieval 222, 441
segmentation 75, 216
service 215

OUTPUT JCL statement 84
outside consultants 30
overlapped activit ies 430
overlay in MVS 345
overlay structures 345
overriding JCL 76
overview

accounting management 471
change management 460
CICS transaction server 133
problem management 461
programming elements 327
systems management 457

P
PAGEIN macro 290
parallel activit ies 430

overlapped activit ies 430
parallel activit ies 430
synchronizing VSE with OS/390 applications 430

Parallel Sysplex 427

parameter
handling 75
mapping POWER - JES2 225
passing 335
to be passed 340

partition dependent codes in JCL 81
partition independent fi le names 124
partit ion standard labels 78
parti t ioning 422
passing parameters into main program 335
patching facility JES2 231
PAUSE statement 77
PCB after GE status 172
PDUMP macro 279
performance 243
performance customer migration 531
performance management 463

methodology 464
overview 463
tasks 463

performance tools 475
permanent assignments 79
PFIX & PFREE macros 290
PFKeys 445
philosophy of OS/390 job control 70
philosophy of systems management 457
philosophy of VSE/ESA JCL 70
physical IOCS element comparison 328
pilot conversion 52, 487
PIOCS 327
PL/I

called by RPG II 331
calling SORT 340
checkpoint-restart 342
CICS & PL/I 346
CICS/VS transaction ABEND codes 346
COBOL vs. PL/I 351
DOS PL/I 356
functional differences

%INCLUDE 335
dynamic loading of dependent programs 334
EGCS (VSE) to DBCS (OS Version 2)

comments 333
extended precision 334
file organization 334
multi tasking 334
parameters passed to a main program 335

interfaces 340
Optimizer DUMP 343
PL/I for VSE/ESA 354
PLICANC 343
PLICKPT 342
PLIREST 342
program conversion 345
programming interfaces 242
return codes 344
return from CICS transaction backout 347
return from ON-units 347

610 VSE to OS/390 Migration Workbook

PL/I (continued)
storage management 345
subprograms 331
VSAM support 131

PL/I and CICS 346
calling DUMP 346
CICS transaction backout 347
compatibi l i ty 346
execution options 346
file support 346
return from ON-units 347
statements not supported 346
transaction ABEND codes 346

PL/I calling SORT
interfaces offered 340
parameters to be passed

DDNAME PREFIXES 341
E15 EXIT PROCEDURE 341
EXIT E35 341
RECORD 341
RETURN CODE 341
SORT FIELDS 341
SORT MESSAGES 341
SORT TECHNIQUES 342
STORAGE 341

PL/I compiler options
EXEC & PROCESS cards 338
execution options

COUNT FLOW 337
ISASIZE 337
REPORT 337
SPIE STAE 338

options specific to DOS compiler
CATALOG 335
DYNBUF 336
LIMSCONV 336
LINK 336
NAME 336
WORKFILE 336

options specific to MVS compiler
GONUMBER 336
IMPRECISE 337
INTERRUPT 337
NUMBER 336
SEQUENCE 336
SMESSAGE or LMESSAGE 337
STATEMENT 336
TERMINAL 337

PL/I forcing an ABEND
automatic restart 345
usage of DISP in the JCL 344

PL/I overlay structures
conversion 345
overlay in MVS 345

plan components
assumptions 45
education 49
milestone events 48

plan components (continued)
tasks 47
team

applications programmers 47
operations 47
project manager 46
systems programmers 46

plan development
overview 41
recommendations

conversion method 42
conversion tools & automation 42
librarian 43
migration assignments 44
migration plan - guide and outline 42
migration responsibil i t ies 43
project management 41
project staffing 43
two phase approach 42

references 41
plan examples

project plan example
details 58
summary 56

project schedule 54
PLICANC 343
PLICKPT 342
PLINE mapping to JES2 LINE parms for RJE &

NJE 227
PLIREST 342
POINTS macro 300, 308
POINTW/POINTR macros 299, 308
Poly-JES 225
portabil i ty 175
POWER

command equivalences 231
defaults 79
detailed comparisons with JES2 225
equivalent JES2 parameters 225
functional comparison with JES2 211
JES2 command equivalences 231
JES2 JECL comparison 89
JES2 parameter mapping 225
major POWER-JES2 differences 207
other differences POWER-JES2 209

POWER/JES2 command equivalences 231
POWER/JES2 detailed comparisons 225

exit comparisons
JES2 patching facility 231
source code modifications 231

mapping POWER parameters to JES2 init parms
define BSC remotes 228
define compaction tables 230
define NJE nodes 230
define SNA remote workstations 229
equivalent JES2 parms for POWER macro 225
PLINE mapping to JES2 LINE parms for RJE &

NJE 227

Index 611

POWER/JES2 detailed comparisons (continued)
POWER/JES2 command equivalences

control commands 233
file control 234
network management 233
NJE operator commands 233
queue management commands 232
sending commands & messages 234
task management commands 232

preparation phases 493
OS/390 standards & naming conventions 497
Phase 0: project management & technical

leadership
project planning & orientation 494

Phase 1: application inventory
analysis & resolution of exceptions 496
collection 496
determination 496
supply 496

Phase 2: conversion specifications
analyze VSE source material 500
design MVS target output 501
determine source/target method 501

Phase 3: customization/development of conversion
tools

manual OS/390 conversion 502
VSE positioning 502

prepare the migration environment 401
preparing to use the system

logon procedures 157
message facilit ies 157
security 157
summary 158
user profiles 155

prerequisites 198
preventive service 414
print application migration 241
print fi les 329
Print Services Facility/MVS 235
print stream coexistence 241
PRINTDEV parameter comparison 238
PRINTDEV statements 238
printer

features 235
file definition 296
forms alignment via PSETUP 208, 217
Parm macro 241
resident fonts 240
SNA-attached 236
supported 216, 235
TCP/IP attached 237

printing
from TSO 241
log streams 393
OPERLOG 394
SMF records 395
softcopy books 412
SYSLOG 394

PRINTLOG uti l i ty 393
problem determination considerations 153
problem determination tools 473
problem management 411, 461

methodology 462
overview 461
tasks 462

problem program area addresses 275
PROCEDURE DIVISION - Input/Output 256
procedure language REXX

environments
TSO/E Environment 371
VM/ESA environment 370
VSE/ESA environment 370

migration issues 371
REXX and TSO/E 369
REXX and VM/ESA 369
REXX and VSE/ESA 369
REXX Exec samples 371

procedures 81, 407
procedures, nested 72
PROCESS card 338
processing a DAM File under MVS 324
processing a DAM File under VSE 324
processing options 330
processor requirements 402
product areas 182
product installation 186, 192, 193
program

conversion 33, 503
final conversion 517
generation 192
source code example 526
specification block (PSB) 171
termination 257

programmable spool interfaces 221
programming 191
programming elements 327
programming interfaces HLL 242
progressive versus mass conversion

approach differences 49
automated operations tools 50
complexity of implementation

mass migration as conversion method 52
mass migration as conversion tool 52

historical perspective 50
operations support staffing 50
risk management 51
shared application code 50
shared application files and databases 50
standardized conversion deliverables &

automation 51
project

management 37, 41, 440, 484
manager 46
migration cost elements 39
plan details 58
plan example 56

612 VSE to OS/390 Migration Workbook

project (continued)
plan summary 56
planning 37
planning & orientation 494
schedule 54
staffing 43
tasks 47

PRTOV macro 296
PSB 171
PSETUP 208, 217
PSF

command comparison 242
migrating resources 240
printer definit ions 237
remote-resident resources 240
starting and stopping 242
startup procedures 237
supplied util it ies 244

PSF/MVS
accounting 244
differences 243
exclusives 235
installation 236
installation exits 243
introduction 235
performance 243
publications 244

PSF/MVS operational differences
command comparison 242
starting and stopping PSF 242

PSF/MVS references
other sources 244
PSF/MVS publications 244
PSF/VSE publications 244
redbooks 244
services 245
tools

DITTO 244
internet locations 245
other uti l i t ies 244
PSF supplied utilities 244

PSF/VSE and PSF/MVS functional comparison 235
PSF/VSE publications 244

Q
queue management commands 232

R
RACF 149, 158
RAS characteristics 224
RCB/ENQ/DEQ macros 286
RCE (Read Column Eliminate) 339
RDO 144
RDO considerations 143
Read Column Eliminate 339
READ macro 307, 313

REALAD macro 290
reasons for migrating 4, 10
reasons for migration 3
recommendations 424
recommended settings for options 363
Reconcile/SRC 526
record 341

addressing 315
addressing by ID 315
addressing by KEY 316
reference by ID 316
reference by KEY 317

record level sharing (RLS) 129, 136
recovery example for COBOL 526
Recovery/SRC 526
Redbooks 244, 408, 412
reference methods 316
references 244
register conventions 269
related redbooks 408
relative importance 546
release 4 base elements 416
release 4 optional features 416
reloading database 176
RELPAG macro 290
RELSE macro 300, 306
remote

job entry 219
operations management 452
operator command authority 453, 454
resident resources 240
without consoles 453
workstation definitions 219, 229
workstation operations 452

Rename/SRC 526
reorganization uti l i t ies 173
repetit ive conversion 488
REPORT 337
Report Controller API 135
Report Controller Feature (RCF) 151
REPORT WRITER statements in DOS/VS COBOL

programs 253
REPRO function 119
required hardware 402
required training 535
RES/NORES 260
reserved word considerations for DOS/VS

COBOL 263
reserved words 263

reserved words for DOS/VS COBOL 263
reserved words for VS COBOL II and COBOL for

VSE/ESA 265
RESET statement 83
resources

allocation 78
allocation at OPEN time 78
definit ion 187, 190
management 37

Index 613

resources (continued)
operation 187
remote-resident 240

RESTART with CHKP 173
retrieving output 441
RETURN CODE 341
return codes 73
return codes in PL/I 344

return code values 344
setting return codes 344

RETURN macro 273
reusable data sets 123
Rewind option 173
REXX 163, 242, 369

and SAA 372
and TSO/E 369
and VSE/ESA 369
bibliography 372
CMS sample 371
environments 370
Exec samples 371
migration issues 371
OS/2 sample 371
TSO sample 371
TSO/E 371
VM/ESA 370
VSE/ESA 370

risk management 51
risky VSE coding practices 504
RJE

exits 220
functional differences 219
JES2 operations 452
operations 220
PLINE mapping to JES2 LINE parameters 227
SDSF panels 453
using SDSF panels 453

RMF & other monitors 450
role of automation 460
roll ing window definition 578
routine handling 287
RPG II 131, 150, 171

calling COBOL subprograms 331
calling PL/I subprograms 331
II migration 329
VSAM support 131

RPG II migration to OS/390
calling COBOL subprograms 331
calling PL/I subprograms 331
device information 329
extent exit 330
file access methods 330
print fi les 329
processing options 330
tape labels 330

RPL macro (additional MVS parameters) 291
run-time options 359, 366

run-time options & LE/VSE 1.1 361
run-time options & LE/VSE 1.4 & later releases 362
RUNMODE macro 290
running converted COBOL programs 265
RVA Snapshop 387

S
sample MVS JCL 93
sample VSE JCL 92
sample VSE plus carry-over 94
save areas 270
SAVE macro 272
scope of systems management 459
scope of work challenges

application inventory 32
automated operations 37
fi le migration 35
JCL conversion 33
program conversion 33
project management 37

SDSF 23
and TSO/ISPF 437
device panels 449
operator usage 441
panels 450
panels for NJE 454
panels for RJE 453
system operation 446

secondary index creation 173
secure OS/390 skills 484
security 24, 157, 196, 385

TCP/IP 197
security administrator 181
security management 468

methodology 469
overview 468
tasks 468

segmentation 216
sending commands 234
sending messages 234
separator page difference 208
separator page differences 217
SEQUENCE 336
sequential access method (SAM) 15, 97
sequential file definition on DASD 304
Sequential Insert Strategy 340
serializing job execution 214
ServerPac 406
services 245
services and tools 519
SETPFA macro 290
setting return codes 344
setting up AFP resources 240

migrating print applications
assembler programming interfaces 241
COBOL applications 242
high level language programming

interfaces 242
JCL and JECL differences 241

614 VSE to OS/390 Migration Workbook

setting up AFP resources (continued)
migrating print applications (continued)

OS/390 dynamic allocation & output descriptor
macros 242

PL/I 242
printing from TSO 241
REXX 242
VSE printer PARM macro 241

migrating resources from VSE to OS/390
defining resources 240
migration without the source 240

remote-resident resources 240
transferring print streams 241

setup JES2 resources 209
shared

application code 50
DASD 404, 425
DASD between OS/390 test systems 432
DASD between VSE and OS/390 (vs. cloned

DASD) 433
DASD vs. cloned DASD 432
volume ownership 120

shareoptions 125
SHAREOPTIONS (X 3) 130
SHAREOPTIONS (X 4) 130
SHOWCB macro 292
shutdown statistics 137
SIE 405
single CPU cross-region sharing 126
single region data set sharing 128
single switchover 28
SIS option (Sequential Insert Strategy) 340
SISIPT data 73
SISRO - CORTEX-Migration System

(CORTEX-MS) 524
sizing migration effort 18

areas of VSE & OS/390 differences
batch & online program conversion 14
files 15
Job Control Language 15
operations 16
source program inventory 14
source programs 14

basic VSE vs. OS/390 functions & components 16
introduction 13
project objectives definition 13

sliding window definition 579
SLIP 475
SMESSAGE or LMESSAGE 337
SMF 22, 395
SMP/E 23
SMP/E zone maintenance 431
SMPO (Software Project Office) 539
SNA

attached printers 236
migrat ion 485
network 191
remote workstation definit ion 229

SNA Network Interconnection (SNI) 189
SNAP macro 279
softcopy books 412
softcopy l ibrary 412
software configuration library manager (SCLM) 391,

440
software partit ioning 423
Software Project Office 539
SoftwareXcel SystemPac/MVS 406
SORT

control statements 377
DFSORT/VSE control statements 379
DFSORT/VSE migration considerations 379
FIELDS 341
ICETOOL 380
JCL statements 375
MESSAGES 341
multiple data sets 132
programming support 131
suicide 131
TECHNIQUES 342
VSAM considerations 131

source code modifications 231
source program inventory 14
space classes 125
space management 100
SPIE STAE 338
spool

CICS interface 151
interface restrictions 151
interfaces 221
interfaces - other 222
space allocation 221
volumes JES2 210

spooling 73
SPUFI 179
SQL/DS to DB2

descriptions of users
application developers 179
database administrators (DBAS) 180
end users 178
security administrators 181
system administrators 180

ISQL and SPUFI 179
other comparison areas

data replication and data access 182
DRDA considerations 182
other product areas 182
transaction management 182
year 2000 181

summary of migration Task 182
SQL/DS to DB2 for OS/390 migration 178
SRM 22
STACKER 339
staff availabil ity 12
staffing strategies 29
stand-alone Fast Copy 397

Index 615

stand-alone systems 421
standard applications 195
standard labels 78, 103
standard user labels 105
standardized conversion deliverables 51
standards 407
standards, procedures, documentation

documentation
hardcopy l ibrary 412
printing softcopy books 412
redbooks 412
softcopy l ibrary 412

installation standards
DASD and tape volume serials 408
data management standards 407
data sets 408
generation data groups 408
JCL standards 409
MVS naming standards 408
other MVS names 409
related redbooks 408

systems management procedures
backing up system 410
change management 411
critical operations procedures setup 411
emergency backup system creation 410
enforcing installation standards 410
implementing system security 410
problems management 411

started task contol 451
start ing

& stopping PSF 242
a job 72
JES2 210
the system 447

startup procedures PSF 237
STATEMENT 336
statement compatibi l i ty 172
statements not supported 346
status codes 172
STEPCAT statement 117
stopping JES2 448
stopping PSF 242
stopping the system 448
STORAGE 341
storage & space management

implementing DFSMS 102
OS/390 considerations 100
system managed storage 100
VSE considerations 100

storage management 100, 345
storage management in PL/I 345

storage management in DOS 345
storage management in MVS 345

strategies 27
structural KSDS errors 477
submitting jobs 439

submitting jobs for batch execution 162
using command procedures 163

subsystem level comparison/affinity 24
Subsystem Storage Protect 508
summary 430, 472

migration tasks 182
of JES2 JECL 90
of MVS JCL statements 88
TSO/E 158

supported linkages 338
supported printers 235
supported to be avoided 340
switchover 517
SYNCHK parameter 121
synchronizing VSE applications with OS/390

versions 430
synopsis 3
syntax correction 76
SYS1.PARMLIB parameters 415
SYSIN/SYSOUT spooling 73
SYSLOG 394
system

access by TSO/E 159
administrator 180
automation for OS/390 467
availabi l i ty 11
backup 410
data sets for CICS 145
initialization parameters for CICS 140
interface & macros 268
macros 268
managed storage 100
messages 395
operation via SDSF 446
preparation 155
problems diagnosis 473
programmers 46
programming commands 147
requirements MVS 170
security 410
simulation 426
standard labels 78
start 447
status 447
stop 448
testing 513
usage 158
work display 449

system customization 413
System/390 JCL philosophy

OS/390′s job control 70
VSE/ESA′s Job Control Language 70

systems management 10
overview 457
philosophy & methodology 457
procedures 409
role of automation 460
scope 459

616 VSE to OS/390 Migration Workbook

systems management (continued)
summary 472

Systems Management Recording
printing SMF records 395

T
tailoring JES2 211
tailoring other components 416
tape

differences 103
drives 404
file definition 297
labels 330
similarit ies 103
spooling 208, 216
storage considerations 97

tape similarities & differences
bypass label processing facility in OS/390 106
no labels 105
nonstandard labels 106
standard labels

standard user labels 105
volume interchangeabil i ty 103

task management commands 232
task quantity 9
tasks accounting management 472
TCP/IP

applications 195
applications using BSD/C sockets 196
applications using LE/VSE C socket API 196
applications using Preprocessor API 196
attached printers 237
batch jobs 195
configuration 195
customization 195
network definitions 194
related user data 195
security 196
standard applications 195

telecommunications subsystems 185
TERMINAL 337
terminal access 404
terminal access to OS/390 414
terminal execution 161
terminating COBOL programs 257
termination 269
terminology 419
test

activit ies 430
considerations 153
converted applications 506
differences in testing philosophy 419
environment introduction 419
logical partit ion 431
philosophy 419
plan 508
summary 430
systems during migration 420

test (continued)
techniques JES2 225
terminology 419

The Source Recovery Company 525
THEN statement 84
time event scheduling 214
time event scheduling for jobs 208
time sharing user control 451
TLBL statement 82
TME 10 23
TME 10 Netview 467
TME 10 OPC 468
tools 244
TOTAL option 340
trace analysis 474
traces 474
track & record addressing 315
track addressing 315
tracking jobs 441
traditional reasons for migrating 4
training - instructors 537
training - where and when 537

custom classes 536
OEM product education 536
OS/390 classes 535
required 535

transaction
attributes for CICS 144
management 182
security 149
server 133

transferring print streams 241
translator option for CICS 252
trial conversions 505
TRUNC macro 300, 306
TSO/E 155

and REXX 369
broadcast data set 157
command procedures 163
controll ing users 451
data set name 159
environment 371
extended MCS consoles 445
functions 445
ISPF and SDSF 437
logon procedures 157
message facilit ies 157
naming conventions 549
program execution 161
security 157
summary 158
system access 159
user profiles 155

TTIMER macro 288
two phase approach 42, 486

Index 617

U
UCS naming conventions 218
understanding device allocation 448
understanding operational differences 242
understanding the operator interfaces

controlling consoles 444
extended MCS consoles

using SDSF for system operation 446
using the TSO/E functions 445

managing display consoles
console modes 444
display areas 445
PFKeys 445

understanding message formats and Replies 446
unit address 80
unit testing 511
unlabeled tapes 105
UNLOAD 339
unloading database 176
unsupported

linkages 338
P/I options in MVS 339
products in CICS TS 136
statements 346

UPSI 82, 149, 174, 255, 275, 276
user

Assembler exits 364
catalogs 115
descriptions 178
hardcopy l ibrary 412
labels 105
name 547
profi les 155
program communication bytes 275
program switch indicators (UPSI) 275
softcopy l ibrary 412
written applications 195
written TCP/IP applications 195

using
BSD/C sockets 196
BTAM 193
CMS 429
command procedures 163
IPCS 474
ISPF utilities 439
SDSF for operators 441
SDSF for system operation 446
SDSF panels for NJE 454
SDSF panels for RJE 453
sockets API for Assembler 196
the Preprocessor API 196
TSO/E functions 445

using the system 158
accessing the system 159
entering and manipulating data 159

util i t ies 173, 180, 393, 439

V
variables 73
vendor applications 154
verifying new OS/390 system 413
VersionMatch/SRC 526
VIRTAD macro 290
virtual storage 5

considerations for MVS 135
constraint 5
macros 289

VM systems 421
VM, LPAR, or Stand-alone Systems 421
VM, LPAR, or Standalone Systems

logical partit ioning 422
our recommendation

new users of VM 425
OS/390 guest considerations 430
shared DASD 425
use of CMS 429

software partit ioning 423
summary 430

VM/ESA environment 370
VM/ESA Guest support 29, 426
VOLSEQ 339
volume cleanup 124
volume interchangeabil i ty 103, 108
volume ownership 120
VS COBOL II 355

& COBOL for VSE/ESA reserved words 265
CICS programs 259
compiler options 261

VS FORTRAN in OS/390 349
VSAM 97

accessing VSE catalog from OS/390 118
additional MVS SHOWCB fields 292
AMS commands 121
BACKUP/RESTORE 124, 387
catalog 81, 110, 112
catalog conversion 118
catalog moving 119
CHECK macro 292
CISIZEs 122
converting VSE catalogs to OS/390 ICF

catalogs 118
cross-system shareoptions 129
data set naming conventions 550
data set sharing alternatives 130
default models 123
differences 110
error & reason code compatibil ity 131
error compatibi l i ty 292
EXAMINE command 477
functional differences 119
IDCAMS 455
implicit DEFINE 123
introduction to differences 110
KSDS structural errors 477
macros 290

618 VSE to OS/390 Migration Workbook

VSAM (continued)
managed SAM files 122
managed space 15
moving catalog to different DASD type 119
MVS VSAM CHECK macro 292
NOALLOCATION data sets 123
OS/390

Backup/Restore 387
catalog management 114
cross-region SHR(4) 127
cross-system shareoptions 129
master catalog 114
user catalogs 115
VSE catalog compatibility 117

programming language support 131
reason code compatibil ity 292
record sizes 122
relocating catalog 119
REPRO function 119
SHAREOPTIONS 125
TCLOSE 292
VSE Backup/Restore 387
VSE TCLOSE macro 292
VSE/VSAM access from OS/390 118

VSAM differences
data sharing & integrity

alternatives to VSAM data set sharing 130
cross-region sharing - single CPU

environment 126
cross-system & DASD sharing 129
DASD Sharing considerations 130
intra-region data set name sharing 128
OS/390 definitions for DASD sharing

support 129
OS/390 VSAM cross-region SHR(4) 127
OS/390 VSAM cross-system Shareoptions 129
SHAREOPTIONS (X 3) 130
SHAREOPTIONS (X 4) 130
single ACB OPEN - multiple string

processing 128
single region data set sharing 128

DFSORT and VSAM considerations 131
error & reason code compatibil ity 131
introduction 110
OS/390 - VSE/VSAM catalog compatibility

accessing a VSE/VSAM catalog from an OS/390
system 118

converting VSE/VSAM catalogs to OS/390 ICF
catalogs 118

moving a VSAM catalog to a different DASD
Type 119

OS/390 catalogs
Integrated Catalog Facility (ICF) 111
management 114
master catalog 114
user catalogs 115
VSAM catalogs 112

programming languages support
Assembler 131

VSAM differences (continued)
programming languages support (continued)

COBOL for OS/390 & VM 131
OS/VS COBOL 131
PL/I 131
RPG 131

VSAM functional differences
AMS commands 121
areas of consideration 119
catalog structures 120
COMPRESS 121
default models 123
DELETE IGNOREERROR 121
FBA DASD 120
IKQVCHK - catalog check 125
IKQVDU - volume cleanup 124
JCL implicit DEFINE 123
NOALLOCATION data sets 123
NOIMBED option 120
partition independent fi le names 124
reusable data sets 123
shared volume ownership 120
space classes 125
SYNCHK parameter 121
VSAM CI and record sizes 122
VSAM SHAREOPTIONS 125
VSE/VSAM BACKUP/RESTORE & VSE

FASTCOPY 124
VSE/VSAM-managed SAM files 122
XXL KSDS 121

VSE
and MVS JCL 86
ASSGN statement 80, 83
carry-over 79, 94
COBOL compilers conversion considerations 259
communication region 274
data management macros 292
data set naming 99
DATE function 81
FASTCOPY 124
Interactive Interface 151
JCL - sample 92
JCL Analyzer 79
JCL statements 82
JCL versus MVS JCL 73
Job Control statements 82
LISTLOG util ity program 393
logical unit address 80
multitasking macros 283
OS/390 (vs. cloned DASD) 433
OS/390 application synchronization 430
positioning 502
printer Parm macro 241
PRINTLOG utility 393
risky coding practices 504
storage management 100
to OS/390 migration considerations 250, 352
UPSI 82

Index 619

VSE (continued)
virtual storage macros 289
VSAM backup/restore 387
VTAM 188

VSE & MVS JCL comparison 91
sample MVS JCL 93
sample VSE JCL 92
sample VSE plus carry-over 94

VSE/ESA conversion facilities 520
VSE/ESA environment 370
VSE/ESA′s JCL philosophy 70
VSE/Fast Copy 397
VSE/Fast Copy online 397
VSE/ICCF to MVS 163
VSE/ICCF to TSO/E 163
VSE/ICCF vs.TSO/ISPF

creating & executing ISPF applications 440
editing data sets 438
managing projects 440
retrieving output 441
submitting jobs 439
tracking jobs 441
using ISPF utilities 439
using SDSF for operators 441

VSE/VSAM access from OS/390 118
VTAM data sets 186
VTAM tables 190
VTAM tuning 190
VTAMLST 190
VTOC Considerations 109
VTOC processing 108

W
Wait handling 288
WAIT/POST macros 285
WAITF CLOSE macro 314
Web URL 40
who is affected by migration 26
why customers migrate 3
WORKFILE 336
workstation subsystem controller 189
WRITE macro 307, 314
WTO & WTOR macros 278
WTRPROT 339

X
XCF 189
XPI calls 147
XXL KSDS 121

Y
year 2000 181
year2000

challenge definition 582
ready definit ion 582
support definition 582

year2000 (continued)
transit ion definit ion 582

your hardcopy l ibrary 412
your softcopy library 412
YY format definition 582
YYYY format definition 582

620 VSE to OS/390 Migration Workbook

ITSO Redbook Evaluation

VSE to OS/390 Migration Workbook
SG24-2043-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
__Customer __Business Partner __Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1998 621

S
G

24
-2

04
3-

00
P

rin
te

d
in

 t
he

 U
.S

.A
.

VSE to OS/390 Migration Workbook SG24-2043-00

IB
M

L

/XRL/1

Artwork Definitions

id File Page References

WOLOGO 2043SU
i

WOLOGOS 2043SU
i

TILOGO 2043SU
i

TILOGOS 2043SU
i

Table Definitions

id File Page References

COBCMP 2043VARS
i i, i, i, i, i, 250

HDR1 2043VARS
i

LPUBS1R 2043VARS
i i, 353

LPUBS1H 2043VARS
i 353

MAINTB 2043VARS
i

MVSFB 2043VARS
i

MVSFBK 2043VARS
i

ONE 2043VARS
i

PLNBOD1 2043VARS
i i, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54,

54, 54, 54, 54, 55, 55, 55, 55
PLNBOD2 2043VARS

i i, 54
PLNHDR 2043VARS

i 54, 54, 55, 55
PUBS1R 2043VARS

i i, 251
PUBS1H 2043VARS

i 252
ROW1 2043VARS

i 250
ROW2 2043VARS

i 250
ROW3 2043VARS

i 250
ROW4 2043VARS

i 250
ROWCAP 2043VARS

i 250
TAB1 2043VARS

i 257
TAB2 2043VARS

i 257, 257, 257
TAB4 2043VARS

i 363, 363
TAB5 2043VARS

i 363, 363
TAB6 2043VARS

i 367, 367
TAB7 2043VARS

i 367, 367
TABC 2043VARS

i 363, 363
TABH 2043VARS

i 363, 363
TABP 2043VARS

i 364
TWO 2043VARS

i
VENPSB 2043VARS

i i, 539, 539
VENPSH 2043VARS

i 539
WHOBOD 2043VARS

i i, 26, 26
WHOHDR 2043VARS

i 26

/XRL/2

R2 REDB$EVA
621 621

R1 REDB$EVA
621 621, 621

Figures

id File Page References

VAE 2043CH01
6 1

6
VAE4 2043CH01

7 2
7

ESA 2043CH01
8 3

8
OS3 2043CH01

9 4
9

MGTEAM 2043CH03
45 5

45
JMPVMC 2043CH03

49 6
49

F011 2043CH05
107 7

105, 106
WSC9741 2043CH05

113 8
117

F042 2043CH05
116 9

F054 2043CH06
136 11

136
CICSDMS 2043CH06

139 12
138

CICSLSC 2043CH06
146 13

145
CICSDS 2043CH06

146 14
146

F066 2043CH08
177 16

F2043A1 2043CH09
187 17

186, 186
DOSOPT 2043CH12

261 19
260

VS2OPT 2043CH12
262 20

261
VS2NAV 2043CH12

263 21
262

RESWDD 2043CH12
264 22

263
RESWDU 2043CH12

264 23
264

RESWDC 2043CH12
264 24

264
RESWD2 2043CH12

265 25
265

NOOO 2043CH12
265 26

262
F107 2043CH13

270 27
269

F108 2043CH13
271 28

269
F109 2043CH13

/XRL/3

274 29
273

F1010 2043CH13
279 30

278
F1011 2043CH13

295 31
294

F1012 2043CH13
295 32

294
F1038 2043CH13

296 33
294

F1013 2043CH13
297 34

296
F1014 2043CH13

302 35
301

F1015 2043CH13
303 36

301
F1016 2043CH13

304 37
303

F1017 2043CH13
310 38

309
F1018 2043CH13

311 39
309

F1019 2043CH13
312 40

311
F1020 2043CH13

313 41
312

F1021 2043CH13
317 42

316, 324
F1022 2043CH13

318 43
317

F1032 2043CH13
318 44

318, 325
F1031 2043CH13

319 45
318

F1023 2043CH13
319 46

318, 319
F1024 2043CH13

320 47
318, 319, 324, 327

F1026 2043CH13
320 48

318, 320
F1027 2043CH13

321 49
318, 320, 324

F1030 2043CH13
324 50

318, 324, 324
F1025 2043CH13

325 51
318, 325

F1033 2043CH13
326 52

326
F1035 2043CH13

327 53
327

F1036 2043CH13
328 54

328
F1034 2043CH13

328 55
CS45 2043CH17

366 56
365

JMACP 2043CH32
491 57

491

/XRL/4

JMPP 2043CH32
493 58

493

Headings

id File Page References

REDBCOM REDB$COM
xxii Comments Welcome

PLNG 2043IMBD
1 Part 1, Planning the Migrat ion - An Introduction

3, 3, 3
TREAS 2043CH01

4 1.2, Traditional Reasons for Migrating
3

FREAS 2043CH01
10 1.3, Functional Reasons for Migrating to OS/390

3
INTSIZ 2043CH02

13 2.1, Introduction to Sizing
13

CPS 2043CH02
18 2.2, OS/390 Components/Products/Subsystems

13, 416, 539
SIZCHGS 2043CH02

24 2.3, What Changes Between VSE and OS/390?
13

SIZWHO 2043CH02
26 2.4, Who is Affected by This Migration?

13
APMIG 2043CH02

27 2.5, Approaches to Migration
13

MIGSTR 2043CH02
27 2.5.2, OS/390 Conversion and Production Implementation

Strategies
OVERV 2043CH02

29 2.5.3, VM/ESA Guest Support in Your VSE to OS/390
Migrat ion

SIZEDU 2043CH02
31 2.6, Educational Requirements

13, 481
WKSCOPE 2043CH02

32 2.7, Scope of Work and Challenges
13, 481, 481, 482

OCT02 2043CH02
33 2.7.3, JCL Conversion

482
FILEMIG 2043CH02

35 2.7.4, File Migration
482

SIZCOST 2043CH02
38 2.8, Cost Considerations

13
DEVPLAN 2043CH03

41 Chapter 3, Developing the Plan
481, 481, 494, 494

HMC3OV 2043CH03
41 3.1, Overview

41
HMPROST 2043CH03

43 3.1.2.6, Project Staffing
MIGPLG 2043CH03

45 3.2, Plan Components
41

HMC3PMC 2043CH03
49 3.3, Progressive versus Mass Conversion

41
OCT01 2043CH03

51 3.3.7, Standardized Conversion Deliverables and Automation
481

MIGSAMP 2043CH03
53 3.4, Plan Examples

41, 42
MIGXMP 2043CH03

56 3.4.2, Project Plan Example
47, 482

CVSE390 2043IMBD
67 Part 2, Converting the VSE Operating System to the OS/390

Operating System
3, 3

JCL 2043CH04

/XRL/5

69 Chapter 4, Job Control Language (JCL) Differences and
Considerations

209, 375, 482
JCLFIL 2043CH04

69 4.1, The Philosophy of JCL in System/390
69, 73

JCLHI 2043CH04
72 4.2, High Level Similarit ies

69
CONJCL1 2043CH04

73 4.2.1.9, Conditional JCL
JCLDIFF 2043CH04

73 4.3, JCL Differences Between VSE and MVS
69

JCLRED 2043CH04
76 4.3.2, JCL Expansion

CONJCL2 2043CH04
84 4.3.11.3, MVS Conditional JCL

73
JECL 2043CH04

89 4.4, JECL
69, 84

JCLCOMP 2043CH04
91 4.5, VSE and MVS JCL Comparison Example

69
VSESAM 2043CH04

92 4.5.1, Sample VSE JCL
77, 91, 91

MVSSAM 2043CH04
93 4.5.2, Sample MVS JCL

91, 91
VSECARR 2043CH04

94 4.5.3, Sample VSE plus Carry-Over
79, 91, 91

TDSTOR 2043CH05
97 Chapter 5, Disk and Tape Storage Considerations

84, 404
DTAMSD 2043CH05

97 5.1, Access Method Similarit ies and Differences
97

DTNAME 2043CH05
99 5.2, Data Set Naming Considerations

97, 481
DTMGT 2043CH05

100 5.3, Storage and Space Management
97

DTTAPE 2043CH05
103 5.4, Tape Similarit ies and Differences

97
DTDISK 2043CH05

108 5.5, DASD Similarit ies and Differences
97

IVTOC 2043CH05
109 5.5.3, Indexed VTOC Considerations (OS/390)

108
DTVSAM 2043CH05

110 5.6, VSAM Differences
97, 175

VSCATS 2043CH05
112 5.6.2.2, VSAM Catalogs

VSCATCM 2043CH05
117 5.6.4, OS/390 - VSE/VSAM Catalog Compatibility

110
ACCATM 2043CH05

118 5.6.4.1, Accessing a VSE/VSAM Catalog from an OS/390
System

112
IRDSNS 2043CH05

128 Intra-Region Data Set Name Sharing
128

CSDSHAR 2043CH05
129 5.6.6.3, Cross-System and DASD Sharing

118
CICS 2043CH06

133 Chapter 6, CICS
17, 17

CICSDLI 2043CH06
154 6.2, CICS with DL/I

ICCFTSO 2043CH07
155 Chapter 7, ICCF and TSO

17, 17, 18, 18
TSOESUB 2043CH07

162 7.4, Submitting Jobs for Batch Execution
212

DB2DLI 2043CH08

/XRL/6

169 Chapter 8, Databases
18, 18, 366

DLIUTIL 2043CH08
173 8.1.6, Util i t ies

176
TELECOM 2043CH09

185 Chapter 9, Telecommunications Subsystems
17, 17

AVTAM 2043CH09
185 9.1, ACF/VTAM

185
H2043A1 2043CH09

186 9.1.1.1, VTAM Data Sets
186

H2043A2 2043CH09
192 9.2, ACF/NCP

185, 190
TBTAM 2043CH09

193 9.3, BTAM
185

TCPIP 2043CH09
193 9.4, Migrating TCP/IP

185
MSERIES 2043CH09

197 9.5, MQSeries
185

PWRJES 2043CH10
207 Chapter 10, POWER and JES2

73
KEEPJOB 2043CH10

207 10.1.1.1, KEEP Disposition for Pre-Execution Jobs
213

TPSPL 2043CH10
208 10.1.1.3, Tape Spooling

215, 216
PSETUP 2043CH10

208 10.1.1.4, Printer Forms Alignment via PSETUP
215, 217, 233

SEPAGE 2043CH10
208 10.1.1.5, Separator Page Difference

215, 217
EOPAGE 2043CH10

209 10.1.1.6, End-of-page Sensing
216, 217

J2PROC 2043CH10
211 10.2.2.1, The JES2 Procedure

J2CUST 2043CH10
211 10.2.3, Tailoring JES2

JOBDISP 2043CH10
213 10.3.3.1, Job Stream Disposition

213
DJC 2043CH10

214 10.3.3.2, Serializing Job Execution
OUTDEV 2043CH10

216 10.3.4.1, Printers Supported
215

OUTDISP 2043CH10
217 10.3.4.7, Output Disposition

215
FCB1 2043CH10

217 10.3.4.8, FCB Naming Differences
209, 215

UCS1 2043CH10
218 10.3.4.9, UCS Naming Conventions

215
JIRJE 2043CH10

219 10.3.6.2, Remote Workstation Definitions
212

JINJE 2043CH10
221 10.3.7.1, NJE Definitions

212, 221
CTLSPL 2043CH10

221 10.3.8.2, Programmable Spool Interfaces
J2PARM 2043CH10

225 10.4, POWER/JES2 Detailed Comparisons
PWRJ2I 2043CH10

225 10.4.1, Mapping POWER Parameters to JES2 Init Parms
JICMPCT 2043CH10

230 10.4.1.6, Define Compaction Tables
PJXIT 2043CH10

230 10.4.2, Exit Comparisons
211

PJCMDS 2043CH10
231 10.4.3, POWER-JES2 Command Equivalences

211

/XRL/7

AFPPSF 2043CH11
235 Chapter 11, Advanced Function Printing and Print Services

Facil i ty/MVS
17, 17, 215

PSFINCN 2043CH11
236 11.2, Install ing and Configuring PSF/MVS

236
PSFRES 2043CH11

240 11.3, Setting up AFP Resources
236

PSFAPPL 2043CH11
241 11.3.4, Migrating Print Applications

236
AFPPPM 2043CH11

241 VSE Printer PARM Macro
PSFOPS 2043CH11

242 11.4, Understanding Operational Differences
236

PSFOTH 2043CH11
243 11.5, Other Differences

236
PSFREFS 2043CH11

244 11.6, References
AFPTOOL 2043CH11

244 11.6.5, Tools
240

CVLANG 2043IMBD
247 Part 3, Converting VSE Languages to OS/390 Languages

3, 3, 17, 17, 482
COBOL 2043CH12

249 Chapter 12, COBOL
17, 17, 131, 131, 355, 356

VMC 2043CH12
250 12.2, VSE to OS/390 Migration Considerations

258, 259, 259, 354
DOSCV 2043CH12

252 12.3, Converting from DOS/VS COBOL
251

VSCB2CV 2043CH12
258 12.5, Converting from VS COBOL II

251
ASMBLR 2043CH13

267 Chapter 13, Assembler
17, 17, 82, 131, 359

TRM 2043CH13
269 13.2.1.2, Termination

281
REGCONV 2043CH13

269 Register Conventions
289

COMREG 2043CH13
274 13.2.1.3, Communication Region

277
LDMAC 2043CH13

277 LOAD Macro
272

GTIME 2043CH13
278 GETIME Macro

277
DMPMAC 2043CH13

280 DUMP Macro
281

ROUTHDL 2043CH13
287 Routine Handling

288
VSMACS 2043CH13

290 13.2.5, VSAM Macros
268

DMMACS 2043CH13
292 13.2.6, Data Management Macros

268
RPG 2043CH14

329 Chapter 14, RPG II
17, 17

PLI 2043CH15
333 Chapter 15, PL/I

17, 17, 354, 356
STMPLI 2043CH15

345 15.11, Storage Management in PL/I
337

FORTRAN 2043CH16
349 Chapter 16, FORTRAN

17, 17
LE 2043CH17

351 Chapter 17, Language Environment (LE)

/XRL/8

17, 17, 258, 259
CONDIF 2043CH17

352 17.1.2, Conceptual Differences between LE/VSE and OS/390
Language Environment

361
LVMC 2043CH17

352 17.2, VSE to OS/390 Migration Considerations
LEVCON 2043CH17

352 17.2.1, LE/VSE-conforming Languages
NONLEMG 2043CH17

354 17.4, Migrating from Non-LE/VSE Run-time Environments
C370HD 2043CH17

355 17.4.2, C/370
353

MIGLEV 2043CH17
359 17.5, Migrating from LE/VSE

353
LEVX 2043CH17

364 17.5.2, User Exits and Abnormal Termination Exits
367

ASMX4 2043CH17
364 17.5.2.1, Assembler User Exits

ABTX4 2043CH17
365 17.5.2.3, Abnormal Termination Exits

REXX 2043CH18
369 Chapter 18, Procedure Language REXX

17, 17
CVUTIL 2043IMBD

373 Part 4, Converting VSE Utilit ies to OS/390 Util i t ies
3, 4

SORT 2043CH19
375 Chapter 19, SORT

18, 18
SRTJCL 2043CH19

375 19.1, JCL Statements
375

SRTCTLS 2043CH19
377 19.2, Control Statements

375
SRTADDS 2043CH19

379 19.3, Additional DFSORT/VSE Migration Considerations
375

DITTO 2043CH20
381 Chapter 20, DITTO

18, 18, 244
DTCOMP 2043CH20

381 20.1, Compatibil ity with Previous Releases of DITTO
381

NLSFUN 2043CH20
382 20.2, DITTO Functions that are No Longer Supported

381
NRFUN 2043CH20

383 20.3, DITTO Functions that are Not Recommended
381

FUNCODE 2043CH20
384 20.4, DITTO Function Code Synonyms

381
NLSBAT 2043CH20

384 20.5, Batch Keywords that are No Longer Supported
381

NRBAT 2043CH20
385 20.6, Batch Keywords that are Not Recommended

381
DTSEC 2043CH20

385 20.7, DITTO/ESA Security
381

BRVSAM 2043CH21
387 Chapter 21, VSAM Backup/Restore

LIBR 2043CH22
389 Chapter 22, Librarian

17, 17
LPLOG 2043CH23

393 Chapter 23, LISTLOG/PRINTLOG - Print ing Log Streams
FCOPDSS 2043CH24

397 Chapter 24, VSE/Fast Copy and OS/390 DFSMSdss
17, 17

MIGENV 2043IMBD
399 Part 5, Setting Up the Migration Environment

3, 4
SETUPEN 2043CH25

401 Chapter 25, Prepare the Migration Environment
481, 482, 512

SETISC 2043CH25
404 25.2.5, Inter-Systems Connectivity

SETSTDS 2043CH25

/XRL/9

407 25.4, Set Up Standards, Procedures, and Documentation
100, 481

PUTRSU 2043CH25
414 25.5.1.2, Applying Preventive Service

411
SETERM 2043CH25

414 25.5.1.3, Providing Terminal Access to the OS/390 System
404

SETNJE 2043CH25
415 25.5.1.5, Providing NJE Connection to the OS/390 System

405
TESTENV 2043CH26

419 Chapter 26, Test Environments
482

RUNSYS 2043IMBD
435 Part 6, Running Your OS/390 System

3, 3, 4, 482
TSOISPF 2043CH27

437 Chapter 27, Orienting ICCF Users to TSO/ISPF
17, 17, 481

390CNSL 2043CH28
443 Chapter 28, Orientation to OS/390 Console Operation

17, 17, 209, 411, 481
OPERRJE 2043CH28

452 28.6.1, JES2 RJE Operations
220

OPERNJE 2043CH28
453 28.6.2, NJE Operations

221
UTILS 2043CH29

455 Chapter 29, Orientation for Utilit ies
244, 373, 481

SYM00 2043CH30
457 Chapter 30, Systems Management Philosophy and

Methodology
17, 17, 409

SYM01 2043CH30
457 30.1, The Philosophy of Systems Management

457
SYM02 2043CH30

460 30.2, Change Management
457

SYM03 2043CH30
461 30.3, Problem Management

457
SYM04 2043CH30

463 30.4, Performance Management
457

SYM05 2043CH30
465 30.5, Operations Management

457
SYM06 2043CH30

468 30.6, Security Management
457

SYM07 2043CH30
469 30.7, Configuration Management

457
SYM08 2043CH30

471 30.8, Asset Management
457

SYM09 2043CH30
471 30.9, Accounting Management

457
DIGPRBS 2043CH31

473 Chapter 31, Diagnosing System Problems
482

CNVAPLS 2043IMBD
479 Part 7, Converting your Applications

3, 4
CONVPRC 2043CH32

481 Chapter 32, Conversion Process
CPOV 2043CH32

482 32.1, Conversion Process Introduction
483

MHIST 2043CH32
486 32.2, Mass Conversion - Background, Benefits and Method

483
POVIEW 2043CH32

493 32.3, Mass Conversion Phase Overview
483

PREPF 2043CH32
493 32.4, Preparation Phases

481, 483
CONVF 2043CH32

503 32.5, Conversion Phases

/XRL/10

482, 482, 483
IMPF 2043CH32

515 32.6, Implementation Phases
482, 483

CNVSRVS 2043CH33
519 33.1, Conversion Services

519
CNVTOOL 2043CH33

520 33.2, Conversion Tools
483, 519

MIGEXMP 2043IMBD
527 Part 8, Migration Experience

3, 4
MIGEXP1 2043CH34

529 Chapter 34, Customer Migrat ion Example
483

APPXS 2043IMBD
533 Part 9, Appendixes

4
AX2 2043AX01

535 Appendix A, Education Information
31, 69, 481

HMAX21 2043AX02
539 Appendix B, Mapping ISV Products and Functions

DSNAMES 2043AX03
543 Appendix C, DFSMS Naming Conventions

481, 483, 494, 500
NOTICES SG242043 SCRIPT

553 Appendix D, Special Notices
ii

BIBL 2043BIBL
557 Appendix E, Related Publications

401
REDBCDR REDB$BIB

559 E.5, Redbooks on CD-ROMs
ORDER REDB$ORD

561 How to Get ITSO Redbooks
557

REDBIBM REDB$ORD
561 How IBM Employees Can Get ITSO Redbooks

REDBCUS REDB$ORD
562 How Customers Can Get ITSO Redbooks

REDBFOR REDB$ORD
563 IBM Redbook Order Form

REDBEVA REDB$EVA
593 ITSO Redbook Evaluation

xxi i

Index Entries

id File Page References

C050001 2043VARS
i (1) access method

97, 97, 98, 98, 99, 455
C300009 2043VARS

i (1) accounting
223, 223, 224, 471, 471, 472, 472

C090002 2043VARS
i (1) ACF/NCP

192, 192, 193
C090001 2043VARS

i (1) ACF/VTAM
186, 187, 190, 191

C130001 2043VARS
i (1) Assembler Products

268, 283, 287, 289, 290, 292
C300008 2043VARS

i (1) asset management
471, 471, 471

C090003 2043VARS
i (1) BTAM

193, 193
C260005 2043VARS

i (1) building the initial OS/390 test system
431, 431, 431

C300002 2043VARS
i (1) change management

460, 460, 461
C150006 2043VARS

i (1) Checkpoint-Restart in PL/I
342, 342, 343

C170006 2043VARS

/XRL/11

i (1) CICS
133, 133, 134, 135, 135, 136, 136, 136, 137, 137, 138,
138, 140, 140, 142, 143, 145, 147, 147, 149, 150, 151,
152, 153, 153, 153, 154, 154, 201, 201, 201, 252, 252,
252, 346, 366, 366, 367, 522, 522

C120001 2043VARS
i (1) COBOL

131, 131, 131, 242, 249, 249, 249, 250, 250, 250, 250,
251, 252, 252, 252, 252, 253, 253, 253, 255, 255, 255,
256, 256, 257, 257, 257, 258, 258, 258, 259, 259, 259,
259, 259, 260, 260, 261, 263, 263, 265, 265, 265, 331,
331, 351, 354, 354, 355, 356, 366, 366, 492, 522, 526

A030004 2043VARS
i (1) common applications - naming conventions

549, 550, 550, 551
C120008 2043VARS

i (1) compiler options
C300007 2043VARS

i (1) configuration management
469, 469, 470

C120007 2043VARS
i (1) conversion considerations for all VSE COBOL compilers

C330001 2043VARS
i (1) conversion services

519, 519
C330002 2043VARS

i (1) conversion tools
43, 52, 486, 490, 520, 520, 522, 524, 525, 525

C340001 2043VARS
i (1) customer migration example

529, 529, 531
C010001 2043VARS

i (1) customer migration rationale
4, 4, 5, 5, 9

A030002 2043VARS
i (1) data set name components

544, 546, 546, 547, 547
A030003 2043VARS

i (1) data set name exclusions
547, 548, 548, 548, 548, 549, 549

C310009 2043VARS
i (1) DFSMS/MVS diagnosis

476, 477, 478, 478
DITTIND 2043VARS

i (1) DITTO
381, 381, 382, 383, 384, 384, 384, 385, 385, 385

C080001 2043VARS
i (1) DL/I & IMS/VS DB differences

169, 170, 170, 171, 171, 173, 173, 175, 178
C120004 2043VARS

i (1) DOS/VS COBOL & COBOL for OS/390 and VM language
differences

253, 255, 256, 256, 257
C150007 2043VARS

i (1) DUMP in PL/I Optimizer
343, 343, 344, 344

C150004 2043VARS
i (1) ENVIRONMENT attributes

339, 340, 340, 340
C010003 2043VARS

i (1) functional reasons for migrating to OS/390
10, 10, 11, 11, 12

C250002 2043VARS
i (1) hardware install and configure

402, 402, 402, 403, 404
C100002 2043VARS

i (1) implementing JES2
209, 210, 211

C110002 2043VARS
i (1) install ing & configuring PSF/MVS

236, 236, 237, 237, 238
C110001 2043VARS

i (1) introducing PSF/MVS
235, 235

C310003 2043VARS
i (1) IPCS

473, 474, 474, 474
A020001 2043VARS

i (1) ISV system management products
539, 539

C040003 2043VARS
i (1) JCL differences (VSE and MVS)

73, 76, 76, 78, 78, 80, 81, 81, 81, 82, 84, 86, 88
C040002 2043VARS

i (1) JCL high level similarit ies

/XRL/12

72, 73
C040004 2043VARS

i (1) JECL
89, 89, 89, 90

C100003 2043VARS
i (1) JES2/POWER functional comparison

212, 213, 215, 218, 219, 220, 221, 223, 224, 225
C170001 2043VARS

i (1) Language Environment (LE)
196, 351, 351, 352, 352, 352, 353, 353, 353, 354, 359,
359, 365, 366

C150003 2043VARS
i (1) l inkages between languages

338, 338
C280006 2043VARS

i (1) managing remote operations
452, 453

C170005 2043VARS
i (1) migrating from LE/VSE

359, 364, 365, 366
C170003 2043VARS

i (1) migrating from LE/VSE-conforming languages
353, 354, 354

C170004 2043VARS
i (1) migrating from non-LE/VSE run-time environments

354, 355, 355, 356, 356, 358, 358, 359
C070005 2043VARS

i (1) migrating from VSE/ICCF to MVS and TSO/E
163, 167

C090004 2043VARS
i (1) migrating TCP/IP

194, 195, 195, 195, 195, 196, 197
C090005 2043VARS

i (1) MQSeries
198, 198, 203, 203, 203, 203, 205, 205, 206

C300005 2043VARS
i (1) operations management

465, 465, 466, 467
OPLOIND 2043VARS

i (1) OPERLOG
394

C290001 2043VARS
i (1) orientation for uti l i t ies

455, 455, 455, 455, 456
C250003 2043VARS

i (1) OS/390 software - order and install
405, 405, 405, 406

C260004 2043VARS
i (1) parallel activit ies

430, 430, 430
C300004 2043VARS

i (1) performance management
463, 463, 464

C150001 2043VARS
i (1) PL/I

333
C150012 2043VARS

i (1) PL/I and CICS
346, 346, 346, 346, 346, 346, 347, 347

C150005 2043VARS
i (1) PL/I calling SORT

340, 340
C150002 2043VARS

i (1) PL/I compiler options
335, 336, 337, 338

C150009 2043VARS
i (1) PL/I forcing an ABEND

344, 345
C150010 2043VARS

i (1) PL/I overlay structures
345, 345

C100004 2043VARS
i (1) POWER/JES2 detailed comparisons

225, 230, 231
C070001 2043VARS

i (1) preparing to use the system
155, 157, 157, 157, 158

C300003 2043VARS
i (1) problem management

461, 462, 462
C180001 2043VARS

i (1) procedure language REXX
369, 369, 369, 369, 371, 371

C110005 2043VARS
i (1) PSF/MVS

/XRL/13

235, 235, 236, 243, 243, 243, 244, 244
C110004 2043VARS

i (1) PSF/MVS operational differences
242, 242

C110006 2043VARS
i (1) PSF/MVS references

244, 244, 244, 244, 244, 245
C120009 2043VARS

i (1) reserved words
263, 265

C150008 2043VARS
i (1) return codes in PL/I

344, 344
C140001 2043VARS

i (1) RPG II migration to OS/390
329, 329, 330, 330, 330, 330, 331, 331

C300006 2043VARS
i (1) security management

468, 468, 469
C110003 2043VARS

i (1) setting up AFP resources
240, 240, 241, 241

C190001 2043VARS
i (1) SORT

131, 131, 132, 375, 377, 380
C080002 2043VARS

i (1) SQL/DS to DB2
178, 179, 181, 182

C250004 2043VARS
i (1) standards, procedures, documentation

407, 409, 412
C250005 2043VARS

i (1) OS/390 customization
413, 415, 416

C050003 2043VARS
i (1) storage & space management

100, 100, 100, 102
C150011 2043VARS

i (1) storage management in PL/I
345, 345

C070004 2043VARS
i (1) submitting jobs for batch execution

163
C040001 2043VARS

i (1) System/390 JCL philosophy
70, 70

C300001 2043VARS
i (1) systems management

409, 457, 457, 459, 460, 472
SMFPIND 2043VARS

i (1) Systems Management Recording
395

C050004 2043VARS
i (1) tape similarit ies & differences

103, 103, 105, 106, 106
C260001 2043VARS

i (1) test
153, 225, 419, 419, 419, 419, 420, 430, 430, 431, 506, 508

A010001 2043VARS
i (1) training - where and when

535, 535, 536, 536
C280002 2043VARS

i (1) understanding the operator interfaces
444, 444, 445, 446

C070002 2043VARS
i (1) using the system

159, 159
C260003 2043VARS

i (1) VM, LPAR, or Standalone Systems
422, 423, 424, 430

C050006 2043VARS
i (1) VSAM differences

110, 110, 117, 119, 125, 131, 131, 131
C040005 2043VARS

i (1) VSE & MVS JCL comparison
92, 93, 94

C270001 2043VARS
i (1) VSE/ICCF vs.TSO/ISPF

438, 439, 439, 440, 440, 441, 441, 441
ECH0001 2043VARS

i (1) ACB
128, 128, 290, 290, 290

ECH0002 2043VARS
i (1) Advanced Function Printing (AFP)

235, 240, 240, 240, 242

/XRL/14

ECH0003 2043VARS
i (1) Assembler

131, 173, 196, 241, 267, 267, 267, 269, 269, 359, 359,
359, 364, 492

ECH0004 2043VARS
i (1) VSAM

15, 81, 110, 110, 110, 112, 114, 118, 118, 118, 118, 119,
119, 119, 119, 119, 121, 122, 122, 122, 123, 123, 123,
124, 125, 129, 130, 130, 131, 131, 290, 292, 292, 292,
292, 292, 292, 292, 387, 387, 455, 477, 477, 550, 550

ECH0005 2043VARS
i (1) bibl iographies

206, 244, 244, 251, 353, 372, 478
ECH0006 2043VARS

i (1) Assembler macros
272, 273, 276, 277, 277, 277, 278, 278, 278, 278, 278,
279, 279, 280, 280, 281, 281, 281, 281, 281, 282, 283,
283, 285, 285, 286, 286, 286, 288, 289, 289, 290, 290,
290, 290, 290, 290, 290, 291, 291, 292, 292, 292, 296,
296, 297, 298, 298, 299, 299, 299, 300, 300, 300, 301,
301, 301, 304, 305, 305, 305, 306, 306, 306, 306, 307,
307, 307, 308, 308, 308, 309, 309, 313, 314, 314, 314,
314, 314, 327, 328

ECH0007 2043VARS
i (1) macros

98, 167, 268, 271, 272, 283, 289, 290, 292
ECH0008 2043VARS

i (1) FORTRAN
349, 349, 358

ECH0009 2043VARS
i (1) PL/I

131, 242, 331, 331, 331, 331, 340, 340, 342, 342, 342,
343, 343, 344, 345, 345, 346, 346, 347, 347, 351, 354, 356

ECH0010 2043VARS
i (1) DL/I

16, 154, 169, 169, 170, 171, 172, 174, 175, 175, 178, 366
ECH0011 2043VARS

i (1) conversion
42, 52, 52, 118, 163, 252, 258, 259, 259, 259, 259, 259,
265, 265, 267, 345, 349, 499, 503, 505, 516, 516, 517,
519, 519, 520, 522, 525

ECH0013 2043VARS
i (1) JES2

89, 90, 151, 207, 207, 207, 209, 209, 209, 210, 210, 210,
210, 211, 211, 211, 211, 211, 211, 211, 211, 213, 214,
215, 220, 221, 223, 225, 225, 225, 225, 227, 231, 231,
231, 395, 395, 395, 448, 449, 450, 452, 453, 475

ECH0014 2043VARS
i (1) RJE

219, 220, 220, 220, 227, 452, 453, 453
ECH0015 2043VARS

i (1) NJE
221, 221, 221, 221, 224, 227, 230, 233, 405, 415, 453,
454, 454

ECH0016 2043VARS
i (1) POWER

79, 89, 207, 209, 211, 225, 225, 225, 231, 231
ECH0017 2043VARS

i (1) JCL
25, 33, 69, 70, 72, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73,
73, 75, 76, 76, 77, 78, 79, 79, 81, 81, 82, 84, 84, 84, 86,
88, 91, 92, 93, 241, 241, 344, 375, 409, 492, 516

ECH0018 2043VARS
i (1) Job Control Language

70, 82, 84, 451
ECH0019 2043VARS

i (1) data set
81, 99, 99, 116, 123, 123, 128, 128, 130, 132, 145, 159,
186, 202, 408, 438, 543, 547, 551

ECH0020 2043VARS
i (1) OS/390

19, 19, 19, 20, 23, 25, 38, 39, 70, 99, 100, 106, 106, 109,
110, 114, 114, 115, 129, 129, 129, 131, 178, 189, 189,
190, 192, 213, 242, 250, 329, 349, 352, 387, 390, 391,
393, 394, 394, 397, 398, 402, 405, 405, 406, 406, 413,
414, 415, 416, 430, 430, 430, 430, 431, 431, 431, 431,
432, 432, 433, 443, 443, 447, 447, 467, 497, 510, 518, 535

ECH0021 2043VARS
i (1) ISPF

390, 437, 437, 439, 440, 440, 440
ECH0022 2043VARS

i (1) FORTRAN
349, 358

ECH0023 2043VARS
i (1) migrat ion

/XRL/15

3, 3, 4, 4, 10, 10, 13, 18, 27, 28, 29, 35, 35, 35, 36, 39, 42,
43, 44, 134, 163, 182, 193, 205, 235, 241, 250, 251, 329,
352, 353, 354, 358, 359, 371, 401, 420, 485, 529, 529,
531, 531, 532

ECH0024 2043VARS
i (1) SORT

131, 341, 341, 342, 377, 379, 379
ECH0025 2043VARS

i (1) DASD
16, 108, 108, 108, 108, 108, 109, 120, 129, 129, 130, 304,
402, 404, 408, 408, 425, 425, 432, 432, 432, 433, 433, 508

SYSTIND 2043VARS
i (1) system

11
VIRTIND 2043VARS

i (1) virtual storage
5, 135, 289

APPLIND 2043VARS
i (1) application

10, 32, 47, 50, 137, 150, 179, 196, 221, 358, 430, 440,
495, 548

ANALIND 2043VARS
i (1) analyzing

473, 474, 476, 500
AUTIND 2043VARS

i (1) automated
37, 50, 488, 490, 519

BATIND 2043VARS
i (1) batch

14, 162, 171, 195, 451, 512
CATIND 2043VARS

i (1) catalog
110, 110, 110, 111, 114, 114, 115, 117, 118, 120, 120,
125, 432, 476

COMMIND 2043VARS
i (1) command

163, 171, 231, 242, 453, 454
COMPIND 2043VARS

i (1) comparing
86, 89, 91, 181, 238, 242, 250, 328

CONTIND 2043VARS
i (1) controll ing

444, 447, 447, 448, 448, 448, 448, 449, 449, 449, 449,
449, 450, 450, 450, 450, 451, 451, 451

COURIND 2043VARS
i (1) courses

535, 536, 536, 537, 537
DATIND 2043VARS

i (1) data
75, 76, 125, 125, 159, 182, 182, 195, 292, 405, 407

CONVIND 2043VARS
i (1) convert ing

163, 252, 252, 253, 258, 259, 259, 345, 516
DATBIND 2043VARS

i (1) database
175, 176, 176, 180

DEFIND 2043VARS
i (1) defining

72, 203, 221, 228, 229, 230, 230, 236, 236, 240, 293
DEVIND 2043VARS

i (1) device
36, 80, 329, 402, 448, 448, 448

DIFFIND 2043VARS
i (1) differences

169, 209, 241, 419
DISPIND 2043VARS

i (1) display
259, 444, 444, 445, 447, 448, 449

DOSIND 2043VARS
i (1) DOS

335, 343, 345, 356
DOSCIND 2043VARS

i (1) DOS/VS COBOL
252, 253, 260, 263

EXITIND 2043VARS
i (1) exits

147, 148, 191, 211, 220, 221, 230, 243, 364, 364, 364,
365, 385, 415

FCBIND 2043VARS
i (1) FCB

209, 217, 217, 218
FILIND 2043VARS

i (1) fi le
35, 35, 50, 72, 124, 234, 257, 257, 258, 330, 334, 346,
492, 546

/XRL/16

GENIND 2043VARS
i (1) general

135, 136, 311, 351
HIGHIND 2043VARS

i (1) high level
72, 242, 364, 544

IBMIND 2043VARS
i (1) IBM

250, 519, 520, 522
ICCFIND 2043VARS

i (1) ICCF
155, 157, 157, 161, 163, 163, 167, 167, 218, 437

INSTIND 2043VARS
i (1) installation

200, 211, 243, 402, 405, 407, 410
INTRIND 2043VARS

i (1) introduction
13, 110, 169, 419, 443

JOBIND 2043VARS
i (1) job

26, 50, 70, 70, 72, 72, 73, 208, 213, 213, 214, 214, 222,
223, 275, 395, 439, 441, 515, 549

LEVIND 2043VARS
i (1) LE/VSE

352, 353, 359, 364, 366
LIBRIND 2043VARS

i (1) l ibrary
389, 389, 389, 389, 390, 390, 391, 432

LIOCIND 2043VARS
i (1) LIOCS

294, 296, 297, 303, 304, 304, 311, 326
MANIND 2043VARS

i (1) managing
411, 411, 440, 444

MAPIND 2043VARS
i (1) mapping

225, 227, 354, 539
MIGIND 2043VARS

i (1) migrat ing
3, 134, 240, 241, 250, 251, 354, 358

MULTIND 2043VARS
i (1) multiple

74, 128, 212, 255, 325, 429
MVSIND 2043VARS

i (1) MVS
21, 21, 73, 78, 80, 84, 84, 88, 93, 135, 142, 149, 149, 170,
214, 269, 269, 271, 283, 289, 290, 292, 336, 344, 345,
345, 408, 415, 415, 447, 450, 486, 508

NAMIND 2043VARS
i (1) naming

99, 217, 543, 549
NETIND 2043VARS

i (1) network
191, 194, 203, 233, 236

OPERIND 2043VARS
i (1) operations

37, 50, 50, 220, 221, 411
OPRIND 2043VARS

i (1) operator
76, 76, 76, 211, 233, 288, 443

OPTIND 2043VARS
i (1) options

335, 336, 343, 344, 354
OTHIND 2043VARS

i (1) other
209, 222, 243, 244, 244, 403, 406, 409, 416, 416, 450

OUTIND 2043VARS
i (1) output

75, 215, 216, 217, 222, 343, 441, 548
OVERIND 2043VARS

i (1) overview
133, 327, 457, 460, 461, 471

PARIND 2043VARS
i (1) parameter

75, 225, 335, 340
PRTIND 2043VARS

i (1) pr inter
208, 216, 217, 235, 235, 236, 237, 240, 241, 296

PROJIND 2043VARS
i (1) project

37, 37, 39, 41, 43, 46, 47, 54, 56, 56, 58, 440, 484, 494
PRTGIND 2043VARS

i (1) print ing
241, 393, 394, 394, 395, 412

PROGIND 2043VARS

/XRL/17

i (1) program
33, 171, 192, 257, 503, 517, 526

PSFIND 2043VARS
i (1) PSF

237, 237, 240, 240, 242, 242, 244
RECIND 2043VARS

i (1) record
315, 315, 316, 316, 317

REMIND 2043VARS
i (1) remote

219, 219, 229, 240, 452, 452, 453, 453, 454
RESIND 2043VARS

i (1) resources
37, 78, 78, 187, 187, 190, 240

REXXIND 2043VARS
i (1) REXX

369, 369, 370, 370, 370, 371, 371, 371, 371, 371, 371,
372, 372

RPGIND 2043VARS
i (1) RPG II

131, 329, 331, 331
SDSFIND 2043VARS

i (1) SDSF
437, 441, 446, 449, 450, 453, 454

SHRIND 2043VARS
i (1) shared

50, 120, 404, 425, 432, 432, 433
SNAIND 2043VARS

i (1) SNA
191, 229, 236, 485

SPLIND 2043VARS
i (1) spool

151, 151, 210, 221, 221, 222
STARIND 2043VARS

i (1) start ing
72, 210, 242, 447

SUMMIND 2043VARS
i (1) summary

88, 90, 158, 182
SYSIND 2043VARS

i (1) system
46, 78, 100, 140, 145, 147, 155, 158, 159, 170, 180, 268,
268, 395, 410, 410, 426, 446, 447, 447, 448, 449, 467,
473, 513

TAPIND 2043VARS
i (1) tape

97, 103, 103, 208, 216, 297, 330, 404
TCPIND 2043VARS

i (1) TCP/IP
194, 195, 195, 195, 195, 195, 195, 196, 196, 196, 196, 237

TRANIND 2043VARS
i (1) transaction

133, 144, 149, 182
TSOIND 2043VARS

i (1) TSO/E
155, 157, 157, 157, 157, 158, 159, 159, 161, 163, 369,
371, 437, 445, 445, 451, 549

UNSIND 2043VARS
i (1) unsupported

136, 338, 339, 346
USERIND 2043VARS

i (1) user
105, 115, 155, 178, 195, 195, 275, 275, 364, 412, 412, 547

USGIND 2043VARS
i (1) using

163, 193, 196, 196, 196, 429, 439, 441, 445, 446, 453,
454, 474

VSCIND 2043VARS
i (1) VS COBOL II

259, 261, 265
VSEIND 2043VARS

i (1) VSE
73, 79, 79, 80, 80, 81, 82, 82, 82, 83, 86, 92, 94, 99, 100,
124, 151, 188, 241, 250, 259, 274, 283, 289, 292, 352,
387, 393, 393, 430, 433, 502, 504

Y2IND 2043VARS
i (1) year2000

582, 582, 582, 582
C020001 2043VARS

i (1) sizing migration effort
13, 13, 14, 16

C020002 2043VARS
i (1) OS/390 components/products/subsystems

19, 24
C020003 2043VARS

/XRL/18

i (1) changes between VSE and OS/390
24, 24, 25, 25, 25, 25

C020005 2043VARS
i (1) approaches to migration

27, 27, 27, 28, 29, 29, 29, 30, 30
C020006 2043VARS

i (1) education
31, 31, 31, 31, 31

C020007 2043VARS
i (1) scope of work challenges

32, 33, 33, 35, 37, 37
C020009 2043VARS

i (1) OS/390 documentation resources
39, 40, 40

C030001 2043VARS
i (1) plan development

41, 41, 41
C030002 2043VARS

i (1) plan components
45, 45, 47, 48, 49

C030003 2043VARS
i (1) progressive versus mass conversion

49, 50, 50, 50, 50, 50, 51, 51, 51
C030004 2043VARS

i (1) plan examples
54, 56

C320001 2043VARS
i (1) conversion process

482, 483, 484, 484, 486
C320002 2043VARS

i (1) mass conversion - background, benefits & method
486, 487, 489, 490, 490

C320004 2043VARS
i (1) preparation phases

494, 495, 497, 499, 501
C320005 2043VARS

i (1) conversion phases
503, 504, 505, 506, 506, 511, 511, 513, 514

C320006 2043VARS
i (1) implementation phases

516, 516, 517, 518
D010003 2043CH01

5 (1) customer migration rationale
(2) capacity constraints

5, 9, 9
D020002 2043CH02

14 (1) sizing migration effort
(2) areas of VSE & OS/390 differences

14, 14, 14, 15, 15, 16
D020004 2043CH02

19 (1) OS/390 components/products/subsystems
(2) operating environment

19, 19, 20, 21, 23
D030002 2043CH03

41 (1) plan development
(2) recommendations

41, 42, 42, 42, 42, 43, 43, 43, 44
D030004 2043CH03

45 (1) plan components
(2) team

46, 46, 47, 47
D030016 2043CH03

51 (1) progressive versus mass conversion
(2) complexity of implementation

52, 52
D030018 2043CH03

56 (1) plan examples
(2) project plan example

56, 58
D040003 2043CH04

72 (1) JCL high level similarit ies
(2) JCL statement & job layout

72, 72, 72, 72, 72, 72, 73, 73, 73, 73
D040004 2043CH04

73 (1) JCL high level similarit ies
(2) spooling

73
D040005 2043CH04

73 (1) JCL differences (VSE and MVS)
(2) job input

74, 75, 75
D040006 2043CH04

76 (1) JCL differences (VSE and MVS)
(2) JCL expansion

76, 76

/XRL/19

D040007 2043CH04
76 (1) JCL differences (VSE and MVS)

(2) operator intervention
76, 76, 77, 77

D040008 2043CH04
78 (1) JCL differences (VSE and MVS)

(2) resource allocation
78

D040009 2043CH04
78 (1) JCL differences (VSE and MVS)

(2) hidden JCL
78, 79, 79, 79

D040012 2043CH04
81 (1) JCL differences (VSE and MVS)

(2) JCL partition dependent codes
81, 81

D040013 2043CH04
81 (1) JCL differences (VSE and MVS)

(2) communication region
81, 82

D040014 2043CH04
82 (1) JCL differences (VSE and MVS)

(2) VSE Job Control statements
82, 82, 82, 83, 83, 83, 83, 83, 84

D040015 2043CH04
84 (1) JCL differences (VSE and MVS)

(2) MVS Job Control statements
84, 84, 84, 84, 85

D050011 2043CH05
103 (1) tape similarit ies & differences

(2) standard labels
105

D050019 2043CH05
110 (1) VSAM differences

(2) OS/390 catalogs
111, 112, 114, 114, 115

VOSIND 2043CH05
114 (1) VSAM

(2) OS/390
114, 114, 115, 117, 127, 129, 129, 387

D050021 2043CH05
117 (1) VSAM differences

(2) OS/390 - VSE/VSAM catalog compatibility
118, 118, 119

D050022 2043CH05
119 (1) VSAM differences

(2) VSAM functional differences
119, 120, 120, 120, 120, 121, 121, 121, 121, 121, 122,
122, 123, 123, 123, 123, 124, 124, 124, 125, 125, 125

D050023 2043CH05
125 (1) VSAM differences

(2) data sharing & integrity
126, 127, 128, 128, 128, 129, 129, 129, 130, 130, 130, 130

D050024 2043CH05
131 (1) VSAM differences

(2) programming languages support
131, 131, 131, 131, 131

CTRIND 2043CH06
133 (1) CICS

(2) transaction
133, 144, 149, 347

CSYSIND 2043CH06
138 (1) CICS

(2) system
138, 140, 145, 147, 147

D080005 2043CH08
171 (1) DL/I & IMS/VS DB differences

(2) batch programming
171, 171, 171, 172, 172, 172, 172, 172, 172, 173

D080006 2043CH08
173 (1) DL/I & IMS/VS DB differences

(2) uti l i t ies
173, 173

D080007 2043CH08
173 (1) DL/I & IMS/VS DB differences

(2) operations
173, 174, 174, 174

D080008 2043CH08
175 (1) DL/I & IMS/VS DB differences

(2) database portabil i ty
175, 176

D080010 2043CH08
178 (1) SQL/DS to DB2

(2) descriptions of users
178, 179, 180, 180, 181

/XRL/20

D080011 2043CH08
181 (1) SQL/DS to DB2

(2) other comparison areas
181, 182, 182, 182, 182

D090001 2043CH09
186 (1) ACF/VTAM

(2) product installation
186

D090002 2043CH09
187 (1) ACF/VTAM

(2) resource definit ion and operation
190, 190

D090003 2043CH09
190 (1) ACF/VTAM

(2) customization and programming
190, 191

D090011 2043CH09
195 (1) migrating TCP/IP

(2) TCP/IP configuration
195, 195

D090014 2043CH09
195 (1) migrating TCP/IP

(2) user written TCP/IP applications
196, 196, 196, 196, 196

D090017 2043CH09
198 (1) MQSeries

(2) MQSeries in operating system environment
198, 200, 201, 202

D100001 2043CH10
207 (1) JES2

(2) major differences
207, 208, 208, 208, 208, 209, 209, 209

D100002 2043CH10
209 (1) implementing JES2

(2) setting up required resources
210, 210

D100003 2043CH10
210 (1) implementing JES2

(2) starting JES2
211

D100004 2043CH10
211 (1) implementing JES2

(2) tailoring JES2
211, 211, 211, 211

D100005 2043CH10
212 (1) JES2/POWER functional comparison

(2) input service
D100006 2043CH10

213 (1) JES2/POWER functional comparison
(2) job scheduling

213, 213, 214, 214, 214
D100007 2043CH10

215 (1) JES2/POWER functional comparison
(2) output service

216, 216, 216, 217, 217, 217, 217, 217, 217, 218, 218
D100008 2043CH10

218 (1) JES2/POWER functional comparison
(2) interactive user interfaces (ICCF/CMS/TSO)

D100009 2043CH10
219 (1) JES2/POWER functional comparison

(2) remote job entry
219, 219, 220, 220

D100010 2043CH10
220 (1) JES2/POWER functional comparison

(2) network job entry
221, 221, 221, 221

D100011 2043CH10
221 (1) JES2/POWER functional comparison

(2) application interfaces
221, 221, 222, 222, 222

D100012 2043CH10
223 (1) JES2/POWER functional comparison

(2) accounting comparisons
223, 223, 224

D100013 2043CH10
224 (1) JES2/POWER functional comparison

(2) RAS characteristics
D100014 2043CH10

225 (1) JES2/POWER functional comparison
(2) JES2 testing techniques

225
D100015 2043CH10

225 (1) POWER/JES2 detailed comparisons
(2) mapping POWER parameters to JES2 init parms

225, 227, 228, 229, 230, 230

/XRL/21

D100016 2043CH10
230 (1) POWER/JES2 detailed comparisons

(2) exit comparisons
231, 231

D100017 2043CH10
231 (1) POWER/JES2 detailed comparisons

(2) POWER/JES2 command equivalences
232, 232, 233, 233, 233, 234, 234

D110001 2043CH11
235 (1) introducing PSF/MVS

(2) functional comparison
235, 235, 235

D110003 2043CH11
236 (1) install ing & configuring PSF/MVS

(2) defining channel-attached printers to MVS
236

D110004 2043CH11
236 (1) install ing & configuring PSF/MVS

(2) defining network printers
236, 237

D110007 2043CH11
238 (1) install ing & configuring PSF/MVS

(2) FSS procedure and PRINTDEV statements
238

D110008 2043CH11
240 (1) setting up AFP resources

(2) migrating resources from VSE to OS/390
240, 240

D110011 2043CH11
241 (1) setting up AFP resources

(2) migrating print applications
241, 241, 241, 241, 242, 242, 242, 242, 242

D110021 2043CH11
244 (1) PSF/MVS references

(2) tools
244, 244, 244, 245

D120010 2043CH12
256 (1) DOS/VS COBOL & COBOL for OS/390 and VM language

differences
(2) PROCEDURE DIVISION - Input/Output

257
D120011 2043CH12

257 (1) DOS/VS COBOL & COBOL for OS/390 and VM language
differences

(2) fi le handling considerations
257, 258, 258

D130001 2043CH13
268 (1) Assembler Products

(2) system interface & macros
269, 269, 269, 270, 271, 274, 274, 275, 275, 275, 275,
276, 277, 277, 278, 278, 278, 278, 279, 280, 281, 281,
281, 282

D130002 2043CH13
283 (1) Assembler Products

(2) multi tasking macros
283, 284, 285, 286

D130003 2043CH13
287 (1) Assembler Products

(2) interrupt handling routines
287, 287, 288, 288, 288

D130004 2043CH13
289 (1) Assembler Products

(2) virtual storage macros
289, 290, 290, 290, 290, 290

D130005 2043CH13
290 (1) Assembler Products

(2) VSAM macros
290, 290, 291, 291, 292, 292, 292, 292, 292

D130006 2043CH13
292 (1) Assembler Products

(2) data management macros
293, 293, 293, 294, 294, 296, 296, 296, 297, 297, 298,
298, 299, 299, 300, 300, 300, 301, 301, 303, 304, 304,
304, 305, 305, 306, 306, 306, 306, 307, 307, 307, 308,
308, 309, 309, 311, 311, 312, 313, 314, 314, 314, 315,
315, 315, 315, 316, 316, 316, 317, 318, 319, 323, 323,
324, 324, 325, 326, 327, 327, 327, 328, 328

D150001 2043CH15
333 (1) PL/I

(2) functional differences
333, 334, 334, 334, 334, 335, 335

D150008 2043CH15
335 (1) PL/I compiler options

(2) options specific to DOS compiler
335, 336, 336, 336, 336, 336

/XRL/22

D150009 2043CH15
336 (1) PL/I compiler options

(2) options specific to MVS compiler
336, 336, 336, 336, 337, 337, 337, 337

D150010 2043CH15
337 (1) PL/I compiler options

(2) execution options
337, 337, 337, 338

D150014 2043CH15
339 (1) ENVIRONMENT attributes

(2) unsupported in MVS
339, 339, 339, 339, 339, 339, 339, 339, 339, 340

D150019 2043CH15
340 (1) PL/I calling SORT

(2) parameters to be passed
341, 341, 341, 341, 341, 341, 341, 341, 342

D170001 2043CH17
351 (1) Language Environment (LE)

(2) general comments on Language Environment
351

D170016 2043CH17
359 (1) migrating from LE/VSE

(2) run-time options
361, 362, 363

D170017 2043CH17
364 (1) migrating from LE/VSE

(2) user exits & abnormal termination exits
364, 364, 365, 365

D170018 2043CH17
365 (1) migrating from LE/VSE

(2) callable services & math services
366

C180004 2043CH18
369 (1) procedure language REXX

(2) environments
370, 370, 371

D250005 2043CH25
404 (1) hardware install and configure

(2) inter-systems connectivity
404, 404, 404, 405

D250006 2043CH25
405 (1) OS/390 software - order and install

(2) installing OS/390 fee-based
405, 406, 406

D250007 2043CH25
406 (1) OS/390 software - order and install

(2) entitled methods of installing OS/390
406, 407

D250008 2043CH25
407 (1) standards, procedures, documentation

(2) installation standards
407, 408, 408, 408, 408, 408, 409, 409

D250009 2043CH25
409 (1) standards, procedures, documentation

(2) systems management procedures
410, 410, 410, 410, 411, 411, 411

D250010 2043CH25
412 (1) standards, procedures, documentation

(2) documentation
412, 412, 412, 412

D250013 2043CH25
413 (1) OS/390 customization

(2) new OS/390 system
413, 414, 414, 415, 415

D250011 2043CH25
415 (1) OS/390 customization

(2) MVS BCP
415, 415, 416

D250012 2043CH25
416 (1) OS/390 customization

(2) other OS/390 elements
416, 416, 417

D260005 2043CH26
424 (1) VM, LPAR, or Standalone Systems

(2) our recommendation
425, 425, 429, 430

D280003 2043CH28
444 (1) understanding the operator interfaces

(2) managing display consoles
444, 445, 445

D280004 2043CH28
445 (1) understanding the operator interfaces

(2) extended MCS consoles
445, 446

D280017 2043CH28

/XRL/23

452 (1) managing remote operations
(2) JES2 RJE operations

452, 452, 453, 453, 453
D280018 2043CH28

453 (1) managing remote operations
(2) NJE operations

454, 454
D310005 2043CH31

476 (1) DFSMS/MVS diagnosis
(2) DFSMSdfp

476, 476, 477
D320003 2043CH32

484 (1) conversion process
(2) recommendations

484, 484, 484, 484, 485, 485, 486
D320006 2043CH32

487 (1) mass conversion - background, benefits & method
(2) overview/benefi ts

488, 488, 489, 489
D320009 2043CH32

490 (1) mass conversion - background, benefits & method
(2) CORTEX MS

492, 492, 492, 492, 492, 492
D320010 2043CH32

494 (1) preparation phases
(2) Phase 0: project management & technical leadership

494
D320012 2043CH32

495 (1) preparation phases
(2) Phase 1: application inventory

496, 496, 496, 496
D320015 2043CH32

499 (1) preparation phases
(2) Phase 2: conversion specifications

500, 501, 501
D320017 2043CH32

501 (1) preparation phases
(2) Phase 3: customization/development of conversion tools

502, 502
D320018 2043CH32

503 (1) conversion phases
(2) program conversion

503, 504
D320023 2043CH32

506 (1) conversion phases
(2) Phase 5: OS/390 regression tests & repeated trial

conversions
507, 507, 507, 507, 508, 508, 508, 508, 510

D320025 2043CH32
511 (1) conversion phases

(2) unit testing
512, 512, 512, 512

D320026 2043CH32
513 (1) conversion phases

(2) system testing
513, 513, 514

D320027 2043CH32
514 (1) conversion phases

(2) parallel/production simulation testing
514, 515, 515

D320029 2043CH32
516 (1) implementation phases

(2) Phase 6: actual conversion & switchover
516, 517

D320030 2043CH32
517 (1) implementation phases

(2) switchover
517, 518

D330004 2043CH33
520 (1) conversion tools

(2) IBM OPTI-AUDIT for VSE
521, 521

D330005 2043CH33
522 (1) conversion tools

(2) IBM COBOL and CICS CCCA
523, 523

D330007 2043CH33
525 (1) conversion tools

(2) Computer Associates
525, 525

D330008 2043CH33
525 (1) conversion tools

(2) The Source Recovery Company
526, 526, 526, 526, 526, 526

D340001 2043CH34

/XRL/24

529 (1) customer migration example
(2) environment

529, 529, 530, 530
D340002 2043CH34

531 (1) customer migration example
(2) duration

531, 531

List Items

id File Page References

TSK1 2043CH02
26 1

26
TSK2 2043CH02

26 2
26

TSK3 2043CH02
26 3

26
TSK4 2043CH02

26 4
26

TSK5 2043CH02
27 5

26
TSK6 2043CH02

27 6
26

TSK7 2043CH02
27 7

26
TSK8 2043CH02

27 8
26

TSK9 2043CH02
27 9

26
TSK10 2043CH02

27 10
26

TSK11 2043CH02
27 11

26
JANDS 2043CH04

71 4
78

Footnotes

id File Page References

FNR3 2043CH10
222 6

222, 222, 222
FNMICRO 2043CH11

235 7
235

Tables

id File Page References

CCHART 2043CH02
16 1

WHOAFF 2043CH02
26 2

NINMAIN 2043CH03
54 3

CNVMAIN 2043CH03
54 4

XYZAFF 2043CH03
55 5

OPRAFF 2043CH03
55 6

VSEJCL 2043CH04

/XRL/25

86 7
OSJCL 2043CH04

88 8
POWJECL 2043CH04

89 9
J2JECL 2043CH04

90 10
89

JESIN 2043CH10
212 11

JSCHED 2043CH10
213 12

OUTSERV 2043CH10
215 13

FCB 2043CH10
217 14

TSOFUNC 2043CH10
219 15

TABC161 2043CH10
224 16

PMACS 2043CH10
226 17

211
PLINE 2043CH10

228 18
219, 221

PRMTB 2043CH10
228 19

220
PRMTS 2043CH10

229 20
220

PNODE 2043CH10
230 21

221
PCPTAB 2043CH10

230 22
PEXIT 2043CH10

231 23
220, 221

NJENM 2043CH10
233 27

NJEFCC 2043CH10
234 28

NJECM 2043CH10
234 29

PRNTDEV 2043CH11
239 30

PSFOPER 2043CH11
242 31

BUPE 2043CH12
252 32

249, 251
TERMST 2043CH12

257 33
257

DOSOPT1 2043CH12
261 34

VS2OPT1 2043CH12
262 34

VS2NAV1 2043CH12
263 34

PLICHRT 2043CH17
351 34

249
LBUPE 2043CH17

353 35
351, 353

CPLIOPT 2043CH17
355 36

354
CMIG 2043CH17

355 37
355

BMIG 2043CH17
356 38

356
DMIG 2043CH17

356 39
356

PMIG 2043CH17
357 40

356
ILCMIG 2043CH17

358 41

/XRL/26

358
OPTRC1 2043CH17

363 42
363

OPTRC4 2043CH17
363 43

363
CICOPT 2043CH17

367 44
367

TABDLY 2043CH25
403 45

432
VENPS 2043AX02

539 46

Schedules

id File Page References

JMPFSUM 2043CH03
56

56
JMPFDET 2043CH03

60
58

Processing Options

Runtime values:
Document fileid ... SG242043 SCRIPT
Document type .. USERDOC
Document style ... REDBOOK
Profile ... EDFPRF40
Service Level .. 0022
SCRIPT/VS Release ... 4.0.0
Date .. 98.10.20
Time .. 04:41:52
Device .. 3820A
Number of Passes .. 4
Index ... YES
SYSVAR D .. YES
SYSVAR G ... INLINE
SYSVAR X .. YES

Formatting values used:
Annotation .. NO
Cross reference listing .. YES
Cross reference head prefix only .. NO
Dialog ... LABEL
Duplex .. YES
DVCF conditions file ... (none)
DVCF value 1 .. (none)
DVCF value 2 .. (none)
DVCF value 3 .. (none)
DVCF value 4 .. (none)
DVCF value 5 .. (none)
DVCF value 6 .. (none)
DVCF value 7 .. (none)
DVCF value 8 .. (none)
DVCF value 9 .. (none)
Explode .. NO
Figure list on new page ... YES
Figure/table number separation ... YES
Folio-by-chapter .. NO
Head 0 body text .. Part
Head 1 body text .. Chapter
Head 1 appendix text ... Appendix
Hyphenation .. NO
Justification ... NO
Language ... ENGL
Keyboard ... 395
Layout .. OFF
Leader dots ... YES
Master index ... (none)
Partial TOC (maximum level) .. 4
Partial TOC (new page after) .. INLINE
Print example id′s .. NO

/XRL/27

Print cross reference page numbers ... YES
Process value ... (none)
Punctuation move characters,
Read cross-reference fi le .. (none)
Running heading/footing rule .. NONE
Show index entries ... NO
Table of Contents (maximum level) ... 3
Table list on new page .. YES
Title page (draft) alignment ... RIGHT
Write cross-reference fi le .. (none)

Imbed Trace

Page 0 2043SU
Page 0 2043VARS
Page 0 REDB$POK
Page i REDB$ED1
Page i 2043EDNO
Page i REDB$ED2
Page xxi 2043ABST
Page xxi 2043ACKS
Page xxii REDB$COM
Page xxii 2043IMBD
Page 1 2043CH01
Page 12 2043CH02
Page 40 2043CH03
Page 67 2043CH04
Page 95 2043CH05
Page 132 2043CH06
Page 154 2043CH07
Page 167 2043CH08
Page 183 2043CH09
Page 206 2043CH10
Page 234 2043CH11
Page 247 2043CH12
Page 265 2043CH13
Page 328 2043CH14
Page 331 2043CH15
Page 347 2043CH16
Page 349 2043CH17
Page 367 2043CH18
Page 373 2043CH19
Page 380 2043CH20
Page 385 2043CH21
Page 388 2043CH22
Page 391 2043CH23
Page 395 2043CH24
Page 399 2043CH25
Page 417 2043CH26
Page 435 2043CH27
Page 441 2043CH28
Page 454 2043CH29
Page 456 2043CH30
Page 472 2043CH31
Page 479 2043CH32
Page 518 2043CH33
Page 527 2043CH34
Page 533 2043AX01
Page 537 2043AX02
Page 541 2043AX03
Page 553 2043SPEC
Page 553 REDB$SPE
Page 553 2043TMKS
Page 556 2043BIBL
Page 559 REDB$BIB
Page 560 REDB$ORD
Page 563 2043GLOS
Page 582 2043ABRV
Page 620 REDB$EVA

	VSE to OS/390 Migration Workbook
	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Redbook Builders and Key Contributors
	Authors and Significant Contributors
	Comments Welcome

	Part 1. Planning the Migration - An Introduction
	Chapter 1. Why Customers Migrate
	A Synopsis of This Book
	Traditional Reasons for Migrating
	Business Consolidation
	Mergers/ Acquisitions
	Capacity Constraints
	Image
	Functional Reasons for Migrating to OS/ 390
	Applications Availability
	Systems Management
	Connectivity
	Systems Availability
	Staff Availability

	Chapter 2. Sizing the Effort
	Introduction to Sizing
	Defining the Migration Project Objectives
	Areas of VSE and OS/ 390 Differences
	Comparison of Basic VSE Functions & Components to OS/390
	OS/ 390 Components/ Products/ Subsystems
	The OS/ 390 Operating Environment
	Subsystem Level Comparison/ Affinity
	What Changes Between VSE and OS/ 390?
	Philosophical Changes
	Who is Affected by This Migration?
	Job Roles and Normal Activities
	Approaches to Migration
	Disclaimer
	OS/ 390 Conversion and Production Implementation Strategies
	VM/ ESA Guest Support in Your VSE to OS/ 390 Migration
	Staffing Strategies
	Conversion Tools
	Educational Requirements
	Introduction
	Scope of Work and Challenges
	Application Inventory
	Program Conversion
	JCL Conversion
	File Migration
	Project Management
	Automated Operations
	Cost Considerations
	OS/ 390 Documentation Resources
	Introduction References
	Key Documents and Other References
	Web URL

	Chapter 3. Developing the Plan
	Overview
	References
	Recommendations
	Plan Components
	Approach
	Team
	Tasks
	Milestone Events
	Education
	Progressive versus Mass Conversion
	Approach Differences
	Historical Perspective
	Shared Application Files and Databases
	Shared Application Code
	Operations Support Staffing
	Automated Operations Tools
	Standardized Conversion Deliverables and Automation
	Risk Management
	Complexity of Implementation
	Plan Examples
	Project Schedule
	Project Plan Example

	Part 2. Converting the VSE Operating System to the OS/390 Operating System
	Chapter 4. Job Control Language (JCL) Differences and Considerations
	The Philosophy of JCL in System/390
	VSE/ ESA¢ s Job Control Language Philosophy
	OS/ 390¢ s Job Control Philosophy
	High Level Similarities
	JCL Statement and Job Layout
	Spooling
	JCL Differences Between VSE and MVS
	Job Input
	JCL Expansion
	Operator Flexibility and Intervention
	Allocation of Resources
	Hidden JCL
	Device Address Specifications
	Catalogs
	Partition Dependent Codes in JCL
	Communication Region - DATE and UPSI
	VSE Job Control Statements
	MVS Job Control Statements
	Comparison of VSE and MVS JCL - A Summary
	Summary of MVS JCL Statements
	JECL
	Comparison of POWER and JES2 JECL - A Summary
	Summary of JES2 JECL - A Table
	VSE and MVS JCL Comparison Example
	Sample VSE JCL
	Sample MVS JCL
	Sample VSE plus Carry- Over

	Chapter 5. Disk and Tape Storage Considerations
	Access Method Similarities and Differences
	Access Methods
	Operating System Implementations
	Miscellaneous Functions
	Data Set Naming Considerations
	VSE Considerations
	OS/ 390 Considerations
	Storage and Space Management
	VSE Considerations
	OS/ 390 Considerations
	System Managed Storage
	Implementing DFSMS
	Tape Similarities and Differences
	Volume Interchangeability
	Standard Labels
	No Labels
	Nonstandard Labels
	Bypass Label Processing Facility in OS/ 390
	DASD Similarities and Differences
	Volume Interchangeability
	DASD (VTOC) Processing
	Indexed VTOC Considerations (OS/ 390)
	VSAM Differences
	Introduction
	OS/ 390 Catalogs
	OS/ 390 Catalog Management
	OS/ 390 - VSE/ VSAM Catalog Compatibility
	VSAM Functional Differences
	Data Sharing and Integrity
	Programming Languages and VSAM Support
	VSAM Error and Reason Code Compatibility
	DFSORT and VSAM Considerations

	Chapter 6. CICS
	Introduction
	Overview CICS Transaction Server
	Essential Supplemental Reading and Migration Support Material
	General Compatibility Comments
	Virtual Storage Considerations for MVS
	CICS General System Considerations
	CICS Macro Resource Definition Table Changes
	CSD and RDO Considerations
	CICS System Data Sets Requirements
	CICS System Program Interface and Exits
	CICS Transaction Security
	CICS UPSI
	Application Programming
	CICS/ VSE and TS Coexistence Considerations
	Testing and Problem Determination Considerations
	Vendor Applications
	CICS with DL/ I

	Chapter 7. ICCF and TSO
	Preparing to Use the System
	User Profiles
	LOGON Procedures
	Message Facilities
	Security
	Summary
	Using the System
	Accessing the System
	Entering and Manipulating Data
	Executing Programs at a Terminal
	Submitting Jobs for Batch Execution
	Using Command Procedures
	Migrating from VSE/ ICCF to MVS and TSO/ E
	Converting ICCF Libraries
	ICCF Procedures and Macros

	Chapter 8. Databases
	DL/ I and IMS/ VS DB Differences
	Introduction
	MVS System Requirements
	Data Base Descriptor (DBD)
	Program Specification Block (PSB)
	Batch Programming
	Utilities
	Operations
	Database Portability
	DL/ I Multiple Partition Support
	Additional Information
	SQL/ DS to DB2 for OS/ 390 Migration Consideration
	Descriptions of Users
	Other Comparison Areas
	Summary of Migration Task

	Chapter 9. Telecommunications Subsystems
	ACF/ VTAM
	Product Installation
	Resource Definition and Operation
	Customization and Programming
	Network Configuration
	ACF/ NCP
	Product Installation
	Program Generation
	Backlevel Hardware Support
	BTAM
	Product Installation
	Usage
	Migrating TCP/ IP
	Network Definitions
	TCP/ IP Configuration
	TCP/ IP Related User Data
	TCP/ IP Batch Jobs
	User Written TCP/ IP Applications
	Security
	Bibliography
	MQSeries
	MQSeries in Your Operating System Environment
	Networking Definitions
	Defining MQSeries Object and Operating
	MQSeries- based Applications
	Bibliography

	Chapter 10. POWER and JES2
	JES2 Introduction
	Major Differences
	Implementing JES2
	Setting Up the Required Resources
	Starting JES2
	Tailoring JES2
	JES2- POWER Functional Comparison
	Input Service
	Job Scheduling
	Output Service
	Interactive User Interfaces (ICCF/ CMS/ TSO)
	Remote Job Entry
	Network Job Entry
	Application Interfaces
	Accounting Comparisons
	RAS Characteristics
	JES2 Testing Techniques
	POWER/ JES2 Detailed Comparisons
	Mapping POWER Parameters to JES2 Init Parms
	Exit Comparisons
	POWER- JES2 Command Equivalences

	Chapter 11. Advanced Function Printing and Print Services Facility/ MVS
	Introducing PSF/ MVS
	Functional Comparison between PSF/ VSE and PSF/ MVS
	Migration Effort
	Installing and Configuring PSF/ MVS
	Defining Channel- attached Printers to MVS
	Defining Network Printers
	The PSF Startup Procedures
	Defining Printers for PSF Printing
	FSS Procedure and PRINTDEV Statements
	Setting up AFP Resources
	Migrating Resources from VSE to OS/ 390
	Remote-Resident Resources
	Transferring Print Streams - VSE and OS/ 390 Coexistence
	Migrating Print Applications
	Understanding Operational Differences
	Starting and Stopping PSF
	Command Comparison
	Other Differences
	Performance
	Installation Exits
	Accounting
	References
	PSF/ VSE Publications
	PSF/ MVS Publications
	Redbooks
	Other Sources
	Tools
	Services

	Part 3. Converting VSE Languages to OS/390 Languages
	Chapter 12. COBOL
	Introduction
	General Comments on COBOL for OS/ 390 and VM
	Comparison of IBM COBOL Compilers
	VSE to OS/ 390 Migration Considerations
	Migrating Object Code
	Useful Publications
	Converting from DOS/ VS COBOL
	DOS/ VS COBOL CICS Programs
	DOS/ VS COBOL Programs Containing REPORT WRITER Statements
	DOS/ VS COBOL and COBOL for OS/ 390 and VM Language Differences
	Common COBOL Coding Problems
	ENVIRONMENT DIVISION
	DATA DIVISION - FILE DESCRIPTION (FD)
	PROCEDURE DIVISION - Input/ Output
	File Handling Considerations
	Converting from VS COBOL II
	VS COBOL II CICS Programs
	Converting from COBOL for VSE/ ESA
	Some Conversion Considerations for all VSE COBOL Compilers
	VSAM
	DISPLAY Statement
	Compiler Options
	RES/ NORES
	Reserved Words
	Reserved Word Considerations for DOS/ VS COBOL
	Reserved Word Considerations for VS COBOL II and COBOL for
	VSE/ ESA
	Compiling and Running Your Converted COBOL Programs

	Chapter 13. Assembler
	Assembler Products
	General Assembler Conversion Comments
	System Interface and Macros
	Multitasking Macros
	Interrupt Handling Routines
	Virtual Storage Macros
	VSAM Macros
	Data Management Macros

	Chapter 14. RPG II
	Migration from VSE to OS/ 390
	Device Information
	Print Files
	Tape Labels
	Extent Exit
	Processing Options
	File Access Methods
	Calling COBOL Subprograms
	Calling PL/ I Subprograms

	Chapter 15. PL/ I
	Functional Differences
	EGCS (VSE) to DBCS (OS Version 2) Comments
	Extended Precision
	Multitasking
	Dynamic Loading of Dependent Programs
	File Organization
	Parameters Passed to a Main Program
	%INCLUDE
	Compiler Options
	Options Specific to the DOS Compiler
	Options Specific to the MVS Compiler
	Execution Options
	The EXEC and PROCESS Cards
	Linkages Between Languages
	Linkages Supported
	Linkages not Supported
	ENVIRONMENT Attributes
	Not Supported in MVS
	Supported but to be Avoided
	The Option
	The SIS Option (Sequential Insert Strategy)
	Calling SORT from PL/ I
	Interfaces Offered
	Parameters to be Passed
	Checkpoint- Restart in PL/ I
	PLICKPT
	PLIREST
	PLICANC
	DUMP in PL/ I Optimizer
	Output File
	Options Specific to DOS
	Options Specific to MVS
	Compatibility
	Return Codes in PL/ I
	Setting Return Codes
	Return Code Values
	Forcing an ABEND
	Use of DISP in the JCL
	Automatic Restart
	Overlay Structures
	Conversion
	Overlay in MVS
	Storage Management in PL/ I
	Storage Management in DOS
	Storage Management in MVS
	PL/ I and CICS
	File Support
	Statements not Supported
	CALLing DUMP
	Execution Options
	Compatibility
	PL/ I- CICS/ VS Transaction ABEND Codes
	PL/ I Return from ON- units and CICS Transaction Backout

	Chapter 16. FORTRAN
	VS FORTRAN in OS/ 390
	FORTRAN Conversion Considerations

	Chapter 17. Language Environment (LE)
	Introduction
	General Comments on Language Environment
	Conceptual Differences between LE/ VSE and OS/ 390 Language
	Environment
	VSE to OS/ 390 Migration Considerations
	LE/ VSE- conforming Languages
	Useful Publications
	Migrating from LE/ VSE- Conforming Languages
	C for VSE/ ESA
	COBOL for VSE/ ESA
	PL/ I for VSE/ ESA
	Migrating from Non- LE/ VSE Run- time Environments
	Options Mapping
	C/ 370
	VS COBOL II
	DOS/ VS COBOL
	DOS PL/ I
	VS FORTRAN
	Migrating Interlanguage Communications Applications
	Migrating Assembler Applications
	Migrating from LE/ VSE
	Run- time Options
	User Exits and Abnormal Termination Exits
	Callable Services and Math Services
	LE/VSE 1.4 Locales
	CICS
	COBOL and CICS
	Run- time Options
	User Exits and Abnormal Termination Exits

	Chapter 18. Procedure Language REXX
	REXX and VM/ ESA
	REXX and VSE/ ESA
	REXX and TSO/ E
	Environments
	VSE/ ESA Environment
	VM/ ESA Environment
	TSO/ E Environment
	REXX Exec Sample for the OS/ 2, TSO and CMS Environments
	Migration Issues
	REXX and SAA
	REXX Bibliography

	Part 4. Converting VSE Utilities to OS/390 Utilities
	Chapter 19. SORT
	JCL Statements
	Control Statements
	Additional DFSORT/ VSE Migration Considerations
	Control Statements
	ICETOOL

	Chapter 20. DITTO
	Compatibility with Previous Releases of DITTO
	DITTO Functions that are No Longer Supported
	DITTO Functions that are Not Recommended
	DITTO Function Code Synonyms
	Batch Keywords that are No Longer Supported
	Batch Keywords that are Not Recommended
	DITTO/ ESA Security

	Chapter 21. VSAM Backup/ Restore
	VSAM Backup/ Restore
	OS/ 390 VSAM Backup/ Restore
	VSE/ VSAM Backup/ Restore

	Chapter 22. Librarian
	Overall Library Support
	OS/ 390 ISPF Overview
	OS/ 390 Library Management

	Chapter 23. LISTLOG/PRINTLOG - Printing Log Streams
	VSE PRINTLOG Utility
	VSE LISTLOG Utility Program
	OS/ 390 Hardcopy Processing
	SYSLOG
	Printing SYSLOG
	OPERLOG
	Printing OPERLOG
	JES2 System Data Sets - Job Log and System Messages
	Systems Management Recording
	Printing SMF Records

	Chapter 24. VSE/Fast Copy and OS/390 DFSMSdss
	VSE/ Fast Copy (Online and Stand- Alone)
	DFSMSdss - OS/ 390 Component

	Part 5. Setting Up the Migration Environment
	Chapter 25. Prepare the Migration Environment
	Introduction
	Install and Configure Required Hardware
	Processor Requirements
	Devices Supported by OS/ 390
	DASD Requirements
	Other Hardware Requirements
	Inter-Systems Connectivity
	Order and Install the OS/ 390 Software
	Fee- based Methods of Installing OS/ 390
	Entitled Methods of Installing OS/ 390
	Set Up Standards, Procedures, and Documentation
	Installation Standards
	Systems Management Procedures
	Documentation
	Customize Your New OS/ 390 System
	MVS BCP Customization
	Other OS/ 390 Elements

	Chapter 26. Test Environments
	Introduction
	Differences in Testing
	Terminology
	Test Systems in the Life of the Migration
	VM, LPAR, or Standalone Systems
	Logical Partitioning
	Software Partitioning
	Our Recommendation
	Summary
	Parallel Activities
	Synchronizing VSE Applications with OS/ 390 Versions
	Building the Initial OS/ 390 Test System
	OS/ 390 Maintenance Environment
	OS/ 390 Test Logical Partition
	Maintaining Your OS/ 390 Libraries and SMP/ E Zones
	Shared DASD vs. Cloned DASD
	Shared DASD between OS/ 390 Test Systems (vs. Cloned DASD)
	Shared DASD between VSE and OS/ 390 (vs. Cloned DASD)

	Part 6. Running Your OS/390 System
	Chapter 27. Orienting ICCF Users to TSO/ISPF
	TSO/ ISPF and SDSF
	Editing Data Sets
	Submitting Jobs
	Using ISPF Utilities
	Creating and Executing ISPF Applications
	Managing Projects
	Tracking Jobs
	Retrieving Output
	Using SDSF for Operators

	Chapter 28. Orientation to OS/390 Console Operation
	Introduction
	Operating Hardware Consoles
	Understanding the Operator Interfaces
	Controlling Consoles
	Managing Display Consoles
	Extended MCS Consoles
	Understanding Message Formats and Replies
	Controlling the OS/ 390 System
	Starting the System
	Displaying System Status
	Stopping the System
	Controlling Devices
	Displaying the Status of Devices
	Understanding Device Allocation
	JES2 Devices
	SDSF Device Panels
	Controlling TSO Users, Jobs and Started Tasks
	Displaying Work on Your System
	Controlling Time Sharing Users
	Controlling Batch Jobs
	Controlling Started Tasks
	Managing Remote Operations
	JES2 RJE Operations
	NJE Operations

	Chapter 29. Orientation for Utilities
	IEBxxx or IEHxxx
	IEBCOPY
	IDCAMS
	IEBGENER
	DFSMSdss

	Chapter 30. Systems Management Philosophy and Methodology
	The Philosophy of Systems Management
	Systems Management Overview
	Systems Management Scope - What Needs to be Managed?
	The Role of Automation
	Change Management
	Overview
	Tasks
	Methodology
	Problem Management
	Overview
	Tasks
	Methodology
	Performance Management
	Overview
	Tasks
	Methodology
	Operations Management
	Overview
	Tasks
	Methodology
	Security Management
	Overview
	Tasks
	Methodology
	Configuration Management
	Overview
	Tasks
	Methodology
	Asset Management
	Overview
	Tasks
	Methodology
	Accounting Management
	Overview
	Tasks
	Methodology
	Summary

	Chapter 31. Diagnosing System Problems
	Problem Determination Tools
	Dumps
	IPCS
	Analyzing Dumps
	Traces
	Analyzing Traces
	Using IPCS
	JES2 Diagnosis
	SLIP
	Performance Tools
	LOGREC
	SYSLOG
	DFSMS/ MVS Diagnosis
	DFSMSdfp
	DFSMShsm
	DFSMSrmm
	DFSMSdss
	Diagnostic Reference Publications

	Part 7. Converting your Applications
	Chapter 32. Conversion Process
	Conversion Process Introduction
	References
	Prerequisites
	Recommendations
	Assumptions
	Mass Conversion - Background, Benefits and Method
	IBM MVS Migration System - Background
	Mass Conversion Overview / Benefits
	Mass Conversion Tools
	Automated Conversion Process
	CORTEX MS
	Mass Conversion Phase Overview
	Preparation Phases
	Phase 0: Project Management and Technical Leadership
	Phase 1: Application Inventory
	OS/ 390 Standards and Naming Conventions
	Phase 2: Conversion Specifications
	Phase 3: Customization or Development of Conversion Tools
	Conversion Phases
	Program Conversion
	JCL Conversion
	Phase 4: Initial Trial Conversion
	Phase 5: OS/390 Regression Tests and Repeated Trial Conversions
	Initialization Testing
	Unit Testing
	System Testing
	Parallel/ Production Simulation Testing
	Implementation Phases
	Phase 6: Actual Conversion and Switchover
	Switchover
	Phase 7: Initial OS/ 390 Operations

	Chapter 33. Conversion Services and Tools
	Conversion Services
	IBM Global Services
	Automated Migration Services (AMS)
	Conversion Tools
	VSE/ ESA Facilities
	IBM OPTI- AUDIT for VSE
	IBM COBOL and CICS Command Level Conversion Aid (CCCA)
	SISRO - CORTEX- Migration System (CORTEX- MS)
	Computer Associates
	The Source Recovery Company

	Part 8. Migration Experience
	Chapter 34. Customer Migration Example
	Background
	Environment
	Inventory
	Resources
	Duration
	Performance
	Benefits

	Part 9. Appendixes
	Appendix A. Education Information
	A.1 What Training is Needed and What Training Courses are Available
	A.1.1 OS/ 390 Classes
	A.1.2 Custom Classes
	A. 1.3 OEM Product Education
	A.2 When are Courses Scheduled and When are they Needed?
	A.3 Who will Provide the Training?
	A.4 Where will the Training Take Place?

	Appendix B. Mapping ISV Products and Functions
	B. 1 The IBM Software Migration Project Office (SMPO)
	B. 2 VSE ISV System Management Products and OS/ 390 Compared

	Appendix C. DFSMS Naming Conventions
	C. 1 Data Set Naming Guidelines
	C. 2 Components of a Data Set Name
	C. 2.1 High- Level Qualifier (HLQ)
	C. 2.2 Relative Importance
	C. 2.3 File Contents
	C. 2.4 User Name
	C. 2.5 Data Set Level
	C. 3 Things Not to Include in the Data Set Name
	C. 3.1 Department Number
	C. 3.2 Application Location
	C. 3.3 Management Criteria
	C. 3.4 Output Device Type
	C. 3.5 Expiration Date
	C. 3.6 Access Method
	C. 3.7 Job Name
	C. 4 Common Applications - Naming Conventions
	C. 4.1 TSO Naming Conventions
	C. 4.2 VSAM Data Set Naming Conventions
	C. 4.3 DB2 Naming Conventions
	C. 4.4 Generation Data Sets

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.1.1 OS/ 390 and MVS Redbooks
	E.1.2 Other Redbooks
	E.2 OS/ 390 Product Publications
	E.2.1 Planning Books
	E.2.2 OS/ 390 Online Product Library
	E.3 Other Publications
	E.4 Other Sources
	E.4.1 Books on the Internet
	E.5 Redbooks on CD- ROMs

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	List of Abbreviations
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	G
	F
	H
	I
	J
	K
	L
	M
	O
	N
	P
	Q
	R
	S
	T
	U V
	W
	X
	Y
	ITSO Redbook Evaluation

