
Programming Guide
Rev. 1.62 / August 2012

ZWIR451x
Low-Power Wireless IPv6 Module Series

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
2 of 91

Content

Content... 2

List of Figures ... 6

List of Tables .. 6

1 Introduction .. 7

1.1. IPv6 .. 8

1.2. 6LoWPAN ... 8

1.3. Organization of this Document ... 8

2 System Overview ... 9

3 Functional Description .. 12

3.1. Requirements Notation ... 12

3.2. Terms ... 12

3.3. Naming Conventions .. 13

3.4. Library Architecture .. 13

3.5. Operating Modes .. 13

3.5.1. Device Mode ... 15

3.5.2. Gateway Mode .. 15

3.5.3. Sniffer Mode .. 15

3.6. Operating System ... 16

3.6.1. Initialization ... 16

3.6.2. Normal Operation .. 17

3.6.3. Power Modes .. 18

3.6.4. Error Handling ... 19

3.7. Firmware Version Information ... 19

3.7.1. Vendor ID .. 20

3.7.2. Product ID ... 20

3.7.3. Major Firmware Version .. 20

3.7.4. Minor Firmware Version .. 20

3.7.5. Firmware Version Extension ... 20

3.7.6. Library Version .. 20

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
3 of 91

3.8. Addressing .. 20

3.8.1. Address Types .. 21

3.8.2. IPv6 Addresses ... 21

3.8.3. IPv6 Address Autoconfiguration .. 23

3.8.4. Validation of Address Uniqueness .. 23

3.9. Data Transmission and Reception .. 24

3.9.1. User Datagram Protocol .. 25

3.9.2. Data Transmission and Reception .. 25

3.9.3. Address Resolution ... 27

3.9.4. Recommendations .. 28

3.10. Mesh Routing ... 28

3.10.1. Multicast Traffic ... 29

3.10.2. Unicast Traffic ... 29

3.10.3. Mesh Routing Parameter Configuration Recommendations 29

3.11. Network and Device Status .. 31

3.12. Security ... 31

3.12.1. Internet Protocol Security (IPSec) ... 32

3.12.2. Internet Key Exchange Version 2 (IKEv2) ... 33

3.12.3. Recommendations .. 34

3.13. Firmware Over-the-Air Updates .. 34

3.13.1. Functional Description ... 34

3.13.2. Firmware Constraints .. 35

3.14. Memory Considerations .. 36

3.14.1. Call Stack .. 36

3.14.2. ZMDI Network Stack Dynamic RAM Requirements .. 37

3.14.3. Using Dynamic Memory Allocation .. 37

3.15. Supported Network Standards .. 38

4 Core-Library Reference .. 41

4.1. Initialization ... 41

4.2. Program Control ... 42

4.3. Networking .. 45

4.3.1. Address Management ... 45

4.3.2. Socket and Datagram Handling .. 48

4.3.3. Radio Parameters ... 51

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
4 of 91

4.3.4. Gateway Mode Functions .. 53

4.3.5. Miscellaneous ... 54

4.4. Power Management ... 56

4.5. Network Monitoring ... 59

4.6. Firmware Version Information ... 64

4.7. Properties and Parameters ... 65

4.8. Error Codes .. 66

5 UART Library Reference .. 67

5.1. Symbol Reference .. 67

5.2. Error Codes .. 69

6 GPIO Library Reference ... 70

6.1. Symbol Reference .. 70

7 IPSec Library Reference .. 74

7.1. Symbol Reference .. 74

8 IKEv2 Library Reference .. 77

8.1. Symbol Reference .. 77

8.2. Library Parameters ... 78

9 Over-the-Air Update Library ... 78

9.1. Library Reference ... 78

10 Accessing Microcontroller Resources .. 79

10.1. Internal Microcontroller Configuration ... 79

10.2. Interrupt Handlers ... 79

10.3. Default I/O Configuration .. 82

11 Certification .. 84

11.1. European R&TTE Directive Statements ... 84

11.2. Federal Communication Commission Certification Statements 84

11.2.1. Statements .. 84

11.2.2. Requirements .. 84

11.2.3. Accessing the FCC ID ... 85

11.3. Supported Antennas ... 85

12 Alphabetical List of Symbols .. 86

13 Related Documents .. 89

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
5 of 91

14 Glossary ... 89

15 Document Revision History .. 91

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
6 of 91

List of Figures

Figure 1.1 ZWIR451x-I Application Domain .. 7
Figure 2.1 Schematic View of the ZWIR451x Module .. 9
Figure 3.1 Library Architecture ..14
Figure 3.2 Application Interface into the Protocol Stack in Different Operating Modes ..14
Figure 3.3 IPv6 Unicast Address Layout ...22
Figure 3.4 IPv6 Multicast Address Layout ..22
Figure 3.5 Resolving Address Conflicts in Local Networks ..24
Figure 3.6 Working Principle of IPSec ..33
Figure 3.7 Memory Layout of OTAU-Enabled Applications ..35
Figure 3.8 Heap Memory Scattering ...38
Figure 6.1 ZWIR_GPIO_ReadMultiple Result Alignment ...71
Figure 8.1 FCC Compliance Statement to be printed on Equipment Incorporating ZWIR4512 Devices85

List of Tables

Table 2.1 Pin Description of ZWIR451x Modules ..10
Table 3.1 Naming Conventions Used in C-Code ...13
Table 3.2 Event Processing Priority in the Main Event Loop ...17
Table 3.3 Power Modes Overview ...18
Table 3.4 Interrupts Causing System Reset ..19
Table 3.5 Unicast Socket Examples ..26
Table 3.6 Multicast Addressing Examples ...27
Table 3.7 Stack-Parameter Dynamic Memory Size Requriements ...37
Table 3.8 Supported RFCs and Limitations ...38
Table 4.1 Configurable Stack Parameters and Their Default Values ..65
Table 4.2 Error Codes Generated by the Core Library ..66
Table 5.1 Error Codes Generated by the UART Libraries ...69
Table 8.1 Overview of IKEv2 Library Parameters and Properties ...78
Table 10.1 STM32 Interrupt Vector Table ...80
Table 10.2 STM32 Default I/O Configuration ...82

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
7 of 91

1 Introduction

This guide describes the usage of the 6LoWPAN application programming interface (API) for application devel-

opment using ZWIR451x modules. These modules provide bidirectional IPv6 communication over an IEEE

802.15.4 wireless network. Using IPv6 as the network layer protocol allows easy integration of sensor or actor

nodes into an existing Internet Protocol (IP) infrastructure without the need for additional hardware.

Figure 1.1 ZWIR451x-I Application Domain

Figure 1.1 shows a typical network configuration. The Personal Area Network (PAN) is built from a set of various

ZWIR451x modules. The network is connected via a border router to the local area network (LAN) and from there

to a wide area network (WAN) such as the Internet. With this setup, each module can be accessed from anywhere

in the world with just its unique IPv6 address.

The radio nodes are typically organized in a mesh topology. Routing of IP packets over this topology is handled by

the software stack transparently for the user. The network allows dropping in new nodes or removing existing

nodes without requiring manual reconfiguration. Routes to new nodes will be found automatically by the stack.

Application software runs on an ARM Cortex M3 microcontroller (MCU) on top of the ZWIR451x API. The MCU is

clocked with up to 64 MHz and provides 256 kByte flash memory and 48 kByte RAM which allows the

implementation of memory and computationally intensive applications. The API provides functions to

communicate with remote devices, access different I/O interfaces and support power-saving modes.

WAN

LAN

PAN

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
8 of 91

1.1. IPv6

IPv6 is the successor of the IPv4 protocol, which has been the major network protocol used for Internet

communication over the past decades. One of the main advantages of IPv6 over IPv4 is its huge address area,

which provides 2
128

 (about 3.4 x 10
38

) unique addresses. This enormous address space allows assignment of a

globally unique IP address to every imaginable device that could be connected to the Internet. Another advantage

with respect to sensor networks is the stateless address auto-configuration mechanism, allowing nodes to obtain

a unique local or global IP address without requiring a specific server or manual configuration.

The use of IPv6 makes it possible to connect sensor networks directly to the Internet. Basically this is possible

with other network protocols, too, but those require a dedicated gateway that translates network addresses to IP

addresses and vice versa. Usually this translation requires application knowledge and maintenance of the

application state in the border router, and therefore changing the border router software might be required with

each application update. The protocol gateway might also introduce an additional point of attack if secure

communication between devices inside and outside of the PAN is required.

ZMDI’s 6LoWPAN implementation supports IPSec, which is the mandated standard for secure communication

over IPv6. The use of IPv6 through the whole network allows real end-to-end security.

1.2. 6LoWPAN

IPv6 has been designed for high bandwidth internet infrastructure, which does not put significant constraints on

the underlying network protocols due to the vast amount of memory, computing power and energy. In contrast, the

IEEE 802.15.4 standard is intended for low data-rate communication of devices with very limited availability of all

these resources. In order to make both standards work together, the 6LoWPAN standard (RFC 4944) has been

developed by the Internet Engineering Task Force (IETF) to carry IP packets over IEEE 802.15.4 networks.

6LoWPAN adds an adaption layer between the link layer and network layer of the Open Systems Interconnection

(OSI) reference model. This layer performs compression of IPv6 and higher layer headers as well as

fragmentation to get large IPv6 packets transmitted over IEEE 802.15.4 networks. The 6LoWPAN layer is

transparent for the user, and therefore on 6LoWPAN devices, the IPv6 protocol is used in exactly the same way

as on native IPv6 devices. The presence of the 6LoWPAN adaption layer does not restrict IP functionality. The

user of a 6LoWPAN system doesn’t even recognize the existence of the 6LoWPAN layer.

1.3. Organization of this Document

The following section gives a system overview and shows the interfaces available for the programmer.

Sections 3 to 8 cover the API documentation, which is divided into two parts. The first part, covered by section 3

provides a functional description of the network stack. It explains the correlation of the different API functions and

provides background information about stack internals. The second part is the function reference and is covered

by sections 4 to 8. If familiar with the general stack functionality, the reader can just use these sections to look up

function signatures or basic usage information.

Section 9 explains how user applications can use the resources provided by the microcontroller and which

resources are blocked by the operating system.

Terms set in bold monospace font can be clicked, activating a hyperlink to the section where a detailed

definition of this term can be found.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
9 of 91

2 System Overview

ZMDI’s ZWIR451x modules integrate an IEEE802.15.4 compliant transceiver (TRX) with a powerful ARM Cortex

M3 microcontroller (MCU). The complete radio front-end is integrated. The transceiver performs analog and digital

radio processing and implements parts of the medium access control (MAC) layer. The microcontroller

implements the remaining part of the MAC and the higher protocol layers.

Figure 2.1 Schematic View of the ZWIR451x Module

1 2 3 4 5 6 7 8 9

24 23 22 21 20 19 18 17 16

10

11

12

13

14

15

30

29

28

27

26

25

TRX MCU

Digital In/Out, Configurable

Digital In/Out, Fixed

Analog Out, Fixed

Digital Internal, Fixed

Figure 2.1 shows the outline of ZWIR451x modules with a schematic view of the internal components and

connections. Users can disregard RF issues except the external antenna pin. Most of the external pins are

general purpose digital pins that are connected directly to the MCU and are freely configurable. Table 2.1 lists the

functionality of the pins and which port they are connected to on the MCU.

ZWIR451x modules are delivered with a 6LoWPAN stack, which is completely implemented on the MCU. The

microcontroller provides enough resources to run a user application in parallel with the stack. The user application

can make use of the rich set of peripherals, and system level costs are kept low because no external controller is

required.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
10 of 91

Table 2.1 Pin Description of ZWIR451x Modules

Pin Name
MCU
Port

Type 1 5V Startup Function Alternative Function

1 GPIO7 PA7 IO GPIO (input mode)

SPI1 – MOSI

ADC1 / ADC2 – IN7

PWM (TIM8-1N, TIM3-1, TIM1-1N)

2 GPIO6 PA6 IO GPIO (input mode)

SPI1 – MISO

ADC1 / ADC2 – IN6

PWM (TIM3-1)

Timer Break (TIM1, TIM8)

3 GPIO5 PA5 IO GPIO (input mode)

SPI1 – SCK

DAC – OUT2

ADC1 / ADC2 – IN5

4 GPIO4 PA4 IO GPIO (input mode)

SPI1 – NSS

USART2 – CK

DAC – OUT1

ADC1 / ADC2 – IN4

5 GPIO3 PA3 IO GPIO (input mode)

USART2 – RX

ADC1 / ADC2 / ADC3 – IN3

PWM (TIM2-4, TIM5-4)

6 GPIO2 PA2 IO GPIO (input mode)

USART2 – TX

ADC1 / ADC2 / ADC3 – IN2

PWM (TIM2-3, TIM5-3)

7 GPIO1 PA1 IO GPIO (input mode)

USART2 – RTS

ADC1 / ADC2 / ADC3 – IN1

PWM (TIM2-2, TIM5-2)

8 GPIO0
PA0-

WKUP
IO GPIO (input mode)

WKUP

USART2 – CTS

ADC1 / ADC2 / ADC3 – IN0

PWM (TIM2-1, TIM5-1)

Timer Trigger (TIM2)

9 GPIO12 PC13 IO GPIO (input mode) TAMPER-RTC

10 /RESET NRST IO Reset Not available

11 GND GND S Ground Not available

12 GPIO9 PA10 IO  GPIO (input mode)
USART1 – RX

PWM (TIM1-3)

13 GPIO8 PA9 IO  GPIO (input mode)
USART1 – TX

PWM (TIM1-2)

14 VCC VCC S Power Supply Not available

15 BSEL BOOT0 I Boot mode selection Not available

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
11 of 91

Pin Name
MCU
Port

Type 1 5V Startup Function Alternative Function

16 GPIO10 PA11 IO  GPIO (input mode)

USART1 – CTS

USB – D-

CAN – RX

PWM (TIM1-4)

17 GPIO11 PA12 IO  GPIO (input mode)

USART1 – RTS

USB – D+

CAN – TX

Timer Trigger (TIM1)

18 VSTDBY VBAT S
Alternative power supply
for Standby Mode

Not available

19 TDO PB3 IO  JTAG – TDO

TRACESW

SPI1 – SCK

PWM (TIM2-2)

20 TMS PA13 IO  JTAG – TMS GPIO 2

21 TDI PA15 IO  JTAG – TDI

GPIO 3

SPI1 – NSS

Timer Trigger (TIM2)

22 TCK PA14 IO  JTAG – TCK GPIO 2

23 GPIO14 PB7 IO  GPIO (input mode)

I
2
C – SDA

UART1 – RX 4

PWM (TIM4-2)

24 GPIO13 PB6 IO  GPIO (input mode)

I
2
C-SCL

UART1 – TX

PWM (TIM4-1)

25 DIG1 - O Not available

26 PACTLN - O
PA control (differential)
complementary output

Not available

27 PACTLP - O PA control (differential) Not available

28 GND GND S Ground Not available

29 ANT - IO Antenna pin Not available

30 GND GND S Ground Not available

1.
 The “Type” column indicates the type of the pin: IO - input/output, I - input only, O - output only, S - power supply.

2.
 In order to enable alternative functions, field SWJ_CFG in MCU register AFIO_MAPR must be set to 0b100!

3.
 In order to enable alternative functions, field SWJ_CFG in MCU register AFIO_MAPR must be set to 0b010 or 0b100!

4.
 Remapped function.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
12 of 91

3 Functional Description

The following subsections give a generic overview of the different functionalities of the firmware delivered with

ZWIR451x modules. Background information is provided if required for proper use of the libraries. Usage

recommendations are given for optimal performance in certain application configurations. A detailed description of

the functions, types and variables available for application programming is given in sections 4 through 8.

3.1. Requirements Notation

This document uses several words to indicate the requirements of ZMDI’s 6LoWPAN stack implementation. The

key-words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and

OPTIONAL, set in italic small caps letters denote requirements as described below

MUST, SHALL, REQUIRED These words denote an absolute requirement of the implementation. Disregarding these

requirements will cause erroneous function of the system.

MUST NOT, SHALL NOT These phrases mean that something is absolutely prohibited by the implementation.

Disregarding these requirements will cause erroneous function of the system.

SHOULD, RECOMMENDED These words describe best practice but there may be reasons to disregard it. Before

ignoring this, implications of ignoring it must be fully understood.

SHOULD NOT, NOT RECOMMENDED These words describe items that, when implemented, can impair proper

behavior of the system. However, there may be reasons to choose to implement the item anyway. Implications of

doing so must be fully understood.

MAY, OPTIONAL These words describe items which are optional. No misbehavior is to be expected when these

items are ignored.

3.2. Terms

This document distinguishes between three types of functions: hooks, callbacks and API functions. Basically, all

three types are defined as normal functions in C, but they differ in the way that they are used.

API Functions are functions which are defined and implemented by ZMDI’s 6LoWPAN stack. They provide a

functionality that can be accessed by the user code. The declarations of API functions are provided in the header

file belonging to the library the function is implemented in.

Hooks are functions that provide the user the ability to extend the default behavior of the stack. They are called

from the operating system (OS) to give the application the opportunity to implement custom features or reactions

to events. The operating system provides a default implementation of the hook that is called if no custom hook is

defined. The prototypes of all available hooks are defined in the header file belonging to the library the default

implementation is located in. ZWIR_AppInitNetwork and ZWIR_Error are examples of hooks.

Callbacks are also called from the operating system, but they need to be registered explicitly at the OS. The

function may have a custom name, but the signature must be matching. Callback functions are registered at the

OS using API functions. One example for a function expecting a callback is ZWIR_OpenSocket. In contrast to

hooks, callbacks do not have default implementations. For each callback function there is a type declaration

declaring how the signature of the user function should look like.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
13 of 91

3.3. Naming Conventions

For better readability of the code, all user accessible functions and types of the API comply with a set of naming

conventions. Each identifier that is an element of the API is prefixed with “ZWIR_.” Function, variable, function

argument and type identifiers are defined using “CamelCase” style. This means that each single word of a multiple

word identifier starts with a capital letter. The remaining letters of the word are lower case. Preprocessor macros

are defined using all capital letters.

Different style rules apply to functions, variables and types definitions. Function-name and type-name identifiers

start with a capital letter in the first word, while variable identifiers start with a lower case letter in the first word.

Type names have an additional “_t” suffix. Variable names and function arguments are not differentiated in the

naming conventions.

Table 3.1 Naming Conventions Used in C-Code

Identifier Type Style

variableName, functionArgument First word starts with lower case, all other words with capital letters.

FunctionName All words start with capital letters (“CamelCase”).

TypeName_t All words start with capital letters, “_t” suffix.

PREPROCESSOR_MACRO All letters are capitalized.

3.4. Library Architecture

ZWIR451x modules are freely programmable by means of an API that is implemented in a set of libraries. The

libraries provide different functionality and can be linked into the user program. The use of the core library is

mandatory, as it provides the operating system and all generic communication functionality. All other libraries are

optional and can be linked depending on the requirements of the target application. Each library exposes a set of

functions and types that are required to implement the desired functionality. The library architecture is depicted in

Figure 3.1.

To make programming as easy as possible, the libraries make use of an event and command approach wherever

possible. Using this approach, application code is not required to poll for data on the different interfaces. Instead,

newly available data is passed to user defined callback functions automatically. Timer hooks and callbacks are

available, and they are executed periodically or after expiration of a user-defined time interval automatically.

Linking the library without any additional code will result in a valid binary that can be programmed on a radio

module. Obviously such binaries will not provide user specific functionality. However, the nodes are relaying

packets in mesh networks and are responding to ping requests. In order to add functionality, several functions that

have empty default implementations can be defined by the user.

3.5. Operating Modes

The API provides three operating modes: Device Mode, Gateway Mode and Sniffer mode. The modes differ in

how many of the protocol layers are processed by the network stack. All other API functionality remains the same.

Setting the operating mode of a node must be done before any initialization of the API and the hardware. For this

purpose, the ZWIR_SetOperatingMode function is provided.

Figure 3.2 shows how application code interfaces into the network stack in different operating modes. A

description of the three different modes is provided in the next subsections.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
14 of 91

Figure 3.1 Library Architecture

Figure 3.2 Application Interface into the Protocol Stack in Different Operating Modes

G
P

IO
 &

 P
e

ri
p

h
e
ra

ls

Mesh Routing

6LoWPAN

IPSec
IPv6

IKEv2

IP
S

e
c
 C

o
n
fi
g

.
&

K
e
y
 D

a
ta

b
a
s
e

UDP

Application

U
A

R
T

1

HAL

IEEE 802.15.4 PHY

Network

Buffers

U
A

R
T

2

A
R

M
 C

o
rt

e
x

 M
3

Z
W

IR

4
5

0
2

Hardware

OTA Update

ICMPv6

IEEE 802.15.4 MAC

IEEE 802.15.4 MAC

libZWIR451x-OTAU.a

libZWIR451x-UART2.a

Application Code

libZWIR451x-UART1.a

libZWIR4512.a

libZWIR45xx-IKEv2.a

libZWIR45xx-IPSec.a

libZWIR45xx-6LoWPAN.a

Mesh Routing

6LoWPAN

IPv6

UDP

Application CodeApplication Code

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

Mesh Routing

6LoWPAN

IPv6

UDP

Application CodeApplication Code

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

Mesh Routing

6LoWPAN

IPv6

UDP

Application CodeApplication Code

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

6LoWPAN Stack

Application CodeApplication Code

Hardware

ZWIR_SendUDP

(((uuu(

User Callback

ZWIR_Send6LoWPAN

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
15 of 91

3.5.1. Device Mode

The Device Mode is preconfigured since this is the most commonly used mode for ZWIR451x modules. Each

node with sensing or acting functionality should use this operating mode. Full protocol processing is performed for

incoming and outgoing data. This means that all header information is removed from incoming User Datagram

Protocol (UDP) packets and only payload data is passed to the application. Accordingly the application only has to

provide payload data that should be sent over the network. The stack automatically adds all necessary header

information.

Device Mode-configured devices behave as normal IPv6 devices. Therefore address auto-configuration and

neighbor-discovery is performed as defined by the IPv6 standard. Data are sent and received over UDP sockets.

The functions ZWIR_SendUDP and ZWIR_SendUDP2 serve as an interface to the network stack. Incoming data is

passed to an application callback that must be registered when a socket is opened using ZWIR_OpenSocket.

3.5.2. Gateway Mode

The Gateway Mode is intended for use with modules that should work as protocol gateways. Protocol gateways

change the physical media used for IPv6 packet transmission. This enables the integration of 6LoWPAN networks

into Ethernet-based IPv6 networks for instance.

In contrast to the Device Mode, not all network layers are processed in Gateway Mode. For any IPv6 packet that

is received via the air interface, only the 6LoWPAN-specific modifications of the headers are removed, resulting in

a packet containing all IPv6 and higher layer headers. This packet is passed to the receive callback function.

Accordingly, all data that need to be sent over the network are assumed to have valid IPv6 and higher layer

headers. Only 6LoWPAN-specific modifications will be applied to outgoing packets.

Gateway-configured devices do not perform address auto-configuration and neighbor-discovery as defined by the

IPv6 standard. Moreover no router solicitation and router advertisement messages are generated automatically.

To enter the Gateway Mode, ZWIR_SetOperatingMode must be called from ZWIR_AppInitHardware. It is

not possible to call ZWIR_SetOperatingMode from any other location in the code. ZWIR_SetOperatingMode

accepts a callback function that is called upon reception of data in the gateway. Sending data is accomplished

using the function ZWIR_Send6LoWPAN.

3.5.3. Sniffer Mode

The sniffer mode is provided to allow observation of raw network traffic. No protocol processing is performed.

Thus the data passed to the application layer includes all header information. In contrast to the two other

operating modes, all packets received over the air interface are passed to the application, regardless whether the

packet which address they have been sent. This also includes MAC Layer packets.

Sniffer mode is useful for debugging purposes. It can be used to find out which devices in the network are

transferring packets and which are not. Sniffer Mode devices do not generate network traffic at all, neither

autonomously nor user triggered. That’s why there is only an interface from the stack to the application code, but

not vice versa.

To enter Sniffer Mode, call ZWIR_SetOperatingMode (ZWIR_omSniffer, YourCallbackFunction) from

ZWIR_AppInitHardware. The functions ZWIR_Send6LoWPAN, ZWIR_SendUDP and ZWIR_SendUDP2 are not

working in this mode. However, it is still possible to change the physical channel and the modulation scheme of

the transceiver by calling ZWIR_SetChannel and ZWIR_SetModulation.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
16 of 91

3.6. Operating System

The operating system is very light-weight and does not provide multi-threading. That means, any user defined

function that is called from the operating system is completely executed before control is passed back to the

operating system. Therefore, the user is required to write cooperative code. Users must be aware that functions

requiring long execution time will block the operating system kernel and may cause the kernel to miss incoming

data, regardless if they are received over the air or any wired interface.

3.6.1. Initialization

During the operating system initialization phase, the different libraries and the MCU peripherals required for

system operation are initialized. Startup initialization is done in two phases, each of which has its own hook for

user application code. During the first phase, the internal clocks and the peripherals used by the stack

are initialized and the random number generator is seeded. Also peripherals required by certain libraries are

initialized if the corresponding library is linked into the project. After this, the ZWIR_AppInitHardware hook is

called if present, enabling application code to initialize further hardware. The application may initialize its I/Os and

peripherals in this function. ZWIR_SetOperatingMode shall be called from here if Gateway Mode is required.

Sending data over the network or initializing network sockets is not possible from here, as the network stack is not

initialized. However, functions controlling the physical parameters of the network (e.g., output power or physical

channel) should be called from here. Otherwise the first network operations that are done during initialization will

be done with a possibly wrong parameter set.

During the second phase, the transceiver and the network stack are initialized. If the Normal Mode is selected,

also duplicate address detection (DAD) is started and router information is solicited. DAD checks if the address

given to the module is unique on the link. After finishing network initialization, ZWIR_AppInitNetwork is called.

Application code may do its remaining initialization tasks such as setting up sockets here. Since DAD and router

solicitation are started before the call to ZWIR_AppInitNetwork, it is recommended that physical parameters of

the network are set up first in ZWIR_AppInitHardware. This will ensure that DAD and RS are performed on the

correct channel with correct settings.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
17 of 91

3.6.2. Normal Operation

During normal operation, the operating system collects events from the different peripherals and the application

and handles them according to their priority. Event processing priorities are fixed and cannot be changed. Events

are processed highest priority first; the lowest number represents the highest priority. Table 3.2 lists all events with

their priorities and triggered actions.

Table 3.2 Event Processing Priority in the Main Event Loop

Priority Event Triggered By Effect

0 Application Event 0 Application Code Call user-defined callback function

1 Transceiver Event Transceiver Interrupt Request Process transceiver request

2 Application Event 1 Application Code Call user-defined callback function

3 Callback Timer Expired SysTick Controlled Software Timer Call user-defined callback function

4 Sleep Requested Software Sleep for the requested time

5 Received Data on UART1 UART1 Interrupt Call user-defined callback function

6 Application Event 2 Application Code Call user-defined callback function

7 10 ms Timer Expired SysTick Controlled Software Timer Call ZWIR_Main10ms

8 100 ms Timer Expired SysTick Controlled Software Timer Call ZWIR_Main100ms

9 1000 ms Timer Expired SysTick Controlled Software Timer Call ZWIR_Main1000ms

10 Application Event 3 Application Code Call user-defined callback function

11 Received Data on UART2 UART2 Interrupt Call user-defined callback function

12 Sending Data Failed due to
Resource Conflict

Network Stack Retry sending

13 Application Event 4 Application Code Call user-defined callback function

The operating system provides five application event handlers that can be used to process application events in

the context of the operating system scheduler. Application event handlers should be used to react to

asynchronous events requiring computationally intensive processing. Interrupts are a typical example for such

events. If an interrupt occurs, the interrupt service routine (ISR) can trigger an event and delay the processing to

an appropriate time. This ensures that multiple asynchronous events are handled in the order of their priority,

without blocking interrupts.

Application events are triggered by calling ZWIR_TriggerAppEvent with the corresponding event number (0

through 4). When the OS scheduler reaches the user triggered event, an application callback function is executed.

Multiple calls to this function before the corresponding application callback is invoked will not cause multiple

invocations of the application callback.

For each application event, an event handler callback function must be registered using

ZWIR_RegisterAppEventHandler. If no event handler is registered for a certain event, triggering this event

has no effect. In order to change an event handler, ZWIR_RegisterAppEventHandler must be called again

with the new handler. Unregistering event handlers can be performed by calling the registration function with a

NULL callback argument.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
18 of 91

3.6.3. Power Modes

The stack supports different modes to reduce the power consumption of the device. In Active Mode all module

features are available. The Sleep, Stop and Standby Modes reduce the power consumption by disabling different

module functionality. Each of the power-saving modes affects the behavior of the MCU and the transceiver and

supports different wake-up conditions.

Table 3.3 Power Modes Overview

Mode Wakeup Clock Context
1
 I/O Transceiver

 Source Time MCU Core Peripherals

Active

On On
2
 Retained

As
Configured

On
3

Sleep Any IRQ 1.8 µs Off On
2
 Retained

As
Configured

Off
4

Stop
RTC IRQ

External IRQ
5.4 µs Off Off Retained

As
Configured

Off
4

Standby
RTC IRQ

Wakeup Pin
50 µs Off Off Lost

Analog
Input

Off

1.
 Refers to the status of the RAM and peripheral register contents after wakeup – the backup registers of the MCU are always

available.
2.
 Clock is enabled for all peripherals that have been enabled by application code and all peripherals that are used by the library.

3.
 Can be powered off by application code.

4.
 Remains on if peripheral/transceiver is selected as wakeup source.

Active Mode is entered automatically after startup. In this mode, the MCU core and all peripherals used by the

application are running and all functionality is available. The transceiver is typically on, but can be switched off

explicitly by a call to ZWIR_TransceiverOff. This mode has the highest power consumption.

In Sleep Mode, the MCU core is disabled but the MCU peripherals are still working if required. The transceiver

can be switched on or off. Memory contents and I/O settings remain in the state that was active at the activation of

the Sleep Mode. Waking up from Sleep Mode is possible on any MCU interrupt. After the wakeup event, the stack

continues execution at the position it had been stopped. The power consumption in Sleep Mode is slightly

reduced compared to Active Mode. If more significant reduction of the power consumption is required, the Stop or

Standby Modes should be considered.

Stop Mode provides significant reduction of power consumption while still providing short wakeup time and

context saving. Depending on the application’s requirements, the transceiver may remain enabled to wake up the

module when a packet comes in (set the transceiver as wakeup source). By default, the transceiver is disabled in

Stop-Mode. The MCU core and all peripherals of the MCU are disabled in Stop Mode. Wakeup is only possible by

the built-in RTC or an external interrupt, triggered at any GPIO line. For that, the external interrupt must be

configured appropriately.

Standby Mode is the lowest power mode. In this mode, the MCU is powered off and the transceiver is on standby.

Only the MCU’s internal RTC is running, serving as a wakeup source. Additionally, the external wakeup pin can

be used to wake up the module. After wakeup, the memory contents of the MCU are lost and must be reinitialized

the same as after normal power-on.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
19 of 91

Any of the low power modes is entered by calling the function ZWIR_PowerDown. It can be chosen whether

power-down is delayed until all pending events are processes or not. If delayed power down is chosen, the power-

down procedure can be aborted by a call to ZWIR_AbortPowerDown. The wakeup sources for the different

power modes are configured by ZWIR_SetWakeupSource.

3.6.4. Error Handling

The stack performs error handling in two different ways. The first one is simply to reset the chip if an

unrecoverable MCU exception occurs that caused an interrupt. For errors that are not caused by MCU exceptions,

the stack provides a default handling which may be overwritten by the application code.

The error handlers performing a system reset are triggered by one of the interrupts listed in Table 3.4. The reason

for resetting the whole system is that in the case of normal operation none of the listed interrupts should appear.

However, if different behavior is desired, it is possible to overwrite the default implementation by providing own

interrupt service routines. See section 10.2 for details.

Table 3.4 Interrupts Causing System Reset

Resetting Interrupts

Non-maskable Interrupt

Hard Fault

Memory Management

Bus Fault

Usage Fault

Programmable Voltage Detector

In the case of a recoverable error, the ZWIR_Error hook is called by the operating system. The error number is

passed as function argument. In order to provide custom error handling the application MUST provide an

implementation of ZWIR_Error. The return value of the function determines whether the error has been handled

by the application (return true) or if the default handler shall be executed (return false).

3.7. Firmware Version Information

The ZWIR451x API provides the possibility of including firmware version information in the stack. This information

can be requested remotely afterwards and are required by the Firmware Over-the-Air Update library. The

complete firmware version consists of the Vendor ID, the Firmware ID, the Major Firmware Version, the Minor

Firmware Version and the Firmware Version Extension. These components are defined in the application code

using global variables. The role of the different components is explained in the following subsections.

Besides the firmware version information mentioned above, the stack provides additional version information for

the library the application was linked with. This version information consists of Major Stack Version, Minor Stack

Version and Stack Version Extension field.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
20 of 91

3.7.1. Vendor ID

The Vendor ID is a 32 bit number which identifies the company that developed the device firmware. A Vendor ID

must be requested from ZMDI. Each company must get its own Vendor ID before placing products on the market.

The Vendor ID is set using the global variable ZWIR_vendorID. If this variable is not set, the firmware will use

the Vendor ID E966H, which is reserved for experimental purposes and must not be used for production firmware.

3.7.2. Product ID

The Product ID is a 16 bit number identifying the product firmware. It is especially important for the Over-the-Air

Update functionality, but may also serve for remote identification of the device type. Refer to the application note

“Enabling Firmware Over-the-Air Updates” for more information about the role of the Product ID in ZMDI’s Over-

the-Air Update library.

The Product ID is set by defining the global variable ZWIR_productID. If this variable is not defined, the value

will be read as zero.

3.7.3. Major Firmware Version

The Major Firmware Version is a version information field which is freely usable for application purposes. It is set

by defining the global variable ZWIR_firmwareMajorVersion. If this variable is not defined the value will be

read as zero.

3.7.4. Minor Firmware Version

The Minor Firmware Version is a version information field which is freely usable for application purposes. It is set

by defining the global variable ZWIR_firmwareMinorVersion. If this variable is not defined the value will be

read as zero.

3.7.5. Firmware Version Extension

The Firmware Version Extension is a version information field which is freely usable for application purposes. It is

set by defining the global variable ZWIR_firmwareVersionExtension. If this variable is not defined the value

will be read as zero.

3.7.6. Library Version

ZMDIs firmware stack libraries have their own version information included. This information is compiled into the

binary libraries and may be requested by the application code using the function ZWIR_GetRevision. Like the

firmware version, the library version consists of major and minor version as well as extension information.

3.8. Addressing

Each module has three types of addresses: a PAN identifier, link layer address and network layer address. This

section describes the different address types and explains how they are used in the stack.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
21 of 91

3.8.1. Address Types

The PAN Identifier (PANId) is a 16-bit-wide number carrying an identifier of the network. Each device in the same

network must have the same PANId. Nodes with different PANIds cannot communicate. A default PANId is

preprogrammed in the network stack. The current PAN Id can be requested or changed using the functions

ZWIR_GetPANId and ZWIR_SetPANId, respectively. The default value is ACCAHEX.

The link layer address is also referred to as the MAC address or PAN address. This address is used by the

lower communication layers and does not need to be handled directly by the user. The link layer address must be

unique in the network. Each ZWIR451x module has a predefined, hardware programmed address that is globally

unique. The PAN address is 64-bits-wide. It can be requested and changed by the functions

ZWIR_GetPANAddress and ZWIR_SetPANAddress. Changing the PAN address is not recommended as this

could cause problems as described in section 3.8.4.

The third address type is the network layer address, which is equivalent to the IPv6 Address. These addresses

are 128-bit-wide. They are used by the application to determine the destination that packets should be sent to or

the source packets should be received from. Each device needs at least one IPv6 address to be reachable.

However, multiple addresses can be assigned to each node. IPv6 addresses assigned to a node must be unique

on the network. However, users typically do not need to handle Pv6 address assignment. IPv6 provides a

mechanism that performs automatic address configuration. This mechanism is explained in section 3.8.3.

3.8.2. IPv6 Addresses

IPv6 addresses are 128-bit and therefore 16 bytes wide. As it would be impractical to use the byte-wise notation

known from IPv4, IPv6 introduces a new notation. IPv6 addresses are represented by eight 16-bit hexadecimal

segments that are separated by colons. An example for such address is

2001:0db8:0000:0000:1b00:0000:0ae8:52f1

The leading zeros of segments can be omitted as they do not carry information. Furthermore the IPv6 notation

allows omitting a sequence of zero-segments and representing it as double colon. With these rules, the above

address can be written as

2001:db8::1b00:0:ae8:5211 or 2001:db8:0:0:1b00::ae8:52f1.

However, replacing multiple zero segments is not allowed, so the following address is invalid:

2001:db8::1b00::ae8:5211

An IPv6 address consists of two components: a prefix and an interface identifier. The prefix specifies the network

a device is part of while the interface identifier specifies the interface of a device. A node with multiple network

interfaces has multiple interface identifiers. The size of the prefix varies for different address types. In the IPv6

address notation, the prefix length can be appended to the address with a slash followed by the number of prefix

bits. For example, the notation 2001:db8::/64 represents a network containing the addresses from 2001:db8:: to

2001:db8::ffff:ffff:ffff:ffff.

IPv6 supports three kinds of addressing methodologies: unicast addressing, multicast addressing and anycast

addressing. Addresses for the different addressing schemes differ in how the prefix is formed.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
22 of 91

Figure 3.3 IPv6 Unicast Address Layout

Prefix Interface-Identifier

127 64 63 0

Unicast addresses are shown in Figure 3.3 and use 64 bits each for the prefix and the interface identifier. Unicast

addresses exactly identify one single interface in a network. The prefix of the address determines the scope of the

unicast address. If the prefix equals fe80::/64 this is a link-local unicast address. Link local addresses are valid

only on the single link a node is connected to. The prefix of global unicast addresses is received via address auto-

configuration from a router that is connected to the Internet. There are additional prefix configurations with limited

scope that are not covered by this documentation.

Multicast addressing allows sending out a single packet to multiple receivers. For this purpose, IPv6 provides

multicast addresses. A multicast address can only be used as the destination address, but never as the source

address of a packet. The layout of a multicast address is shown in Figure 3.4. Multicast addresses have a 16-bit

prefix with the most significant 8 bits set to FFHEX, followed by two 4-bit fields for flags and the scope of the

multicast packet. The remaining bits specify the multicast group ID.

Figure 3.4 IPv6 Multicast Address Layout

Prefix Multicast Group ID

127 111 0

0xff

8

ScopeFlags

4 4

In this document, it is assumed that the flags field is always either 0000BIN or 0001BIN. 0000BIN specifies that the

multicast address is a well-known address. 0001BIN marks the address as a temporarily assigned address that is

not specified by Internet standards. These addresses must be used for custom multicast addressing. The scope

field is always assumed to be 0b0010, representing the link-local scope. Other scopes are usable but must be

supported by routers.

Two specific addresses should be paid special attention, as these are used very often. More information about

their use can be found in section 3.9.2.

1. The unspecified address ::

All segments of this address are zero. It is used by receivers to listen to any sender. This address must

never be used as destination address.

2. The link-local all nodes multicast address ff02::1

Packets sent to this address are received by all nodes in the network, so this multicast address is

equivalent to broadcasting.

For more detailed information about IPv6 addressing refer to RFC 4291 – “IP Version 6 Addressing Architecture”.

http://tools.ietf.org/html/rfc4291

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
23 of 91

3.8.3. IPv6 Address Autoconfiguration

IPv6 provides a stateless address auto-configuration mechanism. This mechanism allows the configuration of

node addresses from information being statically available on the node and information provided by routers.

Router information is only required if global communication is required. Addresses for link-local communication

can be derived from the link-layer address. This removes the need for manual configuration of addresses or

dynamic host configuration protocol (DHCP) servers in the network.

The local information used for auto-configuration is the interface EUI-64 address. The EUI-64 address is a factory

programmed link-layer address which ZMDI guarantees to be unique for each module. The EUI-64 address is

often referred to as the MAC address. During network initialization, each node generates a unique link-local IPv6

address by putting the prefix fe80::/64 in front of the EUI-64 address with bit 1 of the most significant EUI-64 byte

inverted. Assuming a link-layer address of 00:11:7d:00:12:34:56:78, the generated link-local IPv6 address would

be fe80::211:7d00:1234:5678.

In addition to link-local address generation, nodes request router information during startup, trying to obtain a

global prefix for building a globally valid address. Those requests are called router solicitations. Routers present

on the link will respond to router solicitation messages of the node with router advertisements, containing global

prefix information. Taking this prefix and the EUI-64 address of the node, a global address is generated in the

same way as for the link-local address. Router solicitation is done automatically during the startup phase. If there

is no router on the link, no global address will be assigned and only link-local communication is possible. In this

case the router solicitation messages may be suppressed by setting the stack parameter

ZWIR_spDoRouterSolicitation to zero.

A host cannot rely on a generated address to be unique, as there might be manually configured EUI-64 addresses

on its link. Therefore, it must perform “duplicated address detection” (DAD) to be sure the generated address is

unique. Duplicate address detection is mandatory for each address being attached to a node and is performed

automatically by the network stack. It is described in more detail in the following section. Each address being

assigned to an interface is subject to duplicate address detection. Addresses are not valid before duplicate

address detection (DAD) is completed. Devices are not able to send or receive packets using an unicast address

that has not been validated to be unique. After device startup (and therefore after assignment of the link-local

unicast address), the network stack calls the hook ZWIR_AppInitNetworkDone, signaling that DAD on the link-

local address has been completed and the address may be used. Applications should use this hook to send out

initial packets.

3.8.4. Validation of Address Uniqueness

After a node has configured its own address it performs Duplicate Address Detection (DAD) to check if the newly

configured IPv6 address is unique on the link. For this purpose, the node starts to send neighbor solicitation (NS)

messages to the address to be checked (to its own address). If another node replies to one of those messages or

if another node also sends neighbor solicitation messages to this address, the assigned address is not unique and

must not be used. In this case, the error handler hook ZWIR_Error is called with the error code

ZWIR_eDADFailed. It is up to the user to provide its own error handling mechanism for such cases. The default

implementation provided in the library only removes the failing address from the interface. If the failing address

was the only address of the module, the module will not be reachable.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
24 of 91

Figure 3.5 Resolving Address Conflicts in Local Networks

Assign link-

address

Perform network

initialization & DAD

DAD Failed?

yes

no

Start

Normal Operation

Application code can try to resolve the address conflict. One possible solution is to manually change the link-layer

address of the node, using random numbers or a dedicated algorithm. ZWIR_SetPANAddress must be called

with the new address and the network initialization must be restarted. This is done by calling

ZWIR_ResetNetwork. The procedure can be repeated for an arbitrary number of times until a unique address is

found.

Note that a duplicate address problem should not appear if each module in the network uses the factory

programmed link-layer address. In this case the link-layer address is guaranteed to be globally unique. Thus, it is

recommended not to use the user’s own addresses.

In some cases the application may be certain that there are no duplicate addresses in the network. In such cases

the duplicate address detection mechanism may be disabled by setting the stack parameter

ZWIR_spDoDuplicateAddressDetection to zero. This has the positive side effect of immediate ability to

send and receive packets using the own IPv6 address(es). Furthermore, less traffic is generated on the network.

3.9. Data Transmission and Reception

Data are transmitted using the User Datagram Protocol (UDP). If a destination node is not directly reachable from

the source node, packets are routed over intermediate nodes automatically. Route setup is done transparently for

the user. The following subsections describe the different aspects of data transmission and reception.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
25 of 91

3.9.1. User Datagram Protocol

The User Datagram Protocol is used for data communication. UDP is a connectionless and lightweight protocol,

introducing minimal communication and processing overhead. No connection has to be created and no network

traffic is required before data transmission between nodes can be started. Instead, communication is possible

immediately. UDP does not guarantee that packets that have been sent are reaching the receiver. It is also

possible that a single UDP packet is received multiple times. Furthermore, it is not guaranteed that the receiving

order of packets at the destination is the same as the sending order at the source. This must be considered by the

application programmer.

UDP uses the concept of ports to distinguish different data streams to a node. 65535 different ports can be

distinguished in UDP. A port can be seen as the address of a service running on a node. Depending on the

destination port of a packet, the network stack decides to which service the packet is routed on the receiver node.

In ZMDI’s 6LoWPAN stack, services, providing the callback functions that network packets are passed to, are

running in the application code. Each service has it’s own callback function.

3.9.2. Data Transmission and Reception

Data transmission is requested by calling ZWIR_SendUDP or ZWIR_SendUDP2. Both functions send a single UDP

packet to a remote host. ZWIR_SendUDP2 accepts the address and port of the remote device as a parameter,

while ZWIR_SendUDP requires a socket handle, specifying the destination parameters. For reception of data, a

socket is required as well.

A socket is an object that stores the address of a remote device and the remote and local UDP ports used for

communication. It can be seen as an endpoint of a uni- or bi-directional communication flow. Additionally, a

callback can be specified that is called when data is received over the socket. Sockets are opened and closed

using the API functions ZWIR_OpenSocket and ZWIR_CloseSocket. The maximum number of sockets that

can be open in parallel is defined by the stack parameter ZWIR_spMaxSocketCount.

Four parameters have to be provided when a socket is opened:

 IPv6 address of the remote communication endpoint: This is the address that data should be sent to and/or

received from. Data reception is only possible if the remote address is a unicast address or the unspecified

address. If a multicast address is provided, only data transmission is possible.

 Remote UDP port: This is the UDP port that data are sent to. For reception of data, this port is ignored.

 Local UDP port: This is the UDP port that data are received on. Only packets that are sent to this port will be

handled in the callback function. If this number is 0, no data is received.

 Receive callback function: This is a pointer to a function that is called when data from a remote device is

received. If no data should be received, this pointer can be set to NULL.

The choice of whether ZWIR_SendUDP or ZWIR_SendUDP2 should be used for communication depends on the

characteristics of the network traffic between the communicating devices. ZWIR_SendUDP2 is intended to send

few packets to a remote device without expecting a response from the target device. The function accepts the

remote address and UPD port together with the data to be sent. Internally the function will open a temporary

socket that is immediately closed after sending out the packet, so a slight overhead is added. ZWIR_SendUDP2

functions even if the maximum number of sockets is open. ZWIR_SendUDP shall be used in cases where

responses are expected from the remote device or data have to be transmitted frequently.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
26 of 91

The following subsections will explain unicast and multicast communication in more detail and give examples of

how to use the IPv6 addresses and ports appropriately.

3.9.2.1. Unicast

Traffic that has only a single destination node is called unicast traffic. In order to send data unicast, the sender

must open a socket with the remote address set to the IPv6 address of the intended receiver. The receiver must

open a socket with the remote address field set to the sender’s IPv6 address or to the unspecified address. The

sender socket remote port field must match the receiver socket local port field in both cases. Table 3.5 shows

some example socket configurations and comments if communication is possible or not.

Table 3.5 Unicast Socket Examples

A) B) C)

D) E)

Sender Comment

A B receives packet. (Remote address and port of A match interface address and local port of B.)

C does not receive packet. (Remote port of A does not match local port of C.)

D receives packet. (Remote address of D matches all addresses; local port of D matches remote port of A.)

E does not receive packet. (Remote address of A does not match interface address of E.)

B A receives packet. (Remote address and port of B match interface address and local port of A.)

No other socket receives packet. (Interface addresses do not match remote address field of B; local ports do
not match remote port of B.)

C A receives packet. (Remote address and port of B match interface address and local port of A.)

No other socket receives packet. (Interface addresses do not match remote address field of B.)

D No socket receives packet. (Sending is not possible with an unspecified address as the destination.)

E No socket receives packet. (Remote address of sockets A, B, C do not match interface address of E; local port
of D does not match remote port of E.)

3.9.2.2. Multicast

Multicast is used to send data to multiple nodes at the same time. For a multicast transmission, the sender must

open a socket with the remote address set to a multicast IPv6 address. The semantics of ports is the same as for

unicast communication. The receiver must open a socket with the remote address set to the IPv6 address of the

sender or to the unspecified address. Note that a socket with a multicast remote address cannot be used for data

reception.

Rem. Addr. :

Rem. Port :

Local Port :

fe80::2:2:2:2

55555

44444

fe80::1:1:1:1

Rem. Addr. :

Rem. Port :

Local Port :

fe80::1:1:1:1

44444

55555

fe80::2:2:2:2

Rem. Addr. :

Rem. Port :

Local Port :

fe80::1:1:1:1

44444

33333

fe80::2:2:2:2

Rem. Addr. :

Rem. Port :

Local Port :

::

44444

55555

fe80::2:2:2:2

Rem. Addr. :

Rem. Port :

Local Port :

fe80::1:1:1:1

44444

55555

fe80::3:3:3:3

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
27 of 91

ZMDI’s implementation of the IPv6 multicast feature does not support explicit assignment of multicast groups to

single nodes. Instead, if a packet is received that was sent to a temporary multicast address, the hook function

ZWIR_CheckMulticastGroup is called by the network stack. This function must be implemented by application

code that wants to make use of the multicast feature. The application can check the multicast group of the

destination address and decide if it is part of it. This mechanism allows very flexible and application-tailored

multicast addressing schemes. If the application does not provide the ZWIR_CheckMulticastGroup, temporary

multicast addresses are rejected by the stack.

Table 3.6 Multicast Addressing Examples

A) B) C)

 D) E)

Sender Comment

A D and E receive packet. (Remote address matches interface address of A; local port of D and E
matches remote port of A.)

B No socket receives packet. (If multicast group ID is not 1, packets are dropped by the receiver as well-
known addresses must not be used by applications.)

C D and E receive packet if multicast group ID resolution is implemented in user code and returns “true.”
(Remote address of C is temporary link-local multicast group; local ports of D and E match remote port
of C.)

3.9.3. Address Resolution

Before unicast data can be transmitted from one device to another one, the sending node must determine the link-

layer address of the receiver. This is called address resolution and is done automatically by the sender’s network

stack, using the neighbor discovery protocol (NDP). NDP replaces the address resolution protocol (ARP), which

was used in IPv4 networks. Address resolution starts on demand and is transparent to the user.

If a data packet has to be sent to a receiver for which the link-layer address is not known, the sender performs

address resolution to find the link-layer address of the receiver. The result is added to the so-called neighbor

cache and the data packet is sent out. The maximum size of the neighbor cache is configurable using the stack

parameter ZWIR_spNeighborCacheSize. Note that changing this parameter at runtime will result in the oss of

all cache entries, regardless if the neighbor cache size is increased or decreased.

Rem. Addr. :

Rem. Port :

Local Port :

ff02::1

55555

44444

fe80::1:1:1:1

Rem. Addr. :

Rem. Port :

Local Port :

fe80::1:1:1:1

x

55555

fe80::x:x:x:x

Rem. Addr. :

Rem. Port :

Local Port :

::

x

55555

fe80::x:x:x:x

Rem. Addr. :

Rem. Port :

Local Port :

ff02:x:x:x:x:x:x:x

55555

44444

fe80::1:1:1:1

Rem. Addr. :

Rem. Port :

Local Port :

ff12:x:x:x:x:x:x:x

55555

44444

fe80::1:1:1:1

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
28 of 91

Neighbor cache entries are valid only for a limited time. After this time, the accessibility of the neighbor must be

verified. This is also automatically by the NDP and is beyond the scope of this document. The lifetime of neighbor

cache entries is defined by routers attached to the network. If the network doesn’t have any routers, a default

reachable time is used. In order to make this time configurable, ZMDIs network stack provides the stack

parameter ZWIR_spNeighborReachableTime. In cases where routers advertise lifetime information, this infor-

mation is given precedence over the stack parameter. Note that the default value for this constant significantly

differs from the Ethernet default setting of 30 seconds. This is to reduce communication overhead generated by

neighbor reachability detection messages. It is possible to disable the timeout completely. This is done by setting

ZWIR_spNeighborReachableTime to zero.

The exact specification of the neighbor discovery protocol can be found in RFC 4861 – “Neighbor Discovery for IP

version 6 (IPv6)”.

3.9.4. Recommendations

The 6LoWPAN protocol performs IPv6 header compression to make transmission of IPv6 more efficiently

transmittable over IEEE 802.15.4 based networks. The header compression mechanism is assuming that the

interface identifier, thus the lower 64 bits of the IPv6 address, is generated from the link-layer address of the

device. In such situations the header compression mechanism is capable of eliding link-local IPv6 addresses

completely from the compressed header. Therefore, it is NOT RECOMMENDED using manually assigned IPv6

addresses. Instead the IPv6 addresses generated by address autoconfiguration after device startup SHOULD be

used.

In order to achieve maximum compression of global IPv6 addresses it is possible to define compression contexts

using the stack parameters ZWIR_spHeaderCompressionContext1-3. These parameters define frequently

occurring prefixes which should be compressed by the 6LoWPAN header compression mechanism. If such

prefixes are defined, it must be ensured that each device in the network uses the same configuration of these

parameters!

In addition to IPv6 header compression, the 6LoWPAN layer may also compresses the UDP header. This is done

if the source and/or destination port is in the range of 61616 to 61631. Thus, if the application doesn’t explicitly

require another port range, these ports SHOULD be used to maximize the data transmission efficiency.

3.10. Mesh Routing

ZMDI’s 6LoWPAN stack enables devices to work in a mesh network topology. If the distance between two

communicating devices is too big for direct radio transmission, packets are routed over intermediate devices –

known as “hops” – automatically. Routes through the mesh are detected transparently for the application. Nodes

may take two roles in a mesh network scenario: they may act as endpoints only, or they may provide relaying

service. In this documentation devices are named endpoints or relays, depending on their configuration. If the

stack configuration is not changed by the application each node is configured as relay with a maximum hop count

of four.

ZMDI’s mesh routing protocol is working on top of the MAC layer, just below the network layer.

http://tools.ietf.org/html/rfc4861

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
29 of 91

3.10.1. Multicast Traffic

Network layer multicast traffic is handled by broadcast messages on the mesh and lower layers. Receivers of a

mesh broadcast message may forward it, depending on their configuration. The decision whether the message is

forwarded is taken based on the configuration parameter ZWIR_spMaxHopCount. This value actually determines

the upper limit of hops a broadcast packet may take through the network. Each broadcast packet carries its hop

count in its mesh routing headers. This field is incremented each time the packet is forwarded by a relay. When a

node receives a packet with the hop count being equal to or bigger than ZWIR_spMaxHopCount, the node

doesn’t forward the packet. Otherwise the hop count is incremented and the packet is forwarded. Thus nodes can

be forced to work as endpoints by setting ZWIR_spMaxHopCount to zero. Any other configuration makes a node

a mesh network relay.

3.10.2. Unicast Traffic

For unicast traffic all nodes, hence endpoints and relays, maintain a so called routing table. The routing table

stores the MAC address of the next hop to be taken to a certain destination MAC address. After power on, reset

or network reset the routing table doesn’t contain any entries. A node requiring unicast communication needs to

set up a route to each of its unicast destination nodes. This is done on demand and transparent for the

application.

When the transmission of a unicast packet is requested and there is no matching routing table entry for the

destination, the packet to be sent is queued and the route discovery process is started. A Route Request (RReq)

is broadcasted into the network, requesting a route to the destination address of the unicast packet. Nodes

receiving a RReq check whether the requested address matches their own address or not. If not, the packet is

retransmitted by relays and ignored by endpoints, respectively. If the own address is matched, a Route Reply

(RRep) message is sent to source hop of the RReq packet. Nodes receiving a RRep packet create/update a

record in their routing tables, storing the source address of the RRep packet as next hop to the requested

destination.

Unicast packets always take the same route through the network as long as the route is not removed from the

routing tables. Routing table entries are removed for one of the following reasons:

 The route has not been used for ZWIR_spRouteTimeout seconds

 The route has been failing for ZWIR_spRouteMaxFailCount times

 The route was oldest when a new route needed to be created but the routing table was full

If one hop is failing for ZWIR_spRouteMaxFailCount times (no acknowledge is sent by the hop), the sender

considers the route as broken and sends an informative packet to the originator of the packet. The originator then

reinitiates the route discovery process, searching for an alternative route.

3.10.3. Mesh Routing Parameter Configuration Recommendations

In order to maximize the network performance for different application scenarios while maintaining a high level of

stability and without wasting resources, the different routing parameters should be configured according to the

applications characteristics. Below all parameters are listed along with explanations of the basic function of the

parameter and recommendations for their setting in different application scenarios.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
30 of 91

ZWIR_spMaxHopCount

This parameter determines the whether a node acts as endpoint or as relay and constraints the forwarding of

multicast packets. With ZWIR_spMaxHopCount set to zero the node acts as communication endpoint. Note that

the node is still able to communicate with remote nodes over multiple hops. Only the ability to forward packets is

constraint by this parameter!

In order to make a node a mesh network relay, ZWIR_spMaxHopCount MUST be set to a value greater than zero.

However, the value SHOULD NOT be chosen arbitrarily but it SHOULD reflect the actual size of the network. The

optimal value is the number hops required to reach the farthest remote communication partner. If no mesh routing

is required, setting ZWIR_spMaxHopCount to zero will improve the performance.

It is strongly recommended limiting the number of nodes working as relay in the network. As a rule of thumb a

relay should not have more than ten other relays in direct reachability. Otherwise the network latency and the

packet loss are very likely to increase. If a large number of relays is desired, using the

ZWIR_spRouteRequestMinRSSI parameter should be considered, to limit the amount of traffic generated

during the route discovery process.

ZWIR_spRoutingTableSize

This parameter configures how many routes may be kept alive concurrently. Thus, this parameter defines with

how many nodes the device may communicate without the need for dropping and reestablishing routes. The

routing table is required in endpoints and relays! On endpoints the table size should be equal to or larger than the

number of remote nodes the device wishes to communicate with. On relays this number should be increased by

the number nodes relay service is provided for.

The routing table is stored in the RAM and therefore limited by the RAM size. The RAM for the routing table is

quasi-statically allocated before the ZWIR_AppInitNetwork hook is called. Therefore it is recommended to

define the size of the routing-table in ZWIR_AppInitHardware. Otherwise a network reset has to be performed

in order to get the change into effect.

ZWIR_spRouteTimeout

This parameter defines how many seconds an idle route is kept in the routing table. The default value is 3600

seconds. The idle time counter is restarted each time the route is used. Typically the route timeout parameter

doesn’t explicitly affect memory consumption or application performance. However, in frequently changing

network configurations reduction of the timeout value may be advantageous, as old routes don’t have to be tested

and found to be defect before a new route is established.

ZWIR_spRouteMaxFailCount

This parameter controls how often a route may fail before it is considered as dead. Depending on the network

characteristics this value should be set to a rather low value between zero and five. The higher the probability of

unreachability of a relay or endpoint, the lower this value should be selected. In networks with frequent changes of

positions of nodes or a rapidly changing environment, the probability of unreachability is high and therefore, this

variable should be low. In contrast, fixed installations of nodes and relays may select a higher value, as the

unreachability of a node/relay is very likely to be temporary.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
31 of 91

ZWIR_spRouteRequestAttempts

This parameter configures how many attempts are made to set up a route to a remote device. By reducing this

number the application may reduce the network load caused by failing route discovery attempts. On the other

hand reducing this number will increase the chance of a failing route discovery when it would be physically

possible.

ZWIR_spRouteRequestMinLinkRSSI and ZWIR_spRouteRequestMinLinkRSSIReduction

Propagation of electromagnetic waves is influenced by a multitude of external parameters. As a result radio

transmission sometimes appears to behave randomly. Typically this is caused by subtle changes in the external

environment. The occurrence of random behavior may notably increase in mesh network topologies. For one

logical connection of two nodes there are typically multiple physical links included, all of which have an

independent failure probability.

In order to make links more robust against loss of connection due to environmental variations the parameters

ZWIR_spRouteRequestMinLinkRSSI and ZWIR_spRouteRequestMinLinkRSSIReduction are provided.

These parameters allow specifying link quality constraints on each physical link of the whole route. With such

constraints in place, smaller environmental changes will impair the routes less, as the signal quality on any link is

less likely dropping below the sensitivity level of the module.

3.11. Network and Device Status

The API provides functions for discovering the network and requesting the device status. Network discovery is

performed using the ZWIR_DiscoverNetwork function. This function broadcasts a message to all devices in the

PAN and makes the answers available to the user. For each device, the hop-distance, the link-quality and all

assigned IPv6 addresses are returned.

The node status is returned by ZWIR_GetTRXStatistic. The returned data structure contains information such

as sent and received packet and byte count and failing transmission attempts. However, the most important value

is the sender duty cycle. This value is important, as frequency regulations require nodes to keep their

transmission duty cycle lower than 1%. It is the responsibility of the application code to make sure that this

number is not exceeded.

3.12. Security

Most applications require secure communication in order to protect sensitive data and to protect actors from

unauthorized accesses through attackers. For that reason, ZMDI provides an implementation of the Internet

Protocol Security Suite (IPSec) and the Internet Key Exchange protocol version 2 (IKEv2). IPSec is used to

encrypt and authenticate data, while IKEv2 is used to manage the keys used for encryption and authentication.

IPSec as well as IKEv2 are standardized by the Internet Engineering Task Force (IETF). Both protocols are

mandated to be used for encryption and key management in IPv6. The implementation of the protocols is

provided in two separate libraries.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
32 of 91

3.12.1. Internet Protocol Security (IPSec)

ZMDI provides an IPSec implementation in conjunction with its communication libraries. IPSec is a protocol suite

for encryption and authentication of data sent over an IP network. IPSec is supported by virtually all modern

operating systems. The encapsulating security payload (ESP) and authentication header (AH) protocols are

supported for data encryption and authentication, respectively. Data encryption ensures confidentiality of

information transmitted over the network. Authentication is applied to ensure that data are not modified along the

way and that the sender is the entity that it claims to be.

In order to use the security features of the stack, the libZWIR45xx-IPSec.a library must be included in the project

and must be configured appropriately. IPSec maintains a Security Policy Database (SPD) that contains rules for

how outgoing and incoming traffic must be handled. For each incoming and outgoing packet, the stack checks the

SPD for a matching rule that contains information on how the packet should be handled. The rules can direct the

network stack to either drop, bypass or process the packet in the security module. Bypassing a packet means that

no security processing is applied. Rules can be applied to single addresses or complete subnets.

Each item in the SPD requiring security processing contains a pointer into the Security Association Database

(SAD). Each item of this database contains the required information for encryption and decryption of packets. This

information includes keying material and the algorithm to be used for encryption and decryption.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
33 of 91

Figure 3.6 Working Principle of IPSec

Lookup

in SPD

Security

Policy

Database

(SPD)

Security

Association

Database

(SAD)

Lookup

in SAD

IPSec

Process

IKEv2
IPSec

Process

Lookup

in SPD

Lookup

in SAD

Do not

secure

packet

Do

secure

packet

No entry
Matching

entry

Matching policy

Matching entry

No entry

Discard packet

No policy

Discard packetDiscard packet

Unprotected Network Interface

Protected Network Interface

The SAD items can be configured manually or automatically. For automatic configuration, the Internet Key

Exchange protocol is used. This protocol is implemented in a separate library and is described in the following

section. In either case, SPD entries for incoming and outgoing traffic must be configured by the application. This is

done using the function ZWIRSEC_AddSecurityPolicy. If manual configuration should be used, the function

ZWIRSEC_AddSecurityAssociation must be called on both communicating devices, setting the security

parameters for the connection.

3.12.2. Internet Key Exchange Version 2 (IKEv2)

The Internet Key Exchange version 2 protocol can be used for automatic creation of keying material for secured

connections. This protocol is implemented in the libZWIR45xx-IKEv2.a library. If IKEv2 is used, no manual

configuration of the SAD is required. Instead, keying material is negotiated automatically on demand. If application

code tries to send data to a remote node and the according SPD entry requires security processing of this data, it

is checked whether a security association is assigned to the SPD entry. If no such entry exists, IPSec requests

the establishment of a security association from the IKEv2 daemon.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
34 of 91

IKEv2 first tries to set up a secure communication channel over which keying material is exchanged. This channel

is set up using the Diffie-Hellmann-Key-Exchange algorithm. Both communicating parties use a Pre-Shared Key

(PSK) for mutual authentication. The PSK is registered using the ZWIRSEC_AddIKEAuthenticationEntry

function. After setup of the secure channel, keying material for the security association to be created is

exchanged.

3.12.3. Recommendations

ZMDI strongly recommends using the security features provided by the network stack. Security is not only

required to prevent data from being visible for third parties. More critical are active attacks on a network. Most

applications will suffer from such attacks. In the best case, applications may be behaving erratically; however, in

the worst case, perilous behavior of actors can be caused by an attack. Attacking possibilities are manifold:

Packets can be changed on their way to the destination; they can be sent again; invalid packets can be infiltrated

into the network; or packets can be simply blocked by an attacker. IPSec can protect against all of these attacks.

IPSec in conjunction with IKEv2 further increases the security, as the keying material can be renewed on a regular

basis.

3.13. Firmware Over-the-Air Updates

ZMDI provides an over-the-air update (OTAU) library. This library extends the application with functionality for the

reception and processing of update packets, as well as functionality for replacing the existing code with a new

version. The update mechanism incorporates recovery mechanisms, ensuring the proper recovery after occur-

rence of an error during the update process.

The OTAU firmware library is designed to require minimal interaction of the firmware programmer. However, it

places some constraints on the firmware in order to ensure reliability of the OTAU function.

3.13.1. Functional Description

Integrating the firmware over-the-air update (OTAU) adds two components into the user application. The first one

is a service for the reception and processing OTAU-related network traffic. The second one is a boot-loader that

replaces the old firmware image with the new one after complete reception and verification of all update traffic.

The boot-loader component is located in a program section called .update_code. The location of this segment

MUST be the first flash memory pages(s). During the update process, the boot-loader is not replaced! A second

segment that is dedicated to OTAU-enabled code is the .status_seg. This segment resides directly behind the

boot-loader component and stores status information about the firmware update.

Including the sections referenced above, the application’s memory layout would be as shown in Figure 3.7. The

application code is located after the .update_code and .status_seg sections. Optionally the OTAU memory

layout may incorporate a section for the storage of permanent parameters. This section MUST be located at the

end of the flash. In contrast to non-OTAU-enabled applications, the amount of memory available for the

application is limited to less than one half of the microcontroller’s total flash memory size. This is because the

space for the buffering of the full new firmware image must be provided.

The OTAU network service is started through a call to the ZWIR_OTAU_Register function. The function takes

the UDP port to be used by the OTAU network service as the argument. Calling this function is all that is required

to enable the reception and processing of firmware over-the-air updates. All other update parameters are con-

trolled by the update server, which is typically a computer in the network.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
35 of 91

Figure 3.7 Memory Layout of OTAU-Enabled Applications

.update_code

(OTAU Boot-Loader)

.status_seg

(OTAU Status Information)

.text

.data

...

(Active Application Firmware)

.text*

.data*

...*

(New Application Firmware Image)

Optional section for permanent

parameter storage

A new firmware image to be loaded into the device is typically received in small chunks of data. Whenever a

chunk of data is received, the corresponding flash location in the new application firmware image portion of the

flash is updated. If this is the first chunk written to a flash page, the flash page is completely erased before the

chunk is written to it. All packets corresponding to the same firmware update MUST include the same version

information and the size of data chunks must be the same for all packets. Packets containing fragments of

different size than the first fragment are ignored, once the update is started. Packets containing different version

information trigger a complete re-initialization of the update.

3.13.2. Firmware Constraints

The OTAU network service uses a dedicated UDP port for the reception and transmission of OTAU-related pac-

kets. The application MUST NOT use the same port for any other purpose. If this limitation is ignored, the

application behavior is determined by the behavior of sockets being reopened with the same parameters.

The contents of the .update_code and .status_seg segments must not be changed in any way by the appli-

cation. This means the application MUST NOT explicitly place functions or data in either of these sections!

In order to allow the OTAU from a firmware-version A to a firmware version B, the firmware versions MUST share

the following properties:

 The call stack of A and B must be located at the same RAM position

 The call stack of A and B must be of the same size

 The flash memory layout of A and B must be the same (e.g., no optional section as shown in Figure 3.7

can be added or removed)

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
36 of 91

3.14. Memory Considerations

Applications must take care of their memory consumption – especially with respect to RAM (random access

memory). There are basically three components which contribute to the overall RAM size requirement of the

application:

1. Statically allocated memory

2. Dynamically allocated memory

3. Call-Stack

The call stack is required by the application to store the return addresses from function calls, function arguments

and variables stored locally in functions. The RAM size reserved for the call-stack can be configured in the linker-

script. Applications utilizing ZMDIs network stack need a minimum of 2 kB of call-stack. In order to leave some

flexibility for user application, the default stack size configured in the linker script is 5 kB. The call stack resides at

the lower end of the RAM area.

Static memory is consumed by globally declared and local statically declared variables. ZMDIs network stack

requires less than 8 kB of static memory in a minimal configuration. The static memory consumption can easily be

found out by examining the map-file generated by the linker. Static memory is allocated right behind the call stack.

The third component, the dynamically allocated memory, is allocated in the unused area between static memory

and the end of RAM. Memory in this area is typically allocated at runtime using C’s malloc function. Memory may

be freed using the free function. Some lists and buffers used by ZMDIs network stack are allocated dynamically.

There is no tool support for automatic determination of the dynamic memory size requirements of applications.

The size of dynamic memory used by the ZMDIs network stack depends on the configured parameters. This is

explained in more detail in section 3.14.2.

3.14.1. Call Stack

ZMDI’s network stack places the Call-Stack of the application at the lower end of the RAM. This is to be able to

detect stack overflows. The stack grows downwards from its topmost address towards the beginning of the RAM.

When a stack overflow occurs, the MCU tries to access an address which is not in the RAM area and the MCU

will generate a Bus-Fault interrupt. During interrupt handling, it must be considered that the interrupt handler

function doesn’t have a working stack. Thus, it is not secure to use local variables or calling subroutines. The Bus-

Fault interrupt default handler performs a system reset.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
37 of 91

3.14.2. ZMDI Network Stack Dynamic RAM Requirements

ZMDI’s network stack has a number of configurable parameters which require allocation of memory at runtime.

During system startup and after reset memory for these variables is allocated dynamically on the Heap. Table 3.7

gives hints on how these parameters influence the dynamic RAM requirements of the application.

Table 3.7 Stack-Parameter Dynamic Memory Size Requriements

Parameter Size
1
 Element Count Comment

 [bytes] Min Default

ZWIR_spRoutingTableSize 28 1 8

ZWIR_spNeighborCacheSize 60 1 8

ZWIR_spMaxSocketCount 28 4 8

- 238 - 6 This memory is allocated for internal
buffers whose size cannot be configured

- 48 - 2

1.
 This column specifies the size of a single element. It must be multiplied with the configured parameter value. For each row an

additional 32 byte element is required for storing the allocation record, if not otherwise denoted.

Besides the quasi-statically allocated memories above, ZMDI’s network stack dynamically allocates memory at

runtime if packets have to be sent to destinations for which address resolution and route discovery have not been

performed. One packet can be buffered for each destination node. Allocation is performed if enough memory is

available. If no memory is left, the packet to be sent is dropped, but the address resolution and route detection

procedure is initiated anyway. Thus, even if the packet is not being buffered, the next packet being sent is likely to

arrive at the destination node.

Application developers always have to make sure that the parameter settings allow proper allocation of all quasi-

static memory. If parameters are chosen too big, stack initialization will fail and report the error

ZWIR_eMemoryExhaustion. The default handling of this error is a system reset. Thus, if the parameters

causing the memory exhaustion are set during system startup, this will result in an infinitive loop. The error is

detected easily with a custom implementation of the ZWIR_Error function.

3.14.3. Using Dynamic Memory Allocation

Applications requiring dynamic memory allocation may freely use the function malloc and free for allocation

and deallocation of RAM at runtime, respectively. However, the application developers must be aware of the

limited availability of RAM on the device. Each allocated block consumes an additional 32 byte block on the heap

as allocation record.

Due to memory fragmentation effects, it cannot be guaranteed that memory allocation is successful, even if the

total amount of free heap space is sufficient for an allocation request. If memory blocks are allocated and freed

frequently, it may happen that the free space in memory is scattered over the whole heap, not providing any free

block big enough for holding a requested block. Figure 3.8 demonstrates this with a simple example which has

3kB of free memory but doesn’t allow the allocation of a 2kB memory block with malloc.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
38 of 91

Figure 3.8 Heap Memory Scattering

Memory blocks have been allocated in the order

M1  M2  M3

M2 was freed after M3 had been allocated

M4 has never been allocated

 3kB of free memory remaining, but allocation of

2kB block is not possible

3.15. Supported Network Standards

Table 3.8 lists RFCs that are supported by ZMDI’s network stack, and it specifies the limitations that apply with

respect to these RFCs.

Table 3.8 Supported RFCs and Limitations

RFC Limitations

Internet Protocol Version 6 (IPv6) Specification

2460  Hop-by-hop options header

o Only Pad1 and PadN options are supported (as specified in RFC).

o Other options will cause unrecognized option processing as proposed in RFC.

 Routing extension header

o If segments left > 0, packets are ignored and icmp error message parameter problem is sent.
However, the use of the type 0 routing header has been deprecated by RFC 5095!

 Fragmentation extension header

o Not supported – packets received with this extension header are silently dropped.

o Spec requirement of receiving 1500 byte packets is not supported. However use of
fragmentation is discouraged by the RFC!

 Destination options header

o Only Pad1 and PadN options are supported (as specified in RFC).

o Other options will cause unrecognized option processing as proposed in RFC.

o Packets with next header 59 are dropped.

o Traffic class and flow label are always set to zero in packets sent from 6LoWPAN nodes.

M1 – 2 kB

M2 – 1.5 kB

M3 – 1 kB

M4 – 1.5 kB

6
 k

B
 H

e
a
p
 M

e
m

o
ry

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
39 of 91

Security Architecture for the Internet Protocol

4301  Tunnel mode is not supported.

 ESP SA with both null encryption and no integrity algorithm is allowed.

 Events are not logged.

 Local IPv6 address cannot be used as selector.

 No Sequence Counter Overflow.

 SA lifetime is handled by IKE and only time controlled.

 Certificates are not supported for IKE authentication.

 No ICMP error messages processing and generation.

 Fragmentation and reassembly is not supported.

IP Authentication Header

4302  AH is not supported.

IP Encapsulating Security Payload (ESP)

4303  SPI 0 to 255 are not reserved.

 Anti-replay service is not active.

 The sequence number will cycle.

 ESN is not supported.

 Dummy packets are not supported.

 TFC Padding is not supported.

 Auditing is not supported.

Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and
Authentication Header (AH)

4835  Supports ONLY NULL-encryption and AES-CTR.

 Supports ONLY NULL-authentication and AES-XCBC-MAC-96.

Neighbor Discovery for IP Version 6 (IPv6)

4861  Only host functionality is implemented.

 Destination cache as proposed by the standard is not available. However, no need for this as this
should speed up next hop determination, which is done in a fraction of the time that message
transport requires.

 No checking of the linkMTU option is performed – however this is not required as 6LoWPAN only
supports the minimum linkMTU of 1280 and will never send larger packets.

 If no reachable router is in the router list, default router selection is not performed in a round-robin
manner as proposed by the standard, but the first entry found is taken. However, reachable routers
still have precedence over routers whose reachability is unknown (Section 6.3.6).

 Variables are mainly implemented as constants.

 During address resolution packets must be queued until address resolution is complete. The
memory for this is allocated dynamically at runtime. If memory allocation fails, the packet is not
being queued! Only one single packet will be queued. A queued packet is not replaced with the
latest one if more than one packet needs to be buffered during the address resolution process.

 Changes of the link-layer address are not advertised as proposed in section 7.2.6. However, this is
not required, as the node also will change its IPv6 address.

 Anycast neighbor solicitation is not supported.

 Redirect messages are not supported (specification section 8).

 Nodes which use multicast do not use the MLD protocol to announce groups they are members of.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
40 of 91

IPv6 Stateless Address Autoconfiguration

4862  Maximum number of NS for DAD is limited to 1.

 Variable RETRANS_TIMER is not configurable but fixed to value of 3s.

 Address deprecation is not implemented. Behavior is the same as preferredLifetime==validLifetime.
However, router advertisements with a perferredLifetime>validLifetime are ignored by the device.

Transmission of IPv6 Packets over IEEE 802.15.4 Networks

4944  ZMDIs implementation does not support one of the specified header compression algorithms
proposed by the RFC. Instead, it implements the RFC draft-hui-6lowapn-hc version 01. 0x03 is
used as dispatch value for this compression format.

 Mesh functionality specified in the RFC is not implemented. Instead, a proprietary link-layer mesh
implementation is provided.

 Only 64-bit link-layer addresses are supported at this time.

IPv6 Configuration in Internet Key Exchange Protocol Version 2 (IKEv2)

5996  Supports only the negotiation of an ESP in transport mode between two protected endpoints.

 The Diffie-Hellman group cannot be changed.

 Only one initial exchange can occur at the same time.

 Only one pair of child SAs can be negotiated with one IKE SA.

 Windowing is not supported.

 Timeouts are defined by user.

 The critical flag is ignored.

 Cookies are not supported.

 Implementation provides only one proposal.

 Only packets for port 500 are accepted.

 EAP is not supported.

 IPComp is not supported.

 NAT traversal is not supported.

 Only ID_IPV6_ADDR is supported.

 Only shared key message integrity code are supported.

 Vendor ID payload is not supported.

 Configuration payload is not supported.

Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)

4307  Supports only 768 MODP Group.

 Supports only ENCR_AES_CBC.

 Supports only PRF_AES128_CBC.

 Supports only AUTH_AES_XCBC_96.

6LoWPAN Compression of IPv6 Datagrams

draft-hui-
6lowpan-

hc-01

 ISA100_UDP Header Compression is not implemented (specification section 3.3).

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
41 of 91

4 Core-Library Reference

4.1. Initialization

The core library provides two different hooks that can be used to initialize the application during system startup.

The first hook, named ZWIR_AppInitHardware, is called before network initialization. The second one, named

ZWIR_AppInitNetwork, is called afterwards.

void

 ZWIR_AppInitHardware (ZWIR_ResetReason_t resetReason)

This hook is called after power on and after reset to configure the module peripherals. The resetReason

argument specifies the reset source that triggered the execution of this function. If required, the operating

mode of the module SHOULD be set from this function.

Note: Most API functions must not be called from this function. The documentation specifies which API

functions can be called from ZWIR_AppInitHardware.

void

 ZWIR_AppInitNetwork (ZWIR_ResetReason_t resetReason)

This hook is called when the default networking parameters have been initialized after power-on or reset. It

should be used to open sockets and initialize further network parameters if required. However, it must not

be used for sending out data, as the node has not completed Duplicate Address Detection (refer to section

3.8.4 for further details) at this point in time. The resetReason argument specifies the reset source that

triggered the execution of this function.

void

 ZWIR_AppInitNetworkDone (ZWIR_ResetReason_t resetReason)

This hook is called after successful completion of the Duplicate Address Detection procedure. It is also

called when DAD is disabled. In this case the function is called immediately after the call to

ZWIR_AppInitNetwork. The resetReason argument specifies the reset source that triggered the

execution of this function. All API functions may be called from this function.

void

 ZWIR_SetOperatingMode (ZWIR_OperatingMode_t opMode,

 ZWIR_RadioReceiveCallabck_t callback)

This function sets the operating mode of the device. Device Mode, Gateway Mode or Sniffer Mode may be

selected (refer to section 3.5) with the operatingMode argument. The callback argument is used in

Gateway Mode and Sniffer Mode to specify the function to be called on the reception of data. If callback is

NULL, no function will be called. If Device Mode is selected callback is ignored. It is RECOMMENDED to call

ZWIR_SetOperatingMode from ZWIR_AppInitHardware only.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
42 of 91

typedef enum { ... } ZWIR_OperatingMode_t

Type enumerating the different operating modes of the device. Possible values include:

 ZWIR_omNormal = 0 Device Mode

 ZWIR_omGateway = 1 Gateway Mode

 ZWIR_omSniffer = 2 Sniffer Mode

typedef enum { ... } ZWIR_ResetReason_t

Type enumerating the different reasons for system reset. Possible values include:

ZWIR_rPowerOnReset The device has been powered on after being

switched off

ZWIR_rStandbyReset The device is waking up from standby mode

ZWIR_rIndependentWatchdogReset The MCU’s independent watchdog (IWDG) was

triggered

ZWIR_rSoftwareReset A software reset has been performed

ZWIR_rPinReset System reset was triggered by pulling low the

reset pin

ZWIR_rWindowWatchdogReset The window watchdog has triggered

ZWIR_rLowPowerReset The supply voltage dropped below the specified

threshold

4.2. Program Control

The API does not provide the concept of a central main function as usual in traditional C programs. Merely three

timing driven hooks, named ZWIR_Main10ms, ZWIR_Main100ms and ZWIR_Main1000ms, are provided, which

are called periodically after 10, 100 and 1000 milliseconds, respectively. Sensing and acting of the user

application should be implemented in these hooks. For more fine-tuned time control, a user-programmable

callback timer is available. This timer can be programmed at 1 millisecond increments. Initialization and

deinitialization of the freely programmable timer function is accomplished by ZWIR_StartCallbackTimer and

ZWIR_StopCallbackTimer.

The ZWIR_Main10ms, ZWIR_Main100ms and ZWIR_Main1000ms hooks can be defined to implement applica-

tion behavior that has to be executed periodically. The default implementations of these hooks do nothing, so

these hooks can be left undefined if they are not required.

Besides the fixed period main functions, the API also provides a freely configurable callback timer. The timer is

started using the ZWIR_StartCallbackTimer function. It is possible to provide a data pointer to this function,

which is passed to the callback when the timer expires. This allows for delayed data processing. It can be chosen,

if the timer is triggered just once or periodically. The timer is stopped with the ZWIR_StopCallbackTimer.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
43 of 91

void

 ZWIR_Reset (void)

This function causes a software reset of the system. Both, the microcontroller and the transceiver are reset.

The complete startup sequence is executed. If this function is called while the transceiver receives or

transmits data, the packet will be lost.

void

 ZWIR_ResetNetwork (void)

This function resets the radio transceiver and reinitializes the network stack. After a call to this function,

IPv6 address auto configuration is restarted and manually assigned addresses are lost. Also routing and

address resolution information are lost.

void

 ZWIR_Main10ms (void)

void

 ZWIR_Main100ms (void)

void

 ZWIR_Main1000ms (void)

These hooks are called with a period of 10, 100 and 1000 milliseconds. On timeslots that are multiples of

10ms or 100ms, the shorter period function has priority over the longer period. This means

ZWIR_Main10ms is called before ZWIR_Main100ms, which is called before ZWIR_Main1000ms. All three

functions are called immediately at system startup.

Note: These functions are not suitable if exact timer behavior is required. A constant execution interval

cannot be guaranteed, nor is it guaranteed that the function is executed at each intended time instant.

void

 ZWIR_StartCallbackTimer (uint32_t timeout,

 ZWIR_TimeoutCallback_t callback,

 void* data,

 bool periodic)

If this function is called, the freely programmable timer is initialized and started. The function provided with

the callback argument will be called about timeout milliseconds after the call to

ZWIR_StartCallbackTimer. The value provided with data will be passed to callback when it is

called. If the periodic flag is set to one, callback is called periodically; otherwise callback is called

just once. If this function is called while the timer is running, the timer will be reprogrammed and the

previous programming will be lost.

Note: The callback timer is not suitable if exact timer behavior is required. Consider using a MCU timer

peripheral for exact timing.

void

 ZWIR_StopCallbackTimer ()

This function stops a running callback timer. If no timer is running, nothing will happen.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
44 of 91

void

 ZWIR_TriggerAppEvent (uint8_t eventId)

This function allows the processing of application events with a certain operating system priority. This

function notifies the operating system of the presence of an application event and schedules the

appropriate callback function for execution. Typically this is used to execute computational intensive code in

response to an interrupt.

void

 ZWIR_RegisterAppEventHandler (uint8_t eventId,

 ZWIR_AppEventHandler_t handler)

This function registers an application event handler callback for a certain application event in the operating

system. If this function is called more than once with the same eventId, the callback function provided

with the last call will be in effect.

typedef void (* ZWIR_AppEventHandler_t) (void)

This function pointer type defines the signature of a callback function that is executed in response to an

application event.

typedef void (* ZWIR_TimeoutCallback_t) (void* data)

Function pointer type for the callback function that should be called if the callback timer expires.

ZWIR_RevisionInfo_t

 ZWIR_GetRevision (void)

This function returns a structure containing detailed version information. This information must be provided

if support requests are sent to ZMDI.

typedef struct { int8_t majorRevision

 int8_t minorRevision

 int16_t versionExtension } ZWIR_RevisionInfo_t

Type for objects carrying version information. If problems are encountered while using the stack, request

this structure using ZWIR_GetRevision and provide the information obtained to ZMDI together with an

error report.

bool

 ZWIR_Error (int32_t errorCode)

This function is called when a recoverable library error is encountered. The error-code is passed in the

errorCode argument. If true is returned, the error is assumed to be processed and no action will be taken

by the stack. If false is returned, the default error handler will be executed.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
45 of 91

int32_t

 ZWIR_Rand (void)

This function returns a random number. The sequence of numbers generated by this function is actually

only pseudo-random, as a linear feedback shift register with a generator polynomial is used. However, by

calling ZWIR_SRand with zero as argument, the random number generator is seeded with a true random

number.

int32_t

 ZWIR_SRand (int32_t seed)

This function seeds the random number generator. If zero is provided as seed, a true random number is

generated from thermal noise. Any value other than zero is used to initialize the generator directly. This

allows creating reproducible application behavior for debug purposes. Using non-zero seed values in

production code is not recommended.

4.3. Networking

A ZWIR451x node can join any IPv6 network. Each device automatically gets an IPv6 address that is computed
from the link-layer address of the module. Additionally, the user’s own IPv6 addresses can be assigned to the
module. The modules can communicate bidirectional using the UDP protocol.

4.3.1. Address Management

The API provides a set of functions for managing the different addresses of a 6LoWPAN module. A module has

three different types of addresses: the PAN identifier, the link-layer address, which is also called the PAN-address

and a set of IPv6 addresses.

4.3.1.1. PAN Identifier

The PAN identifier is a 16-bit value that determines the personal area network that the module belongs to. All

devices in a PAN must have the same PAN identifier. Devices with different PAN identifiers cannot communicate

with each other. They cannot even use each other as a network relay. Each device has exactly one PAN identifier.

It can be read and altered using the ZWIR_SetPANId and ZWIR_GetPANId functions, respectively. The default

value of the PAN identifier is ACCAHEX.

uint16_t

 ZWIR_GetPANId (void);

Reads and returns the PAN identifier of the module.

void

 ZWIR_SetPANId (uint16_t panId);

Sets the PAN identifier of the node to the value provided in panId. The value is retained until the next reset

or until Standby Mode is entered. After waking up, the factory programmed value is active again until the

next call to this function.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
46 of 91

4.3.1.2. Link-Layer Address

The link-layer address, also called PAN-address, is a 64-bit-wide value that identifies the device in the PAN. All

communication between devices in a PAN is based on the link-layer address. Higher layer protocols, such as

IPv6, resolve their addresses into link-layer addresses. A globally unique link-layer address is programmed into

each device during manufacturing. Changing this address is not recommended, as this could cause the address

to be not longer unique. Nevertheless, the functions ZWIR_SetPANAddress and ZWIR_GetPANAddress allow

reading and writing the PAN-address.

ZWIR_PANAddress_t const*

 ZWIR_GetPANAddress (void)

Reads and returns the link-layer address of the module.

void

 ZWIR_SetPANAddress (ZWIR_PANAddress_t const* panAddress)

Sets the link-layer address to the value provided in panAddress. Changing the link-layer address of

module is not recommended for those reasons given in section 3.8.4. However, if manual assignment of

addresses is required, calling ZWIR_SetPANAddress from ZWIR_AppInitHardware is recommended.

The assigned panAddress value is retained until the next system reset or deep sleep. After waking up, the

factory programmed value is active again until the next call to this function.

Note: Changing the link-layer address of a device during normal operation will typically cause a loss of all

incoming packets for a period of time. The standard allows sending unsolicited neighbor advertisements as

an option if the link-layer address changes. This feature is not included in ZMDI’s 6LoWPAN stack.

typedef union { uint8_t u8 [8],

 uint16_t u16 [4],

 uint32_t u32 [2] } ZWIR_PANAddress_t

Data type for representation of link-layer addresses. Bytes are stored in network byte order, which is big

endian. That means that the highest order byte is stored first; therefore using the u16 or u32 elements

might cause unexpected results especially when printing. Consider using the function ntohs for u16 and

ntohl for u32 elements if host byte order is required.

4.3.1.3. IPv6 Addresses

Although manual assignment of IPv6 addresses is not required by most applications, the API provides the function

ZWIR_SetIPv6Address. This function can be used to assign additional IPv6 addresses to an interface. Up to

three addresses can be assigned in total, but the first address is always allocated by the automatically configured

link-local address. The function ZWIR_GetIPv6Addresses can be used to request all addresses assigned to an

interface.

The ZWIR_CheckMulticastGroup hook is called if a multicast packet is received that does not belong to the all

nodes multicast group or the node solicited address multicast group. This function must be implemented by the

application if multicast addressing is used.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
47 of 91

bool

 ZWIR_SetIPv6Address (ZWIR_IPv6Address_t const* ipv6)

Add the address provided in ipv6 to the network interface.

The function returns true if the operation was successful or false otherwise. The function fails if the

maximum number of IPv6 addresses is assigned to the interface already.

uint8_t

 ZWIR_GetIPv6Addresses (ZWIR_IPv6Address_t const* ipv6Buffer,

 uint8_t maxCount)

Request a set of addresses assigned to the interface. The ipv6Buffer argument must carry a pointer that

points to a buffer that is able to store at most maxCount IPv6Addresses. The function will store maxCount

addresses in this buffer if the interface has at least maxCount addresses assigned. If the number of

assigned address is lower than maxCount, the function will store all available addresses.

The return value determines the number of addresses that have actually been stored. Thus, if 0 is returned,

the interface has no IPv6 address assigned. This could be due to failing duplicate address detection.

void

 ZWIR_SetDestinationPANId (uint16_t pandID)

This function is used for changing the destination PAN Id temporarily. The configured value remains in

effect until ZWIR_ResetDestinationPANId is called or the device is reset.

void

 ZWIR_ResetDestinationPANId (void)

This function reset the PAN Id of the device to the last value that had been configured before it was

changed using ZWIR_SetDestinationPANId.

bool

 ZWIR_CheckMulticastGroup (ZWIR_IPv6Address_t const* ipv6)

This hook is called whenever a multicast packet is received that contains a multicast group that is not

known by the network stack. The user implementation must decide if the node is part of the multicast group

provided with the multicast group ID (the lower 112 bytes) in the IPv6 address. True must be returned if the

node belongs to the multicast group, false otherwise.

typedef union { uint8_t u8 [16],

 uint16_t u16 [8],

 uint32_t u32 [4] } ZWIR_IPv6Address_t

Data type for representation of IPv6 addresses. Bytes are stored in network byte order, which is big endian;

i.e., the highest order byte is stored first. Therefore using the u16 or u32 elements might cause unexpected

results especially when printing. Consider using the functions ntohs for u16 and ntohl for u32 elements if

host byte order is required.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
48 of 91

4.3.2. Socket and Datagram Handling

The functions ZWIR_OpenSocket and ZWIR_CloseSocket are provided for opening and closing sockets,

respectively. Datagrams are sent over sockets using the ZWIR_SendUDP, ZWIR_SendUDP2 and

ZWIR_Send6LoWPAN functions, depending on the operating mode of the device.

Incoming datagrams are handled by user-defined callback functions, which must be to be assigned to sockets

using the ZWIR_OpenSocket function. The API functions ZWIR_GetPacketSenderAddress,

ZWIR_GetPacketSenderPort and ZWIR_GetPacketHopCount are provided for requesting the address and

port of a sender.

ZWIR_SocketHandle_t

 ZWIR_OpenSocket (ZWIR_IPv6Address_t const* remoteAddr

 uint16_t remotePort,

 uint16_t localPort,

 ZWIR_RadioReceiveCallback_t rxHandler)

This function opens a new socket to a remote host. The remoteAddr and remotePort arguments specify

the IPv6 address and the UDP port of the remote host. The localPort argument specifies the port on

which incoming data is accepted. If localPort is set to zero, an unused port from the range from 4096

through 32000 is chosen. If incoming data should be received, a pointer to a callback function must be

passed in the rxHandler argument. If no data is expected, the value of localPort does not matter and

rxHandler must be set to NULL. In order to receive packets from arbitrary remote hosts, the unspecified

address can be passed to the function. In this case, the socket is not suitable for sending packets.

On success, the function returns a socket handle that can be used with datagram handling functions. The

function fails if the maximum number of sockets is already opened or if a socket with the same parameters

remoteAddress and localPort already exists. In this case NULL is returned.

void

 ZWIR_CloseSocket (ZWIR_SocketHandle_t socket)

Open sockets are closed using this function. If a socket is invalid or has already been closed, the function

has no effect. Closing a socket has no effect on any previously sent packets, even if transmission is not yet

completed.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
49 of 91

bool

 ZWIR_SendUDP (ZWIR_SocketHandle_t socket,

 uint8_t const* data,

 uint16_t length)

UDP datagrams are sent over a specific socket using this function. The socket denoted by the socket

argument determines the destination address and port of the datagram. The data and length arguments

specify the payload. The maximum packet size is 1232 byte. The function returns a non-zero value if the

packet to be sent was successfully queued in the output queue, otherwise zero is returned. If zero is

returned, there is not enough room in the output queue to buffer this packet. In this case control must be

passed back to the operating system.

Note: A non-zero return value does not automatically denote the successful delivery of the packet.

Successful delivery can only be verified by response-packets sent on the application level.

Note: Calling this function in a while loop, waiting for a non-zero result will dead-lock the system if a packet

cannot be queued. After a zero result control always must be passed to the operating system. Otherwise

the output buffers will never be freed and this function continues to fail, resulting in a dead-lock.

Note: This function cannot be used in the Gateway Mode; use ZWIR_Send6LoWPAN when in Gateway

Mode!

bool

 ZWIR_SendUDP2 (uint8_t* data,

 uint16_t size,

 ZWIR_IPv6Address_t* remoteAddress,

 uint16_t remotePort)

This function sends an UDP packet without the need for opening a socket. Destination address and

destination port are provided in the remoteAddress and remotePort arguments. The local UDP port is

selected arbitrarily by the network stack. The maximum packet size is 1232 byte. The function returns a

non-zero value if the packet to be sent was successfully queued in the output queue, otherwise zero is

returned. If zero is returned, there is not enough room in the output queue to buffer this packet. In this case

control must be passed back to the operating system.

Note: A non-zero return value does not automatically denote the successful delivery of the packet.

Successful delivery can only be verified by response-packets sent on the application layer.

Note: Calling this function in a while loop, waiting for a non-zero result will dead-lock the system if a packet

cannot be queued. After a zero result control always must be passed to the operating system. Otherwise

the output buffers will never be freed and this function continues to fail, resulting in a dead-lock.

Note: This function cannot be used in the Gateway Mode; use ZWIR_Send6LoWPAN when in Gateway

Mode!

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
50 of 91

ZWIR_IPv6Address_t const*

 ZWIR_GetPacketSenderAddress (void)

This function returns a pointer to the IPv6 address of the last received packet. It can be used reliably in the

RX callback function. Using this function outside of the RX callback function might cause unpredictable

results.

Note: This function cannot be used in Gateway Mode.

uint16_t

 ZWIR_GetPacketSenderPort (void)

This function returns the sender port of the last received packet. It can be used reliably in the RX callback

function. Using this function outside of the RX callback function might cause unreliable results.

Note: This function cannot be used in Gateway Mode.

uint8_t

 ZWIR_GetPacketHopCount (void)

Returns the number of hops the last received packet has taken.

Note: Using this function outside of the RX callback function might cause unreliable results.

int32_t

 ZWIR_GetLastRSSI (void)

Returns the receive signal strength indicator (RSSI). The value approximately corresponds to the receive

power level in dBm. Using this function outside of the RX callback function might cause unreliable results.

ZWIR_PANAddress_t*

 ZWIR_GetSourcePANAddress (void)

Returns the source PAN address of the latest received packet.

Note: Using this function outside the receive callback might cause unreliable results.

ZWIR_PANAddress_t*

 ZWIR_GetDestinationPANAddress (void)

Returns the destination PAN address of the last received packet.

Note: Using this function outside the receive callback might cause unreliable results.

ZWIR_SocketHandle_t

 ZWIR_GetPacketRXSocket (void)

Returns the socket handle of the socket the last packet was received on.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
51 of 91

ZWIR_IPv6Address_t*

 ZWIR_GetFailingAddress (void)

Retruns the last address address resolution failed for. This function is typically called from ZWIR_Error

when the ZWIR_eHostUnrechable error was reported. When no address resolution error occurred since

the last reset, the result is undefined.

bool

 ZWIR_Send6LoWPAN (ZWIR_PANAddress_t const* remoteAddr,

 uint16_t const* data,

 uint8_t const length)

This function is used to send complete IPv6/UDP packets to the remote host with the link-local address

remoteAddr. No UDP or IPv6 header processing is performed on the packet. Instead it is passed directly

to the 6LoWPAN processing layer. The data argument must point to the first header byte of the IPv6/UDP

packet; length specifies the size including all headers. This is useful in conjunction with the Gateway

Mode.

Note: Calling this function in a while loop, waiting for a non-zero result will dead-lock the system if a packet

cannot be queued. After a zero result control always must be passed to the operating system. Otherwise

the output buffers will never be freed and this function continues to fail, resulting in a dead-lock.

typedef

 void (* ZWIR_RadioReceiveCallback_t) (uint8_t* data,

 uint16_t length)

Function pointer type for the callback function that should be called on reception of data over an UDP

socket.

typedef

 void* ZWIR_SocketHandle_t

Type representing a socket.

4.3.3. Radio Parameters

The radio module provides the capability to alter the physical radio channel and the transmit output power. This is

accomplished using the ZWIR_SetChannel, ZWIR_SetModulation and ZWIR_SetTransmitPower functions.

Changes to the radio parameters are getting into effect immediately. The changes are reset by ZWIR_Reset, but

not by ZWIR_ResetNetwork. Changing radio parameters during the transmission/reception of a packet will very

likely cause the loss of the packet.

void

 ZWIR_SetChannel (ZWIR_RadioChannel_t channel)

Sets the module to the radio channel specified by channel.

Note: If this is done while a transmission or reception is ongoing, the transmitted or received packet will be

lost. It is recommended to call this function from ZWIR_AppInitHardware.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
52 of 91

Note: Local regulations limit the use of the spectrum. You MUST only select channels which are allowed to

be used in the area the application is going to be installed! Check with you local authorities which part of the

spectrum is allowed to be used for your application.

void

 ZWIR_SetModulation (ZWIR_Modulation_t modulation)

This function is used to change the modulation scheme to the value specified with the modulation

argument.

Note: If this is done while a transmission or reception is ongoing, the transmitted or received packet will be

lost. It is recommended to call this function from ZWIR_AppInitHardware.

void

 ZWIR_SetTransmitPower (int power)

Sets the transceiver output power to the value specified by power. The valid range of values depends on

the channel being selected. In the European frequency band a transmission power of -10dBm to 5dBm may

be selected; in the US band -10dBm to 10dBm are possible. Values being too low or too high are

automatically adjusted to the closest valid value.

Note: If this is done while a transmission is ongoing the transmitted packet is very likely to be lost. For that

reason it is recommended that this function be called only from ZWIR_AppInitHardware.

typedef enum { ... } ZWIR_RadioChannel_t

Radio channel enumeration type accepted by ZWIR_SetChannel. Possible values include

ZWIR_channel0, ZWIR_eu868 EU-Band, 868.3 MHz

ZWIR_channel1, ZWIR_us906 US-Band, 906 MHz

ZWIR_channel2, ZWIR_us908 US-Band, 908 MHz

ZWIR_channel3, ZWIR_us910 US-Band, 910 MHz

ZWIR_channel4, ZWIR_us912 US-Band, 912 MHz

ZWIR_channel5, ZWIR_us914 US-Band, 914 MHz

ZWIR_channel6, ZWIR_us916 US-Band, 916 MHz

ZWIR_channel7, ZWIR_us918 US-Band, 918 MHz

ZWIR_channel8, ZWIR_us920 US-Band, 920 MHz

ZWIR_channel9, ZWIR_us922 US-Band, 922 MHz

ZWIR_channel10, ZWIR_us924 US-Band, 924 MHz

ZWIR_channel100,ZWIR_eu865 EU-Band, 865.3 MHz

ZWIR_channel101,ZWIR_eu866 EU-Band, 866.3 MHz

ZWIR_channel102,ZWIR_eu867 EU-Band, 867.3 MHz

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
53 of 91

typedef enum { ... } ZWIR_Modulation_t

Enumeration of modulation schemes accepted by ZWIR_SetModulation. Possible Values include

 ZWIR_mBPSK Binary Phase Shift Keying

 ZWIR_mQPSK Offset Quadrature Phase Shift Keying

4.3.4. Gateway Mode Functions

The ZWIR45xx network stack provides the Gateway Mode to allow easy implementation of network bridges.

Therefore, the stack does only perform network processing up to and including the 6LoWPAN layer. Thus, when a

packet comes in, a full IPv6 packet is passed to the receive callback. This allows the implementation of a perfectly

transparent network bridge. However, if the bridge should be updateable or configuration parameters should be

set remotely, it would be desirable to have the opportunity of performing higher layer processing of incoming

packets which are addressed to the bridge. For this purpose the types and functions defined in this section are

provided.

bool

 ZWIR_GatewayProcessPacket (uint8_t* data,

 uint16_t size);

This function must be called to make the network stack process the network and higher layer protocols of

an incoming packet. The function is intended to be called from the receive callback of gateway mode

devices. The data and size arguments of the receive callback should be passed unmodified to this

function.

void

 ZWIR_GatewaySetOutputFunction (ZWIR_GatewayOutputFunction_t fn)

Devices operating in gateway mode typically have more than one network interface. When higher layer

protocol processing is in place, it must be decided which network interface is used for sending out packets.

This decision has to be taken by an application callback which must be registered at the network stack

using this function.

typedef

 uint8_t (*ZWIR_GatewayOutputFunction_t) (uint8_t* data,

 uint16_t size,

 ZWIR_PANAddress_t* address);

This type defines the signature of functions to be used as output function in gateway mode. The task of this

function is taking the decision to which interface an outgoing packet must be sent and calling the

corresponding output function for this interface. The decision is typically taken based on the PAN address

of the destination node which is provided in the address argument. The data argument carries a pointer

to the IPv6 packet to be sent; the size argument determines the size of this packet.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
54 of 91

4.3.5. Miscellaneous

ZWIR_TRXStatistic_t

 ZWIR_GetTRXStatistic (void)

This function returns statistic information about transmission and reception. The returned data structure

contains the number of packets, the number of bytes received and transmitted, the number of

retransmissions and the number of CRC failures on reception. Furthermore, the transmit duty-cycle is

included. The counters are reset either on reset or if ZWIR_ResetTRXStatistic is called.

Checking the duty cycle should be performed on a regular basis in order to meet the duty cycle

requirements at the operation site of the device. Please contact the local authorities to find out if duty-cycle

limitations apply on your target market(s).

Note: All values in the structure might be higher than expected. This is due to the overhead communication

that is required for address resolution and route discovery. Refer to section 3.10 to check if it is possible to

optimize constant settings in order to reduce overhead traffic to a minimum.

void

 ZWIR_ResetTRXStatistic (void)

This function resets all values of the transceiver statistics to 0. This function has no effect on ongoing

transfers.

typedef struct {

 uint32_t txBytes

 uint32_t txPackets

 uint32_t rxBytes

 uint32_t rxPackets

 uint32_t txFail

 uint32_t dutyCycle

} ZWIR_TRXStatistic_t

This structure is returned by ZWIR_GetTRXStatistic. The values contained are counted starting from

reset, network reset (initiated by ZWIR_RestNetwork) or a call to ZWIR_ResetTRXStatistic. Besides

data sent from the application code, the fields contained in the structure also consider packets that are sent

in the background (e.g., route and neighbor discovery). The ZWIR_dutyCycle filed contains the quotient

of time spent sending and the time elapsed since the occurrence of one of the above events. In order to

obtain the actual duty cycle percentage divide dutyCycle by 1000.

void

 ZWIR_SetPromiscuousMode (bool enable)

This command puts the device into promiscuous reception mode. This means that on MAC layer all packet

filtering is disabled. In promiscuous mode the device receives packets sent to all PAN Ids and all PAN

Addresses, regardless of its own PAN Id and PAN Address configuration. Filters on higher protocol layers

are still active.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
55 of 91

The promiscuous mode should not be used in normal operation. It may make sense in Gateway Mode and

it is required for sniffers.

bool

 ZWIR_CreateAlternativeAddressList (uint16_t size)

This function is used in promiscuous mode to allocate memory for an alternative PAN address list. The

device will treat each packet sent to one of the addresses in the alternative PAN address list in the same

way as if the packet had been sent to the device’s own PAN address. The size argument determines the

maximum number of entries in the list. The function returns true on success or false otherwise

bool

 ZWIR_AddAlternativeAddress (ZWIR_PANAddress_t* address,

 ZWIR_AlternativeAddressType_t type)

This function adds a PAN address to the alternative address list. The address argument specifies the

address to be added and the type argument specifies the type of the address. The function returns true if

the address was added successfully. false is returned when no alternative address list has been allocated

(refer to ZWIR_CreateAlternativeAddressList). If address is already in the address list true is

returned. If there is no free item in the alternative address list, the item that has not been used for the

longest time is overwritten.

ZWIR_AlternativeAddressType_t

 ZWIR_IsAlternativeAddress (ZWIR_PANAddress_t* address,

 ZWIR_AlternativeAddressType_t type)

This function checks whether address of type is in the alternative PAN address list or not. type is used

as filter. The type of address stored in the address list logically AND’ed with type. The function returns the

type of the stored address if available or ZWIR_noAddr otherwise.

typedef enum {...} ZWIR_AlternativeAddressType_t

This type is used by ZWIR_IsAlternativeAddresss and ZWIR_AddAlterantiveAddress as

address type, address filter or return value. Possible values are:

ZWIR_aatNone 0x00 Address not found (only with ZWIR_IsAlternativeAddress)

ZWIR_aatEUI64 0x01 Address is a EUI64 address

ZWIR_aatEUI48 0x02 Address is a EUI48 address

ZWIR_aatAny 0x03 Only to be used as filter in ZWIR_IsAlternativeAddress

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
56 of 91

bool

 ZWIR_ExternalClockEnable (bool enable)

This function is used to select whether the external or the internal clock is used as system clock. The

external clock is much more precise, but it is not possible to use sleep mode or turn off the transceiver

when the external clock is used.

char const*

 ZWIR_GetFCCID (void)

This function returns the FCC ID of the module. The FCC ID is returned as NULL-terminated string.

4.4. Power Management

The MCU on the module can operate at different clock rates. The lowest possible clock frequency matching the

needs of the application should be selected in order to work as power efficiently as possible. The operating

system frequency is set using ZWIR_SetFrequency.

Besides clock speed modification, the radio module supports the Sleep, Stop and Standby Modes (see section

3.6.3). The wakeup conditions are adjustable for each power mode individually. By default, the system continues

its execution after an RTC alarm. The state of the transceiver depends of the selection of the transceiver interrupt

or event as the wakeup source. When the transceiver interrupt or event is masked, the transceiver will be

switched of automatically.

All three power modes can be executed immediately or delayed to send out all buffered packets. After entering

the Standby Mode, all RAM content is lost and the microcontroller will be reset.

The functions ZWIR_SetWakeupSource, ZWIR_PowerDown and ZWIR_AbortPowerDown are used to

configure, to enter or to leave the low power modes.

void

 ZWIR_SetFrequency (ZWIR_MCUFrequency_t freq)

This function sets the clock speed of the MCU core. Peripheral clocks are not changed.

void

 ZWIR_AbortPowerDown (void)

This function stops all delayed power down actions.

void

 ZWIR_PowerDown (ZWIR_PowerDownState_t powerDownMode,

 uint32_t time)

This function changes the power mode of the system immediately or after sending all buffered fragments.

The powerDownMode argument defines the next power down mode. The time parameter specifies the

power down time. For the Sleep Mode, the time is given in 10 milliseconds multiples. For the Stop and

Standby Modes, the time is given in seconds. If the RTC alarm is not selected as the source, the time

parameter will be ignored.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
57 of 91

void

 ZWIR_SetWakeupSource (ZWIR_PowerDownState_t powerDownMode,

 uint64_t wakeupSource)

This function sets the wakeup condition for a power mode. The powerDownMode argument defines the

power down mode to be configured and the wakeupSource parameter specifies the event(s) that will

cause the module to enter active mode, again. Depending on the value of powerDownMode, the

wakeupSource parameter is interpreted differently. The settings being applied to different register will be

revoked when exiting power down mode.

In sleep mode each interrupt can be used to wake up the system. Accordingly, the wakeupSource

parameter is interpreted as an interrupt mask. The interrupt mask allows selecting one or more of the lower

64 interrupts to be selected as wakeup source. The bits correspond to the interrupt position according to the

Nested Vectored Interrupt Controller (NVIC) documentation in the STM32 Reference Manual.

For Stop Mode, only events are supported as wakeup source. Therefore, the wakeupSource parameter is

used to configure the external interrupt/event controller’s event mask register (EXTI_EMR). The external

interrupt controller limits the wakeup sources for stop mode to the external pins, the programmable voltage

detector, the real-time clock and the USB wakeup function. Refer to the STM32 Reference Manual for

further information about the external interrupt controller.

Exit from standby mode is only possible using the Real-Time Clock (RTC) or the external wakeup pin.

Wakeup by RTC is selected if ‘1’ is passed as wakeupSource, the WKUP pin is selected by ‘2’ and an

argument of ‘3’ selects both.

If an invalid wakeup source is selected, the default wakeup source, the RTC, is set.

void

 ZWIR_Sleep (uint16_t sleepTime)

This function puts the system into Sleep Mode. The sleepTime argument controls the duration of Sleep

Mode and is given in 10 millisecond multiples. That means that a sleepTime value of 100 puts the system

into Sleep Mode for 1 second. During Sleep Mode, all memory contents are retained. Waking up the system

from sleep is not possible.

Note: This function is deprecated – use ZWIR_PowerDown instead.

void

 ZWIR_Standby (uint32_t standbyTime)

This function puts the system into Standby Mode. The standbyTime argument controls the duration of

Standby Mode and is given in seconds. In order to consume minimal power, almost all power domains of

the MCU are disconnected. Memory contents are not retained during Standby Mode. The system can be

woken up before expiration of the standby timer if the external wakeup pin of the module is triggered.

Note: This function is deprecated – use ZWIR_PowerDown(ZWIR_ pStandby, standbyTime)

instead

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
58 of 91

void

 ZWIR_TransceiverOff (void)

This function switches the transceiver off manually. Attempts to send data using one of the functions

ZWIR_SendUDP, ZWIR_SendUDP2 and ZWIR_Send6LoWPAN while the transceiver is switched off will fail

and the sent data will be lost. To turn the transceiver on, the functions ZWIR_TransceiverOn or

ZWIR_ResetNetwork can be used. The transceiver is re-enabled after a system reset.

void

 ZWIR_TransceiverOn (void)

This function switches the radio transceiver on manually after having it switched of using

ZWIR_TransceiverOff. If the transceiver is already active, this function does nothing.

Typedef

 enum { ... } ZWIR_PowerDownState_t

MCU frequency enumeration type accepted by ZWIR_PowerDown and ZWIR_SetWakeupSource.

Possible values include

Value
Power
Mode

Wait Until
Sent?

Possible Wakeup Sources

ZWIR_pSleep Sleep No IRQ 0 to 63

ZWIR_pSleepAfterActivities Sleep Yes IRQ 0 to 63

ZWIR_pStop Stop No EXTI 0 to 18

ZWIR_pStopAfterActivities Stop Yes EXTI 0 to 18

ZWIR_pStandby Standby No RTC, Wakeup pin

ZWIR_pStandbyAfterActivities Standby Yes RTC, Wakeup pin

Typedef

 enum { ... } ZWIR_MCUFrequency_t

MCU frequency enumeration type accepted by ZWIR_SetFrequency. Possible values include

 ZWIR_mcu8MHz 8 MHz

 ZWIR_mcu16MHz 16 MHz

 ZWIR_mcu32MHz 32 MHz

 ZWIR_mcu64MHz 64 MHz

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
59 of 91

4.5. Network Monitoring

ZWIR451x devices implement a protocol providing the functionality for remote network monitoring without the

need for explicit support from the application layer. The monitoring functionality is available on each node

operating in Device or Gateway Mode regardless of the application running on the module. Monitoring functions

implemented at the time of publication of this document allow for discovery of network devices, determination of

node configuration parameters and determination of routes through the network. The protocol is implemented on

top of UDP.

void

 ZWIR_DiscoverNetwork (ZWIR_DiscoveryCallback_t callback,

 uint8_t responseInterval)

This function initiates network discovery. A network discovery request is broadcasted to all nodes in the

network. The callback argument is a pointer to a function that should be called to pass replying node

information to the application. The information provided includes the hop-distance, the RSSI, IPv6 address

count and all IPv6 addresses of the node. The responseInteval argument specifies a maximum time

interval within which a responding device has to answer the request. The actual response time is chosen

randomly. responseInterval should be increased with growing number of devices in the network. If zero

is specified as responseInterval, the default response time of three seconds is used.

Note: This function is deprecated! Use ZWIR_NetMA_RemoteParameterRequest instead.

void

 ZWIR_NetMA_RemoteParameterRequest (ZWIR_IPv6Address_t* address,

 ZWIR_NetMA_RPRCallback_t callback,

 ZWIR_NetMA_RPRFields_t fields = 0,

 ZWIR_NetMA_Flags_t flags = 0,

 uint8_t respInterval = 3,

 uint8_t queryId = 0,

 uint8_t hopLimit = 0)

Use this function to obtain configuration data remotely. Data may be requested from a single or from

multiple devices. Different parameters control the answering of the requested devices. The function is

actually a macro providing the possibility of using the function like a C++ style function with default

arguments.

The address parameter specifies the device(s) from which data is requested. The function provided with

callback will be called when a response is received. The remaining arguments are optional. As in C++ all

arguments before the last one to be specified need to be provided. Assuming the application needs to

specify the respInterval argument, fields and flags have to be specified as well.

The fields argument controls which sets of information are requested from the remote device. Refer to

the documentation of the ZWIR_NetMA_RPRFields_t to see which options are available. flags limits the

scope of the request which is especially useful in conjunction with multicast addressing. For instance it is

possible to send requests just to devices configured in Gateway Mode using the flags argument.

respInterval specifies the maximum number of seconds a device waits before it sends its response.

The actual response interval is chosen randomly between zero and respInterval seconds in order to

avoid collisions of responses sent from multiple devices at the same time.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
60 of 91

The queryId is used to distinguish between different queries. A device that has successfully responded to

a remote parameter request will not respond to another remote parameter request with the same queryId.

However, the queryId is only considered when the corresponding flag in the flags argument is set.

The hopLimit argument specifies up to which hop limit devices may respond to the request. If hopLimit

is left unspecified or explicitly set to zero, all devices will respond regardless of their hop-distance to the

requesting device. However, the hopLimit is only considered when the corresponding flag in the flags

argument is set.

typedef

 void (*ZWIR_NetMA_RPRCallback_t) (ZWIR_NetMA_RPRFields_t fields,

 ZWIR_NetMA_RemoteData_t* data)

This type defines the signature of functions to be used as remote parameter request response callbacks.

void

 ZWIR_NetMA_SetPort (uint16_t port)

Using this function the application may change the port used by the NetMA protocol. The default UDP port

is 1357.

void

 ZWIR_NetMA_Trace (ZWIR_PANAddress_t* routeDestination,

 ZWIR_IPv6Address_t* routeSource,

 ZWIR_NetMA_TraceCallback_t callback)

This function allows examining routes through the network. Routes to routeDestination may be

examined from the node calling this function or from a starting point which is passed as in the

routeSource argument. Selecting a different starting point is required for requests coming from nodes not

implementing ZMDIs network stack, e.g. computers in a network.

Responses to route requests are received by the application through the function defined by callback. If

callback is NULL, the trace request will not be executed. Replied route information contains the list of all

hops to routeDestination along with the forward RSSI of each hop. Be aware that response times may

be significant long if long routes are examined.

Note: This function will not create routes between routeSource and routeDestination, but may

generate routes between the requesting device and routeSource if required.

typedef

 void (* ZWIR_DiscoveryCallback_t) (uint8_t hopCount,

 int8_t rssi,

 uint8_t addrCount,

 ZWIR_IPv6Address_t* addresses)

Function pointer type for the callback function that should be called if network discovery reply packets are

received.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
61 of 91

typedef

 void (* ZWIR_NetMA_TraceCallback_t) (uint8_t hopCount,

 ZWIR_NetMA_HopInfo_t* hopInfo)

This type defines the function signature that is required by functions to be used as callback for the

ZWIR_NetMA_Trace function.

typedef

 struct {

 ZWIR_PANAddress_t address;

 int16_t linkRSSI;

 } ZWIR_NetMA_HopInfo_t

Objects of this type are passed to the trace route callback function. Each object contains the address of a

hop and the RSSI value of the forward path from the previous hop/source node to this node. Note that the

return path’s RSSI might be slightly different.

typedef

 enum { ... } ZWIR_NetMA_RPRFields_t

This enumerator is used with ZWIR_NetMA_RemoteParameterRequest to specify which sets of

information have to be included in the response. The values may be binary OR’ed to request multiple sets

of information at the same time. The following values are available:

ZWIR_NetMA_rprfMACAddress 0x0100 include ZWIR_NetMA_RemoteMACAddr_t

ZWIR_NetMA_rprfFirmwareVersion 0x0200 include ZWIR_NetMA_RemoteVersion_t

ZWIR_NetMA_rprfConfig 0x0400 include ZWIR_NetMA_RemoteConfig_t

ZWIR_NetMA_rprfIPv6Addresses 0x0800 include ZWIR_NetMA_RemoteIPv6Addr_t

ZWIR_NetMA_rprfTRXStatistics 0x1000 include ZWIR_NetMA_RemoteStatus_t

typedef

 enum { ... } ZWIR_NetMA_Flags_t

This enumerator defines flags to be used in conjunction with remote parameter requests. The flags limit the

scope of the request. Possible values include:

ZWIR_NetMA_fDevice 0x04

ZWIR_NetMA_fBridge 0x08

ZWIR_NetMA_fQueryID 0x10

ZWIR_NetMA_fHopCountLimitation 0x20

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
62 of 91

typedef

 struct {

 ZWIR_NetMA_RemoteMACAddr_t* macAddr;

 ZWIR_NetMA_RemoteIPv6Addr_t* ipv6Addr;

 ZWIR_NetMA_RemoteConfig_t* config;

 ZWIR_NetMA_RemoteVersion_t* version;

 ZWIR_NetMA_RemoteStatus_t* status;

 } ZWIR_NetMA_RemoteData_t

This structure contains pointers to the remote parameters received in response to a remote parameter

request. The fields correlate with the ZWIR_NetMA_RPRFields_t enumerators. For each requested field

the corresponding pointer should be set in the response. Fields which have not been requested result in a

NULL pointer of the corresponding structure element.

typedef

 struct {

 uint16_t panID;

 ZWIR_PANAddress_t panAddr;

 } ZWIR_NetMA_RemoteMACAddr_t

This structure type carries a remote device’s configured PAN ID and its PAN address.

typedef

 struct {

 uint8_t count;

 ZWIR_IPv6Address_t addresses [];

 } ZWIR_NetMA_RemoteIPv6Addr_t

This type defines a structure carrying all IPv6 addresses of a device. The count argument defines how

many addresses are contained in the structure; the addresses element contains the actual addresses. The

size of memory required by this structure varies – it depends on the number of contained addresses. The

size of this structure cannot be determined using C’s sizeof operator.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
63 of 91

typedef

 struct {

 uint16_t routeTimeout;

 uint16_t routingTableSize;

 uint16_t neighborReachableTime;

 uint8_t neighborCacheSize;

 uint8_t maxNetfloodHopCount;

 uint8_t maxSocketCount;

 uint8_t routeMaxFailCount;

 int8_t routeRequestMinLinkRSSI;

 uint8_t routeRequestMinLinkRSSIReduction;

 uint8_t routeRequestAttempts;

 uint8_t channel;

 uint8_t power;

 uint8_t modulation;

 uint8_t doDuplicateAddressDetection;

 uint8_t doRouterSolicitation;

 } ZWIR_NetMA_RemoteConfig_t

Objects of this type are used to report the configuration of the remote device.

typedef

 ZWIR_TRXStatistic_t ZWIR_NetMA_RemoteStatus_t

This type defines the remote status as being equal to the transceiver statistics type.

typedef

 struct {

 uint32_t vendorID;

 uint16_t productID;

 uint8_t firmwareMajorVersion;

 uint8_t firmwareMinorVersion;

 uint16_t firmwareVersionExtension;

 uint8_t libraryMajorVersion;

 uint8_t libraryMinorVersion;

 uint16_t libraryVersionExtension;

 } ZWIR_NetMA_RemoteVersion_t

This type bundles all version information defined in a device.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
64 of 91

4.6. Firmware Version Information

Each productive firmware version shall include a valid set of version information. The complete set consists of

major and minor version number, version extension, vendor ID and product ID. For more detailed information

about these elements refer to section 3.7.

Version information is included in the firmware by global definition of the variables listed below. If these variables

are not defined by the application code, they will contain default values.

uint32_t ZWIR_vendorID = 0xe966

This variable defines the Vendor ID. A vendor ID is assigned by ZMDI. It MUST be defined appropriately in

production code!

uint16_t ZWIR_productID = 0

This variable identifies a product or firmware type, respectively. It SHALL be defined appropriately for each

firmware type. It is used by the firmware over-the-air update mechanism to distinguish different firmware

types.

uint8_t ZWIR_firmwareMajorVersion = 0

This variable defines the major version number of the firmware.

uint8_t ZWIR_firmwareMinorVersion = 0

This variable defines the minor version number of the firmware.

uint16_t ZWIR_firmwareVersionExtension = 0

This defines version extension information of the firmware.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
65 of 91

4.7. Properties and Parameters

The behavior of built-in network stack functionality is configurable to some extend by a set of parameters which

are changed using the function ZWIR_SetParameter.

int32_t

 ZWIR_SetParameter (ZWIR_SystemParameter_t parameter,

 int64_t value)

This function changes the setting of a single network stack parameter. Configuration changes are getting

into effect immediately when this function is called from ZWIR_AppInitHardware. Otherwise, the new

value is buffered until ZWIR_ResetNetwork is called.

typedef enum { ... } ZWIR_SystemParameter_t

This enumeration names the different parameters which may be configured using ZWIR_SetParameter.

Possible names are listed in Table 4.1, below:

Table 4.1 Configurable Stack Parameters and Their Default Values

Enumerator Size Default Description

ZWIR_spRoutingTableSize 1 8 Refer to section 3.10.3

ZWIR_spNeighborCacheSize 1 8 Refer to section 3.9.3

ZWIR_spMaxSocketCount 1 8

ZWIR_spRouteTimeout 2 3600 (s) Refer to section 3.10.3

ZWIR_spNeighborReachableTime 2 3600 (s) Refer to section 3.9.3

ZWIR_spMaxHopCount 1 4 Refer to section 3.10.3

ZWIR_spRouteMaxFailCount 1 3 Refer to section 3.10.3

ZWIR_spRouteRequestMinLinkRSSI 1 -128 (dBm) Refer to section 3.10.3

ZWIR_spRouteRequestMinLinkRSSIReduction 1 0 (dB) Refer to section 3.10.3

ZWIR_spDoDuplicateAddressDetection 1 1 Refer to section 3.8.4

ZWIR_spDoRouterSolicitation 1 1 Refer to section 3.8.3

ZWIR_spRouteRequestAttempts 1 4 Refer to section 3.10.3

ZWIR_spHeaderCompressionContext1 8 0 Refer to section 3.9.4

ZWIR_spHeaderCompressionContext2 8 0 Refer to section 3.9.4

ZWIR_spHeaderCompressionContext3 8 0 Refer to section 3.9.4

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
66 of 91

4.8. Error Codes

The error codes listed in Table 4.2 are generated by the core library and passed to the ZWIR_Error hook if it is

implemented in the application code.

Table 4.2 Error Codes Generated by the Core Library

C – Identifier Code Default Handling

ZWIR_eDADFailed 100HEX Node shutdown (permanent deep-sleep, node can only be
restarted with external reset)

ZWIR_eProgExit 101HEX Node shutdown (permanent deep-sleep, node can only be
restarted with external reset)

ZWIR_eReadMACFailed 102HEX System reset triggered

ZWIR_eMemoryExhaustion1 103HEX System reset triggered

ZWIR_eHostUnreachable 104HEX Ignore – the packet causing this failure is dropped

ZWIR_eExtClockPowerDown 105HEX Ignore – the node will not enter power-down mode

1.
 This error is only triggered when allocation fails for the memories required by the network stack. Failing allocation attempts from

the application code have to be caught by checking the allocation result for NULL!

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
67 of 91

5 UART Library Reference

The libZWIR451x-UART1.a and libZWIR451x-UART2.a libraries provide functions for easy access of the UART

interfaces provided by the microcontroller. Each ZWIR451x module has two UART interfaces. ZMDI provides two

separate libraries, one for each UART interface. Both libraries expose exactly the same interface. Symbol names

only differ in the number behind “UART,” which is part of each symbol name. Just replace the question mark in the

following function and type names with 1 or 2, depending on which UART is being used.

It is possible to use only one of the UARTs or both in parallel. Consider the different priorities of the interfaces

when selecting the UART (refer to section 3.6.2). The initialization of a UART interface is performed automatically

if the UART library is linked into the project. The UARTs can be used after hardware initialization but not inside of

ZWIR_AppInitHardware.

The UART’s receive buffer is 256 bytes. If data are received on the UART interface, data are kept in the buffer

until read by ZWIR_UART?_ReadByte. If the buffer is full and more data is received, ZWIR_Error is called with

ZWIR_eUART?Ovfl as the argument. The UART libraries use an event-based programming approach. Instead of

relying on polling the UART interfaces, a callback function has to be specified, which is called automatically when

data is available in the receive buffer. This is done using the function ZWIR_UART?_SetRXCallback. Without

calling this function, the UART receiver remains disabled, saving some power.

5.1. Symbol Reference

bool

 ZWIR_UART?_SendByte (uint8_t data)

Single bytes are sent via the interface using this function. The byte to be sent is provided in data. The

function returns true if the byte was successfully placed in the transmit buffer or false otherwise. If bytes are

in the buffer, they are written immediately until the buffer is empty. However, be aware that significant time

can elapse between a call to ZWIR_UART?_SendByte and the actual sending of the byte if there is already

data in the buffer.

uint8_t

 ZWIR_UART?_Send (uint8_t* data,

 uint16_t dataSize)

A block of bytes is written to the buffer and transmission is started. The data argument must point to the

data to be written. dataSize determines the number of bytes to be transferred. The return value contains

the number of bytes that have actually been written. It can be lower than dataSize.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
68 of 91

bool

 ZWIR_UART?_ReadByte (uint8_t* data)

This function reads a single byte from the receive buffer. The read byte is stored to the location data points

to. The function returns true if a byte is successfully read and false otherwise.

void

 ZWIR_UART?_SetRXCallback (ZWIR_UART_RXCallback_t callback)

This function registers a callback function that is called if data is received on the UART. The callback

argument is a pointer to the function to be called. The UART receiver is not started before

ZWIR_UART?_SetRXCallback is called. If NULL is passed as callback argument, the receiver is

disabled.

void

 ZWIR_UART?_Setup (uint32_t baudRate,

 uint32_t parameters)

This function configures the UART peripheral of the microcontroller. The baudRate argument configures

the speed of the transmission line. Its value must be given in bits per second. The parameters argument

is a set of flags which configures the parity bit generation, the stop bit generation and controls whether flow

control is used or not. The parameters argument is generated from a binary OR combination of one

constants from each block described below. Default values may be omitted. In order to set all values to their

default settings a zero may be passed in the parameters argument.

The following configuration options are available for parity configuration:

 ZWIR_UART_NoParity No parity bit is transmitted (default)

 ZWIR_UART_OddParity Odd parity bit is transmitted/checked

 ZWIR_UART_EvenParity Even parity bit is transmitted/checked

The following configuration options are available for stop-bit configuration:

 ZWIR_UART_Stop_1 One stop-bit is transmitted at the end of a frame (default)

 ZWIR_UART_Stop_2 Two stop bits are transmitted at the end of a frame

The following configuration options are available for flow-control configuration:

 ZWIR_UART_NoFlowControl Flow control is disabled (default)

 ZWIR_UART_HWFlowControl Use hardware flow control with CTS and RTS

Note: A call to this function drops all bytes which are still in the transmission buffer. If this function is called

during an active transmission, the active transmission will fail very likely.

Note: When flow control is enabled the configuration of the CTS and RTS pins of the corresponding UART

interface are configured as input and alternative push/pull output, respectively. This configuration overwrites

the configuration these pins had before. When flow control changes from enabled to disabled, the pin

configuration of the CTS and RTS pins is not changed.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
69 of 91

bool

 ZWIR_UART?_IsTXEmpty (void)

This function returns false if there are still bytes in the UART transmit buffer and returns true otherwise.

uint16_t

 ZWIR_UART?_GetAvailableTXBuffer (void)

This function returns the number of free bytes in the UART TX buffer.

typedef

 void (* ZWIR_UART_RXCallback_t) (void)

This is the type definition for a UART callback function. This type is used with

ZWIR_UART?_SetRXCallback. The callback does not accept any elements and does not return.

ZWIR_UART?_PRINTF

This is a macro provided for convenience. If high-level functions for text output like printf are used, an

appropriate low-level function must be provided, which can output characters to a device. This macro

defines a low-level output function writing to the UART interface. This macro must only be used once in the

whole application source code. It must not be put inside of function definitions and should not be put in

header files. It is not possible to use both, ZWIR_UART1_PRINTF and ZWIR_UART2_PRINTF in the same

project.

5.2. Error Codes

The error codes listed in Table 5.1 are generated by the UART libraries and passed to the ZWIR_Error hook if it

is implemented in the application code.

Table 5.1 Error Codes Generated by the UART Libraries

C – Identifier Code Default Handling

libZWIR451x-UART1.a

ZWIR_UART1_eOvfl 200HEX Ignore

ZWIR_UART1_eParity 201HEX Ignore

ZWIR_UART1_eFrame 202HEX Ignore

ZWIR_UART1_eNoise 203HEX Ignore

libZWIR451x-UART2.a

ZWIR_UART2_eOvfl 210HEX Ignore

ZWIR_UART2_eParity 211HEX Ignore

ZWIR_UART2_eFrame 212HEX Ignore

ZWIR_UART2_eNoise 213HEX Ignore

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
70 of 91

6 GPIO Library Reference

The GPIO library provides a convenient interface for accessing and controlling the GPIO ports of the module. It

allows configuring GPIOs to be used as application programmable inputs or outputs and it is possible to enable or

disable special function of certain ports such as the JTAG ports. All functions from the GPIO library are also

accessible using the MCUs peripheral control registers.

The intention of the GPIO library is to provide a high-level, lightweight, convenient interface to the GPIOs. For that

reason the GPIO library functions do no implement parameter checking. It is in the responsibility of the application

to ensure that appropriate parameters are used. All microcontroller GPIO pins which are not connected to one of

the modules I/O pins are locked, so that it is impossible to change their configuration accidentally.

6.1. Symbol Reference

void

 ZWIR_GPIO_ConfigureAsOutput (ZWIR_GPIO_Pin_t pins,

 ZWIR_GPIO_DriverStrength_t driver,

 ZWIR_GPIO_OutputMode_t mode)

This function registers one or multiple pins as output. In the pins argument specifies the pin to be

configured. If multiple pins need to be configured provide a binary or’ed combination of the enumeration

values corresponding to the pins. The driver argument determines the driving strength of the pin; the

mode argument determines the output mode. If multiple pins are specified, all pins will be configured in the

same way.

Be sure to use a combination of ZWIR_GPIO_Pin_t enumeration values to specify which pins shall be

configured. Otherwise the wrong pins might be configured resulting in a configuration which could cause

damage to the system.

void

 ZWIR_GPIO_ConfigureAsInput (ZWIR_GPIO_Pin_t pins,

 ZWIR_GPIO_InputMode_t mode)

This function registers one or multiple pins as input. The pins argument specifies the pin to be configured.

If multiple pins need to be configured, provide a binary or’ed combination of the enumeration values

corresponding to the pins. The mode argument selects the configuration of the inputs. If multiple pins are

specified, all pins will be configured in the same way.

Be sure to use a combination of ZWIR_GPIO_Pin_t enumeration values to specify which pins shall be

configured. Otherwise the system might behave not as expected.

bool

 ZWIR_GPIO_Read (ZWIR_GPIO_Pin_t pin)

This function reads the input value of a single pin. The function doesn’t care if the pin is configured as input

or output pin. If the pin is configured as analog input, the return value is undefined.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
71 of 91

uint32_t

 ZWIR_GPIO_ReadMultiple (ZWIR_GPIO_Pin_t pins)

This function reads the input value of multiple pins. The function doesn’t care if the pins are configured as

inputs or outputs. If a pin is configured as analog input, the return value at the corresponding bit is

undefined. The result is aligned as shown in Figure 6.1. In order to extract single bit results, the return value

of the function may be binary or’ed with the ZWIR_GPIO_Pin_t enumeration values.

Figure 6.1 ZWIR_GPIO_ReadMultiple Result Alignment

Note: Only pins from the same GPIO bank are read at the same time. If pins don’t share the same GPIO

bank, there will be a time difference between the accesses to their input registers. All pins belonging to the

same GPIO bank are highlighted with the same color in Figure 6.1.

void

 ZWIR_GPIO_Write (ZWIR_GPIO_Pin_t pins,

 bool value)

This function sets the output value of one or multiple pins. All pins specified in the pins argument are set to

value. The output is written regardless of the pin configuration! If one of the pins was configured as pull-up

or pull-down input, writing the output register of this pin can change the pull-up/pull-down configuration

accidentally!

void

 ZWIR_GPIO_Remap (ZWIR_GPIO_RemapFunction_t function,

 int32_t value)

This function is used to control the remapping of GPIO pins to system functions. It allows configuring

whether the JTAG pins are used for debug purposes or as normal GPIO pins. The value argument shall

be one of the options defined by the enumeration type ZWIR_GPIO_SWJRemapValue_t.

Reserved Pin 9 Reserved

Pin 23 Pin 24 Reserved Pin 10 Pin 19 Reserved

Pin 21 Pin 22 Pin 20 Pin 17 Pin 16 Pin 12 Pin 13

Pin1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7 Pin 8

Reserved

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
72 of 91

typedef enum { ... } ZWIR_GPIO_Pin_t

This enumeration type assigns a name to each pin. Some GPIO operations allow specifying multiple pins.

This is done by or-combining the pins.

ZWIR_Pin1 MCU port A7

ZWIR_Pin2 MCU port A6

ZWIR_Pin3 MCU port A5

ZWIR_Pin4 MCU port A4

ZWIR_Pin5 MCU port A3

ZWIR_Pin6 MCU port A2

ZWIR_Pin7 MCU port A1

ZWIR_Pin8 MCU port A0

ZWIR_Pin9 MCU port C13

ZWIR_Pin12 MCU port A10

ZWIR_Pin13 MCU port A9

ZWIR_Pin16 MCU port A11

ZWIR_Pin17 MCU port A12

ZWIR_Pin19) MCU port B3 (remapped function; default configuration JTDO

ZWIR_Pin20) MCU port A13 (remapped function; default configuration JTMS

ZWIR_Pin21 MCU port A15 (remapped function; default configuration: JTDI)

ZWIR_Pin22 MCU port A14 (remapped function; default configuration: JTCK)

ZWIR_Pin23 MCU port B7

ZWIR_Pin24 MCU port B6

typedef enum { ... } ZWIR_GPIO_DriverStrength_t

This enumeration value specifies the driving strength of GPIO output pins.

ZWIR_GPIO_dsLow Low driving strength

ZWIR_GPIO_dsMedium Medium driving strength

ZWIR_GPIO_dsHigh High driving strength

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
73 of 91

typedef enum { ... } ZWIR_GPIO_OutputMode_t

This enumeration value specifies the mode of GPIO output pins.

ZWIR_GPIO_omPushPull Application controlled push/pull output

ZWIR_GPIO_omOpenDrain Application controlled open drain output

ZWIR_GPIO_omAlternativePushPull Hardware controlled push/pull output

ZWIR_GPIO_omAlternativeOpenDrain Hardware controlled open drain output

typedef enum { ... } ZWIR_GPIO_InputMode_t

This enumeration value specifies the mode of GPIO input pins.

ZWIR_GPIO_imAnalog Analog input (default configuration)

ZWIR_GPIO_imFloating Floating input

ZWIR_GPIO_imPullUp Pull-up input

ZWIR_GPIO_imPullDown Pull-down input

typedef enum { ... } ZWIR_GPIO_RemapFunction_t

This enumeration type is used to specify which remapping shall be changed with ZWIR_GPIO_Remap.

ZWIR_GPIO_rfSWJ Configure remapping of the JTAG/SWD pins (Pin19 – Pin 22)

typedef enum { ... } ZWIR_GPIO_SWJRemapValue_t

In calls to ZWIR_GPIO_Remap this enumeration value specifies which configuration is used for JTAG/SWD

remapping.

ZWIR_GPIO_swjrEnableSWJ Enable full JTAG/SWD support (pins 19 to 22 cannot be

used as GPIO).

ZWIR_GPIO_swjrSWOnly Enable SWD support only (pins 20 and 22 cannot be

used as GPIO).

ZWIR_GPIO_swjrDisableSWJ Disable JTAG/SWD support (pins 19 to 22 can be used

as GPIO).

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
74 of 91

7 IPSec Library Reference

The IPSec library provides functions to manage security policies and security associations. A security policy is

added using ZWIRSEC_AddSecurityPolicy. Security Associations can be added using the function

ZWIRSEC_AddSecurityAssociation. For more detailed information about security policies and security

association, refer to the ZMDI application note “Using IPSec and IKEv2 in 6LoWPANs.”

7.1. Symbol Reference

uint8_t

 ZWIRSEC_AddSecurityPolicy (ZWIRSEC_PolicyType_t type,

 ZWIR_IPv6Address_t* remoteAddress,

 uint8_t prefix,

 ZWIR_Protocol_t proto,

 uint16_t lowerPort,

 uint16_t upperPort,

 ZWIRSEC_SecurityAssociation_t* securityAssociation)

A call to this function adds a security policy to the IPSec security policy database. The type argument

determines the traffic direction and how packets have to be handled. The combination of the

remoteAddress, prefix, protocol, lowerPort and upperPort arguments specify the traffic which is

affected by this policy. See section 3.12 and ZMDI application note “Using IPSec and IKEv2 in 6LoWPANs”

for more details. The function returns the security policy index of the newly created security policy. In case

of error FFHEX is returned.

The last argument specifies the security association to be used by this policy. A security association must

be created using ZWIRSEC_AddSecurityAssociation before ZWIRSEC_AddSecurityPolicy is

called. If IKEv2 should be used for generating the security association automatically, pass NULL as the

securityAssociation argument.

void

 ZWIRSEC_RemoveSecurityPolicy (uint8_t spi)

This function removes the security policy with index spi from the security policy database. If no index is

stored at spi the function does nothing.

ZWIRSEC_SecurityAssociation_t*

 ZWIRSEC_AddSecurityAssociation (uint32_t securityParamIdx,

 ZWIRSEC_EncryptionSuite_t* encSuite,

 ZWIRSEC_AuthenticationSuite_t* authSuite)

This function adds a security association to the security association database manually. Use this function

before calling ZWIRSEC_AddSecurityPolicy if not using IKEv2 for automatic key exchange.

The securityParamIdx argument is a unique number identifying the security association. The

encSuite and authSuite parameters specify the encryption and authentication algorithms and keys.

Refer to section 3.12.1 and the links for ZWIRSEC_EncryptionSuite_t and

ZWIRSEC_AuthenticationSuite_t for more details.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
75 of 91

The function returns a pointer to the security association descriptor if it was created successfully. In case of

error the function returns NULL.

void

 ZWIRSEC_RemoveSecurityAssociation (ZWIRSEC_SecurityAssociation_t* sa)

This function removes the security association pointed to by sa.

typedef enum { ... } ZWIRSEC_PolicyType_t

IPSec policy type enumeration. Possible values include

 ZWIRSEC_ptOutputApply 0x11 Secure outbound traffic with IPSec

ZWIRSEC_ptOutputBypass 0x12 Bypass outbound traffic unsecured

ZWIRSEC_ptOutputDrop 0x13 Drop outbound traffic

ZWIRSEC_ptInputApply 0x21 Unsecure inbound traffic with IPSec

ZWIRSEC_ptInputBypass 0x22 Bypass inbound traffic unsecured

ZWIRSEC_ptInputDrop 0x23 Drop inbound traffic

typedef enum { ... } ZWIR_Protocol_t

IPSec protocol enumeration. Possible values include

ZWIR_protoAny 0

ZWIR_protoTCP 6

ZWIR_protoUDP 17

ZWIR_protoICMPv6 58

typedef struct {

 ZWIRSEC_EncryptionoAlgorithm_t algorithm

 uint8_t key [16]

 uint8_t nonce [4]

} ZWIRSEC_EncryptionSuite_t

This structure carries all encryption related information. It is used to pass encryption information to

ZWIRSEC_AddSecurityAssociation.

typedef struct {

 ZWIRSEC_AuthenticationAlgorithm_t algorithm

 uint8_t key [16]

} ZWIRSEC_AuthenticationSuite_t

This structure carries all authentication related information. It is used to pass authentication information to

ZWIRSEC_AddSecurityAssociation.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
76 of 91

typedef void* ZWIRSEC_SecurityAssociation_t

Objects of this type are returned by ZWIRSEC_AddSecurityAssociation. They are passed to

ZWIRSEC_AddSecurityPolicy.

typedef enum { ... } ZWIRSEC_EncryptionAlgorithm_t

Enumeration of algorithms available for encryption; possible values include

 ZWIRSEC_encNull 11 no encryption

 ZWIRSEC_encAESCTR 13 AES
1
 Counter Mode based encryption

typedef enum { ... } ZWIRSEC_AuthenticationAlgorithm_t

Enumeration of algorithms available for authentication; possible values include

 ZWIRSEC_authNull 0 no authentication

 ZWIRSEC_authAESXCBC96 5 Extended AES128 CBC
2
 Mode based auth.

1
 AES – Advanced Encryption Standard

2
 CBC – Cyclic Block Cipher

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
77 of 91

8 IKEv2 Library Reference

IKEv2 is used for IPSec key management. Using IKEv2 it is possible to limit the lifetime of a security association

and automatically regenerate it with new keys automatically. In order to add IKEv2 functionality to an application,

the IKEv2 library must be linked into the project. If this is done, the IKEv2 daemon is automatically registered as

the key management engine for IPSec.

The only task to be done by the application is adding the suitable authentication entries to the IKEv2 authen-

tication database. This is done using the ZWIRSEC_AddIKEAuthenticationEntry function.

8.1. Symbol Reference

uint8_t

 ZWIRSEC_AddIKEAuthenticationEntry (ZWIR_IPv6Address_t* remoteAddress,

 uint8_t prefixLength,

 uint8_t* id,

 uint8_t idLength,

 uint8_t* presharedKey)

Calling this function adds an authentication entry to the IKE authentication database. The remoteAddress

argument contains the IPv6 address of the remote device; prefixLength contains the prefix length of

remoteAddress. The device identifier is given in id. idLength specifies its length. The presharedKey

argument carries a pointer to the pre shared key that is used for authentication.

The function returns true on success or false otherwise. A false return indicates there is no room in the

authentication database.

uint8_t ZWIRSEC_ikeRetransmitTime = 10

Weak constant defining how many seconds IKE waits for a reply before retransmission is initiated. The

time should be long enough to enable IKE processing at the receiver. This value largely depends on the

clock frequency. Set the value accordingly. The predefined value of 10 seconds is suitable for a receiver

clock frequency of 32 MHz or 64 MHz only. The value can be redefined by definition of the variable

ZWIR_ikeRetransmitTime with an appropriate value in the application code.

uint32_t ZWIRSEC_ikeRekeyTime = 86400

This is a weakly defined variable that controls the interval at which the IKE connection must be rekeyed.

The default setting corresponds to one week. In order to change this value, the variable

ZWIRSEC_ikeRekeyTime must be defined with an appropriate value in the application code.

uint32_t ZWIRSEC_ikeSARekeyTime = 604800

This weakly defined variable controls the interval during which security associations remain valid before

rekeying is required. The default setting corresponds to one day. In order to change this value, the variable

ZWIRSEC_ikeSARekeyTime must be defined with an appropriate value in the application code.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
78 of 91

8.2. Library Parameters

Table 8.1 shows a summary of ZMDI’s IKEv2 library parameters and properties.

Table 8.1 Overview of IKEv2 Library Parameters and Properties

Property Value

Authentication database size 5

Number of used sockets 2

Parameter Value

ZWIRSEC_ikeSARekeyTime 604800

ZWIRSEC_ikeRekeyTime 86400

ZWIRSEC_ikeRetransmitTime 10 s

9 Over-the-Air Update Library

This library implements the Firmware Over-the-Air Update functionality. The only function exported from this

library is used to register the Over-the-Air Update daemon in the system.

9.1. Library Reference

void

 ZWIR_OTAU_Register (uint16_t port)

Register the Over-the-Air Update daemon and configures the UDP port the daemon is listening on.

typedef enum { ... } ZWIR_OTAU_ErrorCode_t

Defines error codes which have to be handled locally. Theses error codes are used with ZWIR_Error.

Possible values are:

 ZWIR_eInvalidVID this error is reported when the configured vendor ID is invalid

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
79 of 91

10 Accessing Microcontroller Resources

Many applications might wish to make use of the rich internal resources provided by the microcontroller. In

general this is no problem, but some caution must be taken when this is considered. No resources must be used

that are already occupied by the operating system. Furthermore some of the MCU configuration parameters must

not be altered. Refer to the next section for a complete list of resources that are used by the OS.

The library does not provide dedicated functions for configuration of the microcontroller peripherals. This must be

done by third-party libraries, or by programming the appropriate configuration registers directly. Names for

interrupt handlers are predefined by the library. If interrupt handlers are required, a function with the library-

determined name must be implemented by the library user.

10.1. Internal Microcontroller Configuration

The STM32 is clocked from its internal 8 MHz oscillator (HSI). The system clock (SYSCLK) is taken from the

phase-locked loop (PLL) output (PLLCLK). The PLL source is HSI/2 and the PLL multiplier is 16, so SYSCLK has

a frequency of 64 MHz. The Advanced High-performance Bus (AHB) clock (HCLK) is configured according to the

selected CPU frequency (see ZWIR_SetFrequency). APB1 clock (PCLK1) frequency is always 4 MHz, APB2

clock (PCLK2) frequency is always 8 MHz. It is strongly recommended that the frequencies of APB1 or APB2 are

not changed! Doing so would result in wrong timing behavior of the operating system and might even result in

system breakdown.

The Cortex System Timer (SysTick) is used as the operating system base timer. It is configured to issue an

interrupt each millisecond. The real-time clock (RTC) is used for the different sleep modes.

All microcontroller GPIO pins which are not connected to one of the modules I/O pins are locked, so that it is

impossible to change their configuration accidentally. The configuration of the external interrupt line 0 (EXTI0) and

the configuration of the SPI2 peripheral of the microcontroller must not be changed. Otherwise the interfacing

between MCU and transceiver might be impaired.

10.2. Interrupt Handlers

The API library comes with a set of predefined interrupt handlers that is sufficient for the built-in functionality but

does not go beyond it. For all other interrupts that are not required, default handlers are provided that typically do

nothing or perform a reset in case of an error. Most of the interrupts are defined as weak symbols in the library.

This means that the default implementations of the handlers can be overwritten by simply defining the interrupt

handler symbol in the user’s application code. Only those interrupts that are required for proper operation of the

stack are not defined as weak and therefore cannot be overwritten. An attempt to overwrite these handlers will

result in a linker error.

Table 10.1 lists the interrupts for the STM32. For each interrupt, the handler name, the default priority and the

default behavior is shown and whether or not the interrupt can be overwritten.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
80 of 91

Table 10.1 STM32 Interrupt Vector Table

Interrupt Implementation

Id Name Handler Prio Fix Default-Behavior

0 Reset Reset_Handler -3 Yes Perform system reset

1 NMI ZWIR_ISR_NMI -2 No Perform system reset

2 HardFault ZWIR_ISR_HardFault -1 No Perform system reset

3 MemManage ZWIR_ISR_MemManage 0 No Perform system reset

4 BusFault ZWIR_ISR_BusFault 1 No Perform system reset

5 UsageFault ZWIR_ISR_UsageFault 2 No Perform system reset

6 SVCall ZWIR_ISR_SVCall 3 No NULL

7 DebugMonitor ZWIR_ISR_DebugMonitor 4 No NULL

8 PendSV ZWIR_ISR_PendSV 5 No NULL

9 SysTick ZWIR_ISR_SysTick 6 Yes Used as operating system timer

10 WWDG ZWIR_ISR_WWDG 7 No NULL

11 PVD ZWIR_ISR_PVD 8 No Perform system reset

12 TAMPER ZWIR_ISR_TAMPER 9 No NULL

13 RTC ZWIR_ISR_RTC 10 Yes Reserved for OS use

14 FLASH ZWIR_ISR_FLASH 11 No NULL

15 RCC ZWIR_ISR_RCC 12 No NULL

16 EXTI0 ZWIR_ISR_EXTI0 13 Yes Handle transceiver service request

17 EXTI1 ZWIR_ISR_EXTI1 14 No NULL

18 EXTI2 ZWIR_ISR_EXTI2 15 No NULL

19 EXTI3 ZWIR_ISR_EXTI3 16 No NULL

20 EXTI4 ZWIR_ISR_EXTI4 17 No NULL

21 DMA1_Channel1 ZWIR_ISR_DMA1_Channel1 18 No NULL

22 DMA1_Channel2 ZWIR_ISR_DMA1_Channel2 19 No NULL

23 DMA1_Channel3 ZWIR_ISR_DMA1_Channel3 20 No NULL

24 DMA1_Channel4 ZWIR_ISR_DMA1_Channel4 21 No NULL

25 DMA1_Channel5 ZWIR_ISR_DMA1_Channel5 22 No NULL

26 DMA1_Channel6 ZWIR_ISR_DMA1_Channel6 23 No NULL

27 DMA1_Channel7 ZWIR_ISR_DMA1_Channel7 24 No NULL

28 ADC1_2 ZWIR_ISR_ADC1_2 25 No NULL

29 USB_HP_CAN_TX ZWIR_ISR_USB_HP_CAN1_TX 26 No NULL

30 USB_LP_CAN_RX0 ZWIR_ISR_USB_LP_CAN1_RX0 27 No NULL

31 CAN_RX1 ZWIR_ISR_CAN1_RX1 28 No NULL

32 CAN_SCE ZWIR_ISR_CAN1_SCE 29 No NULL

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
81 of 91

Interrupt Implementation

Id Name Handler Prio Fix Default-Behavior

33 EXTI9_5 ZWIR_ISR_EXTI9_5 30 No NULL

34 TIM1_BRK ZWIR_ISR_TIM1_BRK 31 No NULL

35 TIM1_UP ZWIR_ISR_TIM1_UP 32 No NULL

36 TIM1_TRG_COM ZWIR_ISR_TIM1_TRG_COM 33 No NULL

37 TIM1_CC ZWIR_ISR_TIM1_CC 34 No NULL

38 TIM2 ZWIR_ISR_TIM2 35 No NULL

39 TIM3 ZWIR_ISR_TIM3 36 No NULL

40 TIM4 ZWIR_ISR_TIM4 37 Yes NULL

41 I2C1_EV ZWIR_ISR_I2C1_EV 38 No NULL

42 I2C1_ER ZWIR_ISR_I2C1_ER 39 No NULL

43 I2C2_EV ZWIR_ISR_I2C2_EV 40 No NULL

44 I2C2_ER ZWIR_ISR_I2C2_ER 41 No NULL

45 SPI1 ZWIR_ISR_SPI1 42 No NULL

46 SPI2 ZWIR_ISR_SPI2 43 Yes Used by network stack

47 USART1 ZWIR_ISR_USART1 44 No NULL
3

48 USART2 ZWIR_ISR_USART2 45 No NULL
4

49 USART3 ZWIR_ISR_USART3 46 No NULL

50 EXTI15_10 ZWIR_ISR_EXTI15_10 47 No NULL

51 RTCAlarm ZWIR_ISR_RTCAlarm 48 Yes Reserved for OS use

52 USBWakeup ZWIR_ISR_USBWakeup 49 No NULL

53 TIM8_BRK ZWIR_ISR_TIM8_BRK 50 No NULL

54 TIM8_UP ZWIR_ISR_TIM8_UP 51 No NULL

55 TIM8_TRG_COM ZWIR_ISR_TIM8_TRG_COM 52 No NULL

56 TIM8_CC ZWIR_ISR_TIM8_CC 53 No NULL

57 ADC3 ZWIR_ISR_ADC3 54 No NULL

58 FSMC ZWIR_ISR_FSMC 55 No NULL

59 SDIO ZWIR_ISR_SDIO 56 No NULL

60 TIM5 ZWIR_ISR_TIM5 57 No NULL

61 SPI3 ZWIR_ISR_SPI3 58 No NULL

3
 Implementation is provided if libZWIR451x-UART0.a is linked into the project

4
 Implementation is provided if libZWIR451x-UART1.a is linked into the project

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
82 of 91

Interrupt Implementation

Id Name Handler Prio Fix Default-Behavior

62 UART4 ZWIR_ISR_UART4 59 No NULL

63 UART5 ZWIR_ISR_UART5 60 No NULL

64 TIM6 ZWIR_ISR_TIM6 61 No NULL

65 TIM7 ZWIR_ISR_TIM7 62 No NULL

66 DMA2_Channel1 ZWIR_ISR_DMA2_Channel1 63 No NULL

67 DMA2_Channel2 ZWIR_ISR_DMA2_Channel2 64 No NULL

68 DMA2_Channel3 ZWIR_ISR_DMA2_Channel3 65 No NULL

69 DMA2_Channel4_5 ZWIR_ISR_DMA2_Channel4_5 66 No NULL

10.3. Default I/O Configuration

Table 10.2 shows the default I/O configuration that is set when the device is powered on and no manual changes

are made to the I/Os. The left section shows the configuration if only libZWIR45xx-6LoWPAN.a is linked into the

program; the right section shows changes applied when additional libraries are linked.

Table 10.2 STM32 Default I/O Configuration

MCU Module libZWIR45xx-6LoWPAN.a Alternative Configuration

Port Pin Configuration Drive Configuration Drive Library

A0 8 Analog Input - None

A1 7 Analog Input - None

A2 6 Analog Input - 2 MHz Push/Pull
Alternative Output

x libZWIR451x-
UART2.a

A3 5 Analog Input - Floating Alternative
Input

- libZWIR451x-
UART2.a

A4 4 Analog Input - None

A5 3 Analog Input - None

A6 2 Analog Input - None

A7 1 Analog Input - None

A8 - 2 MHz Push/Pull Output 0 None

A9 13 Analog Input - 2 MHz Push/Pull
Alternative Output

x libZWIR451x-
UART1.a

A10 12 Analog Input - Floating Alternative
Input

- libZWIR451x-
UART1.a

A11 16 Analog Input - None

A12 17 Analog Input - None

A13 - Floating Input - None

A14 - Floating Input - None

A15 - Floating Input - None

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
83 of 91

MCU Module libZWIR45xx-6LoWPAN.a Alternative Configuration

Port Pin Configuration Drive Configuration Drive Library

B0 - Pull-up Input - None

B1 - Floating Input - None

B2 - Floating Input - None

B3 - Floating Input - None

B4 - Floating Input - None

B5 - Floating Input - None

B6 24 Floating Input - None

B7 23 Floating Input - None

B8 - Floating Input - None

B9 - 2 MHz Push/Pull Output 1 None

B10 - 2 MHz Push/Pull Output 0 None

B11 - 2 MHz Push/Pull Output 0 None

B12 - 10 MHz Push/Pull Output 1 None

B13 - 10 MHz Push/Pull Alternative
Output

x None

B14 - 10 MHz Push/Pull Alternative
Output

x None

B15 - 10 MHz Push/Pull Alternative
Output

x None

C0 - 2 MHz Push/Pull Output 1 None

C1 - 2 MHz Push/Pull Output 1 None

C2 - 2 MHz Push/Pull Output 1 None

C4 - Analog Input - None

C5 - Analog Input - None

C6 - Analog Input - None

C7 - Analog Input - None

C8 - Analog Input - None

C9 - Analog Input - None

C10 - Analog Input - None

C11 - Analog Input - None

C12 - Analog Input - None

C13 9 Analog Input - None

C14 - Analog Input - None

C15 - Analog Input - None

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
84 of 91

11 Certification

11.1. European R&TTE Directive Statements

The ZWIR4512 module has been tested and found to comply with Annex IV of the R&TTE Directive 1999/5/EC

and is subject of a notified body opinion. The module has been approved for Antennas with gains of 4 dBi or less.

11.2. Federal Communication Commission Certification Statements

11.2.1. Statements

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part

15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a

residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not

installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does

cause harmful interference to radio or television reception, which can be determined by turning the equipment off

and on, the user is encouraged to try to correct the interference by one or more of the following measures:

 Reorient or relocate the receiving antenna.

 Increase the separation between the equipment and receiver.

 Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

 Consult the dealer or an experienced radio/TV technician for help.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This

device may not cause harmful interference, and (2) this device must accept any interference received, including

interference that may cause undesired operation.

Modifications not expressly approved by ZMD AG could void the user's authority to operate the equipment.

The internal / external antennas used for this mobile transmitter must provide a separation distance of at least 20

cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

11.2.2. Requirements

The ZWIR4512 complies with Part 15 of the FCC rules and regulations. In order to retain compliance with the

FCC certification requirements, the following conditions must be met:

1. Modules must be installed by original equipment manufacturers (OEM) only

2. The module must only be operated with antennas …i

3. The OEM must place a clearly visible text label on the outside of the end-product containing the text shown in

Figure 8-1, below.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
85 of 91

Figure 11.1 FCC Compliance Statement to be printed on Equipment Incorporating ZWIR4512 Devices

Contains FCC ID: COR-ZWIR4512AC1

This device complies with part 15 of the FCC Rules. Operation
is subject to the following two conditions: (1) This device may
not cause harmful interference, and (2) this device must accept
any interference received, including interference that may
cause undesired operation.

11.2.3. Accessing the FCC ID

ZWIR451x modules are capable of showing their FCC-ID electronically. C-API applications may read the modules

FCC-ID through the function ZWIR_GetFCCID. Due to space constraints the FCC ID is not printed on the module.

Host devices incorporating this module must be marked according to above guidelines.

11.3. Supported Antennas

The FCC compliance testing of the ZWIR4512 has been carried out using the MEXE902RPSM antenna from

PCTEL Inc. This antenna has an omnidirectional radiation pattern at an antenna gain of 2 dBi. In order to be

allowed to use the module without re-certification, the product incorporating the ZWIR4512 module must either

use the antenna mentioned above or must use an antenna with an omnidirectional radiation pattern and a gain

being less than or equal to 2 dBi.

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
86 of 91

12 Alphabetical List of Symbols

ZWIR_aatEUI48 .. 55
ZWIR_aatEUI64 .. 55
ZWIR_aatNone ... 55
ZWIR_AbortPowerDown ... 56
ZWIR_AddAlternativeAddress 55
ZWIR_AlternativeAddressType_t 55
ZWIR_AppEventHandler_t 44
ZWIR_AppInitHardware .. 41
ZWIR_AppInitNetwork .. 41
ZWIR_AppInitNetworkDone 41
ZWIR_channel0 .. 52
ZWIR_channel1 .. 52
ZWIR_channel10 .. 52
ZWIR_channel100 .. 52
ZWIR_channel101 .. 52
ZWIR_channel102 .. 52
ZWIR_channel2 .. 52
ZWIR_channel3 .. 52
ZWIR_channel4 .. 52
ZWIR_channel5 .. 52
ZWIR_channel6 .. 52
ZWIR_channel7 .. 52
ZWIR_channel8 .. 52
ZWIR_channel9 .. 52
ZWIR_CheckMulticastGroup 47
ZWIR_CloseSocket .. 48
ZWIR_CreateAlternativeAddressList 55
ZWIR_DiscoverNetwork ... 59
ZWIR_DiscoveryCallback_t 60
ZWIR_eDADFailed ... 66
ZWIR_eExtClockPowerDown 66
ZWIR_eHostUnreachable 66
ZWIR_eInvalidVID .. 78
ZWIR_eMemoryExhaustion 66
ZWIR_eProgExit ... 66
ZWIR_eReadMACFailed .. 66
ZWIR_Error ... 44
ZWIR_eu865 ... 52
ZWIR_eu866 ... 52
ZWIR_eu867 ... 52
ZWIR_eu868 ... 52
ZWIR_ExternalClockEnable 56
ZWIR_firmwareMajorVersion 64
ZWIR_firmwareMinorVersion 64
ZWIR_firmwareVersionExtension 64
ZWIR_GatewayOutputFunction_t 53
ZWIR_GatewayProcessPacket 53
ZWIR_GatewaySetOutputFunction 53
ZWIR_GetDestinationPANAddress 50
ZWIR_GetFailingAddress 51
ZWIR_GetFCCID .. 56

ZWIR_GetIPv6Addresses 47
ZWIR_GetLastRSSI .. 50
ZWIR_GetPacketHopCount 50
ZWIR_GetPacketRXSocket 50
ZWIR_GetPacketSenderAddress 50
ZWIR_GetPacketSenderPort 50
ZWIR_GetPANAddress .. 46
ZWIR_GetPANId ... 45
ZWIR_GetRevision ... 44
ZWIR_GetSourcePANAddress 50
ZWIR_GetTRXStatistic ... 54
ZWIR_GPIO_ConfigureAsInput 70
ZWIR_GPIO_ConfigureAsOutput 70
ZWIR_GPIO_DriverStrength_t 72
ZWIR_GPIO_dsHigh... 72
ZWIR_GPIO_dsLow ... 72
ZWIR_GPIO_dsMedium ... 72
ZWIR_GPIO_imAnalog ... 73
ZWIR_GPIO_imFloating ... 73
ZWIR_GPIO_imPullDown 73
ZWIR_GPIO_imPullUp ... 73
ZWIR_GPIO_InputMode_t 73
ZWIR_GPIO_omAlternativeOpenDrain 73
ZWIR_GPIO_omAlternativePushPull 73
ZWIR_GPIO_omOpenDrain 73
ZWIR_GPIO_omPushPull 73
ZWIR_GPIO_OutputMode_t 73
ZWIR_GPIO_Pin_t.. 72
ZWIR_GPIO_Read ... 70
ZWIR_GPIO_ReadMultiple 71
ZWIR_GPIO_Remap .. 71
ZWIR_GPIO_RemapFunction_t 73
ZWIR_GPIO_rfSWJ .. 73
ZWIR_GPIO_swjrDisableSWJ 73
ZWIR_GPIO_SWJRemapValue_t 73
ZWIR_GPIO_swjrEnableSWJ 73
ZWIR_GPIO_swjrSWOnly 73
ZWIR_GPIO_Write ... 71
ZWIR_IPv6Address_t ... 47
ZWIR_IsAlternativeAddress 55
ZWIR_Main1000ms .. 43
ZWIR_Main100ms .. 43
ZWIR_Main10ms .. 43
ZWIR_mBPSK .. 53
ZWIR_mcu16MHz... 58
ZWIR_mcu32MHz... 58
ZWIR_mcu64MHz... 58
ZWIR_mcu8MHz ... 58
ZWIR_MCUFrequency_t .. 58
ZWIR_Modulation_t .. 53
ZWIR_mQPSK .. 53

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
87 of 91

ZWIR_NetMA_fBridge .. 61
ZWIR_NetMA_fDevice .. 61
ZWIR_NetMA_fHopCountLimitation 61
ZWIR_NetMA_Flags_t .. 61
ZWIR_NetMA_fQueryID ... 61
ZWIR_NetMA_HopInfo_t .. 61
ZWIR_NetMA_RemoteConfig_t.............................. 63
ZWIR_NetMA_RemoteData_t 62
ZWIR_NetMA_RemoteIPv6Addr_t 62
ZWIR_NetMA_RemoteMACAddr_t 62
ZWIR_NetMA_RemoteParameterRequest 59
ZWIR_NetMA_RemoteStatus_t 63
ZWIR_NetMA_RemoteVersion_t 63
ZWIR_NetMA_RPRCallback_t 60
ZWIR_NetMA_rprfConfig .. 61
ZWIR_NetMA_rprfFirmwareVersion 61
ZWIR_NetMA_RPRFields_t 61
ZWIR_NetMA_rprfIPv6Addresses 61
ZWIR_NetMA_rprfMACAddress 61
ZWIR_NetMA_rprfTRXStatistics............................. 61
ZWIR_NetMA_SetPort .. 60
ZWIR_NetMA_Trace .. 60
ZWIR_NetMA_TraceCallback_t.............................. 61
ZWIR_omGateway ... 42
ZWIR_omNormal .. 42
ZWIR_omSniffer ... 42
ZWIR_OpenSocket ... 48
ZWIR_OperatingMode_t ... 42
ZWIR_OTAU_ErrorCode_t 78
ZWIR_OTAU_Register ... 78
ZWIR_PANAddress_t ... 46
ZWIR_Pin1 .. 72
ZWIR_Pin12 .. 72
ZWIR_Pin13 .. 72
ZWIR_Pin16 .. 72
ZWIR_Pin17 .. 72
ZWIR_Pin19 .. 72
ZWIR_Pin2 .. 72
ZWIR_Pin20 .. 72
ZWIR_Pin21 .. 72
ZWIR_Pin22 .. 72
ZWIR_Pin23 .. 72
ZWIR_Pin24 .. 72
ZWIR_Pin3 .. 72
ZWIR_Pin4 .. 72
ZWIR_Pin5 .. 72
ZWIR_Pin6 .. 72
ZWIR_Pin7 .. 72
ZWIR_Pin8 .. 72
ZWIR_Pin9 .. 72
ZWIR_PowerDown ... 56
ZWIR_PowerDownState_t 58
ZWIR_productID ... 64

ZWIR_protoAny .. 75
ZWIR_Protocol_t ... 75
ZWIR_protoICMPv6 .. 75
ZWIR_protoTCP ... 75
ZWIR_protoUDP ... 75
ZWIR_pSleep .. 58
ZWIR_pSleepAfterActivities 58
ZWIR_pStandby .. 58
ZWIR_pStandbyAfterActivities 58
ZWIR_pStop ... 58
ZWIR_pStopAfterActivities 58
ZWIR_RadioChannel_t ... 52
ZWIR_RadioReceiveCallback_t 51
ZWIR_Rand .. 45
ZWIR_RegisterAppEventHandler 44
ZWIR_Reset ... 43
ZWIR_ResetDestinationPANId 47
ZWIR_ResetNetwork .. 43
ZWIR_ResetReason_t .. 42
ZWIR_ResetTRXStatistic 54
ZWIR_RevisionInfo_t .. 44
ZWIR_rIndependentWatchdogReset 42
ZWIR_rLowPowerReset ... 42
ZWIR_rPinReset ... 42
ZWIR_rPowerOnReset ... 42
ZWIR_rSoftwareReset .. 42
ZWIR_rStandbyReset ... 42
ZWIR_rWindowWatchdogReset 42
ZWIR_Send6LoWPAN ... 51
ZWIR_SendUDP ... 49
ZWIR_SendUDP2 ... 49
ZWIR_SetChannel .. 51
ZWIR_SetDestinationPANId 47
ZWIR_SetFrequency .. 56
ZWIR_SetIPv6Address ... 47
ZWIR_SetModulation .. 52
ZWIR_SetOperatingMode 41
ZWIR_SetPANAddress ... 46
ZWIR_SetPANId ... 45
ZWIR_SetParameter... 65
ZWIR_SetPromiscuousMode 54
ZWIR_SetTransmitPower 52
ZWIR_SetWakeupSource 57
ZWIR_Sleep .. 57
ZWIR_SocketHandle_t ... 51
ZWIR_spDoDuplicateAddressDetection 65
ZWIR_spDoRouterSolicitation 65
ZWIR_spHeaderCompressionContext1 65
ZWIR_spHeaderCompressionContext2 65
ZWIR_spHeaderCompressionContext3 65
ZWIR_spMaxHopCount .. 65
ZWIR_spMaxSocketCount 65
ZWIR_spNeighborCacheSize 65

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
88 of 91

ZWIR_spNeighborReachableTime 65
ZWIR_spRouteMaxFailCount 65
ZWIR_spRouteRequestAttempts............................ 65
ZWIR_spRouteRequestMinLinkRSSI 65
ZWIR_spRouteRequestMinLinkRSSIReduction 65
ZWIR_spRouteTimeout .. 65
ZWIR_spRoutingTableSize 65
ZWIR_SRand .. 45
ZWIR_Standby.. 57
ZWIR_StartCallbackTimer 43
ZWIR_StopCallbackTimer 43
ZWIR_SystemParameter_t 65
ZWIR_TimeoutCallback_t 44
ZWIR_TransceiverOff ... 58
ZWIR_TransceiverOn ... 58
ZWIR_TriggerAppEvent .. 44
ZWIR_TRXStatistic_t .. 54
ZWIR_UART_EvenParity 68
ZWIR_UART_HWFlowControl 68
ZWIR_UART_NoFlowControl 68
ZWIR_UART_NoParity ... 68
ZWIR_UART_OddParity ... 68
ZWIR_UART_RXCallback_t 69
ZWIR_UART_Stop_1 ... 68
ZWIR_UART_Stop_2 ... 68
ZWIR_UART1_eFrame .. 69
ZWIR_UART1_eNoise .. 69
ZWIR_UART1_eOvfl .. 69
ZWIR_UART1_eParity .. 69
ZWIR_UART1_GetAvailableTXBuffer 69
ZWIR_UART1_IsTXEmpty 69
ZWIR_UART1_PRINTF .. 69
ZWIR_UART1_ReadByte 68
ZWIR_UART1_Send .. 67
ZWIR_UART1_SendByte 67
ZWIR_UART1_SetRXCallback............................... 68
ZWIR_UART1_Setup ... 68
ZWIR_UART2_eFrame .. 69
ZWIR_UART2_eNoise .. 69
ZWIR_UART2_eOvfl .. 69
ZWIR_UART2_eParity .. 69
ZWIR_UART2_GetAvailableTXBuffer 69

ZWIR_UART2_IsTXEmpty 69
ZWIR_UART2_PRINTF .. 69
ZWIR_UART2_ReadByte 68
ZWIR_UART2_Send... 67
ZWIR_UART2_SendByte 67
ZWIR_UART2_SetRXCallback 68
ZWIR_UART2_Setup ... 68
ZWIR_us906 ... 52
ZWIR_us908 ... 52
ZWIR_us910 ... 52
ZWIR_us912 ... 52
ZWIR_us914 ... 52
ZWIR_us916 ... 52
ZWIR_us918 ... 52
ZWIR_us920 ... 52
ZWIR_us922 ... 52
ZWIR_us924 ... 52
ZWIR_vendorID .. 64
ZWIRSEC_AddIKEAuthenticationEntry 77
ZWIRSEC_AddSecurityAssociation 74
ZWIRSEC_AddSecurityPolicy 74
ZWIRSEC_authAESXCBC96 76
ZWIRSEC_AuthenticationAlgorithm_t 76
ZWIRSEC_AuthenticationSuite_t 75
ZWIRSEC_authNull .. 76
ZWIRSEC_encAESCTR ... 76
ZWIRSEC_encNull ... 76
ZWIRSEC_EncryptionAlgorithm_t 76
ZWIRSEC_EncryptionSuite_t 75
ZWIRSEC_ikeRekeyTime 77
ZWIRSEC_ikeRetransmitTime 77
ZWIRSEC_ikeSARekeyTime 77
ZWIRSEC_PolicyType_t ... 75
ZWIRSEC_ptInputApply ... 75
ZWIRSEC_ptInputBypass 75
ZWIRSEC_ptInputDrop .. 75
ZWIRSEC_ptOutputApply 75
ZWIRSEC_ptOutputBypass 75
ZWIRSEC_ptOutputDrop .. 75
ZWIRSEC_RemoveSecurityAssociation 75
ZWIRSEC_RemoveSecurityPolicy 74
ZWIRSEC_SecurityAssociation_t 76

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
89 of 91

13 Related Documents

IETF Documents Source

Internet Protocol, Version 6 (IPv6) Specification RFC 2460, http://tools.ietf.org/html/rfc2460

IP Version 6 Addressing Architecture RFC 4291, http://tools.ietf.org/html/rfc4291

Security Architecture for the Internet Protocol RFC 4301, http://tools.ietf.org/html/rfc4301

Internet Key Exchange (IKEv2) Protocol RFC 5996, http://tools.ietf.org/html/rfc5996

Neighbor Discovery for IP Version 6 (IPv6) RFC 4861, http://tools.ietf.org/html/rfc4861

IPv6 Stateless Address Auto-configuration RFC 4862, http://tools.ietf.org/html/rfc4862

Transmission of IPv6 Packets over IEEE 802.15.4
Networks

RFC 4944, http://tools.ietf.org/html/rfc4944

ZMDI Documents File Name

ZWIR4512 Data Sheet ZWIR4512_Data_Sheet_revX.xy.pdf

ZWIR451x Application Note: Using IPSec and IKEv2 in
6LoWPANs

ZWIR45xx_AN_Security_revX.xy.pdf

ZWIR451x Application Note: Enabling Firmware Over-the-
Air Updates

ZWIR451x_AN_OTAU_revX.xy.pdf

Visit ZMDI’s website www.zmdi.com or contact your nearest sales office for the latest version of these documents.

14 Glossary

Term Description

6LoWPAN IPv6 over Low Power Wireless Personal Area Networks

AES Advanced Encryption Standard

AH Authentication Header

API Application Programming Interface

ARP Address Resolution Protocol

CBC Cyclic Block Cipher

DAD Duplicate Address Detection

DHCP Dynamic Host Configuration Protocol

ESP Encapsulating Security Payload

GPIO General Purpose Input/Output

IETF Internet Engineering Task Force

IKEv2 Internet Key Exchange version 2

IPSec Internet Protocol Security

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc5996
http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc4862
http://tools.ietf.org/html/rfc4944
http://www.zmdi.com/

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
90 of 91

Term Description

MAC Media Access Control

LAN Local Area Network

MCU Micro Controller Unit

NDP Neighbor Discovery Protocol

NA Neighbor Advertisement

NS Neighbor Solicitation

OSI Open Systems Interconnection

PAN Personal Area Network

PLL Phase-Locked Loop

PSK Pre Shared Key

RA Router Advertisement

RS Router Solicitation

RSSI Receive Signal Strength Indicator

SA Security Association

SAD Security Association Database

SP Security Policy

SPD Security Policy Database

SWD Serial Wire Debug

TRX Transceiver

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

WAN Wide Area Network

WPAN Wireless Personal Area Network

ZWIR451x Programming Guide

Low-Power Wireless IPv6 Module Series

Programming
Guide

August 31, 2012

© 2012 Zentrum Mikroelektronik Dresden AG — Rev. 1.62

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the

prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
91 of 91

15 Document Revision History

Revision Date Description

1.00 October 1, 2010 Initial Version

1.10 December 13, 2010 - Added I/O pin descriptions for SAM3S based modules (e.g. ZWIR4522-I)

- Added interrupt vector table for ZWIR452x-I modules (e.g. ZWIR4511-I)

- Corrected declaration of ZWIR_DiscoveryCallback_t

- Replaced invalid declaration ZWIR_GetPacketRSSI with ZWIR_GetLastRSSI

- Applied some beautification

1.20 March 27, 2011 - Renamed document to ZWIR451x Programming Guide

- Removed parts of documentation dedicated to SAM3S based modules

- Adapted documentation to library release 1.2

- Cross-linked all symbols

1.30 July 5, 2011 Minor revisions for clarity

1.40 November 17, 2011 - Added libGPIO documentation

- Minor revisions for clarity

1.60 June 18, 2012 - Added documentation of new functionality provided with API version 1.6

- Many text improvements for clarity

- Fixed error in Table 2.1

- Added documentation for NetMA functions and types

1.61 July 27, 2012 - Minor edits

1.62 August 31, 2012 - Added documentation of FCC-ID readout command

- Added R&TTE & FCC conformity statements

Sales and Further Information www.zmdi.com wpan@zmdi.com

Zentrum Mikroelektronik
Dresden AG

Grenzstrasse 28
01109 Dresden
Germany

ZMD America, Inc.

1525 McCarthy Blvd., #212
Milpitas, CA 95035-7453
USA

Zentrum Mikroelektronik
Dresden AG, Japan Office

2nd Floor, Shinbashi Tokyu Bldg.
4-21-3, Shinbashi, Minato-ku
Tokyo, 105-0004
Japan

ZMD FAR EAST, Ltd.

3F, No. 51, Sec. 2,
Keelung Road
11052 Taipei
Taiwan

Zentrum Mikroelektronik
Dresden AG, Korean Office

POSCO Centre Building
West Tower, 11th Floor
892 Daechi, 4-Dong,
Kangnam-Gu
Seoul, 135-777
Korea

Phone +49.351.8822.7476
Fax +49.351.8822.87476

Phone +855-ASK-ZMDI
 (+855.275.9634)

Phone +81.3.6895.7410
Fax +81.3.6895.7301

Phone +886.2.2377.8189
Fax +886.2.2377.8199

Phone +82.2.559.0660
Fax +82.2.559.0700

DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Zentrum Mikroelektronik Dresden AG
(ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate. However, under
no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever
arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any customer, licensee or any
other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in connection with or arising out of the furnishing,
performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise.

http://www.zmdi.com/
mailto:wpan@zmdi.com

