

ION Geophysical Corporation 12300 Parc Crest Drive Stafford, Texas 77477-2416 USA Tel +1.281.552.3002 Fax +1.281.879.3626 www.iongeo.com

Copyright © 2008 ION Geophysical Corporation. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language in any format or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without prior written permission of ION Geophysical Corporation. Copyright violators also may be subject to civil penalties.

ION Geophysical makes no warranties as to the accuracy, validity, or fitness for use or application of the contents of this document. ION Geophysical reserves the right to revise the information in this document at any time without notice. Although an attempt has been made to ensure the accuracy of the following material, no responsibility is assumed by ION for any use, or for any consequences resulting from any use, of the information contained herein. No guarantee of suitability for any purpose is offered or implied.

FireFly® is a registered trademark of ION Geophysical Corp.; SCORPION® is a registered trademark of ION Geophysical Corp..

ION has attempted, throughout this document, to distinguish proprietary trademarks from descriptive terms by following the capitalization style used by the manufacturer. All brand names and product names used in this document are trade names, service marks, trademarks, or registered trademarks of their respective owners.

Print date: December, 2008

Original publication date: November, 2007 PDF part number: 1018-010063-0001A

To order printed copies of this document, please reference the following part number: 1018-010063-0002A

Contents

Equipment Layout	6
Changing the External Battery	9
Field Shooting for Dynamite	
Equipment Pickup	17

FCC Regulatory Information:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

RF Exposure Compliance Warning:

The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 30 cm from all persons and must not be colocated or operating in conjunction with any other antenna or transmitter. Users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance.

FCC Rule About Modifications:

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Industry Canada Statement:

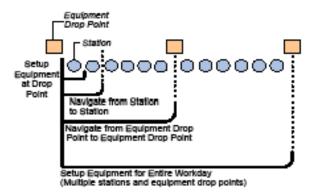
"This device has been designated to operate with the antennas listed below, and having a maximum gain of 5.2 dB. Antennas not included in this list or having a gain greater than 5.2 dB are strictly prohibited for use with this device. The required antenna impedance is 50 Ohms" Antenna Part Number Format: YK150-L/M/G

Equipment Layout

The basic workflow for equipment layout is:

- Set up the equipment at the equipment drop point
- Navigate from station to station, with an equipment drop point at specified intervals
- Navigate from station to station

Equipment


A set of FireFly station equipment consists of:

- Field Station Unit (FSU-2E)
- VectorSeis sensor (SVSM)
- External Battery

Note Do not connect the equipment until you are at the station.

The following example uses six stations per equipment drop point:

Figure 1-1. Equipment Layout Example

TASK: Lay Out Equipment

1. Locate station equipment.

Use NavTool to locate the equipment drop point and move equipment to the closest station location.

- **2.** Unload equipment.
 - Unload the first set of the FireFly equipment.
 - Attach the antenna to the antenna mount.
 - Plug the VectorSeis cable into the FSU-2E.
 - Plug the external battery into the FSU-2E as shown and swipe the magnet over the FSU-2E power symbol to turn on the FSU-2E.

Figure 1-2. FSU-2E connections

Caution To prevent damage to the FSU-2E, you must connect the VectorSeis sensor to the FSU-2E before connecting the external battery to the FSU-2E.

Figure 1-3. FSU-2E Magnet Swipe Area

- 3. Place FSU-2E and VectorSeis sensor.
 - Using NavTool, determine the proper location for the VectorSeis sensor.
- Auger a hole for the VectorSeis sensor and place the sensor securely in the hole.
- Using NavTool, perform these steps:
- a. Select the battery type that you have connected to the FSU-2E.
- b. Select the sensor orientation.
- **4.** Take alignment readings.
 - Keeping the NavTool attached to the Alignment pole, place the Alignment pole over the VectorSeis sensor to get a reading.

Figure 1-4. NavTool on Alignment Pole

• Using NavTool, perform these steps:

- a. Select the FSU-2E that you are connecting to.
- b. After the NavTool runs FSU-2E tests, transmit the data to the FSU-2E.
- c. Take a GPS and Compass reading with NavTool and transmit the readings to FSU-2E.
- **5.** Move to the next station.
 - Pick up equipment and drill and move to the next station.
 - Navigate to the next location using NavTool.
- **6.** Unload equipment.
 - Unload the next set of FireFly equipment (FSU-2E, VectorSeis unit, and external battery) and place the units at the station location.
 - Plug the VectorSeis sensor cable, the antenna, and the external battery into the FSU-2E. Wait 30 seconds after plugging battery into the FSU-2E to place the FSU-2E and VectorSeis sensor.

Note Connect the components in this order:

Sensor, Antenna, Power battery (SAP)

- **7.** Repeat step 3 and step 4 for all remaining stations.
- **8.** Move to final station.
 - Secure the empty equipment at the final station in the set.
 - Use NavTool to take the GPS reading for the empty equipment drop point position.
- 9. Use NavTool to select the next equipment drop point in the field and repeat step 1 to step 9.

Changing the External Battery

You can change out an external battery in the field.

Caution The batteries should be replaced while the CRUs are operational and transmitting to the FSU-2Es. If the CRUs are not running, the FSU-2Es may lose the timing reference and waste battery power.

Equipment

Uses the following equipment

- Charged external battery and cable
- NavTool
- Magnet
- 1. Navigate to station location where the battery needs to be changed.
- **2.** Unplug the external battery from the FSU-2E.
- **3.** Plug the new battery into the FSU-2E. The FSU-2E will reboot when the battery is attached.
- **4.** If the FSU-2E does not reboot, power on the FSU-2E by swiping with magnet.
- **5.** Verify that the NavTool connects to the FSU-2E.
- **6.** Using NavTool, troubleshoot and select the battery to replace.
- 7. Return the discharged to the Battery Charging Module for checking and recharging.

Figure 1-5. FSU-2E connections

Field Shooting for Dynamite

Crew and Equipment

A crew of two:

- Shooter
- Helper

The following FireFly equipment is used:

- Pelton Shot Pro® II firing pack (includes all Pelton equipment)
- digital compass mounted to firing pack
- NavTool
- Radio
- Backpack with firing line and uphole phone

Note The total number of shooting crews will vary depending on the daily production targets, resources and equipment. The communication collision management allows shooting crews to operate independently and in parallel so a higher number of total crews can operate simultaneously, compared to traditional dynamite shooting operations.

TASK: Shooting

Please refer to the Shot Pro II Manual for detailed information about using the Shot Pro.

Figure 1-6. Pelton Shot Pro

1. Navigate to the source position using NavTool and take a GPS reading (S & H1).

2. Prepare for shooting (S & H1).

- (H1 only) Connect the firing line to the cap lead at the shot hole.
- Place the uphole geophone beside the shooting position so that the uphole time of the shot can be measured.
- Stretch out the firing line and the geophone line while moving a safe distance (typically a minimum of 100 feet) from this source position in the direction of the next source position, if possible.
- Remove the Shot Pro backpack and place it upright on the ground. Place NavTool on top of shooting pack (the NavTool shows status during shooting and is used for data entry).
- **3.** Prepare for shooting (S).
 - Press the **READY** button and wait for the ARM notification from the recorder.
 - When the ARM notification is received (green LEDs flash on the Shot Pro front panel and the NavTool displays a message), press and hold the two firing buttons on the Shot Pro to charge the firing voltage and arm the Shot Pro. Continue holding the buttons until the FIRE command is received.

Figure 1-7. Shot Pro II Firing Buttons

Warning At this point, the shooter has control over the shot detonating. If the area around the shot hole is not clear, the shooter can release the buttons to abort the shot.

- 4. Take the Shot (S).
 - When the FIRE command is received and the shot is detonated, release the charge buttons.
 - Select the shot status (good, misfire, or blow out) on the NavTool before moving to the next shot point.
 - If the shot was a misfire, retry the shot. It is not necessary to radio the mis-fire into the recorder over voice radio. The system automatically puts the shooter back into the shooting queue to try the shot again.
- **5.** Clean up and navigate to next position (S&H1)
 - (H1) Clean up the detonated shot hole.
 - (S) Put the Shot Pro backpack on and use NavTool to go to the next position.
- **6.** Repeat step 2 through step 5 for all assigned source positions for the day.

Equipment Pickup

The basic workflow for equipment pickup is:

- Navigate to the first station
- Verify the equipment
- Pick up the equipment
- Navigate to the next station
- Package equipment at the equipment pickup point for pickup

Equipment

A set of FireFly station equipment consists of:

- Field Station Unit (FSU-2E)
- VectorSeis sensor (SVSM)
- External Battery

TASK: Pick Up Equipment

- 1. Navigate to first station.
- **2.** Pick up FSU-2E, SVSM, and battery.
 - Swipe the FSU-2E with a magnet to wake it up.
 - Using NavTool, perform these steps:
 - Connect to the FSU-2E.
 - Verify the ID of the FSU-2E.
 - If the ID is correct, click **Picked Up**.

- **3.** Pick up the equipment.
 - Retrieve VectorSeis sensor, using extraction tool if necessary.
 - Disconnect the external battery from the FSU-2E.
 - Disconnect the VectorSeis sensor from the FSU-2E.
 - Gather the FSU-2E, VectorSeis sensor, and external battery.

Caution To prevent potential problems, disconnect the battery from the FSU-2E before disconnecting the VectorSeis Sensor from the FSU-2E.

- **4.** Navigate to next position and repeat step 2 and 3.
- **5.** Move to the last station.
 - Ensure that all ground assembly equipment has been collected.
 - Secure the equipment at equipment pickup point for pickup by helicopter or vehicle.
- Use NavTool to take GPS reading for the equipment pickup point.
- **6.** Use NavTool to select next set of stations in the field and repeat step 1 to step 5.