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Intel® IXP2800 Network Processor 
Introduction
Introduction 1

1.1 About This Document
This document is the hardware reference manual for the Intel® IXP2800 Network Processor. 
This information is intended for use by developers and is organized as follows:

Section 2, “Technical Description” contains a hardware overview.

Section 3, “Intel XScale® Core” describes the embedded core.

Section 4, “Microengines” describes Microengine operation.

Section 5, “DRAM” describes the DRAM Unit.

Section 6, “SRAM Interface” describes the SRAM Unit.

Section 7, “SHaC — Unit Expansion” describes the Scratchpad, Hash Unit, and CSRs (SHaC).

Section 8, “Media and Switch Fabric Interface” describes the Media and Switch Fabric (MSF) 
Interface used to connect the network processor to a physical layer device.

Section 9, “PCI Unit” describes the PCI Unit.

Section 10, “Clocks and Reset” describes the clocks, reset and initialization sequence.

Section 11, “Performance Monitor Unit” describes the PMU.

1.2 Related Documentation
Further information on the IXP2800 is available in the following documents:

IXP2800 Network Processor Datasheet – Contains summary information on the IXP2800 Network 
Processor including a functional description, signal descriptions, electrical specifications, and 
mechanical specifications.

IXP2400 and IXP2800 Network Processor Programmer’s Reference Manual – Contains detailed 
programming information for designers.

IXP2400/IXP2800 Network Processor Development Tools User’s Guide – Describes the Developer 
Workbench and the development tools you can access through the use of the Workbench GUI.
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1.3 Terminology
Table 1 and Table 2 list the terminology used in this manual.

Table 1. Data Terminology

Term Words Bytes Bits

Byte ½ 1 8

Word 1 2 16

Longword 2 4 32

Quadword 4 8 64

Table 2. Longword Formats

Endian Type 32-Bit 64-Bit

Little-Endian (0x12345678) arranged as {12 34 56 78} 64-bit data 0x12345678 9ABCDE56 
arranged as {12 34 56 78 9A BC DE 56}

Big-Endian (0x12345678) arranged as {78 56 34 12} 64-bit data 0x12345678 9ABCDE56 
arranged as {78 56 34 12, 56 DE BC 9A}
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Technical Description 2

2.1 Overview
This section provides a brief overview of the IXP2800 Network Processor internal hardware. 
This section is intended as an overall hardware introduction to the network processor.

The major blocks are:

• Intel XScale®core — General purpose 32-bit RISC processor (ARM* Version 5 Architecture 
compliant) used to initialize and manage the network processor, and can be used for higher 
layer network processing tasks.

• Intel XScale® technology Peripherals (XPI) — Interrupt Controller, Timers, UART, General 
Purpose I/O (GPIO) and interface to low-speed off chip peripherals (such as maintenance port 
of network devices) and Flash ROM.

• Microengines (MEs) — Sixteen 32-bit programmable engines specialized for Network 
Processing. Microengines do the main data plane processing per packet.

• DRAM Controllers — Three independent controllers for Rambus* DRAM. Typically DRAM 
is used for data buffer storage.

• SRAM Controllers — Four independent controllers for QDR SRAM. Typically SRAM is used 
for control information storage.

• Scratchpad Memory — 16 Kbytes storage for general purpose use.

• Hash Unit — Polynomial hash accelerator. The Intel XScale® core and Microengines can use 
it to offload hash calculations.

• Control and Status Register Access Proxy (CAP) — These provide special inter-processor 
communication features to allow flexible and efficient inter-Microengine and Microengine to 
Intel XScale® core communication.

• Media and Switch Fabric Interface (MSF) — Interface for network framers and/or Switch 
Fabric. Contains receive and transmit buffers.

• PCI Controller — PCI Local Bus Specification, Version 2.2* interface for 64-bit 66-MHz I/O. PCI can 
be used to either connect to a Host processor, or to attach PCI-compliant peripheral devices.

• Performance Monitor — Counters that can be programmed to count selected internal chip 
hardware events, which can be used to analyze and tune performance.

Figure 1 is a simple block diagram of the network processor showing the major internal hardware 
blocks. Figure 2 is a detailed diagram of the network processor units and buses.
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Figure 1. IXP2800 Network Processor Functional Block Diagram
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Figure 2. IXP2800 Network Processor Detailed Diagram
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2.2 Intel XScale® Core Microarchitecture
The Intel XScale® microarchitecture consists of a 32-bit general purpose RISC processor that 
incorporates an extensive list of architecture features that allows it to achieve high performance.

2.2.1 ARM* Compatibility
The Intel XScale® microarchitecture is ARM* Version 5 (V5) Architecture compliant. It 
implements the integer instruction set of ARM* V5, but does not provide hardware support of the 
floating point instructions.

The Intel XScale® microarchitecture provides the Thumb instruction set (ARM V5T) and the 
ARM V5E DSP extensions.

Backward compatibility with the first generation of StrongARM* products is maintained for user-
mode applications. Operating systems may require modifications to match the specific hardware 
features of the Intel XScale® microarchitecture and to take advantage of the performance 
enhancements added to the Intel XScale® core.

2.2.2 Features

2.2.2.1 Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulates in two cycles and can sustain a 
throughput of a MAC operation every cycle. Several architectural enhancements were made to the 
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for
16-bit packed values.

2.2.2.2 Memory Management

The Intel XScale® microarchitecture implements the Memory Management Unit (MMU) 
Architecture specified in the ARM Architecture Reference Manual. The MMU provides access 
protection and virtual to physical address translation.

The MMU Architecture also specifies the caching policies for the instruction cache and data 
memory. These policies are specified as page attributes and include:

• identifying code as cacheable or non-cacheable

• selecting between the mini-data cache or data cache

• write-back or write-through data caching

• enabling data write allocation policy

• and enabling the write buffer to coalesce stores to external memory

2.2.2.3 Instruction Cache

The Intel XScale® microarchitecture implements a 32-Kbyte, 32-way set associative instruction 
cache with a line size of 32 bytes. All requests that “miss” the instruction cache generate a 32-byte 
read request to external memory. A mechanism to lock critical code within the cache is also 
provided.
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2.2.2.4 Branch Target Buffer

The Intel XScale® microarchitecture provides a Branch Target Buffer (BTB) to predict the 
outcome of branch type instructions. It provides storage for the target address of branch type 
instructions and predicts the next address to present to the instruction cache when the current 
instruction address is that of a branch.

The BTB holds 128 entries.

2.2.2.5 Data Cache

The Intel XScale® microarchitecture implements a 32-Kbyte, 32-way set associative data cache 
and a 2-Kbyte, 2-way set associative mini-data cache. Each cache has a line size of 32 bytes, and 
supports write-through or write-back caching.

The data/mini-data cache is controlled by page attributes defined in the MMU Architecture and by 
coprocessor 15.

The Intel XScale® microarchitecture allows applications to reconfigure a portion of the data cache 
as data RAM. Software may place special tables or frequently used variables in this RAM.

2.2.2.6 Interrupt Controller

The Intel XScale® microarchitecture provides two levels of interrupt, IRQ and FIQ. They can be 
masked via coprocessor 13. Note that there is also a memory-mapped interrupt controller described 
with the Intel XScale® technology peripherals (see Section 3.12), which is used to mask and steer 
many chip-wide interrupt sources.
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2.2.2.7 Address Map

Figure 3 shows the partitioning of the Intel XScale® core microarchitecture 4-Gbyte address space.

Figure 3. Intel XScale® Core 4-GB (32-Bit) Address Space
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2.3 Microengines
The Microengines do most of the programmable pre-packet processing in the IXP2800 Network 
Processor. There are 16 Microengines, connected as shown in Figure 1. The Microengines have 
access to all shared resources (SRAM, DRAM, MSF, etc.) as well as private connections between 
adjacent Microengines (referred to as “next neighbors”).

The block diagram in Figure 4 is used in the Microengine description. Note that this block diagram 
is simplified for clarity; some blocks and connectivity have been omitted to make the diagram 
more readable. Also, this block diagram does not show any pipeline stages, rather it shows the 
logical flow of information.

Microengines provide support for software-controlled multi-threaded operation. Given the 
disparity in processor cycle times versus external memory times, a single thread of execution often 
blocks, waiting for external memory operations to complete. Multiple threads allow for thread-
interleave operation, as there is often at least one thread ready to run while others are blocked.
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Figure 4. Microengine Block Diagram
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2.3.1 Microengine Bus Arrangement
The IXP2800 Network Processor supports a single D_Push/D_Pull bus, and both Microengine 
clusters interface to the same bus. Also, it supports two command buses, and two sets of 
S_Push/S_Pull buses connected as shown in Table 3, which also shows the next neighbor 
relationship between the Microengine.

2.3.2 Control Store
The Control Store is a RAM that holds the program that is executed by the Microengine. It holds 
8192 instructions, each of which is 40 bits wide. It is initialized by the Intel XScale® core, which 
writes to USTORE_ADDR and USTORE_DATA Local CSRs.

The Control Store is protected by parity against soft errors. Parity checking is enabled by 
CTX_ENABLE[CONTROL STORE PARITY ENABLE]. A parity error on an instruction read 
will halt the Microengine and assert an interrupt to the Intel XScale® core.

2.3.3 Contexts
There are eight hardware Contexts available in the Microengine. To allow for efficient context 
swapping, each Context has its own register set, Program Counter, and Context specific Local 
registers. Having a copy per Context eliminates the need to move Context specific information to/
from shared memory and Microengine registers for each Context swap. Fast context swapping 
allows a Context to do computation while other Contexts wait for I/O (typically external memory 
accesses) to complete or for a signal from another Context or hardware unit. (A context swap is 
similar to a taken branch in timing.)

Table 3. IXP2800 Network Processor Microengine Bus Arrangement

Microengine 
Cluster

Microengine 
Number

Next 
Neighbor

Previous 
Neighbor

Command 
Bus

S_Push and 
S_Pull Bus

0

0x00 0x01 NA

0 0

0x01 0x02 0x00

0x02 0x03 0x01

0x03 0x04 0x02

0x04 0x05 0x03

0x05 0x06 0x04

0x06 0x07 0x05

0x07 0x10 0x06

1

0x10 0x11 0x07

1 1

0x11 0x12 0x10

0x12 0x13 0x11

0x13 0x14 0x12

0x14 0x15 0x13

0x15 0x16 0x14

0x16 0x17 0x15

0x17 NA 0x16
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Each of the eight Contexts is in one of four states.

1. Inactive — Some applications may not require all eight contexts. A Context is in the Inactive 
state when its CTX_ENABLE CSR enable bit is a 0.

2. Executing — A Context is in Executing state when its context number is in 
ACTIVE_CTX_STS CSR. The executing Context’s PC is used to fetch instructions from the 
Control Store. A Context will stay in this state until it executes an instruction that causes it to 
go to Sleep state (there is no hardware interrupt or preemption; Context swapping is 
completely under software control). At most one Context can be in Executing state at any time.

3. Ready — In this state, a Context is ready to execute, but is not because a different Context is 
executing. When the Executing Context goes to the Sleep state, the Microengine’s context 
arbiter selects the next Context to go to the Executing state from among all the Contexts in the 
Ready state. The arbitration is round robin.

4. Sleep — Context is waiting for external event(s) specified in the 
INDIRECT_WAKEUP_EVENTS CSR to occur (typically, but not limited to, an I/O access). 
In this state the Context does not arbitrate to enter the Executing state.

The state diagram in Figure 5 illustrates the Context state transitions. Each of the eight Contexts 
will be in one of these states. At most one Context can be in Executing state at a time; any number 
of Contexts can be in any of the other states.

The Microengine is in Idle state whenever no Context is running (all Contexts are in either Inactive 
or Sleep states). This state is entered:

1. After reset (CTX_ENABLE Local CSR is clear, putting all Contexts into Inactive states).

2. When a context swap is executed, but no context is ready to wake up.

3. When a ctx_arb[bpt] instruction is executed by the Microengine (this is a special case of 
condition 2 above, since the ctx_arb[bpt] clears CTX_ENABLE, putting all Contexts into 
Inactive states).

Figure 5. Context State Transition Diagram
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The Microengine provides the following functionality during the Idle state:

1. The Microengine continuously checks if a Context is in Ready state. If so, a new Context 
begins to execute. If no Context is Ready, the Microengine remains in the Idle state.

2. Only the ALU instructions are supported. They are used for debug via special hardware 
defined in number 3 below.

3. A write to the USTORE_ADDR Local CSR with the USTORE_ADDR[ECS] bit set, causing 
the Microengine to repeatedly execute the instruction pointed by the address specified in the 
USTORE_ADDR CSR. Only the ALU instructions are supported in this mode. Also, the result 
of the execution is written to the ALU_OUT Local CSR rather than a destination register.

4. A write to the USTORE_ADDR Local CSR with the USTORE_ADDR[ECS] bit set, followed 
by a write to the USTORE_DATA Local CSR loads an instruction into the Control Store. After 
the Control Store is loaded, execution proceeds as described in number 3 above.

2.3.4 Datapath Registers
As shown in the block diagram in Figure 4, each Microengine contains four types of 32-bit 
datapath registers:

1. 256 General Purpose registers

2. 512 Transfer registers

3. 128 Next Neighbor registers

4. 640 32-bit words of Local Memory

2.3.4.1 General-Purpose Registers (GPRs)

GPRs are used for general programming purposes. They are read and written exclusively under 
program control. GPRs, when used as a source in an instruction, supply operands to the execution 
datapath. When used as a destination in an instruction, they are written with the result of the 
execution datapath. The specific GPRs selected are encoded in the instruction.

The GPRs are physically and logically contained in two banks, GPR A, and GPR B, defined in 
Table 5.

2.3.4.2 Transfer Registers

Transfer (abbreviated as Xfer) registers are used for transferring data to and from the Microengine 
and locations external to the Microengine, (for example DRAMs, SRAMs etc.). There are four 
types of transfer registers.

• S_TRANSFER_IN

• S_TRANSFER_OUT

• D_TRANSFER_IN

• D_TRANSFER_OUT

TRANSFER_IN registers, when used as a source in an instruction, supply operands to the 
execution datapath. The specific register selected is either encoded in the instruction, or selected 
indirectly via T_INDEX. TRANSFER_IN registers are written by external units (A typical case is 
when the external unit returns data in response to read instructions. However, there are other 
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methods to write TRANSFER_IN registers, for example a read instruction executed by one 
Microengine may cause the data to be returned to a different Microengine. Details are covered in 
the instruction set descriptions).

TRANSFER_OUT registers, when used as a destination in an instruction, are written with the 
result from the execution datapath. The specific register selected is encoded in the instruction, or 
selected indirectly via T_INDEX. TRANSFER_OUT registers supply data to external units
(for example, write data for an SRAM write).

The S_TRANSFER_IN and S_TRANSFER_OUT registers connect to the S_PUSH and S_PULL 
buses, respectively.

The D_TRANSFER_IN and D_TRANSFER_OUT Transfer registers connect to the D_PUSH and 
D_PULL buses, respectively.

Typically, the external units access the Transfer registers in response to instructions executed by the 
Microengines. However, it is possible for an external unit to access a given Microengine’s Transfer 
registers either autonomously, or under control of a different Microengine, or the Intel XScale® 
core, etc. The Microengine interface signals controlling writing/reading of the TRANSFER_IN 
and TRANSFER_OUT registers are independent of the operation of the rest of the Microengine, 
therefore the data movement does not stall or impact other instruction processing
(it is the responsibility of software to synchronize usage of read data).

2.3.4.3 Next Neighbor Registers

Next Neighbor registers, when used as a source in an instruction, supply operands to the execution 
datapath. They are written in two different ways:

1. By an adjacent Microengine (the “Previous Neighbor”).

2. By the same Microengine they are in, as controlled by CTX_ENABLE[NN_MODE].

The specific register is selected in one of two ways: 

1. Context-relative, the register number is encoded in the instruction.

2. As a Ring, selected via NN_GET and NN_PUT CSR registers. 

The usage is configured in CTX_ENABLE[NN_MODE].

• When CTX_ENABLE[NN_MODE] is ‘0’ — when Next Neighbor is a destination in an 
instruction, the result is sent out of the Microengine, to the Next Neighbor Microengine.

• When CTX_ENABLE[NN_MODE] is ‘1’ — when Next Neighbor is used as a destination in 
an instruction, the instruction result data is written to the selected Next Neighbor register in the 
same Microengine. Note that there is a 5-instruction latency until the newly written data may 
be read. The data is not sent out of the Microengine as it would be when 
CTX_ENABLE[NN_MODE] is ‘0’.

Table 4. Next Neighbor Write as a Function of CTX_ENABLE[NN_MODE]

NN_MODE

Where the Write Goes

External? NN Register in this 
Microengine?

0 Yes No

1 No Yes
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2.3.4.4 Local Memory 

Local Memory is addressable storage within the Microengine. Local Memory is read and written 
exclusively under program control. Local Memory supplies operands to the execution datapath as a 
source, and receives results as a destination. The specific Local Memory location selected is based 
on the value in one of the LM_ADDR registers, which are written by local_csr_wr instructions. 
There are two LM_ADDR registers per Context and a working copy of each. When a Context goes 
to the Sleep state, the value of the working copies is put into the Context’s copy of LM_ADDR. 
When the Context goes to the Executing state, the value in its copy of LM_ADDR are put into the 
working copies. The choice of LM_ADDR_0 or LM_ADDR_1 is selected in the instruction. 

It is also possible to make use of both or one LM_ADDRs as global by setting 
CTX_ENABLE[LM_ADDR_0_GLOBAL] and/or CTX_ENABLE[LM_ADDR_1_GLOBAL]. 
When used globally, all Contexts use the working copy of LM_ADDR in place of their own 
Context specific one; the Context specific ones are unused. There is a three-instruction latency 
when writing a new value to the LM_ADDR, as shown in Example 1.

LM_ADDR can also be incremented or decremented in parallel with use as a source and/or 
destination (using the notation *l$index#++ and *l$index#--), as shown in Example 2, where three 
consecutive Local Memory locations are used in three consecutive instructions.

Local Memory is written by selecting it as a destination. Example 3 shows copying a section of 
Local Memory to another section. Each instruction accesses the next sequential Local Memory 
location from the previous instruction.

Example 4 shows loading and using both Local Memory addresses.

Example 1. Three-Cycle Latency when Writing a New Value to LM_ADDR
;some instruction to compute the address into gpr_m

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_m]; put gpr_m into lm_addr

;unrelated instruction 1

;unrelated instruction 2

;unrelated instruction 3

alu[dest_reg, *l$index0, op, src_reg]

;dest_reg can be used as a source in next instruction

Example 2. Using LM_ADDR in Consecutive Instructions
alu[dest_reg1, src_reg1, op, *l$index0++]

alu[dest_reg2, src_reg2, op, *l$index0++]

alu[dest_reg3, src_reg3, op, *l$index0++]

Example 3. Copying One Section of Local Memory to Another Section
alu[*l$index1++, --, B, *l$index0++]

alu[*l$index1++, --, B, *l$index0++]

alu[*l$index1++, --, B, *l$index0++]

Example 4. Loading and Using Both Local Memory Addresses
local_csr_wr[INDIRECT_LM_ADDR_0, gpr_m]

local_csr_wr[INDIRECT_LM_ADDR_1, gpr_n]

;unrelated instruction 1

;unrelated instruction 2

alu[dest_reg1, *l$index0, op, src_reg1]

alu[dest_reg2, *l$index1, op, src_reg2]
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As shown in Example 1, there is a latency in loading LM_ADDR. Until the new value is loaded, 
the old value is still usable. Example 5 shows the maximum pipelined usage of LM_ADDR.

LM_ADDR can also be used as the base of a 16 32-bit word region of memory, with the instruction 
specifying the offset from that base, as shown in Example 6. The source and destination can use 
different offsets.

Note: Local Memory has 640 32-bit words. The local memory pointers (LM_ADDR) have an addressing 
range of up to 1K longwords. However, only 640 longwords are currently populated with RAM. 
Therefore:

0 – 639 (0x0 – 0x27F) are addressable as local memory.

640 – 1023 (0x280 – 0x3FF) are addressable, but not populated with RAM.

To the programmer, all instructions using Local Memory act as follows, including
read/modify/write instructions like immed_w0, ld_field, etc.

1. Read LM_ADDR location (if LM_ADDR is specified as source).

2. Execute logic function.

3. Write LM_ADDR location (if LM_ADDR is specified as destination).

4. If specified, increment or decrement LM_ADDR.

5. Proceed to next instruction.

Example 7 is legal because lm_addr_0[2] does not post-modify LM_ADDR.

In Example 7, the programmer sees:

1. Read Local Memory memory location pointed to by LM_ADDR.

2. Invert the data.

3. Write the data into the address pointed to by LM_ADDR with the value of 2 that is OR’ed into 
the lower bits.

4. Increment LM_ADDR.

5. Proceed to next instruction.

Example 5. Maximum Pipelined Usage of LM_ADDR
local_csr_wr[INDIRECT_LM_ADDR_0, gpr_m]

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_n]

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_o]

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_p]

alu[dest_reg1, *l$index0, op, src_reg1] ; uses address from gpr_m

alu[dest_reg2, *l$index0, op, src_reg2] ; uses address from gpr_n

alu[dest_reg3, *l$index0, op, src_reg3] ; uses address from gpr_o

alu[dest_reg4, *l$index0, op, src_reg4] ; uses address from gpr_p

Example 6. LM_ADDR Used as Base of a 16 32-Bit Word Region of Local Memory
alu[*l$index0[3], *l$index0[4], +, 1]

Example 7. LM_ADDR Use as Source and Destination
alu[*l$index0[2], --, ~B, *l$index0]
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In Example 8, the second instruction will access the Local Memory location one past the source/
destination of the first.

2.3.5 Addressing Modes
GPRs can be accessed in either a context-relative or an absolute addressing mode. Some 
instructions can specify either mode; other instructions can specify only Context-Relative mode.

Transfer and Next Neighbor registers can be accessed in Context-Relative and Indexed modes, and 
Local Memory is accessed in Indexed mode. The addressing mode in use is encoded directly into 
each instruction, for each source and destination specifier.

2.3.5.1 Context-Relative Addressing Mode

The GPRs are logically subdivided into equal regions such that each Context has relative access to 
one of the regions. The number of regions is configured in the CTX_ENABLE CSR, and can be 
either 4 or 8. Thus a Context-Relative register number is actually associated with multiple different 
physical registers. The actual register to be accessed is determined by the Context making the 
access request (the Context number is concatenated with the register number specified in the 
instruction). Context-Relative addressing is a powerful feature that enables eight (or four) different 
contexts to share the same code image, yet maintain separate data.

Table 5 shows how the Context number is used in selecting the register number in relative mode. 
The register number in Table 5 is the Absolute GPR address, or Transfer or Next Neighbor Index 
number to use to access the specific Context-Relative register. For example, with eight active 
Contexts, Context-Relative Register 0 for Context 2 is Absolute Register Number 32.

Example 8. LM_ADDR Post-Increment
alu[*l$index0++, --, ~B, gpr_n]

alu[gpr_m, --, ~B, *l$index0]

Table 5. Registers Used By Contexts in Context-Relative Addressing Mode

Number of 
Active 

Contexts

Active
Context 
Number

GPR
Absolute Register Numbers S_Transfer or 

Neighbor
Index Number

D_Transfer
Index Number

A Port B Port

8
(Instruction 

always specifies 
registers in 

range 0 – 15)

0 0 – 15 0 – 15 0 – 15 0 – 15

1 16  –  31 16 – 31 16 – 31 16 – 31

2 32 – 47 32 – 47 32 – 47 32 – 47

3 48 – 63 48 – 63 48 – 63 48 – 63

4 64 – 79 64 – 79 64 – 79 64 – 79

5 80 – 95 80 – 95 80 – 95 80 – 95

6 96 – 111 96 – 111 96 – 111 96 – 111

7 112 – 127 112 – 127 112 – 127 112 – 127

4
(Instruction 

always specifies 
registers in 

range 0 – 31)

0 0 – 31 0 – 31 0 – 31 0 – 31

2 32 – 63 32 – 63 32 – 63 32 – 63

4 64 – 95 64 – 95 64 – 95 64 – 95

6 96 – 127 96 – 127 96 – 127 96 – 127
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2.3.5.2 Absolute Addressing Mode

With Absolute addressing, any GPR can be read or written by any of the eight Contexts in a 
Microengine. Absolute addressing enables register data to be shared among all of the Contexts, 
e.g., for global variables or for parameter passing. All 256 GPRs can be read by Absolute address.

2.3.5.3 Indexed Addressing Mode

With Indexed addressing, any Transfer or Next Neighbor register can be read or written by any one 
of the eight Contexts in a Microengine. Indexed addressing enables register data to be shared 
among all of the Contexts. For indexed addressing the register number comes from the T_INDEX 
register for Transfer registers or NN_PUT and NN_GET registers (for Next Neighbor registers). 
Example 9 shows the Index Mode usage. Assume that the numbered bytes have been moved into 
the S_TRANSFER_IN registers as shown.

If the software wants to access a specific byte that is known at compile-time, it will normally use 
context-relative addressing. For example to access the word in transfer register 3:

If the location of the data is found at run-time, indexed mode can be used, e.g., if the start of an 
encapsulated header depends on an outer header value (the outer header byte is in a fixed location).

Example 9. Use of Indexed Addressing Mode 

Transfer 
Register 
Number

Data

31:24 23:16 15:8 7:0

0 0x00 0x01 0x02 0x03

1 0x04 0x05 0x06 0x07

2 0x08 0x09 0x0a 0x0b

3 0x0c 0x0d 0x0e 0x0f

4 0x10 0x11 0x12 0x013

5 0x14 0x15 0x16 0x17

6 0x18 0x19 0x1a 0x1b

7 0x1c 0x1d 0x1e 0x1f

alu[dest, --, B, $xfer3] ; move the data from s_transfer 3 to gpr dest

; Check byte 2 of transfer 0

; If value==5 header starts on byte 0x9, else byte 0x14

br=byte[$0, 2, 0x5, L1#], defer_[1]

local_csr_wr[t_index_byte_index, 0x09]

local_csr_wr[t_index_byte_index, 0x14]

nop ; wait for index registers to be loaded

L1#:

; Move bytes right justified into destination registers

nop ; wait for index registers to be loaded

nop ;

byte_align_be[dest1, *$index++]

byte_align_be[dest2, *$index++] ;etc.

; The t_index and byte_index registers are loaded by the same instruction.
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2.3.6 Local CSRs
Local Control and Status registers (CSRs) are external to the Execution Datapath, and hold specific 
data. They can be read and written by special instructions (local_csr_rd and local_csr_wr) and are 
accessed less frequently than datapath registers. 

Because Local CSRs are not built in the datapath, there is a write-to-use delay of three instructions, 
and a read-to-consume penalty of two instructions.

2.3.7 Execution Datapath
The Execution Datapath can take one or two operands, perform an operation, and optionally write 
back a result. The sources and destinations can be GPRs, Transfer registers, Next Neighbor 
registers, and Local Memory. The operations are shifts, add/subtract, logicals, multiply, byte align, 
and find first one bit. 

2.3.7.1 Byte Align

The datapath provides a mechanism to move data from source register(s) to any destination 
register(s) with byte aligning. Byte aligning takes four consecutive bytes from two concatenated 
values (8 bytes), starting at any of four byte boundaries (0, 1, 2, 3), and based on the endian-type 
(which is defined in the instruction opcode), as shown in Example 5. The four bytes are taken from 
two concatenated values. Four bytes are always supplied from a temporary register that always 
holds the A or B operand from the previous cycle, and the other four bytes from the B or A operand 
of the Byte Align instruction. 

The operation is described below, using the block diagram in Figure 6. The alignment is controlled 
by the two LSBs of the BYTE_INDEX Local CSR.

Table 6. Align Value and Shift Amount

Align Value
(in Byte_Index[1:0])

Right Shift Amount (Number of Bits) 
(Decimal)

Little-Endian Big-Endian

0 0 32

1 8 24

2 16 16

3 24 8
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Example 10 shows a big-endian align sequence of instructions and the value of the various 
operands. Table 7 shows the data in the registers for this example. The value in 
BYTE_INDEX[1:0] CSR (which controls the shift amount) for this example is 2.

Figure 6. Byte-Align Block Diagram

A9353-01

Prev_A

Byte_Index

Result

B_OperandA_Operand

Prev_B

.  .  ..  .  .

Shift

Table 7. Register Contents for Example 10

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 0 1 2 3

1 4 5 6 7

2 8 9 A B

3 C D E F

Example 10. Big-Endian Align

Instruction Prev B A Operand B Operand Result

Byte_align_be[--, r0] -- -- 0123 --

Byte_align_be[dest1, r1] 0123 0123 4567 2345

Byte_align_be[dest2, r2] 4567 4567 89AB 6789

Byte_align_be[dest3, r3] 89AB 89AB CDEF ABCD

NOTE: A Operand comes from Prev_B register during byte_align_be instructions.
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Example 11 shows a little-endian sequence of instructions and the value of the various operands.
Table 8 shows the data in the registers for this example. The value in BYTE_INDEX[1:0] CSR 
(which controls the shift amount) for this example is 2.

As the examples show, byte aligning “n” words takes “n+1” cycles due to the first instruction 
needed to start the operation.

Another mode of operation is to use the T_INDEX register with post-increment, to select the 
source registers. T_INDEX operation is described later in this chapter.

2.3.7.2 CAM

The block diagram in Figure 7 is used to explain the CAM operation.

The CAM has 16 entries. Each entry stores a 32-bit value, which can be compared against a source 
operand by instruction:

CAM_Lookup[dest_reg, source_reg]

All entries are compared in parallel, and the result of the lookup is a 9-bit value that is written into 
the specified destination register in bits 11:3, with all other bits of the register 0 (the choice of bits 
11:3 is explained below). The result can also optionally be written into either of the LM_Addr 
registers (see below in this section for details).

The 9-bit result consists of four State bits (dest_reg[11:8]), concatenated with a 1-bit Hit/Miss 
indication (dest_reg[7]), concatenated with 4-bit entry number (dest_reg[6:3]). All other bits of 
dest_reg are written with 0. Possible results of the lookup are:

• miss (0) — lookup value is not in CAM, entry number is Least Recently Used entry (which 
can be used as a suggested entry to replace), and State bits are 0000.

• hit (1) — lookup value is in CAM, entry number is entry that has matched; State bits are the 
value from the entry that has matched.

Table 8. Register Contents for Example 11

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 3 2 1 0

1 7 6 5 4

2 B A 9 8

3 F E D C

Example 11. Little-Endian Align

Instruction A Operand B Operand Prev A Result

Byte_align_le[--, r0] 3210 -- -- --

Byte_align_le[dest1, r1] 7654 3210 3210 5432

Byte_align_le[dest2, r2] BA98 7654 7654 9876

Byte_align_le[dest3, r3] FEDC BA98 BA98 DCBA

NOTE: B Operand comes from Prev_A register during byte_align_le instructions.
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Note: The State bits are data associated with the entry. The use is only by software. There is no 
implication of ownership of the entry by any Context. The State bits hardware function is:

• the value is set by software (at the time the entry is loaded, or changed in an already loaded 
entry).

• its value is read out on a lookup that hits, and used as part of the status written into the 
destination register.

• its value can be read out separately (normally only used for diagnostic or debug).

The LRU (Least Recently Used) Logic maintains a time-ordered list of CAM entry usage. When an 
entry is loaded, or matches on a lookup, it is marked as MRU (Most Recently Used). Note that a 
lookup that misses does not modify the LRU list.

The CAM is loaded by instruction:
CAM_Write[entry_reg, source_reg, state_value]

The value in the register specified by source_reg is put into the Tag field of the entry specified by 
entry_reg. The value for the State bits of the entry is specified in the instruction as state_value.

Figure 7. CAM Block Diagram

A9354-01

Status
and
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Logic
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Lookup Value
(from A port)

State
Match

Match

Match

Tag State

Tag State

Tag State
Match

Lookup Status
(to Dest Req)

State Status Entry Number

0000 Miss 0 LRU Entry

State Hit 1 Hit Entry
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The value in the State bits for an entry can be written, without modifying the Tag, by instruction:
CAM_Write_State[entry_reg, state_value]

Note: CAM_Write_State does not modify the LRU list.

One possible way to use the result of a lookup is to dispatch to the proper code using instruction:
jump[register, label#],defer [3]

where the register holds the result of the lookup. The State bits can be used to differentiate cases 
where the data associated with the CAM entry is in flight, or is pending a change, etc. Because the 
lookup result was loaded into bits[11:3] of the destination register, the jump destinations are spaced 
eight instructions apart. This is a balance between giving enough space for many applications to 
complete their task without having to jump to another region, versus consuming too much Control 
Store. Another way to use the lookup result is to branch on just the hit miss bit, and use the entry 
number as a base pointer into a block of Local Memory.

When enabled, the CAM lookup result is loaded into Local_Addr as follows:
LM_Addr[5:0] = 0 ([1:0] are read-only bits)
LM_Addr[9:6] = lookup result [6:3] (entry number)
LM_Addr[11:10] = constant specified in instruction

This function is useful when the CAM is used as a cache, and each entry is associated with a block 
of data in Local Memory. Note that the latency from when CAM_Lookup executes until the 
LM_Addr is loaded is the same as when LM_Addr is written by a Local_CSR_Wr instruction.

The Tag and State bits for a given entry can be read by instructions:
CAM_Read_Tag[dest_reg, entry_reg]

CAM_Read_State[dest_reg, entry_reg]

The Tag value and State bits value for the specified entry is written into the destination register, 
respectively for the two instructions (the State bits are placed into bits [11:8] of dest_reg, with all 
other bits 0). Reading the tag is useful in the case where an entry needs to be evicted to make room 
for a new value—the lookup of the new value results in a miss, with the LRU entry number 
returned as a result of the miss. The CAM_Read_Tag instruction can then be used to find the value 
that was stored in that entry. An alternative would be to keep the tag value in a GPR. These two 
instructions can also be used by debug and diagnostic software. Neither of these modify the state of 
the LRU pointer.

Note: The following rules must be adhered to when using the CAM.

• CAM is not reset by Microengine reset. Software must either do a CAM_clear prior to using 
the CAM to initialize the LRU and clear the tags to 0, or explicitly write all entries with 
CAM_write.

• No two tags can be written to have same value. If this rule is violated, the result of a lookup 
that matches that value will be unpredictable, and LRU state is unpredictable.

The value 0x00000000 can be used as a valid lookup value. However, note that CAM_clear 
instruction puts 0x00000000 into all tags. To avoid violating rule 2 after doing CAM_clear, it is 
necessary to write all entries to unique values prior to doing a lookup of 0x00000000.
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An algorithm for debug software to find out the contents of the CAM is shown in Example 12.

The CAM can be cleared with CAM_Clear instruction. This instruction writes 0x00000000 
simultaneously to all entries tag, clears all the state bits, and puts the LRU into an initial state 
(where entry 0 is LRU, ..., entry 15 is MRU).

2.3.8 CRC Unit
The CRC Unit operates in parallel with the Execution Datapath. It takes two operands, performs a 
CRC operation, and writes back a result. CRC-CCITT, CRC-32, CRC-10, CRC-5, and iSCSI 
polynomials are supported. One of the operands is the CRC_Remainder Local CSR, and the other 
is a GPR, Transfer_In register, Next Neighbor, or Local Memory, specified in the instruction and 
passed through the Execution Datapath to the CRC Unit. 

The instruction specifies the CRC operation type, whether to swap bytes and or bits, and which 
bytes of the operand to include in the operation. The result of the CRC operation is written back 
into CRC_Remainder. The source operand can also be written into a destination register (however 
the byte/bit swapping and masking do not affect the destination register; they only affect the CRC 
computation). This allows moving data, for example, from S_TRANSFER_IN registers to 
S_TRANSFER_OUT registers at the same time as computing the CRC.

Example 12. Algorithm for Debug Software to Find out the Contents of the CAM
; First read each of the tag entries. Note that these reads
; don’t modify the LRU list or any other CAM state.
tag[0] = CAM_Read_Tag(entry_0);
......
tag[15] = CAM_Read_Tag(entry_15);

; Now read each of the state bits
state[0] = CAM_Read_State(entry_0);
...
state[15] = CAM_Read_State(entry_15);

; Knowing what tags are in the CAM makes it possible to 
; create a value that is not in any tag, and will therefore
; miss on a lookup.

; Next loop through a sequence of 16 lookups, each of which will
; miss, to obtain the LRU values of the CAM.
for (i = 0; i < 16; i++)
  BEGIN_LOOP
   ; Do a lookup with a tag not present in the CAM. On a
   ; miss, the LRU entry will be returned. Since this lookup
   ; missed the LRU state is not modified.
   LRU[i] = CAM_Lookup(some_tag_not_in_cam);
   ; Now do a lookup using the tag of the LRU entry. This 
   ; lookup will hit, which makes that entry MRU.
   ; This is necessary to allow the next lookup miss to
   ; see the next LRU entry.
   junk = CAM_Lookup(tag[LRU[i]]);
END_LOOP

; Because all entries were hit in the same order as they were
; LRU, the LRU list is now back to where it started before the
; loop executed.
; LRU[0] through LRU[15] holds the LRU list.
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2.3.9 Event Signals
Event Signals are used to coordinate a program with completion of external events. For example, 
when a Microengine executes an instruction to an external unit to read data (which will be written 
into a Transfer_In register), the program must insure that it does not try to use the data until the 
external unit has written it. This time is not deterministic due to queuing delays and other 
uncertainty in the external units (for example, DRAM refresh). There is no hardware mechanism to 
flag that a register write is pending, and then prevent the program from using it. Instead the 
coordination is under software control, with hardware support.

In the instructions that use external units (i.e., SRAM, DRAM, etc.) there are fields that direct the 
external unit to supply an indication (called an Event Signal) that the command has been 
completed. There are 15 Event Signals per Context that can be used, and Local CSRs per Context 
to track which Event Signals are pending and which have been returned. The Event Signals can be 
used to move a Context from Sleep state to Ready state, or alternatively, the program can test and 
branch on the status of Event Signals.

Event Signals can be set in nine different ways.

1. When data is written into S_TRANSFER_IN registers

2. When data is written into D_TRANSFER_IN registers

3. When data is taken from S_TRANSFER_OUT registers

4. When data is taken from D_TRANSFER_OUT registers

5. By a write to INTERTHREAD_SIGNAL register

6. By a write from Previous Neighbor Microengine to NEXT_NEIGHBOR_SIGNAL

7. By a write from Next Neighbor Microengine to PREVIOUS_NEIGHBOR_SIGNAL

8. By a write to SAME_ME_SIGNAL Local CSR

9. By Internal Timer

Any or all Event Signals can be set by any of the above sources. 

When a Context goes to the Sleep state (executes a ctx_arb instruction, or an instruction with 
ctx_swap token), it specifies which Event Signal(s) it requires to be put in Ready state.
The ctx_arb instruction also specifies if the logical AND or logical OR of the Event Signal(s) is 
needed to put the Context into Ready state.

When all of the Context’s Event Signals arrive, the Context goes to Ready state, and then 
eventually to Executing state. In the case where the Event Signal is linked to moving data into or 
out of Transfer registers (numbers 1 through 4 in the list above), the code can safely use the 
Transfer register as the first instruction (for example, using a Transfer_In register as a source 
operand will get the new read data). The same is true when the Event Signal is tested for branches 
(br_=signal or br_!signal instructions).

The ctx_arb instruction, CTX_SIG_EVENTS, and ACTIVE_CTX_WAKEUP_#_EVENTS 
Local CSR descriptions provide details.
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2.4 DRAM
The IXP2800 Network Processor has controllers for three Rambus* DRAM (RDRAM) channels. 
Each of the controllers independently accesses its own RDRAMs, and can operate concurrently 
with the other controllers (i.e., they are not operating as a single, wider memory). DRAM provides 
high-density, high-bandwidth storage and is typically used for data buffers.

• RDRAM sizes of 64, 128, 256, or 512 Mbytes, and 1 Gbyte are supported; however, each of 
the channels must have the same number, size, and speed of RDRAMs populated. Refer to 
Section 5.2 for supported size and loading configurations. 

• Up to two Gbytes of DRAM is supported. If less than two Gbytes of memory is present, the 
upper part of the address space is not used. It is also possible, for system cost and area savings, 
to have Channels 0 and 1 populated with Channel 2 empty, or Channel 0 populated with 
Channels 1and 2 empty.

• Reads and writes to RDRAM are generated by Microengines, The Intel XScale® core, and PCI 
(external Bus Masters and DMA Channels). The controllers also do refresh and calibration 
cycles to the RDRAMs, transparently to software.

• RDRAM Powerdown and Nap modes are not supported.

• Hardware interleaving (also known as striping) of addresses is done to provide balanced 
access to all populated channels. The interleave size is 128 bytes. Interleaving helps to 
maintain utilization of available bandwidth by spreading consecutive accesses to multiple 
channels. The interleaving is done in the hardware in such a way that the three channels appear 
to software as a single contiguous memory space.

• ECC (Error Correcting Code) is supported, but can be disabled. Enabling ECC requires that 
x18 RDRAMs be used. If ECC is disabled x16 RDRAMs can be used. ECC can detect and 
correct all single-bit errors, and detect all double-bit errors. When ECC is enabled, partial 
writes (writes of less than 8 bytes) must be done as read-modify-writes. 

2.4.1 Size Configuration
Each channel can be populated with anywhere from one-to-four RDRAMs (Short Channel Mode). 
Refer to Section 5.2 for supported size and loading configurations. The RAM technology used will 
determine the increment size and maximum memory per channel as shown in Table 9.

RDRAMs with 1 x 16 or 2 x 16 dependent banks, and 4 independent banks are supported.

Table 9. RDRAM Sizes

RDRAM Technology1 Increment Size Maximum per Channel

64/72 MB 8 MB 256 MB

128/144 MB 16 MB 512 MB

256/288 MB 32 MB 1 GB2

512/576 MB 64 MB 2 GB2

NOTES:
1. The two numbers shown for each technology indicate x16 parts and x18 parts.
2. The maximum memory that can be addressed across all channels is 2 GB. This limitation is based on the 

partitioning of the 4-GB address space (32-bit addresses). Therefore, if all three channels are used, each 
can be populated up to a maximum of 768 MB. Two channels can be populated to a maximum of 
1 GB each. A single channel can be populated to a maximum of 2 GB.
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2.4.2 Read and Write Access
The minimum DRAM physical access length is 16 bytes. Software (and PCI) can read or write as 
little as a single byte, however the time (and bandwidth) taken at the DRAMs is the same as for an 
access of 16 bytes. Therefore, the best utilization of DRAM bandwidth will be for accesses that are 
multiples of 16 bytes.

If ECC is enabled, writes of less than 8 bytes must do read-modify-writes, which take two 16-byte 
time accesses (one for the read and one for the write).

2.5 SRAM
The IXP2800 Network Processor has four independent SRAM controllers, which each support 
pipelined QDR synchronous static RAM (SRAM) and/or a coprocessor that adheres to QDR 
signaling. Any or all controllers can be left unpopulated if the application does not need to use 
them. SRAM are accessible by the Microengines, the Intel XScale® core, and the PCI Unit 
(external bus masters and DMA).

The memory is logically four bytes (32-bits) wide; physically the data pins are two bytes wide and 
are double clocked. Byte parity is supported. Each of the four bytes has a parity bit, which is 
written when the byte is written and checked when the data is read. There are byte-enables that 
select which bytes to write for writes of less than 32 bits.

Each of the 4 QDR ports are QDR and QDRII compatible. Each port implements the “_K” and 
“_C” output clocks and “_CQ” as an input and their inversions. (Note: the “_C” and “_CQ” clocks 
are optional). Extensive work has been performed providing impedance controls within the 
IXP2800 Network Processor for processor-initiated signals driving to QDR parts. Providing a 
clean signaling environment is critical to achieving 200 – 250 MHz QDRII data transfers. 

The configuration assumptions for the IXP2800 Network Processor I/O driver/receiver 
development includes four QDR loads and the IXP2800 Network Processor. The IXP2800 
Network Processor supports bursts of two SRAMs, but does not support bursts of four SRAMs.

The SRAM controller can also be configured to interface to an external coprocessor that adheres to 
the QDR electricals and protocol. Each SRAM controller may also interface to an external 
coprocessor through its standard QDR interface. This interface enables the cohabitation of both 
SRAM devices and coprocessors to operate on the same bus. The coprocessor behaves as a 
memory-mapped device on the SRAM bus.
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2.5.1 QDR Clocking Scheme
The controller drives out two pairs of K clock (K and K#). It also drives out two pairs of C clock
(C and C#). Both C/C# clocks externally return to the controller for reading data. Figure 8 shows 
the clock diagram if the clocking scheme for QDR interface driving four SRAM chips.

 

2.5.2 SRAM Controller Configurations
Each channel has enough address pins (24) to support up to 64 Mbytes of SRAM. The SRAM 
controllers can directly generate multiple port enables (up to four pairs) to allow for depth 
expansion. Two pairs of pins are dedicated for port enables. Smaller RAMs use fewer address 
signals than the number provided to accommodate the largest RAMs, so some address pins (23:20) 
are configurable as either address or port enable based on CSR setting as shown in Table 10. 
Note that all of the SRAMs on a given channel must be the same size.

Figure 8. Echo Clock Configuration
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*The CIN[1] pin is not used internally to capture the READ data; however, the I/O Pad can be used
to terminate the signal.

Table 10. SRAM Controller Configurations  (Sheet 1 of 2)

SRAM
Configuration SRAM Size Addresses Needed 

to Index SRAM
Addresses Used
as Port Enables

Total Number of Port 
Select Pairs Available

512K x 18 1 MB 17:0 23:22, 21:20 4

1M x 18 2 MB 18:0 23:22, 21:20 4

2M x 18 4 MB 19:0 23:22, 21:20 4

4M x 18 8 MB 20:0 23:22 3
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Each channel can be expanded by depth according to the number of port enables available. If 
external decoding is used, then the number of SRAMs used is not limited by the number of port 
enables generated by the SRAM controller. 

Note: Doing external decoding may require external pipeline registers to account for the decode time, 
depending on the desired frequency. 

Maximum SRAM system sizes are shown in Table 11. Shaded entries require external decoding, 
because they use more port enables than the SRAM controller can supply directly.

2.5.3 SRAM Atomic Operations
In addition to normal reads and writes, SRAM supports the following atomic operations. 
Microengines have specific instructions to do each atomic operation; Intel XScale® 
microarchitecture uses aliased address regions to do atomic operations.

• bit set

• bit clear

• increment

• decrement

• add

• swap

The SRAM does read-modify-writes for the atomic operations, the pre-modified data can also be 
returned if desired. The atomic operations operate on a single 32-bit word. 

8M x 18 16 MB 21:0 23:22 3

16M x 18 32 MB 22:0 None 2

32M x 18 64 MB 23:0 None 2

Table 10. SRAM Controller Configurations  (Sheet 2 of 2)

SRAM
Configuration SRAM Size Addresses Needed 

to Index SRAM
Addresses Used
as Port Enables

Total Number of Port 
Select Pairs Available

Table 11. Total Memory per Channel

SRAM Size
Number of SRAMs on Channel

1 2 3 4 5 6 7 8

512K x 18 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB

1M x 18 2 MB 4 MB 6 MB 8 MB 10 MB 12 MB 14 MB 16 MB

2M x 18 4 MB 8 MB 12 MB 16 MB 20 MB 24 MB 28 MB 32 MB

4M x 18 8 MB 16 MB 24 MB 32 MB 64 MB NA NA NA

8M x 18 16 MB 32 MB 48 MB 64 MB NA NA NA NA

16M x 18 32 MB 64 MB NA NA NA NA NA NA

32M x 18 64 MB NA NA NA NA NA NA NA
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2.5.4 Queue Data Structure Commands
The ability to enqueue and dequeue data buffers at a fast rate is key to meeting line-rate 
performance. This is a difficult problem as it involves dependent memory references that must be 
turned around very quickly. The SRAM controller includes a data structure (called the Q_array) 
and associated control logic to perform efficient enqueue and dequeue operations. The Q_array has 
64 entries, each of which can be used in one of four ways.

• Linked-list queue descriptor (resident queues)

• Cache of recently used linked-list queue descriptors (backing store for the cache is in SRAM)

• Ring descriptor

• Journal

The commands provided are:

For Linked-list queues or Cache of recently used linked-list queue descriptors
• Read_Q_Descriptor_Head(address, length, entry, xfer_addr)

• Read_Q_Descriptor_Tail(address, length, entry)

• Read_Q_Descriptor_Other(address, entry)

• Write_Q_Descriptor(address, entry)

• Write_Q_Descriptor_Count(address, entry)

• ENQ(buff_desc_adr, cell_count, EOP, entry)

• ENQ_tail(buff_desc_adr, entry)

• DEQ(entry, xfer_addr)

For Rings
• Get(entry, length, xfer_addr)

• Put(entry, length, xfer_addr)

For Journals
• Journal(entry, length, xfer_addr)

• Fast_journal(entry)

Note: The Read_Q_Descriptor_Head, Read_Q_Descriptor_Tail, etc.) are used to initialize the rings and 
journals but not used to perform the ring and journal function. 

2.5.5 Reference Ordering 
This section covers the ordering between accesses to any one SRAM controller.

2.5.5.1 Reference Order Tables

Table 12 shows the architectural guarantees of order to access to the SAME SRAM address 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The definition of first and second is defined by the order 
they are received by the SRAM controller. 

Note: A given Network Processor version may implement a superset of these order guarantees. However, 
that superset may not be supported in future implementations. 
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Verification is required to test only the order rules shown in Table 12 and Table 13).

Note: A blank entry in Table 12 means that no order is enforced.

Table 13 shows the architectural guarantees of order to access to the SAME SRAM Q_array entry 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The definition of first and second is defined by the order 
they are received by the SRAM controller. The same caveats apply as for Table 12.

Table 12. Address Reference Order

1st ref
2nd ref Memory 

Read CSR Read Memory 
Write CSR Write Memory 

RMW

Queue / 
Ring / 

Q_Descr 
Commands

Memory Read Order

CSR Read Order

Memory Write Order

CSR Write Order

Memory RMW Order

Queue / Ring / Q_ 
Descr Commands

See 
Table 13.

Table 13. Q_array Entry Reference Order

1st ref
2nd ref

Read_Q
_Descr 
head,

tail

Read_
Q_Des

cr 
other

Write_Q
_Descr Enqueue Dequeue Put Get Journal

Read_Q_Descr
head,tail Order

Read_Q_
Descr other Order

Write_Q_
Descr

Enqueue Order Order Order

Dequeue Order Order Order

Put Order

Get Order

Journal Order
Hardware Reference Manual 55



Intel® IXP2800 Network Processor
Technical Description
2.5.5.2 Microengine Software Restrictions to Maintain Ordering

It is the Microengine programmer’s job to ensure order where the program flow finds order to be 
necessary and where the architecture does not guarantee that order. The signaling mechanism can 
be used to do this. For example, say that microcode needs to update several locations in a table. A 
location in SRAM is used to “lock” access to the table. Example 13 is the code for the table update.

Other rules:

• All accesses to atomic variables should be via read-modify-write instructions.

• If the flow must know that a write is completed (actually in the SRAM itself), follow the write 
with a read to the same address. The write is guaranteed to be complete when the read data has 
been returned to the Microengine.

• With the exception of initialization, never do WRITE commands to the first three longwords 
of a queue_descriptor data structure (these are the longwords that hold head, tail, and count, 
etc.). All accesses to this data must be via the Q commands.

• To initialize the Q_array registers, perform a memory write of at least three longwords, 
followed by a memory read to the same address (to guarantee that the write completed). 
Then, for each entry in the Q_array, perform a read_q_descriptor_head followed by a 
read_q_descriptor_other using the address of the same three longwords.

2.6 Scratchpad Memory
The IXP2800 Network Processor contains a 16 Kbytes of Scratchpad Memory, organized as 4K 
32-bit words, that is accessible by Microengines and the Intel XScale® core. The Scratchpad 
Memory provides the following operations:

• Normal reads and writes. 1–16 32-bit words can be read/written with a single Microengine 
instruction. Note that Scratchpad is not byte-writable (each write must write all four bytes).

• Atomic read-modify-write operations, bit-set, bit-clear, increment, decrement, add, subtract, 
and swap. The RMW operations can also optionally return the pre-modified data.

• Sixteen Hardware Assisted Rings for interprocess communication. (A ring is a FIFO that uses 
a head and tail pointer to store/read information in Scratchpad memory.)

Scratchpad Memory is provided as a third memory resource (in addition to SRAM and DRAM) 
that is shared by the Microengines and the Intel XScale® core. The Microengines and the Intel 
XScale® core can distribute memory accesses between these three types of memory resources to 
provide a greater number of memory accesses occurring in parallel.

Example 13. Table Update Code
IMMED [$xfer0, 1]

SRAM [write, $xfer0, flag_address, 0, 1], ctx_swap [SIG_DONE_2]

; At this point, the write to flag_address has passed the point of coherency. Do 
the table updates.

SRAM [write, $xfer1, table_base, offset1, 2] , sig_done [SIG_DONE_3]

SRAM [write, $xfer3, table_base, offset2, 2] , sig_done [SIG_DONE_4]

CTX_ARB [SIG_DONE_3, SIG_DONE_4]

; At this point, the table writes have passed the point of coherency. Clear the 
flag to allow access by other threads.

IMMED [$xfer0, 0]

SRAM [write, $xfer0, flag_address, 0, 1, ctx_swap [SIG_DONE_2]
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2.6.1 Scratchpad Atomic Operations
In addition to normal reads and writes, the Scratchpad Memory supports the following atomic 
operations. Microengines have specific instructions to do each atomic operation; the Intel XScale® 
microarchitecture uses aliased address regions to do atomic operations.

• bit set

• bit clear

• increment

• decrement

• add

• subtract

• swap

The Scratchpad Memory does read-modify-writes for the atomic operations, the pre-modified data 
can also be returned if desired. The atomic operations operate on a single 32-bit word. 

2.6.2 Ring Commands
The Scratchpad Memory provides sixteen Rings used for interprocess communication. The rings 
provide two operations.

• Get(ring, length) 

• Put(ring, length) 

Ring is the number of the ring (0 through 15) to get or put from, and length specifies the 
number of 32-bit words to transfer. A logical view of one of the rings is shown in Table 9.

Figure 9. Logical View of Rings
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Head, Tail, and Size are registers in the Scratchpad Unit. Head and Tail point to the actual ring data, 
which is stored in the Scratchpad RAM. The count of how many entries are on the Ring is 
determined by hardware using the Head and Tail. For each Ring in use, a region of Scratchpad 
RAM must be reserved for the ring data.

Note: The reservation is by software convention. The hardware does not prevent other accesses to the 
region of Scratchpad Memory used by the Ring. Also the regions of Scratchpad Memory allocated 
to different Rings must not overlap.

Head points to the next address to be read on a get, and Tail points to the next address to be written 
on a put. The size of each Ring is selectable from the following choices: 128, 256, 512, or 1024 
32-bit words. 

Note: The region of Scratchpad used for a Ring is naturally aligned to it size.

When the Ring is near full, it asserts an output signal, which is used as a state input to the 
Microengines. They must use that signal to test (by doing Branch on Input State) for room on the 
Ring before putting data onto it. There is a lag in time from a put instruction executing to the Full 
signal being updated to reflect that put. To guarantee that a put will not overfill the ring there is a 
bound on the number of Contexts and the number of 32-bit words per write based on the size of the 
ring, as shown in Table 14. Each Context should test the Full signal, then do the put if not Full, and 
then wait until the Context has been signaled that the data has been pulled before testing the Full 
signal again. 

An alternate usage method is to have Contexts allocate and deallocate entries from a shared count 
variable, using the atomic subtract to allocate and atomic add to deallocate. In this case the 
Full signal is not used.

Table 14. Ring Full Signal Use – Number of Contexts and Length versus Ring Size

Number of 
Contexts

Ring Size

128 256 512 1024

1 16 16 16 16

2 16 16 16 16

4 8 16 16 16

8 4 12 16 16

16 2 6 14 16

24 1 4 9 16

32 1 3 7 15

40 Illegal 2 5 12

48 Illegal 2 4 10

64 Illegal 1 3 7

128 Illegal Illegal 1 3

NOTES:
1. Number in each table entry is the largest length that should be put. 16 is the largest length that a single put 

instruction can generate.
2. Illegal -- With that number of Contexts, even a length of one could cause the Ring to overfill.
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2.7 Media and Switch Fabric Interface
The Media and Switch Fabric (MSF) Interface is used to connect the IXP2800 Network Processor 
to a physical layer device (PHY) and/or to a Switch Fabric. the MSF consists of separate receive 
and transmit interfaces. Each of the receive and transmit interfaces can be separately configured for 
either SPI-4 Phase 2 (System Packet Interface) for PHY devices or CSIX-L1 protocol for Switch 
Fabric Interfaces.

The receive and transmit ports are unidirectional and independent of each other. Each port has 16 
data signals, a clock, a control signal, and a parity signal, all of which use LVDS (differential) 
signaling, and are sampled on both edges of the clock. There is also a flow control port consisting 
of a clock, data, and ready status bits, and used to communicate between two IXP2800 Network 
Processors, or the IXP2800 Network Processor chip and a Switch Fabric Interface. These are also 
LVDS, dual-edge data transfer. All of the high speed LVDS interfaces support dynamic deskew 
training.

The block diagram in Figure 10 shows a typical configuration.

Figure 10. Example System Block Diagram
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Notes:
1. Gasket is used to convert 16-bit, dual-data IXP2800 signals to wider single edge CWord signals 

used by Switch Fabric, if required.

2. Per the CSIX specification, the terms "egress" and ingress" are with respect to the Switch Fabric. 
So the egress processor handles traffic received from the Switch Fabric and the ingress 
processor handles traffic sent to the Switch Fabric.
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An alternate system configuration is shown in the block diagram in Figure 11. In this case, a single 
IXP2800 Network Processor is used for both Ingress and Egress. The bit rate supported would be 
less than in Figure 10. A hypothetical Bus Converter chip, external to the IXP2800 Network 
Processor is used. The block diagram in Figure 11 is only an illustrative example.

2.7.1 SPI-4
SPI-4 is an interface for packet and cell transfer between a physical layer (PHY) device and a link 
layer device (the IXP2800 Network Processor), for aggregate bandwidths of OC-192 ATM and 
Packet over SONET/SDH (POS), as well as 10 Gb/s Ethernet applications.

The Optical Internetworking Forum (OIF), www.oiforum.com, controls the SPI-4 Implementation 
Agreement document.

SPI-4 protocol transfers data in variable length bursts. Associated with each burst is information 
such as Port number (for a multi-port device such as a 10 x 1 GbE), SOP, and EOP. This 
information is collected by the MSF and passed to the Microengines.

Figure 11. Full-Duplex Block Diagram
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Notes:
The Bus Converter chip receives and transmits both SPI-4 and CSIX protocols from/to Intel 
IXP2800 Network Processor. It steers the data, based on protocol, to either PHY device or 
Switch Fabric. PHY interface can be UTOPIA-3, IXBUS, or any other required protocol.
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2.7.2 CSIX
CSIX-L1 (Common Switch Interface) defines an interface between a Traffic Manager (TM) and a 
Switch Fabric (SF) for ATM, IP, MPLS, Ethernet, and similar data communications applications.

The Network Processor Forum (NPF) www.npforum.org, controls the CSIX-L1 specification.

The basic unit of information transferred between Traffic Managers and Switch Fabrics is called a 
CFrame. There are three categories of CFrames:

• Data

• Control

• Flow Control

Associated with each CFrame is information such as length, type, address. This information is 
collected by MSF and passed to Microengines.

MSF also contains a number of hardware features related to flow control.

2.7.3 Receive
Figure 12 is a simplified block diagram of the MSF receive section.

Figure 12. Simplified MSF Receive Section Block Diagram
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2.7.3.1 RBUF

RBUF is a RAM that holds received data. It stores received data in sub-blocks (referred to as 
elements), and is accessed by Microengines or the Intel XScale® core reading the received 
information. Details of how RBUF elements are allocated and filled is based on the receive data 
protocol. When data is received, the associated status is put into the FULL_ELEMENT_LIST 
FIFO and subsequently sent to Microengines to process. FULL_ELEMENT_LIST insures that 
received elements are sent to Microengines in the order that the data was received.

RBUF contains a total of 8 KB of data. The element size is programmable as either 64 bytes, 
128 bytes, or 256 bytes per element. In addition, RBUF can be programmed to be split into one, 
two, or three partitions depending on application. For receiving SPI-4, one partition would be used. 
For receiving CSIX, two partitions are used (Control CFrames and Data CFrames). When both 
protocols are being used, the RBUF can be split into three partitions. For both SPI-4 and CSIX, 
three partitions are used.

Microengines can read data from the RBUF to Microengine S_TRANSFER_IN registers using the 
msf[read] instruction where they specify the starting byte number (which must be aligned to 4 
bytes), and number of 32-bit words to read. The number in the instruction can be either the number 
of 32-bit words, or number of 32-bit word pairs, using the single and double instruction modifiers, 
respectively. 

Microengines can move data from RBUF to DRAM using the dram instruction where they specify 
the starting byte number (which must be aligned to 4 bytes), the number of 32-bit words to read, 
and the address in DRAM to write the data.

For both types of RBUF read, reading an element does not modify any RBUF data, and does not 
free the element, so buffered data can be read as many times as desired. This allows, for example, a 
processing pipeline to have different Microengines handle different protocol layers, with each 
Microengine reading only the specific header information it requires.

2.7.3.1.1 SPI-4 and the RBUF

SPI-4 data is placed into RBUF with each SPI-4 burst allocating an element. If a SPI-4 burst is 
larger than the element size, another element is allocated. The status information for the element 
contains the following information:

The definitions of the fields are shown in Table 90, “RBUF SPIF-4 Status Definition” on page 252.
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2.7.3.1.2 CSIX and RBUF

CSIX CFrames are placed into either RBUF with each CFrame allocating an element. Unlike 
SPI-4, a single CFrame must not spill over into another element. Since CSIX spec specifies a 
maximum CFrame size of 256 bytes, this can be done by programming the element size to 256 
bytes. However, if the Switch Fabric uses a smaller CFrame size, then a smaller RBUF element 
size can be used.

Flow Control CFrames are put into the FCEFIFO, to be sent to the Ingress IXP2800 Network 
Processor where a Microengine will read them to manage flow control information to the Switch 
Fabric.

The status information for the element contains the following information:

The definitions of the fields are shown in Table 91, “RBUF CSIX Status Definition” on page 254.

2.7.3.2 Full Element List

Receive control hardware maintains the FULL_ELEMENT_LIST to hold the status of valid RBUF 
elements, in the order in which they were received. When an RBUF element is filled, its status is 
added to the tail of the FULL_ELEMENT_LIST. When a Microengine is notified of element 
arrival (by having the status written to its S_Transfer register), it is removed from the head of the 
FULL_ELEMENT_LIST.

2.7.3.3 RX_THREAD_FREELIST

RX_THREAD_FREELIST is a FIFO that indicates Microengine Contexts that are awaiting an 
RBUF element to process. This allows the Contexts to indicate their ready status prior to the 
reception of the data, as a way to eliminate latency. Each entry added to a Freelist also has an 
associated S_TRANSFER register and signal number. There are three RX_THREAD_FREELISTS 
that correspond to the RBUF partitions.

To be added as ready to receive an element, a Microengine does an msf[write] or an 
msf[fast_write] to the RX_THREAD_FREELIST address; the write data is the Microengine/
CONTEXT/S_TRANSFER register number to add to the Freelist.

When there is valid status at the head of the Full Element List, it will be pushed to a Microengine. 
The receive control logic pushes the status information (which includes the element number) to the 
Microengine in the head entry of RX_THREAD_FREELIST, and sends an Event Signal to the 
Microengine. It then removes that entry from the RX_THREAD_FREELIST, and removes the 
status from Full Element List. 
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Each RX_THREAD_FREELIST has an associated countdown timer. If the timer expires and no 
new receive data is available yet, the receive logic will autopush a Null Receive Status Word to the 
next thread on the RX_THREAD_FREELIST. A Null Receive Status Word has the “Null” bit set, 
and does not have any data or RBUF entry associated with it.

The RX_THREAD_FREELIST timer is useful for certain applications. Its primary purpose is to 
keep the receive processing pipeline (implemented as code running on the Microengines) moving 
even when the line has gone idle. 

It is especially useful if the pipeline is structured to handle mpackets in groups, i.e., eight mpackets 
at a time. If seven mpackets are received, then the line goes idle, then the timeout will trigger the 
autopush of a null Receive Status Word, filling the eighth slot and allowing the pipeline to advance. 
Another example is if one valid mpacket is received before the line goes idle for a long period; 
seven null Receive Status Words will be autopushed, allowing the pipeline to proceed. Typically 
the timeout interval is programmed to be slightly larger than the minimum arrival time of the 
incoming cells or packets.

The timer is controlled using the RX_THREAD_FREELIST_TIMEOUT_# CSR. The timer may 
be enabled or disabled, and the timeout value specified using this CSR.

2.7.3.4 Receive Operation Summary

During receive processing, received CFrames, and SPI-4 cells and packets (which in this context 
are all called mpackets) are placed into the RBUF, and then handed off to a Microengine to process. 
Normally, by application design, some number of Microengine Contexts will be assigned to 
receive processing. Those Contexts will have their number added to the proper 
RX_THREAD_FREELIST (via msf[write]or msf[fast_write]), and then will go to sleep to 
wait for arrival of an mpacket (or alternatively poll waiting for arrival of an mpacket). 

When an mpacket arrives, MSF receive control logic will autopush eight bytes of information for 
the element to the Microengine/CONTEXT/S_TRANSFER registers at the head of 
RX_THREAD_FREELIST. The information pushed is:

• Status Word (SPI-4) or Header Status (CSIX) — see Table 90, “RBUF SPIF-4 Status 
Definition” on page 252 for more information.

• Checksum (SPI-4) or Extension Header (CSIX) — see Table 91, “RBUF CSIX Status 
Definition” on page 254 for more information.

To handle the case where the receive Contexts temporarily fall behind and 
RX_THREAD_FREELIST is empty, all received element numbers are held in the 
FULL_ELEMENT_LIST. In that case, as soon as an RX_THREAD_FREELIST entry is entered, 
the status of the head element of FULL_ELEMENT_LIST will be pushed to it.

The Microengines may read part of (or the entire) RBUF element to their S_TRANSFER registers 
(via an msf[read] instruction) for header processing, etc., and may also move the element data to 
DRAM (via a dram[rbuf_rd] instruction).

When a Context is done with an element, it does an msf[write]or msf[fast_write] to 
RBUF_ELEMENT_DONE address; the write data is the element number. This marks the element 
as free and available to be re-used. There is no restriction on the order in which elements are freed; 
Contexts can do different amounts of processing per element based on the contents of the element 
— therefore elements can be returned in a different order than they were handed to Contexts.
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2.7.4 Transmit
Figure 13 is a simplified Block Diagram of the MSF transmit section.

2.7.4.1 TBUF

TBUF is a RAM that holds data and status to be transmitted. The data is written into sub-blocks 
referred to as elements, by Microengines or the Intel XScale® core. 

TBUF contains a total of 8 Kbytes of data. The element size is programmable as either 64 bytes, 
128 bytes, or 256 bytes per element. In addition, TBUF can be programmed to be split into one, 
two, or three partitions depending on application. For transmitting SPI-4, one partition would be 
used. For transmitting CSIX, two partitions are used (Control CFrames and Data CFrames). For 
both SPI-4 and CSIX, three partitions are used.

Microengines can write data from Microengine S_TRANSFER_OUT registers to the TBUF using 
the msf[write] instruction where they specify the starting byte number (which must be aligned to 
4 bytes), and number of 32-bit words to write. The number in the instruction can be either the 
number of 32-bit words, or number of 32-bit word pairs, using the single and double instruction 
modifiers, respectively. 

Microengines can move data from DRAM to TBUF using the dram instruction where they specify 
the starting byte number (which must be aligned to 4 bytes), the number of 32-bit words to write, 
and the address in DRAM of the data.

Figure 13. Simplified Transmit Section Block Diagram
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All elements within a TBUF partition are transmitted in the order. Control information associated 
with the element defines which bytes are valid. The data from the TBUF will be shifted and byte 
aligned as required to be transmitted. 

2.7.4.1.1 SPI-4 and TBUF

For SPI-4, data is put into the data portion of the element, and information for the SPI-4 Control 
Word that will precede the data is put into the Element Control Word.

When the Element Control Word is written, the information is:

The definitions of the fields are shown in Table 15.
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Table 15. TBUF SPI-4 Control Definition

Field Definition

Payload Length

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00 
means 256 bytes. The sum of Prepend Length and Payload Length will be sent. That 
value will also control the EOPS field (1 or 2 bytes valid indicated) of the Control Word 
that will succeed the data transfer. Note 1.

Prepend Offset Indicates the first valid byte of Prepend, from 0 to 7

Prepend Length Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7.

Skip
Allows software to allocate a TBUF element and then not transmit any data from it.
0—transmit data according to other fields of Control Word.
1—free the element without transmitting any data.

SOP Indicates if the element is the start of a packet. This field will be sent in the SOPC field of 
the Control Word that will precede the data transfer.

EOP Indicates if the element is the end of a packet. This field will be sent in the EOPS field of 
the Control Word that will succeed the data transfer. Note 1.

ADR The port number to which the data is directed. This field will be sent in the ADR field of the 
Control Word that will precede the data transfer.

NOTE:
1. Normally EOPS is sent on the next Control Word (along with ADR and SOP) to start the next element. If 

there is no valid element pending at the end of sending the data, the transmit logic will insert an Idle Control 
Word with the EOPS information.
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2.7.4.1.2 CSIX and TBUF

For CSIX, payload information is put into the data area of the element, and Base and Extension 
Header information is put into the Element Control Word.

When the Element Control Word is written, the information is:

The definitions of the fields are shown in Table 16.

2.7.4.2 Transmit Operation Summary

During transmit processing data to be transmitted is placed into the TBUF under Microengine 
control. The Microengine allocates an element in software; the transmit hardware processes TBUF 
elements within a partition in strict sequential order so the software can track which element to 
allocate next. 

Microengines may write directly into an element by an msf[write] instruction, or have data from 
DRAM written into the element by a dram[tbuf_wr] instruction. Data can be merged into the 
element by doing both.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Payload Length Prepend 
Offset Prepend Length Payload 

Offset

R
es

Skip

R
es

C
R P Res Type

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Extension Header

Table 16. TBUF CSIX Control Definition 

Field Definition

Payload Length

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00 
means 256 bytes. The sum of Prepend Length and Payload Length will be sent, and also 
put into the CSIX Base Header Payload Length field. Note that this length does not 
include any padding that may be required. Padding is inserted by transmit hardware as 
needed.

Prepend Offset Indicates the first valid byte of Prepend, from 0 to 7.

Prepend Length Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7.

Skip
Allows software to allocate a TBUF element and then not transmit any data from it. 
0—transmit data according to other fields of Control Word.
1—free the element without transmitting any data.

CR CR (CSIX Reserved) bit to put into the CSIX Base Header.

P P (Private) bit to put into the CSIX Base Header.

Type Type Field to put into the CSIX Base Header. Idle type is not legal here.

Extension Header
The Extension Header to be sent with the CFrame. The bytes are sent in big-endian 
order; byte 0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in 
bits 39:32.
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There is a Transmit Valid bit per element, that marks the element as ready to be transmitted. 
Microengines move all data into the element, by either or both of msf[write] and 
dram[tbuf_wr] instructions to the TBUF. Microengines also write the element Transmit Control 
Word with information about the element. When all of the data movement is complete, the 
Microengine sets the element valid bit. 

1. Move data into TBUF by either or both of msf[write] and dram[tbuf_wr] instructions to 
the TBUF.

2. Wait for 1 to complete.

3. Write Transmit Control Word at TBUF_ELEMENT_CONTROL_# address. Using this 
address sets the Transmit Valid bit.

2.7.5 The Flow Control Interface
The MSF provides flow control support for SPI-4 and CSIX.

2.7.5.1 SPI-4

SPI-4 uses a FIFO Status Channel to provide flow control information. MSF receives the 
information from the PHY device and stores it so that Microengines can read the information on a 
per-port basis. It can then use that information to determine when to transmit data to a given port.

The MSF also sends status to the PHY based on the amount of available space in the RBUF — 
i.e., done by hardware without Microengines.

2.7.5.2 CSIX

CSIX provides two types of flow control — link level and per queue.

• The link level control is handled by hardware. MSF will stop transmission is response to link 
level flow control received from the Switch Fabric. MSF will assert link level flow control 
based on the amount of available space in the RBUF.

• Per queue flow control information is put into the FCIFIFO and handled by Microengine 
software. Also, if required, Microengines can send Flow Control CFrames to the Switch 
Fabric under software control.

In both cases, for a full-duplex configuration, information is passed from the Switch Fabric to the 
Egress IXP2800 Network Processor, which then passes it to the Ingress IXP2800 Network 
Processor over a proprietary flow control interface.
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2.8 Hash Unit
The IXP2800 Network Processor contains a Hash Unit that can take 48-, 64-, or 128-bit data and 
produce a 48-, 64-, or a 128-bit hash index, respectively. The Hash Unit is accessible by the 
Microengines and the Intel XScale® core, and is useful in doing table searches with large keys, for 
example L2 addresses. Figure 14 is a block diagram of the Hash Unit.

Up to three hash indexes can be created using a single Microengine instruction. This helps to 
minimize command overhead. The Intel XScale® core can only do a single hash at a time.

A Microengine initiates a hash operation by writing the hash operands into a contiguous set of 
S_TRANSFER_OUT registers and then executing the hash instruction. The Intel XScale® core 
initiates a hash operation by writing a set of memory-mapped HASH_OP registers, which are built 
in the Intel XScale® core gasket, with the data to be used to generate the hash index. There are 
separate registers for 48-, 64-, and 128-bit hashes. The data is written from MSB to LSB, with the 
write to LSB triggering the Hash Operation. In both cases, the Hash Unit reads the operand into an 
input buffer, performs the hash operation, and returns the result.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to 
create hash indexes. Three separate multipliers are supported, one for 48-bit hash operations, one 
for 64-bit hash operations and one for 128-bit hash operations. The multiplier is programmed 
through Control registers in the Hash Unit.

The multiplicand is shifted into the hash array, 16 bits at a time. The hash array performs a 
1’s-complement multiply and polynomial divide, using the multiplier and 16 bits of the 
multiplicand. The result is placed into an output buffer register and also feeds back into the array. 
This process is repeated three times for a 48-bit hash (16 bits x 3 = 48), four times for a 64-bit hash 
(16 bits x 4 = 64), and eight times for a 128-bit hash (16 x 8 = 128). After the multiplicand has been 
passed through the hash array, the resulting hash index is placed into a two-stage output buffer.

After each hash index is completed, the Hash Unit returns the hash index to the Microengines’ 
S_TRANSFER_IN registers, or the Intel XScale® core HASH_OP registers. For Microengine 
initiated hash operations, the Microengine is signaled after all the hashes specified in the 
instruction have been completed.

For the Intel XScale® core initiated hash operations, the Intel XScale® core reads the results from 
the memory-mapped HASH_OP registers. The addresses of Hash Results are the same as the 
HASH_OP registers. Because of queuing delays at the Hash Unit, the time to complete an 
operation is not fixed. The Intel XScale® core can do one of two operations to get the hash results.

• Poll the HASH_DONE register. This register is cleared when the HASH_OP registers are 
written. Bit [0] of HASH_DONE register is set when the HASH_OP registers get the return 
result from the Hash Unit (when the last word of the result is returned). The Intel XScale® core 
software can poll on HASH_DONE, and read HASH_OP when HASH_DONE is equal to 
0x00000001.

• Read HASH_OP directly. The interface hardware will acknowledge the read only when the 
result is valid. This method will result in the Intel XScale® core stalling if the result is not 
valid when the read happens.

The number of clock cycles required to perform a single hash operation equals: two or four cycles 
through the input buffers, three, four or eight cycles through the hash array, and two or four cycles 
through the output buffers. Because of the pipeline characteristics of the Hash Unit, performance is 
improved if multiple hash operations are initiated with a single instruction rather than separate hash 
instructions for each hash operation.
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Figure 14. Hash Unit Block Diagram
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2.9 PCI Controller
The PCI Controller provides a 64-bit, 66 MHz capable PCI Local Bus Revision 2.2 interface, and is 
compatible to 32-bit or 33 MHz PCI devices. The PCI controller provides the following functions:

• Target Access (external Bus Master access to SRAM, DRAM, and CSRs)

• Master Access (the Intel XScale® core access to PCI Target devices)

• Two DMA Channels

• Mailbox and Doorbell registers for the Intel XScale® core to Host communication

• PCI arbiter

The IXP2800 Network Processor can be configured to act as PCI central function (for use in a 
stand-alone system), where it provides the PCI reset signal, or as an add-in device, where it uses the 
PCI reset signal as the chip reset input. The choice is made by connecting the cfg_rst_dir input pin 
low or high.

2.9.1 Target Access
There are three Base Address Registers (BARs) to allow PCI Bus Masters to access SRAM, 
DRAM, and CSRs, respectively. Examples of PCI Bus Masters include a Host Processor (for 
example a Pentium® processor), or an I/O device such as an Ethernet controller, SCSI controller, or 
encryption coprocessor.

The SRAM BAR can be programmed to sizes of 16, 32, 64, 128, or 256 Mbytes, or no access.

The DRAM BAR can be programmed to sizes of 128, 256, or 512 Mbytes or 1 Gbyte, or no access.

The CSR BAR is 8 KB.

PCI Boot Mode is supported, in which the Host downloads the Intel XScale® core boot image into 
DRAM, while holding the Intel XScale® core in reset. Once the boot image has been loaded, the 
Intel XScale® core reset is deasserted. The alternative is to provide the boot image in a Flash ROM 
attached to the Slowport.

2.9.2 Master Access
The Intel XScale® core and Microengines can directly access the PCI bus. The Intel XScale® core 
can do loads and stores to specific address regions to generate all PCI command types. 
Microengines use PCI instruction, and also use address regions to generate different PCI 
commands.

2.9.3 DMA Channels
There are two DMA Channels, each of which can move blocks of data from DRAM to the PCI or 
from the PCI to DRAM. The DMA channels read parameters from a list of descriptors in SRAM, 
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors 
are loaded from predefined SRAM entries or may be set directly by CSR writes to DMA Channel 
registers. There is no restriction on byte alignment of the source address or the destination address. 
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For PCI to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory 
Read Multiple. For DRAM to PCI transfers, the PCI command is Memory Write. Memory Write 
Invalidate is not supported.

Up to two DMA channels are running at a time with three descriptors outstanding. Effectively, the 
active channels interleave bursts to or from the PCI Bus. 

Interrupts are generated at the end of DMA operation for the Intel XScale® core. However, 
Microengines do not provide an interrupt mechanism. The DMA Channel will instead use an Event 
Signal to notify the particular Microengine on completion of DMA. 

2.9.3.1 DMA Descriptor

Each descriptor uses four 32-bit words in SRAM, aligned on a 16-byte boundary. The DMA 
channels read the descriptors from SRAM into working registers once the control register has been 
set to initiate the transaction. This control must be set explicitly; this starts the DMA transfer. 
Register names for DMA channels are listed in Figure 15 and Table 17 lists the descriptor contents.

After a descriptor is processed, the next descriptor is loaded in the working registers. This process 
repeats until the chain of descriptors is terminated (i.e., the End of Chain bit is set).

Figure 15. DMA Descriptor Reads
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Table 17. DMA Descriptor Format

Offset from Descriptor Pointer Description

0x0 Byte Count

0x4 PCI Address

0x8 DRAM Address

0xC Next Descriptor Address
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2.9.3.2 DMA Channel Operation

The DMA channel can be set up to read the first descriptor in SRAM, or with the first descriptor 
written directly to the DMA channel registers. When descriptors and the descriptor list are in 
SRAM, the procedure is as follows:

1. The DMA channel owner writes the address of the first descriptor into the DMA Channel 
Descriptor Pointer register (DESC_PTR).

2. The DMA channel owner writes the DMA Channel Control register (CONTROL) with 
miscellaneous control information and also sets the channel enable bit (bit 0). The channel 
initial descriptor bit (bit 4) in the CONTROL register must also be cleared to indicate that the 
first descriptor is in SRAM.

3. Depending on the DMA channel number, the DMA channel reads the descriptor block into the 
corresponding DMA registers, BYTE_COUNT, PCI_ADDR, DRAM_ADDR, and 
DESC_PTR.

4. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done bit in the CONTROL register.

5. If the end of chain bit (bit 31) in the BYTE_COUNT register is clear, the channel checks the 
Chain Pointer value. If the Chain Pointer value is not equal to 0. it reads the next descriptor 
and transfers the data (step 3 and 4 above). If the Chain Pointer value is equal to 0, it waits for 
the Descriptor Added bit of the Channel Control register to be set before reading the next 
descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets the 
channel chain done bit in the CONTROL register and then stops.

6. Proceed to the Channel End Operation.

When single descriptors are written into the DMA channel registers, the procedure is as follows:

1. The DMA channel owner writes the descriptor values directly into the DMA channel registers. 
The end of chain bit (bit 31) in the BYTE_COUNT register must be set, and the value in the 
DESC_PTR register is not used.

2. The DMA channel owner writes the base address of the DMA transfer into the PCI_ADDR to 
specify the PCI starting address.

3. When the first descriptor is in the BYTE_COUNT register, the DRAM_ADDR register must 
be written with the address of the data to be moved.

4. The DMA channel owner writes the CONTROL register with miscellaneous control 
information, along with setting the channel enable bit (bit 0). The channel initial descriptor in 
register bit (bit 4) in the CONTROL register must also be set to indicate that the first descriptor 
is already in the channel descriptor registers.

5. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done bit (bit 2) in the CONTROL register.

6. Since the end of the chain bit (bit 31) in the BYTE_CONT register is set, the channel sets the 
channel chain done bit (bit 7) in the CONTROL register and then stops.

7. Proceed to the Channel End Operation.
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2.9.3.3 DMA Channel End Operation

1. Channel owned by PCI:
If not masked via the PCI Outbound Interrupt Mask register, the DMA channel interrupts the 
PCI host after the setting of the DMA done bit in the CHAN_X_CONTROL register, which is 
readable in the PCI Outbound Interrupt Status register.

2. Channel owned by the Intel XScale® core:
If enabled via the Intel XScale® core Interrupt Enable registers, the DMA channel interrupts 
the Intel XScale® core by setting the DMA channel done bit in the CHAN_X_CONTROL 
register, which is readable in the Intel XScale® core Interrupt Status register.

3. Channel owned by Microengine:
If enabled via the Microengine Auto-Push Enable registers, the DMA channel signals the 
Microengine after setting the DMA channel done bit in the CHAN_X_CONTROL register, 
which is readable in the Microengine Auto-Push Status register. 

2.9.3.4 Adding Descriptors to an Unterminated Chain

It is possible to add a descriptor to a chain while a channel is running. To do so, the chain should be 
left unterminated, i.e., the last descriptor should have End of Chain clear, and the Chain Pointer 
value equal to 0. A new descriptor (or linked list of descriptors) can be added to the chain by 
overwriting the Chain Pointer value of the unterminated descriptor (in SRAM) with the Local 
Memory address of the (first) added descriptor (the added descriptor must actually be valid in 
Local Memory prior to that). After updating the Chain Pointer field, the software must write a 1 to 
the Descriptor Added bit of the Channel Control register. This is necessary for the case where the 
channel was paused to reactivate the channel. However, software need not check the state of the 
channel before writing that bit; there is no side-effect of writing that bit in the case where the 
channel had not yet read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor 
processed (i.e., the one that originally had the 0 value for Chain Pointer) to get the address of the 
newly added descriptor.

A descriptor cannot be added to a descriptor that has End of Chain set.

2.9.4 Mailbox and Message Registers
Mailbox and Doorbell registers provide hardware support for communication between the Intel 
XScale® core and a device on the PCI Bus.

Four 32-bit mailbox registers are provided so that messages can be passed between the Intel 
XScale® core and a PCI device. All four registers can be read and written with byte resolution from 
both the Intel XScale® core and PCI. How the registers are used is application dependent and the 
messages are not used internally by the PCI Unit in any way. The mailbox registers are often used 
with the Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an interrupt as well as encoding the 
purpose of the interrupt. The PCI Unit supports a 32-bit the Intel XScale® core DOORBELL 
register that is used by a PCI device to generate an the Intel XScale® core interrupt, and a separate 
32-bit PCI DOORBELL register that is used by the Intel XScale® core to generate a PCI interrupt. 
A source generating the Doorbell interrupt can write a software defined bitmap to the register to 
indicate a specific purpose. This bitmap is translated into a single interrupt signal to the destination 
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(either a PCI interrupt or an Intel XScale® core interrupt). When an interrupt is received, the 
DOORBELL registers can be read and the bit mask can be interpreted. If a larger bit mask is 
required than that is provided by the DOORBELL register, the MAILBOX registers can be used to 
pass up to 16 bytes of data.

The doorbell interrupts are controlled through the registers shown in Table 18.

2.9.5 PCI Arbiter
The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the PCI 
Unit’s initiator interface. If more than two external masters are used in the system, the aribter can 
be disabled and an external (to the IXP2800 Network Processor used. In that case, the IXP2800 
Network Processor will provide its PCI request signal to the external aribter, and use that arbiters 
grant signal.

The arbiter uses a simple round-robin priority algorithm; it asserts the grant signal corresponding to 
the next request in the round-robin during the current executing transaction on the PCI bus (this is 
also called hidden arbitration). If the arbiter detects that an initiator has failed to assert frame_l 
after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter deasserts the grant. 
That master does not receive any more grants until it deasserts its request for at least one PCI clock 
cycle. Bus parking is implemented in that the last bus grant will stay asserted if no request is 
pending.

To prevent bus contention, if the PCI bus is idle, the arbiter never asserts one grant signal in the 
same PCI cycle in which it deasserts another, It deasserts one grant, and then asserts the next grant 
after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

Table 18. Doorbell Interrupt Registers

Register Name Description

XSCALE DOORBELL Used to generate the Intel XScale® core Doorbell interrupts.

XSCALE DOORBELL 
SETUP Used to initialize the Intel XScale® core Doorbell register and for diagnostics.

PCI DOORBELL Used to generate the PCI Doorbell interrupts.

PCI DOORBELL SETUP Used to initialize the PCI Doorbell register and for diagnostics.
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2.10 Control and Status Register Access Proxy
The Control and Status Register Access Proxy (CAP) contains a number of chip-wide control and 
status registers. Some provide miscellaneous control and status, while others are used for inter-
Microengine or Microengine to the Intel XScale® core communication (note that rings in 
Scratchpad Memory and SRAM can also be used for inter-process communication). These include:

• INTERTHREAD SIGNAL — Each thread (or context) on a Microengine can send a signal to 
any other thread by writing to InterThread_Signal register. This allows a thread to go to sleep 
waiting completion of a task by a different thread.

• THREAD MESSAGE — Each thread has a message register where it can post a software-
specific message. Other Microengine threads, or the Intel XScale® core, can poll for 
availability of messages by reading theTHREAD_MESSAGE_SUMMARY register. Both the 
THREAD_MESSAGE and corresponding THREAD_MESSAGE_SUMMARY clear upon a 
read of the message; this eliminates a race condition when there are multiple message readers. 
Only one reader will get the message.

• SELF DESTRUCT — This register provides another type of communication. Microengine 
software can atomically set individual bits in the SELF_DESTRUCT registers; the registers 
clear upon read. The meaning of each bit is software-specific. Clearing the register upon read 
eliminates a race condition when there are multiple readers.

• THREAD INTERRUPT — Each thread can interrupt the Intel XScale® core on two different 
interrupts; the usage is software-specific. Having two interrupts allows for flexibility, for 
example, one can be assigned to normal service requests and one can be assigned to error 
conditions. If more information needs to be associated with the interrupt, mailboxes or Rings 
in Scratchpad Memory or SRAM could be used.

• REFLECTOR — CAP provides a function (called “reflector”) where any Microengine thread 
can move data between its registers and those of any other thread. In response to a single write 
or read instruction (with the address in the specific reflector range) CAP will get data from the 
source Microengine and put it into the destination Microengine. Both the sending and 
receiving threads can optionally be signaled upon completion of the data movement.

2.11 Intel XScale® Core Peripherals

2.11.1 Interrupt Controller
The Interrupt Controller provides the ability to enable or mask interrupts from a number of chip 
wide sources, for example:

• Timers (normally used by Real-Time Operating System).

• Interrupts generated by Microengine software to request services from the Intel XScale® core.

• External agents such as PCI devices.

• Error conditions, such as DRAM ECC error, or SPI-4 parity error.

Interrupt status is read as memory mapped registers; the state of an interrupt signal can be read 
even if it is masked from interrupting. Enabling and masking of interrupts is done as writes to 
memory mapped registers. 
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2.11.2 Timers
The IXP2800 Network Processor contains four programmable 32-bit timers, which can be used for 
software support. Each timer can be clocked by the internal clock, by a divided version of the 
clock, or by a signal on an external GPIO pin. Each timer can be programmed to generate a 
periodic interrupt after a programmed number of clocks. The range is from several ns to several 
minutes depending on the clock frequency.

In addition, timer 4 can be used as a watchdog timer. In this use, software must periodically reload 
the timer value; if it fails to do so and the timer counts to 0, it will reset the chip. This can be used 
to detect if software “hangs” or for some other reason fails to reload the timer.

2.11.3 General Purpose I/O
The IXP2800 Network Processor contains eight General Purpose I/O (GPIO) pins. These can be 
programmed as either input or output and can be used for slow speed I/O such as LEDs or input 
switches. They can also be used as interrupts to the Intel XScale® core, or to clock the 
programmable timers. 

2.11.4 Universal Asynchronous Receiver/Transmitter
The IXP2800 Network Processor contains a standard RS-232 compatible Universal Asynchronous 
Receiver/Transmitter (UART), which can be used for communication with a debugger or 
maintenance console. Modem controls are not supported; if they are needed, GPIO pins can be 
used for that purpose. 

The UART performs serial-to-parallel conversion on data characters received from a peripheral 
device and parallel-to-serial conversion on data characters received from the processor. The 
processor can read the complete status of the UART at any time during operation. Available status 
information includes the type and condition of the transfer operations being performed by the 
UART and any error conditions (parity, overrun, framing or break interrupt).

The serial ports can operate in either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit 
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO 
buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator that is capable of dividing the internal 
clock input by divisors of 1 to 216 - 1 and produces a 16X clock to drive the internal transmitter 
logic. It also drives the receive logic. The UART can be operated in polled or in interrupt driven 
mode as selected by software.

2.11.5 Slowport
The Slowport is an external interface to the IXP2800 Network Processor, used for Flash ROM 
access and 8, 16, or 32-bit asynchronous device access. It allows the Intel XScale® core do read/ 
write data transfers to these slave devices.

The address bus and data bus are multiplexed to reduce the pin count. In addition, 24 bits of 
address are shifted out on three clock cycles. Therefore, an external set of buffers is needed to latch 
the address. Two chip selects are provided.
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The access is asynchronous. Insertion of delay cycles for both data setup and hold time is 
programmable via internal Control registers. The transfer can also wait for a handshake 
acknowledge signal from the external device.

2.12 I/O Latency
Table 19 shows the latencies for transferring data between the Microengine and the other sub-
system components. The latency is measured in 1.4 GHz cycles. 

2.13 Performance Monitor
The Intel  XScale® core hardware provides two 32-bit performance counters that allow two unique 
events to be monitored simultaneously. In addition, the Intel  XScale® core implements a 32-bit 
clock counter that can be used in conjunction with the performance counters; its sole purpose is to 
count the number of core clock cycles, which is useful in measuring total execution time.

Table 19. I/O Latency

Sub-system

DRAM
(RDR)

SRAM
(QDR) Scratch MSF

Transfer Size
8 bytes – 16 bytes

(note 2)
4 bytes 4 bytes 8 bytes

Average Read 
Latency

~ 295 cycles
(note 3)

100 (light load) – 
160 (heavy load) 

~ 100 cycles 
(range 53 – 152)

range 53 – 120
(RBUF)

Average Write 
Latency ~ 53 cycles ~ 53 cycles ~ 40 cycles

~ 48 cycles
(TBUF)

Note1: RDR, QDR, MSF, and Scratch values are extracted from a simulation model.
Note 2: Minimum DRAM burst size on pins is 16 bytes. Transfers less than 16 bytes incur the same as a 
16-byte transfer.
Note 3: At 1016 MHz, read latency should be ~ 240 cycles.
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Intel XScale® Core 3

This section contains information describing the Intel XScale® core, Intel XScale® core gasket, and 
Intel XScale® core Peripherals (XPI). 

For additional information about the Intel XScale® architecture refer to the Intel XScale® Core 
Developers Manual available on Intel’s Developers web site (http://www.developer.intel.com).

3.1 Introduction
The Intel XScale® core is an ARM* V5TE compliant microprocessor. It has been designed for high 
performance and low-power; leading the industry in mW/MIPs. The Intel XScale® core 
incorporates an extensive list of architecture features that allows it to achieve high performance. 
Many of the architectural features added to the Intel XScale® core help hide memory latency that 
often is a serious impediment to high performance processors. 

This includes:

• The ability to continue instruction execution even while the data cache is retrieving data from 
external memory.

• A write buffer.

• Write-back caching.

• Various data cache allocation policies that can be configured different for each application.

• Cache locking.

All these features improve the efficiency of the memory bus external to the core. 

ARM* Version 5 (V5) Architecture added floating point instructions to ARM* Version 4. The Intel 
XScale® core implements the integer instruction set architecture of ARM* V5, but does not 
provide hardware support of the floating point instructions.

The Intel XScale® core provides the Thumb instruction set (ARM* V5T) and the ARM* V5E DSP 
extensions.
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3.2 Features
Figure 16 shows the major functional blocks of the Intel XScale® core.

3.2.1 Multiply/ACcumulate (MAC)
The MAC unit supports early termination of multiplies/accumulates in two cycles and can sustain a 
throughput of a MAC operation every cycle. Architectural enhancements to the MAC support 
audio coding algorithms, including a 40-bit accumulator and support for 16-bit packed data. 

3.2.2 Memory Management
The Intel XScale® core implements the Memory Management Unit (MMU) Architecture specified 
in the ARM* Architecture Reference Manual (see the ARM* website at http://www.arm.com).
The MMU provides access protection and virtual to physical address translation. The MMU 
Architecture also specifies the caching policies for the instruction cache and data memory. 
These policies are specified as page attributes and include:

• identifying code as cacheable or non-cacheable

• selecting between the mini-data cache or data cache

• write-back or write-through data caching

• enabling data write allocation policy

• and enabling the write buffer to coalesce stores to external memory

Figure 16. Intel XScale® Core Architecture Features
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3.2.3 Instruction Cache
The Intel XScale® core implements a 32-Kbyte, 32-way set associative instruction cache with a 
line size of 32 bytes. All requests that “miss” the instruction cache generate a 32-byte read request 
to external memory. A mechanism to lock critical code within the cache is also provided. 

3.2.4 Branch Target Buffer (BTB)
The Intel XScale® core provides a Branch Target Buffer to predict the outcome of branch type 
instructions. It provides storage for the target address of branch type instructions and predicts the 
next address to present to the instruction cache when the current instruction address is that of a 
branch.

The BTB holds 128 entries.

3.2.5 Data Cache
The Intel XScale® core implements a 32-Kbyte, a 32-way set associative data cache and a 2-Kbyte, 
2-way set associative mini-data cache. Each cache has a line size of 32 bytes, and supports write-
through or write-back caching. 

The data/mini-data cache is controlled by page attributes defined in the MMU Architecture and by 
coprocessor 15. The Intel XScale® core allows applications to reconfigure a portion of the data 
cache as data RAM. Software may place special tables or frequently used variables in this RAM.

3.2.6 Performance Monitoring
Two performance monitoring counters have been added to the Intel XScale® core that can be 
configured to monitor various events. These events allow a software developer to measure cache 
efficiency, detect system bottlenecks, and reduce the overall latency of programs. 

3.2.7 Power Management
The Intel XScale® core incorporates a power and clock management unit that can assist in 
controlling clocking and managing power.

3.2.8 Debugging
The Intel XScale® core supports software debugging through two instruction address breakpoint 
registers, one data-address breakpoint register, one data-address/mask breakpoint register, and a 
trace buffer. 

3.2.9 JTAG
Testability is supported on the Intel XScale® core through the Test Access Port (TAP) Controller 
implementation, which is based on IEEE 1149.1 (JTAG) Standard Test Access Port and Boundary-
Scan Architecture. The purpose of the TAP controller is to support test logic internal and external 
to the Intel XScale® core such as built-in self-test, boundary-scan, and scan. 
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3.3 Memory Management
The Intel XScale® core implements the Memory Management Unit (MMU) Architecture specified 
in the ARM Architecture Reference Manual. To accelerate virtual to physical address translation, 
the Intel XScale® core uses both an instruction Translation Look-aside Buffer (TLB) and a data 
TLB to cache the latest translations. Each TLB holds 32 entries and is fully-associative. Not only 
do the TLBs contain the translated addresses, but also the access rights for memory references.

If an instruction or data TLB miss occurs, a hardware translation-table-walking mechanism is 
invoked to translate the virtual address to a physical address. Once translated, the physical address 
is placed in the TLB along with the access rights and attributes of the page or section. These 
translations can also be locked down in either TLB to guarantee the performance of critical 
routines. 

The Intel XScale® core allows system software to associate various attributes with regions of 
memory:

• cacheable

• bufferable

• line allocate policy

• write policy

• I/O 

• mini Data Cache

• Coalescing

• P bit 

Note: The virtual address with which the TLBs are accessed may be remapped by the PID register.

3.3.1 Architecture Model

3.3.1.1 Version 4 versus Version 5

ARM* MMU Version 5 Architecture introduces the support of tiny pages, which are 1 Kbyte in 
size. The reserved field in the first-level descriptor (encoding 0b11) is used as the fine page table 
base address.

3.3.1.2 Memory Attributes

The attributes associated with a particular region of memory are configured in the memory 
management page table and control the behavior of accesses to the instruction cache, data cache, 
mini-data cache and the write buffer. These attributes are ignored when the MMU is disabled.

To allow compatibility with older system software, the new Intel XScale® core attributes take 
advantage of encoding space in the descriptors that was formerly reserved.

3.3.1.2.1 Page (P) Attribute Bit

The P bit assigns a page attribute to a memory region. Refer to the Intel® IXP2400 and IXP2800 
Network Processor Programmer’s Reference Manual for details about the P bit.
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3.3.1.2.2 Instruction Cache

When examining these bits in a descriptor, the Instruction Cache only utilizes the C bit. If the C bit 
is clear, the Instruction Cache considers a code fetch from that memory to be non-cacheable, and 
will not fill a cache entry. If the C bit is set, then fetches from the associated memory region will be 
cached.

3.3.1.2.3 Data Cache and Write Buffer

All of these descriptor bits affect the behavior of the Data Cache and the Write Buffer. 

If the X bit for a descriptor is 0 (see Table 20), the C and B bits operate as mandated by the ARM* 
architecture. If the X bit for a descriptor is one, the C and B bits’ meaning is extended, as detailed 
in Table 21.

3.3.1.2.4 Details on Data Cache and Write Buffer Behavior

If the MMU is disabled all data accesses will be non-cacheable and non-bufferable. This is the 
same behavior as when the MMU is enabled, and a data access uses a descriptor with X, C, and B 
all set to 0.

The X, C, and B bits determine when the processor should place new data into the Data Cache. The 
cache places data into the cache in lines (also called blocks). Thus, the basis for making a decision 
about placing new data into the cache is a called a “Line Allocation Policy.”

Table 20. Data Cache and Buffer Behavior when X = 0

C B Cacheable? Bufferable? Write Policy
Line 

Allocation 
Policy

Notes

0 0 N N — — Stall until complete1

1. Normally, the processor will continue executing after a data access if no dependency on that access is encountered. With
this setting, the processor will stall execution until the data access completes. This guarantees to software that the data ac-
cess has taken effect by the time execution of the data access instruction completes. External data aborts from such access-
es will be imprecise.

0 1 N Y — —

1 0 Y Y Write Through Read Allocate

1 1 Y Y Write Back Read Allocate

Table 21. Data Cache and Buffer Behavior when X = 1

C B Cacheable? Bufferable? Write Policy
Line 

Allocation 
Policy

Notes

0 0 — — — — Unpredictable; do not use

0 1 N Y — — Writes will not coalesce into 
buffers1

1. Normally, bufferable writes can coalesce with previously buffered data in the same address range

1 0 (Mini Data 
Cache) — — —

Cache policy is determined 
by MD field of Auxiliary 
Control register

1 1 Y Y Write Back Read/Write 
Allocate
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If the Line Allocation Policy is read-allocate, all load operations that miss the cache request a 
32-byte cache line from external memory and allocate it into either the data cache or mini-data 
cache (this is assuming the cache is enabled). Store operations that miss the cache will not cause a 
line to be allocated.

If read/write-allocate is in effect, load or store operations that miss the cache will request a 32-byte 
cache line from external memory if the cache is enabled.

The other policy determined by the X, C, and B bits is the Write Policy. A write-through policy 
instructs the Data Cache to keep external memory coherent by performing stores to both external 
memory and the cache. A write-back policy only updates external memory when a line in the cache 
is cleaned or needs to be replaced with a new line. Generally, write-back provides higher 
performance because it generates less data traffic to external memory.

3.3.1.2.5 Memory Operation Ordering

A fence memory operation (memop) is one that guarantees all memops issued prior to the fence 
will execute before any memop issued after the fence. Thus software may issue a fence to impose a 
partial ordering on memory accesses.

Table 22 shows the circumstances in which memops act as fences.

Any swap (SWP or SWPB) to a page that would create a fence on a load or store is a fence.

3.3.2 Exceptions
The MMU may generate prefetch aborts for instruction accesses and data aborts for data memory 
accesses. 

Data address alignment checking is enabled by setting bit 1 of the Control register (CP15, 
register 1). Alignment faults are still reported even if the MMU is disabled. All other MMU 
exceptions are disabled when the MMU is disabled. 

Table 22. Memory Operations that Impose a Fence

operation X C B

load — 0 —

store 1 0 1

load or store 0 0 0
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3.3.3 Interaction of the MMU, Instruction Cache, and Data Cache
The MMU, instruction cache, and data/mini-data cache may be enabled/disabled independently. 
The instruction cache can be enabled with the MMU enabled or disabled. However, the data cache 
can only be enabled when the MMU is enabled. Therefore only three of the four combinations of 
the MMU and data/mini-data cache enables are valid (see Table 23). The invalid combination will 
cause undefined results.

3.3.4 Control

3.3.4.1 Invalidate (Flush) Operation

The entire instruction and data TLB can be invalidated at the same time with one command or they 
can be invalidated separately. An individual entry in the data or instruction TLB can also be 
invalidated.

Globally invalidating a TLB will not affect locked TLB entries. However, the invalidate-entry 
operations can invalidate individual locked entries. In this case, the locked remains in the TLB, but 
will never “hit” on an address translation. Effectively, a hole is in the TLB. This situation may be 
rectified by unlocking the TLB.

3.3.4.2 Enabling/Disabling

The MMU is enabled by setting bit 0 in coprocessor 15, register 1 (Control register). When the 
MMU is disabled, accesses to the instruction cache default to cacheable and all accesses to data 
memory are made non-cacheable. A recommended code sequence for enabling the MMU is shown 
in Example 14.

Table 23. Valid MMU and Data/Mini-Data Cache Combinations

MMU Data/Mini-data Cache

Off Off

On Off

On On

Example 14. Enabling the MMU

; This routine provides software with a predictable way of enabling the MMU.

; After the CPWAIT, the MMU is guaranteed to be enabled. Be aware

; that the MMU will be enabled sometime after MCR and before the instruction

; that executes after the CPWAIT.

; Programming Note: This code sequence requires a one-to-one virtual to 

; physical address mapping on this code since 

; the MMU may be enabled part way through. This would allow the instructions 

; after MCR to execute properly regardless the state of the MMU.

MRC P15,0,R0,C1,C0,0; Read CP15, register 1 

ORR R0, R0, #0x1; Turn on the MMU

MCR P15,0,R0,C1,C0,0; Write to CP15, register 1

; The MMU is guaranteed to be enabled at this point; the next instruction or 

; data address will be translated.
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3.3.4.3 Locking Entries

Individual entries can be locked into the instruction and data TLBs. If a lock operation finds the 
virtual address translation already resident in the TLB, the results are unpredictable. An invalidate 
by entry command before the lock command will ensure proper operation. Software can also 
accomplish this by invalidating all entries, as shown in Example 15. 

Locking entries into either the instruction TLB or data TLB reduces the available number of entries 
(by the number that was locked down) for hardware to cache other virtual to physical address 
translations. 

A procedure for locking entries into the instruction TLB is shown in Example 15.

If a MMU abort is generated during an instruction or data TLB lock operation, the Fault Status 
register is updated to indicate a Lock Abort, and the exception is reported as a data abort. 

Note: If exceptions are allowed to occur in the middle of this routine, the TLB may end up caching a 
translation that is about to be locked. For example, if R1 is the virtual address of an interrupt 
service routine and that interrupt occurs immediately after the TLB has been invalidated, the lock 
operation will be ignored when the interrupt service routine returns back to this code sequence. 
Software should disable interrupts (FIQ or IRQ) in this case. 

As a general rule, software should avoid locking in all other exception types. 

Example 15. Locking Entries into the Instruction TLB

; R1, R2 and R3 contain the virtual addresses to translate and lock into 

; the instruction TLB.

; The value in R0 is ignored in the following instruction. 

; Hardware guarantees that accesses to CP15 occur in program order

MCR P15,0,R0,C8,C5,0 ; Invalidate the entire instruction TLB

MCR P15,0,R1,C10,C4,0 ; Translate virtual address (R1) and lock into

; instruction TLB

MCR P15,0,R2,C10,C4,0 ; Translate

; virtual address (R2) and lock into instruction TLB

MCR P15,0,R3,C10,C4,0 ; Translate virtual address (R3) and lock into

; instruction TLB

CPWAIT

; The MMU is guaranteed to be updated at this point; the next instruction will 

; see the locked instruction TLB entries.
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The proper procedure for locking entries into the data TLB is shown in Example 16.

Note: Care must be exercised here when allowing exceptions to occur during this routine whose handlers 
may have data that lies in a page that is trying to be locked into the TLB. 

3.3.4.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the TLBs is round-robin; there is a round-robin pointer that 
keeps track of the next entry to replace. The next entry to replace is the one sequentially after the 
last entry that was written. For example, if the last virtual to physical address translation was 
written into entry 5, the next entry to replace is entry 6. 

At reset, the round-robin pointer is set to entry 31. Once a translation is written into entry 31, the 
round-robin pointer gets set to the next available entry, beginning with entry 0 if no entries have 
been locked down. Subsequent translations move the round-robin pointer to the next sequential 
entry until entry 31 is reached, where it will wrap back to entry 0 upon the next translation. 

A lock pointer is used for locking entries into the TLB and is set to entry 0 at reset. A TLB lock 
operation places the specified translation at the entry designated by the lock pointer, moves the 
lock pointer to the next sequential entry, and resets the round-robin pointer to entry 31. Locking 
entries into either TLB effectively reduces the available entries for updating. For example, if the 
first three entries were locked down, the round-robin pointer would be entry 3 after it rolled over 
from entry 31. 

Only entries 0 through 30 can be locked in either TLB; entry 31can never be locked. If the lock 
pointer is at entry 31, a lock operation will update the TLB entry with the translation and ignore the 
lock. In this case, the round-robin pointer will stay at entry 31. 

Example 16. Locking Entries into the Data TLB

; R1, and R2 contain the virtual addresses to translate and lock into the data TLB

MCR  P15,0,R1,C8,C6,1 ; Invalidate the data TLB entry specified by the

; virtual address in R1

MCR  P15,0,R1,C10,C8,0 ; Translate virtual address (R1) and lock into 

; data TLB

; Repeat sequence for virtual address in R2

MCR  P15,0,R2,C8,C6,1 ; Invalidate the data TLB entry specified by the

; virtual address in R2

MCR  P15,0,R2,C10,C8,0 ; Translate virtual address (R2) and lock into 

; data TLB

CPWAIT ; wait for locks to complete

; The MMU is guaranteed to be updated at this point; the next instruction will 

; see the locked data TLB entries.
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Figure 17 illustrates locked entries in TLB.

3.4 Instruction Cache
The Intel XScale® core instruction cache enhances performance by reducing the number of 
instruction fetches from external memory. The cache provides fast execution of cached code. Code 
can also be locked down when guaranteed or fast access time is required. 

Figure 18 shows the cache organization and how the instruction address is used to access the cache. 

The instruction cache is a 32-Kbyte, 32-way set associative cache; this means there are 32 sets with 
each set containing 32 ways. Each way of a set contains eight 32-bit words and one valid bit, which 
is referred to as a line. The replacement policy is a round-robin algorithm and the cache also 
supports the ability to lock code in at a line granularity. 

Figure 17. Example of Locked Entries in TLB

A9684-01

L
o

ck
ed

Note:  8 entries locked, 24 entries available for round robin replacement 

entry 0
entry 1

entry 7
entry 8

entry 22
entry 23

entry 30
entry 31
88 Hardware Reference Manual



Intel® IXP2800 Network Processor
Intel XScale® Core
The instruction cache is virtually addressed and virtually tagged. The virtual address presented to 
the instruction cache may be remapped by the PID register. 

3.4.1 Instruction Cache Operation

3.4.1.1 Operation when Instruction Cache is Enabled

When the cache is enabled, it compares every instruction request address to the addresses of 
instructions that it is holding in cache. If the requested instruction is found, the access “hits” the 
cache, which returns the requested instruction. If the instruction is not found, the access “misses” 
the cache, which requests a fetch from external memory of the 8-word line (32 bytes) that contains 
the instruction (using the fetch policy). As the fetch returns instructions to the cache, they are put in 
one of two fetch buffers and the requested instruction is delivered to the instruction decoder. A 
fetched line is written into the cache if it is cacheable (code is cacheable if the MMU is disabled or 
if the MMU is enabled and the cacheable (C) bit is set to 1 in its corresponding page). 

Note: An instruction fetch may “miss” the cache but “hit” one of the fetch buffers. If this happens, the 
requested instruction is delivered to the instruction decoder in the same manner as a cache “hit.”

Figure 18. Instruction Cache Organization
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3.4.1.2 Operation when Instruction Cache is Disabled

Disabling the cache prevents any lines from being written into the instruction cache. Although the 
cache is disabled, it is still accessed and may generate a “hit” if the data is already in the cache. 

Disabling the instruction cache does not disable instruction buffering that may occur within the 
instruction fetch buffers. Two 8-word instruction fetch buffers will always be enabled in the cache 
disabled mode. As instruction fetches continue to “hit” within either buffer (even in the presence of 
forward and backward branches), no external fetches for instructions are generated. A miss causes 
one or the other buffer to be filled from external memory using the fill policy. 

3.4.1.3 Fetch Policy

An instruction-cache “miss” occurs when the requested instruction is not found in the instruction 
fetch buffers or instruction cache; a fetch request is then made to external memory. The instruction 
cache can handle up to two “misses.” Each external fetch request uses a fetch buffer that holds 
32-bytes and eight valid bits, one for each word. A miss causes the following:

1. A fetch buffer is allocated.

2. The instruction cache sends a fetch request to the external bus. This request is for a 32-byte line.

3. Instructions words are returned back from the external bus, at a maximum rate of 1 word per 
core cycle. As each word returns, the corresponding valid bit is set for the word in the fetch 
buffer. 

4. As soon as the fetch buffer receives the requested instruction, it forwards the instruction to the 
instruction decoder for execution.

5. When all words have returned, the fetched line will be written into the instruction cache if it is 
cacheable and if the instruction cache is enabled. The line chosen for update in the cache is 
controlled by the round-robin replacement algorithm. This update may evict a valid line at that 
location.

6. Once the cache is updated, the eight valid bits of the fetch buffer are invalidated. 

3.4.1.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the instruction cache is round-robin. Each set in the instruction 
cache has a round-robin pointer that keeps track of the next line (in that set) to replace. The next 
line to replace in a set is the one after the last line that was written. For example, if the line for the 
last external instruction fetch was written into way 5-set 2, the next line to replace for that set 
would be way 6. None of the other round-robin pointers for the other sets are affected in this case. 

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written 
into way 31, the round-robin pointer points to the first available way of a set, beginning with way0 
if no lines have been locked into that particular set. Locking lines into the instruction cache 
effectively reduces the available lines for cache updating. For example, if the first three lines of a 
set were locked down, the round-robin pointer would point to the line at way 3 after it rolled over 
from way 31.
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3.4.1.5 Parity Protection

The instruction cache is protected by parity to ensure data integrity. Each instruction cache word 
has 1 parity bit. (The instruction cache tag is not parity protected.) When a parity error is detected 
on an instruction cache access, a prefetch abort exception occurs if the Intel XScale® core attempts 
to execute the instruction. Before servicing the exception, hardware place a notification of the error 
in the Fault Status register (Coprocessor 15, register 5). 

A software exception handler can recover from an instruction cache parity error. This can be 
accomplished by invalidating the instruction cache and the branch target buffer and then returning 
to the instruction that caused the prefetch abort exception. A simplified code example is shown in 
Example 17. A more complex handler might choose to invalidate the specific line that caused the 
exception and then invalidate the BTB.

If a parity error occurs on an instruction that is locked in the cache, the software exception handler 
needs to unlock the instruction cache, invalidate the cache and then re-lock the code in before it 
returns to the faulting instruction. 

3.4.1.6 Instruction Cache Coherency

The instruction cache does not detect modification to program memory by loads, stores or actions 
of other bus masters. Several situations may require program memory modification, such as 
uploading code from disk. 

The application program is responsible for synchronizing code modification and invalidating the 
cache. In general, software must ensure that modified code space is not accessed until modification 
and invalidating are completed.

To achieve cache coherence, instruction cache contents can be invalidated after code modification 
in external memory is complete.

If the instruction cache is not enabled, or code is being written to a non-cacheable region, software 
must still invalidate the instruction cache before using the newly-written code. This precaution 
ensures that state associated with the new code is not buffered elsewhere in the processor, such as 
the fetch buffers or the BTB.

Naturally, when writing code as data, care must be taken to force it completely out of the processor 
into external memory before attempting to execute it. If writing into a non-cacheable region, 
flushing the write buffers is sufficient precaution. If writing to a cacheable region, then the data 
cache should be submitted to a Clean/Invalidate operation to ensure coherency.

Example 17. Recovering from an Instruction Cache Parity Error

; Prefetch abort handler 

MCR P15,0,R0,C7,C5,0 ; Invalidate the instruction cache and branch target 

; buffer

CPWAIT ; wait for effect 

;

SUBS PC,R14,#4 ; Returns to the instruction that generated the 

; parity error

; The Instruction Cache is guaranteed to be invalidated at this point
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3.4.2 Instruction Cache Control

3.4.2.1 Instruction Cache State at Reset

After reset, the instruction cache is always disabled, unlocked, and invalidated (flushed). 

3.4.2.2 Enabling/Disabling

The instruction cache is enabled by setting bit 12 in coprocessor 15, register 1 (Control register). 
This process is illustrated in Example 18.

3.4.2.3 Invalidating the Instruction Cache

The entire instruction cache along with the fetch buffers are invalidated by writing to 
coprocessor 15, register 7. This command does not unlock any lines that were locked in the 
instruction cache nor does it invalidate those locked lines. To invalidate the entire cache including 
locked lines, the unlock instruction cache command needs to be executed before the invalidate 
command.

There is an inherent delay from the execution of the instruction cache invalidate command to 
where the next instruction will see the result of the invalidate. The routine in Example 19 can be 
used to guarantee proper synchronization.

The Intel XScale® core also supports invalidating an individual line from the instruction cache. 

3.4.2.4 Locking Instructions in the Instruction Cache

Software has the ability to lock performance critical routines into the instruction cache. Up to 
28 lines in each set can be locked; hardware will ignore the lock command if software is trying to 
lock all the lines in a particular set (i.e., ways 28 – 31can never be locked). When this happens, the 
line is still allocated into the cache, but the lock will be ignored. The round-robin pointer will stay 
at way 31 for that set. 

Lines can be locked into the instruction cache by initiating a write to coprocessor 15. Register Rd 
contains the virtual address of the line to be locked into the cache. 

Example 18. Enabling the Instruction Cache

; Enable the ICache

MRC P15, 0, R0, C1, C0, 0 ; Get the control register

ORR R0, R0, #0x1000 ; set bit 12 -- the I bit

MCR P15, 0, R0, C1, C0, 0 ; Set the control register

CPWAIT

Example 19. Invalidating the Instruction Cache

MCR P15,0,R1,C7,C5,0 ; Invalidate the instruction cache and branch

; target buffer

CPWAIT

; The instruction cache is guaranteed to be invalidated at this point; the next

; instruction sees the result of the invalidate command.
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There are several requirements for locking down code:

1. The routine used to lock lines down in the cache must be placed in non-cacheable memory, 
which means the MMU is enabled. As a corollary: no fetches of cacheable code should occur 
while locking instructions into the cache.

2. The code being locked into the cache must be cacheable.

3. The instruction cache must be enabled and invalidated prior to locking down lines.

Failure to follow these requirements will produce unpredictable results when accessing the 
instruction cache.

System programmers should ensure that the code to lock instructions into the cache does not reside 
closer than 128 bytes to a non-cacheable/cacheable page boundary. If the processor fetches ahead 
into a cacheable page, then the first requirement noted above could be violated.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set a line gets 
locked into depends on the set index of the virtual address. Figure 19 is an example of where lines 
of code may be locked into the cache along with how the round-robin pointer is affected. 

Software can lock down several different routines located at different memory locations. This may 
cause some sets to have more locked lines than others as shown in Figure 19. 

Figure 19. Locked Line Effect on Round Robin Replacement
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Example 20 shows how a routine, called “lockMe” in this example, might be locked into the 
instruction cache. Note that it is possible to receive an exception while locking code.

3.4.2.5 Unlocking Instructions in the Instruction Cache

The Intel XScale® core provides a global unlock command for the instruction cache. Writing to 
coprocessor 15, register 9 unlocks all the locked lines in the instruction cache and leaves them 
valid. These lines then become available for the round-robin replacement algorithm.

3.5 Branch Target Buffer (BTB)
The Intel XScale® core uses dynamic branch prediction to reduce the penalties associated with 
changing the flow of program execution. The Intel XScale® core features a branch target buffer 
that provides the instruction cache with the target address of branch type instructions. The branch 
target buffer is implemented as a 128-entry, direct mapped cache.

3.5.1 Branch Target Buffer Operation
The BTB stores the history of branches that have executed along with their targets. Figure 20 
shows an entry in the BTB, where the tag is the instruction address of a previously executed branch 
and the data contains the target address of the previously executed branch along with two bits of 
history information. 

Example 20. Locking Code into the Cache

lockMe: ; This is the code that will be locked into the cache

mov r0, #5

add r5, r1, r2

. . .

lockMeEnd:

. . .

codeLock: ; here is the code to lock the “lockMe” routine

ldr r0, =(lockMe AND NOT 31); r0 gets a pointer to the first line we 

should lock

ldr r1, =(lockMeEnd AND NOT 31); r1 contains a pointer to the last line we 

should lock

lockLoop:

mcr p15, 0, r0, c9, c1, 0; lock next line of code into ICache

cmp r0, r1 ; are we done yet?

add r0, r0, #32 ; advance pointer to next line

bne lockLoop ; if not done, do the next line
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The BTB takes the current instruction address and checks to see if this address is a branch that was 
previously seen. It uses bits [8:2] of the current address to read out the tag and then compares this 
tag to bits [31:9,1] of the current instruction address. If the current instruction address matches the 
tag in the cache and the history bits indicate that this branch is usually taken in the past, the BTB 
uses the data (target address) as the next instruction address to send to the instruction cache. 

Bit[1] of the instruction address is included in the tag comparison to support Thumb execution. 
This organization means that two consecutive Thumb branch (B) instructions, with instruction 
address bits[8:2] the same, will contend for the same BTB entry. Thumb also requires 31 bits for 
the branch target address. In ARM* mode, bit[1] is 0. 

The history bits represent four possible prediction states for a branch entry in the BTB. Figure 21 
shows these states along with the possible transitions. The initial state for branches stored in the 
BTB is Weakly-Taken (WT). Every time a branch that exists in the BTB is executed, the history 
bits are updated to reflect the latest outcome of the branch, either taken or not-taken. 

The BTB does not have to be managed explicitly by software; it is disabled by default after reset 
and is invalidated when the instruction cache is invalidated. 

3.5.1.1 Reset

After Processor Reset, the BTB is disabled and all entries are invalidated. 

Figure 20. BTB Entry
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3.5.2 Update Policy
A new entry is stored into the BTB when the following conditions are met:

• The branch instruction has executed

• The branch was taken

• The branch is not currently in the BTB

The entry is then marked valid and the history bits are set to WT. If another valid branch exists at 
the same entry in the BTB, it will be evicted by the new branch. 

Once a branch is stored in the BTB, the history bits are updated upon every execution of the branch 
as shown in Figure 21. 

3.5.3 BTB Control

3.5.3.1 Disabling/Enabling

The BTB is always disabled with Reset. Software can enable the BTB through a bit in a 
coprocessor register.

Before enabling or disabling the BTB, software must invalidate it (described in the following 
section). This action will ensure correct operation in case stale data is in the BTB. Software should 
not place any branch instruction between the code that invalidates the BTB and the code that 
enables/disables it.

3.5.3.2 Invalidation

There are four ways the contents of the BTB can be invalidated.

1. Reset.

2. Software can directly invalidate the BTB via a CP15, register 7 function.

3. The BTB is invalidated when the Process ID register is written. 

4. The BTB is invalidated when the instruction cache is invalidated via CP15, register 7 
functions.

3.6 Data Cache
The Intel XScale® core data cache enhances performance by reducing the number of data accesses 
to and from external memory. There are two data cache structures in the Intel XScale® core, a 32-
Kbyte data cache and a 2-Kbyte mini-data cache. An eight entry write buffer and a four entry fill 
buffer are also implemented to decouple the Intel XScale® core instruction execution from external 
memory accesses, which increases overall system performance. 
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3.6.1 Overviews

3.6.1.1 Data Cache Overview

The data cache is a 32-Kbyte, 32-way set associative cache, i.e., there are 32 sets and each set has 
32 ways. Each way of a set contains 32 bytes (one cache line) and one valid bit. There also exist 
two dirty bits for every line, one for the lower 16 bytes and the other one for the upper 16 bytes. 
When a store hits the cache, the dirty bit associated with it is set. The replacement policy is a 
round-robin algorithm and the cache also supports the ability to reconfigure each line as data RAM.

Figure 22 shows the cache organization and how the data address is used to access the cache. 
Cache policies may be adjusted for particular regions of memory by altering page attribute bits in 
the MMU descriptor that controls that memory. 

The data cache is virtually addressed and virtually tagged. It supports write-back and write-through 
caching policies. The data cache always allocates a line in the cache when a cacheable read miss 
occurs and will allocate a line into the cache on a cacheable write miss when write allocate is 
specified by its page attribute. Page attribute bits determine whether a line gets allocated into the 
data cache or mini-data cache.

Figure 22. Data Cache Organization
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3.6.1.2 Mini-Data Cache Overview

The mini-data cache is a 2-Kbyte, 2-way set associative cache; this means there are 32 sets with 
each set containing 2 ways. Each way of a set contains 32 bytes (one cache line) and one valid bit. 
There also exist 2 dirty bits for every line, one for the lower 16 bytes and the other one for the 
upper 16 bytes. When a store hits the cache, the dirty bit associated with it is set. The replacement 
policy is a round-robin algorithm. 

Figure 23 shows the cache organization and how the data address is used to access the cache. 

The mini-data cache is virtually addressed and virtually tagged and supports the same caching 
policies as the data cache. However, lines cannot be locked into the mini-data cache. 

Figure 23. Mini-Data Cache Organization
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3.6.1.3 Write Buffer and Fill Buffer Overview

The Intel XScale® core employs an eight entry write buffer, each entry containing 16 bytes. Stores 
to external memory are first placed in the write buffer and subsequently taken out when the bus is 
available. The write buffer supports the coalescing of multiple store requests to external memory. 
An incoming store may coalesce with any of the eight entries. 

The fill buffer holds the external memory request information for a data cache or mini-data cache 
fill or non-cacheable read request. Up to four 32-byte read request operations can be outstanding in 
the fill buffer before the Intel XScale® core needs to stall. 

The fill buffer has been augmented with a four-entry pend buffer that captures data memory 
requests to outstanding fill operations. Each entry in the pend buffer contains enough data storage 
to hold one 32-bit word, specifically for store operations. Cacheable load or store operations that 
hit an entry in the fill buffer get placed in the pend buffer and are completed when the associated 
fill completes. Any entry in the pend buffer can be pended against any of the entries in the fill 
buffer; multiple entries in the pend buffer can be pended against a single entry in the fill buffer. 
Pended operations complete in program order.

3.6.2 Data Cache and Mini-Data Cache Operation
The following discussions refer to the data cache and mini-data cache as one cache (data/mini-
data) since their behavior is the same when accessed. 

3.6.2.1 Operation when Caching is Enabled

When the data/mini-data cache is enabled for an access, the data/mini-data cache compares the 
address of the request against the addresses of data that it is currently holding. If the line containing 
the address of the request is resident in the cache, the access “hits’ the cache. For a load operation 
the cache returns the requested data to the destination register and for a store operation the data is 
stored into the cache. The data associated with the store may also be written to external memory if 
write-through caching is specified for that area of memory. If the cache does not contain the 
requested data, the access ‘misses’ the cache, and the sequence of events that follows depends on 
the configuration of the cache, the configuration of the MMU and the page attributes. 

3.6.2.2 Operation when Data Caching is Disabled

The data/mini-data cache is still accessed even though it is disabled. If a load hits the cache it will 
return the requested data to the destination register. If a store hits the cache, the data is written into 
the cache. Any access that misses the cache will not allocate a line in the cache when it’s disabled, 
even if the MMU is enabled and the memory region’s cacheability attribute is set. 
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3.6.2.3 Cache Policies

3.6.2.3.1 Cacheability

Data at a specified address is cacheable given the following:

• The MMU is enabled

• The cacheable attribute is set in the descriptor for the accessed address 

• The data/mini-data cache is enabled

3.6.2.3.2 Read Miss Policy

The following sequence of events occurs when a cacheable load operation misses the cache:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line. 

— If so, the current request is placed in the pending buffer and waits until the previously 
requested fill completes, after which it accesses the cache again, to obtain the request data 
and returns it to the destination register. 

— If there is no outstanding fill request for that line, the current load request is placed in the 
fill buffer and a 32-byte external memory read request is made. If the pending buffer or fill 
buffer is full, the Intel XScale® core will stall until an entry is available.

2. A line is allocated in the cache to receive the 32 bytes of fill data. The line selected is 
determined by the round-robin pointer (see Section 3.6.2.4). The line chosen may contain a 
valid line previously allocated in the cache. In this case both dirty bits are examined and if set, 
the four words associated with a dirty bit that’s asserted will be written back to external 
memory as a 4-word burst operation. 

3. When the data requested by the load is returned from external memory, it is immediately sent 
to the destination register specified by the load. A system that returns the requested data back 
first, with respect to the other bytes of the line, will obtain the best performance. 

4. As data returns from external memory, it is written into the cache in the previously allocated 
line.

A load operation that misses the cache and is not cacheable makes a request from external memory 
for the exact data size of the original load request. For example, LDRH requests exactly two bytes 
from external memory, LDR requests four bytes from external memory, etc. This request is placed 
in the fill buffer until, the data is returned from external memory, which is then forwarded back to 
the destination register(s).
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3.6.2.3.3 Write Miss Policy

A write operation that misses the cache, requests a 32-byte cache line from external memory if the 
access is cacheable and write allocation is specified in the page; then, the following events occur:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line. 

— If so, the current request is placed in the pending buffer and waits until the previously 
requested fill completes, after which it writes its data into the recently allocated cache 
line.

— If there is no outstanding fill request for that line, the current store request is placed in the 
fill buffer and a 32-byte external memory read request is made. If the pending buffer or fill 
buffer is full, the Intel XScale® core will stall until an entry is available.

2. The 32 bytes of data can be returned back to the Intel XScale® core in any word order, i.e, the 
eight words in the line can be returned in any order. Note that it does not matter, for 
performance reasons, which order the data is returned to the Intel XScale® core since the store 
operation has to wait until the entire line is written into the cache before it can complete. 

3. When the entire 32-byte line has returned from external memory, a line is allocated in the 
cache, selected by the round-robin pointer (see Section 3.6.2.4). The line to be written into the 
cache may replace a valid line previously allocated in the cache. In this case both dirty bits are 
examined and if any are set, the four words associated with a dirty bit that’s asserted will be 
written back to external memory as a 4-word burst operation. This write operation will be 
placed in the write buffer. 

4. The line is written into the cache along with the data associated with the store operation. 

If the above condition for requesting a 32-byte cache line is not met, a write miss will cause a write 
request to external memory for the exact data size specified by the store operation, assuming the 
write request does not coalesce with another write operation in the write buffer. 

3.6.2.3.4 Write-Back versus Write-Through

The Intel XScale® core supports write-back caching or write-through caching, controlled through 
the MMU page attributes. When write-through caching is specified, all store operations are written 
to external memory even if the access hits the cache. This feature keeps the external memory 
coherent with the cache, i.e., no dirty bits are set for this region of memory in the data/mini-data 
cache. This however does not guarantee that the data/mini-data cache is coherent with external 
memory, which is dependent on the system level configuration, specifically if the external memory 
is shared by another master. 

When write-back caching is specified, a store operation that hits the cache will not generate a write 
to external memory, thus reducing external memory traffic.
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3.6.2.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the data cache is round-robin. Each set in the data cache has a 
round-robin pointer that keeps track of the next line (in that set) to replace. The next line to replace 
in a set is the next sequential line after the last one that was just filled. For example, if the line for 
the last fill was written into way 5-set 2, the next line to replace for that set would be way 6. None 
of the other round-robin pointers for the other sets are affected in this case. 

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written 
into way 31, the round-robin pointer points to the first available way of a set, beginning with way 0 
if no lines have been reconfigured as data RAM in that particular set. Reconfiguring lines as data 
RAM effectively reduces the available lines for cache updating. For example, if the first three lines 
of a set were reconfigured, the round-robin pointer would point to the line at way 3 after it rolled 
over from way 31. Refer to Section 3.6.4 for more details on data RAM.

The mini-data cache follows the same round-robin replacement algorithm as the data cache except 
that there are only two lines the round-robin pointer can point to such that the round-robin pointer 
always points to the least recently filled line. A least recently used replacement algorithm is not 
supported because the purpose of the mini-data cache is to cache data that exhibits low temporal 
locality, i.e., data that is placed into the mini-data cache is typically modified once and then written 
back out to external memory. 

3.6.2.5 Parity Protection

The data cache and mini-data cache are protected by parity to ensure data integrity; there is one 
parity bit per byte of data. (The tags are not parity protected.) When a parity error is detected on a 
data/mini-data cache access, a data abort exception occurs. Before servicing the exception, 
hardware will set bit 10 of the Fault Status register. 

A data/mini-data cache parity error is an imprecise data abort, meaning R14_ABORT (+8) may not 
point to the instruction that caused the parity error. If the parity error occurred during a load, the 
targeted register may be updated with incorrect data.

A data abort due to a data/mini-data cache parity error may not be recoverable if the data address 
that caused the abort occurred on a line in the cache that has a write-back caching policy. Prior 
updates to this line may be lost; in this case the software exception handler should perform a “clean 
and clear” operation on the data cache, ignoring subsequent parity errors, and restart the offending 
process. This operation is shown in Section 3.6.3.3.1.

3.6.2.6 Atomic Accesses

The SWP and SWPB instructions generate an atomic load and store operation allowing a memory 
semaphore to be loaded and altered without interruption. These accesses may hit or miss the data/
mini-data cache depending on configuration of the cache, configuration of the MMU, and the page 
attributes. Refer to Section 3.11.4 for more information.
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3.6.3 Data Cache and Mini-Data Cache Control

3.6.3.1 Data Memory State After Reset

After processor reset, both the data cache and mini-data cache are disabled, all valid bits are set to 
0 (invalid), and the round-robin bit points to way 31. Any lines in the data cache that were 
configured as data RAM before reset are changed back to cacheable lines after reset, i.e., there are 
32 KBytes of data cache and 0 bytes of data RAM.

3.6.3.2 Enabling/Disabling

The data cache and mini-data cache are enabled by setting bit 2 in coprocessor 15, register 1 
(Control register).

Example 21 shows code that enables the data and mini-data caches. Note that the MMU must be 
enabled to use the data cache.

3.6.3.3 Invalidate and Clean Operations

Individual entries can be invalidated and cleaned in the data cache and mini-data cache via 
coprocessor 15, register 7. Note that a line locked into the data cache remains locked even after it 
has been subjected to an invalidate-entry operation. This will leave an unusable line in the cache 
until a global unlock has occurred. For this reason, do not use these commands on locked lines.

This same register also provides the command to invalidate the entire data cache and mini-data 
cache. These global invalidate commands have no effect on lines locked in the data cache. Locked 
lines must be unlocked before they can be invalidated. This is accomplished by the Unlock Data 
Cache command.

Example 21. Enabling the Data Cache

enableDCache:

MCR p15, 0, r0, c7, c10, 4; Drain pending data operations...

; 

MRC p15, 0, r0, c1, c0, 0; Get current control register

ORR r0, r0, #4 ; Enable DCache by setting ‘C’ (bit 2)

MCR p15, 0, r0, c1, c0, 0; And update the Control register
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3.6.3.3.1 Global Clean and Invalidate Operation

A simple software routine is used to globally clean the data cache. It takes advantage of the line-
allocate data cache operation, which allocates a line into the data cache. This allocation evicts any 
cache dirty data back to external memory. Example 22 shows how data cache can be cleaned.

The line-allocate operation does not require physical memory to exist at the virtual address 
specified by the instruction, since it does not generate a load/fill request to external memory. Also, 
the line-allocate operation does not set the 32 bytes of data associated with the line to any known 
value. Reading this data will produce unpredictable results.

The line-allocate command will not operate on the mini Data Cache, so system software must clean 
this cache by reading two Kbytes of contiguous unused data into it. This data must be unused and 
reserved for this purpose so that it will not already be in the cache. It must reside in a page that is 
marked as mini Data Cache cacheable.

The time it takes to execute a global clean operation depends on the number of dirty lines in cache.

Example 22. Global Clean Operation
; Global Clean/Invalidate THE DATA CACHE
; R1 contains the virtual address of a region of cacheable memory reserved for
; this clean operation
; R0 is the loop count; Iterate 1024 times which is the number of lines in the 
; data cache

;; Macro ALLOCATE performs the line-allocation cache operation on the
;; address specified in register Rx.
;;

MACRO ALLOCATE Rx

MCR P15, 0, Rx, C7, C2, 5

ENDM

MOV  R0, #1024

LOOP1:

ALLOCATE R1 ; Allocate a line at the virtual address 

; specified by R1.

ADD R1, R1, #32 ; Increment the address in R1 to the next cache line

SUBS R0, R0, #1 ; Decrement loop count

BNE LOOP1

;

;Clean the Mini-data Cache

; Can’t use line-allocate command, so cycle 2KB of unused data through.

; R2 contains the virtual address of a region of cacheable memory reserved for
; cleaning the Mini-data Cache

; R0 is the loop count; Iterate 64 times which is the number of lines in the
; Mini-data Cache.

MOV  R0, #64

LOOP2:

LDR R3,[R2],#32 ; Load and increment to next cache line

SUBS R0, R0, #1 ; Decrement loop count

BNE LOOP2

;

; Invalidate the data cache and mini-data cache 

MCR P15, 0, R0, C7, C6, 0 

;
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3.6.4 Reconfiguring the Data Cache as Data RAM
Software has the ability to lock tags associated with 32-byte lines in the data cache, thus creating 
the appearance of data RAM. Any subsequent access to this line will always hit the cache unless it 
is invalidated. Once a line is locked into the data cache it is no longer available for cache allocation 
on a line fill. Up to 28 lines in each set can be reconfigured as data RAM, such that the maximum 
data RAM size is 28 Kbytes. 

Hardware does not support locking lines into the mini-data cache; any attempt to do this will 
produce unpredictable results.

There are two methods for locking tags into the data cache; the method of choice depends on the 
application. One method is used to lock data that resides in external memory into the data cache 
and the other method is used to reconfigure lines in the data cache as data RAM. Locking data from 
external memory into the data cache is useful for lookup tables, constants, and any other data that is 
frequently accessed. Reconfiguring a portion of the data cache as data RAM is useful when an 
application needs scratch memory (bigger than the register file can provide) for frequently used 
variables. These variables may be strewn across memory, making it advantageous for software to 
pack them into data RAM memory.

Refer to the Intel XScale® Core Developers Manual for code examples.

Tags can be locked into the data cache by enabling the data cache lock mode bit located in 
coprocessor 15, register 9. Once enabled, any new lines allocated into the data cache will be locked 
down.

Note that the PLD instruction will not affect the cache contents if it encounters an error while 
executing. For this reason, system software should ensure the memory address used in the PLD is 
correct. If this cannot be ascertained, replace the PLD with a LDR instruction that targets a scratch 
register.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set a line gets 
locked into depends on the set index of the virtual address of the request. Figure 19 is an example 
of where lines of code may be locked into the cache along with how the round-robin pointer is 
affected. 

Software can lock down data located at different memory locations. This may cause some sets to 
have more locked lines than others as shown in Figure 19.

Lines are unlocked in the data cache by performing an unlock operation.

Before locking, the programmer must ensure that no part of the target data range is already resident 
in the cache. The Intel XScale® core will not refetch such data, which will result in it not being 
locked into the cache. If there is any doubt as to the location of the targeted memory data, the cache 
should be cleaned and invalidated to prevent this scenario. If the cache contains a locked region 
that the programmer wishes to lock again, then the cache must be unlocked before being cleaned 
and invalidated.
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3.6.5 Write Buffer/Fill Buffer Operation and Control
The write buffer is always enabled, which means stores to external memory will be buffered. The 
K bit in the Auxiliary Control register (CP15, register 1) is a global enable/disable for allowing 
coalescing in the write buffer. When this bit disables coalescing, no coalescing will occur 
regardless the value of the page attributes. If this bit enables coalescing, the page attributes X, C, 
and B are examined to see if coalescing is enabled for each region of memory.

All reads and writes to external memory occur in program order when coalescing is disabled in the 
write buffer. If coalescing is enabled in the write buffer, writes may occur out of program order to 
external memory. Program correctness is maintained in this case by comparing all store requests 
with all the valid entries in the fill buffer. 

The write buffer and fill buffer support a drain operation, such that before the next instruction 
executes, all the Intel XScale® core data requests to external memory have completed. 

Writes to a region marked non-cacheable/non-bufferable (page attributes C, B, and X all 0) will 
cause execution to stall until the write completes.

If software is running in a privileged mode, it can explicitly drain all buffered writes.

3.7 Configuration
The System Control Coprocessor (CP15) configures the MMU, caches, buffers and other system 
attributes. Where possible, the definition of CP15 follows the definition of the StrongARM* 
products. Coprocessor 14 (CP14) contains the performance monitor registers and the trace buffer 
registers.

CP15 is accessed through MRC and MCR coprocessor instructions and allowed only in privileged 
mode. Any access to CP15 in user mode or with LDC or STC coprocessor instructions will cause 
an undefined instruction exception. 

CP14 registers can be accessed through MRC, MCR, LDC, and STC coprocessor instructions and 
allowed only in privileged mode. Any access to CP14 in user mode will cause an undefined 
instruction exception.

The Intel XScale® core Coprocessors, CP15 and CP14, do not support access via CDP, MRRC, or 
MCRR instructions. An attempt to access these coprocessors with these instructions will result in 
an Undefined Instruction exception.

Many of the MCR commands available in CP15 modify hardware state sometime after execution. 
A software sequence is available for those wishing to determine when this update occurs.

Like certain other ARM* architecture products, the Intel XScale® core includes an extra level of 
virtual address translation in the form of a PID (Process ID) register and associated logic. 
Privileged code needs to be aware of this facility because, when interacting with CP15, some 
addresses are modified by the PID and others are not.

An address that has yet to be modified by the PID (“PIDified”) is known as a virtual address (VA). 
An address that has been through the PID logic, but not translated into a physical address, is a 
modified virtual address (MVA). Non-privileged code always deals with VAs, while privileged 
code that programs CP15 occasionally needs to use MVAs. For details refer to the Intel XScale® 
Core Developers Manual.
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3.8 Performance Monitoring
The Intel XScale® core hardware provides two 32-bit performance counters that allow two unique 
events to be monitored simultaneously. In addition, the Intel XScale® core implements a 32-bit 
clock counter that can be used in conjunction with the performance counters; its sole purpose is to 
count the number of core clock cycles, which is useful in measuring total execution time. 

The Intel XScale® core can monitor either occurrence events or duration events. When counting 
occurrence events, a counter is incremented each time a specified event takes place and when 
measuring duration, a counter counts the number of processor clocks that occur while a specified 
condition is true. If any of the three counters overflow, an IRQ or FIQ will be generated if it’s 
enabled. Each counter has its own interrupt enable. The counters continue to monitor events even 
after an overflow occurs, until disabled by software. Refer to the Intel® IXP2400 and IXP2800 
Network Processor Programmer’s Reference Manual for more detail.

Each of these counters can be programmed to monitor any one of various events.

To further augment performance monitoring, the Intel XScale® core clock counter can be used to 
measure the executing time of an application. This information combined with a duration event can 
feedback a percentage of time the event occurred with respect to overall execution time.

Each of the three counters and the performance monitoring control register are accessible through 
Coprocessor 14 (CP14), registers 0-3. Access is allowed in privileged mode only. 

The following are a few notes about controlling the performance monitoring mechanism:

• An interrupt will be reported when a counter’s overflow flag is set and its associated interrupt 
enable bit is set in the PMNC register. The interrupt will remain asserted until software clears 
the overflow flag by writing a one to the flag that is set. Note: the product specific interrupt 
unit and the CPSR must have enabled the interrupt in order for software to receive it.

• The counters continue to record events even after they overflow. 

3.8.1 Performance Monitoring Events
Table 24 lists events that may be monitored by the PMU. Each of the Performance Monitor Count 
registers (PMN0 and PMN1) can count any listed event. Software selects which event is counted 
by each PMNx register by programming the evtCountx fields of the PMNC register.

Table 24. Performance Monitoring Events (Sheet 1 of 2)

Event Number 
(evtCount0 or 

evtCount1)
Event Definition

0x0 Instruction cache miss requires fetch from external memory.

0x1 Instruction cache cannot deliver an instruction. This could indicate an ICache miss or an 
ITLB miss. This event will occur every cycle in which the condition is present.

0x2 Stall due to a data dependency. This event will occur every cycle in which the condition is 
present.

0x3 Instruction TLB miss.
0x4 Data TLB miss.
0x5 Branch instruction executed, branch may or may not have changed program flow.
0x6 Branch mispredicted. (B and BL instructions only.)
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Some typical combination of counted events are listed in this section and summarized in Table 25. 
In this section, we call such an event combination a mode.

3.8.1.1 Instruction Cache Efficiency Mode

PMN0 totals the number of instructions that were executed, which does not include instructions 
fetched from the instruction cache that were never executed. This can happen if a branch 
instruction changes the program flow; the instruction cache may retrieve the next sequential 
instructions after the branch, before it receives the target address of the branch. 

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests 
loads 32 bytes at a time. 

Statistics derived from these two events:

• Instruction cache miss-rate. This is derived by dividing PMN1 by PMN0. 

• The average number of cycles it took to execute an instruction or commonly referred to as 
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMN0, where CCNT 
was used to measure total execution time.

0x7 Instruction executed.

0x8 Stall because the data cache buffers are full. This event will occur every cycle in which the 
condition is present.

0x9 Stall because the data cache buffers are full. This event will occur once for each contiguous 
sequence of this type of stall.

0xA Data cache access, not including Cache Operations
0xB Data cache miss, not including Cache Operations

0xC  Data cache write-back. This event occurs once for each ½ line (four words) that are written 
back from the cache.

0xD

Software changed the PC. This event occurs any time the PC is changed by software and 
there is not a mode change. For example, a mov instruction with PC as the destination will 
trigger this event. Executing a swi from User mode will not trigger this event, because it will 
incur a mode change.

0x10 — 0x17 Refer to the Intel® IXP2400 and IXP2800 Network Processor Programmer’s Reference 
Manual for more details.

all others Reserved, unpredictable results

Table 24. Performance Monitoring Events (Sheet 2 of 2)

Event Number 
(evtCount0 or 

evtCount1)
Event Definition

Table 25. Some Common Uses of the PMU

Mode PMNC.evtCount0 PMNC.evtCount1

Instruction Cache Efficiency 0x7 (instruction count) 0x0 (ICache miss)
Data Cache Efficiency 0xA (Dcache access) 0xB (DCache miss)
Instruction Fetch Latency 0x1 (ICache cannot deliver) 0x0 (ICache miss)
Data/Bus Request Buffer Full 0x8 (DBuffer stall duration) 0x9 (DBuffer stall)
Stall/Writeback Statistics 0x2 (data stall) 0xC (DCache writeback)
Instruction TLB Efficiency 0x7 (instruction count) 0x3 (ITLB miss)
Data TLB Efficiency 0xA (Dcache access) 0x4 (DTLB miss)
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3.8.1.2 Data Cache Efficiency Mode

PMN0 totals the number of data cache accesses, which includes cacheable and non-cacheable 
accesses, mini-data cache access and accesses made to locations configured as data RAM. 

Note that STM and LDM will each count as several accesses to the data cache depending on the 
number of registers specified in the register list. LDRD will register two accesses. 

PMN1 counts the number of data cache and mini-data cache misses. Cache operations do not 
contribute to this count. 

The statistic derived from these two events is:

• Data cache miss-rate. This is derived by dividing PMN1 by PMN0. 

3.8.1.3 Instruction Fetch Latency Mode

PMN0 accumulates the number of cycles when the instruction-cache is not able to deliver an 
instruction to the Intel XScale® core due to an instruction-cache miss or instruction-TLB miss. 
This event means that the processor core is stalled.

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests 
loads 32 bytes at a time. This is the same event as measured in instruction cache efficiency mode 
and is included in this mode for convenience so that only one performance monitoring run is need.

Statistics derived from these two events:

• The average number of cycles the processor stalled waiting for an instruction fetch from 
external memory to return. This is calculated by dividing PMN0 by PMN1. If the average is 
high then the Intel XScale® core may be starved of the bus external to the Intel XScale® core.

• The percentage of total execution cycles the processor stalled waiting on an instruction fetch 
from external memory to return. This is calculated by dividing PMN0 by CCNT, which was 
used to measure total execution time. 

3.8.1.4 Data/Bus Request Buffer Full Mode

The Data Cache has buffers available to service cache misses or uncacheable accesses. For every 
memory request that the Data Cache receives from the processor core, a buffer is speculatively 
allocated in case an external memory request is required or temporary storage is needed for an 
unaligned access. If no buffers are available, the Data Cache will stall the processor core. 

The frequency of Data Cache stalls depends on the performance of the bus external to the Intel 
XScale® core and what the memory access latency is for Data Cache miss requests to external 
memory. If the Intel XScale® core memory access latency is high (possibly due to starvation) these 
Data Cache buffers will become full. This performance monitoring mode is provided to determine 
whether the Intel XScale® core is being starved of the bus external to the Intel XScale® core — 
which affects the performance of the application running on the Intel XScale® core. 

PMN0 accumulates the number of clock cycles by which the processor is stalled due to this 
condition and PMN1 monitors the number of times this condition occurs. 
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Statistics derived from these two events:
• The average number of cycles the processor stalled on a data-cache access that may overflow 

the data-cache buffers. 
This is calculated by dividing PMN0 by PMN1. This statistic lets you know if the duration 
event cycles are due to many requests or are attributed to just a few requests. If the average is 
high, the Intel XScale® core may be starved of the bus external to the Intel XScale® core. 

• The percentage of total execution cycles the processor stalled because a Data Cache request 
buffer was not available.
This is calculated by dividing PMN0 by CCNT, which was used to measure total execution 
time.

3.8.1.5 Stall/Writeback Statistics

When an instruction requires the result of a previous instruction and that result is not yet available, 
the Intel XScale® core stalls, to preserve the correct data dependencies. PMN0 counts the number 
of stall cycles due to data dependencies. Not all data dependencies cause a stall; only the following 
dependencies cause such a stall penalty:

• Load-use penalty: attempting to use the result of a load before the load completes. To avoid the 
penalty, software should delay using the result of a load until it’s available. This penalty shows 
the latency effect of data-cache access.

• Multiply/Accumulate-use penalty: attempting to use the result of a multiply or multiply-
accumulate operation before the operation completes. Again, to avoid the penalty, software 
should delay using the result until it’s available.

• ALU use penalty: there are a few isolated cases where back-to-back ALU operations may 
result in one cycle delay in the execution. 

PMN1 counts the number of writeback operations emitted by the data cache. These writebacks 
occur when the data cache evicts a dirty line of data to make room for a newly requested line or as 
the result of clean operation (CP15, register 7). 

Statistics derived from these two events:
• The percentage of total execution cycles the processor stalled because of a data dependency. 

This is calculated by dividing PMN0 by CCNT, which was used to measure total execution 
time. Often, a compiler can reschedule code to avoid these penalties when given the right 
optimization switches.

• Total number of data writeback requests to external memory can be derived solely with PMN1. 
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3.8.1.6 Instruction TLB Efficiency Mode

PMN0 totals the number of instructions that were executed, which does not include instructions 
that were translated by the instruction TLB and never executed. This can happen if a branch 
instruction changes the program flow; the instruction TLB may translate the next sequential 
instructions after the branch, before it receives the target address of the branch. 

PMN1 counts the number of instruction TLB table-walks that occurs when there is a TLB miss. 
If the instruction TLB is disabled, PMN1 will not increment. 

Statistics derived from these two events:

• Instruction TLB miss-rate. This is derived by dividing PMN1 by PMN0. 

• The average number of cycles it took to execute an instruction or commonly referred to as 
cycles-per-instruction (CPI).
CPI can be derived by dividing CCNT by PMN0, where CCNT was used to measure total 
execution time.

3.8.1.7 Data TLB Efficiency Mode

PMN0 totals the number of data cache accesses, which includes cacheable and non-cacheable 
accesses, mini-data cache access and accesses made to locations configured as data RAM. 

Note that STM and LDM will each count as several accesses to the data TLB depending on the 
number of registers specified in the register list. LDRD will register two accesses. 

PMN1 counts the number of data TLB table-walks, which occurs when there is a TLB miss. If the 
data TLB is disabled PMN1 will not increment. 

The statistic derived from these two events is:

• Data TLB miss-rate. This is derived by dividing PMN1 by PMN0. 

3.8.2 Multiple Performance Monitoring Run Statistics
Even though only two events can be monitored at any given time, multiple performance monitoring 
runs can be done, capturing different events from different modes. For example, the first run could 
monitor the number of writeback operations (PMN1 of mode, Stall/Writeback) and the second run 
could monitor the total number of data cache accesses (PMN0 of mode, Data Cache Efficiency). 
From the results, a percentage of writeback operations to the total number of data accesses can be 
derived. 

3.9 Performance Considerations
This section describes relevant performance considerations that compiler writers, application 
programmers, and system designers need to be aware of to efficiently use the Intel XScale® core. 
Performance numbers discussed here include interrupt latency, branch prediction, and instruction 
latencies. 
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3.9.1 Interrupt Latency
Minimum Interrupt Latency is defined as the minimum number of cycles from the assertion of any 
interrupt signal (IRQ or FIQ) to the execution of the instruction at the vector for that interrupt. The 
point at which the assertion begins is TBD. This number assumes best case conditions exist when 
the interrupt is asserted, e.g., the system isn’t waiting on the completion of some other operation. 

A useful number to work with is the Maximum Interrupt Latency. This is typically a complex 
calculation that depends on what else is going on in the system at the time the interrupt is asserted. 
Some examples that can adversely affect interrupt latency are: 

• The instruction currently executing could be a 16-register LDM.

• The processor could fault just when the interrupt arrives.

• The processor could be waiting for data from a load, doing a page table walk, etc.

• There are high core-to-system (bus) clock ratios.

Maximum Interrupt Latency can be reduced by:

• Ensuring that the interrupt vector and interrupt service routine are resident in the instruction 
cache. This can be accomplished by locking them down into the cache.

• Removing or reducing the occurrences of hardware page table walks. This also can be 
accomplished by locking down the application’s page table entries into the TLBs, along with 
the page table entry for the interrupt service routine. 

3.9.2 Branch Prediction
The Intel XScale® core implements dynamic branch prediction for the ARM* instructions B and 
BL and for the Thumb instruction B. Any instruction that specifies the PC as the destination is 
predicted as not taken. For example, an LDR or a MOV that loads or moves directly to the PC will 
be predicted not taken and incur a branch latency penalty. 

These instructions -- ARM B, ARM BL and Thumb B -- enter into the branch target buffer when 
they are “taken” for the first time. (A “taken” branch refers to when they are evaluated to be true.) 
Once in the branch target buffer, the Intel XScale® core dynamically predicts the outcome of these 
instructions based on previous outcomes. Table 26 shows the branch latency penalty when these 
instructions are correctly predicted and when they are not. A penalty of 0 for correct prediction 
means that the Intel XScale® core can execute the next instruction in the program flow in the cycle 
following the branch.

Table 26. Branch Latency Penalty

Core Clock Cycles
Description

ARM* Thumb

+0 + 0 Predicted Correctly. The instruction is in the branch target cache and is 
correctly predicted.

+4 + 5

Mispredicted. There are three occurrences of branch misprediction, all of which 
incur a 4-cycle branch delay penalty. 
1. The instruction is in the branch target buffer and is predicted not-taken, but is 

actually taken. 
2. The instruction is not in the branch target buffer and is a taken branch.
3. The instruction is in the branch target buffer and is predicted taken, but is 

actually not-taken
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3.9.3 Addressing Modes
All load and store addressing modes implemented in the Intel XScale® core do not add to the 
instruction latencies numbers.

3.9.4 Instruction Latencies
The latencies for all the instructions are shown in the following sections with respect to their 
functional groups: branch, data processing, multiply, status register access, load/store, semaphore, 
and coprocessor. The following section explains how to read these tables. 

3.9.4.1 Performance Terms

• Issue Clock (cycle 0)
The first cycle when an instruction is decoded and allowed to proceed to further stages in the 
execution pipeline (i.e., when the instruction is actually issued).

• Cycle Distance from A to B
The cycle distance from cycle A to cycle B is (B-A) – that is, the number of cycles from the 
start of cycle A to the start of cycle B. Example: the cycle distance from cycle 3 to cycle 4 is 
one cycle.

• Issue Latency
The cycle distance from the first issue clock of the current instruction to the issue clock of the 
next instruction. The actual number of cycles can be influenced by cache-misses, resource-
dependency stalls, and resource availability conflicts.

• Result Latency
The cycle distance from the first issue clock of the current instruction to the issue clock of the 
first instruction that can use the result without incurring a resource dependency stall. The 
actual number of cycles can be influenced by cache-misses, resource-dependency stalls, and 
resource availability conflicts

• Minimum Issue Latency (without Branch Misprediction)
The minimum cycle distance from the issue clock of the current instruction to the first possible 
issue clock of the next instruction assuming best case conditions (i.e., that the issuing of the 
next instruction is not stalled due to a resource dependency stall; the next instruction is 
immediately available from the cache or memory interface; the current instruction does not 
incur resource dependency stalls during execution that cannot be detected at issue time; and if 
the instruction uses dynamic branch prediction, correct prediction is assumed).

• Minimum Result Latency
The required minimum cycle distance from the issue clock of the current instruction to the 
issue clock of the first instruction that can use the result without incurring a resource 
dependency stall assuming best case conditions (i.e., that the issuing of the next instruction is 
not stalled due to a resource dependency stall; the next instruction is immediately available 
from the cache or memory interface; and the current instruction does not incur resource 
dependency stalls during execution that cannot be detected at issue time).

• Minimum Issue Latency (with Branch Misprediction)
The minimum cycle distance from the issue clock of the current branching instruction to the 
first possible issue clock of the next instruction. This definition is identical to Minimum Issue 
Latency except that the branching instruction has been mispredicted. It is calculated by adding 
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Minimum Issue Latency (without Branch Misprediction) to the minimum branch latency 
penalty number from Table 26, which is four cycles.

• Minimum Resource Latency
The minimum cycle distance from the issue clock of the current multiply instruction to the 
issue clock of the next multiply instruction assuming the second multiply does not incur a data 
dependency and is immediately available from the instruction cache or memory interface. 
Example 23 contains a code fragment and an example of computing latencies.

Table 27 shows how to calculate Issue Latency and Result Latency for each instruction. Looking at 
the issue column, the UMLAL instruction starts to issue on cycle 0 and the next instruction, ADD, 
issues on cycle 2, so the Issue Latency for UMLAL is two. From the code fragment, there is a 
result dependency between the UMLAL instruction and the SUB instruction. In Table 27, 
UMLAL starts to issue at cycle 0 and the SUB issues at cycle 5; so the Result Latency is 5. 

Example 23. Computing Latencies

UMLALr6,r8,r0,r1

ADD r9,r10,r11

SUB r2,r8,r9

MOV r0,r1

Table 27. Latency Example

Cycle Issue Executing

0 umlal (1st cycle) --

1 umlal (2nd cycle) umlal

2 add umlal

3 sub (stalled) umlal & add

4 sub (stalled) umlal

5 sub umlal

6 mov sub

7 -- mov
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3.9.4.2 Branch Instruction Timings

 (

3.9.4.3 Data Processing Instruction Timings

Table 28. Branch Instruction Timings (Predicted by the BTB)

Mnemonic Minimum Issue Latency when Correctly 
Predicted by the BTB

Minimum Issue Latency with Branch 
Misprediction

B 1 5
BL 1 5

Table 29. Branch Instruction Timings (Not Predicted by the BTB)

Mnemonic Minimum Issue Latency when 
the branch is not taken

Minimum Issue Latency when 
the branch is taken

BLX(1) N/A 5
BLX(2) 1 5

BX 1 5
Data Processing Instruction with 

PC as the destination Same as Table 30 4 + numbers in Table 30

LDR PC,<> 2 8
LDM with PC in register list 3 + numreg1

1. numreg is the number of registers in the register list including the PC.

10 + max (0, numreg-3)

Table 30. Data Processing Instruction Timings

Mnemonic

<shifter operand> is not a Shift/Rotate 
by Register

<shifter operand> is a Shift/Rotate by 
Register or

<shifter operand> is RRX

Minimum Issue 
Latency

Minimum Result 
Latency1

1. If the next instruction needs to use the result of the data processing for a shift by immediate or as Rn in a QDADD or QDSUB,
one extra cycle of result latency is added to the number listed.

Minimum Issue 
Latency

Minimum Result 
Latency1

ADC 1 1 2 2
ADD 1 1 2 2
AND 1 1 2 2
BIC 1 1 2 2

CMN 1 1 2 2
CMP 1 1 2 2
EOR 1 1 2 2
MOV 1 1 2 2
MVN 1 1 2 2
ORR 1 1 2 2
RSB 1 1 2 2
RSC 1 1 2 2
SBC 1 1 2 2
SUB 1 1 2 2
TEQ 1 1 2 2
TST 1 1 2 2
Hardware Reference Manual 115



Intel® IXP2800 Network Processor
Intel XScale® Core
3.9.4.4 Multiply Instruction Timings

Table 31. Multiply Instruction Timings (Sheet 1 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum 
Issue Latency

Minimum Result 
Latency1

Minimum Resource 
Latency (Throughput)

MLA

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3
1 4 4 4

MUL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3
1 4 4 4

SMLAL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 2 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 2 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4
1 5 5 5

SMLALxy N/A N/A 2 RdLo = 2; RdHi = 3 2
SMLAWy N/A N/A 1 3 2
SMLAxy N/A N/A 1 2 1

SMULL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4
1 5 5 5

SMULWy N/A N/A 1 3 2
SMULxy N/A N/A 1 2 1

UMLAL

Rs[31:15] = 0x00000
0 2 RdLo = 2; RdHi = 3 2
1 3 3 3

Rs[31:27] = 0x00
0 2 RdLo = 3; RdHi = 4 3
1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4
1 5 5 5
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3.9.4.5 Saturated Arithmetic Instructions
h

UMULL

Rs[31:15] = 0x00000
0 1 RdLo = 2; RdHi = 3 2
1 3 3 3

Rs[31:27] = 0x00
0 1 RdLo = 3; RdHi = 4 3
1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4
1 5 5 5

1. If the next instruction needs to use the result of the multiply for a shift by immediate or as Rn in a QDADD or QDSUB, one
extra cycle of result latency is added to the number listed.

Table 32. Multiply Implicit Accumulate Instruction Timings

Mnemonic Rs Value (Early 
Termination)

Minimum Issue 
Latency

Minimum Result 
Latency

Minimum Resource 
Latency 

(Throughput)

MIA

Rs[31:16] = 0x0000
or

Rs[31:16] = 0xFFFF
1 1 1

Rs[31:28] = 0x0
or

Rs[31:28] = 0xF
1 2 2

all others 1 3 3

MIAxy N/A 1 1 1

MIAPH N/A 1 2 2

Table 33. Implicit Accumulator Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency Minimum Resource Latency 
(Throughput)

MAR 2 2 2

MRA 1 (RdLo = 2; RdHi = 3)1

1. If the next instruction needs to use the result of the MRA for a shift by immediate or as Rn in a QDADD or QDSUB, one extra
cycle of result latency is added to the number listed.

2

Table 34. Saturated Data Processing Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

QADD 1 2
QSUB 1 2
QDADD 1 2
QDSUB 1 2

Table 31. Multiply Instruction Timings (Sheet 2 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum 
Issue Latency

Minimum Result 
Latency1

Minimum Resource 
Latency (Throughput)
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3.9.4.6 Status Register Access Instructions

3.9.4.7 Load/Store Instructions

3.9.4.8 Semaphore Instructions

Table 35. Status Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRS 1 2
MSR 2 (6 if updating mode bits) 1

Table 36. Load and Store Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

LDR 1 3 for load data; 1 for writeback of base
LDRB 1 3 for load data; 1 for writeback of base
LDRBT 1 3 for load data; 1 for writeback of base
LDRD 1 (+1 if Rd is R12) 3 for Rd; 4 for Rd+1; 2 for writeback of base
LDRH 1 3 for load data; 1 for writeback of base
LDRSB 1 3 for load data; 1 for writeback of base
LDRSH 1 3 for load data; 1 for writeback of base
LDRT 1 3 for load data; 1 for writeback of base
PLD 1 N/A
STR 1 1 for writeback of base
STRB 1 1 for writeback of base
STRBT 1 1 for writeback of base
STRD 2 1 for writeback of base
STRH 1 1 for writeback of base
STRT 1 1 for writeback of base

Table 37. Load and Store Multiple Instruction Timings

Mnemonic Minimum Issue Latency1

1. LDM issue latency is 7 + N if R15 is in the register list and 2 + N if it is not. STM issue latency is calculated as 2 + N. N is
the number of registers to load or store.

Minimum Result Latency

LDM 3 – 23 1 – 3 for load data; 1 for writeback of base
STM 3 – 18 1 for writeback of base

Table 38. Semaphore Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

SWP 5 5

SWPB 5 5
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3.9.4.9 Coprocessor Instructions

3.9.4.10 Miscellaneous Instruction Timing

3.9.4.11 Thumb Instructions

The timing of Thumb instructions are the same as their equivalent ARM* instructions. This 
mapping can be found in the ARM* Architecture Reference Manual. The only exception is the 
Thumb BL instruction when H = 0; the timing in this case would be the same as an ARM* data 
processing instruction. 

3.10 Test Features
This section gives a brief overview of the Intel XScale® core JTAG features. The Intel XScale® 
core provides test features compatible with the IEEE Standard Test Access Port and Boundary Scan 
Architecture (IEEE Std. 1149.1). These features include a TAP controller, a 5-bit instruction 
register, and test data registers to support software debug. The Intel XScale® core also provides 
support for a boundary-scan register, device ID register, and other data test registers.
A full description of these features can be found in the Intel® IXP2400 and IXP2800 Network 
Processor Programmer’s Reference Manual.

Table 39. CP15 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRC 4 4

MCR 2 N/A

Table 40. CP14 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRC 7 7

MCR 7 N/A

LDC 10 N/A

STC 7 N/A

Table 41. SWI Instruction Timings

Mnemonic Minimum latency to first instruction of SWI exception handler

SWI 6

Table 42. Count Leading Zeros Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

CLZ 1 1
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3.10.1 IXP2800 Network Processor Endianness
Endianness defines the way bytes are addressed within a word. A little-endian system is one in 
which byte 0 is the least significant byte (LSB) in the word and byte 3 is the most significant byte 
(MSB). A big-endian system is one in which byte 0 is the MSB and byte 3 is the LSB. For 
example, the value of 0x12345678 at address 0x0 in a 32-bit little-endian system looks like this:

The same value stored in a big-endian system is shown in Table 44:

Bits within a byte are always in little-endian order. The least significant bit resides at bit location 0 
and the most significant bit resides at bit location 7 (7:0).

The following conventions are used in this document:

Endianness for the IXP2800 network processor can be divided into three major categories:

• Read and write transactions initiated by the Intel XScale® core:

— Reads initiated by the Intel XScale® core

— Writes initiated by the Intel XScale® core 

• SRAM and DRAM access:

— 64-bit Data transfer between DRAM and the Intel XScale® core

— Byte, word, or longword transfer between SRAM/DRAM and the Intel XScale® core

— Data transfer between SRAM/DRAM and PCI

— Microengine-initiated access to SRAM and DRAM

• PCI Accesses

— Intel XScale® core generated reads/writes to PCI in memory space

— Intel XScale® core generated read/write of external/internal PCI configuration registers

Table 43. Little-Endian Encoding

Address/Byte 
Lane 0x0/ByteLane 3 0x0/ByteLane 2 0x0/ByteLane 1 0x0/ByteLane 0

Byte Value 0x12 0x34 0x56 0x78

Table 44. Big-Endian Encoding

Address/Byte 
Lane 0x0/ByteLane 3 0x0/ByteLane 2 0x0/ByteLane 1 0x0/ByteLane 0

Byte Value 0x78 0x56 0x34 0x12

1 Byte: 8-bit data

1 Word: 16-bit data

1 Longword: 32-bit data

Longword Little-Endian
Format (LWLE)

32-bit data (0x12345678) arranged as {12 34 56 78}
64-bit data 0x12345678 9ABCDE56 arranged as {12 34 56 78 9A BC DE 56}

Longword Big-Endian format
(LWBE):

32-bit data (0x12345678) arranged as {78 56 34 12}
64-bit data 0x12345678 9ABCDE56 arranged as {78 56 34 12, 56 DE BC 9A}
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3.10.1.1 Read and Write Transactions Initiated by the Intel XScale® Core 

The Intel XScale® core may be used in either a little-endian or big-endian configuration. The 
configuration affects the entire system in which the Intel XScale® core microarchitecture exists. 
Software and hardware must agree on the byte ordering to be used. In software, a system’s
byte order is configured with CP15 register 1, the control register. Bit 7 of this register, the B bit, 
informs the processor of the byte order in use by the system. Note that this bit takes effect even if 
the MMU is not otherwise in use or enabled. The state of this bit is reflected in the cbiBigEndian 
signal.

Although it is the responsibility of system hardware to assign correct byte lanes to each byte field 
in the data bus, in the IXP2800 network processor, it is left to the software to interpret byte lanes in 
accordance with the endianness of the system. As shown in Figure 24, system byte lanes 0 – 3 are 
connected directly to the Intel XScale® core byte lanes 0 – 3. This means that byte lane 0 (M[7:0]) 
of the system is connected to byte lane 0 (X[7:0]) of the Intel XScale® core, byte lane 1 (M[15:8]) 
of the system is connected to byte lane 1 (X[15:8]) of the Intel XScale® core, etc.

Interface operation of the Intel XScale® core and the rest of the IXP2800 network processor can be 
divided into two parts:

• Intel XScale® core reading from the IXP2800 network processor

• Intel XScale® core writing to the IXP2800 network processor

3.10.1.1.1 Reads Initiated by the Intel XScale® Core

Intel XScale® core reads can be one of the following three types:

• Byte read

• 16-bits (word) read

• 32-bits (longword) read

Byte Read

When reading a byte, the Intel XScale® core generates the byte_enable that corresponds to the 
proper byte lane as defined by the endianness setting. Table 45 summarizes byte-enable generation 
for this mode.

The 4-to-1 multiplexer steers the byte read into the byte lane 0 location of the read register inside 
the Intel XScale® core. Select signals for the multiplexer are generated based on endian setting and 
ByteEnable generated by the Intel XScale® core as defined in Figure 24.

Table 45. Byte-Enable Generation by the Intel XScale® Core for Byte Transfers in Little- and
Big-Endian Systems

Byte Number 
to be Read

Byte-Enables for Little-Endian System Byte-Enables for Big-Endian System

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte 0 1 0 0 0 0 0 0 1

Byte 1 0 1 0 0 0 0 1 0

Byte 2 0 0 1 0 0 1 0 0

Byte 3 0 0 0 1 1 0 0 0
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16-Bit (Word) Read

When reading a word, the Intel XScale® core generates the byte_enable that corresponds to the 
proper byte lane as defined by the endianness setting. Figure 25 summarizes byte enable generation 
for this mode.

The 4-to-1 multiplexer steers byte lane 0 or byte lane 2 into the byte 0 location of the read register 
inside the Intel XScale® core. The 2-to-1 multiplexer steers byte lane 1 or byte lane 3 into the 
byte 1 location of the read register inside the Intel XScale® core. The Intel XScale® core does not 
allow word access to an odd-byte address. Select signals for the multiplexer are generated based on 
endian setting and ByteEnable generated by the Intel XScale® core, as defined in Figure 24. 
Table 46 summarizes byte-enable generation for this mode.

Figure 24. Byte Steering for Read and Byte-Enable Generation by the Intel XScale® Core
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32-Bit (Longword) Read

32-bit (longword) reads are independent of endianness. Byte lane 0 from the Intel XScale® core’s 
data bus gets into the byte 0 location of the read register inside the Intel XScale® core, byte lane 1 
from the Intel XScale® core’s data bus gets into the byte 1 location of the read register inside the 
Intel XScale® core, etc. The software determines byte location, based on the endian setting.

3.10.1.1.2 The Intel XScale® Core Writing to the IXP2800
Network Processor

Writes by the Intel XScale® core can also be divided into the following three categories:

• Byte Write

• Word Write (16 bits)

• Longword write (32 bits)

Byte Write

When the Intel XScale® core writes a single byte to external memory, it puts the byte in the byte 
lane where it intends to write it, along with the byte enable for that byte turned ON, based on the 
endian setting of the system. Intel XScale® core register bits [7:0] always contain the byte to be 
written, regardless of the B-bit setting. 

For example, if the Intel XScale® core wants to write to byte 0 in the little-endian system, it puts 
the byte in byte lane 0 and turns X_BE[0] to ON. If the system is big-endian, the Intel XScale® 

core puts byte 0 in byte lane 3 and turns X_BE[3] to ON. Other possible combinations of byte lanes 
and byte enables are shown in the Table 47. Byte lanes other than the one currently being driven by 
the Intel XScale® core, contain undefined data.

Table 46. Byte-Enable Generation by the Intel XScale® Core for 16-Bit Data Transfers in Little-
and Big-Endian Systems

Word to 
be Read

Byte-Enables for Little-Endian System Byte-Enables for Big-Endian System

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte 0,
Byte 1 1 1 0 0 0 0 1 1

Byte 2, 
Byte 3 0 0 1 1 1 1 0 0

Table 47. Byte-Enable Generation by the Intel XScale® Core for Byte Writes in Little- and 
Big-Endian Systems

Byte Number
to be Written

Byte-Enables for Little-Endian Systems Byte-Enables for Big-Endian Systems

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte 0 1 0 0 0 0 0 0 1

Byte 1 0 1 0 0 0 0 1 0

Byte 2 0 0 1 0 0 1 0 0

Byte 3 0 0 0 1 1 0 0 0
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Word Write (16-Bits Write)

When the Intel XScale® core writes a 16-bit word to external memory, it puts the bytes in the byte 
lanes where it intends to write them along with the byte enables for those bytes turned ON based on 
the endian setting of the system. The Intel XScale® core does not allow a word write on an 
odd-byte address. The Intel XScale® core register bits [15:0] always contain the word to be written 
regardless of the B-bit setting.

For example, if the Intel XScale® core wants to write one word to a little-endian system at address 
0x0002, it will copy byte 0 to byte lane 2 and byte 1 to byte lane 3 along with X_BE[2] and 
X_BE[3] turned ON. If the Intel XScale® core wants to write one word to a big-endian system at 
address 0x0002, it will copy byte 0 to byte lane 0 and byte 1 to byte lane 1 along with X_BE[0] and 
X_BE[1] turned ON. Table 48 shows other possible combinations of byte lanes and byte enables. 
Byte lanes other than those currently driven by the Intel XScale® core contain undefined data.

Longword (32-Bits) Write

The longword to be written is put on the Intel XScale® core’s data bus with byte 0 on X[7:0], 
byte 1 on X[15:8], byte 2 on X[23:16], and byte 4 on X[31:24] (see Figure 25). All of the byte 
enables are turned ON. A 32-bit longword write (0x12345678) by the Intel XScale® core to address 
0x0000 regardless of endianness, causes byte 0 (0x78) to be written to address 0x0000, byte 1 
(0x56) to address 0x0001, byte 2 (0x34) to address 0x0002, and byte 3 (0x12) to address 0x0003.

Table 48. Byte-Enable Generation by the Intel XScale® Core for Word Writes in Little- and
Big-Endian Systems

Word
to be 

Written

Byte-Enables for Little-Endian Systems Byte-Enables for Big-Endian Systems

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte 0, 
Byte 1 1 1 0 0 0 0 1 1

Byte 2, 
Byte 3 0 0 1 1 1 1 0 0

Figure 25. Intel XScale® Core-Initiated Write to the IXP2800 Network Processor
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3.11 Intel XScale® Core Gasket Unit

3.11.1 Overview
The Intel XScale® core uses the Core Memory Bus (CMB) to communicate with the functional 
blocks. The rest of the IXP2800 Network Processor functional blocks use the Command Push Pull 
(CPP) as the global bus to pass data. Therefore, the gasket is needed to translate Core Memory Bus 
commands to Command Push Pull commands. 

This gasket has a set of local CSRs, including interrupt registers. These registers can be accessed 
by the Intel XScale® core via the gasket internal bus.The CSR Access Proxy (CAP) is only allowed 
to do a set on these interrupt registers.

Figure 26. Intel XScale® Core-Initiated Write to the IXP2800 Network Processor (Continued)
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The Intel XScale® core coprocessor bus is not used in the IXP2800 Network Processors, therefore 
all accesses are only through the Command Memory Bus. 

Figure 27 shows the block diagram of the global bus connections to the gasket.

The gasket unit has the following features:

• Interrupts are sent to the Intel XScale® core via the gasket, with the interrupt controller 
registers used for masking the interrupts.

• The gasket converts CMB reads and writes to CPP format.

• All the atomic operations are applied on SRAM and SCRATCH only, not DRAM.

• There is a stepping-stone sitting between the Intel XScale® core and the gasket. The Intel 
XScale® core runs at 600 – 700 MHz. The gasket currently supports a 1:1 (IXP2800 Network 
Processor) clock ratio. For a 2:1 ratio, the Command Push Pull bus will be running at ½ of the 
frequency of the Intel XScale® core.

• In IXP2800 memory controllers, read after write ordering is enforced. There is no write after 
read enforcement for the Intel XScale® core. The gasket will perform enforcement by 
employing Content Addressable Memory (CAM) to detect a write to an address with read 
pending. This only applies for writes to SRAM.

• The gasket CPP interface contains one command bus, one D_Push bus, one D_Pull bus, one 
S_Push bus, and one S_Pull bus, each with a 32-bit data width. 

A maximum four outstanding reads and four outstanding writes from the Intel XScale® core are 
allowed.

Figure 27. Global Buses Connection to the Intel XScale® Core Gasket 
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3.11.2 Intel XScale® Core Gasket Functional Description

3.11.2.1 Command Memory Bus to Command Push/Pull Conversion

The primary function of the Intel XScale® core gasket unit is to translate commands initiated from 
the Intel XScale® core in the Intel XScale® core command bus format, into the IXP2800 internal 
command format (Command Push/Pull format).

Table 49 shows how many CPP commands are generated by the gasket from each CMB command. 
Write data is guaranteed to be 32-bit (longword) aligned. Table 49 shows only the Store command. 
In the Load case, the gasket simply converts it to the CPP format. No command splitting is 
required. A Load can only be a byte (8 bits), a word (16 bits), longword (32 bits), or eight 
longwords (8x32).

3.11.3 CAM Operation
In the SRAM controller, access ordering is guaranteed only for a read coming after a write. The 
gasket enforces order rules in the following two cases.

1. Write coming after a read.

2. Read-Modify-Write coming after read.

The address CAMing is on 8-word boundaries. The SRAM effective address is 28 bits. Deduct
five bits (two bits for the word address and three bits for eight words), and the tag width for the 
CAM is 23 bits wide. The CAM only operates on SRAM accesses. 

Table 49. CMB Write Command to CPP Command Conversion 

Store Length CPP SRAM 
Cmd Count

CPP DRAM 
Cmd Count Remark

Byte, word, 
longword 1 1 SRAM uses 4-bit mask, and DRAM uses an 8-bit mask.

2 longwords 1 or 2 1 or 2

SRAM: If there is any mask bit detected as ‘0’,two 
commands will be generated.
DRAM: If it starts with odd word address, two commands 
will be generated.

3 longwords 1 or 3 2
SRAM: If there is a mask bit of ‘0’ detected, Three SRAM 
commands will be generated.
DRAM: always two DRAM commands.

4 longwords 1 or 4 1 or 2

SRAM: If there is a mask bit of ‘0’ detected, four 
commands will be generated.
DRAM: If there is a mask bit of ‘0’ detected, two 
commands will be generated.

8 longwords Not allowed in a write.
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3.11.4 Atomic Operations
The Intel XScale® core has Swap (SWP) and Swap Byte (SWPB) instructions that generate an 
atomic read-write pair to a single address. These instructions are supported for the SRAM and 
Scratch space, and also to any other address space if it is done by a Read command followed by 
Write command. 

cbiIO is asserted when a data cache request is initiated to a memory region with cacheable and 
bufferable bits in the translation table first-level descriptor set to 0. Also, if cbiIO is asserted during 
the CMB read portion of the SWP, then it also does a Read Command followed by Write 
Command, regardless of address. In those cases, the SWP/SWPB is atomic with respect to 
processes running on the Intel XScale® core, but not with respect to the Microengines. 

The following summarizes the Atomic operation.

When the Intel XScale® core presents the read command portion of the SWP, it will assert the 
cbiLock signal. The gasket will “ack” the read and save the BufID in the push_ff. It will not 
arbitrate for the command bus at that time; rather it will wait for the corresponding write of the 
SWP (which will also have cbiLock asserted). At that time the gasket will arbitrate for the 
command bus to send a command with the atomic operation in the command field (the command is 
based on the address space chosen for the SRAM/Scratch, which has multiple aliased address 
ranges). 

The SRAM or Scratch controller will pull the data, do the atomic read-modify-write, and then push 
the read data back. The gasket will use the saved BufID when returning the data to CMB. 

Note: Unrelated reads, such as instruction and Page Table fetches, can come in the interval between the 
read-lock and write-unlock, and will be handled by the gasket. No other data reads or writes will 
come in that interval. Also, the Intel XScale® core will not wait for the SWP read data before 
presenting the write data.

The gasket uses address aliases to generate the following atomic operations.

• Bit Set

• Bit Clear

• Add

• Subtract

• Swap

For the alias address type of atomic operation, the Intel XScale® core will issue a SWP command 
with an alias address if it needs data return. The Intel XScale® core will use the write command 
with an alias address if it does not need data return.

Xscale_IF will not check the second address, as long as it detects one write after one read, both 
with cbiLock enabled. It will take the write address and put it in the command.

Address Space cbiIO Operation

SRAM/Scratch 0 RMW Command

Not SRAM/Scratch x Read Command followed by Write Command

Any 1 Read Command followed by Write Command
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3.11.4.1 Summary of Rules for the Atomic Command Regarding I/O

The following rules summarize the Atomic command, regarding I/O.

• SWP to SRAM/Scratch and Not cbiIO, Xscale_IF generates an Atomic operation command.

• SWP to all other Addresses that are not SRAM/Scratch, will be treated as separate read and 
write commands. No Atomic command is generated.

• SWP to SRAM/Scratch and cbiIO, will be treated as separate read and write commands. No 
Atomic command is generated.

3.11.4.2 Intel XScale® Core Access to SRAM Q-Array

The Intel XScale® core can access the SRAM controllers queue function to do buffer allocation 
and freeing. Allocation does a SRAM dequeue (deq) operation, and freeing does a SRAM enqueue 
(enq) operation. Alias addresses are used as shown in Table 50 to access the freelist. Each SRAM 
channel supports up to 64 lists, so there are 64 addresses per channel.

Address 7:2 selects which Queue_Array entry within the SRAM channel is used.

Doing a load to an address in the table will do a deq, and the SRAM controller returns the 
dequeued information (i.e., the buffer pointer) as the load data; a store to an address in the table 
will do an enq, and the data to be enqueued is taken from the Intel XScale® core store data.

The gasket generates command fields as follows, based on address and cbiLd:

Target_ID = SRAM (00 0010)
Command = deq (1011) if cbiLd, enq (1100) if ~cbiLd
Token[1:0] = 0x0
Byte_Mask = 0xFF
Length = 0x1
Address = {XScale_Address[23:22], XScale_Address[7:2], XScale_Write_Data[25:2]}

Note: On the command bus, address[31:30] selects the SRAM channel, address[29:24] is the Q_Array 
number, and address[23:0] is the SRAM longword address. For Dequeue, the SRAM controller 
ignores address[23:0].

Table 50. IXP2800 Network Processor SRAM Q-Array Access Alias Addresses

Channel Address Range

0 0xCC00 0100 – 0xCC00 01FC

1 0xCC40 0100 – 0xCC40 01FC

2 0xCC80 0100 – 0xCC80 01FC

3 0xCCC0 0100 – 0xCCC0 01FC
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3.11.5 I/O Transaction
The Intel XScale® core can request an I/O transaction by asserting xsoCBI_IO concurrently with 
xsoCBI_Req. The value of xsoCBI_IO is undefined when xsoCBI_Req is not asserted. When the 
gasket sees an I/O request with xsoCBI_IO asserted, it will raise xsiCBR_Ack but will not 
acknowledge future requests until the IO transaction is complete. The gasket will check if all of the 
command FIFOs and write data FIFOs are empty or not. It will also check if the command counters 
(SRAM and DRAM) are equal to 0. All of these checks are to guarantee that:

• Writes are issued to the target, and targets have pulled the data.

• Pending reads have their data all back to the gasket.

When the gasket sees that all of the conditions are satisfied, it will assert xsiCBR_SynchDone to 
the Intel XScale® core. XsiCBR_SynchDone is one cycle long and does not need to coincide with 
xsiCBR_DataValid.

3.11.6 Hash Access
Hash accesses are accomplished by the gasket Local_CSR accesses from the Intel XScale® core. 
There are two sets of registers in the gasket that are involved in Hash accesses.

• Four 32-bit XG_GCSR_Hash[3:0] registers for holding the data to be hashed and index 
returned as well. 

• A XG_GCSR_CTR0(valid) register to hold the status of the Hash Access.

The procedure for the Intel XScale® core to setup a Hash access is as follows.

1. The Intel XScale® core writes data to XG_GCSR_Hash by Local_CSR access, using address 
[X:yy:zz]. X selects Hash register set, yy selects hash_48, hash_64, or hash_128 mode, and zz 
selects one of four Hash_Data registers.

2. The data write order is 3-2-1-0 (for hash_128) and 1-0 (for hash_48 or hash_64). When the 
data write to Hash_Data[0] is performed, it triggers the Hash request to go out on the CPP bus. 
At the same time, XG_GCSR_Hash(valid) is cleared by hardware. 

3. The Intel XScale® core starts to poll Hash_Result_Valid periodically by Local_CSR read.

4. After a period of time, the Hash_Result is returned to XG_GCSR_Hash, and 
XG_GCSR_CTR0(valid) is set to indicate that Hash_Result is ready to be retrieved.

5. The Intel XScale® core issues a Local_CSR read to read back the Hash_Result.

Note: Each Hash command requests only one index returned.

The Hash CSR is in the gasket local CSR space. See Section 3.11.7.
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3.11.7 Gasket Local CSR
There are two sets of Control and Status registers residing in the gasket Local CSR space. ICSR 
refers to the Interrupt CSR. The ICSR address range is 0xd600_0000 – 0xd6ff_ffff. The Gasket 
CSR (GCSR) refers to the Hash CSRs and debug CSR. It has a range of 
0xd700_0000 – 0xd7ff_ffff. GCSR is shown in Table 51.

Note: The Gasket registers are defined in the IXP2400 and IXP2800 Network Processor Programmer’s 
Reference Manual.

Table 51. GCSR Address Map (0xd700 0000)

Bits Name R/W Description Address Offset 

[31:0] XG_GCSR_HASH0 R/W

Hash word 0
Write from Intel XScale® 
core.
Rd/Wr from CPP.

0x00—for 48-bit Hash
0x10—for 64-bit Hash
0x20—for 128-bit Hash

[31:0] XG_GCSR_HASH1 R/W

Hash word 1
Write from Intel XScale® 
core.
Rd/Wr from CPP.

0x04—for 48-bit Hash
0x14—for 64-bit Hash
0x24—for 128-bit Hash

[31:0] XG_GCSR_HASH2 R/W

Hash word 2
Write from Intel XScale® 
core.
Rd/Wr from CPP.

0x28—for 128-bit Hash

[31:0] XG_GCSR_HASH3 R/W

Hash word 3
Write from Intel XScale® 
core.
Rd/Wr from CPP.

0x2c—for 128-bit Hash

[31:0] XG_GCSR_CTR0 R

[31:1] reserved. 
[0] hash valid flag.
Read from Intel XScale® 
core.
Set by LCSR control.

0x30

[31:0] XG_GCSR_CTR1 R/W

[31:1] reserved. 
[0] Break_Function
When set to 1, the debug 
break signal is used to stop 
the clocks. 
When set to 0, the debug 
break signal is used to 
cause an Intel XScale® 
core debug breakpoint

0x3c
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3.11.8 Interrupt
The Intel XScale® core CSR controller contains local CSR(s) and interrupts inputs from multiple 
sources. The diagram in Figure 28 shows the flow through the controller.

Within the Interrupt/CSR register block there are raw status registers, enable registers, and local 
CSR(s). The raw status registers are the un-masked interrupt status. These interrupt status are 
masked or steered to theIntel XScale® core’s IRQ or FIQ inputs by multiple levels of enable 
registers. 

Refer to Figure 29.

• {IRQ,FIQ}Status = (RawStatus & {IRQ,FIQ}Enable)

• {IRQ,FIQ}ErrorStatus = (ErrorRawStatus & {IRQ,FIQ}ErrorEnable)

• {IRQ,FIQ}ThreadStatus_$_# = ({IRQ,FIQ}ThreadRawStatus_$_# & 
{IRQ,FIQ}ThreadEnable_$_#)

Each interrupt input is visible in the RawStatus register and is masked or steered by two level of 
interrupt enable registers. The error and thread status are masked by one level of enable registers. 
Their combination along with other interrupt sources contributes to the RawStatusReg. The 
RawStatus is masked via IRQEnable/FIQEnable to trigger the IRQ and FIQ interrupt to the Intel 
XScale® core.

The enable register’s bits are set and cleared through EnableSet and EnableClear registers. The 
Status, RawStatus, and Enable registers are read-only, and EnableSet and EnableClear are 
write-only. Also, Enable and EnableSet share the same address for reads and writes respectively.

Note that software needs to take into account the delay between the clearing of an interrupt 
condition and having its status updated in the RawStatus registers. Also in the case of simultaneous 
writes to the same registers, the value of the last write is recorded.

Figure 28. Flow Through the Intel XScale® Core Interrupt Controller
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Figure 29. Interrupt Mask Block Diagram
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3.12 Intel XScale® Core Peripheral Interface
This section describes the Intel XScale® core Peripheral Interface unit (XPI). The XPI is the block 
that connects to all the slow and serial interfaces that communicate with the Intel XScale® core 
through the APB. These can also be accessed by the Microengines and PCI unit. 

This section does not describe the Intel XScale® core interface protocol, only how to interface with 
the peripheral devices connected to the core. The I/O units described are:

• UART

• Watchdog timers

• GPIO

• Slowport 

All the peripheral units are memory mapped from the Intel XScale® core point of view.

3.12.1 XPI Overview
Figure 30 shows the XPI location in the IXP2800 Network Processor. The XPI receives read and 
write commands from the Command Push Pull bus to addresses the memory has mapped to I/O 
devices. 

The SHaC (Scratchpad, Hash Unit, and CSRs) acts like a bridge to control the access from the Intel 
XScale® core or other host (like the PCI Unit). The extended APB is used to communicate between 
the XPI and the SHaC. The extended APB has only one signal, APB_RDY, added. This signal is 
used to tell the SHaC when the transaction should be terminated. 

The XPI is responsible for passing the data between the extended APB and the internal blocks, like 
the UART, GPIO, Timer, and Slowport, which will in turn pass these data to an external peripheral 
device with a corresponding bus format.

The XPI is always a master on the Slowport bus and all the Slowport devices act like slaves. On the 
other side, the SHaC is always the master and the XPI is the slave with respect to the APB. 
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3.12.1.1 Data Transfers

The current rate for data transfers is four bytes, except for the Slowport. The 8-bit and 16-bit 
accesses are only available in the Slowport bus. The devices connected to the Slowport dictate this 
data width. The user has to configure the data width register resident in the Slowport to run a 
different type of data transaction. There is no burst to Slowport.

3.12.1.2 Data Alignment

For all the CSR accesses, a 32-bit data bus is assumed. Therefore, the lower two bits of the address 
bus are ignored.

For the Slowport accesses, 8-, 16-, or 32-bit data access is dictated by the external device 
connected to the Slowport. The APB Bus should be able to match the data width according to 
which devices it is talking to. 

SeeTable 52 for additional details on data alignment.

Figure 30. XPI Interfaces for IXP2800 Network Processor
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3.12.1.3 Address Spaces for XPI Internal Devices

Table 53 shows the address space assignment for XPI devices.

Table 52. Data Transaction Alignment

Interface Units APB Bus Read Write

GRegs 32 bits 32 bits 32 bits

UART 32 bits 32 bits 32 bits

GPIO 32 bits 32 bits 32 bits

Timer 32 bits 32 bits 32 bits

Slowport
Microprocessor Access

8 bits 8 bits 8 bits

16 bits 16 bits 16 bits

32 bits 32 bits 32 bits

Slowport
Flash Memory Access1

1. The flash memory interface only supports 8-bit wide flash devices. APB write transactions are assumed to be 8-bits wide,
and correspond to one write cycle at the flash interface. APB read transactions are assumed to be 32-bits wide, and corre-
spond to four flash read cycles for the 32-bit read mode set in the SP_FRM register. However, for the flash register read
mode (8-bit read mode), it only needs one flash read cycle of 8-bit data and passes it back to APB directly. By default, the
32-bit read mode is set. It is advisable to stay in this mode most of the time and not change them dynamically during ac-
cesses.

32 bits for 32-bit read mode, 8 
bits for register read mode;
8 bits for write;

Assemble 8 bits into 32-bit data for 
32-bit read mode; 8 bits for register 
read mode (8-bit read mode).

8 bits

CSR Access 32 bits 32 bits 32 bits

Table 53. Address Spaces for XPI Internal Devices

Units Starting Address Ending Address

GPIO 0xC0010000 0xC0010040

TIMER 0xC0020000 0xC0020040

UART 0xC0030000 0xC003001C

PMU 0xC0050000 0xC0050E00

Slowport CSR 0xC0080000 0xC0080028

Slowport Device 0xC4000000 0xC7FFFFFF
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3.12.2 UART Overview
The UART performs serial-to-parallel conversion on data characters received from a peripheral 
device and parallel-to-serial conversion on data characters received from the network processor. 
The processor can read the complete status of the UART at any time during the functional 
operation. Available status information includes the type and condition of the transfer operations 
being performed by the UART and any error conditions (parity, overrun, framing, or break 
interrupt).

The serial ports can operate in either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit 
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO 
buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator that is capable of dividing the clock input 
by divisors of 1 to 216 - 1 and produces a 16X clock to drive the internal transmitter logic. It also 
drives the receive logic. The UART has a processor interrupt system. The UART can be operated in 
polled or in interrupt driven mode as selected by software.

The UART has the following features

• Functionally compatible with National Semiconductor*’s PC16550D for basic receive and 
transmit.

• Adds or deletes standard asynchronous communications bits (start, stop, and parity) to or from 
the serial data

• Independently controlled transmit, receive, line status

• Programmable baud rate generator allows division of clock by 1 to (216 - 1) and generates an 
internal 16X clock

• 5-, 6-, 7-, or 8-bit characters

• Even, odd, or no parity detection

• 1, 1½, or 2 stop bit generation

• Baud rate generation

• False start bit detection

• 64-byte Transmit FIFO

• 64-byte Receive FIFO

• Complete status reporting capability

• Internal diagnostic capabilities include:

— Break

— Parity

— Overrun

— Framing error simulation

• Fully prioritized interrupt system controls
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3.12.3 UART Operation
The format of a UART data frame is shown in Figure 31.

Figure 31. UART Data Frame
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The UART has one transmit FIFO and one receive FIFO. The transmit FIFO is 64 bytes deep and 
eight bits wide. The receive FIFO is 64 bytes deep and 11 bits wide.
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When the Receive FIFO and receiver interrupts are enabled (UART_FCR[0]=1 and 
UART_IER[0]=1), receiver interrupts occur as follows:

• The receive data available interrupt is invoked when the FIFO has reached its programmed 
trigger level. The interrupt is cleared when the FIFO drops below the programmed trigger 
level.

• The UART_IIR receive data available indication also occurs when the FIFO trigger level is 
reached, and like the interrupt, the bits are cleared when the FIFO drops below the trigger 
level.

• The receiver line status interrupt (UART_IIR = C6H), as before, has the highest priority. The 
receiver data available interrupt (UART_IIR=C4H) is lower. The line status interrupt occurs 
only when the character at the top of the FIFO has errors.

• The data ready bit (DR in UART_LSR register) is set to 1 as soon as a character is transferred 
from the shift register to the Receive FIFO. This bit is reset to 0 when the FIFO is empty.
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Character Time-out Interrupt

When the receiver FIFO and receiver time-out interrupt are enabled, a character time-out interrupt 
occurs when all of the following conditions exist:

• At least one character is in the FIFO.

• The last received character was longer than four continuous character times ago (if two stop 
bits are programmed the second one is included in this time delay).

• The most recent processor read of the FIFO was longer than four continuous character times 
ago.

The maximum time between a received character and a time-out interrupt is 160 ms at 300 baud 
with a 12-bit receive character (i.e., 1 start, 8 data, 1 parity, and 2 stop bits).

When a time-out interrupt occurs, it is cleared and the timer is reset when the processor reads one 
character from the receiver FIFO. If a time-out interrupt has not occurred, the time-out timer is 
reset after a new character is received or after the processor reads the receiver FIFO.

Transmit Interrupt

When the transmitter FIFO and transmitter interrupt are enabled (UART_FCR[0]=1, 
UART_IER[1]=1), transmit interrupts occur as follows:

• The Transmit Data Request interrupt occurs when the transmit FIFO is half empty or more 
than half empty. The interrupt is cleared as soon as the Transmit Holding register is written 
(1 to 64 characters may be written to the transmit FIFO while servicing the interrupt) or the IIR 
is read.

3.12.3.1.2 FIFO Polled Mode Operation

With the FIFOs enabled (TRFIFOE bit of UART_FCR set to 1), setting UART_IER[4:0] to all 0s 
puts the serial port in the FIFO polled mode of operation. Since the receiver and the transmitter are 
controlled separately, either one or both can be in the polled mode of operation. In this mode, 
software checks receiver and transmitter status via the UART_LSR. As stated in the register 
description:

• UART_LSR[0] is set as long as there is one byte in the receiver FIFO.

• UART_LSR[1] through UART_LSR[4] specify which error(s) has occurred for the character 
at the top of the FIFO. Character error status is handled the same way as interrupt mode. The 
UART_IIR is not affected since UART_IER[2] = 0.

• UART_LSR[5] indicates when the transmitter FIFO needs data.

• UART_LSR[6] indicates that both the transmitter FIFO and shift register are empty.

• UART_LSR[7] indicates whether there are any errors in the receiver FIFO.

3.12.4 Baud Rate Generator
The baud rate generator is a programmable block and generates a clock used in the transmit block. 
The output frequency of the baud rate generator is 16X the baud rate; baud rate is calculated as:

BaudRate = APB Clock / (16 X Divisor)

The Divisor ranges from 1 to 216 - 1. For example, for an APB clock of 1 MHz and a baud rate of 
300 bps, the divisor is 209.
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3.12.5 General Purpose I/O (GPIO)
The IXP2800 Network Processor has eight General Purpose Input/Output (GPIO) port pins for use 
in generating and capturing application-specific input and output signals. Each pin is 
programmable as an input or output or as an interrupt signal sourcing from an external device. The 
GPIO can be used with appropriate software in I2C application.

Each GPIO pin can be configured as a input or an output by programming the corresponding GPIO 
pin direction register. When programmed as an input, the current state of the GPIO can be read 
through the corresponding GPIO pin level register. The register can be read at any time and can be 
used to confirm the state of the pin when it is configured as an output. In addition, each GPIO pin 
can be programmed to detect a rising or a falling edge by setting the corresponding GPIO rising/
falling edge detect registers. 

When configured as an output, the pin can be controlled by writing to the GPIO set register to write 
a 1 and by writing to the GPIO clear register to write a 0. These registers can be written regardless 
of whether the pin is configured as an input or a output.

Each of the GPIO pins is designed the same and instantiated to the number of GPIO port pins. 
Figure 32 shows a GPIO functional diagram. The GPIO pin as seen can be programmed based on 
the configuration registers.

Figure 32. GPIO Functional Diagram
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3.12.6 Timers
The IXP2800 Network Processor supports four timers. These timers are clocked by the Advanced 
Peripheral/Bus Clock (APB-CLK), which runs at 50 MHz to produce the PLPL_APB_CLK, 
PLPL_APB_CLK/16, or PLPL_APB_CLK/256 signals. The counters are loaded with an initial 
value, count down to 0, and raise an interrupt (if interrupts are not masked). 

In addition, timer 4 can be used as a watchdog timer when the watchdog enable bits are configured 
to 1. When used as a watchdog timer, and when a count of 0 is encountered, it will initiate the reset 
sequence.

Figure 33 shows the timer control unit interfacing with other functional blocks.

3.12.6.1 Timer Operation

Each timer consists of a 32-bit counter.

By default, the timer counter load register (TCLD) is set to 0xFFFFFFFF. The timer will count 
down from 0xFFFFFFFF to 0x00000000, then wrap back to 0xFFFFFFFF and continue to 
decrement if the TCLD is not programmed to any value. If a different value is programmed in the 
TCLD, then the counter will load this value every time it counts down to 0.

An interrupt is issued to the Intel XScale® core whenever the counter reaches 0. The interrupt 
signals can be enabled or disabled by the IRQEnable/FIQEnable registers. The interrupt remains 
asserted until it is cleared by writing a 1 to the corresponding timer clear register (TCLR).

The counter can be advanced by the clock, clock divided by 16, clock divided by 256, and the 
GPIO signals. The clock rate is controlled by the TCTL value programmed into the TCTL 
registers. There are four gpio signals, GPIO[3:0] that correspond to Timer 1, 2, 3, and 4, 
respectively. These signal are synchronized within the timer-clock domain before driving the 
counter.

Figure 33. Timer Control Unit Interfacing Diagram
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Figure 34 shows the Timer Internal logic.

3.12.7 Slowport Unit
The IXP2800 Network Processor Slowport Unit supports basic PROM access and 8-, 16-, and 
32-bit microprocessor device access. It allows a master, (Intel XScale® core or Microengine), to do 
a read/ write data transfer to these slave devices.

The address bus and data bus are multiplexed to reduce the pin count. In addition, the address bus 
is also compressed from A[25:0] down to A[7:0] and shifted out with three clock cycles. Therefore, 
an external set of buffers is needed for address storage and latch.

The access can be asynchronous. Insertion of delay cycles is possible for both setup and hold data. 
A programmable timing control mechanism is provided for this purpose. There are two types of 
interfaces supported in the Slowport Unit:

• Flash memory interface

• Microprocessor interface. 

Figure 34. Timer Internal Logic Diagram
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The Flash memory interface is used for the PROM device. The microprocessor interface can be 
used for SONET/SDH Framer microprocessor access. 

There are two ports in the Slowport unit. The first is dedicated to the flash memory device while 
the second to the microprocessor device.

3.12.7.1 PROM Device Support

For all the Flash Memory access, only 8-bit devices are supported. APB write transactions are 
assumed to be 8-bits wide, and correspond to one write cycle at the flash interface. The extended 
APB read transactions are assumed to be 32-bits wide, and correspond to four read cycles at the 
flash memory interface for all the flash memory data read. However, for the flash register read 
inside the flash memory, like the flash status register, the returned data is one byte and placed in the 
lower order byte location. In this case, only one external transaction cycle is involved.

To accomplish this, a register (SP_FRM) is installed to allow to configure between 8-bit read mode 
and 32-bit read mode. By default, it goes to 32-bit read mode. For the 8-bit read mode, one read 
cycle is involved. No packing process is needed. The data will be directly placed onto the lower 
order byte, [7:0] and passed to APB. For the 32-bit read mode, it needs four read cycles. All 4 bytes 
are packed into a 32-bit data and passed to the APB. 16-bit mode is not supported for read.

Write always accesses the flash with one 8-bit cycle. Therefore, no unpacking process is needed. 
The PROM devices supported are listed in Figure 54:

3.12.7.2 Microprocessor Interface Support for the Framer

The Slowport Unit also supports a microprocessor interface with Framer components. Some 
supported devices are listed in Table 55:

Table 54. 8-Bit Flash Memory Device Density

Vendor Part Number Size

Intel 28F128J3A 16 MB

Intel 28F640J3A 8 MB

Intel 28F320J3A 4 MB

Table 55. SONET/SDH Devices (Sheet 1 of 2)

Vendor Part Number  Microprocessor 
Interface

SP_PCR register 
Setting

DW Setting in 
SP_ADC register

PMC-Sierra* PM3386 16 bits 0x3 0x1

PMC-Sierra* PM5345 8 bits 0x2 0x0

PMC-Sierra* PM5346 8 bits 0x2 0x0

PMC-Sierra* PM5347 8 bits 0x2 0x0

PMC-Sierra* PM5348 8 bits 0x2 0x0

PMC-Sierra* PM5349 8 bits 0x2 0x0

PMC-Sierra* PM5350 8 bits 0x2 0x0

PMC-Sierra* PM5351 8 bits 0x2 0x0

PMC-Sierra* PM5352 8 bits 0x2 0x0
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3.12.7.3 Slowport Unit Interfaces

Figure 35 shows the Slowport unit interface diagram.

PMC-Sierra* PM5355 8 bits 0x2 0x0

PMC-Sierra* PM5356 8 bits 0x2 0x0

PMC-Sierra* PM5357 8 bits 0x2 0x0

PMC-Sierra* PM5358 16 bits 0x2 0x1

PMC-Sierra* PM5381 16 bits 0x2 0x1

PMC-Sierra* PM5382 8 bits 0x2 0x0

PMC-Sierra* PM5386 16 bits 0x2 0x1

AMCC* S4801 (AMAZON) 8 bits 0x0 0x0

AMCC* S4803 (YUKON) 8 bits 0x0 0x0

AMCC* S4804 (RHINE) 8/16 bits 0x0/0x3 0x0/0x1

Intel IXF6012 (Volga) 16 bits 0x3/0x41 0x1

Intel IXF6048 (Amazon-A) 16 bits 0x3/0x41 0x1

Intel Centaur — 0x3/0x41 —

Intel IXF6501 — 0x3/0x41 —

Intel Ben Nevis 32 bits 0x3/0x41 0x2

Lucent* TDAT042G5 16 bits 0x1/ 0x1

Lucent* TDAT04622 16 bits 0x1 0x1

Lucent* TDAT021G2 16 bits 0x1 0x1

1. Usually there are two different protocols, Intel or Motorola*, of microprocessor interface in the Intel framer; the setting in the
PCR should match with protocols activated in the framer.

Table 55. SONET/SDH Devices (Sheet 2 of 2)

Vendor Part Number  Microprocessor 
Interface

SP_PCR register 
Setting

DW Setting in 
SP_ADC register

Figure 35. Slowport Unit Interface Diagram
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3.12.7.4 Address Space

The total address space is defined as 64 Mbytes, which is further divided into two segments of 
32 Mbytes each. Two devices can be connect to this bus. If these peripheral devices have a density 
of 256 Mbits (32 Mbytes) each, all the address space is going to be filled like a contiguous address 
space. However, if a small capacity device is used (like a device of 4, 8, or 16 MBytes), there will 
be a memory hole left in between these two devices. Figure 36 is a 4-Mbyte memory example. 
Trying to read the space in between, you will get the repeating value for each 4-Mbyte location

3.12.7.5 Slowport Interfacing Topology

Figure 37 demonstrates one of the topologies used to connect to an 8-bit device. From the diagram, 
we can observe that address is shifted out eight bits at a time and buffered into three 74F377 or 
equivalent tri-state buffer devices in three consecutive clock cycles. These buffers also output 
separately to form a 25-bit wide address bus to address the 8-bit devices. The data are expected to 
be driven out after the address has been placed into the buffers.

There are two devices shown in Figure 37. The top one is the fix-timed device, while the lower 
one, self-timing device. For the self-timing device, the access latency depends on the SP_ACK_L 
responded back from this device.

Three extra signals, SP_CP, SP_OE_L, and SP_DIR, are added to pack and unpack the data when a 
16-bit or 32-bit device is hooked up to Slowport. They are used for special application only as 
described below.

Figure 36. Address Space Hole Diagram
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3.12.7.6 Slowport 8-Bit Device Bus Protocols

The write/read transfer protocols are discussed in the following sections. The burst transfers are 
going to be broken down into single mode transfer. For each single write/read transaction, it can be 
either fixed-timed transaction or self-timing transaction. The fixed-timed transaction has the 
response fixed in a certain period, that can be controlled by the timing control registers. 

For the self-timing transaction, the response timing is dictated by the peripheral device. Hence, 
wait states can be inserted during the transaction. All the back-to-back transactions are intervened 
with one clock cycle. The Slowport clock, SP_CLK, shown in the following waveform diagrams, 
is generated by dividing the PLPL_APB_CLK. The divisor used is specified in the clock control 
register, SP_CCR.

Figure 37. Slowport Example Application Topology
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3.12.7.6.1 Mode 0 Single Write Transfer for Fixed-Timed Device

Figure 38, shows the single write transfer for a fixed-timed device with the CSR programmed to a 
value of setup=4, pulse width=0, and hold=2, followed by another read transfer.

The transaction is initiated with SP_ALE_L asserted. It latches the address from the SP_AD[7:0] 
bus into the external buffer, using three clock cycles. After that, it should deassert the SP_ALE_L 
to disable latching the address into the buffers.

The SP_A[1:0] signals span the whole transaction cycle.

For the write, it drives the data onto the SP_AD[7:0]. Meanwhile, it asserts the SP_CS_L[1:0] 
signals. Depending on the timing control setup parameter, for this case, the SP_WR_L is not 
asserted until four clock cycles have elapsed. The SP_CS_L[1:0] signals are deasserted two clocks 
after the SP_WR_L is deasserted.

Figure 38. Mode 0 Single Write Transfer for a Fixed-Timed Device
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3.12.7.6.2 Mode 0 Single Write Transfer for Self-Timing Device

Figure 39 depicts the single write transfer for a self-timing device with the CSR programmed to 
setup=4, pulse width=0, and hold=3. Similarly, a read transaction is attached behind.

Similar to the single write for fixed-timed device, the ALE_L, CS_L[1:0], AD[7:0], and A[1:0] 
follow the same pattern, and the timing is controlled by the timing control register — except for the 
WR_L, which is terminated depending on the SP_ACK_L returned from the self-timing device.

The time-out counter will be set to 255. If no SP_ACK_L responds back when the time-out counter 
reaches 0, the transaction is terminated with a time-out. An interrupt signal is issued to the bus 
master simultaneously with the time-out register update.

Figure 39. Mode 0 Single Write Transfer for a Self-Timing Device
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3.12.7.6.3 Mode 0 Single Read Transfer for Fixed-Timed Device

Figure 40 demonstrates the single read transfer issued to a fixed-timed PROM device followed by 
another write transaction. The CSR is assumed to be configured to the value setup=2,
pulse width=10, and hold=1.

The address is loaded onto the external buffer in three clock cycles with the ALE_L asserted. Then, 
a clock cycle is inserted to tri-state all the AD[7:0] signals. The CS_L[1:0] signals come asserted 
on the fourth clock cycle. Now, the values stored in the timing control registers take effect. The 
RD_L is asserted after two clock cycles. It keeps asserted for ten clock cycles. The CS_L[1:0] 
should be de-asserted one clock cycle after RD_L is de-asserted. The data will be valid at clock 
cycle 16 as shown in the diagram. Since the hold delay has two cycles, and the transaction is 
terminated at clock cycle 16.

Figure 40. Mode 0 Single Read Transfer for Fixed-Timed Device
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3.12.7.6.4 Single Read Transfer for a Self-Timing Device

Figure 41 demonstrates the single read transfer issued to a self-timing PROM device followed by 
another write transaction. The CSR assumed to be programmed to the value of setup=4, 
pulse width=0, and hold=2.

The only difference for self-timed mode is in the SP_ACK_L signal. It has a dominant effect on the 
length of the transaction cycle or it overrides the value in the timing control register. A time-out 
counter is set to 256. The SP_ACK_L should arrive before the time-out counter counts down to 0. 
Similarly to the single write for self-timing device, an interrupt is launched for the time-out event 
and the time-out register is updated. In this case, the data will be sampled at clock cycle 12.

3.12.7.7 SONET/SDH Microprocessor Access Support

To support the SONET/SDH Microprocessor Interface, extra logic is added into this unit. Here we 
consider three SONET/SDH available components, including the Lucent* TDAT042G5, 
PMC-Sierra* PM5351, Intel, and AMCC* SONET/SDH devices.

However, because these microprocessor interfaces are not standardized, we treat them separately 
and a configuration register is installed to activate the bus to work with different interface protocol 
at a time. Extra pins are also added to accomplish this task.

A microprocessor interface type register is used to provide these kinds of solutions. The user is 
allowed to configure the interface to the following four different modes. The pin functionality and 
the interface protocol will be changed accordingly. By default, it activates the mode 0 with 8-bit 
generic PROM device support as mentioned above.

Figure 41. Mode 0 Single Read Transfer for a Self-Timing Device
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3.12.7.7.1 Mode 1: 16-Bit Microprocessor Interface Support with 
16-Bit Address Lines

The address size control register is programmed to 16-bit address space for this case. This mode is 
designated for the devices with the similar protocol with the Lucent* TDAT042G5 SONET/SDH 
device.

16-Bit Microprocessor Interfacing Topology with 16-Bit address lines

Figure 42 shows a solution for the 16-bit microprocessor interface. This solution bridges the 
Lucent* TDAT042G5 SONET/SDH 16-bit interface. From Figure 42, we observe that the control 
pins SP_RD_L and SP_WR_L are converted to R/W and ADS. The CS and DT are still 
compactible with SP_CS_L[1] and SP_ACK_L protocol.

Extra pins are added to accomplish the task of multiplexing and demultiplexing the data bus. The 
total pin count is 18.

During the write cycle, 8-bit data are stacked into 16-bit data. They are first shifted into two 
tri-state buffers, 74F646 or equivalent by SP_CP, using two consecutive clock cycle; then the 
SP_CS_L is used for output of the 16-bit data, which is shared with the CS.

During the read cycle, the 16-bit data are unpacked into 8-bit data by SP_CP. Two 74F646 or 
equivalent tri-state buffers are used. First, the 16-bit data are stored into these buffers. Then they 
are shifted out by SP_DIR, using two consecutive clock cycles.
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Figure 42. An Interface Topology with Lucent* TDAT042G5 SONET/SDH
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16-Bit Microprocessor Write Interface Protocol
Figure 43 uses the Lucent* TDAT042G5 device. In this case, the user should program the P_PCR 
register to mode 1 and also program the write timing control register to setup=7, pulse width=5, 
and hold=1, which represent seven clock cycles for CS, five clock cycles for DT delay, and one 
clock cycle for ADS. They are intervened with two idle cycles.

From Figure 43, we observe that there are a total of twelve clock cycles used for write access, 
(i.e., 240 ns), not including an intervened turnaround cycle after the write transaction. The 
throughput is 8.3 Mbytes per second.

Figure 43. Mode 1 Single Write Transfer for Lucent* TDAT042G5 Device (B0)
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16-Bit Microprocessor Read Interface Protocol

Figure 44, likewise depicts a single read transaction launched from the IXP2800 Network 
Processor to the Lucent* TDAT042G5 device followed by a single read transaction. However, in 
this case the read timing control register has to be programmed to setup=0, pulse width=7, and 
hold =0.

In Figure 44, we can count twelve clock cycles used for the read transaction in total, (i.e., 240 ns) 
for a clock cycle of 10 ns, excluding a turnaround cycle after that. It has the throughput of 7.7 
Mbytes per second.

Figure 44. Mode 1 Single Read Transfer for Lucent* TDAT042G5 Device (B0)
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3.12.7.7.2 Mode 2: Interface with 8 Data Bits and 11 Address Bits

This application is designed for the PMC-Sierra* PM5351 S/UNI-TETRA* device. For the
PMC-Sierra* PM5351, the address space is programmed to 11 bits; otherwise, other address space 
should be specified.

8-Bit PMC-Sierra* PM5351 S/UNI-TETRA* Interfacing Topology

Figure 45 displays one of the topologies used to connect to the Slowport with the PMC-Sierra* 
PM5351 S/UNI-TETRA* device.

From Figure 45, because the protocols are very close to the generic Slowport protocol, the pin 
counts and the functionality is quite compatible. We do not need to use any more pins in this case. 
The only difference is in the INTB signal, which will be connected to the SP_ACK_L. Therefore, 
the SP_ACK_L needs to be converted to an interrupt signal.

Also because the address contains only 11bits, two 74F377 or equivalent buffers are needed.

The AS field in the SP_ADC register should be programmed to a 16-bit addressing space with the 
upper five address bits unconnected.

The timing controls are similar to the generic case.

Figure 45. An Interface Topology with PMC-Sierra* PM5351 S/UNI-TETRA*
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PMC-Sierra* PM5351 S/UNI-TETRA* Write Interface Protocol

Figure 46 depicts a single write transaction launched from the IXP2800 to the PMC-Sierra* 
PM5351 device followed by single read transaction.
The write transaction for the PMC-Sierra* component has six clock cycles or a 120-ns access time 
for a 50-MHz Slowport clock. In this case, no intervening cycle is added after the transaction. The 
I/O throughput is 8.3 Mbytes per second. The SP_PCR should be programmed to mode 2 and the 
fields of SU, PW, and HD in the SP_WTC2 should be set to 1, 2, and 1, respectively. Here, SU, 
PW, and HD represent the SP_CS_L[1] pulse width, the SP_WR_L pulse width, and the SP_CP 
pulse width, respectively.

PMC-Sierra* PM5351 S/UNI-TETRA* Read Interface Protocol

Figure 46. Mode 2 Single Write Transfer for PMC-Sierra* PM5351 Device (B0)
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Figure 47, depicts a single read transaction launched from the IXP2800 Network Processor to the 
PMC-Sierra* PM5351 device, followed by a single write transaction.

In this case, there are ten clock cycles of access time, or 200 ns in total, with three turnaround 
cycles attached at the back. The I/O throughput is 11.2 Mbytes per second.

3.12.7.7.3 Mode 3: Support for the Intel and AMCC* 2488 Mbps
SONET/SDH Microprocessor Interface

The user has to configure the address bus to 10 bits.

Mode 3 Interfacing Topology

Figure 48 demonstrates one of the topologies used to connect the Slowport to the Intel and AMCC* 
2488-Mbps SONET/SDH device. Similar to the Lucent* TDAT042G5 interface, the address and 
the data need demultiplexing. Totally, it requires four buffers to accomplish this task.

The SP_RD_L, SP_WR_L, and SP_CS_L[1] entirely match the RDB, WRB, and CSB pins in the 
Intel and AMCC* component. However, the INT has to be connected to the SP_ACK_L as the 
PMC-Sierra* Interface does. The ALE pin shares the SP_CP signal. If the timing does not meet 
specification, then ALE can be tied high as shown in Figure 49. It employs the same method as 
Lucent*’s TDAT042G5’s topology to pack and unpack the data between the IXP2800 Slowport 
interface and the Intel and AMCC* microprocessor interface.

Figure 47. Mode 2 Single Read Transfer for PMC-Sierra* PM5351 Device (B0)
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For a write, SP_CP loads the data onto the 74F646 (or equivalent) tri-state buffers, using two clock 
cycles. To reduce the pin count, the 16-bit data is latched with the same pin (SP_CS_L[1]), 
assuming that a turnaround cycle is inserted between the transaction cycles.

For a read, data are shifted out of two 74F646 or equivalent tri-state buffers by SP_CP, using two 
consecutive clock cycles.

Figure 48. An Interface Topology with Intel / AMCC* SONET/SDH Device
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Figure 49. Mode 3 Second Interface Topology with Intel / AMCC* SONET/SDH Device
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Mode 3 Write Interface Protocol

Figure 50 depicts a single write transaction launched from the IXP2800 Network Processor to the 
Intel and AMCC* SONET/SDH device, followed by two consecutive reads.

Compared with the Lucent* TDAT042G5, this device has a shorter access time, about eight clock 
cycles (i.e., 160 ns). In this case, an intervening cycle may not be needed for the write transactions. 
Therefore, the throughput is about 12.5 Mbytes per second.

Figure 50. Mode 3 Single Write Transfer Followed by Read (B0)
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Mode 3 Read Interface Protocol

Figure 51 depicts a single read transaction launched from the IXP2800 to the Intel and AMCC* 
SONET/SDH device, followed by two consecutive writes.

Similarly, the access time is much better than the Lucent* TDAT042G5. The access time is eight 
clock cycles or 160 ns for a 50-MHz Slowport clock. Here, there are three intervening cycles 
between transactions. Therefore, the throughput is 11.1 Mbytes per second.

Mode 4 Interfacing Topology

Figure 52 demonstrates one of the topologies used to connect Slowport to the Intel and AMCC* 
SONET/SDH device.

Similar to the Lucent* TDAT042G5 interface, the address and the data need demultiplexing. It 
requires a total of six buffers.

The RD_L, WR_L, and CS_L[1] entirely match the E, RWB, and CSB pins respectively, in the 
Intel framer configured to Motorola* mode. However, the INT has to be connected to the 
SP_ACK_L as the PMC-Sierra* Interface does. The ALE pin can share the SP_CP. However, if it 
does not meet the timing, the ALE pin can be tied high as shown in Figure 53.

Figure 51. Mode 3 Single Read Transfer Followed by Write (B0)
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It employs the same way to pack and unpack the data between the IXP2800 Network Processor 
Slowport interface and the Intel and AMCC* microprocessor interface.

For a write, W2B loads the data onto the 74F646 or equivalent tri-state buffers, using two clock 
cycles. To reduce the pin count, the 16-bit data are latched with the same pin (CS_L[1]), assuming 
that a turnaround cycle is inserted between the transaction cycles.

For a read, data are pipelined out of two 74F646 or equivalent tri-state buffers by B2S, using two 
consecutive clock cycles.

Figure 52. An Interface Topology with Intel / AMCC* SONET/SDH Device in Motorola* Mode
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Figure 53. Second Interface Topology with Intel / AMCC* SONET/SDH Device
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Mode 4 Write Interface Protocol

Figure 54 depicts a single write transaction launched from the IXP2800 Network Processor to the 
Intel and AMCC* SONET/SDH device, followed by two consecutive reads.

Compared with the Lucent* TDAT042G5, this device has a shorter access time, about eight clock 
cycles (i.e., 120 ns). In this case, an intervened cycle may not be needed; therefore, the throughput 
is about 12.5 Mbytes per second.

Figure 54. Mode 4 Single Write Transfer (B0)
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Mode 4 Read Interface Protocol

Figure 55 shows a single read transaction launched from the IXP2800 Network Processor to the 
Intel and AMCC* SONET/SDH device, followed by two consecutive writes.

Similarly, the access time is much better than the Lucent* TDAT042G5. The access time is about 
eight clock cycles or 160 ns. Here, we need an intervened cycle at the back. Therefore, the 
throughput is 11.2 Mbytes per second.

Figure 55. Mode 4 Single Read Transfer (B0)
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Microengines 4

This section defines the Network Processor Microengine (ME). This is the second version of the 
Microengine, and is often referred to as the MEv2 (Microengine Version 2). 

4.1 Overview
The following sections describe the programmer’s view of the Microengine. The block diagram in 
Figure 56 is used in the description. Note that this block diagram is simplified for clarity, not all 
interface signals are shown, and some blocks and connectivity have been omitted to make the 
diagram more readable. This block diagram does not show any pipeline stages, rather it shows the 
logical flow of information.

The Microengine provides support for software controlled multi-threaded operation. Given the 
disparity in processor cycle times versus external memory times, a single thread of execution will 
often block waiting for external memory operations to complete. Having multiple threads available 
allows for threads to interleave operation—there is often at least one thread ready to run while 
others are blocked.
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Figure 56. Microengine Block Diagram
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4.1.1 Control Store
The Control Store is a static RAM that holds the program that the Microengine executes. It holds 
8192 instructions, each of which is 40 bits wide. It is initialized by an external device that writes to 
Ustore_Addr and Ustore_Data Local CSRs.

The Control Store can optionally be protected by parity against soft errors. The parity protection is 
optional, so that it can be disabled for implementations that don’t need or want to pay the cost for 
it. Parity checking is enabled by CTX_Enable[Control Store Parity Enable]. A parity error on an 
instruction read will halt the Microengine and assert an output signal that can be used as an 
interrupt.

4.1.2 Contexts
There are eight hardware Contexts available in the Microengine. To allow for efficient context 
swapping, each Context has its own register set, Program Counter, and Context specific Local 
registers. Having a separate copy per Context eliminates the need to move Context specific 
information to/from shared memory and Microengine registers for each Context swap. Fast context 
swapping allows a Context to do computation while other Contexts wait for IO (typically external 
memory accesses) to complete or for a signal from another Context or hardware unit. Note: a 
context swap is similar to a taken branch in timing.

Each of the eight Contexts is always in one of four states.

1. Inactive — Some applications may not require all eight contexts. A Context is in the Inactive 
state when its CTX_Enable CSR enable bit is a 0.

2. Executing — A Context is in Executing state when its context number is in 
Active_CTX_Status CSR. The executing Context’s PC is used to fetch instructions from the 
Control Store. A Context will stay in this state until it executes an instruction that causes it to 
go to Sleep state (there is no hardware interrupt or preemption; Context swapping is 
completely under software control). At most one Context can be in Executing state at any time.

3. Ready — In this state, a Context is ready to execute, but is not because a different Context is 
executing. When the Executing Context goes to Sleep state, the Microengine’s context arbiter 
selects the next Context to go to the Executing state from among all the Contexts in the Ready 
state. The arbitration is round robin.

4. Sleep — Context is waiting for external event(s) specified in the CTX_#_Wakeup_Events 
CSR to occur (typically, but not limited to, an IO access). In this state the Context does not 
arbitrate to enter the Executing state.

The state diagram in Figure 57 illustrates the Context state transitions. Each of the eight Contexts 
will be in one of these states. At most one Context can be in Executing state at a time; any number 
of Contexts can be in any of the other states.
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The Microengine is in Idle state whenever no Context is running (all Contexts are in either Inactive 
or Sleep states). This state is entered:

1. After reset (because CTX_Enable Local CSR is clear, putting all Contexts into Inactive states).

2. When a context swap is executed, but no context is ready to wakeup.

3. When a ctx_arb[bpt] instruction is executed by the Microengine (this is a special case of 
condition 2 above, since the ctx_arb[bpt] clears CTX_Enable, putting all Contexts into 
Inactive states).

The Microengine provides the following functionality during Idle state:

1. The Microengine continuously checks if a Context is in Ready state. If so, a new Context 
begins to execute. If no Context is Ready, the Microengine remains in the Idle state.

2. Only the ALU instructions are supported. They are used for debug via special hardware 
defined in number 3 below.

3. A write to the Ustore_Addr Local CSR with the Ustore_Addr[ECS] bit set, causing the 
Microengine to repeatedly execute the instruction pointed by the address specified in the 
Ustore_Addr CSR. Only the ALU instructions are supported in this mode. Also, the result of 
the execution is written to the ALU_Out Local CSR rather than a destination register.

4. A write to the Ustore_Addr Local CSR with the Ustore_Addr[ECS] bit set, followed by a 
write to the Ustore_Data Local CSR loads an instruction into the Control Store. After the 
Control Store is loaded, execution proceeds as described in number 3 above. Note that the 
write to Ustore_Data causes Ustore_Addr to increment, so it must be written back to the 
address of the desired instruction.

Figure 57. Context State Transition Diagram
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4.1.3 Datapath Registers
As shown in the block diagram in Figure 56, each Microengine contains four types of 32-bit 
datapath registers:

• 256 General Purpose registers

• 512 Transfer registers

• 128 Next Neighbor registers

• 640 32-bit words of Local Memory

4.1.3.1 General-Purpose Registers (GPRs)

GPRs are used for general programming purposes. They are read and written exclusively under 
program control. GPRs, when used as a source in an instruction, supply operands to the execution 
datapath. When used as a destination in an instruction, they are written with the result of the 
execution datapath. The specific GPRs selected are encoded in the instruction.

The GPRs are physically and logically contained in two banks, GPR A and GPR B, defined in 
Table 57.

Note: The Microengine registers are defined in the IXP2400 and IXP2800 Network Processor 
Programmer’s Reference Manual.

4.1.3.2 Transfer Registers

There are four types of transfer (abbreviated as Xfer) registers used for transferring data to and 
from the Microengine and locations external to the Microengine (DRAMs, SRAMs, etc.). 

• S_TRANSFER_IN

• S_TRANSFER_OUT

• D_TRANSFER_IN

• D_TRANSFER_OUT

Transfer_In registers, when used as a source in an instruction, supply operands to the execution 
datapath. The specific register selected is either encoded in the instruction or selected indirectly 
using T_Index. Transfer_In registers are written by external units based on the Push_ID input to 
the Microengine.

Transfer_Out registers, when used as a destination in an instruction, are written with the result from 
the execution datapath. The specific register selected is encoded in the instruction, or selected 
indirectly via T_Index. Transfer_Out registers supply data to external units based on the Pull_ID 
input to the Microengine.

As shown in Figure 56, the S_TRANSFER_IN and D_TRANSFER_IN registers connect to both 
the S_Push and D_Push buses via a multiplexor internal to the Microengine. Additionally, the 
S_TRANSFER_OUT and D_TRANSFER_OUT Transfer registers connect to both the S_Pull and 
D_Pull buses. This feature enables a programmer to use the either type of transfer register 
regardless of the source or destination of the transfer.
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Typically, the external units access the Transfer registers in response to commands sent by the 
Microengines. The commands are sent in response to instructions executed by the Microengine 
(for example, the command instructs a SRAM controller to read from external SRAM, and place 
the data into a S_TRANSFER_IN register). However, it is possible for an external unit to access a 
given Microengine’s Transfer registers either autonomously, or under control of a different 
Microengine, or the Intel XScale® core, etc. The Microengine interface signals controlling writing/
reading of the Transfer_In/Transfer_Out registers are independent of the operation of the rest of the 
Microengine.

4.1.3.3 Next Neighbor Registers

A new feature added for the Microengine Version 2 are 128 Next Neighbor registers that provide a 
dedicated datapath for transferring data from the previous/next neighbor Microengine. Next 
Neighbor registers, when used as a source in an instruction, supply operands to the execution 
datapath. They are written in two different ways: (1) by an external entity, typically, but not limited 
to, another adjacent Microengine, or (2) by the same Microengine they are in, as controlled by 
CTX_Enable[NN_Mode]. The specific register is selected in one of two ways: (1) Context-
relative, the register number is encoded in the instruction, or (2) as a Ring, selected via NN_Get 
and NN_Put CSR registers.

When CTX_Enable[NN_Mode] is ‘0’ – When Next Neighbor is used as a destination in an 
instruction, the instruction result data is sent out of the Microengine, typically to another, adjacent 
Microengine.

When CTX_Enable[NN_Mode] is ‘1’– When Next Neighbor is used as a destination in an 
instruction, the instruction result data is written to the selected Next Neighbor register in the 
Microengine. Note that there is a 5-instruction latency until the newly written data can be read. 
The data is not sent out of the Microengine as it would be when CTX_Enable[NN_Mode] is ‘0’.

4.1.3.4 Local Memory

Local Memory is addressable storage located in the Microengine, organized as 640 32-bit words. 
Local Memory is read and written exclusively under program control. Local Memory supplies 
operands to the execution datapath as a source, and receives results as a destination. 

The specific Local Memory location selected is based on the value in one of the Local 
Memory_Addr registers, which are written by local_CSR_wr instructions. There are two 
LM_Addr registers per Context and a working copy of each. When a Context goes to the Sleep 
state, the value of the working copies is put into the Context’s copy of LM_Addr. When the 
Context goes to the Executing state, the value in its copy of LM_Addr is put into the working 
copies. The choice of LM_Addr_0 or LM_Addr_1 is selected in the instruction. 

Table 56. Next Neighbor Write as a Function of CTX_Enable[NN_Mode]

NN_Mode

Where the Write Goes

External? NN Register in this 
Microengine?

0 Yes No

1 No Yes
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It is also possible to make use of both or one LM_Addrs as global by setting 
CTX_Enable[LM_Addr_0_Global] and/or CTX_Enable[LM_Addr_1_Global]. When used 
globally, all Contexts use the working copy of LM_Addr in place of their own Context specific 
one; the Context specific ones are unused.

4.1.4 Addressing Modes
GPRs can be accessed in two different addressing modes: Context-Relative and Absolute. Some 
instructions can specify either mode; other instructions can specify only Context-Relative mode.

• Transfer and Next Neighbor registers can be accessed in Context-Relative and Indexed modes.

• Local Memory is accessed in Indexed mode.

• The addressing mode in use is encoded directly into each instruction, for each source and 
destination specifier.

4.1.4.1 Context-Relative Addressing Mode

The GPRs are logically subdivided into equal regions such that each Context has exclusive access 
to one of the regions. The number of regions (four or eight) is configured in the CTX_Enable CSR. 
Thus, a Context-Relative register name is actually associated with multiple different physical 
registers. The actual register to be accessed is determined by the Context making the access request 
(the Context number is concatenated with the register number specified in the instruction — see 
Table 57). Context-Relative addressing is a powerful feature that enables eight different contexts to 
share the same microcode, yet maintain separate data.

Table 57 shows how the Context number is used in selecting the register number in relative mode. 
The register number in Table 57 is the Absolute GPR address, or Transfer or Next Neighbor Index 
number to use to access the specific Context-Relative register. For example, with eight active 
Contexts, Context-Relative Register 0 for Context 2 is Absolute Register Number 32.

Table 57. Registers Used by Contexts in Context-Relative Addressing Mode

Number of 
Active 

Contexts

Active
Context 
Number

GPR
Absolute Register Numbers S_Transfer or 

Neighbor
Index Number

D_Transfer
Index Number

A Port B Port

8

0 0 – 15 0 – 15 0 – 15 0 – 15

1 16 – 31 16 – 31 16 – 31 16 – 31

2 32 – 47 32 – 47 32 – 47 32 – 47

3 48 – 63 48 – 63 48 – 63 48 – 63

4 64 – 79 64 – 79 64 – 79 64 – 79

5 80 – 95 80 – 95 80 – 95 80 – 95

6 96 – 111 96 – 111 96 – 111 96 – 111

7 112 – 127 112 – 127 112 – 127 112 – 127

4

0 0 – 31 0 – 31 0 – 31 0 – 31

2 32 – 63 32 – 63 32 – 63 32 – 63

4 64 – 95 64 – 95 64 – 95 64 – 95

6 96 – 127 96 – 127 96 – 127 96 – 127
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4.1.4.2 Absolute Addressing Mode

With Absolute addressing, any GPR can be read or written by any one of the eight Contexts in a 
Microengine. Absolute addressing enables register data to be shared among all of the Contexts, 
e.g., for global variables or for parameter passing. All 256 GPRs can be read by Absolute address.

4.1.4.3 Indexed Addressing Mode

With Indexed addressing, any Transfer or Next Neighbor register can be read or written by any one 
of the eight Contexts in an Microengine. Indexed addressing enables register data to be shared 
among all of the Contexts. For indexed addressing the register number comes from the T_Index 
register for Transfer registers or NN_Put and NN_Get registers (for Next Neighbor registers).

4.2 Local CSRs
Local Control and Status registers (CSRs) are external to the Execution Datapath, and hold specific 
purpose information. They can be read and written by special instructions (local_csr_rd and 
local_csr_wr) and are typically accessed less frequently than datapath registers. Because Local 
CSRs are not built in the datapath, there is a write to use delay of either three or four cycles, and a 
read to consume penalty of one cycle.

4.3 Execution Datapath
The Execution Datapath can take one or two operands, perform an operation, and optionally write 
back a result. The sources and destinations can be GPRs, Transfer registers, Next Neighbor 
registers, and Local Memory. The operations are shifts, addition, subtraction, logicals, 
multiplication, byte-align, and “find first bit set”.

4.3.1 Byte Align
The datapath provides a mechanism to move data from source register(s) to any destination 
register(s) with byte aligning. Byte aligning takes four consecutive bytes from two concatenated 
values (eight bytes), starting at any of four byte boundaries (0, 1, 2, 3), and based on the endian 
type (which is defined in the instruction opcode), as shown in Table 58. The four bytes are taken 
from two concatenated values. Four bytes are always supplied from a temporary register that 
always holds the A or B operand from the previous cycle, and the other four bytes from the B or A 
operand of the Byte Align instruction. The operation is described below using the block diagram 
Figure 58. The alignment is controlled by the two LSBs of the Byte_Index Local CSR.

Table 58. Align Value and Shift Amount

Align Value
(in Byte_Index[1:0])

Right Shift Amount (Number of Bits in Decimal)

Little-Endian Big-Endian

0 0 32

1 8 24

2 16 16

3 24 8
174 Hardware Reference Manual



Intel® IXP2800 Network Processor
Microengines
Example 24 shows an align sequence of instructions and the value of the various operands. 
Table 59 shows the data in the registers for this example. The value in Byte_Index[1:0] CSR 
(which controls the shift amount) for this example is 2.

Figure 58. Byte Align Block Diagram

A9353-01

Prev_A

Byte_Index

Result

B_OperandA_Operand

Prev_B

.  .  ..  .  .

Shift

Table 59. Register Contents for Example 23

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 0 1 2 3

1 4 5 6 7

2 8 9 A B

3 C D E F

Example 24. Big-Endian Align

Instruction Prev B A Operand B Operand Result

Byte_align_be[--, r0] -- -- 0123 --

Byte_align_be[dest1, r1] 0123 0123 4567 2345

Byte_align_be[dest2, r2] 4567 4567 89AB 6789

Byte_align_be[dest3, r3] 89AB 89AB CDEF ABCD

NOTE: A Operand comes from Prev_B register during byte_align_be instructions.
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Example 25 shows another sequence of instructions and the value of the various operands. 
Table 60, shows the data in the registers for this example.

The value in Byte_Index[1:0] CSR (which controls the shift amount) for this example is 2.

As the examples show, byte aligning “n” words takes “n+1” cycles due to the first instruction 
needed to start the operation.

Another mode of operation is to use the T_Index register with post-increment, to select the source 
registers. T_Index operation is described later in this chapter.

4.3.2 CAM
The block diagram in Figure 59 is used to explain the CAM operation.

The CAM has 16 entries. Each entry stores a 32-bit value, which can be compared against a source 
operand by instruction: CAM_Lookup[dest_reg, source_reg].

All entries are compared in parallel, and the result of the lookup is a 9-bit value that is written into 
the specified destination register in bits 11:3, with all other bits of the register set to 0 (the choice of 
bits 11:3 is explained below). The result can also optionally be written into either of the LM_Addr 
registers (see below in this section for details).

The 9-bit result consists of four State bits (dest_reg[11:8]), concatenated with a 1-bit Hit/Miss 
indication (dest_reg[7]), concatenated with 4-bit entry number (dest_reg[6:3]). All other bits of 
dest_reg are written with 0. Possible results of the lookup are:

• miss (0) — lookup value is not in CAM, entry number is Least Recently Used entry (which 
can be used as a suggested entry to replace), and State bits are 0000.

• hit (1) — lookup value is in CAM, entry number is entry that has matched; State bits are the 
value from the entry that has matched.

Table 60. Register Contents for Example 24

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 3 2 1 0

1 7 6 5 4

2 B A 9 8

3 F E D C

Example 25. Little-Endian Align

Instruction A Operand B Operand Prev A Result

Byte_align_le[--, r0] 3210 -- -- --

Byte_align_le[dest1, r1] 7654 3210 3210 5432

Byte_align_le[dest2, r2] BA98 7654 7654 9876

Byte_align_le[dest3, r3] FEDC BA98 BA98 DCBA

NOTE: B Operand comes from Prev_A register during byte_align_le instructions.
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Note: The State bits are data associated with the entry. State bits are only used by software. There is no 
implication of ownership of the entry by any Context. The State bits hardware function is:

• the value is set by software (when the entry is loaded or changed in an already-loaded entry).

• its value is read out on a lookup that hits, and used as part of the status written into the 
destination register.

• its value can be read out separately (normally only used for diagnostic or debug).

The LRU (Least Recently Used) Logic maintains a time-ordered list of CAM entry usage. When an 
entry is loaded, or matches on a lookup, it is marked as MRU (Most Recently Used). Note that a 
lookup that misses does not modify the LRU list. The CAM is loaded by instruction: 
CAM_Write[entry_reg, source_reg, state_value].

The value in the register specified by source_reg is put into the Tag field of the entry specified by 
entry_reg. The value for the State bits of the entry is specified in the instruction as state_value.

The value in the State bits for an entry can be written, without modifying the Tag, by instruction:
CAM_Write_State[entry_reg, state_value].

Note: CAM_Write_State does not modify the LRU list.

Figure 59. CAM Block Diagram
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Status
and
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Logic
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Lookup Value
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Match

Match

Tag State

Tag State

Tag State
Match

Lookup Status
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State Status Entry Number

0000 Miss 0 LRU Entry

State Hit 1 Hit Entry
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One possible way to use the result of a lookup is to dispatch to the proper code using instruction:
jump[register, label#],defer [3]

where the register holds the result of the lookup. The State bits can be used to differentiate cases 
where the data associated with the CAM entry is in flight, or is pending a change, etc. Because the 
lookup result was loaded into bits[11:3] of the destination register, the jump destinations are spaced 
eight instructions apart. This is a balance between giving enough space for many applications to 
complete their task without having to jump to another region, versus consuming too much Control 
Store. Another way to use the lookup result is to branch on just the hit miss bit, and use the entry 
number as a base pointer into a block of Local Memory.

When enabled, the CAM lookup result is loaded into Local_Addr as follows:
LM_Addr[5:0] = 0 ([1:0] are read-only bits)
LM_Addr[9:6] = lookup result [6:3] (entry number)
LM_Addr[11:10] = constant specified in instruction

This function is useful when the CAM is used as a cache, and each entry is associated with a block 
of data in Local Memory. Note that the latency from when CAM_Lookup executes until the 
LM_Addr is loaded is the same as when LM_Addr is written by a Local_CSR_Wr instruction.

The Tag and State bits for a given entry can be read by instructions:
CAM_Read_Tag[dest_reg, entry_reg]

CAM_Read_State[dest_reg, entry_reg]

The Tag value and State bits value for the specified entry is written into the destination register, 
respectively for the two instructions (the State bits are placed into bits [11:8] of dest_reg, with all 
other bits 0). Reading the tag is useful in the case where an entry needs to be evicted to make room 
for a new value — the lookup of the new value results in a miss, with the LRU entry number 
returned as a result of the miss. The CAM_Read_Tag instruction can then be used to find the value 
that was stored in that entry. An alternative would be to keep the tag value in a GPR. These two 
instructions can also be used by debug and diagnostic software. Neither of these modify the state of 
the LRU pointer.

Note: The following rules must be adhered to when using the CAM.

• CAM is not reset by Microengine reset. Software must either do a CAM_clear prior to using 
the CAM to initialize the LRU and clear the tags to 0, or explicitly write all entries with 
CAM_write.

• No two tags can be written to have the same value. If this rule is violated, the result of a lookup 
that matches that value will be unpredictable, and LRU state is unpredictable. 

The value, 0x00000000 can be used as a valid lookup value. However, note that the CAM_clear 
instruction puts 0x00000000 into all tags.To avoid violating rule 2 after doing CAM_clear, it is 
necessary to write all entries to unique values prior to doing a lookup of 0x00000000. An algorithm 
for debug software to determine the contents of the CAM is shown in Example 26.
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The CAM can be cleared with CAM_Clear instruction. This instruction writes 0x00000000 
simultaneously to all entries tag, clears all the state bits, and puts the LRU into an initial state 
(where entry 0 is LRU, ..., entry 15 is MRU).

4.4 CRC Unit
The CRC Unit operates in parallel with the Execution Datapath. It takes two operands, performs a 
CRC operation, and writes back a result. CRC-CCITT, CRC-32, CRC-10, CRC-5, and iSCSI 
polynomials are supported. One of the operands is the CRC_Remainder Local CSR, and the other 
is a GPR, Transfer_In register, Next Neighbor, or Local Memory, specified in the instruction and 
passed through the Execution Datapath to the CRC Unit. The instruction specifies the CRC 
operation type, whether to swap bytes and or bits, and the bytes of the operand to be included in the 
operation. The result of the CRC operation is written back into CRC_Remainder. The source 
operand can also be written into a destination register (however the byte/bit swapping and masking 
do not affect the destination register; they only affect the CRC computation). This allows moving 
data, for example, from S_TRANSFER_IN registers to S_TRANSFER_OUT registers at the same 
time as computing the CRC.

Example 26. Algorithm for Debug Software to Determine the Contents of the CAM
; First read each of the tag entries. Note that these reads
; don’t modify the LRU list or any other CAM state.
tag[0] = CAM_Read_Tag(entry_0);
......
tag[15] = CAM_Read_Tag(entry_15);

; Now read each of the state bits
state[0] = CAM_Read_State(entry_0);
...
state[15] = CAM_Read_State(entry_15);

; Knowing what tags are in the CAM makes it possible to 
; create a value that is not in any tag, and will therefore
; miss on a lookup.

; Next loop through a sequence of 16 lookups, each of which will
; miss, to obtain the LRU values of the CAM.
for (i = 0; i < 16; i++)
  BEGIN_LOOP
   ; Do a lookup with a tag not present in the CAM. On a
   ; miss, the LRU entry will be returned. Since this lookup
   ; missed the LRU state is not modified.
   LRU[i] = CAM_Lookup(some_tag_not_in_cam);
   ; Now do a lookup using the tag of the LRU entry. This 
   ; lookup will hit, which makes that entry MRU.
   ; This is necessary to allow the next lookup miss to
   ; see the next LRU entry.
   junk = CAM_Lookup(tag[LRU[i]]);
END_LOOP

; Because all entries were hit in the same order as they were
; LRU, the LRU list is now back to where it started before the
; loop executed.
; LRU[0] through LRU[15] holds the LRU list.
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4.5 Event Signals
Event Signals are used to coordinate a program with completion of external events. For example, 
when a Microengine issues a command to an external unit to read data (which will be written into a 
Transfer_In register), the program must insure that it does not try to use the data until the external 
unit has written it. There is no hardware mechanism to flag that a register write is pending, and then 
prevent the program from using it. Instead the coordination is under software control, with 
hardware support.

When the program issues the command to the external event, it can request that the external unit 
supply an indication (called an Event Signal) that the command has been completed. There are 15 
Event Signals per Context that can be used, and Local CSRs per Context to track which Event 
Signals are pending and which have been returned. The Event Signals can be used to move a 
Context from Sleep state to Ready state, or alternatively, the program can test and branch on the 
status of Event Signals.

Event Signals can be set in nine different ways.

1. When data is written into S_TRANSFER_IN registers (part of S_Push_ID input)

2. When data is written into D_TRANSFER_IN registers (part of D_Push_ID input)

3. When data is taken from S_TRANSFER_OUT registers (part of S_Pull_ID input)

4. When data is taken from D_TRANSFER_OUT registers (part of D_Pull_ID input)

5. On InterThread_Sig_In input

6. On NN_Sig_In input

7. On Prev_Sig_In input

8. On write to Same_ME_Signal Local CSR

9. By Internal Timer

Any or all Event Signals can be set by any of the above sources. 

When a Context goes to the Sleep state (executes a ctx_arb instruction, or a Command instruction 
with ctx_swap token), it specifies which Event Signal(s) it requires to be put in the Ready state. 
The ctx_arb instruction also specifies whether the logical AND or logical OR of the Event 
Signal(s) is needed to put the Context into the Ready state.

When a Context Event Signals arrive, it goes to the Ready state, and then to the Executing state. 
In the case where the Event Signal is linked to moving data into or out of Transfer registers 
(numbers 1 through 4 in the list above), the code can safely use the Transfer register as the first 
instruction (for example, using a Transfer_In register as a source operand will get the new read 
data). The same is true when the Event Signal is tested for branches (br_=signal or br_!signal 
instructions).

The ctx_arb instruction, CTX_Sig_Events, and CTX_Wakeup_#_Events Local CSR descriptions 
provide details.
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4.5.1 Microengine Endianness
Microengine operation from an “endian” point of view can be divided into following categories:

• Read from RBUF (64 bits)

• Write to TBUF (64 bits)

• Read/write from/to SRAM

• Read/write from/to DRAM

• Read/write from/to SHaC and other CSRs

• Write to Hash

4.5.1.1 Read from RBUF (64 Bits)

Data in RBUF is arranged in LWBE order. Whenever the Microengine reads from RBUF, the low 
order longword (LDW0) is transferred into Microengine transfer register 0 (treg0), the high order 
longword (LDW1) is transferred into treg1, etc. This is explained in Figure 60.

Figure 60. Read from RBUF (64 Bits)
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4.5.1.2 Write to TBUF

Data in TBUF is arranged in LWBE order. When writing from the Microengine transfer registers to 
TBUF, treg0 goes into LDW0, treg1 goes into LDW1, etc. See Figure 61.

4.5.1.3 Read/Write from/to SRAM

Data inside SRAM is in big-endian order. While transferring data from SRAM to a Microengine, 
no endianness is involved and first read data goes into the first transfer register specified, the next 
read data into the second, etc.

4.5.1.4 Read/Write from/to DRAM

Data inside DRAM is in LWBE order. When a Microengine reads from DRAM, LDW0 goes into 
the first transfer register specified in the instruction, LDW1 goes into the next, and so on. While 
writing to DRAM, treg0 goes first, then followed by treg1, and both are combined in the DRAM 
controller as {LDW1, LDW0} and written as a 64-bit quantity into DRAM.

4.5.1.5 Read/Write from/to SHaC and Other CSRs

Read and write from SHaC and other CSRs happen as 32-bit operations only and are endian-
independent. The low byte goes into the low byte of the transfer register and the high byte goes into 
the high byte of the transfer register.

Figure 61. Write to TBUF (64 Bits)
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4.5.1.6 Write to Hash Unit

Figure 62 explains 48-, 64-, and 128-bit hash operations. When the Microengine transfers a 48-bit 
hash operand to the hash unit, the operand resides in two transfer registers and is transferred, as 
shown in Figure 62. In the second longword transfer, only the lower half is valid. Hash unit 
concatenates the two longwords as shown in Figure 62. Similarly, 64-bit and 128-bit hash operand 
transfers from the Microengine to the hash unit happen as shown in Figure 62.

4.5.2 Media Access
Media operation can be divided in two parts:

• Read from RBUF (Section 4.5.2.1)

• Write to TBUF (Section 4.5.2.2)

Figure 62. 48-, 64-, and 128-Bit Hash Operand Transfers
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4.5.2.1 Read from RBUF

To analyze the endianness on the media-receive interface and the way in which bytes are arranged 
inside RBUF, a brief introduction of how bytes are generated from the serial interface is provided 
here. Pipe A denotes the serial stream of data received at the serial interface (SERDES). Bit 0 of 
byte 0 comes first, followed by bit 1, etc. Pipe B converts this bit stream into byte stream 
byte 0 — byte 7, etc. So, byte 0 currently is the least significant byte received. In Pipe C, before 
being transmitted to the SPI-4 interface, these bytes are organized in 16-bit words in big-endian 
order where byte 0 is at B[15:8] and byte 1 is at B[7:0].

When the SPI-4 interface inside the IXP2800 received these 16-bit words, they are put into RBUF 
in LWBE order where longwords inside one RBUF entry are organized in little-endian order as 
shown in one RBUF element in Figure 63. In the least-significant-longword, byte 0 is at a higher 
address than byte 3 (therefore, big-endian). Similarly, in the most-significant-longword, byte4  is at 
a higher address than byte 7 (therefore, big-endian). While transferring from RBUF to 
Microengine, the least significant longword from one RBUF element is transferred first, followed 
by the most significant longword into the Microengine transfer registers.

.

Figure 63. Bit, Byte, and Longword Organization in One RBUF Element
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4.5.2.2 Write to TBUF

For writing to TBUF, the header comes from the Microengine and data comes from RBUF or 
DRAM. Since the Microengine to TBUF header transfer happened in 8-byte chunks, it is possible 
that the first longword that is inside tr0 may not contain any data if the valid header begins in 
transfer register tr1. Since data in tr0 goes to the LW1 location at offset 0 and data in tr2 goes to the 
LW0 location at offset 0, there are some invalid bytes at the beginning of the header, at offset 0. 
These invalid bytes are removed by the aligner on the way out of TBUF, based on the control word 
for this TBUF element. The data from tr2, tr3, ... tr6 is placed in TBUF, as shown in Figure 64 in 
big-endian order.

Figure 64. Write to TBUF
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Since data in RBUF or DRAM is arranged in LWBE order, it is swapped on the way into the TBUF 
to make it truly big-endian, as shown in Figure 64. Again, the invalid bytes at the beginning of the 
payload that starts at offset 3 and at the end-of-header at offset 2 is removed by the aligner on the 
way out of TBUF.

4.5.2.3 TBUF to SPI-4 Transfer

Figure 65 shows how the MSF interface removes invalid bytes from TBUF data and transfers them 
onto the SPI-4 interface in 16-bit (2-byte) chunks.

Figure 65. MSF Interface
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DRAM 5

This section describes Rambus* DRAM operation.

5.1 Overview
The IXP2800 Network Processor has controllers for three Rambus* DRAM (RDRAM) channels. 
Either one, two, or three channels can be enabled. When more than one channel is enabled, the 
channels are interleaved (also known as striping) on 128-byte boundaries to provide balanced 
access to all populated channels. Interleaving is performed in hardware and is transparent to the 
programmer. The programmer views the DRAM memory space as a contiguous block of memory.

The total address space of two Gbytes is supported by the DRAM interface regardless of the 
number of channels that are enabled. The controllers support 64-, 128-, 256-, and 512-Mbyte, and 
1-Gbyte devices; however, with interleaving, each of the channels must have the same number, 
size, and speed of RDRAMs populated. Each channel can be populated with up to 32 RDRAM 
devices. While each channel must have the same size and speed RDRAMs, it is possible for each 
individual channel to have different size and speed RDRAMs, as long as the total amount of 
memory is the same for all of the channels.

ECC (Error Correcting Code) is supported. Enabling ECC requires that x18 RDRAMs be used.
If ECC is disabled, x16 RDRAMs can be used. 

The Microengines (MEs), Intel XScale® core, and PCI (external Bus Masters and DMA Channels) 
have access to the DRAM memory space. 

The controllers also automatically perform refresh as well as IO driver calibration to account for 
variations in operating conditions due to process, temperature, voltage, and board layout. 

RDRAM Powerdown and nap modes are not supported.
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5.2 Size Configuration
Each channel can be populated with 1 – 4 RDRAMs (Short Channel Mode). For supported loading 
configurations, refer to Table 61. The RAM technology used determines the increment size and 
maximum memory per channel as shown in Table 62.

Note: One or two channels can be left unpopulated if desired.

RDRAMs with 1 x 16 dependent banks, 2 x 16 dependent banks, and four independent banks are 
supported.

Table 61. RDRAM Loading

Bus Interface Maximum Number of Loads Trace Length (inches)

Short Channel: 400 and 533 MHz 4 devices per channel.  201

1. For termination, the DRAMs should be located as close as possible to the IXP2800 Network Processor.

Long Channel: 400 MHz 2 RIMMs per channel – a maximum of 
32 devices in both RIMMs.  201

Long Channel: 533 MHz 1 RIMM and 1 C-RIMM per channel – 
a maximum of 16 devices.  201

Table 62. RDRAM Sizes

RDRAM Technology1 Increment Size Maximum per Channel

64/72 MB 8 MBs 256 MB

128/144 MB 16 MB 512 MB

256/288 MB 32 MB 1 GB2

512/576 MB 64 MB 2 GB2

NOTES:
1. The two numbers shown for each technology indicate x16 parts and x18 parts.
2. The maximum memory that can be addressed across all channels is 2 Gbytes. This limitation is based on 

the partitioning of the 4-Gbyte address space (32-bit addresses). Therefore, if all three channels are used, 
each can be populated up to a maximum of 768 Mbytes. Two channels can be populated to a maximum of 
1 Gbyte each. A single channel could be populated to a maximum of 1 Gbyte.
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5.3 DRAM Clocking
Figure 66 shows the clock generation for one channel (this description is just for reference; for 
more information, refer to Rambus* design literature). The other channels use the same 
configuration.

Note: Refer to Section 10 for additional information on clocking.

The RDRAM Controller receives two clocks, both generated internal to the IXP2800 Network 
Processor.

The internal clock, is used to control all logic associated with communication with other on-chip 
Units. This clock is ½ of the Microengine frequency, and is in the range of 500 – 700 MHz.

The other clock, the Rambus* Memory Controller (RMC) clock, is internally divided by two and 
brought out on the CLK_PHASE_REF pin, which is then used as the reference clock for the DRCG 
(see Figure 67 and Figure 68). The reason for this is that our internal RMC clock is derived from 
the Microengine clock (supported programmable divide range is from 8 – 15 for the A stepping and 
6 – 15 for the B stepping) at a Microengine frequency of 1.4 GHz (the available RMC clock 
frequencies are 100 MHz and 127 MHz). In the RMC implementation, we have a fixed 1:1 clock 
relationship between the RMC clock and the SYNCLK (SYNCLK = Clock-to-Master(CTM)/4); to 
maintain this relationship, we provide the clock to the DRCG. The CTM is received by the DRAM 
controller which it drives back out as Clock-from-Master (CFM). Additionally, the controller 
creates PCLKM and SYNCLKN, which are also driven to the DRCG.

Figure 66. Clock Configuration
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5.4 Bank Policy
The RDRAM Controller uses a “closed bank” policy. Banks are activated long enough to do an 
access and then closed and precharged. They are not left open in anticipation of another access to 
the same page. This is unlike many CPU applications, where there is a high degree of locality. 
Since that locality does not exist in the typical applications in which the IXP2800 Network 
Processor uses RDRAM, the “closed bank” policy is used.

Figure 67. IXP2800 Clocking for RDRAM at 400 MHz
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Figure 68. IXP2800 Clocking for RDRAM at 508 MHz

A9728-01

RMC RAC

100 MHz

63.5 MHz

31.75
MHz

31.75
MHz

Bus CLK = 508 MHz

System
Ref_Clk

DRCG

PLL

/4

/4/2

PCLK =
127 MHz

CLK_PHASE_REF

Phase Detector

SYNCLK =
127 MHz

/4

x 8
190 Hardware Reference Manual



Intel® IXP2800 Network Processor
DRAM
5.5 Interleaving
The RDRAM channels are interleaved on 128-byte boundaries in hardware to improve 
concurrency and bandwidth utilization. Contiguous addresses are directed to different channels by 
rearranging the physical address bits in a programmable manner described in Section 5.5.1 through 
Section 5.5.3 and then remapped as described in Section 5.5.4. The block diagram in Figure 69 
illustrates the flow.

The mapping of addresses to channels is completely transparent to software. Software deals with 
physical addresses in RDRAM space; the mapping is done completely by hardware. 

Note: Accessing an address above the amount of RDRAM populated will cause unpredictable results.

5.5.1 Three Channels Active (3-Way Interleave)
When all three channels are active, the interleave scheme selects the channel for each block, using 
modulo-3 reduction (address bits [31:7] are summed as modulo-3, and the remainder is the selected 
channel number). The algorithm ensures that adjacent blocks are mapped to different channels.

The address within the DRAM is then selected by rearranging the received address, as shown in 
Table 63. In this case, the number of DRAMs on a channel must be either 1, 2, 4, 8, 16, or 32.

For Rev. B, the address within the DRAM is selected by adding the received address to the contents 
of one of the CSRs (K0 – K11), or 0, as shown in Table 64. The values to load into K0 – K11 are a 
function of the amount of memory on the channel, and are specified in the IXP2400 and IXP2800 
Network Processor Programmer’s Reference Manual. 

For memory sizes of 32, 64, or 128 Mbytes, etc., the specified constants give the same remapping 
as was done in a previous revision.

Figure 69. Address Mapping Flow
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Table 63. Address Rearrangement for 3-Way Interleave (Sheet 1 of 2)

When 
these 
bits of 

address 
are all 

“1”s…1

Shift 
30:7 
right 
by 

this 
many 
bits

Add this amount to shifted 30:7 (based on amount of memory on the channel)
Address within channel is {30:7+table_value), 6:0}

8 MB3 16 MB 32 MB3 64 MB 128 MB3 256 MB 512 MB3 1 GB

30:7 26 N/A2 N/A N/A N/A N/A N/A N/A 8388607

28:7 24 N/A N/A N/A N/A N/A 2097151 4194303 8388606

26:7 22 N/A N/A N/A 524287 1048575 2097150 4194300 8388600

24:7 20 N/A 131071 262143 524286 1048572 2097144 4194288 8388576

22:7 18 65535 131070 262140 524280 1048560 2097120 4194240 8388480

20:7 16 65532 131064 262128 524256 1048512 2097024 4194048 8388096

18:7 14 65520 131040 262080 524160 1048320 2096640 4193280 8386560

16:7 12 65472 130944 261888 523776 1047552 2095104 4190208 8380416

14:7 10 65280 130560 261120 522240 1044480 2088960 4177920 8355840

12:7 8 64512 129024 258048 516096 1032192 2064384 4128768 8257536

10:7 6 61440 122880 245760 491520 983040 1966080 3932160 7864320

8:7 4 49152 98304 196608 393216 786432 1572864 3145728 6291456

None 2 0 0 0 0 0 0 0 0

NOTES:
1. This is a priority encoder; when multiple lines satisfy the condition, the line with the largest number of ones 

is used.
2. N/A means not applicable.
3. For these cases, the top 3 blocks (each block is 128 bytes) of the logical address space is not accessible. 

For example if each channel has 8 Mbytes, only (24 Mbytes - 384) total bytes are usable. This is an artifact 
of the remapping method.

4. The numbers in the table are derived as follows:
For the first pair of ones (8:7) value is 3/4 the number of blocks. For each subsequent pair of ones, the 
value is the previous value, plus another 3/4 the remaining blocks.
• [8:7]==11 - 3/4 * blocks
• [10:7]==1111 - (3/4 + 3/16) * blocks
• [12:7]==111111 - (3/4 + 3/16 + 3/64) * blocks
• etc.
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Table 64. Address Rearrangement for 3-Way Interleave (Sheet 2 of 2) (Rev B)

5.5.2 Two Channels Active (2-Way Interleave)
It is possible to have only two channels populated for system cost and area savings. If only two 
channels are desired, than channels 0 and 1 should be populated and channel 2 should be left 
empty. In the Two Channel Mode, the address interleaving is designed with the goal of spreading 
adjacent accesses across the 2 channels.

When two channels are active, address bit 7 is used as the channel select. Addresses that have 
address 7 equal to 0 are mapped to channel 0 while those with address 7 equal to 1 are mapped to 
channel 1. The address within the channel is {[31:8], [6:0]}.

5.5.3 One Channel Active (No Interleave)
When only one channel is active, all accesses go to that channel. In this case, it is possible for an 
access to split across two DRAM banks (which could be in different RDRAMs).

When these bits of address are all 
“1”s…1

Add the value in this CSR to 
the address

30:7 K11

28:7 K10

26:7 K9

24:7 K8

22:7 K7

20:7 K6

18:7 K5

16:7 K4

14:7 K3

12:7 K2

10:7 K1

8:7 K0

None Value 0 added.

NOTES:
1. This is a priority encoder; when multiple lines satisfy the condition, 

the line with the largest number of ones is used.
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5.5.4 Interleaving Across RDRAMs and Banks
In addition to interleaving across the different RDRAM channels, addresses are also interleaved 
across RDRAM chips and internal banks. This improves utilization since certain operations to 
different banks can be performed concurrently. The interleaving is done based on rearranging the 
remapped address derived from Section 5.5.1, Section 5.5.2, and Section 5.5.3 as a function of the 
memory size as shown in Table 65. The two MSBs of the rearranged address are used to select 
which Bank Command FIFO the command is place in. The rearranged address is also partitioned to 
choose RDRAM chip, bank within RDRAM, and page within bank.

5.6 Parity and ECC
DRAM can be optionally protected by byte parity or by an 8-bit error detecting and correcting code 
(ECC). RDRAMn_Control[ECC] for each channel selects whether or not that channel should use 
Parity, ECC, or no protection. When parity or ECC is enabled x18 RDRAMs must be used with the 
extra bits connected to the dqa[8] and dqb[8] signals. Eight bits of ECC code cover eight bytes of 
data (aligned to an 8-byte boundary).

5.6.1 Parity and ECC Disabled
• On reads, the data is delivered to the originator of the read; no error is possible.

• Partial writes (writes of less than eight bytes) are done as masked writes.

Table 65. Address Bank Interleaving

Memory Size on 
Channel (MB)3

Remapped Address
Based on RDRAM_Control[Bank_Remap]

00 01 10 11

8 7:14, 22:15 9:14, 7:8, 22:15 11:14, 7:10, 22:15 13:14, 7:12, 22:15

16 7:14, 23:15 9:14, 7:8, 23:15 11:14, 7:10, 23:15 13:14, 7:12, 23:15

32 7:14, 24:15 9:14, 7:8, 24:15 11:14, 7:10, 24:15 13:14, 7:12, 24:15

64 7:14, 25:15 9:14, 7:8, 25:15 11:14, 7:10, 25:15 13:14, 7:12, 25:15

128 7:14, 26:15 9:14, 7:8, 26:15 11:14, 7:10, 2615 13:14, 7:12, 26:15

256 7:14, 27:15 9:14, 7:8, 27:15 11:14, 7:10, 27:15 13:14, 7:12, 27:15

512 7:14, 28:15 9:14, 7:8, 28:15 11:14, 7:10, 28:15 13:14, 7:12, 28:15

1024 7:14, 29:15 9:14, 7:8, 29:15 11:14, 7:10, 29:15 13:14, 7:12, 29:15

Bits used to select 
Bank Command 

FIFO
7:8 9:10 11:12 13:14

NOTES:
1. Table shows device/bank sorting of the channel remapped block address, which is in address 31:7. LSBs of 

the address are always 6:0 (byte within the block), which are not remapped.
2. Unused MSBs of address have value of 0.
3. Size is programmed in RDRAM_Control[Size].
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5.6.2 Parity Enabled
On writes, odd byte parity is computed for each byte and written into the corresponding parity bit. 
Partial writes (writes of less than eight bytes) are done as masked writes.

On reads, odd byte parity is computed on each byte of data and compared to the corresponding 
parity bit. If there is an error RDRAMn_Error_Status_1[Uncorr_Err] bit is set, which can interrupt 
the Intel XScale® core if enabled. The Data Error signal will be asserted when the read data is 
delivered on D_Push_Data.

The address of the error, along with other information, is logged in 
RDRAMn_Error_Status_1[ADDR] and RDRAMn_Error_Status_2. Once the error bit is set, those 
registers are locked. That is, the information relating to subsequent errors is not loaded until the 
error status bit is cleared by the Intel XScale® core write.

5.6.3 ECC Enabled
On writes, eight ECC check bits are computed based on 64 bits of data, and are written into the 
check bits. Partial writes (writes of less than eight bytes) cause the channel controller to do a 
read-modify-write. Any single-bit error detected during the read portion is corrected prior to 
merging with the write data. An uncorrectable error detected during the read does not modify the 
data. Either type of error will set the appropriate error status bit, as described below.

On reads, the correct value for the check bits is computed from the data and is compared to the 
ECC check bits. If there is no error, data is delivered to the originator of the read, because it came 
from the RDRAMs. If there is a single-bit error, it is corrected before being delivered (the 
correction is done automatically, the reader is given the correct data). The error is also logged by 
setting the RDRAMn_Error_Status_1[Corr_Err] bit, which can interrupt the Intel XScale® core if 
enabled.

If there is an uncorrectable error, the RDRAMn_Error_Status_1[Uncorr_Err] bit is set, which can 
interrupt the Intel XScale® core if enabled. The Data Error signal is asserted when the read data is 
delivered on D_Push_Data, unless the token, Ignore Data Error, was asserted in the command. In 
that case, the RDRAM controller does not assert Data Error and does not assert a Signal (it will use 
0xF, which is a null signal, in place of the requested signal number).

In both correctable and uncorrectable cases, the address of the error, along with other information, 
is logged in RDRAMn_Error_Status_1[ADDR] and RDRAMn_Error_Status_2. Once either of the 
error bits is set, those registers are locked. That is, the information relating to subsequent errors is 
not loaded until both error status bits are clear. That does not prevent the correction of single-bit 
errors, only the logging.

Note: When a single-bit error is corrected, the corrected data is not written back into memory (scrubbed) 
by hardware; this can be done by software if desired, because all of the information pertaining to 
the error is logged.
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To avoid the detection of false ECC errors, the RDRAM ECC mode must be initialized using the 
procedure described below:

1. Ensure that parity/ECC is not enabled: program DRAM_CTRL[15:14] = 00

2. Write all zeros (0x00000000) to all the memory locations. By default, this initializes the 
memory with odd parity and in this case (data all 0), it coincides with ECC and does not 
require any read-modify-writes because ECC is not enabled.

3. Ensure that all of the writes are completed prior to enabling ECC. This is done by performing 
a read operation to 1000 locations.

4. Enable ECC mode: program DRAM_CTRL[15:14] accordingly.

5.6.4 ECC Calculation and Syndrome
The ECC check bits are calculated by forming parity checks on groups of data bits. The check bits 
are stored in memory during writes via the dqa[8] and dqb[8] signals. Note that memory 
initialization code must put good ECC into all of memory by writing each location before it can be 
read. Writing any arbitrary data into memory – for example 0, will accomplish this. This will take 
several milliseconds per Mbyte of memory.

On reads, the expected code is calculated from the data, and then compared to (XORed) the ECC 
that was read. The result of the comparison is called the syndrome. If the syndrome is equal to 0, 
then there was no error. There are eight syndromes that are calculated based on the read data and its 
corresponding ECC bit. When ECC is enabled, upon detecting a single-bit error, the syndrome is 
used to determine which bit needs to be flipped to correct the error.

5.7 Timing Configuration
Table 66 shows the example timing settings for RDRAMs of various speeds. The parameters are 
programmed in the RDRAM_Config CSRs (refer to the PRM for register descriptions)

.

Table 66. RDRAM Timing Parameter Settings

Parameter 
Name

-40-
800

-45-
800

-50-
800

-45-
711

-50-
711

-45-
600

-53-
600

CfgTrcd 7 9 11 7 9 5 7

CfgTrasSyn 5 5 6 5 5 4 5

CfgTrp 8 8 10 8 8 6 8

CfgToffpSyn 4 4 4 4 4 4 4 

CfgTrasrefSyn 5 5 6 5 5 4 5

CfgTprefSyn 2 2 2 2 2 2 2
196 Hardware Reference Manual



Intel® IXP2800 Network Processor
DRAM
5.8 Microengine Signals
Upon completion of a read or write, the RDRAM controller can signal a Microengine context, 
when enabled. It does so using the sig_done token; see Example 27.

Because the RDRAM address space is interleaved, consecutive accesses can go to different 
RDRAM channels. There is no ordering guaranteed among different channels, so a separate signal 
is needed for each.

In addition, because accesses start at any address, and can specify up to 16 64-bit words 
(128 bytes), they can also split across two channels (refer to Section 5.5). The ctx_arb instruction 
must set two Wakeup_Events (an odd/even pair) per access. The RDRAM controllers coordinate as 
follows:

• If the access split across two channels, the channel handling the low part of the split delivers 
the even-numbered Event Signal, and the channel handling the upper part of the split delivers 
the odd-numbered Event Signal.

• If the access does not split, the channel delivers both Event Signals (by coordinating with the 
D_Push or D_Pull arbiter for read and writes respectively).

• In all cases, the channel delivers the Event Signal with the last data Push or Pull of a burst.

Using the above rules, the Microengine will be put into the Ready State (ready to resume 
executing) only when all accesses have completed.

5.9 Serial Port
The RDRAM chips are configured through a serial port, which consists of signals D_SIO, 
D_CMD, and D_SCK. Access to the serial port is via the RDRAM_Serial_Command and 
RDRAM_Serial_Data CSRs (refer to the IXP2400 and IXP2800 Network Processor Programmer’s 
Reference Manual for the register descriptions). 

All serial commands are initiated by a write to RDRAM_Serial_Command. Because the serial port 
is slow, RDRAM_Serial_Command has a Busy bit, which indicates that a serial port command is 
in progress. Software must test this bit before initiating a command. This ensures that software will 
not lose a command, while eliminating the need for a hardware FIFO for serial commands.

Serial writes are done by the following steps:

1. Read RDRAM_Serial_Command; test Busy bit until its a 0.

2. Write RDRAM_Serial_Data.

3. Write RDRAM_Serial_Command to start the write.

Example 27. RDRAM Controller Signaling a Microengine Context
dram [read,$xfer6,addr_a,0,1], sig_done_4

dram [read,$xfer7,addr_b,0,1], sig_done_6

ctx_arb[4, 5, 6, 7]
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Serial reads are done by the following steps:

1. Read RDRAM_Serial_Command; test Busy bit until it is a 0.

2. Write RDRAM_Serial_Command to start the read.

3. Read RDRAM_Serial_Command; test Busy bit until it is a 0.

4. Read RDRAM_Serial_Data to collect the serial read data.

5.10 RDRAM Controller Block Diagram
The RDRAM controller consists of three pieces. Figure 70 is a simplified block diagram.

Pre_RMC — has the queues for commands, data (both in and out), and interfaces to internal 
buses. It checks incoming commands and addresses to determine if they are targeted to the channel, 
and if so, enqueues them (if a command splits across two channels, the channel must enqueue the 
portion of the command that it owns). It sorts the enqueued commands to RDRAM banks, selects 
the command to be executed based on policy to get good bank utilization, and then hands off that 
command to RMC. It also arbitrates for refresh and calibration, which it requests RMC to perform. 
Pre_RMC also contains the ECC logic, and the CSRs that set size, timing, ECC, etc.

RMC — Rambus* Memory Controller, that handles the pin protocol. It controls all timing 
dependencies, pin turnaround, RAS-CAS, RAS-RAS, etc., including bank interactions. RMC 
handles all commands in the order that it receives them. RMC is based on the Rambus* RMC.

RAC — Rambus* ASIC Cell, a high-speed parallel-to-serial and serial-to-parallel interface. This 
is a hard macro that contains the I/O pads and drivers, DLL, and associated pin interface logic.

The following is a brief explanation of command operation:

Pre_RMC enqueues commands and sends them to RMC. It is responsible for initiating Pull 
operations to get Microengine/RBUF/Intel XScale® core/PCI data into the Pull_Data FIFO. A 
write is not eligible to go to RMC until Pre_RMC has all the data in the Pull Data FIFO.

Pre_RMC provides the Full signal to the Command Arbiter to inform it stop allowing RDRAM 
commands.

Figure 70. RDRAM Controller Block Diagram
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5.10.1 Commands
When a valid command is placed on the command bus, the control logic checks to see if the 
address matches the channel’s address range, based on interleaving as described in Section 5.5. 
The command, address, length, etc. are enqueued into the command Inlet FIFO.

If the command Inlet FIFO becomes full, the channel sends a signal to the command arbiter, which 
will prevent it from sending further DRAM commands. The full signal must be asserted while there 
is still enough room in the FIFOs to hold the worst case number of in-flight commands.

5.10.2 DRAM Write
When a write (or RBUF_RD, which does a DRAM write) command is at the head of the Command 
Inlet FIFO, it is moved to the proper Bank CMD FIFO, and the Pull_ID is sent to the Pull arbiter. 
This can only be done if there is room for the command in the Bank’s CMD FIFO and for the pull 
data in the Bank’s Pull Data FIFO (which must take into account all pull data in flight). If there is 
not enough room in the Bank’s CMD FIFO or the Bank’s Pull Data FIFO, the write command waits 
at the head of the Command Inlet FIFO. When the Pull_ID is sent to the Pull Arbiter, the Bank 
number is put into the PP (Pull in Progress) FIFO; this allows the channel to sort the Pull Data into 
the proper Bank Pull Data FIFO when it arrives.

The source of the Pull Data can be either RBUF, PCI, Microengine, or the Intel XScale® core, and 
is specified in the Pull_ID. When the source is RBUF or PCI, data will be supplied to the Pull Data 
FIFO, at 64 bits per cycle. When the source is Microengine or the Intel XScale® core, data will be 
supplied at 32 bits per cycle, justified to the low 32 bits of Pull Data. The Pull Arbiter must merge 
and pack data as required. In addition, the data must be aligned according to the start address, 
which has longword resolution; this is done in Pre_RMC.

The Length field of the command at the head of the Bank CMD FIFO is compared to the number of 
64-bit words in the Bank Pull_Data FIFO. When the number of 64-bit words in Pull_Data FIFO is 
greater or equal to the length, the write arbitrates for the RMC. When it wins arbitration, it sends 
the address and command to RMC, which requests the write data from Pull_Data FIFO at the 
proper time to send it to the RDRAMs.

Note: The Microengine is signaled when the last data is pulled.

5.10.2.1 Masked Write

Masked writes (write of less than eight bytes) are done as either Read-Modify-Writes when ECC is 
enabled, or as Rambus*-masked writes (using COLM packets), when ECC is not enabled. In both 
cases, the masked write will modify seven or fewer bytes because the command bus limits a 
masked write to a ref_count of 1.

If a RMW is used, no commands from that Bank’s CMD FIFO are started between the read and the 
write; other Bank commands can be done during that time.
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5.10.3 DRAM Read
When a read (or TBUF_WR, which does a DRAM read) command is at the head of the Command 
Inlet FIFO, it is moved to the proper Bank CMD FIFO if there is room. If there is not enough room 
in the Bank’s CMD FIFO, the read command waits at the head of the Command Inlet FIFO.

When a read command is at the head of the Bank CMD FIFO, and there is room for the read data in 
the Push Data FIFO (including all reads in flight at the RDRAM), it will arbitrate for RMC. When 
it wins arbitration, it sends the address and command to RMC. The Push_ID is put into the RP 
FIFO (Read in Progress) to coordinate it with read data from RMC.

When read data is returned from RMC, it is placed into the Push_Data FIFO. Each Push_Data is 
sent to the Push Arbiter with a Push_ID; the RDRAM controller increments the Push_ID for each 
data phase. If Push Arbiter asserts the full signal, Push Data is stopped and held in the Push Data 
skid FIFO. The Push Data is sent to the read destination under control of the Push Arbiter.

The destination of the Push Data can be either Intel XScale® core, PCI, TBUF, or Microengine, and 
is specified in the Push_ID. When the destination is TBUF or PCI, data is taken at 64 bits per cycle. 
When the destination is the Microengine or the Intel XScale® core, data is taken at 32 bits per 
cycle. The Push Arbiter justifies the data to the low 32 bits of Push Data. The Microengine is 
signaled when the last data is pushed.

5.10.4 CSR Write
When a CSR write command is at the head of the Command Inlet FIFO, it is moved to the CSR 
CMD register, and the Pull_ID is sent to the Pull arbiter. This can only be done if the CSR CMD 
register is not currently occupied. If it is, the CSR write command waits at the head of the 
Command Inlet FIFO. 

When the Pull_ID is sent to the Pull Arbiter, a tag is put into the PP FIFO (Pull in Progress); this 
allows the channel to identify the Pull Data as CSR data when it arrives. When the CSR pull data 
arrives, it is put into the addressed CSR, and the CSR CMD register is marked as empty.

5.10.5 CSR Read
When a CSR read command is at the head of the Command Inlet FIFO, it is moved to the CSR 
CMD register. This can only be done if the CSR CMD register is not currently occupied. If it is, the 
CSR read command waits at the head of the Command Inlet FIFO.

On the first available cycle in which RDRAM data from RMC is not being put into the Push Data 
FIFO, the CSR data will be put into the Push Data FIFO. If it is convenient to guarantee a slot by 
putting a bubble on the RMC input, then that will be done.
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5.10.6 Arbitration
The channel needs to arbitrate among several different operations at RMC. Arbitration rules are 
given here for those cases: from highest to lowest priority:

• Refresh RDRAM.

• Current calibrate RDRAM.

• Bank operations. When there are multiple bank operations ready, the rules are: (1) round robin 
among banks to avoid bank collisions, and (2) skip a bank to avoid DQ bus turnarounds. No 
bank can be skipped more than twice.

Commands are given to RMC in the order in which they will be executed.

5.10.7 Reference Ordering
Table 67 lists the ordering of reads and writes to the same address for DRAM. The definition of 
first and second is defined by the time the command is valid on the command bus.

5.11 DRAM Push/Pull Arbiter
The DRAM Push/Pull Arbiter contains the push and pull arbiters for the D-Cluster (DRAM 
Cluster). Both the PUSH and PULL data buses have multiple masters and multiple targets. The 
DRAM Push/Pull Arbiter determines which master gets to drive the data bus for a given 
transaction and makes sure that the data is delivered correctly.

This unit has the following features:

• Up to three DX Unit (DRAM Unit) masters.

• 64-bit wide push and pull data buses.

• Round-robin arbitration scheme.

• Peak delivery of 64 bits per cycle.

• Supports third-party data transfers; the Microengine’s can command data movements between 
the MSF (Media) and either the DX Units or the CR Units.

Table 67. Ordering of Reads and Writes to the Same Address for DRAM

First 
Access

Second 
Access Ordering Rules

Read Read None. If there are no side-effects on reads, both readers get the same data. 

Read Write
Reader must get the pre-modified data. This is not enforced in hardware. The write 
instruction must not be executed until after the Microengine receives the signal of read 
completion (i.e., program must use sig_done on the read).

Write Read

Reader must get the post-modified data. This is not enforced in hardware. The read 
instruction must not be executed until after the Microengine receives the signal of write 
completion (i.e., program must use sig_done token on the write instruction and wait 
for the signal before executing the read instruction).

Write Write The hardware guarantees that the writes complete in the order in which they are 
issued.
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• Supports chaining for burst DRAM push operations to tell the arbiter to grant consecutive push 
requests.

• Supports data error bit handling and delivery.

Figure 71 shows the functional blocks for the DRAM Push/Pull Arbiter.

5.11.1 Arbiter Push/Pull Operation
Within the arbiter there are two functional units: the push arbiter and the pull arbiter. Push and pull 
always refer to the way data is flowing from the bus master, i.e., a Microengine makes a read 
request, the DRAM channel does the read, and then “pushes” the data back to the Microengine. 

For a push transaction, a push master drives the command and data to the DRAM push arbiter 
(DPSA) and into a dedicated request FIFO. When that command is at the head of the FIFO, and it 
is either the requesting unit’s turn to go based on the round-robin arbitration policy, or there are no 
other requesters, then the arbiter will “grant” the request. This grant means that the arbiter delivers 
the push data to the correct target with all the correct handshakes and retires the request (a data 
transaction is always eight bytes).

The DRAM pull arbiter (DPLA) is slightly different because it functions on bursts of data 
transactions instead of single transactions. For a pull transaction, a pull master drives a command 
to the pull arbiter and into a dedicated request FIFO. When the command gets to the head of the 
FIFO it is evaluated, s was done for the push arbiter. The difference is that each command may 
reference bursts of data movements (always in multiples of eight bytes). The arbiter grants the 
command, and keeps it granted until it increments through all of the data movements required by 
the command. As the data is read from its source, the command is modified to address the next data 
address, and a handshake to the requesting unit is driven when the data is valid.

Figure 71. DRAM Push/Pull Arbiter Functional Blocks
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5.11.2 DRAM Push Arbiter Description
The general data flow for a push operation is as shown in Table 68. The DRAM Push Arbiter 
functional blocks are shown in Figure 72.

The push arbiter takes push requests from any requestors. Each requestor has a dedicated request 
FIFO. A request comes in the form of a PUSH_ID, and is accompanied by the data to be pushed, a 
data error bit, and a chain bit. All of this information is enqueued in the correct FIFO for each 
request, i.e., for each eight bytes of data. The push arbiter must drive a full signal to the requestor if 
the FIFO reaches a predefined “full” level to apply backpressure and stop requests from coming. 
The FIFO is 64 entries deep and goes full at 40 entries. The long skid allows for burst reads in 
flight to finish before stalling the DRAM controller. If the FIFO is not full, the push arbiter can 
enqueue a new request from each requestor on every cycle.

The push arbiter monitors the heads of each FIFO, and does a round robin arbitration between any 
available requestors. If the chain bit is asserted, it indicates that once the head request of a queue is 
granted, the arbiter should continue to grant that queue until the chain bit de-asserts. It is expected 
that the requestor will assert the chain bit for no longer than a full burst length. The push arbiter 
must also take special notice of requests destined for the receive buffer in the Media Switch Fabric 
(MSF). Finally, the push arbiter must manage the delivery of data at different rates, depending on 
how wide the bus is going into a given target. 

The Microengines, PCI, and the Intel XScale® core all have 32-bit data buses. For these targets, the 
push arbiter takes two clock cycles to deliver 64 bits of data by first delivering bits 31:0 in the first 
cycle, and then putting bits 63:32 onto the low 32 bits of the PUSH_DATA in the second cycle.

Table 68. DRAM Push Arbiter Operation

Push Bus Master/Requestor Data Source Data Destination

IXP2800 Network Processor

D0 Unit
D1 Unit
D2 Unit

Current Master

TC0 Cluster (ME 0 – 7)
TC1 Cluster (ME 10 – 17)

Intel XScale® core
PCI Unit
MSF Unit
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The DRM Push Arbiter boundary conditions are:

• Make sure each of the push_request queues assert the full signal and back pressure the 
requesting unit. 

• Maintain 100% bus utilization, i.e., no holes.

5.12 DRAM Pull Arbiter Description
The general data flow for a push operation is as shown in Table 69. The DRAM Pull Arbiter 
functional blocks are shown in Figure 73.

The pull arbiter is very similar to the push arbiter, except that it gathers the data from a data source 
ID and delivers it to the requesting unit where it is written to DRAM memory. 

Figure 72. DRAM Push Arbiter Functional Blocks
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Table 69. DPLA Description

Pull Bus Master/Requestor Data Source Data Destination

IXP2800 Network Processor

D0 Unit
D1 Unit
D2 Unit

TC0 Cluster (Microengine 0 – 7)
TC1 Cluster (Microengine 8 – 15)

Intel XScale® core
PCI Unit
MSF Unit

Current Master 
204 Hardware Reference Manual



Intel® IXP2800 Network Processor
DRAM
When a requestor gets a pull command on the CMD_BUS, the requestor sends the command to the 
pull arbiter. This is enqueued into a requestor-dedicated FIFO. The pull request FIFOs are much 
smaller than the push request FIFOs because pull requests can request up to 128 bytes of data. It is 
eight entries deep and asserts full when it has six entries to account for in-flight requests.

The pull arbiter monitors the heads of each of the three FIFOs. A round robin arbitration scheme is 
applied to all valid requests. When a request is granted, the request is completed regardless of how 
many data transfers are required. Therefore, one request can take as many as 16 – 32 DRAM 
cycles. The push data bus can only use 32 bits when delivering data to the Microengines, PCI, and 
the Intel XScale® core. For these data sources, it takes two cycles to pull every eight bytes 
requested; otherwise, it takes only one cycle per eight bytes. On four byte cycles, data is delivered 
as pulled. 

Figure 73. DRAM Pull Arbiter Functional Blocks
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SRAM Interface 6

6.1 Overview
The IXP2800 Network Processor contains four independent SRAM controllers. SRAM controllers 
support pipelined QDR synchronous static RAM (SRAM) and a coprocessor that adheres to QDR 
signaling. Any or all controllers can be left unpopulated if the application does not need them.

Reads and writes to SRAM are generated by Microengines (MEs), the Intel XScale® core, and PCI 
Bus masters. They are connected to the controllers through Command Buses and Push and Pull 
Buses. Each of the SRAM controllers takes commands from the command bus and enqueues them. 
The commands are de-queued according to priority, and successive accesses to the SRAMs are 
performed. 

Each SRAM controller receives commands using two Command Buses, one of which may be tied 
off as inactive, depending on the chip implementation. The SRAM Controller can enqueue a 
command from each Command Bus in each cycle. Data movement between the SRAM controllers 
and the Microengines is through the S_Push bus and S_Pull bus. 

The overall structure of the SRAM controllers is shown in Figure 74.
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6.2 SRAM Interface Configurations
Memory is logically four bytes (one longword) wide while physically, the data pins are two bytes 
wide and double-clocked. Byte parity is supported. Each of the four bytes has a parity bit, which is 
written when the byte is written and checked when the longword is read. There are byte-enables 
that select the bytes to write, for lengths of less than a longword. 

The QDR controller implements a big-endian ordering scheme at the interface pins. For write 
operations, bytes 0/1, (data bits [31:16]), and associated parity and byte-enables are written on the 
rising edge of the K clock while bytes 2/3, (data bits [15:0]), and associated parity and byte-enables 
are written on the rising edge of the K_n clock. For read operations, bytes 0/1, (data bits [31:16]), 
and associated parity and byte-enables are captured on the rising edge of CIN0 clock while bytes
2/3, (data bits [15:0]), and associated parity and byte-enables are captured on the rising edge of 
CIN0_n clock.

Figure 74. SRAM Controller/Chassis Block Diagram
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In general, QDR and QDR II bursts of two SRAMs are supported at speeds up to 233 MHz. As 
other (larger) QDR SRAMs are introduced, they will also be supported.

The SRAM controller can also be configured to interface to an external coprocessor that adheres to 
the QDR or QDR II electrical and functional specification.

6.2.1 Internal Interface
Each SRAM channel receives commands through the command bus mechanism and transfers data 
to and from the Microengines, the Intel XScale® core, and PCI, using SRAM push and SRAM pull 
buses.

6.2.2 Number of Channels
The IXP2800 Network Processor supports four channels.

6.2.3 Coprocessor and/or SRAMs Attached to a Channel
Each channel supports the attachment of QDR SRAMs, a co-processor, or both, depending on the 
module level signal integrity and loading.

6.3 SRAM Controller Configurations
There are enough address pins (24) to support up to 64 Mbytes of SRAM. The SRAM controllers 
can directly generate multiple port enables (up to five pairs) to allow for depth expansion. Two 
pairs of pins are dedicated for port enables. Smaller RAMs use fewer address signals than the 
number provided to accommodate the largest RAMs, so some address pins (23:18) are 
configurable as either address or port-enable based on CSR SRAM_Control[Port_Control] as 
shown in Table 70.

Note: All of the SRAMs on a given channel must be the same size.

Note: Table 70 shows the capability of the logic — 1, 2, or 4 loads are supported as shown in the table, 
but this is subject to change.

Table 70. SRAM Controller Configurations

SRAM
Configuration SRAM Size Addresses Needed

to Index SRAM
Addresses Used
as Port Enables

Total Number of Port
Select Pairs Available

512K x 18 1 Mbyte 17:0 23:22, 21:20 4

1M x 18 2 Mbytes 18:0 23:22, 21:20 4

2M x 18 4 Mbytes 19:0 23:22, 21:20 4

4M x 18 8 Mbytes 20:0 23:22 3

8M x 18 16 Mbytes 21:0 23:22 3

16M x 18 32 Mbytes 22:0 None 2

32M x 18 64 Mbytes 23:0 None 1
Hardware Reference Manual 209



Intel® IXP2800 Network Processor
SRAM Interface
Each channel can be expanded in depth according to the number of port enables available. If 
external decoding is used, then the number of SRAMs is not limited by the number of port enables 
generated by the SRAM controller.

Note: External decoding may require external pipeline registers to account for the decode time, 
depending on the desired frequency.

Maximum SRAM system sizes are shown in Table 71. Shaded entries require external decoding, 
because they use more port-enables than the SRAM controller can directly supply.

Figure 75 shows how the SRAM clocks on a channel are connected. For receiving data from the 
SRAMs, the clock path and data path are matched to meet hold time requirements.

It is also possible to pipeline the SRAM signals with external registers. This is useful for the case 
when there is considerable loading on the address and data signals, which would slow down the 
cycle time. The pipeline stages make it possible to keep the cycle time fast by fanning out the 
address, byte write, and data signals. The RAM read data may also be put through a pipeline 
register, depending on configuration. External decoding of port selects can also be done to expand 
the number of SRAMs supported. Figure 76 is a block diagram that shows the concept of external 
pipelining.

Table 71. Total Memory per Channel

SRAM Size
Number of SRAMs on Channel

1 2 3 4 5 6 7 8

512K x 18 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB

1M x 18 2 MB 4 MB 6 MB 8 MB 10 MB 12 MB 14 MB 16 MB

2M x 18 4 MB 8 MB 12 MB 16 MB 20 MB 24 MB 28 MB 32 MB

4M x 18 8 MB 16 MB 24 MB 32 MB 64 MB NA NA NA

8M x 18 16 MB 32 MB 48 MB 64 MB NA NA NA NA

16M x 18 32 MB 64 MB NA NA NA NA NA NA

32M x 18 64 MB NA NA NA NA NA NA NA

Figure 75. SRAM Clock Connection on a Channel
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A side-effect of the pipeline registers is to add latency to reads, and the SRAM controller must 
account for that delay by waiting extra cycles (relative to no external pipeline registers) before it 
registers the read data. The number of extra pipeline delays is programmed in 
SRAM_Control[Pipeline].

6.4 Command Overview
This section will give an overview of the SRAM commands and their operation. The details will be 
given later in the document. Memory reference ordering will be specified along with the detailed 
command operation.

6.4.1 Basic Read/Write Commands
The basic read and write commands will transfer from 1 – 16 longwords of data to or from the 
QDR SRAM external to the IXP2800 Network Processor.

For a read command, the SRAM is read and the data placed on the Push bus, one longword at a 
time. The command source (for example, the Microengine) is signaled that the command is 
complete during the last data phase of the push bus transfer.

For a write command, the data is first pulled from the source, then written to the SRAM in 
consecutive SRAM cycles. The command source is signaled that the command is complete during 
the last data phase of the pull bus transfer.

If a read operation stalls due to the pull-data FIFO filling, any concurrent write operation that is in 
progress to the same address is temporarily stopped. This technique results in atomic data reads.

6.4.2 Atomic Operations
The SRAM Controller does read-modify-writes for the atomic operations, and the pre-modified 
data can be returned if desired. Other (non-atomic) readers and writers can access the addressed 
location between the read and write portions of the read-modify-write. Table 72 describes the 
atomic operations supported by the SRAM Controller.

Figure 76. External Pipeline Registers Block Diagram
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Up to two Microengine signals are assigned to each read-modify-write reference. Microcode 
should always tag the read-modify-write reference with an even-numbered signal. If the operation 
requires a pull, the requested signal is sent on the pull. If the pre-modified data is to be returned to 
the Microengine, then the Microengine is sent (requested signal OR 1) when that data is pushed.

In Example 28, the version of Test_and_Set requires both a pull and a push:

In Example 29, the version of Test_and_Set does not require a pull, but does issue a push. A signal 
is generated when the push is complete.

In Example 30, an Increment operation does not require a pull:

Table 72. Atomic Operations

Instruction Pull Operand Value Written to SRAM

Set_bits Optional1

1. There are two versions of the Set, Clear, Add, and Swap instructions. One version pulls operand data from the Microengine
transfer registers, and the second version passes the operand data to the SRAM unit as part of the command.

SRAM_Read_Data or Pull_Data

Clear_bits Optional SRAM_Read_Data and not Pull_Data

Increment No SRAM_Read_Data + 0x00000001

Decrement No SRAM_Read_Data - 0x00000001

Add Optional SRAM_Read_Data + Pull_Data 

Swap Optional Pull_Data

Example 28. SRAM Test_and_Set with Pull Data
immed [$xfer0, 0x1]

SRAM[test_and_set, $xfer0, test_address, 0, 1], sig_done_2

// SIGNAL_2 is set when $xfer0 is pulled from this ME. SIGNAL_3 is
// set when $xfer0 is written with the test value. Sleep until both
// SIGNALS have arrived.

CTX_ARB[signal_2, signal_3]

Example 29. SRAM Test_and_Set with Optional No-Pull Data
#define no_pull_mode_bit 24
#define byte_mask_override_bit 20
#define no_pull_data_bit 12
#define upper_part_bit 21

// This constant can be created once at init time
ALU[no_pull_constant, --, b, 0x3, <<no_pull_mode_bit]
ALU[no_pull_constant, no_pull_constant, or, 1, <<byte_mask_override_bit]

// Here is a no_pull test_and_add
ALU[temp, no_pull_constant, or, 0xfe, <<no_pull_data_bit] 
ALU[temp, temp, or, 0x5, <<upper_part_bit] 
SRAM[test_and_add, $x0, addra, 0], indirect_ref, sig_done[sig2]

CTX_ARB[sig2]

Example 30. SRAM Increment without Pull Data
SRAM [incr, $xfer0, incr_address, 0, 1], signal_2

// SIGNAL_2 is set when $xfer0 is written with the pre-increment value.

CTX_ARB[signal_2]
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6.4.3 Queue Data Structure Commands
The ability to enqueue and dequeue data buffers at a fast rate is key to meeting chip performance 
goals. This is a difficult problem as it involves dependent memory references that must be turned 
around very quickly. The SRAM controller includes a data structure (called the Q_array) and 
associated control logic to perform efficient enqueue and dequeue operations. Optionally, this 
hardware (or a portion of it) can be used to implement rings and journals.

A queue is an ordered list of data buffers stored at non-contiguous addresses. The first buffer added 
to the queue will be the first buffer removed from the queue. Queue entries are joined together by 
creating links from one data buffer to the next. This hardware implementation supports only a 
forward link. A queue is described by a pointer to its first entry (called the head) and a pointer to its 
last entry (the tail). In addition, there is a count of the number of items currently on the queue. This 
triplet (head, tail, and count) is referred to as the queue descriptor. In the IXP2800 chips, the queue 
descriptor is stored in that order — head first, then tail, then count. The longword alignment of the 
head addresses for all queue descriptors must be a power of two. For example, when there are no 
extra parameters on the queue descriptor, there will be one unused longword per queue descriptor.

Figure 77 shows a queue descriptor and queue links for a queue containing four entries.

There are two different versions of the enqueue command, ENQ_tail_and_link and ENQ_tail. 
ENQ_tail_and_link enqueues one buffer at a time. In Figure 77, issuing an 
ENQ_tail_and_link to buffer link address Z results in the queue shown in Figure 78.

Figure 77. Queue Descriptor with Four Links
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Figure 78. Enqueueing One Buffer at a Time
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The ENQ_tail_and_link command followed by ENQ_tail enqueue a previously linked string 
of buffers. The string of buffers is used in the case where one packet is too large to fit in one buffer. 
Instead, it is divided among multiple buffers. Figure 79 is an example of a string of buffers.

To enqueue the string of buffers in Figure 79 to the example queue in Figure 77, first issue 
ENQ_tail_and_link to address T; Figure 80 is the result.

The second step is to issue an ENQ_tail to address W. This will fix the Tail to point to the last 
buffer of the string.

Note: Q_count is not changed by ENQ_tail because the string of buffers represents one packet.

Figure 81 is the final queue state.

Figure 79. Previously Linked String of Buffers
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Figure 80. First Step to Enqueue a String of Buffers to a Queue (ENQ_Tail_and_Link)
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Figure 81. Second Step to Enqueue a String of Buffers to a Queue (ENQ_Tail)
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There are two different modes for the dequeue command. One mode removes an entire buffer from 
the queue. The second mode removes a piece of the buffer (referred to as a cell). The mode (cell 
dequeue or buffer dequeue) is selectable on a buffer-by-buffer basis by setting the cell_count 
bits (<30:24>) in the link longword.

A ring is an ordered list of data words stored in a fixed block of contiguous addresses. A ring is 
described by a head pointer and a tail pointer. Data is written, using the put command, to a ring at 
the address contained in the tail pointer and the tail pointer is incremented. Data is read, using the 
get command, from a ring at the address contained in the head pointer and the head pointer is 
incremented. Whenever either pointer reaches the end of the ring, the pointer is wrapped back to 
the address of the start of the ring.

A journal is similar to a ring. It is generally used for debugging. Journal commands only write to 
the data structure. New data overwrites the oldest data. Microcode can choose to tag the journal 
data with the Microengine number and CTX number of the journal writer.

The Q_array to support queuing, rings and journals contains 64 registers per SRAM channel. For 
a design with a large number of queues, the queue descriptors cannot all be stored on the chip, and 
thus a subset of the queue descriptors (16) is cached in the Q_array. (To implement the cache, 16 
contiguous Q_array registers must be allocated.) The cache tag (the mapping of queue number to 
Q_array registers) for the Q_array is maintained by microcode in the CAM of a Microengine. 
The writeback and load of the cached registers in the Q_array is under the control of that 
microcode.

Note: The size of the Q_array does not set a limit on the number of queues supported.

For other queues (free buffer pools, for example), rings, and journals, the information does not 
need to be subsetted and thus can be loaded into the Q_array at initialization time and left there to 
be updated solely by the SRAM controller.

The sum total of the cached queue descriptors plus the number of rings, journals, and static queues 
must be less than or equal to 64 for a given SRAM channel.

The fields and sizes of the Q_array registers are shown in Table 73 and Table 74. All addresses 
are of type longword, and are 32 bits in length.

Table 73. Queue Format

Name Longword 
Number

Bit 
Number1

1. Bits 31:24 of longword number 2 are available for use by microcode.

Definition

EOP 0 31 End of Packet — decrement Q_count on dequeue

SOP 0 30 Start of Packet — used by the programmer

Cell Count 0 29:24 Number of cells in the buffer

Head 0 23:0 Head pointer

Tail 1 23:0 Tail pointer

Q_count 2 23:0 Number of packets on the queue or number of buffers on the queue

SW_Private 2 31:24 Ignored by hardware, returned to Microengine

Head Valid N/A Cached head pointer valid — maintained by hardware

Tail Valid N/A Cached tail pointer valid — maintained by hardware
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Note: For a Ring or Journal, Head and Tail must be initialized to the same address.

Journals/Rings can be configured to be one of eight sizes, as shown in Table 75.

The following sections contain pseudo-code to describe the operation of the various queue and ring 
instructions.

Note: For these examples, NIL is the value 0.

6.4.3.1 Read_Q_Descriptor Commands

These commands are used to bring the queue descriptor data from QDR SRAM memory into the 
Q_array. Only portions of the Q_descriptor are read with each variant of the command, to 
minimize QDR SRAM bandwidth utilization. It is assumed that microcode has previously evicted 
the Q_descriptor data for the entry prior to overwriting the entry data with the new 
Q_descriptor data. Refer to the section, “SRAM (Read Queue Descriptor)”, in the IXP2400 and 
IXP2800 Network Processor Programmer’s Reference Manual, for more information.

.

6.4.3.2 Write_Q_Descriptor Commands

The write_Q_descriptor commands are used to evict an entry in the Q_array and return its 
contents to QDR SRAM memory. Only the valid fields of the Q_descriptor are written, to 
minimize QDR SRAM bandwidth utilization. Refer to the section, “SRAM (Write Queue 
Descriptor)”, in the IXP2400 and IXP2800 Network Processor Programmer’s Reference Manual, 
for more information.

Table 74. Ring/Journal Format

Name Longword 
Number

Bit 
Number Definition

Ring Size 0 31:29 See Table 75 for size encoding.

Head 0 23:0 Get pointer

Tail 1 23:0 Put pointer

Ring Count 2 23:0 Number of longwords on the ring

Table 75. Ring Size Encoding

Ring Size Encoding Size of Journal/Ring Area Head/Tail Field Base Head and Tail Field Increment

000 512 longwords 23:9 8:0

001 1K 23:10 9:0

010 2K 23:11 10:0

011 4K 23:12 11:0

100 8K 23:13 12:0

101 16K 23:14 13:0

110 32K 23:15 14:0

111 64K 23:16 15:0
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6.4.3.3 ENQ and DEQ Commands

These commands add or remove elements from the queue structure while updating the Q_array 
registers. Refer to the sections, “SRAM (Enqueue)” and “SRAM (Dequeue)”, in the IXP2400 and 
IXP2800 Network Processor Programmer’s Reference Manual, for more information.

6.4.4 Ring Data Structure Commands
The ring structure commands use the Q_array registers to hold the head tail and count data for a 
ring data structure, which is a fixed-size array of data with insert and remove pointers. Refer to the 
section, “SRAM (Ring Operations)” in the IXP2400 and IXP2800 Network Processor 
Programmer’s Reference Manual, for more information.

6.4.5 Journaling Commands
Journaling commands use the Q_array registers to index into an array of memory in the QDR 
SRAM that will be periodically written with information to help debug applications running on the 
IXP2400 and IXP2800 processors. Once the array has been completely written once, subsequent 
journal writes overwrite the previously written data — only the most recent data will be present in 
the data structure. Refer to the section, “SRAM (Journal Operations)”, in the IXP2400 and 
IXP2800 Network Processor Programmer’s Reference Manual, for more information.

6.4.6 CSR Accesses
CSR accesses will write or read CSRs within each controller. The upper address bits will determine 
which channel will respond, while the CSR address within a channel are given in the lower address 
bits.

6.5 Parity
SRAM can be optionally protected by byte parity. Even parity is used — the combination of eight 
data bits and the corresponding parity bit will have an even number of ‘1s’. The SRAM controller 
generates parity on all SRAM writes. When parity is enabled (SRAM_Control[Par_Enable]), 
the SRAM controller checks for correct parity on all reads. 

Upon detection of a parity error on a read, or the read portion of an atomic read-modify-write, the 
SRAM controller records the address of the location with bad parity in SRAM_Parity[Address] 
and sets the appropriate SRAM_Parity[Error] bit(s). Those bit(s) interrupt the Intel XScale® 

core when enabled in IRQ_Enable[SRAM_Parity] or FIQ_Enable[SRAM_Parity]. 

The Data Error signal in the Push_CMD is asserted when the data to be read is delivered (unless the 
token Ignore Data Error was asserted in the command; in that case, the SRAM controller does 
not assert Data Error). When Data Error is asserted, the Push Arbiter suppresses the Microengine 
signal if the read was originated by a Microengine (it uses 0x0, which is a null signal, in place of 
the requested signal number).
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Note: If incorrect parity is detected on the read portion of an atomic read-modify-write, the incorrect 
parity is preserved after the write (that is, the byte(s) with bad parity during the read will have 
incorrect parity written during the write).

When parity is used, the Intel XScale® core software must initialize the SRAMs by:

1. Enabling parity (write a 1 to SRAM_Control[Par_Enable]).

2. Writing to every SRAM address.

SRAM should not be read prior to doing the above initialization; otherwise, parity errors are likely 
to be recorded.

6.6 Address Map
Each SRAM channel occupies a 1-Gbyte region of addresses. Channel 0 starts at 0, Channel 1 at 
1 Gbyte, etc. Each SRAM controller receives commands from the command buses. It compares the 
target ID to the SRAM target ID, and address bits 31:30 to the channel number. If they both match, 
then the controller processes the command. See Table 76.

Note: If an access addresses a non-existent address within an SRAM controller’s address space, the 
results are unpredictable.For example the result of accessing address 0x0100 0000 when there is 
only one Mbyte of SRAM populated on the channel, produces unpredictable results.

For SRAM (memory or CSR) references from the Intel XScale® core, the channel select is in 
address bits 29:28. The Gasket shifts those bits to 31:30 to match addresses generated by the 
Microengines. Thus, the SRAM channel select logic is the same whether the command source is a 
Microengine or the Intel XScale® core.

The same channel start and end addresses are used both for SRAM memory and CSR references. 
CSR references are distinguished from memory references through the CSR encoding in the 
command field.

Note: Reads and writes to undefined CSR addresses yield unpredictable results.

The IXP2800 addresses are byte addresses. The fundamental unit of operation of the SRAM 
controller is longword access, so the SRAM controller ignores the two low-order address bits in all 
cases and utilizes the byte mask field on memory address space writes to determine the bytes to 
write into the SRAM. Any combination of the four bytes can be masked. 

The operation of byte writes with a length other than 1 are unpredictable. That is, microcode should 
not use a ref_count greater than one longword when a byte_mask is active. CSRs are not byte-
writable.

Table 76. Address Map

Start Address End Address Responder

0x0000 0000 0x3FFF FFFF Channel 0

0x4000 0000 0x7FFF FFFF Channel 1

0x8000 0000 0xBFFF FFFF Channel 2

0xc000 0000 0xFFFF FFFF Channel 3
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6.7 Reference Ordering
This section describes the ordering between accesses to any one SRAM controller. Various 
mechanisms are used to guarantee order — for example, references that always go to the same 
FIFOs remain in order. There is a CAM associated with write addresses that is used to order reads 
behind writes. Lastly, several counter pairs are used to implement “fences”. The input counter is 
tagged to a command and the command is not permitted to execute until the output counter 
matches the fence tag. All of this will be discussed in more detail in this section.

6.7.1 Reference Order Tables
Table 77 shows the architectural guarantees of order of accesses to the same SRAM address 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The definition of first and second is defined by the time 
the command is valid on the command bus. Verification requires testing only the order rules shown 
in Table 77 and Table 78. Note that a blank entry means no order is enforced.

Table 78 shows the architectural guarantees of order to access to the same SRAM Q_array entry 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The terms first and second are defined with reference to 
the time the command is valid on the command bus. The same caveats that apply to Table 77 apply 
to Table 78.

Table 77. Address Reference Order

1st ref
2nd ref Memory 

Read CSR Read Memory 
Write CSR Write Atomics

Queue / 
Ring / 

Q_Descr 
Commands

Memory Read Order Order

CSR Read Order

Memory Write Order Order

CSR Write Order

Atomics Order Order

Queue / Ring /
Q_ Descr 
Commands

See 
Table 78.
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6.7.2 Microcode Restrictions to Maintain Ordering
The microcode programmer must ensure order where the program flow requires order and where 
the architecture does not guarantee that order. One mechanism that can be used to do this is 
signaling. For example, if the microcode needs to update several locations in a table, a location in 
SRAM can be used to lock access to the table. Example 31 is the microcode for this table update.

Table 78. Q_array Entry Reference Order

1st ref
2nd ref

Read_Q
_Descr 
head,

tail

Read_
Q_Des

cr 
other

Write_Q
_Descr Enqueue Dequeue Put Get Journal

Read_Q_Descr
head,tail Order1

1. The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element will be guaranteed only if it is to a different
descriptor SRAM address. The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element with the same
descriptor SRAM address is not guaranteed and should be handled by the Microengine code.

Read_Q_
Descr other Order

Write_Q_
Descr2

2. Write_Q_Descr reference order is not guaranteed after any of the other references. The Queue array hardware assumes
that the Microengine managing the cached entries will flush an element ONLY when it becomes the LRU in the Microengine
CAM. Using this scheme, the time between the last use of this element and the write reference is sufficient to guarantee the
order.

Enqueue Order Order Order Order3

3. Order between Enqueue references and Dequeue references are guaranteed only when the Queue is empty or near empty.

Dequeue Order Order Order3 Order

Put Order

Get Order

Journal Order

Example 31. Table Update Microcode
IMMED [$xfer0, 1]

SRAM [write, $xfer0, flag_address, 0, 1, ctx_swap [SIG_DONE_2]

; At this point, the write to flag_address has passed the point of coherency. Do 
the table updates.

SRAM [write, $xfer1, table_base, offset1, 2] , sig_done [SIG_DONE_3]

SRAM [write, $xfer3, table_base, offset2, 2] , sig_done [SIG_DONE_4]

CTX_ARB [SIG_DONE_3, SIG_DONE_4]

; At this point, the table writes have passed the point of coherency. Clear the 
flag to allow access by other threads.

IMMED [$xfer0, 0]

SRAM [write, $xfer0, flag_address, 0, 1, ctx_swap [SIG_DONE_2]
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Other microcode rules:

• All access to atomic variables should be through read-modify-write instructions.

• If the flow must know that a write is completed (actually in the SRAM itself), follow the write 
with a read to the same address. The write is guaranteed to be complete when the read data has 
been returned to the Microengine.

• With the exception of initialization, never do write commands to the first three longwords of a 
queue_descriptor data structure (these are the longwords that hold head, tail, and count). 
All accesses to this data must be through the Q commands.

• To initialize the Q_array registers, perform a memory write of at least three longwords, 
followed by a memory read to the same address (to guarantee that the write completed). Then, 
for each entry in the Q_array, perform a read_q_descriptor_head followed by a 
read_q_descriptor_other using the address of the same three longwords.

6.8 Coprocessor Mode
Each SRAM controller may interface to an external coprocessor through its standard QDR 
interface. This interface allows for the cohabitation of both SRAM devices and coprocessors 
operating on the same bus, and the coprocessor behaves as a memory-mapped device on the SRAM 
bus. Figure 82 is a simplified block diagram of the SRAM controller. Figure 82 shows the 
connection to a coprocessor through a standard QDR interface.

Note: Most coprocessors do not need a large number of address bits — connect as many bits of An as 
required by the coprocessor.

Figure 82. Connection to a Coprocessor Though Standard QDR Interface
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The external coprocessor interface is based on FIFO communication.

A thread can send parameters to the coprocessor by doing a normal SRAM write instruction:
sram[write, $sram_xfer_reg, src1, src2, ref_count], optional_token

The number of parameters (longwords) passed is specified by ref_count. The address can be 
used to support multiple coprocessor FIFO ports. The coprocessor performs some operation using 
the parameters, and then will later pass back some number of results values (the number of 
parameters and results will be known by the coprocessor designers). The time between the input 
parameter and return values is not fixed; it is determined by the amount of time the coprocessor 
requires to do its processing and can be variable. When the coprocessor is ready to return the 
results, it signals back to the SRAM controller through a mailbox-valid bit that the data in the read 
FIFO is valid. A thread can get the return values by doing a normal SRAM read instruction:
sram[read, $sram_xfer_reg, src1, src2, ref_count], optional_token

Figure 83 shows the coprocessor with 1-to-n memory-mapped FIFO ports.

If the read instruction executes before the return values are ready, the coprocessor signals 
data-invalid through the mailbox register on the read data bus (Qn[17:0]). Signaling a thread 
upon pushing its read data works exactly as in a normal SRAM read.

Figure 83. Coprocessor with Memory Mapped FIFO Ports
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There can be multiple operations in progress in the coprocessor. The SRAM controller sends 
parameters to the coprocessor in response to each SRAM write instruction without waiting for 
return results of previous writes. If the coprocessor is capable of re-ordering operations — i.e., 
returning the results for a given operation before returning the results of an earlier arriving 
operation — Microengine code must manage matching results to operations. Tagging the operation 
by putting a sequence value into the parameters, and having the coprocessor copy that value into 
the results is one way to accomplish this requirement.

Flow control is under the Network Processor’s Microengine control. A Microengine thread 
accessing a coprocessor port maintains a count of the number of entries in that coprocessor’s write-
FIFO port. Each time an entry is written to that coprocessor port, the count is incremented. When a 
valid entry is read from that coprocessor read-port, the count is decremented by the thread.
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SHaC — Unit Expansion 7

This section covers the operation of the Scratchpad, Hash Unit, and CSRs (SHaC). 

7.1 Overview
The SHaC unit is a multifunction block containing Scratchpad memory and logic blocks used to 
perform hashing operations and interface with the Intel XScale® core peripherals and control status 
registers (CSRs) through the Advanced Peripheral Bus (APB) and CSR buses, respectively. The 
SHaC also houses the global registers, as well as Reset logic.

The SHaC unit has the following features:

• Communication to Intel XScale® core peripherals, such as GPIOs and timers, through the 
APB.

• Creation of hash indices of 48-, 64-, or 128-bit widths.

• Communication ring used by Microengines for interprocess communication.

• Third-option memory storage usable by Intel XScale® core and Microengines.

• CSR bus interface to permit fast writes to CSRs, as well as standard read and writes.

• Push/Pull Reflector to transfer data from the Pull bus to the Push bus.

The CSR and ΑRM* Advanced Peripheral Bus (APB) bus interfaces are controlled by the 
Scratchpad state machine and will be addressed in the Scratchpad design detail section.
(See Section 7.1.2.)

Note: Detailed information about CSRs is contained in the Intel® IXP2400 and IXP2800 Network 
Processor Programmer’s Reference Manual.

7.1.1 SHaC Unit Block Diagram
The SHaC unit contains two functional units: the Scratchpad and Hash Unit. Each will be described 
in greater detail in the following sections. The CAP and APB interfaces are described as part of the 
Scratchpad description.
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Figure 84. SHaC Top Level Diagram
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7.1.2 Scratchpad

7.1.2.1 Scratchpad Description

The SHaC Unit contains a 16-Kbyte Scratchpad memory, organized as 4K 32-bit words, that is 
accessible by the Intel XScale® core and Microengines. The Scratchpad connects to the internal 
Command, S_Push and S_Pull, CSR, and APB buses, as shown in Figure 85.

The Scratchpad memory provides the following operations:

• Normal reads and writes. 1 — 16 longwords (32 bits) can be read/written with a single 
command. Note that Scratchpad is not byte-writable. Each write must write all four bytes.

• Atomic read-modify-write operations, bit-set, bit-clear, increment, decrement, add, subtract, 
and swap. The Read-Modify-Write (RMW) operations can also optionally return the 
premodified data.

• 16 Hardware Assisted Rings for interprocess communication.1

• Standard support of APB peripherals such as UART, Timers, and GPIOs through the ARM* 
Advanced Peripheral Bus (APB).

• Fast write and standard read and write operations to CSRs through the CSR Bus. For a fast 
write, the write data is supplied with the command, rather than pulled from the source.

• Push/Pull Reflector Mode that supports reading from a device on the pull bus and writing the 
data to a device on the push bus (reflecting the data from one bus to the other). A typical 
implementation of this mode is to allow a Microengine to read or write the transfer registers or 
CSRs in another Microengine. Note that the Push/Pull Reflector Mode only connects to a 
single Push/Pull bus. If a chassis implements more than one Push/Pull bus, it can only connect 
one specific bus to the CAP.

Scratchpad memory is provided as a third memory resource (in addition to SRAM and DRAM) 
that is shared by the Microengines and Intel XScale® core. The Microengines and Intel XScale® 
core can distribute memory accesses between these three types of memory resources to provide a 
greater number of memory accesses occurring in parallel.

1. A ring is a FIFO that uses a head and tail pointer to store/read information in Scratchpad memory.
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Figure 85. Scratchpad Block Diagram
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7.1.2.2 Scratchpad Interface

Note: The Scratchpad command and S_Push and S_Pull bus interfaces actually are shared with the Hash 
Unit. Only one command, to either of those units, can be accepted per cycle.

The CSR and APB buses are described in detail in the following sections.

7.1.2.2.1 Command Interface

The Scratchpad accepts commands from the Command Bus and can accept one command every 
cycle.

For Push/Pull reflector write and read commands, the command bus is rearranged before being sent 
to the Scratchpad state machine to allow a single state (REFLECT_PP) to be used to handle both 
commands. 

7.1.2.2.2 Push/Pull Interface

The Scratchpad has the capability to interface to either one or two pairs of push/pull (PP) bus pairs. 
The interface from the Scratchpad to the PP bus pair is through the Push/Pull Arbiters. Each PP bus 
has a separate Push and Pull arbiter through which access to the Push bus and Pull bus, 
respectively, is regulated. Refer to the SRAM Push Arbiter and SRAM Pull Arbiter chapters for 
more information. When the Scratchpad is used in a chip that only utilizes one pair of PP buses, the 
other interface is unused.

7.1.2.2.3 CSR Bus Interface

The CSR Bus provides fast write and standard read and write operations from the Scratchpad to the 
CSRs in the CSR block.

7.1.2.2.4 Advanced Peripherals Bus Interface (APB)

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus Architecture 
(AMBA) hierarchy of buses that are optimized for minimal power consumption and reduced 
design complexity.

Note: The SHaC Unit uses a modified APB interface in which the APB peripheral is required to generate 
an acknowledge signal (APB_RDY_H) during read operations. This is done to indicate that valid 
data is on the bus. The addition of the acknowledge signal is an enhancement added specifically for 
the IXP2800 Network Processor architecture. (For more details refer to the ARM* AMBA 
Specification 1.6.1.3.)

7.1.2.3 Scratchpad Block Level Diagram

Scratchpad Command Overview

This section describes the operations performed for each Scratchpad command. Command order is 
preserved because all commands go through a single command inlet FIFO.

When a valid command is placed on the command bus, the control logic checks the instruction 
field for the Scratchpad or CAP ID. The command, address, length, etc., are enqueued into the 
Command Inlet FIFO. If the command requires pull data, signals are generated and immediately 
sent to the Pull Arbiter. The command is pushed from the Inlet FIFO to the command pipe where it 
is serviced according to the command type.
Hardware Reference Manual 229



Intel® IXP2800 Network Processor
SHaC — Unit Expansion
If the Command Inlet FIFO becomes full, the Scratchpad controller sends a full signal to the 
command arbiter that prevents it from sending further Scratchpad commands.

7.1.2.3.1 Scratchpad Commands

The basic read and write commands transfer from 1 – 16 longwords of data to/from the Scratchpad.

Reads 

When a read command is at the head of the Command queue, the Push Arbiter is checked to see if 
it has enough room for the data. If so, the Scratchpad RAM is read, and the data is sent to the Push 
Arbiter one 32-bit word at a time (the Push_ID is updated for each word pushed). The Push Data is 
sent to the specified destination.

The read data is placed on the S_Push bus, one 32-bit word at a time. If the master is a 
Microengine, it is signaled that the command is complete during the last phase of the push bus 
transfer. Other masters (Intel XScale® core and PCI) must count the number of data pushes to 
know when the transfer is complete.

Writes

When a write command is at the head of the Command Inlet FIFO, signals are sent to the Pull 
Arbiter. If there is room in the queue, the command is sent to the Command pipe.

When a write command is at the head of the Command pipe, the command waits for a signal from 
the Pull Data FIFO, indicating that the data to be written is valid. Once the first longword is 
received, the data is written on consecutive cycles to the Scratchpad RAM until the burst (up to 16 
longwords) is completed.

If the master is a Microengine, it is signaled that the command is complete during the last pull bus 
transfer. Other masters (Intel XScale® core and PCI) must count the number of data pulls to know 
when the transfer is complete.

Atomic Operations

The Scratchpad supports the following atomic operations.

• bit set

• bit clear

• increment

• decrement

• add

• subtract

• swap

The Scratchpad does read-modify-writes for the atomic operations, and the pre-modified data also 
can be returned, if desired. The atomic operations operate on a single longword. There is one cycle 
between the read and write while the modification is done. In that cycle, no operation is done, so an 
access cycle is lost.

When a read-modify-write command requiring pull data from a source is at the head of the 
Command Inlet FIFO, a signal is generated and sent to the Pull Arbiter (if there is room).
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When the RMW command reaches the head of the Command pipe, the Scratchpad reads the 
memory location in the RAM. If the source requests the pre-modified data (Token[0] set), it is sent 
to the Push Arbiter at the time of the read. If the RMW requires pull data, the command waits for 
the data to be placed into the Pull Data FIFO before performing the operation; otherwise the 
operation is performed immediately. Once the operation has been performed, the modified data is 
written back to the Scratchpad RAM.

Up to two Microengine signals are assigned to each read-modify-write reference. Microcode 
should always tag the read-modify-write reference with an even-numbered signal. If the operation 
requires a pull, then the requested signal is sent on the pull. If the read data is to be returned to the 
Microengine, then the Microengine is sent (requested signal OR 1) when that data is pushed.

For all atomic operations, whether or not the read data is returned, is determined by Command bus 
Token[0].

Note: The Intel XScale® core can do atomic commands using aliased addresses in Scratchpad. An Intel 
XScale® core Store instruction to an atomic command address will do the RMW without returning 
the read data, and an Intel XScale® core Swap instruction (SWP) to an atomic command address 
will do the RMW and return the read data to Intel XScale® core.

7.1.2.3.2 Ring Commands

The Scratchpad provides 16 Rings used for interprocess communication. The rings provide two 
operations.

• Get(ring, length)

• Put(ring, length)

Ring is the number of the ring (0 — 15) to get from or put to, and length specifies the number of 
longwords to transfer. A logical view of one of the rings is shown in Figure 86.

Figure 86. Ring Communication Logic Diagram
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Head, Tail, Base, and Size are registers in the Scratchpad Unit. Head and Tail point to the actual 
ring data, which is stored in the Scratchpad RAM. For each ring in use, a region of Scratchpad 
RAM must be reserved for the ring data. The reservation is by software convention. The hardware 
does not prevent other accesses to the region of Scratchpad used by the ring. Also, the regions of 
Scratchpad memory allocated to different rings must not overlap.

Head points to the next address to be read on a get, and Tail points to the next address to be written 
on a put. The size of each ring is selectable from the following choices: 128, 256, 512, or 1,024 
32-bit words. The size is specified in the Ring_Base register. 

Note: The above rule stating that rings must not overlap implies that many configurations are not legal. 
For example, programming five rings to a size of 1024 words would exceed the total size of 
Scratchpad memory, and therefore is not legal.

Note: The region of Scratchpad used for a ring is naturally aligned to its size.

Each ring asserts an output signal that is used as a state input to the Microengines. The software 
configures whether the Scratchpad asserts the signal if a ring becomes empty or if the ring is nearly 
full.

If configured to assert status when the rings are nearly full, Microengines must test the input state 
(by doing Branch on Input Signal) before putting data onto a ring. There is a lag in time from a put 
instruction executing to the Full signal being updated to reflect that put. To be guaranteed that a put 
does not overfill the ring, there is a limit on the number of Contexts and the number of 32-bit words 
per write, based on the size of the ring, as shown in Table 79. Each Context should test the Full 
signal, then do the put if not Full, and then wait until the Context has been signaled that the data has 
been pulled, before testing the Full signal again.

Table 79. Ring Full Signal Use – Number of Contexts and Length versus Ring Size

Number of 
Contexts Ring Size

128 256 512 1024

1 16 16 16 16

2 16 16 16 16

4 8 16 16 16

8 4 12 16 16

16 2 6 14 16

24 1 4 9 16

32 1 3 7 15

40 Illegal 2 5 12

48 Illegal 2 4 10

64 Illegal 1 3 7

128 Illegal Illegal 1 3

NOTE:
1. Number in each table entry is the largest length that should be put. 16 is the largest length that a single put 

instruction can generate.
2. Illegal - With that number of Contexts, even a length of 1 could cause the ring to overfill.
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The ring commands operate as outlined in the pseudo-code in Example 32. The operations are 
atomic, meaning that multi-word “Gets” and “Puts” do all the reads and writes, with no other 
intervening Scratchpad accesses.

Prior to using the Scratchpad rings, software must initialize the Ring registers (by CSR writes). The 
Base address of the ring must be written, and also the size field that determines the number of
32-bit words for the Ring. 

Note: Detailed information about CSRs is provided in the Intel® IXP2400 and IXP2800 Network 
Processor Programmer’s Reference Manual.

Writes
For an APB or CAP CSR write, the Scratchpad arbitrates for the S_Pull_Bus, pulls the write data 
from the source identified in the instruction (either a Microengine transfer register or an Intel 
XScale® core write buffer), and puts it into one of the Pull Data FIFOs. It then drives the address 
and writes data onto the appropriate bus. CAP CSRs locally decode the address to match their own. 
The Scratchpad generates a separate APB device select signal for each peripheral device
(up to 15 devices). If the write is to an APB CSR, the control logic maintains valid signaling until 
the APB_RDY_H signal is returned (the APB RDY signal is an extension to the APB bus 
specification, specifically added for the Network Processor). Upon receiving the APB_RDY_H 
signal, the APB select signal is deasserted and the state machine returns to the idle state between 
commands. The CAP CSR bus does not support a similar acknowledge signal on writes since the 
Fast Write functionality requires that a write operation be retired on each cycle.

Example 32. Ring Command Pseudo-Code

GET Command
Get(ring, length) 

If count[ring] >= length //enough data in the ring?

ME <-- Scratchpad[head[ring]] // each data phase

head[ring]+= length % ringSize

count[ring] -= length

else ME <--nil // 1 data phase signals read off empty list
NOTE: The Microengine signal is delivered with last data. In the case of nil, the signal is delivered with the 1 

data phase.
PUT Command
Before issuing a PUT command, it is the responsibility of the Microengine thread issuing the command to make 
sure the Ring has enough room.
Put(ring, length)

SRAM[tail[ring]] <-- ME pull data // each data phase

tail[ring]+= length % ringSize

Count[ring] += length

Table 80. Head/Tail, Base, and Full Threshold – by Ring Size

Size
(Number of 32-Bit Words) Base Address Head/Tail Offset Full Threshold (Entries)

128 13:9 8:2 32

256 13:10 9:2 64

512 13:11 10:2 128

1024 13:12 11:2 256

NOTE: Note that bits [1:0] of the address are assumed to be 00.
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For writes using the Reflector mode, Scratchpad arbitrates for the S_Pull_Bus, pulls the write data 
from the source identified in the instruction (either a Microengine transfer register or an Intel 
XScale® core write buffer), and puts it into one of the Pull Data FIFOs (same as for APB and CAP 
CSR writes). The data is then removed from the Pull Data FIFO and sent to the Push Arbiter.

For CSR Fast Writes, the command bypasses the Inlet Command FIFO and is acted on at first 
opportunity. The CSR control logic has an arbiter that gives highest priority to fast writes. If an 
APB write is in progress when a fast write arrives, both write operations will complete 
simultaneously. For a CSR fast write, the Scratchpad extracts the write data from the command, 
instead of pulling the data from a source over the Pull bus. It then drives the address and writes data 
to all CSRs on the CAP CSR bus, using the same method used for the CAP CSR write. 

The Scratchpad unit supports CAP write operations with burst counts greater than 1, except for fast 
writes, which only support a burst count of 1. Burst support is required primarily for Reflector 
mode and software must ensure that burst is performed to a non-contiguous set of registers. CAP 
looks at the length field on the command bus and breaks each count into a separate APB write 
cycle, incrementing the CSR number for each bus access. 

Reads

For an APB read, the Scratchpad drives the address, write, select, and enable signals, and then 
waits for the acknowledge signal (APB_RDY_H) from the APB device. For a CAP CSR read, the 
address is driven, which controls a tree of multiplexers to select the appropriate CSR. CAP then 
waits for the acknowledge signal (CAP_CSR_RD_RDY). 

Note: The CSR bus can support an acknowledge signal since the read operations occur on a separate read 
bus and will not interfere with Fast Write operations. In both cases, when the data is returned, the 
data is sent to the Push Arbiter and the Push Arbiter pushes the data to the destination. 

For reads using the Reflector mode, the write data is pulled from the source identified in 
ADDRESS (either a Microengine transfer register or an Intel XScale® core write buffer), and put 
into one of the Scratchpad Pull Data FIFOs. The data is then sent to the Push Arbiter. The arbiter 
then moves the data to the destination specified in the command. Note that this is the same as a 
Reflector mode write, except that the source and destination are identified using opposite fields.

The Scratchpad performs one read operation at a time. In other words, CAP does not begin an APB 
read until a CSR read has completed, or vice versa. This simplifies the design by ensuring that, 
when lengths are greater than 1, the data is sent to the Push Arbiter in a contiguous order and not 
interleaved with data from a read on the other bus. 

Signal Done

CAP can provide a signal to a Microengine upon completion of a command. For APB and CAP 
CSR operations, CAP signals the Microengine using the same method as any other target. For 
Reflector mode reads and writes, CAP uses the TOKEN field of the Command to determine 
whether to signal the command initiator, the Microengine that is the target of the reflection, both, or 
neither.
234 Hardware Reference Manual



Intel® IXP2800 Network Processor
SHaC — Unit Expansion
7.1.2.3.3 Clocks and Reset

Clock generation and distribution is handled outside of CAP and is dependent on the specific chip 
implementation. Separate clock rates are required for CAP CSRs/Push/Pull Buses and ARB since 
APB devices tend to run slower. CAP provides reset signals for the CAP CSR block and APB 
devices. These resets are based on the system reset signal and synchronized to the appropriate bus 
clock.

Table 81 shows the Intel XScale® core and Microengine instructions used to access devices on 
these buses and it shows the buses that are used during the operation. For example, to read an APB 
peripheral such as a UART CSR, a Microengine would execute a csr[read] instruction and the Intel 
XScale® core would execute a Load (ld) instruction. Data is then moved between the CSR and the 
Intel XScale® core/Microengine by first reading the CSR via the APB bus and then writing the 
result to the Intel XScale® core/Microengine via the Push Bus.

7.1.2.3.4 Reset Registers

The reset registers reside in the SHaC. For more information on chip reset, refer to Section 10, 
“Clocks and Reset”. Strapping pins are used to select the reset count (currently 140 cycles after 
deassert). Options for reset count will be 64 (default), 128, 512, and 2048.

Table 81. Intel XScale® Core and Microengine Instructions

Accessing Read Operation Write Operation

APB Peripheral

Access Method: 
Microengine: csr[read]
Intel XScale® core: ld

Access Method: 
Microengine: csr[write]
Intel XScale® core: st

Bus Usages: 
Read source: APB bus
Write dest: Push bus

Bus Usages: 
Read source: Pull Bus
Write dest: APB bus

CAP CSR

Access Method: 
Microengine: csr[read]
Intel XScale® core: ld

Access Method: 
Microengine: csr[write], fast_wr

Intel XScale® core: st

Bus Usages: 
Read source: CSR bus
Write dest: Push bus

Bus Usages: 
csr[write] and st

Read source: Pull Bus
Write dest: CSR bus

fast_wr
Write dest: CSR bus

Microengine CSR or Xfer 
register

(Reflector Mode)

Access Method: 
Microengine: csr[read]
Intel XScale® core: ld

Access Method: 
Microengine: csr[write]
Intel XScale® core: st

Bus Usages: 
Read source: Pull bus (Address)
Write dest: Push bus(PP_ID)

Bus Usages: 
Reads: Pull Bus (PP_ID)
Write dest: Push bus (Address)
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7.1.3 Hash Unit
The SHaC unit contains a Hash Unit that can take 48-, 64-, or 128-bit data and produce a 48-, 64-, 
or a 128-bit hash index, respectively. The Hash Unit is accessible by the Microengines and the 
Intel XScale® core. Figure 87 is a block diagram of the Hash Unit. 

.

Figure 87. Hash Unit Block Diagram
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7.1.3.1 Hashing Operation

Up to three hash indexes (see Example 33) can be created by using one Microengine instruction. 

A Microengine initiates a hash operation by writing a contiguous set of SRAM Transfer registers 
and then executing the hash instruction. The SRAM Transfer registers can be specified as either 
Context-Relative or Indirect; Indirect allows any of the SRAM Transfer registers to be used. Two 
SRAM Transfer registers are required to create hash indexes for 48-bit and 64-bit, and four SRAM 
Transfer registers to create 128-bit hash indexes, as shown in Table 82. In the case of the 48-bit 
hash, the Hash Unit ignores the upper two bytes of the second Transfer register.

Example 33. Microengine Hash Instructions
hash1_48[$xfer], optional_token

hash2_48[$xfer], optional_token

hash3_48[$xfer], optional_token

hash1_64[$xfer], optional_token

hash2_64[$xfer], optional_token

hash3_64[$xfer], optional_token

hash1_128[$xfer], optional_token

hash2_128[$xfer], optional_token

hash3_128[$xfer], optional_token

Where:

$xfer The beginning of a contiguous set of registers that supply the data used 
to create the hash input and receive the hash index upon completion of 
the hash operation.

optional_token sig_done, ctx_swap, defer [1]

Table 82. S_Transfer Registers Hash Operands (Sheet 1 of 2)

Register Address

48-Bit Hash Operations

Don't care hash 3[47:32] $xfer n+5

hash 3 [31:0] $xfer n+4

Don't care hash 2[47:32] $xfer n+3

hash 2 [31:0] $xfer n+2

Don't care hash 1[47:32] $xfer n+1

hash 1 [31:0] $xfer n

64-Bit Hash Operations

hash 3 [63:32] $xfer n+5

hash 3 [31:0] $xfer n+4

hash 2 [63:32] $xfer n+3

hash 2 [31:0] $xfer n+2

hash 1 [63:32] $xfer n+1

hash 1 [31:0] $xfer n
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The Intel XScale® core initiates a hash operation by writing a set of memory-mapped Hash 
Operand registers (which are built into the Intel XScale® core gasket) with the data to be used to 
generate the hash index. There are separate registers for 48-, 64-, and 128-bit hashes. Only one 
hash operation of each type can be done at a time. Writing to the last register in each group informs 
the gasket logic that it has all of the operands for that operation, and it will then arbitrate for the 
Command bus to send the command to the Hash Unit.

Note: Detailed information about CSRs is contained in the Intel® IXP2400 and IXP2800 Network 
Processor Programmer’s Reference Manual.

For Microengine-generated commands and those generated by the Intel XScale® core, the 
command enters the Command Inlet FIFO. As with the Scratchpad write and RMW operations, 
signals are generated and sent to the Pull Arbiter. The Hash unit Pull Data FIFO allows the data for 
up to three hash operations to be read into the Hash Unit in a single burst. When the command is 
serviced, the first data to be hashed enters the hash array while the next two wait in the FIFO.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to 
create hash indexes. Three separate multipliers are supported — one each, for 48-, 64-, and 128-bit 
hash operations. The multiplier is programmed through the registers, HASH_MULTIPLIER_64_1, 
HASH_MULTIPLIER_64_2, HASH_MULTIPLIER_48_1, HASH_MULTIPLIER_48_2, 
HASH_MULTIPLIER_128_1, HASH_MULTIPLIER_128_2, HASH_MULTIPLIER_128_3, and 
HASH_MULTIPLIER_128_4.

The multiplicand is shifted into the hash array 16 bits at a time. The hash array performs a 
1’s-complement multiply and polynomial divide, calculated by using the multiplier and 16 bits of 
the multiplicand. The result is placed into an output register and is also fed back into the array. This 
process is repeated three times for a 48-bit hash (16 bits x 3 = 48), four times for a 64-bit hash
(16 bits x 4 = 64), and eight times for a 128-bit hash (16 x 8 = 128). After an entire multiplicand has 
been passed through the hash array, the resulting hash index is placed into a two-stage output 
pipeline and the next hash is immediately started.

128-Bit Hash Operations

hash 3 [127:96] $xfer n+11

hash 3 [95:64] $xfer n+10

hash 3 [63:32] $xfer n+9

hash 3 [31:0] $xfer n+8

hash 2 [127:96] $xfer n+7

hash 2 [95:64] $xfer n+6

hash 2 [63:32] $xfer n+5

hash 2 [31:0] $xfer n+4

hash 1 [127:96] $xfer n+3

hash 1 [64:95] $xfer n+2

hash 1 [63:32] $xfer n+1

hash 1 [31:0] $xfer n

Table 82. S_Transfer Registers Hash Operands (Sheet 2 of 2)

Register Address
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The Hash Unit shares the Scratchpad’s Push Data FIFO. After each hash index is completed, the 
index is placed into a three-stage output pipe and the Hash Unit sends a PUSH_DATA_REQ to the 
Scratchpad to indicate that it has a valid hash index to put into the Push Data FIFO for transfer. The 
Scratchpad issues a SEND_HASH_DATA signal, transfers the hash index to the Push Data FIFO, 
and sends the data to the Arbiter.

For hash operations initiated by the Intel XScale® core, the core reads the results from its memory-
mapped Hash Result registers. The addresses of Hash Results are the same as the Hash Operand 
registers. Because of queuing delays at the Hash Unit, the time to complete an operation is not 
fixed. The Intel XScale® core can do one of two operations to get the hash results:

• Poll the Hash Done register. This register is cleared when the Hash Operand registers are 
written. Bit [0] of the Hash Done register is set when the Hash Result registers get the result 
from the Hash Unit (when the last word of the result is returned). The Intel XScale® core 
software can poll on Hash Done, and read Hash Result when Hash Done equals 0x00000001.

• Read Hash Result directly. The gasket logic acknowledges the read only when the result is 
valid. The Intel XScale® core stalls if the result is not valid when the read happens.

The number of clock cycles required to perform a single hash operation equals: two or four cycles 
through the input buffers, three, four, or eight cycles through the hash array, and two or four cycles 
through the output buffers. With the pipeline characteristics of the Hash Unit, performance is 
improved if multiple hash operations are initiated with a single instruction, rather than with 
separate hash instructions for each hash operation.

7.1.3.2 Hash Algorithm

The hashing algorithm allows flexibility and uniqueness since it can be programmed to provide 
different results for a given input. The algorithm uses binary polynomial multiplication and 
division under modulo-2 addition. The input to the algorithm is a 48-, 64-, or 128-bit value. 

The data used to generate the hash index is considered to represent the coefficients of an order-47, 
order-63, or order-127 polynomial in x. The input polynomial (designated as A(x)) has the form:

Equation 1.  (48-bit hash operation)

Equation 2.  (64-bit hash operation)

Equation 3.  (128-bit hash operation)

This polynomial is multiplied by a programmable hash multiplier using a modulo-2 addition. The 
hash multiplier, M(x) is stored in Hash Unit CSRs and represents the polynomial.

Equation 4.  (48-bit hash operation)

Equation 5.  (64-bit hash operation)

Equation 6.  (128-bit hash operation)

Since multiplication is performed using modulo-2 addition, the result is an order-94 polynomial, an 
order-126 polynomial, or an order-254 polynomial with coefficients that are also 1 or 0. This 
product is divided by a fixed generator polynomial given by:

A48 x( ) a0 a1x a2x2 … a46x46 a47x47+ + + + +=

A64 x( ) a0 a1x a2x2 … a62x62 a63x63+ + + + +=

A128 x( ) a0 a1x a2x2 … a126x126 a127x127+ + + + +=

M48 x( ) m0 m1x m2x2 … m46x46 m47x47+ + + + +=

M64 x( ) m0 m1x m2x2 … m62x62 m63x63+ + + + +=

M128 x( ) m0 m1x m2x2 … m126x126 m127x127+ + + + +=
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Equation 7.  (48-bit hash operation)

Equation 8.  (64-bit hash operation)

Equation 9.  (128-bit hash operation)

The division results in a quotient Q(x), a polynomial of order-46, order-62, or order-126, and a 
remainder R(x), and a polynomial of order-47, order-63, or order-127. The operands are related by 
the equation:

Equation 10. 

The generator polynomial has the property of irreducibility. As a result, for a fixed multiplier M(x), 
there is a unique remainder R(x) for every input A(x). The quotient Q(x), can then be discarded, 
since input A(x) can be derived from its corresponding remainder R(x). A given bounded set of 
input values A(x) — for example, 8K or 16K table entries — with bit weights of an arbitrary 
density function can be mapped one-to-one into a set of remainders R(x) such that the bit weights 
of the resulting Hashed Arguments (a subset of all values of R(x) polynomials) are all 
approximately equal.

In other words, there is a high likelihood that the low-order set of bits from the Hash Arguments are 
unique, so they can be used to build an index into the table. If the hash algorithm does not provide 
a uniform hash distribution for a given set of data, the programmable hash multiplier (M(x)) may 
be modified to provide better results.

G48 x( ) 1 x10 x25 x36 x48+ + + +=

G64 x( ) 1 x17 x35 x54 x64+ + + +=

G128 x( ) 1 x33 x69 x98 x128+ + + +=

A x( )M x( ) Q x( )G x( ) R x( )+=
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Media and Switch Fabric Interface 8

8.1 Overview
The Media and Switch Fabric (MSF) Interface connects the IXP2800 Network Processor to a 
physical layer device (PHY) and/or to a Switch Fabric. The MSF consists of separate receive and 
transmit interfaces, each of which can be separately configured for either SPI-4 Phase 2 (System 
Packet Interface), for PHY devices or for the CSIX-L1 protocol, for Switch Fabric Interfaces.

The receive and transmit ports are unidirectional and independent of each other. Each port has 16 
data signals, a clock, a control signal, and a parity signal, all of which use LVDS (differential) 
signaling, and are sampled on both edges of the clock. There is also a flow control port consisting 
of a clock, data, and ready status bits, for communicating between two IXP2800 Network 
Processors, or a IXP2800 Network Processor and a Switch Fabric Interface; these are also LVDS, 
dual-edge data transfer. 

Signal usage and the receive and transmit functions, are illustrated in Figure 88, and described in 
the sections that follow.

Note: Detailed information about CSRs is contained in the Intel® IXP2400 and IXP2800 Network 
Processor Programmer’s Reference Manual.
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The use of some of the receive and transmit pins is based on protocol, SPI-4 or CSIX. For the 
LVDS pins, only the active high name is given (for LVDS, there are two pins per signal). The 
definitions of the pins can be found in the SPI-4 and CSIX specs, referenced below.

An alternate system configuration is shown in the block diagram in Figure 89. In this case, a single 
IXP2800 Network Processor is used for both Ingress and Egress. The bit-rate supported would be 
less than in Figure 88. A hypothetical Bus Converter chip, external to the IXP2800 Network 
Processor, is used. The block diagram in Figure 89 is only an illustrative example.

Figure 88. Example System Block Diagram
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single edge CWord signals used by Switch Fabric, if required.

2. Per the CSIX specification, the terms "egress" and ingress" are with respect to the Switch Fabric. 
So the egress processor handles traffic received from the Switch Fabric and the ingress 
processor handles traffic sent to the Switch Fabric.
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8.1.1 SPI-4
SPI-4 is an interface for packet and cell transfer between a physical layer (PHY) device and a link 
layer device (the IXP2800 Network Processor), for aggregate bandwidths of OC-192 ATM and 
Packet over SONET/SDH (POS), as well as 10 Gb/s Ethernet applications.

The Optical Internetworking Forum (OIF), www.oiforum.com, controls the SPI-4 Implementation 
Agreement document.

SPI-4 has two types of transfers — Data when the RCTL signal is deasserted; Control when the 
RCTL signal is asserted. The Control Word format is shown in Table 83 (this information is from 
the SPI-4 specification, shown here for convenience).

Figure 89. Full-Duplex Block Diagram
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Switch Fabric. PHY interface can be UTOPIA-3, IXBUS, or any other required protocol.
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Control words are inserted only between burst transfers; once a transfer has begun, data words are 
sent uninterrupted until either End of Packet or a multiple of 16 bytes is reached. The order of bytes 
within the SPI-4 data burst is shown in Table 84. 

The most significant bits of the bytes correspond to bits 15 and 7. On data transfers that do not end 
on an even byte-boundary, the unused byte on bits [7:0] is set to all zeros.

Table 83. SPI-4 Control Word Format

Bit
Position Label Description

15 Type
Control Word Type.

• 1—payload control word (payload transfer will immediately follow the control word).
• 0—idle or training control word.

14:13 EOPS

End-of-Packet (EOP) Status.
Set to the following values below according to the status of the immediately preceding 
payload transfer.

• 00—Not an EOP.
• 01—EOP Abort (application-specific error condition).
• 10—EOP Normal termination, 2 bytes valid.
• 11—EOP Normal termination, 1 byte valid.

EOPS is valid in the first Control Word following a burst transfer. It is ignored and set to 00 
otherwise.

12 SOP

Start-of-Packet (SOP).
• Set to 1 if the payload transfer immediately following the Control Word corresponds to 

the start of a packet; set to 0 otherwise.
• Set to 0 in all idle and training control words.

11:4 ADR

Port Address.
8-bit port address of the payload data transfer immediately following the Control Word. 
None of the addresses are reserved (all are available for payload transfer).

• Set to all zeros in all idle Control Words.
• Set to all ones in all training Control Words.

3:0 DIP-4
4-bit Diagonal Interleaved Parity.
4-bit odd parity computed over the current Control Word and the immediately preceding 
data words (if any) following the last Control Word.
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Table 84 shows the order of bytes on SPI-4; this example shows a 43-byte packet.

Figure 90 shows two ways in which the SPI-4 clocking can be done. Note that it is also possible to 
use an internally-supplied clock and leave TCLK_REF unused.

Table 84. Order of Bytes1 within the SPI-4 Data Burst

1. These bytes are valid only if EOP is set.

Bit 15 Bit 8 Bit 7 Bit 0

Data Word 1 Byte 1 Byte 2

Data Word 2 Byte 3 Byte 4

Data Word 3 Byte 5 Byte 5

Data Word 4 Byte 7 Byte 6

… … …

… … …

… … …

Data Word 21 Byte 41 Byte 42

Data Word 22 Byte 432

2. All transfers on the SPI-4 bus must be in multiples of 16 bytes if it is not associated with an End of Packet (EOP) transfer,
to comply with the protocol. Hence, this 43-byte example would only be valid for an EOP transfer.

00

Figure 90. Receive and Transmit Clock Generation
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8.1.2 CSIX
CSIX_L1 (Common Switch Interface) defines an interface between a Traffic Manager (TM) and a 
Switch Fabric (SF) for ATM, IP, MPLS, Ethernet, and similar data communications applications.

The Network Processor Forum (NPF) www.npforum.org, controls the CSIX_L1 specification.

The basic unit of information transferred between TMs and SFs is called a CFrame. There are a 
number of CFrame types defined as shown in Table 85.

For transmission from the IXP2800 Network Processor, CFrames are constructed for transmission 
under Microengine software control, and written into the Transmit Buffer (TBUF).

On receive to the IXP2800 Network Processor, CFrames are either discarded, placed into Receive 
Buffer (RBUF), or placed into Flow Control Egress FIFO (FCEFIFO), according to mapping 
defined in the CSIX_Type_Map CSR. CFrames put into RBUF are passed to a Microengine to be 
parsed by software. CFrames put into FCEFIFO are sent to the Ingress IXP2800 Network 
Processor over the Flow Control bus. Link-level Flow Control information (CSIX Ready field) in 
the Base Header of all CFrames (including Idle) is handled by hardware.

8.1.3 CSIX/SPI-4 Interleave Mode
SPI-4 packets and CSIX CFrames are interleaved when the RBUF and TBUF are configured in
3-partition mode. When the protocol signal RPROT or TPROT is high, the data bus is transferring 
CSIX CFRAMES or IDLE cycles. When protocol is low, the data bus is transferring SPI-4 packets 
or idle cycles. When operating in interleave mode, RPROT must be driven high (logic 1) for the 
entire CSIX CFRAME or low (logic 0) for the entire SPI-4 burst. When in 3-partition mode, the 
SPI-4 interval should be padded using SPI-4 idle cycles so that it ends on a 32-bit boundary or a 
complete RCLK or TCLK clock cycle. The actual SPI-4 data length can be any size. However, the 
SPI-4 interval, which includes the SPI-4 control words and payload data, must end on a 32-bit 
boundary.

Table 85. CFrame Types

Type Encoding CFrame Type

0 Idle

1 Unicast

2 Multicast Mask

3 Multicast ID

4 Multicast Binary Copy

5 Broadcast

6 Flow Control

7 Command and Status

8-F CSIX Reserved
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8.2 Receive
The receive section consists of:

• Receive Pins (Section 8.2.1)

• Checksum (Section 8.2.2)

• Receive Buffer (RBUF) (Section 8.2.2)

• Full Element List (Section 8.2.3)

• Rx_Thread_Freelist (Section 8.2.4)

• Flow Control Status (Section 8.2.7)

Figure 91 is a simplified block diagram of the receive section.

Figure 91. Simplified Receive Section Block Diagram
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8.2.1 Receive Pins
The use of the receive pins is a function of RPROT input, as shown in Table 86.

In general, hardware does framing, parity checking, and flow control message handling. 
Interpretation of frame header and payload data is done by Microengine software.

The internal clock used is taken from the RCLK pin. RCLK_Ref output is a buffered version of 
the clock. It can be used to supply TCLK_Ref of the Egress IXP2800 Network Processor if 
desired.

The receive pins RDAT[15:0], RCTL, RPAR are sampled relative to RCLK. To work at high 
frequencies, each of those pins has de-skewing logic as described in Section 8.6.

8.2.2 RBUF
RBUF is a RAM that holds received data. It stores received data in sub-blocks (referred to as 
elements), and is accessed by a Microengine or the Intel XScale® core reading the received 
information. Details of how RBUF elements are allocated and filled is based on the receive data 
protocol, and is described in Section 8.2.2.1 – Section 8.2.2.2. When data is received, the 
associated status is put into the Full_Element_List FIFO and subsequently sent to a Microengine 
for processing. Full_Element_List insures that received elements are sent to a Microengine in the 
order in which the data was received.

RBUF contains a total of eight Kbytes of data. Table 87 shows the order in which received data is 
stored in RBUF. Each number represents a byte, in order of arrival from the receiver interface.

The mapping of elements to address offset in RBUF is based on the RBUF partition and element 
size, as programmed in the MSF_Rx_Control CSR. RBUF can be partitioned into one, two, or 
three partitions based on MSF_Rx_Control[RBUF_Partition]. The mapping of received data to 
partitions is shown in Table 88.

Table 86. Receive Pins Usage by Protocol

Name Direction SPI-4 Use CSIX Use

RCLK Input RDCLK TxClk

RDAT[15:0] Input RDAT[15:0] TxData[15:0]

RCTL Input RCTL TxSOF

RPAR Input Not Used TxPar

RSCLK Output RSCLK Not Used

RSTAT[1:0] Output RSTAT[1:0] Not Used

Table 87. Order in which Received Data Is Stored in RBUF

Data/Payload Address Offset (Hex)

4 5 6 7 0 1 2 3 0

C D E F 8 9 A B 8

14 15 16 17 10 11 12 13 10
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The data in each partition is further broken up into elements, based on 
MSF_Rx_Control[RBUF_Element_Size_#] (n = 0, 1, 2). There are three choices of element size 
– 64, 128, or 256 bytes.

Table 89 shows the RBUF partition options. Note that the choice of element size is independent for 
each partition.

The Microengine can read data from the RBUF to Microengine S_TRANSFER_IN registers using 
the msf[read] instruction, where the starting byte number is specified (which must be aligned to
4-byte units), and also the number of 32-bit words to read. The number in the instruction can be 
either the number of 32-bit words, or the number of 32-bit word pairs, using the single- and double-
instruction modifiers, respectively. The data is pushed to the Microengine on the S_Push_Bus by 
RBUF control logic:

msf[read, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

Table 88. Mapping of Received Data to RBUF Partitions

Number of 
Partitions in 

Use
Receive Data 

Protocol

Data Use by Partition, Fraction of RBUF Used, Start Byte Offset (Hex)

Partition Number

0 1 2

1 SPI-4 only
SPI-4

All
Byte 0

n/a n/a

2 CSIX only
CSIX Data

3/4 of RBUF
Byte 0

CSIX Control
1/4 of RBUF
Byte 0x1800

n/a

3 Both SPI-4 and 
CSIX

CSIX Data
1/2 of RBUF

Byte 0

SPI-4
3/8 of RBUF
Byte 0x1000

CSIX Control
1/8 of RBUF
Byte 0x1C00

Table 89. Number of Elements per RBUF Partition

RBUF_Partition Field RBUF_Element_Size_# Field
Partition Number

0 1 2

00 (1 partition)

00 (64 bytes) 128 

Unused Unused01 (128 bytes) 64

10 (256 bytes) 32

01 (2 partitions)

00 (64 bytes) 96 32

Unused01 (128 bytes) 48 16

10 (256 bytes) 24 8

10 (3 partitions)

00 (64 bytes) 64 48 16

01 (128 bytes) 32 24 8

10 (256 bytes) 16 12 4
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The src_op_1 and src_op_2 operands are added together to form the address in RBUF (note that 
the base address of the RBUF is 0x2000). The ref_cnt operand is the number of 32-bit words or 
word pairs, that are pushed into two sequential S_TRANSFER_IN registers, starting with 
$s_xfer_reg.

Using the data in RBUF in Table 87 above, reading eight bytes from offset 0 into transfer registers 
0 and 1 would yield the result in Example 34.

Microengine can move data from RBUF to DRAM using the instruction:
dram[rbuf_rd, --, src_op1, src_op2, ref_cnt], indirect_ref

The src_op_1 and src_op_2 operands are added together to form the address in DRAM, so the 
dram instruction must use the indirect_ref modifier to specify the RBUF address (refer to the 
IXP2800 Network Processor chassis chapter for details). The ref_cnt operand is the number of 
64-bit words that are read from RBUF.

Using the data in RBUF in Table 87 above, reading 16 bytes from offset 0 in RBUF into DRAM 
would yield the result in Example 35 in DRAM (addresses in DRAM must be aligned to 
8-byte units. The data from lower-offset RBUF offsets goes into lower addresses in DRAM.)

For both types of RBUF read, reading an element does not modify any RBUF data, and does not 
free the element, so buffered data can be read as many times as desired.

8.2.2.1 SPI-4

SPI-4 data is placed into RBUF as follows:

• At chip reset all elements are marked invalid (available).

• When a SPI-4 Control Word is received (i.e., when RCTL is asserted) it is placed in a 
temporary holding register. The Checksum accumulator is cleared. The subsequent action is 
based on the Type field.

— If Type is Idle or Training, the Control Word is discarded.

— If Type is not Idle or Training:
An available RBUF element is allocated by receive control logic.(If there is no available 
element, the data is discarded and MSF_Interrupt_Status[RBUF_Overflow is set.) Note 
that this normally should not happen because, when the number of RBUF elements falls 
below a programmed limit, the flow control status is sent back to the PHY device (refer to 

Example 34. Data from RBUF Moved to Microengine Transfer Registers

Transfer 
Register 
Number

Bit Number within Transfer Register

31 24 23 16 15 8 7 0

0 0 1 2 3

1 4 5 6 7

Example 35. Data from RBUF Moved to DRAM

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

4 5 6 7 0 1 2 3

C D E F 8 9 A B
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Section 8.2.7.1). The SPI-4 Control Word Type, EOPS, SOP, and ADR fields are placed 
into a temporary status register. The Byte_Count field of the element status is set to 0x0. 
As each Data Word is received, the data is written into the element, starting at offset 0x0 
in the element, and Byte_Count is updated. Subsequent Data transfers are placed at higher 
offsets (0x2, 0x4, etc.). The 16-bit Checksum Accumulator is also updated with the 1’s-
complement addition of each byte pair. (Note that, if the data transfer has an odd number 
of bytes, a byte of zeros is appended as the more significant byte, before the checksum 
addition is done.)

• If a Control Word is received before the element is full — the element is marked valid. EOP 
for the element is taken from the value of the EOPS field (see Table 83) from the just-received 
Control Word. If the EOPS field from the just-received Control Word indicates that EOP is 
asserted, then the Byte_Count for the element is decremented by 0 or 1, according to the EOPS 
field (i.e., decrement by 0 if two bytes are valid, and by 1 if one byte is valid). If the EOPS 
field indicates Abort, Byte_Count is rounded up to the next multiple of 4. The temporary 
status register value is put into Full_Element_List.

• If the element becomes full before receipt of another Control Word — the element is marked 
as pre-valid. The eventual status is based on the next SPI-4 transfer(s).

• If the next transfer is a Data Word — the previous element is changed from pre-valid to valid. 
The EOP for the element is 0. The temporary status register value is put into 
Full_Element_List. Another available RBUF element is allocated, and the new data is written 
into it. The temporary status for the new element gets the same ADR field of the previous 
element, and SOP is set to 0. The Status word Byte_Count field is set to 0x2, and will be 
incremented as more Data Words arrive. The Checksum Accumulator is cleared.

• If the next transfer is a Control Word — the previous element is changed from pre-valid to 
valid. EOP for the element is taken from the value of the EOPS field from the just-received 
Control Word. If the EOPS field from the just-received Control Word indicates that EOP is 
asserted, then the Byte_Count for the element is decremented by 0 or 1, according to the EOPS 
field (i.e., decrement by 0 if two bytes valid, and by 1 if one byte is valid). The temporary 
status register value is put into Full_Element_List.
Data received from the bus is placed into the element lowest offset first, in big-endian order 
(i.e., with the first byte received in the most significant byte of the 32-bit word, etc.).
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The status contains the following information:

The definitions of the fields are shown in Table 90.
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Table 90. RBUF SPIF-4 Status Definition

Field Definition

RPROT This bit is a 0, indicating that the Status is for SPI-4. It is derived from the RPROT input 
signal.

Element The element number in the RBUF that holds the data. This is equal to the offset in RBUF 
of the first byte in the element, shifted right by six places 

Byte_Count
Indicates the number of Data bytes, from 1 to 256, in the element (value 0x00 means 
256). This field is derived from the number of data transfers that fill the element, and also 
the EOPS field of the Control Word that most recently succeeded the data transfer.

SOP

Indicates whether the element is the start of a packet. This field is taken from the SOP 
field of the Control Word that most recently preceded the data transfer for the first element 
allocated after a Control Word. For subsequent elements (i.e., if more than one element 
worth of data follow the Control Word) this value is 0.

EOP Indicates whether the element is the end of a packet. This field is taken from the EOPS 
field of the Control Word that most recently succeeded the data transfer.

Err Error. This is the logical OR of Par Err, Len Err, and Abort Err.

Len Err A non-EOP burst occurred that was not a multiple of 16 bytes.

Par Err Parity Error was detected in the DIP-4 parity field. See the description in Section 8.2.8.1.

Abort Err An EOP with Abort was received on bits [14:13] of the Control Word that most recently 
succeeded the data transfer.

Null

Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired 
before any more data was received, and that a null Receive Status Word is being pushed, 
to keep the receive pipeline flowing. The rest of the fields in the Receive Status Word 
must be ignored; there is no data or RBUF entry associated with a null Receive Status 
Word.

Type This field is taken from the Type field of the Control Word that most recently preceded the 
data transfer.

ADR The port number to which the data is directed. This field is taken from the ADR field of the 
Control Word that most recently preceded the data transfer.

Checksum Checksum calculated over the Data Words in the element. This can be used for TCP.
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8.2.2.2 CSIX

CSIX CFrames are placed into either RBUF or FCEFIFO as follows:

At chip reset, all RBUF elements are marked invalid (available) and FCEFIFO is empty.

When a Base Header is sent (i.e., when RxSof is asserted) it is placed in a temporary holding 
register. The Ready Field is extracted and held to be put into FC_Egress_Status CSR when (and 
if) the entire CFrame is received without error. The Type field is extracted and used to index into 
CSIX_Type_Map CSR to determine one of four actions.

• Discard (except for the Ready Field as described in Section 8.2.7.2.1).

• Place into RBUF Control CFrame partition.

• Place into RBUF Data CFrame partition.

• Place into FCEFIFO.

Note: Normally Idle CFrames (Type 0x0) will be discarded, Command and Status CFrames (Type 0x7) 
will be placed into Control Partition, Flow Control CFrames (Type 0x6) will be placed into 
FCEFIFO, and all others will be placed into Data Partition (see Table 87). The remapping done 
through the CSIX_Type_Map CSR allows for more flexibility in usage, if desired.

If the action is Discard, the CFrame is discarded (except for the Ready Field as described in 
Section 8.2.7.2.1). The Base Header, as well as Extension Header and Payload (if any) are 
discarded.

If the destination is FCEFIFO:

The Payload is placed into the FCEFIFO, to be sent to the Ingress IXP2800 Network Processor 
over the TXCDAT pins. If there is not enough room in FCEFIFO for the entire CFrame, based on 
the Payload Size in the Base Header, the entire CFrame is discarded and 
MSF_Interrupt_Status[FCEFIFO_Overflow] is set.

If the destination is RBUF (either Control or Data):

An available RBUF element of the corresponding type is allocated by receive control logic. If there 
is not an available element, the CFrame is discarded and 
MSF_Interrupt_Status[RBUF_Overflow] is set. Note that this normally should not happen 
because, when the number of RBUF elements falls below a programmed limit, backpressure is sent 
to the Switch Fabric. (Refer to Section 8.2.7.2.) The Type, Payload Length, CR (CSIX Reserved), 
and P (Private) bits, and (subsequently arriving) Extension Header are placed into a temporary 
status register. As the Payload (including padding if any) is received, it is placed into the allocated 
RBUF element, starting at offset 0x0. (Note that it is more exact to state that the first four bytes 
after the Base Header are placed into the status register as Extension Header. For Flow Control 
CFrames, there is no Extension Header; the first four bytes are part of the Payload. They would be 
found in the Extension Header field of the Status — no bytes are lost.)

When all of the Payload data (including padding if any), as indicated by the Payload Length field, 
and Vertical Parity has been received, the element is marked valid. If another RxSof is received 
prior to receiving the entire Payload, the element is also marked valid, and the Length Error status 
bit is set. If the Payload Length field of the Base Header is greater than the element size (as 
configured in MSF_Rx_Control[RBUF_Element_Size], then the Length Error bit in the status 
will be set, and all payload bytes above the element size will be discarded. The temporary status 
register value is put into Full_Element_List.
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Note: In CSIX protocol, an RBUF element is allocated only on RxSof assertion. Therefore, the element 
size must be programmed based on the Switch Fabric usage. For example, if the switch never sends 
a payload greater than 128 bytes, then 128-byte elements can be selected. Otherwise, 256-byte 
elements must be selected.

Data received from the bus is placed into the element lowest-offset first in big-endian order
(that is, with the first byte received in the most significant byte of the 32-bit word, etc.).

The status contains the following information:

The definitions of the fields are shown in Table 91.
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Table 91. RBUF CSIX Status Definition

Field Definition

RPROT This bit is a 1, indicating that the Status is for CSIX-L1. It is derived from the RPROT input 
signal.

Element The element number in the RBUF that holds the data. This is equal to the offset in RBUF 
of the first byte in the element, shifted right by six places.

Payload Length Payload Length Field from the CSIX Base Header. A value of 0x0 indicates 256 bytes.

CR CR (CSIX Reserved) bit from the CSIX Base Header.

P P (Private) bit from the CSIX Base Header.

Err Error. This is the logical OR of VP Err, HP Err, and Len Err.

Len Err

Length Error; either
amount of Payload received (before receipt of next Base Header) did not match value 
indicated in Base Header Payload Length field) or
Payload Length field was greater than size of RBUF element.

HP Err Horizontal Parity Error was detected on the CFrame. See description in Section 8.2.8.2.1.

VP Err Vertical Parity Error was detected on the CFrame. See description in Section 8.2.8.2.2.

Null

Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired 
before any more data was received, and that a null Receive Status Word is being pushed, 
to keep the receive pipeline flowing. The rest of the fields in the Receive Status Word 
must be ignored; there is no data or RBUF entry associated with a null Receive Status 
Word.

Type Type Field from the CSIX Base Header.

Extension Header The Extension Header from the CFrame. The bytes are received in big-endian order; byte 
0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in bits 39:32.
254 Hardware Reference Manual



Intel® IXP2800 Network Processor
Media and Switch Fabric Interface
8.2.3 Full Element List
Receive control hardware maintains the Full Element List to hold the status of valid RBUF 
elements, in the order in which they were received. When an element is marked valid (as described 
in Section 8.2.2.1 for SPI-4 and Section 8.2.2.2 for CSIX), its status is added to the tail of the Full 
Element List. When a Microengine is notified of element arrival (by having the status written to its 
S_Transfer register; see Section 8.2.4), it is removed from the head of the Full Element List.

8.2.4 Rx_Thread_Freelist_#
Each Rx_Thread_Freelist_# is a FIFO that indicates Microengine Contexts that are awaiting an 
RBUF element to process. This allows the Contexts to indicate their ready-status prior to the 
reception of the data, as a way to eliminate latency. Each entry added to a Freelist also has an 
associated S_Transfer register and signal number. The receive logic maintains either one, two, or 
three separate lists based on MSF_Rx_Control[RBUF_Partition], 
MSF_Rx_Control[CSIX_Freelist], and Rx_Port_Map as shown in Table 92.

To be added as ready to receive an element, an Microengine does an msf[write] or 
msf[fast_write] to the Rx_Thread_Freelist_# address; the write data is the Microengine/
Context/S_Transfer register number to add to the Freelist. Note that using the data (rather than the 
command bus ID) permits a Context to add either itself or other Contexts as ready.

When there is valid status at the head of the Full Element List, it will be pushed to a Microengine. 
The receive control logic pushes the status information (which includes the element number) to the 
Microengine in the head entry of Rx_Thread_Freelist_#, and sends an Event Signal to the 
Microengine. It then removes that entry from the Rx_Thread_Freelist_#, and removes the status 
from Full Element List. (Note that this implies the restriction — a Context waiting on status must 
not read the S_Transfer register until it has been signaled.) See Section 8.2.6 for more information. 
In the event that Rx_Thread_Freelist_# is empty, the valid status will be held in Full Element List 
until an entry is put into Rx_Thread_Freelist_#.

Table 92. Rx_Thread_Freelist Use

Number of 
Partitions1 Use CSIX_Freelist2

Rx_Thread_Freelist_# Used

0 1 2

1 SPI-4 only n/a
SPI-4 Ports equal 

to or below 
Rx_Port_Map

SPI-4 Ports above 
Rx_Port_Map Not Used

2 CSIX only
0 CSIX Data CSIX Control Not Used

1 CSIX Data and 
CSIX Control Not Used Not Used

3 Both SPI-4 
and CSIX

0 CSIX Data SPI-4 CSIX Control

1 CSIX Data and 
CSIX Control SPI-4 Not Used

1. Programmed in MSF_Rx_Control[RBUF_Partition].
2. Programmed in MSF_Rx_Control[CSIX_Freelist].
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8.2.5 Rx_Thread_Freelist_Timeout_#
Each Rx_Thread_Freelist_# has an associated countdown timer. If the timer expires and no new 
receive data is available yet, the receive logic will autopush a Null Receive Status Word to the next 
thread on the Rx_Thread_Freelist_#. A Null Receive Status Word has the “Null” bit set, and does 
not have any data or RBUF entry associated with it.

The Rx_Thread_Freelist_# timer is useful for certain applications. Its primary purpose is to keep 
the receive processing pipeline (implemented as microcode running on the Microengine) moving 
even when the line has gone idle. It is especially useful if the pipeline is structured to handle 
mpackets in groups, i.e., eight mpackets at a time. 

If seven mpackets are received, the line goes idle, and the timeout triggers the autopush of a null 
Receive Status Word, filling the eighth slot and allowing the pipeline to advance. Another example 
is if one valid mpacket is received before the line goes idle for a long period; seven null Receive 
Status Words will be autopushed, allowing the pipeline to proceed. 

Typically, the timeout interval is programmed to be slightly larger than the minimum arrival time 
of the incoming cells or packets. The timer is controlled by using the 
Rx_Thread_Freelist_Timeout_# CSR. The timer may be enabled or disabled, and the timeout 
value specified using this CSR.

The following rules define the operation of the Rx_Thread_Freelist timer.

1. Writing a non-zero value to the Rx_Thread_Freelist_Timeout_# CSR both resets the timer 
and enables it. Writing a zero value to this CSR resets the timer and disables it.

2. If the timer is disabled, then only valid (non-null) Receive Status Words are autopushed to the 
receive threads; null Receive Status Words are never pushed.

3. If the timer expires and the Rx_Thread_Freelist_# is non-empty, but there is no mpacket 
available, this will trigger the autopush of a null Receive Status Word.

4. If the timer expires and the Rx_Thread_Freelist_# is empty, the timer stays in the EXPIRED 
state and is not restarted. A null Receive Status Word cannot be autopushed, since the logic has 
no destination to push anything to.

5. An expired timer is reset and restarted if and only if an autopush, null or non-null, is 
performed.

6. Whenever there is a choice, the autopush of a non-null Receive Status Word takes precedence 
over a null Receive Status Word.

8.2.6 Receive Operation Summary
During receive processing, received CFrames, cells, and packets (which in this context are all 
called mpackets) are placed into the RBUF, and then, when marked valid, are immediately handed 
off to a Microengine for processing. Normally, by application design, some number of 
Microengine Contexts will be assigned to receive processing. Those Contexts will have their 
number added to the proper Rx_Thread_Freelist_# (via msf[write]or msf[fast_write]), 
and then will go to sleep to wait for arrival of an mpacket (or alternatively poll waiting for arrival 
of an mpacket). 
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When an mpacket becomes valid as described in Section 8.2.2.1 for SPI-4 and Section 8.2.2.2 for 
CSIX, receive control logic will autopush eight bytes of information for the element to the 
Microengine/Context/S_Transfer registers at the head of Rx_Thread_Freelist_#. The information 
pushed is (see Table 90 and Table 91 for detailed definitions):

• Status Word (SPI-4) or Header Status (CSIX) to Transfer register n (n is the Transfer register 
programmed to the Rx_Thread _Freelist_#)

• Checksum (SPI-4) or Extension Header (CSIX) to Transfer register n+1

To handle the case where the receive Contexts temporarily fall behind and Rx_Thread_Freelist_# 
is empty, all received element numbers are held in the Full Element List. In that case, as soon as an 
Rx_Thread_Freelist_# entry is entered, the status of the head element of Full Element List will be 
pushed to it.

The Microengine may read part of (or the entire) RBUF element to their S_Transfer registers (via 
msf[read] instruction) for header processing, etc., and may also move the element data to DRAM 
(via dram[rbuf_rd] instruction).

When a Context is done with an element, it does an msf[write]or msf[fast_write] to the 
RBUF_Element_Done address; the write data is the element number. This marks the element as 
free and available to be re-used. There is no restriction on the order in which elements are freed; 
Contexts can do different amounts of processing per element based on the contents of the element 
— therefore, elements can be returned in a different order than they were handed to Contexts.

The states that an RBUF element goes through are shown in Figure 92.

Figure 92. RBUF Element State Diagram
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Table 93 summarizes the differences in RBUF operation between the SPI-4 and CSIX protocols.

8.2.7 Receive Flow Control Status
Flow control is handled in hardware. There are specific functions for SPI-4 and CSIX.

8.2.7.1 SPI-4

SPI-4, FIFO status information is sent periodically over the RSTAT signals from the Link Layer 
device (which is the IXP2800 Network Processor) to the PHY device. (Note that TXCDAT pins 
can act as RSTAT based on the MSF_Rx_Control[RSTAT_Select] bit.) The information to be sent 
is based on the number of RBUF elements available to receive SPI-4.

The FIFO status of each port is encoded in a 2-bit data structure — code 0x3 is used for framing the 
data, and the other three codes are valid status values. The FIFO status words are sent according to 
a repeating calendar sequence. Each sequence begins with the framing code to indicate the start of 
a sequence, followed by the status codes, followed by a parity code covering the preceding frame. 
The length of the calendar is defined in Rx_Calendar_Length, which is a CSR field that is 
initialized with the length of the calendar, since in many cases fewer than 256 ports are in use.

When TRAIN_DATA[RSTAT_En] is disabled, RSTAT is held at 0x3.

The IXP2800 Network Processor transmits FIFO status only if TRAIN_DATA[RSTAT_En] is 
set. The logic sends “Satisfied,” Hungry,” or “Starving” based on either the upper limit of the 
RBUF, a global override value set in MSF_Rx_Control[RSTAT_OV_VALUE], or a port-specific 
override value set in RX_PORT_CALENDAR_STATUS_#. The choice is controlled by 
MSF_RX_CONTROL[RX_Calendar_Mode]. 

When set to Conservative_Value, the status value sent for each port is the most conservative of:

• The RBUF upper limit

• MSF_RX_CONTROL[RSTAT_OV_VALUE]

• RX_PORT_CALENDAR_STATUS_#

“Satisfied” is more conservative than “Hungry,” which is more conservative than “Starving.” 

Table 93. Summary of SPI-4 and CSIX RBUF Operations

Operation SPI-4 CSIX

When is RBUF Element 
Allocated?

Upon receipt of Payload Control Word or when Element data 
section fills and more Data Words arrive. The Payload 
Control Word allocates an element for data that will be 
received subsequent to it.

Start of Frame and Base Header Type 
is mapped to RBUF (in the 
CSIX_Type_Map CSR).

How Much Data is Put 
into Element?

All Data Words received between two Payload Control 
Words, or number of bytes in the element, whichever is less.

Number of bytes specified in Payload 
Length field of Base Header.

How is RBUF Element 
Set Valid?

Upon receipt of Payload Control Word or when Element data 
section fills. The Payload Control Word validates the element 
holding data received prior to it.

All Payload is received (or if 
premature SOF, which will set an 
error bit in Element Status).

How is RBUF Element 
Handed to Microengine?

Element Status is pushed to Microengine at the head of the appropriate Rx_Thread_Freelist_# 
(based on the protocol). Status is pushed to two consecutive Transfer registers; bits[31:0] of Element 
Status to the first Transfer register and bits[63:32] to the next higher numbered Transfer register.

How is RBUF Element 
returned to free list? CSR write to RBUF_Element_Done.
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When MSF_RX_CONTROL[RX_Calendar_Mode] is set to Force_Override, the value of 
RX_PORT_CALENDAR_STATUS_# is used to determine which status value is sent. If 
RX_PORT_CALENDAR_STATUS_# is set to 0x3, then the global status value set in 
MSF_RX_CONTROL[RSTAT_OV_VALUE] is sent; otherwise, the port-specific status value 
set in RX_PORT_CALENDAR_STATUS_# is sent.

The RBUF upper limit is based on the MSF_RX_CONTROL register and is defined in Table 89. 
The upper limit is programmed in HWM_Control[RBUF_S_HWM]. Note that either RBUF 
partition 0 or partition 1 will be used for SPI-4 (Table 88).

8.2.7.2 CSIX

There are two types of CSIX flow control:

• Link-level

• Virtual Output Queue (VOQ)

Information received from the Switch Fabric by the Egress IXP2800 Network Processor, must be 
communicated to the Ingress IXP2800 Network Processor, which is sending data to the Switch 
Fabric.

8.2.7.2.1 Link-Level

Link-level flow control can be used to stop all transmission. Separate Link-level flow control is 
provided for Data CFrames and Control CFrames. CSIX protocol provides link-level flow control 
as follows. Every CFrame Base Header contains a Ready Field, which contains two bits; one for 
Control traffic (bit 6 of byte 1) and one for Data traffic (bit 7 of byte 1). The CSIX requirement for 
response is:

From the tick that the Ready Field leaves a component the maximum response time for a pause 
operation is defined as: n*T, n=C+L where:

• T is the clock period of the interface

• n is the maximum number of ticks for the response

• C is a constant for propagating the field within the “other” component (or chipset as the case 
may be) to the interface logic controlthe reverse direction data flow. C is defined to be 
32 ticks.

• L is the maximum number of ticks to transport the maximum fabric CFrame size.

As each CFrame is received, the value of these bits is copied (by receive hardware) into the 
FC_Egress_Status[SF_CReady] and FC_Egress_Status[SF_DReady] respectively. The value of 
these two bits is sent from the Egress to the Ingress IXP2800 Network Processor on the TXCSRB 
signal, and can be used to stop transmission to the Switch Fabric, as described in Section 8.3.4.2. 
The TXCSRB signal is described in Section 8.5.1.
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8.2.7.2.2 Virtual Output Queue

CSIX protocol provides Virtual Output Queue Flow Control via Flow Control CFrames. CFrames 
that were mapped to FCEFIFO (via the CSIX_Type_Map CSR) are parsed by the receive control 
logic and placed into FCEFIFO, which provides buffering while they are sent from the Egress 
IXP2800 Network Processor to the Ingress IXP2800 Network Processor over the TXCDAT signals 
(normally Flow Control CFrames would be mapped to FCEFIFO).

The entire CFrame is sent over TXCDAT, including the Base Header and Vertical Parity field. The 
32-bit CWord is sent four bits at a time, most significant bits first. The CFrames are forwarded in a 
“cut-through” manner, meaning that the Egress IXP2800 Network Processor does not wait for the 
entire CFrame to be received before forwarding (each CWord can be forwarded as it is received).

If FCEFIFO gets full, as defined by HWM_Control[FCEFIFO_HWM], then the 
FC_Egress_Status[TM_CReady] bit will be deasserted (to inform the Ingress IXP2800 Network 
Processor to deassert Control Ready in CFrames sent to the Switch Fabric). Section 8.3.4.2 
describes how Flow Control information is used in the Ingress IXP2800 Network Processor.

8.2.8 Parity

8.2.8.1 SPI-4

The receive logic computes 4-bit Diagonal Interleaved Parity (DIP-4) as specified in the SPI-4 
specification. The DIP-4 field received in a control word contains odd parity computed over the 
current Control Word and the immediately preceding data words (if any) following the last Control 
Word. Figure 93 shows the extent of the DIP-4 codes.

There is a DIP-4 Error Flag and a 4-bit DIP-4 Accumulator register. After each Control Word is 
received, the Flag is conditionally reset (see Note below this paragraph) and the Accumulator 
register is cleared. As each Data Word (if any), and the first succeeding Control Word is received, 
DIP-4 parity is accumulated in the register, as defined in the SPI-4 spec. The accumulated parity is 
compared to the value received in the DIP-4 field of that first Control Word. If it does not match, 
the DIP-4 Error Flag is set. The value of the flag becomes the element status Par Err bit.

Note: An error in the DIP-4 code invalidates the transfers before and after the Control Word, since the 
control information is assumed to be in error. Therefore the DIP-4 Error Flag is not reset after a 
Control Word with bad DIP-4 parity. It is only reset after a Control Word with correct DIP-4 parity.

Figure 93. Extent of DIP-4 Codes
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8.2.8.2 CSIX

8.2.8.2.1 Horizontal Parity

The receive logic computes Horizontal Parity on each 16 bits of each received Cword (there is a 
separate parity for data received on rising and falling edge of the clock).

There is an internal HP Error Flag. At the end of each CFrame, the flag is reset. As each 16 bits of 
each Cword is received, the expected odd-parity value is computed from the data, and compared to 
the value received on RxPar. If there is a mismatch, the flag is set. The value of the flag becomes 
the element status HP Err bit.

If the HP Error Flag is set:

• the FC_Egress_Status[SF_CReady] and FC_Egress_Status[SF_DReady] bits are cleared

• the MSF_Interrupt_Status[HP_Error] bit is set (which can interrupt the Intel XScale® core 
if enabled)

8.2.8.2.2 Vertical Parity

The receive logic computes Vertical Parity on CFrames.

There is a VP Error Flag and a 16-bit VP Accumulator register. At the end of each CFrame, the flag 
is reset and the register is cleared. As each Cword is received, odd parity is accumulated in the 
register as defined in the CSIX specification (16 bits of vertical parity are formed on 32 bits of 
received data by treating the data as words; i.e., bit 0 and bit 16 of the data are accumulated into 
parity bit 0, bit 1, and bit 17 of the data are accumulated into parity bit 1, etc.). After the entire 
CFrame has been received (including the Vertical Parity field; the two bytes following the Payload) 
the accumulated value should be 0xFFFF. If it is not, the VP Error Flag is set. The value of the flag 
becomes the element status VP Err bit.

Note: The Vertical Parity always follows the Payload, which may include padding to the CWord width if 
the Payload Length field is not an integral number of CWords. The CWord width is programmed in 
MSF_Rx_Control[Rx_CWord_Size].

If the VP Error Flag is set:

• the FC_Egress_Status[SF_CReady] and FC_Egress_Status[SF_DReady] bits are cleared

• the MSF_Interrupt_Status[VP_Error] bit is set (which can interrupt the Intel XScale® core)

8.2.9 Error Cases
Receive errors are specific to the protocol, SPI-4 or CSIX. The element status, described in 
Table 90 and Table 91, has appropriate error bits defined. Also, there are some IXP2800 Network 
Processor specific error cases — for example, when an mpacket arrives with no free elements —
that are logged in the MSF_Interrupt_Status register, which can interrupt the Intel XScale® core 
if enabled.
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8.3 Transmit
The transmit section consists of:

• Transmit Pins (Section 8.3.1)

• Transmit Buffer (Section 8.3.2)

• Byte Aligner (Section 8.3.2)

Each of these is described below.

Figure 94 is a simplified block diagram of the MSF transmit block.

8.3.1 Transmit Pins
The use of the transmit pins is a function of the protocol (which is determined by TBUF partition in 
MSF_Tx_Control CSR) as shown in Table 94.

Figure 94. Simplified Transmit Section Block Diagram
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Table 94. Transmit Pins Usage by Protocol (Sheet 1 of 2)

Name Direction SPI-4 Use CSIX Use

TCLK Output TDCLK RxClk

TDAT[15:0] Output TDAT[15:0] RxData[15:0]

TCTL Output TCTL RxSOF
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8.3.2 TBUF
The TBUF is a RAM that holds data and status to be transmitted. The data is written into sub-
blocks referred to as elements, by Microengine or the Intel XScale® core. TBUF contains a total of 
8 Kbytes of data, and associated control.

Table 95 shows the order in which data is written into TBUF. Each number represents a byte, in 
order of transmission onto the tx interface. Note that this is reversed on a 32-bit basis relative to 
RBUF — the swap of 4 low bytes and 4 high bytes is done in hardware to facilitate the 
transmission of bytes.

The mapping of elements to address offset in TBUF is based on the TBUF partition and element 
size, as programmed in MSF_Tx_Control CSR. TBUF can be partitioned into one, two, or three 
partitions based on MSF_Tx_Control[TBUF_Partition]. The mapping of partitions to transmit 
data is shown in Table 96.

The data in each segment is further broken up into elements, based on 
MSF_Tx_Control[TBUF_Element_Size_#] (n = 0,1,2). There are three choices of element size: 
64, 128, or 256 bytes.

TPAR Output Not Used RTxPar

TSCLK Input TSCLK Not Used

TSTAT[1:0] Input TSTAT[1:0] Not Used

Table 94. Transmit Pins Usage by Protocol (Sheet 2 of 2)

Name Direction SPI-4 Use CSIX Use

Table 95. Order in which Data is Transmitted from TBUF

Data/Payload Address Offset (Hex)

0 1 2 3 4 5 6 7 0

8 9 A B C D E F 8

10 11 12 13 14 15 16 17 10

Table 96. Mapping of TBUF Partitions to Transmit Protocol

Number of 
Partitions 

in Use
Transmit Data 

Protocol

Data Use by Partition, Fraction of TBUF Used, Start Byte Offset (Hex)

Partition Number

0 1 2

1 SPI-4 only
SPI-4

All
Byte 0

n/a n/a

2 CSIX only
CSIX Data

3/4 of TBUF
Byte 0

CSIX Control
1/4 of TBUF
Byte 0x1800

n/a

3 Both SPI-4 and 
CSIX

CSIX Data
1/2 of TBUF

Byte 0

SPI-4
3/8 of TBUF
Byte 0x1000

CSIX Control
1/8 of TBUF
Byte 0x1C00
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Table 97 shows the TBUF partition options. Note that the choice of element size is independent for 
each partition.

The Microengine can write data from Microengine S_TRANSFER_OUT registers to the TBUF 
using the msf[write] instruction, where they specify the starting byte number (which must be 
aligned to four bytes), and number of 32-bit words to write. The number in the instruction can be 
either the number of 32-bit words, or number of 32-bit word pairs, using the single and double 
instruction modifiers, respectively. Data is pulled from the Microengine to TBUF via S_Pull_Bus.
msf[write, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

The src_op_1 and src_op_2 operands are added together to form the address in TBUF (note that 
the base address of the TBUF is 0x2000). The ref_cnt operand is the number of 32-bit words or 
word pairs, which are pulled from sequential S_TRANSFER_OUT registers, starting with 
$s_xfer_reg.

The Microengine can move data from DRAM to TBUF using the instruction
dram[tbuf_wr, --, src_op1, src_op2, ref_cnt], indirect_ref

The src_op_1 and src_op_2 operands are added together to form the address in DRAM, so the 
dram instruction must use indirect mode to specify the TBUF address. The ref_cnt operand is the 
number of 64-bit words that are written into TBUF.

Data is stored in big-endian order. The most significant (lowest numbered) byte of each 32-bit 
word is transmitted first.

All elements within a TBUF partition are transmitted in the order. Control information associated 
with the element (Section 98 and Section 99) defines which bytes are valid. The data from the 
TBUF will be shifted and byte-aligned to the TDAT pins as required. Four parameters are defined.

Prepend Offset — Number of the first byte to send. This is information that is prepended onto the 
payload, for example as a header. It need not start at offset 0 in the element.

Prepend Length — Number of bytes of prepended information. This can be 0 to 31 bytes. If it is 0, 
then the Prepend Offset must also be 0.

Table 97. Number of Elements per TBUF Partition

TBUF_Partition Field TBUF_Element_Size_# Field
Partition Number

0 1 2

00 (1 partition)

00 (64 bytes) 128 

Unused Unused01 (128 bytes) 64

10 (256 bytes) 32

01 (2 partitions)

00 (64 bytes) 96 32

Unused01 (128 bytes) 48 16

10 (256 bytes 24 8

10 (3 partitions)

00 (64 bytes) 64 48 16

01 (128 bytes) 32 24 8

10 (256 bytes) 16 12 4
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Payload Offset — Number of bytes to skip from the last 64-bit word of the Prepend to the start of 
Payload. The absolute byte number of the first byte of Payload in the element is:
((Prepend Offset + Prepend Length + 0x7) && 0xF8) + Payload Offset.

Payload Length — Number of bytes of Payload.

The sum of Prepend Length, Payload length, and any gaps in between them (((prepend_offset + 
prepend_length + 7) & 0xF8) + payload_offset + payload_length) must be no greater than the 
number of bytes in the element. Typically, the Prepend is computed by a Microengine and written 
into the TBUF by msf[write] and the Payload will be written by dram[tbuf_wr]. These two 
operations can be done in either order; the microcode is responsible for making sure the element is 
not marked valid to transmit until all data is in the element (see Section 8.3.3).

Example 36 illustrates the usage of the parameters. The element in Example 36 is shown as 8 bytes 
wide because the smallest unit that can be moved into the element is 8 bytes. In Example 36, bytes 
to be transmitted are shown in black (the offsets are byte numbers); bytes in gray are written into 
TBUF (because the writes always write 8 bytes), but are not transmitted.

Prepend Offset = 6 (bytes 0x0 — 0x5 are not transmitted).

Prepend Length = 16 (bytes 0x6 — 0x15 are transmitted).

Payload Offset = 7 (bytes 0x16 — 0x1E are not transmitted). The Payload starts in the next 8-byte 
row (i.e., the next “empty” row above where the Prepend stops), even if there is room in the last 
row containing Prepend information. This is done because the TBUF does not have byte write 
capability, and therefore would not merge the msf[write] and dram[tbuf_wr]. The software 
computing the Payload Offset only needs to know how many bytes of the payload that were put 
into DRAM need to be removed.

Payload Length = 33 (bytes 0x1F through 0x3F are transmitted).

The transmit logic will send the valid bytes onto TDAT correctly aligned and with no gaps. The 
protocol transmitted, SPI-4 or CSIX (and the value of the TPROT output) are based on which 
partition of TBUF the data was placed (see Table 95).

Example 36. TBUF Prepend and Payload
0 1 2 3 4 5 6 7

8 9 A B C D E F

10 11 12 13 14 15 16 17 

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F
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8.3.2.1 SPI-4

For SPI-4, data is put into the data portion of the element, and information for the SPI-4 Control 
Word that will precede the data is put into the Element Control Word.

When the Element Control Word is written the information is (the data comes from two 
consecutive Transfer registers; bits [31:0] from the lower numbered and bits[63:32] from the 
higher numbered):

The definitions of the fields are shown in Table 98.
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Table 98. TBUF SPI-4 Control Definition

Field Definition

Payload Length

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00 
means 256 bytes. The sum of Prepend Length and Payload Length will be sent. That 
value will also control the EOPS field (1 or 2 bytes valid indicated) of the Control Word 
that will succeed the data transfer. Note 1.

Prepend Offset Indicates the first valid byte of Prepend, from 0 to 7, as defined in Section 8.3.2.

Prepend Length Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7, as defined in Section 8.3.2.

Skip
Allows software to allocate a TBUF element and then not transmit any data from it. 
0—transmit data according to other fields of Control Word.
1—free the element without transmitting any data.

Abort
Indicates if the element is the end of a packet that should be aborted. If this bit is set, the 
status code of EOP Abort will be sent in the EOPS field of the Control Word that will 
succeed the data transfer. Note 1.

SOP Indicates if the element is the start of a packet. This field will be sent in the SOPC field of 
the Control Word that will precede the data transfer.

EOP Indicates if the element is the end of a packet. This field will be sent in the EOPS field of 
the Control Word that will succeed the data transfer. Note 1.

ADR The port number to which the data is directed. This field will be sent in the ADR field of the 
Control Word that will precede the data transfer.

NOTE:
1. Normally EOPS is sent on the next Control Word (along with ADR and SOP) to start the next element. If 

there is no valid element pending at the end of sending the data, the transmit logic will insert an Idle Control 
Word with the EOPS information.
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8.3.2.2 CSIX

For CSIX protocol, the TBUF should be set to two partitions in 
MSF_Tx_Control[TBUF_Partition], one for Data traffic and one for Control traffic.

Payload information is put into the Payload area of the element, and Base and Extension Header 
information is put into the Element Control Word.

Data is stored in big-endian order. The most significant byte of each 32-bit word is transmitted 
first.

When the Element Control Word is written the information is (note that the data comes from two 
consecutive Transfer registers; bits [31:0] from the lower numbered and bits[63:32] from the 
higher numbered):

The definitions of the fields are shown in Table 99.
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Table 99. TBUF CSIX Control Definition

Field Definition

Payload Length

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00 
means 256 bytes. The sum of Prepend Length and Payload Length will be sent, and also 
put into the CSIX Base Header Payload Length field. Note that this length does not 
include any padding that may be required. Padding is inserted by transmit hardware as 
needed.

Prepend Offset Indicates the first valid byte of Prepend, from 0 to 7, as defined in Section 8.3.2.

Prepend Length Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7, as defined in Section 8.3.2.

Skip
Allows software to allocate a TBUF element and then not transmit any data from it.
0—transmit data according to other fields of Control Word
1—free the element without transmitting any data.

CR CR (CSIX Reserved) bit to put into the CSIX Base Header.

P P (Private) bit to put into the CSIX Base Header.

Type Type Field to put into the CSIX Base Header. Idle type is not legal here.

Extension Header
The Extension Header to be sent with the CFrame. The bytes are sent in big-endian 
order; byte 0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in 
bits 39:32.
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8.3.3 Transmit Operation Summary
During transmit processing data to be transmitted is placed into the TBUF under Microengine 
control, which allocates an element in software. The transmit hardware processes TBUF elements 
within a partition, in strict sequential order so the software can track the element to allocate next. 

Microengines may write directly into an element by the msf[write] instruction, or have data 
from DRAM written into the element by the dram[tbuf_wr] instruction. Data can be merged into 
the element by doing both.

There is a Transmit Valid bits per element, which marks the element as ready to be transmitted. 
Microengines move all data into the element, by either or both of the msf[write] and 
dram[tbuf_wr] instructions to the TBUF. The Microengines also write the element Transmit 
Control Word with information about the element. The Microengines should use a single operation 
to perform the TCW write, i.e., a single msf[write] with a ref_count of 2. When all of the data 
movement is complete, the Microengine sets the element valid bit as shown in the following steps.

1. Move data into TBUF by either or both of msf[write] and dram[tbuf_wr] instructions to 
the TBUF.

2. Wait for 1 to complete.

3. Write Transmit Control Word at TBUF_Element_Control_# address. Using this address sets 
the Transmit Valid bit.

Note: When moving data from DRAM to TBUF using dram[tbuf_wr], it is possible that there could be 
an uncorrectable error on the data read from DRAM (if ECC is enabled). In that case, the 
Microengine does not get an Event Signal, to prevent use of the corrupt data. The error is recorded 
in the DRAM controller (including the number of the Microengine that issued the TBUF_Wr 
command — refer to the DRAM chapter for details), and will interrupt the Intel XScale® core, if 
enabled, so that it can take appropriate action. Such action is beyond the scope of this document. 
However, it must include recovering the TBUF element by setting it valid with the Skip bit set in 
the Control Word. 

The transmit pipeline will be stalled since all TBUF elements must be transmitted in order; it will 
be un-stalled when the element is skipped.

8.3.3.1 SPI-4

Transmit control logic sends valid elements on the transmit pins in element order. First, a Control 
Word is sent — it is formed as shown in Table 100. After the Control Word, the data is sent; the 
number of bytes to send is the total of Element Control Word Prepend Length field plus the 
Element Control Word Payload Length.

Table 100. Transmit SPI-4 Control Word

SPI-4 Control Word Field Derived from:

Type Type Bit of Element Control Word

EOPS EOP Bit, Prepend Length, Payload Length of previous element’s Element Control 
Word

SOP SOP Bit of Element Control Word

ADR ADR field of Element Control Word

DIP-4 Parity accumulated on previous element’s data and this Control Word
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If the next sequential element is not valid when its turn comes up:

1. Send an idle Control Word with SOP set to 0, and EOPS set to the values determined from the 
most recently sent element, ADR field 0x00, correct parity.

2. Until an element becomes valid, send idle Control Words with SOP set to 0, EOPS set to 00, 
ADR field 0x00, and correct parity.

Note: Sequential elements with same ADR are not “merged”, a Control Word is sent for each element.

Note: SPI-4 requires that all data transfers, except the last fragment (with EOP), be multiples of 16 bytes. 
It is up to the software loading the TBUF element to enforce this rule.

After an element has been sent on the transmit pins, the valid bit for that element is cleared. The 
Tx_Sequence register is incremented when the element has been transmitted; by also maintaining 
a sequence number of elements that have been allocated (in software), the microcode can 
determine how many elements are in-flight.

8.3.3.2 CSIX

Transmit control logic sends valid elements on the transmit pins in element order. Each element 
sends a single CFrame. First the Base Header is sent — it is formed as shown in Table 101. Next, 
the Extension Header is sent. Finally, the data is sent; the number of bytes to send is the total of 
Element Control Word Prepend Length field plus the Element Control Word Payload Length, plus 
padding to fill the final CWord if required (the CWord Size is programmed in 
MSF_Tx_Control[Tx_CWord_Size]). Both Horizontal Parity and Vertical Parity are transmitted, as 
described in Section 8.3.5.2.1 and Section 8.3.5.2.2.

Note: When transmitting a Flow Control CFrame, the entire payload must be written into the TBUF 
entry. The extension header field of the Transmit Control Word is not used for Flow Control 
CFrames.

Control elements and Data elements share use of the transmit pins. Each will alternately transmit a 
valid element, if present.

If the next sequential element is not valid when its turn comes up, or if transmission is disabled by 
FC_Ingress_Status[SF_CReady] or FC_Ingress_Status[SF_DReady], then transmit logic will 
alternate sending Idle CFrames with Dead Cycles; it will continue to do so until a valid element is 
ready. Idle CFrames get the value for the Ready Field from FC_Ingress_Status[TM_Cready] and 
FC_Ingress_Status[TM_DReady], the Payload Length is set to 0.

Table 101. Transmit CSIX Header

CSIX Header Field Derived From

Type Type field of Element Control Word

Data Ready FC_Ingress_Status[TM_DReady] 

Control Ready FC_Ingress_Status[TM_CReady] 

Payload Length Element Control Word Prepend Length + Element Control Word Payload Length

P P Bit of Element Control Word

CR CR Bit of Element Control Word

Extension Header Extension Header field of Element Control Word
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Note: A Dead Cycle is any cycle after the end of a CFrame, and prior to the start of another CFrame
(i.e., SOF is not asserted). The end of a CFrame is defined as after the Vertical Parity has been 
transmitted. This in turn is found by counting the Payload Bytes specified in the Base Header and 
rounding up to CWord size.

After an element has been sent on the transmit pins, the valid bit for that element is cleared. The 
Tx_Sequence register is incremented when the element has been transmitted; by also maintaining 
a sequence number of elements that have been allocated (in software), the microcode can 
determine how many elements are in-flight.

8.3.3.3 Transmit Summary

The states that a TBUF element goes through (Free, Allocated, Transmitting, and Valid) are shown 
in Figure 95.

8.3.4 Transmit Flow Control Status
Transmit Flow Control is handled partly by hardware and partly by software. Information from the 
Egress IXP2800 Network Processor can be transmitted to the Ingress IXP2800 Network Processor 
(as described in Section 8.2.7 on Receive Flow Control); how it is used is described in the 
remainder of this section.

Figure 95. TBUF State Diagram
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8.3.4.1 SPI-4

FIFO status information is sent periodically over the TSTAT signals from the PHY to the Link 
Layer device, which is the IXP2800 Network Processor. (The RXCDAT pins can act as TSTAT 
based on the MSF_Tx_Control[TSTAT_Select] bit.) The FIFO status of each port is encoded in a 
2-bit data structure — code 0x3 is used for framing the data, and the other three codes are valid 
status values, which are interpreted by Microengine software.

The FIFO status words are received according to a repeating calendar sequence. Each sequence 
begins with the framing code to indicate the start of a sequence, followed by the status codes, 
followed by a DIP-2 parity code covering the preceding frame. The length of the calendar, as well 
as the port values, are defined in this section, and shown in Figure 96.

Tx_Port_Status_# is a register file containing 256 registers, one for each of the SPI-4.2 ports. The 
port status is updated each time a new calendar status is received for each port, according to the 
mode programmed in MSF_Tx_Control[Tx_Status_Update_Mode]. The Tx_Port_Status_# 
register file holds the latest received status for each port, and can be read by CSR reads. 

There are 16 Tx_Multiple_Port_Status_# registers. Each aggregates the status for each group of 
16 ports. These registers provide an alternative method for reading the FIFO status of multiple 
ports with a single CSR read. For example, Tx_Multiple_Port_Status_0 contains the 2-bit status 
for ports 0 – 16, and provides the same status as reading the individual registers, 
Tx_Port_Status_0 through Tx_Port_Status_15.

Figure 96. Tx Calendar Block Diagram
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The TX_Port_Status_# or the TX_Multiple_Port_Status_# registers must be read by the 
software to determine the status of each port and send data to them accordingly. The MSF hardware 
does not check these registers for port status before sending data out to a particular port.

The MSF_Tx_Control[Tx_Status_Update_Mode] field is used to select one of two methods for 
updating the port status. The first method updates the port status with the new status value, 
regardless of the value received. The second method updates the port status only when a value is 
received that is equal to or less than the current value.

Note: Detailed information about the status update modes is contained in the Intel® IXP2400 and 
IXP2800 Network Processor Programmer’s Reference Manual.

Reading a port status causes its value to be changed. This provides a way to avoid reading stale 
status bits. The MSF_Tx_Control[Tx_Status_Read_Mode] field is used to select the method for 
changing the bits after they are read. 

Tx_Calendar is a RAM with 256 entries of eight bits each. It is initialized with the calendar 
information by software (the calendar is a list that indicates the sequence of port status that will be 
sent — the PHY and the IXP2800 Network Processor must be initialized with the same calendar). 
Tx_Calendar_Length is a CSR field that is initialized with the length of the calendar, since in 
many cases, not all 256 entries of Tx_Calendar are used.

When the start of a Status frame pattern is detected (by a value of 0x3 on TSTAT) the Calendar 
Counter is initialized to 0. On each data cycle, the Calendar Counter is used to index into 
Tx_Calendar to read a port number. The port number is used as an index to Tx_Port_Status, and 
the information received on TSTAT is put into that location in Tx_Port_Status. The count is 
incremented each cycle.

DIP-2 Parity is also accumulated on TSTAT. At the start of the frame, parity is cleared. When the 
count reaches Tx_Calendar_Length, the next value on TSTAT is used to compare to the 
accumulated parity. The control logic then looks for the next frame start. If the received parity does 
not match the expected value, the MSF_Interrupt_Status[TSTAT_Par_Err] bit is set, which can 
interrupt the Intel XScale® core if enabled.

Note: An internal status flag records whether or not the most recently received DIP-2 was correct. When 
that flag is set (indicating bad DIP-2 parity) all reads to Tx_Port_Status return a status of 
“Satisfied” instead of the value in the Tx_Port_Status RAM. The flag is re-loaded at the next 
parity sample; so the implication is that all ports will return “Satisfied” status for at least one 
calendar.

SPI-4 protocol uses a continuous stream of repeated frame patterns to indicate a disabled status 
link. The IXP2800 Network Processor flow control status block has a Frame Pattern Counter that 
counts up each time a frame pattern is received on TSTAT, and is cleared when any other pattern is 
received. When the Frame Pattern Counter reaches 32, 
MSF_Interrupt_Status[Detect_No_Calendar] is set and Train_Data[Detect_No_Calendar] is 
asserted (MSF_Interrupt_Status[Detect_No_Calendar] must be cleared by a write to the 
MSF_Interrupt_Status register; Train_Data[Detect_No_Calendar] will reflect the current 
status and will deassert when the frame pattern stops). The transmit logic will generate training 
sequence on transmit pins while both Train_Data[Detect_No_Calendar] and 
Train_Data[Train_Enable_TSTAT] are asserted.
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8.3.4.2 CSIX

There are two types of CSIX flow control:

• Link-level

• Virtual Output Queue (VOQ)

8.3.4.2.1 Link-Level

The Link-level flow control function is done via hardware and consists of two parts:

1. Enable/disable transmission of valid TBUF elements.

2. Ready field to be sent in CFrames sent to the Switch Fabric.

As described in Section 8.2.7, the Ready Field of received CFrames is placed into 
FC_Egress_Status[SF_CReady] and FC_Egress_Status[SF_DReady]. The value in those bits is 
sent to the Ingress IXP2800 Network Processor on TXCSRB. In Full Duplex Mode, the 
information is received on RXCSRB by the Ingress IXP2800 Network Processor and put into 
FC_Ingress_Status[SF_CReady] and FC_Ingress_Status[SF_DReady]. Those bits allow or 
stop transmission of Control and Data elements, respectively. When one of those bits transitions 
from allowing transmission to stopping transmission, the current CFrame in progress (if any) is 
completed, and the next CFrame of that type is prevented from starting.

As described in Section 8.2.7, if the Egress IXP2800 Network Processor RBUF gets near full, or if 
the Egress IXP2800 Network Processor FCEFIFO gets near full, it will send that information on 
TXCSRB. Those bits are put into FC_Ingress_Status[TM_CReady] and 
FC_Ingress_Status[TM_DReady], and are used as the value in CFrame Base Header Control 
Ready and Data Ready, respectively.

8.3.4.2.2 Virtual Output Queue

The Virtual Output Queue flow control function is done by software, with hardware support.

As described in Section 8.2.7, the CSIX Flow Control CFrames received on the Egress IXP2800 
Network Processor are passed to the Ingress IXP2800 Network Processor over TXCDAT. The 
information is received on RXCDAT and placed into the FCIFIFO. A Microengine reads that 
information by msf[read], and uses it to maintain per-VOQ information. The way in which that 
information is used is application-dependent and is done in software. The hardware mechanism is 
described in Section 8.5.3.

8.3.5 Parity

8.3.5.1 SPI-4

DIP-4 parity is computed by Transmit hardware placed into the Control Word sent at the beginning 
of transmission of a TBUF element, and also on Idle Control Words sent when no TBUF element is 
valid. The value to place into the DIP-4 field is computed on the preceding Data Words (if any), 
and the current Control Word.
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8.3.5.2 CSIX

8.3.5.2.1 Horizontal Parity

The transmit logic computes odd Horizontal Parity for each transmitted 16-bits of each Cword, and 
transmits it on TxPar.

8.3.5.2.2 Vertical Parity

The transmit logic computes Vertical Parity on CFrames. There is a 16-bit VP Accumulator 
register. At the beginning of each CFrame, the register is cleared. As each Cword is transmitted, 
odd parity is accumulated in the register as defined in the CSIX specification (16 bits of vertical 
parity are formed on 32 bits of transmitted data by treating the data as words; i.e., bit 0 and bit 16 of 
the data are accumulated into parity bit 0, bit 1, and bit 17 of the data are accumulated into parity 
bit 1, etc.). The accumulated value is transmitted in the Cword along with the last byte of Payload 
and any padding, if required.

8.4 RBUF and TBUF Summary
Table 102 summarizes and contrasts the RBUF and TBUF operations.

Table 102. Summary of RBUF and TBUF Operations (Sheet 1 of 2)

Operation RBUF TBUF

Allocate element

SPI-4
Hardware allocates an element upon receipt of a 
non-idle Control Word, or when a previous element 
becomes full and another Data Word arrives with no 
intervening Control Word. Any available element in 
the SPI-4 partition may be allocated, however, 
elements are guaranteed to be handed to threads in 
the order in which they arrive.

CSIX
Hardware allocates an element upon receipt of 
RxSof asserted. Any available element in the CSIX 
Control or CSIX Data partition may be allocated 
(according to the type), however, elements are 
guaranteed to be handed to threads in the order in 
which they arrive.

Microengine allocates an element. Because the 
elements are transmitted in FIFO order (within each 
TBUF partition), the Microengine can keep the 
number of the next element in software.

Fill element

SPI-4
Hardware fills the element with Data Words.

CSIX
Hardware fills the element with Payload.

Microcode fills the element from DRAM using the 
dram[tbuf_wr] instruction and from Microengine 
registers using msf[write] instruction.

Set element valid

SPI-4
Set valid by hardware when either it becomes full or 
when a Control Word is received.

CSIX
Set valid by hardware when the number of bytes in 
Payload Length have been received.

The element’s Transmit Valid bit is set. This is done 
by a write to the TBUF_Element_Control_$_# CSR 
($is A or B, # is the element number).
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8.5 CSIX Flow Control Interface
This section describes the Flow Control Interface. Section 8.2 and Section 8.3 of this chapter also 
contain descriptions of how those functions interact with Flow Control. There are two modes — 
Full Duplex, where flow control information goes from Egress IXP2800 Network Processor to the 
Ingress IXP2800 Network Processor, and Simplex mode, where the information from the Switch 
Fabric is sent directly to the Ingress IXP2800 Network Processor, and from the Egress IXP2800 
Network Processor to the Switch Fabric.

8.5.1 TXCSRB and RXCSRB Signals
TXCSRB and RXCSRB are used only in Full Duplex mode. (See Figure 97.) They send 
information from the Egress to the Ingress IXP2800 Network Processor for two reasons:

1. Pass the CSIX Ready Field (link-level flow control) from the Switch Fabric to the Ingress 
IXP2800. The information is used by the Ingress IXP2800’s transmit control logic to stop 
transmission of CFrames to the Switch Fabric.

2. Set the value of the Ready field sent from the Ingress IXP2800 to the Switch Fabric. This is to 
inform the Switch Fabric to stop transmitting CFrames to the Egress IXP2800, based on 
receive buffer resource availability in the Egress IXP2800.

Remove data from 
element

Microcode moves data from the element to DRAM 
using the dram[rbuf_rd] instruction and to 
Microengine registers using the msf[read] 
instruction.

Hardware transmits information from the element to 
the Tx pins. Transmission of elements is in FIFO 
order within each partition; that is an element will be 
transmitted only when all preceding elements in that 
partition have been transmitted.
Choice of element to transmit among partitions is 
round-robin.

Return element to 
Free List

Microcode writes to Rx_Element_Done with the 
number of the element to free.

Microengine software uses the TX_Sequence_n 
CSRs to track elements that have been transmitted.

Table 102. Summary of RBUF and TBUF Operations (Sheet 2 of 2)

Operation RBUF TBUF

Figure 97. CSIX Flow Control Interface — TXCSRB and RXCSRB
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The information transmitted on TXCSRB can be read in FC_Egress_Status CSR, and the 
information received on RXCSRB can be read in FC_Ingress_Status CSR.

The TXCSRB or RXCSRB signals carry the Ready information in a serial stream. Four bits of data 
are carried in 10 clock phases, LSB first, as shown in Table 103.

The Transmit Data Ready bit sent from Egress to Ingress IXP2800 Network Processor will be 
deasserted if the following condition is met.

• RBUF CSIX Data partition is full, based on HWM_Control[RBUF_D_HWM].

The Transmit Control Ready bit sent from the Egress to the Ingress IXP2800 Network Processor 
will be deasserted if either of the following conditions is met.

• RBUF CSIX Control partition is full, based on HWM_Control[RBUF_C_HWM].

• FCEFIFO full, based on HWM_Control[FCEFIFO_HWM].

8.5.2 FCIFIFO and FCEFIFO Buffers
FCIFIFO and FCEFIFO are 1-Kbyte (256 entry x 32-bit) buffers for the flow control information. 
FCEFIFO holds data while it is being transmitted off of the Egress IXP2800 Network Processor. 
FCIFIFO holds data received into the Ingress IXP2800 Network Processor until Microengines can 
read it. There are two usage models for the FIFOs — Full Duplex Mode and Simplex Mode, 
selected by MSF_Rx_Control[Duplex_Mode].

Table 103. SRB Definition by Clock Phase Number

Clock 
Cycle 

Number

Description

Source of bit on Egress IXP2800 Network 
Processor (TXCSRB)

Use of bit on Ingress IXP2800 Network 
Processor (RXCSRB)

0–5 Framing information. Data is 000001; this pattern allows the Ingress IXP2800 Network Processor to 
get synchronized to the serial stream regardless of the data values.

6

Most recently received Control Ready from a 
CFrame Base Header.
Also visible in 
FC_Egress_Status[SF_CReady].

When 0—Stop sending Control CFrames to the 
Switch Fabric.
When 1—OK to send Control CFrames to the 
Switch Fabric.
Also visible in FC_Ingress_Status[SF_CReady].

7

Most recently received Data Ready from a 
CFrame Base Header.
Also visible in 
FC_Egress_Status[SF_DReady]

When 0—Stop sending Data CFrames to the 
Switch Fabric.
When 1—OK to send Data CFrames to the 
Switch Fabric.
Also visible in FC_Ingress_Status[SF_DReady].

8
RBUF or FCEFIFO are above high water mark.
Also visible in 
FC_Egress_Status[TM_CReady].

Place this bit in the Control Ready bit of all 
outgoing CSIX Base Headers.
Also visible in 
FC_Ingress_Status[TM_CReady].

9
RBUF is above high water mark.
Also visible in 
FC_Egress_Status[TM_DReady].

Place this bit in the Data Ready bit of all outgoing 
CSIX Base Headers.
Also visible in 
FC_Ingress_Status[TM_DReady].
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8.5.2.1 Full Duplex CSIX

In Full Duplex Mode, the information from the Switch Fabric is sent to the Egress IXP2800 
Network Processor and must be communicated to the Ingress IXP2800 Network Processor via 
TXCSRB or RXCSRB. CSIX CFrames received from the Switch Fabric on the Egress IXP2800 
Network Processor are put into FCEFIFO, based on the mapping in the CSIX_Type_Map CSR 
(normally they will be the Flow Control CFrames). The entire CFrame is put in, including the Base 
Header and Vertical Parity field.

The CFrames are forwarded in a “cut-through” manner, meaning the Egress IXP2800 Network 
Processor does not wait for the entire CFrame to be received before forwarding. The Egress 
processor will corrupt the Vertical Parity of the CFrame being forwarded if either a Horizontal or 
Vertical Parity is detected during receive, to inform the Ingress processor that an error occured.The 
Ingress IXP2800 Network Processor checks both Horizontal Parity and Vertical Parity and will 
discard the entire CFrame if bad parity is detected. The signal protocol details of how the 
information is sent from the Egress IXP2800 Network Processor to the Ingress IXP2800 Network 
Processor is described in Section 8.5.3. (See Figure 98.)

The Ingress IXP2800 Network Processor puts the CFrames into the FCIFIFO, including the Base 
Header and Vertical Parity fields. It does not make a CFrame visible in the FCIFIFO until the entire 
CFrame has been received without errors. If there is an error, the entire CFrame is discarded and 
MSF_Interrupt_Status[FCIFIFO_Error] is set.

CFrames in the FCIFIFO of the Ingress IXP2800 Network Processor are read by Microengines, 
which use them to keep current VOQ Flow Control information. (The application software 
determines how and where that information is stored and used.) 

Figure 98. CSIX Flow Control Interface — FCIFIFO and FCEFIFO in Full Duplex Mode
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The FCIFIFO supplies two signals to Microengines, which can be tested using the BR_STATE 
instruction:

1. FCI_Not_Empty — indicates that there is at least one CWord in the FCIFIFO. This signal 
stays asserted until all CWords have been read. (Note that when FCIFIFO is empty, this signal 
will not assert until a full CFrame has been received into FCIFIFO; as that CFrame is removed 
by the Microengine, this signal will stay asserted until all CWords have been removed, 
including any subsequently received CFrames.)

2. FCI_Full — indicates that FCIFIFO is above the upper limit defined in 
HWM_Control[FCIFIFO_Int_HWM].

The Microengine that has been assigned to handle FCIFIFO must read the CFrame, 32 bits at a 
time, from the FCIFIFO by using the msf[read] instruction to the FCIFIFO address; the length of 
the read can be anywhere from 1 to 16. The FCIFIFO handler thread must examine the Base 
Header to determine how long the CFrame is and perform the necessary number of reads from the 
FCIFIFO to dequeue the entire CFrame. If a read is issued to FCIFIFO when it is empty, an Idle 
CFrame will be read back (0x0000FFFF). Note that when FCIFIFO is receiving a CFrame, it does 
not make it visible until the entire CFrame has been received without errors.

The nearly-full signal is based on the upper limit programmed into 
HWM_Control[FCIFIFO_Int_HWM]. When asserted, this means that higher priority needs to 
be given to draining the FCIFIFO to prevent flow control from being asserted to the Egress 
IXP2800 Network Processor (by assertion of RXCFC).

8.5.2.2 Simplex CSIX

In Simplex Mode, the Flow Control signals are connected directly to the Switch Fabric; flow 
control information is sent directly from the Egress IXP2800 Network Processor to the Switch 
Fabric, and directly from the Switch Fabric to the Ingress IXP2800 Network Processor.
(See Figure 99.)

Figure 99. CSIX Flow Control Interface — FCIFIFO and FCEFIFO in Simplex Mode
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The TXCSRB and RXCSRB pins are not used in Simplex Mode. The RXCFC and TXCFC pins are 
used for flow control in both Simplex and Duplex Modes. The Egress IXP2800 Network Processor 
uses the TXCSOF, TXCDAT, and TXCPAR pins to send CFrames to the Switch Fabric.

The Ingress IXP2800 Network Processor uses the RXCSOF, RXCDAT, and RXCPAR pins to 
receive CFrames from the Switch Fabric (the Switch Fabric is expected to send Flow Control 
CFrames on these pins instead of the RDAT pins in Simplex Mode). The 
FC_Ingress_Status[SF_CReady] and FC_Ingress_Status[SF_DReady] bits are set are from the 
“Ready bits” received in all incoming CFrames received on this interface. Transmit hardware in the 
Ingress IXP2800 Network Processor uses the FC_Ingress_Status[SF_CReady] and 
FC_Ingress_Status[SF_DReady] bits to flow control the data and control transmit on TDAT.

CFrames in the FCIFIFO of the Ingress IXP2800 Network Processor are read by Microengines, 
which use them to keep current VOQ Flow Control information (this is the same as for Full Duplex 
Mode). The FCI_Not_Empty and FCI_Full status flags, as described in Section 8.5.2.1 let the 
Microengine know if the FCIFIFO has any CWords in it. When FCI_Full is asserted, 
FC_Ingress_Status[TM_CReady] will be deasserted; that bit is put into the Ready field of 
CFrames going to the Switch Fabric, to inform it to stop sending Control CFrames.

Flow Control CFrames to the Switch Fabric are put into FCEFIFO, instead of TBUF, as in the Full 
Duplex Mode case. In this mode, the Microengines create CFrames and write them into FCEFIFO 
using the msf[write] instruction to the FCEFIFO address; the length of the write can be from 
1 – 16. The Microengine creating the CFrame must put a header (conforming to CSIX Base Header 
format) in front of the message, indicating to the hardware how many bytes to send. 

The Microengine first tests if there is room in FCEFIFO by reading the 
FC_Egress_Status[FCEFIFO_Full] status bit. After the CFrame has been written to FCEFIFO, 
the Microengine writes to the FCEFIFO_Validate register, indicating that the CFrame should be 
sent out on TXCDAT; this prevents underflow by ensuring that the entire CFrame is in FCEFIFO 
before it can be transmitted. A validated CFrame at the head of FCEFIFO is started on TXCDAT if 
FC_Egress_Status[SF_CReady] is asserted, and held off, if it is deasserted. However, once 
started, the entire CFrame is sent, regardless of changes in FC_Egress_Status[SF_CReady]. 
The FC_Egress_Status[SF_DReady] is ignored in controlling FCEFIFO.

FC_Egress_Status[TM_CReady] and FC_Egress_Status[TM_DReady] are placed by hardware 
into the Base Header of outgoing CFrames. Horizontal and Vertical parity are created by hardware. 

If there is no valid CFrame in FCEFIFO, or if FC_Egress_Status[SF_CReady] is deasserted, then 
idle CFrames are sent on TXCDAT. The idle CFrames also carry (in the Base Header Ready Field), 
both FC_Egress_Status[TM_CReady] and FC_Egress_Status[TM_DReady]. In all cases, the 
Switch Fabric must honor the “ready bits” to prevent overflowing RBUF.

Note: For simplex mode, there is a condition in which the Flow Control Bus may take too long to 
properly control incoming traffic on CSIX. This condition may occur when large packets are 
transmitted on the Flow Control Bus and small packets are transmitted on CSIX. For example, this 
condition may occur if the Switch Fabric’s CSIX Receive FIFO is full, and the FIFO wants to 
deassert the x_RDY bit, but a maximum-sized flow control CFrame just went out. The Flow 
Control Bus is a 4-bit wide LVDS interface that sends data on both the rising and falling edges of 
the clock. As such, it takes 260 clock cycles to transmit a maximum-sized CFrame, which consists 
of 256 bytes, plus a 4-byte base header/vertical parity (i.e, 260 bytes total). The interface does not 
see the transition of the X_RDY bit until this CFrame has been transmitted or until 260 cycles later.
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8.5.3 TXCDAT/RXCDAT, TXCSOF/RXCSOF, TXCPAR/RXCPAR,
and TXCFC/RXCFC Signals
TXCDAT and RXCDAT, along with TXCSOF/RXCSOF and TXCPAR/RXCPAR are used to send 
CSIX Flow Control information from the Egress IXP2800 Network Processor to the Ingress 
IXP2800 Network Processor.

The protocol is basically the same as CSIX-LI, but with only four data signals.

TXCSOF is asserted to indicate start of a new CFrame. The format is the same as any normal 
CFrame — Base Header, followed by Payload and Vertical Parity; the only difference is that each 
CWord is sent on TXCDAT in four cycles, with the most significant bits first. TXCPAR carries odd 
parity for each four bits of data. The transmit logic also creates valid Vertical Parity at the end of 
the CFrame, with one exception. If the Egress IXP2800 Network Processor detected an error on the 
CFrame, it will create bad Vertical parity so that the Ingress IXP2800 Network Processor will 
detect that and discard it.

The Egress IXP2800 Network Processor sends CFrames from FCEFIFO in cut-though manner. If 
there is no data in FCEFIFO, then the Egress IXP2800 Network Processor alternates sending Idle 
CFrames and Dead Cycles. (Note that FCIFIFO never enqueues Idle CFrames in either Full Duplex 
or Simplex Modes. The transmitted Idle CFrames are injected by the control state machine, not 
taken from the FCEFIFO.)

The Ingress IXP2800 Network Processor asserts RXCFC to indicate that FCIFIFO is full, as 
defined by HWM_Control[FCIFIFO_Ext_HWM]. The Egress IXP2800 Network Processor, 
upon receiving that signal asserted, will complete the current CFrame, and then transmit Idle 
CFrames until RXCFC deasserts. During that time, the Egress IXP2800 Network Processor can 
continue to buffer Flow Control CFrames in FCEFIFO; however, if that fills, the further CFrames 
mapped to FCEFIFO will be discarded.

Note: If there is no Switch Fabric present, this port could be used for interchip message communication. 
FC pins must connect between network processors as in Full Duplex Mode. Set 
MSF_RX_CONTROL[DUPLEX_MODE] = 0 and MSF_TX_CONTROL[DUPLEX_MODE] 
= 0 (Simplex) and FC_STATUS_OVERRIDE=0x3ff. Microengines write CFrames to the 
FCEFIFO CSR as in Simplex Mode. The RXCFC and TXCFC pins must be connected between 
network processors to provide flow control.

8.6 Deskew and Training
There are three methods of operation that can be used, based on the application requirements.

1. Static Alignment — the receiver latches all data and control signals at a fixed point in time, 
relative to clock.

2. Static Deskew — the receiver latches each data and control signal at a programmable point in 
time, relative to clock. The programming value for each signal is characterized for a given 
system design and loaded into deskew control registers at system boot time.

3. Dynamic Deskew — the transmitter periodically sends a training pattern that the receiver uses 
to automatically select the optimal timing point for each data and control signal. The timing 
values are loaded into the deskew control registers by the training hardware.
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The IXP2800 Network Processor supports all three methods. There are three groups of high-speed 
pins to which this applies, as shown in Table 104, Table 105, and Table 106. The groups are 
defined by the clock signal that is used.

Table 104. Data Deskew Functions

Clock Signals IXP2800 Network Processor Operation

RCLK

RDAT 1. Sample point for each pin is programmed in Rx_Deskew.
2. Deskew values set automatically when training pattern (Section 8.6.1) is 

received and is enabled in Train_Data[Ignore_Training].RCTL

RPAR

RPROT

TCLK

TDAT 1. Send training pattern
• under software control (write to Train_Data[Continuous_Train] or 

Train_Data[Single_Train])
• when TSTAT input has framing pattern for more than 32 cycles and enabled in 

Train_Data[Train_Enable].

TCTL

TPAR

TPROT

Table 105. Calendar Deskew Functions

Clock Signals IXP2800 Network Processor Operation

RSCLK RSTAT

1. Used to indicate need for data training on receive pins by forcing to continual 
framing pattern (write to Train_Data[RSTAT_En]).

2. Send training pattern under software control (write to 
Train_Calendar[Continuous_Train] or Train_Calendar[Single_Train]).

TSCLK TSTAT

1. Sample point for each pin is set in Rx_Deskew, either by manual programming 
or automatically.

2. Deskew values set automatically when training pattern (Section ) is received 
and is enabled in Train_Calendar[Ignore_Training].

3. Received continuous framing pattern can be used to initiate data training 
(Train_Data[Detect_No_Calendar]), and/or interrupt the Intel XScale® core.

Table 106. Flow Control Deskew Functions

Clock Signals IXP2800 Network Processor Operation

RXCCLK

RXCSOF 1. Sample point for each pin is programmed in Rx_Deskew.
2. Deskew values set automatically when training pattern (Section 8.6.2) is 

received and is enabled in Train_Flow_Control[Ignore_Training].
Note 1, 2

RXCDAT

RXCPAR

RXCSRB

TXCCLK

TXCSOF 1. Send training pattern
• under software control (write to Train_Flow_Control[Continuous_Train] or 

Train_Flow_Control[Single_Train])
• when TXCFC input has been asserted for more than 32 cycles and enabled in 

Train_Flow_Control[Train_Enable].
Notes 1, 2

TXCDAT

TXCPAR

TXCSRB

NOTES:
1. TXCFC is not trained. RXCFC is driven out relative to RXCCLK; TXCFC is received relative to TXCCLK, 

but is treated as asynchronous.
2. RXCFC can be forced asserted by write to Train_Flow_Control[RXCFC_En].
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8.6.1 Data Training Pattern
The data pin training sequence is shown in Table 107. This is a superset of SPI-4 training sequence, 
because it includes the TPAR/RPAR and TPROT/RPOT pins, which are not included in SPI-4.

8.6.2 Flow Control Training Pattern
This section defines training for the flow control pins (Table 108). These pins are normally used for 
CSIX flow control (Section 8.5), but can be programmed for use as SPI-4 Status Channel. The 
training pattern used is based on the usage.

The flow control pin training sequence when the pins are used for CSIX flow control is shown in 
Table 108.

Table 107. Data Training Sequence

Cycle 
(Note 4)

PR
O

T

PA
R

C
TL

DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 (Note 5) 0 x 1 0 x x 0 0 0 0 0 0 0 0 0 a b c d

2 to 11 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

12 to 21 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

20α-18 to 20α-9 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

20α-8 to 20α+1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

NOTES:
1. In cycle 1, x and abcd depend on the contents of the interval after the last preceding control word. This is 

an Idle Control Word.
2. α represents the number of repeats, as specified in SPI-4 specification. When the IXP2800 Network 

Processor is transmitting training sequences the value is in Train_Data[Alpha]. 
3. On receive, the IXP2800 Network Processor will do dynamic deskew when Train_Data[Ignore_Training] 

is 0, and RCTL = 1 and RDATA = 0x0FFF for three consecutive samples. Note that RPROT and RPAR are 
ignored when recognizing the start of training sequence.

4. These are really phases (i.e.,each edge of the clock is counted as one sample).
5. This cycle is valid for SPI-4, it is not used in CSIX training.

Table 108. Flow Control Training Sequence

Cycle
(Note 3)

XC
SO

F

XCDAT

XC
PA

R

XC
SR

B3 2 1 0

1 to 10 1 1 1 0 0 0 0

11 to 20 0 0 0 1 1 1 1

20α-19 to 20α-10 1 1 1 0 0 0 0

20α-9 to 20α 0 0 0 1 1 1 1

NOTE:
1. α represents the number of repeats, as specified in SPI-4 specification. When 

the IXP2800 Network Processor is transmitting training sequences the value is 
in Train_Flow_Control[Alpha].

2. On receive, the IXP2800 Network Processor will do dynamic deskew when 
Train_Flow_Control[Ignore_Training] is 0, and RXCSOF = 1, RXCDATA = 
0xC, RXCPAR =0, and RXCSRB = 0 for three consecutive samples.

3. These are really phases (i.e.,each edge of the clock is counted as one sample).
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The training sequence when the pins are used for SPI-4 Status Channel is shown in Table 109.
This is compatible to SPI-4 training sequence.

8.6.3 Use of Dynamic Training
Dynamic training is done by cooperation of hardware and software as defined in this section. 

The IXP2800 Network Processor will need training at reset or it loses training. Loss of training will 
typically be detected by parity errors on received data. Table 110 lists the steps to initiate the 
training. SPI-4, CSIX Full Duplex, and CSIX Simplex cases follow similar but slightly different 
sequences. The SPI-4 protocol uses the calendar status pins, TSTAT/RSTAT (or RXCDAT/
TXCDAT if those are used for calendar status), as an indicator that data training is required. For 
CSIX use, the IXP2800 Network Processor uses a proprietary method of in-band signaling using 
Idle CFrames and Dead Cycles to indicate the need for training.

Until the LVDS IOs are deskewed correctly, DIP-4 errors will occur. At startup, the receiver should 
request training followed by the transmitting device being sent training. The receiver should 
initially see received_training set and DIP-4 parity errors. The receiver should then clear the parity 
errors, wait for receive_training set and dip4_error cleared and check that all of the applicable 
RX_PHASEMON registers indicate no training errors. Then the LVDS IOs are properly trained.

Table 109. Calendar Training Sequence

Cycle
(Note 3)

XCDAT

1 0

1 to 10 0 0

11 to 20 1 1

20α-19 to 20α-10 0 0

20α-9 to 20α 1 1

NOTE:
1. α represents the number of repeats, as specified in SPI-4 specification. When the IXP2800 Network 

Processor is transmitting training sequences the value is in Train_Calendar[Alpha].
2. On receive, the IXP2800 Network Processor will do dynamic deskew when 

Train_Calendar[Ignore_Training] is 0, and TCDAT= 0x0 for ten consecutive samples.
3. These are really phases (i.e.,each edge of the clock is counted as one sample).
4. Only XCDAT[1:0] are included in training.
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The second case is when the Switch Fabric or SPI-4 framing device indicates it needs Data 
training. Table 111 lists that sequence.

Table 110. IXP2800 Network Processor Requires Data Training

Step
SPI-4

(IXP2800 Network Processor 
is Ingress Device)

CSIX
(IXP2800 Network Processor is Egress Device)

Full Duplex Simplex

1 Detect need for training (for example, reset or excessive parity errors).

2

Force RSTAT (when using 
LVTTL status channel) to 
continuous framing pattern 
(Write a 0 to 
Train_Data[RSTAT_En]), or 
force RXCDAT (when using 
LVDS status channel) to 
continuous training (Write a 1 to 
Train_Calendar
[Continuous_Train]).

Force Transmission of Idle 
CFrames on Flow Control 
(Write a 1 to 
Train_Flow_Control 
[Force_FCIdle]).

Force Transmission of Dead 
Cycles on Flow Control (Write a 
1 to Train_Flow_Control
[Force_FCDead]).

3

Framer device detects RSTAT 
in continuous framing (when 
using LVTTL status channel, or 
RXCDAT in continuos training 
(when using LVDS status 
channel).

Ingress IXP2800 Flow Control 
port detects Idle CFrames and 
sets Train_Flow_Control
[Detect_FCIdle].

Switch Fabric detects Dead 
Cycles on Flow Control.

4
Framer device transmits 
Training Sequence (IXP2800 
receives on RDAT).

Ingress IXP2800 sends Dead 
Cycles on TDAT (if Train_Data
[Dead_Enable_FCIdle] is set).

5 Switch Fabric detects Dead 
Cycles on Data.

6 Switch Fabric transmits Training Sequence on Data.

7

When MSF_Interrupt_Status[Received_Training_Data] interrupt indicates training happened, and 
all of the applicable RX_PHASEMON registers indicate no training errors. Write 
MSF_Interrupt_Status[DIP4_ERR] to clear previous errors.

Write a 1 to 
Train_Data[RSTAT_En] or 
Write a 0 to Train_Calendar
[Continuous_Train].

Write a 0 to 
Train_Flow_Control
[Force_FCIdle].

Write a 0 to 
Train_Flow_Control
[Force_FCDead].
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The IXP2800 Network Processor needs training at reset, or whenever it loses training. Loss of 
training is typically detected by parity errors on received flow control information.

Table 111. Switch Fabric or SPI-4 Framer Requires Data Training

Step SPI-4
CSIX

Full Duplex Simplex

1

Framer sends continuous 
framing code on IXP2800 
calendar status pins TSTAT 
(when using LVTTL status 
channel) or sends continuos 
training on IXP2800 calendar 
status pins RXCDAT (when 
using LVDS status channel).

Switch Fabric sends continuous 
Dead Cycles on Data.

Switch Fabric sends continuous 
Dead Cycles on Flow Control.

2

IXP2800 detects no calendar 
on TSTAT (when using LVTTL 
status channel) or detects 
continuos training on RXCDAT 
(when using LVDS status 
channel), and sets Train_Data
[Detect_No_Calendar].

Egress IXP2800 detects Dead 
Cycles and sets 
Train_Data[Detect_CDead].

Ingress IXP2800 detects Dead 
Cycles and sets 
Train_Flow_Control
[Detect_FCDead].3

IXP2800 transmits Training 
Pattern (if Train_Data
[Train_Enable_TDAT] is set).

Egress IXP2800 Flow Control 
port sends continuous Dead 
Cycles if Train_Flow_Control
[TD_Enable_CDead].

4

Ingress IXP2800 Flow Control 
port detects continuous Dead 
Cycles and set 
Train_Flow_Control
[Detect_FCDead].

5 Ingress IXP2800 transmits continuous Training Sequence on data 
if Train_Data[Train_EN_FCDead].

6

When Framer/Switch Fabric is trained it indicates that fact by reverting to normal operation.

Framer stops continuous 
framing code on calendar 
status pins.

Switch Fabric stops continuous 
Dead Cycles on Data.

Switch Fabric stops continuous 
Dead Cycles on Flow Control.
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Table 112 lists the steps to initiate the training. CSIX Full Duplex and CSIX Simplex cases follow 
similar, but slightly different sequences.

The last case is when the Switch Fabric indicates it needs Flow Control training. Table 113 lists 
that sequence.

Table 112. IXP2800 Network Processor Requires Flow Control Training

Step

CSIX
(IXP2800 Network Processor is Ingress Device)

Full Duplex Simplex

1 Force TXCFC pin asserted (Write a 0 to 
Train_Flow_Control [RXCFC_En]).

Force Data pins to continuos Dead Cycles 
(Write a 1 to Train_Data[Force_CDead]).

2
Egress IXP2800 Network Processor Flow Control port 
detects RXCFC sustained assertion and sets 
Train_Flow_Control [Detect_TXCFC_Sustained].

Switch Fabric detects Dead Cycles on 
Data.

3
Ingress IXP2800 Network Processor transmits 
Training Sequence on Flow Control pins (if 
Train_Flow_Control [Train_Enable_CFC] is set).

Switch Fabric transmits Training 
Sequence on Flow Control pins.

4

When MSF_Interrupt_Status[Received_Training_FC] interrupt indicates training happened and 
all of the applicable RX_PHASEMON registers indicate no training errors, write CSR bits set in 
Step 1 to inactive value.

Write a 1 to Train_Flow_Control [RXCFC_En]. Write a 1 to Train_Data[Force_CDead].

Table 113. Switch Fabric Requires Flow Control Training

Step Simplex
(IXP2800 Network Processor is Egress Device)

1 Switch Fabric sends continuous Dead Cycles on Data.

2 Egress IXP2800 Network Processor detects Dead Cycles and sets Train_Data [Detect_CDead].

3 Egress IXP2800 Network Processor transmits Training Sequence on Flow Control pins (if 
Train_Flow_Control [Train_Enable_CDead] is set).

4 Switch Fabric, upon getting trained stops continuous Dead Cycles on Data.
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8.7 CSIX Startup Sequence
This section defines the sequence required to startup the CSIX interface.

8.7.1 CSIX Full Duplex

8.7.1.1 Ingress IXP2800 Network Processor

1. On reset, FC_STATUS_OVERRIDE[Egress_Force_En] is set to force the Ingress IXP2800 to 
send Idle CFrames with low CReady and DReady bits to the Egress IXP2800 over TXCSRB.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Rx_Control[RX_En_C] so that 
Idle CFrames can be received.

3. The Microengine or the Intel XScale® core polls on 
MSF_Interrupt_Status[Detected_CSIX_Idle] to see when the first Idle CFrame is received. 
The Intel XScale® core may use the Detected_CSIX_Idle Interrupt if 
MSF_Interrupt_Enable[Detected_CSIX_Idle] is set.

4. When the first Idle CFrame is received, the Microengine or the Intel XScale® core writes a 0 
to FC_STATUS_OVERRIDE[Egress_Force_En] to deactivate SRB Override or writes 2'b11 
to FC_STATUS_OVERRIDE[7:6] ([TM_CReady] and [TM_DReady]). This will inform the 
Egress IXP2800 that the Switch Fabric has sent an Idle CFrame and the Ingress IXP2800 has 
detected it.

8.7.1.2 Egress IXP2800 Network Processor

1. On reset, FC_STATUS_OVERRIDE[Ingress_Force_En] is set.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Tx_Control[Transmit_Idle] and 
MSF_Tx_Control[Transmit_Enable] so that Idle CFrames with low CReady and Dready bits 
are sent over TDAT.

3. The Microengine or the Intel XScale® core writes a 0 to 
FC_STATUS_OVERRIDE[Ingress_Force_En]. The Egress IXP2800 will then be sending Idle 
CFrames with CReady and DReady according to what is received on RXCSRB from the 
Ingress IXP2800. If the Egress IXP2800 has not detected an Idle CFrame, low TM_CReady 
and TM_DReady bits will be transmitted over its TXCSRB pin. If it has detected an Idle 
CFrame, the TM_CReady and TM_DReady bits are high. The TM_CReady and TM_DReady 
bits received on RXCSRB by the Ingress IXP2800 are used in the Base Headers of CFrames 
transmitted over TDAT.

4. The Microengine or the Intel XScale® core polls on FC_Ingress_Status[TM_CReady] and 
FC_Ingress_Status[TM_DReady]. When they are seen active, the Microengine or the Intel 
XScale® core writes a 1 to MSF_Tx_Control[TX_En_CC] and 
MSF_Tx_Control[TX_En_CD]. Egress IXP2800 then resumes normal operation. Likewise, 
when the Switch Fabric recognizes Idle CFrames with “ready bits” high, it will assume normal 
operation.
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8.7.1.3 Single IXP2800 Network Processor

1. The Microengine or the Intel XScale® core writes a 1 to MSF_Tx_Control[Transmit_Idle] and 
MSF_Tx_Control[Transmit_Enable] so that Idle CFrames with low CReady and DReady bits 
are sent over TDAT.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Rx_Control[RX_En_C] so that 
Idle CFrames can be received.

3. The Microengine or the Intel XScale® core writes a 0 to 
FC_STATUS_OVERRIDE[Ingress_Force_En].

4. The Microengine or the Intel XScale® core polls on 
MSF_Interrupt_Status[Detected_CSIX_Idle] to see when the first Idle CFrame is received. 
The Intel XScale® core may use the Detected_CSIX_Idle Interrupt if 
MSF_Interrupt_Enable[Detected_CSIX_Idle] is set.

5. When the first Idle CFrame is received, the Microengine or the Intel XScale® core writes a 0 
to FC_STATUS_OVERRIDE[Egress_Force_En] to deactivate SRB Override or writes 2'b11 
to FC_STATUS_OVERRIDE[7:6] ([TM_CReady and TM_DReady]).

6. The Microengine or the Intel XScale® core writes a 1 to MSF_Tx_Control[TX_En_CC] and 
MSF_Tx_Control[TX_En_CD]. IXP2800 resumes normal operation.

8.7.2 CSIX Simplex

8.7.2.1 Ingress IXP2800 Network Processor

1. On reset, FC_STATUS_OVERRIDE[Egress_Force_En] is set to force Ingress IXP2800 to 
send Idle CFrames with low CReady and DReady bits to Switch Fabric over TXCDAT.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Rx_Control[RX_En_C] so that 
Idle CFrames can be received.

3. The Microengine or the Intel XScale® core polls on 
MSF_Interrupt_Status[Detected_CSIX_Idle] to see when the first Idle CFrame is received. 
The Intel XScale® core may use the Detected_CSIX_Idle Interrupt if 
MSF_Interrupt_Enable[Detected_CSIX_Idle] is set.

4. When the first Idle CFrame is received, the Microengine or the Intel XScale® core writes a 0 
to FC_STATUS_OVERRIDE[Egress_Force_En]. Idle CFrames with “ready bits” high will be 
transmitted over TXCDAT. Ingress IXP2800 may resume normal operation.
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8.7.2.2 Egress IXP2800 Network Processor

1. On reset, FC_STATUS_OVERRIDE[Ingress_Force_En] is set.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Tx_Control[Transmit_Idle] and 
MSF_Tx_Control[Transmit_Enable] so that Idle CFrames with low CReady and DReady bits 
are sent over TDAT.

3. The Microengine or the Intel XScale® core polls on 
MSF_Interrupt_Status[Detected_CSIX_FC_Idle] to see when the first Idle CFrame is 
received. The Intel XScale® core may use the Detected_CSIX_FC_Idle Interrupt if 
MSF_Interrupt_Enable[Detected_CSIX_FC_Idle] is set.

4. When the first Idle CFrame is received, the Microengine or the Intel XScale® core writes a 0 
to FC_STATUS_OVERRIDE[Ingress_Force_En] to deactivate SRB Override.

5. The Microengine or the Intel XScale® core polls on FC_Ingress_Status[TM_CReady] and 
FC_Ingress_Status[TM_DReady]. When they are seen active, the Microengine or the Intel 
XScale® core writes a 1 to MSF_Tx_Control[TX_En_CC] and 
MSF_Tx_Control[TX_En_CD]. Egress IXP2800 then resumes normal operation. Likewise, 
when the Switch Fabric recognizes Idle CFrames with “ready bits” high, it will assume normal 
operation.

8.7.2.3 Single IXP2800 Network Processor

Both CSIX startup routines described above will be needed to complete the CSIX startup sequence. 
Using Simplex mode on a single IXP2800 with RDAT, TDAT and RXCDAT, TXCDAT using 
CSIX, there are essentially two independent CSIX receive and transmit buses.
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8.8 Interface to Command and Push and Pull Buses
Figure 100 shows the interface of the MSF to the command and push and pull buses. Data transfers 
to and from the TBUF/RBUF are done in the following cases (refer to section):

• RBUF or MSF CSR to Microengine S_TRANSFER_IN Register for Instruction:

• Microengine S_TRANSFER_OUT Register to TBUF or MSF CSR for Instruction:

• Microengine to MSF CSR for Instruction:

• From RBUF to DRAM for Instruction:

• From RBUF to DRAM for Instruction:

Figure 100. MSF to Command and Push and Pull Buses Interface Block Diagram
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8.8.1 RBUF or MSF CSR to Microengine S_TRANSFER_IN 
Register for Instruction:
msf[read, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

For transfers to a Microengine, the MSF acts as a target. Commands from Microengines and the 
Intel XScale® core are received on the command bus. The commands are checked to see if they are 
targeted to the MSF. If so, they are enqueued into the Command Inlet FIFO, and then moved to the 
Read Cmd FIFO. When the Command Inlet FIFO is nearly full, it asserts a signal to the command 
arbiters. The command arbiters prevent further commands to the MSF until after the full signal is 
asserted. The RBUF element or CSR specified in the address field of the command is read and the 
data is registered in the SPUSH_DATA register. The control logic then arbitrates for 
S_PUSH_BUS, and when granted, it drives the data.

8.8.2 Microengine S_TRANSFER_OUT Register to TBUF or
MSF CSR for Instruction:
msf[write, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

For transfers from a Microengine, the MSF acts as a target. Commands from Microengines are 
received on the two command buses. The commands are checked to see if they are targeted to the 
MSF. If so, they are enqueued into the Command Inlet FIFO, and then moved to the Write Cmd 
FIFO. When the Command Inlet FIFO is nearly full, it asserts a signal to the command arbiters. 
The command arbiters prevent further commands to the MSF until after the full signal is asserted. 
The control logic then arbitrates for S_PULL_BUS, and when granted, it receives and registers the 
data from the Microengine into the S_PULL_DATA register. It then writes that data into the TBUF 
element or CSR specified in the address field of the command.

8.8.3 Microengine to MSF CSR for Instruction:
msf[fast_write, src_op_1, src_op_2]

For fast write transfers from the Microengine, the MSF acts as a target. Commands from 
Microengines are received on the two command buses. The commands are checked to see if they 
are targeted to the MSF. If so, they are enqueued into the Command Inlet FIFO, and then moved to 
the Write Cmd FIFO. When the Command Inlet FIFO is nearly full, it asserts a signal to the 
command arbiters. The command arbiters prevent further commands to the MSF until after the full 
signal is asserted. The control logic uses the address and data, both found in the address field of the 
command. It then writes the data into the CSR specified.

8.8.4 From RBUF to DRAM for Instruction:
dram[rbuf_rd, --, src_op1, src_op2, ref_cnt], indirect_ref

For the transfers to DRAM, the RBUF acts like a slave. The address of the data to be read is given 
in D_PULL_ID. The data is read from RBUF and registered in the D_PULL_DATA register. It is 
then multiplexed and driven to the DRAM channel on D_PULL_BUS.
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8.8.5 From DRAM to TBUF for Instruction:
dram[tbuf_wr, --, src_op1, src_op2, ref_cnt], indirect_ref

For the transfers from DRAM, the TBUF acts like a slave. The address of the data to be written is 
given in D_PUSH_ID. The data is registered and assembled from D_PUSH_BUS, and then written 
into TBUF.

8.9 Receiver and Transmitter Interoperation with Framers and 
Switch Fabrics
The Intel® IXP2800 Network Processor can process data received at a peak rate of 16 Gb/s and 
transmit data at a peak rate of 16 Gb/s. In addition, data may be received and transmitted via the 
PCI bus at an aggregate peak rate of 4.2 Gb/s, as shown in Figure 101.

The network processor’s receiver and transmitter can be independently configured to support either 
an SPI-4.2 framer interface or a fabric interface consisting of DDR LVDS signaling and the CSIX-
L1 protocol. The dynamic training sequence of SPI-4.2, used for de-skewing the signals, has been 
optionally incorporated into the fabric interface.

“SPI-4.2 is an interface for packet and cell transfer between a physical layer (PHY) device and a 
link layer device, for aggregate bandwidths of OC-192 ATM and Packet over SONET/SDH (POS), 
as well as 10 Gb/s Ethernet applications.”1 

“CSIX-L1 is the Common Switch Interface. It defines a physical interface for transferring 
information between a traffic manager (Network Processor) and a switching fabric…”2 The 
network processor adopts the protocol of CSIX-L1, but uses a DDR LVDS physical interface rather 
than an LVCMOS or HSTL physical interface.

Figure 101. Basic I/O Capability of the Intel® IXP2800 Network Processor
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1. “System Packet Interface Level 4 (SPI-4) Phase 2: OC-192 System Interface for Physical and Link Layer Devices,” Implementation 
Agreement: OIF-SPI4-02.0, Optical Internetworking Forum

2. “CSIX-L1: Common Switch Interface Specification-L1,” CSIX
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SPI-4.2 supports up to 256 port addresses, with independent flow control for each. For data 
received by the PHY and passed to the link layer device, flow control is optional. The flow control 
mechanism is based upon independent pools of credits, corresponding to 16-byte blocks, for each 
port.

The CSIX-L1 protocol supports 4096 ports and 256 unicast classes of traffic. It supports various 
forms of multicast and 256 multicast queues of traffic. The protocol supports independent link-
level flow control for data and control traffic and supports virtual output queue (VOQ) flow control 
for data traffic.

8.9.1 Receiver and Transmitter Configurations
The network processor receiver and transmitter independently support three different 
configurations:

• Simplex (SPI-4.2 or CSIX-L1 protocol), described in Section 8.9.1.1.

• Hybrid simplex (transmitter only, SPI-4.2 data path, and CSIX-L1 protocol flow control), 
described in Section 8.9.1.2.

• Dual Network Processor, full duplex (CSIX-L1 protocol), described in Figure 8.9.1.3.

Additionally, the combined receiver and transmitter support a single Network Processor, full-
duplex configuration using two different protocols:

• Multiplexed SPI-4.2 protocol, described in Section 8.9.1.4.

• CSIX-L1 protocol, described in Section 8.9.1.5. 

In both the simplex and hybrid simplex configurations, the path receiving from a framer, fabric, or 
Network Processor is independent of the path transmitting to a framer, fabric, or Network 
Processor. In a full duplex configuration, the receiving path forwards CSIX-L1 control information 
for the transmit path and vice versa.

8.9.1.1 Simplex Configuration

In the simplex configuration, as shown in Figure 102, the reverse path provides control information 
to the transmitter. This control information may include flow control information and requests for 
dynamic training sequences.

Figure 102. Simplex Configuration
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The SPI-4.2 mode of the simplex configuration supports an LVTTL reverse path or status interface 
clocked at up to 125 MHz or a DDR LVDS reverse path or status interface clocked at up to 500 
MHz. The SPI-4.2 mode status interface consists of a clock signal and two data signals. 

The CSIX-L1 protocol mode of the simplex configuration supports a full-duplex implementation 
of the CSIX-L1 protocol, but no Data CFrames are transferred on the reverse path and the reverse 
path is a quarter of the width of the forward path. The CSIX-L1 protocol mode supports a DDR 
LVDS reverse path interface clocked at up to 500 MHz. The CSIX-L1 protocol mode reverse path 
control interface consists of a clock signal, four data signals, a parity signal, and a start-of-frame 
signal.

8.9.1.2 Hybrid Simplex Configuration

In the hybrid simplex configuration, data transfers and link-level flow control is supported via the 
SPI-4.2 modes of the receiver and transmitter, as shown in Figure 103. Only the LVTTL SPI-4.2 
status interface is supported in this configuration.

Virtual output queue flow control information (or other information) is delivered to the transmitter 
via the CSIX-L1 protocol via an interface similar to the reverse path of the CSIX-L1 protocol mode 
of the simplex configuration. Flow control for the CSIX-L1 CFrames is provided by an 
asynchronous LVDS signal back to the fabric and not by the “ready bits” of the CSIX-L1 protocol.

The hybrid simplex configuration for a fabric interface may be especially useful to implementers 
when an SPI-4.2 interface implementation is readily available. The CSIX-L1 protocol reverse path 
may not need to operate at a clock rate as aggressive as the SPI-4.2 interface and, as such, may be 
easier to implement than a full-rate data interface.

Figure 103. Hybrid Simplex Configuration
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8.9.1.3 Dual Network Processor Full Duplex Configuration

In the dual Network Processor, full duplex configuration, an ingress Network Processor and an 
egress Network Processor are integrated to offer a single full duplex interface to a fabric, similar to 
the CSIX-L1 interface, as shown in Figure 104. This configuration provides an interface that is 
closest to the standard CSIX-L1 interface. It is easiest to bridge between this configuration and an 
actual CSIX-L1 interface.

Flow control CFrames are forwarded by the egress Network Processor to the ingress Network 
Processor over a separate flow control interface. The bandwidth of this interface is a quarter of the 
primary interface offered to the fabric. A signal from ingress Network Processor to egress Network 
Processor provides flow control for this interface. (This interface is the same interface that was 
used in the hybrid simplex configuration.) A separate signal from egress Network Processor to 
ingress Network Processor provides the state of the CSIX-L1 “ready bits” that were received from 
the fabric, conveying the state of the fabric receiver, and those that should be sent to the fabric, 
conveying the state of the egress Network Processor receiver. 

The PCI may be used to convey additional information between the egress Network Processor and 
ingress Network Processor.

Figure 104. Dual Network Processor, Full Duplex Configuration
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8.9.1.4 Single Network Processor Full Duplex Configuration (SPI-4.2)

The single Network Processor, full duplex configuration (SPI-4.2 only) allows a single Network 
Processor to interface to multiple discrete devices, processing both the receiver and transmitter data 
for each, as shown in Figure 105 (where N=255). Up to 256 devices can be addressed by the SPI-
4.2 implementation. The bridge chip implements the specific interfaces for each of those devices.

Figure 105. Single Network Processor, Full Duplex Configuration (SPI-4.2 Protocol)
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8.9.1.5 Single Network Processor, Full Duplex Configuration
(SPI-4.2 and CSIX-L1)

The Single Network Processor, Full Duplex Configuration (SPI-4.2 and CSIX-L1 Protocol) allows 
a single Network Processor to interface to a fabric via a CSIX-L1 interface and to multiple other 
discrete devices, as shown in Figure 106. The CSIX-L1 and SPI-4.2 protocols are multiplexed on 
the network processor receiver and transmitter interface. Independent processing and buffering 
resources are allocated to each protocol.

8.9.2 System Configurations
The receiver and transmitter configurations in the preceding Section 8.9.1 enable several system 
designs, as shown in Figure 107 through Figure 111.

Figure 106. Single Network Processor, Full Duplex Configuration (SPI-4.2 and CSIX-L1 
Protocols)
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8.9.2.1 Framer, Single Network Processor Ingress and Egress, and
Fabric Interface Chip

Figure 107 illustrates the baseline system configuration consisting of the dual chip, full-duplex 
fabric configuration of network processors with a framer chip and a fabric interface chip

8.9.2.2 Framer, Dual Network Processor Ingress, Single 
Network Processor Egress, and Fabric Interface Chip

If additional processing capacity is required in the ingress path, an additional network processor 
can be added to the configuration, as shown in Figure 108. The configuration of the interface 
between the two ingress network processors can use either the SPI-4.2 or CSIX-L1 protocol.

Figure 107. Framer, Single Network Processor Ingress and Egress, and Fabric Interface Chip
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8.9.2.3 Framer, Single Network Processor Ingress and Egress, and
CSIX-L1 Chips for Translation and Fabric Interface

To interface to existing standard CSIX-L1 fabric interface chips, a translation bridge can be 
employed, as shown in Figure 109. Translation between the network processor interface and 
standard CSIX-L1 is very simple by design.

8.9.2.4 CPU Complex, Network Processor, and Fabric Interface Chip

If a processor card requires access to the fabric, a single network processor can provide both 
ingress and egress access to the fabric for the processor via the PCI interface, as shown in 
Figure 110. In many cases the available aggregate peak bandwidth of 4.2 Gb/s is sufficient for the 
processor’s capacity.

Figure 109. Framer, Single Network Processor Ingress, Single Network Processor Egress,
CSIX-L1 Translation Chip and CSIX-L1 Fabric Interface Chip
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Figure 110. CPU Complex, Network Processor, and Fabric Interface Chips
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8.9.2.5 Framer, Single Network Processor, Co-Processor, and
Fabric Interface Chip

The network processor supports multiplexing the SPI-4.2 and CSIX-L1 protocols over its physical 
interface via a protocol signal. This capability enables using a bridge chip to allow a single network 
processor to support the ingress and egress paths between a framer and a fabric, provided the 
aggregate system bandwidth does not exceed the capabilities of that single network processor, as 
shown in Figure 111.

Figure 111. Framer, Single Network Processor, Co-Processor, and Fabric Interface Chip
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8.9.3 SPI-4.2 Support
Data is transferred across the SPI-4.2 interface in variously-sized bursts and encapsulated with a 
leading and trailing control word. The control words provide annotation of the data with port 
address (0-255) information, start-of-packet and end-of-packet markers, and an error detection 
code (DIP-4). Data must be transferred in 16-byte integer multiples, except for the final burst of a 
packet. 

The status interface transfers state as an array of state or calendar, two bits per port, for all of the 
supported ports. The status information provides for reporting one of three status states for each 
port (satisfied, hungry, and starving) corresponding to credit availability for the port. The mapping 
of calendar offset to port is flexible. Individual ports may be repeated multiple times for greater 
frequency of update.

8.9.3.1 SPI-4.2 Receiver

The network processor receiver stores received SPI-4.2 bursts into receiver buffers. The buffers 
may be configured as 128 buffers of 64 bytes, 64 buffers of 128 bytes, or 32 buffers of 256 bytes. 
Information from the control words, the length of the burst, and the TCP checksum of the data are 
stored in an additional eight bytes of control storage. The buffers support storage of bursts 
containing an amount of data that is less than or equal to the buffer size. A burst that is greater than 
the configured size of the buffers is stored in multiple buffers. Each buffer is made available to 
software as it becomes filled.

As the filling of each buffer completes, the buffer is dispatched to a thread of a Microengine that 
has been registered in a free list of threads, and the eight bytes of control information are forwarded 
to the register context of the thread. If no thread is currently available, the receiver waits for a new 
thread to become available as other buffers are also filled (and then also have “waiting queues”). 

Figure 112. SPI-4.2 Interface Reference Model with Receiver and Transmitter Labels
Corresponding to Link Layer Device Functions
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As threads complete processing of the data in a buffer, the buffer is returned to a free list. 
Subsequently, the thread also returns to a separate free list. The return of buffers and threads to the 
free lists may occur in a different order than the order of their removal.

All SPI-4.2 ports sharing the interface have equal access to the buffering resources. Flow control 
can transition to a non-starving state when 25%, 50%, 75%, or 87.5% of the buffers are consumed, 
as configured by HWM_Control[RBUF_S_HWM]. At this point, the remaining buffers are 
available and, additionally, 2K bytes of packed FIFO (corresponding to 128 SPI-4.2 credits) are 
available for incoming data storage. If receiver flow control is expected to be asserted and for a 
sufficiently large number of ports and values of MaxBurst1 or MaxBurst2, it may be necessary for 
the PHY device to discard credits already granted if a state of Satisfied is reported by the network 
processor to the device, treating the Satisfied state more as an XOFF state. Otherwise, excessive 
credits may be outstanding for the storage available and receiver overruns may occur.

For more information about the SPI-4.2 receiver, see Section 8.2.7.

8.9.3.2 SPI-4.2 Transmitter

The network processor transmitter transfers SPI-4.2 bursts from transmitter buffers. The buffers 
may be configured as 128 buffers of 64 bytes, 64 buffers of 128 bytes, or 32 buffers of 256 bytes. 
The control word information and other control information for the burst are stored in additional 
control storage. The buffers are always transmitted in a fixed order. Software can determine the 
index of the last buffer transmitted, and keep track of the last buffer committed to the transmitter. 
The transmitter buffers are used as a ring, with the “get index” updated by the transmitter and the 
“put index” updated due to committing a buffer element to transmission.

Each transmit buffer supports a limited gather capability to stitch together a protocol header and a 
payload. The buffer supports independent prefix (or prepended) data and payload data. The prefix 
data can begin at any offset from 0 to 7 and have a length of from 0 to 31 bytes. The payload begins 
at an offset of 0 to 7 bytes from the next octal-byte boundary following the prefix and can fill out 
the remainder of the buffer. For more complicated merging or shifting of data within a burst, the 
data should be passed through a Microengine to perform any arbitrary merging and/or shifting.

Buffers may be statically allocated to different ports in an inter-leaved fashion so that bandwidth 
availability is balanced for each of the ports. Transmit buffers may be flagged to be skipped if no 
data is available for a particular port.

The transmitter scheduler, implemented on a Microengine, is responsible for reacting to the status 
information provided by the PHY device. The status information can be read via registers. The 
status information is available in two formats: a single status per register and status for 16 ports in 
a single register. For more information, see Section 8.3.4, “Transmit Flow Control Status” on 
page 270.
302 Hardware Reference Manual



Intel® IXP2800 Network Processor
Media and Switch Fabric Interface
8.9.4 CSIX-L1 Protocol Support

8.9.4.1 CSIX-L1 Interface Reference Model: Traffic Manager and Fabric
Interface Chip

The CSIX-L1 protocol operates between a Traffic Manger and a Fabric Interface Chip(s) across a 
full-duplex interface. It supports mechanisms to interface to a fabric that avoid congestion using 
virtual output queue (VOQ) flow control and enables a fabric that offers lossless, non-blocking 
transfer of data from ingress port to egress ports. Both data and control information pass over the 
receiver and transmitter interfaces.

The Traffic Manger on fabric ingress is responsible for segmentation of packet data and scheduling 
the transmission of data segments into the fabric. The fabric on ingress is responsible for 
influencing the scheduling of data transmission through link-level flow control and Virtual Output 
Queue (VOQ) flow control so that the fabric does not experience blocking or data loss due to 
congestion. The fabric on egress is responsible for scheduling the transfer of data to the Traffic 
Manager according to the flow control indications from the Traffic Manager.

The CSIX-L1 protocol supports addressing up to 4096 fabric ports and identifies up to 256 classes 
of unicast traffic. It optionally supports multicast and broadcast traffic, supporting identification of 
up to 256 queues of such traffic. Virtual output queue flow control is supported at the ingress to the 
fabric and the egress from the fabric.

The standard CSIX-L1 interface supports interface widths of 32, 64, 94, and 128 bits. A single 
clocked transfer of information across the interface is called a CWord. The CWord size is the width 
of the interface.

Figure 113. CSIX-L1 Interface Reference Model with Receiver and Transmitter Labels
Corresponding to Fabric Interface Chip Functions
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Information is passed across the interface in CFrames. CFrames are padded out to an integer 
multiple of CWords.   CFrames consist of a 2-byte base header, an optional 4-byte extension 
header, a payload of 1 to 256 bytes, padding, and a 2-byte vertical parity. Transfers across the 
interface are protected by a horizontal parity. When there is no information to pass over the 
interface, an alternating sequence of Idle CFrames and Dead Cycles are passed across the interface.

There are 16 possible codes for CFrame types. Each CFrame type is either a data CFrame or a 
control CFrame. Data CFrame types include Unicast, Multicast Mask, Multicast ID, Multicast 
Binary Copy, and Broadcast. Control CFrames include Flow Control.

CSIX-L1 supports independent link-layer flow control for data CFrames and control CFrames by 
using “ready bits” (CRdy and DRdy) in the base header.   The response time for link-level flow 
control is specified to be 32 interface clock ticks, but allows for additional time to complete 
transmission of any CFrame already in progress at the end of that interval.

8.9.4.2 Intel® IXP2800 Support of the CSIX-L1 Protocol

The adaptation of the CSIX-L1 protocol to the network processor physical interface has been 
accomplished in a straightforward manner.

8.9.4.2.1 Mapping to 16-Bit Wide DDR LVDS

The CSIX-L1 interface is built in units of 32 data bits. For each group of 32 data signals, there is a 
clock signal (RxClk, TxClk), a start-of-frame signal (RxSOF, TxSOF) and a horizontal-parity 
signal (RxPar, TxPar). If the CWord or interface width is greater than 32 bits, the assertion of the 
Start-of-Frame signal associated with each group of 32 data bits is used to synchronize the transfers 
across the independently clocked individual 32-bit interfaces.

The network processor supports 32-bit data transfers across two transfers or clock edges of the
SPI-4.2 16-bit DDR LVDS data interface. The CSIX-L1 RxSOF and TxSOF signals are mapped to 
the SPI-4.2 TCTL and RCTL signals. For the transfer of CFrames, the start-of-frame signal is 
asserted on only the first edge of the 32-bit transfer. (Assertion of the start-of-frame signal for 
multiple contiguous clock edges denotes the start of a de-skew training sequence as described 
below.) 

Receiver logic for the interface should align the start of 32-bit transfers to the assertion of the start-
of-frame signal. The network processor always transmits the high order bits of a 32-bit transfer on 
the rising edge of the transmit clock, but a receiver may de-skew the signals and align the received 
data with the falling edge of the clock. The network processor receiver always aligns the received 
data according to the assertion of the start-of-frame signal.

The network processor supports CWord widths of 32, 64, 96, and 128 bits. It will pad out CFrames 
(including Idle CFrames) and Dead Cycles according to this CWord width. The physical interface 
remains just 16 data bits. The start-of-frame signal is only asserted for the high order 16 bits of the 
first 32-bit transfer; it is not asserted for each 32-bit transfer. Support for multiple CWord widths is 
intended to facilitate implementation of IXP2800-to-CSIX-L1 translator chips and to facilitate 
implementation of chips with native network processor interfaces, but with wider internal transfer 
widths.

The network processor supports a horizontal parity signal (RPAR, TPAR). The horizontal parity 
signal covers the 16 data bits that are transferred on each edge of the clock. It does not cover 32 bits 
as in CSIX-L1. Support for horizontal-parity requires an additional physical signal beyond that 
required for SPI-4.2. Checking of the horizontal parity can be optionally disabled on reception. If a 
fabric interface chip does not support TPAR, then the checking of RPAR should be disabled.
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The network processor supports a variation of the standard CSIX-L1 vertical parity. Instead of a 
single vertical XOR for the calculation of the vertical parity, the network processor can be 
configured to calculate as DIP-16 code, as documented within the SPI-4.2 specification. If 
horizontal parity is not enabled for the interface, the use of the DIP-16 code is recommended to 
provide for better error coverage than that provided by a vertical parity.

8.9.4.2.2 Support for Dual Chip, Full-Duplex Operation
A dual-chip configuration of network processors consisting of an ingress and egress network 
processor, can present a full-duplex interface to a fabric interface chip, consistent with the 
expectations of the CSIX-L1 protocol. A flow control interface is supported between the ingress 
and egress chips to forward necessary flow control information from the egress network processor 
to the ingress network processor. Additional information can be transferred between the ingress 
and egress network processors through the PCI bus.

The flow control interface consists of a data transfer signal group, a serial signal for conveying the 
state of the CSIX-L1 “ready bits” (TXCSRB, RXCSRB), and a backpressure signal (TXCFC, 
RXCFC) to avoid overrunning the receiver in the ingress network processor. (The orientation of the 
signal names is consistent with the egress network processor, receiving CFrames from the fabric, 
and forwarding flow control information out through the transmit flow control pins.) The data 
transfer signal group consists of:

• Four data signals (TXCDAT[0..3], RXCDAT[0..3])

• A clock (TXCCLK, RXCCLK)

• A start-of-frame signal (TXCSOF, RXCSOF)

• A horizontal-parity signal (TXCPAR, RXCPAR)

The network processor receiver forwards Flow Control CFrames from the fabric in a cut-through 
fashion over the flow control interface. The flow control interface has one-fourth of the bandwidth 
of the network processor fabric data interface. The Crdy bit in the base header of the CSIX-L1 
protocol (link-level flow control) prevents overflowing of the FIFO for transmitting out the flow 
control interface from the egress network processor. The fabric can implement a rate limit on the 
transmission of Flow Control CFrames to the egress network processor, consistent with the 
bandwidth available on the flow control interface. With a rate limit, the fabric can detect 
congestion of Flow Control CFrames earlier, instead of waiting for the assertion of cascaded 
backpressure signals.

The CRdy and DRdy bits of CFrames sent across the flow control interface are set to 0 on 
transmission and ignored upon reception at the ingress network processor. If no CFrames are 
available to send from the egress network processor to the ingress network processor, an alternating 
sequence of Idle CFrames and Dead Cycles is sent from the egress to the ingress network 
processor, consistent with the CSIX-L1 protocol.

The state of the CRdy and DRdy bits sent to the egress network processor by the fabric and the 
state of the CRdy and DRdy bits that should be sent to the fabric by the ingress network processor, 
reflecting the state of the egress network processor buffering, are sent through the TXCSRB signal 
and received through the RXCSRB signal. A new set of bits are conveyed every 10 clock edges or 
five clock cycles, of the interface. A de-assertion of a “ready bit” is forwarded immediately upon 
processing the “ready bit”. An assertion of a “ready bit” is forwarded only after all of the horizontal 
parities and the vertical parity of the CFrame are checked. A configuration of ingress and egress 
network processors is expected to respond to the de-assertion of a CRdy or DRdy bit within 32 
clock cycles (RCLK), consistent with the formulation described for CSIX-L1.
Hardware Reference Manual 305



Intel® IXP2800 Network Processor
Media and Switch Fabric Interface
The backpressure signal (TXCFC, RXCFC) is an asynchronous signal and is asserted by the 
ingress network processor to prevent overflow of the ingress network processor ingress flow 
control FIFO. If the egress network processor is so optionally configured, it will react to assertion 
of the backpressure signal for 32 clock cycles (64 edges) as a request for a de-skew training 
sequence to be transmitted on the flow control interface.

The flow control interface only supports a 32-bit CWord. Flow Control CFrames that are received 
by the egress network processor are stripped of any padding associated with large CWord widths 
and forwarded to the flow control interface.

The various options for parity calculation and checking supported on the data interface are 
supported on the flow control interface. Horizontal parity checking may be optionally disabled. 
The standard calculation of vertical parity may be replaced with a DIP-16 calculation.

8.9.4.2.3 Support for Simplex Operation
The network processor supports a mode of operation that supports the CSIX-L1 protocol, but offers 
an independent interface for the ingress and egress network processors. In this mode, the ingress 
and egress network processors each offer an independent full-duplex CSIX-L1 flavor of interface 
to the fabric, but the network processor-to-fabric interface on the egress network processor and the 
fabric-to-network processor interface of the ingress network processor are of reduced width, 
consisting of four (instead of 16) data signals. These narrow interfaces are referred to as Reverse 
Path Control Interfaces and use the same physical interface as the flow control interface in the 
dual-chip, full duplex configuration. They support the transfer of Flow Control CFrames and the 
CRdy and DRdy “ready” bits, but are not intended to support the transfer of data CFrames.

The Reverse Path Control Interfaces (RPCI) support only the 32-bit CWord width of the dual chip, 
full duplex flow control interface. The variations of parity support provided by the data interface 
and the flow control interface are supported by the RPCI.

Figure 114. Reference Model for IXP2800 Support of the Simplex Configuration Using
Independent Ingress and Egress Interfaces
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The transfer time of CFrames across the RPCI is four times that of the data interface. The latency 
of link-level flow control notifications depends on the frequency of sending new CFrame base 
headers. As such, the maximum size of CFrames supported on the RPCI should be limited to 
provide sufficient link-level flow control responsiveness.

The behavior of state machines for a full-duplex interface regarding interface initialization, link-
level flow control, and requests to send a de-skew training sequence is supported by the data 
interface in combination with its reverse path control interface as if the two interfaces were 
equivalent to a full-duplex interface.

The simplex mode of interfacing to the ingress and egress network processor is an alternative to the 
dual chip full-duplex configuration. It provides earlier notification of Flow Control CFrame 
congestion within the ingress network processor and marginally less latency for delivery of Flow 
Control CFrames to the ingress network processor. It allows more of the bandwidth on the data 
interface to be used for the transfer of data CFrames as Flow Control CFrames are transferred on 
the RPCI. 

 The simplex configuration provides a straightforward mechanism for the egress network processor 
to send VOQ flow control to the fabric if the fabric supports such functionality. In the dual chip, 
full-duplex configuration, the egress network processor sends a request across the PCI to the 
ingress network processor, requesting that a Flow Control CFrame be sent to the fabric.

8.9.4.2.4 Support for Hybrid Simplex Operation
The SPI-4.2 interface may be used to transfer data to and from a fabric, although there is no 
standard protocol for such conveyance. The necessary addressing information for the fabric and 
egress network processor may be encoded within the address bits of the preceding control word or 
stored in the initial data words of the SPI-4.2 burst. The LVTTL status interface may be used to 
provide link-level flow control for the data bursts. (The SPI-4.2 LVDS status interface cannot be 
used, because it shares the same pins with the fabric flow control interface.)

Figure 115. Reference Model for Hybrid Simplex Operation
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The SPI-4.2 interface does not support a virtual output queue (VOQ) flow control mechanism.
The Intel® IXP2800 Network Processor supports use of the CSIX-L1 protocol-based flow control 
interface (as used in the dual chip, full-duplex configuration) on the ingress network processor, 
while SPI-4.2 is operational on the data interface. This interface can provide VOQ flow control 
information from the fabric and allow the transmitter scheduler, implemented in a Microengine 
within the ingress network processor, to avoid sending data bursts to congested destinations.

The fabric should send alternating Idle CFrames and Dead Cycles when there are no Flow Control 
CFrames to transmit. The CRdy and DRdy “ready bits” should be set to 0 on transmission and are 
ignored on reception.

The fabric should respond to the RXCFC backpressure signal. In this mode of operation, the 
RXCSRB signal that would normally receive the state of the CRdy and DRdy “ready bits” is not 
used. If dynamic de-skew is configured on the interface, and the backpressure signal is asserted for 
32 clock cycles, the fabric sends a (de-skew) training sequence on the flow control interface. It may 
be acceptable in this configuration to operate the flow control interface at a sufficiently low clock 
rate that dynamic de-skew is not required.

Operation in the hybrid simplex mode for the ingress network processor is slightly more taxing on 
the transmit scheduler computation than the homogenous CSIX-L1 protocol configurations. The 
status reported for the data interface must be polled by the transmit scheduler. In this configuration, 
the response to link-level flow control is performed in software and is slower than in the 
homogenous CSIX-L1 protocol configurations where it is accomplished in hardware.

8.9.4.2.5 Support for Dynamic De-Skew Training
The SPI-4.2 interface incorporates a training sequence for dynamic de-skew of its signals relative 
to the source synchronous clock. This training sequence has been extended and incorporated into 
the CSIX-L1 protocol support of the Intel® IXP2800 Network Processor.

The training pattern for the 16-bit data interface consists of 20 words, 10 repetitions of 0x0fff 
followed by 10 repetitions of 0xf000. The CTL and PAR signals are asserted for the first 10 words 
and de-asserted for the second 10 words. The PROT signal (see below) is de-asserted for the first 
10 words and asserted for the second 10 words. A training sequence consists of “alpha” repetitions 
of the training pattern. The idle control word that precedes a training sequence in SPI-4.2 is not 
used in conjunction with the CSIX-L1 protocol. See Section 8.6.1 for more information.

A receiver should detect a training sequence in the context of the CSIX-L1 protocol 
implementation by the assertion of the start-of-frame signal for three adjacent clock edges and the 
correct value on the data signals for those three adjacent clock edges.

A receiver may request a training sequence to be sent by transmitting continuous Dead Cycles on 
the interface. Reception of two adjacent Dead Cycles triggers the transmission of a training 
sequence in the opposite direction. If an interface is sending Dead Cycles and a training sequence 
becomes pending, the interface must send the training sequence at a higher priority than the Dead 
Cycles. Otherwise, a deadlocked situation may arise.

In the simplex configuration, the request for training, and the response to it, occur between a 
primary interface and its associated reverse path control interface. In the dual chip, full-duplex 
configuration, requests for training and Dead Cycles are encoded across the flow control interface 
as either continuous Dead Cycles or continuous Idle CFrames, both of which violate the standard 
CSIX-L1 protocol.
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The training pattern for the flow control data signals consists of 10 nibbles of 0xc followed by 10 
nibbles of 0x3. The parity and serial “ready bits” signal is de-asserted for the first 10 nibbles and 
asserted for the second 10 nibbles. The start-of-frame signal is asserted for the first 10 nibbles and 
de-asserted for the second 10 nibbles. See Section 8.6.2 for more information.

When a training sequence is received, the receiver should update the state of the received CRdy 
and DRdy “ready bits” to a de-asserted state until they are updated by a subsequent CFrame.

8.9.4.3 CSIX-L1 Protocol Receiver Support

The Intel® IXP2800 Network Processor receiver support for the CSIX-L1 protocol is similar to 
that for SPI-4.2. CFrames are stored in the receiver data buffers. The buffers are configured to be of 
a size of 64, 128, or 256 bytes. The contents of the CFrame base header and extension header are 
stored in separate storage with the reception status of the CFrame. Unlike SPI-4.2 data bursts, the 
entire CFrame must fit into a single buffer. The receiver does not progress to the next buffer to 
store subsequent parts of a single CFrame. (The buffer is required only to be sufficiently large to 
accommodate the payload, not the header, the padding, or the vertical parity.) Designated CFrame 
types, typically Flow Control CFrames, are forwarded in cut-through mode directly to the flow 
control egress FIFO and not stored in the receiver buffers.

The receiver resources are separately allocated to the processing of data and control CFrames. 
Separate free lists of buffers and Microengine threads for each category of CFrame type are 
maintained. The size of the buffers in each resource pool is separately configurable. The mapping 
of CFrame type to data or control category is completely configurable via the CSIX_Type_Map 
register. This register also allows for any types to be designated for cut-through forwarding to the 
flow control egress FIFO. Typically, only the Flow Control CFrame type is configured in this way. 

The receiver buffers are partitioned into two pools via MSF_Rx_Control[RBUF_Partition], 
providing 75% of the buffer memory (6 Kbytes) for data CFrames and 25% of the buffer memory
(2 Kbytes) for control CFrames. The number of buffers available per pool depends on the 
configured buffer size. For 64-byte buffers, there are 96 and 32 buffers, respectively. For 128-byte 
buffers, there are 48 and 16 buffers, respectively. For 256-byte buffers, there are 24 and 8 buffers, 
respectively.

As with SPI-4.2, link-level flow control for a buffer pool can be asserted by configuration when 
buffer consumption reaches 25%, 50%, 75%, or 87.5% within that pool. The receiver has an 
additional 1024 bytes of packed FIFO storage for each traffic category to accept additional 
CFrames after link-level flow control (CRdy or DRdy) is asserted. Link-level flow control for 
control CFrames (CRdy) is also asserted if the flow-control egress FIFO contents exceeds a 
threshold as configured by HWM_Control[FCEFIFO_HWM]. The threshold may be set to 16, 32, 
64, or 128 32-bit words. The total capacity of the FIFO is 512 32-bit words.

Within the base header, the receiver hardware processes the CRdy bit, the DRdy bit, the Type field, 
and the Payload Length. Only the Flow Control Frame CFrame is expected to lack the 32-bit 
extension header. The receiver hardware validates the vertical parity of the CFrame and only writes 
it to the receiver buffer if the write operation also includes payload data. The hardware supports 
configuration options for processing all 16 CFrame types. In all other respects, processing of the 
CFrame contents is done entirely by software. Variations in the CSIX-L1 protocol are supported 
that only affect the software processing. These variations might include address swapping (egress 
port address swapping with ingress port address) and use of reserve bits to encode start and end of 
packets.

When the network processor is configured to forward Flow Control Frame CFrames to the flow 
control egress FIFO, software does not process those CFrames. Processor interrupts occur if there 
are reception errors, but the actual CFrames are not made available for further processing.
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8.9.4.4 CSIX-L1 Protocol Transmitter Support

The Intel® IXP2800 Network Processor transmitter support for the CSIX-L1 protocol is similar to 
that for SPI-4.2. The transmitter fetches CFrames from transmitter buffers. An entire CFrame must 
fit within a single buffer. In the case of SPI-4.2, the array of transmitter buffers operates as a single 
ring. In the case of CSIX-L1 protocol support, the array of buffers operates as two rings, one for 
data CFrames and another for control CFrames. The partitioning of the transmitter buffers is 
configured via MSF_Tx_Control[TBUF_Partition]. The portion of the aggregate transmitter buffer 
storage (8 Kbytes) allocated to data CFrames is 75% (6 Kbytes), with the remainder (2 Kbytes) 
allocated to control CFrames. The size of the buffers within each partition is independently 
configurable to a size of 64, 128, or 256 bytes. The payload size of CFrames sent from the buffers 
may vary from 1 to the size of the buffer.

The CSIX-L1 protocol link-level flow control operates directly upon the hardware that processes 
the two (control and data) transmitter rings. The transmitter services the two rings in round-robin 
order when allowed by link-level flow control. The transmitter transmits Idle CFrames and Dead 
Cycles according to the CSIX-L1 protocol if there are no CFrames to transmit.

Virtual output queue flow control is accommodated by a transmit scheduler implemented on a 
Microengine. In all three network processor ingress configurations, Flow Control CFrames are 
loaded by hardware into the flow control ingress FIFO. Two state bits associated with this FIFO are 
distributed to all of the Microengines: (1) the FIFO is non-empty, and (2) the FIFO contains more 
than a threshold amount of CFrame 32-bit words (HWM_Control[FCIFIFO_Int_HWM])

Any Microengine can perform transmitter scheduling by sensing the state associated with the flow 
control ingress FIFO, using the branch-on-state instruction. If the FIFO is not empty, the transmit 
scheduler processes some of the FIFO by performing a read of the FCIFIFO registers. 

A single Microengine instruction can perform a block read of up to 16 32-bit words. The data for 
the read is likely to arrive after several subsequent scheduling decisions. The scheduler should 
incorporate the new information from the newly-read Flow Control CFrame(s) in its later 
scheduling decisions. If the FIFO state indicates that the threshold capacity has been exceeded, the 
scheduler should suspend further scheduling decisions until the FIFO is sufficiently processed, 
otherwise it risks making scheduling decisions with information that is stale.

The responsiveness of the network processor to VOQ flow control depends on the transmit pipeline 
length, from transmit scheduler to CFrames on the interface signals. For rates at or above 10 Gb/s, 
the pipeline length is likely to be 32 – 64 CFrames, assuming four pipeline stages (schedule, de-
queue, data movement, and transmit) and 8 – 16 CFrames concurrently processed per stage.

In the simplex configuration, the egress network processor can send CFrames over the Reverse 
Path Control Interface. The CFrames are loaded into the flow control egress FIFO by performing 
writes of 32-bit words to the FCEFIFO registers. The base header, the extension header, the 
payload, the padding, and a dummy vertical parity must be written to the FIFO. The transmitter 
hardware calculates the actual vertical parity as the CFrame is transmitted.

Note: The transmitter hardware for the transmitter buffers and the flow control egress FIFO expect that 
only the Flow Control CFrame type does not have an extension header of 32 bits (all other types 
have this header). The hardware disregards the contents of the extension header or the payload.

The limited gather capability described for SPI-4.2 also is available for CFrames. A prefix header 
of up to 31 bytes and a disjoint payload is supported. The prefix header may start at an offset of 0 to 
7 bytes. The payload may start at an offset of 0 to 7 bytes from the octal-byte boundary following 
the end of the prefix header. For more complicated merging or shifting of data within a CFrame, 
the data should be passed through a Microengine to perform any arbitrary merging and/or shifting.
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8.9.4.5 Implementation of a Bridge Chip to CSIX-L1

The Intel® IXP2800 Network Processor support for the CSIX-L1 protocol in the dual chip, full-
duplex configuration minimizes the difficulty in implementing a bridge chip to a standard CSIX-L1 
interface. If dynamic de-skew training is not employed, the bridge chip can directly pass through 
the different CSIX-L1 protocol elements, CFrames, and Dead Cycles. The horizontal parity must 
be recalculated on each side of the bridge chip. If the standard CSIX-L1 interface implements a 
CWord width that is greater than 32 bits, it must implement a synchronization mechanism for 
aligning the received 32-bit portions of the CWord before passing the CWord to the network 
processor.

For transmitting the standard CSIX-L1 interface, the bridge chip must assert the start-of-frame 
signal for each 32-bit portion of the CWord, as the network processor only asserts it for the first
32-bit portion. If the bridge chip requires clock frequencies on the network processor interface and 
the standard CSIX-L1 interface to be appropriate, exact multiples of each other (2x for 32-bit 
CWord, 4x for 64-bit CWord, 6x for 96-bit CWord, and 8x for 128-bit CWord), then the bridge chip 
requires only minimal buffering and does not need to implement any flow control mechanisms.

A slightly more complicated bridge allows incorporating dynamic de-skew training and/or 
independent clock frequencies for the network processor and standard CSIX-L1 interfaces. The 
bridge chip must implement a control and data FIFO for each direction and the link-level flow 
control mechanisms specified in the protocol using CRdy and DRdy. The FIFOs must be large 
enough to accommodate the response latency of the link-level flow control mechanisms.

Idle CFrames and Dead Cycles are not directly passed through this more complicated bridge chip, 
but are discarded on reception and generated on transmission. The network processor interface of 
this bridge chip can support the dynamic de-skew training protocol extensions implemented on the 
network processor because it can send a training sequence to the network processor between 
CFrames without regard to CFrames arriving over the standard CSIX-L1 interface. (In the simpler 
bridge design, these CFrames must be forwarded immediately to the network processor.)
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8.9.5 Dual Protocol (SPI and CSIX-L1) Support
In many system designs that are less bandwidth-intensive, a single network processor can forward 
and process data from the framer to the fabric and from the fabric to the framer. A bridge chip must 
pass data between the network processor and multiple physical devices. The network processor 
supports multiplexing SPI-4.2 and CSIX-L1 protocol elements over the same transmitter and 
receiver physical interfaces, differentiated by a protocol signal that is de-asserted for SPI-4.2 
protocol elements and asserted for CSIX-L1 protocol elements.

In the dual protocol configuration, the CSIX-L1 configuration of the network processor 
corresponds to the dual chip, full duplex configuration. The flow control transmitter interface is 
looped back to the flow control receiver interface, either externally or internally. Only the LVTTL 
status interface is available for the SPI-4.2 interface.

8.9.5.1 Dual Protocol Receiver Support

When the network processor receiver is configured for dual protocol support, the aggregate 
receiver buffer is partitioned in three ways: 50% for data CFrames (4 Kbytes), 37.5% for SPI-4.2 
bursts (3 Kbytes) and 12.5% for control CFrames (1 Kbyte). The buffer sizes within each partition 
are independently configurable. Link-level flow control can be independently configured for 
assertion at thresholds of 25%, 50%, 75%, or 87.5%. For the traffic associated with each partition, 
an additional 680 bytes of packed FIFO storage is available to accommodate received traffic after 
assertion of link-level flow control.

8.9.5.2 Dual Protocol Transmitter Support

When the network processor transmitter is configured for dual protocol support, the aggregate 
transmitter buffer is partitioned three ways, in the same proportions as the receiver. Each partition 
operates as a separate ring. The transmitter services each ring in round-robin order. If no CFrames 
are pending, an Idle CFrame is transmitted to update link-level flow control. If no SPI-4.2 bursts 
are pending, idle control words are not sent.
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8.9.5.3 Implementation of a Bridge Chip to CSIX-L1 and SPI-4.2

A bridge chip can provide support for both standard CSIX-L1 and standard physical layer device 
interfaces such as SPI-3 or UTOPIA Level 3. The bridge chip must implement the functionality of 
the less trivial CSIX-L1 bridge chip described previously and additionally, implement bridge 
functionality between SPI-4.2 and the other physical device interfaces. The size of the FIFOs must 
be in accordance with the response times of the flow control mechanisms. Figure 116 is a block 
diagram of a dual protocol (SPI-4.2 and CSIX-L1) bridge chip.

Figure 116. Block Diagram of Dual Protocol (SPI-4.2 and CSIX-L1) Bridge Chip
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8.9.6 Transmit State Machine
Table 114 describes the transmitter state machine by providing guidance in interfacing to the 
network processor. The state machine is described as three separate state machines for SPI-4.2, 
training, and CSIX-L1. When each machine is inactive, it tracks the states of the other two state 
machines.

8.9.6.1 SPI-4.2 Transmitter State Machine

The SPI-4.2 Transmit State Machine makes state transitions on each bus transfer of 16 bits, as 
described in Table 114.

Table 114. SPI-4.2 Transmitter State Machine Transitions on 16-Bit Bus Transfers

Current State Next State Conditions

Idle Control Idle Control No data pending and no training sequence pending, 
CSIX-L1 mode disabled.

Payload Control Data pending and no training sequence pending, 
CSIX-L1 mode disabled.

Training Training sequence pending, CSIX-L1 mode disabled.

CSIX CSIX-L1 mode enabled.

Payload Control Data Burst Always

Data Burst Data Burst Until end of burst as programmed by software.

Payload Control Data pending and no training sequence pending and 
CSIX-L1 mode not enabled.

Idle Control No data to send or training sequence pending or CSIX-
L1 mode enabled.

Tracking Other State Machine States

Training Training Training SM not entering CSIX-L1 or SPI state.

CSIX Training SM entering CSIX-L1 state.

Payload Control Training SM entering SPI state and data pending.

Idle Control Training SM entering SPI state and no data pending.

CSIX CSIX CSIX-L1 SM not entering Training or SPI state.

Training CSIX-L1 SM entering Training state.

Payload Control CSIX-L1 SM entering SPI state and data pending.

Idle Control CSIX-L1 SM entering SPI state and no data pending.
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8.9.6.2 Training Transmitter State Machine

The Training State Machine makes state transitions on each bus transfer of 16 bits, as described in 
Table 115. 

8.9.6.3 CSIX-L1 Transmitter State Machine

The CSIX-L1 Transmit State Machine makes state transitions on CWord boundaries. CWords can 
be configured to consist of 32, 64, 96, or 128 bits, corresponding to 2, 4, 6, or 8 bus transfers, as 
described in Table 116. 

Table 115. Training Transmitter State Machine Transitions on 16-Bit Bus Transfers

Current State Next State Conditions

Training Control Training Control Until 10 control cycles.

Training Data After 10 control cycles.

Training Data Training Data Until 10 data cycles.

Training Control After 10 data cycles and repetitions of training 
sequence or new training sequence pending.

CSIX After 10 data cycles and no training sequence pending 
and CSIX-L1 mode enabled.

SPI After 10 data cycles and No training sequence pending 
and CSIX-L1 mode disabled.

Tracking Other State Machine States

CSIX CSIX CSIX-L1 SM not entering SPI or Training state.

SPI CSIX-L1 SM entering SPI state.

Training Control CSIX-L1 SM entering Training state.

SPI SPI SPI SM not entering CSIX-L1 or Training state.

CSIX SPI SM entering CSIX-L1 state.

Training Control SPI SM entering Training state.

Table 116. CSIX-L1 Transmitter State Machine Transitions on CWord Boundaries (Sheet 1 of 2)

Current State Next State Conditions

SoF CWord CFrame CWord CFrame longer than a CWord.

Dead Cycle CFrame fits in a CWord.

CFrame CWord CFrame CWord CFrame remainder pending.

SoF CWord Un-flow-controlled CFrame pending, no training 
sequence pending, and SPI mode not enabled.

Dead Cycle
No un-flow-controlled CFrame pending or training 
sequence pending or requesting training sequence or 
SPI mode enabled and data pending.

Dead Cycle SoF CWord
Un-flow-controlled CFrame pending and no training 
sequence pending and no SPI data pending and not 
requesting training sequence.

Idle CFrame
No un-flow-controlled CFrame pending and no training 
sequence pending and no SPI data pending and not 
requesting training sequence.
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8.9.7 Dynamic De-Skew
The Intel® IXP2800 Network Processor supports optional dynamic de-skew for the signals of the 
16-bit data interface and the signals of the 4-bit flow control interface or the signals of the 2-bit 
SPI-4.2 LVDS status interface. (The flow control interface and the LVDS status interface are 
alternate configurations of the same signal balls and pads. They share the same de-skew circuits.)

In both cases, eight evenly-spaced phases of the received clock are generated for each bit time.
As the transition occurs during training a pattern, the best pair of clock phases is identified for 
sampling each received signal. An interpolated clock is generated from a pair of clock phases for 
each signal and that clock is used as a reference for sampling the data. This provides maximum 
quantization error in the sampling of the signals of 6.25%.

Dead Cycle Requesting reception of training sequence and no 
training sequence pending.

Training Training sequence pending.

SPI Training sequence not pending and SPI data pending 
and not requesting training sequence.

Idle CFrame Dead Cycle Always.

Tracking Other State Machine States

SPI SPI SPI SM not entering CSIX-L1 or Training state.

SoF CWord SPI SM entering CSIX-L1 state and un-flow-controlled 
CFrame pending.

Idle CFrame SPI SM entering CSIX-L1 state and un-flow-controlled 
CFrame not pending.

Training SPI SM entering Training state.

Training Training Training SM not entering CSIX-L1 or Training state.

SoF CWord Training SM entering CSIX-L1 state and un-flow-
controlled CFrame pending.

Idle CFrame Training SM entering CSIX-L1 state and un-flow-
controlled CFrame not pending.

SPI Training SM entering SPI state.

Table 116. CSIX-L1 Transmitter State Machine Transitions on CWord Boundaries (Sheet 2 of 2)

Current State Next State Conditions
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8.9.8 Summary of Receiver and Transmitter Signals
Figure 117 summarizes the Receiver and Transmitter Signals.

Figure 117. Summary of Receiver and Transmitter Signaling
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This section contains information on the IXP2800 Network Processor PCI Unit.

9.1 Overview
The PCI Unit allows PCI target transactions to internal registers, SRAM, and DRAM. It also 
generates PCI initiator transactions from the DMA Engine, Intel XScale® core, and Microengines. 

The PCI Unit main functional blocks are shown in Figure 118 and include:

• PCI Core Logic

• PCI Bus Arbiter

• DRAM Interface Logic

• SRAM Interface Logic

• Mailbox and Message registers

• DMA Engine

• Intel XScale® core Direct Access to PCI

The main function of the PCI Unit is to transfer data between the PCI Bus and the internal devices, 
which are the Intel XScale® core, the internal registers, and memories. 

These are the data transfer paths supported as shown in Figure 119:

• PCI Slave read and write between PCI and internal buses

— CSRs (PCI_CSR_BAR)

— SRAM (PCI_SRAM_BAR)

— DRAM (PCI_DRAM_BAR)

• Push/Pull Master (Intel XScale® core, Microengine, or PCI) accesses to internal registers 
within PCI unit

• DMA 

— Descriptor read from SRAM

— Data transfers between PCI and DRAM

•  Push/Pull Master (Intel XScale® core and Microengines) direct read and write to PCI Bus

Note: Detailed information about CSRs is contained in the Intel® IXP2400 and IXP2800 Network 
Processor Programmer’s Reference Manual.
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Figure 118. PCI Functional Blocks
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9.2 PCI Pin Protocol Interface Block
This block generates the PCI compliant protocol logic. It operates either as an initiator or a target 
device on the PCI Bus. As an initiator, all bus cycles are generated by the core. As a PCI target, the 
core responds to bus cycles that have been directed towards it. 

On the PCI Bus, the interface supports interrupts, 64-bit data path, 32-bit addressing, and single 
configuration space. The local configuration registers are accessible from the PCI Bus or from the 
Intel XScale® core through an internal path.

The PCI block interfaces with the other sub-blocks with a FIFO bus called FBus. The FBus speed 
is the same as the internal Push/Pull bus speed. The FIFOs are implemented with clock 
synchronization logic between the PCI speed and the internal Push/Pull bus speed.

There are four data FIFOs and two address FIFOs in the core. The separate slave and master data 
FIFOs allows simultaneous operations and multiple outstanding PCI bus transfers. Table 117 lists 
the FIFO sizes. The target address FIFO latches up to four PCI read or write addresses. 

Figure 119. Data Access Paths
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If a read address is latched, the subsequent cycles will be retried and no address will be latched 
until the read completes. The initiator address FIFO can accumulate up to four addresses that can 
be PCI reads or writes.

These FIFOs are inside the PCI Core, which stores data received from the PCI Bus or data to be 
sent out to the PCI Bus. There are additional buffers implemented in other sub-blocks that buffers 
data to and from the internal push/pull buses.

Table 118 lists the maximum PCI Interface loading.

9.2.1 PCI Commands
Table 119 lists the supported PCI commands and identifies them as either a target or initiator. 

Table 117. PCI Block FIFO Sizes

Location Depth

Target Address 4

Target Write Data 8

Target Read Data 8

Initiator Address 4

Initiator Write Data 8

Initiator Read Data 8

Table 118. Maximum Loading

Bus Interface Maximum Number of Loads Trace Length (inches)

PCI
Four loads at 66-MHz bus frequency 
Eight loads at 33-MHz bus frequency

5 to 7 

Table 119. PCI Commands  (Sheet 1 of 2)

C_BE_L Command
Support

Target Initiator

0x0 Interrupt Acknowledge Not Supported Supported

0x1 Special Cycle Not Supported Supported

0x2 IO Read cycle Not Supported Supported

0x3 IO Write cycle Not Supported Supported

0x4 Reserved – –

0x5 Reserved – –

0x6 Memory Read Supported Supported

0x7 Memory Write Supported Supported

0x8 Reserved – –

0x9 Reserved – –

0xA Configuration Read Supported Supported

0xB Configuration Write Supported Supported
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PCI functions not supported by the PCI Unit include:

• IO Space response as a target

• Cacheable memory

• VGA palette snooping 

• PCI Lock Cycle

• Multi-function devices

• Dual Address cycle

9.2.2 IXP2800 Network Processor Initialization 
When the IXP2800 Network Processor is a target, the internal CSR, DRAM, or SRAM address is 
generated when the PCI address matches the appropriate base address register. The window sizes to 
the SRAM and DRAM Base Address Registers (BARs) can be optionally set by PCI_SWIN and 
PCI_DWIN strap pins or mask registers depending on the state of the PROM_BOOT signal.

There are two initialization modes supported. They are determined by the PROM_BOOT signal 
sampled on the de-assertion edge of Chip Reset. If PROM_BOOT is asserted, then there is a boot 
prom in the system. The Intel XScale® core will boot from the prom and be able to program the 
BAR space mask registers. If PROM_BOOT is not asserted, the Intel XScale® core is held in reset 
and the BAR sizes are determined by strap pins. 

0xC Memory Read 
Multiple

Aliased as Memory Read except 
SRAM accesses where the number 

of Dwords to read is given by the 
cache line size.

Supported

0xD Reserved — —

0xE Memory read line

Aliased as Memory Read except 
SRAM accesses where the number 

of Dwords to read is given by the 
cache line size.

Supported

0xF Memory Write and 
Invalidate Aliased as Memory Write. Not Supported

Table 119. PCI Commands  (Sheet 2 of 2)

C_BE_L Command
Support

Target Initiator
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9.2.2.1 Initialization by the Intel XScale® Core

The PCI unit is initialized to an inactive, disabled state until the Intel XScale® core has set the 
Initialize Complete bit in the Control register. This bit is set after the Intel XScale® core has 
initialized the various PCI base address and mask registers (which should occur within 1 ms of the 
end of PCI_RESET). The mask registers are used to initialize the PCI base address registers to 
values other than the default power-up values, which includes the base address visible to the PCI 
host and the prefetchable bit in the base registers (see Table 120).

When the PCI unit is in the inactive state, it returns retry responses as the target of PCI 
configuration cycles if the PCI Unit is not configured as the PCI host. In the case of PCI Unit being 
configured as the PCI host, the PCI bus will be held in reset until the Intel XScale® core completes 
the PCI Bus configurations and clears the PCI Reset (as described in Section 9.2.11).

Note: During PCI bus enumeration initiated by the Intel XScale® core, reading a non-existent address
(an address for which no target asserts DEVSEL) results in a Master Abort. The Master Abort then 
results in an Intel XScale® Core Data Abort Exception that must be handled by the enumeration 
software. When this occurs, the RMA bit in the PCI_CONTROL register and the RX_MA bit in 
the PCI_CMD_STAT register is set. The enumeration software must then clear these bits before 
continuing with the enumeration process.

9.2.2.2 Initialization by a PCI Host

In this mode, the PCI Unit is not hosting the PCI Bus regardless of the PCI_CFG[0] signal. The 
host processor is allowed to configure the internal CSRs while the Intel XScale® core is held in 
reset. The host processor configures the PCI address space, the memory controllers, and other 
interfaces. Also, the program code for the Intel XScale® core may be downloaded into local 
memory. 

The host processor then clears the Intel XScale® core reset bit in the PCI Reset register. This de-
asserts the internal reset signal to the Intel XScale® core and the core begins its initialization 
process. The PCI_SWIN and PCI_DWIN strap signals are used to select the window sizes to 
SRAM BAR and DRAM BAR (see Table 121).

Table 120. PCI BAR Programmable Sizes

Base Address
Register

Address
Space Sizes

PCI_CSR_BAR CSR 1 Mbyte

PCI_SRAM_BAR SRAM 0 Bytes; 128, 256, or 512 Kbytes; 1, 2, 4, 8, 16, 32, 64, 128, or 256 Mbytes

PCI_DRAM_BAR DRAM 0 Bytes; 1, 2, 4, 8, 16, 32, 64, 128, 256, or 512 Mbytes; 1 Gbyte

Table 121. PCI BAR Sizes with PCI Host Initialization

Base Address 
Register

Address 
Space Sizes

PCI_CSR_BAR CSR 1 Mbyte

PCI_SRAM_BAR SRAM 32, 64, 128, or 256 Mbytes

PCI_DRAM_BAR DRAM 128, 256, or 512 Mbytes; 1 Gbyte
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9.2.3 PCI Type 0 Configuration Cycles 
A PCI access to a configuration register occurs when the following conditions are satisfied:

• PCI_IDSEL is asserted. (PCI_IDSEL only supports PCI_AD[23:16] bits).

• The PCI command is a configuration write or read.

• The PCI_AD [1:0] are 00.

A configuration register is selected by PCI_AD[7:2]. If the PCI master attempts to do a burst 
longer than one 32-bit Dword, the PCI unit signals a target disconnect. PCI unit does not issue 
PCI_ACK64 for configuration cycle.

9.2.3.1 Configuration Write

A write occurs if the PCI command is a Configuration Write. The PCI byte-enables determine 
which bytes are written.If a nonexistent configuration register is selected within the configuration 
register address range, the data is discarded and no error action is taken. 

9.2.3.2 Configuration Read

A read occurs if the PCI command is a Configuration Read. The data from the configuration 
register selected by PCI_AD[7:2] is returned on PCI_AD[31:0]. If a nonexistent configuration 
register is selected within the configuration register address range, the data returned are zeros and 
no error action is taken. 

9.2.4 PCI 64-Bit Bus Extension
The PCI Unit is in 64-bit mode when PCI_REQ64_L is sampled active on the de-assertion edge of 
PCI Reset. These are the general rules in assertions of PCI_REQ64_L and PCI_ACK64_L:

As a target:

1. PCI Unit asserts PCI_ACK64_L only in 64-bit mode.

2. PCI Unit asserts PCI_ACK64_L only to target cycles that matches the PCI_SRAM_BAR and 
PCI_DRAM_BAR and a 64-bit transaction is negotiated.

3. PCI Unit does not assert PCI_ACK64_L target cycles that matches the PCI_CSR_BAR even a 
64-bit transaction is negotiated.

As an initiator:

1. PCI Unit asserts PCI_REQ64_L only in 64-bit mode.

2. PCI Unit asserts PCI_REQ64_L to negotiate a 64-bit transaction only if the address is double 
Dword aligned (PCI_AD[2] must be 0 during the address phase).

3. If the target responses to PCI_REQ64_L with PCI_ACK64_L de-asserted, PCI Unit will 
complete the transaction acting as a 32-bit master by not asserting PCI_REQ64_L on 
subsequent cycle.

4. If the target responses to PCI_REQ64_L with PCI_ACK64_L de-asserted and PCI STOP_L 
asserted, PCI Unit will complete the transaction by not asserting PCI_REQ64_L on 
subsequent cycles.
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9.2.5 PCI Target Cycles
The following PCI transactions are not supported by the PCI Unit as a target:

• IO read or write

• Type 1 configuration read or write

• Special cycle

• IACK cycle

• PCI Lock cycle

• Multi-function devices

• Dual Address cycle

9.2.5.1 PCI Accesses to CSR

A PCI access to a CSR occurs if the PCI address matches the CSR base address register 
(PCI_CSR_BAR).The PCI Bus will be disconnected after the first data-phase if the data is more 
than one data phase. For 64-bit CSR accesses, the PCI Unit will not assert PCI_ACK64_L on the 
PCI bus.

9.2.5.2 PCI Accesses to DRAM

A PCI access to DRAM occurs if the PCI address matches the DRAM base address register 
(PCI_DRAM_BAR).

9.2.5.3 PCI Accesses to SRAM

A PCI access to SRAM occurs if the PCI address matches the SRAM base address register 
(PCI_SRAM_BAR). The SRAM is organized as three distinct channel and the address is not 
contiguous. The PCI_SRAM_BAR programmed window size will be used as the total memory 
space. The upper two bits of the address will be used as channel number in addressing the 
particular channel and the remaining address bits will be used as the memory address.

9.2.5.4 Target Write Accesses from the PCI Bus

A PCI write occurs if the PCI address matches one of the base address registers and the PCI 
command is either a Memory Write or Memory Write and Invalidate. The core will store up to four 
write addresses into the target address FIFO along with the BAR IDs of the transaction. The write 
data will be stored into the target write FIFO.When either the address FIFO or data FIFO is full, a 
retry is forced on the PCI Bus in response to write accesses.

The FIFO data is forwarded to an internal slave buffer before being written into SRAM or DRAM. 
If the FIFO fills during the write, the address is crossing the 64-byte address boundary, or in the 
case of the command being a burst to the CSR space, the PCI unit signals target disconnect to the 
PCI master.
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9.2.5.5 Target Read Accesses from the PCI Bus

A PCI read occurs if the PCI address matches one of the base address registers and the PCI 
command is either a Memory Read, Memory Read Line, or Memory Read Multiple. 

The read is completed as a PCI delayed read. That is, on the first occurrence of the read, the PCI 
unit signals a retry to the PCI master,. If there is no prior read pending, the PCI unit latches the 
address and command and places it into the target address FIFO. When the address reaches the 
head of the FIFO, the PCI unit reads the DRAM. Subsequent reads will also get retry responses 
until data is available.

When the read data is returned into the PCI Read FIFO, the PCI unit begins to decrement its 
discard timer. If the PCI bus master has not repeated the read by the time the timer reaches 0, the 
PCI unit discards the read data, invalidates the delayed read address and sets Discard Timer 
Expired (bit 16) in the Control register (PCI_CONTROL). If enabled, the PCI unit interrupts the 
Intel XScale® core. The discard timer counts 215 (32,768) PCI clocks.

When the master repeats the read command, the PCI unit compares the address and checks that the 
command is a Memory Read, a Memory Read Line, or a Memory Read Multiple. If there is a 
match, the response is as follows:

• If the read data has not yet been read, the response is retry. 

• If the read data has been read, assert trdy_l and deliver the data. If the master attempts to 
continue the burst past the amount of data read, the PCI unit signals a target disconnect.

• CSR reads are always 32-bit reads.

• If the discard timer has expired for a read, the subsequent read will be treated as a new read.

9.2.6 PCI Initiator Transactions
PCI master transactions are caused by either the Intel XScale® core loads and stores that fall into 
the various PCI address spaces, Microengine read and write commands, or by the DMA engine. 
The command register (PCI_COMMAND) bus master bit (BUS_MASTER) must be set for the 
PCI unit to perform any of the initiator transactions.

The PCI cycle is initiated when there is an entry in the PCI Core Interface initiator address FIFO. 
The core handshakes with the master interface with the FBus FIFO status signals. The PCI core 
supports both burst and non-burst master read transfers by the burst count inputs 
(FB_BstCntr[7:0]), driven by Master Interface to inform the core the burst size. For a Master write, 
FB_WBstonN indicates to the PCI core whether the transfers are burst or non-burst, on a 64-bit 
double Dword basis.

The PCI core supports read and write memory cycles as an initiator while taking care of all 
disconnect/retry situations on the PCI Bus. 

9.2.6.1 PCI Request Operation

If an external arbiter is used (PCI_CFG_ARB[1] is not active), the reql[0] and gnt[0] are connected 
to the PCI_REQ_L and PCI_GNT_L pins. Otherwise, they are connected to the internal arbiter.

The PCI unit asserts req_l[0] to act as a bus master on the PCI. If gnt_l[0] is asserted, the PCI unit 
can start a PCI transaction regardless of the state of req_l[0]. When the PCI unit requests the PCI 
bus, it performs a PCI transaction when gnt_l[0] is received. Once req_l[0] is asserted, the PCI unit 
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never de-asserts it prior to receiving gnt_l[0] or de-asserts it after receiving gnt_l[0] without doing 
a transaction. PCI Unit de-asserts req_l[0] for two cycles when it receives a retry or disconnect 
response from the target.

9.2.6.2 PCI Commands

The following PCI transactions are not generated by PCI Unit as an initiator:

• PCI Lock Cycle

• Dual Address cycle

• Memory Write and Invalidate

9.2.6.3 Initiator Write Transactions

The following general rules apply to the write command transactions:

• If the PCI unit receives either a target retry response or a target disconnect response before all 
of the write data has been delivered, it resumes the transaction at the first opportunity, using 
the address of the first undeliverable data.

• If the PCI unit receives a master abort, it discards all of the write data from that transaction and 
sets the status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts 
the Intel XScale® core.

• If the PCI unit receives a target abort, it discards all of the remaining write data from that 
transaction, if any, and sets the status registers (PCI_STATUS) received target abort bit, which, 
if enabled, interrupts the Intel XScale® core.

• The PCI unit can dessert frame_l prior to delivering all data due to the master latency timer, If 
this occurs, it resumes the write at the first opportunity, using the address of the first 
undeliverable data.

9.2.6.4 Initiator Read Transactions

The following general rules apply to the read command transactions:

• If the PCI unit receives a target retry, it repeats the transaction at the first opportunity until the 
whole transaction is completed.

• If the PCI unit receives a master abort, it substitutes 0xFFFF FFFF for the read data and sets 
the status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts the 
Intel XScale® core.

• If the PCI unit receives a target abort, it sets the status registers (PCI_STATUS) received target 
abort bit, which, if enabled, interrupts the Intel XScale® core and does not try to get any more 
read data. PCI unit will substitute 0xFFFF FFFF for the data which are not read and complete 
the cycle.

9.2.6.5 Initiator Latency Timer

When the PCI unit begins PCI transaction as an initiator, asserting frame_l, it begins to decrement 
its master latency timer. When the timer value reaches 0, the PCI unit checks the value of gnt_l[0]. 
If gnt_l[0] is de-asserted, the PCI unit de-asserts frame_l (if it is still asserted) at the earliest 
opportunity. This is normally the next data phase for all transactions.
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9.2.6.6 Special Cycle

As an initiator, special cycles are broadcast to all PCI agents, so DEVSEL_L is not asserted and no 
error can be received.

9.2.7 PCI Fast Back-to-Back Cycles
The core supports fast back-to-back target cycles on the PCI Bus. The core does not generate 
initiator fast back-to-back cycles on the PCI Bus regardless of the value in the fast back-to-back 
enable bit of the Status and Command register in the PCI configuration space. 

9.2.8 PCI Retry
As a slave, the PCI Unit generates retry on:

• A slave write when the Data write FIFO is full.

• When address FIFO is full

• Data read is handled as delay transactions. If the HOG_MODE bit is set in the 
PCI_CONTROL register, the bus will be held for 16 PCI clocks before asserting retry.

As an initiator, the core supports retry by maintaining an internal counter of the current address. On 
receiving a retry, the core de-asserts PciFrameN and then re-assert PciFrameN with the current 
address from the counter.

9.2.9 PCI Disconnect
As a slave, it disconnects for the following conditions:

• Bursted PCI configuration cycle.

• Bursted access to PCI_CSR_BAR.

• PCI reads past the amount of data in the read FIFO.

• PCI burst cycles that cross 1K PCI address boundary which includes PCI burst cycles that 
cross memory decodes from the core as a target to decodes that are outside the core (e.g., 
started inside a BAR and ends outside of that BAR).

As an initiator, the core supports retry and disconnect by maintaining an internal counter of the 
current address. On receiving a retry or disconnect, the core de-asserts PciFrameN and then re-
assert PciFrameN with the current address + “current transfer byte size” from the counter.

9.2.10 PCI Built-In System Test 
The IXP2800 Network Processor supports BIST when there is an external PCI host. The PCI host 
will set the STRT bit in the PCI_CACHE_LAT_HDR_BIST configuration register. An interrupt is 
generated to the Intel XScale® core if it is enabled by the Intel XScale® core Interrupt Enable 
register. The Intel XScale® core software can respond to the interrupt by running an application-
specific test. Upon successful completion of the test, the Intel XScale® core will reset the STRT bit. 
If this bit is not reset two seconds after the PCI host sets the STRT bit, the host will indicate that the 
Network Processor failed the test.
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9.2.11  PCI Central Functions
The CFG_RSTDIR pin is active high for enabling the PCI Unit central function.

The CFG_PCI_ARB(GPIO[2]) pin is the strap pin for the internal arbiter. When this strap pin is 
high during reset then the XPI Unit owns the arbitration.

The CFG_PCI_BOOT_HOST(GPIO[1]) pin is the strap pin for the PCI host.When 
PCI_BOOT_HOST is asserted during reset then PCI Unit will support as a PCI host.

Note * CFG_PCI_RSTDIR = 1 then central function.
* CFG_PCI_BOOT_HOST must be central function.
* CFG_PCI_ARB must be central function.

9.2.11.1 PCI Interrupt Inputs

The PCI Unit supports two interrupt lines from the PCI Bus as host. One of the interrupt lines will 
be open-drain output and input. The other interrupt line will be selected as PCI interrupt input. 
Both the interrupt lines can be enabled in the Intel XScale® core Interrupt Enable register.

9.2.11.2 PCI Reset Output

If the IXP2800 Network Processor is central function (CFG_RSTDIR =1), PCI Unit will be 
asserting the PCI_RST_L after the system power-on. The Intel XScale® core has to write to the 
PCI External Reset bit in the IXP2800 Network Processor’s Reset register to de-assert the 
PCI_RST_L. In this case, chip reset CLK_NRESET) is driven by a signal other than PCI_RST_L.

When the PCI Unit is not configured as the central function (CFG_RSTDIR =0), PCI_RST_L is 
used as a chip reset input.

Table 122. Legal Combinations of the Strap Pin Options

CFG_PCI_BOOT_HOST
(GPIO[1])

CFG_PCI_ARB
(GPIO[2])

CFG_PCI_RSTDIR
(Central function)

CFG_PROM_BOOT
(GPIO[0])

OK 0 0 0 0

OK 0 0 0 1

OK 0 0 1 1

Not supported 0 1 0 x

OK 0 1 1 1

Not supported 1 0 0 x

OK 1 0 1 1

Not supported 1 1 0 x

OK 1 1 1 1
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9.2.11.3 PCI Internal Arbiter

The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the PCI 
Unit’s initiator interface. To enable the PCI arbiter, the CFG_PCI_ARB(GPIO[2]) strapping pin 
must be 1 during reset. As shown in Figure 120, the local bus request and grant pair become 
externally not visible. These signals will be made available to external debug pins for debug 
purpose.

The arbiter uses a simple round-robin priority algorithm, The arbiter asserts the grant signal 
corresponding to the next request in the round-robin during the current executing transaction on the 
PCI bus (this is also called hidden arbitration). If the arbiter detects that an initiator has failed to 
assert frame_l after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter de-
asserts the grant. That master does not receive any more grants until it de-asserts its request for at 
least one PCI clock cycle. Bus parking is implemented in that the last bus grant will stay asserted if 
no request is pending.

To prevent bus contention, if the PCI bus is idle, the arbiter never asserts one grant signal in the 
same PCI cycle in which it de-asserts another. It de-asserts one grant, and then asserts the next 
grant after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

Figure 120. PCI Arbiter Configuration Using CFG_PCI_ARB(GPIO[2])

Pin CFG_PCI_ARB(GPIO[2]) = 0 (during reset) CFG_PCI_ARB(GPIO[2]) = 1(during reset)
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9.3 Slave Interface Block
The slave interface logic supports internal slave devices interfacing to the target port of the FBus.

• CSR — register access cycles to local CSRs. 

• DRAM — memory access cycles to the DRAM push/pull Bus.

• SRAM — memory access cycles to the SRAM push/pull Bus.

The slave port of the FBus is connected to a 64-byte write buffer to support bursts of up to 64 bytes 
to the memory interfaces. The slave read data are directly downloaded into the FBus read FIFO. 
See Table 123.

As a push/pull command bus master, the PCI Unit translates these accesses into different types of 
push/pull command. As the push/pull data bus target, the write data is sent through the pull data 
bus and the read data is received on the push data bus.

9.3.1 CSR Interface 
The internal Control and Status registers data is directed to or from the Slave FIFO port of the PCI 
core FBus when the BAR id matches PCI_CSR_BAR (BAR0). The CSR accesses from the PCI 
Bus directed towards CSRs not in PCI Unit is translated into a push/pull CSR type command. PCI 
local CSRs are handled within the PCI Unit.

For writes, the data is sent when the pull bus is valid and the ID matches. The address is unloaded 
from the FBus target address FIFO as indication to the PCI core logic that the cycle is completed. 
The slave write buffer is not used for CSR access.

For reads, the data is loaded into the target receive FIFO as soon as the push bus is valid and the ID 
matches. The address is unloaded from the FBus address FIFO.

Note: Target reads to the Scratch unit must always be in multiples of 32-bit (PCI_CBE_L[3:0] =0x0) as 
the Scratch unit only supports 32-bit accesses.

One example of a PCI host access to internal registers is the initialization of internal registers and 
memory to enable the Intel XScale® core to boot off the DRAM in the absence of a boot up PROM. 

The accesses to the CSRs inside the PCI Unit are completed internally without sending the 
transaction out to the push pull bus, just like the other internal register accesses.

Table 123. Slave Interface Buffer Sizes

Location Slave Address Slave Write Slave Read

Buffer Depth 1 64 Byte 0

Usage CSR, SRAM, DRAM SRAM, DRAM None
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9.3.2 SRAM Interface
The SRAM interface connects the FBus to the internal push/pull command bus and the SRAM 
push/pull data buses. Request to memory is sent on the command bus. Data request is received as 
valid push/pull ID sent by the SRAM push/pull data bus.

If the PCI_SRAM_BAR is used, the target state machine generates a request to the command bus 
for SRAM access. Once the grant is received, the address, then data is directed between the slave 
FIFOs of the PCI core and the SRAM push/pull bus. 

9.3.2.1 SRAM Slave Writes

The slave write buffer is used to support memory burst accesses. The buffer is added to guarantee 
data transfer for each clock and burst size can be determined before memory request is issued. Data 
is assembled in the buffers before being sent to memory for SRAM write.

On the push/pull bus, AM access can start at any address and have length up to 16 Dwords as 
shown in Figure 121. For masked writes, only size 1 is supported to transfer up to four bytes. 

The slave interface also has to make sure there is enough data in the slave write buffer to complete 
the memory data transfer before making a memory request.

Figure 121. Example of Target Write to SRAM of 68 Bytes
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9.3.2.2 SRAM Slave Reads

For a slave read from SRAM, a 32-bit DWORD is fetched from the memory for memory read 
command, one cache line is fetched for memory read line command, and two cache lines are read 
for memory read multiple command. Cache line size is programmable in the CACHE_LINE field 
of the PCI_CACHE_LAT_HDR_BIST configuration register. If the computed read size is greater 
than 64 bytes, the PCI SRAM read will default to the maximum of 64 bytes. No pre-fetch is 
supported in that the PCI Unit will not read beyond the computed read size.

The PCI core resets the target read FIFO before issuing a memory read data request on FBus. The 
maximum size of SRAM data read is 64 bytes. The PCI core will disconnect at the 64-byte address 
boundary.

9.3.3 DRAM Interface
The memory is accessed using the push/pull mechanism. Request to memory is sent on the 
command bus. If the PCI_DRAM_BAR is used, the target state machine generates a request to the 
command bus for DRAM access with the address in the slave address FIFO. Once the push/pull 
request is received. The data is directed between the Slave FIFOs of the PCI core and DRAM push/
pull bus.

9.3.3.1 DRAM Slave Writes

The slave write buffer is used to support memory burst accesses. The buffer is added to guarantee 
data transfer for each clock and burst size can be determined before memory request is issued. Data 
is assembled in the buffers before being sent to memory for memory write.

DRAM target write access is only required to be 8-byte address aligned and the address does not 
wrap around the 64-byte address boundary on a DRAM burst. Each 8-byte access that is a partial 
write to the memory, is treated as single write. Remaining writes of the 64-byte segment is written 
as one single burst. Transfers that cross a 64 -byte segment are split into separate transfers. 
Figure 123 splits the 68-byte transfers into two partial 8-byte transfers to address 06 and address 48 
and one 56-byte burst transfer in the first 64-byte segment from address 08 to 38 and one 8-byte 
transfer to address 40.

For write to DRAM on the push/pull bus, the burst must be broken down into address aligned 
smaller transfer sizes (see Figure 122).

The Target interface also must make sure there is enough data in the target write buffer to complete 
the memory data transfer before making a memory request.
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9.3.3.2 DRAM Slave Reads

For target reads from IXP2800 Network Processor memory, the entire 64-byte block is fetched 
from DRAM. For target reads from IXP2800/IXP2850 Network Processor memory, the block size 
is 16 bytes. Depending on the address for the target request, extra data is discarded at the beginning 
until the target address is reached. Also, extra data is discarded at the end of the transfer also when 
the burst ends in the middle of a data block. No pre-fetch is supported for DRAM access. See 
Figure 123.

Figure 122. Example of Target Write to DRAM of 68 Bytes
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Note: The IXP2800/IXP2850 always disconnects after transferring 16-bytes for DRAM target reads. The 
PCI core will also disconnect at a 64-byte address boundary.

The PCI core resets the read FIFO before issuing a memory read data request on FBus. The PCI 
core will disconnect at the 64-byte address boundary.

9.3.4 Mailbox and Doorbell Registers 
Mailbox and Doorbell registers provide hardware support for communication between the Intel 
XScale® core and a device on the PCI Bus.

Four mailbox registers are provided so that messages can be passed between the Intel XScale® core 
and a PCI device. All four registers are 32 bits and can be read and written with byte resolution 
from both the Intel XScale® core and PCI. How the registers are used is application dependent and 
the messages are not used internally by the PCI Unit in any way. The mailbox registers are often 
used with the Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an interrupt as well as encoding the 
purpose of the interrupt. The PCI Unit supports an Intel XScale® core Doorbell register that is used 
by a PCI device to generate an Intel XScale® core FIQ and a separate PCI Doorbell register that is 
used by the Intel XScale® core to generate a PCI interrupt. A source generating the Doorbell 
interrupt can write a software defined bitmap to the register to indicate a specific purpose. This 
bitmap is translated into a single interrupt signal to the destination (either a PCI interrupt or a 
IXP2800 Network Processor interrupt). When an interrupt is received, the Doorbell registers can 
be read and the bit mask can be interpreted. If a larger bit mask is required than that is provided by 
the Doorbell register, the Mailbox registers can be used to pass up to four 32-bit blocks of data.

Figure 123. Example of Target Read from DRAM Using 64-Byte Burst
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The doorbell interrupts are controlled through the registers shown in Table 124.

The Intel XScale® core and PCI devices write to the corresponding DOORBELL register to 
generate up to 32 doorbell interrupts. Each bit in the DOORBELL register is implemented as an SR 
flip-flop. The Intel XScale® core writes a 1 to set the flip-flop and the PCI device writes a 1 to clear 
the flip-flop. Writing a 0 has no effect on the registers. The PCI interrupt signal is the output of an 
NOR functions of all the PCI DOORBELL register bits (outputs of the SR flip-flops). The Intel 
XScale® core interrupt signal is the output of an NAND function of all the Intel XScale® core 
DOORBELL register bits (outputs of the SR flip-flops).

To assert an interrupt (i.e., to “push a doorbell”):

• A write of 1 to the corresponding bit of the DOORBELL register generates an interrupt. This 
is the case for either PCI device or the Intel XScale® core, since writing 1 changes the doorbell 
bit to the proper asserted state (i.e., 0 for an Intel XScale® core interrupt and 1 for a PCI 
interrupt).

To dismiss an interrupt:

• A write of 1 to the corresponding bit of the DOORBELL register clears an interrupt. This is 
the case for either PCI device or the Intel XScale® core, since writing 1 changes the doorbell 
bit to the proper de-asserted state (i.e., 1 for an Intel XScale® core interrupt and 0 for a PCI 
interrupt).

Figure 124 and Figure 125 illustrate how a Doorbell interrupt is asserted and cleared by both the 
Intel XScale® core and a PCI device. 

Table 124. Doorbell Interrupt Registers

Register Name Description

Intel XScale® core 
Doorbell Used to generate the Intel XScale® core Doorbell interrupts.

Intel XScale® core 
Doorbell Setup Used to initialize the Intel XScale® core Doorbell register and for diagnostics.

PCI Doorbell Used to generate the PCI Doorbell interrupts.

PCI Doorbell Setup Used to initialize the PCI Doorbell register and for diagnostics.

Figure 124. Generation of the Doorbell Interrupts to PCI
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The Doorbell Setup register allows the Intel XScale® core and a PCI device to perform two 
functions that are not possible using the Doorbell register. This register is used during setup and 
diagnostics and is not used during normal operations. First, it allows the Intel XScale® core and 
PCI device to clear an interrupt that it has generated to the other device. If the Intel XScale® core 
sets an interrupt to PCI device using the Doorbell register, the PCI device is the only one that can 
use the Doorbell register to clear the interrupt by writing one. With the Doorbell setup register, the 
Intel XScale® core can clear the interrupt by write 0 to it.

Second, it allows the Intel XScale® core and PCI device to generate a doorbell interrupt to itself. 
This can be used for diagnostic testing. Each bit in the Doorbell Setup register is mapped directly to 
the data input of the Doorbell register such that the data is directly written into the Doorbell 
register.

During system initialization, the doorbell registers must be initialized by clearing the interrupt bits 
in the Doorbell register using the Doorbell Setup register. This is done by writing zeros to the PCI 
Doorbell setup register and ones to the Intel XScale® core Doorbell setup register.

Figure 125. Generation of the Doorbell Interrupts to the Intel XScale® Core

A9772-02

1. PCI device write 1 to
clear bit and generate
a FIZ/IRQ.

FIQ or IRQ

Intel XScale® Core 
DOORBELL Register

RS

Q

D

2. Intel XScale® Core Reads 
XSCALE_DOORBELL to 
determine the Doorbell 
interrupt
(e.g.;  reads 0x0030 F2F1).

3. Intel XScale® Core inverts 
the read value and write 
back the results to clear interrupt
(e.g., write 0x0030 F2F1 ^ 0xFFFF FFFF = 0xFFCF 0C0E).
338 Hardware Reference Manual



Intel® IXP2800 Network Processor
PCI Unit
9.3.5 PCI Interrupt Pin 
An external PCI interrupt can be generated in the following way:

• The Intel XScale® core initiates a Doorbell interrupt XSCALE_INT_ENABLE.

• One or more of the DMA channels have completed the DMA transfers.

• The PNI bit is cleared by the Intel XScale® core to generate a PCI interrupt

• An internal functional unit generates either an interrupt or an error directly to the PCI host. 

Table 125 describes how IRQ are generated for each silicon stepping.

Figure 126 shows how PCI interrupts are managed via the PCI and the Intel XScale® core.

Table 125. IRQ Interrupt Options by Stepping

Stepping Description

A stepping IRQ interrupts can be handled only by the Intel XScale® core.

B Stepping
IRQ interrupts can be handled by either the Intel XScale® core or a PCI host. Refer to the 
description of the PCI_OUT_INT_MASK and PCI_OUT_INT_STATUS registers in the 
Intel® IXP2400 and IXP2800 Network Processor Programmer’s Reference Manual.

Figure 126. PCI Interrupts
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9.4 Master Interface Block
The Master Interface consists of the DMA engine and the Push/pull target interface. Both can 
generate initiator PCI transactions.

9.4.1 DMA Interface
There are two DMA channels, each of which can move blocks of data from DRAM to the PCI or 
from the PCI to DRAM. The DMA channels read parameters from a list of descriptors in SRAM, 
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors 
are loaded from predefined SRAM entries or may be set directly by CSR writes to DMA registers. 
There is no restriction on byte alignment of the source address or the destination address. For PCI 
to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory Read 
Multiple. For DRAM to PCI transfers, the PCI command is Memory Write. Memory Write 
Invalidate is not supported.

DMA reads are unmasked reads (all byte enables asserted) from DRAM. After each transfer, the 
byte count is decremented by the number of bytes read, and the source address is incremental by 
one 64-bit double Dword. The whole data block is fetched from the DRAM. For a system using 
RDRAM (like the IXP2800 Network Processor), the block size is 16 bytes. 

DMA reads are masked reads from the PCI and writes are masked for both the PCI and DRAM. 
When moving a block of data, the internal hardware adjusts the byte enables so that the data is 
aligned properly on block boundaries and that only the correct bytes are transferred if the initial 
and final data requires masking.

For DMA data, the DMA FIFO consists of two separate FBus initiator read FIFOs and two initiator 
write FIFOs, which are inside the PCI Core and three DMA buffers (corresponding to the DMA 
channels), which buffer data to and from the DRAM. Since there is no simultaneous DMA read and 
write outstanding, one shared 64-byte buffer is used for both read and write DRAM data 

Up to two DMA channels are running at a time with three descriptors outstanding. The two DMA 
channels and the direct access channel to PCI Bus from Command Bus Master are contending to 
use the address, read and write FIFOs inside the Core.

Effectively, the active channels interleave bursts to or from the PCI Bus. Each channel is required 
to arbitrate for the PCI FIFOs after each PCI burst request.
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9.4.1.1 Allocation of the DMA Channels

Static allocation are employed such that the DMA resources are controlled exclusively by a single 
device for each channel. The Intel XScale® core, a Microengine and the external PCI host can 
access the two DMA channels. The first two channels can function in one of the following modes, 
as determined by the DMA_INF_MODE register:

• The Intel XScale® core owns both DMA channel 1 and channel 2.

• The Microengines owns both DMA channel 1 and channel 2.

• PCI host owns both DMA channel 1 and channel 2.

• The Intel XScale® core owns both DMA channel 1 and channel 2.

The third channel can be allocated to either the Intel XScale® core, PCI host, or Microengines.

The DMA mode can be changed only by the Intel XScale® core under software control. The 
software should signal to suspend DMA transactions and wait until all DMA channels are free 
before changing the mode. Software should determine when all DMA channels are free either by 
polling XSCALE_INT_STATUS register bits DMA1 and DMA3 until both DMA channels are 
done.

9.4.1.2 Special Registers for Microengine Channels

Interrupts are generated at the end of DMA operation for the Intel XScale® core and PCI-initiated 
DMA. However, the Microengine does not provide the interrupt mechanism. The PCI Unit will 
instead use an “Auto-Push” mechanism to signal the particular Microengine on completion of 
DMA. 

When the Microengine sets up the DMA channel, it would also write the CHAN_X_ME_PARAM 
with Microengine number, Context number, Register number, and Signal number. When the DMA 
channel completes, it writes some status information (Error or OK status) to the Microengine/
Context/Register/Signal. PCI Unit will arbitrate for the SRAM Push bus. The Push ID is from the 
parameters in the register. 

The ME_PUSH_STATUS reflects the DMA Done bit in each of the CHAN_X_CONTROL 
registers. The Auto-Push operation will proceed after the DMA is done for the particular DMA 
channel if the corresponding enable bit in the ME_PUSH_ENABLE is set.
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9.4.1.3 DMA Descriptor

Each descriptor occupies four 32-bit Dwords and is aligned on a 16-byte boundary. The DMA 
channels read the descriptors from local SRAM into the four DMA working registers once the 
control register has been set to initiate the transaction. This control must be set explicitly. This 
starts the DMA transfer. The register names for the DMA channels are listed in Figure 127. 

After a descriptor is processed, the next descriptor is loaded in the working registers. This process 
repeats until the chain of descriptors is terminated (i.e., the End of Chain bit is set). See Table 126.

Figure 127. DMA Descriptor Reads
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Table 126. DMA Descriptor Format

Offset from Descriptor Pointer Description

0x0 Byte Count

0x4 PCI Address

0x8 DRAM Address

0xC Next Descriptor Address
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9.4.1.4 DMA Channel Operation

Since a PCI device, Microengine, or the Intel XScale® core can access the internal CSRs and 
memory in a similar way, the DMA channel operation description that follows will apply to all 
channels. CHAN_1_, CHAN_2_, or CHAN_3_ can be placed before the name for the DMA 
registers.

The DMA channel owner can either set up the descriptors in SRAM or it can write the first 
descriptor directly to the DMA channel registers.

When descriptors and the descriptor list are in SRAM, the procedure is as follows:

1. The DMA channel owner writes the address of the first descriptor into the DMA Channel 
Descriptor Pointer register (DESC_PTR).

2. The DMA channel owner writes the DMA Channel Control register (CONTROL) with 
miscellaneous control information and also sets the channel enable bit (bit 0). The channel 
initial descriptor bit (bit 4) in the CONTROL register must also be cleared to indicate that the 
first descriptor is in SRAM.

3. Depending on the DMA channel number, the DMA channel reads the descriptor block into the 
corresponding DMA registers, BYTE_COUNT, PCI_ADDR, DRAM_ADDR, and 
DESC_PTR.

4. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done (bit 2) in the CONTROL register.

5. If the end of chain bit (bit 31) in the BYTE_COUNT register is clear, the channel checks the 
Chain Pointer value. If the Chain Pointer value is not equal to 0. it reads the next descriptor 
and transfers the data (step 3 and 4 above). IF the Chain Pointer value is equal to 0, it waits for 
the Descriptor Added bit of the Channel Control register to be set before reading the next 
descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets the 
channel chain done bit (bit 7) in the CONTROL register and then stops.

6. Proceed to the Channel End Operation. (See Section 9.4.1.5.)

When single descriptors are written directly into the DMA channel registers, the procedure is as 
follows:

1. The DMA channel owner writes the descriptor values directly into the DMA channel registers. 
The end of chain bit (bit 31) in the BYTE_COUNT register must be set, and the value in the 
DESC_PTR register is not used.

2. The DMA channel owner writes the base address of the DMA transfer into the PCI_ADDR to 
specify the PCI starting address.

3. When the first descriptor is in the BYTE_COUNT register, the DRAM_ADDR register must 
be written with the address of the data to be moved.

4. The DMA channel owner writes the CONTROL register with miscellaneous control 
information, along with setting the channel enable bit (bit 0). The channel initial descriptor in 
register bit (bit 4) in the CONTROL register must also be set to indicate that the first descriptor 
is already in the channel descriptor registers.

5. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done bit (bit 2) in the CONTROL register.

6. Since the end of the chain bit (bit 31) in the BYTE_CONT register is set, the channel sets the 
channel chain done bit (bit 7) in the CONTROL register and then stops.

7. Proceed to the Channel End Operation. (See Section 9.4.1.5.)
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9.4.1.5 DMA Channel End Operation

1. Channel owned by PCI:
If not masked via the PCI Outbound Interrupt Mask register, the DMA channel interrupts the 
PCI host after the setting of the DMA done bit in the CHAN_X_CONTROL register, which is 
readable in the PCI Outbound Interrupt Status register.

2. Channel owned by the Intel XScale® core:
If enabled via the Intel XScale® core Interrupt Enable registers, the DMA channel interrupts 
the Intel XScale® core by setting the DMA channel done bit in the CHAN_X_CONTROL 
register, which is readable in the Intel XScale® core Interrupt Status register.

3. Channel owned by Microengine:
If enabled via the Microengine Auto-Push Enable registers, the DMA channel signals the 
Microengine after setting the DMA channel done bit in the CHAN_X_CONTROL register, 
which is readable in the Microengine Auto-Push Status register. 

9.4.1.6 Adding Descriptor to an Unterminated Chain

It is possible to add a descriptor to a chain while a channel is running. To do so the chain should be 
left un-terminated, that is the last descriptor should have End of Chain clear, and the Chain Pointer 
value equal to 0. A new descriptor (descriptors) can be added to the chain by overwriting the Chain 
Pointer value of the un-terminated descriptor (in SRAM) with the Local Memory address of the 
(first) added descriptor (Note that the added descriptor must actually be valid in Local Memory 
prior to that). After updating the Chain Pointer field, the software must write a 1 to the Descriptor 
Added bit of the Channel Control register. This is necessary for the case where the channel was 
paused to reactivate the channel. However, software need not check the state of the channel before 
writing that bit; there is no side-effect of writing that bit in the case where the channel had not yet 
read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor 
processed (i.e., the one that originally had the 0 value for Chain Pointer) to get the address of the 
newly added descriptor.

A descriptor cannot be added to a descriptor that has End of Chain set.

9.4.1.7 DRAM to PCI Transfer

For a DRAM-to-PCI transfer, the DMA channel reads data from DRAM and places it into the 
DMA buffer for transfer to the FBus FIFO when the following conditions are met:

• There is at least free space for a read block in the buffer.

• The DRAM controller issues data valid on DRAM push data bus to the DMA engine.

• DMA transfer is not done.

Before data is stored into the DMA buffer, the DRAM starting address is evaluated. Extra data will 
be discarded in case the DRAM starting address does not start at aligned addresses. The lower 
address bits determine the byte enables for the first data double Dword. At the end of the DMA 
transfer, extra data will be discarded and byte enables are calculated for the last 64-bit double 
Dword. After the data is loaded into the buffer, the PCI starting address is evaluated and the buffer 
is shifted byte wise to align the starting DRAM data with the starting PCI starting address. 
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A 64-bit double Dword with byte enables is pushed into the FBus FIFO from the DMA buffers as 
soon as there is data available in the buffer and there is space in the FBus FIFO. The Core logic will 
transfer the exact number of bytes to the PCI Bus. The maximum burst size on the PCI bus varies 
according to the stepping and is described in Table 127

9.4.1.8 PCI to DRAM Transfer

The DMA channel issues a sequence of PCI read request commands through the FBus address 
FIFO to read the precise byte count from PCI.

The DMA engine will continue to load the DMA write buffer with FBus FIFO data as soon as data 
is available.

The DMA engine determines the largest size of memory request possible with the current DRAM 
address and remaining byte count. It also has to make sure there is enough data in the write buffer 
before sending the memory request. 

9.4.2 Push/Pull Command Bus Target Interface
Through the command bus target interface, the command bus masters (PCI, Intel XScale® core, 
and Microengines) can access the PCI Unit internal registers including the local PCI configuration 
registers and the local PCI Unit CSRs. Also, the Microengine and the Intel XScale® core can issue 
transactions on the PCI bus. The requests are generated from the command master to the command 
bus arbiter. The arbiter selects a master and sends it a grant. That master then sends a command, 
which is passed through by the arbiter.

PCI Unit will issue the push and pull data responses to the SRAM push/pull data buses. When the 
read command is received, the PCI Unit will issue the push data request on the SRAM push data 
bus. When the write command is received, PCI Unit will issue the pull command on the SRAM 
pull data bus.

9.4.2.1 Command Bus Master Access to Local Configuration Registers

The configuration register within the PCI unit can be accessed by push/pull command bus access to 
configuration space through the FBus interface of the PCI core. When the IXP2800 Network 
Processor is a PCI host, these registers have to be accessed through this internal path and no PCI 
bus cycle will be generated.

Table 127. PCI Maximum Burst Size

Stepping Description

A Stepping The maximum burst size is 64 bytes.

B Stepping

The maximum burst size can be greater than 64 bytes for certain operations.
The register PCI_IXP_PARAM configures the burst length for target write 
operations.
The register CHAN_#_CONTROL configures the burst length for DMA read and 
write operations.
The register PCI_CONTROL configures the atomic feature for target write 
operations of 64 bytes or fewer.
Note: Bursts longer than 64 bytes are not supported for PCI target read 
operations.
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9.4.2.2 Command Bus Master Access to Local Control and 
Status Registers

These are CSRs within the PCI Unit that are accessible from push/pull bus masters. The masters 
include the Intel XScale® core, Microengines. There is no PCI bus cycles generated. The CSRs 
within the PCI Unit can be accessed internally by external PCI devices. 

9.4.2.3 Command Bus Master Direct Access to PCI Bus

The Intel XScale® core and Microengines are the only command bus masters that have direct 
access to the PCI bus as a PCI Bus initiator. The PCI Bus can be accessed by push/pull command 
bus access to PCI bus address space. The PCI Unit will share the internal SRAM push/pull data bus 
with SRAM for the data transfers. 

Data from the SRAM push/pull data bus is transferred through the master data port of the FBus 
interface of the PCI core. The PCI Core handles all of the PCI Bus protocol handshakes. The 
SRAM pull data received for a write command will be transferred to the Master write FIFO for PCI 
writes. For PCI reads, data is transferred from the read FIFO to the SRAM push data bus. A 32-
byte Direct buffer is used to support up to 32 bytes of data responses to the direct access to PCI 
Bus.

The Command Bus Master access to the PCI bus will require internal arbitration to gain access to 
the data FIFOs inside the core, which are shared between the DMA engine and direct access to 
PCI.

9.4.2.3.1 PCI Address Generation for IO and MEM Cycles

When the push/pull command bus master is accessing the PCI Bus, the PCI address is generated 
based on the PCI address extension register (PCI_ADDR_EXT). Figure 128 shows how the 
address is generated from a Command Bus Master address.

Figure 128. PCI Address Generation for Command Bus Master to PCI

A9775-02

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

PMSA
PCI Extension
Register

PCI Address for PCI
Memory Accesses

PIOADD RES

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

PCI Address for
PCI I/O AccessesPIOADD 00

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

PMSAPIOADD RES

Intel XScale® Core Address[15:2]
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9.4.2.3.2 PCI Address Generation for Configuration Cycles

When a push/pull command bus master is accessing the PCI Bus to generate a configuration cycle, 
the PCI address is generated based on the a Command Bus Master address as shown in Table 128 
and Figure 129:

9.4.2.3.3 PCI Address Generation for Special and IACK Cycles

The PCI address is undefined for special and IACK PCI cycles.

9.4.2.3.4 PCI Enables

The PCI byte-enables are generated based on the Command Bus Master instruction, and the PCI 
unit does not change the states of the enables.

9.4.2.3.5 PCI Command

The PCI command is derived from the Command Bus Master address space map. The different 
spaces supported are listed in Table 129:

Table 128. Command Bus Master Configuration Transactions

Cycle Result

Type 1 Configuration Cycle Command Bus address bits [31:24] are equal to 0xDA

Type 0 Configuration Cycle Command Bus address bits [31:24] are equal to 0xDB.

Figure 129. PCI Address Generation for Command Bus Master to PCI Configuration Cycle

A9776-02

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

0000 0000 00Intel XScale® Core Address[23:2]

Table 129. Command Bus Master Address Space Map to PCI

PCI Command Intel XScale® Core Address Space

PCI Memory 0xE000 0000 – 0xFFFF FFFF

Local CSR 0xDF00 0000 – 0xDFFF FFFF

Local Configuration Register 0xDE00 0000 – 0xDEFF FFFF

PCI Special Cycle/PCI IACK Read 0xDC00 0000 – 0xDDFF FFFF

PCI Type 1 Configuration Cycle 0xDB00 0000 – 0xDBFF FFFF

PCI Type 0 Configuration Cycle 0xDA00 0000 – 0xDAFF FFFF

PCI I/O 0xD800 0000 – 0xD8FF FFFF
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9.5 PCI Unit Error Behavior

9.5.1 PCI Target Error Behavior

9.5.1.1 Target Access Has an Address Parity Error

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. PCI core will not claim the cycle regardless of internal device select signal.

b. PCI core will let the cycle terminate with master abort. 

c. PCI core will not assert PCI_SERR_L.

d. Slave Interface sets PCI_CONTROL[TGT_ADR_ERR], which will interrupt the Intel 
XScale® core if enabled.

9.5.1.2 Initiator Asserts PCI_PERR_L in Response to One of Our Data 
Phases

1. Core does nothing.

2. Responsibility lies with the initiator to discard data, report this to the system, etc.

9.5.1.3 Discard Timer Expires on a Target Read

1. PCI unit discards the read data.

2. PCI Unit invalidates the delayed read address 

3. PCI Unit sets Discard Timer Expired bit (DTX) in the PCI_CONTROL. 

4. If enabled (XSCALE_INT_ENABLE [DTE]), the PCI unit interrupts the Intel XScale® core. 

9.5.1.4 Target Access to the PCI_CSR_BAR Space Has Illegal
Byte Enables

Note: The acceptable byte enables are:

1. PCI local CSRs - PCI_BE[3:0] = 0x0or 0xF.

2. CSRs not in the PCI Unit - PCI_BE[3:0] = 0x0, 0xE, 0xD, 0xB, 0x7, 0xC, 0x3, or 0xF.

When byte-enables are detected, the hardware asserts the following error conditions:

1. Slave Interface will set PCI_CONTROL[TGT_CSR_BE].

2. Slave Interface will issue target abort for target read and drop the transaction for target write.
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9.5.1.5 Target Write Access Receives Bad Parity PCI_PAR with the Data

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. core asserts PCI_PERR_L and sets PCI_CMD_STAT[PERR].

b. Slave Interface sets PCI_CONTROL[TGT_WR_PAR], which will interrupt the Intel 
XScale® core if enabled.

c. Data is discarded.

9.5.1.6 SRAM Responds with a Memory Error on One or More Data Phases
on a Target Read

1. Slave Interface sets PCI_CONTROL[TGT_SRAM_ERR], which will interrupt the Intel 
XScale® core if enabled.

2. Assert PCI Target Abort at or before the data in question is driven on PCI.

9.5.1.7 DRAM Responds with a Memory Error on One or More Data Phases
on a Target Read

1. Slave Interface sets PCI_CONTROL[TGT_DRAM_ERR], which will interrupt the Intel 
XScale® core if enabled.

2. Slave Interface asserts PCI Target Abort at or before the data in question is driven on PCI.

9.5.2 As a PCI Initiator During a DMA Transfer

9.5.2.1 DMA Read from DRAM (Memory-to-PCI Transaction) Gets a 
Memory Error

1. Set PCI_CONTROL[DMA_DRAM_ERR] which will interrupt the Intel XScale® core if 
enabled.

2. Master Interface terminates transaction before bad data is transferred (okay to terminate 
earlier).

3. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

4. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

6. Master Interface resets the state machines and DMA buffers.
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9.5.2.2 DMA Read from SRAM (Descriptor Read) Gets a Memory Error

1. Set PCI_CONTROL[DMA_SRAM_ERR] which will interrupt the Intel XScale® core if 
enabled.

2. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

3. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

4. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers.

9.5.2.3 DMA from DRAM Transfer (Write to PCI) Receives PCI_PERR_L on 
PCI Bus

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Master Interface sets PCI_CONTROL[DPE] which will interrupt the Intel XScale® core 
if enabled.

b. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

c. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

d. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer 
pointing to the DMA descriptor of the failed transfer.

e. Master Interface resets the state machines and DMA buffers.

f. Core sets PCI_CMD_STAT[PERR] if properly enabled.

9.5.2.4 DMA To DRAM (Read from PCI) Has Bad Data Parity 

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Core asserts PCI_PERR_L on PCI if PCI_CMD_STAT[PERR_RESP] is set.

b. Master Interface sets PCI_CONTROL[DPED] which can interrupt the Intel XScale® core 
if enabled.

c. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

d. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

e. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer 
pointing to the DMA descriptor of the failed transfer.

f. Master Interface resets the state machines and DMA buffers.
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9.5.2.5 DMA Transfer Experiences a Master Abort (Time-Out) on PCI 

Note: That is, nobody asserts DEVSEL during the DEVSEL window.

1. Master Interface sets PCI_CONTROL[RMA] which will interrupt the Intel XScale® core if 
enabled.

2. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

3. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

4. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers

9.5.2.6 DMA Transfer Receives a Target Abort Response During a 
Data Phase

1. Core terminates the transaction. 

2. Master Interface sets PCI_CONTROL[RTA] which can interrupt the Intel XScale® core if 
enabled.

3. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

4. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

6. Master Interface resets the state machines and DMA buffers.

9.5.2.7 DMA Descriptor Has a 0x0 Word Count (Not an Error)

1. No data is transferred.

2. Descriptor is retired normally.

9.5.3 As a PCI Initiator During a Direct Access from the Intel
XScale® Core or Microengine

9.5.3.1 Master Transfer Experiences a Master Abort (Time-Out) on PCI

1. Core aborts the transaction. 

2. Master Interface sets PCI_CONTROL[RMA] which will interrupt the Intel XScale® core if 
enabled.

9.5.3.2 Master Transfer Receives a Target Abort Response During
a Data Phase

1. Core aborts the transaction. 

2. Master Interface sets PCI_CONTROL[RTA] which will interrupt the Intel XScale® core if 
enabled.
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9.5.3.3 Master from the Intel XScale® Core or Microengine Transfer
(Write to PCI) Receives PCI_PERR_L on PCI Bus

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Core sets PCI_CMD_STAT[PERR].

b. Master Interface sets PCI_CONTROL[DPE] which will interrupt the Intel XScale® core 
if enabled.

9.5.3.4 Master Read from PCI (Read from PCI) Has Bad Data Parity

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Core asserts PCI_PERR_L on PCI.

b. Master Interface sets PCI_CONTROL[DPED] which will interrupt the Intel XScale® core 
if enabled.

c. Data that has been read from PCI is sent to the Intel XScale® core or Microengine with a 
data error indication.

9.5.3.5 Master Transfer Receives PCI_SERR_L from the PCI Bus

Master Interface sets PCI_CONTROL[RSERR] which will interrupt the Intel XScale® core if 
enabled.

9.5.3.6 Intel XScale® Core Microengine Requests Direct Transfer when 
the PCI Bus is in Reset

Master Interface will complete the transfer and drop the write data and return all ones on the read 
data.

9.6 PCI Data Byte Lane Alignment
During any endian conversion, PCI does not need to do any longword swapping between two 
32-bit longwords (LW1, LW0). But PCI may need to do byte swapping within the 32-bit 
longwords. Because of the different endian convention between PCI Bus and the memory, all data 
going between the PCI core FIFO and memory data bus passes through the byte lane reversal as 
shown in Table 130 through Table 137.

PCI allows byte-enable swapping only without the data swapping or allow data swapping only 
without byte enable swapping. When PCI handle the mis align data in above two cases, PCI will 
only care about valid data. So PCI will drive any data values for those mis-aligned invalid data 
portions.
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Table 130. Byte Lane Alignment for 64-Bit PCI Data In (64 Bits PCI Little-Endian to Big-Endian
with Swap)

PCI Data IN[63:56] IN[55:48] IN[47:40] IN[39:32] IN[31:24] IN[23:16] IN[15:8] IN[7:0]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 (32 bits)
LW0 drive first

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 131. Byte Lane Alignment for 64-Bit PCI Data In (64 Bits PCI Big-Endian to Big-Endian
without Swap)

PCI Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 (32 bits)
LW0 drive first

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 132. Byte Lane Alignment for 32-Bit PCI Data In (32 Bits PCI Little-Endian to Big-Endian
with Swap)

PCI Add[2]=1 PCI Add[2]=0

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

PCI Data IN[31:24] IN[23:16] IN[15:8] IN[7:0] IN[31:24] IN[23:16] IN[15:8] IN[7:0]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 133. Byte Lane Alignment for 32-Bit PCI Data In (32 Bits PCI Big-Endian to Big-Endian
without Swap)

PCI Add[2]=1 PCI Add[2]=0

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

PCI Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

SRAM Data OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

direct map
pci to dram IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]
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Table 134. Byte Lane Alignment for 64-Bit PCI Data Out (Big-Endian to 64 Bits PCI Little
Endian with Swap)

SRAM Data
IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Side OUT[63:56] OUT[55:48] OUT[47:40] OUT[39:32] OUT[31:24] OUT[23:16] OUT[15:8] OUT[7:0]

Table 135. Byte Lane Alignment for 64-Bit PCI Data Out (Big-Endian to 64 Bits PCI Big-Endian
without Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

direct map
pci to dram IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Side OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 136. Byte Lane Alignment for 32-Bit PCI Data Out (Big-Endian to 32 Bits PCI Little
Endian with Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Data OUT[31:24] OUT[23:16] OUT[15:8] OUT[7:0] OUT[31:24] OUT[23:16] OUT[15:8] OUT[7:0]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

PCI Add[2]=1 PCI Add[2]=0

Table 137. Byte Lane Alignment for 32-Bit PCI Data Out (Big-Endian to 32 Bits PCI Big-Endian
without Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Data OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Longword1 (32 bits)
LW1 drive after LW0

Longword0 ((32 bits)
LW0 drive first

PCI Add[2]=1 PCI Add[2]=0
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The BE_DEMI bit of the PCI_CONTROL register can be set to enable big-endian on the incoming 
data from the PCI Bus to both the SRAM and DRAM. The BE_DEMO bit of the PCI_CONTROL 
register can be set to enable big-endian on the outgoing data to the PCI Bus from both the SRAM 
and DRAM.

9.6.1 Endian for Byte Enable
During any endian conversion, PCI does not need to do any longword byte enable swapping 
between two 32-bit longwords (LW1, LW0). But PCI may need to do byte enable swapping within 
the 32-bit longword byte enable. Because of the different endian convention between PCI Bus and 
the memory, all data going between the PCI core FIFO and memory data bus passes through the 
byte lane reversal as shown in Table 138 through Table 145:

Table 138. Byte Enable Alignment for 64-Bit PCI Data In (64 Bits PCI Little-Endian to Big-
Endian with Swap)

PCI Data IN_BE[7] IN_BE[6] IN_BE[5] IN_BE[4] IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0]

SRAM Data
OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 139. Byte Enable Alignment for 64-Bit PCI Data In (64 Bits PCI Big-Endian to Big-Endian
without Swap)

PCI Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

SRAM Data
OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 140. Byte Enable Alignment for 32-Bit PCI Data In (32 bits PCI Little-Endian to Big-
Endian with Swap)

PCI Add[2]=1 PCI Add[2]=0

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

PCI Data IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0] IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0]

SRAM Data
OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]
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Table 141. Byte Enable Alignment for 32-Bit PCI Data In (32 Bits PCI Big-Endian to Big-Endian
without Swap)

PCI Add[2]=1 PCI Add[2]=0

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

PCI Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

SRAM Data OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

direct map
pci to dram IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 142. Byte Enable Alignment for 64-Bit PCI Data Out (Big-Endian to 64 Bits PCI Little
Endian with Swap)

SRAM Data
IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Side OUT_BE[7] OUT_BE[6] OUT_BE[5] OUT_BE[4] OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0]

Table 143. Byte Enable Alignment for 64-Bit PCI Data Out (Big-Endian to 64 Bits PCI Big
Endian without Swap)

SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Side OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 144. Byte Enable Alignment for 32-Bit PCI Data Out (Big-Endian to 32 Bits PCI Little
Endian with Swap)

SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Data OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0] OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

PCI Add[2]=1 PCI Add[2]=0
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The BE_BEMI bit of the PCI_CONTROL register can be set to enable big-endian on the incoming 
byte enable from the PCI Bus to both the SRAM and DRAM. The BE_BEMO bit of the 
PCI_CONTROL register can be set to enable big-endian on the outgoing byte enable to the PCI 
Bus from both the SRAM and DRAM.

The B-stepping silicon provides a mechanism to enable byte swapping for PCI I/O operations as 
described in Table 146.

Table 145. Byte Enable Alignment for 32-Bit PCI Data Out (Big-Endian to 32 Bits PCI Big
Endian without Swap)

SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Data OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Longword1byte enable
LW1 byte enable drive after LW0 byte enable

Longword0 byte enable
LW0 byte enable drive first

PCI Add[2]=1 PCI Add[2]=0
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Table 146. PCI I/O Cycles with Data Swap Enable

Stepping Description

A Stepping
A PCI IO cycle is treated like CSR where the data bytes are not swapped. It is sent in 
the same byte order whether the PCI bus is configured in Big-Endian or Little-Endian 
mode.

B Stepping

When PCI_CONTROL[IEE] is 0, PCI data is sent in the same byte order whether the 
PCI bus is configured in Big-Endian or Little-Endian mode.
When PCI_CONTROL[IEE] is 1, PCI IO data will follow the same memory space 
swapping rule. The address always follows the physical location, Example:

BEs not Swapped (1 byte access) BEs Swapped (1 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 1  1  1  0 1 1 0  1  1  1

0 1 1  1  0  1 1 0 1  0  1  1

1 0 1  0  1  1 0 1 1  1  0  1

11 0  1  1  1 0 0 1  1  1  0

BEs not Swapped (2 byte access) BEs Swapped (2 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 1  1  0  0 1 0 0  0  1  1

0 1 1  0  0  1 0 1 1  0  0  1

1 0 0  0  1  1 0 0 1  1  0  0

BEs not Swapped (3 byte access) BEs Swapped (3 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 1  0  0  0 0 1 0  0  0  1

0 1 0  0  0  1 0 0 1  0  0  0

BEs not Swapped (4 byte access) BEs Swapped (4 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 0  0  0  0 0 0 0  0  0  0
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Clocks and Reset 10

This section describes the IXP2800 Network Processor clocks and reset. Refer to the Intel® 
IXP2800 Network Processor Hardware Initialization Reference Manual for information about the 
initialization of all units of the IXP2800 Network Processor.

10.1 Clocks
The block diagram in Figure 130 shows how the IXP2800 Network Processor implements an 
onboard clock generator to generate the internal clocks used by the various functional units in the 
device. It takes an external reference frequency and multiplies it to a higher frequency clock using 
a PLL. That clock is then divided down by a set of programmable dividers to provide clocks to 
SRAM and DRAM controllers. 

The Intel XScale® core and Microengines get clocks using fixed divide ratios. The Media and 
Switch Fabric Interface clock is selected based on the strap pin (CFG_MSF_FREQ_SEL) so that 
when CFG_MSF_FREQ_SEL is high, an internally-generated clock using the programmable 
divider is used and when CFG_MSF_FREQ_SEL is low, an externally-received clock on the MSF 
interface is used. 

The PCI controller uses external clocks. Each of the units also interfaces to internal buses, which 
run at ½ the Microengine frequency. Figure 130 shows the overall clock generation and 
distribution and Table 147 summarizes the clock usage.
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Figure 130. Overall Clock Generation and Distribution
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Table 147. Clock Usage Summary (Sheet 1 of 2)

Unit Name Description Comment

Microengine Microengines internal.

Internal 
Buses

Command/Push/Pull interface of 
DRAM, SRAM, Intel XScale® core, 
Peripheral, MSF, and PCI Units.

1/2 Microengine frequency.

Intel 
XScale® 

core

Intel XScale® core microprocessor, 
caches, microprocessor side of 
Gasket.

1/2 of Microengine frequency.

DRAM
DRAM pins and control logic (all of 
DRAM unit except Internal Bus 
interface).

Divide of Microengine frequency. All DRAM channels 
use the same frequency. Clocks are driven by the 
IXP2800 Network Processor to external DRAMs.
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The fast frequency on the IXP2800 Network Processor is generated by an on-chip PLL that 
multiplies a reference frequency provided by an on-board LVDS oscillator (frequency 100 MHz) 
by a selectable multiplier. The multiplier is selected by using external strap pins SP_AD[5:0] and 
can be viewed by software via the STRAP_OPTIONS[CFG_PLL_MULT] CAP CSR register bits. 
The multiplier range is even multiples between 16 and 48, so the PLL can generate a 1.6 GHz to 
4.8 GHz clock (with a 100-Mhz reference frequency). 

The PLL output frequency is divided by 2 to get the Microengine clock and by 4 to get the Intel 
XScale® core and the internal Command/Push/Pull bus frequency. An additional division (after the 
divide by 2) is used to generate the clock frequencies for the other internal units. The divisors are 
programmable via the CLOCK_CONTROL CSR. APB divisor specified in the 
CLOCK_CONTROL CSR clock is scaled by 4 (i.e., a value of 2 in the CSR selects a divisor of 8).

Table 148 shows the frequencies that are available based on a 100-Mhz oscillator and various 
values of PLL multipliers, for the supported divisor values of 3 to 15.

SRAM
SRAM pins and control logic (all of 
the SRAM unit except Internal Bus 
interface).

Divide of Microengine frequency. Each SRAM channel 
has its own frequency selection. Clocks are driven by 
the IXP2800 Network Processor to external SRAMs 
and/or Coprocessors.

Scratch, 
Hash, CSR

Scratch RAM, Hash Unit, CSR 
access block

1/2 of Microengine frequency. Note that Slowport has 
no clock. Timing for Slowport accesses is defined in 
Slowport registers.

MSF Receive and Transmit pins and 
control logic.

The transmit clock for the Media and Switch interface 
can be derived in two different ways.

• From TCLK input signal (supplied by PHY device).
• Divided from internal clock.

For details please refer to Chapter 8, “Media and 
Switch Fabric Interface”.

APB APB logic Divide of Microengine frequency.

PCI PCI pins and control logic. External reference. Either from Host system or on-
board oscillator.

Table 147. Clock Usage Summary (Sheet 2 of 2)

Unit Name Description Comment
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Figure 131 shows the clocks generation circuitry for the IXP2800 Network Processor. When the 
chip is powered up, bypass clock will be sent to all the units. After the PLL is locked, clock unit 
will switch all units from bypass clock to a fixed frequency clock which is generated by dividing 
PLL OUTPUT FREQUENCY by 16. Once Clock Control CSR is written, clock unit will replace 
fixed frequency clock with the defined clocks for different units.

Table 148. Clock Rates Examples

Input Oscillator Frequency (MHz) 100

PLL Output Frequency (MHz)
[PLL Multiplier]1

1. This multiplier is selected via SP_AD[5:0] strap pins. 

2000
[20]

2200
[22]

2400
[24]

2600
[26]

2800
[28]

4000
[40]

4800
[48]

Microengine Frequency2

2. This frequency is the PLL output frequency divided by 2. 

1000 1100 1200 1300 1400 2000 2400
Intel XScale® core & Command/Push/Pull 

Bus Frequency 3

3. This frequency is the PLL output frequency divided by 4. 

500 550 600 650 700 1000 1200

Divide Ratio for other Units
(except APB)4

4. The ABP divisor specified in the CLOCK_CONTROL CAP CSR is scaled by an additional x4. 

D
iv

is
or

5

5. This divisor is selected via the CLOCK_CONTROL CAP CSR. The Base Frequency is the PLL output frequency divided by 2

26

6. This divide ratio is only used by test logic. In the normal functional mode, this ratio is reserved for Push/Pull clocks only. 

500 550 600 650 700 1000 1200
3 333 367 400 433 467 666 800
4 250 275 300 325 350 500 600
5 200 220 240 260 280 400 480
6 167 183 200 217 233 334 400
7 143 157 171 186 200 286 342
8 125 138 150 163 175 250 300
9 111 122 133 144 156 222 266

10 100 110 120 130 140 200 240
11 91 100 109 118 127 182 218
12 83 92 100 108 117 166 200
13 77 85 92 100 107 154 184
14 71 79 86 93 100 142 172
15 67 73 80 87 93 134 160
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10.2 Synchronization Between Frequency Domains
Due to the internal design architecture of the IXP2800 Network Processor, it is guaranteed that one 
of the clock domains of an asynchronous transfer will be the Push/Pull domain (PLL/4). 
Additionally, all other clocks are derived by further dividing the Microengine clock (PLL/2n where 
n is 3 or more); refer to Figure 132.

Note: The exception is the PCI unit where the PCI clock is fully asynchronous with the PP clock. 
Therefore in the PCI unit, data is synchronized using the usual 3-flop synchronization method.

Therefore, the clock A and clock B relationship will always be apart by at least two PLL clocks. To 
solve hold problem between clock A and clock B, a delay is added anytime data is transferred from 
clock A to clock B. The characteristic of this delay element is such that it is high enough to resolve 
any hold issue in fast environment but in the slow environment its delay is still less than two PLL 
clocks.

Figure 131. IXP2800 Network Processor Clock Generation
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10.3 Reset
The IXP2800 Network Processor can be reset four ways.

• Hardware Reset Using nRESET or PCI_RST_L.

• PCI-Initiated Reset.

• Watchdog Timer Initiated Reset.

• Software Initiated Reset.

10.3.1 Hardware Reset Using nRESET or PCI_RST_L
The IXP2800 Network Processor provides the nRESET pin so that it can be reset by an external 
device. Asserting this pin resets the internal functions and generates an external reset via the 
nRESET_OUT pin.

Upon power-up, nRESET (or PCI_RST_L) must remain asserted for 1ms after VDD is stable to 
properly reset the IXP2800 Network Processor and ensure that the external clocks are stable. While 
nRESET is asserted, the processor is held in reset. When nRESET is released, the Intel XScale® 
core begins executing from address 0x0. If PCI_RST_L is input to the chip, nRESET should be 
removed before or at the same time as PCI_RST_L.

All the strap options are latched with nRESET except for PCI strap option BOARD_IS_64 which 
is latched with PCI_RST_L only (by latching the status of REQ64_L at the trailing edge of 
PCI_RST_L).

If nRESET is asserted, while the Intel XScale® core is executing, the current instruction is 
terminated abnormally and the reset sequence is initiated.

The nRESET_OUT signal de-assertion depends upon settings of reset_out_strap and 
IXP_RESET_0[22] also called the EXTRST_EN bit. During power up, IXP_RESET_0[22] is reset 
to 0; therefore the value to be driven on nRESET_OUT is defined by reset_out_strap. When 

Figure 132. Synchronization Between Frequency Domains
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Clock A and Clock B are guaranteed to be at least two PLL clocks apart; therefore, if the delay element is such that it is
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Clock A to Clock B domain.
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“reset_out_strap” is sampled as 0 on the trailing edge of reset, nRESET_OUT is de-asserted based 
on the value of IXP_RESET_0[15] which is written by software. If “reset_out_strap” is sampled as 
1 on the trailing edge of reset, nRESET_OUT is de-asserted after PLL locks.

During normal function mode, if software wants to pull nRESET_OUT high, it should set 
IXP_RESET_0[22] = 1 and then set IXP_RESET_0[15] = 1. To pull nRESET_OUT low, software 
should set the IXP_RESET_0[15] bit back to 0.

Figure 133. Reset Out Behavior
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10.3.2 PCI-Initiated Reset 
CFG_RST_DIR is not asserted and PCI_RST_L is asserted.

When the CFG_RST_DIR strap pin is not asserted (sampled 0), PCI_RST_L is input to the 
IXP2800 Network Processor and is used to reset all the internal functions. Its behavior is the same 
as a hardware reset using nRESET pin.

10.3.3 Watchdog Timer-Initiated Reset 
The IXP2800 Network Processor provides a watchdog timer that can cause a reset if the Watchdog 
timer expires and the Watchdog enable bit WDE in the Timer Watchdog Enable register is also set. 
The Intel XScale® core should be programmed to reset the watch dog timer periodically to ensure 
that it does not expire. If a watchdog timer expires, it is assumed that the Intel XScale® core has 
ceased executing instructions properly. When the timer expires, the Watchdog History 
register bit[0] is set which can be read by the software later on.

The following sections define IXP2800 Network Processor behavior for the watchdog event.

Figure 134. Reset Generation
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10.3.3.1 Slave Network Processor (Non-Central Function)

• If the Watchdog timer reset enable bit set to 1, Watchdog reset will trigger the soft reset

• If the Watchdog timer reset enable bit set to 0, Watchdog reset will trigger the PCI interrupt to 
external PCI host (if interrupt is enabled by PCI Outbound Interrupt Mask Register[3]). 
External PCI host can check the IXP2800 error status and log the error then reset the Slave 
IXP2800 Network Processor only or reset all the PCI devices (assert the PCI_RST_L).

• If the Watchdog history bit is already set when a new watchdog event happens, the Watchdog 
timer reset enable bit is disregarded and a soft reset is generated.

10.3.3.2 Master Network Processor (PCI Host, Central Function)

• If the Watchdog timer reset enable bit is set to 1, Watchdog reset will trigger the soft reset and 
set the watchdog history bit.

• If the Watchdog timer reset enable bit is set to 0, check the watchdog history bit. If is already 
set, generate soft reset. If the watchdog history bit is not set already, watchdog reset will just 
set the watchdog history bit and no further action is taken. 

10.3.3.3 Master Network Processor (Central Function)

• If the Watchdog timer reset enable bit is set to 0, Watchdog reset will trigger the PCI interrupt 
to external PCI host (if interrupt is enabled by PCI Outbound Interrupt Mask Register[3]). 

• If the Watchdog history bit is already set when a new watchdog event happens, the Watchdog 
timer reset enable bit is disregarded, and a soft reset is generated.

• If the Watchdog timer reset enable bit is set to 1, Watchdog reset will trigger the soft reset.

10.3.4 Software-Initiated Reset
The Intel XScale® core or external PCI bus master can reset specific functions in the IXP2800 
Network Processor by writing to the IXP_RESET0 and IXP_RESET1 registers. All the individual 
microengines and specific units can be reset individually in this fashion.

Software reset initiated by the Reset All bit in the IXP_RESET0 register behaves almost the same 
as hardware resets in the sense that PLL and rest of the core gets reset. The only difference between 
soft reset and hard reset is that a 512-cycle counter is added at the output of the RESET_ALL bit 
going to the PLL unit for chip reset generation. The PCI unit in the meantime detects the bus idle 
condition and generates a local reset. This local reset is removed once chip reset is generated and 
chip reset then takes over the reset function of PCI unit.

Both hardware and software resets (software reset after 512 cycles delay) combined generate 
PLL_RST for the PLL logic. During the assertion of PLL_RST, PLL block remains in the bypass 
mode and passes the incoming clock directly to the core logic. At this time everyone inside the core 
gets the same basic clock. The Clock Control register is reset to 0x0FFF_FFFF using the same 
signal.

Once the PLL_RST signal goes away, the PLL starts generating divide_by_2 clock for the 
Microengines, divide_by_4 clock for the Intel XScale® core and divide_by_16 clock for the rest of 
the chip (not using divide_by_4 clock) after inserting 16 – 32 idle clocks. Once the clock control 
CSR is written by software, the PLL block detects it by finding a change in value of this register. 
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Once in operation, if the watchdog timer expires with watchdog timer enable bit WDE from Timer 
Watchdog Enable register set, a reset pulse from the watchdog timer logic goes to PLL unit after 
passing through a counter to guarantee minimum assertion time, which in turn resets the 
IXP_RESETn registers that cause the entire chip to be reset. 

Figure 134 explains the reset generation for the PLL logic and for the rest of the core. CORE_RST 
is used inside the IXP2800 to reset everything; PLL_RST can be disabled.

10.3.5 Reset Removal Operation Based on CFG_PROM_BOOT 
Reset removal based on the CFG_PROM_BOOT strap option (BOOT_PROM) can be divided into 
two parts:

1. When CFG_PROM_BOOT is 1 (BOOT_PROM is present).

2. When CFG_PROM_BOOT is 0 (BOOT_PROM is not present).

10.3.5.1 When CFG_PROM_BOOT is 1 (BOOT_PROM is Present)

After CORE_RST is de-asserted, reset from the Intel XScale® core, SHaC, and CMDARB is 
removed. Once the Intel XScale® core reset is removed, the Intel XScale® core starts initializing 
the chip. The Intel XScale® core writes the ‘clock control CSR’ to define the operating frequencies 
of different units. The Intel XScale® core writes IXP_RESET0[21] to allow the PCI logic to start 
accepting transactions on the PCI bus as part of initialization process.

10.3.5.2 When CFG_PROM_BOOT is 0 (BOOT_PROM is Not Present)

After CORE_RST is de-asserted, IXP_RESET0[21] is set, allowing the PCI unit to start accepting 
transactions on the PCI bus. In this mode, the Intel XScale® core is kept in reset. Reset from 
DRAM logic is removed by the PCI host by writing 0 to specific bits in the IXP_RESET0 register. 

10.3.6 Strap Pins
The IXP2800 Strap pins for reset and initialization operation are described in Table 149. 
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Table 149. IXP2800 Network Processor Strap Pins

Signal Name Description

CFG_RST_DIR RST_DIR

PCI_RST direction pin: (Also called PCI_HOST) Need to 
be a dedicated pin.
1—IXP2800 Network Processor is the host supporting 
central function. PCI_RST_L is output.
0—IXP2800 Network Processor is not central function. 
PCI_RST_L is input.
This pin is stored at XSC[31] (XScale_Control register) at 
the trailing edge of reset.

CFG_PROM_BOOT GPIO[0]

PCI PROM BOOT Pin:
1—IXP2800 Network Processor will boot from PROM: 
Whether Intel XScale® core will configure the system or not 
will be defined by CFG_PCI_BOOT_HOST strap option.
0—IXP2800 Network Processor will not boot from PROM. 
So after host has downloaded image od boot code into 
DRAM, Intel XScale® core will boot from DRAM address 0. 
This pin is stored at XSC[29] (XScale_Control register) at 
the trailing edge of reset.

CFG_PCI_BOOT_HOST GPIO[1]

PCI BOOT HOST Pin:
1—IXP2800 Network Processor will configure the PCI 
system.
0—IXP2800 Network Processor will not configure the PCI 
system.
This pin is stored at XSC[28] (XScale_Control register) at 
the trailing edge of reset.

CFG_PCI_ARB GPIO[2]

PCI Arbiter Pin:
1—IXP2800 Network Processor is the arbiter on the PCI 
bus.
0—IXP2800 Network Processor is not the arbiter on the 
PCI bus.

PLL_MULT[5:0] SP_AD[5:0]
PLL Multiplier 
Valid values are 010000-110000 for a multiplier range of 16 
– 48. Other values will result in undefined behavior by PLL.

RESET_OUT_STRAP SP_AD[7]
When 1: nRESET_OUT is removed after PLL locks.
When 0: nRESET_OUT is removed by software using bit 
IXP_RESET0[17].

CFG_PCI_SWIN[1:0] GPIO[6:5]

SRAM Bar Window:
11—SRAM BAR size of 256 Mbytes
10—SRAM BAR size of 128 Mbytes
01—SRAM BAR size of 64 Mbytes
00—SRAM BAR size of 32 Mbytes

CFG_PCI_DWIN[1:0] GPIO[4:3]

DRAM BAR Window:
11—DRAM BAR size of 1024 Mbytes
10—DRAM BAR size of 512 Mbytes
01—DRAM BAR size of 256 Mbytes
00—DRAM BAR size of 128 Mbytes

CFG_MSF_FREQ_SEL SP_AD[6]
Select source of MSF Tx Clock:
0—TCLK_Ref input pin
1—Internally generated clock
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Table 150 lists the supported Strap combinations of CFG_PROM_BOOT, CFG_RST_DIR, and 
CFG_PCI_BOOT_HIST.

One more restriction in the PCI unit is that, if the IXP2800 Network Processor is a PCI_HOST or 
PCI_ARBITER, it should also be PCI_CENTRAL_FUNCTION.

10.3.7 Powerup Reset Sequence
When the system is powered up, bypass clock is sent to all the units as the chip begins to power up. 
It will merely be used to allow a gradual power up and to begin clocking state elements to remove 
possible circuit contention. When PLL gets locked after nRESET is de-asserted, it will start 
generating divide_by_16 clocks for all the units. Reset from the IXP_RESET register is also 
removed at the same time. When software updates the clock count register, clocks are again 
stopped for 32 cycles and then start again. 

The reset sequence described above is the same in the case when reset happens through the 
PCI_RST_L signal and CFG_RST_DIR is asserted.

Once in operation, if watchdog timer expires with watchdog timer enable bit (bit [0] in the Timer 
Watchdog Enable register ON, a reset pulse from the watchdog timer logic resets the IXP_RESETn 
registers and in turn causes the entire network processor to be reset.

10.4 Boot Mode
The IXP2800 can boot in following two modes:

• Flash ROM

• PCI Host Download

Figure 135 shows the IXP2800 Network Processor Boot process.

Table 150. Supported Strap Combinations

CFG_PROM_BOOT, CFG_RST_DIR, CFG_PCI_BOOT_HOST Result

000 Allowed

001 Allowed

010 Not allowed

011 Not allowed

100 Allowed

101 Allowed

110 Allowed

111 Allowed
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Figure 135. Boot Process
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Media, etc.

3. If CFG_RST# signal after 
1 ms timeout once PCI 
clock active is detected.

4. Retries PCI config cycles.
5. Programs PCI BAR 
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Reset Signal deasserted. If CFG_RST_DIR 
is 1, the Network Processor drives PCI 
RST# signal. If CFG_RST_DIR is 0, 
PCI_RST# is input. 

END
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10.4.1 Flash ROM
At power up, if FLASH_ROM is present, strap pin CFG_PROM_BOOT should be sampled 1 
(should be pulled up). Therefore after reset being removed by the PLL logic from the 
IXP_RESET0 register, the Intel XScale® core reset is automatically removed. Flash Alias Disable 
(bit [8] of Misc Control register) information is used by the Intel XScale® core gasket to decide 
where to forward address 0 from the Intel XScale® core when the Intel XScale® core wakes up and 
starts accessing the code from address 0. In this mode, since “flash alias disable” bit is reset to 0, 
the Intel XScale® core gasket will convert access to address 0 to PROM access from address 0 
using the CAP command. Based on the code residing inside PROM, the Intel XScale® core starts 
removing reset from SRAM, PCI, DRAM, Microengines etc. by writing 0 in their corresponding 
bit location of IXP_RESETn register and then initializing their configuration registers.

Boot code in PROM can change flash alias disable bit to 1 anytime to map DRAM at address 0 and 
therefore block further accesses to PROM at address 0. This change should be done before putting 
any data in DRAM at address 0. 

The Intel XScale® core also sets different BARs inside PCI unit to define memory requirements for 
different windows.

The Intel XScale® core behavior as a host is controlled by CFG_PCI_BOOT_HOST strap option. 
If CFG_PCI_BOOT_HOST is sampled asserted in the de-asserting edge of reset, the Intel XScale® 
core will behave as boot host and configure the PCI system.

10.4.2 PCI Host Download
At power up, if FLASH_ROM is not present, strap pin CFG_PROM_BOOT should be sampled 0 
(should be pulled down). In this mode CFG_RST_DIR pin should be 0 at power up signaling 
PCI_RST_L pin is an input that behaves as global chip reset.

1. Even after reset is removed by the PLL logic from IXP_RESET0 register (after PCI_RST_L 
reset is de-asserted), the Intel XScale® core reset is not removed.

2. PCI Reset through IXP_RESET0 [16] is removed automatically after being set and reset being 
removed.

3. IXP_RESET0[21] is set after PCI_RST_L has been removed and PLL_LOCK is sampled 
asserted.

4. Once IXP_RESET0[21] is set, PCI unit starts responding to transactions.

5. PCI Host first configures CSR, SRAM and DRAM base address registers after reading size 
requirements for these BARs. The size for CSR, SRAM and DRAM is defined by the use of 
Strap pins. Pre-fetchability for the window is defined by bit [3] of the respective BAR 
registers; therefore when host reads these registers, bit [3] is returned as 0 for CSR, SRAM and 
DRAM defining CSRs and also if SRAM and DRAM are to be non-prefetchable. Type Bits 
[2:0] are always Read-Only and return the value of 0x0 when read for CSR, SRAM and 
DRAM BAR registers.

6. PCI Host also programs Clock Control CSR, for PLL unit to generate proper clocks for 
SRAM, DRAM and other units.

Once these base address registers have been programmed, PCI host programs DRAM channels by 
initializing SDRAM_CSR, SDRAM_MEMCTL0, SDRAM_MEMCTL1 and SDRAM_MEMINIT 
registers. Once these registers have been programmed, PCI host writes the BOOT Code in DRAM 
starting at DRAM address 0. PCI Host can also program other registers if required. Once the boot 
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code is written in DRAM, PCI host writes 1 at bit [8] of Misc_Control register called Flash Alias 
Disable (Reset value 0). The Alias Disable bit can be wired to the Intel XScale® core gasket 
directly so that gasket knows how to transform address 0 from the Intel XScale® core. After 
writing 1 at Flash Alias Disable bit, host removes reset from the Intel XScale® core by writing 0 in 
bit [0] of IXP_RESET0 register. The Intel XScale® core starts booting from address 0, which is 
now directed by the gasket to DRAM.

10.5 Initialization
Refer to the Intel® IXP2800 Network Processor Hardware Initialization Reference Manual for 
information about the initialization of all units of the IXP2800 Network Processor.
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Performance Monitor Unit 11

11.1 Introduction
The Performance Monitor Unit (PMU) is a hardware block consisting of counters and comparators 
that can be programmed and controlled by using a set of configured registers to monitor and to fine 
tune performance of different hardware units in the IXP2800 Network Processor. The total number 
of such counters needed is determined based on the different events and functions that must be 
monitored concurrently. Observation of such events on the chip is used for statistical analysis, 
uncovering bottlenecks, and to tune the software to fit the hardware resources.

11.1.1 Motivation for Performance Monitors
For a given set of functionality, a measure of performance is very important in making decisions on 
feature sets to be supported, and to tune the embedded software on the chip. An accurate estimate 
of latency and speed in hardware blocks enables firmware and software designers to understand the 
limitations of the chip and to make prudent judgments about its software architecture. The current 
generation does not provide any performance monitor hooks. 

Since IXP2800 Network Processors are targeted for high performance segments (OC-48 and 
above), the need for tuning the software to get the most out of the hardware resources becomes 
extremely critical. The performance monitors provide valuable insight into the chip by providing 
real-time data on latency and utilization of various resources. See Figure 136 for the Performance 
Monitor Interface Block Diagram.
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11.1.2 Motivation for Choosing CHAP Counters
The Chipset Hardware Architecture Performance (CHAP) counters enable statistics gathering of 
internal hardware events in real-time. This implementation provides users with direct event 
counting and timing for performance monitoring purposes, and provides enough visibility into the 
internal architecture to perform utilization studies and workload characterization. 

This implementation can also be used for chipset validation, higher-performing future chipsets, and 
applications tuned to the current chipset. The goal is that this will benefit both internal and external 
hardware and software development. The primary motivation for selecting the CHAP architecture 
for use in the IXP2800 Network Processor product family is that it has been designed and validated 
in several Intel desktop chipsets and the framework also provides a software suite that may be 
reused with little modification.

Figure 136. Performance Monitor Interface Block Diagram
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11.1.3 Functional Overview of CHAP Counters
At the heart of the CHAP counter’s functionality are counters, each with associated registers. Each 
counter has a corresponding command, event, status, and data register. The smallest 
implementation has two counters, but if justified for a particular product, this architecture can 
support many more counters. The primary consideration is available silicon area. The memory-
mapped space currently defined can accommodate registers for 256 counters. It can be configured 
for more, but that is beyond what is currently practical.

Signals that represent events from throughout the chip are routed to the CHAP unit. Software can 
select events that are recorded during a measurement session. The number of counters in an 
implementation defines the number of events that can be recorded simultaneously. Software and 
hardware events can control the starting, stopping, and sampling of the counters. This can be done 
in a time-based (polling) or an event-based fashion. Each counter can be incremented or 
decremented by different events. In addition to simple counting of events, the unit can provide data 
for histograms, queue analysis, and conditional event counting (for example, the number of times 
that event A happens before the first event B takes place).

When a counter is sampled, the current value of the counter is latched into the corresponding data 
register. The command, event, status, and data registers are accessible via standard Advanced 
Peripheral Bus (APB) memory-mapped registers, to facilitate high-speed sampling.

Two optional external pins allow for external visibility and control of the counters. The output pin 
signals that one of the following conditions generated an interrupt from any one of the counters:

• A programmable threshold condition was true.

• A command was triggered to begin.

• A counter overflow or underflow occurred.

The input pin allows an external source to control when a CHAP command is executed.

Figure 137 represents a single counter block. The multiplexers, registers, and all other logic are 
repeated for each counter that is present. There is a threshold event from each counter block that 
feeds into each multiplexer.
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11.1.4 Basic Operation of the Performance Monitor Unit
At power-up, the Intel XScale® core invokes the performance monitoring software code. The PMU 
software has the application code to generate different types of data, such as histograms and 
graphs. It also has a device driver to configure and read data from the PMU in the IXP2800 
Network Processor. This software programs the configuration registers in the PMU block to 
perform a certain set of monitoring and data collection. PMU CHAP counters execute the 
commands programmed by the Intel XScale® core and they collect various types of data such as 
latency and counts. Upon collection, it triggers an interrupt to the Intel XScale® core to indicate the 
completion of monitoring.

The Intel XScale® core either periodically monitors the PMU registers or waits for an interrupt to 
collect the observed data. The Intel XScale® core uses the APB to communicate with the PMU 
configuration registers.

Figure 138 represents a block diagram of the IXP2800 Network Processor and Performance 
Monitor Unit’s (PMU) in relation to other hardware blocks in the chip.

Figure 137. Block Diagram of a Single CHAP Counter
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11.1.5 Definition of CHAP Terminology

Figure 138. Basic Block Diagram of IXP2800 Network Processor with PMU
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11.1.6 Definition of Clock Domains
The following abbreviations are used in the events table under clock domain.

11.2 Interface and CSR Description
CAP is a standard logic block provided as part of the Network Processor that provides a method of 
interfacing to the ARM APB. This bus supports standard APB peripherals such as PMU, UART, 
Timers, and GPIO as well as CSRs that do not need to be accessed by the Microengines.

As shown in Figure 139, CAP uses three bus interfaces to support these modes. CAP supports a 
target ID of 0101, which Microengine assemblers should identify as a CSR instruction.

Table 151 shows the Intel XScale® core and Microengine instructions used to access devices on 
these buses and it shows which buses are used during the operation. For example, to read an APB 
peripheral such as a UART CSR, a Microengine would execute a csr[read] instruction and the Intel 
XScale® core would execute a Load (ld) instruction. Data is then moved between the CSR and the 
Intel XScale® core/Microengine by first reading the CSR via the APB and then writing the result to 
the Intel XScale® core/Microengine via the Push Bus.

P_CLK The Command Push/Pull Clock also known as the Chassis clock. This clock is 
derived from the Microengine (ME) Clock. It is one-half of the Microengine clock.

T_CLK Microengine Clock.

MTS_CLK MSF Flow Control Status LVTTL Clock TS_CLK.

MRX_CLK MSF Flow Control Receive LVDS Clock RX_CLK.

MR_CLK MSF Receive Data Clock R_CLK.

MT_CLK MSF Transmit Data Clock T_CLK.

MTX_CLK MSF Flow Control Transmit LVDS Clock TX_CLK.

D_CLK DRAM Clock.

S_CLK SRAM Clock.

APB_CLK Advance Peripheral Bus Clock.

Figure 139. CAP Interface to the APB
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11.2.1 APB Peripheral
The APB is part of the AMD* controller Bus Architecture (AMBA) hierarchy of buses that is 
optimized for minimal power consumption and reduced design complexity. The PMU needs to 
operate as an APB peripheral, interfacing with rest of the chip via the APB. The PMU needs to 
have an APB interface unit, which can perform a APB reads and writes to enable data transfer to 
and from the PMU registers.

11.2.2 CAP Description

11.2.2.1 Selecting the Access Mode

The CAP selects the appropriate access mode based on the COMMAND and ADDRESS fields 
from the Command Bus.

11.2.2.2 PMU CSR 

Please refer to Intel IXP2400 and IXP2800 Network Processor Programmer's Reference Manual. 

11.2.2.3 CAP Writes

For an APB write, CAP arbitrates for the S_Pull_Bus, pulls the write data from the source 
identified in PP_ID (either a Microengine transfer register or Intel XScale® core write buffer), and 
puts it into the CAP Pull Data FIFO. It then drives the address and writes data onto the appropriate 
bus. CAP CSRs locally decode the address to match their own. CAP generates a separate APB — 
devices select signal for each CAP device (up to 15 devices). If the write is to an APB CSR, the 
Control Logic maintains valid signaling until the APB_RDY_H signal is returned. (The APB RDY 
signal is an extension to the APB specification specifically added for the Network Processor).

CAP supports write operations with burst counts greater than 1. CAP looks at the length field on 
the command bus and breaks each count into a separate APB write cycle, incrementing the CSR 
number for each bus access.

11.2.2.4 CAP Reads

For an APB read, CAP drives the address, write, select, and enable signals, and waits for the 
acknowledge signal (APB_RDY_H) from the APB device. For a CAP CSR read, CAP drives the 
address, which controls a tree of multiplexers to select the appropriate CSR. CAP then waits for the 

Table 151. APB Usage

Accessing Read Operation Write Operation

APB Peripheral

Access Method: 
• Microengine: csr[read]
• Intel XScale® core: ld 

Access Method: 
• Microengine: csr[write]
• Intel XScale® core: st

Bus Usages: 
• Read source: APB
• Write destination: Push bus

Bus Usages: 
• Read source: Pull Bus
• Write destination: APB
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acknowledge signal (CAP_CSR_RD_RDY). When the data is returned, CAP puts the read data 
into the Push Data FIFO, arbitrates for the S_Push_Bus, and then the Push/Pull Arbiter pushes the 
data to the destination identified in PP_ID.

11.2.3 Configuration Registers
Because the CHAP unit resides on the APB, the offset associated with each of these registers is 
relative to the Memory Base Address that the configuration software sets in the PMUADR register.

Each counter has one command, one event, one status, and one data register associated with it. 
Each counter is “packaged” with these four registers in a “counter block”. Each implementation 
selects the number of counters it will implement, and therefore how many counter blocks (or slices) 
it will have. These registers are numbered 0 through N - 1 where N represents the number of 
counters - 1. See Figure 140.

11.3 Performance Measurements
There are several measurements that can be made on each of the hardware blocks. These 
measurements together would enable improvements in hardware and software implementation and 
architectural issues. Table 152 describes the different blocks and their associated performance 
measurement events.

Figure 140. Conceptual Diagram of Counter Array
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Table 152. Hardware Blocks and Their Performance Measurement Events (Sheet 1 of 2)

Hardware 
Block Performance Measurement Event Description

Intel XScale® Core

DRAM Read Head of Queue Latency 
Histogram

The Intel XScale® core generates a read or write command to the 
DRAM primarily to either push or pull data of the DDRAM. These 
commands are scheduled to the DRAM through the push-pull arbiter 
through a command FIFO in the gasket. The DRAM-read head of queue 
enables the PMU to monitor when the read and write commands posted 
by the Intel XScale® core in the gasket gets fetched and delivered to 
DDRAM.

SRAM Read Head of Queue Latency 
Histogram

The Intel XScale® core generates a read or write command to the 
SRAM primarily to either push or pull data of the SRAM. These 
commands are scheduled to the SRAM through the push-pull arbiter 
through a command FIFO in the gasket. The SRAM-read head of queue 
enables the PMU to monitor when the read and write commands posted 
by the Intel XScale® core in the gasket gets fetched and delivered to 
SRAM.

Interrupts
Number of interrupts seen.
Histogram of time between interrupts.

Microengines

Command FIFO Number of 
Commands

These statistics give the number of the commands issued by the 
Microengine in a particular period of time. It also can count each 
different thread.

Control Store Measures

Count time between two microstore locations (locations can be set by 
instrumentation software).
Histogram time between two microstore locations (locations can be set 
by instrumentation software)

Execution Unit Status Histogram of stall time. Histogram of aborted time. Histogram of 
swapped out time. Histogram of idle time.

Command FIFO Head of Queue Wait 
Time Histogram (Latency)

This is to measure the latency of a command, which is at the head of 
the queue and is waiting to be sent out to the destination over the 
chassis.

SRAM

SRAM Commands A count of SRAM commands received. These are maskable by 
command type such as Put and Get.

SRAM Bytes, Cycles Busy This measurement describes the number of bytes transferred and the 
SRAM busy time.

Queue Depth Histogram
This measurement analyzes the different queues such as ordered, 
priority, push queue, pull queue, read lock fail, and HW queues, and 
provides information about utilization.

DRAM

DRAM Commands This measurement lists the total commands issued to the DRAM, and 
they can be counted based on command type and error type. 

DRAM Bytes, Cycles Busy This measurement indicates the DRAM busy time and bytes 
transferred.

Maskable by Read/Write, 
Microengine, PCI, or the Intel XScale® 
Core

This measurement indicates the different accesses that are initiated to 
the DRAM. These measurements could be for all the accesses to the 
memory or can be masked using a specific source such as PCI, the 
Intel XScale® core, or Microengine. This can further be measured 
based on read or write cycles.
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Chassis/Push-Pull

Command Bus Utilization

These statistics give the number of the command requests issued by 
the different Masters in a particular period of time. 
This measurement also indicates how long it takes to issue the grant 
from the request being issued by the different Masters. 

Push and Pull Bus Utilization This measurement keeps track of the number of accesses issued and 
how long it takes to send the data to its destination. 

Hash

Number of Accesses by Command 
Type

This measurement indicates the number of hash accesses issued; this 
count is maskable, based on command type.

Latency of Histogram This monitors the latency through each of the HASH queues.

Scratch

Number of Accesses by Command 
Type

This measurement indicates the number of Scratch accesses issued 
and this count is maskable, based on command type.

Number of Bytes Transfer This measurement indicates total number of bytes transferred to or from 
Scratch.

Latency of Histogram This measurement indicates the latency of performing read or write from 
the Scratch. Latency in command executions may also be measured. 

PCI

Master Accesses
These statistics give the number of Master accesses that were 
generated by the PCI blocks. This measurement can be counted based 
on individual command type.

Slave Accesses
These statistics give the number of Slave accesses that were generated 
by the PCI blocks. This measurement can be counted based on 
individual command type.

Master/Slave Read Byte Count
This statistics give the total number of bytes of data that were generated 
by the PCI Master/Slave reads access. This measurement can be 
counted based on individual command type.

Master/Slave Write Byte Count
These statistics give the total number of bytes of data that were 
generated by the PCI Master/Slave write accesses. This measurement 
can be counted based on individual command type.

Burst Size Histogram These statistics give a histogram of the number of various burst sizes.

Media Interface

TBUF Occupancy Histogram This measurement shows the occupancy rate at different depths of the 
FIFO. This can help in better utilization of TBUF.

RBUF Occupancy Histogram This measurement shows the occupancy rate at different depths of the 
FIFO. This can help in better utilization of RBUF.

Packet/Cell/Frame Count on a Per-
Port Basis

This measurement gives the count of number of packets or cells or 
frames transferred in Transmitting mode. This measurement gives the 
count of number of packets or cells or frames transferred in the 
receiving mode. This may be measured using a per-port basis.

Inter-arrival Time for Packets on a 
Per-Port Basis

This measurement can provide information on gaps between packets, 
thereby indicating effective line rate.

Burst Size Histogram This measurement gives the various burst sizes of packets being 
transmitted and received.

Table 152. Hardware Blocks and Their Performance Measurement Events (Sheet 2 of 2)

Hardware 
Block Performance Measurement Event Description
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11.4 Events Monitored in Hardware
Tables in this section describe the events that can be measured, including the name of the event and 
the Event Selection Code (ESC). Refer to Section 11.4 for tables showing event selection codes.

The acronyms in the event names typically represent unit names.The guidelines for which events a 
particular component must implement are provided in the following sections.

11.4.1 Queue Statistics Events

11.4.1.1 Queue Latency

Latency of Queue is an indicator of the control logic performance in terms of effective execution of 
the commands in the Control/Command queue or, the control logic’s ability to effectively transfer 
data from the Data Queue.

This kind of monitoring needs observation of specific events such as:

• Enqueue into the Queue
This event indicates when an entry was made to the queue.

• Dequeue into the Queue
This event indicates when an entry was removed from the queue. The time period between 
when a particular entry was made into the queue and when the entry was removed from the 
queue indicates the latency of the queue for that entry.

• Queue Full Event
This event indicates when the queue has no room for additional entries.

• Queue Empty Event
This event indicates when the queue has no entries.

Queue Full and Queue Empty events can be used to determine Queue Utilization and bandwidth 
available in the queue to determine how to handle more traffic.

11.4.1.2 Queue Utilization

Utilization of Queue is determined by observing the percentage of time each queue is operating at a 
particular threshold level. Based on Queue size, multiple threshold values can be predetermined 
and monitored. The result of these observations can be used to provide histograms for Queue 
utilization. This kind of observation helps us better utilize the available resources in the queue.

11.4.2 Count Events

11.4.2.1 Hardware Block Execution Count

On each of the hardware blocks, events of importance such as number of commands executed, 
number of bytes transferred, total amount of clock-blocks that are free, and the total amount of time 
all of the contexts in the Microengine were idle can be counted as statistics, for managing the 
available resources.
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11.4.3 Design Block Select Definitions
Once an event is defined, its definition must remain consistent between products. If the definition 
changes, it should have a new event selection code. This document contains the master list of all 
ESCs in all CHAP-enabled products. Not all of the ESCs in this document are listed in numerical 
order. The recommendation is to group similar events within the following ESC ranges.
See Table 153.

Table 153. PMU Design Unit Selection (Sheet 1 of 2)

Target Device Target ID PMU Design Group Block # Description

Null xxx xxx 0000
Null (False) Event

PMU_Counter xxx xxx
0001

(PMU) 

CHAP Counters Internal 
Threshold Events
Event bit 0 CHAP Counter 0
Event bit 1 CHAP Counter 1
Event bit 2 CHAP Counter 2
Event bit 3 CHAP Counter 3
Event bit 4 CHAP Counter 4
Event bit 5 CHAP Counter 5

SRAM Group

SRAM_DP1 001 001

0010
(SRAM Group)

one and only one will be 
selected from same group

SRAM channel 0
SRAM channel 1
SRAM channel 2
SRAM channel 3
SRAM d-push
SRAM d-pull 

SRAM_DP0 001 010

SRAM_CH3 001 011

SRAM_CH2 001 100

SRAM_CH1 001 101

SRAM_CH0 001 110

DRAM Group

DRAM_CR1 010 000

0011
(DRAM)

one and only one will be 
selected from same group

DRAM channel 0
DRAM channel 1
DRAM channel 2
DRAM d-push
DRAM d-pull 

DRAM_CR0 010 001

DRAM_DPLA 010 010

DRAM_DPSA 010 011

DRAM_CH2 010 100

DRAM_CH1 010 101

DRAM_CH0 010 110

XPI 000 001
0100
(XPI)

XPI

SHaC 000 010 0101

MSF 000 011 0110 Media
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11.4.4 Null Event
Not an actual event. When used as an increment or decrement event, no action takes place. When 
used as a Command Trigger, it causes the command to be triggered immediately after the command 
register is written to by the software. Also called False Event. Not reserved.

Intel XScale® core 000 100 0111 Intel XScale® core

PCI 000 101 1000 PCI

ME Cluster 0 Group

ME07
ME06
ME05
ME04
ME03
ME02
ME01
ME00

100 111
100 110
100 101
100 100
100 011
100 010
100 001
100 000

1001
(MEC0)

one and only one will be 
selected from same group

ME Channel 0
ME00 
ME01
ME02
ME03
ME04 
ME05 
ME06
ME07 

ME Cluster 1 Group

ME17
ME16
ME15
ME14
ME13
ME12
ME11
ME10

110 111
110 110
110 101
110 100
110 011
110 010
110 001
110 000

1010
(MEC1)

one and only one will be 
selected from same group

ME Channel 1
ME10 
ME11
ME12
ME13
ME14 
ME15 
ME16
ME17 

1011-1111 Reserved

Table 153. PMU Design Unit Selection (Sheet 2 of 2)

Target Device Target ID PMU Design Group Block # Description
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11.4.5 Threshold Events
These are the outputs of the threshold comparators. When the value in a data register is compared 
to its corresponding counter value and the condition is true, a threshold event is generated. 
This results in:

• A pulse on the signal lines that are routed to the event’s input port (one signal line from each 
comparator).

• One piece of functionality this enables is to allow for CHAP commands to be completed only 
when a Threshold Event occurs. In other words, a Threshold Event can be used as a Command 
Trigger to control the execution of any CHAP command (start, stop, sample, etc.). See 
Table 154.

Table 154. Chap Counter Threshold Events (Design Block # 0001)

Multiplexer # Event Name Clock
Domain

Single 
pulse/
Long
pulse

Burst Description 

000 Counter 0 Threshold P_CLK single separate Threshold Condition True on 
Event Counter 0

001 Counter 1 Threshold P_CLK single separate Threshold Condition True on 
Event Counter 1

010 Counter 2 Threshold P_CLK single separate Threshold Condition True on 
Event Counter 2

011 Counter 3 Threshold P_CLK single separate Threshold Condition True on 
Event Counter 3

100 Counter 4 Threshold P_CLK single separate Threshold Condition True on 
Event Counter 4

101 Counter 5 Threshold P_CLK single separate Threshold Condition True on 
Event Counter 5
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11.4.6 External Input Events

11.4.6.1 XPI Events Target ID(000001) / Design Block #(0100)

Table 155. XPI PMU Event List (Sheet 1 of 4)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 XPI_RD_P APB_CLK single separate It includes all the read accesses, PMU, timer, GPIO, 
UART, and Slowport.

1 XPI_WR_P APB_CLK single separate It includes all the write accesses, PMU, timer, GPIO, 
UART, and Slowport.

2 PMU_RD_P APB_CLK single separate It executes the read access to the PMU unit.

3 PMU_WR_P APB_CLK single separate It executes the write access to the PMU unit.

4 UART_RD_P APB_CLK single separate It executes the read access to the UART unit.

5 UART_WR_P APB_CLK single separate It executes the write access to the UART unit.

6 GPIO_RD_P APB_CLK single separate It executes the read access to the GPIO unit.

7 GPIO_WR_P APB_CLK single separate It executes the write access to the GPIO unit.

8 TIMER_RD_P APB_CLK single separate It executes the read access to the Timer unit.

9 TIMER_WR_P APB_CLK single separate It executes the write access to the Timer unit.

10 SPDEV_RD_P APB_CLK single separate It executes the read access to the Slowport Device.

11 SPDEV_WR_P APB_CLK single separate It executes the write access to the Slowport Device.

12 SPCSR_RD_P APB_CLK single separate It executes the read access to the Slowport CSR.

13 SPCSR_WR_P APB_CLK single separate It executes the write access to the Slowport CSR.

14 TM0_UF_P APB_CLK single separate It shows the occurrence of timer 1 counter underflow.

15 TM1_UF_P APB_CLK single separate It shows the occurrence of timer 2 counter underflow.

16 TM2_UF_P APB_CLK single separate It shows the occurrence of timer 3 counter underflow.

17 TM3_UF_P APB_CLK single separate It shows the occurrence of timer 4 counter underflow.

18 IDLE0_0_P APB_CLK single separate It displays the idle state of the state machine 0 for the 
mode 0 of Slowport.

19 START0_1_P APB_CLK single separate It enters the start state of the state machine 0 for the 
mode 0 of Slowport.

20 ADDR10_3_P APB_CLK single separate It enters the first address state, AD[9:2], of the state 
machine 0 for the mode 0 of Slowport.

21 ADDR20_2_P APB_CLK single separate It enters the second address state, AD[17:10], of the 
state machine 0 for the mode 0 of Slowport.

22 ADDR30_6_P APB_CLK single separate It enters the third address state, AD[24:18], of the 
state machine 0 for the mode 0 of Slowport.

23 SETUP0_4_P APB_CLK single separate It enters data setup state of the state machine 0 for 
the mode 0 of Slowport.

24 PULW0_5_P APB_CLK single separate It enters data duration state of the state machine 0 for 
the mode 0 of Slowport.

25 HOLD0_D_P APB_CLK single separate It enters data hold state of the state machine 0 for the 
mode 0 of Slowport.
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26 TURNA0_C_P APB_CLK single separate It enters the termination state of the state machine 0 
for the mode 0 of Slowport.

27 IDLE1_0_P APB_CLK single separate It displays the idle state of the state machine 1 for the 
mode 1 of Slowport.

28 START1_1_P APB_CLK single separate It enters the start state of the state machine 1 for the 
mode 1 of Slowport.

29 ADDR11_3_P APB_CLK single separate It enters the first address state, AD[7:0], of the state 
machine 1 for the mode 1 of Slowport.

30 ADDR21_2_P APB_CLK single separate It enters the second address state, AD[15:8], of the 
state machine 1 for the mode 1 of Slowport.

31 ADDR31_6_P APB_CLK single separate It enters the second address state, AD[23:16], of the 
state machine 1 for the mode 1 of Slowport.

32 ADDR41_7_P APB_CLK single separate It enters the second address state, AD[24], of the 
state machine 1 for the mode 1 of Slowport.

33 WRDATA1_5_P APB_CLK single separate
It unpacks the data from the APB onto the Slowport 
bus for the state machine 1 for the mode 1 of 
Slowport.

34 PULW1_4_P APB_CLK single separate It enters the pulse width of the data transaction cycle 
for the state machine 1 for the mode 1 of Slowport.

35 CHPSEL1_C_P APB_CLK single separate
It enters the chip select assertion pulse width when 
the state machine 1 is active for the mode 1 of 
Slowport.

36 OUTEN1_E_P APB_CLK single separate
It enters the cycle when the OE is asserted during 
running on the state machine 1 for the mode 1 of 
Slowport.

37 PKDATA1_F_P APB_CLK single separate It enters the read data packing state when the state 
machine 1 is active for the mode 1 of Slowport.

38 LADATA1_D_P APB_CLK single separate It enters the data capturing cycle when the state 
machine 1 is active for the mode 1 of Slowport.

39 READY1_9_P APB_CLK single separate
It enters the acknowledge state to terminate the read 
cycle when the state machine 1 is active for the mode 
1 of Slowport.

40 TURNA1_8_P APB_CLK single separate
It enters the turnaround state of the transaction when 
the state machine 1 is active for the mode 1 of 
Slowport.

41 IDLE2_0_P APB_CLK single separate It displays the idle state of the state machine 2 for the 
mode 2 of Slowport.

42 START2_1_P APB_CLK single separate It enters the start state of the state machine 2 for the 
mode 2 of Slowport.

43 ADDR12_3_P APB_CLK single separate It enters the first address state, AD[7:0], of the state 
machine 2 for the mode 2 of Slowport.

44 ADDR22_2_P APB_CLK single separate It enters the second address state, AD[15:8], of the 
state machine 2 for the mode 2 of Slowport.

45 ADDR32_6_P APB_CLK single separate It enters the second address state, AD[23:16], of the 
state machine 2 for the mode 2 of Slowport.

46 ADDR42_7_P APB_CLK single separate It enters the second address state, AD[24], of the 
state machine 2 for the mode 2 of Slowport.

47 WRDATA2_5_P APB_CLK single separate
It unpacks the data from the APB onto the Slowport 
bus for the state machine 2 for the mode 2 of 
Slowport.

Table 155. XPI PMU Event List (Sheet 2 of 4)
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48 SETUP2_4_P APB_CLK single separate It enters the pulse width of the data transaction cycle 
for the state machine 2 for the mode 2 of Slowport.

49 PULW2_C_P APB_CLK single separate It enters the pulse width of the data transaction cycle 
for the state machine 2 for the mode 2 of Slowport.

50 HOLD2_E_P APB_CLK single separate It enters the data hold period for the state machine 2 
for the mode 2 of Slowport.

51 OUTEN2_F_P APB_CLK single separate It starts to assert the OE when the state machine 2 is 
active for the mode 2 of Slowport.

52 PKDATA2_D_P APB_CLK single separate It enters the read data packing state during the active 
state machine 2 for the mode 2 of Slowport.

53 LADATA2_9_P APB_CLK single separate It enters the data capturing cycle during the active 
state machine 2 for the mode 2 of Slowport.

54 READY2_B_P APB_CLK single separate
It enters the acknowledge state to terminate the read 
cycle when the state machine 2 is active for the mode 
2 of Slowport.

55 TURNA2_8_P APB_CLK single separate
It enters the turnaround state of the transaction when 
the state machine 2 is active for the mode 2 of 
Slowport.

56 IDLE3_0_P APB_CLK single separate It displays the idle state of the state machine 3 for the 
mode 3 of Slowport.

57 START3_1_P APB_CLK single separate It enters the start state of the state machine 3 for the 
mode 3 of Slowport.

58 ADDR13_3_P APB_CLK single separate It enters the first address state, AD[7:0], of the state 
machine 3 for the mode 3 of Slowport.

59 ADDR23_2_P APB_CLK single separate It enters the second address state, AD[15:8], of the 
state machine 3 for the mode 3 of Slowport.

60 ADDR33_6_P APB_CLK single separate It enters the second address state, AD[23:16], of the 
state machine 3 for the mode 3 of Slowport.

61 ADDR43_7_P APB_CLK single separate It enters the second address state, AD[24], of the 
state machine 3 for the mode 3 of Slowport.

62 WRDATA3_5_P APB_CLK single separate
It unpacks the data from the APB onto the Slowport 
bus for the state machine 3 for the mode 3 of 
Slowport.

63 SETUP3_4_P APB_CLK single separate It enters the pulse width of the data transaction cycle 
for the state machine 3 for the mode 3 of Slowport.

64 PULW3_C_P APB_CLK single separate It enters the pulse width of the data transaction cycle 
for the state machine 3 for the mode 3 of Slowport.

65 HOLD3_E_P APB_CLK single separate It enters the data hold period for the state machine 3 
for the mode 3 of Slowport.

66 OUTEN3_F_P APB_CLK single separate It starts to assert the OE when the state machine 3 is 
active for the mode 3 of Slowport.

67 PKDATA3_D_P APB_CLK single separate It enters the read data packing state during the active 
state machine 3 for the mode 3 of Slowport.

68 LADATA3_B_P APB_CLK single separate It enters the data capturing cycle during the active 
state machine 3 for the mode 3 of Slowport.

69 READY3_9_P APB_CLK single separate
It enters the acknowledge state to terminate the read 
cycle when the state machine 3 is active for the mode 
3 of Slowport.

Table 155. XPI PMU Event List (Sheet 3 of 4)
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70 TURNA3_8_P APB_CLK single separate
It enters the turnaround state of the transaction when 
the state machine 3 is active for the mode 3 of 
Slowport.

71 IDLE4_0_P APB_CLK single separate It displays the idle state of the state machine 4 for the 
mode 4 of Slowport.

72 START4_1_P APB_CLK single separate It enters the start state of the state machine 4 for the 
mode 4 of Slowport.

73 ADDR14_3_P APB_CLK single separate It enters the first address state, AD[7:0], of the state 
machine 4 for the mode 4 of Slowport.

74 ADDR24_2_P APB_CLK single separate It enters the second address state, AD[15:8], of the 
state machine 4 for the mode 4 of Slowport.

75 ADDR34_6_P APB_CLK single separate It enters the second address state, AD[23:16], of the 
state machine 4 for the mode 4 of Slowport.

76 ADDR44_7_P APB_CLK single separate It enters the second address state, AD[24], of the 
state machine 4 for the mode 4 of Slowport.

77 WRDATA4_5_P APB_CLK single separate
It unpacks the data from the APB onto the Slowport 
bus for the state machine 4 for the mode 4 of 
Slowport.

78 SETUP4_4_P APB_CLK single separate It enters the pulse width of the data transaction cycle 
for the state machine 4 for the mode 4 of Slowport.

79 PULW4_C_P APB_CLK single separate It enters the pulse width of the data transaction cycle 
for the state machine 4 for the mode 4 of Slowport.

80 HOLD4_E_P APB_CLK single separate It enters the data hold period for the state machine 4 
for the mode 4 of Slowport.

81 OUTEN4_F_P APB_CLK single separate It starts to assert the OE when the state machine 4 is 
active for the mode 4 of Slowport.

82 PKDATA4_D_P APB_CLK single separate It enters the read data packing state during the active 
state machine 4 for the mode 4 of Slowport.

83 LADATA4_B_P APB_CLK single separate It enters the data capturing cycle during the active 
state machine 4 for the mode 4 of Slowport.

84 READY4_9_P APB_CLK single separate
It enters the acknowledge state to terminate the read 
cycle when the state machine 4 is active for the mode 
4 of Slowport.

85 TURNA4_8_P APB_CLK single separate
It enters the turnaround state of the transaction when 
the state machine 4 is active for the mode 4 of 
Slowport.

Table 155. XPI PMU Event List (Sheet 4 of 4)
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11.4.6.2 SHaC Events Target ID(000010) / Design Block #(0101)
Table 156. SHaC PMU Event List (Sheet 1 of 4)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0
Scratch
Cmd_Inlet_Fifo Not_Empty

P_CLK single separate Scratch Command Inlet FIFO Not Empty

1 Scratch Cmd_Inlet_Fifo Full P_CLK single separate Scratch Command Inlet FIFO Full

2 Scratch Cmd_Inlet_Fifo 
Enqueue P_CLK single separate Scratch Command Inlet FIFO Enqueue

3 Scratch Cmd_Inlet_Fifo 
Dequeue P_CLK single separate Scratch Command Inlet FIFO Dequeue

4 Scratch Cmd_Pipe 
Not_Empty P_CLK single separate Scratch Command Pipe Not Empty

5 Scratch Cmd_Pipe Full P_CLK single separate Scratch Command Pipe Full

6 Scratch Cmd_Pipe 
Enqueue P_CLK single separate Scratch Command Pipe Enqueue

7 Scratch Cmd_Pipe 
Dequeue P_CLK single separate Scratch Command Pipe Dequeue

8 Scratch Pull_Data_Fifo 0 
Full P_CLK single separate Scratch Pull Data FIFO Cluster 0 Full

9 Scratch Pull_Data_Fifo 1 
Full P_CLK single separate Scratch Pull Data FIFO Cluster 1 Full

10 Hash Pull_Data_Fifo 0 Full P_CLK single separate Hash Pull Data FIFO Cluster 0 Full

11 Hash Pull_Data_Fifo 1 Full P_CLK single separate Hash Pull Data FIFO Cluster 1 Full

12 Scratch Pull_Data_Fifo 0 
Not_Empty P_CLK single separate Scratch Pull Data FIFO Cluster 0 Not Empty

13 Scratch Pull_Data_Fifo 0 
Enqueue P_CLK single separate Scratch Pull Data FIFO Cluster 0 Enqueue

14 Scratch Pull_Data_Fifo 0 
Dequeue P_CLK single separate Scratch Pull Data FIFO Cluster 0 Dequeue

15 Scratch Pull_Data_Fifo 1 
Not_Empty P_CLK single separate Scratch Pull Data FIFO Cluster 1 Not Empty

16 Scratch Pull_Data_Fifo 1 
Enqueue P_CLK single separate Scratch Pull Data FIFO Cluster 1 Enqueue

17 Scratch Pull_Data_Fifo 1 
Dequeue P_CLK single separate Scratch Pull Data FIFO Cluster 1 Dequeue

18 Scratch State Machine Idle P_CLK single separate Scratch State Machine Idle

19 Scratch RAM Write P_CLK single separate Scratch RAM Write 

20 Scratch RAM Read P_CLK single separate Scratch RAM Read

21 Scratch Ring_0 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_0_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_0_STATUS indicates full.
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22 Scratch Ring_1 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_1_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_1_STATUS indicates full.

23 Scratch Ring_2 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1 
RING_2_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0
RING_2_STATUS indicates full.

24 Scratch Ring_3 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1
RING_3_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0
RING_3_STATUS indicates full.

25 Scratch Ring_4 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1
RING_4_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_4_STATUS indicates full.

26 Scratch Ring_5 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_5_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_5_STATUS indicates full.

27 Scratch Ring_6 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_6_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_6_STATUS indicates full.

28 Scratch Ring_7 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_7_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_7_STATUS indicates full.

29 Scratch Ring_8 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_8_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_8_STATUS indicates full.

30 Scratch Ring_9 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_9_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_9_STATUS indicates full.

31 Scratch Ring_10 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_10_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_10_STATUS indicates full.

32 Scratch Ring_11 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_11_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_11_STATUS indicates full.

33 Scratch Ring_12 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_12_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_12_STATUS indicates full.

34 Scratch Ring_13 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_13_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_13_STATUS indicates full.

Table 156. SHaC PMU Event List (Sheet 2 of 4)
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35 Scratch Ring_14 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_14_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_14_STATUS indicates full.

36 Scratch Ring_15 Status P_CLK single separate

If SCRATCH_RING_BASE_x[26] = 1, 
RING_15_STATUS indicates empty.
If SCRATCH_RING_BASE_x[26] = 0, 
RING_15_STATUS indicates full.

37 CAP CSR Write P_CLK single separate CAP CSR Write

38 CAP CSR Fast Write P_CLK single separate CAP CSR Fast Write

39 CAP CSR Read P_CLK single separate CAP CSR Read

40 DEQUEUE APB data P_CLK single separate Dequeue APB Data

41 apb_push_cmd_wph P_CLK single separate APB Push Command 

42 APB_PUSH_DATA_REQ_
RPH P_CLK single separate APB Push Data Request

43 APB pull1 FIFO dequeue P_CLK single separate APB Pull Cluster 1 FIFO Dequeue

44 apb_deq_pull1_data_wph P_CLK single separate APB Pull Cluster 1 Data Dequeue

45 data valid in apb pull1 FIFO P_CLK single separate APB Pull Cluster 1 Data FIFO Valid

46 APB pull0 FIFO dequeue P_CLK single separate APB Pull Cluster 0 FIFO Dequeue

47 SCR_APB_TAKE_PULL0_
DATA_WPH P_CLK single separate APB Pull Cluster 0 Data

48 data valid in apb pull0 FIFO P_CLK single separate APB Pull Cluster 0 Data FIFO Valid

49 CAP APB read P_CLK single separate CAP APB Read

50 CAP APB write P_CLK single separate CAP APB Write

51 APB cmd dequeue P_CLK single separate APB Command Dequeue

52 APB CMD FIFO enqueue P_CLK single separate APB Command FIFO Enqueue

53 APB CMD FIFO FULL P_CLK single separate APB Command FIFO Full

54 APB CMD valid P_CLK single separate APB Command Valid

55 Hash Pull_Data_Fifo 0 
Not_Empty P_CLK single separate Hash Pull Data FIFO Cluster 0 Not Empty

56 Hash Pull_Data_Fifo 0 
Enqueue P_CLK single separate Hash Pull Data FIFO Cluster 0 Enqueue

57 Hash Pull_Data_Fifo 0 
Dequeue P_CLK single separate Hash Pull Data FIFO Cluster 0 Dequeue

58 Hash Pull_Data_Fifo 1 
Not_Empty P_CLK single separate Hash Pull Data FIFO Cluster 1 Not Empty

59 Hash Pull_Data_Fifo 1 
Enqueue P_CLK single separate Hash Pull Data FIFO Cluster 1 Enqueue

60 Hash Pull_Data_Fifo 1 
Dequeue P_CLK single separate Hash Pull Data FIFO Cluster 1 Dequeue

61 Hash Active P_CLK single separate Hash Active

62 Hash Cmd_Pipe 
Not_Empty P_CLK single separate Hash Command Pipe Not Empty
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63 Hash Cmd_Pipe Full P_CLK single separate Hash Command Pipe Full

64 Hash Push_Data_Pipe 
Not_Empty P_CLK single separate Hash Push Data Pipe Not Empty

65 Hash Push_Data_Pipe Full P_CLK single separate Hash Push Data Pipe Full

Table 156. SHaC PMU Event List (Sheet 4 of 4)

Table 157. IXP2800 Network Processor MSF PMU Event List (Sheet 1 of 6)

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

0 inlet command FIFO 
enqueue P_CLK pulse separate

1 inlet command FIFO 
dequeue P_CLK pulse separate

2 inlet command FIFO full P_CLK level separate

3 inlet command FIFO not 
empty P_CLK level separate

4 read command FIFO 
enqueue P_CLK pulse separate

5 read command FIFO 
dequeue P_CLK pulse separate

6 read command FIFO full P_CLK level separate

7 read command FIFO not 
empty P_CLK level separate

8 write command FIFO 
enqueue P_CLK pulse separate

9 write command FIFO 
dequeue P_CLK pulse separate

10 write command FIFO full P_CLK level separate

11 write command FIFO not 
empty P_CLK level separate

12 S_PULL data FIFO 0 
enqueue P_CLK pulse separate

13 S_PULL data FIFO 0 
dequeue P_CLK pulse separate

14 S_PULL data FIFO 0 full P_CLK level separate

15 S_PULL data FIFO 0 not 
empty P_CLK level separate

16 Received Data Training P_CLK level separate

17 Received Calendar Training P_CLK level separate

18 Received Flow Control 
Training P_CLK level separate
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19 reserved

20 S_PULL data FIFO 1 
enqueue P_CLK pulse separate

21 S_PULL data FIFO 1 
dequeue P_CLK pulse separate

22 S_PULL data FIFO 1 full P_CLK level separate

23 S_PULL data FIFO 1 not 
empty P_CLK level separate

24 Tbuffer Partition 0 full P_CLK level separate Indicates partition 0 of the tbuffer is full

25 Tbuffer Partition 1 full P_CLK level separate Indicates partition 1 of the tbuffer is full

26 Tbuffer Partition 2 full P_CLK level separate Indicates partition 2of the tbuffer is full

27 reserved

28 Rx_Thread_Freelist 0 
enqueue P_CLK pulse separate

29 Rx_Thread_Freelist 0 
dequeue P_CLK pulse separate

30 Rx_Thread_Freelist 0 full P_CLK level separate

31 Rx_Thread_Freelist 0 not 
empty P_CLK level separate

32 Rx_Thread_Freelist 1 
enqueue P_CLK pulse separate

33 Rx_Thread_Freelist 1 
dequeue P_CLK pulse separate

34 Rx_Thread_Freelist 1 full P_CLK level separate

35 Rx_Thread_Freelist 1 not 
empty P_CLK level separate

36 Rx_Thread_Freelist 2 
enqueue P_CLK pulse separate

37 Rx_Thread_Freelist 2 
dequeue P_CLK pulse separate

38 Rx_Thread_Freelist 2 
empty P_CLK level separate

39 Rx_Thread_Freelist 2 not 
full P_CLK level separate

40 reserved

41 reserved l

42 reserved

43 Detect No Calendar MTS_CLK level separate

Indicates that a framing pattern has been 
received on the TSTAT inputs for greater 
than 32 clock cycles; the valid signal from 
the MTS_CLK domain is synchronized; as 
such, it yields an approximate value.

44 Detect FC_IDLE MRX_CLK level separate

Indicates that an idle cycle has been 
received on the RXCDAT inputs for greater 
than 2 clock cycles; the valid signal from the 
MTS_CLK domain is synchronized; as such, 
it yields an approximate value.

Table 157. IXP2800 Network Processor MSF PMU Event List (Sheet 2 of 6)
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45 Detect FC_DEAD MRX_CLK level separate

Indicates that a dead cycle has been 
received on the RXCDAT inputs for greater 
than 2 clock cycles; the valid signal from the 
MTS_CLK domain is synchronized; as such, 
it yields an approximate value.

46 Detect C_IDLE MR_CLK level separate

Indicates that an idle cycle has been 
received on the RDAT inputs for greater 
than 2 clock cycles; the valid signal from the 
MTS_CLK domain is synchronized; as such, 
it yields an approximate value.

47 Detect C_DEAD MR_CLK level separate

Indicates that a dead cycle has been 
received on the RDAT inputs for greater 
than 2 clock cycles; the valid signal from the 
MTS_CLK domain is synchronized; as such, 
it yields an approximate value.

48 Detect CFC sustained MTX_CLK level separate

Indicates that the CFC input flag has been 
asserted for greater than 32 clock cycles; 
the valid signal from the MTX_CLK domain 
is synchronized; as such, it yields an 
approximate value.

49 Rbuffer Partition 0 empty P_CLK level separate Indicates that partition 0 of the rbuffer is 
empty.

50 Rbuffer Partition 1 empty P_CLK level separate Indicates that partition 1 of the rbuffer is 
empty.

51 Rbuffer Partition 2 empty P_CLK level separate Indicates that partition 2of the rbuffer is 
empty.

52 Full Element List enqueue P_CLK pulse separate

53 Full Element List dequeue P_CLK pulse separate

54 Full Element List full P_CLK level separate

55 Full Element List not empty P_CLK level separate

56 Rbuffer Partition 0 full P_CLK level separate Indicates that partition 0 of the rbuffer is full.

57 Rbuffer Partition 1 full P_CLK level separate Indicates that partition 1 of the rbuffer is full.

58 Rbuffer Partition 2 full P_CLK level separate Indicates that partition 2of the rbuffer is full.

59 reserved

60 Rx_Valid[0] is set P_CLK separate

61 Rx_Valid[8] is set P_CLK separate

62 Rx_Valid[16] is set P_CLK separate

63 Rx_Valid[24] is set P_CLK separate

64 Rx_Valid[32] is set P_CLK separate

65 Rx_Valid[48] is set P_CLK separate

66 Rx_Valid[64] is set P_CLK separate

67 Rx_Valid[96] is set P_CLK separate

68 Data CFrame received P_CLK pulse separate
Indicates that the CSIX DATA state machine 
after the Receive input FIFO has received a 
CSIX DATA CFRAME.

69 Control CFrame received P_CLK pulse separate
Indicates that the CSIX CONTROL state 
machine after the Receive input FIFO has 
received a CSIX CONTROL CFRAME.

Table 157. IXP2800 Network Processor MSF PMU Event List (Sheet 3 of 6)
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70 SPI-4 Packet received P_CLK pulse separate
Indicates that the SPI-4 state machine after 
the Receive input FIFO has received an 
SPI-4 packet.

71 reserved

72 Data CFrame transmitted P_CLK level separate

Indicates that the transmit buffer state 
machine is writing a CSIX Data CFRAME 
into the transmit FIFO; One P_CLK cycle 
indicates a 32-bit write into the transmit 
FIFO.

73 Control CFrame transmitted P_CLK level separate

Indicates the transmit buffer state machine 
is writing a CSIX Control CFRAME into the 
transmit FIFO; One P_CLK cycle indicates a 
32-bit write into the transmit FIFO.

74 SPI-4 CFrame transmitted P_CLK level separate

Indicates the transmit buffer state machine 
is writing an SPI-4 Packet into the transmit 
FIFO; One P_CLK cycle indicates a 32-bit 
write into the transmit FIFO.

75 reserved

76 Tx_Valid[0] is set P_CLK level separate

77 Tx_Valid[8] is set P_CLK level separate

78 Tx_Valid[16] is set P_CLK level separate

79 Tx_Valid[24] is set P_CLK level separate

80 Tx_Valid[32] is set P_CLK level separate

81 Tx_Valid[48] is set P_CLK level separate

82 Tx_Valid[64] is set P_CLK level separate

83 Tx_Valid[96] is set P_CLK level separate

84 Tbuffer Partition 0 empty P_CLK level separate Indicates partition 0 of the tbuffer is empty.

85 Tbuffer Partition 1 empty P_CLK level separate Indicates partition 1 of the tbuffer is empty.

86 Tbuffer Partition 2 empty P_CLK level separate Indicates partition 2of the tbuffer is empty.

87 reserved

88 D_PUSH_DATA write to 
TBUF P_CLK pulse separate Each write is in units of quadwords (8 

bytes).

89 S_PULL_DATA_0 write to 
TBUF P_CLK pulse separate Each write is in units of longwords (4 bytes).

90 S_PULL_DATA_1 write to 
TBUF P_CLK pulse separate Each write is in units of longwords (4 bytes).

91 CSR write P_CLK pulse separate

92 D_PULL_DATA read from 
RBUF P_CLK pulse separate Each read is in units of quadwords (8 bytes).

93 S_PUSH_DATA read from 
RBUF P_CLK pulse separate Each read is in units of longwords (4 bytes).

94 CSR read P_CLK pulse separate

95 CSR fast write P_CLK pulse separate

96
RX Autopush Asserts for 
Null and Non-Null 
Autopushes

P_CLK pulse separate
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97 Rx null autopush P_CLK pulse separate

98 Tx skip P_CLK pulse separate
An mpacket was dropped due to the 
Tx_Skip bit being set in the Transmit Control 
Word.

99 SF_CRDY P_CLK level separate
Only valid in CSIX receive mode and 
indicates how much of the time the switch 
fabric is able to receive control CFrames.

100 SF_DRDY P_CLK level separate
Only valid in CSIX receive mode and 
indicates how much of the time the switch 
fabric is able to receive data CFrames.

101 TM_CRDY P_CLK level separate
Only valid in CSIX receive mode; indicates 
how much of the time the egress processor 
is able to receive control CFrames.

102 TM_DRDY P_CLK level separate
Only valid in CSIX receive mode; indicates 
how much of the time the egress processor 
is able to receive data CFrames.

103 FCIFIFO enqueue P_CLK pulse separate

104 FCIFIFO dequeue P_CLK pulse separate

105 FCIFIFO error P_CLK pulse separate

Indicates that a bad CFrame was received 
on the CBus (horizontal or vertical parity 
error, premature RxSOF); only valid in CSIX 
transmit mode.

106 FCIFIFO synchronizing 
FIFO error P_CLK pulse separate

Indicates that the CBus ingress logic 
encountered a FCIFIFO full condition while 
enqueueing a CFrame into FCIFIFO.

107 Vertical parity error P_CLK pulse separate Only valid in CSIX receive mode.

108 Horizontal parity P_CLK pulse separate Only valid in CSIX receive mode.

109 Dip 4 Parity Error P_CLK pulse separate Only valid in SPI-4 receive mode.

110 Dip 2 Parity Error P_CLK pulse separate Only valid in SPI-4 receive mode.

111 reserved

112 CSIX DATA receive active MR_CLK level separate

Indicates a valid CSIX DATA CFRAME 
received on the RX_DATA bus and may be 
used to measure bus utilization; the active 
signal from the MR_CLK domain is 
synchronized; as such, it yields an 
approximate value.

113
CSIX CONTROL
receive active

MR_CLK level separate

Indicates a valid CSIX CONTROL CFRAME 
received on the RX_DATA bus and may be 
used to measure bus utilization; the active 
signal from the MR_CLK domain is 
synchronized; as such, it yields an 
approximate value.

114 SPI-4 receive active MR_CLK level separate

Indicates a valid SPI-4 Packet received on 
the RX_DATA bus and may be used to 
measure bus utilization; the active signal 
from the MR_CLK domain is synchronized; 
as such, it yields an approximate value.

Table 157. IXP2800 Network Processor MSF PMU Event List (Sheet 5 of 6)
400 Hardware Reference Manual



Intel® IXP2800 Network Processor
Performance Monitor Unit
115 FCE receive active MR_CLK level separate

Indicates a valid Flow Control Packet 
received on the RX_DATA bus and may be 
used to measure bus utilization; the active 
signal from the MR_CLK domain is 
synchronized; as such, it yields an 
approximate value.

116 CSIX DATA transmit active MT_CLK level separate

Indicates valid transmit data on the 
TX_DATA bus and may be used to measure 
bus utilization; the valid signal from the 
MT_CLK domain is synchronized; as such, it 
yields an approximate value.

117
CSIX CONTROL
transmit active

MT_CLK level separate

Indicates valid transmit data on the 
TX_DATA bus and may be used to measure 
bus utilization; the valid signal from the 
MT_CLK domain is synchronized; as such, it 
yields an approximate value.

118 SPI-4 transmit active MT_CLK level separate

Indicates valid transmit data on the 
TX_DATA bus and may be used to measure 
bus utilization; the valid signal from the 
MT_CLK domain is synchronized; as such, it 
yields an approximate value.

119 FCE transmit active MTX_CLK level separate

Indicates valid transmit data on the 
TXC_DATA bus and may be used to 
measure bus utilization; the valid signal from 
the MTX_CLK domain is synchronized; as 
such, it yields an approximate value.

120 FCI receive active MRX_CLK level separate

Indicates a valid Flow Control Packet 
received on the RXC_DATA bus and may be 
used to measure bus utilization; the active 
signal from the MRX_CLK domain is 
synchronized; as such, it yields an 
approximate value.

121 Receive FIFO error MR_CLK pulse separate

The receive FIFO has experienced an 
underflow or overflow. A pulse from the 
MR_CLK clock domain is converted to a 
pulse in the P_CLK clock domain.

122 reserved

123 reserved

124 reserved

125 reserved

126 reserved

127 reserved
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Table 158. Intel XScale® Core Gasket PMU Event List (Sheet 1 of 4)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 XG_CFIFO_WR_EVEN_XS P_CLK single separate XG command FIFO even enqueue

1 reserved

2 XG_DFIFO_WR_EVEN_XS P_CLK single separate XG DRAM data FIFO even enqueue

3 reserved

4 XG_SFIFO_WR_EVEN_XS P_CLK single separate XG SRAM data FIFO even enqueue

5 reserved

6 XG_LCFIFO_WR_EVEN_XS P_CLK single separate XG lcsr command FIFO even enqueue

7 XG_LCFIFO_WR_ODD_XS P_CLK single separate XG lcsr command FIFO odd enqueue

8 XG_LDFIFO_WR_EVEN_XS P_CLK single separate XG lcsr data FIFO even enqueue

9 XG_LDFIFO_WR_ODD_XS P_CLK single separate XG lcsr data FIFO odd enqueue

10 XG_LCSR_RD_EVEN_XS P_CLK single separate XG lcsr return data FIFO even dequeue

11 XG_LCSR_RD_ODD_XS P_CLK single separate XG lcsr return data FIFO odd dequeue

12 XG_LCSR_RD_OR_XS P_CLK single separate XG lcsr return data FIFO even_or_odd 
dequeue

13 XG_PUFF0_RD_EVEN_XS P_CLK single separate XG push fifo0 even dequeue

14 XG_PUFF0_RD_ODD_XS P_CLK single separate XG push fifo0 odd dequeue

15 XG_PUFF0_RD_OR_XS P_CLK single separate XG push fifo0 even_or_odd dequeue

16 XG_PUFF1_RD_EVEN_XS P_CLK single separate XG push fifo1 even dequeue

17 XG_PUFF1_RD_ODD_XS P_CLK single separate XG push fifo1 odd dequeue

18 XG_PUFF1_RD_OR_XS P_CLK single separate XG push fifo1 even_or_odd dequeue

19 XG_PUFF2_RD_EVEN_XS P_CLK single separate XG push fifo2 even dequeue

20 XG_PUFF2_RD_ODD_XS P_CLK single separate XG push fifo2 odd dequeue

21 XG_PUFF2_RD_OR_XS P_CLK single separate XG push fifo2 even_or_odd dequeue

22 XG_PUFF3_RD_EVEN_XS P_CLK single separate XG push fifo3 even dequeue

23 XG_PUFF3_RD_ODD_XS P_CLK single separate XG push fifo3 odd dequeue

24 XG_PUFF3_RD_OR_XS P_CLK single separate XG push fifo3 even_or_odd dequeue

25 XG_PUFF4_RD_EVEN_XS P_CLK single separate XG push fifo4 even dequeue

26 XG_PUFF4_RD_ODD_XS P_CLK single separate XG push fifo4 odd dequeue

27 XG_PUFF4_RD_OR_XS P_CLK single separate XG push fifo4 even_or_odd dequeue

28 XG_SYNC_ST_XS P_CLK single separate XG in sync. state

29 reserved

30 reserved

31 reserved
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32 reserved

33 reserved

34 XG_CFIFO_EMPTYN_CPP P_CLK single separate XG command FIFO empty flag

35 XG_DFIFO_EMPTYN_CPP P_CLK single separate XG DRAM data FIFO empty flag

36 XG_SFIFO_EMPTYN_CPP P_CLK single separate XG SRAM data FIFO empty flag

37 XG_LCFIFO_EMPTYN_CPP P_CLK single separate XG lcsr command FIFO empty flag

38 XG_LDFIFO_EMPTYN_CPP P_CLK single separate XG lcsr data FIFO empty flag

39 reserved

40 XG_OFIFO_EMPTYN_CPP P_CLK single separate XG cpp command FIFO empty flag

41 XG_OFIFO_FULLN_CPP P_CLK single separate XG cpp command FIFO full flag

42 XG_DP_EMPTYN_CPP P_CLK single separate XG DRAM pull data FIFO empty flag

43 XG_SP_EMPTYN_CPP P_CLK single separate XG SRAM pull data FIFO empty flag

44 XG_HASH_48_CPP P_CLK single separate hash_48 command on cpp bus

45 XG_HASH_64_CPP P_CLK single separate hash_64 command on cpp bus

46 XG_HASH_128_CPP P_CLK single separate hash_128 command on cpp bus

47 XG_LCSR_FIQ_CPP P_CLK single separate XG FIQ generated by interrupt CSR

48 XG_LCSR_IRQ_CPP P_CLK single separate XG IRQ generated by interrupt CSR

49 XG_CFIFO_RD_CPP P_CLK single separate XG command FIFO dequeue

50 XG_DFIFO_RD_CPP P_CLK single separate XG DRAM data FIFO dequeue

51 XG_SFIFO_RD_CPP P_CLK single separate XG SRAM data FIFO dequeue

52 XG_LCFIFO_RD_CPP P_CLK single separate XG lcsr command FIFO dequeue

53 XG_LDFIFO_RD_CPP P_CLK single separate XG lcsr data FIFO dequeue

54 XG_LCSR_WR_CPP P_CLK single separate XG lcsr return data FIFO enqueue

55 XG_OFIFO_RD_CPP P_CLK single separate XG cpp command FIFO dequeue

56 XG_OFIFO_WR_CPP P_CLK single separate XG cpp command FIFO enqueue

57 XG_DPDATA_WR_CPP P_CLK single separate XG DRAM pull data FIFO enqueue

58 XG_DPDATA_RD_CPP P_CLK single separate XG DRAM pull data FIFO dequeue

59 XG_SPDATA_WR_CPP P_CLK single separate XG SRAM pull data FIFO enqueue

60 XG_SPDATA_RD_CPP P_CLK single separate XG SRAM pull data FIFO dequeue

61 XG_PUFF0_WR_CPP P_CLK single separate XG push fifo0 enqueue

62 XG_PUFF1_WR_CPP P_CLK single separate XG push fifo1 enqueue

63 XG_PUFF2_WR_CPP P_CLK single separate XG push fifo2 enqueue

64 XG_PUFF3_WR_CPP P_CLK single separate XG push fifo3 enqueue

65 XG_PUFF4_WR_CPP P_CLK single separate XG push fifo4 enqueue

66 XG_SRAM_RD_CPP P_CLK single separate XG SRAM read command on cpp bus

67 XG_SRAM_RD_1_CPP P_CLK single separate XG SRAM read length=1 on cpp bus

68 XG_SRAM_RD_8_CPP P_CLK single separate XG SRAM read length=8 on cpp bus

69 XG_SRAM_WR_CPP P_CLK single separate XG SRAM write command on cpp bus

70 XG_SRAM_WR_1_CPP P_CLK single separate XG SRAM write length=1 on cpp bus
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71 XG_SRAM_WR_2_CPP P_CLK single separate XG SRAM write length=2 on cpp bus

72 XG_SRAM_WR_3_CPP P_CLK single separate XG SRAM write length=3 on cpp bus

73 XG_SRAM_WR_4_CPP P_CLK single separate XG SRAM write length=4 on cpp bus

74 XG_SRAM_CSR_RD_CPP P_CLK single separate XG SRAM csr read command on cpp bus

75 XG_SRAM_CSR_WR_CPP P_CLK single separate XG SRAM csr write command on cpp bus

76 XG_SRAM_ATOM_CPP P_CLK single separate XG SRAM atomic command on cpp bus

77 XG_SRAM_GET_CPP P_CLK single separate XG SRAM get command on cpp bus

78 XG_SRAM_PUT_CPP P_CLK single separate XG SRAM put command on cpp bus

79 XG_SRAM_ENQ_CPP P_CLK single separate XG SRAM enq command on cpp bus

80 XG_SRAM_DEQ_CPP P_CLK single separate XG SRAM deq command on cpp bus

81 XG_S0_ACC_CPP P_CLK single separate XG SRAM channel0 access on cpp bus

82 XG_S1_ACC_CPP P_CLK single separate XG SRAM channel1 access on cpp bus

83 XG_S2_ACC_CPP P_CLK single separate XG SRAM channel2 access on cpp bus

84 XG_S3_ACC_CPP P_CLK single separate XG SRAM channel3 access on cpp bus

85 XG_SCR_RD_CPP P_CLK single separate XG scratch read command on cpp bus

86 XG_SCR_RD_1_CPP P_CLK single separate XG scratch read length=1 on cpp bus

87 XG_SCR_RD_8_CPP P_CLK single separate XG scratch read length=8 on cpp bus

88 XG_SCR_WR_CPP P_CLK single separate XG scratch write command on cpp bus

89 XG_SCR_WR_1_CPP P_CLK single separate XG scratch write length=1 on cpp bus

90 XG_SCR_WR_2_CPP P_CLK single separate XG scratch write length=2 on cpp bus

91 XG_SCR_WR_3_CPP P_CLK single separate XG scratch write length=3 on cpp bus

92 XG_SCR_WR_4_CPP P_CLK single separate XG scratch write length=4 on cpp bus

93 XG_SCR_ATOM_CPP P_CLK single separate XG scratch atomic command on cpp bus

94 XG_SCR_GET_CPP P_CLK single separate XG scratch get command on cpp bus

95 XG_SCR_PUT_CPP P_CLK single separate XG scratch put command on cpp bus

96 XG_DRAM_RD_CPP P_CLK single separate XG DRAM read command on cpp bus

97 XG_DRAM_RD_1_CPP P_CLK single separate XG DRAM read length=1 on cpp bus

98 XG_DRAM_RD_4_CPP P_CLK single separate XG DRAM read length=4 on cpp bus

99 XG_DRAM_WR_CPP P_CLK single separate XG DRAM write on cpp bus

100 XG_DRAM_WR_1_CPP P_CLK single separate XG DRAM write length=1 on cpp bus

101 XG_DRAM_WR_2_CPP P_CLK single separate XG DRAM write length=2 on cpp bus

102 XG_DRAM_CSR_RD_CPP P_CLK single separate XG DRAM csr read command on cpp bus

103 XG_DRAM_CSR_WR_CPP P_CLK single separate XG DRAM csr write command on cpp bus

104 XG_MSF_RD_CPP P_CLK single separate XG msf read command on cpp bus

105 XG_MSF_RD_1_CPP P_CLK single separate XG msf read length=1 on cpp bus

106 reserved

107 XG_MSF_WR_CPP P_CLK single separate XG msf write command on cpp bus

108 XG_MSF_WR_1_CPP P_CLK single separate XG msf write length=1 on cpp bus

109 XG_MSF_WR_2_CPP P_CLK single separate XG msf write length=2 on cpp bus
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110 XG_MSF_WR_3_CPP P_CLK single separate XG msf write length=3 on cpp bus

111 XG_MSF_WR_4_CPP P_CLK single separate XG msf write length=4 on cpp bus

112 XG_PCI_RD_CPP P_CLK single separate XG pci read command on cpp bus

113 XG_PCI_RD_1_CPP P_CLK single separate XG pci read length=1 on cpp bus

114 XG_PCI_RD_8_CPP P_CLK single separate XG pci read length=8 on cpp bus

115 XG_PCI_WR_CPP P_CLK single separate XG pci write command on cpp bus

116 XG_PCI_WR_1_CPP P_CLK single separate XG pci write length=1 on cpp bus

117 XG_PCI_WR_2_CPP P_CLK single separate XG pci write length=2 on cpp bus

118 XG_PCI_WR_3_CPP P_CLK single separate XG pci write length=3 on cpp bus

119 XG_PCI_WR_4_CPP P_CLK single separate XG pci write length=4 on cpp bus

120 XG_CAP_RD_CPP P_CLK single separate XG cap read command on cpp bus

121 XG_CAP_RD_1_CPP P_CLK single separate XG cap read length=1 on cpp bus

122 XG_CAP_RD_8_CPP P_CLK single separate XG cap read length=8 on cpp bus

123 XG_CAP_WR_CPP P_CLK single separate XG cap write command on cpp bus

124 XG_CAP_WR_1_CPP P_CLK single separate XG cap write length=1 on cpp bus

125 reserved

126 reserved

127 reserved

Table 158. Intel XScale® Core Gasket PMU Event List (Sheet 4 of 4)

Table 159. PCI PMU Event List (Sheet 1 of 5)

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

0 PCI_TGT_AFIFO_FULL PCI_CLK single separate PCI Target Address FIFO Full

1 PCI_TGT_AFIFO_NEMPTY P_CLK single separate PCI Target Address FIFO Not Empty

2 PCI_TGT_AFIFO_WR PCI_CLK single separate PCI Target Address FIFO Write

3 PCI_TGT_AFIFO_RD P_CLK single separate PCI Target Address FIFO Read

4 PCI_TGT_RFIFO_FULL P_CLK single separate PCI Target Read FIFO Full

5 PCI_TGT_RFIFO_NEMPTY PCI_CLK single separate PCI Target Read FIFO Not Empty

6 PCI_TGT_RFIFO_WR P_CLK single separate PCI Target Read FIFO Write

7 PCI_TGT_RFIFO_RD PCI_CLK single separate PCI Target Read FIFO Read

8 PCI_TGT_WFIFO_FULL PCI_CLK single separate PCI Target Write FIFO Full

9 PCI_TGT_WFIFO_NEMPTY P_CLK single separate PCI Target Write FIFO Not Empty

10 PCI_TGT_WFIFO_WR PCI_CLK single separate PCI Target Write FIFO Write

11 PCI_TGT_WFIFO_RD P_CLK single separate PCI Target Write FIFO Read

12 PCI_TGT_WBUF_FULL P_CLK single separate PCI Target Write Buffer Full
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13 PCI_TGT_WBUF_NEMPTY P_CLK single separate PCI Target Write Buffer Not Empty

14 PCI_TGT_WBUF_WR P_CLK single separate PCI Target Write Buffer Write

15 PCI_TGT_WBUF_RD P_CLK single separate PCI Target Write Buffer Read

16 PCI_MST_AFIFO_FULL P_CLK single separate PCI Master Address FIFO Full

17 PCI_MST_AFIFO_NEMPTY PCI_CLK single separate PCI Master Address FIFO Not Empty

18 PCI_MST_AFIFO_WR P_CLK single separate PCI Master Address FIFO Write

19 PCI_MST_AFIFO_RD PCI_CLK single separate PCI Master Address FIFO Read

20 PCI_MST_RFIFO_FULL PCI_CLK single separate PCI Master Read FIFO Full

21 PCI_MST_RFIFO_NEMPTY P_CLK single separate PCI Master Read FIFO Not Empty

22 PCI_MST_RFIFO_WR PCI_CLK single separate PCI Master Read FIFO Write

23 PCI_MST_RFIFO_RD P_CLK single separate PCI Master Read FIFO Read

24 PCI_MST_WFIFO_FULL P_CLK single separate PCI Master Write FIFO Full

25 PCI_MST_WFIFO_NEMPTY PCI_CLK single separate PCI Master Write FIFO Not Empty

26 PCI_MST_WFIFO_WR P_CLK single separate PCI Master Write FIFO Write

27 PCI_MST_WFIFO_RD PCI_CLK single separate PCI Master Write FIFO Read

28 PCI_DMA1_BUF_FULL P_CLK single separate PCI_DMA_Channel 1 

29 PCI_DMA1_BUF_NEMPTY P_CLK single separate PCI DMA Channel 1 Buffer Not Empty

30 PCI_DMA1_BUF_WR P_CLK single separate PCI DMA Channel 1 Buffer Write

31 PCI_DMA1_BUF_RD P_CLK single separate PCI DMA Channel 1 Buffer Read

32 reserved

33 reserved

34 reserved

35 reserved

36 PCI_DMA3_BUF_FULL P_CLK single separate PCI_DMA_Channel 3

37 PCI_DMA3_BUF_NEMPTY P_CLK single separate

38 PCI_DMA3_BUF_WR P_CLK single separate

39 PCI_DMA3_BUF_RD P_CLK single separate

40 PCI_TCMD_FIFO_FULL P_CLK single separate PCI TARGET Command Fifo

41 PCI_TCMD_FIFO_NEMPTY P_CLK single separate

42 PCI_TCMD_FIFO_WR P_CLK single separate

43 PCI_TCMD_FIFO_RD P_CLK single separate

44 PCI_TDATA_FIFO_FULL P_CLK single separate PCI Push/Pull Data Fifo

45 PCI_TDATA_FIFO_NEMPTY P_CLK single separate

46 PCI_TDATA_FIFO_WR P_CLK single separate

47 PCI_TDATA_FIFO_RD P_CLK single separate

48 PCI_CSR_WRITE P_CLK single separate PCI Write to PCI_CSR_BAR

49 PCI_CSR_READ P_CLK single separate

50 PCI_DRAM_WRITE P_CLK single separate PCI Write to PCI_DRAM_BAR

51 PCI_DRAM_READ P_CLK single separate

Table 159. PCI PMU Event List (Sheet 2 of 5)
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52 PCI_DRAM_BURST_WRITE P_CLK single separate PCI Burst Write to PCI_CSR_BAR

53 PCI_DRAM_BURST_READ P_CLK single separate PCI Burst Read to PCI_CSR_BAR

54 PCI_SRAM_WRITE P_CLK single separate PCI Write to PCI_SRAM_BAR

55 PCI_SRAM_READ P_CLK single separate

56 PCI_SRAM_BURST_WRITE P_CLK single separate PCI Burst Write to PCI_SRAM_BAR

57 PCI_SRAM_BURST_READ P_CLK single separate

58 PCI_CSR_CMD P_CLK single separate PCI CSR Command Generated

59 PCI_CSR_PUSH P_CLK single separate PCI CSR Push Command 

60 PCI_CSR_PULL P_CLK single separate PCI CSR Pull Command 

61 PCI_SRAM_CMD P_CLK single separate PCI SRAM Command 

62 PCI_SRAM_PUSH P_CLK single separate PCI SRAM Push Command 

63 PCI_SRAM_PULL P_CLK single separate PCI SRAM Pull Command 

64 PCI_DRAM_CMD P_CLK single separate PCI DRAM Command 

65 PCI_DRAM_PUSH P_CLK single separate

66 PCI_DRAM_PULL P_CLK single separate

67 PCI_CSR_2PCI_WR P_CLK single separate PCI Target Write to PCI local CSR

68 PCI_CSR_2PCI_RD P_CLK single separate

69 PCI_CSR_2CFG_WR PCI_CLK single separate PCI Target Write to PCI local Config 
CSR

70 PCI_CSR_2CFG_RD PCI_CLK single separate

71 PCI_CSR_2SRAM_WR P_CLK single separate PCI Target Write to SRAM CSR

72 PCI_CSR_2SRAM_RD P_CLK single separate

73 PCI_CSR_2DRAM_WR P_CLK single separate PCI Target Write to DRAM CSR

74 PCI_CSR_2DRAM_RD P_CLK single separate

75 PCI_CSR_2CAP_WR P_CLK single separate PCI Target Write to CAPCSR

76 PCI_CSR_2CAP_RD P_CLK single separate

77 PCI_CSR_2MSF_WR P_CLK single separate PCI Target Write to MSFCSR

78 PCI_CSR_2MSF_RD P_CLK single separate

79 PCI_CSR_2SCRAPE_WR P_CLK single separate PCI Target Write to Scrape CSR

80 PCI_CSR_2SCRAPE_RD P_CLK single separate

81 PCI_CSR_2SCRATCH_RING_WR P_CLK single separate PCI Target Write to Scratch Ring CSR

82 PCI_CSR_2SCRATCH_RING_RD P_CLK single separate

83 PCI_CSR_2SRAM_RING_WR P_CLK single separate PCI Target Write to SRAM Ring CSR

84 PCI_CSR_2SRAM_RING_RD P_CLK single separate

85 PCI_XS_LCFG_RD P_CLK single separate PCI Intel XScale® Core Read Local 
Config CSR

86 PCI_XS_LCFG_WR P_CLK single separate

87 PCI_XS_CSR_RD P_CLK single separate PCI Intel XScale® Core Read Local 
CSR

88 PCI_XS_CSR_WR P_CLK single separate

Table 159. PCI PMU Event List (Sheet 3 of 5)
Hardware Reference Manual 407



Intel® IXP2800 Network Processor
Performance Monitor Unit
89 PCI_XS_CFG_RD P_CLK single separate PCI Intel XScale® Core Read PCI Bus 
Config Space

90 PCI_XS_CFG_WR P_CLK single separate

91 PCI_XS_MEM_RD P_CLK single separate PCI Intel XScale® Core Read PCI Bus 
Memory Space

92 PCI_XS_MEM_WR P_CLK single separate

93 PCI_XS_BURST_RD P_CLK single separate PCI Intel XScale® Core Burst Read 
PCI Bus Memory Space

94 PCI_XS_BURST_WR P_CLK single separate

95 PCI_XS_IO_RD P_CLK single separate PCI Intel XScale® Core Read PCI Bus 
I/O Space

96 PCI_XS_IO_WR P_CLK single separate

97 PCI_XS_SPEC P_CLK single separate PCI Intel XScale® Core Read PCI Bus 
as Special

98 PCI_XS_IACK P_CLK single separate PCI Intel XScale® Core Read PCI Bus 
as IACK

99 PCI_ME_CSR_RD P_CLK single separate PCI ME Read Local CSR

100 PCI_ME_CSR_WR P_CLK single separate

101 PCI_ME_MEM_RD P_CLK single separate PCI ME Read PCI Bus Memory Space

102 PCI_ME_MEM_WR P_CLK single separate

103 PCI_ME_BURST_RD P_CLK single separate PCI ME Burst Read PCI Bus Memory 
Space

104 PCI_ME_BURST_WR P_CLK single separate

105 PCI_MST_CFG_RD P_CLK single separate PCI Initiator Read PCI Bus Config 
Space

106 PCI_MST_CFG_WR P_CLK single separate

107 PCI_MST_MEM_RD P_CLK single separate PCI Initiator Read PCI Bus Memory 
Space

108 PCI_MST_MEM_WR P_CLK single separate

109 PCI_MST_BURST_RD P_CLK single separate PCI Initiator Burst Read PCI Bus Mem-
ory Space

110 PCI_MST_BURST_WR P_CLK single separate

111 PCI_MST_IO_READ P_CLK single separate PCI Initiator Read PCI Bus I/O Space

112 PCI_MST_IO_WRITE P_CLK single separate

113 PCI_MST_SPEC P_CLK single separate PCI Initiator Read PCI Bus As a Spe-
cial Cycle

114 PCI_MST_IACK P_CLK single separate PCI Initiator Read PCI Bus As IACK 
Cycle

115 PCI_MST_READ_LINE P_CLK single separate PCI Initiator Read Line Command to 
PCI

116 PCI_MST_READ_MULT P_CLK single separate PCI Initiator Read Line Multiple Com-
mand to PCI

117 PCI_ARB_REQ[2] PCI_CLK single separate Internal Arbiter PCI Bus Request 2

Table 159. PCI PMU Event List (Sheet 4 of 5)
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118 PCI_ARB_GNT[2] PCI_CLK single separate Internal Arbiter PCI Bus Grant 2

119 PCI_ARB_REQ[1] PCI_CLK single separate

120 PCI_ARB_GNT[1] PCI_CLK single separate

121 PCI_ARB_REQ[0] PCI_CLK single separate

122 PCI_ARB_GNT[0] PCI_CLK single separate

123 PCI_TGT_STATE[4] P_CLK single separate PCI Target State Machine State Bit 4

124 PCI_TGT_STATE[3] P_CLK single separate

125 PCI_TGT_STATE[2] P_CLK single separate

126 PCI_TGT_STATE[1] P_CLK single separate

127 PCI_TGT_STATE[0] P_CLK single separate

Table 159. PCI PMU Event List (Sheet 5 of 5)

Table 160. ME00 PMU Event List (Sheet 1 of 2)

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

0 ME_FIFO_ENQ_EVEN T_CLK single separate Even version of Command FIFO 
Enqueue (pair with event #8)

1 ME_IDLE_EVEN T_CLK single separate Even version of No Thread running in 
Microengine (pair with event #9)

2 ME_EXECUTING_EVEN T_CLK single separate Even version of Valid Instruction (pair with 
event #10)

3 ME_STALL_EVEN T_CLK single separate Even version of Microengine stall caused 
by FIFO Full (pair with event #11)

4 ME_CTX_SWAPPING_EVEN T_CLK single separate Even version of Occurrence of context 
swap (pair with event #12)

5 ME_INST_ABORT_EVEN T_CLK single separate Even version of Instruction aborted due to 
branch taken (pair with event #13)

6 ME_FIFO_ENQ_ODD T_CLK single separate Odd version of Command FIFO Enqueue 
(pair with event #0)

7 ME_IDLE_ODD T_CLK single separate Odd version of No Thread running in 
Microengine (pair with event #3)

8 ME_EXECUTING_ODD T_CLK single separate Odd version of Valid Instruction (pair with 
event #4)

9 ME_STALL_ODD T_CLK single separate Odd version of Microengine stall caused 
by FIFO Full (pair with event #5)

10 ME_CTX_SWAPPING_ODD T_CLK single separate Odd version of Occurrence of context 
swap (pair with event #6)

11 ME_INST_ABORT_ODD T_CLK single separate Odd version of Instruction aborted due to 
branch (pair with event #7)
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12 ME_FIFO_DEQ P_CLK single separate Command FIFO Dequeue

13 ME_FIFO_NOT_EMPTY P_CLK single separate Command FIFO not empty

Note:
1. All the Microengine have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.

Table 160. ME00 PMU Event List (Sheet 2 of 2)

Table 161. ME01 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.
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11.4.6.9 ME03 Events Target ID(100011) / Design Block #(1001)

Table 162. ME02 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.

Table 163. ME03 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.
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11.4.6.11 ME05 Events Target ID(100101) / Design Block #(1001)

Table 164. ME04 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.

Table 165. ME05 PMU Event List 

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.
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11.4.6.13 ME07 Events Target ID(100111) / Design Block #(1001)

Table 166. ME06 PMU Event List 

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.

Table 167. ME07 PMU Event List 

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.
Hardware Reference Manual 413



Intel® IXP2800 Network Processor
Performance Monitor Unit
11.4.6.14 ME10 Events Target ID(110000) / Design Block #(1010)

11.4.6.15 ME11 Events Target ID(110001) / Design Block #(1010)

Table 168. ME10 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.

Table 169. ME11 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.
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11.4.6.17 ME13 Events Target ID(110011) / Design Block #(1010)

Table 170. ME12 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.

Table 171. ME13 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.
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11.4.6.19 ME15 Events Target ID(110101) / Design Block #(1010)

Table 172. ME14 PMU Event List 

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.

Table 173. ME15 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.
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11.4.6.21 ME17 Events Target ID(110111) / Design Block #(1010)

Table 174. ME16 PMU Event List 

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.

Table 175. ME17 PMU Event List 

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Microengines have the same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in Microengine CSR, This field holds the number of context to be monitored. The 
event count only reflects the events that occur when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. 1.4 GHz events are sampled by the PMU at a 700 MHz rate. For this reason, all 1.4 GHz events have both an even and an odd 
event. To determine the total number of 1.4 GHz events, the occurrences of the even events and odd events should be added 
together.
4. For IXP2800 Network Processor Rev B, CC_Enable[3] must be set to 1 on all 16 Microengines for proper PMU functionality.
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11.4.6.23 SRAM DP0 Events Target ID(001010) / Design Block #(0010)

Table 176. SRAM DP1 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. SRAM DP1/DP0 push/pull arbiter has same event lists. 
2. S_CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_  correspond to S_Push Arb
signals that begin with spl_ correspond to S_Pull Arb

signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _m_  (after the unit designation) correspond to the MSF target interface
signals that contain _sh_  (after the unit designation) correspond to the SHaC target interface
signals that contain _s0_  (after the unit designation) correspond to the SRAM0 target interface
signals that contain _s1_  (after the unit designation) correspond to the SRAM1 target interface
signals that contain _s2_  (after the unit designation) correspond to the SRAM2 target interface
signals that contain _s3_  (after the unit designation) correspond to the SRAM3 target interface

Table 177. SRAM DP0 PMU Event List (Sheet 1 of 3)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 sps_pc_cmd_valid_rph P_CLK Long separate PCI Push Command Queue FIFO Valid

1 sps_pc_enq_wph P_CLK single separate PCI Push Command Queue FIFO Enqueue

2 sps_pc_deq_wph P_CLK single separate PCI Push Command Queue FIFO Dequeue

3 sps_pc_push_q_full_wph P_CLK Long separate PCI Push Command Queue FIFO Full

4 sps_m_cmd_valid_rph P_CLK Long separate MSF Push Command Queue FIFO Valid

5 sps_m_enq_wph P_CLK single separate MSF Push Command Queue FIFO Enqueue

6 sps_m_deq_wph P_CLK single separate MSF Push Command Queue FIFO Dequeue

7 sps_m_push_q_full_wph P_CLK Long separate MSF Push Command Queue FIFO Full

8 sps_sh_cmd_valid_rph P_CLK Long separate SHaC Push Command Queue FIFO Valid

9 sps_sh_enq_wph P_CLK single separate SHaC Push Command Queue FIFO Enqueue

10 sps_sh_deq_wph P_CLK single separate SHaC Push Command Queue FIFO 
Dequeue

11 sps_sh_push_q_full_wph P_CLK Long separate SHaC Push Command Queue FIFO Full

12 sps_s0_cmd_valid_rph P_CLK Long separate SRAM0 Push Command Queue FIFO Valid
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13 sps_s0_enq_wph P_CLK single separate SRAM0 Push Command Queue FIFO 
Enqueue

14 sps_s0_deq_wph P_CLK single separate SRAM0 Push Command Queue FIFO 
Dequeue

15 sps_s0_push_q_full_wph P_CLK Long separate SRAM0 Push Command Queue FIFO Full

16 sps_s1_cmd_valid_rph P_CLK Long separate SRAM1 Push Command Queue FIFO Valid

17 sps_s1_enq_wph P_CLK single separate SRAM1 Push Command Queue FIFO 
Enqueue

18 sps_s1_deq_wph P_CLK single separate SRAM1 Push Command Queue FIFO 
Dequeue

19 sps_s1_push_q_full_wph P_CLK Long separate SRAM1 Push Command Queue FIFO Full

20 sps_s2_cmd_valid_rph P_CLK Long separate SRAM2 Push Command Queue FIFO Valid

21 sps_s2_enq_wph P_CLK single separate SRAM2 Push Command Queue FIFO 
Enqueue

22 sps_s2_deq_wph P_CLK single separate SRAM2 Push Command Queue FIFO 
Dequeue

23 sps_s2_push_q_full_wph P_CLK Long separate SRAM2 Push Command Queue FIFO Full

24 sps_s3_cmd_valid_rph P_CLK Long separate SRAM3 Push Command Queue FIFO Valid

25 sps_s3_enq_wph P_CLK single separate SRAM3 Push Command Queue FIFO 
Enqueue

26 sps_s3_deq_wph P_CLK single separate SRAM3 Push Command Queue FIFO 
Dequeue

27 sps_s3_push_q_full_wph P_CLK Long separate SRAM3 Push Command Queue FIFO Full

28 spl_pc_cmd_valid_rph P_CLK Long separate PCI Pull Command Queue FIFO Valid

29 spl_pc_enq_cmd_wph P_CLK single separate PCI Pull Command Queue FIFO Enqueue

30 spl_pc_deq_wph P_CLK single separate PCI Pull Command Queue FIFO Dequeue

31 spl_pc_cmd_que_full_wph P_CLK Long separate PCI Pull Command Queue FIFO Full

32 spl_m_cmd_valid_rph P_CLK Long separate MSF Pull Command Queue FIFO Valid

33 spl_m_enq_cmd_wph P_CLK single separate MSF Pull Command Queue FIFO Enqueue

34 spl_m_deq_wph P_CLK single separate MSF Pull Command Queue FIFO Dequeue

35 spl_m_cmd_que_full_wph P_CLK Long separate MSF Pull Command Queue FIFO Full

36 spl_sh_cmd_valid_rph P_CLK Long separate SHaC Pull Command Queue FIFO Valid

37 spl_sh_enq_cmd_wph P_CLK single separate SHaC Pull Command Queue FIFO Enqueue

38 spl_sh_deq_wph P_CLK single separate SHaC Pull Command Queue FIFO Dequeue

39 spl_sh_cmd_que_full_wph P_CLK Long separate SHaC Pull Command Queue FIFO Full

40 spl_s0_cmd_valid_rph P_CLK Long separate SRAM0 Pull Command Queue FIFO Valid

41 spl_s0_enq_cmd_wph P_CLK single separate SRAM0 Pull Command Queue FIFO 
Enqueue

42 spl_s0_deq_wph P_CLK single separate SRAM0 Pull Command Queue FIFO 
Dequeue

43 spl_s0_cmd_que_full_wph P_CLK Long separate SRAM0 Pull Command Queue FIFO Full

44 spl_s1_cmd_valid_rph P_CLK Long separate SRAM1 Pull Command Queue FIFO Valid

Table 177. SRAM DP0 PMU Event List (Sheet 2 of 3)
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45 spl_s1_enq_cmd_wph P_CLK single separate SRAM1 Pull Command Queue FIFO 
Enqueue

46 spl_s1_deq_wph P_CLK single separate SRAM1 Pull Command Queue FIFO 
Dequeue

47 spl_s1_cmd_que_full_wph P_CLK Long separate SRAM1 Pull Command Queue FIFO Full

48 spl_s2_cmd_valid_rph P_CLK Long separate SRAM2 Pull Command Queue FIFO Valid

49 spl_s2_enq_cmd_wph P_CLK single separate SRAM2 Pull Command Queue FIFO 
Enqueue

50 spl_s2_deq_wph P_CLK single separate SRAM2 Pull Command Queue FIFO 
Dequeue

51 spl_s2_cmd_que_full_wph P_CLK Long separate SRAM2 Pull Command Queue FIFO Full

52 spl_s3_cmd_valid_rph P_CLK Long separate SRAM3 Pull Command Queue FIFO Valid

53 spl_s3_enq_cmd_wph P_CLK single separate SRAM3 Pull Command Queue FIFO 
Enqueue

54 spl_s3_deq_wph P_CLK single separate SRAM3 Pull Command Queue FIFO 
Dequeue

55 spl_s3_cmd_que_full_wph P_CLK Long separate SRAM3 Pull Command Queue FIFO Full

Table 177. SRAM DP0 PMU Event List (Sheet 3 of 3)

Table 178. SRAM CH3 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the SRAM Channel has same event lists. 
2. S_CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_  correspond to S_Push Arb
signals that begin with spl_ correspond to S_Pull Arb

signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _m_  (after the unit designation) correspond to the MSF target interface
signals that contain _sh_  (after the unit designation) correspond to the SHaC target interface
signals that contain _s0_  (after the unit designation) correspond to the SRAM0 target interface
signals that contain _s1_  (after the unit designation) correspond to the SRAM1 target interface
signals that contain _s2_  (after the unit designation) correspond to the SRAM2 target interface
signals that contain _s3_  (after the unit designation) correspond to the SRAM3 target interface
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11.4.6.25 SRAM CH2 Events Target ID(001100) / Design Block #(0010)

11.4.6.26 SRAM CH1 Events Target ID(001101) / Design Block #(0010)

Table 179. SRAM CH3 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the SRAM Channel has same event lists. 
2. S_CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_  correspond to S_Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _m_  (after the unit designation) correspond to the MSF target interface
signals that contain _sh_  (after the unit designation) correspond to the SHaC target interface
signals that contain _s0_  (after the unit designation) correspond to the SRAM0 target interface
signals that contain _s1_  (after the unit designation) correspond to the SRAM1 target interface
signals that contain _s2_  (after the unit designation) correspond to the SRAM2 target interface
signals that contain _s3_  (after the unit designation) correspond to the SRAM3 target interface

Table 180. SRAM CH3 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the SRAM Channel has same event lists. 
2. S_CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_  correspond to S-Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _m_  (after the unit designation) correspond to the MSF target interface
signals that contain _sh_  (after the unit designation) correspond to the SHaC target interface
signals that contain _s0_  (after the unit designation) correspond to the SRAM0 target interface
signals that contain _s1_  (after the unit designation) correspond to the SRAM1 target interface
signals that contain _s2_  (after the unit designation) correspond to the SRAM2 target interface
signals that contain _s3_  (after the unit designation) correspond to the SRAM3 target interface
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Table 181. SRAM CH0 PMU Event List (Sheet 1 of 2)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 QDR I/O Read S_CLK single separate QDR I/O Read

1 QDR I/O Write S_CLK single separate QDR I/O Write

2 Read Cmd Dispatched P_CLK single separate Read Cmd Dispatched

3 Write Cmd Dispatched P_CLK single separate Write Cmd Dispatched

4 Swap Cmd Dispatched P_CLK single separate Swap Cmd Dispatched

5 Set Dispatched P_CLK single separate Set Dispatched

6 Clear Cmd Dispatched P_CLK single separate Clear Cmd Dispatched

7 Add Cmd Dispatched P_CLK single separate Add Cmd Dispatched

8 Sub Cmd Dispatched P_CLK single separate Sub Cmd Dispatched

9 Incr Cmd Dispatched P_CLK single separate Incr Cmd Dispatched

10 Decr Cmd Dispatched P_CLK single separate Decr Cmd Dispatched

11 Ring Cmd Dispatched P_CLK single separate Ring Cmd Dispatched

12 Jour Cmd Dispatched P_CLK single separate Jour Cmd Dispatched

13 Deq Cmd Dispatched P_CLK single separate Deq Cmd Dispatched

14 Enq Cmd Dispatched P_CLK single separate Enq Cmd Dispatched

15 CSR Cmd Dispatched P_CLK single separate CSR Cmd Dispatched

16 WQDesc Cmd Dispatched P_CLK single separate WQDesc Cmd Dispatched

17 RQDesc Cmd Dispatched P_CLK single separate RQDesc Cmd Dispatched

18 FIFO Dequeue – CmdA0 Inlet Q P_CLK single separate FIFO Dequeue – CmdA0 Inlet Q

19 FIFO Enqueue – CmdA0 Inlet Q P_CLK single separate FIFO Enqueue – CmdA0 Inlet Q

20 FIFO Valid – CmdA0 Inlet Q P_CLK long separate FIFO Valid – CmdA0 Inlet Q

21 FIFO Full – CmdA1 Inlet Q P_CLK long separate FIFO Full – CmdA1 Inlet Q

22 FIFO Dequeue – CmdA1 Inlet Q P_CLK single separate FIFO Dequeue – CmdA1 Inlet Q

23 FIFO Enqueue – CmdA1 Inlet Q P_CLK single separate FIFO Enqueue – CmdA1 Inlet Q

24 FIFO Valid – CmdA1 Inlet Q P_CLK long separate FIFO Valid – CmdA1 Inlet Q

25 FIFO Full – CmdA1 Inlet Q P_CLK long separate FIFO Full – CmdA1 Inlet Q

26 FIFO Dequeue – Wr Cmd Q S_CLK single separate FIFO Dequeue – Wr Cmd Q

27 FIFO Enqueue – Wr Cmd Q P_CLK single separate FIFO Enqueue – Wr Cmd Q

28 FIFO Valid – Wr Cmd Q S_CLK long separate FIFO Valid – Wr Cmd Q

29 FIFO Full – Wr Cmd Q P_CLK long separate FIFO Full – Wr Cmd Q

30 FIFO Dequeue – Queue Cmd Q S_CLK single separate FIFO Dequeue – Queue Cmd Q

31 FIFO Enqueue – Queue Cmd Q P_CLK single separate FIFO Enqueue – Queue Cmd Q

32 FIFO Valid – Queue Cmd Q S_CLK long separate FIFO Valid – Queue Cmd Q
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33 FIFO Full – Queue Cmd Q P_CLK long separate FIFO Full – Queue Cmd Q

34 FIFO Dequeue – Rd Cmd Q S_CLK single separate FIFO Dequeue – Rd Cmd Q

35 FIFO Enqueue – Rd Cmd Q P_CLK single separate FIFO Enqueue – Rd Cmd Q

36 FIFO Valid – Rd Cmd Q S_CLK long separate FIFO Valid – Rd Cmd Q

37 FIFO Full – Rd Cmd Q P_CLK long separate FIFO Full – Rd Cmd Q

38 FIFO Dequeue – Oref Cmd Q S_CLK single separate FIFO Dequeue – Oref Cmd Q

39 FIFO Enqueue – Oref Cmd Q P_CLK single separate FIFO Enqueue – Oref Cmd Q

40 FIFO Valid – Oref Cmd Q S_CLK long separate FIFO Valid – Oref Cmd Q

41 FIFO Full – Oref Cmd Q P_CLK long separate FIFO Full – Oref Cmd Q

42 FIFO Dequeue – SP0 Pull Data Q S_CLK single separate FIFO Dequeue – SP0 Pull Data Q

43 FIFO Enqueue – SP0 Pull Data Q P_CLK single separate FIFO Enqueue – SP0 Pull Data Q

44 FIFO Valid – SP0 Pull Data Q S_CLK long separate FIFO Valid – SP0 Pull Data Q

45 FIFO Full – SP0 Pull Data Q P_CLK long separate FIFO Full – SP0 Pull Data Q

46 FIFO Dequeue – SP1 Pull Data Q S_CLK single separate FIFO Dequeue – SP1 Pull Data Q

47 FIFO Enqueue – SP1 Pull Data Q P_CLK single separate FIFO Enqueue – SP1 Pull Data Q

48 FIFO Valid – SP1 Pull Data Q S_CLK long separate FIFO Valid – SP1 Pull Data Q

49 FIFO Full – SP1 Pull Data Q P_CLK long separate FIFO Full – SP1 Pull Data Q

50 FIFO Dequeue – Push ID/Data Q P_CLK single separate FIFO Dequeue – Push ID/Data Q

51 FIFO Enqueue – Push ID/Data Q S_CLK single separate FIFO Enqueue – Push ID/Data Q

52 FIFO Valid – Push ID/Data Q P_CLK long separate FIFO Valid – Push ID/Data Q

53 FIFO Full – Push ID/Data Q S_CLK long separate FIFO Full – Push ID/Data Q

Table 181. SRAM CH0 PMU Event List (Sheet 2 of 2)

Table 182. IXP2800 Network Processor Dram DPLA PMU Event List (Sheet 1 of 2)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 d0_enq_id_wph P_CLK single separate Enqueue d0 cmd

1 d0_deq_id_wph P_CLK single separate Dequeue d0 cmd

2 dram_req_rph[0] P_CLK single separate d0 has a valid req

3 next_d0_full_wph P_CLK single separate d0 FIFO hit the full threshold

4 d1_enq_id_wph P_CLK single separate Enqueue d1 cmd

5 d1_deq_id_wph P_CLK single separate Dequeue d1 cmd

6 dram_req_rph[1] P_CLK single separate d1 has a valid req

7 next_d1_full_wph P_CLK single separate d1 FIFO hit the full threshold

8 d2_enq_id_wph P_CLK single separate Enqueue d2 cmd
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9 d2_deq_id_wph P_CLK single separate Dequeue d2 cmd

10 dram_req_rph[2] P_CLK single separate d2 has a valid req

11 next_d2_full_wph P_CLK single separate d2 FIFO hit the full threshold

12 cr0_enq_id_wph P_CLK single separate Enqueue cr0 cmd

13 cr0_deq_id_wph P_CLK single separate Dequeue cr0 cmd

14 dram_req_rph[3] P_CLK single separate cr0 has a valid req

15 next_cr0_full_wph P_CLK single separate cr0 FIFO hit the full threshold

16 cr1_enq_id_wph P_CLK single separate Enqueue cr1 cmd

17 cr1_deq_id_wph P_CLK single separate Dequeue cr1 cmd

18 dram_req_rph[4] P_CLK single separate cr1 has a valid req

19 next_cr1_full_wph P_CLK single separate cr1 FIFO hit the full threshold

Table 182. IXP2800 Network Processor Dram DPLA PMU Event List (Sheet 2 of 2)

Table 183. IXP2800 Network Processor Dram DPSA PMU Event List (Sheet 1 of 2)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 d0_enq_id_wph P_CLK single separate Enqueue d0 cmd/data

1 d0_deq_id_wph P_CLK single separate Dequeue d0 cmd/data

2 dram_req_rph[0] P_CLK single separate d0 has a valid req(not empty)

3 next_d0_full_wph P_CLK single separate d0 FIFO hit the full threshold

4 d1_enq_id_wph P_CLK single separate Enqueue d1 cmd/data

5 d1_deq_id_wph P_CLK single separate Dequeue d1 cmd/data

6 dram_req_rph[1] P_CLK single separate d1 has a valid req

7 next_d1_full_wph P_CLK single separate d1 FIFO hit the full threshold

8 d2_enq_id_wph P_CLK single separate Enqueue d2 cmd/data

9 d2_deq_id_wph P_CLK single separate Dequeue d2 cmd/data

10 dram_req_rph[2] P_CLK single separate d2 has a valid req

11 next_d2_full_wph P_CLK single separate d2 FIFO hit the full threshold

12 cr0_enq_id_wph P_CLK single separate Enqueue cr0 cmd/data

13 cr0_deq_id_wph P_CLK single separate Dequeue cr0 cmd/data

14 dram_req_rph[3] P_CLK single separate cr0 has a valid req

15 next_cr0_full_wph P_CLK single separate cr0 FIFO hit the full threshold

16 cr1_enq_id_wph P_CLK single separate Enqueue cr1 cmd/data
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17 cr1_deq_id_wph P_CLK single separate Dequeue cr1 cmd/data

18 dram_req_rph[4] P_CLK single separate cr1 has a valid req

19 next_cr1_full_wph P_CLK single separate cr1 FIFO hit the full threshold

Table 183. IXP2800 Network Processor Dram DPSA PMU Event List (Sheet 2 of 2)

Table 184. IXP2800 Network Processor Dram CH2 PMU Event List (Sheet 1 of 5)

Event 
Numbe

r
Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 DATA_ERROR_SYNC_RPH P_CLK single separate

Indicates that a data error has been detected on 
the RDRAM read data from the RMC. The signal 
asserts for both correctable and uncorrectable 
errors.

1 GET_PULL_DATA_SYNC_R
PH P_CLK single separate Asserts when the RMC is accepting RDRAM 

write data from the d_app_unit block.

2 TAKE_PUSH_DATA_SYNC_
RPH P_CLK single separate Asserts when the RMC is driving RDRAM read 

data to the d_push_bus_if block.

3 START_SYNC_RPH P_CLK single separate

Input to RMC, asserted to request memory 
transaction and deasserted when the RMC is 
ready to accept a command (i.e., when RMC 
asserts GETC_SYNC_RPH).

4 GETC_SYNC_RPH P_CLK single separate Output from RMC, indicates the RMC is ready to 
accept a command for the RDRAM channel.

5 reserved

6 reserved

7 dps_push_ctrl_fifo_full_rph P_CLK single separate
Active when the push_control FIFO is nearly full, 
i.e., > 6 entries
1:0   2'H0

8 push_ctrl_fifo_enq_rph P_CLK single separate Active when enqueueing push control and status 
data to the FIFOs in d_push_bus_if.

9 DPS_ENQ_PUSH_DATA_R
PH P_CLK single separate Active when enqueueing data from the RMC into 

the push data FIFO.

10 valid_push_data_rp P_CLK single separate

Is (data_valid AND !create_databackup), where 
data_valid indicates data available in the 
d_push_bus_if data FIFO; create_databackup 
asserts when the push arbiter FIFO (in dp_unit 
block) gets nearly full. When it asserts, it prevents 
dequeueing from the d_push_bus_if data FIFO.

11 push_ctrl_fifo_empty_rph P_CLK single separate Active when the push control FIFO is empty.

12 deq_push_data_wph P_CLK single separate Asserts to dequeue from the data FIFO in the 
d_push_bus_if block.

13 deq_csr_data_wph P_CLK single separate Pulses active when reading from a CSR instead 
of DRAM.
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14 deq_push_ctrl_wph P_CLK single separate
Active when dequeueing from the push control 
FIFO; occurs on the last cycle of a burst or on the 
only cycle of a single transfer.

15 d_push_ctrl_fsm/
single_xfer_wph P_CLK single separate

Active if the data is about to be transferred from 
d_push data FIFO to the dp_unit FIFO is length 0, 
i.e., a single 8-byte transfer.

16 d_push_ctrl_fsm/
data_128_bit_alligned P_CLK single separate

Active if the data is about to be transferred from 
d_push data FIFO to the dp_unit FIFO is quad-
word (128-bit) aligned.

17 perf_data_fifo_full P_CLK single separate

Asserts when the data FIFO in the d_push_bus_if 
block has > 4 entries (Data from the RDRAM is 
enqueued into this FIFO; dequeued data is 
written to the push bus arbiter FIFO in dp_unit 
block.)

18 reserved

19 reserved

20 DPL_RMW_BANK3_READ_
DATA_AVAIL_RPH P_CLK single separate

Indicates that the read data for a read-modify-
write operation is available in the d_pull_bus_if 
block. This signal is deasserted when the data 
and command

21 DPL_RMW_BANK2_READ_
DATA_AVAIL_RPH P_CLK single separate

Indicates that the read data for a read-modify-
write operation is available in the d_pull_bus_if 
block. This signal is deasserted when the data 
and command

22 DPL_RMW_BANK1_READ_
DATA_AVAIL_RPH P_CLK single separate

Indicates that the read data for a read-modify-
write operation is available in the d_pull_bus_if 
block. This signal is deasserted when the data 
and command

23 DPL_RMW_BANK0_READ_
DATA_AVAIL_RPH P_CLK single separate

Indicates that the read data for a read-modify-
write operation is available in the d_pull_bus_if 
block. This signal is deasserted when the data 
and command

24 addr_128bit_alligned P_CLK single separate

Indicates that bit 3 of the DRAM command’s 
address at the head of the pull control FIFO (i.e., 
about to be dequeued) is low. This command is 
for the pull data which is about to be enqueued 
into a pull data bank FIFO.

25 b3_empty_rph P_CLK single separate Indicates that the pull data’s bank FIFO is empty.

26 b2_empty_rph P_CLK single separate Indicates that the pull data's bank FIFO is empty.

27 b1_empty_rph P_CLK single separate Indicates that the pull data's bank FIFO is empty.

28 b0_empty_rph P_CLK single separate indicates that the pull data's bank FIFO is empty

29 b3_full_rph P_CLK single separate Indicates that the pull data's bank FIFO has > 0xf 
entries in it, i.e., is full

30 b2_full_rph P_CLK single separate Indicates that the pull data's bank FIFO has > 0xf 
entries in it, i.e., is full.

31 b1_full_rph P_CLK single separate Indicates that the pull data's bank FIFO has > 0xf 
entries in it, i.e., is full.

32 b0_full_rph P_CLK single separate Indicates that the pull data's bank FIFO has > 0xf 
entries in it, i.e., is full.

Table 184. IXP2800 Network Processor Dram CH2 PMU Event List (Sheet 2 of 5)
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33 DAP_DEQ_B3_DATA_RPH P_CLK single separate

Indicates pull data and command are being 
dequeued from the data and command bank 
FIFOs to the RMC (the command and data FIFOs 
used in tandem for pulls to supply the address 
and data respectively).

34 DAP_DEQ_B2_DATA_RPH P_CLK single separate

35 DAP_DEQ_B1_DATA_RPH P_CLK single separate

36 DAP_DEQ_B0_DATA_RPH P_CLK single separate

Indicates pull data and command are being 
dequeued from the data and command bank 
FIFOs to the RMC (the command and data FIFOs 
used in tandem for pulls to supply the address 
and data respectively).

37 csr_wr_data_avail P_CLK single separate Indicates that CSR write data is ready to be 
latched into the CSR.

38 bank3_enq_wph P_CLK single separate Indicates pull data is being enqueued to a bank 
FIFO in the pull bus interface block.

39 bank2_enq_wph P_CLK single separate Indicates pull data is being enqueued to a bank 
FIFO in the pull bus interface block.

40 bank1_enq_wph P_CLK single separate Indicates pull data is being enqueued to a bank 
FIFO in the pull bus interface block.

41 bank0_enq_wph P_CLK single separate Indicates pull data is being enqueued to a bank 
FIFO in the pull bus interface block.

42 reserved

43 DCB_BANK3_CMD_AVAL_
RDH D_CLK single separate Indicates that this bank FIFO has a command 

available.

44 DCB_BANK2_CMD_AVAL_
RDH D_CLK single separate Indicates that this bank FIFO has a command 

available.

45 DCB_BANK1_CMD_AVAL_
RDH D_CLK single separate Indicates that this bank FIFO has a command 

available.

46 DCB_BANK0_CMD_AVAL_
RDH D_CLK single separate Indicates that this bank FIFO has a command 

available.

47 DAP_CSR_READ_CMD_TA
KEN_WDH D_CLK single separate

Indicates dequeueing of a CSR read command 
and clears the CSR read request signal coming 
out of d_command_bus_if.

48 DAP_BANK3_CMD_DEQ_
WDH D_CLK single separate Active to dequeue a DRAM command from bank 

N's FIFO, generated by d_app block.

49 DAP_BANK2_CMD_DEQ_
WDH D_CLK single separate Active to dequeue a DRAM command from bank 

N's FIFO, generated by d_app block.

50 DAP_BANK1_CMD_DEQ_
WDH D_CLK single separate Active to dequeue a DRAM command from bank 

N's FIFO, generated by d_app block.

51 DAP_BANK0_CMD_DEQ_
WDH D_CLK single separate Active to dequeue a DRAM command from bank 

N's FIFO, generated by d_app block.

52 split_cmd_wph P_CLK single separate Active if the command will cross a 128-byte 
boundary and thus be split across channels.

53 reserved

54 reserved

55 reserved

56 reserved
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57 reserved

58 reserved

59 deq_split_cmd_fifo_wph P_CLK single separate Active when dequeueing from the split inlet FIFO.

60 deq_inlet_fifo1_wph P_CLK single separate Active when dequeueing from the inlet FIFO.

61 deq_inlet_fifo_wph P_CLK single separate Active when dequeueing from either the inlet or 
split-inlet FIFO.

62 DCB_PULL_CTRL_AVAL_W
PH P_CLK single separate Indicates the pull control FIFO has >= 1 entry.

63 inlet_cmd_aval_rph P_CLK single separate Indicates a command is available in the non-split 
inlet FIFO.

64 split_fifo_not_empty P_CLK single separate
Indicates a command is available in the ”split 
inlet” FIFO (split refers to a command being split 
across channels).

65 bank3_pull_ok_wph P_CLK single separate
Indicates that this bank's data FIFO has enough 
room to accommodate the size of the next pull 
command in the inlet FIFO.

66 bank2_pull_ok_wph P_CLK single separate
Indicates that this bank's data FIFO has enough 
room to accommodate the size of the next pull 
command in the inlet FIFO.

67 bank1_pull_ok_wph P_CLK single separate
Indicates that this bank's data FIFO has enough 
room to accommodate the size of the next pull 
command in the inlet FIFO.

68 bank0_pull_ok_wph P_CLK single separate
Indicates that this bank's data FIFO has enough 
room to accommodate the size of the next pull 
command in the inlet FIFO.

69 csr_q_full_wph P_CLK single separate Indicates that a CSR access is in process.

70 DXDP_CMD_Q_FULL_RPH P_CLK single separate Indicates the command inlet FIFO contains > 8 
entries.

71 pull_ctrl_fifo_full P_CLK single separate Indicates that there are > 6 outstanding pull 
requests.

72 bank3_cmd_q_full_rph P_CLK single separate Indicates the bank command FIFO contains > 6 
entries.

73 bank2_cmd_q_full_rph P_CLK single separate Indicates the bank command FIFO contains > 6 
entries.

74 bank1_cmd_q_full_rph P_CLK single separate Indicates the bank command FIFO contains > 6 
entries.

75 bank0_cmd_q_full_rph P_CLK single separate Indicates the bank command FIFO contains > 6 
entries.

76 valid_write_req_wph P_CLK single separate

Indicates a DRAM write is being passed from the 
inlet FIFO to a bank FIFO. The DRAM write may 
be: DRAM RBUF read, DRAM write, or CSR 
write.

77 csr_q_full_en_wph P_CLK single separate Pulses at both the start of a CSR read/write and 
at the completion of a CSR read/write.

78 push_rmw_wr_cmd_wph P_CLK single separate Indicates the command being passed from the 
inlet FIFO to a bank FIFO is a read-modify-write.

79 bank3_enq_wph P_CLK single separate Indicates this channel is enqueueing a DRAM 
command for bank3.

Table 184. IXP2800 Network Processor Dram CH2 PMU Event List (Sheet 4 of 5)
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11.4.6.31 IXP2800 Network Processor DRAM CH1 Events Target ID(010101) /
Design Block #(0011)

11.4.6.32 IXP2800 Network Processor DRAM CH0 Events Target ID(010110) /
Design Block #(0011)

80 bank2_enq_wph P_CLK single separate Indicates this channel is enqueueing a DRAM 
command for bank2.

81 bank1_enq_wph P_CLK single separate Indicates this channel is enqueueing a DRAM 
command for bank1.

82 bank0_enq_wph P_CLK single separate Indicates this channel is enqueueing a DRAM 
command for bank0.

83 push2split_cmd_fifo_wph P_CLK single separate Indicates this channel is enqueueing a DRAM 
command which is split between two channels.

84 push2inlet_fifo_wph P_CLK single separate Indicates this channel is enqueueing a DRAM 
command which fits entirely in this channel.

85 valid_dram_cmd_wph P_CLK single separate Indicates the command bus' target ID is DRAM.

86-127 reserved

Table 184. IXP2800 Network Processor Dram CH2 PMU Event List (Sheet 5 of 5)

Table 185. IXP2800 Network Processor Dram CH1 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Dram Channels have same event lists. Please reference Channel 2 Event lists.

Table 186. IXP2800 Network Processor Dram CH0 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the Dram Channels have same event lists. Please reference Channel 2 Event lists
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