# Engineering Mathematics Made Easy with TI-36X Pro (All India Syllabus)

## **By PROF. AJOY K RAY**









Engineering Mathematics Made Easy with TI-36X Pro (All India Syllabus)

Published by Statworks India Private Limited ("Statworks")

Copyright ©2012 by Statworks India Private Limited ("Statworks")

All rights reserved. No part of this publication maybe reproduced or distributed in any form or by any means or stored in a database or retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the publisher.

Trademark and Copyright of Texas Instruments Inc. ("TI") : TI-36XPRO

Disclaimer:

The guidebook Engineering Mathematics Made Easy with TI-36X Pro (All India Syllabus) is solely the written work of Statworks and its consultants and Statworks acknowledges that Texas Instruments (TI) has no liability or claims whatsoever in respect of this guidebook and its content.





#### FOREWORD

To all Academicians and Students

Are you expecting to solve Engineering Mathematics easily and quickly using the latest and leading Scientific Calculator in the market right now? If your answer is a resounding YES, then you are on the right path purchasing my book: **ENGINEERING MATHEMATICS MADE EASY WITH TI-36XPRO (All India Syllabus)**.

This book is an interesting combo package – It is designed to be used in conjunction with Engineering Mathematics Textbooks. The calculator selected for this workbook is the Texas Instruments Scientific Calculator – TI-36XPRO.

Each section in this workbook shows how to use the calculator to work out solutions to problems similar to those found in Engineering Mathematics textbooks. Most types of problems are covered. Emphasis is on the use of the scientific functions of the calculator. The only assumption is that students have the identical calculator. If another model of calculator is used, it is possible, or even likely, that other keystroke sequences will be needed to achieve correct results. Some calculators will not be able to do all the types of problems demonstrated in this workbook. This guidebook will enable students and academicians to be in a better position to assist others on the usage of the scientific calculator to solve Engineering Mathematics problems.

The students will find this book useful in assisting them to improve their skills on how to use the Scientific Calculator TI-36XPRO to efficiently solve their problems. The **ENGINEERING MATHEMATICS MADE EASY WITH TI-36XPRO (All India Syllabus)** provides the Engineering Mathematics examples, answers and step to be followed with the calculator to solve these mathematics problems. A student could either refer to the answer before following the steps or the student could follow the steps and check whether their methods and answers are correct in solving the problems. It is a way for the students to assess themselves with the help of the book.

Texas Instruments TI 36X Pro is the leading Advanced Scientific Calculator (nonprogrammable) which is widely used in US, Europe and other Asian Countries. It is fast gaining acceptance in India due to its unique features and ease of use. This guidebook helps academicians and students to learn to use TI-36XPRO thoroughly which in turn help students to save time in solving mathematical problems during their examinations.





#### **ABOUT THE AUTHOR**

The Author, Prof. Ajoy Kumar Ray is the Vice Chancellor of the Bengal Engineering and Science University, Shibpur. Previously, he was a Professor of Electronics and Electrical Communication Engineering and Head, School of Medical Science and Technology at IIT Kharagpur. He has co-authored about 90 research papers well as has authored five books published by International Publishing Houses, such as John Wiley, Tata McGraw Hill, Prentice Hall of India etc. He is an expert in engineering mathematics and is experienced in using various types of calculators whereby which he has selected the TI-36XPRO Scientific Calculator and has written a Guidebook to assist students and academicians in solving Engineering Mathematics problems easily.



## **TABLE OF CONTENTS**

## **Basic Algebra**

| Arithmetic                                      | 7  |
|-------------------------------------------------|----|
| Fractions, Decimals and Percentages             | 12 |
| Indices, Standard Form and Engineering Notation | 16 |
| Calculations and Evaluation of Formulae         | 20 |
| Computer Numbering Systems                      | 24 |
| Algebra                                         | 28 |
| Logarithms                                      | 32 |
| Number Sequences                                | 38 |

#### **Complex Number**

| Complex Number | 43 |
|----------------|----|
|----------------|----|

## Theory of Equation

| Simple Equations        |  |
|-------------------------|--|
| Simultaneous Equation51 |  |

## **Matrices and Vector**

| Determinants and Matrices | 56 |
|---------------------------|----|
| Vector                    | 61 |





## **Geometry and Trigonometry**

| Introduction to Trigonometry     | 66 |
|----------------------------------|----|
| Cartesian and polar co-ordinates | 71 |
| Geometry and Triangles           | 74 |
| Adding of Waveforms              | 86 |

#### **Analytical Solid Geometry**

| Areas of Plane Figures   | 94 |
|--------------------------|----|
| The Circle               |    |
| Volumes of common solids |    |

#### **Calculus**

| Integration     | 108 |
|-----------------|-----|
| Differentiation | 112 |

## **Statistics and Probability**

| Correlation and Regression                  | 117 |
|---------------------------------------------|-----|
| Measures of Central Tendency and Dispersion | 128 |
| Distributions                               | 134 |
| Probability                                 | 140 |
| Sampling and Inference                      | 143 |





## Arithmetic

#### **Overview / Introduction / Terminology:**

Arithmetic is the study of numerical quantities. At least a basic understanding of arithmetic is fundamental in the study of algebra and all other mathematical studies. This book assumes that the reader already understands some mathematics but wishes to relearn it in a more formal manner.

#### **Arithmetic Sequence**

Arithmetic sequence is a sequence of numbers that has a constant difference between every two consecutive terms.

In other words, arithmetic sequence is a sequence of numbers in which each term except the first term is the result of adding the same number, called the common difference, to the preceding term. Example: The sequence 5, 11, 17, 23, 29, 35 . . . is an arithmetic sequence; because the same number 6 (i.e. the common difference) is added to each term of the sequence to get the succeeding term.

#### **Arithmetic Progressions**

By an arithmetic progression of m terms, we mean a finite sequence of the form

 $a, a + d, a + 2d, a + 3d, \dots, a + (m - 1)d$ 

The real number a is called the first term of the arithmetic progression, and the real number d is called the difference of the arithmetic progression.

#### **Arithmetic Series**

A series such as  $3 + 7 + 11 + 15 + \dots + 99$  or  $10 + 20 + 30 + \dots + 10000$  which has a constant difference between terms. The first term is  $a_1$ , the common difference is d, and the number of terms is n. The sum of an arithmetic series is found by multiplying the number of terms times the average of the first and last terms. Formula:

$$Sum = n\left(\frac{a_1 + a_n}{2}\right) or \frac{n}{2}[2a_1 + (n-1)d]$$

Keystrokes: [math],2nd[num-solv],[sto+





| Topic:           | Math Concepts:                                           |  |
|------------------|----------------------------------------------------------|--|
| Basic Arithmetic | Arithmetic Sequence, Arithmetic Progressions, Arithmetic |  |
|                  | Series.                                                  |  |
|                  |                                                          |  |

#### **Example:**

1. Fine the value of the following summation:

$$\sum_{n=15}^{47} 2n - 5$$

From the formula ("2n - 5") for the *n*-th term, each term will be two units larger than the previous term. (Plug in values for *n* if you're not sure about this.) So this is indeed an arithmetical sum. But this summation starts at n = 15, not at n = 1, and the summation formula applies to sums starting at n = 1. So how can it work with this summation?

The quickest way to find the value of this sum is to find the 14th and 47th partial sums, and then subtract the 14th from the 47th. By doing this subtraction, it be left with the value of the sum of the 15th through 47th terms. The first term is  $a_1 = 2(1) - 5 = -3$ . The other necessary terms are  $a_{14} = 2(14) - 5 = 23$  and  $a_{47} = 2(47) - 5 = 89$ .

$$\sum_{n=1}^{14} 2n - 5 = \left(\frac{14}{2}\right)(-3 + 23) = (7)(20) = 140$$
$$\sum_{n=1}^{14} 2n - 5 = \left(\frac{47}{2}\right)(-3 + 89) = \left(\frac{47}{2}\right)(86) = 2021$$

Subtracting:

$$\sum_{n=15}^{47} 2n - 5 = \left(\sum_{n=1}^{47} 2n - 5\right) - \left(\sum_{n=1}^{47} 2n - 5\right)$$

$$= 2021 - 140 = 1881$$





Math Concepts: Arithmetic Sequence, Arithmetic Progressions, Arithmetic Series.

| No | Keystrokes                                                                                                  | Screenshots                                      |
|----|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1  | Assume $n = x$ ,<br>Firstly press button, math $\odot \odot \odot \odot$ enter or 5:sum(,                   | ™INUM DMS R⇔P<br>4↑▶Pfactor<br>EBsum(<br>6:prod( |
| 2  | Insert value in the formulae,<br>$15 \odot 47 \odot 2 x_{abcd}^{yet} - 5 \odot enter$<br>The answer = 1881. | 47<br>Σ(2α−5)<br>x=15 <sup>(2α−5)</sup> 1881     |

2.  $3 + 7 + 11 + 15 + \dots + 99$  has  $a_1 = 3$  and d = 4. To find *x*, use the explicit formula for an arithmetic sequence.

| No | Keystrokes                                                                                              | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Firstly solve value for n, press $2nd[num-solv]$ ,<br>Then insert value $3+(x_{abcd}^{yer}-1)499$ enter | ■=∷<br>Enter equation<br>to solve.<br>3+(%-1)4=99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2  | Assume $x = 0$ , and press enter enter<br>Press () enter to go to the home screen.                      | Image: solution of the soluti |





Topic: Math Concepts: **Basic Arithmetic** Arithmetic Sequence, Arithmetic Progressions, Arithmetic Series. No **Keystrokes** Screenshots And then, insert x = 25 in the formula and press 3 DEG ÷., **25(∃3**+99**⊙2)**)enter. 25( <u>3+99</u> 1275 The answer is 1275.

# 3. Solve, $3 + 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81}$ has $a = 3, t = \frac{1}{3}$ and x = 6.

| No | Keystrokes                                                                                                                                                                                                                                                                                                                                   | Screenshots                                                                                                                                                                                       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Store the value in the variable $a, t, x$ . Press<br><b>3</b> sto $\rightarrow x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (a)$ enter,<br><b>1 3 s</b> to $\rightarrow x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (x)$ enter and<br><b>6</b> sto $\rightarrow x_{abcd}^{yzt} (x)$ enter.<br>And press clear (home screen). | 3÷a 3<br>1⇒t 1<br>6÷x 6                                                                                                                                                                           |
| 2  | Then, insert value in the formula, press<br>∃3(1-(∃1⊙3⊙)x=6))⊙1-∃1⊙3<br>() enter.                                                                                                                                                                                                                                                            | $ \begin{array}{c}       3\left(1-\left(\frac{1}{3}\right)^{6}\right) \\       1-\frac{1}{3} \end{array} $ $ \begin{array}{c}       \frac{1}{1-\frac{1}{3}} \\       \frac{364}{81} \end{array} $ |

## **Exercise**:

- 1. Holes are drilled 35.7 mm apart in a metal plate. If a row of 26 holes is drilled, determine the distance, in centimeters, between the centers of the first and last holes.
- 2. Determine the HCF and LCM of the numbers given:
  - a) 12, 30, 45
  - b) 10, 15, 70, 105
  - c) 196, 210, 910, 462





- 3. Simplify the expressions given in below:
  - a)  $\frac{112}{16} 119 \div 17 + (3 \times 19)$ b)  $\frac{(50-14)}{3} + 7(16 - 7) - 7$
- 4. Calculate the diameter *d* and dimensions *A* and *B* for the template shown in the figure below. All dimensions are in the millimeters.



5. Expand the following series and find the sum :

$$\sum_{n=0}^{4} 2n$$

#### Answer:

- 1. 89.25 cm
- a) HCF = 3, LCM = 180
  b) HCF = 5, LCM = 210
  c) HCF = 14, LCM = 420
- 3. a) 57
  - b) 68
- 4. d = 64 mm, A = 136 mm, B = 10 mm.
- 5. 20





## **Fractions, Decimals and Percentages**

### **Overview / Introduction / Terminology:**

Decimals, Fractions and Percentages are just different ways of showing the same value:



| ĺ | As a fraction:   | $\frac{1}{2}$ |
|---|------------------|---------------|
| 1 | As a decimal:    | 0.5           |
|   | As a percentage: | 50%           |
|   |                  |               |

A Half can be written...



| A Quarter can be written |  |  |
|--------------------------|--|--|
| As a fraction:           |  |  |

| As a fraction:   | $\frac{1}{4}$ |
|------------------|---------------|
| As a decimal:    | 0.25          |
| As a percentage: | 25%           |



## **Keystrokes**:

 $\square$ ,  $2nd[\square \square$  math, mode (DEC), 2nd[%],  $\clubsuit \approx$ 





## Example:

1. Find the value of  $3\frac{2}{3} - 2\frac{1}{6}$ 

| No | Keystrokes                                                                                        | Screenshots                                                   |
|----|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1  | To view a value as a mathprint mode, Press:modemode() () () () () () () () () () () () () (       | DEG<br>Ingene HEX BIN OCT †<br>CLASSIC <u>Infernationalan</u> |
| 2  | Press 2nd[7][□=]to enter a mixed number. Insert value with press,<br>3) 2 3 3 − 2nd 7 2 1 6 enter | $3\frac{2}{3}-2\frac{1}{6}$                                   |
| 3  | To chance the proper fractions to the mixed fraction, press [math 1: enter].                      |                                                               |
| 4  | Press enter to continue,<br>The answer is $1\frac{1}{2}$                                          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$         |

2. A mining company extracts 5000 tons of ore with a concentration of metal of 3% and 7300 tons with a concentration of 2.3%. On the basis of these two extraction figures, what is the total quantity of metal obtained?

If one ton of metal is worth 280 dollars, what is the total value of the metal extracted?





**Topic:** Fractions, Decimals and Percentages Math Concepts: Fractions, Decimals, Percentages and Converter.

| No | Keystrokes                                                                                                                                   | Screenshots                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1  | Press 3 2nd [%] × 50000 enter<br>Then press + 2 · 3 2nd [%] × 7 300 enter                                                                    | ™ ^<br>3%*5000 150<br>ans+2.3%*7300<br>317.9 |
| 2  | After get a value, Press ×280<br>The two extractions represent a total of 317.9 tons of metal<br>for a total value of <b>89012 dollars</b> . | **************************************       |

3. Express as decimal fraction:  $15\frac{8}{6}\pi$ 

| No | Keystrokes                                                                          | Screenshots                                              |
|----|-------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1  | Press 2nd 7 to get the template for mixed fraction                                  | $15\frac{8}{6}\pi$ $\frac{49\pi}{3}$                     |
|    | Then insert $150806\pi_i^{e}$ [enter]                                               |                                                          |
| 2  | To change the answer as decimal, press •= $\pi$<br>Thus, $15\frac{8}{6}\pi = 51.31$ | $15\frac{8}{6}\pi$ $\frac{49\pi}{3}$<br>ans* 51.31268001 |





#### **Exercise**:

- 1.  $\left(\frac{2}{3} \times 1\frac{1}{4}\right) \div \left(\frac{2}{3} + \frac{1}{4}\right) + 1\frac{3}{5}$
- 2. Determine the dimension marked *x* in the length of shaft shown in Figure below. The dimensions are in millimeters.



- 3. A concrete mixture contain seven parts by volume of ballast, four parts by volume of sand and two parts by volume of cement. Determine the percentage of each of these three constituents correct to the nearest 1% and the mass of cement in a two tonne dry mix, correct to 1 significant figure.
- 4. Convert to percentages:
  - a) 0.057
  - b) 0.374
  - c) 1.285
- 5. In a sample of iron ore, 18% is iron. How much more is needed to produce 3600 kg of iron?

#### Answer:

- 1. 228/55
- 2. 12.52 mm
- 3. 54%, 31%, 15%, 0.3 *t*
- 4. (a) 5.7%
  - (b) 37.4%
  - (c) 128.5%
- 5. 20 000*kg*





## Indices, Standard Form and Engineering Notation

## **Overview / Introduction / Terminology:**

General use of decimal notation for whole numbers and decimal fractions dates from 1585 when *Simon Stevin* (1548–1620) published his book, *Die Thiende*. Stevin used powers of 10 to introduce place value and showed how the algebra of powers (the *index laws*) led to relatively simple ways of doing arithmetic. We write a number such as: Three hundred and sixteen and a quarter in terms of powers of 10 as  $3 \times 10^2 + 1 \times 10^1 + 2 \times 10^0 + 2 \times 10^{-1} + 5 \times 10^{-2}$  and shorten this to 316.25.

Here  $10^n = 10 \times 10 \times ... \times 10$ , (*n* times) when n > 0,  $10^0 = 1$  and  $10^{-n} = \frac{1}{10^n}$ .

When we multiply 316.25 by 10 we use the index law,  $e 10^n \times 10 = 10^{n+1}$  (and the distributive law) to obtain the quick answer 3162.5.

The two basic *index laws*:  $\mathbf{10}^{a} \times \mathbf{10}^{b} = \mathbf{10}^{a+b}$  and  $(\mathbf{10}^{a})^{b} = \mathbf{10}^{ab}$  can be easily checked from the definitions when *a* and *b* are positive integers. A little more thought is needed when *a* and/or *b* are negative integers (or fractions!).

The definitions of  $10^{0} (= 1)$  and  $10^{-n} (= \frac{1}{10^{n}})$ , and later of  $10^{\frac{1}{2}} (= \sqrt{10})$ , are chosen to ensure that the basic index laws

$$x^{\alpha} \times x^{b} = x^{\alpha+b}$$
,  $(x^{\alpha})^{b} = x^{\alpha b}$  and  $x^{\alpha} \cdot y^{\alpha} = (xy)^{\alpha}$ 

The index laws allow us to write very large numbers in a compact and manageable form. For Example, the number of atoms in the universe is frighteningly large but elementary arguments show that this number is approximately  $10^{50}$ . Scientific notation provides an agreed way of giving in standard form the approximate value of very large numbers which occur in science, e.g.

$$2^{10} = 1024 = 1.024 \times 10^3 \approx 1 \times 10^3$$
  
 $2^{20} = 1.048576 \approx 1.05 \times 10^6$ 

Writing numbers in this form makes it easy to do rough calculators. For example,

$$2^{40} = (2^{20})^2 = (1.05 \times 10^6)^2$$
$$(1.05 \times 10^6)^2 = (1.05)^2 \times (10^6)^2 = 1.1025 \times 10^2$$
$$2^{-20} = \frac{1}{2^{20}} = \frac{1}{1.05 \times 10^6} = 0.95 \times 10^{-6}$$
$$0.95 \times 10^{-6} = 9.5 \times 10^{-7}$$

Keystrokes:

[math][MATH][NUM], mode] [SCI][ENG], 2nd[num-solv]





| Topic:                         | Math Concepts:                          |
|--------------------------------|-----------------------------------------|
| Calculations and Evaluation of | Calculations and Evaluation of Formulae |
| Formulae                       |                                         |

#### **Example:**

1. Engineering notation is similar to scientific notation except that the power of ten is always a multiple of 3. For example,

 $0.00035 = 3.5\ \times 10^{-4}$  in scientific notation,

 $0.00035 = 0.35 \times 10^{-3} \text{ or } 350 \times 10^{-6}$  in engineering notation.

| No | Keystrokes                                                                                                                                                                                                                                                    | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | In scientific notation, press mode 	⊕ (enter clear ,<br>0 • 0 0 0 3 5 enter .                                                                                                                                                                                 | sci Des<br>Mach RAD GRAD<br>NORH Bood ENG<br>100000 0123456789<br>BEAL 9+bi r20<br>4<br>0.00035 3.5e <sup>-4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2  | In engineering notation, press<br>mode $\textcircled{O}$ $\textcircled{O}$ enter Clear , $\bigcirc \bigcirc $ | ENG DEG<br>NORH SCI <u>1920</u><br>190710 0123456789<br>190710 0123456789 |

2. Find the value of *x* on the following equation:

$$15x^2 + \frac{1}{2}\pi = 20$$





**Topic:** Calculations and Evaluation of Formulae Math Concepts: Calculations and Evaluation of Formulae

| No | Keystrokes                                                                                                | Screenshots                                                              |
|----|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1  | To find the value of $x$ , press $2nd[num-solv]$ ,                                                        | Enter equation to solve.                                                 |
| 2  | Insert equation in the formulae. Press<br>$15x_{abcd}^{yet}x^2 + 10 20\pi_i^{e}$ 20.<br>Then press enter. | <sup>∞∞</sup><br>15x <sup>2</sup> + <u>1</u> /2 π=20⊠                    |
| 3  | Assume that $x = 0$ and press enter enter                                                                 | DEG<br>  <u>= }  = 3                              </u>                   |
| 4  | So, value of $x = 1.1084$ .<br>Press () enter to back to home screen.                                     | DES<br><b>BOINT MOR</b><br>1=1.108428427<br>L - R =0<br>SOLVE AGAIN QUIT |

3. Evaluate  $|(35 \times 10^3)(15 \times 10^4)|$ . Expressing answer is standard form.

| No | Keystrokes                                                                                 | Screenshots                                                                              |
|----|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1  | Firstly, Change mode calculator to the scientific mode with press, mode () [enter] Clear]. | 50 066<br>الأعلى RAD GRAD<br>NORH <b>State</b> ENG<br>اعلى 0123456789<br>الأعلى 4+51 ب28 |





| Topic:                         | Math Concepts:                          |
|--------------------------------|-----------------------------------------|
| Calculations and Evaluation of | Calculations and Evaluation of Formulae |
| Formulae                       |                                         |

| No | Keystrokes                                                                                              | Screenshots                                                           |
|----|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 2  | Press math () enter to get the absolute value.                                                          | MATH <b>XUIN</b> DMS R⇔P<br>Math XUIN<br>DMS R⊕P<br>Mant(<br>3↓iPart( |
| 3  | Then, press ( $35 \times 10x^{\circ}3$ ) ( $15 \times 10x^{\circ}4$ ) (enter<br>So the answer is 5.25E9 | °° ~<br> (35*10 <sup>3</sup> )(15*10∳<br>5.25⊑9                       |

## **Exercise**:

- 1. In problems (a) to (e), simplify the expressions given, expressing the answers in index form and with positive indices:
  - a)  $4^2 \times 4^3 \times 4^4$
  - b)  $(15^3)^5$

$$5^{-7} \times 5^{-7}$$

C) 
$$\frac{1}{5^{-8} \times 5^3}$$

- 2.  $|(9.293 \times 10^2) + (1.3 \times 10^3)|$  Expressing the answers in standard form.
- 3. Use a calculator to evaluate the following in engineering notation:

a) 
$$4.5 \times 10^{-7} \times 3 \times 10^{4}$$
  
b)  $\frac{(1.6 \times 10^{-5} (25 \times 10^{3}))}{(1.6 \times 10^{-5} (25 \times 10^{3}))}$ 

b) 
$$\frac{(100\times10^{-6})}{(100\times10^{-6})}$$

- 4. Find the intercepts for this equation 5x + 8y = 20
- 5. Find the value of 7.9  $\,\times\,\,10^{-2}\,-5.4\,\,\times\,\,10^{-2}$

## Answer:

1. a) 4<sup>9</sup>

b) 15<sup>15</sup> c) 1

- 2. 2.2293е3
- 3. a)  $13.5 \times 10^{-3}$
- b)  $4 \times 10^{3}$
- 4. x = 4 and y = 2.5
- 5.  $2.5 \times 10^{-2}$





## **Calculations and Evaluation of Formulae**

## **Overview / Introduction / Terminology:**

One commonly distinguishes between the relative error and the absolute error. The absolute error is the magnitude of the difference between the exact value and the approximation. The relative error is the absolute error divided by the magnitude of the exact value. The percent error is the relative error expressed in terms of per 100.

As an example, if the exact value is 50 and the approximation is 49.9, then the absolute error is 0.1 and the relative error is 0.1/50 = 0.002. The relative error is often used to compare approximations of numbers of widely differing size; for example, approximating the number 1,000 with an absolute error of 3 is, in most applications, much worse than approximating the number 1,000,000 with an absolute error of 3; in the first case the relative error is 0.003 and in the second it is only 0.000003.

Another example would be if you measured a beaker and read 5mL. The correct reading would have been 6mL. This means that your % error (Approximate error) would be 16.666666. % error.

Given some value v and its approximation the **absolute error** is

$$\epsilon = |v - vapprox|$$

where the vertical bars denote the absolute value. If  $v \neq 0$  the **relative error** is

$$n = \frac{|v - v_{approx}|}{|v|} = \left|\frac{v - v_{approx}}{v}\right| = \left|1 - \frac{v_{approx}}{v}\right|$$

and the **percent error** is

$$\delta = \frac{|v - v_{approx}|}{|v|} \times 100\% = \left|\frac{v - v_{approx}}{v}\right| \times 100\%$$

These definitions can be extended to the case when v and  $v_{approx}$  are *n*-dimensional vectors, by replacing the absolute value with an *n*-norm.

## Keystrokes:

 $2nd[complex], sto \rightarrow x_{abcd}^{yzi}, 2nd[\sqrt{}], \pi_{i}^{e}$ 





| Topic:                         | Math Concepts:                          |
|--------------------------------|-----------------------------------------|
| Calculations and Evaluation of | Calculations and Evaluation of Formulae |
| Formulae                       |                                         |

### Example:

1. The area *A* of a triangle is given by  $A = 1\frac{3}{5}ab$ . The base *a* when measures is found to be 4.12 *cm*, and the perpendicular height *b* is 8.1 *cm*. Determine the area of the triangle.

| No | Keystrokes                                                                                                                                                                                                                                                                                                                            | Screenshots                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1  | Firstly, insert value in the variable using STO button.                                                                                                                                                                                                                                                                               | 4.12→a 4.12<br>8.1→b 8.1       |
|    | First variable<br><b>4</b> .12 sto $\rightarrow x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (a)$ enter                                                                                                                                                                                                                | 8.1→b 8.1                      |
|    | Second variable<br><b>8</b> • <b>1</b> sto • $x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (b)$ [enter]                                                                                                                                                                                  |                                |
| 2  | After that, calculate $A = 1\frac{3}{5}ab$ with press button<br>$2nd[7[\square = 1]) \odot \odot \odot \odot x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (a) \odot x_{abcd}^{yzt}$<br>$x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (b)$ enter.<br>Thus, $A = 1\frac{3}{5}ab = 53.4$ cm <sup>2</sup> . | <sup>∞ ~</sup><br>1∃ab 53.3952 |

2. Calculate  $\left|\frac{45x^2-15}{12x^4+5}\right| \times \left|\frac{12-4x^2}{4+5x^3}\right|$ .

| No | Keystrokes                                                                                                           | Screenshots                                                            |
|----|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1  | Firstly, press 2nd[complex] € € [enter].                                                                             | ™<br><b>[EDINIANEX]</b><br>1:2<br>2:polar an9le<br><b>MM</b> ma9nitude |
| 2  | Insert the calculation. Press<br>$\exists 45x_{abcd}^{y_{ac}}x^{2}-15 \odot 12x_{abcd}^{y_{ac}}x^{0}4 + 5 \otimes x$ | <u>45%<sup>2</sup>-15</u>  *<br> 12% <sup>4</sup> +5 *                 |





Topic:Math Concepts:Calculations and Evaluation ofCalculations and Evaluation of FormulaeFormulaeCalculations and Evaluation of Formulae

| No | Keystrokes                                                                                                           | Screenshots                                                     |
|----|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 3  | Then press 2nd[complex]  Then press 2nd[complex]                                                                     | ™<br><b>DEDINATION</b><br>1:2<br>2:Polar an9le<br>MEMMa9nitude  |
| 4  | Continue with the calculation. Press $12 - x_{abcd}^{yzz} = 4 + 5x^{2} $                                             | ••<br><u> •-15</u>  *  <u> 12-4%</u> 2<br><u> 4+5%</u>  ■       |
| 5  | Press enter.<br>Thus, $\left \frac{45x^2 - 15}{12x^4 + 5}\right  \times \left \frac{12 - 4x^2}{4 + 5x^3}\right  = 9$ | $\frac{\frac{45\pi^2 - 15}{12\pi^4 + 5}  *  \frac{12}{4+5}}{9}$ |

3. Evaluate the value of  $\sqrt{\left[\frac{6.09^2}{25.2 \times \sqrt{7}}\right]}$ 

| No | Keystrokes                                          | Screenshots                                            |
|----|-----------------------------------------------------|--------------------------------------------------------|
| 1  | Using the square root button                        |                                                        |
|    | Press<br>2nd√[[∃x□@6·09@2@@25·2×2nd√]7<br>@]@enter. | )( <u>6.094</u> )<br>( <u>25.2*/7</u> )<br>0.745834575 |
|    | So, the answer is 0.745834575                       |                                                        |

4. The volume  $V \ cm^3$  of a right circular cone is given by  $V = \frac{1}{3}\pi x^2 a$ . Given that x = 4.321 cm and a = 18.35 cm, find the volume V.





| Topic:                         |
|--------------------------------|
| Calculations and Evaluation of |
| Formulae                       |

| No | Keystrokes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Screenshots                                                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1  | Insert a value in the variable<br>Press $4 \cdot 321 \text{ sto} \cdot x_{abcd}^{yzt}$ enter,<br>$18 \cdot 35 \text{ sto} \cdot x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt}$ 4 times to get<br>variable <i>a</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.321→n 4.321<br>18.35→a 18.35                                                  |
| 2  | Calculate $V = \frac{1}{3}\pi x^2 a$ with press<br>$\exists 1 \odot 3 \odot \pi_i^* x_{abcd}^{y \pm i} x^2 x_{abcd}^{y \pm i} x_{abcd}^$ | <sup>266</sup> ~<br><sup>1</sup> / <sub>3</sub> π <sup>2</sup> a<br>358.7841254 |

### **Exercise:**

- 1. For a gas pV = c. When pressure p = 103400 Pa and  $V = 0.54m^3$  then  $c = 55836 Pa m^3$ .
- 2. Use a calculator to evaluate correct to 4 significant figures:

a) 
$$\left(\frac{0.2681 \times 41.2^2}{32.6 \times 11.89}\right)^4$$
  
b)  $\sqrt{(6.921^2 + 4.816^3 - 2.161^4)}$ 

- 3. Resistance  $R_2$  is given by  $R_2 = R_1(1+\propto t)$ . Find  $R_2$ , correct to 4 significant figures, when  $R^1 = 220, \propto = 0.00027$  and t = 75.6.
- 4. The area, *A*, of a circle is given by  $A = \pi r^2$ . Determine the area correct to 2 decimal place, given radius r = 5.23 m.
- 5. The time of swing *t* seconds of a simple pendulum is given by  $t = 2\pi \sqrt{\frac{l}{g}}$ . Determine the time, correct to 3 decimal place, given that l = 12.0 and g = 9.81.

## Answer:

- 1. Measured value, hence  $c = 55\ 800\ Pa\ m^3$ .
- 2. a) 1.900
  - b) 11.74
- 3. 224.5
- 4. Hence area,  $A = 85.93m^2$ , correct to 2 decimal place.
- 5. Hence time t = 6.950 seconds, correct to 3 decimal place.





## **Computer Numbering Systems**

## **Overview / Introduction / Terminology:**

All computers do the amazing things that they do by simply manipulating ones and zeros. Computers can only do binary (base 2) arithmetic. It is able to use the binary number system in order to appreciate how the computer works. Since the computer works with the binary number system and since it is relatively easy to convert hexadecimal (base 16) and octal numbers (base 8) into binary, computer scientists need to be familiar with the octal and hexadecimal number systems.

I. Numbering Systems

- 1. Decimal System
  - $\circ$  base 10
    - o valid digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- 2. Binary System
  - o base 2
  - $\circ$  valid digits 0, 1
- 3. Octal System
  - o base 8
  - valid digits − 0, 1, 2, 3, 4, 5, 6, 7
- 4. Hexadecimal System
  - $\circ \quad \text{base 16} \quad$
  - valid digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *A*, *B*, *C*, *D*, *E*, *F*
  - A refers to decimal 10, B refers to decimal 11, etc.
- II. To convert a number in a base other than 10 to the base 10
  - 1. Easy way: To convert 345 (base 8) to decimal, it would be label the three columns as the 1's, 8's, and 64's columns from right to left. Then, multiply the digits by these column labels and compute the sum of the 3 products. Since a 3 is in the 64's column, multiply to obtain 192. Since 4 is in the 8's column, multiply 4 x 8 to get 32. Then add 32 to the 192 from the step before to get a running total of 224. Finally, since a 5 is in the 1's column, multiply 1 x 5 to get the product of 5 and add it to the running total of 224 to get 229. That final value, 229, is the decimal equivalent to the original number 345 (*base* 8).
  - 2. Formal way: Expand the number 345 (base 8) into expanded form. Expanded form is written as

$$(3 x 8^2) + (4 x 8^1) + (5 x 8^0) = 229$$

III. To convert a decimal number into a base other than 10





- 1. Write out the powers in the other base starting at the power of 0 until you reach a number higher than the given number.
- 2. Divide the highest power of the base that can divided at least once into the given number.
- 3. Put the quotient of that division into a column that will eventually be the leftmost digit of the final answer.
- 4. Continue steps 2 & 3 using the remainder of the previous division but add each successive quotient to the right of previous quotients in the final answer.

#### **Keystrokes**:

2nd[base n]

#### Example:

1. Convert  $1011_2$  into decimal number.

| No | Keystrokes                                                                                                                  | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Firstly, change the calculator mode to engineering mode.<br>Press mode ()) () enter and press clear to back to home screen. | العام الع<br>العام العام الع<br>العام العام ال<br>العام العام ال<br>العام العام الع<br>العام العام الع<br>العام العام ال<br>العام العام العام<br>العام العام الع<br>العام العام الع<br>العام العام الع<br>العام العام ال<br>العام العام الع<br>عام العام الع |
| 2  | Press 1011 in the calculator.<br>After that, press 2nd[base n] () ⊙ [enter], to get the <b>b=binary.</b>                    | CONVR <b>III I LOGIC</b><br>1:h<br>2005<br>34d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3  | Then, to change to the decimal, press<br>[2nd][base n] ⓒ ⊙ [▶ Dec][enter][enter].                                           | ™ ™<br>ING IC<br>I: •Hex<br>2: •Bin<br>III •Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4  | Thus, $1011^2$ to decimal = $11E0$                                                                                          | ™ Tes A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





| Topic:                     | Math Concepts:                          |
|----------------------------|-----------------------------------------|
| Computer Numbering Systems | Binary, Decimal, Octal and Hexadecimal. |

## 2. Convert $341_8$ into decimal

| No | Keystrokes                                                               | Screenshots                                                |
|----|--------------------------------------------------------------------------|------------------------------------------------------------|
| 1  | Firstly, press 341, in the calculator.                                   | eng deg ^<br>341∎                                          |
| 2  | And followed by 2nd[base n] () ⊙ ⊙ ⊙ (enter), to find the o = octal      | ENG DEG<br>CONVR <b>NY 21 –</b> LOGIC<br>2↑b<br>3∶d<br>ESE |
| 3  | Then, to convert to decimal, press<br>[2nd][base n] ⊙ ⊙ [enter] [enter]. | ™G DEG<br>DEDINUS TYPE LOGIC<br>1:▶Hex<br>2:▶Bin<br>MENDec |
| 4  | $341_8$ into decimal = <b>225</b> E <b>0</b>                             | <sup>ENG DEG ~</sup><br>341o⊧Dec 225e0                     |

## 3. Convert $949_{10}$ into hexadecimal number

| No | Keystrokes                   | Screenshots      |
|----|------------------------------|------------------|
| 1  | Press 949 in the calculator. | eng deg *<br>949 |





| Topic:                     | Math Concepts:                          |
|----------------------------|-----------------------------------------|
| Computer Numbering Systems | Binary, Decimal, Octal and Hexadecimal. |

| No | Keystrokes                                                                                | Screenshots                                                   |
|----|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 2  | Press $2nd[base n] \oplus \odot \odot [:d]$ to find the <b>d=decimal</b> and press enter, | ™ LOGIC<br>CONVR <b>IIIII</b> LOGIC<br>1:h<br>2:b<br>III      |
| 3  | To change the decimal to hexadecimal number, Press [2nd][base n][enter][enter].           | ™ ™<br><b>DORNE</b> TYPE LOGIC<br>18 Mex<br>2: Main<br>3↓Moec |
| 4  | Thus $949_{10}$ into <i>hexadecimal</i> = <b>3B5h</b> .                                   | ®949d⊁Hex 3B5h                                                |

#### **Exercise:**

- 1. Convert binary numbers given to decimal numbers:
  - a) 11001<sub>2</sub>
  - b) 101101<sub>2</sub>
- 2. Convert the decimal numbers to the octal numbers:
  - a) 47.40625<sub>10</sub>
  - b)  $535.90625_{10}$
- 3. Convert octal numbers to their hexadecimal equations.
  - a) 11010111<sub>8</sub>
  - b) 11101010<sub>8</sub>
- 4. Convert the following hexadecimal numbers into their binary equivalents.
  - a) 7*B*<sub>16</sub>
  - b) 17D<sub>16</sub>
- 5. Convert binary to hexadecimal for 1110011110101001.

#### Answer:

- 1. a) 25е0 b) 45е0
- 2. a) 57*o* b) 1027*o*
- 3. a) 241049*h* b) 248208*h*
- 4. a) 1111011<sub>2</sub> b) 101111101<sub>2</sub>
- 5. *E*7*A*9<sub>16</sub>





## Algebra

## **Overview / Introduction / Terminology:**

Algebra is the branch of mathematics that uses letters in place of some unknown numbers. You've been using algebra since your early schooling, when you learned formulas like the **area of a rectangle**, with width *w*, height *h*:

$$A = w \times h$$

We used **letters to stand for numbers.** Once we knew the width and height, we could substitute them into the formula and find our area. Another one you may have seen is the **area of a square**, with sides *s*:

$$A = s^2$$

As soon as we know the length of the sides, we can find the area.

**Literal numbers** (the letters used in algebra) can either stand for **variables** (the value of the letter can change, like in the examples of the area of a rectangle and the area of a square) or **constants** (where the value does not change), for example *e* (which has a constant value of 2.781828...).

 Keystrokes:

 sto→, [][□]], π];





| Topic:  | Math Concepts:                                                 |
|---------|----------------------------------------------------------------|
| Algebra | Basic Algebra, Laws of Indices, Formula and Literal Equations. |

## **Example:**

1. Simplify  $\frac{x^{1/2}y^2z^{2/3}}{x^{1/4}y^{1/2}z^{1/6}}$  and evaluate when x = 16, y = 9 and z = 4, taking positive roots only.

| No | Keystrokes                                                                                               | Screenshots                                               |
|----|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1  | Firstly you need to store a value into a variable                                                        |                                                           |
|    | Insert value $x = 16$ , $y = 9$ and $z = 4$                                                              | 16→x 16<br>9→y 9<br>4→z 4                                 |
|    | Press <b>1</b> [6] sto $\rightarrow x_{abcd}^{yzt}$ [enter]                                              |                                                           |
|    | Press 9 sto $\rightarrow x_{abcd}^{yzt} x_{abcd}^{yzt}$ enter,                                           |                                                           |
|    | Press 4 sto $\rightarrow x_{abcd}^{yzt} x_{abcd}^{yzt}$ enter.                                           |                                                           |
| 2  | Calculate the equation. Press $\frac{1}{2} x^{\frac{y \in I}{abcd}} x^{\frac{y \in I}{2}} $              | <sup>DEG</sup> ~~<br>4→Z 4                                |
|    | $[x_{abcd}^{yzt}][x_{abcd}^{yzt}][x^2],$                                                                 | $\frac{\chi^{1/2}y^{2}z^{2/3}}{\chi^{1/4}y^{1/2}z^{1/6}}$ |
|    | $\frac{x_{abcd}^{yzt}}{x_{abcd}^{yzt}} x_{abcd}^{yzt} x_{abcd}^{yzt} x^{\Box} = 2 \odot 3 \odot \odot ,$ | 108                                                       |
|    | $x_{abcd}^{yzt} x^{D} = 1 \otimes 4 \otimes \mathfrak{O},$                                               |                                                           |
|    | $x_{abcd}^{yzt} x_{abcd}^{yzt} x^{\texttt{B}} = 1 ) 2 ) )$                                               |                                                           |
|    | $x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x^{pzt} = 10600,$                                          |                                                           |
|    | enter                                                                                                    |                                                           |

2. What is the area of circle if the radius is 20 cm? Reminder:  $A = 2\pi \times r^2$ 

| No | Keystrokes                                                                      | Screenshots                               |
|----|---------------------------------------------------------------------------------|-------------------------------------------|
| 1  | Press $2\pi$ $\pi$ $20x^2$ enter. The area of the circle is $800\pi$ square cm. | <sup>∞</sup> ~<br>2π*20 <sup>2</sup> 800π |





| Topic:  | Math Concepts:                                                 |
|---------|----------------------------------------------------------------|
| Algebra | Basic Algebra, Laws of Indices, Formula and Literal Equations. |

| No | Keystrokes                                                                                                                          | Screenshots                                                                   |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 2  | Then press $\textcircled{\bullet z}$ . The area of the circle is approximately 2513.27 square cm when rounded to one decimal place. | <sup>∞</sup> ~<br>2π*20 <sup>2</sup> 800π<br>800π <del>*</del><br>2513.274123 |

- 3. Hooke's law states that stress  $\sigma$  is directly proportional to strain  $\varepsilon$  within the elastic limit of a material. When, for mild steel, the stress is  $25 \times 10^6$  pascals, the strain is 0.000125. Determine:
  - a) The coefficient of proportionality
  - b) The value of strain when the stress is  $18 \times 10^6$  pascals.

| No | Keystrokes                                                                                                                                                                                                                                                           | Screenshots                                                                                              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 1  | a) $\sigma \alpha \varepsilon$ , i.e. $\sigma = k\varepsilon$ , from which $k = \sigma/\varepsilon$ . Hence the coefficient of proportionality<br>Firstly, change mode calculator in the engineering mode with press, mode $\odot$ $\odot$                           | eng Deg<br>Mind RAD GRAD<br>NORH SCI <u>19201</u><br>Mind 0123456789<br>Mind 0123456789<br>Mind G+bi ۲28 |
| 2  | Then press $325 \times 10x^{10} \odot 0.000125$<br>enter.<br>So $k = 200 \times 10^{9}$ or $200E9$                                                                                                                                                                   | ENG DEG ~~<br><u>25*106</u><br>0.000125 200E9                                                            |
| 3  | b) After that, change the calculator to the normal mode<br>with press mode ⊙enter.                                                                                                                                                                                   | 056<br>1056 RAD GRAD<br>10761 SCI ENG<br>10701 0123456789<br>3891 q+bi r∠0<br>↓                          |
| 4  | Since $\sigma = k\varepsilon, \varepsilon = \sigma/k$ . Hence when $\sigma = 18 \times 10^6$<br>Then press $\exists 18 \times 10 x^{\circ} 6 \odot 200 \times 10 x^{\circ} 9 \odot$<br>enter.<br>So $\varepsilon = \frac{18 \times 10^6}{200 \times 10^9} = 0.00009$ | 18 <u>*10</u> 6<br>200*10 <sup>9</sup><br>0.00009                                                        |



#### **Exercise:**

1. Subtract  $\frac{3}{2}a - \frac{b}{3} + c$  from  $\frac{b}{2} - 4a - 3c$ 2. Simplify  $\frac{a^5bc^3}{a^2b^3c^2}$  and evaluate when  $a = \frac{3}{2}$ ,  $b = \frac{1}{2}$  and  $c = \frac{2}{3}$ .  $\left(a^3b^{\frac{1}{2}}c^{-\frac{1}{2}}\right)(ab)^{\frac{1}{3}}$ 

3. 
$$\frac{\sqrt{1-1}}{(\sqrt{a^3}\sqrt{bc})}$$

- 4. If y is inversely proportional to x and y = 15.3 when x = 0.6, determine:
  - a) The coefficient of proportionality
  - b) The value of y when x is 1.5
  - c) The value of x when y is 27.2
- 5. Boyle's law states that for a gas at constant temperature, the volume of a fixed mass of gas is inversely proportional to its absolute pressure. If a gas occupies a volume of  $1.5m^3$  at a pressure of  $200 \times 10^3$  pascals, determine
  - a) The constant od proportionality
  - b) The volume when the pressure is  $800\, imes\,10^3$  pascals
  - c) The pressure when the volume is  $1.25m^3$ .

### Answer:

1. 
$$-5\frac{1}{2}a + \frac{5}{6}b - 4$$
  
2.  $a^{3}b^{-2}c, 9$   
3.  $a^{11/6}b^{1/3}c^{-3/2}$  or  $\frac{\sqrt[6]{a^{11}\sqrt[3]{b}}}{\sqrt{c^{3}}}$   
4. a) 9.18  
b) 6.12  
c) 0.3375  
5. a) 300 × 10<sup>3</sup>  
b) 0. 275 m<sup>2</sup>

b)  $0..375m^2$ c)  $24 \times 10^3$ 





## Logarithms

#### **Overview / Introduction / Terminology:**

If a number y can be written in the form  $a^{\chi}$ , then the index x is called the 'logarithm of y to the base of a',

If y = ax, then  $x = log_a y$ . Thus, since  $1000 = 10^3$ , then  $3 = log 10^{1000}$ 

#### **Types of logarithms:**

(a) Logarithms having a base of 10 are called common logarithms and  $log_{10}$  is usually abbreviated to lg.

For example:  $lg \ 17.9 = 1.2528$ 

(b) Logarithms having a base of e (where 'e' is a mathematical constant approximately equal to 2.7183) are called hyperbolic, Napierian or natural logarithms, and log<sub>e</sub> or usually abbreviated as ln.

For example: ln 3.15 = 1.1474, ln 362.7 = 5.8935, ln 0.156 = -1.8578

#### Laws of logarithms

| (i)   | To multiply two numbers        | $: log(A \times B) = log A + log B$             |
|-------|--------------------------------|-------------------------------------------------|
| (ii)  | To divide to numbers           | $: log\left(\frac{A}{B}\right) = log A - log B$ |
| (iii) | To raise a number to the power | $: log A^n = n log A$                           |

A logarithmic scale is a <u>scale of measurement</u> that displays the value of a <u>physical quantity</u> using intervals corresponding to orders of magnitude, rather than a standard linear scale.

An exponential function is one which contains  $e^x$ , e being a constant called the exponent and having an approximate value of 2.7183. The exponent arises from the natural laws of growth and decay and is used as a base for natural or Napierian logarithms.

For example:  $e^1 = 2.7182818$ ,  $e^{2.4} = 11.023176$ ,

#### The Laws of Growth and Decay

The laws of exponential growth and decay are of the form  $y = Ae^{-kx}$  and  $y = A(1 - e^{-kx})$ , where A and k are constants.

 Znd
 e<sup>n</sup> 10<sup>n</sup>

 In log
 [num-solv]

 data
 [stat-reg/distr]





#### **Example:**

1. The power dissipated by a resistor was measured for varying values of current flowing in the resistor and the results are as shown:

| Current, I amperes | 1.4 | 4.7 | 6.8  | 9.1  | 11.2 | 13.1 |
|--------------------|-----|-----|------|------|------|------|
| Power, P watts     | 49  | 552 | 1156 | 2070 | 3136 | 4290 |

Prove that the law relating current and power is of the form P = RIn, where R and n are constants, and determine the law. Hence calculate the power when the current is 12 amperes and the current when the power is 1000 watts.

| No | Keystrokes                                                                                                                              | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | To key in, the data, press $data$ and key in the $I$ values.                                                                            | Image: Contract of the second seco |
| 2  | To key in the data values in the table, press<br>1.4 enter 4.7 enter 6.8 enter 9.1 enter<br>11.213.1 enter                              | 0     0     10       9.1     11.2       13.1       L1(7)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3  | To key in the data values in second table, press () and press<br>(49 enter) 552 enter 1156 enter) 2070 enter<br>3136 enter (4290 enter) | Image: Second state     Image: Second state       9.1     2070       11.2     3136       13.1     4290       L2(7)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4  | To calculate the value of x and y, press [2nd][stat-reg/distr]                                                                          | ™ <b>SHENES</b> DISTR<br>6↑CubicRe9<br>7:LnRe9 a+bln%<br>8 <b>‼</b> PwrRe9 a%^b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



| No | Keystrokes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Screenshots                                                                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 5  | Press $\textcircled{O}$ $\r{O}$ $\r$ | 066<br>12 DATA: L1 L2 L3 †<br>19 DATA: L1 L2 L3<br>FRQ: DOXED L1 L2 L3<br>Re9EQ→f(12): [20] YES<br>9=q12^b CALC |
| 6  | Press $\textcircled{O}$ $\textcircled{O}$ $\textcircled{O}$ enter to get the answer.<br>Thus, value for $a = 24.996$ and $b = 2.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pes<br>ax*b:L1,L2,1<br>1:a=24.99681043<br>2:b=2.000012158<br>3↓r2=0.999999988                                   |
| 7  | To round the answer, press mode ⊙⊙ () enter to choose rounded to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ™ DEG<br>RAD GRAD<br>NORij SCI ENG<br>FLOAT 0123456789<br>[331] a+bi r∠0<br>↓                                   |
| 8  | To get the answer, press [2nd][stat-reg/distr][enter] to go back to the table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ™ DISTR<br><b>18</b> StatVars<br>2:1-Var Stats<br>3↓2-Var Stats                                                 |
| 9  | Thus, the answer is rounded to O.<br>a = 25 and $b = 2So, the equation P = RIn is P = 25I^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>FIX</sup> DEG<br><b>ax^b:_1,_2,1</b><br><b>1:</b> a=25<br>2: b=2<br>3↓r <sup>2</sup> =1                    |





2. The temperature  $\theta_2$  of a winding which is being heated electrically at time t is given by:  $\theta_2 = \theta_1 (1 - e^{-t/\tau})$  where  $\theta_1$  is the temperature (in degrees Celsius) at time t = 0 and  $\tau$  is a constant. Calculate the value of  $\theta_1$  correct to the nearest degree, when  $\theta_2$  is 50°C, t is 30s and  $\tau$  is 60s.

| No | Keystrokes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Screenshots                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 1  | Based on the question,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0EG                                            |
|    | $50 = \theta 1 (1 - e^{-30/60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50=% (1-e <sup>-60</sup> )                     |
|    | To enter the equation and values, press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
|    | $2nd[num-solv]50) (x_{abcd}^{yzt}) (1) (-) (x$ |                                                |
|    | 60))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| 2  | To get the answer, press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DEG<br>(C) (C) (C) (C) (C) (C) (C) (C) (C) (C) |
|    | enterlenter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1=127.0747041<br>L - R =0                      |
|    | Thus, $x = 127.07^{\circ}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOLVE AGAIN QUIT                               |

- 3. The temperature  $\theta_2$  of a winding which is being heated electrically at time t is given by  $\theta_2 = \theta_1 (1 - e^{(-t)/\tau})$  where  $\theta_1$  is the temperature (in degrees Celsius) at time t = 0 and  $\tau$  is a constant. Calculate:
  - (a)  $\theta_1$ , correct to the nearest degree, when  $\theta_2$  is 50°C, t is 30s and  $\tau$  is 60s.
  - (b) The time *t*, correct to 1 decimal place, for  $\theta_2$  to be half the value of  $\theta_1$ .

| No | Keystrokes                                                                                   | Screenshots                |
|----|----------------------------------------------------------------------------------------------|----------------------------|
| 1  | To enter the values in the equation, press                                                   |                            |
|    | $50 = x \left( 1 - e^{\frac{-30}{60}} \right)$                                               | 50=x(1-e <sup>-60</sup> )8 |
|    | $\frac{2nd[num-solv]50}{2nd} \frac{x_{abcd}^{yet}}{1-e^{-10}} \frac{1}{2} - 30 \odot 60}{2}$ |                            |





Topic: Number Sequences

| No | Keystrokes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Screenshots                                                             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 2  | To get the answer, press enter enter enter<br>Thus, $x @ \theta_1 = 127.07^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 066<br><b>BDIMINATORI</b> †<br>1127.0747041<br>L - R =0<br>RUIT         |
| 3  | Quit the previous calculation by press [2nd[quit].<br>Before do the calculation, set the decimal place to 1.<br>Press mode ()()()()()()()()()()()()()()()()()()()                                                                                                                                                                                                                                                                                                                                                                       | ₩                                                                       |
| 4  | Since $\theta_2 = \frac{1}{2}\theta_1$ , thus $\theta_2 = 63.54$<br>From equation, $\theta 2 = \theta_1 (1 - e^{(-t)/\tau})$ let $t = x$<br>$63.54 = 127.07 (1 - e^{\frac{-x}{60}})$<br>To enter the new values in the equation, press<br>[2nd [num-solv] to go back to the previous equation.<br>Enter the new values in the equation, press<br>[delete] delete] 2nd [insert] [6] $\cdot$ [5] $4$ $\theta$ delete]<br>[2nd [insert] 127 $\cdot$ [0] $7$<br>$\theta \oplus \theta$ delete] delete] delete] $x_{abcd}^{yet} \oplus \Phi$ | 63.54=127.07 (1-►                                                       |
| 5  | To get the answer, press enter enter enter<br>Thus, $t = 41.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FIX DEG<br><b>I 3/1 4/3 A/10 SOLUA †</b><br>N=4 <b>1.</b> 6<br>SOLVE: % |





### **Exercise**:

1. Atmospheric pressure *p* is measured at varying altitudes *h* and the results are as shown below:

| Altitude, h cm | 500   | 1500  | 3000  | 5000  | 8000  |
|----------------|-------|-------|-------|-------|-------|
| Pressure, p cm | 73.39 | 68.42 | 61.60 | 53.56 | 43.41 |

Show that the quantities are related by the  $aw = ae^{kh}$ , where a and k are constants. Determine the values of a and k and state the law. Find also the atmospheric pressure at 10000 m.

2. When a chain of length 2*L* is suspended from two points, 2*D* metres apart, on the same horizontal level

$$D = k \left\{ \ln \left( \frac{L + \sqrt{L^2 + k^2}}{k} \right) \right\}$$

Evaluate D when k = 75m and L = 180 m.

- 3. Choose K = 10 in the expression  $x^{K}e^{-x}$  and calculate  $x^{K}e^{-x}$  using your calculator for x = 5, 10, 15, 20, 25, 30, 35.
- 4. The amount of product x (in mol/cm<sup>3</sup>) found in a chemical reaction starting with 2.5 mol/cm<sup>3</sup> of reactant is given by  $x = 2.5 (1 e^{-1}(-4t))$  where t is the time, in minutes, to form product x. Plot a graph at 30 second intervals up to 2.5 minutes and determine x after 1 minute.
- 5. The amount A after n years of a sum invested P is given by the compound interest law: A = Pe - rn/100 when the per unit interest rate r is added continuously. Determine, correct to the nearest pounds, the amount after 8 years for a sum of £1500 invested if the interest rate is 6% per annum.

### Answer:

- 1. a = 76,  $k = -7 \times 10^{-5}$ ,  $p = 76e^{-7 \times 10^{-5}}$ , 37.74 cm
- 2. 120.7 m

3.

| x           | 5                | 10        | 15        | 20               | 25   | 30 | 35  |
|-------------|------------------|-----------|-----------|------------------|------|----|-----|
| x^10 e^(-x) | 6.5 <i>x</i> 104 | 4.5 x 105 | 1.7 x 105 | 2.1 <i>x</i> 104 | 1324 | 55 | 1.7 |

- 4. 2.45 mol/cm3
- 5. £2424





## **Number Sequences**

# **Overview / Introduction / Terminology:**

Number sequences can be used as a tool to practice and improve any numerical reasoning skills. By practicing it's can improve the numerical reasoning ability which can be of great help in daily life activities like loan calculations, groceries or during job applications in assessments.



("term", "element" or "member" mean the same thing)

#### Simple Sequence

If the sequence is simple enough one can look at the first few terms and guess the general rule for computing the nth term. For instance:

The graph of a sequence will look like a collection of dots whose x-coordinates are spaced one apart. Some examples of graphs of sequences are shown in Figure below.

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots, a_n = \frac{1}{n}$$

### Arithmetic Sequence

An arithmetic sequence is a mathematical sequence consisting of a sequence in which the next term originates by adding a constant to its predecessor. When the first term x1 and the difference of the sequence d is known, the whole sequence is fixed, or in formula:

$$X_n = a + d(n-1)$$

An example of this type of number sequence could be the following:

This common difference is -2. The pattern is continued by subtracting 2 each time.

#### **Geometric Sequence**

A Geometric sequence is a mathematical sequence consisting of a sequence in which the next term originates by multiplying the predecessor with a constant, better known as the common ratio. When the first term x1 and the common ratio r are known, the whole sequence is fixed, or in formula:

$$X_n = ar^{n-1}$$

An example of this type of number sequence could be the following:

2, 4, 8, 16, 32, 64, 128, 256, ...

This sequence has a factor of 3 between each number, however as can be seen the sequence can work both by increasing as well as decreasing the value of numbers. The pattern is continued by dividing the last number by 3 each time.





# **Keystrokes:**

 $2nd[set op], 2nd[op], sto \rightarrow x^{yzt}_{abcd}, math [sum(].$ 

### **Example:**

1. Add up the first 10 terms of the arithmetic sequence:

The value of a = 1 (the first term), d = 3 (the "common difference") and

t = 10 (how many terms to add up).

| No | Keystrokes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Screenshots                                                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1  | Set operation with press 2nd[set op],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |
| 2  | Then, press button math � � � € [sum(]enter].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <mark>MENNE</mark> I NUM DMS R⇔P<br>4↑▶Pfactor<br>EBsum(<br>6:prod( |
| 3  | Insert value,<br>$0 	(x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (t) - 1 	(x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (t) - 1 	(x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (t) - 1 	(x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (t) - 1 	(x_{abcd}^{yzt} x_{abcd}^{yzt} x_{ab$ | $OP = \sum_{x=0}^{t-1} (a+xd) \blacksquare$                         |
| 4  | Insert value for variable,<br>1 $\operatorname{sto} \xrightarrow{x_{abcd}^{yzt}} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (a)$ [enter], 3 $\operatorname{sto} \xrightarrow{x_{abcd}^{yzt}} x_{abcd}^{yzt} x_{abcd}^{yzt} (a)$<br>$x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (a)$ [enter], and<br>1 $\operatorname{oto} \xrightarrow{x_{abcd}^{yzt}} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (t)$ [enter] clear].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1÷a 1<br>3÷d 3<br>10÷t 10                                           |





| No | Keystrokes                                                             | Screenshots                                                  |
|----|------------------------------------------------------------------------|--------------------------------------------------------------|
| 5  | Recall the operation with press $2nd[op]$<br>So, the answer is $145$ . | $ \begin{array}{c} t-1 \\ \Sigma (a+nd) \\ n=1 \end{array} $ |

2. Find the 10<sup>th</sup> term of the geometric sequence for 10, 30, 90, 270, 810, 2430, ... This sequence has a factor of 3 between each number.

The value of a = 10 (first term) and b = 3(common ratio)

| No | Keystrokes                                                                                                                                                                                                                                                                                                              | Screenshots                        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1  | Firstly, set the operation with press button <a>[set op]</a> .                                                                                                                                                                                                                                                          | op=a*b <sup>(%-1)</sup>            |
|    | Insert value,<br>$\begin{array}{c} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} \\ (b) x^{\text{D}} ( x_{abcd}^{yzt} - 1 ) \end{array} \text{enter Clear}. \end{array}$                                                                                                                                  |                                    |
| 2  | After that, store value in the variable,<br>10 sto $\rightarrow x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (a)$ enter,<br>3 sto $\rightarrow x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} x_{abcd}^{yzt} (b)$ enter,<br>10 sto $\rightarrow x_{abcd}^{yzt}$ enter clear. | 10→a 10<br>3→b 3<br>10→% 10        |
| 3  | After finish, recall the operation, press <a>[op]</a><br>And the answer is <a>196830</a>                                                                                                                                                                                                                                | a*b <sup>(%-1)</sup> 196830<br>n=1 |

3. Sum the first 4 terms of 10, 30, 90, 270, 810, 2430, ... This sequence has a factor of 3 between each number.

The value of a = 10, d = 3 and t = 4 are:





| No | Keystrokes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Screenshots                                                                                                                                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Set the operation in the calculation, press [2nd][set op].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |
| 2  | Then press math � € € € [sum(],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ™INUM DMS R⇔P<br>4↑▶Pfactor<br>EBsum(<br>6:prod(                                                                                                                                                       |
| 3  | Insert value and press<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $OP = \sum_{x=0}^{t-1} (ad^x) \blacksquare$                                                                                                                                                            |
| 4  | After that, insert value in variable,<br>$10 \operatorname{sto} + x_{abcd}^{yzt} (x_{abcd}^{yzt}) (x_{ab$ | 10→a 10<br>3→d 3<br>4→t 4                                                                                                                                                                              |
| 5  | Press [2nd][op] to get the answer.<br>The answer is 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} \overset{\text{res} \rightarrow \bullet}{\sum} \\ x=0 \\ x=0 \\ \end{array} \begin{array}{c} \text{n=1} \\ n=1 \end{array} \begin{array}{c} 400 \\ 400 \\ \end{array} \end{array} $ |

### 4. Find the sum of the first 9 terms of the series 72.0, 57.6, 46.08, ...

| No | Keystrokes                                     | Screenshots             |
|----|------------------------------------------------|-------------------------|
| 1  | For the common ratio,                          | 066 **                  |
|    | Press # 57 • 6 • 7 2 • 0 enter                 | <u>57.6</u><br>72.0 0.8 |
|    | $a = 72.0, \qquad r = \frac{57.6}{72.0} = 0.8$ |                         |





| No | Keystrokes                                              | Screenshots            |
|----|---------------------------------------------------------|------------------------|
| 2  | For the sum of 0 terms = $S_9 = \frac{a(1-r^n)}{(1-r)}$ | <u>72.0(1-0.89)</u>    |
|    | Press<br>₿72.0(1-0.8x9))⊙(1-0.8))<br>Øenter.            | (1-0.8)<br>311.6816179 |
|    | The answer is <b>311.7</b>                              |                        |

### **Exercise:**

- 1. The seventh term of a series is 29 and the eleventh term is 54. Determine the sixteenth term.
- 2. The sum of 15 terms of an arithmetic progression is 202.5 and the common difference is 2. Find the term of the series.
- 3. Which term of the series 3, 9, 27, ... is 59049?
- 4. The first, twelfth and last term of an arithmetic progression are  $4,31\frac{1}{2}$  and  $376\frac{1}{2}$  respectively. Determine,
  - a) The number of terms in the series
  - b) The sum of all the terms
  - c) The 80'th term.
- 5. In a geometric progression the 5<sup>th</sup> term is 9 times the 3<sup>th</sup> term and the sum of the 6<sup>th</sup> and 7<sup>th</sup> terms is 1944. Determine,
  - a) The common ratio,
  - b) The first term,
  - c) The sum of the 4th to 10th terms inclusive.

### Answer:

- 1. 85.25
- 2.  $-\frac{1}{2}$
- 3. 10th
- 4. (a) 150
  - (b) 28537.5
  - (c)  $201\frac{1}{2}$
- 5. (a) 3
  - (b) 2
  - (c) 59022





# **Complex Number**

### **Overview / Introduction / Terminology:**

A complex number is a number that can be expressed in the form

a + bi

where *a* and *b* are real numbers and *i* is the <u>imaginary unit</u>, satisfying i2 = -1. For example, -3.5 + 2*i* is a complex number. It is common to write *a* for *a* + 0*i* and *bi* for 0 + *bi*. Moreover, when the imaginary part is negative, it is common to write a - bi with b > 0 instead of a + (-b)i, for example 3 - 4i instead of 3 + (-4)i.



**Complex Conjugates** are a pair of complex numbers, both having the same real part, but with imaginary parts of equal magnitude and opposite signs. For example, 3 + 4i and 3 - 4i are complex conjugates.

The conjugate of the complex number z

where a and b are real numbers, is

 $\overline{z} = a - ib$ 

z = a + ib

Keystrokes: [complex] cos-1 sin-1 enter





| Topic:         | Math Concepts:                                             |
|----------------|------------------------------------------------------------|
| Complex Number | Complex Conjugate, magnitude, Polar form of complex number |
|                | and distance between 2 complex numbers                     |

# Example:

1. Solve  $\frac{2+6i}{5-4i}$  in polar form

| No | Keystrokes                                                                                                                                                             | Screenshots                                                                                               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1  | Change REAL mode to COMPLEX mode Press mode  () enter                                                                                                                  | <sup>DEG</sup><br>101301 RAD GRAD<br>100311 SCI ENG<br>13100311 0123456789<br>REAL <u>SE2311</u> Ի∠θ<br>∔ |
| 2  | Press<br>$2nd[complex] \odot enter = 2+6\pi^{\circ};$ $\pi^{\circ};\pi^{\circ};\pi^{\circ};\pi^{\circ};\pi^{\circ};\pi^{\circ};\pi^{\circ};\pi^{\circ};\infty) = nter$ | an9le( <u>2+6i</u> )<br>an9le( <u>5-4i</u> )<br>110.2248594                                               |

2. Solve  $\frac{3+2i}{6-7i}$  in  $r < \theta$ 

| No | Keystrokes                                                                                                                    | Screenshots                                       |
|----|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1  | Press<br>$(\exists 3+2\pi_{i}^{e}\pi_{i}^{e}) \oplus 6 -$ $7\pi_{i}^{e}\pi_{i}^{e}\pi_{i}^{e}) (2nd\pi_{i}^{e}) \oplus enter$ | <sup>FIR</sup><br>( <u>3+2i</u> )⊧r∠θ<br>0.4∠83.1 |





| Topic:         | Math Concepts:                                             |
|----------------|------------------------------------------------------------|
| Complex Number | Complex Conjugate, magnitude, Polar form of complex number |
|                | and distance between 2 complex numbers                     |

3. Solve  $\frac{|conj(6+2i)|}{conj(2-i)}$ , answer must in the form of a + bi

| No | Keystrokes                                                                                                                                                                              | Screenshots                                               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1  | Press<br>$\frac{1}{2} 2nd(\pi_{i}^{e}) 3 2nd(\pi_{i}^{e}) 6 6 + 2 \pi_{i}^{e}(\pi_{i}^{e}) \pi_{i}^{e})$ $( 2nd(\pi_{i}^{e}) 6 2 - \pi_{i}^{e}(\pi_{i}^{e}) \pi_{i}^{e}) \text{ enter}$ | Fix Des ~<br><u>Iconi(6+2i) </u><br>coni(2-i)<br>2.5-1.3i |

### **Exercise:**

- 1. Solve magnitude of  $\frac{|2+5i|}{|6-4i|}$
- 2. Solve  $\frac{|4-i|}{2+2i}$  in  $r < \theta$
- 3. Solve 6 6i in polar form
- 4. Solve |conj(2 + 6i)|
- 5. Solve magnitude of |3 + 3i|. |2 + i|

### Answer:

- 1. 0.75
- 2. 1.46 < -45
- 3. -45
- 4. 6.32
- 5. 9.49





# **Simple Equations**

### **Overview / Introduction / Terminology:**

A mathematical **equation** is a formula containing an equals sign (=) with a mathematical expression on each side of it. The equals sign says that both sides are exactly the same.

There are two kinds of mathematical equations:

- The kind of equation that is either true or false; these are also called identities Example: 2.  $(x + 4) = 2x + 8 \rightarrow true$
- The kind of equation that lets you calculates the value of one or several variables. The equation is only true if the variable(s) have that value.

Example: 2.  $x = 8 \rightarrow x = true$ 

The second kind is often used to solve problems in which you have to know the value of some variables. For example, if 2x = 8, x = 8/2 = 4.

The second kind of equation is used in algebra. For example, to solve the equation 2x = 8 by finding x you would follow an algebraic rule. Then you can work out that x = 4.

An equation is like a weighing scale - both sides should always be perfectly balanced. To solve the equation you need to find the value of missing numbers and perform the same operation to each side.

For example, suppose you are trying to find out how many sweets are in the bag shown here.



By subtracting three sweets from each side, the scales remain balanced. You can now see that one bag is equivalent to two sweets. Written algebraically, this is:

$$x + 3 = 5$$

Subtract 3 from both sides, to give:

x = 2

Keystrokes: 2nd[sys-solv], [math] NUM, 2nd[poly-solv]





| Topic:           | Math Concepts:                               |
|------------------|----------------------------------------------|
| Simple Equations | Linear, Absolute Value, Quadratic Equations. |

### **Example:**

1. Find value for  $\left|\frac{\sin(2^{x^2}-6x+1)}{3x+5\pi}\right|$ 

| No | Keystrokes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Screenshots                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1  | Firstly, press [math] (NUM] [enter] [] [sin-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MATH <mark>XIIII</mark> DMS R⇔P<br>MBabs(<br>2:round(<br>3↓iPart( |
| 2  | Insert value in the equation,<br>$2x^{x}x^{yz}x^{z}x^{2} - 6x^{yz} + 1) + 3x^{yz}x^{z} + 5\pi^{e} + 5\pi^{e$ | $\left \frac{\frac{\sin(2\pi^2-6\pi+1)}{3\pi+5\pi}}\right $       |
| 3  | Thus, $\left \frac{\sin(2^{x^2}-6x+1)}{3x+5\pi}\right  = 0.002221771$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\frac{\sin(2^{\pi^2}-6\pi+1)}{3^{\pi}+5\pi}}{0.002221771}$ |

2. In the equation  $9x^2 - 86x + 6 = 0$ , *a* is the coefficient of the  $x^2$  term, *b* is the coefficient of the *x* term, and c is the constant. Substitute 9 for a, -86 forb, and 6 for c in the quadratic formula and simplify.

The quadratic formula is:

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

| No | Keystrokes                                                                  | Screenshots                                                                       |
|----|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1  | If you have already defined variables, the solver will assume those values. | <sup>∞c</sup><br><b>10127 5012033</b><br><b>11</b> ax²+bx+c=0<br>2:ax³+bx²+cx+d=0 |
|    | To solve this equation, press <a>[2nd]</a> [poly-solv][enter]               |                                                                                   |





Topic: Simple Equations Math Concepts: Linear, Absolute Value, Quadratic Equations.

| No | Keystrokes                                                         |       | Screenshots                                                                                         |  |
|----|--------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------|--|
| 2  | Then, insert value with<br>9[enter]()[8]6][enter]6][enter][enter]. | press | a=9 t                                                                                               |  |
|    |                                                                    |       | +<br>b=-86 t                                                                                        |  |
|    |                                                                    |       |                                                                                                     |  |
|    |                                                                    |       | c=6 t<br>SOLVE                                                                                      |  |
| 3  | Press enter, enter, enter, enter, (YES) enter                      |       | ∞<br><b> </b>                                                                                       |  |
|    | So, $x1 = 0.07028440793$ and                                       |       | +                                                                                                   |  |
|    | <i>x</i> 2 = 9.485271148                                           |       | n2=9.485271148                                                                                      |  |
|    |                                                                    |       | 066<br>Store %1: 1200% 9zt †<br>Store %2: 120% 9zt<br>QuadEQ→f(%): 120<br>4                         |  |
|    |                                                                    |       | <sup>066</sup><br>(=0)365 атох = 70253550 †<br>а=9<br>h=43/9<br>k=1199. 4444444<br>SOLVE AGAIN QUIT |  |



3. A formula relating initial and final states of pressures,  $P_1$  and ,  $P_2$ , volumes ,  $V_1$  and ,  $V_2$  and absolute temperatures, ,  $T_1$  and ,  $T_2$ , of an ideal gas is  $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ . Find the value of  $P_2$  given  $P_1 = 100 \times 10^3$ ,  $V_1 = 1.0$ ,  $V_2 = 0.266$ ,  $T_1 = 423$  and  $T_2293$ .

| No | Keystrokes                                                                                                                                         | Screenshots                                                                                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1  | Since is $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ then $\frac{(100 \times 10^3)(1.0)}{423} = \frac{P_2(0.266)}{293}$                              | ENG DEG<br> 0301 RAD GRAD<br>NORH SCI <u> 3101</u><br> 310730 0123456789<br> 33210 q+bi r∠0     |
|    | 'Cross-multiplying' gives:                                                                                                                         | <b>T</b>                                                                                        |
|    | Firstly, press mode () () enter to change to engineering mode. Then press clear to go to home screen.                                              |                                                                                                 |
| 2  | After that, insert the equation, press<br>$\exists (100 \times 10x^{2}3) (1 \cdot 0) (2)$<br>$93) \odot (0 \cdot 266) (423)$ .<br>Then press enter | (100*10 <sup>3</sup> )(1.0)(<br>(0.266)(423,<br>260.40278E3                                     |
|    | Try change to the scientific mode with press mode  () enter Clear .                                                                                | 50 066<br>M⊐CH RAD GRAD<br>NORH <b>BOMM</b> ENG<br>Information 0123456789<br>REGNA G+bir∠0<br>↓ |
|    | Press () to select the last equation and press enter to get the new answer.                                                                        | <sup>50</sup> 065 ↔<br>(100*10 <sup>3</sup> )(1.0)(                                             |
|    | Hence $P_2 = 260 \times 10^3$ or $2.6 \times 10^5$                                                                                                 | (0.266)(423)<br>2.6040278E5                                                                     |





#### **Exercise**:

- 1. Solve 4(3x + 1) = 7(x + 4) 2(x + 5)
- 2. Solve this equation  $\sqrt{\left(\frac{y+2}{y-2}\right)} = \frac{1}{2}$
- 3. A rectangle has a length of 20 cm and width b cm. When its width is reduced by 4 cm its area becomes  $160 \text{ } cm^2$ . Find the original width and area of the rectangle.
- 4. If  $t = 2\pi \sqrt{(w/Sg)}$ , find the value of *S* given w = 1.219, g = 9.81 and t = 0.3132.
- 5. The extension x m of an aluminum tie bar of length l m and cross-sectional area  $A m^2$  when carrying a load of F newton is given by the modulus of elasticity E = Fl/Ax. Find the extension of the tie bar (in mm) if  $E = 70 \times 10^9 \frac{N}{m^2}$ ,  $F = 20 \times 10^6 N$ ,  $A = 0.1 m^2$  and l = 1.4m.

### Answer:

- 1. 2
- 2.  $-3\frac{1}{2}$
- 3. 12 cm, 240 cm2
- 4. 50
- 5. x = 4 mm





# Simultaneous Equation

## **Overview / Introduction / Terminology:**

The terms **simultaneous equations** and systems of equations refer to conditions where two or more unknown variables are related to each other through an equal number of equations. Consider the following example:

$$\begin{aligned} x + y &= 24\\ 2x - y &= -6 \end{aligned}$$

The intersection point has been defined at point (6,18) which is x = 6 and y = 18.

Three methods of solving simultaneous equations analytically are:

- (a) by **substitution**, and
- (b) by elimination.
- (c) using formula,  $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

**Quadratic equation** is the equation contains power 2 in general form:

$$ax^2 + bx + c = 0$$

Ex:  $x^2 - 5x + 6 = 0$  with two roots which is  $x^1 = 2$ ,  $x^2 = 3$ 

There are **four** methods of **solving quadratic equations**.

- These are: (i) by factorization (where possible)
  - (ii) by 'completing the square'
  - (iii) by using the 'quadratic formula'
  - (iv) graphically

The **cubic equation** which have the equation up to power 3 in general form:

$$ax^3 + bx^2 + cx + d = 0$$

Ex:  $x^3 - 27x + 54 = 0$  with three roots which are x1 = -6, x2 = 3, x3 = 3

#### Keystrokes: [2nd][num-solv][sys-solv]





# **Example:**

1. A shed is 4.0 m long and 2.0 m wide. A concrete path of constant width is laid all the way around the shed. If the area of the path is 9.50 m<sup>2</sup>, calculate its width.



| No | Keystrokes                                                                                                                                                    | Screenshots                                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1  | From the above figure, it shows a plan view of the shed with<br>its surrounding path of width $t$ metres.<br>Area of path = $2(2.0 \times t) + 2t (4.0 + 2t)$ | <sup>∞∞</sup><br><b>18</b> ax2+bx+c=0<br>2:ax3+bx2+cx+d=0 |
|    | $Pread of path = 2(2.0 \times t) + 2t (4.0 + 2t)$ Or $9.50 = 4.0t + 8.0t + 4t^{2}$                                                                            | a=4∎ t                                                    |
|    | We can rearrange the equation:<br>$4t^2 + 12t - 9.5 = 0$                                                                                                      | +                                                         |
|    | 4t + 12t - 9.5 = 0<br>Therefore; a = 4, b = 12, c = -9.5                                                                                                      | b=12∎ <sup>™</sup> †                                      |
|    | To enter the quadratic equation solver, press : 2nd<br>[poly-solv] choose no 1 and then press enter                                                           | ↓<br>DEG                                                  |
|    | To enter coefficient of <i>a</i> : [4] [enter]<br>To enter coefficient for <i>b</i> : [1][2] [enter]                                                          | c=-9.5∎ t                                                 |
|    | To enter coefficient for $c : (-)$ 9.5 [enter]                                                                                                                | SOLVE                                                     |





| Topic:                | Math Concepts:                                              |
|-----------------------|-------------------------------------------------------------|
| Simultaneous Equation | Transposition of Formulae, Simultaneous Equation, Quadratic |
|                       | Equation, Cubic Equation                                    |

| No | Keystrokes                              | Screenshots                                                        |
|----|-----------------------------------------|--------------------------------------------------------------------|
| 2  | To find the answer. Root 1: enter 🕤     | ™ <sup>DEG</sup><br><b>(100±1000000000000000000000000000000000</b> |
| 3  | To find Root 2: 🕤                       |                                                                    |
|    | Thus,                                   |                                                                    |
|    | <i>t</i> <sub>1</sub> = 0.6505813168 m  | n2=-3.650581317<br>+                                               |
|    | <i>t</i> <sub>1</sub> = - 3.650581317 m |                                                                    |

2. When Kirchhoff 's laws are applied to the electrical circuit shown in Figure 9.1 the currents  $I_1$  and  $I_2$  are connected by the equations:

1.5I1 + 8(I1 - I2) = 27 -----(1)2 I2 - 8(I1 - I2) = -26 -----(2)

Solve the equations to find the values of currents  $I_1$  and  $I_2$ .



| No | Keystrokes                                           | Screenshots                        |
|----|------------------------------------------------------|------------------------------------|
| 1  | From the equation,                                   |                                    |
|    | 9.5 l1 - 8 l2 = 27(1)                                | 1 2×2 LIN EQUS<br>2:3×3 LIN SYSTEM |
|    | -8 l1 + 10 l2 = -26(2)                               |                                    |
|    |                                                      |                                    |
|    | To enter to system solver for simultaneous equation, |                                    |
|    | Press 2nd [sys-solv] and choose 1, enter.            |                                    |
|    |                                                      |                                    |



| Topic:                | Math Concepts:                                              |
|-----------------------|-------------------------------------------------------------|
| Simultaneous Equation | Transposition of Formulae, Simultaneous Equation, Quadratic |
|                       | Equation, Cubic Equation                                    |

| No | Keystrokes                                                                                             | Screenshots                                          |
|----|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 2  | Assume $x = l_1$ , $y = l_2$<br>To enter the values in first equation,<br>9.5[enter]-8[enter]27[enter] | 000<br>(9.5%- 89= 27<br>( 3.+ 9= 0<br>SOLVE          |
| 3  | To enter the values in second equation,<br>                                                            | ( 9.5%- 89= 27<br>{ -8%+ 109= -26<br><u> 60]=0 2</u> |
| 4  | To get the answer, press enter<br>Thus,                                                                | x=2                                                  |
|    | x = 2 @ $l1 = 2y = -1$ @ $l2 = -1$                                                                     | y=-1                                                 |

3. If one of the roots of the equation  $x^3 - 6x^2 + 11x - 6 = 0$  is 2, then the other two roots are:

| No | Keystrokes                                                                                                         | Screenshots                                 |
|----|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1  | To enter to equation solver, press [2nd][poly-solv] ④ enter                                                        | <b>1:</b> ax2+bx+c=0<br>28ax3+bx2+cx+d=0    |
| 2  | To enter the values in the equation,<br>1 enter () 6 enter 1 1 enter () 6 enter enter<br>To get the answers, press | <mark>c=101:==3 00±====00</mark> +<br>1=3 ↓ |





| Topic:                | Math Concepts:                                              |
|-----------------------|-------------------------------------------------------------|
| Simultaneous Equation | Transposition of Formulae, Simultaneous Equation, Quadratic |
|                       | Equation, Cubic Equation                                    |

| [enter] [enter] [enter] | DEG                            |
|-------------------------|--------------------------------|
|                         | 5105-1500-1500-1500-1500-1     |
| Thus the answers are:   | x2=2                           |
| x = 3, 2, 1             | 4                              |
|                         | DEG                            |
|                         | <u>G105 +1002 + G0 +2 E0</u> † |
|                         | x3=1                           |
|                         | +                              |
|                         |                                |

#### **Exercise:**

1. In an electrical alternating current circuit the impedance *Z* is given by:

$$Z = \sqrt{\left\{R^2 + \left(\omega L - \frac{1}{\omega c}\right)^2\right\}}.$$

Transpose the formula to make C the subject and hence evaluate C when  $Z = 130, R = 120, \omega = 314$  and L = 0.32.

- 2. An approximate relationship between the number of teeth, *T*, on a milling cutter, the diameter of cutter, *D*, and the depth of cut, *d*, is given by:  $T = \frac{12.5D}{D+4d}$ . Determine the value of *D* when T = 10 and d = 4 mm.
- 3. A rectangular building is 15 m long by 11 m wide. A concrete path of constant width is laid all the way around the building. If the area of the path is  $60.0 m^2$ , calculate its width correct to the nearest millimeter.
- 4. The resistance *R* ohms of copper wire at t°C is given by  $R = R_0 (1 + \alpha t)$ , where  $R_0$  is the resistance at 0°C and  $\alpha$  is the temperature coefficient of resistance. If R = 25.44 at 30°C and R = 32.17 at 100°C, find  $\alpha$  and  $R_0$ .
- 5. One real root of the equation  $x^3 + x 5 = 0$  lies in the interval?

### Answer:

- 1.  $C = \frac{1}{\omega \{\omega L \sqrt{Z^2 R^2}\}}$ , 63.1 x 10<sup>-6</sup>
- 2. 64mm
- 3. 1.066*m*
- 4.  $\alpha = 0.00426, R_0 = 22.56\Omega$
- 5. (1,2)





### **Determinants and Matrices**

### **Overview / Introduction / Terminology:**

The expression is called a **determinant of the second order** and stands for  $a_1b_2 - a_2b_1'$ . It contains 4 number  $a_1$ ,  $b_1$ ,  $a_2$ ,  $b_2$  (called **elements**) which are arranged along two horizontal lines (called **rows**) and two vertical lines (called **columns**).

$$\mathsf{A} = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

A system of mn numbers arranged in a rectangular formation along m rows and n columns and bounded by the brackets [] is called an m by n matrix; which is written  $m \times n$  matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

#### **Matrix Operations**

- 1. Equality of Matrices
  - Two matrices A and B are said to equal if and only if
  - (i) They are of the same order
  - (ii) Each element of A is equal to the corresponding element of B
- 2. Addition and Subtraction of matrices :  $\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} + \begin{bmatrix} c_1 & d_1 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1c_1 & b_1d_1 \\ a_2c_2 & b_2d_2 \end{bmatrix}$ 3. Multiplication of matrix by a scalar :  $k \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = \begin{bmatrix} ka_1 & kb_1 \\ ka_2 & kb_2 \end{bmatrix}$ 4. Multiplication of matrices :  $\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \times \begin{bmatrix} c_1 & d_1 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1c_1 + b_1c_2 & a_1d_1 + b_1d_2 \\ a_2c_1 + b_2c_2 & a_2d_1 + b_2d_2 \end{bmatrix}$

#### Types of matrices:

1. Transpose of a matrix : **A** = **A'** 

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix} \qquad A' = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{bmatrix}$$

- 2. Adjoint of a square matrix : *Adjoint of the matrix A = Adj. A*
- 3. Inverse of a matrix :  $\mathbf{A} = \mathbf{A}^{-1} = \frac{Adj.A}{|A|}$

#### **Keystrokes**:

2nd [matrix]





# Example:

1. If 
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ , verify that  $(AB)' = B'A'$ , where  $A'$  is the transpose of  $A$ .=

| No | Keystrokes                                                                                                                                                      | Screenshots                                                              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1  | To enter to matrices screen, press 2nd[matrix]().<br>Press Senter to choose first matrix, A.<br>Press () () enter () () enter enter to enter the matrix screen. | DEG<br>0 0 0<br>0 0 0<br>A 1, 1=0                                        |
| 2  | To enter the values, key in the values in matrix A.<br>1 [enter] 2 [enter] () 1 [enter] 3 [enter] 0 [enter] 2 [enter]<br>4 [enter] 5 [enter] 0 [enter]          | A3, 3=0                                                                  |
| 3  | To enter the values in matrix B, press<br>2nd[matrix] ( enter].<br>Press ( enter) enter enter to enter the matrix screen                                        | B 17 1=0                                                                 |
| 4  | To enter the values, key in the values in matrix B.<br>1 [] [] [] [] [] [] [] [] [] [] [] [] []                                                                 | 1     0     0       2     1     0       0     1     0       B373=3     3 |
| 5  | To get the answer for (AB)' press<br>([2nd[matrix]enter]2nd[matrix]<br>enter]) 2nd[matrix]<br>© enter] enter]                                                   | ( [A] [B] ) T                                                            |





| Topic:<br>Deterr | ninants and Matrices                                                                                    | Math Concepts:<br>Basic Algebra, Matrices |                                  |              |
|------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|--------------|
|                  |                                                                                                         |                                           | 2<br>1<br>2<br>-3<br>6           | 14<br>5<br>0 |
| 6                | To get the answer for B'A', pre<br>[2nd [matrix] @enter[2nd[matrix]<br>[2nd[matrix][enter][2nd][matrix] | trix]() ) enter                           | (B) T (A) T                      | DEG 🔺        |
|                  | Thus, $(AB)' = B'A'$ is prove                                                                           |                                           | 1 2<br>-3 6<br>Mii <b>ste</b> es | 14<br>5<br>0 |

3. Verify that the following matrix is orthogonal.

| u | 105011     | ui.  |      |  |
|---|------------|------|------|--|
| I | [1/3       | 2/3  | 2/3  |  |
|   | 1/3<br>2/3 | 1/3  | -2/3 |  |
|   | 2/3        | -2/3 | 1/3  |  |
|   | 2/3        | -2/3 | 1/3  |  |

| No | Keystrokes                                                    | Screenshots                   |
|----|---------------------------------------------------------------|-------------------------------|
| 1  | To enter to matrices screen, press 2nd[matrix]④.              |                               |
|    | Press 🕞 enter to choose first matrix, A.                      |                               |
|    | Press $()$ [enter] [enter] enter] to enter the matrix screen. | A1, 1=0                       |
| 2  | To enter the values,                                          |                               |
|    | 1 = 3 enter 2 = 3 enter 2 = 3 enter                           | 2/3 1/3 -2/3<br>2/3 -2/3 -2/3 |
|    | 2 = 3 enter 1 = 3 enter (-) 2 = 3 enter                       | A3,3=1/3                      |
|    | 2 = 3 enter (-) 2 = 3 enter 1 = 3 enter                       |                               |





| Topic:                    | Math Concepts:          |
|---------------------------|-------------------------|
| Determinants and Matrices | Basic Algebra, Matrices |

| No | Keystrokes                                                                             | Screenshots                  |
|----|----------------------------------------------------------------------------------------|------------------------------|
| 3  | To define the matrix is orthogonal. Press, 2nd[quit] to quit from the matrix template. | rref([A])∎                   |
|    | To do calculation, press 2nd[matrix]() (2nd[matrix]enter])                             |                              |
| 4  | To get the answer, press enter.                                                        |                              |
|    | Thus, the matrix is orthogonal.                                                        | [ 0 0 1]<br>[:12]=5 (75) (3) |

4. If  $=\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ , find the value of  $A^2 - 6A + 8I$ , where *I* is a unit matrix of second order.

| No | Keystrokes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Screenshots                         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1  | To enter to matrices screen, press 2nd[matrix]④.<br>Press ⓒ enter to choose first matrix, A.<br>Press ⓒ enter ⓒ enter enter the matrix screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0     0       0     0       A1, 1=0 |
| 2  | To enter the values,<br>3 [3] [anter] 2] [anter] 3] [anter | PEG<br>[ 2 3]<br>[ 3 2=2            |
| 3  | Press $2nd[quit]$ to quit from the matrix form.<br>To get the answer, key in the equation, $A^2 - 6A + 8I$ .<br>$2nd[matrix]enter[x^2] - 6[2nd[matrix]enter] + 8[2nd]enter]$<br>+ 8[2nd[matrix] () () enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [A] <sup>2</sup> -6[A]+8[I2]        |





| Topic:                    | Math Concepts:          |
|---------------------------|-------------------------|
| Determinants and Matrices | Basic Algebra, Matrices |

| No | Keystrokes                              | Screenshots                   |
|----|-----------------------------------------|-------------------------------|
| 4  | To get the answer, press enter.         | [ <b>──</b> € <sup>−</sup> 6] |
|    | Thus, the answer is <b>3</b> <i>I</i> . | [:12]= <b>5 (15</b> (13 )     |

#### **Exercise**:

- 1. If  $=\begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ , and  $C = \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ , verify that (AB)C = A(BC) and A(B+C) = AB + AC2. If  $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix}$ , and *I* is the unit matrix of order 3, evaluate  $A^2 - 3A + 9I$ . 3. If  $= \begin{bmatrix} 3 & 2 & 2 \\ 1 & 3 & 1 \\ 5 & 3 & 4 \end{bmatrix}$ , compute *adj A* and  $A^{-1}$ . Also find *B* such that  $AB = \begin{bmatrix} 3 & 4 & 2 \\ 1 & 6 & 1 \\ 5 & 6 & 4 \end{bmatrix}$ 4. If  $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$  find  $A^{-1}$ . Also find two non-singular matrices *P* and *Q* such that PAQ = I. Where *I* is the unit matrix and verify that  $A^{-1=}QP$ .
- 5. Find the inverse of the following matrix.
  - $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{bmatrix}$

### Answer:

1. Proved.

2. 
$$\begin{bmatrix} -6 & 1 & 2 \\ 5 & 4 & 4 \\ 2 & 8 & -3 \end{bmatrix}$$
  
3. 
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
  
4. 
$$\begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$
  
5. 
$$\frac{1}{8} \begin{bmatrix} 2 & 2 & -2 \\ -9 & 11 & 5 \\ 5 & -7 & -1 \end{bmatrix}$$





### Vector

### **Overview / Introduction / Terminology:**

Some physical quantities are entirely defined by a numerical value and are called **scalar quantities** or **scalars**. Other physical quantities are defined by both a numerical value and a direction in space and these are called **vector quantities** or **vectors**.

There are many types of symbol for vector such as  $\overrightarrow{AB}$ ,  $\overrightarrow{A}$ ,  $\overrightarrow{a}$ ,  $\underline{a}$ , xi + jy and in column matric  $\binom{a}{b}$ .



#### **Resolution of Vectors**

A vector can be resolved into two component parts such that the vector addition of the component parts is equal to the original vector.





For the vector  $F_1$  and  $F_2$  shown in the figure, the horizontal component of vector addition is:

$$H = F1\cos\theta 1 + F2\cos\theta 2$$

And the vertical component of vector addition is:  $V = F1 \sin \theta 1 + F2 \sin \theta 2$ 





| Topic: | Math Concepts:                |
|--------|-------------------------------|
| Vector | Basic Algebra, Vector Algebra |
|        |                               |

#### **Relative velocity**

In any vector equation, only the start and finish points affect the resultant vector of a system. Two different systems are shown in figure below, but in each of the systems, the resultant vector is **ad.** 



#### **Keystrokes:**

[2nd][matrix][vector]

#### **Example:**

1. If the equation A = I + 2J + 3K, B = -I + 2J + K. Find the dot product for *AB*.

| No | Keystrokes                                                                                                                          | Screenshots       |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1  | To enter to vector screen, press<br>[2nd[vector]) enter) enter                                                                      | ( 0 0]<br>u1=0    |
| 2  | Key in the values, 1)[enter]2][enter]3][enter]                                                                                      | [ 1 2 [ ]<br>u3=3 |
| 3  | To key in the values in vector B, press<br>2nd[vector] ( enter) ( enter enter<br>And key in the values, (-) 1 enter 2 enter 1 enter | [€ 2 1]<br>∪1=-1  |
| 4  | To do calculation, A.B press<br>2nd[vector])enter[2nd[vector]enter]2nd[,]<br>2nd[vector] enter])enter<br>Thus, the answer is 6.     | DotP([u],[v]) 6   |





| Topic: | Math Concepts:                |
|--------|-------------------------------|
| Vector | Basic Algebra, Vector Algebra |

2. Find the AB.



| No | Keystrokes                                                                                                                        | Screenshots     |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1  | AB = OA + OB<br>To enter to vector screen, press<br>[2nd[vector])[enter])[enter][enter]                                           | U 0 0]          |
| 2  | Key in the values, 4 [enter] 3 [enter] () 2 [enter]                                                                               | u3=12           |
| 3  | key in the values in vector B, press<br>2nd[vector] ( enter) ( enter) enter<br>And key in the values, 6 enter 1 enter (-) 3 enter | [ 1 -3]<br>v1=6 |
| 4  | To do calculation, 2nd[vector]enter]+2nd[vector] enter                                                                            | [               |





| Topic: | Math Concepts:                |
|--------|-------------------------------|
| Vector | Basic Algebra, Vector Algebra |

# 3. Find the norm magnitude for vector A = 2I + 5K, and B = 5I + 10K

| No | Keystrokes                                                                                                                                               | Screenshots                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1  | To enter to vector screen, press<br>[2nd][vector] () [enter] [enter]                                                                                     | UEG<br>[ 0]<br>u1=0                    |
| 2  | Key in the values, 2)enter 5)enter                                                                                                                       | 0eg<br>[ 2 ■■■■]<br>u2=[u]■            |
| 3  | Key in the values in vector B, press<br>2nd[vector] ( enter) enter<br>And key in the values, 5 enter 10 enter                                            | [ 5 <b>10</b> ]                        |
| 4  | Press 2nd[quit] to quit from the vector template.<br>To do calculation, 2nd[vector]) enter 2nd[vector])                                                  | norm([u]) <u>129</u>                   |
| 5  | To calculate norm magnitude for B, press<br>$2nd[vector] \odot enter 2nd[vector] \odot )$<br>Thus, norm magnitude for $A = \sqrt{29}$<br>$B = 5\sqrt{5}$ | norm([u]) √ <u>29</u><br>norm([v]) 5√5 |





| ſ | Topic: | Math Concepts:                |
|---|--------|-------------------------------|
|   | Vector | Basic Algebra, Vector Algebra |

### **Exercise:**

- 1. If A = I 2J 3K, B = 2I + J K, C = I + 3J K, find: (i) A x (B x C) (ii) (A x B) x (B x C)
- 2. Find the moment about a line through the origin having direction of 2I + 2J + K, due to a 30 kg force acting at a point (-4,2,5) in the direction of 12I 4J 3K.



3. Show that the volume of the tetrahedron *ABCD* is  $\frac{1}{6}[\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}]$ .

Hence find the volume of the tetrahedron formed by the points (1,1,1), (2,1,3), (3,2,2) and (3,3,4).



- 4. Show that the points -6I + 3J + 2K, 3I 2J + 4K, 5I + 7J 3K and -13I + 17J K are coplanar.
- 5. Find the torque about the point 2I + J K of a force represented by 4I + K acting through the point I J + 2K.



Answer:

- 1. (i) -7 I 11J + 5K (ii) -30I 15J + 15K
- 2. 89.23
- 3.  $\frac{5}{6}$
- 4.  $[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}] = 0$ . Thus, A,B,C,D are coplanar.
- 5. Magnitude of the moment = 15.4





# **Introduction to Trigonometry**

# **Overview / Introduction / Terminology:**

Trigonometry is a branch of mathematics that studies triangles and the relationships between their sides and the angles between these sides.

Pythagorean theorem:

The theorem can be written as an equation relating the lengths of the sides a, b and c, often called the Pythagorean equation:





where c represents the length of the hypotenuse, and a and b represent the lengths of the other two sides.

Trigonometric ratios are given by the following trigonometric functions of the known angle A, where a, b and c refer to the lengths of the sides in the accompanying figure:

Sine function (*sin*), defined as the ratio of the side opposite the angle to the hypotenuse.

$$\sin A = \frac{opposite}{hypotenuse} = \frac{a}{c}$$

Cosine function (*cos*), defined as the ratio of the adjacent leg to the hypotenuse.

$$\cos A = \frac{adjacent}{hypotenuse} = \frac{b}{c}$$

Tangent function (*tan*), defined as the ratio of the opposite leg to the adjacent leg.

$$\tan A = \frac{opposite}{adjacent} = \frac{a}{b}$$







### Keystrokes: sin\_1 cos\_1 tan\_1

### **Example:**

1. Find the length of BC



| No | Instructions / Keystrokes                                                                                                                                                                                                        | Screenshots                       |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1  | By Pythagoras' theorem, $a^2 = b^2 + c^2$ . We can rearrange<br>the equation as $a = \sqrt{b^2 + c^2}$ . From the figure we know<br>that $b = 4$ and $c = 3$ .<br>Key-in: $2nd[\sqrt{-4x^2} + 3x^2]$ enter<br>Thus $BC = 5 \ cm$ | √4 <sup>2</sup> +3 <sup>2</sup> 5 |

2. Determine the values of  $sin \theta$ ,  $cos \theta$  and  $tan \theta$  for the rightangled triangle *ABC* 







| No | Instructions / Keystrokes                         | Screenshots                                         |
|----|---------------------------------------------------|-----------------------------------------------------|
| 1  | By definition:                                    |                                                     |
|    | $\sin\theta = \frac{opposite}{hypotenuse},$       |                                                     |
|    | $\cos 	heta = rac{adjacent}{hypotenuse}$ and     |                                                     |
|    | $\tan \theta = \frac{opposite}{adjacent}$         |                                                     |
|    | Key-in:                                           |                                                     |
|    | <b>5</b> $\div$ <b>13enter</b> for sin $\theta$   | <sup>∞</sup> ~<br>5∕13<br>0.384615385               |
|    | <b>12</b> $\div$ <b>13enter</b> for $\cos \theta$ | 5/13<br>0.384615385<br>12/13<br>0.923076923         |
|    | <b>5</b> $\div$ <b>12enter</b> for tan $\theta$   | ** ~<br>12/13<br>0.923076923<br>5/12<br>0.416666667 |





| Topic:                       | Math Concepts:                                                  |
|------------------------------|-----------------------------------------------------------------|
| Introduction to Trigonometry | sin, cos, tan, angle, Pythagorean theorem, trigonometric ratios |
|                              |                                                                 |

3. Find angle A of the right triangle below. Then calculate angle B and the length of the hypotenuse *c*. Lengths are in meters.



| No | Instructions / Keystrokes                                                                                                 | Screenshots                                                |
|----|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1  | $\tan A = \frac{7}{3}$ , therefore angle $A = \tan^{-1}(\frac{7}{3})$                                                     | tan¹( <u>7</u> )<br>66.80140949                            |
|    | To get the answer, press ten ten (T = 3)) enter                                                                           |                                                            |
| 2  | Key-in <b>90–2nd</b> [answer]enter to calculate the value of angle B                                                      | van (ਤ)<br>66.80140949<br>90−ans<br>23.19859051            |
| 3  | For length of hypotenuse $c$ , press $2nd[\sqrt{3}x^2+7x^2]$ enter<br>Press $2x^2$ to convert the answer in decimal mode. | <br>√ <u>3</u> 2+7 <sup>2</sup> √58<br>√58*<br>7.615773106 |





#### **Exercises**:

- 1. When driving, a steep hill is typically only 12°. What is the cosine of this angle?
- 2. The angle that waves hit a shoreline is 75°. What is the tangent of this angle?
- 3. The angle of repose is the steepest angle at which dry, unconsolidated sediment is stable. You create a conical pile of sand that is as steep as you can make it. The pile is 11 cm high and has a radius of 16 cm. What is the angle of repose of this sand?



- 4. You are walking up a 500 meter high hill. The trail has an incline of 12 degrees. How far will you walk to get to the top?
- 5. You note that a bed coal is tilted at 12 degrees and comes to the surface 6 kilometers from your property. How deep will you have to dig to get to the coal bed on your property?

#### Answers:

- 1. 0.978
- 2. 0.0879
- 3. x = 34.5 *degrees*, the angle of repose for this sand.
- 4. The trail up the hill is 2400 *m* long
- 5. the depth of the coal bed, is  $1.275 \ km$  , or  $1275 \ meters$





# **Cartesian and polar co-ordinates**

### **Overview / Introduction / Terminology:**

#### **Type of coordinates**

Cartesian Coordinates (x, y)

by how far along and how far up it is:



Polar Coordinates  $(r, \theta)$ 

Using Cartesian Coordinates you mark a point Using Polar Coordinates you mark a point by how far away, and what angle it is:



#### Converting

To convert from one to the other, you need to solve the triangle:



#### To convert from Cartesian to Polar

The Cartesian coordinates (also called Rectangular coordinates) x and y can be converted to polar coordinates r and  $\theta$  with  $r \ge 0$  and  $\theta$  in the interval  $(-\pi, \pi)$  by:

$$radius, r = \sqrt{x^2 + y^2}$$
  $angle, \theta = tan^{-1}\frac{y}{x}$ 

#### **To convert from Polar to Cartesian**

The two polar coordinates r and  $\theta$  can be converted to the two Cartesian coordinates x and y by using the trigonometric functions sine and cosine:

$$x = r\cos\theta \qquad \qquad y = r\sin\theta$$

Keystrokes: [math] > R↔ P





### **Example:**

1. Convert polar coordinates  $(r, \theta) = (5,30)$  into rectangular coordinates. Then convert rectangular coordinates (x, y) = (3,4) into polar coordinates. Round the results to one decimal place.

| No | Instructions / Keystrokes                                                                                                                                                                                                 | Screenshots                                                                                                                   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1  | To set mode to one decimal place, press<br>clear mode ⊙⊙⊙⊙⊙enter. Then press clear to go back to<br>home screen.                                                                                                          | <sup>FIX DEG</sup><br> 10日 RAD GRAD<br> 10日前  SCI ENG<br> 10日前  SCI ENG<br> 1日前  G+Di P20<br> 1日前  G+Di P20<br> 1日前  G+Di P20 |
| 2  | Press math and using tight cursor, choose R P.                                                                                                                                                                            | ™<br>MATH NUM DMS <b>R™≦</b><br>MBP+R×(<br>2:P+Ry(<br>34R+Pr(                                                                 |
| 3  | To convert to polar coordinates and display $x$ choose 1.<br>P  ightarrow Rx(. Press 1 or enter. Key-in this value in your calculator: 52nd[,]30) enter                                                                   | Fix<br>P▶R×(5,30) 4.3                                                                                                         |
| 4  | To convert to polar coordinates and display $y$ choose 2.<br>R  ightarrow Py(. Press 2 or enter. Key-in this value in your calculator: 52nd[,]30) enter<br>Converting $(r, \theta) = (5, 30)$ gives $(x, y) = (4.3, 2.5)$ | F#<br>P▶Rx(5,30) 4.3<br>P▶Ry(5,30) 2.5                                                                                        |
| 5  | To convert to polar coordinates and display <i>r</i> choose 3.<br>R ▶ Pr( . Press ③ or enter. Key-in this value in your calculator: ③ 2nd [,]④) enter                                                                     | P▶R×(5,30) 4.3<br>P▶R9(5,30) 2.5<br>R▶Pr(3,4) 5.0                                                                             |





**Topic:** Cartesian and polar co-ordinates

| No | Instructions / Keystrokes                                                                                                                    | Screenshots                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 6  | To convert to polar coordinates and display θ choose 4. R<br>▶ Pθ( . Press 4 or enter. Key-in this value in your calculator: 32nd[,]4) enter | FN     Des     **       P ▶ R×(5,30)     4.3       P ▶ R⊎(5,30)     2.5       R ▶ Pr(3,4)     5.0       R ▶ Pθ(3,4)     53.1 |
|    | Converting $(x, y) = (3, 4)$ gives $(r, \theta) = (5.0, 53.1)$                                                                               |                                                                                                                              |

### **Exercises:**

- 1. Change the Cartesian co-ordinates into polar co-ordinates.
  - a. (3,4)
  - b. (-4,3)
  - c. (-5, -12)
  - d. (2,−5)
- 2. Change the polar co-ordinates into Cartesian co-ordinates.
  - a. (4,32°)
  - b. (6,137∘)
  - **c.** (4.5, 5.16 *rad*)

## Answers:

- 1. Question 1:
  - a. (5, 53.13°) or (5, 0.927 rad)
  - b. (5, 143.13°) or (5, 2.498 rad)
  - c. (13, 247.38°) or (13, 4.318 rad)
  - d. (5.385, 291.80°) or (5.385, 5.093 rad)
- 2. Question 2
  - a. (3.39, 2.12)
  - b. (-4.388, 4.092)
  - c. (1.948, -4.057)





## **Geometry and Triangles**

## **Overview / Introduction / Terminology:**

**Geometry** is a part of mathematics in which the properties of points, lines, surfaces and solids are investigated.

An **angle** is the amount of rotation between two straight lines. Angles may be measured in either **degrees** (<sup>°</sup>) or **radians.** 

1 revolution = 360 degrees, thus 1 degree =  $\frac{1}{360}$ <sup>th</sup> of one revolution. 1 minute =  $\frac{1}{60}$ <sup>th</sup> of a degree is written as **1'** 1 second =  $\frac{1}{60}$ <sup>th</sup> of a minute is written as **1''** 

#### **Properties of triangles**

A triangle is a figure enclosed by three straight lines. The sum of the three angles of a triangle is equal to 180°.



Congruent triangles : Two triangles are said to be congruent if they are equal in all respects.
Similar triangles : Two triangles are said to be similar if the angles of one triangle are equal to the angles of the other triangle.







Math Concepts: Basic Algebra, Triangle, Degree, Radian,

## **Keystrokes**:

math 2nd[num-solv]

### **Example:**

1. In the below figure, find the length of side *a*.



| No | Keystrokes                                                                                                                                                                                                                              | Screenshots                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1  | Based on the figure, it shows the similar triangle.<br>$C = 60^{\circ}$ .<br>To get the answer, calculation will be:<br>$\frac{a}{d} = \frac{c}{f}$ , $\frac{a}{4.42} = \frac{12.0}{5.0}$<br>To enter the equation, press 2nd[num-solv] | ∷=∷<br>Enter equation<br>to solve.                |
| 2  | Key in the values,<br>$\frac{\mathbb{E}[x_{abcd}^{yzt}, x_{abcd}^{yzt}, x_{abcd}^{yzt}] \otimes 4.42}{\mathbb{E}[2.0 \otimes 5.0]}$                                                                                                     | $     \boxed{\frac{a}{4.42}} = \frac{12.0}{5.0} $ |
| 3  | To get the answer, press $x_{abcd}^{yzt} x_{abcd}^{yzt}$ .<br>Thus, the answer is $a = 10.608m$                                                                                                                                         | 00 <b>0000000000000000000000000000000000</b>      |





2. A rectangular shed 2m wide and 3m high stands against a perpendicular building of height 5.5 m. A ladder is used to gain access to the roof of the building. Determine the minimum distance between the bottom of the ladder and the shed.



| No | Keystrokes                                                                                                                                                                       | Screenshots                                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1  | Based on the figure, value $AB = 3.0m$ .<br>So, the equation for calculation will be:<br>$\frac{EF}{BD} = \frac{DE}{AB}$ , assume $EF = a$ , so, $\frac{a}{2} = \frac{3.0}{2.5}$ | ∷=∷<br>Enter equation<br>to solve.              |
|    | To enter the equation, press [2nd][num-solv]                                                                                                                                     |                                                 |
| 2  | Key in the values,                                                                                                                                                               | $\frac{a}{2} = \frac{3}{2.50}$                  |
|    | $ = \frac{x_{abcd}^{yzt}}{x_{abcd}^{yzt}} \frac{x_{abcd}^{yzt}}{x_{abcd}^{yzt}} \frac{x_{abcd}^{yzt}}{x_{abcd}^{yzt}} \odot 2 \odot 2 $                                          |                                                 |
| 3  | To get the answer, press $x_{abcd}^{yzt} = x_{abcd}^{yzt} \cdot x_{abcd}^{yzt}$ .                                                                                                | <mark>водальна о</mark> ес<br>9=2.4<br>L - R =0 |
|    | Thus, the answer is $a = 2.4m @ EF = 2.4m$                                                                                                                                       |                                                 |



3. In figure at the right, show the triangles *CBD* and *CAE* are similar and hence find the length of *CD* and *BD*.



| No | Keystrokes                                                                                                                                               | Screenshots                                               |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1  | Based on the figure, the proportion will be:<br>$\frac{CB}{CA} = \frac{CD}{CE} \left(=\frac{BD}{AE}\right)$ To enter the equation, press [2nd][num-solv] | Enter equation to solve.                                  |
| 2  | To enter the values, press<br>$39 \odot 15 \odot x_{abcd}^{yet} \odot 12$                                                                                | $\frac{9}{15} = \frac{12}{12}$                            |
| 3  | To get the answer, press enter enter enter<br>Thus, length of $CD = 7.2cm$                                                                               | egi <b>nihandizi</b> †<br>1=7.2<br>L - R =0<br>■■■■■ QUIT |





**Topic:** Geometry and Triangles Math Concepts: Basic Algebra, Triangle, Degree, Radian,

| No | Keystrokes                                                                                                                                                                           | Screenshots                                                 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 4  | To get the answer for length of BD,<br>$\frac{9}{15} = \frac{BD}{10}$<br>To change the value, press 2nd[num-solv] again, and change<br>the value. Press $() () () () () () () () ()$ | $\frac{9}{15} = \frac{1}{10}^{\text{DEG}}$                  |
| 5  | To get the answer, press enterenter enter $BD = 6cm$                                                                                                                                 | 500 <b>0140021</b> t<br>X=6<br>L - R =0<br>Solve Again Quit |

### **Exercise:**

- 1. Add together the angles :  $48^{\circ}11'19''$ ,  $31^{\circ}41'27''$  and  $9^{\circ}9'37''$
- 2. Convert the following angles to degrees and decimals of a degree, correct to 3 decimal places:

(a) 15°11' (b) 29°53' (c) 49°42'17" (d) 135°7'19"

3. Find the lengths x and y.



4. *PQR* is an equilateral triangle of side 4 *cm*. When *PQ* and *PR* are produced to *S* and *T*, respectively, *ST* is found to be parallel with *QR*. If *PS* is 9 cm, find the length of *ST*. *X* is a point on *ST* between *S* and *T* such that the line *PX* is the bisector of  $\angle$ *SPT*. Find the length of *PX*.





| Topic:                 | Math Concepts:                           |
|------------------------|------------------------------------------|
| Geometry and Triangles | Basic Algebra, Triangle, Degree, Radian, |

5. Find (a) the length of BC when AB = 6cm, DE = 8cm and DC = 3cm, (b) the length of DE when EC = 2cm, AC = 5cm and AB = 10cm.



### Answer:

- 1. 89°2'23"
- 2. (a) 15.183° (b) 29.883° (c) 49.705° (d) 135.122°
- 3. x = 16.54 mm, y = 4.18 mm
- 4. 9 cm, 7.79 cm
- 5. (a) 2.25 *cm* (b) 4 *cm*





# **Triangles and some practical applications**

## **Overview / Introduction / Terminology:**

#### Sine and Cosine Rules:

For triangles which are *not* right-angled we use the sine and cosine rules. The triangle on the right has the conventional notation of small letters for the lengths of sides and capital letters for the angles opposite. To find lengths and angles, use:

The sine rule may be used only when:

- 1 side and any 2 angles are initially given, or
- 2 sides and an angle (not the included angle) are initially given.

The cosine rule may be used only when:

- 2 sides and the included angle are initially given, or
- 3 sides are initially given.



| SINE RULE                                                | COSINE RULE                                                                                                                   |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ | $a^{2} = b^{2} + c^{2} - 2bc \cos A \text{ (for a side)}$ $\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \text{ (for an angle)}$ |

Don't be put off by the letters. Basically, the sine rule says the ratio of side/sine is the same for each pair of sides and angles. And in the cosine rule, ensure that the side on the LHS of the equation matches the angle on the RHS.

#### Area of a non-right angled triangle:

If you know two sides of a triangle, and the size of the angle between the two sides, then the area of the triangle can be found using:





Math Concepts: Determining Resultant Phasors by Calculation

$$Area = \frac{1}{2}ab\sin C \text{ or } \frac{1}{2}ac\sin B \text{ or } \frac{1}{2}bc\sin A$$

## Keystrokes

basic operational keys

## Example

1. Calculate side C



| 1 Law of sine:<br>$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ We can only find angle C at the moment, by using:                                                                                                                                                                                                                      | No | Instructions / Keystrokes                                                                                                                                                                                                                                           | Screenshots |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $\frac{7}{\sin 35} = \frac{c}{\sin 105}$ We can use numerical solver from scientific calculator.<br>[2nd[num-solv]<br><b>7 B S D O</b><br>$\frac{x_{abcd}^{yzz}}{x_{abcd}^{yzz}} \frac{x_{abcd}^{yzz}}{x_{abcd}^{yzz}} \frac{x_{abcd}^{yzz}}{x_{abcd}^{yzz}} \frac{x_{abcd}^{yzz}}{x_{abcd}^{yzz}} \frac{x_{abcd}^{yzz}}{x_{abcd}^{yzz}}$ [enter] |    | Law of sine:<br>$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ We can only find angle C at the moment, by using:<br>$\frac{7}{\sin 35} = \frac{c}{\sin 105}$ We can use numerical solver from scientific calculator.<br>2nd [num-solv]<br>7 = = = 35) • • | DEG         |

| No | Keystrokes | Screenshots |
|----|------------|-------------|
|----|------------|-------------|









2. Solve triangle *DEF* and find its area given that *EF* =35.0 mm, *DE* =25.0mm and  $\angle E$  =64°



| No | Instructions / Keystrokes                                                                                                                                                                          | Screenshots                                               |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1  | Applying the cosine rule<br>$a^{2} = b^{2} + c^{2} - 2bc \cos A$ $e^{2} = d^{2} + f^{2} - 2df \cos E$ In your calculator, key-in this equation:<br>$e = \sqrt{35^{2} + 25^{2} - 2(35)(25)\cos 64}$ | √35 <sup>2</sup> +25 <sup>2</sup> -2(35)()<br>32.90669374 |
|    |                                                                                                                                                                                                    |                                                           |

3. The diagram shows a triangle with sides 5, 7 and 8. Find the size of the smallest angle.







| $\langle \rangle$ |   |  |
|-------------------|---|--|
|                   | 8 |  |

| No | Instructions / Keystrokes                                                                                                           | Screenshots                                       |
|----|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1  | The smallest angle is opposite the smallest side, 5. Using cosine rule, fill in the values you know, and the unknown length. Press: | $     \frac{52 + 8^2 - 7^2}{2*5*8}  \frac{1}{2} $ |
|    |                                                                                                                                     |                                                   |
|    | $5x^{2}+8x^{2}-7x^{2}$                                                                                                              |                                                   |
|    | 2×5×8                                                                                                                               |                                                   |
|    | enter                                                                                                                               |                                                   |
| 2  | Press •• ≈ to convert the answer in decimal mode.                                                                                   |                                                   |
|    | Thus, $\cos P^\circ = 0.5$                                                                                                          | 1/2 ** 0.5                                        |
| 3  | Evaluate the right-hand-side and then use inverse-cosine $cos^{-1}$ to find the angle $P^{\circ}$                                   | 1<br>2** 0.5                                      |
|    | <sup>Cos</sup> ) <sup>Cos</sup> ) ⊙ [enter] ) ]enter]                                                                               | cos-1(0.5) 60                                     |
|    | So, the angle $P^\circ$ is $60^\circ$                                                                                               |                                                   |





| Topic:              | Math Concepts:                               |
|---------------------|----------------------------------------------|
| Adding of Waveforms | Determining Resultant Phasors by Calculation |

4. Find the area for below triangle:



| No | Instructions / Keystrokes                                      | Screenshots |
|----|----------------------------------------------------------------|-------------|
| 1  | Given that $a = 8, c = 7$ and $\langle B = 30^{\circ}$ .       | DEG         |
|    | Using the formula for area, $Area = \frac{1}{2}ac\sin B$       | 14          |
|    | key in                                                         |             |
|    | $1 = 2 \times 8 \times 7 \times \frac{\sin}{\sin} = 30)$ enter |             |
|    | Thus, the area of triangle is $14cm^2$                         |             |
|    |                                                                |             |

## Exercises

Find the unknown side or angle in each of the following diagrams. Round the answer to 3 significant features:











9. Farmer Jones owns a triangular piece of land. The length of fence AB is 150m. The length of the fence BC is 231m. The angle between fence AB and fence BC is  $123^{\circ}$ . How much land does Farmer Jones own?

#### Answers

- 1. p = 11.2
- 2.  $b^{\circ} = 44.0^{\circ}$
- 3. x = 37.7
- 4.  $P^{\circ} = 60^{\circ}$
- 5. h = 117
- 6.  $a^{\circ} = 105^{\circ}$
- 7.  $b^{\circ} = 76.2^{\circ}$
- 8. x = 19.5
- 9. Farmer Jones has 14,530  $m^2$  of land





## **Adding of Waveforms**

### **Overview / Introduction / Terminology:**

#### **Determining Resultant Phasors by Calculation**

This section will cover how to:

- Use the Sine Rule to find unknown sides and angles
- Use the Cosine Rule to find unknown sides and angles
- Combine trigonometry skills to solve problems

Each topic is introduced with a theory section including examples and then some practice questions. At the end of the page there is an exercise where you can test your understanding of all the topics covered in this page. You should already know each of the following formulae:



# Keystrokes:

 $2nd[num-solv], \bigcirc (sin-1), (cos-1), (math)$ 





## **Example:**

1. The Sine Rule can be used in any triangle (not just right-angled triangles) where a side and its opposite angle are known.

Finding Sides: Work out the length of *x* in the diagram below,



| No | Keystrokes                                                                                                    | Screenshots                                          |
|----|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1  | Press [2nd][num-solv],                                                                                        | Enter equation to solve.                             |
| 2  | Insert equation in the number solving, press                                                                  | $\frac{2}{5 \sin(80)} = :::$                         |
|    | $\frac{\mathbb{E}}{\mathbb{E}} x_{abcd}^{yzt} \odot \frac{\sin 30}{\sin 380} \text{ math } \text{ (enter )}.$ | MATH NUM <b>IQIE</b> R++P<br>IIII°<br>2: '<br>3↓"    |
| 3  | Then press                                                                                                    | $\frac{3}{(80^\circ)} = \frac{7}{5 \sin(60^\circ)}$  |
|    |                                                                                                               | ™ATH NUM <b>INIE</b> ® R••P<br>1980°<br>2: '<br>3↓'' |





| Topic:              | Math Concepts:                               |
|---------------------|----------------------------------------------|
| Adding of Waveforms | Determining Resultant Phasors by Calculation |

| No | Keystrokes                                                                                     | Screenshots                                            |
|----|------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 4  | enter to solve the equation.                                                                   |                                                        |
| 5  | Assume that $x = 0$ ,                                                                          | ved<br>Ianniais Anno sollua (†<br>X=0<br>Solve: X      |
| 6  | Press enter enter<br>The answer is <b>7</b> . <b>96</b> (accurate to 3 significant<br>figures) | 005 †<br>127.960106298<br>L - R =0<br>Solve Again Quit |

2. Finding Angles: Work out angle  $m^{\circ}$  in the diagram below: (Note, Change  $m^{\circ}$  to  $x^{\circ}$ .)



| No | Keystrokes           | Screenshots                 |
|----|----------------------|-----------------------------|
| 1  | Press 2nd[num-solv], | DEG                         |
|    |                      | Enter equation<br>to solve. |





| No | Keystrokes                                                                                                         | Screenshots                                                         |
|----|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 2  | Insert equation in the number solving, press                                                                       | <u>Sin(%</u> =:::                                                   |
|    | $ = \underbrace{ x_{abcd}^{yzt} }_{\text{sin}} \operatorname{(math)} ( enter )                                   $ |                                                                     |
|    |                                                                                                                    | ™ATH NUM <b>Mais</b> R++P<br>1988<br>2: '<br>3.↓"                   |
|    |                                                                                                                    | <u>sin(%°)</u> =:::                                                 |
| 3  | Then press                                                                                                         | $\dot{4}\frac{n(x\circ)}{8} = \frac{\sin(75B)}{3}$                  |
|    | $ \textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                |                                                                     |
|    |                                                                                                                    | MATH NUM <b>Maes</b> R++P<br>1998<br>2:'<br>3↓"                     |
| 4  | enter to solve the equation.                                                                                       | $4^{(0)} = \frac{\sin(750)}{10}$                                    |
| 5  | Assume that $x = 0$ ,                                                                                              | <sup>DEG</sup><br>  <u>⊐?M ⊐3: %}?IO SOEM⊐</u> †<br>%=0<br>SOLVE: % |
|    |                                                                                                                    |                                                                     |





| No | Keystrokes                                                                                     | Screenshots                                                                  |
|----|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 6  | Press $enter$ $enter$ The answer is <b>50</b> . <b>6</b> ° (accurate to 3 significant figures) | 086<br><b>50101101021</b> †<br>X=50.60063978<br>L - R =0<br>Solve Again Quit |

- 3. Two alternating voltages are given by  $v_1 = 15 \sin \omega t$  volts and  $v_2 = 25 \sin(\omega t \pi/6)$  volts. Determine a sinusoidal expression for the resultant  $v_R = v_1 + v_2$  by finding horizontal and vertical components.
  - a) The relative positions of  $v_1$  and  $v_2$  at time t=0
  - b) The phasor diagram



| No | Keystrokes                                                                             | Screenshots             |
|----|----------------------------------------------------------------------------------------|-------------------------|
| 1  | Firstly, for the horizontal component of $v_R$ ,                                       |                         |
|    | Press 15 . 0,                                                                          | 15cos(0                 |
|    | Then press math () () () enter                                                         | MATH NUM <b>Die</b> R*P |
|    | Then continue press                                                                    | <u></u><br>3↓"          |
|    | )+25 <sup><math>\infty</math></sup> (-)30 <sup><math>math</math></sup> ()enter) enter. |                         |



| Topic:              | Math Concepts:                               |
|---------------------|----------------------------------------------|
| Adding of Waveforms | Determining Resultant Phasors by Calculation |

|   | Change to the decimal, press math enter.<br>H = oa + ab = 36.65 V | 15cos(0°)+25cos<br><u>25√3+30</u><br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|---|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 2 | For the vertical component of $v_R$ ,                             | 15sin(0∎                                                                                           |
|   | Press 15 5 10                                                     |                                                                                                    |
|   | Then press math ))))enter                                         | ™ATH NUM <b>I®IIB</b> R⊕P<br>I∎®°<br>2:'<br>3↓"                                                    |
|   | Then continue pres                                                | <sup>s</sup> 15sin(0°)+25sin∳<br>- <u>25</u><br>2                                                  |
|   | Change to the decimal, press [2nd][answer] (→ ≈] [enter]          | 15sin(0°)+25sin∳                                                                                   |
|   | V = bc = -12.50 V                                                 | - <u>25</u><br>ans• -12.5                                                                          |



| No | Keystrokes                                                                                                                     | Screenshots                                                                        |
|----|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 3  | Press<br>$2nd[v]36.65x^2+((-)12.50)x^2$ () enter<br>Hence $v_R(=oc) = 38.72$ volts                                             | <sup>∞</sup> ~<br>√36.65 <sup>2</sup> +(-12.50)<br>38.72302287                     |
| 4  | Press $\mathbb{B}(-)$ 12.50 $\odot$ 36.65 $\oplus$ enter<br>$\tan \phi = \frac{V}{H} \left( = \frac{bc}{ob} \right) = -0.3411$ | - <u>12.50</u><br>36.65<br>-0.34106412                                             |
| 5  | Press $\lim_{tan-1} \lim_{tan-1} (-) 0 \cdot 3 4 1 1 ) enter,$<br>Change to Radians mode. Press mode ) enter clear             | tan-1(-0.3411)<br>-18.83450885                                                     |
|    | Recall or select the last equation. Press                                                                                      | 800<br>DEG [3730] GRAD<br>12031 SCI ENG<br>130310 0123456789<br>3891 0+bi r∠0<br>4 |
|    | $\phi = -18.83^{\circ} \text{ or } - 0.329 \text{ radians}$                                                                    | tan-1(-0.3411)<br>-0.328724193                                                     |
|    | Hence $v_R = v_1 + v_2 = 38.72 \sin(\omega t - 0.329) V$                                                                       |                                                                                    |





#### Exercise:

1. Find the missing side in the diagram below: (Use Sine Rule)



2. Find the missing angle in the diagram below: (Use Cosine Rule)



Work out the value of x, y and z for each of the diagram below. The diagrams are not to scale.
 Try and use the most efficient method you can and give your answer to 3 significant figures.



- 4. Express the combination of periodic functions  $i = 25 \sin \omega t 15 \sin \left(\omega t + \frac{\pi}{3}\right) A$  in the form  $A \sin(\omega t \pm \alpha)$ .
- 5. Express the combination of periodic functions  $x = 9 \sin \omega t + \frac{\pi}{7} 7 \sin \left(\omega t \frac{3\pi}{8}\right) cm$  in the form  $A \sin(\omega t \pm \alpha)$ .

#### Answer:

a)

- 1. p = 11.2 (accurate to 3 significant figures)
- 2.  $a^{\circ} = \cos^{-1}(-0.252) = 105^{\circ}$  (accurate to 3 significant figures)
- 3. (a)  $x = 31^{\circ}$  (b) x = 5.64
  - y = 7.39 y = 45.2
  - z = 8.02  $z = 44.8^{\circ}$
- 4.  $i = 21.79 \sin(\omega t 0.639)A$
- 5.  $x = 14.38 \sin(\omega t + 1.444)cm$





## **Areas of Plane Figures**

## **Overview / Introduction / Terminology:**

Area is the measurement of the amount of space occupied by a closed flat surface and is measured in square units. Every unit of length has a corresponding unit of area, namely the area of a square with the given side length. Thus areas can be measured in square meters  $(m^2)$ , square centimeters  $(cm^2)$ , square millimeters  $(mm^2)$ , square kilometers  $(km^2)$ , square feet  $(ft^2)$ , square yards  $(yd^2)$ , square miles  $(mi^2)$ , and so forth. Algebraically, these units can be thought of as the squares of the corresponding length units. The SI unit of area is the square meter, which is considered an SI derived unit.

A plane is a flat or level surface in two dimensions. Figures such as circles or squares have all of their parts lying on a plane and thus, are examples of plane figures.

| ↓<br>b h         | Triangle<br>$Area = \frac{1}{2} \times b \times h$ $b = base$ $h = vertical \ height$          | a           | Square<br>$Area = a^2$<br>a = length of side                                                       |
|------------------|------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------|
| <mark>↓</mark> h | Rectangle<br>$Area = w \times h$<br>w = width<br>h = height                                    | ↓<br>↓<br>b | Parallelogram<br>$Area = b \times h$<br>b = base<br>h = vertical height                            |
| å<br>th<br>b     | Trapezium<br>$Area = \frac{1}{2}(a + b) \times h$ $h = vertical \ height$ $a \ and \ b = base$ | r           | Circle<br>$Area = \pi \times r^2$<br>$Circumference = 2 \times \pi \times r$<br>r = radius         |
| ba               | Ellipse<br>Area = $\pi ab$                                                                     | θr          | Sector<br>$Area = \frac{1}{2} \times r^{2} \times \theta$ $r = radius$ $\theta = angle in radians$ |





Keystrokes: Numbers and basic operational keys

### **Example:**

- 1. Find the area of:
  - a. A square flower-bed of side 17 m
  - b. A rectangular field 45 m long and 40 m wide
  - c. A triangle of base length 30 m and height 25 m

| No | Instructions / Keystrokes                                                                       | Screenshots               |
|----|-------------------------------------------------------------------------------------------------|---------------------------|
| 1  | Area of square = $s^2$<br>Key in: 17×17 enter<br>s = 17 m                                       | 17*17 <sup>289</sup>      |
| 2  | Area of rectangle = $w \times l$<br>Key in: <b>40</b> × <b>45</b> enter<br>w = 40 m<br>l = 45 m | 40*45 <sup>•••</sup> 1800 |





| Topic:                 | Math Concepts:                                                   |
|------------------------|------------------------------------------------------------------|
| Areas of plane figures | area, width, height, square, rectangle, parallelogram, triangle, |
|                        | trapezium                                                        |

| No | Instructions / Keystrokes                                                                       | Screenshots         |
|----|-------------------------------------------------------------------------------------------------|---------------------|
| 3  | Area of triangle = $\frac{1}{2} \times b \times h$<br>Key in: 182 $\times$ 30 $\times$ 25 enter | <u>1</u> *30*25 375 |
|    | h = 25  m<br>b = 30  m                                                                          |                     |

2. Sam cuts grass at RM0.10 per square meter. How much does Sam earn cutting this area:



Let's break the area into two parts:







Topic:Math Concepts:Areas of plane figuresarea, width, height, square, rectangle, parallelogram, triangle,<br/>trapezium

| No | Instructions / Keystrokes                                                                                                                                                                                                                                                     | Screenshots                                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 1  | Part A is a square<br>Area of A = $a^2 = 20m \times 20m$                                                                                                                                                                                                                      | 20*20 <sup>•••</sup> 400                                         |
|    | 20×20enter                                                                                                                                                                                                                                                                    |                                                                  |
| 2  | Part B is a triangle. Viewed sideways it has a base of $20m$ and a height of $14m$<br>Area of B = $\frac{1}{2} \times b \times h = \frac{1}{2} \times 20m \times 14m$<br>1=2 $\times$ 20 $\times$ 14enter                                                                     | 20*20 400<br>1/2*20*14 140                                       |
| 3  | So total area is:<br>$Area A + Area B = 400m^2 + 140m^2$<br>To calculate the total area:<br>Copy answer Area A by pressing $\textcircled{O}$ enter<br>Enter plus sign, $+$ and copy answer Area B by<br>pressing $\textcircled{O}$ enter<br>Press enter to get the total area | 20*20 400<br><u>↓</u> 20*14 140<br>400+140 540                   |
| 4  | Sam earns RM0.10 per square meter<br>For $540m^2$ , Sam earns = RM0.10 × $540m^2$<br>enter × 0 · 10 enter                                                                                                                                                                     | <sup>™</sup><br><u>↓</u> 20*14 140<br>400+140 540<br>540*0.10 54 |





| Topic:                 | Math Concepts:                                                   |
|------------------------|------------------------------------------------------------------|
| Areas of plane figures | area, width, height, square, rectangle, parallelogram, triangle, |
|                        | trapezium                                                        |

3. The area of a trapezium is 52 *square inches* and the bases are 11 *inches* and 15 *inches*. Find the *height*.

| No | Instructions / Keystrokes                                                                                                                                                                                                                                                                                                                                                        | Screenshots                                                                          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1  | Area of trapezium = $\frac{1}{2}(a + b) \times h$<br>To solve this problem we can use numeric equation solver<br>(num-solv) function. Press [2nd][num-solv]                                                                                                                                                                                                                      | Enter equation                                                                       |
| 2  | Key-in the equation by pressing:<br>$x_{abcd}^{yet} ) ) (variable x = area)$ $1 = 2 )$ $(x_{abcd}^{yet}) x_{abcd}^{yet}) x_{abcd}^{yet} x_{abcd}^{yet} (variable a = b_1)$ $+$ $x_{abcd}^{yet}) x_{abcd}^{yet} x_{abcd}^{yet} x_{abcd}^{yet} x_{abcd}^{yet} ) (variable b = b_2)$ $\times$ $x_{abcd}^{yet} x_{abcd}^{yet} x_{abcd}^{yet} x_{abcd}^{yet} enter} (variable t = h)$ | x=1/2 (a+b)*t                                                                        |
| 3  | Insert known value for $x$ , $a$ and $b$ and press enter. Leave blank for value $t$ .                                                                                                                                                                                                                                                                                            | DEG<br><b> <u>37112 3  717  50  4 3 </u>  †<br/>X=52<br/>q=11<br/>b=15<br/>t=0 4</b> |





| Topic:                 | Math Concepts:                                                   |
|------------------------|------------------------------------------------------------------|
| Areas of plane figures | area, width, height, square, rectangle, parallelogram, triangle, |
|                        | tranezium                                                        |

| No | Instructions / Keystrokes                                                                              | Screenshots                                                        |
|----|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1  | Press $\textcircled{O}$ to go to next page. Bring your cursor to variable $t$ by pressing right arrow. | oes<br>SOLVE: Xab∎ †                                               |
| 2  | Press enter get the answer.<br>Thus, the height of trapezium is 4 <i>inches</i> .                      | DEG<br><b>BOIMINGOOZI</b> †<br>t=4<br>L - R =0<br>Solve again Quit |

### **Exercises:**

- 1. The height of a parallelogram is 6 more units than the base. What is the area of the parallelogram if the base is 15cm?
- 2. Find the area of a trapezium with bases of 9*cm* and 7*cm*, and a height of 3*cm*.
- 3. The area of a trapezoid is 52 square inches and the bases are 11 inches and 15 inches. Find the height.
- 4. A triangular-shaped piece of paper has an area of 36 square centimeters and a base of 6*cm*. Find the height.
- 5. The perimeter of a square-shaped rug is 36*m*. Find the area.

#### **Answers**:

- 1. 315
- 2.  $24 \ cm^2$
- 3. 4 in
- 4. 12
- 5. 81





## **The Circle**

## **Overview / Introduction / Terminology:**



A **circle** is a simple shape of Euclidean geometry consisting of those <u>points</u> in a <u>plane</u> that are equidistant from a given point, the centre. The distance between any of the points and the centre is called the radius.

A circle's diameter is the length of a line segment whose endpoints lie on the circle and which passes through the centre. This is the largest distance between any two points on the circle. The diameter of a circle is twice the radius, or distance from the centre to the circle's boundary. The term "diameter" and "radius" also refer to the line segment which fit these descriptions. The circumference is the distance around the outside of a circle.

A chord is a line segment whose endpoints lie on the circle. A diameter is the longest chord in a circle. A tangent to a circle is a straight line that touches the circle at a single point, while a secant is an extended chord: a straight line cutting the circle at two points.

An arc of a circle is any connected part of the circle's circumference. A sector is a region bounded by two radii and an arc lying between the radii, and a segment is a region bounded by a chord and an arc lying between the chord's endpoints.







| Topic:     | Math Concepts:                                                    |
|------------|-------------------------------------------------------------------|
| The circle | circle, radius, circumference, diameter, semicircle, quadrant,    |
|            | tangent, sector, chord, segment, arc, angle, equation of a circle |

### **Keystrokes**:

Numbers and basic operational keys

#### **Example:**

1. If a circle has a diameter of 4, find the circumference of a circle.

| No | Instructions / Keystrokes                                                                                                                         | Screenshots                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1  | Formula of circumference, $c = 2\pi r$ where $r$ is radius<br>We already know that $d = 4$ , so $r = 2$ . Substitute the<br>value in the formula. | <sup>Deg</sup> *τ<br>2*π*2 4π          |
|    | Key-in $2 \times \pi^{e}$ × 2 enter                                                                                                               |                                        |
| 2  | To get the answer in decimal mode, press <b>⊕</b> ≈                                                                                               | <sup>2*π*2</sup> 4π<br>4π* 12.56637061 |
|    | Thus, the answer is 12.57 <i>cm</i>                                                                                                               | 12:00001001                            |

2. Find the length of arc of a circle of radius 5.5 cm when the angle subtended at the centre is1.20 radians.

| No | Instructions / Keystrokes                                       | Screenshots              |
|----|-----------------------------------------------------------------|--------------------------|
| 1  | Formula length of arc, $s=r	heta$ , where $	heta$ is in radians | 5.5*1.2 <sup>DEG</sup> ~ |
|    | Press 5.5×1.2                                                   |                          |





3. A football stadium floodlight can spread its illumination over an angle of  $45^{\circ}$  to a distance of 55m. Determine the maximum area that is floodlit.

| No | Instructions / Keystrokes                                     | Screenshots                                             |
|----|---------------------------------------------------------------|---------------------------------------------------------|
| 1  | Formula for area of sector = $\frac{1}{2}r^2\theta$<br>Press: | $\frac{\frac{1}{2}*55^2*(45*\frac{\pi}{180})}{3025\pi}$ |
|    | 1=2 $\times$ ×55 $x^2$ ×<br>(45× $\pi^{*}$ =180 $)$ )         |                                                         |
|    | enter                                                         |                                                         |
|    |                                                               |                                                         |
| 2  | Press • ≥ to get the answer in decimal mode.                  |                                                         |
|    | Thus, the answer is $11.88m^2$                                | <u>3025π</u><br>8<br>1187.914722                        |

### **Exercises:**

- 1. If the diameter of a circle is 75mm, find its circumference.
- 2. Determine the radius of a circle if its perimeter is 112*cm*.
- 3. Find the circumference of a circle of radius 12*cm*.
- 4. Determine the diameter and circumference of a circle if an arc of length 4.75*cm* subtends an angle of 0.91*radians*.
- 5. An automatic garden sprays produces a spray to a distance of 1.8m and revolves through an angle  $\alpha$  which may be varied. If the desired spray catchment area is to be  $2.52m^2$ , to what should angle  $\alpha$  be set, correct to the nearest degree.

### Answers:

- 1. 235.6*mm*
- 2. 17.83 cm
- 3. 75.40 *cm*
- 4. Diameter = 10.44cm, Circumference = 32.80cm
- **5.** angle  $\alpha = 88^{\circ}$





| Math Concepts:                                                                     |
|------------------------------------------------------------------------------------|
| Solid figures, area, volume, height, base, sphere, cone, cylinder, cuboid, pyramid |
|                                                                                    |

# Volumes of common solids

## **Overview / Introduction / Terminology:**

The volume is a measure of the amount of space inside the figure. Different figures lead to different computation. Common figures where the volume is calculated are shown below

| Regular Solids             | Surface Area                                                                                                                                            | Volume                     |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Sphere                     | $A = 4\pi r^2$                                                                                                                                          | $V = \frac{4}{3}\pi r^3$   |
| Cone                       | Area of the cone is $\pi rs$<br>Area of the base is $\pi r^2$<br>Therefore the formula is<br>$SA = \pi rs + \pi r^2$                                    | $V = \frac{1}{3}\pi r^2 h$ |
| Cylinder<br>,              | Area of the top is $\pi r^2$<br>Area of the base is $\pi r^2$<br>Area of the side is $2\pi rh$<br>Therefore the formula is<br>$SA = 2\pi r^2 + 2\pi rh$ | $V = \pi r^2 h$            |
| Rectangular Prism (Cuboid) | A = 2(wh + lw + lh)                                                                                                                                     | V = lwh                    |
| Square Based Pyramid       | $A = 2bs + b^2$                                                                                                                                         | $V = \frac{1}{3}b^2h$      |





### **Keystrokes:**

Numbers and basic operational keys

### **Example:**

1. What is the surface area of a cylinder with a height of 8 m and a base with a radius of 6m? (Leave your answer in terms of  $\pi$ .)

| No | Instructions / Keystrokes                                                                                         | Screenshots                         |
|----|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1  | $SA for cylinder = 2\pi r^2 + 2\pi rh$                                                                            | DEG A                               |
|    | Substitute the values into formula. Key-in $2 \times \pi^{e} \times 6 x^{2} + 2 \times \pi^{e} \times 6 \times 8$ | 2*π*6 <sup>2</sup> +2*π*6*8<br>168π |
|    | Press enter to get the answer.                                                                                    |                                     |
|    |                                                                                                                   |                                     |

2. What is the surface area of a sphere with a radius of 3m? Leave your answer in terms of  $\pi$ .

| No | Instructions / Keystrokes Screenshots                                     |                        |
|----|---------------------------------------------------------------------------|------------------------|
| 1  | SA for sphere = $4\pi r^2$                                                | DEG **                 |
|    | Substitute the values into formula. Key-in $4 \times \pi_i^e \times 3x^2$ | 4*л*3 <sup>2</sup> 36л |
|    |                                                                           |                        |
|    | Press enter to get the answer.                                            |                        |
|    |                                                                           |                        |
|    |                                                                           |                        |

3. What is the surface area of a rectangular prism with a length of 20m, a height of 21m, and a width of 4m?





| Topic:                   | Math Concepts:                                                     |
|--------------------------|--------------------------------------------------------------------|
| Volumes of common solids | Solid figures, area, volume, height, base, sphere, cone, cylinder, |
|                          | cuboid, pyramid                                                    |

| No | Instructions / Keystrokes                                                                                                         | Screenshots              |
|----|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1  | SA for rectangular prism = $2(wh + lw + lh)$<br>Substitute the values into formula. Key-in<br>$2(4\times21+20\times4+20\times21)$ | 2(4*21+20*4+20*▶<br>1168 |
|    | Press enter to get the answer. Thus the answer is $1168m^2$                                                                       |                          |

4. Let's find the volume of this cone.

We can substitute the values into the volume formula.



| No | Instructions / Keystrokes                                                                                                                                 | Screenshots                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1  | Volume of cone $=\frac{1}{3}\pi r^2 h$<br>Substitute the values into the volume formula. Key-in<br>$1=3 \times \pi^{\circ} \times 4 x^2 \times 9$ [enter] | <sup>∞</sup> ~<br>1/3*π*4 <sup>2</sup> *9 48π |
| 2  | Press $\textcircled{\bullet} =$ to get the answer in decimal mode.<br>When we perform the calculations, we find that the volume is $150.80 cm^3$ .        | <sup></sup>                                   |





| Topic:                   | Math Concepts:                                                                     |
|--------------------------|------------------------------------------------------------------------------------|
| Volumes of common solids | Solid figures, area, volume, height, base, sphere, cone, cylinder, cuboid, pyramid |

| No | Instructions / Keystrokes                                                                                                                                                         | Screenshots                                                                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 1  | Volume of cone $=\frac{4}{3}\pi r^3$                                                                                                                                              | <sup>∞</sup> <sup>≁</sup><br><sup>4</sup> ∃*π*13 <sup>3</sup><br>9202.77208 |
|    | Substitute the values into the volume formula. Key-<br>in $\mathbf{A} \oplus \mathbf{S} \oplus \mathbf{x} \pi_i^{\mathbf{e}} \times 1 \otimes \mathbf{x} \oplus \mathbf{S}$ enter | 9202.77208                                                                  |
|    | Thus, the answer is 9202.77 <i>cubic feet</i> .                                                                                                                                   |                                                                             |

5. Find the volume of this can of potato chips.



| No | Instructions / Keystrokes                                                                                                                                                                                                                                         | Screenshots                                                           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1  | To find the volume of cylinder, here is the formula:<br><i>Volume of cylinder</i> = $\pi r^2 h$<br>Substitute the values into the formula. Key-in<br>$\pi \frac{\pi}{i} \times 9 x^2 \times 20$ enter<br>Press $\Rightarrow z$ to get the answer in decimal mode. | <sup>νεσ</sup><br>π*9 <sup>2</sup> *20 1620π<br>1620π*<br>5089.380099 |

## **Exercises:**

- 1. What is the surface area of a cylinder with a height of 5m and a base radius of 4m? (Leave your answer in terms of  $\pi$ .).=
- 2. What is the surface area of a cylinder with a base area of  $25\pi$  in. and a height of 10 in.? (Leave your answer in terms of  $\pi$ .)==
- 3. What is the surface area of a sphere with a radius of 8cm? (Leave your answer in terms of  $\pi$ .)  $256\pi \ cm^2$





- 4. What is the measure of the radius of a sphere with a total surface area of  $16\pi$  cm?
- 5. What is the volume of a pyramid with a square base with sides of 5*cm*, and a height of 3*cm*?
- 6. Find the volume of a sphere with a diameter of 5 in. us 3.14 for  $\pi$  and round your answer to the nearest inch.
- 7. Find the volume of a rectangular prism that has a base measuring 6 in by 4 in and a height of 8 in.

### Answers:

- **1**. 72π
- **2**. 150π
- 3. The radius is 2 *cm*.
- 4. 25
- 5. 65
- 6. 192





## Integration

## **Overview / Introduction / Terminology:**

The process of integration reverses the process of differentiation. In differentiation, if  $f(x) = 2x^2$  then  $f_{-}(x) = 4x$ . Thus the integral of 4x is  $2x^2$ , i.e. integration is the process of moving from  $f_{-}(x)$  to f(x). B similar reasoning, the integral of 2t is  $t^2$ .

The general solution of integrals of the form where *a* and *n* are constants is given by:

$$\int ax^n \, dx = \frac{ax^{n+1}}{n+1} + c$$

**Definite integrals** are those in which limits are applied. If an expression is written as [x]ba, 'b' is called the upper limit and 'a' the lower limit. The operation of applying the limits is defined as: [x]ba = (b) - (a)

Functions that require integrating are not always in the 'standard form'. However, it is often possible to change a function into a form which can be integrated by using either:

- a) an algebraic substitution
- b) trigonometric substitutions
- c) integration by parts

Keystrokes: 2nd[╠□dx]





| Topic:      | Math Concepts: |
|-------------|----------------|
| Integration | Integration    |

# Example:

1. Evaluate  $\int_{x^2}^{2} (\sqrt[x]{2x^{2+x}}) dx$ 

| No | Instructions / Keystrokes                                                                                                                                                              | Screenshots                                        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1  | Press $2nd \left[ \int_{\Box}^{\Box} \Box dx \right] x_{abcd}^{yzt} (x^2) (2) $ 2nd                                                                                                    |                                                    |
|    | $\begin{bmatrix} \neg \checkmark \end{bmatrix} x_{abcd}^{yzt} \textcircled{0} 2 \underbrace{x_{abcd}^{yzt}}_{xbcd} x^{\texttt{D}} 2 \underbrace{+} \underbrace{x_{abcd}^{yzt}}_{abcd}$ | $\int_{\pi^2}^{\pi} (\sqrt[n]{2\pi^{2+\pi}}) d\pi$ |
|    | Thus, $X = 4.47568$                                                                                                                                                                    | 4.475684763E0                                      |

2. Find x when  $\int_{2}^{5} \sqrt[x]{2x^{2-x}} dx = 4x^{3+6x}$ 

| No | Instructions / Keystrokes                                                                                                                                                            | Screenshots                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1  | At the left hand side,<br>Press 2nd [num-solv] 2nd $[\int_{\Box}^{\Box} \Box dx]$ $( 5 0 2nd [\neg 7]$<br>$x_{abcd}^{yzz}$ $( 2 x_{abcd}^{yzz}   x^{\Box} 2 -   x_{abcd}^{yzz}   0)$ | $\int_{2}^{5} \left( \sqrt[n]{2x^{2-n}} \right) dx = 0$                           |
| 2  | At the right hand side,<br>Press $4x_{abcd}^{yzt}x^{-3}$ + $6x_{abcd}^{yzt}$ enter                                                                                                   | eng deg<br><b>∢</b> 2-%)dn=4n <sup>3+6</sup> n⊠                                   |
| 3  | Press enter enter                                                                                                                                                                    | ENG DEG<br><b>13<u>8113:8 F1810 SOLU3</u> †</b><br>X=2E0<br>SOLVE: X              |
| 4  | Thus, <i>X</i> = 0.93995                                                                                                                                                             | ена реа<br><b>Волачароді</b> †<br>11=0.9399537201<br>L - R =0<br>SOLVE AGAIN QUIT |





| Topic:      | Math Concepts: |
|-------------|----------------|
| Integration | Integration    |

3. The average value of a complex voltage waveform is given by the following. Evaluate V correct to 2 decimal places

$$V = \frac{1}{\pi} \int_{0}^{\pi} (10\sin x + 3\sin 3x + 2\sin 5x) dx$$

| No | Instructions / Keystrokes                                                                                                                                                                         | Screenshots                                                                                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1  | Change Angle to Degree<br>modelenter                                                                                                                                                              | 050 RAD GRAD<br>1031 SCI ENG<br>1031 0123456789<br>3321 q+bi r∠0<br>↓                                     |
| 2  | Change Float to 2 decimal places<br>⊙⊙⊙⊙⊙⊙enter                                                                                                                                                   | <sup>FIX</sup> 066<br>1013151 RAD GRAD<br>1203111 SCI ENG<br>FLOAT 011223456789<br>13131151 ต+bi r∠8<br>∔ |
| 3  | Press $1 \div \pi_i^{e}$ 2nd $[j_{\square}^{u} \Box dx] 0 \odot \pi_i^{e} \odot 10 \lim_{n} x_{abcd}^{yzt})$<br>+ $3 \lim_{n} 3 x_{abcd}^{yzt}$ ) + $2 \lim_{n} 5 x_{abcd}^{yzt}$ ) $\odot$ enter | $ \frac{\pi}{1/\pi}\int_{0}^{\pi}(10\sin(n)+1) 0.79 $                                                     |

4. Evaluate the following

$$\int_{0}^{1} 2e^{6x-1} dx$$

| No | Instructions / Keystrokes                                                                                             | Screenshots                   |
|----|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1  | Press                                                                                                                 | FIX DEG ~~                    |
|    | $2nd \left[ \int_{\Box}^{\Box} dx \right] 0 \textcircled{1} 2 \overline{\pi}_{i}^{e} \overline{\pi}_{i}^{e} x^{\Box}$ | $\int_0^1 (2e^{6\pi-1}) d\pi$ |
|    | $6x_{abcd}^{yzz}$ -1)) () enter                                                                                       | 49.35                         |





| Topic:      | Math Concepts: |
|-------------|----------------|
| Integration | Integration    |
|             |                |

 $\pi/2$ 

5. Evaluate the following

|    | $\int_{0} sinx \cos x  dx$                                                                                                                                                                                                                          |                                                     |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
| No | Instructions / Keystrokes                                                                                                                                                                                                                           | Screenshots                                         |  |
| 1  | Press<br>$2nd \left[ \int_{0}^{n} dx \right] \bigcirc \textcircled{\pi}_{i}^{e} \div 2 \textcircled{sin} \left[ \frac{yzt}{abcd} \right] $ $\underbrace{cos}_{abcd}^{cos} \left[ \frac{x_{abcd}^{yzt}}{x_{abcd}^{yzt}} \right] \textcircled{enter}$ | $\int_{0}^{\pi/2} (\sin(\pi)\cos(\mathbf{b})) 0.02$ |  |

# **Exercise:**

- 1. Determine the area enclosed by y = 2x + 3, the x-axis and coordinates at x = 1 and x = 4
- 2. Find x when the equation is given,

$$\int_2^x (\cos\sqrt{x^2} - 2x^2) = \sin x^2$$

3. Evaluate the following definite integral, correct to 4 significant figures

$$\int_{0}^{\pi/2} 3\sin 2t \, dt$$

Answer:

- 1. 24 square units
- 2. 2.0756
- 3. 0.13





# Differentiation

**Overview / Introduction / Terminology:** 

**Calculus** is a branch of mathematics involving or leading to calculations dealing with continuously varying functions. Calculus is a subject that falls into two parts:

- a) differential calculus (or differentiation) and
- b) integral calculus (or integration).

Differentiation is used in calculations involving velocity and acceleration, rates of change and maximum and minimum values of curves.

A and *B* are two points very close together on a curve,  $\delta x$  (delta *x*) and  $\delta y$  (delta *y*) representing small increments in the *x* and *y* directions, respectively.



Summarizing the differential coefficient:

$$\frac{dy}{dx} = f'^{(x)} = \lim_{n \to 0} \frac{\partial y}{\partial x}$$
$$= \lim_{n \to 0} \frac{f(x + \partial x) - f(x)}{\partial x}$$

From differentiation by first principles, a general rule for differentiating *axn* emerges where *a* and *n* are any constants. This rule is:

$$y = ax^n$$
 , then  $\frac{dy}{dx} = anx^{n-1}$ 

Keystrokes:table $d/dx \square$ 





# **Example:**

- 1. If  $f(x) = 4x^2 3x + 2$  find:
  - a. *f* (0),*f* (3),*f* (−1)
  - b. f(3) f(-1)

| No | Instructions / Keystrokes                                                                  | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Press table. Select option No 2: Edit Function Press enter                                 | ™<br>1:f(<br>MBEdit function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2  | Key in $4x^{yzt}_{abcd}x^2 - 3x^{yzt}_{abcd} + 2$<br>Press enter                           | $f(x)=4x^2-3x+2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3  | Key in table setup:<br>Start: () ③ Press enter<br>Step: ① Press enter<br>Press enter enter | Deg<br><b>U<u>F138330005</u> t</b><br>Start=-3<br>Step=1<br><b>MUNE</b> X = ?<br>CALC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4  | Press table. Select option No 1: f(<br>Press enter<br>Press ①) enter<br>Press () 1) enter  | Image: Contract of the second state |





| Topic:          | Math Concepts:  |
|-----------------|-----------------|
| Differentiation | Differentiation |

2. Find the differential coefficient of  $y = \frac{\sin x^2 - 1}{2 - \ln 2x}$  when x = 2

| No | Instructions / Keystrokes                                                   | Screenshots                                                                             |
|----|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1  | Press                                                                       | DEG A                                                                                   |
|    | $[2nd] [d/dx \Box] = \lim_{\Box} \lim_{\sin^{-1}} [x_{abcd}^{yzt}] [x^2] -$ | $\frac{\frac{d}{d\pi} \left( \frac{\sin(\pi^{2}-1)}{2-\ln(2\pi)} \right)}{0.183079388}$ |
|    | 1) •2-In log 2) enter                                                       | 0.103079300                                                                             |
|    |                                                                             |                                                                                         |
|    | Thus, $x = 0.1830$                                                          |                                                                                         |

3. Determine the derivative of the following and determine the gradient of the curve at x = 1.5 $y = 2x^3 + 4x + 7$ 

| No | Instructions / Keystrokes                                                           | Screenshots                                                  |
|----|-------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1  | Press $2nd[4/dx \Box] 2x_{abcd}^{yzt} x\Box 3 + 4x_{abcd}^{yzt} + 7$<br>()1.5 enter | <sup>∞</sup> ~<br>dn(2n <sup>3</sup> +4n+7) n=∳<br>17.500002 |

4. Determine the rate of change of voltage given the following when t = 0.2s

#### $v = 5t \sin 2t volts$

| Screenshots                                                    |
|----------------------------------------------------------------|
| <sup>∞</sup> ~<br>dx(5xsin(2x)  <sub>x=</sub> €<br>0.069812036 |
| -                                                              |





5. If 
$$y = \frac{\cos(2x+1)}{\ln(x^2-1)+\sqrt{x}}$$
, find dy/dx and solve the equality for  $\frac{dy}{dx} = \int_x^2 \frac{\ln x - \sin 2x}{2}$ 

| No | Instructions / Keystrokes                                                                                                                          | Screenshots                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1  | At left hand side,                                                                                                                                 | $\frac{d}{d\pi} \left( \frac{\cos (2\pi + 1)}{\ln (\pi^2 - 1) + \sqrt{\pi B}} \right)$ |
|    | Press                                                                                                                                              | G%( 1n(%2-1)+√%₿                                                                       |
|    | $\left[\operatorname{num-solv}\right]\left[\frac{d}{dx}\Box\right] \stackrel{\square}{=} \stackrel{\cos}{=} 2 \frac{x_{abcd}^{yzt}}{z_{abcd}} + 1$ |                                                                                        |
|    | $) \odot \ln \log \left[ x_{abcd}^{yzt} \right] \left[ x^2 - 1 \right] \left[ \sqrt{x_{abcd}^{yzt}} \right] $                                      |                                                                                        |
| 2  | At right hand side,                                                                                                                                |                                                                                        |
|    | Press                                                                                                                                              |                                                                                        |
|    | $[2nd] \left[ \int_{\Box}^{\Box} \Box dx \right] x_{abcd}^{yzt} [2] \textcircled{\Box} \left[ \ln \log x_{abcd}^{yzt} \right]$                     |                                                                                        |
|    | $) - \underset{sin^{-1}}{sin^{-1}} 2 x_{abcd}^{yzt} ) \bigcirc 2 \text{[enter]}$                                                                   |                                                                                        |
| 3  | Press enter) enter                                                                                                                                 | X ENG DEG<br>  <b>= ? v = 3  * ? 0   \$0   0  =</b> †<br>X=2E0<br>SOLVE: %             |
| 4  | Thus, $x = 2.696178379$                                                                                                                            | ENG DEG<br><b>E019440021</b> †<br>1=2.696178379 L - R =0<br>SOLVE AGAIN QUIT           |





| Topic:          | Math Concepts:  |
|-----------------|-----------------|
| Differentiation | Differentiation |

### **Exercise**:

- 1. Differentiate when x = 2, given  $y = \frac{\cos(2x+1)^2 \ln(x^2+1)}{\sin(2x-1)^2 + \ln(x^2-1)}$ . Give the answer correct to 3 significant figures.
- 2. Find the gradient of the curve y = 3x4 2x2 + 5x 2 at the points (0, -2) and (1, 4)
- 3. An alternating current, *i* amperes, is given by  $i = 10 \sin 2\pi f t$ , where *f* is the frequency in hertz and *t* the time in seconds. Determine the rate of change of current when t = 20 ms, given that f = 150 Hz.
- 4. The distance x metres moved by a carin a time t seconds is given by: x = 3t3 2t2 + 4t 1. Determine the velocity and acceleration when t = 1.5 s

### Answer:

- 1. -0.0517
- 2. 12x3 4x + 5,5,13
- 3.  $3000\pi A/s$
- 4. 18.25 *m/s*, 23*m/s*





# **Correlation and Regression**

## **Overview / Introduction / Terminology:**

Correlation is a measure of the amount of association existing between two variables. For linear correlation, if points are plotted on a graph and all the points lie on a straight line, then **perfect linear correlation** is said to exist. When a straight line having a positive gradient can reasonably be drawn through points on a graph **positive or direct linear correlation** exists, similarly, when a straight line having a negative gradient can reasonably be drawn through points on a graph **positive or direct linear correlation** exists, similarly, when a straight line having a negative gradient can reasonably be drawn through points on a graph, **negative or inverse linear correlation** exists



The amount of linear correlation between two variablesis expressed by a **coefficient of correlation**, given the symbol *r*. This is defined in terms of the derivations of the co-ordinates of two variables from their mean values and is given by the **product-moment formula** which states:

$$r = \frac{\sum xy}{\sqrt{\{(\sum x^2(\sum y^2))\}}}$$

The results of this determination give values of r lyingbetween +1 and -1, where +1 indicates perfect direct correlation, -1 indicates perfect inverse correlation and 0 indicates that no correlation exists. Between these values, the smaller the value of r, the less is the amount of correlation which exists. Generally, values of r in the ranges 0.7 and 1 and -0.7 to - 1 show that a fair amount of correlation exists.

Regression analysis, usually termed **regression**, is used to draw the line of 'best fit' through co-ordinates on a graph. The techniques used enable a mathematical equation of the straight line form y = mx + cto be deduced for a given set of co-ordinate values, the line being such that the sum of the deviations of the co-ordinate values from the line is a minimum, i.e. it is the line of 'best fit'. When a regression





| Topic:                     | Math Concepts:             |
|----------------------------|----------------------------|
| Correlation and Regression | Correlation and Regression |

analysis is made, it is possible to obtain two lines of best fit, depending on which variable is selected as the dependent variable and which variable is the independent variable.

The equation of the least-squares regression line is usually written as Y = a0 + a1X, where a0 is the Yaxis intercept value and a1 is the gradient of the line (analogous to c and m in the equation y=mx + c). The regression line of Y onX is used to estimate values of Y for given value

of *X*. By using the regression line of *X* on *Y*, values of *X* corresponding to given values of *Y* may be found by either interpolation or extrapolation.

The equation of the regression line is of the form: X = b0 + b1Y and the normal equations become:

$$\sum X = b_0 N + b_1 \sum Y$$
$$\sum (XY) = b_0 \sum Y + b_1 \sum Y^2$$

The regression line of *X* on *Y* is used to estimated values of *X* for given values of *Y*. The regression line of *Y* on *X* is used to determine any value of *Y* corresponding to a given value of *X*. If the value of *Y* lies within the range of *Y*-values of the extreme co-ordinates, the process of finding the corresponding value of *X* is called **linear interpolation**. If it lies outside of the range of *Y*-values of the extreme co-ordinates than the process is called **linear extrapolation** and the assumption must be made that the line of best fit extends.

Keystrokes: 2nd/data[stat-reg/distr]





# **Example:**

1. In an experiment to determine the relationship between force on a wire and the resulting extension, the following data is obtained:

| Force (N)         | 10 | 20   | 30   | 40   | 50   | 60   | 70   |
|-------------------|----|------|------|------|------|------|------|
| Extension<br>(mm) |    | 0.40 | 0.61 | 0.85 | 1.20 | 1.45 | 1.70 |

Determine the linear coefficient of correlation for this data.

| No | Instructions / Keystrokes                                                                                              | Screenshots                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Press data .Key in the data in list L1and L2                                                                           | Image: Second state     Image: Second state       50     1.2       60     1.7       70     1.7       L2(6) = 1.45                                      |
| 2  | Select Press 2nd data<br>Select option No 3: 2-Var Stats by using ⊙ Press enter                                        | ™<br><b>Suidussis</b><br>1:StatVars<br>2:1-Var Stats<br>MM2-Var Stats                                                                                  |
| 3  | Select default option :<br>xData: L1<br>yData: L2<br>Frq: One                                                          | DEG<br>DEG<br>ADATA: L1 L2 L3<br>YDATA: L1 L2 L3<br>FRQ: <u>DNI</u> L1 L2 L3<br>CALC                                                                   |
| 4  | Use ⊙to move to CALC<br>Press enter.<br>Scroll using ⊙to access the r statistics which shows the<br>linear correlation | ∞<br><b>2=var: 0,2251</b><br>↑a=0.025464286<br>:b=-0.1<br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> |





2. Find the coefficient of correlation between the values X and Y

| X | 1 | 3  | 5  | 7  | 8  | 10 |
|---|---|----|----|----|----|----|
| В | 8 | 12 | 15 | 17 | 18 | 20 |

| No | Instructions / Keystrokes                                                                                                                                                                                           | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Press data data twice to clear list L1 by selecting the option<br>to clear L1.<br>Press enter Press data again and scroll using ⊙to select list<br>L2 to clear. Press enter<br>Key in the new data in list L1and L2 | Image: Second state     Descendent       Image: Second state     Image: Second state       Image: Second |
| 2  | Select Press 2nd data<br>Select option No 3: 2-Var Stats by using $\bigcirc$<br>Press enter                                                                                                                         | ™<br>IStatVars<br>2:1-Var Stats<br>MM2-Var Stats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3  | Select default option :<br>xData: L1, yData: L2<br>Frq: One                                                                                                                                                         | DES<br>DES<br>ADATA: L1 L2 L3<br>YDATA: L1 L2 L3<br>FRQ: <u>DNH</u> L1 L2 L3<br>CALC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4  | Use $\bigcirc$ to move to CALC<br>Press enter.<br>Scroll using $\bigcirc$ to access the r statistics which shows the<br>linear correlation                                                                          | ∞<br>2=Var:L1,L2,1<br>1a=1.301204819<br>:b=7.626506024<br>↓r=0.9878783399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





3. In an experiment to determine the relationship between frequency and the inductive reactance of an electrical circuit, the following results were obtained: Determine the equation of the regression line of inductive reactance on frequency, assuming a linear relationship.

| Freq | 50 | 100 | 150 | 200 | 250 | 300 |
|------|----|-----|-----|-----|-----|-----|
| Ohms | 30 | 65  | 90  | 130 | 150 | 190 |

| No | Instructions / Keystrokes                                                                                                                                                                                               | Screenshots                                                                                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1  | Press data data twice to clear list L1 by selecting the option<br>to clear L1. Press enter Press data again and scroll using $\odot$ to<br>select list L2 to clear. Press enter<br>Key in the new data in list L1and L2 | B     B <sup>066</sup> 10     E00       200     130       250     150       300     190       L2(3) = 90         |
| 2  | Select Press 2nd data<br>Select option No 4: LinReg by using 🕤<br>Press enter                                                                                                                                           | ™ <b>Stats</b> DISTR<br>3↑2-Var Stats<br><b>28</b> LinRe9 a%+b<br>5↓QuadraticRe9                                 |
| 3  | Select default option :<br>xData: L1<br>yData: L2<br>Frq: One<br>RegEQ :Use () to move to Yes. Press enter                                                                                                              | 066<br>XDATA: [■6] L2 L3 †<br>9DATA: L1 [■6] L3<br>FRQ: [012]=] L1 L2 L3<br>Re9EQ÷f(X): NO [4]=65<br>9=aX+b CALC |
| 4  | Use $\textcircled{O}$ to move to CALC<br>Press enter.<br>Scroll using $\textcircled{O}$ to access the regression equation<br>coefficients and r statistics                                                              | ∞<br>a%+b:L1,L2,1<br>1:a=0.4480745342<br>2:b=41.20869565<br>3↓r <sup>2</sup> =0.782097675                        |





- 4. The experimental values relating centripetal force and radius, for a mass travelling at constant velocity in a circle, are as shown: Determine the equations of
  - a) the regression line of force on radius and
  - b) calculate the force at a radius of 40cm
  - c) the regression line of radius on force.
  - d) calculate the radius corresponding to a force of 32N

| Force(Y)   | 5  | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
|------------|----|----|----|----|----|----|----|----|
| Radius (X) | 55 | 30 | 16 | 12 | 11 | 9  | 7  | 5  |

#### <u>Solve 4a& b</u>

| No | Instructions / Keystrokes                                                                                   | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Press data data twice to clear all lists by selecting the option to clear All. Press enter                  | ™<br>■===:<br>2↑Clear L2<br>3:Clear L3<br>EEClear ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | Key in the new data in list L1and L2                                                                        | B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B |
| 2  | Select Press 2nd data<br>Select option No 4: LinReg by using $\odot$<br>Press enter                         | ™<br>3↑2-Var Stats<br><b>49</b> LinRe9 a%+b<br>5↓QuadraticRe9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3  | Select default option :<br>xData: L1, yData: L2<br>Frq: One<br>RegEQ : Use () to move to Yes<br>Press enter | 066<br>3DATA: L1 L2 L3 †<br>3DATA: L1 L2 L3<br>FRQ: D1213 L1 L2 L3<br>Re9EQ→f(11): NO L1253<br>9=q1(+b) CALC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





Topic: Correlation and Regression

Math Concepts: Correlation and Regression

| No | Instructions / Keystrokes                                                                                                                           | Screenshots                                                                            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 4  | Use $\textcircled{O}$ to move to CALCPress enter.<br>Scroll using $\textcircled{O}$ to access the regression equation coefficients and r statistics |                                                                                        |
| 5  | Select Press 2nd data<br>Select option No 1: StatsVar<br>Press enter                                                                                | <sup>066</sup><br><b>SUANEJE</b> DISTR<br>1:StatVars<br>2:1-Var Stats<br>3↓2-Var Stats |
| 6  | Scroll using $\bigcirc$ to access the function variable force when $radius = 40cm$<br>: y'(<br>Press enter                                          | <sup>066</sup><br><b>∃%+88_1, _2,1</b><br>↑Σχ9=2045<br>ἐχ'(<br><b>3</b> 9'(            |
| 7  | Key in 40 and Press)<br>Press enter.                                                                                                                | ∞ ~<br>9.000506874                                                                     |

### <u>Solve 4c& d</u>

| No | Instructions / Keystrokes                                                                  | Screenshots                                                                              |
|----|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1  | Press data data twice to clear all lists by selecting the option to clear All. Press enter | <sup>™</sup><br>2↑Clear L2<br>3:Clear L3<br><b>E⊞</b> Clear ALL                          |
|    | Key in the new data in list L1and L2                                                       | B     B <sup>DEG</sup> 5        30     10       16     15       12     20       L1(1)=55 |





Math Concepts: Correlation and Regression

| No | Instructions / Keystrokes                                                                                                                                  | Screenshots                                                                               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 2  | Select Press 2nd data<br>Select option No 4: LinReg by using $\odot$<br>Press enter                                                                        | ™<br>3 <b>12-Var</b> DISTR<br>3↑2-Var Stats<br><b>28</b> LinRe9 a%+b<br>5↓QuadraticRe9    |
| 3  | Select default option :<br>xData: L2<br>yData: L1<br>Frq: One<br>RegEQ : Use () to move to Yes<br>Press enter                                              | 066<br>%DATA: L1 L2 L3<br>FRQ: 00719 L1 L2 L3<br>Re9EQ9+(%): NO ¥1993<br>9=a%+b           |
| 4  | Use $\textcircled{o}$ to move to CALC<br>Press enter.<br>Scroll using $\textcircled{o}$ to access the regression equation coefficients<br>and r statistics | ™<br><b>a%+b=1,12,1</b><br><b>1:</b> a=-1.15952381<br>2:b=44.21428571<br>3↓r²=0.715564969 |
| 5  | Select Press 2nd data<br>Select option No 1: StatsVar<br>Press enter                                                                                       | ™ <b>Stat</b> DISTR<br><b>18</b> StatVars<br>2:1-Var Stats<br>3↓2-Var Stats               |
| 6  | Scroll using $\textcircled{o}$ to access the function variable radius when<br>force = 32 N<br>: y'(<br>Press enter                                         | ₀<br><u>ax+68_2, 1, 1</u><br>↑x'(<br>8y'(<br>↓minX=5                                      |





| No | Instructions / Keystrokes            | Screenshots                    |
|----|--------------------------------------|--------------------------------|
| 7  | Key in 32 and Press)<br>Press enter. | ••• ••<br>9'(32)<br>7.10952381 |
|    |                                      |                                |

5. Predict the mean radiation dose at an altitude of 3000 ft by fitting an exponential curve to the given data

| Altitude (x)  | 50 | 450 | 780 | 1200 | 4400 | 4800 | 5300 |
|---------------|----|-----|-----|------|------|------|------|
| Radiation (y) | 28 | 30  | 32  | 36   | 51   | 58   | 69   |

Let  $y = ab^x$  be the exponential curve. Then

 $\log y = \log a + x \log b$ 

| No | Instructions / Keystrokes                                                                         | Screenshots                                                          |
|----|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1  | Press data data twice to clear all lists. Scroll using ⊙to select all Lists to clear. Press enter | ■ ■ ■<br><b>20</b> ■ 28 ■<br>450 = 30<br>780 = 36                    |
|    | Key in the new data in list L1and L2                                                              | L1(1)=50                                                             |
| 2  | Select Press 2nd data                                                                             |                                                                      |
|    | Select option No 9: ExpReg by using ${old O}$                                                     | 7↑LnRe9_a+bln%<br>8:PwrRe9_a%^b                                      |
|    | Press enter                                                                                       | <b>RB</b> ExpRe9 ab^%                                                |
| 3  | Select default option :                                                                           |                                                                      |
|    | xData: L1                                                                                         | 9DATA: L1 [129] L3<br>FRQ: 1012]= L1 L2 L3<br>Re9EQ→F(X): NO [12]=B3 |
|    | yData: L2                                                                                         | 9=ab*1 CALC                                                          |





|   | Frq: One                                                                                                           |                                                                                            |
|---|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|   | RegEQ :Use () to move to Yes. Press enter                                                                          |                                                                                            |
| 4 | Use ⊙to move to CALC                                                                                               | DEG                                                                                        |
|   | Press enter).                                                                                                      | ab^%:L1,L2,1<br>1.a=28.31597858                                                            |
|   | Scroll using $\bigcirc$ to access the regression equation coefficients and r statistics                            | 2:b=1.00015343<br>3↓r2=0.976948542                                                         |
| 5 | To get the the value of the radiation dose at an altitude of $3000 ft$ .                                           | ™<br>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                  |
|   | Press table to access the exponential function. Scroll $\odot$ to select Edit Function. Press enter<br>Press enter | f(x)=∎b <sup>x</sup>                                                                       |
| 6 | Key in 3000 at Start.                                                                                              |                                                                                            |
|   | Use ⊙to move to CALC                                                                                               | ₀<br><u> </u>                                                                              |
|   | Press enter .                                                                                                      | Step=1<br>GULAS X = ?<br>CALC                                                              |
| 7 | Therefore at an altitude of 3000, the radiation dose is at 44.866                                                  | ی<br>۲ (۲)<br><b>SDDO</b><br>3001<br>3002<br>44.87296598<br>3002<br>44.87985085<br>(1=3000 |





### **Exercise**:

1. In an experiment to determine the relationship between the current flowing in an electrical circuit and the applied voltage, the results obtained are:

| Current (mA)           | 5 | 11 | 15 | 19 | 24 | 28 | 33 |
|------------------------|---|----|----|----|----|----|----|
| Applied<br>voltage (V) | 2 | 4  | 6  | 8  | 10 | 12 | 14 |

Find the coefficient of correlation for these results.

2. The data shown below refers to the number of times machine tools had to be taken out of service, in equal time periods, due to faults occurring and the number of hours worked by maintenance teams.

| Machines<br>out of<br>service | 4   | 13  | 2   | 9   | 16  | 8   | 7   |
|-------------------------------|-----|-----|-----|-----|-----|-----|-----|
| Maintenance<br>hours          | 400 | 515 | 360 | 440 | 570 | 380 | 415 |

Calculate the coefficient of correlation for this data.

3. Calculate the coeffiecient of the regression equation

| Years     | 10 | 20 | 30 | 40 | 50 | 60  |
|-----------|----|----|----|----|----|-----|
| No of pax | 15 | 32 | 51 | 78 | 79 | 109 |

#### Answer:

- 1. Correlation r = 0.999
- 2. Correlation r = 0.937
- 3. Regression : a = 1.822, b = 3.1333





# Measures of Central Tendency and Dispersion

**Overview / Introduction / Terminology:** 

Statistics is the area of science that deals with collection, organization, analysis, and interpretation of data. It also deals with methods and techniques that can be used to draw conclusions about the characteristics of a large number of data points--commonly called a population. If the data set is based on a sample of a larger population, then the analyst can extend inferences onto the population based on the statistical results from the sample. Some statistical measures include regression analysis, mean, kurtosis, skewness, analysis of variance and variance.

Data are obtained largely by two methods:

- > by counting—for example, the number of engines sold in equal periods of time, and
- ➢ by measurement for example, the heights of a group of people.

A **quantitative variable** has a value or numerical measurement for which operations such as addition or averaging make sense. A **qualitative variable** describes and individual by placing the individual into a category or group such as male or female



There are two types of data:

- > Attribute data are countable data or data that can be put into categories
- Variable data are measurement data, based on some continuous scale





| Math Concepts:                              |
|---------------------------------------------|
| Measures of Central Tendency and Dispersion |
|                                             |
|                                             |

Descriptive statistics enable us to understand data through summary values and graphical presentations. Summary values not only include the average, but also the spread, median, mode, range, interquartiles range, standard deviation and variances.

#### Arithmetic Mean

$$A = \frac{1}{n} * \sum_{i=1}^{n} x_i$$

**Median** – The number that is located in the middle of a set of numbers when that set is ordered sequentially from the smallest to the largest.

**Range** Max(x) - Min(x)

Interquartiles

$$Q_1 = \left(\frac{n+1}{4}\right)^{th} \quad Q_3 = \left(\frac{3(n+1)}{4}\right)^{th}$$

**Standard Deviation** 

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$

Variances

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

Keystrokes: 2nd data [stat-reg/distr]





# **Example:**

1. The frequency distribution for the value of resistance in ohms of 48 resistors is as shown. Determine the mean, median, range and standard deviation value of resistance.

20.5, 20.8, 21.6, 22.3, 22.8, 22.9, 23.5, 24.6, 25.7, 26.8, 27.8, 25.9, 24.3, 22.5, 26.3

| No | Instructions / Keystrokes                                                                                                  | Screenshots                                                   |
|----|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1  | Pressdata .Key in the data in list L1                                                                                      | □                                                             |
| 2  | Select Press 2nd data<br>Select option No 2: 1-Var Stats. Press enter                                                      | <sup>™®</sup><br>1:StatVars<br>281-Var Stats<br>3↓2-Var Stats |
| 3  | Select default option :<br>Data: L1<br>Frq: One                                                                            | DATA: <b>Dit</b> L2 L3<br>FRQ: <b>Dits</b> L1 L2 L3<br>CALC   |
| 4  | Use ⊙to move to CALC<br>Press enter.<br>Scroll using ⊙to access all parameters like mean, sample<br>standard deviation etc |                                                               |





2. Calculate the mean, median, interquartile range, standard deviation and variance for the following:

| Size of Items | 6 | 7 | 8 | 9  | 10 | 11 | 12 |
|---------------|---|---|---|----|----|----|----|
| Frequency     | 3 | 6 | 9 | 13 | 8  | 5  | 4  |

| No | Keystrokes                                                                                                                        | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Press[reset] to clear all previous entries.<br>Press data. Key in the data in list L1 and list L2                                 | Image: Control of the second secon |
| 2  | Select Press 2nd data Select option No 2: 1-Var Stats. Pressenter                                                                 | ™<br><b>Suinesia:</b> DISTR<br>1:StatVars<br>201-Var Stats<br>302-Var Stats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3  | Select option :<br>Data: L1. Use ⊙ to move down<br>Frq: Use ⊙to select L2 :                                                       | DATA: 121 L2 L3<br>FRQ: ONE L1 12 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4  | Use to move to CALC<br>Press enter.<br>Scroll using  to access all parameters like mean, median,<br>sample standard deviation etc | <sup>066</sup><br><b>1=Van: 1.1, 2</b><br><b>1:</b> n=48<br>2:x=9<br>3↓Sx=1.624283803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





3. Calculate the mean, median, quartiles and the quartile coefficient of skewness for the following:

| Weight | 70<br>- 80 | 80 - 90 | 90<br>- 100 | 100<br>- 110 | 110<br>- 120 | 120<br>- 130 | 130<br>- 140 | 140<br>- 150 |
|--------|------------|---------|-------------|--------------|--------------|--------------|--------------|--------------|
| Freq   | 12         | 18      | 35          | 42           | 50           | 45           | 20           | 8            |

| No | Instructions / Keystrokes                                                                                                                                                                                               | Screenshots                                                                                            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1  | Press[reset] to clear all previous entries.<br>Press data. Key in the data in list L1 (take the midpoint –<br>example : (70+80)/2 = 75 and list L2                                                                      | B     B <sup>DEG</sup> 103     42       115     50       125     45       135     20       L1(4) = 105 |
| 2  | Select Press 2nd data<br>Select option No 2: 1-Var Stats. Pressenter                                                                                                                                                    | ™<br><b>Summand D</b> ISTR<br>1:StatVars<br>201-Var Stats<br>342-Var Stats                             |
| 3  | Select option :<br>Data: L1. Use                                                                                                                                                                                        | DATA: ILI L2 L3<br>Frq: One L1 III L3                                                                  |
| 4  | Use to move to CALC<br>Press enter .<br>Scroll using To access all parameters                                                                                                                                           | ™<br>1 <b>-Var: 1, 2</b><br>8↑Q1=95<br>9:Med=115<br>4Q3=125                                            |
| 5  | The quartile coefficient of skewness = $\frac{Q_1+Q_3-2Q_2}{Q_3-Q_1}$<br>Press (. Press 2nd[stat-reg/distr]. Select 1: StatVars. Scroll $\bigcirc$<br>to access Q1. Press enter. Repeat the steps to acess Q3 and<br>Q2 | (Q1+Q3-2Med)/(Q)<br>-0.3333333333                                                                      |





### **Exercise**:

1. The scores of two golfers for 7 rounds each are

| A | 58 | 59 | 60 | 54 | 65 | 66 | 52 |
|---|----|----|----|----|----|----|----|
| В | 69 | 52 | 84 | 56 | 92 | 65 | 86 |

Who may be regarded as the more consistent player?

2. Given below are the marks obtained by a batch of 20 students in a certain class test in statistics and mathematics. In which subject is the level of knowledge of students higher?

| Role No.<br>Students   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|------------------------|----|----|----|----|----|----|----|----|----|----|
| Marks in<br>Statistics | 53 | 54 | 52 | 32 | 30 | 60 | 47 | 46 | 35 | 28 |
| Marks in<br>Math       | 58 | 55 | 25 | 32 | 26 | 85 | 44 | 80 | 33 | 72 |
|                        |    |    |    |    |    |    |    |    |    |    |
| Role No.<br>Students   | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Marks in<br>Statistics | 25 | 42 | 33 | 48 | 72 | 51 | 45 | 33 | 65 | 72 |
| Marks in<br>Math       | 10 | 42 | 15 | 46 | 50 | 64 | 39 | 38 | 80 | 85 |

### Answer:

- 1. Golfer A
- 2. Statistics





# **Distributions**

# **Overview / Introduction / Terminology:**

The **binomial distribution** is a discrete probability distribution which is used when there are exactly two mutually exclusive outcomes of trials. These outcomes are appropriately labeled success and failure. This is used to obtain the probability of observing x successes in n trials, with the probability of success on a single trial denoted by p.

**Binomial Formula.** Suppose a binomial experiment consists of *n* trials and results in *x* successes. If the probability of success on an individual trial is *P*, then the binomial probability is:

$$b(x; n, P) = nCx * P^{x} * (1 - P)^{n-x}$$

A **Poisson distribution** is the probability distribution that results from a Poisson experiment that results in in outcomes that can be classified as successes or failures. Note that the specified region could take many forms. For instance, it could be a length, an area, a volume, a period of time, etc.

**Poisson Formula.** Suppose we conduct a Poisson experiment, in which the average number of successes within a given region is  $\mu$ . Then, the Poisson probability is:

$$P(x; \mu) = (e^{-\mu}) (\mu^{x}) / x!$$

If n is large and p is small, and the product np is less than 5, a very good approximation to a binomial distribution is given by the corresponding Poisson distribution

The **normal distribution** refers to a family of continuous probability distributions described by the normal equation

**Normal equation.** The value of the random variable Y is:  $Y = \{ 1/[\sigma * sqrt(2\pi)] \} * e^{-(x-\mu)2/2\sigma^2}$ 

where *X* is a normal random variable,  $\mu$  is the mean,  $\sigma$  is the standard deviation,  $\pi$  is approximately 3.14159, and *e* is approximately 2.71828.

The graph of the normal distribution depends on two factors - the mean and the standard deviation. The mean of the distribution determines the location of the center of the graph, and the standard deviation determines the height and width of the graph. When the standard deviation is large, the curve is short and wide; when the standard deviation is small, the curve is tall and narrow. All normal distributions look like a symmetric, bell-shaped curve.







When a normal distribution curve has been standardized, the normal curve is called a **standardized normal curve** or a **normal probability curve**, and any normally distributed data may be represented by the **same** normal probability curve. The area under part of a normal probability curve is directly proportional to probability and the value of the shaded area.





Keystrokes: 2nd data [stat-reg/distr]





| Topic:       | Math Concepts: |  |
|--------------|----------------|--|
| Distribution | Distribution   |  |
|              |                |  |

### **Example:**

1. 10% of screws produced in a certain factory turn out to be defective. Find the probability that in a sample of 10 screws chosen at random, exactly two will be defective.

| No | Instructions / Keystrokes                                                                                                                        | Screenshots                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1  | Press 2nd data [stat-reg/distr] enter]. Press (€) to select distributions option. Then press (I to scroll to option 4: Binomialpdf. Press enter] | STAT-REG <b>Disma</b><br>3↑invNormal<br><b>48</b> BinomialPdf<br>5↓Binomialcdf               |
| 2  | Press enter to select thex: single option                                                                                                        | DEG<br>L <mark>SEINCHERNISSENI</mark> †<br>X: <u>SING</u> ES LIST ALL<br>‡                   |
| 3  | Key in the following:<br>$n = 10$ . Use $\odot$ to go to the next option<br>$p = 0 \cdot 1$ . Use $\odot$ to go to the next option               | ISENOHEGINESIN     PEG       TRIALS=n=10     t       P(SUCCESS)=0.1     1       X=2     CALC |
|    | x = 2. Use $\odot$ to go to CALC<br>Press enter                                                                                                  | סייק<br>Strongtorist<br>Value=0.193710245<br>Store: Yztabcd<br>Solve Again Quit              |

- 2. If 3% of the gearwheels produced by a company are defective, determine the probabilities that in a sample of 80 gearwheels
  - a. (a) two and
  - b. more than two will be defective.

The solution is to determine that  $\lambda$  = np = 80 x 0.03 = 2.4< 5 – therefore use Poisson distribution





**Topic:** Distribution Math Concepts: Distribution

| No | Instructions / Keystrokes                                                                                                                                                                                                                                                                                                                              | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Press 2nd/data[stat-reg/distr]enter]. Press() to select distributions option. Then keep press () again and again to scroll to option 6: Poissonpdf. Press[enter]                                                                                                                                                                                       | ™<br>STAT-REG <b>Dista</b><br>5†Binomialcdf<br>CBPoisson⊳df<br>7:Poissoncdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| No | Instructions / Keystrokes                                                                                                                                                                                                                                                                                                                              | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2  | Press enter to select thex: single option                                                                                                                                                                                                                                                                                                              | ILIST<br>ILIST<br>ILIST<br>ILIST<br>ILIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3  | Key in the following:<br>mu = 2 • 4. Use ⊙ to go to the next option<br>x = 2. Use ⊙ to go to CALC<br>Press enter                                                                                                                                                                                                                                       | Image: Second |
| 4  | The probability of having more than 2 defective is 1–(the sum of the probabilities of having 0, 1, and 2 defective gearwheels), i.e.<br>1 - (0.0907 + 0.2177 + 0.2613)<br>Key in the following:<br>Use $\bigcirc$ to go to Solve Again<br>mu = 2 • 4. Use $\bigcirc$ to go to the next option<br>$x = 0$ . Use $\bigcirc$ to go to CALC<br>Press enter | 1-(0.0907179532►<br>0.3395733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





| Use 🕞 to go to Solve Again                              |  |
|---------------------------------------------------------|--|
| mu = $2 \cdot 4$ . Use $\odot$ to go to the next option |  |
| $x = 1$ . Use $\odot$ to go to CALC                     |  |
| Press enter                                             |  |

3. A component is classed as defective if it has a diameter of less than 69 mm. In a batch of 350 components, the mean diameter is 75mm and the standard deviation is 2.8 mm.Determinehow many are likely to be classed as defective

| No | Instructions / Keystrokes                                                                                                                     | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Press 2nd data [stat-reg/distr] enter. Press (€) to select distributions option. Then press (☉) to scroll to option 2: Normalcdf. Press enter | STAT-REG <b>Dishid</b><br>1:Normaledf<br>20Normalcdf<br>3↓invNormal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2  | Press 75 enter to enter for mean<br>Press2.8 to enter for sigma<br>Press • •<br>Press 69 enter enter enter                                    | INCLUSION CONTINUES     066       Hean=Hu=75     1       Si9Ha=2.8     4       INCLUSION CONTINUES     1       INCLUS     1       INO |
| 3  | Key in the following:<br>Use ⊕to go to the variable a under STORE<br>Use ⊙ ⊕ to Qui                                                           | es<br><b>Nowfice (Sec</b> ) †<br>Value=0.016062228<br>Store: Noxyztobcd<br>Solve Again                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





| No | Instructions / Keystrokes                                           | Screenshots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4  | Press 350×2nd[recall]                                               | DEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | Use ⊙to scroll to variable a                                        | <b>312661                                  </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | Press enter enter                                                   | <b>101 101 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100</b> |
|    | The number of components that will be classified as defective is 6. | 350*0.016062227▶<br>5.621779754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# **Exercise:**

- 1. 2 percent of the electric bulbs produced by a company are defective. Find the probability that in a sample of 200 bulbs
  - a. less than bulbs are defective and
  - b. more than 3 bulbs are defective.
- 2. An average light bulb manufactured by the Acme Corporation lasts 300 days with a standard deviation of 50 days. Assuming that bulb life is normally distributed, what is the probability that an Acme light bulb will last at most 365 days

### **Answer**:

- 1. 210
- 2. 3003







# **Probability**

# **Overview / Introduction / Terminology:**

Probabilities, permutations and combinations are used daily in many different fields that range from gambling and games, to mechanical or structural failure rates, to rates of detection in medical screening.

The **probability** of something happening is the likelihood or chance of it happening. Values of probability lie between 0 and 1, where 0 represents an absolute impossibility and 1 represents an absolute certainty. The probability of an event happening usually lies somewhere between these two extreme values and is expressed either as a proper or decimal fraction

 $P(A) = \frac{\text{The Number Of Ways Event A Can Occur}}{\text{The total number Of Possible Outcomes}}$ 

*Permutation*: Use the equation to calculate the number of permutations of a given set of data, where n is the total number of elements in the data set, and k is the number of elements selected at one time. Notice that the definition of a permutation states that the ordering of the element selection *does* matter.

# of permutations = 
$$\frac{n!}{(n-k)!}$$

*Combination*: Use the equation to calculate the number of combinations of a given set of data, where n is the total number of elements in the data set, and k is the number of elements selected at one time. Notice that the definition of a combination states that the ordering of the element selection *does not* matter.

# of combinations = 
$$\frac{n!}{k!(n-k)!}$$

Keystrokes:





| Topic:      | Math Concepts: |
|-------------|----------------|
| Probability | Probability    |
|             |                |

### **Example:**

- 1. Calculate the number of permutations there are of
  - a. 5 distinct objects taken 2 at a time
  - b. 4 distinct objects taken2 at a time

| No | Instructions / Keystrokes         | Screenshots                |  |
|----|-----------------------------------|----------------------------|--|
| 1  | Press 5! ∰; ÷(5–2) ! ⊮; enter     | 5!/(5-2)! 20               |  |
| 2  | Press 4 [ npr ] npr ] npr 2 enter | 5!/(5-2)! 20<br>4 nPr 2 12 |  |

2. A class has 24 students. 4 can represent the class at an exam board. How many combinations are possible when choosing this group?

| No | Instructions / Keystrokes                                  | Screenshots    |  |
|----|------------------------------------------------------------|----------------|--|
| 1  | Press <b>2</b> [ <b>4</b> ]! nCr ]! nCr ] <b>4</b> [enter] | 24 nCr 4 10626 |  |

3. There are 4 Engineers and 3 Managers in a firm. 3 of them are put on duty at a time. What is the probability that there are 2 Engineers and 1 Manager?

| No | Instructions / Keystrokes                                         | Screenshots                     |
|----|-------------------------------------------------------------------|---------------------------------|
| 1  | Total no of people = 7                                            | ∞ *<br>(4 pCp 2*3 pCp ►         |
|    | Total number of combinations of taking 3 out of 7 is $^7C_3$      | (4 nCr 2*3 nCr )<br>0.514285714 |
|    | The combination of 2 Engineers and 1 Manager is $4_{C_2} X^3 C_1$ |                                 |





| opic: Math Concepts:<br>robability Probability                                               |  |      |                           |
|----------------------------------------------------------------------------------------------|--|------|---------------------------|
| Probability = $\frac{4 \text{ C 2}}{7}$<br>Press ( ] 4 [ $\frac{\text{nGr}}{\text{nPr}}$ ]   |  | ans• | 066 ~~<br><u>18</u><br>35 |
| $\underbrace{!npr}_{npr}(!npr}_{npr}) \underbrace{1) \div 7}_{!npr}(!npr}_{3} \text{ enter}$ |  |      |                           |
|                                                                                              |  |      |                           |

# **Exercise:**

- 1. In how many ways can a team of six be picked from ten possible players?
- 2. 15 boxes can each hold one object. In how many ways can 10 identical objects be placed in the boxes?

## Answer:

- 1. 210
- 2. 3003





# **Sampling and Inference**

# **Overview / Introduction / Terminology:**

The sampling of attributes maybe regarded as the selection of samples from a population whose members possess the attributes K or not K. The presence of K maybe called a success and its absence a failure.

Suppose we draw a simple sample of n items. Clearly it is same as a series of n independent trials with the same probability p of success. The probabilities of 0, 1, 2, ..., n successes are the terms in the binomial expansion of  $(q + p)^n$  where q = 1 - p.

If consider the proportion of successes, then:

- 1. Mean proposition of successes = np/(n) = p
- 2. Standard error of the proposition of successes =  $\sqrt{((n, \frac{p}{n}, (\frac{q}{n})))} = \sqrt{\frac{pq}{n}}$
- 3. Precision of the proportion of successes =  $\sqrt{\frac{n}{pq}}$

Tests of significance:

1) Large samples :

 $z = \frac{(x-\mu)}{\sigma}$ , if z > 1.96 ---it is significant

2) Small samples :

$$t = \frac{(x-\mu)}{\sigma}$$
, if  $t > 1.96$ ---it is significant

### **Keystrokes:**

data 2nd [stat-reg/distr]





# **Example:**

1. In a locality containing 18000 families, a sample of 840 families was selected at random. Of these 840 families, 206 families were found to have a monthly income of Rs. 250 or less. It is desired to estimate how many out of 18,000 families have a monthly income of Rs. 250 or less. Within what limits would you place your estimate?

| No | Instructions / Keystrokes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Screenshots                                                                              |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| 1  | Define a.<br>Press 206 $\div$ 840. Pressenter<br>Press $\bigstar \approx$ to convert to fraction. Press 2nd[answer]<br>$\texttt{sto} \bigstar x_{abcd}^{yzz} x_{abcd}^{yzz} x_{abcd}^{yzz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     |  |
| 2  | Define b.<br>Press ( 840-206) $\div$ 840. Pressenter<br>Press $\bullet \approx$ to convert to fraction.<br>Press2nd[answer] $sto \rightarrow [x_{abcd}^{yzt}] [x_{abcd}^{yzt$ | (840-206)/840*<br><u>317</u><br>420                                                      |  |
| 3  | Standard error of population:<br>Press 2nd[√]((2nd[recall]Scroll ⓒ until a Press enter Press<br>×2nd[recall] Scroll ⓒ until b ÷840 enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{bmatrix} \frac{103}{420} * \frac{317}{420} / 840 \\ 0.014844286 \end{bmatrix} $ |  |

Hence taking 103/420 or 24.5% to be the estimate of families having a monthly income of Rs 250 or less in the locality, the limits are (24.5 + -3 x 1.5)% which is 20% and 29% respectively.





2. A machinist is making engine parts with axle diameter of 0.7 *inches*. A random sample of 10 parts shows mean diameter 0.842 *inch* with a standard deviation of 0.04 *inch*. On the basis of this sample, would you say that work is inferior?

Taking the hypothesis that the product is not inferior, there is no significant differences between the means

| No | Keystrokes                                                                              | Screenshots                             |
|----|-----------------------------------------------------------------------------------------|-----------------------------------------|
| 1  | $\mu = 0.7; \ x = 0.742, \ \sigma = 0.040, n = 10$ Press (0.742-0.7)÷ (0.04÷2nd[-10-1)) | 0.0200910+0<br>(0.742-0.7)/(0.▶<br>3.15 |

The value of t  $_{0.05}$  = 2.262. Therefore t = 3.15 > 2.262, the value of t is significant. This implies that sample mean differs significantly from  $\mu$  and the hypothesis is rejected. Hence the work is inferior.

### **Exercise**:

1. 2 A group of boys and girls were given an intelligence test. The mean score, standard deviation and numbers in each group are as follows:

|       | Mean | SD | N  |
|-------|------|----|----|
| Girls | 121  | 10 | 14 |
| Boys  | 124  | 12 | 18 |

Is the mean score of boys significantly different from the girls?

### Answer:

1. No





### NOTES





### NOTES





### NOTES



