

a module solution provider

WG1300-00 EM Board

User Guide Revision 0.1

Copyright © JORJIN TECHNOLOGIES INC. 2012 http://WWW.JORJIN.COM.TW CONFIDENTIAL

Doc No: WG1300-00 EM Board-UG-D01

<u>Index</u>

1. INTRODUCTION	1
2. WG1300-00 EM BOARD	2
2.1. TOP SIDE	2
2.2. BOTTOM SIDE	5
2.3. Hardware setup	7
2.4. Schematics	8
2.5. Bill of Material (BOM)	9
3. APPLICATION EXAMPLES	10
4. HISTORY CHANGE	11

1. INTRODUCTION

The purpose of this user guide is to help user understanding how to use WG1300-00 EM (Evaluation Module) board to complete hardware setup for test to evaluate the performances of CC3000-WG1300-00 SiP Module.

2. WG1300-00 EM BOARD

In the following sub-sections, it'll divide into TOP and BOTTOM Side to explain details on the key parts and its features.

2.1. TOP Side

Figure 1 is TOP-Side picture of WG1300-00 EM Board.

Figure 1. TOP Side of WG1300-00 EM Board

The picture above marks some key parts and jumpers and Table 1 below shows the explanations to them in the details.

Items	Key Parts	Descriptions
		The core module for performance evaluation. It's
1	CC3000-WG1300-00	related feature can be referred to its datasheet.
	Module	
2	Antenna	It can used for radiated test by reworking cpacitor
		to correct pads.
3	J1	It's a U.FL RF connector via which you can proceed
		conducted power test.
		It is a jumper via which we can swap testing modes,
		test mode and operation mode. When pin 2 and
4	J2	pin 3 are shorted, it runs in operation mode and it
		operate in test mode when pin 1 and pin 2 are
		shorted.
		It is a jumper for testing power consumption. In
		operation mode, pins of the jumper is shorted. For
5	J3	power testing, the jumper is removed and ammeter
		crosses the pins to do the testing.
6	J4	Refer to Table 2. For more details on these
		through-hole test points
7	J5	Refer to Table 3. For more details on these
		through-hole test points

Table 1. TOP-Side Key parts of WG1300-00 EM Board

Table 2 below shows the signal descriptions of J4

Pin Number	Pin Name	Pin Type	Descriptions
1	GND		Ground
2	NS_UARTD	I/O	Networking subsystem UART Debug line
3	FUNC4		Leave floating
4	WL_UART_DBG	I/O	UART Debug Line
5	WL_RS232_TX	0	Test RS232 transmit output; Leave floating for normal operation
6	WL_RS232_RX		Test RS232 receive output; Leave floating

Doc No: WG1300-00 EM Board-UG-D01

			for normal operation
7	GND		Ground
8	WL_SPI_CS	I	Host interface SPI Chip Select
9	WL_SPI_DOUT	0	Host interface SPI Data Ouput
10	WL_SPI_IRQ	0	Host Interface SPI Interrupt Request
11	WL_SPI_DIN	I	Host Interface SPI Data Input
12	WL_SPI_CLK	I	Host interface SPI Clock input

Table 2. TOP-Side J4 of WG1300-00 EM Board

Table 3 below shows the signal of	descriptions of J5
-----------------------------------	--------------------

Pin	Pin Name	Pin Type	Descriptions
Number			
			I2C Clock signal output from CC3000. This
1	SCL_CC3000	Ο	pin is connected to SCL_EEPROM via a
			0-Ohm resister and is not used by end
			users.
			I2C Clock signal input from EEPROM inside
2	SCL_EEPROM	I	CC3000-WG1300-00 SiP Module. This pin is
			connected to SCL_CC3000 via a 0-Ohm
			resister and is not used by end users.
			I2C Data signal from CC3000. This pin is
3	SDA_CC3000	I/O	connected to SDA_EEPROM via a 0-Ohm
			resister and is not used by end users.
			I2C Data signal from EEPROM inside
4	SDA_EEPROM	I/O	CC3000-WG1300-00 SiP Module. This pin is
			connected to SDA_CC3000 via a 0-Ohm
			resister and is not used by end users.
5	VBAT_SW_EN	I	Active-high enable signal from Host
			device.
6	GND		Ground
7	GND		Ground
			VIO power supply from HOST to Module.
			For MSP430 Host platform,
8	VIO_HOST	PI	VIO_HOST=VBAT_IN. For other platforms
			which have different voltage levels from

Doc No: WG1300-00 EM Board-UG-D01

			Battery voltages', R14 can be remove to
			support such a case.
			Battery voltage input to Module. For
			MSP430 Host platform, VIO_HOST=VBAT_IN.
9	VBAT_IN	PI	For other platforms which have different
			voltage levels from Battery voltages', R14
			can be remove to support such a case.
10	GND		Ground
			External Slow Clock input from Host
11	EXT_32KHz	I	device. It can be used for the SiP Module
			inside which hasn't slow clock source.

Table 3. TOP-Side J5 of WG1300-00 EM Board

2.2. BOTTOM Side

Figure 2 is BOTTOM-Side picture of WG1300-00 EM Board.

Figure 2. Bottom Side of WG1300-00 EM Board

There are two EM Board mating connectors which are used for connecting to Host platform and are mounted on the bottom side as the picture above. Table 4 and Table 5 show the descriptions on the

signals brought out from these two EM mating connectors.

J6 Pin	Pin Name	Module Pin Type	Description
Number			
1	GND		Ground
			External Slow Clock input from Host
5	EXT_32KHz	I	device. It can be used for the SiP
			Module inside which hasn't slow clock
			source.
10	VBAT_SW_EN	I	Active-high enable signal from Host
			device.
12	WL_SPI_IRQ	О	Host Interface SPI Interrupt Request
14	WL_SPI_CS	I	Host interface SPI Chip Select
16	WL_SPI_CLK	I	Host interface SPI Clock input
18	WL_SPI_DIN	I	Host Interface SPI Data Input
19	GND		Ground
20	WL_SPI_DOUT	0	Host interface SPI Data Ouput

Table 4. BOTTOM-Side J6 of WG1300-00 EM Board

J7 Pin	Pin Name	Module Pin Type	Description
Number			
2	GND		Ground
7	VBAT_IN	PI	Battery voltage input to Module
9	VBAT_IN	PI	Battery voltage input to Module
15	EXT_32KHz	I	External Slow Clock input from Host
			device.

 Table 5. BOTTOM-Side J7 of WG1300-00 EM Board

2.3. Hardware Setup

Before conducting performance test, EM Board should be connected to Host platform, either with mating connectors, J6 and J7, or single row headers, J4 and J5. For the case of using EM mating connector for hardware connection, the mating EM connector should be lined up and spaced 1.2" apart as Figure 3 below

Figure 3. Host PCB Mating Connector Arrangement

For the case of using single row headers, the necessary signals as the ones brought out from EM mating connector need to be wired to Host platform.

2.4. Schematics

Figure 4 is the schematics of WG1300-00 EM Board

Figure 4. Schematics of WG1300-00 EM Board

2.5. Bill Of Material (BOM)

Items	Reference Designator	Description
1	U1	TI CC3000 WiFi b/g Module (BM)
2	ANT1	ANT / 2.4GHZ / Peak Gain 2.5DB
3	J1	Mini RF Header Receptacle
4	J2	CON Male 1x3 / Pitch 2.0 mm
5	J3	CON Male 1x2 / Pitch 2.0 mm
6	J6,J7	Female Header / Fool Proof H:4.3 / 2x10 / Pitch 1.27mm / SMT
7	C1,C3	CAP 0402 / 10pF / 50V / NPO / ±5%
8	C4,C5	CAP 0402 / 1uF / X5R / 6.3V / ±10% / HF
	R1,R2,R3,R4,R5,R6,R8,R9,	
9	R10,R11,R13,R15,R16,	RES 0402 / 0R / Jumper
	R17,R18,R19,R20,R21	
10	R14	RES 0603 / 0R / Jumper

Table 6. BOM of WG1300-00 EM Board

3. APPLICATION DEVELOPMENT

Texas Instrument had developed a HOST platform, MSP-EXP430FR5730, for evaluating CC3000-based SiP Module. Figure 4 shows the platform and WG1300-00 EM Board

Figure 4. MSP-EXP430FR5730 and WG1300-00 EM Board

The MSP-EXP430FR5739 test platform can be ordered as the link below. <u>http://www.ti.com/tool/msp-exp430fr5739</u>

Specific application examples can refer to the link below <u>http://processors.wiki.ti.com/index.php/CC3000 Wi-Fi for MCU</u>

4. HISTORY CHANGE

Revision	Date	Description
R 0.1	2012/2/28	Release 0.1