LG Electronic	S	Updated	File UE RF Band4 HW	/ Manual	Rev.
Written by	Revi	ewed by	Granted by	Managed by	
Title LEO3 R	F (A	WS) Hardware Man	ual	Type Manua	al

ABSTRACT

- This document is a hardware RF board manual for LTE user equipment platform. Contents of
- this document are the description of each blocks and usage directions. It is recommended to
- peruse this manual before operating RF Board.

HISTORY

Rev	Status	Date	Author	Contents

KEY WORDS

_3

 \bigcirc Copyright, 2009 By LG Electronics Inc. All rights reserved. No part of this document may be reproduced in any way, or by any means, without the express written permission of LG Electronics Inc.

LG Electronics

Kyongki-do, KOREA

Mobile Communication Technology Research Lab.

533 Hogye-dong, Dongan-gu, Anyang-shi,

File

[Notice]

- 1. The product described in this manual may be modified without prior notice for reliability, functionality or design improvement.
- 2. Information contained in this manual is correct and reliable, but LG shall not be held
- responsible for damage due to the use of information, product or circuit or infringement of property rights or other rights.
- 3. This manual does not grant users the property rights and other rights of the third party or LG Electronics Inc.
- 4. No part of this manual may be transcribed or duplicated without the written permission of LG Electronics Inc.
- 5. The appearance of the product shown in this manual may slightly differ from that of the actual product.

CONTENTS

1	CONTENTS	
2	1 Introduction	1
3	1.1 Scope	1
4	1.2 Terminology	1
5	2 Features and Photograph	2
6	2.1 Features	2
7	2.2 Photograph of the LEO3 RF board	2
8	3 Block Diagram and Description	4
9	3.1 Block Diagram	4
10	3.2 Block Description	4
11	3.2.1 RX Blocks	4
12	3.2.2TX Blocks	5
13	3.2.3 Common Blocks	6
14	4 Interface	7
15	4.1 Power supply	7
16	4.2 Digital I/Q Data & Sampling Cock	8
17	4.3 SPI	8
18	4.4 Control signals (GPIO's)	9
19	4.5 LEDs	9
20	4.6 Logic probing header	9
21	5 Placement Map	1 0
22		

LGE Proprietary

MCTR Lab.

1		
2	FIGURES	
3	Figure 1: Photograph of LEO3 RF	3
4	Figure 2: RF Block Diagram (For RX/TX)	4
5	Figure 3: Diagrams of Power supply	7
6	Figure 4: Diagrams of Data & Clock Signal Interface	8
7	Figure 5: Diagram of SPI interface	9
8	Figure 6: RX I/Q data probing Interface 1	0
9	Figure 7: Top placement map of LEO3 RF (AWS)1	0
10		
11		
12		
13		
14	TABLES	
15	Table 1: List of SPI programmable devices	8
16		

iv

Rev.

1 Introduction

1.1 Scope

This RF board is intended for radio frequency part of LTE user equipment platform to develop and verify LTE user equipment modem. This RF board is connected to 3rd version of LTE user equipment platform (LEO3) as the form of daughter board. This document intends to describe the brief architecture and usages of the board designed as RF part of LEO3 platform.

File

10

1 2

3 4

5 6

7

8 9

11

1.2 Terminology

12		
13	ADC	Analog to Digital Converter
14	AFC	Automatic Frequency Compensation
15	DAC	Digital to Analog Converter
16	LO	Local Oscillator
17	LTE	Long Term Evolution
18	LVDS	Low-Voltage Differential Signaling
19	MISO	Multi-In Single-Out
20	PA	Power Amplifier
21	RF	Radio Frequency
22	SAW	Surface Acoustic Wave
23	UE	User Equipment
24	VGA	Variable Gain Amplifier

2 Features and Photograph

2.1 Features

1

2 3

> 4 5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

- Supporting RF band: UMTS BAND-4(AWS)
 - Transmitting Frequency band: 1,710~1,755 MHz (45MHz)
 - Receiving Frequency band: 2,110~2,155 MHz (45MHz)
 - 2-Receive path and 1-Transmit path (MISO)
- +6V dc main power supply
- 19.2 MHz reference clock
- 12 Transceiver
 - > Two chips transceiver solution by Infineon SMARTILTE ICs(PMB_LTE_v093)

- Triple-band operation
- > Three programmable LTE RF bandwidths: 5,10,20MHz
- Supply voltage rage from 2.7 ~ 3.0V
- Optional 2nd supply voltage from 1.71 ~ 3.0V
- > On-chip LDO
 - Different power-down modes
 - > 3-wire bus programmable
- 10-bit ADC and DAC support
 - > 61.44 MHz for AD conversion
- 122.88 MHz for DA conversion
- Additional 16-bit HKDAC for Tx VGC and AFC
- 25 **2.2** Photograph of the LEO3 RF board
- 26

Rev.

File

Figure 1: Photograph of LEO3 RF

- Mechanical size of board is 170 (W) X 170 (H) mm

1 2

3 4

5

Block Diagram and Description

Block Diagram (AWS) 3.1

File

Figure 2: RF Block Diagram (For RX/TX)

3.2 **Block Description**

3.2.1 **RX Blocks**

Two receive paths, RX0 path and RX1 path, are designed for MISO technology to increase the receiving data throughput. Both of receiving paths have the same structure and consist of the following transceivers and anything else analog devices.

<u>LNA</u>

-	This LNA is used for each receiving path LNA has the fixed 20dB gain at range of WCDMA Band4
	Transceiver (Rx section)
	LNA2 with three programmable gain steps
_	Complete analog baseband path without external components
_	Three programmable baseband channel filter bandwidths
-	Separate RX PGC 3-wire bus operation possible
	Derfermense

- Performance
 - RX Total Gain : 2~80dB
 - Gain step: 1dB

1 2 3 4	 Gain switching time: under 6 us LNA2 Gain: 0/-6/-12 dB Gain deviation: +/-3 dB NFDSB:12dB – 42dB
5	➢ IP1dB: -15dBm
6	- Support frequency:
7	Band4: 2,110MHz ~ 2,155MHz
8	ADC
9	- Dual 10-bit, 150MSPS analog-to-digital converter
10	- 10-bit dedicated for each I/Q data
11	- A/D CIOCK Speed: 61.44MHZ
12	- Two s complement data formatting Internal fixed reference mode (the input span is 2 Vp n)
13	- Internal fixed reference mode (the linput spart is 2 v p-p)
15	RXIO
16	- RX PLL settling time: 320us (initial)
17	- RX PLL setting time: 150us (handover)
18	- VCO's +frac-N PLL's +loop filters on chip
19	- Receive PLL
20	The principle is exactly the same as for TX, but the frequency offset is now
21	1633iMHz (instead of 1404 MHz) for all bands but band VII,
22	Again the result is accommodated in a 13-bit word in the RX PLL Divider Register.
23	For band VII the offset is 2300 MHz.
24	
25	
26	3.2.2 TX Blocks
27	
28	In transmit path, it is connected to a duplexer linked to ANT0. The transmitting data from LEO3
29	platform is the dedicated 12-bit digital signals for each I/Q via DAC. And its signaling uses LVDS
30	system for high speed data transmitting. Refer to the block diagram at section 2.3. The transmit
31	data pass through the following devices.
32 33	
34	Level Translator
35	- High speed data level conversion. LVDS-to-CMOS
36	3 · · · · · · · · · · · · · · · ·
37	DAC
38	 Dual 10-bit, 125MSPS digital-to-analog converter
39	 10-bit dedicated for each I/Q data
40	- D/A clock speed: 122.88MHz
41	- Offset binary data formatting
42	
43	I ransceiver (IX section)
44	- KF VGA S WIN >000 gain range
45	
46	- POLITmax: $3 \sim 7 dBm$
47	POUTmin: -77dBm
49	\rightarrow TXGC range: 0.5V ~ 2.2V
50	Gain switching time:10usec
51	▶ NTX: -136dBm/Hz
52	Carrier suppression:26dB
53	- Support frequency:
54	Band4: 1,710MHz ~ 1,755MHz
55	
56	Digital Attenuator
57	- Single 10 dB Step
58	- Control voltage: -8.5v≤v≤+8V

1	- Low Loss: 0.3 dB @ 900 MHz
2	- Low Cost SOT-25 Package
3	-
4	Power Amplifier
5	 Operating frequency: 1,710 ~ 1,785MHz
6	- Max output power: 28.5dBm
7	
8	<u>TX LO</u>
9	 TX PLL settling time: 325us(initial)
10	 TX PLL settling ime: 150us (Handover)
11	 VCO's+frac-N PLL's+loop filters on chip
12	For bands I. II. III. IV and IX the desired frequency is programmed by setting the distance.
13	in multiples of 100 kHz, from the fixed frequency offset of 1404 MHz. The result is
14	accommodated in a 13-bit word in the TX PLL Divider Register.
45	For hands V/VI and VIII, the programmed frequency must be twice the wanted frequency
15	To bands v, vi and vin, the programmed frequency must be twice the wanted frequency.
16	For Band VII the fixed offset is 2250 MHz.
17	
18	
19	
20	3.2.3 Common Blocks
21	VOTOVO
22	VUICAU
23	- AFC supported by the external gain control voltage
24	- Generating relefance clock for italiscence in and 2 respectively
20	
20	16-bit HKDAC for AFC and Tx VGC control
28	- Dual channel 16-bit DAC
29	 Programmable by 3 wire serial interface, SPI
30	 Its analog output voltage level functions the following:
31	1) AFC support
32	2) VGA gain control at transmit path

Rev.

4 Interface

The RF board for interfacing with LEO3 platform has 3 units of high speed 120pin connector. One of them has the role for main power supply, 6V. The others make the interface between RF to baseband (LEO3 platform) such as data transmitting and receiving, programming the SPI device, transmitting control signals, supplying A/D or D/A clock, monitoring the status and etc.

File

4.1 Power supply

Po[.] (1

9	
10	

1

2 3

4

5

6

7 8

		LDO (3V)		External LNA
ver Supply , 6V 20 pin conn .)	• •	LDO (3V)	[TX DAC (AVDD, DVDD)
	•	LDO (3.3V)	[LVDT
	•	LDO (2.8V)		RX ADC (ADC0_DRVDD, ADC1_DRVDD)
	•	LDO (2.8V)		HKDAC
	•	LDO (2.8V)		BUFFER
	•	LDO (2.8V)		
	•	LDO (2.8V)	[RFIC (RX)
	•	LDO (2.8V)		RFIC (TX)
	•	LDO (2.8V)		RFIC (TCXO)
	•	LDO (1.5V)		RFICO
	•	LDO (1.5V)		RFIC1
	•	LDO (1.8V)	[RX0 1.8V (AVDD,DVDD,BIAS)
	•	LDO (1.8V)		RX1 1.8V (AVDD,DVDD)
	•	LDO (4V)		PA
		LDO (2.85V)		VREF

Figure 3: Diagrams of Power supply

File

4.3 SPI

There are 3 programmable devices on RF board by using 3 wire SPI interface. 3 units SPI blocks exist on the interface with baseband platform. They are listed at Table 1 (Also refer to block diagram at Figure 5).

At this list, 1st transceiver and 2nd transceiver consist of each SPI0 and SPI1. Also 16-bit HKDAC has the dedicated by SPI2. It can be possible by using a dedicated chip select signal for each device with LLDM software. When selecting one of them, a dedicated chip select signal enables its device to program.

19

9

10 11

12

13

14

20

SPI Device	1 st Transceiver	2 nd Transceiver	16bit-HKDAC ²¹
SPI block	SPI0	SPI1	SPI2 23
SPI data bit	-	-	16 ₂₄
			25

26

Table 1: List of SPI programmable devices

9 10

11 12

13

14

15

16

17

18

19

20

21

22 23 24

25 26

27

28

29

File

Figure	5·	Diagram	of	SPI	interface
Iguie	υ.	Diagram	U	511	menace

4.4 Control signals (GPIO's)

For control the RF blocks, the control signals from LEO3 platform are connected as the below.

- BS(1) IDLE: Enables the LDOs and LED for a self-Indicator
- TX_ON: Enables the LDOs at transmit path and transmit block at 1st Transceiver (Including turns on LED for a self-indicator)
- PA R0 : Controls the power mode of transmitter block (Including D-attenuator)
- PA EN : Enables PA
- LNA EN0: Enables the LNA of antenna0 path (At the 1st transceiver)
- LNA_EN1: Enables the LNA of antenna1 path (At the 2nd transceiver)
- TCXO ON: Enables the LDO for source clock (VC-TCXO)
- GPIO_SLEEPB(0): Enables the 1st transceiver (Via Master on signal) GPIO_SLEEPB(1): Enables the 2nd transceiver (Via Master on signal) _
- _

4.5 LEDs

To indicate PLL lock status of 1st transceiver(LD RFIC0) and 2nd transceiver(LD RFIC1), two LEDs (D401, D404) are present on the board. When locked at the frequency by setting the SPI from LEO3, LD output of each Transceiver turns on this LED.

- Anything else, there are two more LEDs(D4032 D403) for TX ON and IDLE.
- 30 31 32 33

34

Logic probing header 4.6

The type of logic probing header is MICTOR connector. For each receive path, 20-bit 35 dedicated I/Q data is mapped to this (J408, J409). When using this logic probing, agilent E5346A 36 logic analyzer probing adaptor is needed to signal monitoring. The following figure is captured 37 from the schematic. 38

2 3

4

Rev.

File

9

Notice

1

3 4 OEM integrators and installers are instructed that the phrase. This device contains

Updated

Warning: Exposure to Radio Frequency Radiation The radiated output
power of this device is far below the FCC radio frequency exposure
limits. Nevertheless, the device should be used in such a manner that
the potential for human contact during normal operation is minimized.
In order to avoid the possibility of exceeding the FCC radio
frequency exposure limits, human proximity to the antenna should
not be less than 20cm during normal operation. The gain of the
antenna for 3GPP-Band4(1710~1755MHz) must not exceed _-4_ dBi.The antenna(s) used for this transmitter must not be co-located or operating
in conjunction with any other antenna or transmitter.