

TECHNICAL SERVICE MANUAL TRANSMITTER GENERAL INFORMATION

LARCAN INC. 228 AMBASSADOR DRIVE MISSISSAUGA, ONTARIO CANADA L5T 2J2 PHONE: (905) 564-9222 FAX: (905) 564-9244 EMAIL: techservices@larcan.com

PUB07-07 GENERAL INFORMATION

1	IN	NTRODUCTION	1
	1.1	Production Changes	1
	1.2	DISCLAIMER	1
	1.3	CONTACT INFORMATION	1
2	PI	REFIX NUMBERS	2
3	L	ARCAN PARTS, ASSEMBLIES, ASSEMBLY DRAWINGS AND SCHEMATIC NUMBERS	4
	3.1	Vendor Standard Part Numbers	4
	3.2	LARCAN NUMBERS FOR PARTS, ASSEMBLIES AND DOCUMENTATION	4
	3.3	Leaded Resistors	4
	3.4	SURFACE MOUNT RESISTORS 1/4W AND LESS	5
	3.5	SURFACE MOUNT CAPCITORS	5
	3.6	Parts Lists	6
4	SA	AFETY PRECAUTIONS	7
4	4.1	Beryllium Oxide Warning	7
4	4.2	Other Toxic Materials	7
4	4.3	DANGEROUS VOLTAGES	7
4	4.4	SWITCH TO SAFETY	8
4	4.5	DISCOURAGE PESTS	9
AF	PPE	NDIX A	10
	ABBI	REVIATIONS USED IN LARCAN INC. DOCUMENTS	10

1 INTRODUCTION

The transmitter technical details are described in this manual. The Manual is provided on this CD-ROM in PDF format. The complexity of the equipment and the amount of information requires this information to be presented in several publications. These publications are gathered into a single Volume to comprise the transmitter manual. The list of publications and their revision numbers is provided in separate PDF file TSM20-xxxG1 file. Mechanical assemblies are documented in this manual only as far as necessary to describe access to electronic subassemblies, such as circuit boards, thus, some mechanical items might be found only in a parts list. Those having assembly drawings in this manual also have a corresponding parts list. Numbers in circles on the assembly drawings refer to items identified as the parts list line or item number.

1.1 PRODUCTION CHANGES

From time to time, it becomes necessary to make changes to the equipment described in this manual. Such changes are usually made either to provide improved performance or to accommodate component substitutions necessitated by vendor product availability. A revision number might follow the model or group number marked on the nameplate, chassis, or circuit board; or on a parts list. In a parts list, an "R" a number indicates the parts list revision status. This revision number should be quoted whenever contacting LARCAN Customer Service, especially if renewal parts are needed.

1.2 DISCLAIMER

All material in this manual is copyright © LARCAN INC. as of the date of publication. Reproduction in whole or in part in any form for any purpose other than the exclusive use of the equipment owner without prior written authorization from LARCAN INC. is prohibited.

Trademarks are the property of their respective owners and are mentioned in the text for discussion purposes only; any such mention is not an endorsement of the trademark or its owner. Parts lists may also contain trademarked vendor names as an aid in the procurement of spare parts.

Every effort has been made to provide as much information about the equipment as possible and to ensure accuracy, however, LARCAN INC. assumes no responsibility and disclaims all liability for damages resulting from the use of this information or for any errors or omissions. These instructions do not assume to cover all possible details or variations in equipment nor to provide for every possible contingency to be met in connection with its installation, operation, or maintenance. It is assumed that fully competent technical personnel will be responsible for the installation, operation, maintenance and repair of the equipment.

1.3 CONTACT INFORMATION

If you need further information or if you require replacement parts, please contact us.

LARCAN INC. 228 Ambassador Drive Mississauga, Ontario, Canada L5T 2J2 Phone: (905)-564-9222, FAX: (905)-564-9244 EMAIL techservices@larcan.com

Or;

LARCAN USA Inc. 1390 Overlook Drive Lafayette Colorado 80026 USA Phone: (303)-665-8000, FAX: (303)-673-9900.

2 PREFIX NUMBERS

Prefix Numbers assist in identifying assemblies and subassemblies by their physical location in the overall transmitter model assembly. Each transmitter model has an associated Prefix List, which provides an index of Prefix Numbers identifying the Sub-Assemblies in each Cabinet and in large assemblies.

Every sub-assembly of the transmitter on its own is identified by a nine-digit assembly number (e.g., 21B1234G1). This assembly number accurately identifies the item, but bears no information on its own regarding its place in the transmitter and can be cumbersome when identifying functional blocks for documenting the transmitter. To assist in this matter, the Prefix Numbering of subassemblies indexes the major components into their related cabinets and into groups of related assemblies. The following paragraphs are adapted from LARCAN Document Number 11A1886, which outlines the basic system of Prefix Identification

A label attached in the most visible location identifies large Assemblies. Cabinets have labels attached to the rear, top of cabinet frame. Other Large Assemblies have labels attached in the front.

- Cx Control Cabinet # x
- Ax Amplifier Cabinet # x
- Tx Traplexer # x
- Fx Filter # x
- Px Patch Panel # x
- Ox Optional Assembly # x
- Ex Exciter # x
- Mx Modulator # x
- Ux Upconverter # x
- Sx Switch (coaxial, contactless etc.) # x
- Lx Load RF # x
- CRx Combiner # x
- Dx Directional Coupler/Probe Section # x
- Xx External components (heat exchanger, power supply, AC distribution panel) # x

Major Subassemblies inside cabinets or on other large assemblies are identified by numbers only, which are multiples of 10. For example:

- 10 Contactor Panel
- 20 AC Distribution Panel
- 30 Power Amplifier Housing
- 40 Control Unit

Small Subassemblies inside a major subassembly are identified by integer numbers other than multiples of 10. For example:

- 21 PC Board # 1 in AC Distribution Panel
- 22 PC Board # 2 in AC Distribution Panel

Individual component identification is possible at every level. Labeling clearly with a single label does physical identification. Only Large Assemblies will have label "Xn" (X=Letter, n=number) or "X". All other assemblies and components shall have label "n" (n is a number). Each "Xn" or "X" has a square frame outline to denote that it is a prefix number. No "PFX" or "PREFIX" indication is required in front of the x or xnn. For a PC Board having an overall prefix number of A2-11 (as indicated on a Running List or Wiring Diagram), the label on the PC Board need only say 11 since the large assembly is to be clearly labeled as A2.

Use of Prefix Numbers in Documentation

a) Interconnect Diagrams or Running Lists, in which only one Large Assembly is detailed (e.g., Cabinet Assembly). Prefix numbers are used as follows;

For example: 11-J1 (Subassembly #11- Connector J1)

b) Interconnect Diagrams or Running Lists for a Transmitter indicating interconnections between Large Assemblies (Cabinet-to-Cabinet or Cabinet-to-External Components). Prefix numbers are preceded by Major Assembly prefix and "–".

For example: A2-11-J1 (Amplifier Cabinet #2 -Subassembly #11- Connector J1)

The system configuration publication for this transmitter will contain a prefix list specific to your transmitter.

3 LARCAN PARTS, ASSEMBLIES, ASSEMBLY DRAWINGS AND SCHEMATIC NUMBERS

3.1 VENDOR STANDARD PART NUMBERS

Vendor or original manufacturer part numbers are indicated for most components.

3.2 LARCAN NUMBERS FOR PARTS, ASSEMBLIES AND DOCUMENTATION

An index of LARCAN specified number are used to define and specify the following;

- parts made by a manufacturer to LARCAN specification,
- an assembled unit or "group" such as a PC Board or completed cabinet.
- assembly drawings and schematics
- standards.

Depending on the application, Autocad drawing or Microsoft Word document format is used.

Document numbers have the format YYZXXXKn Rev m where :

YYZ Prefix denoting drawing size and Product type. Can be 10A, 11A, 20B, 21B, 30C, 31C, 40D, 41D, 50E, 51E – describes drawing or document size, VHF or UHF application

XXXX Drawing Index number. Between 0000 to 9999.

- K Refers to the type of drawing / document;
 - "no suffix" for drawing of part (assembly or schematic),
 - P = Part
 - G = Group of parts
 - A = Assembly drawing
 - F = PC board fabrication films and
 - S = Schematic

n Index number for drawing type. Part, group, assembly drawing or schematic next number and may be **e** or more digits

Rev Revision (sometimes denoted as R or R-)

m Revision number and may be one digit or more. May contain a decimal (e.g., Revision 3.2)

Drawings may consist of one or more sheets. Generally multiple sheets are used if one sheet is not enough to show all necessary information. Sometimes, especially with older drawings, multiple sheets are used to show more than one part or assembly.

3.3 LEADED RESISTORS

Generic carbon composition resistors with leads are numbered as follows;

			nnnx	
3R	PP P	Р	- or -	D
			nnx	
	Power Rating		Resistance Value *	Tolerance
	152 = 1/4W		nn - first digits of	K =10%

77 = 1/2W	resistance (5, 10% tol.)	J =5%
78 = 1W	nnn - first digits of	H =1%
79 = 2W	resistance (1% tol.)	
	x - x10 multiplier	

For values between 1 Ω and 10 Ω , a letter "R" will appear in the resistance value to indicate the decimal place.

For vendor leaded resistors a generic drawing describing basic specifications, but having many "parts", will often be used.

"3R152P5R6J" is 5.6Ω, 1/4W, ±5%

"3R152P470K" is 47Ω, 1/4W, ±10%

"3R152P1022H" is 10.2kΩ, 1/4W, ±1%

"3R152P102J" is 1k Ω , 1/4W, ±5%

3.4 SURFACE MOUNT RESISTORS 1/4W AND LESS

There is no specified recommended supplier of these parts. The Philips numbering system is employed with the following parameters/designations (example follows):

9C	0000	Ø	А		nnnx	P	Ø
	<u>SIZE LxW</u>	POWER RATING		<u>R</u>	ESISTANCE VALUE	TOLERANCE	TEMP COEF
	0603= 1.6x08mm	1 = 1/16W		nnx	tolerance>=5% nn=first 2 digits	D =0.5%	C =50ppm/°C
					x=multiplier	F =1%	K=100ppm/°C
	0805=2x1.25mm	2 = 1/10W			·		
				nnnx	tolerance<5%	J =5%	L=200ppm/°C
	1206= 3.2x1.6mm	2 = 1/8W (1% tol.) 3 =1/4W (5% tol.)			nnn=first 3 digits x=multiplier		M =300ppm/°C
				nRnx (R inso where	or nnRnx or nRnnx erted as decimal point required		

0000 - four zeros for jumper

The pairs of parameters enclosed in boxes are normally mutually selected; for example, a resistor having 1% tolerance normally is selected as having a temperature coefficient of 100ppm/°C.

Example: 9C08052A1001FK

(Size 0805, Power Rating 1/10W, Resistance 1kohm, Tolerance 1%, Temperature Coefficient 100ppm/°C)

3.5 SURFACE MOUNT CAPCITORS

There is no specifically recommended supplier of these parts. The part numbering system being used is based on a Philips (now Yageo/Phycomp) numbering system with the following parameters/designations (example follows):

0000	Ø	Nnx	Ø	Ø	CP.

		G	SENERAL IN	FORMATION		
SIZE LxW DIELECTRI MATERIAL		RICCAPACITANCEALVALUE(in picofarads)		TOLERANCE	<u>VOLTAGE</u> <u>RATING</u>	TERMINATION
0603=1.6x08mm 0805=2x1.25mm 1206=3.2x1.6mm	CG = NPO 2R = X7R 2F = Y5V *	nn =fir: x =n shown	st 2 digits nultiplier as below	B =0.10pF C =0.25pF D =0.50pF	7=16VDC 8=25VDC 9=50 VDC	B=Ni/Sn A=Ag/Pd C=Ni/Sn-Pb
	2E = Z5U *	chewin	8=x0.01 9=x0.1 0=x1 1=x10 2=x100 3=x1000 4=x10000 5=x100000	F=1% G=2% J=5% K=10% M=20%	0=100VDC B=200VDC D=500VDC	
o.g. 0805CG102	* (infrequent u	use)				
9.7F	190	-0805				
		=NPO				
		=5%				
VOLTAGE RATING		=50V				
TERMINATION		=Ni/Sn				
PACKAGING		=Not Specifi	ied			
MARKING		=None				

Note that "u" appears in most cases instead of the correct symbol " μ " whenever a "micro" is required. Electronic parts list data, when imported by our PC publication program, allows us to substitute the correct " μ " when checking and editing.

3.6 PARTS LISTS

Parts lists for all assemblies in the transmitter are provided on CD-ROM, in PDF format. The CD-ROM is packed inside the transmitter cabinet for shipping.

Parts lists are generated in a hierarchical structure, beginning with major assemblies, then the subassemblies of each major assembly, and so forth.

4 SAFETY PRECAUTIONS

This section has been written to provide general guidance and information for the operation, maintenance, and service personnel who are familiar with the hazards of working with high-powered electronic circuits. This manual does not detail all of the safety precautions which should be observed when servicing this or any other electronic equipment. Service by inadequately trained or inexperienced personnel can result in personal injury or death and/or damage to the equipment.

Important: All personnel concerned with the servicing of this equipment should be thoroughly familiar with standard first aid procedures for the treatment of electrical burns and shock, including cardio-pulmonary resuscitation (CPR).

Use the "buddy" system, with one person performing the actual service and a colleague observing. The observer must be familiar with the work being performed and within sight and sound of the person doing the work. The observer should not be engaged in any other work or be otherwise distracted; he must be available **instantly** in case of accident.

Always have the observer with you when you work on the transmitter.

4.1 BERYLLIUM OXIDE WARNING

Internal thermal management in certain RF devices in this equipment is accomplished through the use of Beryllium Oxide ceramic material. Beryllium Oxide is a hard white ceramic used as insulation for heatsinking of RF power semiconductors. It is used between the silicon die of the device and the case, or flange, to both insulate and to conduct heat to the heatsink through the flange of the transistor. Beryllium Oxide is a **poison**. Do not break open any RF power transistors or otherwise dismantle them. In case of accidental breakage of devices, **do not inhale the resulting beryllium dust and avoid getting beryllium dust in your mouth. Do not let beryllium into your blood stream through cuts or open wounds**. Seek **immediate** medical attention if the dust enters your body in any manner. Avoid cuts by wearing gloves while picking up the broken pieces. Be careful – do not inhale dust while replacing or emptying vacuum cleaner filter bags and wash your hands thoroughly afterward. Wash your hands thoroughly after replacing RF power devices. Dispose of defective RF power devices only through approved toxic waste facilities. Wear gloves when picking up the pieces. Wash your hands thoroughly after replacing devices. Dispose of defective devices only through approved toxic waste facilities.

Note: the ceramic cap that makes up the visible part of an RF device is **not** made from Beryllium Oxide. Beryllium Oxide is **only** used internally to the device. While a broken ceramic cap can be sharp and cause cuts and abrasions and it is therefore wise to handle it with care, the Beryllium Oxide is the substance used between the die of the device and the internal case or flange.

When cleaning up after an accidental breakage, remember to wear a respirator mask to avoid inhaling the dust while replacing or emptying vacuum cleaner filter bags, and to wash your hands well after servicing the vacuum cleaner. If possible, use a wet vacuum, in which the dust gets trapped in water.

4.2 OTHER TOXIC MATERIALS

The non-metallic coverings of some coaxial cables used in this equipment are **flammable** and can transmit fire when ignited. Other wire coverings are not capable of supporting combustion but any non-metallic covering when heated sufficiently can emit dense smoke and acid gases, which can be highly toxic and often corrosive.

Solvents and glues can emit toxic vapors and can be flammable. Read and understand the directions on the containers and ensure that they are used only in well ventilated locations.

4.3 DANGEROUS VOLTAGES

This equipment has been designed to protect operating personnel from accidental contact with dangerous voltages, by means of shields and covers. It is extremely important that any protective covering devices be kept in place at all times.

While all practical safety precautions have been adopted to safeguard personnel from possible injury, both supervisory and operating personnel are urged to ensure that the safety rules detailed below are followed as an established routine at all times. The following four Rules are the standard safety guidelines for working with and around transmitters:

Rule #1 KILL THE AC POWER BEFORE IT KILLS YOU

Under no circumstances should any person reach within the cabinets for the purpose of servicing or adjusting the equipment without first disconnecting the AC power or without the immediate presence of another person capable of rendering aid. The "buddy" system is encouraged for transmitter work.

Rule #2 DO NOT TAMPER WITH INTERLOCKS OR SAFETY SHIELDS

Under normal circumstances, no safety shield should be removed.

Rule #3 REMOVE PERSONAL JEWELRY WHEN WORKING ON THE EQUIPMENT

The mains AC power to this transmitter can deliver high currents capable of melting metallic tools or personal jewelry, such as watch bands, bracelets, or rings. Accidental short circuits from such metallic objects can cause an explosive shower of molten metal which can result in serious personal injury.

Rule #4 KNOW FIRST AID AND KEEP FIRST AID SUPPLIES AVAILABLE

Illustrated first aid instructions for the treatment of electrical shock and burns and CPR procedures should be displayed in a prominent location adjacent to the equipment. In rendering first aid, the timeliness and effectiveness of the treatment are vitally important to the recovery of the injured person.

Always have a colleague with you when you work on the transmitter and make sure both of you know first aid, including cardio-pulmonary resuscitation (CPR). This is most important.

Without exception, all personnel should thoroughly familiarize themselves with the procedures involved. One person, whose normal duties place him or her at the transmitter site often, should be given complete responsibility and authority to ensure that first aid supplies are kept on site and maintained. Prominently display a list of emergency phone numbers. This list should include the numbers of the nearest police, ambulance, hospital, doctor, fire department, paramedics, poison control center, public works (roads) department, and the utility (power and phone) companies.

Do not try to work on the transmitter if you are tired or drowsy; you could make a fatal error in judgement. Antihistamines and decongestants for colds or allergies, and some prescription medications, can make you drowsy; ask your pharmacist if you do not know for sure. Avoid alcohol, even in moderate amounts, before working on the transmitter.

4.4 SWITCH TO SAFETY

MAKE SURE YOU HAVE IN PLACE A COMPREHENSIVE SAFETY PROGRAM AND HAVE DEFINED PROCEDURES FOR EVERY ACTIVITY IN IT. *KNOW FIRST AID AND CPR.*

Use the "buddy" system, with one person performing the actual service and a colleague observing. The observer must be familiar with the work being performed and within sight and sound of the person doing the work. The observer should not be engaged in any other work or be otherwise distracted; he must be available **instantly** in case of accident. *Always have the observer with you when you work on the transmitter.*

Pay attention to emergency communications requirements. This could even include a voice channel on the STL so that constant communication with the studio can be maintained. Headset-equipped phones connected on this voice channel should be installed in locations near hazardous areas or everyone on site should carry fully charged cell phones. When you are administering CPR, you might not be able to leave your patient for the length of time it could take to call paramedics, especially if phone service is poor, or lines are down, and/or you are in a rural area without 911 service.

Do not defeat the interlock switches on access doors unless it is absolutely necessary, and you know **exactly** what you are doing.

Keep your work area neat and tidy, free of any interfering conductive material and free of any sharp objects. Remember that reaction to a shock could cause you to strike nearby objects.

Avoid wearing loose clothing and personal jewelry such as rings, watches, and chains when working near energized circuits. Make a habit of removing all jewelry and stowing it in a safe place as soon as you enter the transmitter building.

Before beginning work, **shut off all AC to the transmitter power supplies. Tag and lockout the switches.** Your safety routine must ensure that the person placing the tag and locking the switch is be the only person who removes it and reactivates the switch. You might want to include the power to the remote control as well, if there is any possibility that a studio worker could unknowingly activate the transmitter while you are working on it. Implement and observe a

lockout/tagout procedure.

You might want to include your tower contractor's rigging crew in the list of people who are allowed to use tags and padlocks. As an alternative, Dielectric[™] makes a transmission line lockout switch that is intended for riggers to turn off and lock out any RF before climbing over the antenna to replace light bulbs, etc.

Proper grounding is **vital**. See the Installation section of this manual. Make ground inspection a part of your maintenance program; someone's life could depend on it!

4.5 DISCOURAGE PESTS

Transmitter sites, particularly unmanned locations, can become nesting grounds for rodents and other pests. These pests can damage equipment and create a serious health hazard.

Eliminate or minimize access for rodents and other pests. Seal all cracks that are ¼ inch or larger with steel wool, caulking, or metal flashing. Ensure that weather seals under doors are in good repair and fit tightly when the door is closed. Make certain that all cable and pipe entrances to the building are properly sealed. Keep spring traps set at all times and placed along the walls (rodents will travel along walls in preference to being out in the open). Clean up the area around the building(s), getting rid of all potential nesting material and cover such as crates, boxes, cans, etc. Ensure that all refuse, particularly foodstuffs, is immediately placed in sealed trash containers and is regularly taken away from the site.

Assume that any rodents or other pests seen carry disease, whether dead or alive. This also applies to any droppings found. Use a solution of household bleach (1½ cups of bleach to 1 gallon of water) to disinfect rodent carcasses and traps before handling. Spray the rodent and trap and allow to sit for 5 to 10 minutes. Wear rubber gloves when handling the trapped rodent. Dispose of the carcass in a sealed container, in accordance with local regulations. Disinfect the gloves and the trap afterward.

Air out any rodent infested building for at least 30 minutes before entering. Do not sweep or dry-vacuum rodent contaminated surfaces, as this can cause contaminants to become airborne. Spray contaminated materials with bleach solution and allow to soak 5 to 10 minutes before cleaning with a mop, sponge, or wet-vacuum. Wear rubber gloves. In heavily infested areas or in situations where ventilation is poor and wet clean up cannot be done, wear a face mask fitted with a high efficiency particulate arrester (HEPA) air filter.

Incidentally, snakes eat mice, but they like warmth as well, and the transmitter and outdoor power supply will be warm after running for a while. Seal all openings (cracks, cable, and pipe entrances), as mentioned above. Remember the power supply has a raised base for a fork lift, and snakes could be warming themselves under it. Contact the local wildlife or natural resources office for information on what species might be in the area and how best to avoid providing a habitat for them.

APPENDIX A

ABBREVIATIONS USED IN LARCAN INC. DOCUMENTS

Following is a list of abbreviations used on Larcan Inc. drawings, part lists, manuals etc.

8VSB	8 LEVEL VSB				
А	AMPERE, ASSEMBLY				
AC	ALTERNATING CURRENT				
AGC	AUTOMATIC GAIN CONTROL				
ALC	AUTOMATIC LEVEL CONTROL				
	ALTERNATE ALTITUDE				
AMP	AMPLIFIER				
499V					
A991					
AJINC					
AUTO					
AVG					
AVVG					
BAI	BATTERY				
BER	BII ERROR RATE				
BLO	BLOWER				
BLU	BLUE				
BOM	BILL OF MATERIAL				
BPF	BANDPASS FILTER				
BTU	BRITISH THERMAL UNIT				
BW	BANDWIDTH				
С	DEGREE CELSIUS, CAPACITOR				
C/N	CARRIER NOISE RATIO				
CA	CABLE ASSEMBLY				
CAB	CABINET				
CAP	CAPACITOR				
CATV	CABLE TV				
CAV	CAVITY				
CBL	CABLE				
CCW	COUNTERCLOCKWISE				
CHAM	CHAMFER				
CHAN	CHANNEL				
CMB	COMBINE				
CMBNR	COMBINER				
CMO2	COMPLIMENTARY METAL OXIDE				
CMRR					
CUAX					
COMP					
COND					
CONN	CONNECTOR				
CORR	CORRECTION				
CPLR	COUPLER				
CPU	CENTRAL PROCESSING UNIT				
CT	CENTER TAP				
CTRL	CONTROL				
CW	CLOCKWISE, CONTINOUS WAVE				
D/L	DUMMY LOAD				

DAC	DIGITAL ANALOG CONVERTER			
dB	DECIBEL			
DC	DIRECT CURRENT			
DDS	DIRECT DIGITAL SYNTHESIS			
DEC	DECIMAL			
DEG	DEGREE			
DFT	DETECTOR			
DEV	DEVIATION			
DG	DIFFERENTIAL GAIN			
DIA	DIAGRAM			
DIFE	DIFFERENTIAL			
DIP				
	DOCUMENT			
DOC				
DWG				
	EXTERNAL			
FPGA				
Giga/ G				
GPS				
GRP DEL				
<u>н</u>	HENRY			
h				
HCMOS	HIGH DENSITY CMOS			
HCT	HIGH SPEED CMOS			
HD	HIGH DENSITY, HIGH DEFINITION			
HEPA	HIGH EFFICIENCY PARTICULATE AIR			
HEX	HEXADECIMAL			
HMOS	HIGH PERFORMANCE MOS			
HORIZ				
HP	HEVVLETT PACKARD, HIGH POWER, HORSE POWER			
HPF	HIGHPASS FILTER			

HTTP	HYPERTEXT TRANSFER PROTOCOL				
HV	HIGH VOLTAGE				
Hz	HERTZ				
1	CURRENT, INCIDENT, INDUCTOR				
I/C	INTERCONNECTION				
I/F	INTERFACE				
I/FACE	INTERFACE				
IC	INTEGRATED CIRCUIT				
	INCIDENTAL CARRIER PHASE				
ICPM	MODULATION				
IF	INTERMEDIATE FREQUENCY				
	INTERMODULATION PRODUCTS				
IN, I/P, INP	INPUT				
IND	INDUCTOR				
INT	INTERNAL				
INTFC	INTERFACE				
INTK	INTERLOCK				
INTLK	INTERLOCK				
IOT	INDUCTIVE OUTPUT TUBE				
IPA					
IRQ	INTERRUPT REQUEST				
kilo/ k	1 00E+03				
LSB					
iviega/ M					
micro/ u	1.00E-06				
mili/ m	1.00E-03				
MIN					
MOD	MODIFICATION, MODULATION, MODEL				
Monm	MEGAUHM				
MON	MONITOR				
MONO	MONOPHONIC				
MOS	METAL OXIDE SEMICONDUCTOR				
MOSFET	METAL OXIDE SEMICONDUCTOR FET				
MOV	METAL OXIDE VARISTOR				
MPT	MALE PIPE THREAD				
MPX	MULTIPLEXER				
MSB	MOST SIGNIFICANT BIT				

MTR	METER
MUX	MULTIPLEXER
MXR	MIXER
Ν	NEUTRAL
N/A	NOT APPLICABLE
nano/ n	1.00E-09
NEUT	NEUTRAL
NONLIN	NONLINEAR
NVM	NON-VOLATILE MEMORY
NVRAM	NON-VOLATILE RAM
0/1	OVERCURRENT
0/1	
0/\/	
OCT	OCTAL
осхо	OVEN CONTROLLED CRYSTAL OSCILLATOR
OPAMP	OPERATIONAL AMPLIFIER
OPT	OPTIONAL, OPTION
ORN	ORANGE
OSC	OSCILLATOR
OUT	OUTPUT
Р	POWER, PRIMARY, PLUG
P/S	POWER SUPPLY
PA	POWER AMPLIFIER, PURCHASED ASSEMBLY
PCB	PRINTED CIRCUIT BOARD
PF	POWER FACTOR
PFD	POWER FLUX DENSITY
PFX	PREFIX
PH	PHASE
pico/ p	1.00E-12
PL	PARTS LIST
PLL	PHASE LOCKED LOOP
PM	PHASE MODULATION
PMOS	P CHANNEL MOS
PNL	PANEL
POT	POTENTIOMETER
P-P	ΡΕΑΚ ΤΟ ΡΕΑΚ
PPS	PARTS PER MILLION
PRESS	PRESSURE
PROD	PRODUCTION
PS	POWER SUPPLY
nsi	POUNDS PER SQUERE INCH
PWR	POWER
0	
QAM	QUADRATURE AMPLITUDE MODULATION
R	READ, RESISTOR, RIGHT, REVISION
R/W	READ/WRITE
RAM	RANDOM ACCESS MEMORY
RCVR	RECEIVER
REF	REFERENCE, REFURBISHED
REJ	REJECT

REM	REMOTE
RES	RESISTOR
RES VAR	RESISTOR VARIABLE, POTENTIOMETER
REV	REVISION
RF	RADIO FREQUENCY
RFI	RADIO FREQUENCY INTERFERENCE
RFL	REFLECTED
RIBB	RIBBON
RLY	RELAY
RMS	ROOT MEAN SQUARE
ROM	READ ONLY MEMORY
RST	RESET
RU	RACK UNIT 1 3/4"
RX	RECEIVING
S	SCHEMATIC
S/N	SERIAL NUMBER
SAT	SATELLITE
SAW	SURFACE ACOUSTIC WAVE
SCH	SCHEMATIC
SCHEM	SCHEMATIC
SCLK	SERIAL CLOCK
SCR	SILICON CONTROLLED RECTIFIER
SEL	SELECT, SELECTION
SHT	SHEET
SMA	SURFACE MOUNT ASSEMBLY
SMT	SURFACE MOUNT TECHNOLOGY
SN	SIGNAL TO NOISE
SND	SOUND
SNR	SIGNAL TO NOISE RATIO
SOT	SMALL OUTLINE TRANSISTOR
SPDT	SINGLE POLE DOUBLE THROW
SPL	SPLITTER
SPST	SINGLE POLE SINGLE THROW
STBY	STANDBY
STD	STANDARD
STEREO	STEREOPHONIC
SUBCARR	SUBCARRIER
SW	SWITCH
SYNC	SYNCHRONIZATION, SYNCHRONOUS
SYS	SYSTEM
TEMP	TEMPERATURE, TEMPORARY

Tera/ T	1.00E+12
TERM	TERMINAL
TERMBLK	TERMINAL BLOCK
THD	TOTAL HARMONIC DISTORTION
TOL	TOLERANCE
TP	TEST POINT
TPO	TRANSMITTER POWER OUTOUT
TSM	TECHNICAL SERVICE MANUAL
ТХ	TRANSMITTER, TRANSMITTING
U	UHF
UART	UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER
UHF	ULTRA HIGH FREQUENCY
UNFL	UNFLANGED
UPS	UNINTERRUPTIBLE POWER SUPPLY
UUT	UNIT UNDER TEST
V	VOLT, VOLTAGE, VHF
VA	VOLTAMPERE
VAR	VARIABLE
Vcc	MAIN POWER SUPPLY
VCO	VOLTAGE CONTROLLED OSCILLATOR
VCXO	VOLTAGE CONTROLLED CRYSTAL OSCILLATOR
VGA	VARIABLE GAIN AMPLIFIER
VHF	VERY HIGH FREQUENCY
VIO	VIOLET
VIS	VISUAL, VISION
VLSI	VERY LARGE SCALE INTEGRATION
VSB	VESTIGIAL SIDEBAND MODULATION
VSWR	VOLTAGE STANDING WAVE RATIO
W	WATT, WRITE, WITH
WHT	WHITE
WLAN	WIRELESS LOCAL AREA NETWORK
Х	REACTANCE
XFMR	TRANSFORMER
XLTR	TRANSLATOR
XMTR	TRANSMITTER
YEL	YELLOW
YR	YEAR
Z	IMPEDANCE