User Manual

WARNINGS

FOR SAFETY REASONS, THE DRIVER SHOULD NOT USE THIS DEVICE IN A VEHICLE WHILE IN MOTION TO ASSIST THE DRIVER TO NAVIGATE.

Please do not try and change any settings on the SporTrak while driving. Come to a complete stop or have your passenger make any changes. Taking your eyes off the road is dangerous and can result in an accident in which you or others could be injured.

USE GOOD JUDGEMENT

This product is an excellent navigation aid, but does not replace the need for careful orienteering and good judgement. Never rely solely on one device for navigating.

USE CARE

The Global Positioning System (GPS) is operated by the U.S. Government, which is solely responsible for the accuracy and maintenance of GPS.

The accuracy of position fixes can be affected by the periodic adjustments to GPS satellites made by the U.S. Government and is subject to change in accordance with the Department of Defense civil GPS user policy and the Federal Radionavigation Plan. Accuracy can also be affected by poor satellite geometry.

USE PROPER ACCESSORIES

Use only Magellan cables and antennas; the use of non-Magellan cables and antennas may severely degrade performance or damage the receiver, and will void the warranty.

LICENSE AGREEMENT

Thales Navigation grants you, the purchaser, the right to use the software supplied in and with Thales Navigation GPS products (the "SOFTWARE") in the normal operation of the equipment. You may make copies only for your own personal use and for use within your organization.

The SOFTWARE is the property of Thales Navigation and/or its suppliers and is protected by United States copyright laws and international treaty provisions; therefore, you must treat this SOFTWARE like any other copyright material.

You may not use, copy, modify, reverse engineer or transfer this SOFTWARE except as expressly provided in this license. All rights not expressly granted are reserved by Thales Navigation and/or its suppliers.

* * *

No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose other than the purchaser's personal use without the prior written permission of Thales Navigation.

© 2002 by Thales Navigation. All rights reserved.

Magellan[™] and SporTrak[™] are trademarks of Thales Navigation.

Table of Contents

Intro	duction	1
	SporTrak User Manual	1
	SporTrak GPS Receiver	2
Getti	ing Started	3
	Installing the Batteries	3
	Proper Handling - Signal Reception	4
	Power On	4
	Initialize	5
	Initialize for First Time Use	5
	Select Language	5
	Key Layout Screen	6
	Initialize Alert	6
	Select Approximate Position	6
	Getting a Fixed Position	9
	Saving Your Waypoint	9
Basi	c Operation	. 11
	Entering Information	11
	Navigation Screens	11
	Using the Status Screen	12
	Using the Position Screen	13
	Using the NAV 1 Screen	14
	Customizing the NAV 1 Screen	14
	Using the Compass Screen	15

	Customizing the Compass Screen	15
	Using the NAV 2 Screen	. 16
	Customizing the NAV 2 Screen	. 16
	Using the Plot Screen	17
	Selecting PAN-N-SCAN	. 18
	Setting Track History	. 18
	Clearing Track History	. 18
	Setting Up the Plotter	. 19
	Setting Hide Data/Show Data	. 20
	Using the Road Screen	. 21
	Customizing the Road Screen	. 21
	Using the Speed Screen	. 22
	Resetting the Odometer	. 22
	Resetting the Trip Odometer	. 23
	Setting the Speed Average	23
	Using the Time Screen	24
	Selecting Time Format	24
	Resetting Elapsed Time	. 25
Refe	rence	26
	Working with Waypoints	27
	Creating a User Waypoint	
	Editing a User Waypoint	. 28
	Creating, Editing, Deleting a Message	. 29
	Deleting a User Waypoint	29
	Finding a Non-UserWaypoint	30
	Sorting a Waypoint	. 30
	Projecting a Waypoint	30
	DataSend [™] CD (optional)	31
	Using DataSend [™]	31

Working with Routes	32
Creating/Clearing a GOTO	32
Creating a GOTO on the Plotter Screen.	32
Creating a Man Over Board Route	33
Creating a Backtrack Route	33
Creating a Multi-Leg Route	34
Viewing/Editing a Route	35
Inserting a Leg	35
Changing a Waypoint in a Route	35
Adding a Waypoint at the End of a Route	36
Deleting a Waypoint in a Route	
Saving a Route	
Activating/Deactivating a Route	36
Reversing a Route	37
Using Plot View in a Route	37
Deleting a Route	37
Working with TrackRoute	38
Auxiliary Functions	39
Working with Sun/Moon and Fish/Hunt	39
Selecting the Simulate Mode	40
Selecting Contrast	40
Selecting Alarm/Message	41
Accessing the Alarm/Message Menu	41
Selecting Anchor Alarm	41
Selecting Arrival Alarm	42
Selecting XTE Alarm	42
Selecting Proximity Alarm	42
Selecting GPS Fix Alarm	43

Viewing the Alarm/MSG Menu44
Selecting Alarm Defaults44
Clearing Alarm Defaults44
Selecting Language44
Customizing 45
Selecting Setup45
Selecting Initialize45
Disabling NAV Screens45
Selecting a Coordinate System46
Selecting Map Datum47
Selecting Elevation Mode47
Selecting Time Format48
Selecting NAV Units48
Selecting North Reference48
Selecting Light Timer49
Selecting the Beeper49
Selecting Personalize49
Selecting Clear Memory50
Selecting NMEA50
Selecting Baud Rate51
Troubleshooting52
Frequently Asked Questions53
Contacting Magellan56
Connecting to the SporTrak 57
WAAS 59
Available Datums60

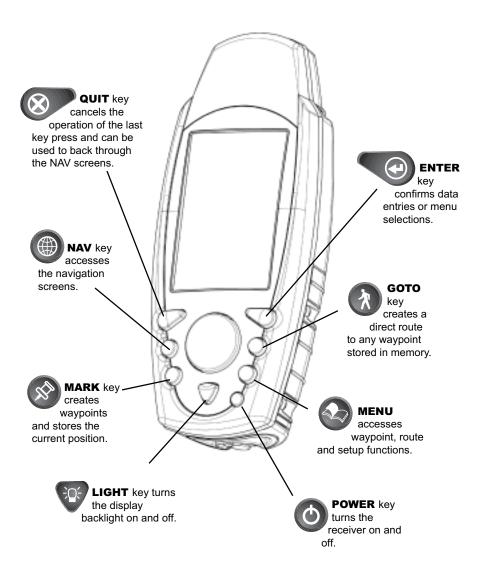
Specifications	61
Accessories	62
Glossary	63

Introduction

Congratulations on your purchase of the Magellan SporTrak GPS receiver. Since introducing the world's first commercial, hand-held GPS receiver in 1989, Magellan has led the way with innovative GPS products to meet a wide range of positioning and navigation needs.

The receiver is designed to get you out into the "Great Outdoors" rather than spending hours reading the user's manual. In order to get you outdoors quickly, the manual is designed with key sequences rather than wordy sentences.

Before you begin, make sure that your package includes all of the items listed on the packing list. Magellan is a trademark name for Thales Navigation.


SporTrak User Manual

The manual is divided into chapters: *Introduction, Getting Started, Basic Operation, Reference, Customizing, Troubleshooting* and *Glossary*. There are also subchapters that describe NMEA, Datums and Accessories.

It is very important that you read through the *Getting Started* chapter first as it prepares your receiver for use and provides basic instruction. The *Basic Operation* chapter describes the features found in your receiver including step-by-step instructions on their use.

The *Reference* section contains information to help you navigate using waypoints, routes and auxiliary functions. Following is the *Customizing* chapter, that allows you to establish options you want set in the receiver. The *Troubleshooting* chapter gives you a problem and answer series to guide you. The final chapter, *Glossary*, defines terms that may be unfamiliar to you.

SporTrak GPS Receiver

Getting Started

This section shows you how to use your receiver for the first time and explains:

- Battery Installation
- Primary Usage
- Getting a Fixed Position

Installing the Batteries

The Magellan SporTrak uses two AA batteries that are installed from the bottom through the battery cover. You can expect to get up to 15 hours of usage on two AA batteries with the backlight turned off.

To remove the battery compartment, loosen the retaining screw at the bottom of the battery compartment. The battery compartment will come free from the SporTrak and you can slide it out.

Install two AA batteries observing the correct polarity. Slide the battery compartment back into the SporTrak and tighten the retaining screw. Do not overtighten the retaining screw.

How much time do I have to replace the batteries? Any waypoints or routes you have created are stored in permanent memory with the batteries removed. Present position and time data is not stored in permanent memory but will be held in memory for at least 12 hours without batteries installed.

Always turn the SporTrak off before removing the batteries or turning off external power. Failure to do so can cause loss or corruption of data.

Proper Handling - Signal Reception

Clear View of the Sky. Because the receiver attains information it needs from satellites orbiting the earth, the antenna needs to have a relatively unobstructed view of the sky. This allows the receiver to choose from all satellites currently available.

If the view of the sky is poor, (large cliffs or buildings, heavy foliage or other obstructions) the satellite signals can be blocked and the receiver may take longer to compute a position fix.

Holding the Receiver. The receiver is designed to fit comfortably in your hand. Hold the receiver in the palm of your hand with the antenna pointing towards the sky.

You do not need to initialize your receiver each time you use it unless the memory has been cleared or if it has been transported more than 300 miles while turned off.

Power On

If after powering the receiver on, you do not press **ENTER** within 10 seconds, the receiver will shut off automatically.

Initialize

Initialize for First Time Use

The final step in setting up the SporTrak for the first time is to initialize the receiver . This will help your SporTrak begin computing your position in the fastest manner possible.

The reason for initialization is to speed up the process for computing the first position fix when the SporTrak has no last position computed in memory (i.e., when the SporTrak is brand new or memory has been cleared). This gives the SporTrak an approximate indication of where it is located so it can use its satellite almanac (stored in permanent memory) to estimate what satellites are overhead and which ones it should be looking for.

Follow these instructions to initialize the SporTrak.

Select Language

The first time you use your SporTrak (or if memory has been completely erased) you will be asked to select the language that you want to use. Use the UP/DOWN arrows on the keypad to highlight the language you desire. With the language highlighted, press the **ENTER** button. You can select English, French, German,

Spanish, Italian, Portuguese, Finnish, Norwegian or Swedish.

You can change the language at any time by accessing the Languages option of the Setup Menu. (See *Changing Languages* in the Reference Section of the User Manual.)

Key Layout Screen

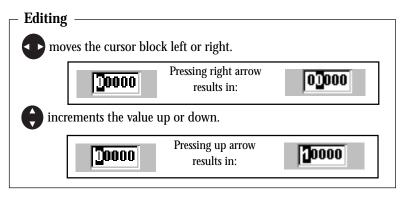
A screen is displayed showing the icons and text name for each key. When the SporTrak prompts you to press a key, it displays the text equivalent for the key icon. This screen should help you understand which key the SporTrak is prompting you to press. When you are done viewing this screen, press **ENTER**.

Initialize Alert

A screen is displayed informing you that the SporTrak is not initialized. Press **ENTER** to continue.

Select Approximate Position

Use the Up/Down arrows on the keypad to highlight your general region.



Use the Up/Down arrows on the keypad to highlight your area.

To use the arrow keys to edit a field, follow the simple diagram below.

You are prompted to enter the elevation of your present position. Use the arrow keys to enter the elevation, if you know it. If you don't know your elevation, press ENTER.

The cursor appears in the time field, waiting for you to input your local time. Set your local time using the arrow keys. Be sure that you set the AM/PM indicator.

Note: After the SporTrak starts to pick up signals from any satellite, it will automatically update the time using the satellite's atomic clock.

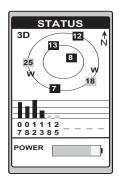
After you have entered the correct time, press

[ENTER].

Using the arrow keys, enter the present date.

Press "

[ENTER].


A screen will be displayed asking your primary use for your receiver, MARINE or LAND. The default is LAND. Use the arrow keys to select usage and press [ENTER].

	Land	Marine
Speed	SPD	SOG
Bearing	BRG	BRG
Distance	DST	DST
Heading	HDG	COG
Velocity Made Good	VMG	VMG
Course To Steer	CTS	CTS
Estimated Time of Arrival	ETA	ETA
Time To Go	TTG	ETE
Cross Track Error	XTE	XTE
Recorded Position	Landmark	Waypoint
Units of Measure	MILES/MPH	NM/KNOTS
	or KM/KPH	

The following chart shows the terminology that your receiver uses while in land or marine mode. For purposes of this manual, it will be assumed that the receiver is in the marine mode.

You have completed the *Initialization*. The STATUS screen will appear on your receiver.

Note: The "3D" in the upper left corner is displayed when the receiver has begun computing your position. The "3D" symbol indicated that the receiver has acquired four or more satellites and can therefore compute elevation as well as your position. If "2D" is displayed, then the SporTrak is computing your position but not elevation. This could be either due to only three satellites have been acquired or you

have set the elevation mode to 2D in the Setup Menu.

Getting a Fixed Position

Now you should go outside in an area where you can get a clear view of the sky. The receiver will begin acquiring data from the satellites in view and will display the progress on the *STATUS* screen. Once the receiver has computed a fixed position, the *POSITION* screen will be displayed.

Saving Your Waypoint

Once the receiver has computed your current position, you may save (MARK) this position as a waypoint. You can save up to 500 waypoints in your SporTrak and refer back to them at any time.

Saving Your Position with a Receiver-Created Name

This is a fast way to save your position.

Saving Your Position with a User-Created Name

This allows saving a position with a name that is more descriptive, such as "CAMP" or "HOME".

Creating a GOTO

A GOTO is a route that guides you from your current position to any waypoint in the receiver's memory.

This completes the *Getting Started* section. The following *Basic Operation* section will familiarize you with the NAV screens and more detailed functions.

Basic Operation

Entering Information

Throughout this user manual there are some key presses that will be used often, so please keep them in mind while setting up and navigating. When entering data...

- Use the for making selections and moving up or down.
- Use the **cursor** to the left or right and page through menus.
- Press return to the previous screen and to exit a screen or end a process.

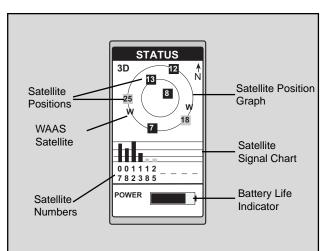
Navigation Screens

The nine NAV (Navigation) screens (*STATUS, POSITION, NAV 1, COMPASS, NAV 2, PLOT, ROAD, SPEED* and *TIME*) provide you with necessary information you will need to use the receiver as a navigational tool.

NAV screens can be viewed by pressing () from any screen. While

viewing any NAV screen, you can use the or to step through the sequence of NAV screens.

All screens, except *STATUS* and *POSITION* screens, can be disabled by turning them off in the NAV SCREENS portion of SETUP.


Once the receiver has computed a fixed position, the *STATUS* screen will be replaced by the *POSITION* screen.

The Battery Life Indicator was designed to be used with AA alkaline batteries. With AA lithium batteries, you will have more battery life available than shown on the Battery Life Indicator.

Using the Status Screen

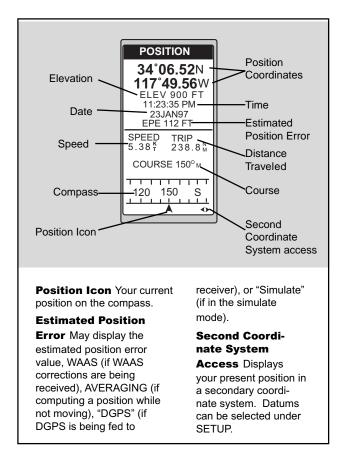
The *STATUS* screen gives you the general well-being of your receiver by showing you satellite status, signal strengths and battery life.

Satellite Positions

Where the satellite is located relative to your position.

Satellite Numbers Identifies the satellite shown on the chart and on the Satellite Position Graph.

Battery Life Indicator Shows approximate remaining battery life for batteries in the receiver.


Satellite Signal Chart Displays satellite signal strengths. When the receiver first tracks a satellite, the strength bar will not be solid until ephemeris is collected. This takes about 30 seconds if uninterrupted.

Satellite Position Graph The two circles indicate satellite elevation, the outer circle represents the horizon and the inner circle represents 45° from the horizon. The center of the circle is 90°.

WAAS Satellite WAAS is described in the back of the user manual.

Using the Position Screen

The *POSITION* screen displays the coordinates of your last computed position and basic navigation data. You also have the option of viewing your position using another coordinate system.

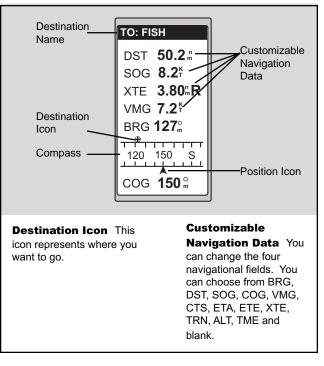
When you are stationary, the receiver begins the averaging mode. While averaging, the receiver continuously takes fixes to

takes fixes to create an average. Once you begin moving, averaging stops automatically.

Viewing the Secondary Coordinate Screen

From the POSITION screen, use the left/right ARROWs to view the Second Coordinate System access screen.

Ideally, when you are navigating, the Position Icon and the Destination Icon should line up, one above the other.

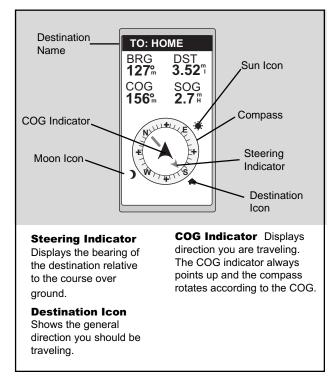

When the bearing to your destination cannot be displayed within the compass, an arrow will be displayed to indicate the steering direction you should be traveling.

	TOMIZE
BRG	027°m
DST	50.2nm
SOG	8.2KT
COG	056°m
VMG	7.2KT
CTS	028°m
ETA	01:09P
ETE	02H24M
XTE	L.2nm
TRN	L26°
ALT	83 ^F _T
TME	01:09P
BLAN	К

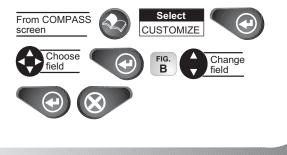
Figure A. Select the data field to appear on the NAV 1 screen.

Using the NAV 1 Screen

The *NAV 1* screen displays your destination along with four customizable navigation data and a graphical compass.


Customizing the NAV 1 Screen

The *NAV 1* screen can be changed to show the navigation data that you prefer to view.


Using the Compass Screen

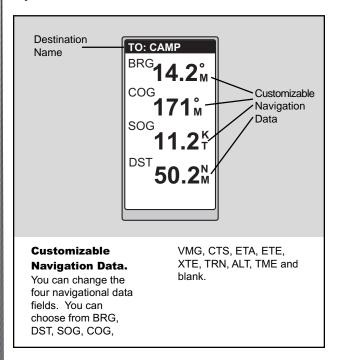
As well as displaying the customizable navigation data, the *COMPASS* screen provides a pointer compass to help you reach your destination.

Customizing the Compass Screen

The *COMPASS* screen can be changed to show the navigation data that you prefer to view.

When the COG Indicator and the Steering Indicator point in the same direction, you are on course.

The


NorthFinder™ feature displays sun and moon icons, above the horizon, for you to determine the direction of north and your destination. Align the sun on the COMPASS screen with the sun in the sky. When aligned, the Steering Indicator will point you in the direction you should travel to reach your destination.

CUS	TOMIZE
BRG	°m
DST	nm
SOG	KT
COG	°m
VMG	KT
CTS	°m
BLAN	К

Figure B. Select the data field to appear on the COMPASS screen.


Using the NAV 2 Screen

The *NAV2* screen displays four customizable navigation data. The *NAV2* screen is designed to help you see the screen when your receiver is mounted at a distance from you.

Customizing the NAV 2 Screen

The *NAV2* screen can be changed to show the navigation data that you prefer to view.

 CUSTOMIZE

 BRG
 027°m

 DST
 50.2nm

 SOG
 8.2kT

 COG
 056°m

 VMG
 7.2kT

 CTS
 028°m

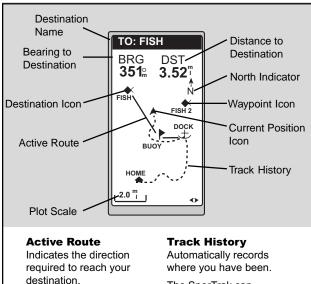
 ETA
 01:09P

 ETE
 02H24M

 XTE
 L.2nm

 TRN
 L26°

 ALT
 83°F


 TME
 01:09P

 BLANK
 01:09P

Figure A. Select the data field to appear on the NAV 2 screen.

Using the Plot Screen

The *PLOT* screen is a mini map that shows where you have traveled and where you want to travel. You can view the active route, your current position and the other waypoints and destination in the *PLOT* screen.

Plot Scale Can be changed by using the left/right arrows. The scale ranges from .1 to 200 miles.

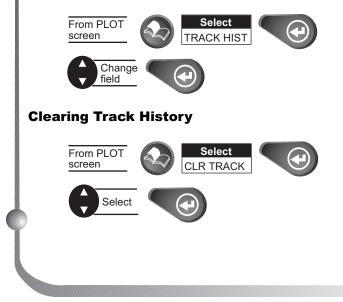
The SporTrak can

store up to 2000 track points.

PAN-N-SCAN, an additional feature. allows you to scroll through the *PLOT* screen enabling you to create waypoints and GOTOs.

Selecting PAN-N-SCAN

By using PAN-N-SCAN, you can look ahead or review where you have traveled according to waypoints, routes and track history.



The ARROWs can be used to move the cursor. If the cursor is over the waypoint icon when **MENU** is pressed, the menu will be displayed with WPT INFO added. Moving the cursor over a waypoint brings up the name, bearing and distance. Pressing **MENU** and selecting WPT INFO displays full information.

In PAN-N-SCAN mode, you can zoom in by pressing the ENTER key. Once the lowest scale is reached (0.1 mile), pressing ENTER zooms out to the highest scale (200 miles).

Setting Track History

Using TRACK HISTORY records where you have been by automatically storing locations, as "dropping bread crumbs" from your starting point as you travel. This is useful when you want to return to your starting point.

Setting Up the Plotter

This menu allows you to change the orientation, turn the plot rings on or off, set the course projection and set the plotter scale.


Setting Plotter Orientation.

Turning Plot Rings On or Off. You may want to estimate the distance to a point on the plotter. To assist you, turn the PLOT RINGS option on. The distance between each plot ring is equal to the scale, therefore, at most you will see a portion of 2 rings at one time.

Setting Up Course Projection. You may want to know where you will be after a specified period of time based on your current speed and heading.

A solid black line will appear starting from your position to the projected position.

Figure A. You can choose from TRACK UP (direction you are moving at the top of the screen), COURSE UP (destination of the current leg at the top of the screen) and NORTH UP (north at the top of the screen).

Figure B. You can choose from OFF, 1, 2, 5 and 10 minutes.

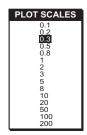
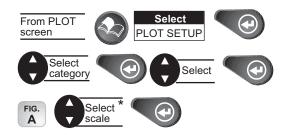



Figure A. You may select the scale for the waypoint to appear on the plotter. The number you select is the maximum scale in which the icon will appear.

Depending on which has been selected previously, you may need to select SHOW DATA to bring the fields into view.

Setting Up Plot Scales. You can set up the maximum scales at which the waypoints appear on the plotter screen.

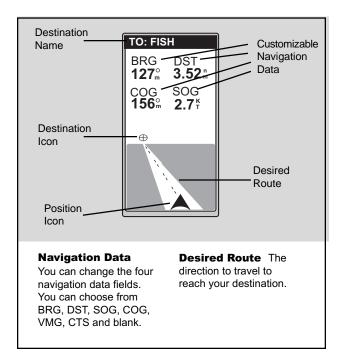
* Selecting OFF will turn the scales off. If you select either ICONS ONLY or ICONS/NAMES, you will be prompted to change the plot scales for a waypoint.

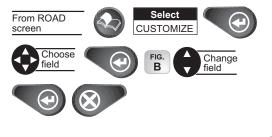
Setting Hide Data/Show Data

You may want bearing and distance to be hidden. You can choose to either hide these navigation data fields or have the fields present. Under HIDE DATA/SHOW DATA, you can turn these fields on or off.

Select

or

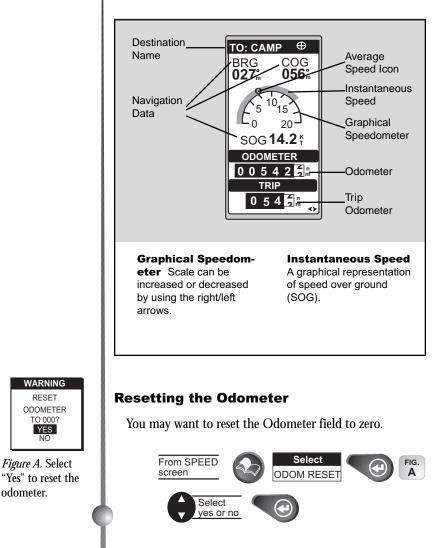



Using the Road Screen

The *ROAD* screen displays four customizable navigation data fields, at the top of the screen, and shows your position on the desired route.

Customizing the Road Screen

The *ROAD* screen can be changed to show the navigation data that you prefer to view.


When the destination icon is straight ahead, you are on course. If you are off course and the destination icon is off the screen, an arrow will appear to point you in the direction to get back on course.

CUS	TOMIZE
BRG	°m
DST	nm
SOG	
COG	°m
VMG	KT
CTS	°m
BLAN	К
	

Figure B. You can choose from BRG, DST, SOG, COG, VMG, CTS and blank.

Using the Speed Screen

While using the SPEED screen, you can view the graphical speedometer, odometer and trip odometer as well as the numerical bearing, course over ground and speed over ground.

WARNING

RESET

TO 000?

YES NO

odometer.

Resetting the Trip Odometer

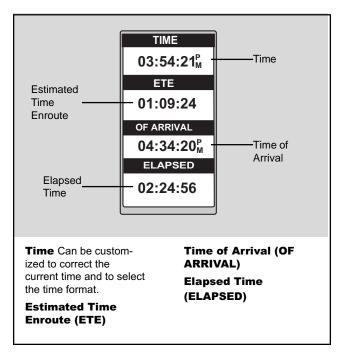
You may want to reset the Trip field to zero.

Setting the Speed Average

You may want to reset the Speed Average field in your receiver.

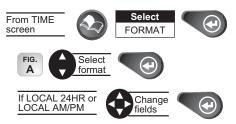
The default is 30 seconds.

Figure B. You can set the timing for Speed Averaging. You can choose from TRIP, 5, 30 seconds, 1, 5 minutes or 1 hour. TRIP option is for averaging speed over the entire trip.



The default for the *TIME* screen is off.

All data shown on the TIME screen applies to the route you are navigating in.


Using the Time Screen

The *TIME* screen displays the current time, estimated time enroute, time of arrival, and elapsed time in regards to the route you are navigating in.

Selecting Time Format

You may need to correct the current time or change the time format.

If UTM is chosen you will not be prompted to make the time change.

Figure A. You can choose from LOCAL 24HR, LOCAL AM/PM and UTC.

Resetting Elapsed Time

You may want to reset the elapsed time to zero.

You have completed the basic operation for your receiver. From the information provided, you can now navigate from place to place quickly and easily.

The following chapters provide you with additional information on using your receiver that build on what you have learned.

Reference

The *Reference* section contains information that will help you navigate using your receiver. Now that you have read the *Basic Operation* section, you have reviewed the basic usage. The *Reference* section will cover waypoints, routes, and auxiliary functions.

The *Working with Waypoints* section tells you how to create, edit, delete, project and sort waypoints. These functions will guide you in the uses of waypoints. You can create your own waypoints (known as User waypoints) or use the waypoints already in the receiver's memory (Non-User waypoints). You can store up to 500 user positions which can be used to build routes for navigation.

The *Working with Routes* section tells you of the four different types of routes consisting of GOTO, BACK-TRACK, MOB and MULTI-LEG ROUTE. A route is a planned course of travel defined by a series of waypoints saved in the receiver's memory. The receiver holds 20 routes with 30 legs. The route function allows you to create, activate/deactivate, view/edit or delete any one of the 20 routes.

The *Auxiliary Function* section tells you how to select the Sun/Moon and Fish/Hunt options, contrast, simulate mode and the alarms and message functions. You can choose from the Anchor alarm, Arrival alarm, XTE alarm, Proximity alarm and GPS Fix alarm. These alarms can be reset to the alarm default settings or can be cleared of defaults.

Following, you will find the *Customizing* section. Customizing allows you to use the Setup menu to establish the options you would like to set in your receiver.

Working with Waypoints

This section tells you how to edit, delete, project and sort waypoints. You can store up to 500 user positions which can be used to build routes for navigation.

Waypoints consist of two types, User and Non-User. The User types are made up of waypoints that you can save in the receiver's memory. You can edit and delete these waypoints, if you wish. The Non-User types display locations, their coordinates and a description. These are permanently stored in the receiver's memory and cannot be deleted unless written over by waypoints downloaded from the DataSendTM CD.

To help you understand the difference, the chart below shows the functions of the User and Non-User waypoints.

WPT Types	Available Functions
User	 Create Edit Delete Project Sort
Non-User	FindProjectSort

You can store up to 10 Non-User waypoint categories. As you are working with waypoints, you will notice that the cities (non-user waypoints) are divided into categories. This division is based on the population of the city using the following guidelines:

Major city	500,000+	
Large city	100,000 - 500,000	
Medium city	20,000 - 100,000	
Small city *	Less than 20,000	
* available with DataSend CD.		

Creating a User Waypoint

A waypoint is a recorded position that can be used in a route or a GOTO. You can save up to 500 user waypoints in your receiver. You can create a waypoint with a receiver-generated name (WPT001, WPT002, WPTxxx) by pressing:

To create a waypoint with a name of your choice or if you wish to change any data field while entering a waypoint, use the following:

Editing a User Waypoint

Editing a Selected Waypoint

Editing Waypoint Fields. Follow the instructions on selecting a waypoint and use the following to edit the desired fields.

Figure A. This menu allows you to select the edit waypoint mode. Only User waypoints can be edited.

Figure B. You may change any of the data fields in this screen.

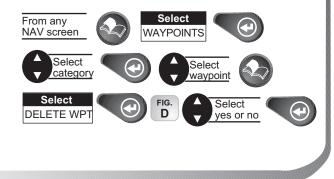
Magellan SporTrak

Creating, Editing and Deleting a Message

To create a message. Follow the instructions on selecting a waypoint and use the following to create/edit/delete a waypoint.

To delete a message. Follow the instructions on selecting a waypoint.

To save your edits. Follow the instructions on selecting a waypoint.



Deleting a User Waypoint

You may find that you have saved waypoints that you no longer use. If so, you can delete these unnecessary waypoints.

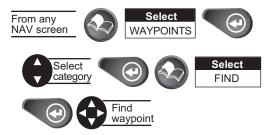
Once these waypoints are deleted, you cannot undo this process or retrieve these deleted waypoints.

EDIT WPT
CAMP ⊕
34°06.56N 117°49.60W
900 FT 11:23:35PM 12JUN97
CREATE MSG
SAVE EDITS 🔶

Figure C. Once you have made your changes, be sure to select SAVE EDITS.

Figure D. This screen prompts you to select YES or NO in deleting the waypoint named.

To find the waypoint use the ARROWs to change the letters. For example, to find Dodger Stadium, use the ARROWs to change the first letter to "D". Then use the ARROWs to find the second letter. "O". Continue until the name is found


Figure A. You can choose from ALPHABETIC (shows all waypoints), NEAREST (shows closest 20 waypoints) and ICON/NAME (cannot sort Non-User waypoints).

In the G.C. (Great Circle) BRG/DST field, you can input the bearing and distance into the data fields in order to compute the projection. You can also input information into the coordinate fields.

Finding a Non-User Waypoint

To simplify your search for a waypoint, you can find it using the smart scroll function.

Sorting a Waypoint

You may want to change how the waypoints are sorted.

Projecting a Waypoint

This function allows you to create a waypoint at a certain distance and direction from an existing waypoint.

You can change any of the three sections in the *PROJEC-TION* screen. Once you have the necessary information in the data fields and the receiver has projected the position, you can save the position by pressing (MARK].

DataSend[™] CD (optional)

DataSendTM software contains a database of waypoints that can be sent to your receiver and are broken down into multiple categories. The software allows you to select a geographical area and enable waypoint categories for that location to be transferred into the receiver.

Using DataSend™

After you have installed DataSendTM you are ready to view and send waypoints to the receiver. While running DataSendTM you will see a background map of the world that you can zoom in to see enabled waypoints.

If you want to send waypoints to your receiver, you must select the geographic area first, then from the waypoint list you can make your selection of waypoints to send. The software will compute the amount of memory required and whether your selection fits into your receiver. If it exceeds the available receiver memory, either the geographic area, list of waypoints selected, or both, can be decreased and the memory requirements recomputed. The list of waypoints selected in the specified geographic area can then be saved under a project name you enter.

You can then send the waypoints to the receiver which replace all waypoints in the receiver. The default waypoints that came with the receiver can be restored at any time.

Don't worry about losing the waypoints that came with the receiver, they are available on the CD for retransmission to the receiver.

Working with Routes

Creating/Clearing a GOTO

A GOTO is a route that guides you from your current position to any waypoint in the receiver's memory. As an example, you can save a waypoint at your home. No matter where you go, you will always be able to navigate back home by using GOTO.

To create a GOTO

To clear a GOTO. The CLEAR GOTO function allows you to delete an active GOTO route.

If there are no active GOTOs, the CLEAR GOTO will not be displayed in the **MENU**.

Creating GOTO on the Plotter Screen

A GOTO route can be created by selecting a waypoint on the plotter screen. While on the plotter screen, follow this procedure to access PAN-N-SCAN and set a GOTO by:

When the crosshair is over the waypoint icon, the waypoint name is displayed at the top of the screen.

Figure A. Your menu may differ depending the waypoints in memory.

By selecting the GOTO destination waypoint from the plotter screen, you can avoid selecting the wrong waypoint if its name is shared with another waypoint.

Creating a Man Over Board (MOB) Route

Another type of route is a Man Over Board (MOB). The MOB route is useful when you want to instantly create and activate a route to the last computed position.

MOB waypoints will be created and titled MOB001, MOB002 and so on. If a MOB already exists, the receiver will give you the option of replacing the MOB.

To clear a MOB. The CLEAR MOB function allows you to delete an active MOB route.

Creating a Backtrack Route

Backtrack creates a route that starts from the last point recorded in track history using the "bread crumbs" saved, to the first point recorded for track history. By following this route, you "retrace your steps" back to the starting point.

A route will be created and given a name in the format of BXXPxx. XX is the BACKTRACK number and xx is the waypoint number ranging from 01 to 31. For example, your first backtrack will read B01P01. The backtrack waypoints will be listed in the menu just as other waypoints.

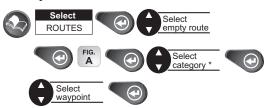

Figure A. Highlight the first dotted line to place the first waypoint in the multi-leg route.

Figure B. Use this menu as an option for saving your route.

Creating a Multi-Leg Route

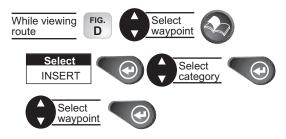
You may want to create a route with your saved waypoints. For example, if you want to create a route from your home, to a campsite and then to a favorite fishing spot, you can create a route that would take you to each place.

* You can combine waypoints of different categories in the same route.

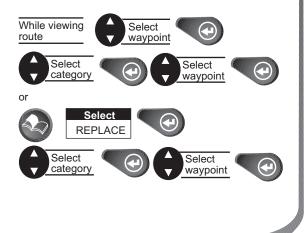
The receiver will display the selected waypoint in the starting location and will highlight the destination for leg 2.

Press for your next selection. Continue this process until you have completed the route.

To end the creation process:



When selecting a navaid for a route, be sure you are selecting the correct one because there may be navaids with the same names in different parts of the world.


Viewing/Editing a Route

Inserting a Leg. With the route you have created, from your home to a campsite, you can insert a leg in the route. For example, on your way to the campsite, you find a stream that you want to stop at on your way back. You can add the waypoint for the stream to your route.

Changing a Waypoint in a Route. Using your home to campsite route, you want to go to the fishing spot on the way to the campsite and not stop at the stream. You can replace the stream waypoint with the fishing spot.

Figure C. To view or edit a route, highlight View/ Edit.

VIEW/EDIT
HOME CAMP
SAVE ROUTE
LEG BRG DST 30° _m 10 ^M ∳

Figure D. You can add to an already existing route by highlighting the next available dotted line.

Figure A. Highlight the waypoint you want deleted.

Figure B. Use this menu as an option for saving the changes made to your route.

Figure C. The menu may read Deactivate, depending on which was chosen previously. Adding a Waypoint at the End of a Route. You may be navigating using the home to campsite route and find a great picnic spot. You would want to add this to the end of your route.

Deleting a Waypoint in a Route. On your next trip navigating from the home to campsite route, you find the campsite has closed. You may want to delete the campsite leg from your route.

Saving a Route. Once you have made changes to your route, you may want to save those changes.

Activating/Deactivating a Route. While navigating in your route from home to campsite, you may decide you want to activate (turn on) the home to campsite route and begin navigating.

While navigating in your route from home to campsite, you may decide you want to deactivate (turn off) the route and return to it later.

Reversing a Route. Once you have reached the end of your route, you can reverse the route to return home. For example, Camp...Fish, goes from A to B to C to D, reversed would read from D to C to B to A and the title would read Fish...Camp.



Using Plot View in a Route. While navigating in your route, you can view the entire route in a small screen overview with the use of Plot View.

Deleting a Route. After your last trip using your home to campsite route, you decide you no longer want to visit those sites. You can delete the route from your receiver.

Figure D. The route title will change when you reverse a route.

Figure E. Use this menu for accessing Plot View in a route.

Working with TrackRoute

TrackRoute consists of track points collected by the Track History function. A track can be up to 2000 points in size.

Activating. By activating the TrackRoute at the top of the ROUTE MENU, you can navigate from the first created track point to the last track point, making a reverse BACK-TRACK. This turns the Track History logging off to keep from overwriting track points in memory. The top of the navigation screens will indicate TO: LEGXXXX where XXXX is between 0 to 2000. As you navigate with the receiver and pass individual track points, the legs will switch and countdown until you reach LEG 0 which is your final destination.

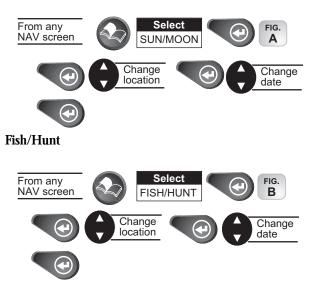
Deactivate. When TrackRoute is deactivated, Track History logging begins. The track points will be overwritten once the receiver records new position fixes.

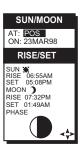
Reverse. This reverses the TrackRoute or the track in Track History.

Delete. This erases the track points in Track History.

Backtrack. This activates BACKTRACK Route by saving the Track History as a 30 leg route and activating it.

There may be some track points that are close to each other causing the receiver to skip 1 or more of these legs.


Magellan SporTrak


Auxiliary Functions

Working with Sun/Moon and Fish/Hunt

The Sun/Moon function displays solar and lunar calculations and the Fish/Hunt function displays times for excellent and good Fishing/Hunting. The default will be the current position unless the function is accessed from a waypoint menu or waypoint information screen.

Sun/Moon

Figure A. You can change the location (AT) and/or the date (ON) for the calculation.

Figure B. You can change the location (AT) and/or the date (ON) for the calculation.

Figure A. If USER is selected, you will be asked to input SOG and COG.

Figure B. Use the cursor to adjust the screen to your preference.

Selecting the Simulate Mode

The Simulate mode will help you become familiar with your receiver and how it works by generating artificial position fixes. By utilizing Simulate, the receiver will create a route and will continue until you end it. In order to end and delete the created route, you can return to the window (where you initiated the mode) and select OFF or power the receiver off.

Default setting: OFF

Both AUTO and USER modes generate a route and simulate navigation using that route. AUTO mode uses a speed of 25 mph and automatically generates a COG to follow the route. USER mode allows you to set the speed and COG to values you enter.

If your receiver is not computing a position fix after exiting Simulate mode, you may need to reset your present position by reinitializing. This is due to the Simulated position being more than 300 miles from your actual present position.

Selecting Contrast

You may want to change the contrast of your receiver. You can adjust the brightness depending on your preference.

Selecting Alarm/Message

Accessing the Alarm/Message Menu

While navigating, you may decide to set an alarm. The receiver has five types of alarms: Anchor alarm, Arrival alarm, XTE alarm, Proximity alarm and GPS Fix alarm. To access the Alarm/MSG menu:

Selecting Anchor Alarm

The Anchor alarm will notify that you have moved from the set position. For example, while boating, you can set your Anchor alarm. Once anchored, your boat begins to drift from the set position, a pop-up window will appear to notify that you are moving.

The alarm will sound when the GPS position is at a distance greater than the distance you have chosen. The alarm will sound until turned off or the condition is corrected.

Default setting: OFF

ATTENTION WPT001 IS WITHIN 100^F ROCKS ON LEFT

When the pop-up window for an alarm is displayed, the distance and a message, if there are any messages, will appear.

ANCHOR	h
OFF	1
100FT	I
250FT	I
500FT	

Figure C. You can choose from OFF, 100, 250 or 500 feet.

Figure A. You can choose from OFF, 100, 250, 500 feet, 0.2, 0.5 and 1.0 miles.

Figure B. You can choose from OFF, 100, 250, 500 feet, 0.2, 0.5 and 1.0 miles.

Selecting Arrival Alarm

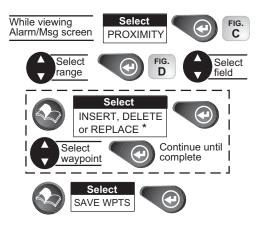
The Arrival alarm will notify you when you are within the arrival circle of the destination waypoint.

The alarm will sound and a pop-up window will appear when the GPS position is within the arrival circle you have chosen. The pop-up window will display the arrival circle distance as well as any message you have inputted for the waypoint. The alarm will sound until turned off.

Default setting: OFF

Selecting XTE Alarm

The XTE (Cross Track Error) alarm will notify you when you have gone off your set course.

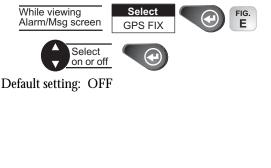


The alarm will sound when the GPS position is off your set course by the distance you have chosen. The alarm will sound until turned off or the condition is corrected.

Default setting: OFF

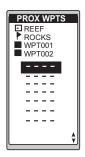
Selecting Proximity Alarm

The Proximity alarm will sound when you are within the proximity of any waypoints you have chosen that are not on the active route.


* DELETE and REPLACE will be displayed only if you select a used waypoint field.

The alarm will sound and a pop-up window will appear when the GPS position is within the proximity distance you have chosen. The pop-up window will display the proximity distance as well as any message you have inputted for the waypoint. The alarm will sound until turned off.

Default setting: OFF


Selecting GPS Fix Alarm

The GPS Fix alarm allows the Poor GPS alarm to be turned off. Therefore, when the GPS reception is poor, you will not be notified.

PROXIMITY
OFF
100FT
250FT
500FT
0.2 MI
0.5 MI
1.0 MI

Figure C. You can choose OFF, 100, 250, 500 feet, 0.2, 0.5 and 1.0 miles.

Figure D. You can select any saved waypoint to list on the Proximity waypoint screen.

GPS ALARM	1
OFF	
ON	

Figure E. You can choose from OFF or ON.

MENU	
DEFAULTS CLEAR MSG	
WAYPOINTS ROUTES SETUP SUN/MOON FISH/HUNT CONTRAST ALARM/MSG	

Figure A. You can restore the default settings or clear all messages.

Figure B. The screen verifies the selection you made.

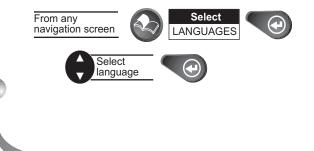
Figure C. Once cleared you cannot retrieve this information.

Viewing the Alarm/MSG Menu

While viewing Alarm/Msg screen

Selecting Alarm Defaults

After a memory clear, you may want to restore the alarm default settings.


Clearing Alarm Defaults

The message buffer may become cluttered with information. You can use the CLEAR MSG to delete the messages.

Selecting Language

Use the following steps to change the language (English, Spanish, German, Italian, Swedish, French, Norwegian, Finnish or Portuguese) of the Magellan SporTrak.

Customizing

Selecting Setup

Setup allows you to initialize the receiver and set system parameters to your preference.

Selecting Initialize

By initializing your receiver, you establish the initial position for the receiver. This will enable the receiver to search the sky for available satellites. You will need to reinitialize if you have traveled more than 300 miles while the receiver is turned off. To initialize:

Follow the steps requested to initialize, as done when the receiver was initialized the first time (see *Getting Started*).

Disabling NAV Screens

You may find that you do not use one, or more, of the nine NAV screens provided in the receiver. You have the option to disable NAV screens, except for the *STATUS* and *POSITION* screens.

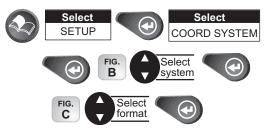
Figure D. Refer to this screen anytime you want to access Setup.

Figure E. If you need to initialize again, make this selection.

The default for the TIME screen is off.

Figure A. You can turn NAV screens on or off.

Figure B. You can choose from LAT/ LON, UTM, TD, OSGB, Irish, Swiss, Swedish, Finnish, German, French, MGRS and User Grid.

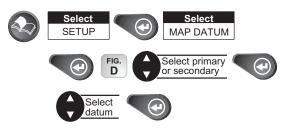

Figure C. You can choose from DEG/ MIN.MM, DEGMIN.MMM or DEG/MIN/ SEC. The screen will be different for other coordinate systems.

The COMPASS screen is displayed next with the same popup menu. You will continue to be prompted for the other NAV screens.

Selecting a Coordinate System

A coordinate system is provided for you. This option allows you to select primary and secondary coordinates used for entering and viewing position information. The most common is LAT/LON.

If a format is required for the coordinate system you have chosen, a pop-up menu will be displayed.


The default primary coordinate system will be Lat/Lon in Degrees/Minutes and the default secondary coordinate system will be UTM.

You will want the receiver to use position coordinates in the same map datum that is used by your maps.

Selecting Map Datum

You can change the datum the receiver uses to compute position coordinates. You will want your receiver's datum to match the datum on the map or chart you are using. Use the map "legend" to determine the datum required for the map or chart. If you are not using a map or chart or are unsure which datum to use, select WGS84.

Default setting: WGS84

Selecting Elevation Mode

You have the option of changing your elevation mode to 2D (2-Dimensional) or 3D (3-Dimensional). You may find 2D useful if you know the elevation of your position and the elevation will not change. Your receiver will compute elevation in 3D mode but will not in 2D mode.

If you select 3D, the receiver will return to SETUP. If 2D is selected, the receiver will ask for elevation.

Default setting: 3D

Figure D. Be sure the map datum matches the datum required for the maps or charts you are using.

Figure E. You can choose from 2D or 3D.

Figure F. If you are at sea level, you can use 2D because your elevation is zero.

Figure A. You can access Time Format from this menu.

Figure B. You can choose from LOCAL 24HR, LOCAL AM/PM or UTC.

Figure C. You can choose from MILES/MPH, NM/KNOTS and KM/KPH.

Figure D. You can choose from TRUE, MAG-NETIC, MILS TRUE or MILS MAG.

Selecting Time Format

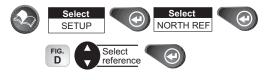
You have the option of changing the format for the time.

If UTC is selected, the receiver will return to SETUP. If LOCAL 24HR or LOCAL AM/PM are selected, a pop-up menu will be displayed prompting you to input the correct time.

Default: Local AM/PM

Selecting NAV Units

You can choose the units of measure used by your receiver.



Default setting is MILES/MPH for land use in the United States and KM/KPH for land use outside the United States.

Default setting is NM/KNOTS for marine use.

Selecting North Reference

The receiver uses magnetic north as a default reference for all navigation computation. You can change this to true north (good, if you are using a map) or back to magnetic north (default, good to use if you are using a compass), or mils true or mils mag under SETUP.

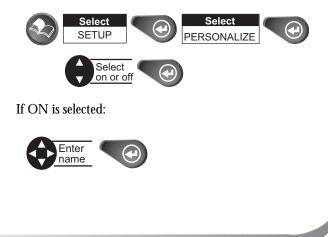
Default setting: MAGNETIC

Selecting Light Timer

The light timer is a power saving function that automatically turns the light off.

Default setting: ALWAYS ON

Selecting the Beeper


You can select the options for when the beeper will sound.

Default setting: KEYS/ALARM

Selecting Personalize

With the personalize function, you have the option of inputting your name into the receiver.

Figure E. Once the timer turns the light off, it can be turned on with the next key press. Suppose you select the timer setting for 30 seconds. Press the light key to turn the light on, it remains lit. With the next key press, the light turns on again for 30 seconds. This continues until you turn the light or the receiver off.

Figure F. You can choose from OFF, KEYS ONLY, ALARM ONLY and KEYS/ALARM.

Selecting Clear Memory

The Clear Memory function allows you to delete track history, waypoints and routes as well as reset the settings to the factory defaults. There is also an option to delete everything in the receiver's memory. Use caution when accessing the Clear Memory function. **Once you have deleted**, **you cannot undo the process or retrieve this deleted data**.

If you clear all memory, the receiver will clear everything and power itself off.

Selecting NMEA

Your receiver can be set to output GPS data to interface with your personal computer.

Default setting: OFF

CLEAR MENU TRACK HIST WPT/ROUTES BACK WPTS ROUTES RESET DFALT ALL

Figure A. You can choose from TRACK HIST, WPT/ROUTES, BACK WPTS, ROUTES, RESET DFALT and ALL.

Figure B. You can choose from OFF, V1.5 APA, V1.5 XTE and V2.1 GSA.

Magellan SporTrak

Selecting Baud Rate

Connection to external devices requires that the baud rate of the data being sent or received by the receiver be matched to the baud rate of the external device.

Troubleshooting

Receiver will not turn on:

- 1. Check to see if batteries are installed correctly.
- 2. Replace with two new AA alkaline or lithium batteries.

Takes more than 10 minutes to get a position fix:

- 1. If there are any obstacles nearby or overhead, move to a new location.
- 2. Make sure that the antenna is pointing up, has a clear view of the sky and is a reasonable distance away from your body.
- 3. Check Satellite Status to see where the satellites are and if the receiver is acquiring data.
- 4. If the receiver still does not get a position fix within 10 minutes, you may wish to repeat the initialization procedure.

Battery life seems shorter than it should be:

- 1. Make sure that you are using two AA alkaline or lithium batteries.
- 2. Shorter life span of the batteries can be due to excessive use of the backlight. **Turn the backlight off when not needed.**

Position coordinates on your receiver do not match the location on your map.

- 1. Make sure that your receiver is set up to use the same datum as your map. The map datum is generally shown in the map legend. See *Map Datum* under *Reference* for instructions on selecting the map datum in your receiver.
- Check your LAT/LON format. Make sure that the format selected in COORDINATE SYSTEM (DEG/MIN/SEC or DEG/ MIN.MM) is in the same format as the map you are using.

Data was not saved or was corrupted.

1. This can be caused because you removed the batteries or removed external power while the SporTrak was turned on

SporTrak turns off unexpectedly.

1. This is commonly caused by excessive static electricity. Turn the receiver back on and it should operate normally. Move the SporTrak to a different location to avoid a similar occurrence.

Frequently Asked Questions

General

What is the difference between degrees/minutes/seconds (DEG/ MIN/SEC) and degrees/minutes/minutes (DEG/MIN/MMM or DEG/MIN/MM)?

> There are different ways in expressing the coordinates computed using Lat/Lon coordinate system. With DEG/MIN/SEC the final set of numbers (SEC) is expressed as 0-59 while DEG/MIN/MM expresses the same value as 0-99 and DEG/MIN/MMM is from 0-999. It would be the same as if you had one clock that expressed time as hour/minutes/seconds and another clock that expressed the same time as hours/minutes/ decimals. The accuracy for any of the three is the same. Which you choose is dependent upon your preference or any chart you are using at the same time. (You should always make sure that your SporTrak is setup to be the same as any map or chart you may be using.)

What is 2D vs. 3D?

The difference is primarily how many satellites are used to compute the position fix and how elevation is computed. In 2D (two-dimensional) only three satellites are needed for a position fix and elevation is not computed. Any elevation displayed by the SporTrak during 2D operation is the elevation you entered. In 3D (three-dimensional), a minimum of four satellites are needed to compute the position and at the same time, elevation is computed by the SporTrak.

How long can I expect my SporTrak to run on a fresh set of batteries?

Under normal operating conditions you should get up to 15 hours of use while the display backlight is turned off. This duration will drop significantly if you use the display backlight.

How often do I need to initialize the SporTrak?

Initializing the SporTrak decreases the time it takes to get a position fix during cold start. What is meant by a cold start is that the SporTrak has no reference to use as a guide to tell it what satellites should be overhead. Without a reference to start with, the SporTrak will have to "search the sky" trying to find any satellite that may be in "view." This takes time and can increase the time it takes to get its first position fix. (Can take 10 minutes in severe conditions.)

So where does this reference come from? Under normal operating conditions, the last position fix computed before the SporTrak was turned off is stored into memory and will be used as the reference the next time the SporTrak is turned on. However, if you cleared the memory (see Clearing Memory - All in the Reference Chapter) this stored reference point is removed from memory and you probably will want to initialize the receiver again. Also, if you travel with your SporTrak for more than 500 miles with it turned off, it will still have the reference point but it may be too inaccurate to be useful and again, you may want to initialize the SporTrak.

Navigation Screens

Why does my compass not point in the right direction?

The SporTrak computes direction by comparing your present position to the last position taken, it requires that you be moving to compute your compass heading. Furthermore, to eliminate error, you must be moving at a minimum of 0.5 mph.

Routes

What is a backtrack route?

A backtrack route allows you to "retrace" your steps. As you are moving, the SporTrak automatically creates and stores hidden waypoints into memory. These waypoints are the ones that the SporTrak will use to retrace your steps. When you create a backtrack route, the SporTrak converts these hidden waypoints into User Waypoints.

How do I know which route is active?

Access the route menu by pressing the MENU button and select the option Routes. The route menu lists all of the routes in memory with the active route displayed in bold characters.

Alarms

Why does my SporTrak not make an audible beep when I have an alarm active?

Check your setup settings for the Beeper. If the selection is Off or Keys Only, the beeper will not sound for alarms.

Output Data

What is NMEA?

NMEA (National Marine Electronics Association) is the standard used for interfacing marine electronic devices. This standard has also been adapted for use in a variety of third-party mapping software programs.

My GPS is not communicating with my computer. What can I do?

Check your baud rate and check the baud rate that your software is using. If they don't match, change either the software's or the SporTrak's baud rate (*See Setup - Changing the Baud Rate.*)

Can I interface my SporTrak with a Macintosh computer?

Magellan does not supply cabling or software for the Macintosh line of computers. For information on a cable or software that may meet your requirements, visit GPSy at www.gpsy.com on the internet.

Contacting Magellan

If after using the troubleshooting section, you are still unable to solve your operation problems, please call Magellan's Technical Service at (800) 707-9971.

Representatives are available Monday through Friday from 7 AM to 5 PM, PST. Faxes can be sent to Customer Service at (909) 394-7070.

If necessary, you can also return your receiver to Magellan for repair. Before returning the receiver you must get a Return Materials Authorization (RMA) from Magellan. To get an RMA, contact a Magellan Technical Service Representative at (800) 707-7845 or you can send an email explaining your reasons to magellanrma@thalesnavigation.com. After receiving the RMA number, ship the receiver by Parcel Post or UPS. Include a description of the problem, your name, address, a copy of your sales receipt and print clearly on the outside of the package the RMA number assigned. If your return ship address is different, please indicate.

With all correspondence, please state the model of your receiver and if calling, please have your receiver with you.

Packages should be sent to:

Thales Navigation Magellan Products 960 Overland Court San Dimas, CA 91773 ATTN: <RMA Number>

Additional information regarding software updates to your SporTrak can be found in the Product Support section of the Magellan web site (www.magellangps.com).

Customers outside of the United States should contact the Magellan distributor for your country. A detailed address of each distributor can be found at www.magellangps.com/frames/frame_stores.htm.

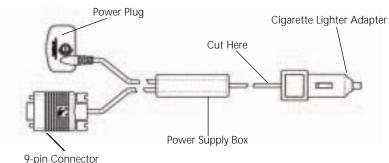
Magellan[™] is a trademark of Thales Navigation.

Connecting to the SporTrak

Available as accessories for your GPS receiver are the following cables: External Power Cable with Cigarette Lighter Adapter, Power/Data Cable, Data Cable and PC Cable with Cigarette Lighter Adapter. The instructions given below apply to all cables, unless otherwise stated.

Connecting directly to the SporTrak. Using the captive screw that is attached to the plug, tighten into the back of the

the plug, tighten into the back of the receiver.


If you are connecting to the SporTrak while it is mounted in the Mounting Cradle, attach the cable through the back of the cradle. It is not necessary to tighten the captive screw to the SporTrak, although you may do so for added security.

Connecting to an External Power Source

If using the cable that comes with the cigarette lighter adapter, simply connect it to the cigarette lighter outlet. If you wish to make a permanent mount to a power supply, cut the cable between the power supply box and the cigarette lighter adapter. Attach the red (+) and black (-) wires to your external power source. The input voltage range for external power is 9-18 VDC.

<u>Caution:</u> Do not bypass the power supply box or you will damage your unit and void the warranty.

Connecting to a Data Source

Data Connection Pinout (PC and Data cables only) This is the pinout looking into the 9-pin female connector

Pin 2: Data Out Pin 3: Data In Pin 5: Ground

Cable Wiring Color Code

Power

Red: Power + Black: GND

Data (Power/Data, PC cable & Data cable only) Yellow: Data In Orange: Data Out Black: GND

WAAS

Your Magellan GPS receiver has been upgraded to include the latest WAAS (Wide Area Augmentation System) technology. With WAAS your GPS receiver can compute position locations with an accuracy never before possible in a commercial receiver.

What is WAAS? WAAS is a means of improving the accuracy of GPS beyond the standard civilian signal. WAAS was developed by the FAA to provide the accuracy needed for aircraft to perform approaches for landings. WAAS improves the accuracy of GPS by calculating the errors in the GPS signal at several monitoring stations around the country and then transmitting the error corrections to special WAAS satellites. In turn, these satellites broadcast the error corrections to WAAS-capable GPS receivers around the world.

WAAS is a free service and, with the small exception of two additional satellites displayed on the Satellite Status screen, it will be transparent to you. There is nothing you need do, it's all ready to go.

How accurate will my GPS receiver be with WAAS? The FAA reports that expected accuracy can be improved to around 7 meters vertically and horizontally. Our own testing suggests that Magellan GPS receivers will typically experience accuracy improvements to around 3 meters. You can expect to see this level of accuracy for 95% of the time that you are receiving WAAS signals.

What are some of the problems with WAAS? The signal coverage with WAAS is not global like GPS satellites. In some locations, receiving WAAS signals can be difficult and intermittent. There are two satellites transmitting WAAS for corrections in the Americas and two more over Africa and India providing similar coverage for Europe. These satellites are geostationary, i.e., they stay in the same spot over the Earth equator. The two satellites for the Americas are over the Pacific and Atlantic Oceans. Chances are then, they will probably be near the horizon from where you are using your GPS receiver. This increases the chance that buildings, foliage, terrain and other obstacles could block the WAAS signal.

Also WAAS is a relatively new system and is still in its developmental stage. So on occasion you may experience service outages. Even during these outages, your GPS receiver will still be working, computing position fixes and helping you get to where you want to go using the GPS signals. The only difference is you will not be getting the precision that WAAS was providing. You can expect to see these outages diminish as the system matures and stabilizes.

For more information on WAAS, you can visit the FAA website's section on their WAAS system: http://gps.faa.gov/programs/WAAS/waas.htm

Available Datums

Datum	Full Name	Datum	Full Name
WGS84	World Geodetic System	IRELA	Ireland 1965
NAD27	North America 1927	KAUAI	Kauai
NAD83	North American 1983	KERTA	Kertau 1948
ADIND	Adinda	KKJ	KKJ (Finland)
ALASK	Alaska	LIBER	Liberia 1964
ARC50	Arc 1950	LUZON	Luzon
ARC60	Arc 1960	MASSA	Massawa
ASTRO	Camp Area Astro	MAUI	Maui
AUS66	Australian Geodetic 1966	MERCH	Merchich
AUS84	Australian Geodetic 1984	MINNA	Minna
BOGOT	Bogota Observatory	MONTJ	
BUKIT	Bukit Rimpah	NAHRW	Nahrwan, Saudi Arabia
CAMPO	Campo Inchauspe	OAHU	Oahu
CANAD	Canada	OEGYP	Old Egyption
CAPE	Cape	OHAWA	Old Hawaiian
CARTH	Carthage	OMAN	Oman
CENAM	Central America	PITCA	Pitcairn Astro 1967
CHATH	Chatham 1971	QATAR	Qatar National
CHUAA	Chau Astro	QORNO	Qornoq
CORRE	Corrego Alegre	RT90	RT90 (Sweden)
CYPRU	Cyprus	SAM56	Provisional So. Am.
DJAKA	Djakarta (Batavia)	5111100	1956
EGYPT	Egypt	SAM69	South American 1969
EUROP	European 1950 (All of Europe)	SCHWA	Schwarzeck
EUR50	European 1950 (W. Europe)	SICIL	Sicily
EUR79	European 1979	SIERR	bieny
GANDA	Gandajika Base	SWISS	
GEO49	Geodetic Datum 1949	TANAN	Tananarive Observatory
GHANA		1/11/11/	1925
GRB36	Ordinance Survey of GB, 1936	THAI	Indian (Thailand,
GUAM	Guam		Vietnam)
GUNSG	G. Segara	TIMBA	Timbalai
GUNSR		TOKYO	Tokyo
HAWAI	Hawaii	USER DEFIN	e e e e e e e e e e e e e e e e e e e
HERAT	Herat North	VOIRO	
HJORS	Hjorsey 1955	WGS72	World Geodetic System
HUTZU	Hu-tzu-shan		1972
INDIA	Indian (India, Nepal)	YACAR	Yacare
IRAN	Iran	ZANDE	Zanderij
		Mag	gellan SporTrak

CHARACTERISTICS

Performance

Receiver	12 parallel-channel technology, tracks up to 12 satellites to compute and update information with quadrifilar antenna		
Acquisition Tir	Acquisition Times (under optimal conditions):		
	Hot Warm Update Rate	approximately 15 seconds approximately 1 minute 1 second continuous	
Accuracy			
Position	7 meters, 95% w/WAAS <3 m	2D RMS 1eters, 95% 2D RMS	
Velocity	0.1 knot RMS	0.1 knot RMS steady state	
Limits:			
Speed	951 mph		
Altitude	17,500 meters		
Physical:			
Size	5.6" x 2.2" x 1. 14.2 cm x 5.6 c	15" [h] x [w] x [d] m x 2.9 cm	
Weight	6 ounces (170 g	grams) with 2 AA batteries installed	
Display	2.2" x 1.33" [h 5.59 cm x 3.88 high contrast L		
Housing	Weatherproof c	onstruction, wraparound rubber armor	
Temp. Range			
Operating	14°F to 140°F	to (-10°C to 60°C)	
Storage	-4°F to 158°F (-20°C to 70°C)	
Power:			
Source	2 AA alkaline b	atteries or 9-18 VDC with power cable	
Battery Life	Up to 15 hours		

Accessories

Accessories for your receiver are available from your Magellan dealer or you can order directly from Magellan at (800) 669-4477 (press 3 to place an order).

Swivel Mounting Bracket: Mounts the receiver on a surface, allowing for hands-free operation.

Vehicle Mounting Bracket: Full swivel and tilt for easy viewing in any vehicle.

Bike Mounting Bracket: Mounts the receiver on the handlebars of a bicycle, motorcycle or off-road vehicle.

Carrying Case: The carrying case provides a way of carrying the SporTrak on your belt while at the same time protecting it from the elements.

Power/Data Cable (Bare Wires): Allows you to connect your receiver to external power and data.

PC Interface Cable with Cigarette Lighter Adapter: Connects your receiver to your PC for data transfer and to a cigarette lighter for external power.

External Power Cable with Cigarette Lighter Adapter: Allows you to connect the receiver to a cigarette lighter for external power.

PC Cable: Allows you to connect the SporTrak to a PC.

DataSendTM CD-ROM: The software contains a database of points of interest that can be sent to your receiver. You can select from a number of geographical locations and download them into your receiver.

Glossary

Active Leg	The segment of a route currently being traveled.
Altitude	The current elevation above sea level.
BRG	Bearing. The compass direction from your position to a destination, measured to the nearest degree.
Buoy	A navigation aid (usually found in marine charts) that is floating in water. The position can vary due to the magnitude and direction of the current.
COG	Course Over Ground. The direction the receiver is moving. COG can be reported in true or magnetic north values.
Coordinates	A unique numeric or alphanumeric description of the position.
CTS	Course to Steer. The direction you should be traveling in order to return to the course while proceeding towards the destination. It is a "compromise" course bearing that projects from your current position to a point on the courseline mid-way between a point perpendicular to your position and the current leg destination waypoint.
Datum	Refers to the theoretical mathematical model of the earth's sea level surface. Map makers may use a different model to chart their maps, so position coordinates will differ from one datum to another. The datum for the map you are using can be found in the legend of the map. If you are unsure of which datum to use, use WGS84.
Default	The value or setting automatically chosen by the unit unless otherwise directed. Can be changed in Setup.
DST	Distance. Distance from position to destination.

Ephemeris	The position and velocity of the satellites in the sky. The receiver uses the ephemeris to calculate the precise distance from the GPS receiver to the satellite.
ETA	Estimated Time of Arrival. The estimated time of day the leg's destination waypoint will be reached.
ETE	Estimated Time Enroute. The estimated time remaining to reach the next waypoint in a route.
Fixed Navaid	A navigation aid (usually found in marine charts) that has a fixed position and can be found on land or water. An example is a T.V. tower on land or a Greenday mark in water.
HDG	Heading. The direction you are facing, defined as an angle from North.
Latitude	The angular distance north or south of the equator measured by lines encircling the earth parallel to the equator from 0° to 90° .
LAT/LON	Coordinate system using latitude and longitude coordinates to define a position on the earth.
Leg (Route)	A segment of a route that has a starting (FROM) waypoint and a destination (TO) waypoint. A route may consist of 1 or more legs. A route that is from waypoint A to waypoint B to waypoint C to waypoint D has three legs with the first being from waypoint A to waypoint B.

LMK	Landmark. A location saved in the unit's memory which is obtained by entering data, editing data, calculating data or saving a current position. Used to create routes. Same as a waypoint.
Longitude	The angular distance east or west of the prime meridian (Greenwich Meridian) as measured by lines perpendicular to the parallels and converging at the poles from 0° to 180°.
Magnetic North	The direction relative to a magnetic compass
NMEA	National Marine Electronics Association. A professional organization that defines and maintains the standard serial format used by marine electronic navigation equipment and computer interfaces.
OSGB	A coordinate system describing only Great Britain, similar to UTMs. Used with GRB36 datum.
Position fix	Position coordinates as computed by the GPS receiver.
SOG	Speed Over Ground. The speed at which the receiver is moving.
TRN	Turn. Degrees or direction to turn.
True North	The direction to North Pole from an observer's position. The north direction on any geographical meridian.
TTG	Time To Go. The measurement of how long it will take you to arrive at your destination. TTG is based on how fast you are moving towards the destination and the distance remaining.

UTC	Universal Time Coordinated. Formerly referred to as Greenwich Mean Time (GMT).
UTM	Universal Transverse Mercator metric grid system used on most large and intermediate scale land topographic charts and maps.
VMG	Velocity Made Good. The component of the velocity that is in the direction of the destina- tion.
Waypoint	WPT. A location saved in the receiver's memory which is obtained by entering data, editing data, calculating data or saving a current position. Used to create routes.
XTE	Cross Track Error. The distance, left or right, of the desired courseline. The courseline is a straight line from your present position to your destination.